
Intelligent Forecasting,
Project Control, and
Client Relationship Management
 —
Dimitre Dimitrov

Software
Project
Estimation

SOFTWARE PROJECT
ESTIMATION

INTELLIGENT FORECASTING, PROJECT
CONTROL, AND CLIENT RELATIONSHIP

MANAGEMENT

Dimitre Dimitrov

Software Project Estimation: Intelligent Forecasting, Project Control, and
Client Relationship Management

ISBN-13 (pbk): 978-1-4842-5024-2		 ISBN-13 (electronic): 978-1-4842-5025-9
https://doi.org/10.1007/978-1-4842-5025-9

Copyright © 2020 by Dimitre Dimitrov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use
the names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Rita Fernando
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Author photo by Caroline Acton

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-
4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484250242. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Dimitre Dimitrov
Toronto, ON, Canada

https://doi.org/10.1007/978-1-4842-5025-9

To a friend.

“Invert, always invert”

—Carl Jacobi, 19th-century mathematician

	Chapter 0:	 ��Assertions��� 1

	Chapter 1:	�� The People in a Software Project��� 3

	Chapter 2:	�� The Role of Simplification��13

	Chapter 3:	�� Statistics and Probabilities��21

	Chapter 4:	 Forecasting Mechanics���31

	Chapter 5:	 Adjustments��59

	Chapter 6:	�� Financial Performance and Managing Risks��������������������������77

��Appendix A:	 Tidbits��95

��Appendix B:	 Sample Spreadsheets and Charts��107

��Bibliography��113

�Index��115

Contents
About the Author ��vii

Acknowledgments���ix

Introduction���xi

About the Author
Dimitre Dimitrov is a software industry
professional with 20 years of experience in
project management, information systems
development, and agile team coaching and
facilitation. Dimitre has helped companies in a
wide range of industries. He explores the
forces and relationships that shape the lives of
modern software development teams and
their clients.

Acknowledgments
I am thankful to many of my colleagues for getting to this wonderful place of
having written a book. I met some very bright programmers and managers
who helped me see the right ways of approaching project planning and man-
agement—want to thank all the teams and clients I have worked with for
being open to new ideas. I want to thank those who showed me the wrong
ways as well.

And I want to thank my family, my lovely wife and girls, for having the chance
to enjoy life together, and my sister and brother-in-law, for their deck, on
which I wrote some of the pages of my book and felt as a true book author,
basking in the summer sun and smelling the air of the Atlantic Ocean.

Special thanks to my editors and proofreaders. And special thanks to the
owner of the Page One cafe in Toronto, whose place and atmosphere are
inspiring many people to start their first page and where I claimed “I’m going
to write a book.”

Introduction
�Why This Book?
Have you been on projects where halfway down the road it seems increasingly
unlikely that you will finish as desired, but you can’t put your finger on it and
simply push through with a growing resentment? Have you been in meetings
where scope discussions get increasingly difficult and depressing, ultimately
sucking the energy out of everyone instead of enabling them to move forward
with certainty and determination? Wouldn’t it be good if a confident assertion
for the project’s ability to deliver is made as early as 1 or 2 months into the
effort? What additional value and quality of working relationships can you
generate if the time for estimation, tracking, and change management is
slashed by a factor of 10 while simultaneously providing clients and team
members with true peace of mind so they can focus on other important busi-
ness activities? This book provides a practical tool that will help with all of
this—it is a how-to book. But ultimately it is about the relationships we
develop during projects and the appreciation of our colleagues and business
partners.

It is 2019! Yet estimation and forecasting in the software development indus-
try are still considered mystifying at best, and an archaic and obsolete concept
at worst. Reliable forecasting continues to present a challenge for many teams
and software development organizations. The practices associated with the
two predominant software development methodologies are inadequate.
Methods related to waterfall development are notoriously bad for long-term
forecasting because they encourage too much information processing too
early and have a tendency to skew reality into a Gantt chart. And methods
that relate well to agile software development are not as notoriously bad,
however, mostly because long-term forecasting is avoided altogether. This is
problematic in many cases because it pushes important decisions too late in
the project, adds unnecessary stress on people’s relationships, and ultimately
diminishes the chances for successful projects.

When forecasting is done on projects utilizing agile software development,
it is often with short-term commitments—an iteration or a few at best.
Such small-span commitments have minimal value for business people who
want to look a year or two ahead. When teams practicing agile software
development commit to a longer-term delivery, they suffer many of the same
issues as people working on waterfall projects do—the desired “project

xii

targets” get missed, and there is lack of confidence throughout the project
about what will be delivered and when. Senior businessmen and business-
women lose the capacity to trust the delivery teams and organizations.
People who work together for years remain at a distance and never build
true partnerships. Many business teams and development teams are
openly adversary.

One reason behind much of these issues is the inability for meaningful long-
term commitment. And while reliably providing accurate and precise software
estimates is close to impossible, reliably providing accurate and precise fore-
casts is not. This book shows you how to do this and commit to a purpose
early. A satisfactory solution can be reached with a small investment in under-
standing people’s problems and through the adoption of simple statistical
principles. The security and reliability that you will be able to contribute to
projects will improve your team’s performance, morale, and motivation and
will have a positive impact on long and healthy client relationships.

�Who Is the Reader of This Book
and What Can You Find in It?
Software Project Estimation is for anyone who wants to have a fresh and ade-
quate outlook on the process of software estimation and forecasting, and
how these activities facilitate the conversations and relationships among peo-
ple. It is directly relevant to the roles of scrum masters and project managers
and provides practical tools for intelligent project control. The book is also
valuable for business people who want insight into the type of problems that
delivery teams face, and for programmers and other delivery team members
who want to gain an understanding of the project manager’s day-to-day chal-
lenges. While life experience as a member of a software project is useful for
quickly recognizing some of the situational nuances, this book will appeal to
curious people who are early in their careers.

The described forecasting method relies on the ability of a technical team to
deliver working software with consistency. Many of the technical practices
enabling such delivery have been perfected and popularized by what came to
be known as agile software development. Thus, in practice, the forecasting
and control methods align well with the operational mode of many teams
delivering software with an agile development methodology. However, this is
not a book about agile software development. If you and your team are prac-
ticing solid software development and do not label yourself as agile or
extreme, then this book will be valuable for you too.

Estimation by itself is of limited use. We do it to forecast and plan. Forecasting
and planning are in turn done to improve the chances of making good deci-
sions and taking appropriate actions. A forecast does not improve a project’s

Introduction

xiii

performance. It is only a tool for visualizing that performance. This book
shows how to use an intelligent forecast for making timely decisions and
applying measured project control for steering toward a valuable goal.

Before going any deeper in this book, we need to establish that estimation and forecasting are

two different things. This book is more about forecasting and control. However, the term

“estimation” has been misused for so long that it has become the normal term for describing

what amounts to forecasting. Estimation is only the initial guess about the size of something.

Forecasting is the activity of processing input data, including the estimates, and formulating an

intelligent prediction.

Where this book ventures into a longer treatment on a subject, or establishes
an explicit view on the meaning of a concept, it is not done with the intent to
educate the reader, rather it is done with the intent of providing context so
the reader can align their understanding with the ideas in the book. For more
information on some of the relevant concepts, you can refer to the literature
provided in the Bibliography at the end.

The method presented here scales well over software projects with different
sizes, provided the organizational structure and the development methods
are such that continuously delivering working software is achieved.

Small projects consisting of a few developers working for a couple of months
are harder to control through the approach provided by this book, but you
can still find useful ideas to guide your future discussions with clients and
teammates.

In the context of a legacy system, the applicability of the approach depends on
whether the system is healthy or not, or at least on how homogeneously
unpredictable is working on the system. For projects within healthy legacy
systems, you can apply the concepts almost directly. For projects within leg-
acy systems with compromised codebase integrity, you can cherry-pick ideas
that make sense in your context and apply them when there is an
opportunity.

This book will be of particular value to people who provide software project
delivery as a service to other companies or departments within larger orga-
nizations. Teams utilizing modern development techniques and automation
have often achieved the technical excellence required for reliable forecasting
and intelligent project control. These teams often serve big corporate clients
who are not well dispositioned or are downright allergic to the concept of no
estimation and no long-term planning. By providing a viable alternative to the
Gantt chart as a control method, this book will help delivery teams speak the
language of business people without sacrificing software development perfor-
mance or quality of delivery practices.

Introduction

xiv

Finally, Software Project Estimation will provide clues for achieving a mind-set
that allows us to bridge an important gap—to see each other (delivery teams
and clients) as human and to appreciate each other’s and our own needs, abili-
ties, and expectations.

�#NoEstimates
Since this book has the word “estimation” in its title, it seems appropriate to
address the idea of #NoEstimates.

#NoEstimates is about searching for alternatives to estimates. The method
described in this book might actually fall in this category of alternative to the
broadly accepted methods of estimation. However, it can be also seen as a
logical extension of traditional estimation. I will leave it to the reader to make
their own judgment as to whether the method described here is alternative
or not—if that categorization matters to the reader at all.

Exploring alternatives is interesting when context is maintained. Still, much of
the discussions in the #NoEstimates blogs and articles move haphazardly
from project delivery to product development to software development.
These are vastly different contexts. The book you are reading is about esti-
mating, forecasting, and controlling software projects.

In contrast, the concepts of business value and guided product experiments
are primarily about product development. Software quality, continual integra-
tion, and automation are primarily about software engineering. All three—
product delivery, software delivery, and project delivery—are complementary,
and when done right each draws on the strengths of the others. While prod-
uct delivery and software delivery present just as interesting and important
problems, they are not the main subject of this book and are only examined
where it facilitates the discussion of intelligent project forecasting.

�How Is This Book Organized?
The concepts in the book build upon each other. Concepts covered earlier
are needed to fully appreciate those covered later. Ideally the reader will take
on a sequential approach and read the book from front to back.

That said, many of the sections in the book can be read without having read
the previous sections or chapters. Some readers might be familiar with a few
of the ideas presented in this book and could dive straight into a later chapter.
The sections within chapters are kept brief, making it easier to locate topics
when reading nonsequentially.

Chapter 0 initializes a minimalistic context for the rest of the book.

Chapters 1–3 lay out the topography.

Introduction

xv

Chapter 4 describes the core estimation and forecasting techniques.

Chapters 5 and 6 add important details.

Appendix A is a compilation of ideas and techniques that are important for
supporting the practical application of this method.

Appendix B contains a few spreadsheet examples.

�Frequently Used Pronouns,
Collective Nouns, and Terms
A few words appear repeatedly throughout the text:

“People” is often used as all the people on a project, which includes both cli-
ent and the software delivery team. Or, “people” can sometimes refer to only
one of these groups—either the client team or the software delivery team.

“We” is mainly from the perspective of the software delivery team, but it is
also used from the perspective of all the people involved on a software proj-
ect. Occasionally “we” stands for project managers and scrum masters only.

“Business people” and “client” are used for the people who request the soft-
ware solution. Sometimes these people are external clients, and sometimes
they are from another department within the same company.

“Software developers” is generally meant as the programmers, designers, and
testers from the delivery team, but is sometimes used to describe all the
people who contribute to the delivery of a software project, including the
scrum master and project manager.

“The team” and “project team”—these and similar expressions are used to
mean all the people on a project, including people from the client team who
are actively engaged with the project.

“Delivery team” is basically “the project team” less the “business people.”

If there are five scrum teams working on the same project, then all of these
are considered “the delivery team,” since the major discussion in this book
focuses on estimating and forecasting complete projects and not individual
team’s performance.

“Accurate” is generally used to mean both accurate and precise, since we are
only interested in the pragmatic side of forecasting.

“Project” is a collaborative enterprise for achieving a particular valuable goal
over a set period (and within certain limitations).

Introduction

xvi

“Project management” is meant as the activities related to decision making
and application of control over project parameters in a way that is most con-
ducive to the project’s success. It also includes the activities related to secur-
ing the people’s well-being within the project boundaries.

“Project manager” is generally meant to describe a role and not a job title.
Anyone who is participating in project management activities on the project
can play the project manager’s role. A scrum master can often be a project
manager, but so can a team lead, a director, or a manager. Occasionally, the
whole team can be the project manager.

“Project performance” captures the project’s progress toward success in
terms of delivered functionality and expanded effort. It is not exactly the
same as team performance, although both are certainly related. It is impor-
tant to keep in mind that the definition of success might shift during a typical
project as people adjust to reality.

Introduction

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_1

C H A P T E R

0

Assertions
These are the beliefs and assertions which give meaning to much of the
discussion in this book.

“Certainty or safety is a basic need”—At some level every person needs safety.
At the most elementary level, a person needs physical and psychological
safety. This is true even when a person engages in an inherently risky endeavor
like starting a new software project.

“A software team can deliver continuously within a controlled productivity range”—
Modern delivery teams have mastered proven software engineering practices
and have repeatedly demonstrated that their productivity can remain within
constant limits throughout the duration of a project. We will take “constant
limits” to mean that if there are two comparable pieces of functionality, then
the team will complete these by expanding comparable amounts of effort, and
we can expect this to hold true throughout the project (with the possible
exception of the first few weeks when people are picking up speed).

“Project control is more important than record keeping”—On a software project,
the primary responsibility of anyone involved is to take actions with the intent
to control and steer the project to success. Bookkeeping is of secondary or
ternary importance. The benefit of forecasting is to pull certain important
decisions earlier in the project’s life. We are not forecasting to prove something
right or wrong, nor are we estimating to keep a record and hold people
accountable for the estimation numbers they produced.

2 Chapter 0 | AssertionsChapter 0 | Assertions

“It is only worth forecasting when there is ability to act”—A forecast on its own
does not change the outcome of a project. There must be a real possibility
that we make control decisions, which lead to measured and timely actions,
and change the project’s parameters. If such readiness for action does not
exist on a project, and will never exist regardless of new knowledge, then
forecasting becomes useless.

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_2

C H A P T E R

1

The People in a
Software Project
Let’s start this book with a short stroll around the office to meet the people
who are involved in a software project. It is important to look at their typical
problems and desires so that we have confidence in the adequacy of the
forecasting method and the approach to project control that we develop later
in this book. It is the people, with their problems and desires, who establish
the solution’s adequacy.

�The People
The client (a.k.a. business person). These are the people who generate
business solutions. They take business risks, sometimes having to power
through considerable fears and doubt. They hustle and discover valuable
things that other people need and are willing to pay for. Their ideas and
resolve for action accomplish the visionary work needed for the creation of
something new. Sometimes they need software tools in order to move their
business ideas forward. Even when they take on a project for building a
software solution, they are not software developers, rather they are business
developers.

4 Chapter 1 | The People in a Software Project Chapter 1 | The People in a Software Project

The developer (a.k.a. programmer, tester, designer). These are the
people whose brains and hands perform the implementation work and bring
a software solution into existence. They are skilled in software techniques
and in making computer systems perform complex things. They understand
how users interact with software. Many of these people can keep large
amounts of information and abstractions in their brains. They enjoy seeing
these abstractions materialize in the form of working software and sharing
this miracle with the rest of us. A certain element of playfulness and doing
things purely for the sake of having them done can be found in many software
developers.

The project manager and the scrum master. These are the people
charged with facilitating and organizing various project activities. They help
other people make decisions and thus have an effect on how a project is being
controlled. Key activities affecting decision making on a project are forecasting
and scope control. While project managers and scrum masters do not
themselves produce estimates, they play a central role1 in how these estimates
are used into planning, and subsequently how the plans are enacted throughout
the project’s execution. The facilitation work that project managers and
scrum masters perform is critical for the overall project tone and the quality
of the work environment.

The product owner and the business analyst. These are the people who
have the skill of converting the ideas of business people into a format
consumable by software developers. Product owners can also make confident
decisions on what is valuable and what is less valuable in a software solution.
Business analysts, and many product owners, help describe, and to a degree
define, the solution that brings about the capabilities desired by business
people. Their work greatly affects the quality of information that developers
get to process, the volume of implementation work, and the end product
suitability.

The manager and the team lead. These are the people who are tasked
with getting the job done. They manage teams of developers with finite
capabilities and less finite potential and are responsible for creating the
environment where developers can do their work well. These are also often
the people who provide initial estimates for software projects. They may
delegate the actual estimation to their teams, but they remain personally

1 Technically, scrum masters are absolved from the responsibility of planning out the full
project. They only focus on helping the team work better and remove impediments.
However, I consider client discomfort and uncertainty to be major impediments for the
team’s work. As such, the scrum master is responsible for minimizing them. One of the
things that can be done is to have a better project forecast, reliable long-term commit-
ment, and a working plan for effective project control.

5

accountable for the information that gets communicated to clients. When it
comes to project sizing, Managers and Team Leads are often expected to use
experience and gut intuition for producing an overall project estimate that is
safe and sufficiently accurate.

�The Problems
A problem is something to be worked out or solved, but it is also something
that allows people to self-validate and to ultimately grow as human beings.
The way a person approaches their own problems has a noticeable effect on
their quality of life and those around them. The way one person approaches
other people’s problems has a noticeable effect on the trust and relationships
they will be able to establish.

Making a decision. This is one of the main problems for businessmen and
businesswomen. Making decisions is how they make their living and create the
ecosystems for other people to make their livelihood too. The actual
mechanics of deciding is not what creates difficulty for them, but it is the
build-up to that decision which costs them time, effort, and comfort. It is a
complex problem since the business context involves various bits of
information and many unknowns that are all in flux. Business people deal with
this complexity and handle the unknown by taking risks and venturing into
business experiments.

The challenge that software projects present is the high variability of just
about everything—which basically translates into more uncertainty. Some feel
uncertainty is what business is all about.

Making a promise. This is one of the main problems for makers. Software
developers are makers. People who make things with their minds and hands
love seeing the products of their labor being used by others. Makers enjoy
providing solutions to other people’s problems. A maker wants to say “I will
solve your problem. Just tell me what it is.”

Whether the promise is explicit or implicit, it is real, and both the maker and
the client appreciate its power. How to make the promise carry through is the
problem that makers wrestle with.

Making a plan. Making a plan is a problem for anyone who is accountable for
seeing a project to an end. On software development projects, this is often
the person tasked with project management responsibilities.

One way or another, every project ends. What activities happen between the
start of a project and the end of a project, and what is the result of each of
these activities, ultimately have a crucial impact on whether the project ends
successfully or not. Consequently, identifying the activities with the best chance
of contributing to a successful outcome is of primary interest for a planner.

Software Project Estimation

6 Chapter 1 | The People in a Software Project Chapter 1 | The People in a Software Project

Typically, there is an expectation, or at least a wish, for a reliable plan to be in
place sooner rather than later through the life of a project. Even when the
“plan” is to simply work through the mountain of challenges, the project
manager is expected to guide the effort on a path of success and to have
sufficient foresight into why the chosen path is the one leading to success.

WHO CARES!

It is easy to say “Don’t promise” and “Don’t plan.” It is less easy to say

“Don’t make decisions,” although some people do say it in a roundabout

way. Even though these approaches look seductively simple, and there is a

hint of bravery in choosing them, none leads to a satisfactory solution. They

invariably lead to unwelcome compromises that people need to accept at the

expense of comfort and happiness.

In the context of a single project, managers have a similar problem to planners;
they want to see the project on time. And business analysts have a similar
problem to makers, that is, they need to see their work materialize and
produce valuable results.

�The Desires
An adequate solution should solve a problem and align with desires. So let’s
make a few more generalizations. You will notice this as a pattern that applies
to estimation and forecasting too—by making careful simplifications we can
get good enough understanding of a complex problem.

To make decisions on reliable information. For business people this is
one of the primary desires. By the nature of what they do, they need to make
so many decisions that any opportunity for making a quick and clear decision,
based on little but reliable information, is welcome.

The next best thing is the knowledge that reliable information will be available
at a defined moment in time. When businessmen and businesswomen are
faced with uncertainty, they can tolerate it for a while, but it helps them a lot
if they have an idea of what to expect once the waiting is over.

Why is this important? It is important so that we can properly sequence the
input we are providing to people who are making decisions. We need to
appreciate what suits them best at a given moment in the life of the project.

7

This makes communications much more meaningful and allows us to move
through seemingly difficult situations with ease.

To be able to work. Makers and artists, which software engineers are, enjoy
working. They like being useful and spending time tinkering with whatever
happens to be in their field of interest. What they typically don’t enjoy is to
deal with something they cannot perceive to be real, valuable, and true. They
markedly dislike the situations where they are the originator of things with
questionable worth.

For makers, it is preferable to describe a complex problem in a complex way,
rather than sacrifice the truth and provide simplistic and untrue answer.
Makers can bend a little and deal with uncertainty, but only for short periods
of time. They prefer to spend their time making things.

Why is this important? Because it is important to understand that software
developers detest estimation, and forecasting by extension, since they cannot
be proven to be true. They are only a guess. And for makers a guess represents
little value. For this reason, we need to be sensitive and empathetic to their
dislike when we need their input and cooperation. When developers see that
we understand the binary unsustainability of our own request, they will oddly
be more willing to help. But it is also important for another reason—when
developers see that our forecasting efforts are ultimately designed to provide
them with a more sensible environment for work, there is a material
improvement in the relationship’s dynamics.

To be able to apply control. For people who make plans and who are
responsible for delivering a project, like project managers, team leads, and
scrum masters, it is highly desirable to have control over how things roll out
toward the project objective. Of course, a project manager is not judged by
their ability to strictly follow a rigid plan. Rather, the project manager is
ultimately valued for their ability to deliver a satisfactory project, changing
plans if necessary, and even steering in the absence of a ratified plan.

Guiding things along a known plan of action is typically easier than making all
the right calls in real time without the benefit of planning and anticipation.
A plan provides a useful reference and an opportunity to rehearse some
scenarios in advance. It puts us in anticipatory mode and not in reactive mode
of being. In this way we can roughly gauge if things are panning out well, and
we can set interim course direction which helps us move through obstacles
without getting distracted by too much fear and unnecessary considerations.
The more control a planner can exert on how work is being completed during
the execution of a project, the more likely it is the end result agrees with the
plan and, by assumption (please see the side note), with the expectations and
wants of the people affected by the project.

Software Project Estimation

8 Chapter 1 | The People in a Software Project Chapter 1 | The People in a Software Project

PROJECT MANAGEMENT? SO 20TH CENTURY!

Waterfall is a method for software development and project management,

which relies heavily on thorough and exhaustive preplanning. It has come to

be that Waterfall is a bad thing in many cases, mainly for not being able to

adjust to reality. Planning and software project management, as practices,

have been associated with Waterfall for so long that many people treat them

as equivalent. We need to separate them though, because they are not the

same. There are ways to plan and to manage a project that are dramatically

different than what Waterfall has established as a standard.

The Manifesto for Agile Software Development (https://agilemanifesto.

org/)2 says we (the software developers) value responding to change over

following a plan. Suggesting that following the plan might be the better thing

to do sounds like a contradiction to the manifesto. However, there are two

assumptions, or rather oversimplifications, which are baked into this particular

postulate of the Manifesto for Agile Software Development. The first is that

we value responding to change only when we have assessed that the change

merits a response. We are not merely responding to any change that comes

along. The other is that we value responding to change over following a static

plan, not over following a plan in general. A plan can be revisited and adjusted

(even within the constraints of a contract). When the plans adapt to the relevant

changes in reality, we can confidently follow these plans, while simultaneously

responding to change.

Here, we are talking about effective project control—steering the project
reliably into producing the desired outcomes. For example, having power
control over people’s overtime is not effective control in this sense, while
minimizing context switching by suggesting or enforcing a smaller WIP (work
in progress) rule, or by improving feedback time, can be considered an
application of adequate project control.

2 See Appendix A for a more detailed discussion about the manifesto.

https://agilemanifesto.org/
https://agilemanifesto.org/

9

WHAT CONTROL?

In this book, when we talk about control, we are talking about project control.
And we are explicitly not talking about control over people.

There are three primary project controls we can manipulate:

•	 Scope—controls the “what” of the solution

•	 Effort—represents the power we apply toward building the
solution

•	 Duration—represents the time we have available for finishing
the project

By adjusting each of these controls within the project envelope, we can

affect the project’s progress and ultimately can drive the project toward

desired objectives. There are other project aspects that can be recognized

as distinct secondary controls. They have direct and indirect impact on

the primary controls, and they are also very important in their own right

for managing the less tangible outcomes of a project. These are the

Environment, Software Quality, Metrics, and Value.

Environment, the well-being and collaborative capacity of people, can

be treated as a secondary control. It almost directly converts to Effort—

motivated people deliver more effectively. In this sense Environment can

be considered part of the Effort primary control, and by improving the

environment, we increase the available effort that can be expanded toward

the project goal.

Software Quality, the well-being and capacity for change in the code base,

can also be treated as a secondary control. However, for most teams this

is only a theoretical control since the quality that the team can attain is

constant (and maximum) within the envelope of a single project. Lowering

the quality is of course possible, but it cannot be considered a control since

it doesn’t make sense. In any case, improving software quality, if it can be

done sustainably within the project, also translates to Effort because once

the team is working at an improved quality level, they get to expend less

effort for achieving a comparable result.

Software Project Estimation

10 Chapter 1 | The People in a Software Project Chapter 1 | The People in a Software Project

Metrics, the health of the adopted development processes. Driving toward

more controlled processes improves the predictability of events on the

project and the likelihood of a forecast being close to the actual outcome.

To the extent that an improved process can be proven to facilitate better

productivity, we can consider it an effective project control. However, let’s

not forget that individuals and interactions come before processes and tools.

Enforcing rigid processes will backfire when creativity and thinking are the

primary activities of people (which is the case on software development

projects).

Value of the end product. Prioritizing functionality, so that we first complete

the more valuable pieces, is a critically important derisking technique.

Prioritization is a variation of the scope control. Occasionally people will

discover valuable functionality that has not been previously recognized as

an objective for the project. Pivoting for value represents product control,
not project control. However, the value of the end result is so crucial for the

project success that the project must accommodate changes to scope where

this has been deemed the correct course of action. If the change in scope

cannot be contained within the current project envelope, then the whole

project needs to be reframed.

It should be noted that within the context of a given project, the appropriate

and sufficient value is assumed to be guaranteed by the project’s definition

itself. A project starts with a specific goal, and it is expected that this goal

has enough value to justify the project.

With forecasting we are seeking insight on where and when to apply

project control.

11

�Summary
There are a few typical roles on any software project. Sometimes these roles
might be fulfilled by people whose daily roles are different. For example, a
developer might be a maker primarily, but can double as a project manager
and planner. It is less likely to see a business person play the role of a maker
and deliver solid software code, but it is not unheard of.

Clients, developers, and facilitators (scrum masters, project managers, team
leads) have various problems and desires. Most of the time they prefer to do
what they do best. People don’t mind occasionally spending time on things
they do not consider their primary interest, and they don’t mind temporarily
hanging in suspense, but they seek the things that make them comfortable and
happy. They desire some form of certainty and autonomy.

Outside these generalizations lies a diverse set of highly nuanced human
wants, fears, and relationships. But the bulky characterizations we discussed
in this chapter define the landscape on most software development projects.

Software Project Estimation

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_3

C H A P T E R

2

The Role of
Simplification
In this chapter we look at simplicity and explore why it is good to keep things
simple. We will go over a few concepts that will allow us to view complex
matter through simplified but correct models.

A model is a composition of ideas that help us understand a subject that the
model represents. A correct model is one which introduces little or no skew
to the particular aspect of interest, that is, there is a reliable mapping between
what we understand through the model and what we would see if we were to
look directly at the subject we are examining. A model can provide significant
simplification and still be correct for a given purpose. For example, if we are
considering shipping books through the mail, then modeling a book as a solid
box with some weight might be a decent simplification.

An oversimplified model distorts reality in a way that makes the model unac-
ceptable for what we are trying to accomplish. An overly complicated model
is too hard to work with and is not worth the knowledge it provides—even if
it’s a correct model.

For example, if we model the book as simply a “unit,” it might be oversimpli-
fied. Consider: “I will ship 4 units.”—it doesn’t carry the necessary information
for size and weight. On the other hand: “I will ship 4 reading doohickeys, each
consisting of two 6"x9" flat unbendable cardboard surfaces hinge-attached
longitudinally along the 9 inch edges and encompassing a set of 250 collated

14 Chapter 2 | The Role of Simplification Chapter 2 | The Role of Simplification

flexible paper sheets suitable for printing” is overly complicated, useless, and
probably wrong, even if we could derive the weight and size of each
doohickey.

When looking for simple solutions, it is important to keep in mind that we
still want a true representation of the reality. Sometimes, to stay true, we
need to combine a few simple concepts and even build a more complex
model—as long as it is not significantly more complex than it needs to be, the
solution can be considered simple in the context of the specific problem.

Why is simplicity important in the context of software estimation, forecast-
ing, and planning? One of the reasons is that these activities do not represent
a primary interest for any of the people on the project. Business people want
to make decisions and move on. Developers want to be working and creating
software solutions. And project managers want the project to be rolling, and
they want to be able to control it toward a successful outcome.

And while everyone on the project understands the importance of a sched-
ule, it is not the schedule or the plan itself that makes anyone happy. Thus, it
is best if this aspect of the project planning1 is approached in a simple and
painless way.

It is useful to examine simplicity on its own before we try to capture it within
the specific techniques for estimation, forecasting, and planning. This will
allow us to confidently accept the validity of the method discussed later.
Whence this chapter.

�What’s Wrong with (Overly) Simple Answers?
Simple answers are very much okay and desirable when they reflect a similarly
simple reality.

But software projects are rarely simple. Thus, providing a simple answer to
almost any question about a software project risks oversimplification.

For example, let’s consider the simple question, “When is this project going
to end?” This can be easily answered by producing a calendar date—July 2nd.
A simple answer like this leaves too many unanswered questions which are
implied in the original inquiry. Is the project going to be successful? Is every-
one going to feel it was a successful project or only some people? Is the

1 It is important to distinguish between the portion of planning, which takes care of the
schedule, and project planning in general. Project planning encompasses a diverse set of
business activities which can be immensely interesting to many people. We are not talking
about that planning here, and we will limit ourselves to discussing the part of it which
deals with estimation, forecasting, and scheduling.

15

project goal going to be met fully or partially? Is there anything else that
needs to happen for the project to be useful?

It is unlikely that someone on a project cares only about the end date. The
reality for which people care is complex, and it is also constantly changing.
Producing overly simple answers in this context is not adequate. But some-
times people get lazy and want to get rid of the problem with a silver bul-
let2—a single metric, or a single best practice, a single simple answer. And
instead of simplifying the matter, they only introduce uncertainty, increase the
likelihood of misunderstanding, and ultimately reduce the chances for a suc-
cessful outcome.

�What’s Wrong with Complicated Answers?
Complicated answers do not instill trust. They require too much intellectual
investment to be understood, and they are only adequate when everyone is
deeply interested in the subject matter in question.

When producing a project forecast, we need to be careful with exposing the
underlying complexities. People will increasingly doubt the forecasting method
with each layer of complexity.

What people need is a simple and fast process—producing simple and trust-
worthy answers.

Complicated answers are not always unwanted. Some of the speculations we
make during forecasting depend on nontrivial relationships among things. We
want to hide these when possible, but if someone is explicitly inquiring about
the source of our reasoning, we should be able to dive in and provide satisfac-
tory answers regardless of how complicated the reality around them happens
to be. In a scenario like this, maintaining simplicity will frustrate people more
than inadvertently overcomplicating an answer.

�Simple Constructs That Capture Complex
Reality
Range. Range is the more adequate alternative of a singular value in almost
any project context. For example, if a client asks “How long do you think this
project will be?”, an answer of “11 months” can be suspicious, while the
equally simple answer of “Between 10 and 12 months” can be satisfactory and
more adequate.

2 Fred Brooks, “No Silver Bullet — Essence and Accidents of Software Engineering,”
Proceedings of the IFIP Tenth World Computing Conference, H.-J. Kugler, ed., Elsevier Science
B.V. Amsterdam, NL (1986): 1069-76.

Software Project Estimation

16 Chapter 2 | The Role of Simplification Chapter 2 | The Role of Simplification

Ranges allow us to say things that are sufficiently true. These statements gen-
erate all the trust needed without exposing the underlying complexities and
uncertainties.

Of course, if we answer “Between 6 and 16 months,” we are just as correct
(or more), but the uncertainty increases unacceptably. The client will have the
same doubts as if we hadn’t provided an answer at all, only now they will also
question our ability to adequately understand their problems. The answer
“Between 10 months and 20 days and 11 months and 10 days,” which can be
correct and very precise, triggers similar suspicions.

To build a meaningful range, we need to know the answers to two
questions:

·· What is an adequate accuracy for the listener? This can
also be called “acceptable error.” It is a value that repre-
sents how far off the true answer someone is willing to
go and still consider the result good.

·· What is a meaningful and sufficiently true value that the
range should encompass?

Often, guessing is acceptable replacement for knowledge, so we don’t really
need to know the exact answers to the two questions, but only to be able to
guess them with some level of comfort. Try this next time you are challenged
to produce a seemingly simple answer, especially when it is about estimates
and dates—instead of a number, produce a range. If people still insist on a
singular answer, then use “most likely” and pick a value within the range. We
talk about probabilities later.

Conditionals. Conditionals help us when there are a few possibilities that
would make for an unacceptably wide range if we were to wrap them all into
a single range.

Sometimes an answer can be dramatically different based on various factors.
Instead of producing a single range encompassing the many possible out-
comes, it is better to have an answer that represents the disparate
possibilities.

For example, when talking to a client, instead of saying, “This project might
take between 8 and 12 months,” we can say, “This project will take between
10 and 12 months if we add Chris to the team. And it will take between 8 and
10 months if we add Avery.”

By using conditionals we provide the client with a clearer picture at the
expense of minimal extra complexity. The end result is a simple reality for the
client.

17

If we spare the conditionals and provide a wider range, say “between 8 and 12
months” from the preceding example, we overload the listener with a differ-
ent type of complexity—they need to consider whether the range is accept-
able to them in its entirety. It may be that the project must end in less than
10 months. The client can wrongly assume that it is more likely for us to be
on the upper end of the provided range, which is 12 months, and they can
decide not to do the project with us. We were technically correct but didn’t
provide the needed information.

Boundary. Setting boundaries is an important technique for simplifying the
reality and for staying safe. It is the emanation of responsibility. When we stay
within reasonable boundaries, the people we work with get the healthy mes-
sage that we are taking measures for our own safety, and as a result they tend
to see us as more trustworthy. However, let’s quickly consider what a reason-
able boundary is and how does the nature of the work change the meaning of
reasonable.

People often say “Don’t drive beyond your headlights.” This is as valid in soft-
ware project context as anywhere else. When driving a car, it simply means
to drive with a speed which allows you to stop on time when something
enters the illuminated area ahead of you. When controlling a project, it simply
means to only commit to what you have real information about.

One of the difficult things when communicating ideas is to make sure that
other people understand accurately what we have in mind. For example,
when we say that the estimates show it will take around 10 months to com-
plete the project, it is likely that people understand this as “The project will
take 10 months to complete.” But what we said is that an estimate we made
is 10 months, not the (actual) length of the project.

Let’s see how setting a boundary can expose the important limits in our
statements and help with this problem. We may say this instead: “We only
have looked at the first two modules with enough detail to speculate on
effort cost and duration. Based on what we have estimated, and on all the
assumptions we made, we think it will take us 1.5 months to complete these
two modules. We have identified a few risks as well. If you want us to discuss
the assumptions or the identified risks, it can help us all stay more aligned
through the next 2 months. If the projection for these two modules turns out
correct, we will be comfortable forecasting the whole project at 16 to 18
months.”

The boundaries we set in this statement are

·· Only part of the system has been assessed.

·· There are assumptions, so we only feel safe within them
being true.

Software Project Estimation

18 Chapter 2 | The Role of Simplification Chapter 2 | The Role of Simplification

·· The overall estimate is based on the smaller estimate
being true.

·· There are also some risks.

Now, it’s true that the statement is not Twitter friendly.3 But it sets boundar-
ies within a relatively concise articulation, and these boundaries make it more
likely that the client’s understanding of what we said is closer to what we
meant. A listener might need some extra time for processing it, and we might
need to furnish help, but this extra time is in the order of minutes. If we spare
the few minutes here and try to be short, we risk people working with incor-
rect understanding for months.

This is important because when we allow the discrepancies in people’s under-
standings to accumulate for long periods, it drains their trust and will eventu-
ally exhaust it—people become convinced that there is no chance for common
understanding. When this happens toward the end of a long and complex
project, there might not be enough willpower left for discussing issues ratio-
nally and making collaborative decisions that work for everyone. Instead, it is
likely that people start blaming each other. Someone will invariably say “But
you said 12 months! We are now only 2 weeks from that!”—estimation and
forecasting have turned into tools for assigning blame and controlling people,
not tools for controlling projects.

Let’s now see how the meaning of reasonable boundary can change based on
the essence of the work. Consider the driving through the night analogy
again. While we are driving the vehicle, it is reasonable to only stay within the
headlights. It might be even more reasonable to stay within half of what the
headlights cover. But let’s imagine that we stop driving and take a short break
on the side of the road. There is nothing wrong with envisioning how long it
will take us to the next little town, so we can find a restaurant to eat, or how
long it will take to cross a continent, if that’s what the trip is about.

When the nature of our work is to envision the future, it becomes unproduc-
tive to maintain the same boundaries that make sense when we work on the
immediate tasks propelling us toward that same vision.

When the future is unknown, we can still maintain enough limiting condi-
tions—for example, we can say, “Provided we maintain the same pace, we will
deliver the first phase of the project in 6 months, so 9 months in total. Based
on the high-level specifications, it seems the second phase is similar in size,

3 Many people these days take pride in emulating Steve Jobs and emit ridiculously succinct
messages (in emails or otherwise), only to then have other people perform inordinate
amount of juggling and mental trickery before finally arriving at the “correct” rendition of
the intent in the commanding message. We need to be careful when pretending to be
Steve Jobs!

19

and it is likely to take a similar amount of time, but this is a speculation which
I’m not comfortable with at the moment.”

We can share our fears and not push through by force and commitment only.
Stated fear is a type of boundary, and we communicate that we are not willing
to venture too far beyond it. This way we stake a claim into the unknown and
still maintain boundaries that make sense to us. Opening up with our fears
takes courage. And we show others that we are both brave and smart. It is
important that we are brave at work, and it is also important to stay respon-
sible. As we get more data, we can sharpen the boundaries and engage with
commitments without fear.

Void. Void is the construct signifying the absence of something. The impor-
tance of this construct is that it allows us to not have to invent information
about something that is simply not there.

When we can intelligently deal with uncomfortable situations, we are creating
trust. It is much more responsible to acknowledge an (ideally temporary)
inability to provide information than to supply fake data masquerading as
information. Whether we work for other people or we risk our own money,
being responsible is the behavior which creates and builds trust the most.
Being irresponsible can destroy trust quicker than any other misstep, even
when it doesn’t cause material loss.

Business people can handle void fairly well if they know when information will
be available. They can also handle cost associated with obtaining information
sooner. The cost might be in money or in increased risk. This allows us to say:
“I cannot provide meaningful information for the target date at the moment,
but if we start now, with the team we considered, I can provide an outlook
with 90% certainty in 2 months, and with 70% certainty in 4 weeks.”

Business people are capable of managing this type of situation well, and pro-
vided we can supply the additional information as promised, void is more
meaningful than something that we only wish to be true.

Probability. This leads us to the next construct—probability. Because it is
such a central notion in estimation and forecasting, it has its own section in
the next chapter. But let’s quickly sketch it here as a tool for simplifying the
reality and talk more about its other properties later.

Probability is in a way similar to a range. With a range we guarantee the value
is within the upper and lower limits. With a probability we avoid providing
that guarantee, but provide a measure of how likely it is that the actual value
matches some target instead.

When it comes to software estimations, probabilities do translate to a range
almost directly. For example, if I say, “I’m 80% certain the project will end
10 months from now,” this can be translated like “The project will end
between 10 and 12 months from now.” Where if I say, “I’m 90% certain the

Software Project Estimation

20 Chapter 2 | The Role of Simplification Chapter 2 | The Role of Simplification

project will end 10 months from now,” then this can be interpreted as “The
project will end between 10 and 11 months from now.”

It is interesting to note that when we make software projections, we talk
about things taking longer than expected and not shorter—“I’m 80% certain
that the project will end 10 months from now” rarely means the project
might turn out to be 8 months. There is an implied “at least” in front of
the number of months—“I’m 80% certain that the project will end at least
10 months from now.”

�Summary
Software projects are complicated. However, there are communication tools
we can use to simplify things considerably and still have a correct understand-
ing of the relevant issues. These tools are common structures that make it
easier for us to comprehend problems, to find and share options, and make
decisions.

People have different demands for information and different tolerance levels
to simplification. We need to learn how to use these simplification tools in
ways that fit organically with everyone on the project—clients, developers,
and managers. If we can help others feel more comfortable, then we can
secure a better environment for effective collaboration.

Things need to stay as simple as possible, especially when it comes to estima-
tion and forecasting. But sometimes we need to think beyond simplicity in
order to capture it truly. We are discussing a few slightly more complex phe-
nomena in the next chapter, and this gets us ready to start on the core of this
book.

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_4

C H A P T E R

3

Statistics and
Probabilities
In this chapter we touch on statistics and probabilities. We will look at a few
interesting applications of statistics and will focus on how they affect decision
making, because the main purpose of intelligent forecasting is to facilitate
decision making and project control.

�Probability
What is probability? What does it mean to you? For example, what does it mean
if I say that you have 80% chance of making $100 profit when you invest $100?

It doesn’t mean much as a number on its own. It doesn’t tell us whether you
will win $100 or not. It only starts meaning something when we put it in
context of other things. For example, are you willing to take on the 20%
probability that you lose $100? Do you only have $100 available? Are you only
allowed to bet one time, two times, or more? Is it your goal to win the extra
$100 in the first place? The answers to these questions provide real meaning
to the probability number.

Probability is a number that helps us decide if we want to try something with
the intent of obtaining a certain outcome. If we are not interested in the
specific outcome, the probability number is of only superficial interest. But if
we do care about the outcome, then this number starts having a more material
meaning.

22 Chapter 3 | Statistics and Probabilities Chapter 3 | Statistics and Probabilities

When we talk about a singular event, probability represents a binary reality—
something either happens or it doesn’t happen. The probability number
informs us how likely are we to win or lose. If we are willing to take the risk
of losing, we might proceed. If the risk is too high, or the potential prize too
insignificant, we might choose to not proceed. But regardless of the likelihood,
if we decide to proceed, we still either win or lose. See Figure 3-1.

When we work with a stream of events, we observe something else—the
probability number starts describing how frequently the desired outcome
occurs. It is now almost guaranteed that the desired outcome will
happen—we just don’t know how many times exactly. As the number of
events gets bigger, the guarantee becomes stronger, and so does the
likelihood of the actual number of successful outcomes being closer to the
probability number. See Figure 3-2.

When we apply a probability number on multiple independent events, things
line up to what is known as normal distribution curve. It is a line that describes
the likelihood of things happening as we move along a range of probable
states.

Figure 3-1.  P=0.2 means there is 20% probability for an outcome. With a single event, there
will be only one result, and although the shaded area result is more likely, there is no guarantee
there will be a result corresponding to the shaded area.

Figure 3-2.  At 5 events the actual number of gray dots might not represent 80% of the total.
At 500 events the actual number of gray dots is very close to 80% of the total.

23

In a normal distribution, the most likely outcome is called “mode” (400 is the
mode in Figure 3-3). Almost all, 99.6%, of the possible outcomes fall within
the ±3 standard deviations from the mode. A standard deviation is a span on
the dimension of interest, which span helps statisticians discuss the probability
distribution easier. Each shaded area in Figure 3-3 is one standard deviation
wide. Approximately 70% of all outcomes fall within ±1 standard deviation
from the mode, and approximately 95% fall within ±2 standard deviations
from the mode. These numbers might seem contrived, but it turns out they
apply over a very large set of natural phenomena.

Let’s say we have a team of two developers and have estimated (guessed) a
project at 1.5 years. Let’s say we have information to think that the absolute
best we can do is 1 year, and based on other assumptions, we think that 2.5
years is the worst we can do. We can build a cumulative probability curve
(Figure 3-4) describing how likely the estimates seem based on what we know
at this moment.

Figure 3-3.  If we ran 1000 independent experiments with P=0.8 for an outcome, and with
500 samples in each experiment, and if we measure the actual number of desired outcomes
per experiment, we would have a result similar to this graph. In 68% of the cases, the number
of desired outcomes will be between 370 and 430, and in 95% the number will be between
330 and 470.

Software Project Estimation

24 Chapter 3 | Statistics and Probabilities Chapter 3 | Statistics and Probabilities

The cumulative distribution curve indicates with about 85% probability that
the project will be less than 2 years, and with only 15% that it will be less than
the estimate of 1.5 years. Even with a grossly oversimplified model like this,
we can start making some crude decisions and we can improve communications
on the project.

�Getting Accurate Information Based on
Imprecise Inputs
The Central Limit Theorem tells us that the sum of many random and
independent variables is approximately normally distributed regardless of the
specific distributions of the variables. This is of great significance and is a
powerful tool we can use for project planning, because projects are such a
sum of large number of variables. True, they are not always independent, and
they are not always completely random, but it is a good enough approximation
that we can use to bypass hefty sets of complexities.

With the help of this theorem, we can view the whole project as a single (sum
total) variable, and we can analyze the probability of this variable being within
a certain range through the help of a normal distribution curve. Something
we’ve been intuitively doing before, but not taking it to its logical conclusion.

Figure 3-4.  Cumulative distribution curve showing that the original 1.5-year estimate is not
as likely as we might have thought when making it

25

What this means for us, as software developers and project managers, is that
even if we botch the accuracy on every individual estimate, we can still have
confidence that the sum total remains within the same normal distribution.
Figure 3-5 shows that we can reason about the distribution of the sum total
and make intelligent speculations for the “total accuracy” without having to
worry about the accuracy of each of its elements.

Figure 3-5.  A sum total normal distribution curve comprised of multiple variables’ distributions

ACCURATE ESTIMATION! WHAT IS THIS?

We should mention here that the idea of an accurate software estimate is

somewhat of a misnomer. This is because the thing we are building does

not exist yet. If we were to estimate the length of a ship, both the real length

and the estimated value exist at the same moment in time. They can be

compared and we can determine the estimation accuracy. However, if we are

to estimate the effort for building something, it is only the estimation value

that exists at that moment—the actual effort for building it does not exist yet

and cannot be measured. Thus we don’t have a reference for establishing

the accuracy of our estimate.

Software Project Estimation

26 Chapter 3 | Statistics and Probabilities Chapter 3 | Statistics and Probabilities

It might be better to say “adequate estimate.” However, I’ll still use the

notion of accuracy since it is more crisp and everyone understands what we

are talking about—namely, whether the effort that we eventually expand

ends up matching our original guess. But we need to recognize that there

is a big time span between these two numbers being available, and we

normally don’t just sit and wait to see if they end up similar, but we actively

apply controls to drive the project where we want it to go.

What is now left, in order to feel confident in the actual values represented
by the distribution model, is finding out how much the normal distribution
for the estimated effort is offset from the “real” effort. And for this, there
is nothing else we can do except take measurements from reality. We can
have a sufficient measurement sample within a few weekly iterations, or
within 1–2 months’ worth of work. Provided we work on a decently sized
project, this leaves us with plenty of time to make decisions and take actions
based on the information we get.

The ideal project size (for statistical forecasting) is one with more than 5–10 developers and an

expected duration of more than 8–9 months.

We’ll consider a project as acceptably sized when there are at least 2–3 programmers, and the

initial estimate is at least 5–6 months. Forecasting for smaller projects becomes less useful, but

see “Short-term estimates are not useless either” in Chapter 6.

With this knowledge we can provide accurate information for the total based
on multiple inputs, each of which is inaccurate. Sometimes clients and
managers expect that we nail down each software module we work on and
that we expand exactly the amount of effort we estimated.

We could be working on the second module, out of a 20-module system, and
it might have been estimated at 5 calendar weeks. It is now taking 7 weeks.
Clients or managers might escalate the situation disproportionately. When
this happens we need to remind them that we are only forecasting and
managing the project, and that we do not have bandwidth (or a reason) to
control the execution of each discrete module with the same precision.

27

�Control, Lack of Control, and Precision
The statistical controls we are discussing here can be rather loose when
there is a low number of sample variables on which to model the distribution.
For example, if we have only delivered 3 or 4 chunks1 from a system, and we
are trying to use the available information to forecast the remaining 97
chunks, then we cannot apply statistical controls yet. Our decisions will be
poorly informed. We need to work with a sample of at least 20–30 variables,
and ideally more than 50, before statistical principles start to work reliably
for us.

What this means in practice is that we cannot approach the management of
a project purely as a statistical problem. This is because usually there are
not enough chunks to get to a good sample quick enough, and we need to
start making decisions before we have a solid statistical model. This
translates to the team and the project manager still having to work out
problems quickly and persistently, just like they would regardless of any
project management techniques. For example (See Figure 3-6), if a set of
functionality was estimated between 2 and 3 days and we sense trouble on
day 2, we need to act2 and not merely observe and record (for the sake of
statistics) how long the job will take. We will talk about sample size later,
but when the whole project scope is represented by 150–200 chunks, and
we need a reasonably good forecast by the first few iterations, we need to
stay firmly on the project controls from day 1.

1 A chunk can be of any size and is not the same as a user story or a functional specifica-
tion. A chunk represents a set of functionality which we have decided to estimate together.
We will talk about resolution and splitting the whole scope in chunks later. For a large
project, a single chunk can represent 3–4 weeks’ worth of work for a single person or a
programming pair, and for smaller projects a chunk can comprise 4–5 days’ worth of work.
2 To “act” here means to make it easier for developers to carry out the implementation
work. Acting does not mean to pressure developers into speeding up—this is a useless
activity from the point of view this book is taking. A scrum master or project manager can
help by getting business people to prioritize the work in advance, or by working with PO
(Product Owner) or BA (Business Analyst) to simplify existing specifications and require-
ments, or by getting coffee and cookies, and so on. A developer can help by seeking help
or offering help, providing quick feedback, and so on. This is what is meant by “to act.”
Everyone should be working together to accomplish activities which help the team move
forward expeditiously.

Software Project Estimation

28 Chapter 3 | Statistics and Probabilities Chapter 3 | Statistics and Probabilities

If we keep too loose control over the execution of the work, and we approach
the problem as a purely statistical observation, then we can go through some
large deviations from the “plan.” This will make the people who are following
the progress of the project uncomfortable. When people are not comfortable,
it is difficult for them to trust us, and valuable energy might get expanded
toward unnecessary problem solving. And even if the forecast works out well
by the final stages of the project, we would have still missed the point, since
it was to create trust during the project, not to prove that a conceptual
model has been correct as the project is finishing.

On the other hand, if we have a knee jerk reaction on every deviation from
estimates, this does not contribute to project control either. For example, if
a task that was estimated at 2 days is taking a day longer (150% already), but
developers know exactly why, then we should not start bothering other
people with escalations or requests for help. This would only make everyone
more uneasy than if we were too loose on the controls.

Overreacting can be not only useless but outright dangerous. It may destabilize
the project’s ecosystem to the point where things get out of the Central Limit
Theorem’s domain. If we alienate developers, and make people unwilling to
invest their full selves into the project, we might have introduced instability
that cannot work itself out by mere statistics.

Figure 3-6.  We do not want to casually venture outside of the estimation range, although
statistically the event is representative of the same distribution curve

29

The Central Limit Theorem tightens as we reach farther. The larger the
project, the more useful the Central Limit Theorem becomes for practical
application. This is somewhat counterintuitive but extremely important—
forecasting and controlling for a long project is more manageable than for a
small project. (However, guessing is more manageable for a small project.)

We still need to work out the immediate problems even on longer projects,
and there will be more of those problems because of the longer timeline. But
when applying project controls based on surveying longer-term goals, we can
make fine input adjustments with larger impact and stay ahead of the (probable)
events.

Figure 3-7 shows that at the same desired burn-up rate, and the same deviation
at month 2, we need a much smaller rate adjustment on a 9-month-long
project in order to compensate for the lateness, compared to the adjustment
we need on a 4-month project.

Figure 3-7.  Corrective adjustment on shorter vs. longer project

�Summary
Many people in the software industry, especially people working with agile
software development methods, have given up on estimation and they feel it
is useless. They feel it cannot be done with accuracy, or that it doesn’t make
a difference how precise you try to be… at the end the project is never on
time. The value of a forecast for facilitating project control is being lost
because of an irrelevant focus on estimation accuracy. The unwillingness of
people to commit to an objective in the face of uncertainty is a direct cause
of this confusion of the main purpose of a forecast. This is a mistake that ends
up costing companies multimillion dollar opportunities and ruining the chances
for good relationships.

Software Project Estimation

30 Chapter 3 | Statistics and Probabilities Chapter 3 | Statistics and Probabilities

Instead of forcing unneeded expectation on the precision of the initial
estimation, we need to learn how to harness imprecisions and proven
statistical principles, along with the capabilities and skill of our teams, in order
to gain valuable business advantage. By doing this we can commit to success
early, based on minimal set of data. We are not committing to a number,
rather we are committing to working out an adequate and timely solution
within an agreed-upon project envelope. By inverting the order of events, and
agreeing to commit before we have a precise outlook, we open the possibility
for a meaningful forecast, which in turn gives us the required leverage over
powerful project control tools—including negotiating scope, reinventing
business ideas, adjusting team composition in timely manner, and even
reframing the project itself (with everyone on board).

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_5

C H A P T E R

4

Forecasting
Mechanics
Let’s get to it!

How do we put all this in practice and work out the project envelope? What
exactly are the things we do to apply intelligent project control? How do we
provide a clear indication of progress, maintain the required team workload
throughout the project, and allow business people and the delivery team
ample time for scope considerations and decisions? How can we do something
today that helps us aim at a 2-week time window 12 months in the future?

The method for intelligent forecasting is a practical application of the scientific
method and can be broken down in the following steps:

	1.	 Define a scale (ballpark approximation)—Scale can be as
wide as the expected project length or it can be some
portion of it. It is not to be confused with an overall
estimate of the project. It might be roughly similar in
length, but the actual project estimate is produced later.

	2.	 Define a resolution—Resolution represents the number
of chunks in which we need to break up work in order to
gain a sufficient statistical grip. Higher resolution provides
an increased certainty, but it also costs progressively
more to sustain.

32 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

	3.	 Initial estimation and sizing—Based on the desired
resolution and other factors, we need to design ranges
for estimating effort. Once we go through the initial
estimation, we can size the project and take a first guess
at whether the team has enough capacity.

	4.	 Adjust for calendar time—It is crucial to convert the
effort estimates into calendar time. This is because the
actual completion data we collect in the next step is
based on calendar time. Once we convert effort
estimation into calendar times, we can also speculate
about optimistic and pessimistic completion dates for the
project.

	5.	 Collect data—Estimation data is only one input for the
forecast. Tracking the actual implementation times and
observing other contextual factors provide another set
of input information. The relationship between estimates
and actual completion times becomes the basis for
adjustments and predictive accuracy.

	6.	 Identify trends and scenarios—Once we have collected
enough data, we can start analyzing, making projections,
and evaluating different scenarios.

Figure 4-1 shows an example output of this process. This chart captures the
evolution of the project delivery, and when used in the early months of a
project can facilitate the decision making needed for applying confident project
management.

We will discuss and reveal the elements of this and a few other charts
throughout the remainder of the book. In this chapter we focus on the
mechanics of obtaining a meaningful forecast—diagramming, defining
suitable chart scale, partitioning the scope to facilitate estimation, sizing the
project, collecting data, and producing a plot on the chart. In the next
chapter, we will analyze various chart indications and discuss the project
controls that we can apply.

Figure 4-1.  Achart depicting project burn-up along with the team’s available thrust

33

The discussion in this chapter moves much closer to the practical application of the estimation

method. For those readers who enjoy spreadsheet formulas and charts, the sample spreadsheets

and diagrams in Appendix B at the end of the book and at www.apress.com/9781484250242

might facilitate your familiarization with the details of the method further.

�Determining the Chart Area
The scale/ballpark. The first thing to do when building a forecasting
model is to prepare the “charting surface” by figuring out the rough scale of
the effort. What we come up with at this point is not an estimate. It is only
an idea of the scale at which we want to be working. Is it a few months, a
year, or more? This choice is very important for the utility of the resulting
forecast. If the scale is too large, we might not be able to pick up on
important project events, and if the scale is too small, we might not be able
to anticipate far enough.

In Figure 4-2 we can see two different approaches for selecting a forecast
chart scale. An approximately 1:1 ratio scale is selected for the project with
an expected length of 11 months on the left and a 1:3 scale for the 24-month
project on the right.

It is important not to confuse the scale with an estimate or a forecast. At
this point we are only figuring out a number (time period) which will help us
build a meaningful chart—one that will help us with its indications. The
selection is not unlike choosing the right scale for a driving map, where a
city map will have a large scale, a country map a medium scale, and a
continent map a small scale.

Resolution. I define resolution as the number of chunks we want to work
with for a given scale. You might have seen it elsewhere as sample size. Higher
resolution provides for a more controlled application of the statistical
principles on which this method relies. However, having too high of a resolution
adds more noise than valuable information, and it also costs more than the
utility it brings. Having too low of a resolution makes the forecast loose and
less useful for promoting trust. We need to find pragmatic resolution and
work within this “normal” range.

Figure 4-2.  Selecting an adequate forecasting scale

Software Project Estimation

http://www.apress.com/9781484250242

34 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

Statistics starts being applicable once there are at least 30 samples. At this
resolution the confidence levels from statistical analysis are relatively low. At
a resolution of 60–70, we can get to statistical error of 15%. At 200–300
variables, the expected error goes down to about 5%. At a set of 2000
variables, the statistical error can drop to less than 3%.

In software development, aiming for early forecast precision of 5% is naive at
best and unethical if done by people with experience. If the project sponsors
are calculating their business opportunities at precision levels of 5%, then
something is seriously wrong. Early confidence of between 5% and 10% is
extremely challenging in software development, and a confidence between
10% and 15% should be sufficient for anyone with a practical business need.
Business people should be able to maneuver within this range of uncertainty
and make useful business decisions without putting undue administrative
stress on a project.

CONFIDENCE LEVELS

You might have seen the “Cone of Uncertainty” diagram that depicts how

confidence levels get progressively better as a waterfall project moves along

the phases of initial concept, approved product definition, requirements

complete, user interface design complete, detailed specification design

complete, and so on. You may have noticed that the estimation error at the

start of development phase is 10–15%.

The difference here is that not all “15%” are equal. The 10–15% we are

discussing in this book are based on data and statistics. The 10–15%

people mentioned in “traditional” estimation approaches are based on a

belief, such as “I believe that the accuracy of this estimate is 10%. It has

to be, we spent a lot of time on it and estimated based on very detailed

specifications. I mean, it has to be 10% or better. Worst case scenario it’s

15%, but not more.”

Therefore, a useful and pragmatic resolution level is around 100 samples on
the lower end, and 250–300 on the higher end. Keep in mind that we are not
leaving the fate of a project in the hands of chance and statistics alone. We are
applying active project control based on multiple inputs, with the forecast
being only one of them.

35

Imagine we are one and a half months into a year-long project (i.e., there are
a little more than 10 months left). The following statements ought to be
sufficient for an intelligent follow-up conversations and decision making:

•	 “We are 80% confident that with the current team setup
we need 2 months longer than the current plan.”

•	 “We are 80% confident that we need 3 more people with
compatible skills to join the team within the next 1
month if we are to make the original deadline.”

•	 “We are 80% confident that unless we cut functionality
in these three specific modules, we cannot make the
timeline with the current setup of the team.”

If people are able to start this type of conversations less than 2 months into
a 1-year-long project, and their confidence levels are (meaningful) 80% or
90%, then this is all that is needed—a trustworthy method for pulling problem
solving early into the project. When we pull problems early, the proposed
solutions have an improved chance of positively affecting the outcome. And
we might even have time for additional solutioning, should the selected
approaches prove ineffective within a reasonable timeframe.

PLAN-DO-CHECK-ACT

The essence of project control is observe, think, act, observe (Figure 4-3).

It is a variation of the PDCA cycle (Plan-Do-Check-Act) of many continuous

processes. The essence of project management, and its associated

practices, is to secure the environment where this type of control is feasible.

Figure 4-3.  PDCA model for project control and the accompanying project management
practices

Software Project Estimation

36 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

�Sizing the Project
Estimation ranges. We need to break down the scope into desired
resolution. Whether we have a large system specification document or we are
just starting with identifying a story map, we need to comprehend the known
project scope. Splitting the known scope into the necessary number of chunks
to support the resolution is relatively straightforward. In order to facilitate
this process, it’s worth identifying meaningfully sized buckets (see Figure 4-4)
that developers can use for labeling the chunks of work.

The proposed software solution needs to be captured in the form of a
specification. It is irrelevant whether we’ve done this through a specification
document, a story map, or a flat backlog of stories and epics. The important
thing is that some areas of the solution are described in enough detail to be
broken down in meaningful chunks.

For example, if we have a specification of 100 pages and the level of detail is
relatively consistent throughout the document, then we can assume that half
a page will contain enough material so that we can split the app in 200 chunks.
Similarly, if we have a story map, we can figure out a way to chunk it even
when some of the stories are not detailed yet.

This is a very mechanistic activity, and there will be instances where half page
captures way too much work or too little. However, once we look at a few of
the chunks, we can start getting a sense of what is an estimation range that
can support them. For example, we might be working on a system where the
first few chunks all feel between 1 and 3 weeks’ worth of effort. We can then
design two ranges from 1 to 1.5 weeks and from 1.2 to 2.5 weeks and proceed
with fitting the rest of the chunks using these two ranges. When we stumble
on an area of the system with insufficient detail, we can define large and extra-
large ranges to support whatever chunks we can carve out.

Figure 4-4.  Establishing the right size of bucket is important for supporting a workable
resolution

37

T-shirt sizing is ideal for this and we can choose to have five ranges when there
is more variation in detail (XS, S, M, L, XL), or only three ranges (S, M, L)
when the detail is more consistent (see Figure 4-5).

The estimation ranges are in “days’ worth of effort” and not calendar time.
With an average chunk size of between 1 and 2.5 weeks (supporting the
desired resolution), we might have these ranges:

XS = less than 5 days (less than 1 week)

S = 4 to 7 days (0.8 weeks to 1.4 weeks)

M = 6 to 12 days (1.2 weeks to 2.4 weeks)

L= 10 to 19 days (2 weeks to 3.8 weeks)

XL = 16 to 30 days (3.2 to 6 weeks)

On a smaller project, we might have smaller ranges supporting the same
resolution:

XS = less than 0.8 days

S = 0.5 to 1.5 days

M = 1.3 to 2.5 days

L = 1.8 to 4 days

XL = 3.5 to 6 days

I try to gauge it so that the S and M ranges are around or slightly smaller than
the average chunk size. This way, when most chunks fall within these two
ranges, we should end up with a total number of chunks that is around or
slightly larger than the target resolution.

Establishing the initial estimation ranges is best done if the ranges are slightly
overlapping and progressively growing (see Figure 4-6). A tighter range
selection, without excessive overlap, creates a slight pressure for developers

Figure 4-5.  Some of the buckets (S, M) support the desired resolution better, but we should
provide smaller and larger buckets just in case some of the chunks are not the “ideal” size

Software Project Estimation

38 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

so they don’t accidentally stop paying attention when throwing chunks into
the buckets. Too little or no overlap generates the wrong type of pressure—
chunks which estimate seems close to the upper limit of a range will routinely
be labeled as belonging to the next larger range for safety. I like the end limits
oscillating around the Fibonacci numbers and the ranges overlapping at about
20–30% of the smaller range. The other thing to look for is to make the
largest range not much larger than two times the chunk size supporting the
resolution.

Having five ranges is preferred because it lets the developers feel unobstructed,
and it makes for a quicker exercise. But three ranges will work too. The
overlap is important because it puts developers at ease. They see right away
that a chunk can go one way or another, and they appreciate this flexibility
since it properly reflects their real experiences with estimation. They are
willing to not overestimate, because they realize the next chunk might go the
other way too.

With properly sized ranges, people get into collaborative mode much sooner,
and estimates for large sets of functionality get done quickly. It almost becomes
a game. In contrast, when the ranges are not overlapping, or if developers are
forced to estimate with “precision” (in exact hours, and not in ranges), they
are much more cautious what estimate to assign, and this leads to routine
overestimation, frustration, and lengthy argumentations, which cost significant
time, bring no value, and ruin the relationships within the team.

Figure 4-6.  The gray arrow indicates what is the “gut feel” of developers—a little more than
3 ½ but less than 4. Ranges with no identity are less useful in subsequent forecasting. Ranges
with strong identity trigger developers to overestimate. Developers are inclined to label the
story as M more often in the second example than in the third example. (The numbers here
might represent days’ worth of work, or weeks’ worth of work.)

39

Estimating the work. Now that we have the estimation ranges defined, we
need to break the known scope of work into pieces and start estimating. We
estimate in days’ worth of effort per single track,1 that is, if the developers had
the day exclusively for delivering working software—programming, designing,
and testing. If we observe that most chunks get in the S and M buckets, then
we can just keep going. Some pieces will end up being XS, and some will end
up L or even XL, but the bulk of the pieces should be in the S and M ranges
(see Figure 4-7).

If too many pieces end up in the L and XL buckets (and if it looks like we
won’t get enough chunks to get to the desired resolution), then we need to
split those chunks further so we get them down to S or M. If most of the
pieces get estimated as XS, then we need to zoom out and look at less detail.
This is where a good business analyst or a product owner can provide just
enough detail so the developers can split or aggregate the work. And a scrum
master or project manager can keep the process moving quickly, helping
people zoom in or out as needed so they don’t get stuck on irrelevant debates.

The one thing we don’t want to do at this step of the process is to burden
developers with a request for precision estimates just because there is a
detailed specification (see Figure 4-8). People might argue that a developer

1 Sometimes a track might be a small team. I worked on a project where two programmers
would couple with a single tester. The three developers would be working almost exclu-
sively together. On that project we estimated the functionality that the whole trio could
complete in a day/week worth of work. Two such mini-teams were working on a single
track of functionality. We had three tracks at the peak.

Figure 4-7.  Aim to have chunks split in a way that makes them suitable for the S and M
buckets. It is okay to have a few spill over into the other buckets. (Do you notice the normal
distribution?)

Software Project Estimation

40 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

should be able to gauge the effort with precision if the functionality is
described with great detail. But it doesn’t work that way in software
development. The specification detail doesn’t provide developers much help
for estimating a piece of work with higher accuracy. However, detailed
specification helps for breaking the work into smaller chunks. The smaller
chunks can then be estimated at a higher resolution. If we want better
accuracy for the final forecast, we need to aim for a higher resolution, and
not for higher accuracy of individual estimates. The objective of the T-shirt
sizing exercise is to get as many chunks as we need estimated and get it over
with quickly.

Estimating at a very high resolution is wasteful. We need to pay the cost
of business analysts and developers looking at too many details and scrum
masters or project managers having to track too many pieces of data. It can
slightly speed up the forecasting when we start collecting data, and it can
provide a (false) sense of certainty, but it costs more than the value it
contributes. We should work at a resolution that makes sense and be
careful every time we lead people into thinking we are working at too fine
of a precision. Most likely we cannot achieve that precision for the final
forecast,2 and no one needs it—people only need an adequate guidance
toward the objective.

2 I worked with a new CTO some time ago and he announced that we were going to start
estimating and delivering all projects with a precision of +/- 1 day. He was reasoning that
if the airlines are able to schedule transcontinental flights with precision of minutes, we
should be able to deliver 3–4-month-long projects with a precision of 1 day. The frequency
of deployment to production was once every three weeks because of dependencies with
marketing campaigns and with other departments. Even if we were able to forecast within
1 day of the actual delivery, it would bring small practical value.

Figure 4-8.  Do not ask developers to provide high precision estimates for intricate functionality
based on detailed specification. Ask them to provide high resolution estimates even if each
individual estimate is of lower accuracy.

41

If the developers cannot engage in the kind of estimates discussed earlier,
but the product owner or business analyst believes there is sufficient
specification detail, we as scrum masters or project managers need to make
sure developers understand that the result of this estimation is only one of
the inputs for the forecast. It is not a binding contract or a final commitment.
Their responsibility is to make a fair attempt at guessing the amount of
work needed for each chunk and to be consistent, so that if two pieces of
work seem equal in size, they get estimated approximately the same.
Developers should definitely not throw random estimates, as this will
sabotage the exercise and possibly the project.

First stab at planning. If you haven’t cringed at some of the simplifications
so far, you might get a cringe now. However, before we go through this, let’s
state one more time that the purpose of estimation and early planning is to
enable intelligent project control through the rest of the project. The
purpose is not to produce an accurate and precise guess at the beginning of
the project.

Suppose we want to finish the project in 12 months and we have estimated all
the work as if a pair of programmers will be working on it. Let’s say that when
we sum all the estimations, we get 3 years’ worth of effort.

If we only had these two developers (see Figure 4-9), then there is obviously
no way to complete the project in 1 year. There are certainly things we can
discuss with business people and choose a meaningful 1-year goal. But if we
want to finish the whole project in 1 year, then we need a larger team. The
mechanistic “mythical man-month” approach is to simply figure out how many
tracks are needed to complete the project (see Figure 4-10).

Figure 4-9.  In a single track, the whole project is delivered one bucket at a time

Software Project Estimation

42 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

However, there are software development laws3 that prohibit this rectangular
approach. Gall’s Law in particular says that we cannot start with a complex
team. In practice this means that we should start with a single track effort
until the solution and the team has matured enough to sustain two tracks.
After some period the team and the solution might graduate to three, four,
or more simultaneous tracks.

The problem becomes to allow ample time for team growth while supporting
the completion of the project within the desired timeframe. The large things
to consider are people’s skill, team’s autonomy for technical decisions, team
compatibility (self-selection?), collocation or lack of, and effort time vs.
calendar time.

First pass project projection. We just stated that the estimation based on
the initial XS, S, M, L, and XL ranges is not contractual—there is no immediate
commitment. But business people often need an early idea for the expected
size of the effort before they commence. What can we do? We can produce
a range. In this case we can build a range from an optimistic and pessimistic
prognosis for the required effort.

You cannot undercommunicate the fact that this will only be a guess. People
should treat it that way. Make sure that if any of the numbers and dates gets
picked as project targets, people realize these are the aspirational targets we
want or hope to meet, not the targets we have promised we will meet.

3 See Appendix A for more information about software development laws.

Figure 4-10.  In a multitrack, the project is delivered a few buckets at a time. Thus the work
gets complete quicker

43

RELATIVE ESTIMATION

Beware of the relative estimation technique that is discussed in many

books on agile software development. It looks something like Figure 4-11,

and the accompanying description usually says that a “stone” that looks

twice the size of another “stone” is twice as big. However, this is not true.

A stone that looks twice as big as another stone will be eight times larger,

because a stone is three dimensional, and two raised to the third power is

eight (23 = 8). In software, the work is often multidimensional and the effect

of this visual “illusion” can be even larger. (Some of the typical dimensions

are business rules, software architecture and design, database access,

performance, security, usability, accessibility, visual design, automation and

documentation, training.)

When initially estimating the chunks of work for the whole project, we would

do better if we looked at each one separately and give it our best shot of

placing it in the right bucket, without comparing it too much with chunks

we have already estimated. This way we don’t inadvertently compound the

estimation “errors.”

Figure 4-11.  Relative estimation

Software Project Estimation

44 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

The technique of relative sizing is adequate when applied on an iteration

level estimation in “story points,” because at that time developers are

intimately familiar with the context. Story points are not useful for initial

project estimation and forecasting, but they serve a different and very

important role. We will talk about it later in this chapter.

We can add up all the lower limits of the chunks’ ranges, and all the upper
limits. This way we can come up with two numbers, each unlikely, but
encompassing the likely scenarios (see Figure 4-12). Again, a range is a useful
simplification when we are trying to work with complex problems without
the benefit of having experienced all the complexities yet.

Keep in mind that this is the implementation effort. For duration range we
need to adjust for calendar time.

Adjusting for calendar time. It is wise to not confuse effort estimates
with calendar time. Such confusion is a naive mistake, but sometimes people
do it when rushed to produce a convenient answer. When we ask developers
whether something takes 2–3 days, we are really asking whether it is 2–3 days
of implementation work (a.k.a. programming), not whether it is 2–3 days on
the calendar. If developers need to attend meetings for 3–4 hours a day, the
effective time for implementation work becomes 2 hours per day, and a piece
of work estimated at 2–3 days might take 8–12 days on the calendar, that is,
2–3 weeks.

Figure 4-12.  We can calculate the lower and upper estimation limits for the whole project
by summing the lower and upper range limits of all pieces. The numbers here can be days’,
weeks’, or months’ worth of effort.

45

One way to translate between effort and calendar time is to add certain
buffers that make sense in the particular situation. Meeting time is only one
of the things we need to consider when converting effort estimates to
calendar time. On a longer project, people need to take vacation, which might
be up to 10% of the calendar time. We can apply this buffer without asking
people for actual vacation plans.4 There are many other activities that do not
directly contribute to software. (There is a longer discussion on this type of
safety buffers in the “Navigating Issues” section of Chapter 6.)

Multiplying the optimistic and pessimistic end of the effort range by 1.5 might
be an honest thing to do when converting to calendar time as long as we can
explain what goes into the extra 0.5 (50%) that we are factoring in. We can also
produce a “realistic” estimate by using PERT calculation (see Figure 4-13), or by
locating a point reasonably spaced between the optimistic and pessimistic limits.

Again, tell people this is only where we are aiming, not where we are going.
At least not yet.

Fine-tuning. The problem with coarse breakdown is that we need a longer
period to start getting meaningful data, and if managers and business people
are tingling for an outlook, this will make them nervous. The problem with
too fine breakdown is that it becomes an impossible work to manage when
the project is larger. A viable approach is to break down the whole project

4 Treating people with respect should be considered a project control. By planning around
people’s needs instead of having people adjust their needs according to a forced plan, we
improve the chances for a wholehearted commitment throughout the duration of the
project.

Figure 4-13.  PERT formula for realistic estimate is E = (O + 4xM + P)/6, where O is optimistic,
M is most likely, and P is a pessimistic prognosis. (The effort-to-calendar conversion ratio is 1.5.)

Software Project Estimation

46 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

coarsely, and then to break down the “first phase” of the project in fine-
grained chunks. This way we can start getting meaningful data quickly at the
fine-grained level. As time goes by, we will start getting meaningful data on the
coarse level (project level) as well, but we would have not starved people who
need forecasting data sooner (whether for comfort or otherwise).

For large projects we should set fine-tuned T-shirt ranges for the first one or
two phases and have a coarse T-shirt size for the whole project. Let’s say we
are working on a system that consists of 18 modules of similar complexity.
We can split each module in 7–10 chunks and measure those against the
coarse T-shirt size on the project level.

We can then break the first 3 modules in about 30 pieces each, and size
these chunks against the fine-grained T-shirt ranges for the first “phase.” As
we move through the first 30 or so fine-grained pieces, we can roughly see
if the plan for the first 3 modules is coming along. Later, as we are getting
ready with the first 3 modules, we can decide if more fine-grained estimation
is needed or if we now have enough confidence to start projecting on the
coarse-grained data. At that time we will have completed about 20–30
chunks on the coarse level.

Earlier, we said that a 20–30-piece sample provides for a low statistical
confidence. However, we are not observing a project strictly statistically, nor
is this the only data reading we will take at the coarse level.

We need to be careful to not deceive ourselves with statistics in case we
observe large variability. If this happens, we need to reexamine the approach
and look for the source of unacceptably high variability. For example, if the M
range is 2–3 days, and we observe that some chunks estimated as M get
delivered in 0.5 days, but others take 2 weeks, we need to carefully look at
the details. If these happen sporadically, we might be okay without corrective
action.

OPERATE AT THE RIGHT LEVEL

If the data from the coarse-level tracking and forecasting is telling us that

things are not going well, do not attempt to discover a solution for the

problems by diving into fine-grained estimation and tracking. Getting tight

control on smaller-scale issues will not provide enough project control to

recover from larger problems that are already affecting the project.

47

�Plotting a Dot
Mapping. Mapping out the actual implementation data to the initial estimation
is the most laborious part of the work. Some project management tools
might be able to help, but a simple spreadsheet should be enough.

Let’s say we have a chunk of work estimated as size M and that this means 2–3
weeks at the set resolution. Once we started the implementation work, this
chunk of functionality had to be broken down into multiple stories (or tasks,
work items, etc.). We need to figure out which stories belong to which chunk
of the original breakdown. This can be facilitated by keeping things well
organized and labeled (see Figure 4-14). A tool like Jira can help with the
labeling/tagging feature. It is important to not confuse chunks with epics.

Once we have mapped the completed stories/tasks back to the originally
estimated chunks, the product owner needs to assess the level of completeness
of each chunk that has some complete work mapped to it (see Figure 4-15).
If we have completed three stories against a chunk sized as M, the product
owner might feel that 80% of the functionality is covered, or he/she may feel
it’s only 40%.

Figure 4-14.  The challenge with mapping is to properly map the stories that appeared in the
process of work back to the originally estimated chunks of scope. Notice the small labels in the
“stories identified in the process of work” column. If we have missed tagging the stories appro-
priately at the time of their origination, then we need to backtrack and figure out which area
of the solution they belong to.

Software Project Estimation

48 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

Whether the mapping is trivial or demanding, we should approach it with
patience and an open mind. It might take a few hours or even a day, but it is a
few hours well spent, and it might also help with learning more about the
state of the project. Items we thought were done might turn out to be only
half done, and things we thought were scheduled for next release might
appear only partially done. It is an opportunity to spot details we might have
missed.

Plotting. With all this work out of the way, we can now “calculate” the scope
we have covered (Figure 4-16). We are ready to plot the first dot on the
forecast graph.

Figure 4-15.  The product owner needs to assess what percentage of the desired solution
(represented by the originally identified chunks) is covered by the demonstrated and working
functionality of the completed stories

49

Don’t let the crude form of this graph fool you. Its data-driven aspect more
than compensates for the small imperfections of a manual drawing. We know
where we have started, we know where we are now, and we know where we
want to go. We are getting closer to being able to forecast.

�The Other Two Pillars
The Central Limit Theorem works very well for the application described so
far. But it is not sufficient by itself. There are two other crucially important
principles that must be satisfied for us to be able to forecast intelligently. They
are “Sustainable pace of work” and “Done.”

Sustainable pace of work. We often see software development teams,
who work in an agile style, estimating user stories in story points. The number
of points delivered within an iteration is called velocity. Story points and
velocity don’t relate directly to the estimation or forecasting for the whole
project. One reason for this is that they change meaning throughout the
project, as they are affected by what the team learns each iteration.

Figure 4-16.  The first data-driven indication on the forecast is applied against the calculated
completed scope. The desired project end date and the total estimated scope define two of
the project envelope limits at this moment.

Software Project Estimation

50 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

Another reason is that sometimes we don’t have enough detail to estimate
everything in points. Even if we had enough detail, it would not make sense to
spend time understanding features and dependencies at the level needed for
story points.

However, story points and measuring velocity are of paramount importance
for the forecast’s worthiness. Their value is in setting a sustainable pace for
the team. A team not working in a sustainable way cannot deliver a project
that can be reliably forecasted. One of the three principles on which the
method of intelligent forecasting is based is that the team must be capable of
working consistently (see Figure 4-17), and story points are a perfect tool for
ensuring this consistency.

Sustainable pace does not necessarily mean a constant pace, as teams typically
need time to reach their optimal pace. Teams can also innovate and accelerate.
During innovative periods, the pace of delivery might suffer at first and then
it can pick up again. There is also normal fluctuation based on the work

Figure 4-17.  Statistics alone is not enough to support intelligent forecasting. The project team
must be capable of sustaining an optimal pace of work throughout the duration of the project.

51

complexity. As long as the team’s productivity remains within a satisfactory
bandwidth, we can consider this mode of operation sustainable (see the
diagram on the left in Figure 4-18).

If there are short bursts of output followed by deep troughs of endless bug
fixing (see the diagram on the right in Figure 4-18) and zero or negative
architectural progress, then the team is not capable of delivering in a
sustainable way.

Figure 4-18.  The diagram on the left shows sustainable work, and the one to the right shows
unsustainable work. Even if the average output ends up relatively equal for the depicted period,
the project on the right is too volatile and it is accumulating bugs, which will eventually drive it
out of usable power.

Engineering techniques like automated unit testing, test-driven development
(TDD), refactoring, and continuous integration and continuous delivery (CI
and CD) greatly contribute toward a team’s capability for sustainable work.
These practices are not the domain of iterative delivery models, and if a team
is practicing them proficiently, they can very likely maintain sustainable pace.

If these software delivery practices are absent, and if regression issues
consume progressively larger bandwidth, we need to account for it in the
forecast. Regardless of whether we use an iterative approach or we follow a
big waterfall plan, we have to be honest about the team’s capabilities.
Deteriorating code base and regression issues can render the team’s
productivity to zero quickly.

Done. Done is a concept I first encountered in a formalized way when
working with Scrum. So I attribute it to Scrum. Wherever it originates,
probably in XP, the effect it has on our ability to intelligently forecast, plan,
and manage the project is binary—that is, if we cannot work within a definition
of Done,5 we cannot intelligently plan or manage a project. “Done” is the

5 Definition of Done is a set of conditions that the team determines as sufficient for
guaranteeing valuable software. For a more thorough description, please see here:
www.scruminc.com/definition-of-done/

Software Project Estimation

https://www.scruminc.com/definition-of-done/

52 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

third pillar to support scientific forecasting (see Figure 4-19). The project
team must be capable of disciplined software delivery within desired and
agreed-upon parameters.

The definition from Scrum Inc. might be a bit overzealous, but is a good
place to start contemplating on your team’s capability to work within a
definition of Done:

Done means coded to standards, reviewed, implemented with unit Test-
Driven Development (TDD), tested with 100 percent test automation,
integrated and documented.

—Scrum Inc.

If we are delivering code, but we cannot claim that a specific piece of
functionality is done, then for all practical purposes we should not include the
expanded effort toward the project’s progress. And if none of the stories can
be claimed as done, we should not claim any progress—that is, even if we
labored for 2 weeks, we have to account for zero delivered scope.

Figure 4-19.  The three pillars supporting Intelligent Software Project Forecast

53

When we cannot claim Done, then the useful output is imaginary. The diagram
on the left in Figure 4-20 shows a project pretending to be delivering
consistently, but without anyone validating that the software is Done (the
dashed line is the pretend output, and the solid line at the very bottom is the
real output). The bugs might be underreported since the software is not being
tested or demonstrated to clients. The diagram on the right of Figure 4-20
shows a project with accumulating bugs, but people still insisting that the
software is Done. Ideally people should agree to not claim Done when there
are uncontrollable functionality bugs, or they will get disillusioned further into
the project.

It is often the case on waterfall projects that people claim 80% readiness on
some functionality, only to have this same status reported week after week
without the ability to identify any single piece that is 100% done. On such
projects, the assessment for completeness is expected by a developer. The
80% readiness level claimed by the developer is not suitable for forecasting,
since it is not validated by a business person or a user. Project managers and
business people on such dysfunctional projects usually say that they need
100% complete functionality before engaging with verifying it, thus leaving the
developers in a perpetual state of uncertainty.

Please note that this is dramatically different than having small pieces of
functionality claimed as 100% done and confirmed by a business person. In
this case we can still say we are 80% done with a larger component of work,
but it actually means that about 80% of the work toward the large component
is done. We can reasonably expect to have about 20% work left. When we
asked the product owner to assess the completeness levels of work items (in
the mapping activity earlier), it was based on “demonstrably done” functionality,
not on how many lines of code developers believe are needed before the
code is done.

Figure 4-20.  Imaginary progress—on the left code is not tested, on the right code is accepted
when there are bugs

Software Project Estimation

54 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

Working within a definition of done is more difficult on waterfall projects.
This is primarily because business people wait for the hand-off at the end of
the development phase. However, the technical practices of test automation
and refactoring, which enable a team to work within a definition of done, are
not exclusively reserved for iteratively run projects. Teams using these
techniques can get very close to the benefits of working within a definition of
done, even if they work on a waterfall project and cannot secure the continual
interaction with business partners.

The two pillars that support predictability and confidence—“Sustainable pace
of work” and “Done”—go hand in hand. If a team does not maintain sustainable
pace, they will start cutting corners and step outside the definition of done; if
the team does work in a sustainable pace but starts casually going out of the
definition of done, then they will very soon become incapable of sustaining
the pace—they will get bogged down in problems. “Done” gives us confidence
about the validity of present claims, and “Sustainable pace” provides for
predictability of projections.

Software delivery practices like test-driven development, automation, and
continuous integration and product development practices like relentless
prioritization, continuous deployment, and continual usability testing
greatly facilitate a mode of operation where teams can consistently work
within a definition of done and deliver at a pace which is sustainable and
commercially viable.

�Forecasting
We now have almost all that is needed to start forecasting. We have one data
point and we have a starting (zero) point. For smaller projects with healthy
teams, a satisfactory end project forecast can be generated on these two
pieces of data alone. But for longer or more complex projects, it is worth
plotting at least three data points before building a forecast model.

One dot on a graph is just that—a single dot. It allows us to build a linear
forecast and that is rarely sufficient (see Figure 4-21). There are too many
activities at the start of a project, and a straight projection line will likely skew
the picture (negatively) more than we want. Two, and ideally three, readings
provide for a projection that reflect the team’s sustainable pace better (see
Figure 4-22). Spacing the readings a few iterations apart allows for the team
to reach that normal pace of development and for us, project managers and
scrum masters, to forecast more meaningfully.

55

Depending on how the project is going, and how the clients feel, we might
choose to go with one or more additional readings (especially if the iterations
are shorter). If after a few readings we still do not feel sufficiently confident to
commit to a full forecast, we should find out what information we can start
communicating, because the utility of a forecast diminishes with time. Three
readings close to each other provide an improved trend compared to a single
reading. A reasonably spaced fourth data reading might “improve” the forecast
further, but pushes the decision-making process too late into the project. An
earlier decision based on less precise forecast might be preferable. Some
decisions like adding additional team members only make sense when done
early into a project. Later into the project, we might be left only with the
options to cut scope or extend the project.

Figure 4-21.  Data reading marked with “x”. A single data reading is a good starting point, but
it usually skews the projection negatively compared to the likely actual situation. However, on
shorter projects this might be all that is needed to support decision making.

Software Project Estimation

56 Chapter 4 | Forecasting MechanicsChapter 4 | Forecasting Mechanics

Figure 4-22.  Data readings marked with “x”. We forecast to make timely decisions, and an
early and sufficiently grounded forecast might be more useful than a later and more precise
forecast.

This method is capable of producing surprisingly stable and reliable results.
It facilitates confidence and awareness, which allow business folks to make
calm decisions even when faced with tough problems. Clarity, a core tenet
of agile software development, is improved significantly with a reliable
forecasting like this, and the positive effect on the project environment
cannot be overstated.

Congratulations! You have produced the first scientific forecast for your
projects. You can now enlighten business people with meaningful information.
Instead of being dragged into status report meetings, the project team can
now get to focus on prioritization, scope deferral, and clarifications—allowing
business people to apply real project control.6

�Summary
Modern-day software delivery techniques enable project forecasting in a way
that was previously not feasible. Tools like unit testing, test automation, TDD
(test-driven development), CI/CD (continuous integration/continuous
deployment), refactoring, and source control and practices like 40-hour

6 As opposed to the artificial control people attempt to apply when escalating issues and
amplifying the pressure days before deadlines.

57

workweek, short iterative software delivery, continual improvement through
retrospectives, and continual user review of working software enable teams
to deliver with reliability that was rarely attainable in the past. This makes
forecasting on the vast majority of software projects not only possible but
quite reliable and inexpensive, thus providing business people with a meaningful
project outlook.

By investing a few hours of work in producing intelligent project data, we can
significantly improve the environment on the project for everyone. Manifesto
for Agile Software Development is about building software. Yet, the principles of
the manifesto are fairly applicable in a broad general context. The very first
postulate of the manifesto is “Individuals and interactions over processes and
tools”—by supporting the individuals and their needs, we stay true to what is
at the core of better ways of working.

Software Project Estimation

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_6

C H A P T E R

5

Adjustments
In software projects, like in most situations involving human relationships, it is
worth the effort to provide meaningful information to people so that they
gain situational awareness and make intelligent choices. Complete awareness
is of course neither possible nor needed, but a small effort can go a long way
toward significant improvements and avoiding major contentions. Schedule
uncertainty of 30–50% or more is likely to create unneeded pressure and
turmoil on any project. Many people operate at these levels of uncertainty
routinely and for long periods. On the other hand, verbally maintaining that
we work at 10–15% uncertainty, without being able to support the claims
with data, is as unnerving if not more so. If we can find a workable method for
bringing the uncertainty level reliably to 10–15%, supported by meaningful
data, it will spare the team and clients valuable energy, unnecessary worry,
and loss of time.

We were already careful to not confuse effort estimate with calendar time,
and we corrected the initial “plans” by tracking the actual completion times.
We are now going to look at a few more adjustments to the forecasting
model that will further enhance our understanding of the project’s progress
and the accuracy of the resulting projections.

�Available Thrust
Now that we have a forecast diagram, we need to figure out how to translate
the information into intelligent decisions in order to adjust the project’s
progress closer to the path we want. Plotting the diagram and looking at the

60 Chapter 5 | AdjustmentsChapter 5 | Adjustments

forecast is only the observational part of the effort. Applying project control
is the real purpose of this observation. Remember, once the end date of a
project is near, we have very limited ability for significant improvements to the
project’s performance. Consequently, we want to apply adequate control as
early in the project as possible. The more stabilized the project performance
is in its early and mid-stages, the greater the probability of arriving at the
desired destination.

I was delighted when I read that the burndown chart in Scrum is based on Jeff
Sutherland’s experience landing fighter jets.1 I, too, enjoy flying and have
always found flying and project management to be close in many ways. When
I was developing this forecasting technique, one such important similarity that
took a central spot in the model was available thrust. The available thrust of an
airplane is the force with which the propeller or jet engine can push the
airplane forward (kind of). The available thrust determines the maximum
angle of climb the airplane can perform. There are a few forces acting on an
airplane in flight, and Figure 5-1 captures how the required power for sustaining
horizontal flight changes with speed. When plotted together with the available
power, some important speeds can be determined. The difference between
required and available power defines the available thrust.

1 Jeff Sutherland and J.J. Sutherland, Scrum: The Art of Doing Twice the Work in Half the Time
(New York: Crown Business, 2014)

Figure 5-1.  A diagram showing the available thrust of an airplane

61

At first, when trying to produce a projection, I was working with “percent
allocation” of people on the project. However, allocation alone did not
properly reflect the contribution people were making to software, and it also
did not properly reflect the discrepancy between the actual team composition
and my plans.

Since I was working as a scrum master, I knew about all the intricate issues
people were having on the project. All these impediments were taking away
from the time that people had available to devote specifically to writing
software. Some impediments were random or temporary by nature, and
some were part of the process.

For example, I found that because we were working with an offshore team
where there were occasional issues with using the English language. Sometimes
we had to repeat things multiple times; sometimes we had to hold an entire
meeting a second time to clarify issues that were at least partly the result of
the inability to use common language. I “calculated” that these diversions cost
us 3% to 5% of our work time. This is about 15–20 minutes a day for the
whole team, and it adds up. Another time sink was caused by a series of
process-related meetings, and these meetings provided close to zero value for
us as a delivery team. In the first 2 months, we attended the meetings twice
a week for an hour and a half each. This alone was consuming 10% to 15% of
the effective time for computer programming.

I knew that the situation would improve with time—people would start
communicating more effectively, and we would be not attending the process-
related meetings for much longer. Everyone was allocated 100% to the project,
but I still wanted to reflect that the real contribution was less. Thus, I came
up with the concept of available thrust to signify that although the team may
be assigned 100% of the time on the project, the thrust people put into
developing working software can be handicapped by all sorts of reasons. I
couldn’t use the term “utilization” as I dislike it when applied to people or
teams. It implies viewing people as utilities, which I do not appreciate.
Additionally, it was not representing my perception correctly, since people are
still utilized when they are in a meeting, only they are not always utilized very
effectively. And I also felt that “available thrust” is a more positive term and
contains within itself the notion of progressive forward movement, something
I kind of wanted for the project’s forecast.

Software Project Estimation

62 Chapter 5 | AdjustmentsChapter 5 | Adjustments

Similar to the airplane’s condition in flight, the actual team’s throughput
capability (see Figure 5-2) depends on multiple factors, and this affects a
number of project conditions, such as maximum sustainable productivity and
team’s ability to climb out of a setback. On the left side of the diagram, the
team is handicapped by bureaucracy, and on the right by being too hasty. I
needed to expose this relationship between capability and required effort
because I wanted to claim a certain increase in the angle of the forecast
projection every time the team was able to remove any resistance factor
(which would represent a higher team throughput capability curve in Figure 5-2
and a greater ability to sustain a steeper project performance). Thus, instead
of just being able to say that performance will improve, I could speculate by
how much it will improve. This allowed me to aim at the target with great
precision. It also helped me have an adequate response when someone had
overly optimistic expectations for the benefits from an expected improvement,
or when someone was too negative and was diverting time into unneeded
solutioning of transitory problems—often such arguments are fear driven and
not based on real data. When meaningful data was available, I was able to shift
discussions toward constructive outcomes more often.

For example, Figure 5-3 shows a plan where the available thrust is 70% for the
first half of the project and 85% for the remainder. The actual available thrust
for the first 3 months turned out to be 50% (based on factual data). The
project team can determine which course of action has a real likelihood of
getting the project to the desired state—whether it is freeing capacity,
reducing scope, or adding new people.

Figure 5-2.  Diagram depicting the relationship between team’s capability and the required
effort to sustain the work on a project

63

I also wanted to reflect the fact that my team might not be at the planned
staffing level. For example (see Figure 5-4), if I had planned to start with two
developers, and then to have six developers working by week 8 of the project,
but there were only four developers by that time, then even if they were all
fully dedicated to writing software for 80% of their time, this is still only 50%
of the theoretical available thrust (4 x 80% / 6 = 53%). This is important
because it is surprisingly easy for people to forget what the plan is in terms of
staffing commitments, yet to retain unfaltering commitments to scope and
deadlines. When we fail to increase the team as planned, the project starts
underperforming, yet the current delivery team can be considered to be
performing as expected. With available thrust depicted, people have a clear
picture from which to produce a new plan of action. By plotting everything on
the timeline, clarity, with all its benefits, is restored.

Figure 5-3.  Planned and actual available thrust plotted against the project burn-up

Software Project Estimation

64 Chapter 5 | AdjustmentsChapter 5 | Adjustments

With available thrust we can also account for more exotic factors affecting
the project, like team dissatisfaction and project politics. If we have ample
information to make an argument that team members are so dissatisfied
that they actually need time during the day to cope with their frustrations—
more frequent walks outside, more conversations, more arguments—we
can assign a percentage of time for these additional activities and subtract
from the available thrust. Similarly, we can assign cost to politics and
process—if team members are being pulled into meetings only to serve as
a backup for arguments, or if they are pulled into unnecessary process-
related meetings, a cost in terms of percentage available thrust can be
assigned.

Context switching. We can “generate” available thrust, and up the angle of
the projected line, by minimizing the amount of context switching. Context
switching is caused by constant interruptions and fragmentation of the work
in progress when working on too many things simultaneously, even if all of
them contribute to the software solution. By reducing context switching, and
providing an environment where programmers can zone in on their work for
longer periods, we can increase the available thrust compared to an
environment where these factors are not in consideration.

Figure 5-4.  Using available thrust to control for team size increase

65

Measuring how much effective time we gain by minimizing context switching
is not very difficult. The nonscientific way to do it is to ask a developer about
how much time a day they feel is being lost from interruptions, or to add 5–15
minutes for each interruption and get an average number of interruptions.

Since context switching can easily contribute to 30–50% effective time loss
(you read this correctly), it is imperative for a scrum master or project
manager to familiarize themselves intimately with ways to minimize it:

•	 Keeping an open and functioning communication network
within the team (communication does not equal chatter)

•	 Ensuring people are available for feedback when needed

•	 Guarding the team from undesired external
communications (when someone, a manager maybe,
comes with a random and unrelated request)

•	 Scheduling meetings according to how developers work2

•	 Identifying queues, applying WIP limits (work in progress
limits), and facilitating short cycle times

•	 Having stories clearly specified3

•	 Promoting direct interaction, communication, and
collaboration between all team members (improving
sociometrics)4

These are all examples of things we can do to minimize context switching for
the team. The time loss is not the only negative that comes with context
switching. Sometimes brilliant ideas will disappear or never appear because
the creative context was not preserved for long enough. These are losses that
are difficult to measure, but not so difficult to feel.

Climbing faster. When we want to drive the angle up by adding more
people to the project, we need to recognize that this is not a linear relation.
Adding 30% more people does not necessarily translate in 30% gain in rate of
climb.

2 Paul Graham, “Maker’s Schedule, Manager’s Schedule,” July 2009,—www.paulgraham.
com/makersschedule.html
3 Clearly specified requirement does not mean voluminous specifications. To make it more
complicated, a clear specification does not guarantee shared knowledge and ease of com-
munication. A great way to specify requirements is the subject of the book Specification by
Example by Gojko Adzic (Shelter Island, NY: Manning Publications, 2011).
4 Having teams where people freely communicate with each other is crucial for many
aspects of high performance. Where this has a positive effect on context switching is that
a novice developer will not feel the need to interrupt a chain of people and ask for assis-
tance in initiating a discussion with another project member.

Software Project Estimation

http://www.paulgraham.com/makersschedule.html
http://www.paulgraham.com/makersschedule.html

66 Chapter 5 | AdjustmentsChapter 5 | Adjustments

People are the single most important factor on a project, and it can affect the
project both ways—adding a person might have a positive effect on the team’s
performance, and removing a person might also have a positive effect. We
also need to account for warm-up time when adding people (see Figure 5-5).
This typically shows as a short dip in the team’s output followed by an increase
in productivity (if the new people are contributing). The ramp-up period
depends on the experience of the team members, the complexity of the
domain, the relative enlargement of the team, and other factors.

Something to keep in mind is Brooks’ Law, which states:

Adding people to a late software project makes it later.

We need to only add people before the project is demonstrably late. By acting
promptly on the available forecast indications, we can add capable team
members early enough to ensure net positive effect on the project. If there
are two or three planned team increases throughout the project, the
cumulative “dip” from ramp-up activities can be substantial and should be
accounted for during planning. It helps if scaling the team is planned and is not
an afterthought.

Figure 5-5.  “Dip” in productivity from ramp-up activities

When applying project control by adding more people, we need to follow up
with new data collection, measurements, and plotting. If the expected
performance improvement is not supported by the data, we need to readjust
the forecast and expectations.

�Take-off and Level-off
Usually, work on a project starts slower and then accelerates a little before
it stabilizes at a sustainable pace. If we simply draw a straight line from the
zero point through a single data point, the performance line is more slant

67

than needed (see Figure 5-6). If we have more than one data point, then the
true project performance is captured better. For this reason, if we ever
forecast on a single data point, which can be the case on a shorter project,
we should adjust for this effect manually and slightly up the burn-up angle of
the projection line.

Figure 5-6.  Adjusting a single data point projection for start of project activities

Somewhat similar visually, but for a different reason, is the situation at the
end of a project (see Figure 5-7). Assuming a project ends with a deployment
or a hand-off, then if we are aiming straight for the final date, we are
effectively planning for a controlled crash on the last day of the project.
Even if it is only to ensure other people’s comfort, we should consider
allowing for a slow-down and level-off prior to the project’s final day. The
project performance line should gradually go horizontal an iteration or two
before the end date so that people have time to work with the software in
a stabilized state. This means that we need to account for the level-off
duration as it requires a slightly steeper performance slope throughout the
bulk of the project. The required level-off at the end of the project effectively
pushes the target scope completion sooner, thus steepening the necessary
burn-up rate. This is an important consideration, especially when we are
running behind schedule and figuring out the required burn-up rate that will
put the project back on target.

Software Project Estimation

68 Chapter 5 | AdjustmentsChapter 5 | Adjustments

The level-off adjustment might seem small, but we can’t underestimate the
increase in project performance that is needed to support it. The adjustment
only seems small on the piece of paper on which we are plotting the graph. In
reality it requires thoughtful application of the team’s energy resources and a
sustained effort of shielding the team from detractors throughout the project.

�Health Factors
Risks and dependencies. It is common practice in software development
to pull riskier items early into the project’s schedule. Sometimes the opposite
makes more sense—to start with the simpler things and let the team gain
confidence. If the team needs to learn new technology, it might be too early
for intelligent forecasting—we should work on getting people proficient first.

Provided the team is proficient, we can derisk the project by prioritizing the
early iterations based on both business value and “complexity equations.”
Complexity equations are a set of criteria for reflecting the complexity of a
piece of work and its significance for the solution’s architecture. By combining
the complexity factor with the business value, we can pull the technological
risk early and maintain a more stable system throughout the project.

This type of adjustment is somewhat “invisible,” but is not immaterial. Often
people prioritize purely on business value. This is acceptable once the
software development has picked up some momentum. But in the early
stages, the technological factors must be reflected adequately in the priority
formulation. This contributes to a healthier system and is similar to taking
care of a child. When the child is very young, we think about them becoming
a doctor, a mathematician, or an artist, and we read books to them to develop
their brains, but we still prioritize feeding them and keeping them dry and

Figure 5-7.  Adjusting the planned burn-up rate to allow the project to level off

69

rested first. Once they become teenagers, and hopefully by then they’ve
developed healthy habits around eating and sleeping, we focus our energy
primarily on the “business” priorities (of them becoming a doctor or an
artist, etc.) and help them develop the personal qualities and capabilities that
can take them there.

We need to recognize the stabilizing effect such adjustment in prioritizing
strategy has on the progress of our project in its later phases. By reducing the
probability for turbulence, we greatly improve the chance of the delivery team
working unobstructed (by escalations and damage management activities)
later in the project. We also greatly enhance the experience for clients and
everyone else.

Technical health index. Every software engineer has their understanding
of what represents good technical health on a software project. The effect of
good technical health on the forecast is that it tightens the date range while
maintaining confidence. The effect of poor health is the opposite—it flattens
the normal distribution stipulated by the Central Limit Theorem and provides
for less certainty in the forecast.

We can produce a technical health index by combining a set of technical
indicators and evaluating the software system for each. The overall picture
will represent the health index, and by maintaining it at a certain level, we can
ensure satisfactory system health.

Adjusting for variability in skill set, or when working with multiple teams.
If, as a scrum master or project manager, you have control over the people
selection, you must select compatible people who perform comparably. You
should work with the team to self-select, or ensure staffing managers are well
aware of what type of people the project needs. Having a compatible team
improves forecasting since it contributes to a more stable team performance.
And more importantly, it improves the chances of having an awesome project.
We are not going to look into interviewing techniques, but you (and the
team) should consider approaching this process as a small business owner
who is hiring staff for their company, and you should be as selective as you
can afford.

If you are already working with a predetermined group of people, you need to
facilitate equalized workload and comparable output from each of the team
members, as well as collective ownership. Pair programming, frequent code
reviews, and frequent demos are some of the techniques to get people to
jointly own the software solution.

If we have a reason to believe that some people or programming pairs do not
perform at the level that was assumed when we were making the T-shirt size
estimates, we can adjust the available thrust appropriately. For example, in a
team of ten developers, where two people are consistently contributing about
50% of what everyone else is contributing, there will be 10% penalty on the

Software Project Estimation

70 Chapter 5 | AdjustmentsChapter 5 | Adjustments

overall available thrust. Remember, our job for the moment as forecasters is
to collect the data. Looking for solutions, individual performance improvements
being one option, is something the whole team can do together.

�Scope
Dealing with new scope and scope creep. When people are faced with
an increase in scope, the tensions often run high and project teams get
demoralized. Developers feel that business people are trying to load them
with out of scope work without comprehending the project realities, and
business people feel that developers are attempting to avoid work without
comprehending the need for success.

This is one more area where charts and diagrams can simplify things significantly
and bring everyone closer to agreement. For this reason alone, an intelligent
forecast pays for itself multiple times along the life of a single project—
removing tension and allowing people to focus on meaningful problems.

When new scope starts sneaking in, we need to

•	 Position the new target on the forecasting diagram.

•	 Track new scope and original scope separately.

•	 Demonstrate the situation.

•	 Outline the available options—aim at the new target;
cease the addition of new scope; extend the project;
defer other scopes; or anything else that can be inferred
from the forecast.

This clarity in choices dissipates tension in the team significantly. The situation
is very different than adding new scope directly to a product backlog and
mixing it with original scope, without a clear picture of the impact that this is
having on target dates and expected features.

SCOPE DESTINATIONS

When dealing with scope, there are a few things we can do, other than

completing it:

•	 Deferral of scope is when we agree to postpone

implementation until all other scope is complete, that is, there

is an agreement that deferred scope can be omitted from the

project deliverables and still have a successful project.

71

•	 Descoping is when we remove scope from the project with

the explicit understanding that we will no longer revisit it.

•	 Reprioritization is when we change the importance of scope

with the intent to focus on the more important functionality

earlier, but we still need the less important scope to be part of

the project deliverables.

Additionally, if scope is organized by releases, it is useful to have fake

releases labeled “Deferred” and “Orphaned”. Deferred scope should be kept

visible on the release level because it is still for consideration. Orphaned

scope is scope that has not been assigned to a release. But just because

it has not been assigned to a release does not mean there is an explicit

agreement to not complete it as part of a release. It is dangerous, because

sometimes orphaned scope becomes “invisible” and then all of a sudden

shows up in the most inconvenient moment.

Scope, and the approach that people take to change in scope, is another
junction where multiple competing concepts confuse the situation and make
it easier to get in conflict. These competing concepts are product, project,
and contract type.

Let’s look at the common confusion between “product” and “project” first.
The product-oriented view is that we can simply prioritize work by business
value, in an ever-evolving backlog, and with this we guarantee that what is
valued most gets completed first. However, for the people who look at the
effort from the project-oriented view, it is also important to know when and
at what cost will the whole effort be complete. Both views are meaningful
from the perspectives of the people who maintain them. It becomes important
to have a tool that can bridge the gap and help people develop an understanding
and empathy for the different view.

The other pair of concepts that is easy to confuse, and affect people’s
attitude to scope change, is “project” and “contract.” There are two main
contract types in software development—one is “Fixed Price” and the other
is “Time and Material.” Both contract types apply some structure to the
relationship of the parties. A project on the other hand, by definition, is an
enterprise with a specific goal. The goal is often defined in terms of specific
functionality or capabilities. The issue here is that a Fixed Price contract
puts a lot of stress on software developers, while a Time and Material
contract puts the stress on the client. Clients working on a project with
Fixed Price contract can become insensitive to the pains of software and

Software Project Estimation

72 Chapter 5 | AdjustmentsChapter 5 | Adjustments

product developers, who are trying to stay within a set budget. And software
developers working on a project with a Time and Material contract might
become insensitive to the client, who is trying to accomplish a defined set
of functionality before their money runs out. It is important to keep in mind
that the fact that a project has a “Time and Material” contract does not
invalidate the fact that the project also has a set goal (at least in the hearts
and hopes of the people who initiated the project).

When we use a simple visual tool, things become clearer, with less possibility
for misunderstanding. Finding satisfactory solutions becomes a controllable
effort, and people are free to make clear choices from mutually complementing
options. In this sense the value of a forecast goes beyond its potential accuracy.
The forecast becomes a tool for communication between people who struggle
finding a common language, thus saving time, projects, and relationships. This
is the true power of a good forecast.

There is nothing bad with scope creep. As it happens, people discover
new things they had not thought about at the start of a project or things
they simply forgot to mention. This newly discovered scope often deserves
to be included in the project’s definition of success. As long as people are
aware that it is “new,” and they are still willing to keep it in their action
plan, then the extra scope cannot be good or bad. It becomes simply an
additional factor to consider. What is not good is when people pretend
that adding new work is as simple as adding new simplistic specifications
to a backlog, and that this has no implication on the rest of the project
parameters like cost, duration, complexity, work environment,
relationships, and more.

To facilitate the scope creep discussions, we need to keep making things
more visible and easier to understand. Figure 5-8 demonstrates a situation
where adding scope with the same pace will mean that only 60–70% of the
originally specified functionality will be delivered by the target date. The
remaining 30–40%, of what is delivered, will consist of newly identified
scope. Based on this information, people can decide if they want to maintain
the current “discovery rate,” restrict their outreach to only what was
planned, or extend the project appropriately. If needed, we can even
differentiate between extra scope which reflects new knowledge and extra
scope which reflects superfluous demands on an already rigorously specified
system (a.k.a. gold plating).

73

By doing this, we can start discussing behaviors and the effects they have
on the project. We can demonstrate the effect of overcomplicating
previously discussed functionality, beautifying components, and gold
plating. We can also demonstrate the effect of perpetual discovery,
learning new things, and “pivoting.”

When we provide people with ample time and a clear picture of how their
actions affect the forecast, they can explore the tradeoffs and make
constructive decisions, including completely reframing the project with a new
set of goals and a new timeline. People can choose to maintain their behaviors
in regard to scope change or they can refocus on their original plans—either
way, they are aware of the situation.

�Driving the Projections
Scope, duration, and cost are the dimensions which interest us most when
forecasting a software development project.

•	 Scope is measured in effort, that is, when sizing a feature,
we say, “It took 2 weeks for 3 people.”

•	 Duration is measured in time.

•	 Cost is a derivative of effort and time. If you are an
accountant, it is possible to measure feature size (or
scope) in dollars. But in reality this dollar value can only
be assigned once the effort had been expanded.

Figure 5-8.  Distinguishing originally planned scope and newly added scope (scope creep)

Software Project Estimation

74 Chapter 5 | AdjustmentsChapter 5 | Adjustments

Consequently, the projections over the axes of effort and time are what we
want to explore when searching for a solution in case the project is not
progressing toward the desired state.

Because we employ techniques and processes that enable a sustainable pace
of software development, we can extrapolate the tracking data over the
remainder of the project. If we are not satisfied with the indication of the
projection, we need to understand what project control to apply in order to
steer the project to where we want. The balance of forces on an actual project
can be rather delicate, and whatever controls we apply, we need to do it
confidently, but not rushed.

We saw how available thrust and scope affect the project performance. We
can use this knowledge to define a target along the effort and time dimensions
and “calculate” the change in available thrust or scope required to arrive at
that target. Figure 5-9 demonstrates these rough calculations: if we increase
the available thrust by 30%, we have a chance of arriving at the target;
alternatively, if we descope 20% of the project and only increase the available
thrust with 5–10%, we also can arrive at the (new) target.

Let’s say we decide to increase the performance angle with a quarter of its
current state. We may need to do this for a number of reasons—for example,
when data shows that we are tracking late with the original scope, or we are
tracking well but want to move the end date sooner, or we are tracking well
toward the original goal but have set eyes on a more ambitious goal. In either
case this means we need “to climb” faster or for a longer period. We can
consider multiple options for increasing available thrust and “calculate”
how much each one contributes toward increase in project performance.

Figure 5-9.  Crude calculations of required thrust increase

75

For example, if we are in a situation depicted by the preceding diagram, we
might drastically cut meeting time, find process optimizations, teach new
refactoring and TDD techniques, and secure 1 extra hour of work per day—
this will give us 15–20% available thrust increase. We can also target less
critical modules and simplify or differ functionality in order to gain the
remaining bump in the projected indications. What the forecast is providing is
the information we need to gain true leverage for the execution of the
required improvement actions without second guessing and backtracking.

In this way we can actively drive the project performance toward a chosen
state and we can apply appropriate and measured project control. Now
instead of simply requesting that we have “more developers,” we can say with
confidence that “if we want to deliver the discussed scope for a level-off two
weeks before the desired end date, then we need three more developers,
who perform similarly to Jimmie and Jacqueline, to join no later than two
months from now, and we need to cut status report meetings by 60%
immediately.”

Random and unsystematic interventions for improving the project’s
performance create confusion, waste time and energy, and frustrate people.
By using a reliable tool for intelligent decision making and by confidently
applying measured and timely control, we preserve the team’s energy and
keep people’s relationships in the healthy area of collaboration. Not rushing
when applying control allows us to do things with specific intent and
anticipation. We are not in action-reaction mode anymore, but into
anticipation-control mode—two very different frames of being, with material
impact on the solution quality and the quality of experiences for people on
the project.

�Summary
Confident and fact-based forecasting is crucial for people’s experiences on a
project. It helps us communicate the state of the project clearly, allows us to
explore the effects of various changes to project performance, and facilitates
the identification of an adequate next action5 for advancing us toward success.

5 Identifying next action to move us toward a desired outcome is the step that closes the
open loops as described in the stress management and productivity framework in Getting
Things Done: The Art of Stress Free Productivity by David Allen (New York: Viking, 2001).

Software Project Estimation

76 Chapter 5 | AdjustmentsChapter 5 | Adjustments

There are a few things that are needed in order to be successful with this
method of forecasting and project control:

•	 An approximation of total project scope

•	 Proper detail of system specification

•	 A set of early estimations (not a forecast yet)

•	 Understanding of the factors affecting available thrust

•	 Understanding of sustainable pace—health of software
system and project teams

•	 Tracking data of actual completion time

•	 Pen and paper, or a spreadsheet application like Google
Sheets or MS Excel, to draw a project performance chart
and forecast

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9_7

C H A P T E R

6

Financial
Performance
and Managing
Risks
In this chapter we will look at a tool providing additional insight into the finan-
cial health and progress of a project. We will also look at a few situations that
can be expected on a typical project and how we can manage them and the
associated risks.

�Performance Index
The scope forecast that we explored in previous chapters enables us to apply
measured project control toward desired functionality and calendar targets.
Scope and time schedule are important project dimensions, but to be confi-
dent and resolute in the decision-making process, we need a clear view of the
energy and financial state of the project. This will enable us to not only steer

78 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

the controls to where we want but also to have an informed expectation for
the longer-term capability of the project.

Figure 6-1.  A chart depicting five project performance metrics that highlight the financial
aspect of a project

The indication of available thrust already provides deep insight into the proj-
ect’s condition. However, available thrust is more about the team’s output
than about the project’s. The team might be hitting all the planned functionality
targets, but at a higher than planned dollar cost, and thus the scope forecast
alone is not sufficient. We can plot the planned1 and actual dollar expenses,
along with a few index values that provide information for the financial health
of the project. Figure 6-1 shows a combination of five project performance
metrics overlaid on the same diagram. We explore them in detail through the
remainder of the chapter. I call this combined representation of the project’s
performance—the performance index.

Similar to the spreadsheet files from Chapter 4, there are sample spreadsheet files with data and

charts demonstrating how to build a performance index. For those readers who enjoy spread-

sheet formulas and charts, the sample spreadsheets and diagrams in Appendix B at the end of

the book—and can be downloaded from www.apress.com/9781484250242 —might facilitate

your familiarization with the details of the method further.

A set of simple indications which improve awareness of the project’s financial
and energy state are

·· Money burn—planned cost and actual cost

·· Value index—scope (“value”) we have delivered to date
compared to planned

1 For projects with a fixed scope and fixed budget contract, the planned cost is clear. For
projects with time and material contracts, there is no agreed-upon cost, but that does not
prevent us from planning or establishing a desired cost, or at least indicating the projected
cost.

http://www.apress.com/9781484250242

79

·· Relative cost index—money we have spent per unit of
scope compared to planned

·· Borrowing index—the overtime we have borrowed from
employees in order to be where we are

The performance indexes diagram shows the project from a different per-
spective, and we gain new sensitivity to changing circumstances compared to
only tracking on scope. By having two qualitatively distinct perspectives, we
get to “triangulate” our position and to steer the project with much more
adequacy and confidence.

Burning more money than planned is not always something negative. If we are
producing proportionally more value than planned, then this is in fact an unex-
ceptional situation. In this case the money burn will indicate a departure of
the actual cost from the planned cost, but the value index and relative cost
index will remain close to each other. Both planned cost and actual cost
graphs are shown in dollars and plotted against the secondary vertical axis on
the diagram in Figure 6-1. The value index and relative cost index are unitless
values, and their graphs are plotted against the main vertical axes on the
diagram in Figure 6-1.

If the value index and relative cost index diverge, we know we are burning money
faster than we are producing value. We then need to start looking for ways to
reduce the money burn or to increase the productivity. If reality and expectations
are irreconcilable, reframing and renegotiation of the project is in order.

This analytical tool gives us an opportunity to identify problems and start
working on them earlier. By pulling the moment of awareness sooner, and by
bringing additional clarity to important project facets, we are given a larger
span of time for an effective action before the latest responsible moment.

If you look at the spreadsheet formulas, you will notice that the inverse of the
money burn is factored into the value index to amplify its indication. An ampli-
fied indicator alerts us more promptly when things go astray. For example,
let’s say we have a plan to add two developers to a team of eight, and expect
to ultimately achieve a 17% increase in the team’s performance (17% is
approximately 1/6th). Let’s say the actual increase in scope completion (after
3 weeks of ramp-up) is about 10%. If we only track for scope and we look at
how the slope of the scope forecast is steepening, it might take us some time
before we realize that the increase in team’s performance is not enough com-
pared to planned. With an amplified indication, when comparing the value
index to the relative cost index, we get alerted of things not going as desired
almost immediately.

This can be seen on Figure 6-2 where the graphs on the top reflect the scope
track, and the graphs on the bottom show the corresponding behavior on the
value index and the relative cost index. Index deviation is not the same as

Software Project Estimation

80 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

actual scope deviation from desired scope. If the planned burn-up is not steep,
then even if the two indexes diverge significantly, the lag in terms of “scope
not delivered” will be small (the scenario on the left side of Figure 6-2). And
the opposite—if the planned burn-up is steeper, then a divergence in the per-
formance indexes is accompanied with a larger scope deviation (the scenario
on the right side of Figure 6-2).

This amplified indication should be used for prompt initiation of situation
analysis and not for triggering a knee jerk reaction or panic. It is important to
understand that the departure of these indexes from one another only signi-
fies some change in the trends. The effect on the project’s progress might be
less dramatic. Even when we observe the indexes departing sharply, we still
need to analyze the situation first and apply measured and careful control only
after gaining sufficient understanding of the indications. If we have a small
team and we are planning to gradually increase it, then if we observe the
indexes departing sharply, indicating that we are producing much less than
planned, we may conclude that this will be compensated quickly later, when
additional developers come on board. The early team might be laying the
groundwork with fundamental software architecture, which we know will pay
for itself later when the new developers can reap the benefits of working on
a healthy system. The situation might not be matching the plan, yet it might
not necessitate an immediate intervention either. Because early or mid-proj-
ect performance is not a success determining factor in and of itself, we can
allow ourselves some time before springing into action. On the other hand, if

Figure 6-2.  The performance indexes at the bottom and the correlated behavior of the proj-
ect in terms of scope delivery at the top

81

our analysis indicates things are deteriorating for the long run, we can get on
it quickly and have more time to generate viable options.

�Borrowing Index
Overtime is shown on the diagram in Figure 6-1 as a percentage of the normal
work time and measured on the primary vertical axis with 1 being 100% (or
8 hours of overtime per day). When it comes to borrowing, different compa-
nies do things differently. Some borrow recklessly, some never borrow, and
some are in between. Some return what they borrowed and some don’t.
Companies that are (very) mature in their adoption of the agile software
development principles reject the idea of overtime vehemently. However, not
all companies and managers are at such a level of agile maturity. Some do not
understand the essence of sustainable work or the 40-hour workweek prin-
ciple and regularly request overtime. When managers do this, they need to
acknowledge the fact that a portion of the output is being covered with effort
for which they have not planned (and frequently are not paying for it2).

2 As a scrum master or project manager, it is our responsibility to talk to managers and
find out whether overtime is being paid and at what rate, or whether people get compen-
sated in other ways like extra vacation or training.

Figure 6-3.  Delivering according to a plan with the help of “hidden” overtime contributions

Software Project Estimation

82 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

Figure 6-3 shows a possible scenario where we are happily forecasting green
project status based on the actual delivery data (the actual delivery very
slightly lagging than planned as indicated by the graph at the top of the figure).
But can the rate of overtime, as indicated by the shaded area on the bottom
chart, be sustained through the remaining half of the project? And even if it
can be sustained—is this the right way to plan and manage a project?

It might be uncomfortable for many project managers to bring overtime to
the surface, but tracking how much time is borrowed and keeping manage-
ment informed is an important energy management activity. Overtime saps
the energy of the team and affects the dynamics on the project. The nature of
this “loan,” like any other loan, is cumulative, and this is why it’s plotted as an
area chart so that the magnitude of time borrowed to date can be appreci-
ated. The information from the overtime graph does not help us get immedi-
ate performance improvements, but it helps us navigate the treacherous
waters of overtime and exposes a major contributor to a deteriorating envi-
ronment. If we observe that the project is staying “on track” by continually
borrowing time from employees, then we should look for other solutions!

�Working Smart
Keep the initial estimation effort tiny and simple. If we spend too
much time for the estimation itself, then it becomes a project on its own, and
no one needs this. A big portion of the estimation time is usually spent with
the initial breaking of scope to the desired resolution.

Sometimes clients come prepared with a large functional specification docu-
ment. These documents have a lot of shortcomings when it comes to actually
building the right product, but they are very good for establishing the baseline
of what is expected from the project. Functional specifications can be decom-
posed fairly easy to the resolution we need. A single person (e.g., a scrum
master, a business analyst, or a software developer) can break this down into
enough pieces to support the desired resolution within a few hours of work.
It takes just a little skill to not get bogged down in irrelevant details and to
keep carving out chunks that comprise a set of related functionality. The
chunks can be simply outlined with a color marker on a printed version of the
specification; there is no need for high-tech toolset.

Or sometimes, instead of a functional specification, we might work with a
story map. Story maps are great tools for clarifying product vision. We need to
make sure the map has enough stories to support the desired resolution from
forecasting perspective. For a decently sized project, this should not be an
issue. However, if we end up with too few stories, then we need to probe the
product owner or business analyst for additional detail. Chances are that if
there are too few items in the story map, then they need to be broken down
further within the iterations, and probing for more detail is not a wasted effort.

83

Occasionally, a product owner has already broken down everything into a big
flat backlog, and he/she is ready to take us through the requirements that are
captured in it. If this happens, we need to be very careful to not confuse the
estimates for the forecasting with the estimates for the story points. It is likely
there will be a strong correlation between both, but we need to protect the
team from artificial pressure of low-level estimation at this point, and we
should keep story point estimation for later when we have iteration planning
meetings and the team has more detail and current context.

Keeping things simple, and even intentionally sketchy, is important when it
comes to estimation and forecasting. The first reason is that we simply don’t
want to do too much work and spend too much money on it. Estimation and
forecasting are activities that many people perceive as overhead already, and
asking for a sizable effort toward them will be met with resistance. The sec-
ond reason, which is probably the main one, is that we don’t want to get too
attached to the estimation results.

Keep the starting data around. Long-term estimates do not become use-
less when we gain new knowledge and update the scope of the solution. We
can incrementally adjust only the things that did change, and we can analyze the
effect this has on the projected performance. Are we going to need more avail-
able thrust? Do we need to cut scope elsewhere or lengthen the project?

If there is a decision to change the scope of the solution, we need to update
the targets and baseline, but it is best to keep the historical data as well. This
way we can backtrack and reevaluate when “calculations” seem off. The effort
that goes into rebasing is usually not that large. If we notice that we need to
rebase the project all the time and that any long-term planning gets invali-
dated within an iteration or two, then we need to figure out what are the
issues around product direction and vision. Those issues will not be solved by
pumping out software.

Short-term estimates are not useless either. Short projects are always
harder to forecast. On projects shorter than 3 months, and with less than
three to four developers, it becomes difficult to get to the required resolution
and to produce a meaningful projection early enough for decision-making
insights. For this reason, a forecast on such projects is less useful as a project
control tool and is more useful as a communication tool.

The best control tool on short projects will always be relentless prioritiza-
tion, deferral, and descoping because there is just no time to improve team
performance by adding people or adopting better development practices. This
is not to say that on long projects we should take prioritization casually—we
need to always ensure we are working on important things and we are not
implementing features with low utility. A forecasting diagram on a short proj-
ect can serve as a great tool for communicating the importance of prioritiza-
tion and deferral to clients by demonstrating an unattainable target sooner.

Software Project Estimation

84 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

We have to be cautious when adding people on short projects. We should
consider this option only if we are certain that the new team members can
start contributing immediately, and that the new team remains compatible. In
practice, this means that everyone is very proficient, and the problems we are
solving with the software are not challenging. If introducing new team mem-
bers will destabilize the project, we should explore other ways to increase
available thrust—improving requirements so developers spend less time in
useless discussions, removing unnecessary process-related meetings, normal-
izing acceptance criteria across features so there is less repetition, and so on.
Cutting meetings is good to a point, but shaving off interaction time exces-
sively can achieve the opposite effect on team’s performance.

Short projects can be riskier for another subtle reason—it is more likely that
business people went into such projects with less thinking and preparation
than what they would expend for a longer project. There is an increased
chance that the business team wants to add new features they forgot to con-
sider at the beginning. Often these change requests are legitimate and scope
needs to be added. By tracking and demonstrating both the projections for
the originally discussed scope and the newly added scope, we can help people
make intelligent choices.

Honesty. Because we want to invest as little time as possible in collecting
data and producing charts, there will be instances where it’s just easier to
round up a number or move things around. For example, functionality might
have been finished a few days after the iteration is over, but we know that
most of the work was performed within it, so we count the scope toward the
totals for that iteration. Or sometimes we know something is incomplete, but
we consider it finished anyway because developers told us they’ll be merging
code in 2 hours. As long as we do these things infrequently, and with a clear
conscience, then we can trust the forecast just the same as if we were able to
plug in the exact true data.

We should keep a record of any manipulations and doctoring of data we had
to perform. And we should be ready to outline the essence of our activities
to the business decision makers if they probe deeper into our analysis. If man-
agers or clients need the data itself, and not only charts, we have to supply the
actual details. We should only discuss data details in terms of their impact on
the confidence in the forecast and avoid qualifying data details as good or bad.

Making the right calls in difficult situations. Sometimes we have a fore-
cast that shows we are tracking short, but clients will say the scope is non-
negotiable, they want it all. Don’t get alarmed. Or at least not right away.

First, look for the usual suspects for lifting the curve up—fewer meetings,
quicker feedback from people with business insight, more and capable people
on the team, simplified implementation (without impacting functionality).
Deferred scope has been stated by the client as “out of the question,” but we
shouldn’t stop asking questions—we need an explicit statement of value for

85

every suspicious system element. We need to look for innovative solutions
and for scope that we can safely get rid of. If clients don’t agree on deferring,
maybe they can agree on simplifying it.

Work on reprioritizing and deferring scope needs to happen with as little participation from

developers as possible. While the project manager and business people are working on defer-

ring scope, developers should be working on the highest priority features that have already been

validated. We should only involve developers if this will enrich their context in a useful way.

Once we have carefully examined what can be done, we can calculate the
contribution these changes might have to available thrust or scope, and we
can present new options to clients.

When looking for “extra time,” be careful to not completely wipe out the
level-off needed toward the end of the project. This will translate into a very
rough end of the project and will leave people with an unpleasant experience.
It will also remove safety for your team.

In case the forecast indicates timely coverage of all the desired scope, we
should still prioritize, simplify, and descope. Occasionally there are small
things that clients have not considered as separate pieces of scope, but once
it is pointed out, they might be willing to drop them. There are few things that
give more positive feedback to a technical team than a project manager or
scrum master who cares to make their lives better by identifying work that
can be removed. And a happy delivery team can work wonders.

Projects like this, where clients want it all, are probably the typical projects.
We need to find a way to sustain the delivery efforts throughout the project.
Just because we made the right call once does not mean we don’t have to
work hard for the rest of the project. Opportunities for descoping should be
sought daily and hourly.

Not making the wrong calls in easy situations. When things are going
well, we should stay vigilant and keep looking for opportunities to simplify
scope and improve environment. Everything that gets worked on should have
clear purpose and value. If we splurge by working on questionably valuable
features when things are going well, it can be difficult to reeducate people
quickly enough when we need to apply discipline to every decision.

Sometimes it is easier to make a decision after you compare how things work
in practice. So people might be inclined to initiate an A/B test. But making
production software with the purpose of experimenting is not cheap. Just
because companies like Google are setting up A/B testing for various usability
aspects of their applications does not mean it is a good idea to apply the same
approach on any project. Such experiments can be expensive in terms of

Software Project Estimation

86 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

software architecture and maintenance, and there might be cheaper, albeit
less certain, methods of gaining valuable knowledge.

When things are going well, extra scope might even come from developers.
They can get so excited that they start building things they find useful. This is
tricky. We should not overdo project control and kill people’s enthusiasm and
inventiveness, but we do need to keep reminding everyone to stay on course.
Doing things for the client at no additional cost is very nice, but it might not
be nice enough to offset their negative experience should a desired feature
get inadvertently dropped later in the project. Prioritization and scope con-
trol should be exercised judiciously regardless of how the project is tracking.

When other people make “wrong” calls, save the relationships and
not the forecast. When working to get a difficult project to success, it is all
too easy to consider events that derail our plans as wrong. If everyone else
on the project is okay with adding scope and affecting the forecast, the scrum
master or project manager can simply change the forecast. Resisting a change
in the project only because the schedule and forecast need an update is never
a valid position and is a definite sign of not understanding the needs of the
people on the project. (If the updated forecast indicates we need to reframe
the project, then this is another problem for people to work on. Reframing a
project is not an indication of failure.)

�Navigating Issues
When business people do not want to engage with prioritization.
Sometimes people do not know how to prioritize, or they don’t want to.
They just cannot get into action mode. Our job, as project managers and
scrum masters, is to help them make the right choices. It is not to make the
choices for them. We should understand what is blocking them from deciding
and treat this as any other blocker on the project—that is, it is our responsi-
bility to have the blocker removed.

It is okay if people do not make decisions right away. We only need them to
acknowledge awareness of an explicit “latest responsible time” for a decision.
Being aware of the latest responsible moment is a powerful motivator.

When people insist on waterfall type of project management and
reports. Sometimes, we haven’t had time to collect data yet, but we are
being asked to have a forecast anyway. It might even come as a request for a
Gantt chart. Producing a forecast takes a day or a few, and ruining relation-
ships over it might cost the project. My choice usually is to produce one and
to supply whatever explanations are needed to ensure the consumers of the
forecast have adequate understanding of the reality.

In this case, we should add extra adjustments (such as in the examples that
follow) and provide an optimistic, pessimistic, and “likely” date. Do not provide

87

a single date even if people choose to only focus on one of the dates you pro-
vide in the range.

We should add buffers to the timeline for anything that represents risk. One
team-hour is equal to 2.5–3% of the workweek budget, and the percentages
can accumulate quickly. We are mostly concerned with the effort of the devel-
opers—programmers, designers, and testers. If a scrum master is in status
report meetings for 50% of the day, this doesn’t necessarily affect the available
thrust negatively, it might even be a good thing.

Here are example safety buffers that I have applied to projects when convert-
ing from “estimated effort” to “calendar time”:

·· 5–10% of the calendar time is for holidays and vacations.

·· 5% of calendar time is for sick and personal time.

·· 2–5% of the effort (and money) can go for ramp-up
activities.

·· 2–5% of the effort (and money) can go for level-off
activities.

·· 10–15% of the calendar time is for the basic project-
related meetings.

·· 2–10% of the effort and money can go toward additional
team communication. Every time the team increases with
four to five people, this percentage needs adjustment. It
is more expensive to have larger teams.

·· 2–10% of the effort can go for additional conference calls
and emails with other locations, regardless of whether it
is a remote client or a dispersed delivery team. It is more
expensive to have teams that are not colocated.

·· Working on a legacy system?—Add 25–50% to your esti-
mated effort right off the bat, and be prepared to adjust
even more as you start collecting data.

·· Account for any nondelivery work that applies to deliv-
ery team and assign cost in terms of % team time. If the
work only applies to one team member, then prorate the
load appropriately:

·· Regulatory process.

·· Alien project management process and procedures—
if the team is being asked to follow an alien process.
Often this is the case when working for a client on
their site and in tight collaboration with their teams.

Software Project Estimation

88 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

·· Technical documentation/user manuals—if the team
needs to write more than what they naturally perceive
as sufficient level of software documentation.

·· Travel/business trips—If someone is going to another
office, they will work on code less.

·· Delivery team training—if the delivery team needs
training or needs to provide training.

·· Time sheets—Sometimes a scrum master (SM) can
help people on the team with this, sometimes not
(depending on the setup, this can easily account for
1–2% of the time in the week for every individual on
the team).

·· Security procedures and dealing with foreign systems
(logging in, switching networks, VPN, etc.) for Dev
and for QA—Sometimes people are forced to work
in less than optimal development environments for
security reasons, and it’s not unheard of to have
spent 10–15 min logging into an ancient system; this
should be reflected as % cost to the project.

Figure 6-4 shows the percentage available thrust that we can reclaim by con-
tributing time for actual software development back to the working day. The
percentages are based on 5 hours of work toward working software per day,
which is probably on the high end for a typical developer.

Activity duration

The whole team Single
developer

Once per
week

Twice per
week Every day

5 min 0.33% 0.66% 1.5% divided by #
of
developers

10 min 0.5% 1% 3%

15 min 1% 2% 5%

30 min 2% 4% 10%

1 hour 4% 8% 20%

Figure 6-4.  Percentage available thrust per unit of working time

89

It is worth guarding against many of these in the Assumptions or Risks sections
of a SOW (Statement of Work). We can introduce clauses in the form of

“Assumptions: No more than 1 hour per week
required for managing client networks and systems.”

I know that the Manifesto for Agile Software Development puts relationships
over contracts, but SOW will be around for a long time as a tool, and there
is nothing wrong with coming up with a good and meaningful SOW document
if we are signing one anyway. This is especially relevant for Fixed Price con-
tracts, but it won’t hurt even in a Time and Material contract so that we draw
attention to activities and risks that can be costly for the project.

Deadlines produced by a senior manager or a VIP client, without input from
developers on the project, are an immediate red flag that needs to be reflected
in the project status report, and it should remain red until there is data to
support the deadline. Sometimes people in senior roles manufacture a date
on their own and say, “we need to just start working and be done by November
20th.” This is okay as a method of getting things going, but we need to make
it immediately visible that, as far as a desired project end date is concerned,
there is nothing to support the “plan.” By immediately calling out an unsup-
ported deadline (by “coloring” the status red), we ensure that people are
working with the correct understanding of the project’s reality.

When clients or managers confuse velocity and forecasting.
Sometimes clients grow impatient and, because they see the team assigning
story points each iteration, they will ask the team to assign points to all the
stories until the end of the project. And they expect that the team subse-
quently commits to covering X number of points per sprint3 from now until
the last sprint.

This is an indication that people are experiencing difficulties in transitioning
from project paradigm to a product paradigm. We need to work with them to
clarify the distinctions and adjust expectations.

As clients get some exposure to agile development practices, they might con-
fuse story points with project estimation. We need to not get confused
though. Story points help with keeping consistent pace when going from one
sprint to another. We only need story points to prevent the team from inad-
vertently taking in too much work within a sprint.

When clients want the whole project estimated in points. Same thing
as earlier, only it happens at the start of the project. They might have heard

3 Sprint is the name for an iteration in one of the more popular frameworks for running
agile development projects—Scrum. Scrum claims to be project and product framework,
but in reality it is more of a product framework (www.scrumalliance.org).

Software Project Estimation

https://www.scrumalliance.org

90 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

about story points, and they think they are for project estimation. We need
to make sure they can start differentiating between story points and project
estimation, and then we can proceed with the forecasting method as explained
in this book.

Estimating bugs. We need to consider bugs as “cost of our practices,” or as
“resistance,” and subtract some amount from the available thrust. For exam-
ple, we can subtract 20% from the available thrust and apply this over the
remainder of the project. If we want to be even more correct, we should find
an exponential function to reflect this technical debt cost, since a cost for
fixing a bug increases the longer the bug stays in existence within a growing
system. For example, we can subtract an additional 2% with every subsequent
iteration.

If there is a rolling wave of bugs, we may need to subtract as much as 80%.
This, of course, is an extremely unhealthy situation, and forecasting is likely
not the first priority on a project like this. But it is exactly in moments like this
when senior managers want even more reports and projections. If we do have
to forecast, a 20% available thrust means that if something is estimated as 1
day of effort, it now takes 5 days of effort, and with the slew of meetings and
context interruptions on a dysfunctional projects like this, it can mean 10 or
more days on the calendar.

When people ask for precise release forecast. If we are committing to
a fixed scope release every 2–3 months, we are in effect doing small waterfall
projects. It is difficult to forecast with good precision on a 2–3-month
timeline.

However, many times releases are only “internal” and software does not get
deployed in production on every “release.” In this case we have to learn why
it is important to get to this level of precision. If it turns out it is not that
important, we can negotiate to forecast only for the full project and to only
provide a brief outlook for the internal releases. Remember, sometimes cli-
ents, managers, or business people will come up with an ask simply out of a
habit or because they are not aware of the actual cost associated with it.
Again, scrum masters and project managers can treat instances of this as
impediments to the project and treat them accordingly, that is, by figuring out
better solutions.

When things don’t pan out right. Sometimes we are 2–3 months into a
long project and we observe we are well behind the desired state. Clients and
other VIPs will often insist on “improved” estimation and forecasting. We
might be asked to go over all the scope again and redo the estimation with
the mandate to produce a more precise number.

If this happens, and if there is a valid reason to doubt the forecast’s quality, do
not go for better precision or accuracy of individual estimates, go for better
resolution. It is easy to just push the pressure onto the delivery team and ask

91

them for more precise estimates, or ask BAs for more detailed specification
and then ask developers for improved precision of estimations. This is detri-
mental to the team and will not produce any form of improvement. The
power of initial estimates is not in their accuracy, but in their numbers. A large
number of estimates, each with low accuracy, makes for a forecast that is
significantly more likely to be accurate than a forecast based on few detailed
and “precise” estimates. Detailed requirements do not facilitate precision of
estimation. However, they facilitate breaking down work in a greater number
of chunks. This in turn improves the forecast quality.

When clients or managers ask for overtime. We need to find out what
are the expected achievements from such an ask. Is the extra 1% of function-
ality coverage, that we get out of a stolen Saturday, worth inconveniencing the
people on the team and creating an unhealthy working environment? Is the
extra 1% we get for that single day of overtime going to be followed by a
whole week of subpar productivity from everyone on the team? What will be
the net % contribution toward the project? Do we need to extend the landing
(and the project) with another week instead?

When we ask these questions, we should do it against the forecast diagram.
We need to improve the visibility of what we are gaining and what we are
losing, so that the decisions are informed and the discussions don’t deterio-
rate into dysfunctional arguments.

Chasing quality through documentation. There will be clients with a
rigid project management process and clumsy procedures. When we are
asked to comply with extraneous processes, escalation procedures, and end-
less paper trail, we need to subtract that time, which affects the delivery
team, from the available thrust. It is sometimes scary to do, when you realize
that people are only left with 20% of their day to actually work toward a soft-
ware solution. But if the information is presented considerately, it can educate
people outside the delivery team on where to improve impeding processes.
We also need not share the actual forecast and all its details. If the environ-
ment is not conducive to limitless transparency, we might be better off keep-
ing the forecast and data to ourselves, while negotiating the terms of the
project with a newly gained perspective and confidence.

When people argue on scope. You’ll sometimes hear people start arguing
about whether something is in scope or out of scope. Working with impre-
cise terms like “too much” and “scope” brings confusion. Additionally, some
people think “out of scope for the project,” and some people think “in scope
for the product.”

When we can clearly show which pieces of the product are making it in the
current project envelope, the discussions become much more focused and
misunderstandings much more unlikely. For this reason we need to keep

Software Project Estimation

92 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

asking for prioritized product backlog and then draw the line where the
project envelope intersects with the (product) backlog.

When people insist on fixed everything—scope, time, money, and
quality. We need to remind people that we, all of us who are working on the
project, can only manage the project within the envelope of what is real. A
forecast is not a tool for improving the project’s performance nor is it a tool
for project control. It is only a tool for visualizing the performance and facili-
tating the control. Just because someone wishes two lines to intersect some-
where else on a diagram does not mean the project is under control. People
need to follow up with specific and intentional actions.

Remember—project and product are two different things. People might be
trying to squeeze the whole product within a single project. We should revisit
the project goals and examine each of the proposed product capabilities
against the goals. If some product features seem less vital, they become good
candidates for deferral and descoping.

The true controls for project performance are

·· Managing scope, including simplifying the requirements

·· Improving people’s understanding of the requirements

·· Managing throughput/available thrust

·· Improving people’s environment

If the business people are not willing to engage with any of these controls, and
the only suggested control is “just get it done,” we need to explain that the
project is not being controlled toward any different outcome than what it is
rolling toward on its own.

If the forecast is showing that the project is behind schedule, but people want
to just wait and see if it is going to steer toward the better outcome on its
own, then this is a valid decision. If the forecast makes us 80% certain in our
claims that a project will be late, then there is a 20% chance we are not right.
Business people are free to take this chance.

What to do when projections don’t materialize? We need to maintain
a constant watch on the situation once projections have been communicated.
We need to speak up early. Usually we are the first to know when the projec-
tions start going south. Also, as project managers and scrum masters, we
need to not get in a rut and become mere bookkeepers or statisticians—we
need to actively help other people and drive the project toward its objectives
with every opportunity we have.

93

�Navigating Issues with the Team
When team members ask what is the point of estimating when it is
not accurate? We might get this question from developers or managers on
our team. People might resist providing estimates, or foot the bill for time
spent on estimation, when they honestly believe we cannot provide what they
consider to be of value—namely, accuracy and precisions. We need to explain
the power of statistics and how it translates to precision.

What a project manager or scrum master can do is to explain the approach
in this book quickly and make it known that no one is being asked to provide
precise individual estimates. The estimation ranges overlap to highlight this
lack of precision, and we need this only as one of the inputs into a forecast.
The forecast itself is generated later and only after the team starts producing
real software, and we can map real data to the initial guesswork.

If people on the team do not trust the approach, we can still ask them to
donate a few hours of their time to help with this as an experiment. We
should prepare for the estimation session well, so we don’t waste any of their
time on activities we could have completed ourselves. We might not get too
many chances at this.

Why do we need to estimate in the beginning when we are giving
story points later anyway? This is the same issue as the one described in
“When clients or managers confuse velocity and forecasting.” We need to
explain that story points are not ideal for project forecasting.

How is this different than the “mythical man-month”? Remember
Brooks’ Law: “Adding manpower to a late software project makes it later.”

The method in this book is different because we are not establishing a one-
to-one relationship between a man-month and the output of a team. We are
identifying a functional relationship between effort, time, and output. We
account for the changes in this relationship when different parameters of the
project change—team size, time in meetings that don’t contribute to soft-
ware, issues with environment, communication difficulties, and many more.
We are also not treating all people equally. We can adjust the functional rela-
tionship to account for most of the factors we are aware of.

And finally, one of the main benefits of a reliable forecast is that we can prove
we need to add people to the project before the project is “late.” When the
realization of a project being late happens in the last quarter of a project,
there is no time to save it by adding more people. When this realization hap-
pens in the first quarter or earlier, then adding people is not necessarily
inadequate.

Software Project Estimation

94 Chapter 6 | Financial Performance and Managing RisksChapter 6 | Financial Performance and Managing Risks

�Summary
Tracking the deliverables of a project and making intelligent scheduling projec-
tions is a critically important task in project management. However, having
knowledge for scope alone is not sufficient for reliably navigating toward suc-
cess. Gaining understanding for the financial performance of a project pro-
vides valuable and rich context for project management decisions and can
highlight issues much sooner. We learn the answers to questions like

·· Are we spending more money than planned for the deliv-
ered functionality?

·· Is our project staying afloat thanks to the “volunteering”
work of the delivery team?

·· Do we have enough money to take us to the end of the
project?

In order to gather the information for producing intelligent scope forecasts
and financial performance index indicators, we need to set up appropriate
expectations, to manage appropriate conditions, and to navigate certain situ-
ations that arise on most software development projects. If we approach
environmental risks without proper consideration, we might introduce insta-
bility on the project that cannot be captured by a forecasting model. Managing
risks wisely, and maintaining an environment where everyone feels safe, is an
important aspect of ensuring that intelligent forecasting and project manage-
ment is a viable option.

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9

A tasty soup of loosely related concepts, heuristics, and practical details
is mixed up in this appendix with the intent to provide the important
nutrients for anyone who applies intelligent forecasting in practice. There
will be situations that require coming up with innovative applications
of the methods described in this book. Having the required nutrition
will aid in developing the intuition and skill for practical application.

�Software Development Laws
Throughout this book I’ve referred to Brooks’ Law and Gall’s Law. I’ve gathered
them, and others, here and expanded on how they related to project
estimation and forecasting.1 I’ve also added few other important software
development principles for quick reference, as they capture important
properties of the reality on software development projects.

�Brooks’ Law
Brooks’ Law: “Adding manpower to a late software project makes it later.”

Brooks’ Law is sometimes generalized as

Adding people to software development slows it down.

1 Some of the ideas in this section have been exercised in Allan Kelly’s book, Xanpan
(Leanpub, 2018), and I’ve reexpressed them along with my additions as it relates to the
concepts in the main body of this book.

�Tidbits

A P P E N D I X

A

https://doi.org/10.1007/978-1-4842-5025-9

96 Appendix A | TidbitsAppendix A | Tidbits

It is important to note here that the generalized form is just that, a
generalization. It is true, but only for a set period that follows immediately
after adding people to the project. Once the new team members have had
time to ramp up and start contributing, the net throughput of development
might increase (depending on many other factors).

The original version of this principle is important for project control because
it tells us that people should be added to a project only in anticipatory mode,
that is, planned. If we are reactively adding people because we have realized
that the project is late, then it is too late.

As said earlier in the book, forecasting can help with this situation since it
puts us exactly in the anticipatory mode needed for sensible project control.
We can decide whether more people are needed in advance of “being late.”

�Gall’s Law
Gall’s Law: “A complex system that works is invariably found to have evolved
from a simple system that worked. A complex system designed from scratch
never works and cannot be patched up to make it work. You have to start over
with a working simple system.”

Gall’s Law is about growing software systems. It explains how complex but
working systems become in existence.

This principle can be applied to software teams as well and has important
implications on scaling teams or working on projects with large teams
(five small scrum teams working on the same project comprise a larger
project team).

A complex team that works is invariably found to have evolved from a simple
team that worked. A complex team designed from scratch never works and
cannot be patched up to make it work. You have to start over with a working
simple team.

This law basically says that we need to grow teams, and not scale them or
“architect” them. This is important, since growing a team does not have to
start with adding more people. We can first exhaust the practical opportunities
for growth and improvement within the small and simple team, including
teaching them new skills. One of the benefits of this is that when we have a
team of high performing individuals, adding new individuals causes much less
disturbance. The new people tend to accelerate quicker because most of
their interactions are having the right support and this builds their confidence.
This feeds into an organically sustainable growing mechanism—as long as we
don’t exceed the intake capacity of the highly proficient team.

97

Many frameworks for applying structure at scale attempt to slice and dice a
large project team into small groups and hope to achieve the efficiency of the
small group, but simply applied at scale. My experience with this approach is
not positive. Large teams that are broken in multiple small teams are still large
teams. They need to be grown. Once we start with a normal sized team and
grow it beyond its natural capacity, we can add more people and then split it
in two. Then keep growing each of the teams gradually until we are able to
split in two again. Of course, we need to account for a great many number of
other factors if we are to build a high performing team. But starting with a
large team, or many small teams, is a sure way to create significant drag from
the get-go.

Starting a project with a large team puts the project in a state of being late as
soon as it has started (because the team cannot be patched to function).
Projects like this operate under Brooks’ Law at all times, and we are stuck in
a death spiral where the more people we add, the less chance we have for
making it out unscathed.

�Parkinson’s Law and Hofstadter’s Law
Parkinson’s Law: “Work expands so as to fill the time available for its
completion.”

Hofstadter’s Law: “It always takes longer than you expect, even when you
take into account Hofstadter’s Law.”

These two principles are true when we look at a project as a single monstrous
task and we grand-total the small tasks into a single large effort. With the
method of intelligent forecasting, we in fact treat each chunk of work as a
small project with its own probability of being on time, early, or late. We then
utilize the Central Limit Theorem to work on all the probabilities together,
accounting for the effect of each one, while not focusing on any one individually.
We are also tracking the project performance with additional project indexes,
which provide a fine-grained survey and prevent the work from simply
expanding and compressing within the full project envelope.

�Conway’s Law
Conway’s Law : “Organizations which design systems … are constrained to
produce designs which are copies of the communication structures of these
organizations.”

Software Project Estimation

98 Appendix A | TidbitsAppendix A | Tidbits

Conway’s Law can be applied to multiple aspects of software teams and the
systems they build. In the context of forecasting, it reinforces Gall’s Law
because if we want to start with a small and simple system, we also need a
small team working on it. Otherwise, if we start with a complex team, even if
the system starts small, it will inherit the complexities of the large team
through an overly complex design and architecture. A complex team will not
be able to produce a simple solution. This will immediately affect the team’s
ability to work in a sustainable way, and the result is often legacy systems even
before they have been deployed to production.

�Manifesto for Agile Software Development
The Manifesto for Agile Software Development2 is a document that gives
valuable perspectives on a few core dimensions of life on a software project.
The manifesto is a document that is worth reflecting on, and people working
with scrum or other frameworks related to agile development should take
time to discuss what applies to their projects and where they want to seek
improvements. Because there are some very popular misinterpretations of
what is in the manifesto, especially as it relates to project management and
planning, I feel it is important to go for a quick dive. First, take a look at
Figure A-1 to read the original manifesto in its entirety.

2 http://agilemanifesto.org

http://agilemanifesto.org

99

What follows is a line-by-line examination of the manifesto with my thoughts
on how it is relevant to forecasting projects. My commentary is in italic.

Manifesto for Agile Software Development

We are uncovering better ways of developing software (A “hint” that this is
primarily about software development and not about project delivery. Better software
development enables better project delivery but does not replace it or guarantee it.)
by doing it and helping others do it.

Figure A-1.  The manifesto as shown at http://agilemanifesto.org

Software Project Estimation

http://agilemanifesto.org

100 Appendix A | TidbitsAppendix A | Tidbits

Through this work we have come to value:

Individuals (clients, managers, developers, and scrum masters are individuals. We
need to treat them as such and value their problems and issues) and interactions
over processes and tools (agile development, scrum, XP, #NoEstimates, and
estimates all fall in this group. We should utilize the tools that facilitate interactions
with individuals.)

Working software over comprehensive documentation

Customer collaboration (working together implies taking care of each other’s
needs. It cannot be one sided where developers only care for better software and
business people only care for business) over contract negotiation (positioning
yourself well for a possible negotiation, and enabling other people to reason
productively during negotiation, is good. Contract negotiation is different than
project negotiation.)

Responding to change (knowing what the change means, in the context of the
project, is important for an adequate response. Baselining, tracking, forecasting, and
planning are not useless activities as they put change in context.) over following a
plan (trying to follow a static plan at any cost is the issue. Having a plan that you
intend to follow, but you are willing to revisit and adjust, is not a bad thing.)

That is, while there is value in the items on the right, we value the items on
the left more.

�Common Gaps, Environment Needs, and
Tiny Details
Project setup. A common gap on many software development projects is to
have the parameters of the project negotiated and to only then assemble a
team with the mandate to complete the project as defined. This creates issues
on multiple levels.

If the delivery team and the project manager (or the sole scrum master) are
not involved in the project setup, then they have missed out on the opportunity
to affect and manage one of the most important stages of the project—its
initiation. Once the project is set up, the chances for success are irreversibly
affected. Having participation from as many of the team members as possible
is an important step toward minimizing risk.

Many projects are defined within a Statement of Work (SOW) that never gets
presented to the delivery team. The team is simply handed a set of requirements
and a final date. This is not the best way to approach a team if we want them
to get to a high performing state. People can sense that they are not being
treated equally, and predictably retract their full and committed participation
in the endeavor. After all, if people are to develop a sense of ownership, then

101

they need to be treated as proper owners of the problem. Also, important
consideration in the form of assumptions and dependencies might get
completely overlooked by the people who “crafted” the SOW, thus exposing
the project to additional risk.

One of the first steps toward a sensible working environment on any software
development project is to have the full delivery team familiarized and ideally
involved with the creation of the SOW. This lays the groundwork for a
participative team and improves the risk profile of a project significantly. The
delivery team should define the assumptions which must hold true throughout
the execution of the project, as well as they need to identify any major
dependencies and risks that need to be worked out in order to have a realistic
chance for success.

Project start. When the delivery team jumps into implementation work
right away, there is a huge risk introduced to the project immediately. The
likelihood for a successful project diminishes greatly when the delivery team
is not allowed the opportunity to familiarize themselves with the business
problems, main users of the proposed system and their primary pain points,
and the typical journeys these users take through the current processes.
Sometimes in an effort to save money, a select group of individuals will go
over some of these topics and will produce written documents, only to then
have the documents stashed somewhere out of reach of the delivery teams.
People can go through year-long projects and then accidentally stumble on
useful descriptions of personas, success criteria, and intricate flow charts with
useful insight.

This is not what we want to save money on. Shared knowledge and
understanding is crucial for optimal flow and a solid solution. A preferable
approach is to take a few full days and have the delivery team and clients go
over the pertinent items together. There are various tools for facilitating this
process, and it is best if completed by a professional facilitator. An investment
like this will pay off on any project longer than 2–3 months.

Project manager vs. scrum master. The job title, of course, does not
matter. However, the attitude does. And the roles are different. Many Project
Managers (PMs) approach project management remotely and do not immerse
themselves fully in either the details of the implementation work or in the
relationships within the team. A Scrum Master (SM) on the other hand has to
be intimately involved in everything that goes into the team, and also be
willing to serve the people on the team and provide assistance, guidance, or
anything else that is needed to keep the team delivering great work. On the
other hand, many SMs would refuse to expand sizable amount of energy on
long-term or outwardly focused activities like project planning. An SM is
mainly concerned with the work of the team within the scope of an iteration
or two.

Software Project Estimation

102 Appendix A | TidbitsAppendix A | Tidbits

My approach, and recommendation, is to always care about the team first—
not the forecast or the project plan. This gives a more useful perspective for
the whole forecasting exercise as it becomes primarily a tool for helping the
team and the project move forward. When the PM aspect takes precedence
over the SM aspect, then the person responsible for managing the project
might get confused that the forecast or project plan actually drives what is
happening. This is usually contraproductive and backfires, as people and reality
refuse to conform to the imposed plan. So for me it has always worked best
to have the forecast and the plan be driven by what is the real capability of the
situation, but fully realizing the impact that the forecast and plan have on the
situation.

�SCARF
“SCARF: A Brain-Based Model for Collaborating with and Influencing Others”
is a model that is based on neuroscience and provides a useful framework for
any type of social interactions, including negotiations. SCARF is an acronym
for “Status, Certainty, Autonomy, Relatedness, Fairness,” and the model is
based around people’s reward and threat responses on these five aspects of
an interaction:

•	 Status—relative importance to others (in the context of
the interaction)

•	 Certainty—ability to predict the future

•	 Autonomy—the sense of having control over events

•	 Relatedness—the perception of safety with others

•	 Fairness—the perception of fair exchanges between people

Here is how an intelligent and reliable forecast facilitates the practical
application of SCARF within the boundaries of the project.

Status. Within the context of a project, the status of a client is that of
someone who has asked for help in accomplishing something that is of value
to them. And our status (the delivery team’s status) is that of someone who
has been entrusted with seeing their project to a successful end. When we
promote the use and application of precise forecasting, we establish ourselves
on the controls of the project, and we are allowing the client to take their
natural status of someone who is being provided a service. This normalizes
the relationship, triggers the client’s reward response, and allows for the right
type of interactions to occur throughout the duration of the project. It is
their project, but they have already entrusted us with it, and by not shying
away from the responsibility to control the project, we cocreate the correct
social structure.

103

Certainty. By providing a clear outlook and prognosis, based on provable
tracking data, we are delivering the ultimate in clarity and certainty to the
client and to the team. When we confidently indicate the likelihood of not
achieving a goal well in advance of the expected time, we provide the client
with the opportunity to work out solutions while there is still time. And
when we confidently state that there is a high likelihood of achieving a goal,
we allow the client to divert their precious energy to solving other important
problems. In both cases, we are triggering the reward response in the client—
either by allowing them ample space for working out the project problems or
by allowing them the comfort of actually knowing that things are on track
(a very different sensation than the one provided by claiming delivery
progress, but combined with continual inability of providing an outlook for
the final result).

Autonomy. By providing clear and viable options for steering the project, we
provide the client with the autonomy of choosing which option suits their
situation the best. The client can steer the project where they want, yet still
within the safety of what we have determined is doable. In this way we
maintain the “status” aspect of the relationship, and we are still responsible
for the ultimate effect that the application of a control has on the project, but
we allow the client to choose which control to apply.

Relatedness. By being transparent in presenting the factors affecting the
project’s progress, and by openly providing multiple options for dealing with
difficult situations, we show the client that we are working for them and that
we are one team. With a willingness to let go of negotiations that have become
inadequate for one reason or another, and by allowing clients to freely
renegotiate scope while maintaining a clear picture of the involved costs, we
become immediately relatable. Simultaneously we continually maintain the
client’s perception of our positive ability to carry out our part of the
relationship. This shows that not only do we care, but we actually can, and
will, do whatever it takes to get the job done (because we are basing everything
on the provable capability of the situation).

Fairness. By laying down all the options, and by demonstrating regard for
every percentage of throughput that we can apply toward the project’s
success, we create an environment where every action is treated fairly within
the envelope of the project. Everything has a clear cost and a clear benefit.
Choices have clear expected outcomes, and there are no secrets or intentional
gotchas. By creating a fair playing field, we allow the client to have a reward
response in this aspect of the negotiation as well.

Negotiation. The dictionary definition of the word is “discussion aimed at
reaching an agreement.” However, I enjoy thinking about this word with its usage
in the expression “negotiating turns” when driving a car, for example. This way,
the whole project and all the people on it become one unit with an immediate
objective of negotiating an obstacle. Negotiations on a software project take on
a completely new meaning when I think of the word this way—it’s a joyride.

Software Project Estimation

104 Appendix A | TidbitsAppendix A | Tidbits

�Variations of the Intelligent
Forecasting Method
Using a story map directly. If the forecast needed by business people is in
broad strokes, this approach can work well. It is a good alternative to no
forecasting when the relationship with the client is strong and the team is
performing well. In essence it is very similar to what is described in this book.

This approach does not provide high-fidelity guidance for applying proper
project control, it does not indicate trouble soon enough, and it does not
(directly) facilitate differentiating “added scope” from “original scope.”

Special care needs to be taken when mixing stories with clear definitions and
stories that are vague or large. Another point to keep in mind is be vigilant
about new stories making it into the product backlog—sometimes these are
net new change, and sometimes they are a clarification for something that was
already estimated.

All stories as 1-point stories. This approach is worth considering if we
already have many stories that are similarly sized. Getting the whole backlog
into similarly sized small stories can be difficult and expensive, though.

Something else to be aware of with this approach is that some stories are
still going to be riskier and more time-consuming than others. If we do the
right thing, and take on the risky and difficult stories first, then we might
have a slower start. Plotted on 1-dot-per-story data, this will indicate we are
tracking too slow for the project. We then need to convince people not to
worry, since we expect to be going quicker through the 1-dot stories planned
for later.

In practice, this method is better suited for iteration level planning and
maintaining consistent delivery pace across iterations. It can save time in place
of the planning poker game, and it also nudges the team toward smaller
stories, which can improve the flow.

�Invert, Always Invert
Carl Gustav Jacob Jacobi (1804–1851) was a German mathematician. One of
his maxims was “Invert, always invert.” He believed that the solution of many
complex problems can be facilitated by expressing the inverse form of the
problem.

105

By studying the inverse of the complex problem, we are presented with
interesting options, and a valid solution often emerges. Here is how this
principle is exercised in a few of the ideas in this book:

•	 To gain the ability to control the project with precision,
we agreed to rely on things over which we don’t have
control and cannot evaluate with precision. By inverting
the focus from precision to imprecision, we allow for
valuable statistical properties to emerge in support of
our objective.

•	 In order to be able to change the parameters of the
project, we commit to a specific outcome, seemingly
putting ourselves in a situation that does not permit
change of parameters. By inverting the typical order of
events, and committing before we know the exact details,
we allow details to emerge once we are in motion and
we are not simply working out a predefined solution, but
we are actively designing the problem itself. In true
collaboration with clients, we examine what success
means and we adjust the details of its very definition in a
way that supports the project’s practical ability within a
defined envelope.

•	 By inverting our focus from personal dynamics and
high performing teamwork, and instead invest energy
into developing a tool which is sourced from a place that
seems diametrically opposed to the human aspect of the
project, namely, statistics and scheduling, we allow space
for the human relationships to develop around the critical
supports of trust and safety (which are facilitated by the
tool). This then allows high performance team dynamics
to emerge and carry out the project.

I’m so much in love with the “invert, always invert” intellectual invention
that its impact on me has not diminished in the last 4–5 years, and I keep
rediscovering its beauty almost daily. Why I love it is because it helps create
contexts that are capable of generating emergent solutions—solutions that
take care of themselves. The contexts might be gentle and sometimes
fragile, they might need special care to maintain, but what emerges from
them is beautiful and alive. The building blocks seem very simple, but the
emergent structures and solutions can get infinitely complex and complete—
just like life itself.

Software Project Estimation

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9

�Sample
Spreadsheets
and Charts
In this appendix are examples of spreadsheets and charts that we have discussed
throughout the book. It is difficult to come up with a spreadsheet that properly
reflects any scenario; however I feel that the essence of tracking and forecasting
can be explored well with simple spreadsheets like the one here. And even
if you do not use spreadsheets to actually generate forecast diagrams, the
knowledge you gain from studying the basics will provide confidence for the
conversations and decisions that you will have throughout your projects.

I have also highlighted some of the “formulas” in these spreadsheets, as this
might facilitate understanding the discussions from Chapters 4, 5, and 6.
If you are interested in the files themselves, they can be downloaded via
www.apress.com/9781484250242.

�Forecasting Project Chart
Figure B-1 is an example forecasting project chart. Scope renegotiation and
project extension were secured in the middle of March based on the actual
and projected performance. This is less than one-third into the project and
allows people across organizations adequate time to adjust other plans and
commitments.

A P P E N D I X

B

https://doi.org/10.1007/978-1-4842-5025-9
http://www.apress.com/9781484250242

108 Appendix B | Sample Spreadsheets and ChartsAppendix B | Sample Spreadsheets and Charts

In this table, these are the more noteworthy details:

“Scope” is only looked at in the context of the amount of effort that is
required to deliver the required function. “Current Planned Scope” represents
the latest estimates. “Actual Complete Scope” represents that scope from
the currently planned scope, which has been delivered. So, for example, if a
large module has 10 identifiable sets of functions and the whole module was
estimated to be delivered for “7 weeks,” then if we have worked for 11 weeks,
but we have only demonstrably delivered 8 of the 10 functions, the “Actual
Complete Scope” can be roughly accepted to be 80% x 7 = 6 weeks. “Actual
Cost” is however the cost that we incurred for 11 weeks’ worth of work.

“Project Events” is a category of expenditures in percentage of the time in
the day/month. This, along with the “Actual Available Effort,” gets factored
into the “Effective Effort” field. “Actual Available Effort” is the “amount of
effort” we have at our disposal. For example, if we planned to have 10
developers available working full time on the project, but we only have 8,
then the Actual Available Effort is 8. The unit here can be something else. In
this particular project, all estimation was done for 1 week worth of work for
two developers and one tester. So 1 week in the spreadsheet is “3 person
weeks” worth of effort.

109

F
ig

ur
e

B
-1

. 
T

he
 fo

re
ca

st
in

g
bu

rn
-u

p
ch

ar
t

Software Project Estimation

110 Appendix B | Sample Spreadsheets and ChartsAppendix B | Sample Spreadsheets and Charts

�T-shirt Reference Tables for Different
Types of Estimates
Figure B-2 is a T-shirt reference table for different types of estimates.
Estimating directly in days might not be the best thing when estimating a
whole project but can provide a reality check during the project when more
details are clear. The little reference table on the right-hand side specifies the
T-shirt ranges in weeks of effort for three people. On projects where people
work primarily in pair programming style, this type of estimation might be
more adequate than single developer’s weeks of effort.

�Before Communicating Outside of the Team
Figure B-3 shows additional items to consider before providing a more final
estimate number. Here only the numbers in the yellow cells are product of
T-shirt estimation that was done by the development team. Those highlighted
in red, along with the optional, need to be included when communicating
outside of the team. (Make sure to be explicit about whether you are
communicating effort or calendar time.)

Figure B-2.  T-shirt reference table

111

�Dev Sprint Burndown with Available
Thrust and Technical Debt
Figure B-4 shows development work burndown with “Available Thrust” and
with “Technical Debt.” On some projects where people have high intolerance
to lack of numbers, it might be cheaper to satisfy their addiction to numbers
than to educate them and change their approach to work. By keeping track of
accumulated technical debt, it becomes easier to justify lower velocity in
subsequent sprints. Accumulated technical debt is quantified with the answer
of the question “How much work would I have to do in order to refactor this
and have a solid design?”

Figure B-3.  Additional items to consider before providing a more final estimate number

Software Project Estimation

112 Appendix B | Sample Spreadsheets and ChartsAppendix B | Sample Spreadsheets and Charts

F
ig

ur
e

B
-4

. 
D

ev
el

op
m

en
t

w
or

k
bu

rn
do

w
n

w
ith

 “
A

va
ila

bl
e

T
hr

us
t”

 a
nd

 w
ith

 “
Te

ch
ni

ca
l D

eb
t”

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9

B

Adzic, Gojko. Specification by Example: How Successful Teams Deliver the
Right Software. Shelter Island, NY: Manning Publications, 2011.

Brooks, Jr., Frederick P. The Mythical Man-Month, 2nd anniv. ed. Boston:
Addison-Wesley, 1995.

Cottmeyer, Mike. “The Case For Project Management.” Leading Agile.
October 15, 2011. www.leadingagile.com/2011/10/the-case-for-
project-management.

Fried, Jason. “Why the Office Is the Worst Place to Work.” CNN.com.
December 5, 2010. www.cnn.com/2010/OPINION/12/05/fried.office.
work/index.html.

Gilb, Tom and Kai Gilb. “When You Can Measure What You Are Speaking
About, and Express It in Numbers, You Know Something About It.” Gilb.
November 21, 2016. www.gilb.com/blog/when-you-can-measure-what-
you-are-speaking-about-and-express-it-in-numbers-you-know-
something-about-it.

Hope, Jeremy and Robin Fraser. Beyond Budgeting: How Managers Can Break
Free from the Annual Performance Trap. Boston: Harvard Business School
Publishing Corporation, 2003.

Kelly, Allan. Xanpan: Team Centric Agile Software Development. Self-published,
2015.

McConnell, Steven C. Software Estimation. Redmond, WA: Microsoft Press,
2006.

�Bibliography

https://doi.org/10.1007/978-1-4842-5025-9
http://www.leadingagile.com/2011/10/the-case-for-project-management
http://www.leadingagile.com/2011/10/the-case-for-project-management
http://edition.cnn.com/2010/OPINION/12/05/fried.office.work/index.html
http://edition.cnn.com/2010/OPINION/12/05/fried.office.work/index.html
http://www.gilb.com/blog/when-you-can-measure-what-you-are-speaking-about-and-express-it-in-numbers-you-know-something-about-it
http://www.gilb.com/blog/when-you-can-measure-what-you-are-speaking-about-and-express-it-in-numbers-you-know-something-about-it
http://www.gilb.com/blog/when-you-can-measure-what-you-are-speaking-about-and-express-it-in-numbers-you-know-something-about-it

114 Bibliography

O'Connell, M. Ryan. “Using the SCARF Model to Navigate Psychological
Landmines of Negotiation.” Viaconflict. April 30, 2015. https://
viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-
to-navigate-the-psychological-landmines-of-negotiations/.

Shore, James. “Estimates or No Estimates?” The Art of Agile. August 31,
2016. www.jamesshore.com/In-the-News/Estimates-or-No-Estimates.
html.

Weinberg, Gerald M. Quality Software Management: Systems Thinking. New York:
Dorset House, 1991.

Wong, Joshua. “Change Management—The Subtle Difference Between Being
Inert and Fickle.” Integrative Thinking to Win. May 1, 2009. http://
ithinktowin.blogspot.ca/2009/05/change-management-subtle-
difference.html.

https://viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-to-navigate-the-psychological-landmines-of-negotiations/
https://viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-to-navigate-the-psychological-landmines-of-negotiations/
https://viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-to-navigate-the-psychological-landmines-of-negotiations/
http://www.jamesshore.com/In-the-News/Estim
http://www.jamesshore.com/In-the-News/Estimates-or-No-Estimates.html
http://www.jamesshore.com/In-the-News/Estimates-or-No-Estimates.html
http://ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.html
http://ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.html
http://ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.html

© Dimitre Dimitrov 2020
D. Dimitrov, Software Project Estimation,
https://doi.org/10.1007/978-1-4842-5025-9

II

Index
A
Accurate information, imprecise

inputs, 24–26

Adopted development processes, 10

Agile software development, 8, 98–100

Anticipatory mode, 96

Assertions, 1, 2

Autonomy, 103

Available thrust, 111, 112
climbing faster, 65, 66
context switching, 64, 65
forecast projection, 62
frustrations, 64
intelligent decisions, 59
planned staffing level, 63
project management, 60
project’s forecast, 61
scrum master, 61

B
Borrowing index, 79, 81, 82

Boundary
collaborative decisions, 18, 19
communicating ideas, 17
cost and duration, 17
responsibility, emanation of, 17
statement, 17

Brooks’ Law, 95, 96

Business analysts, 4

Business developers, 3

C
Central Limit Theorem, 24, 29

Certainty, 103

Collaborative decisions, 18

Communication tool, 72

Complexity equations, 68

Conditionals, 16, 17

Context of software
estimation, 14

Context switching, 64, 65

Control decisions, 2

Conway’s Law, 98

Corrective adjustment, 29

Crude calculations, 74

Cumulative distribution
curve, 24

Current planned scope, 108

D
Decision-making process, 77

Deferral of scope, 70, 71

Descoping, 71

Desires
forecasting efforts, 7
project control, 7, 8
reliable information, 6, 7
time tinkering, 7

Distribution model, 26

https://doi.org/10.1007/978-1-4842-5025-9

116

Done
bugs, 53
definition of, 52
waterfall projects, 54

Driving the projections, 73–75

E
Environment, 9

F
Fairness, 103

Forecasting, benefit, 1

Forecasting mechanics
Central Limit Theorem, 49
chart area determination

decision making, 35
resolution, 33, 34
scale/ballpark, 33

CI/CD, 51
confidence levels, 34
data reading, 55, 56
Done, 51–54
PDCA cycle, 35
plotting a dot

mapping, 47, 48
plotting, 48, 49

project size
adjusting for calendar time, 44, 45
estimating the work, 39–41
estimation ranges, 36–38
fine-tuning, 45, 46
pass project projection, 42, 44
stab at planning, 41, 42

relative estimation technique, 43, 44
steps, 31, 32
sustainable pace of work, 49–51
TDD, 51

Forecasting project chart, 99, 107–109

G
Gall’s Law, 96, 97

H
Health factors

risks and dependencies, 68, 69
technical health index, 69
variablity adjustment, 69, 70

Hidden overtime contributions, 81

Hofstadter’s Law, 97

I, J, K
Intellectual invention, 105

L
Lack of control, 27–29

Laws
Brooks’ Law, 95, 96
Conway’s Law, 98
Gall’s Law, 96, 97
Hofstadter’s Law, 97
Parkinson’s Law, 97

Level-off adjustment, 66–68

M
Metrics, 10

Mode, 23

Money burn, 78

N
Navigating issues

bugs estimation, 90
estimation and forecasting, 90, 91
overtime, 91
precise release forecast, 90
prioritization, 86
projections, 92
project performance, controls, 92
quality through documentation, 91
scope, 91
story points and project

estimation, 90
time, money, and quality, 92
velocity and forecasting, 89
waterfall type, project management and

reports, 86–89
with team, 93

Negotiation, 103

Normal distribution, 23, 26

O
Optimistic expectations, 62

Overtime, 81

Index

117

P, Q
Parkinson’s Law, 97

People
business analysts, 4
client, 3
developer, 4
managers and team leads, 5
product owners, 4
scrum master, 4

Performance index
analytical tool, 79
behavior on value index and relative

cost index, 79
initiation, situation analysis, 80
planned cost and actual cost graphs, 79
project performance metrics, 78
project’s financial and energy state, 78
spreadsheet formulas, 79
triangulate, 79
value index and relative cost index, 79

PERT formula, 45

Plan-Do-Check-Act (PDCA) cycle, 35

Plans, 28, 59

Precision, 27–29

Prioritizing functionality, 10

Probability
binary reality, 22
cumulative distribution curve, 23, 24
mode, 23
multiple independent events, 22
number, 21
software projections, 20
stream of events, 22

Problem
decision making, 5
plan, 5, 6
promise, 5

Product-oriented view, 71

Project management responsibilities, 5

Project management techniques, 27

Project Managers (PMs), 101

Project planning, 14

Project’s ecosystem, 28

Project’s progress, 59

R
Ranges, 16

Relatedness, 103

Relative cost index, 79

Relative estimation technique, 43, 44

Reliable mapping, 13

Reprioritization, 71

Resolution, 33, 34

Role of simplification
complicated answers, 15
simple answers, 14, 15

S
Scale/ballpark, 33

Scope and time schedule, 77

Scope creep, 70–73

Scrum Master (SM), 4, 101

Simplistic specifications, 72

Smart working
honesty, 84
initial estimation effort, 82, 83
issues, product direction

and vision, 83
right calls in difficult

situations, 84, 85
short-term estimates, 83, 84
wrong calls in easy

situations, 85, 86

Software development projects
forecasting method, 104
laws (see Laws)
PM vs. SM, 101, 102
project setup, 100, 101
project start, 101
SCARF, 102

Software quality, 9

Statement of Work (SOW), 89, 100

Statistical controls, 27

Statistical problem, 27

Status, Certainty, Autonomy, Relatedness,
Fairness (SCARF), 102

Stream of events, 22

Index

118

T, U
Technical debt, 111, 112

Technical health index, 69

Test-driven development (TDD), 51, 75

T-shirt reference table, 110

V, W, X, Y, Z
Value, 10

Value index, 78, 79

Void, 19

Index

	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 0: Assertions
	Chapter 1: The People in a Software Project
	The People
	The Problems
	The Desires
	Summary

	Chapter 2: The Role of Simplification
	What’s Wrong with (Overly) Simple Answers?
	What’s Wrong with Complicated Answers?
	Simple Constructs That Capture Complex Reality
	Summary

	Chapter 3: Statistics and Probabilities
	Probability
	Getting Accurate Information Based on Imprecise Inputs
	Control, Lack of Control, and Precision
	Summary

	Chapter 4: Forecasting Mechanics
	Determining the Chart Area
	Sizing the Project
	Plotting a Dot
	The Other Two Pillars
	Forecasting
	Summary

	Chapter 5: Adjustments
	Available Thrust
	Take-off and Level-off
	Health Factors
	Scope
	Driving the Projections
	Summary

	Chapter 6: Financial Performance and Managing Risks
	Performance Index
	Borrowing Index
	Working Smart
	Navigating Issues
	Navigating Issues with the Team
	Summary

	Appendix A:
Tidbits
	Software Development Laws
	Brooks’ Law
	Gall’s Law
	Parkinson’s Law and Hofstadter’s Law
	Conway’s Law

	Manifesto for Agile Software Development
	Common Gaps, Environment Needs, and Tiny Details
	SCARF
	Variations of the Intelligent Forecasting Method
	Invert, Always Invert

	Appendix B:
Sample Spreadsheets and Charts
	Forecasting Project Chart
	T-shirt Reference Tables for Different Types of Estimates
	Before Communicating Outside of the Team
	Dev Sprint Burndown with Available Thrust and Technical Debt

	Bibliography
	Index

