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Preface

This book is the second edition of the book “Spin Current.” The field of physics
and technology, called spin-electronics or spintronics, has been rapidly growing,
where the flow of electrical charge and the flow of electron spin, the so-called
spin current, are manipulated and controlled on an equal footing. The develop-
ment of spintronics may be divided into two generations. The first one emerged
since the discovery of the giant magnetoresistance (GMR) and the tunneling
magnetoresistance (TMR), and was very successful as seen in the application in
a variety of electronics devices. The progress in the nanofabrication technology
of magnetism and the engineering of interfaces and thin films as well as new
concepts in quantum physics such as spin Berry phase and topological states
has introduced the second generation in spintronics in this century. Here, the
key word is “spin current.”

In the first edition of “Spin Current,” the progress in the study on spin current,
spin-Hall effect, spin-transfer torque and their related topics were discussed based
on the study up to August 2011. Since then, much progress in the field has been
made. Spintronics is now not just a part of physics and application of electronics
but provides inter-conversion of a variety of energies such as heat and light via
spin current based on the angular momentum and energy conservations between
electron spin and other degrees of freedom in matters such as mechanical motion
and light. In this second edition, most of chapters are revised to include the recent
progress and references. In addition, new research fields which have emerged since
2011 are included.

On behalf of the editors, I would like to thank the contributors for their re-
writing and/or revising the chapters. Special thanks are due to Sonke Adlung
and Ania Wronski of Oxford University Press for proposing the publication of
the second edition and encouraging the contributors in their writing.

I hope this book together with the first edition is a good guide to physics and
application in spintronics.

December 2016 Sadamichi Maekawa
(On behalf of the Editors)



Preface to the first edition

Since the discovery of the giant magnetoresistance (GMR) effect in magnetic
multilayers in 1988, a new branch of physics and technology, called spin-
electronics or spintronics, has emerged, where the flow of electrical charge as
well as the flow of electron spin, the so-called “spin current,” are manipulated
and controlled together. Whereas charge current flows without decay (owing to
fundamental charge conservation), spin current decays on a length-scale of less
than a few micrometers. In other words, it exists only at nanometer scales. Re-
cent progress in the physics of magnetism and the application of spin current
has progressed in tandem with the nanofabrication technology of magnets and
the engineering of interfaces and thin films.

This book is intended to provide an introduction and guide to the new physics
and application of spin current. The emphasis is place on the interaction between
spin and charge currents in magnetic nanostructures.

The International Conference on Magnetism (ICM), the largest conference in
the physics of magnetism, has been held triennially since the first one organized
by Louis Néel at Grenoble, France in 1958. The Eighteenth Conference in the
ICM series took place in Karlsruhe, Germany in July 2009, where a paradigm
in physics was epitomized by “a flood of spin current,” which introduces a new
front in the evolution of traditional research in magnetism.

I am glad to note that the achievements of the research in spin current by
Sergio O. Valenzuela, Eiji Saitoh, and Takashi Kimura were recognized through
the Young Scientist in Magnetism Awards at the Eighteenth ICM sponsored by
the International Union of Pure and Applied Physics (IUPAP), an agency under
the auspices of UNESCO (United Nations Educational, Scientific, and Cultural
Organization).

In this book, three of them give introductions to spin current, the spin Hall
effect, spin torgues, and the spin Seebeck effect based on their achievements.
Although the chapters make up a coherent whole, each chapter is self-contained
and may be read independently. The physics based on spin current is growing
rapidly. Therefore, we have tried to introduce the most recent results up to
August 2011. I hope this book is a sound guide to the new physics and technology.

August 2011 Sadamichi Maekawa
(On behalf of the Editors)
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Part I Spin current





1 Introduction

E. Saitoh

An electron is an elementary particle that carries negative electric charge and
governs various properties of condensed matter. Besides charge, an electron has
internal angular momentum. This internal angular momentum, similar to the
rotation of a classical particle, is named spin. Spin is the dominant origin of
magnetism, thus, when spins of electrons in a solid are aligned to some extent
in the same direction, the solid becomes a magnet.

In condensed matter, there are some types of flow carried by electrons. A
flow of electron charge is a charge current, or an electric current. The physics of
charge current has been developed in the previous century and is now an essential
contributor to our understanding of electronics. Since an electron carries both
charge and spin, the existence of a charge current naturally implies the existence
of a flow of spin. This flow is called a spin current.

Experiments carried out in the previous century did not focus on spin current
because of its relatively short decay time-scale τ . However, the rapid progress
in nanofabrication technology in this century has allowed researchers to access
spin currents. From the theoretical point of view, the detailed formulation of
spin currents is not simple and is still a challenging undertaking. Nevertheless,
spin current is a very useful and versatile concept; it has given birth to many
phenomena in condensed matter science and spintronics.

In this chapter, we introduce the concept of spin current. We begin with an
introduction to the general concept of spin and spin current, which is followed
by a discussion of particular spin currents.

1.1 Spin of electrons
1.1.1 Spin angular momentum

An electron has a spin angular momentum besides orbital angular momenta. This
concept was first introduced by Uhlenbeck and Goudsmit for the interpretation
of atomic spectra. Later, Dirac provided a theoretical foundation for spin in
terms of relativistic quantum mechanics.

The spin angular momentum is expressed by a vector operator S . Since S
represents angular momentum, it satisfies the commutation relation

[Si, Sj ] = i�εijkSk. (1.1)

E. Saitoh, ‘Introduction’, in Spin current. Second Edition. Edited by

S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura. Oxford University Press (2017).

c© Oxford University Press.

DOI 10.1093/oso/9780198787075.003.0001



4 Introduction

The z-component of spin has only two values in the spin space: 1/2 in units of
�. The spin variable is written as s, and the z-component of spin is written as
s. An eigenfunction of spin for the state s = 1/2 is written as

χ 1
2

(s) =
(

1
0

)
. (1.2)

The right-hand side is a two-component vector with bases s = 1/2 (up spin)
and −1/2 (down spin) describing the state. Similarly, the state for s = −1/2 is
written as

χ− 1
2

(s) =
(

0
1

)
. (1.3)

The spin angular momentum is expressed by a matrix σ with χ 1
2

1
2
(s) and

χ 1
2− 1

2
(s) as bases:

S =
�

2
σ. (1.4)

Here, σ are the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.5)

Equations (1.2) and (1.3) form a complete basis set of spin wavefunctions. The
orthonormal relationship

∑
s=± 1

2

= χ∗
s(s)χs′(s) = δss′ (1.6)

holds for the wavefunctions corresponding to different eigenvalues of Sz. A state
of a particle is defined with a spatial wavefunction describing the probability
amplitude at points in space and a spin wavefunction giving the direction of the
spin.

A charge under rotational motion has a magnetic moment. A particle with
charge −e and mass m moving with orbital angular momentum L has a magnetic
moment

morb =
−e

2mc
L. (1.7)

Similarly, spin in quantum mechanics also has a corresponding magnetic
moment. The magnetic moment of spin is given by

mspin = −g0 e

2mc
S , (1.8)

where g0 is the g-factor, which is about 2 for electrons, as discussed in the next
subsections.
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1.1.2 Dirac equation and spin

Dirac showed that electron spin is, in fact, naturally derived from quantum
mechanics combined with special relativity [1].

Here, for simplicity, a free electron is examined. Remember that the
Schrödinger equation for a nonrelativistic free electron is obtained from the
nonrelativistic energy dispersion relation

ε =
p2

2m
(1.9)

by substituting p = −i�∇ and ε = i�(d/dt). p is the momentum of the particle.
According to special relativity, the energy dispersion relation becomes

ε2 = (cp)2 + (mc2)2, (1.10)

where m and c are the electron’s rest mass and the speed of light, respectively.
By substituting p = −i�∇ and ε = i�(d/dt), we obtain

[
∇2 − 1

c2
∂2

∂t2
−
(mc

�

)2]
ψ = 0. (1.11)

This equation is called the Klein–Gordon equation. However, this equation can-
not be directly applicable to electrons since it contains a second-order time
differential, which allows us to choose two initial condition parameters for ψ and
dψ/dt, respectively. This situation is inconsistent with the probability interpret-
ation of the wavefunction ψ(r). In this interpretation, ψ(r)ψ∗(r) is equal to the
chance of finding an electron at the position r and

∫
ψ(r)ψ∗(r)dr should be a

constant with t, namely,

d

dt

∫
ψ(r)ψ∗(r)dr (1.12)

should be zero. This means that ψ and dψ/dt cannot be chosen independently.
Let us try to find a first-order time-differential equation by factorizing the

relativistic energy dispersion

ε2 = (cp)2 + (mc2)2.

This dispersion relation is factorized to obtain

(ε+ cα · p + βmc2)(ε− cα · p − βmc2) = 0. (1.13)

Here, the coefficients α and β should satisfy the following relations

α2
i = β2 = 1 (i = x, y, z),

αiαj + αjαi = 0 (i �= j), (1.14)
αiβ + βαi = 0.
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Dirac showed that these relations are not satisfied if α and β are simple scalars,
and at least α and β must be 4 × 4 matrices. The following is one possible
combination, called the Dirac representation, of α and β that satisfies Eq. (1.14):

αx =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠, αy =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠, αz =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠,

β =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠. (1.15)

Equation (1.1.2) is always satisfied when

(ε− cα · p − βmc2)ψ = 0. (1.16)

By substituting p = −i�∇ and ε = i�(d/dt), we obtain

i�
∂ψ

∂t
+ i�cα · ∇ψ − βmc2ψ = 0. (1.17)

This is a relativistic expansion of the Schrödinger equation for a free electron,
called the Dirac equation. Since α and β are 4 × 4 matrices, a solution ψ has
four components.

Recall that the system has rotational symmetry and, therefore, the Dirac
Hamiltonian

H = cα · p + βmc2 (1.18)

should conserve angular momentum in general. However we can see that the
orbital angular momentum of electrons L = r × p is not a constant of motion.
In other words, L does not commute with the Hamiltonian in Eq. (1.18). As an
example, for Lx = ypz − zpy,

[Lx, H] =c [(ypz − zpy), (α · p + βmc)]

=c
∑

j

αj [(ypz − zpy), pj ]

=− i�c (αzpy − αypz), (1.19)

which means that Lx is not conserved. Since the total angular momentum must
still be conserved, we hypothesize that electrons have an internal spin angular
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momentum S in addition to the orbital angular momentum so that the sum of
these angular momenta J = L + S commutes with the Hamiltonian:

[J ,H] = [L,H] + [S ,H] = 0. (1.20)

In other words, the commutation relation

[S ,H] = − [L,H] (1.21)

is assumed. One can see that S = (�/2)σ̃, where the components of σ̃ are

σ̃x =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠, σ̃y =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠, σ̃z =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠,

(1.22)

satisfies (1.21), which means that S can be regarded as a spin operatior in the
Dirac equation.

Next, consider an electron with charge −e placed in an electromagnetic field.
The operators in Eq. (1.18) are changed by replacing p with p + eA and adding
the electrostatic potential −eφ, resulting in

[
i�
∂

∂t
+ eφ− cα · (p + eA)− βmc2

]
ψ = 0. (1.23)

φ represents the electric potential.

1.1.3 Nonrelativistic approximation

Multiplying Eq. (1.23) by the operator of
{
i� ∂

∂t + eφ+ cα · (p + eA) + βmc2
}

from the left, and using (1.14) and

αxαy = iσ̃z, αyαz = iσ̃x, αzαx = iσ̃y (1.24)

give

[
(i�

∂

∂t
+ eφ)2 − c2(p + eA)2 −m2c4 + ic�α ·E + c2e�σ̃ ·B

]
ψ = 0. (1.25)

Actually, the four components of ψ represent the four degrees of freedom of an
electron with up spin, one with down spin, an antiparticle of the electron with
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up spin, and one with down spin. To extract the pure electron degree of freedom,
we take a nonrelativistic approximation. We assume a solution for (1.25)

ψ(r , t) =

⎛
⎜⎜⎝
ψ1(r)
ψ2(r)
ψ3(r)
ψ4(r)

⎞
⎟⎟⎠ exp

(
−i ε

�
t
)
, (1.26)

where

ε = mc2 + ε′, (1.27)

where ε′ corresponds to the nonrelativistic energy. Substituting (1.26), (1.27),
and (1.22) into (1.25) gives[

(ε′ + eφ)2 + 2mc2(ε′ + eφ)− c2(p + eA)2 − c2e�σ ·B](
ψ1

ψ2

)
+ ic�eσ ·E

(
ψ3

ψ4

)
= 0. (1.28)

Deviding (1.28) by 2mc2 and neglecting terms containing 1/c2 or 1/c gives[
1

2m
(p + eA)2 +

e�

2m
σ ·B − eφ

](
ψ1

ψ2

)
= ε′

(
ψ1

ψ2

)
, (1.29)

where σ consists of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.30)

This equation is a nonrelativistic Schrödinger equation in which the interaction
between the spin degree of freedom σ and the magnetic field B is embedded
naturally. The terms in the bracket in the left-hand side constitute Schrödinger
Hamiltonian. We introduce the electron spin operator s = 1/2σ and μB = e�

2mc .
Then, the second term in the bracket in the left hand side of (1.29) becomes

e�

2m
σ ·B = 2μBs ·B . (1.31)

This term represents the Zeeman interaction between the spin s and the mag-
netic field B . In this way, the existence of spin and the Zeeman interaction of
an electron is naturally derived from relativistic quantum mechanics.

1.2 Spin current
1.2.1 Concept of spin current

In this chapter, we will introduce the concept of spin current. Before dealing
with spin current, we give a quick review of the definition of charge current for
comparison.
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Charge current is defined in terms of the charge conservation law. Consider a
charge Q within a region enclosed by a closed surface Ω. When the total charge
Q within this region is increasing, the increase is due to the charge flowing into
this region across the surface Ω, owing to the charge conservation law. This flow
of charge is described by the equation∫∫∫

V

ρ̇dr = −
∫∫

Ω

j c · dΩ, (1.32)

where ρ is the charge density and j c is the charge current density. The left-hand
side of this equation is the increase in charge in the volume surrounded by the
surface Ω. By applying Gauss’s theorem to this equation, we obtain

ρ̇ = −divj c. (1.33)

This equation, called the continuity equation of charge, which is a representation
of the charge conservation law, defines a charge current density [2].

We are now in a position to consider spin current. The spin current density j s

is introduced similarly in terms of spin angular momentum conservation. If spin
angular momentum is fully conserved, the continuity equation for spin angular
momentum can be written as

dM

dt
= −divj s, (1.34)

and the spin current density is defined via this equation. M denotes the
local magnetization (magnetic-moment density). Since a spin current has two
orientations—the spatial flowing orientation and the spin orientation, the ex-
pectation value of the spin current density is not a vector but a second-rank
tensor.

In practice, in nanoscales in solids, this angular momentum conservation is
often a good approximation. However, in general, spin angular momentum is

js

js

(a) (b)

M·
jc

jc

ρ̇

Fig. 1.1. The sum of the charge variations over the volume surrounded by a
surface is equal to the sum of the currents penetrating the surface.
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not conserved completely, due to spin relaxation, and it thus obeys the following
modified equation of continuity:

dM

dt
= −divj s + T . (1.35)

The last term T represents the nonconservation of spin angular momentum,
namely, the relaxation and generation of spin angular momentum. As shown
later, in fact, T can be calculated if Lagrangian of the system is fully given.
However, if not, this term should be treated phenomenologically. The simplest
phenomenological model for the relaxation is

T = −(M −M 0)/τ, (1.36)

which is called single pole relaxation. τ is a decay time constant and (M −M 0)
is the nonequilibrium magnetization measured from its equilibrium value M 0.

1.2.2 An exact definition of spin current

In some case, when a proper Lagrangian is given concretely, a spin current can
be exactly defined in terms of the conservation law. In this section, we show an
example of such a definition. We start with reviewing a quantum mechanical
definition of charge current.1

Microscopic description of conduction electrons For free electrons, the Hamil-
tonian described using field operators becomes

H =
∫ ∑

σ

[
�

2

2m
|∇cσ (r) |2 − μc†σ (r) cσ (r)

]
dr , (1.37)

using the electron mass m. Electrons are fermions, therefore c and c† anticom-
mute. σ are indexes to show the two spin states. μ is the chemical potential. The
Fourier transformation of this Hamiltonian yields

H =
∑
k ,σ

(
�

2k2

2m
− μ
)
c†k ,σ (r) ck ,σ (r). (1.38)

For the following discussion, the Lagrangian formalism is more convenient.
The Lagrangian of the system of electrons defined with the operators c† and c
can be written using the Hamiltonian H as

L = i�

∫ [∑
σ

c†σ
∂cσ
∂t

]
dr −H. (1.39)

1 This section draws heavily from Basics of Spintronics by G. Tatara (Baifukan, 2009).
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Conservation of charge First, we show that the charge conservation law is
related to the rotational symmetry in the phase factor of the wavefunction: the
U(1) gauge symmetry. Important physical quantities in electron systems are the
charge current density j c and the charge density ρ. As shown above, these quan-
tities satisfy the charge conservation rule, or the continuity equation of charge.
Let us confirm this using the U(1) symmetry. For the Lagrangian of free electrons

L =
∫ [

i�c†
∂c

∂t
− �

2

2m
∇c†∇c

]
dr , (1.40)

we consider the phase transformation of the electron field

c (r , t)→eiϕ(r , t)c (r , t),

c† (r , t)→e−iϕ(r , t)c† (r , t) .
(1.41)

The scalar quantity ϕ(r , t) is the phase which is dependent on spacetime. The
derivative of the electron field is converted into

∂c

∂xμ
→ eiϕ

(
∂

∂xμ
+ i

∂ϕ

∂xμ

)
(1.42)

by the phase transformation. In turn, the Lagrangian is converted into

L =
∫ [

i�c†
(
∂

∂t
+ i

∂

∂t
ϕ

)
c− �

2

2m
(∇− i∇ϕ) c† (∇+ i∇ϕ) c

]
dr . (1.43)

If the phase ϕ is a single-valued function of spacetime and is differentiable,
physical phenomena must be invariant with respect to phase transformation.
Therefore, the Lagrangian must be invariant, so the first-order term of ϕ in
Eq. (1.43) must be zero. Using the variation of the action, or time integral of
the Lagrangian I ≡ ∫∞

−∞ Ldt , integration by parts results in

δI =
∫ ∞

−∞
dt

∫
�

[
∂
(
c†c
)

∂t
− i�

2m
div
(
c†
←→∇ c

)]
ϕ dr = 0. (1.44)

In other words, the charge conservation law

∂ρ

∂t
+ divj (0) = 0 (1.45)

is obtained. Here,

ρ ≡ e〈c†c〉, j
(0)
i ≡ e

〈
−i �

2m
c†
←→∇i c

〉
(1.46)
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are the charge density and current density, respectively. Equation (1.42) is called
a covariant differential. A U(1) gauge field is defined as Aμ ≡ ∂μϕ and Eq. (1.43)
is the Lagrangian of electrons interacting with the gauge field. However, the
quantity Fμν ≡ ∂μAν−∂νAμ corresponding to the physical field satisfies Fμν = 0
if ϕ is single valued and is differentiable.

Clearly this reflects the fact that a continuous transform of phase does not
change the phenomena. In contrast, if there is an electromagnetic field, ϕ is mul-
tivalued or is not differentiable. In this case Fμν becomes a finite nonzero value
because the partial differential of ϕ depends upon the order of the differential.
The following discussion will consider situations where magnetic or electric fields
exist, and the U(1) gauge field Aem corresponding to the electromagnetic field
is separated from the differentiable part of the phase degree of freedom ϕ. The
Lagrangian of free electrons including the electromagnetic field is

Lem =
∫ [

i�c†
∂c

∂t
− eφc†c− �

2

2m

(
∇+ i

e

�
Aem

)
c†
(
∇− i e

�
Aem

)
c

]
dr , (1.47)

where φ ≡ �Aem t and Aem i are the scalar potential and vector potential,
respectively.

The continuity equation of charge current is derived also in the case that there
are spin–orbit interactions and an external electromagnetic field. The Lagrangian
becomes

Lem,so =
∫ [

i�c†
∂c

∂t
− eφc†c− �

2

2m

(
∇+ i

e

�
Aem

)
c†
(
∇− i e

�
Aem

)
c

]
dr −Hso.

(1.48)

Hso =− i e�2

4m2c2

∫
c†
{
∇φso ·

[(
∇− e

�
Aem

)
× σ

]}
c dr

=− iλso

∫
c†
{
∇φso ·

[(
∇− e

�
Aem

)
× σ

]}
c dr . (1.49)

The requirement of invariance under phase transformation of the electron field
(1.41) analogous to the derivation of Eq. (1.45) for free electrons yields

∂ρ

∂t
+ divj c = 0. (1.50)

Here, ρ is given by Eq. (1.46) as in the case of free electrons. The current density
is

ji ≡ e
〈
−i �

2m
c†
←→∇ ic− e

m
Aem ic

†c− λso

�

∑
jk

εijk(∇jφso)(c†σkc)

〉
. (1.51)
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Conservation of spin and spin current The law of spin conservation is derived
by looking at the change in Lem ,so under the rotation in the spin space (SU(2)
rotation)

c (r , t)→ eiϕ(r , t)·σc (r , t),

c† (r , t)→ c† (r , t) e−iϕ(r , t)·σ,
(1.52)

where ϕ is a three-component vector. In the absence of spin–orbit interaction,
the free electron part Lem has a similar form as Eq. (1.50):

∂ρ
(0)α
s

∂t
+ divj (0)α

s = 0, (1.53)

ĵs
(0)α
i ≡ e

(
−i �

2m
c†
←→∇ i σαc− e

m
Aemic

†σαc

)
, (1.54)

ρ(0)α
s ≡ e〈c†σαc〉. (1.55)

This is a continuity equation of spin. The spin current is defined as j α(0)
s .

This equation represents spin angular momentum conservation under the La-
grangian (1.47), which is due to the action, the integral of the Lagrangian,
Iem =

∫∞
−∞ dtLem, being unchanged by the rotational transformation in the

spin sector (1.52): the spin rotational symmetry.
However, in the presence of the spin–orbit interaction term, total spin is not

conserved because the interaction breaks the spin rotational symmetry. In fact,
the variation of the spin–orbit interaction is

δHso =
�

e

∫ ∑
α

ϕα (divδj α
s − Tα) dr . (1.56)

There is a term T that cannot be written as a divergence. Here,

δĵs
α
i ≡ −

e

�
λso

∑
j

εijα (∇jφso)
(
c†c
)

(1.57)

and

Tα ≡ 2m
�2

λso

∑
ijkβ

εijkεαβk〈(∇iφso) ĵs
(0)β
j 〉. (1.58)
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Then, the requirement of invariance under spin rotation of the electron field
analogous to the derivation of Eq. (1.50) yields

∂ρα
s

∂t
+ divj α

s = Tα. (1.59)

Here, the spin density and the density of the total spin current is

js
α
i ≡ e〈ĵs(0)αi + δĵs

α
i 〉. (1.60)

The spin–orbit interaction adds a correction δjα
si to the spin current density,

resulting in a term T corresponding to nonconservation of spin. This term cor-
responds to a source or sink of spin. In the presence of the spin–orbit interaction,
spin conservation is only an approximation because of this effect. This noncon-
servation of spin is due to the angular momentum transfer of spin into the orbit
and eventually into macroscopic degrees of freedom such as the lattice system.
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2 Incoherent spin current

K. Ando and E. Saitoh

2.1 Fermi-Dirac distribution

The particle number density of a free electron system can be calculated as

n =
∫ ∞

−∞
N(E)f(E)dE, (2.1)

where N(E) is the density of states and N(E)dE is the number of electrons per
unit volume of r-space with energies between E and E + dE. The Fermi-Dirac
function at temperature T is:

f(E, T ) =
1

e(E−μc)/kBT + 1
, (2.2)

where μc is the chemical potential, i.e., the energy necessary to add a particle
to the system. The behavior of the f(E, T ) is shown in Fig. 2.1. At T = 0,
f(E, T = 0) becomes the step function; all the states with energy lower than μc

are occupied and all the states with energy higher than μc are empty. Thus at
T = 0, the chemical potential is equal to the Fermi energy EF :

μc(T = 0) = EF . (2.3)

Here, EF is defined as the energy of the highest occupied quantum state in a
system at T = 0. At finite temperature T , some of the electrons are excited to
the states above EF and f(E, T ) deviates from the step function only in the
thermal energy range of the order kBT around μc(T ). When particle density n
becomes n + δn, the chemical potential changes from μc to μc + δμc. Here, as
seen in Fig. 2.1(b), δμc = δn/N(EF ).

2.2 Diffusion equation

When the electron density n is nonuniform, the gradient of n drives a current
called a diffusive current. For simplicity, we consider one-dimensional electron
diffusion, which is described by the diffusion equation:

∂

∂t
n(t, x) = D

∂2

∂x2
n(t, x), (2.4)
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f(E,T)

E

∆E = kBT

1

T = 0

T > 0

N(E)

N(EF)

E

(a)

δn

(b)

μc

μc μc + δμc

Fig. 2.1. (a) The Fermi-Dirac function f(E, T ) at T = 0 [solid line] and T > 0
[dotted curve]. The two curves differ only in a region of order kBT around
μc. At T > 0, some electrons just below EF have been excited to levels just
above EF . (b) The density of state N(E) for free electrons.

where D is the diffusion constant. n(t, x) is the electron density at position x
at time t. Let j(t, x) denote the flux of n, the net rate at which n is passing
from the left of x to the right of x at time t. Since the electron density n is a
conserved quantity, it satisfies the continuity equation:

∂

∂t
n(t, x) = − ∂

∂x
j(t, x), (2.5)

or in a three-dimensional system (∂/∂t)n(t,x ) + divj (t,x ) = 0. The diffusion
equation [Eq. (2.4)] and the continuity equation [Eq. (2.5)] give a current that
is proportional to the local gradient in the density:

jdiffusion = −D∂n
∂x
. (2.6)

This is known as Fick’s law. Equation (2.6) says that electrons diffuse on average
from regions of high density toward regions of low density.

2.3 Spin diffusion equation

Here, we will discuss a diffusion spin current due to spatial inhomogeneous spin
density and a drift spin current in the absence of coherent dynamics of spin.
Conduction electrons in a semiconductor or in a metal can be regarded as an
electron gas. First, we consider spinless electrons. In the presence of an electric
field E, the drift current density is given by j drift = σE. The sum of the drift
and diffusion current density j = j drift + j diffusion is

j = σE + eD∇n, (2.7)

where j diffusion = eD∇n is the diffusion current density obtained from Eq. (2.6).
σ is the electrical conductivity and e = 1.602×10−19 C is the elementary charge.
Since N(EF )∇μc = ∇n, a gradient in the electrochemical potential μ=μc−eφ is
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∇μ = eE +
∇n

N(EF )
. (2.8)

Thus, for ∇μ = 0, the total current density

j =
(
σ − e2N(EF )D

)
E (2.9)

must be zero and thus one obtains the Einstein relation:

σ = e2N(EF )D. (2.10)

Because of Eqs. (2.8) and (2.10), we can write:

j =
σ

e
∇μ. (2.11)

This relation expresses the fact that the driving force for a current in this system
is a gradient of the electrochemical potential ∇μ.

Next, we consider the spin degree of freedom. The driving force for a diffusion
or drift spin current is a gradient of the difference in the spin-dependent elec-
trochemical potential μσ for spin up (σ =↑) and spin down (σ =↓). The current
density j σ for spin channel σ (σ =↑, ↓) is expressed as

j σ =
σσ

e
∇μσ, (2.12)

where μσ = μc
σ − eφ is the spin-dependent electrochemical potential. Here, we

introduce a charge current j c = j ↑ + j ↓ and a spin current j s = j ↑ − j ↓, which
are rewritten as

j c =
1
e
∇(σ↑μ↑ + σ↓μ↓), (2.13)

j s =
1
e
∇(σ↑μ↑ − σ↓μ↓). (2.14)

In nonmagnetic metals or semiconductors, the electrical conductivity is spin-
independent, σ↑ = σ↓ = (1/2)σN , and thus j s = (σN/2e)∇(μ↑ − μ↓).

The continuity equation for charge is

d

dt
ρ = −divj c. (2.15)

The continuity equation for spins can be written as

d

dt
Mz = −divj s + Tz, (2.16)
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where Mz is the z component of magnetization. z is defined as the quantiza-
tion axis. Tz represents spin relaxation, which can be written as Tz = e(n↑ −
n̄↑)/τ↑↓ − e(n↓ − n̄↓)/τ↓↑ using the single-pole-relaxation approximation. n̄σ is
the equilibrium carrier density with spin σ, and τσσ′ is the scattering time of an
electron from spin state σ to σ′. Note that the detailed balance principle imposes
that N↑/τ↑↓ = N↓/τ↓↑, so that in equilibrium no net spin scattering takes place,
where Nσ denotes the spin-dependent density of states at the Fermi energy. This
implies that, in general, in a ferromagnet, τ↑↓ and τ↓↑ are not the same. In the
equilibrium condition, dρ/dt = dMz/dt = 0, substituting Eqs. (2.13), (2.14), and
N↑/τ↑↓ = N↓/τ↓↑ into Eqs. (2.15) and (2.16), we have:

∇2(σ↑μ↑ + σ↓μ↓) = 0, (2.17)

∇2(μ↑ − μ↓) =
1
λ2

(μ↑ − μ↓). (2.18)

Equation (2.18) is known as the spin-diffusion equation. λ =
√
Dτsf is the spin

diffusion length. Here, D = D↑D↓(N↑+N↓)/(N↑D↑+N↓D↓) is the spin-averaged
diffusion constant, where Dσ is the spin-dependent diffusion constant. The spin
relaxation time τsf is given by 1/τsf = 1/τ↑↓ + 1/τ↓↑.

Now, we consider a simple example of a spin current in a ferromag-
netic/nonmagnetic (F/N) junction with a charge current passing through the
interface as shown in Fig. 2.2(a). The general solution of Eqs. (2.17) and (2.18) is

μF
↑ = AF +BFx+

CF

σF
↑

exp
(
x

λF

)
+
DF

σF
↑

exp
(
− x

λF

)
, (2.19)

μF
↓ = AF +BFx− CF

σF
↓

exp
(
x

λF

)
− DF

σF
↓

exp
(
− x

λF

)
, (2.20)

μN
↑ = AN +BNx+

CN

σN
↑

exp
(
x

λN

)
+
DN

σN
↑

exp
(
− x

λN

)
, (2.21)

μN
↓ = AN +BNx− CN

σN
↓

exp
(
x

λN

)
− DN

σN
↓

exp
(
− x

λN

)
, (2.22)

where μF (N)
σ , λF (N), and σ

F (N)
σ are the electrochemical potential, the spin dif-

fusion length, and the electrical conductivity for the F (N) layer, respectively.
From Eq. (2.12), the current density jF (N)

σ is

jF (N)
σ =

σ
F (N)
σ

e

∂

∂x
μF (N)

σ . (2.23)

In the F layer, the electrical conductivity is spin dependent and thus σF
↑ +σF

↓ =
σF . In contrast, in the N layer, the electrical conductivity is spin independent:
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∆μ

x
0

μ↑
F

μ↓
F

μ↑
N

μ↓
N

js

μ

(a)

(b)

(c)

λN

λF

F

σ↑
F ǂ σ↓

F σ↑
N 

= σ↓
N

N

Fig. 2.2. (a) A ferromagnetic/nonmagnetic (F/N) junction with a current pass-
ing through the interface. (b) The spatial variation of the electrochemical
potential μF (N)

σ for spin-up and spin-down electrons. (c) The spatial variation
of a spin current js.

σN
↑ = σN

↓ = σN/2. The coefficients AF (N), BF (N), CF (N), and DF (N) are de-
termined by boundary conditions. Without loss of generality, we can define first
boundary conditions as

μF
↑ (x = −∞) = μF

↓ (x = −∞), (2.24)

μN
↑ (x =∞) = μN

↓ (x =∞). (2.25)

These conditions yield DF = 0 and CN = 0. An applied charge current density
jc is

jF
↑ + jF

↓ = jN
↑ + jN

↓ = jc, (2.26)

which gives BF = ejc/(σF
↑ +σF

↓ ) = ejc/σF and BN = ejc/(σN
↑ +σN

↓ ) = ejc/σN .
At the F/N interface, the boundary conditions representing the continuity of
μ

F (N)
σ and the conservation of jF (N)

σ are

μF
σ (x = 0) = μN

σ (x = 0), (2.27)

jF
σ (x = 0) = jN

σ (x = 0). (2.28)
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Setting AF = 0 and using these boundary conditions, one finds

μF
↑ =

ejc

σF
x − ejcPλN (1 − P 2)σF

2σF
↑ σN

(
1 + (1 − P 2)

σF λN

σNλF

) exp

(
x

λF

)
, (2.29)

μF
↓ =

ejc

σF
x +

ejcPλN (1 − P 2)σF

2σF
↓ σN

(
1 + (1 − P 2)

σF λN

σNλF

) exp

(
x

λF

)
, (2.30)

μN
↑ =

ejcP
2λN

σN

(
1 + (1 − P 2)

σF λN

σNλF

) +
ejc

σN
x − ejcPλN

σN

(
1 + (1 − P 2)

σF λN

σNλF

) exp

(
− x

λN

)
,

(2.31)

μN
↓ =

ejcP
2λN

σN

(
1 + (1 − P 2)

σF λN

σNλF

) +
ejc

σN
x +

ejcPλN

σN

(
1 + (1 − P 2)

σF λN

σNλF

) exp

(
− x

λN

)
,

(2.32)

where P = (σF
↑ − σF

↓ )/(σF
↑ + σF

↓ ) is the spin polarization of the F layer. Fig-
ure 2.2(b) shows the spatial variation of the electrochemical potential for spin-up
and spin-down electrons with a current through a F/N interface. In the N layer,
a spin current js driven by∇(μN

↑ −μN
↓ ) flows from the interface toward the inside

of the N layer as shown in Fig. 2.2(c). The decay length of js is characterized
by the spin diffusion length λN . In the F layer, a spin-polarized current is sup-
pressed near the interface (∼ λF ) due to the back flow of spin-polarized electrons
induced by the spin accumulation at the interface.

The spin polarization of the current at the interface α = (jN
↑ − jN

↓ )/(jN
↑ +

jN
↓ ) = (jF

↑ − jF
↓ )/(jF

↑ + jF
↓ ) is obtained as

α = P
1

1 + (1− P 2)
σFλN

σNλF

. (2.33)

Note that the spin-polarization α of a current injected into theN layer is different
from the bulk polarization P of the F layer.

Although μ↑ and μ↓ are continuous at the interface, the slope of the electro-
chemical potentials can be discontinuous at the interface [see the dotted lines in
Fig. 2.2(b)]. This voltage drop at the interface Δμ gives spin-coupled interface
resistance Rs = Δμ/(ejc):

Rs = P 2 λNσ
−1
N

1 + (1− P 2)
σFλN

σNλF

. (2.34)
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The above equations show that the magnitude of the spin polarization and the
spin-coupled resistance contain the same factor (σFλN )/(σNλF ). In many cases,
the spin-diffusion length of F is much shorter than that of N , λF � λN , and, in
this case, λF is a limiting factor to obtain a large spin polarization. This problem
becomes serious when a ferromagnetic metal is used to inject spin-polarized
currents into semiconductors. In this case, the electrical conductivity, σN � σF ,
drastically limits the polarization. This problem is known as the conductivity
mismatch problem. A way to overcome the conductivity mismatch problem of
spin injection into a semiconductor is to use a ferromagnetic semiconductor as
a spin source. Another way is to insert a spin-dependent interface resistance at
a metal/semiconductor interface.

There are some methods for experimentally detecting pure spin currents, spin
currents without accompanying charge currents. One direct method is the util-
ization of the inverse spin-Hall effect, a method which was demonstrated first
by spin pumping [5] and non-local technique [6, 7]. The details are discussed
in chapter **. In semiconductors, optical method was also demonstrated (see
Ref. [8]). As an alternative way, one can infer spin-current generation indirectly
by measuring spin accumulation.
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3 Exchange spin current

E. Saitoh and K. Ando

A spin current is carried also by a spin wave, a collective excitation of magnet-
ization in magnets. In this section, we first rewrite the exchange interaction in
magnets by introducing the concept of exchange spin current and then formulate
a spin-wave spin current.

3.1 Magnetic order and exchange interaction

State of matters can be classified into several types in terms of magnetic prop-
erties. In paramagnetic and diamagnetic states, matter has no magnetic order
and exhibits zero magnetization in the absence of external magnetic fields. By
applying a magnetic field, matter in a paramagnetic state exhibits magnetiza-
tion parallel to the external field while that in a diamagnetic state exhibits
magnetization antiparallel to the field. The other types of material states con-
tain magnetic order. In ferromagnetic states, the permanent magnetic moments
of atoms or ions align parallel to a certain direction and the matter exhibits
finite magnetization even in the absence of external magnetic fields. Antiferro-
magnetic states refer to states in which the permanent magnetic moments align
antiparallel and cancel each other out and the net magnetization is zero in the
absence of magnetic fields. In ferrimagnets, the moments align antiparallel but
the cancellation is not perfect and net magnetization appears.

The interaction that aligns spins is called the exchange interaction. One
typical model for the exchange interaction is Heisenberg’s Hamiltonian: H =
−J∑ si ·sj , si represents the spin operator of an atom or an ion at the position
labeled by i. J is the interaction coefficient; for J > 0, parallel alignment of
si and sj reduces the energy. When this energy reduction is greater than the
thermal fluctuation energy, a ferromagnetic state can appear. The summation
runs over all the combination of nearest neighboring i and j.

3.2 Exchange spin current
3.2.1 Landau–Lifshitz–Gilbert equation

In this section, we derive an equation which describes spin or magnetization
dynamics. Consider a system described by the Hamiltonian

H = −M ·H eff, (3.1)

E. Saitoh and K. Ando, ‘Exchange spin current’, in Spin current. Second Edition. Edited by
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which describes the fact that a spin s tends to align parallel to the external
magnetic field H due to Zeeman’s interaction. The magnetization M satisfies
the following commutation relation of angular momentum

[Mi,Mj ] = iγ�εijkMk. (3.2)

The dynamics of M is described by a Heisenberg equation of motion [1]

dM

dt
= − i

�

[
M ,H]. (3.3)

Substituting Eq. (3.2) into this equation, the following result is obtained.

dM

dt
= −γM ×H . (3.4)

This equation describes the dynamics of an isolated spin magnetic moment; a
spin keeps undergoing a precession motion around the magnetic field H , as
shown in Fig. 3.1. However, as shown in Eq. (3.1), the energy is minimized when
the magnetic moment is aligned parallel to the external magnetic field. Therefore
the precession motion should be relaxed to this energy minimized state before too
long. This relaxation is due to the interaction of the spin with the environmental
degrees of freedom, such as conduction electrons and/or lattice vibrations in the
matter. This relaxation is often taken into consideration by adding a term called
the Gilbert term,

D = − α

M
M × dM

dt
(3.5)

to the equation of motion. Note that the Gilbert term is always directed toward
the magnetic field direction, or the precession axis. The equation of motion then
becomes

dM

dt
= −γM ×H +

α

M
M × dM

dt
, (3.6)

which is called the Landau–Lifshitz–Gilbert (LLG) equation.

(b)(a)

M(t)

D(t)
H

M(t)

H

Fig. 3.1. (a) Concept of spin
precession and decay. (b)
Directions of Gilbert term D(t).
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Next, we consider general interactions acting on a single spin magnetic mo-
ment. For small-angle spin dynamics, the interaction can be introduced into
the Landau–Lifshitz–Gilbert equation simply by replacing H with an effective
magnetic field H eff as follows

H eff = −δEi(S)
δsi

. (3.7)

Ei(S) is the energy on the i site electron as a function of the spin direction of
the system. H eff describes the total interactions acting on the spin including
external magnetic fields, magnetic anisotropy, and the exchange interaction.

3.2.2 Rewriting the Landau–Lifshitz–Gilbert equation

We are now in a position to consider the ferromagnetic interaction described by
Heisenberg’s Hamiltonian for a ferromagnet

Ei = −2J
∑

j

si · sj (J > 0). (3.8)

Let us apply the continuum approximation to si to rewrite s as a field value
s(r) where r represents the position vector. When si = s(r), a neighboring sj

is written as s(r +a) where a is the displacement vector of the j site measured
from the i site. s(r + a) is expanded as

s(r + a) = s(r) +
∂s(r)
∂r

· a +
1
2
∂2s(r)
∂r2

a2 + · · · . (3.9)

The second term of the expansion vanishes in Eq. (3.9) due to the summation
of i and j since there are the same atoms or ions at r = a and r = −a and, via
the summation, the second terms of the expansion for these atoms are canceled
out. Therefore, the third term is the dominant term and we will neglect the
higher-order terms. We then obtain

H eff = −2Ja2 ∂
2s(r)
∂r2

≡ A∇2M (r). (3.10)

A is called the spin stiffness constant.
Then the Landau–Lifshitz–Gilbert equation in which exchange interaction is

taken into consideration becomes

∂

∂t
M (r) = −AγM (r)×∇2M (r) +

α

M
M (r)× ∂

∂t
M (r). (3.11)
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Next, let us rewrite this equation in the form of a continuity equation. By using a
mathematical formula of vector analysis, A×∇2A = div(A×∇A), the Landau–
Lifshitz–Gilbert equation for exchange-interacting spins is rewritten as

∂

∂t
M (r) = −div

[
AγM (r)×∇M (r)

]
+

α

M
M (r)× ∂

∂t
M (r). (3.12)

For now, we neglect the Gilbert relaxation term for simplicity, say,

∂

∂t
M (r) = −div

[
AγM (r)×∇M (r)

]
. (3.13)

This equation has the same form as a continuity equation. In fact, by defining
the current j s as j s = AγM ×∇M , the equation becomes

∂M

∂t
= −divj s, (3.14)

which represents the conservation rule of spin angular momentum. j s is inter-
preted as a flow of spin, say, a spin current, called an exchange spin current or a
magnetization current. Since the above is a simple rewriting of the Landau–
Lifshitz–Gilbert equation and the exchange interaction, it means that the
exchange interaction between spins is equivalent to a flow of an exchange spin
currents j s. Then, we restore the Gilbert damping: Ṁ = −divj s + α

M M × ∂
∂tM

The steady state described by this equation is obtained by ∂M /∂t = 0 as

divj s = div(AγM ×∇M ) = 0, (3.15)

which implies a uniform alignment of magnetization.
In this way, exchange interaction can be rewritten in terms of the exchange

spin current, which derives a ferromagnetic order in cooperation with the damp-
ing. In a uniform magnetization state, there are no exchange spin currents. In a
steady nontrivial magnetic structure, for instance in a magnetic domain wall, the
torque due to the exchange spin current is balanced by the magnetic anisotropy
torque.

3.3 Spin-wave spin current

The exchange spin current can be driven in an nonequilibrium manner by ex-
citing spin waves, or magnons. A spin wave is an elementary excitation from
magnetically ordered states, which can be generated by, for instance, applying a
microwave. At finite temperature, a spin current is generated also as a thermal
fluctuation.
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(a)

(b)

Fig. 3.2. Spin wave of a one-atomic chain in (a) side view and (b) top view.

3.3.1 Spin-wave formulation

Now we consider low-energy excitations from a ferromagnetic ground state. Let
us assume that spins are coupled with nearest neighbor spins via the exchange
interaction. If one of spins is tilted against the ground state direction, the neigh-
boring spins tend to follow this tilt and the whole system will start to perform a
collective motion just as a linear chain of masses connected by springs as shown
in Fig. 3.2; the masses become the magnetic moments of the spins and the role
of the springs is taken by the exchange interaction. These collective excitations
of spins are the spin waves.

In a simple situation where only nearest neighbor interactions are important
and all nearest exchange interactions are equal, the Hamiltonian is

H = −2J
∑
〈i,j〉

si · sj − gμBH
∑

i

siz. (3.16)

The second term represents the Zeeman energy. We will further assume s = 1/2
and J > 0. Equation (3.16) can be written in a convenient form using the spin
raising and lowering operators for the ith spin site:

s+i = six + isiy, (3.17)

s−i = six − isiy. (3.18)

Now consider a state |s,M〉, which is an eigenstate of the spin operators s2
i and

siz: s2
i |s,M〉 = s(s+ 1) |s,M〉 and siz |s,M〉 = M |s,M〉. This yields

s+i |s,M〉 = [s(s+ 1)−M(M + 1)]1/2 |s,M + 1〉 , (3.19)

s−i |s,M〉 = [s(s+ 1)−M(M − 1)]1/2 |s,M − 1〉 . (3.20)

In terms of these operators, the Hamiltonian becomes

H = −2J
∑
〈i,j〉

[
1
2
(
s+i s

−
j + s−i s

+
j

)
+ sizsjz

]
− gμBH

∑
i

siz. (3.21)
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The dynamics of sj is obtained using the Heisenberg equation of motion

dsj

dt
=
i

�
[H, sj ] = −1

�
(εj × sj) , (3.22)

where

εj = 2J
∑
i
=j

si + gμBH (3.23)

is the effective magnetic field acting on sj . The second relation of Eq. (3.22) can
be obtained from the commutation relations for spin operators.

When the external magnetic field is H = (0, 0,H), each spin is aligned along
the z-axis. In the case of low-energy excited states, the deviation of the spin
from the z-direction is small and the change of the z-component of si is a
small quantity of second order. Then one can approximate sjz � s. Substituting
Eq. (3.23) with H = (0, 0,H) into Eq. (3.22), we obtain

�
dsjx

dt
= −2Js

∑
i

(siy − sjy) + gμBHsjy, (3.24)

�
dsjy

dt
= −2Js

∑
i

(sjx − six)− gμBHsjx. (3.25)

Using s±j = sjx ± isjy, we have

�
ds±j
dt

= ±i
[
−2Js

∑
i

(
s±j − s±i

)− gμBHs
±
j

]
. (3.26)

The local change of spins propagates through the whole spin system through the
first term on the right-hand side. The coupled motion of neighboring spins can
be decoupled by exploiting the periodicity with the Bloch representation:

s±k =
1√
N

∑
j

e−ik ·Rjs±j . (3.27)

With these normal coordinates, we arrive at

�

i

ds±k
dt

=

[
2Js

∑
i

(
1− e−ik ·(Ri−Rj)

)
+ gμBH

]
s±k . (3.28)

Assuming s−k ∝ δskeiωk t+iα, we find the eigenfrequency of Eq. (3.27) as

�ωk = 2JsZ (1− γk ) + gμBH, (3.29)
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where Z is the number of nearest neighbors and γk = (1/Z)
∑

Ri−Rj
eik ·(Ri−Rj).

The above discussion shows that the whole spin configuration of a crystal behaves
as an oscillatory motion with frequency ωk and wavevector k . This collective
mode is the spin wave that is mediated by the exchange interaction. This col-
lective mode corresponds to a coherent precession of the individual spins around
the direction of the ferromagnetic orientation. It is completely analogous to the
lattice modes in a solid.

For a cubic lattice where the nearest neighbors are along the ±x, ±y, and
±z axes at a distance a, γk = (1/3) (cos kxa+ cos kya+ cos kza). Therefore, for
small k, we have a quadratic dispersion relation for spin waves:

�ωk = gμBH + 2Jsa2k2. (3.30)

This shows a quadratic dependence on the wavevector around the minimum at
k = 0.

3.3.2 Spin current carried by a spin wave

Here we show that spin-wave propagation carries spin angular momentum. In the
following, the Gilbert damping term is neglected for simplicity. We can rewrite
the LLG equation as

∂

∂t
M (r , t) = γH eff ×M (r , t)− divj Mα(r , t). (3.31)

Here, j Mα is the exchange spin current, defined above, whose components are

jMα

β =
D

Ms
[M ×∇βM ]α. (3.32)

The z-component of the LLG equation (3.31) gives a continuity equation for
exchange spin currents: ∂Mz/∂t + divj Mz = 0 , which represents spin angular
momentum conservation, when α = 0.

Here we consider an exchange spin current carried when a spin wave is ex-
cited. We introduce a spin-wave wavefunction ψ(r , t) = M+(r , t) = Mx(r , t) +
iMy(r , t) and its complex conjugate ψ∗(r , t). The z-component of the exchange
spin current is written as

jMz

β =
1
2i

D

Ms

[
ψ∗(r , t)∇βψ(r , t)− ψ(r , t)∇βψ

∗(r , t)
]
. (3.33)

By introducing creation and annihilation operators (b†q, bq) of spin-wave ex-
citations (magnons) with frequency ωq and wave number q by ψ = M+ =√

2/Ms

∑
q bqe

iq ·r and ψ∗ = M− =
√

2/Ms

∑
q b

†
qe

−iq ·r , the exchange spin
current is expressed as
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jMz
x =

∑
p,q

νqnq, (3.34)

where νq = ∂ωq/∂q = 2Dq is the spin-wave group velocity and nq = 〈b†qbq〉 is
the number of spin waves. Equation (3.34) means that, when the numbers of
excited spin waves are different between q and −q in k -space, a nonzero net
exchange spin current is carried by the spin waves: a spin-wave spin current.
Such a spin-wave property was observed in Ref. [2].
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4 Topological spin current

E. Saitoh

In the previous chapter, we showed that the exchange interaction among spins
can be rewritten by introducing an equilibrium exchange spin current. In this
section, another type of equilibrium spin current is discussed, which is a topo-
logical spin current. Topological spin currents are driven by topological band
structure and classified into bulk and surface topological spin currents.

4.1 Bulk topological spin current

Electrons in crystals are confined onto electron-band manifolds and their motions
are sometimes affected by this confinement. This contribution can be argued in
terms of Berry’s phase. Here we go over a standard method to treat this problem
[1], a method combining the equations of motion and the Boltzmann equation
for semi-classical electrons in a band. This method considers a wavepacket of
electrons and tracks its motion, assuming that its position and momentum are
defined with moderate accuracy without violating the uncertainty principle. We
obtain the following equations assuming that the band index n does not change
because interband transitions of electrons do not happen under a weak external
perturbation

dr

dt
=
∂εn(k)
∂k

, (4.1)

dp

dt
= −e

(
E + �

dr

dt
×B

)
. (4.2)

Simple semiclassical motion of an electron is determined without knowledge
of the wavefunctions. However, exact motions in solids must be modified
reflecting the electron-band curvature, which is represented by the connection
of a wavefunction in k-space. This is due to the band structure which causes
the Hilbert space to be projected into electron-band manifolds. The operator
for the position of the electrons r = (xj) = (x, y, z) is canonically conjugate
with the wavenumber vector k = (kj) and satisfies the commutation relation

[xi, kj ] = iδi,j , (4.3)

thus

r = i∇k (4.4)
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holds. Due to the curvature of the electron-band manifold, this position operator
should be generalized into the gauge covariant derivative using the “vector
potential” in k -space expressing the connection due to the curvature

anj(k) = −i〈nk |∇k|nk〉 (4.5)

and becomes

r = i∇k − an(k), (4.6)

and a nontrivial noncommutation relationship holds:

[xi, xj ] = −iεij ∂

∂ki
anj(k). (4.7)

This noncommutation relationship modifies the equation of motion as

ẋμ =− i

�
[xμ,H] = − i

�
[xμ, kν ]

∂

∂kμ
H− i

�
[xμ, xν ]

∂

∂xν
H

=
∂

�∂kμ
εn(k)− ∂

∂kμ
anν(k)

∂

∂xν

V (r)
�

. (4.8)

The second term on the right-hand side is a new term called the anomalous
velocity. This term generates an electric current (topological current), even
under thermal equilibrium. The anomalous velocity is one mechanism for the
spin Hall effect and the anomalous Hall effect.

Taking this effect into consideration, the semiclassical equation of motion of
electrons in solids becomes [1]

dr

dt
=
∂εn(k)
�∂k

+
dk

dt
× bn(k), (4.9)

dk

dt
= −e

(
−∂φ(r)

∂r
+
dr

dt
×B(r)

)
. (4.10)

In these equations, the duality of r and k is obvious; using the field bn(k) instead
of the magnetic field B(r) and using εn(k) instead of the electrostatic potential
φ(r) results in a dual relationship between the equations of motion for r and k .
The second term on the right-hand side is the anomalous velocity, and the Hall
current can be obtained by adding the states occupied by electrons

jx = −e
∑
k ,n

f
(
εn(k)

)
bnz(k)k̇y. (4.11)
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If an electric field exists in the y-direction only, k̇y = −eEy, thus

σxy = e2
∑
k ,n

f
(
εn(k)

)
bnz(k). (4.12)

In paramagnetic or diamagnetic metals, when the gauge field bn(k) is spin
dependent, electrons with different spins have different velocities; an electric
current is converted into a spin current of conduction electrons. Such a spin
current is a bulk topological spin current.

4.2 Surface topological spin current

The spin currents discussed above are basically those that flow in bulk. Fi-
nally, the other type of spin current is introduced very quickly: a surface (edge)
spin current, which is limited near surfaces (edges) of a three (two)-dimensional
system and flows along the surfaces (edges).

This surface spin current is known to appear in topological insulators. In
topological insulators, the bulk is insulating but the surface or edge is electrically
conducting due to the surface or edge state: an electronic state localized at the
surface/edge. In such a system, the spin degeneracy of the surface (edge) state
is lifted except for the k = 0 point and the surface (edge) states of wavevector
k and −k have opposite spin. The situation means the state accompanies a spin
current in an equilibrium state even without external perturbation.

There are two-dimensional and three-dimensional topological insulators. In
two-dimensional topological insulators, spin-flip scattering in the edge states is
predicted to be significantly suppressed due to the absence of spin degeneracy.
The details will be discussed in Chapter 17.

References

[1] Xiao, D., Chang, M. C., and Niu, Q. (2010). Rev. Mod. Phys., 82, 1950.
[2] Morrish, A. H. (1980). The Physical Principles of Magnetism. Robert E.

Krieger, New York.



5 Spin polarization in magnets

K. Takanashi and Y. Sakuraba

5.1 Spin polarization in ferromagnets

The exchange splitting between up- and down-spin bands in ferromagnets un-
exceptionally generates spin-polarized electronic states at the Fermi level (EF).
The quantity of spin polarization P in ferromagnets is one of the important
parameters for application in spintronics since a ferromagnet, having a higher
P , is able to generate larger various spin-dependent effects such as the magneto-
resistance effect, spin transfer torque, spin accumulation, and so on. Usually, P
is defined as

P =
D↑(EF )−D↓(EF )
D↑(EF ) +D↓(EF )

(5.1)

where D↑(↓)(EF) is the density of states (DOS) for the up- (down-) spin channel
at the Fermi level. A typical transition ferromagnet has two components of elec-
tronic structure near EF: Narrow d-bands that are highly spin polarized due to
the exchange energy and broad s-bands with a low degree of spin polarization
due to hybridization with d-bands. Thus, if the orbital character at the Fermi
surface of a ferromagnet is d-like, naturally P expressed by Eq. (5.1) will be high.
However, when it comes to spin-dependent metallic transport or tunneling, the
expression for P written in Eq. (5.1) is not sufficient to describe the actual spin
polarization of electric carriers, because carrier mobility, effective mass, and tun-
neling probability, which differ absolutely in orbital character, must be taken into
consideration. Thus, the spin polarization of conduction electrons Pc, considering
a single transport mode at EF, is often written as

PC =
D↑(EF )νF↑ −D↓(EF )νF↓
D↑(EF )νF↑ +D↓(EF )νF↓

(5.2)

where νF↑(↓) denotes the Fermi velocity of the up- (down-) spin band. In
other words, Eq. (5.2) represents the spin asymmetry of the conductivity
(σ↑σ↓)/(σ↑ + σ↓), which is identical to the value of β defined in Valet and
Fert’s model for giant-magnetoresistive devices [1]. In the case of tunneling, the
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tunneling spin polarization PT, considering a single transport mode at EF, is
expressed as follows,

PT =
D↑(EF )|T↑|2 −D↓(EF )|T↓|2
D↑(EF )|T↑|2 +D↓(EF )|T↓|2 (5.3)

where T↑(↓) are the spin-dependent tunneling matrix elements for the up- (down-)
spin band. The tunneling effect is sensitive to the barrier/electrode interface, so
the meaning of D↑(↓)(EF) in Eq. (5.3) is the density of states at the barrier
interface. It is easily seen from Eqs. (5.1)–(5.3), that the quantities and even
the signs of PC and PT are often different from those of P . It is important
to notice that, obtaining high PC or PT, and not P , is required to enhance
spin-dependent transport properties. A material with a large P originated from
narrow d-states at EF in one spin channel often shows poorer spin-dependent
transport properties than we expected because of the large effective mass and
small tunneling probability of d-electrons.

5.2 Half-metallic ferromagnets

As mentioned in Section 5.1, the spin polarization of a ferromagnet is one
of the important parameters for various spintronic phenomena. However, the
spin polarizations of general 3d transition metals or alloys are generally below
0.6, which limits the size of spin-dependent effects. Thus, “half-metals” are
attracting much interest as an ideal source of spin(-polarized) current and spin-
dependent scattering because they possess perfectly spin-polarized conduction
electrons, i.e., P = 1, due to the energy band gap in either the up- or down-spin
channel at the Fermi level. For example, according to the conventional model
for tunneling magnetoresistance (TMR) proposed by Julliere [2], the TMR
ratio is expressed as 2PLPR/(1 − PLPR), where PL(R) is the spin polarization
of the left (right) ferromagnetic electrode. Thus, the TMR ratio becomes
infinite in the ideal case of using half-metals for both electrodes. Schmidt et
al. predicted that the conductance mismatching problem, which is a main
obstacle to injecting spinpolarized current into a semiconducting material from
a ferromagnetic metal, can be solved by using a half-metal as a spin-injector to
the semiconductor [3]. Other various kinds of spin-dependent phenomena like
spin accumulation, the spin Hall effect, and spin-torque induced phenomena
can also be largely enhanced using half-metals. As candidates for half-metals,
some Heusler compounds [4–6], zinc-blend structure materials [7], and magnetic
oxides (CrO2 [8] and Fe3O4 [9]) etc., were predicted to have a half-metallic
electronic structure by first-principles calculations. However, although in several
candidates of half-metals the high spin polarization reflecting half-metallicity
was clearly observed at low temperature (LT), the evidence of half-metallicity
has never been confirmed at room temperature (RT) so far. Some of the Heusler
compounds having L21- or Clb-structures are promising candidates, showing
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half-metallicity at RT because of their high Curie temperatures and chemical
stability. The L21-structure consists of four fcc sublattices (general chemical
formula is X2Y Z), and the Clb-structure has one unoccupied sublattice for
X atoms (i.e., XYZ ), which are often called full- and half- (semi-) Heusler
compounds, respectively. In 1983 de Groot et al. showed by first-principles
calculation that one of the half-Heusler compounds, NiMnSb has a semicon-
ducting gap at the Fermi level in only the down-spin channel leading to 100%
spin polarization [4]. The other half-Heusler compounds with XMnSb or XCrSb
composition such as PdMnSb and NiCrSb, etc. were also predicted to have a
half-metallic electronic structure. Some of the full-Heusler compounds are other
choices of half-metals; Co2MnX (X = Al, Si, Ge, etc.) is one of the popular
compounds because of their high Curie temperatures of 600–1000 K [5, 6]. Other
quaternary compounds such as Co2(Cr,Fe)Al [10, 11], Co2Fe(Al,Si) [12–14],
and Co2(Mn,Fe)Si [15] are also promising candidates. Apart from the Co-based
full-Heusler compounds, Fe2CrAl [16] and Mn2VAl [17], etc., were predicted to
have half-metallicity with small magnetization. In half- and full-Heuser-based
half-metals, the number of occupied valence spin-down states given by the num-
ber of spin-down bands (Ndown) is 9 and 12, respectively. Thus, it is well known
that the total magnetic moments (Mt) of the half-metallic half- and full-Heusler
compounds must be an integer number following the simple Slater–Pauling
rule: Mt = Zt − 2Ndown, where Zt is the total number of valence electrons
[5]. For example, Zt in Co2MnSi is 29, thus Mt = 29 − 24 = 5 μB. Figure 5.1
shows the spin- and element-resolved density of states in Co2MnSi with perfect
L21-structure. It is noteworthy that the half-metallic energy gap in the Co-based
full-Heusler compounds is derived from the d-states of Co. More concretely,
the conduction and valence edges of the gap are formed by the anti-bonding
(t1u and eu, respectively) states generated from the hybridization of the nearest
Co-Co as shown in Fig. 5.1 [7]. Thus, it is easily predicted that the half-
metallicity is very fragile against chemical disordering and surface/interface
termination involving Co atoms. Picozzi et al. reported that the creation of
a Co anti-site destroys the half-metallicity in Co2MnSi and Co2MnGe due to
the formation of in-gap states [18]. The disappearance of half-metallicity was
also predicted at the Co-terminated [001] surface/interface in contrast to the
preservation of half-metallicity at the Mn-Si termination [19, 20]. Therefore the
control of the chemical ordering and the terminated surface/interface is a crit-
ical issue in obtaining the half-metallicity in half-metallic Heusler compounds.
In experiments, previous studies did not indicate the half-metallicity in half-
Heusler compounds so far; a maximum value of 58% for the spin polarization was
obtained by a point-contact Andreev reflection method [20]. The superconduct-
ing tunnel junction and the magnetic tunnel junction with NiMnSb electrodes
did not show a high spin polarization, suggesting half-metallicity even at LT
[21, 22]. Although nearly 100% polarization was reported on NiMnSb(100) sput-
tered thin films using spin-polarized inverse photoemission, these measurement
were k resolved and therefore do not directly demonstrate the half-metallic
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character across the entire Brillouin zone [23, 24]. On the other hand, recent
extensive studies for the full-Heusler compounds clearly confirmed their half-
metallic nature. The MTJ with a Co2MnSi/Al-O/Co2MnSi structure showed a
giant TMR ratio of 560% at 2 K, indicating a high spin polarization of 86% for
Co2MnSi electrodes [25]. In current-perpendicular-to-plane giant magnetoresist-
ive (CPPGMR) devices with Co2MnSi, Co2FeAl0.5Si0.5, and Co2FeGa0.5Ge0.5,
large MR ratios over 30% were observed at RT, which is one order of magnitude
larger than those reported in devices with normal transition metals [26–29]. The
details will be mentioned in Section 5.4.

5.3 Experimental techniques for spin-polarization measurement
5.3.1 Point-contact Andreev reflection (PCAR)

Point-contact Andreev reflection (PCAR) is the simplest approach to measure
PC for a metal by just making a metallic point contact between the sample and
a superconductor (SC) [20]. This method is convenient since it requires no mag-
netic field and no special constraints on the sample; thin films, single crystals,
and foils of several metals have been successfully measured [20]. The principle
of the method is depicted in Fig. 5.2. A metallic contact allows coherent two-
particle transfer at the interface between the metal and the SC. The conversion
between Cooper pairs and the single-particle charge carriers of the metal at the
interface (called Andreev reflection) gives information about PC. The electron
entering the SC from the metal must condense and proceed as part of the su-
percurrent, thus it becomes a member of a pair. Because a superconducting pair
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Fig. 5.2. Schematic illustrations of supercurrent conversion at the supercon-
ductor/metal interface due to Andreev reflection for a nonmagnetic metal
(PC = 0, (a)) and a half-metal (PC = 1, (b)).

is composed of a spin-up and spin-down electron, the other electron having an
opposite spin direction is obtained from the metal for the formation of the pair.
Thus a hole is left behind and propagates away from the interface. Fig. 5.2(a)
shows the case of a superconducting contact with a nonmagnetic metal, i.e.,
PC = 0. The Andreev-reflected holes double the normal-state conductance Gn

of the applied voltages eV < Δ, where Δ is the superconducting gap at the
interface. In contrast, the conductance G becomes zero within Δ in the case
of contact with a half-metal since there is no supercurrent conversion at the
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interface due to the lack of electrons with one spin direction. For the quantita-
tive analysis of PC, the Blonder–Tinkham–Klapwijk (BTK) theory modified by
considering spin polarization is applied to fit an observed G-V curve, where the
interfacial scattering at the point contact is taken into account as a scattering
parameter Z [30, 31]. A ballistic contact with no scattering has Z = 0, whereas
a tunnel junction corresponds to the limit Z →∞. The intrinsic PC is obtained
at the limit of ballistic contact, thus, PC is usually estimated by extrapolating
Z to 0 in the experimentally-observed Z dependence of PC. Although the PC

for CrO2 and LSMO films was found to be high enough over 90%, suggesting
half-metallicity [20, 32, 33], large spin-polarization has never been observed by
PCAR in the half-metallic candidates of Heusler compounds, showing typically
50–70% [34–37]. Since there are still ambiguities in the analysis of the curve,
especially in the understanding of the scattering parameter Z [38], the model
for the analysis is being gradually improved for more reliable determination of
PC [39].

5.3.2 Superconducting tunneling spectroscopy (STS)

Spin-polarized tunneling spectroscopy in a superconductor (SC)/tunnel bar-
rier(I)/ferromagnetic metal (FM) junction, called superconducting tunneling
spectroscopy (STS), is a traditional and powerful technique to measure the tun-
neling spin polarization PT using a quasi-particle tunneling from SC, which was
first developed by Meservey and Tedrow [40]. As shown in Fig. 5.3(b), in an
applied magnetic field H = 0, the peaks of the tunnel conductance (dI/dV )
indicate that the superconducting gap edges appear at the same voltage (ΔV )
for the spin-up and spin-down electron channels, thus only two peaks are ob-
served. When H is applied in parallel to the film plane, the quasi-particle DOS is
energetically separated by 2μBH according to their spin orientation, which is a
phenomenon known as Zeeman splitting (Fig. 5.3a). An electron passes from/to
these Zeeman split quasiparticle states, which gives rise to two split tunnel con-
ductance (dI/dV ) peaks for each spin-up and spin-down electron channel as
shown in Fig. 5.3(c). From the shape of the dI/dV − V curve the tunneling
spin polarization PT near EF can be quantitatively analyzed. The details of the
method are well described in the review paper by Meservey and Tedrow [41].
Popular SC materials for this measurement are Al, or Al with slight Cu or Si
impurities [42], since the spin–orbit interaction in Al is small enough to observe
a splitting of the spin-up and down channels in the dI/dV −V curve. However, a
big disadvantage of Al is low superconducting transition temperature (Tc) below
∼ 2.5 K, thus measurements must be made at even lower temperatures, typic-
ally below ∼ 0.4 K. Yang et al. used NbN as an alternative superconductor and
successfully observed a splitting of the peak even at 1.2 K due to the high Tc of
NbN ∼ 16 K [43]. It is well known that tunneling spin polarization PT cannot be
explained by the total DOS at EF in a ferromagnet, since it is necessary to con-
sider the mobility of electrons (sp-like or d-like) at EF [44], interfacial bonding,
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and wave -function symmetry, including the spin-detector side, the material and
the thickness of the tunneling barrier [45, 46], and various other extrinsic factors
that affect spin transport such as magnetic impurities at the interface/inside
the barrier. For example, there is a large DOS for the minority d band at EF

with near 100% for P , but the observed PT in Ni was always positive, 23% [41]
and 46% [42]. In the case of a La0.7Sr0.3MnO3/SrTiO3/Co junction [47], the
observed inverse TMR ratio was interpreted by a negative PT of Co, whereas a
positive PT was always measured in Co/SrTiO3/Al and Co/Al-O/Al junctions,
which indicated the importance of the spin-detector and tunneling barrier ma-
terials [42, 48]. The details of tunneling spin polarization are well described in
the recent review paper by Miao et al. [49].
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5.3.3 Spin-resolved photoemission spectroscopy (SP-PES)

Photoemission spectroscopy (PES) is a general technique to investigate the elec-
tronic structure of valence states or inner shells by detecting photoelectrons
excited from those occupied states by incident photon with the energy in the
region from ultraviolet light to X-rays. The information about band disper-
sion is also obtainable by angle-resolved detection of emitted photoelectrons.
In order to obtain spin resolution, a Mott detector [50, 51] or spin low-energy
diffraction (SPLEED) detector [52], etc., are used to count photoelectrons with
spin information. Previously, the low efficiency of spin detection was a crit-
ical problem to investigate a detailed spin-resolved electronic structure with
high-energy resolution, in contrast to the excellent energy resolution of spin-
unresolved photoemission spectroscopy∼ a few meV, but recent improvements of
the instruments is gradually making it possible to obtain higher energy resolution
of 8–30 meV in spin-resolved photoemission spectroscopy (SP-PES) [53, 54]. The
strong surface sensitivity of photoemission spectroscopy is also very attractive
to study the spin splitting due to large spin–orbit interaction by no space rever-
sal asymmetry at the surface or interface. The spin polarization obtained from
SP-PES is basically the spin polarization of the total DOS, which is different
from both PC and PT observed by PCAR and STS. P, at the surface of various
ferromagnets, has been studied by spin-resolved PES for three decades [50, 51].
A nearly fully spin-polarized state at EF was claimed in several half-metallic
materials: A P of 100%, 95% and 90–93% was observed in LSMO [55], CrO2 [56]
and Co2MnSi [57], respectively, by SP-PES. Spin-resolved inverse PES measure-
ments also found a half-metallic P of 100% for LSMO [58] at 100 K and NiMnSb
at 300 K [59]. Note that, Dowben et al. pointed out the difficulty to see a half-
metallicity from SR-PES measurements [24], because finite-temperature effects
leading to the population of spin minority states near EF would be the most
significant at wavevectors away from k// = 0, thus they may not be observed by
SR-PES at normal emission if the sample is single-crystalline or is polycrystalline
with texture growth.

5.4 Magnetoresistive devices with half-metals
5.4.1 Magnetic tunnel junctions with half-metals

One of the most attractive applications of a half-metal is its use as FM electrodes
for magnetic tunnel junctions (MTJs) because the TMR ratio is drastically en-
hanced when PT becomes near unity as is easily expected from Julliere’s formula
[2]. A pioneering result in MTJ with half-metallic electrodes was reported for
the La0.7Sr0.3MnO3 (LSMO)/SrTiO3/LSMO structure, where a giant TMR ra-
tio of 1800% (PT = 95% for LSMO) was observed at 4.2 K [58]. However, the
TMR ratio perfectly disappeared at RT because of a low Curie temperature of
LSMO (TC ∼ 350− 370 K). In MTJs with other half-metallic oxides, CrO2 and
Fe3O4, large TMR ratios, suggesting a half-metallicity, have never been observed
[60, 61], whereas, large TMR ratios reflecting half-metallicity were observed in



Magnetoresistive devices with half-metals 41

MTJs with various half-metallic candidates in Heusler compounds; a giant TMR
ratio of 570% was observed in the Co2MnSi/Al-O/Co2MnSi MTJ at 2 K, indi-
cating a PT of 86% for Co2MnSi electrodes [25]. A recent trend is to combine a
half-metallic Heusler electrode and a MgO crystalline barrier, where the multi-
plied enhancement effects of the TMR ratio, i.e., half-metallicity and spin-filter
effect of the MgO barrier, are theoretically expected [62]. Tezuka et al. reported
a large MR ratio of 832% at 9 K in the Co2FeAl0.5Si0.5/MgO/Co2FeAl0.5 Si0.5-
MTJ [63], and Liu et al. realized a giant TMR ratio of 1995% at 2 K in the
Co-Mn-Si/MgO/Co-Mn-Si MTJ [64]. The highest TMR ratio of 2610% at 4.2K
and 429% at 290 K were reported in Co2(Mn,Fe)Si and MgO barrier as a result
of a careful optimization of the composition ratio to minimize the amount of Co
antisite [65]. A critical issue in half-metallic Heusler-based MTJs is the rapid
reduction of the TMR ratio with temperature as shown in Fig. 5.4, which is
not simply understood because the Curie temperatures of those materials are
much higher than RT (e.g., TC ∼ 985 K for Co2MnSi). There is still a contro-
versy about the origin of this large-temperature dependence; Mavropoulos et al.
suggested that interface states appearing in the minority-spin gap can contrib-
ute to the tunneling conductance in the antiparallel state through spin-mixing
processes such as magnon excitations and inelastic scattering at RT [66]. Sak-
uma et al. theoretically predicted the reduction of the exchange energy of the
Co layer terminated at the MgO barrier in the (001)-oriented CMS/MgO struc-
ture, suggesting large magnon excitation at the CMS/MgO interface [19]. It is
suggested as a solution of the temperature dependence to insert another thin
ferromagnetic layer at the barrier interface to suppress the creation of interface
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states [67] and improve the exchange energy at the interface. Although Tsunegi
et al. reported a slight improvement of the temperature dependence of the TMR
ratio by inserting a thin CoFeB layer at the CMS/MgO interface [67], a strik-
ing breakthrough to solve the problem at the interface seems to be required to
realize high PT reflecting the half-metallicity at RT.

5.4.2 Current-perpendicular-to-plane magnetoresistive device with half-metals

When an electric current flows in the direction perpendicular to the film with a
stacking structure of FM layers separated by nonmagnetic metal (NM) layers,
spin-dependent electron scattering at the FM/NM interfaces and inside the FM
layer generates an MR effect, which is called the current-perpendicular-to-plane
giant magnetoresistive (CPP-GMR) effect. According to the prediction by Mav-
ropoulos [66], the half-metallicity of the electrodes can be fully exploited in the
CPP-GMR structure in contrast to MTJ, because spin-dependent scattering not
only at the interface but also inside the FM layer contributes to the MR effect,
that is, the interface states in the half-metallic gap play almost no significant
role in the CPP-GMR structure. In the (001)-Co2MnSi/Ag/Co2MnSi epitaxial
device, a large MR ratio of 36% was reported at RT, which was one order of
magnitude higher than that observed in normal 3d-transition FM-based CPP-
GMR devices [26, 27]. Spin asymmetries of resistance at the interface (γ) and in
the FM layer (β) have been analyzed on the basis of the Valet–Ferts model [1].
γ and β are expressed as (R↓−R↑/R↓ +R↑ ) and (ρ↓−ρ↑/ρ↓ +ρ↑), respectively,
where R↑(↓) and ρ↑(↓) indicate the interface resistance and the resistivity for
up (down) spin electrons. As a result of the analysis, a large γ over 0.8 at the
Co2MnSi/Ag interface was found, and was explained by the good Fermi surface
matching at the (001)-Co2MnSi/Ag interface according to this first-principles
calculation [27]. Nakatani et al. also observed a large MR ratio of 34% in the
Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 epitaxial device and a large β of 0.71–0.78,
indicating a high spin polarization of conduction electrons [28]. β can also be
expressed as (σ↑ − σ↓)/(σ↓ − σ↑), which corresponds to the definition of PC.
Thus, in principle, the PC observed by PCAR should be equal to the evaluated
β in CPP-GMR devices. In other words, an FM material showing high PC by
PCAR is promising as electrodes for a CPP-GMR device to enhance the MR
effect. Takahashi et al. investigated PC for Co2Fe(GaxGe1−x) with a different
x by PCAR and found the highest PC of 0.69 at x = 0.5. They also prepared
the CPP-GMR device using Co2Fe(Ga0.5Ge0.5) and observed a large MR ratio
of 41.7% at RT [29]. Although the estimated β of 0.77 for Co2Fe(Ga0.5Ge0.5)
deviated from the PC observed by PCAR because of the ambiguity in the esti-
mation of PC in PCAR (mentioned in Section 5.3.1), this result seems to support
the identity between PC and β. More recently, higher MR ratios beyond 50% at
RT were reported by improving the composition ratio and chemical ordering in
Co2Fe(Ga0.5,Ge0.5) and Co2(Fe,Mn)Si Heusler electrodes. [68, 69]. In addition,
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as alternative spacers of the Ag spacer, new spacer materials have also been ex-
plored to obtain larger interfacial spin-polarization. Higher MR outputs than the
Ag spacer were reported by using AgZn [70], Ag3Mg [71] and NiAl [72] spacers
although it is not still unclear in any studies whether the observed large MR
really originates from large interface spin polarization.

5.4.3 Anisotropic magnetoresistance and half-metallicity

The anisotropic magnetoresistance (AMR) effect, in which the electrical resist-
ivity depends on the relative angle between the magnetization direction and the
electric current direction, is one of the most fundamental magnetoresistance ef-
fects in ferromagnetic materials. The AMR effect has been therefore investigated
for various magnetic materials. In particular, the AMR ratio has been measured
to evaluate the amplitude of the effect. The AMR ratio is expressed as

Δρ
ρ

=
ρ// − ρ⊥
ρ⊥

(5.4)

where ρ//(⊥) represents a resistivity when electric current flows in the parallel
(perpendicular) direction to magnetization. The AMR effect basically originates
from s-d scattering from the conduction state (s-state) to localized d-states
hybridized by spin–orbit interaction. Recently Kokado et al. systematically
investigated the relationship between the sign of the AMR ratio and the domin-
ant s-d scattering process using their extended theory for AMR that can treat
AMR in various ferromagnets having different electronic structures [73]. As a
result, they found that, when the dominant s-d scattering process is s ↑→ d ↓ or
s ↓→ d ↑, the sign of the AMR ratio is positive (ρ⊥ < ρ//), as already confirmed
in body-centered cubic Fe, face-centered cubic Co, and Ni [74]. In contrast, when
the dominant scattering is s ↑→ d ↑ or s ↓→ d ↓, the sign is negative (ρ⊥ > ρ//),
which is in good agreement with the AMR effect in Fe4N [75]. Therefore, accord-
ing to this theoretical model, they proposed that the sign of AMR in half-metallic
materials must always be negative because of expected dominant s ↑→ d ↑ or
s ↓→ d ↓ scattering due to the absence of the other spin-state at the Fermi
level. In order to confirm this theoretical prediction, Yang et al. fabricated
Co2FexMn1−xSi epitaxial thin films having different x (from 0 to 1) and measure
their AMR effect [76]. As a result, they observed a clear sign change of AMR
from negative to positive when x becomes more than 0.8. Since the disappear-
ance of half-metallicity of Co2FeSi and Co2Fe0.8Mn0.2Si was also suggested from
the measurement of damping constants [77], TMR effect [78] and CPP-GMR
[68], the positive sign of AMR for x � 0.8, which is a signature of non-half-
metallicity from Kokado’s AMR theory, agreed well with other previous studies.
Sakuraba et al. carried out the AMR measurement for various Co2MnZ and
Co2FeZ (Z = Al, Si, Ga, Ge) thin films to investigate the relationship between
the sign of AMR and the position of Fermi level [79]. Figure 5.5 plots the AMR
ratio as a function of the total valence electron NV in Co2MnZ and Co2FeZ. The
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Fig. 5.5. AMR ratio in
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thin films as a function
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sign change of AMR occurs at two points of Nv, i.e., Nv ∼ 28.2, and 30.3. Since
Fermi levels of Co2MnZ and Co2FeZ are expected to shift with NV by following
a rigid band model, these two points of Nv for the sign change would correspond
to valence and conduction band edges of a half-metallic gap. This result clearly
indicates that the negative sign of the AMR ratio can be considered as a neces-
sary condition for half-metallic materials as Kokado’s theory predicted. Because
AMR effect can be measured without any time-consuming procedure such as
micro-fabrication, AMR measurement can be a facile way to screen materials
with half-metallic nature from potential candidates.
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6 Optically Induced and Detected Spin Current

A. Hirohata and J.-Y. Kim

6.1 Introduction
6.1.1 Optical generation of spins

An alternative method of injecting spin-polarized electrons into a non-magnetic
semiconductor is photoexcitation. This method uses circularly polarized light,
of which the energy needs to be the same as or slightly larger than the semicon-
ductor band-gap, to excite spin-polarized electrons. This process will introduce
a pair of a spin-polarized electron and a spin-polarized hole, which can be de-
tected as electrical signals. Such optically induced spin-polarized current can
only be generated in a direct band-gap semiconductor due to the selection rule
as described below. Such introduction of circularly polarized light can also be
used for spin-polarized scanning tunneling microscopy (spin STM) as shown in
Fig. 6.1.

6.1.2 Spin Polarization in GaAs

In a direct band-gap semiconductor, such as GaAs, which is widely used in
spintronics, the valence band maximum and the conduction band minimum are
aligned at the Γ-point as shown in Fig. 6.2(a). This point is the center of the
Brillouin zone (k = 0), indicating that the only transition induced by photon
energy hν, occurs at Γ[1, 2]. For GaAs, an energy gap is measured to be Eg = 1.43
eV at room temperature (RT). The valence band (p-symmetry) splits into a
four-fold degenerate P3/2 state at Γ8 and a two-fold degenerate P1/2 state at Γ7,
which lies an energy Δ = 0.34 eV below P3/2. The P3/2 band consists of two-fold
degenerate bands; heavy hole and light hole sub-bands. On the other hand, the
conduction band (s-symmetry) is a two-fold degenerate S1/2 state at Γ6.

When hν = Eg circularly polarized light excites electrons from P3/2 to S1/2.
According to the selection rule (Δmj = ±1), the two transitions for each photon
helicity (right, σ+, and left, σ−, circular) are possible. However, the relative
transition probabilities for the light and heavy holes need to be taken into ac-
count in order to estimate the net spin polarization [see Fig. 6.2(b)]. For example,
if electrons are excited only from the valence band maximum (Γ8) by circularly
polarized light, three times more spins are excited from mj = ±3/2 than from
mj = ±1/2 states. Although the maximum spin polarization is expected to be
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Fig. 6.1. Major experimental techniques with circularly polarized photons;
spin-polarized inverse photoemission, spin-polarized scanning tunneling mi-
croscopy (spin STM), photoexcitation and spin-polarized light emitting
diode (spin LED).

50% in theory, the maximum observed experimentally is ∼ 40% at the threshold
as shown in Fig. 6.3. This can be explained due to experimental limitations, such
as spin depolarization in the GaAs layer and the interfaces [1, 3].

For Eg + Δ < hν, the polarization decreases with increasing hν due to the
mixture of the light and heavy hole states with the split-off valence band states,
which have the opposite spin orientation. Such inter-band absorption occurs only
through the spin-orbit interaction, since the electric field of exciting light only
influences electron orbital motion. For Eg + Δ << hν, the spin-orbit interaction
becomes negligible and spin depolarization during the cascade process can dom-
inate the process. Therefore the photoexcited spin-polarized electrons become
absent.

6.1.3 Photoexcitation Model

The helicity-dependent photocurrent I is measured by modulating the photon
helicity from right (σ+) to left (σ−). The two helicity values correspond to op-
posite spin angular momentum values of the incident photon, and the helicity
gives rise to opposite spin polarizations of electrons photoexcited in GaAs [1, 3].
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Fig. 6.2. (a) Schematic band structure of GaAs in the vicinity of the Γ-point
(center of the Brillouin zone) in k-space. The energy gap Eg between the
conduction band and the valence bands for both the heavy and light holes
are shown. The spin-orbit splitting Δ also exists. (b) Schematic diagram of
the allowed transitions for right (σ+, solid lines) and left (σ−, dashed lines)
circularly polarized light in GaAs. The selection rule is Δmj = +1 for σ+

and Δmj = −1 for σ−. The numbers near the arrows represent the relative
transition probabilities. The magnetic quantum numbers are also indicated
at the corresponding energy levels. The heavy and light holes are abbreviated
to hh and lh, respectively.

The magnetization (M) in the ferromagnet is aligned perpendicular (H = 1.8
T) or in plane (H = 0) by using an external field. For σ//M (or anti-parallel),
the electrons in the ferromagnet and the semiconductor share the same spin
quantization axis, while for σ⊥M, the two possible spin states created by the
circularly polarized light are equivalent when projected along the magnetization
direction in the ferromagnet [see Fig. 6.4]. Consequently, in the remnant state
(σ⊥M), when M is orthogonal to the photoexcited spin polarization, both up
and down spin-polarized electrons in the semiconductor can flow into the ferro-
magnet. At perpendicular saturation (σ//M), on the other hand, the up spin
electron current from the semiconductor is filtered due to the spin-split density
of states (DOS) at the Fermi level EF of the ferromagnet [4, 6], i.e., only minor-
ity spin electrons contribute to the transmitted current from the semiconductor
to the ferromagnet. Spin filtering is therefore turned on (σ//M) and off (σ⊥M)
by controlling the relative axes of σ and M, and is detected as the helicity-
dependent photocurrent I. Hence, the helicity-dependent photocurrents I0 and
In correspond to the magnetization configurations σ⊥M [see Fig. 6.4(a)] and
σ//M [see Fig. 6.4(b)], respectively.
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Fig. 6.3. Photoemission spectrum of spin polarization from GaAs + CsOCs at
T � 10 K. The experimental data are shown as boxes including experimental
errors [1].

Different transport mechanisms (hole diffusion into the ferromagnet, thermi-
onic emission of electrons over the AlGaAs barrier, electron tunneling across
the AlGaAs barrier) will contribute to the unpolarized photocurrent, depending
upon the applied bias. Significant spin filtering effects are expected to occur at
reverse bias for the case of spin-dependent hole transport, and at forward bias
for the case of spin-dependent electron transport, respectively. The difference in
the helicity-dependent photocurrent ΔI is a superposition of magneto-optical
(ΔIMCD) and spin filtering (ΔISF) effects:

ΔI = ΔISF + ΔIMCD, (6.1)

with ΔIMCD being proportional to the unpolarized photocurrent
(ΔIMCD =αIph).

The well-defined structure allows a clear separation of all these contributions
[7]. As seen in Fig. 6.5, a significant difference between the bias dependences of
the unpolarized photocurrent and the helicity-dependent photocurrent is only
observed at forward bias (0.4–0.8 V) as shown in Fig. 6.5(a), where electron
tunneling occurs, whereas the bias dependences of both currents match each
other closely at reverse bias. The latter finding shows that spin-dependent hole
transport does not play an important role and that the helicity-dependent photo-
current at reverse bias arises mainly from magnetic circular dichroism (MCD).
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The spin filtering efficiency can then be quantified in terms of an effective
polarization Peff:

Peff = (ΔI − αIph)/Iph. (6.2)

6.2 Optical Spin Injection
6.2.1 Photoexcitation

The possibility of detecting a spin-polarized current through thin film tunnel
junctions of both Co/Al2O3/GaAs and Co/τ -MnAl/AlAs/GaAs induced by pho-
toexcitation was first discussed by Prins et al. [8]. For the former structure, a
spin-dependent tunneling current was observed, while only MCD signals were
seen in the latter structure. In their experiment, a sample with a 2 nm Al2O3 tun-
neling barrier showed the largest helical asymmetry of the photoexcited current
of approximately 1.2% at 1.5 eV (near the GaAs band gap). Accordingly, many
studies of spin-dependent tunneling through metal/oxide/semiconductor (MOS)
junctions have been carried out, e.g., Co (or Ni)/Al2O3/p-GaAs [11], especially
in the view of realizing optically pumped spin-polarized scanning tunneling mi-
croscopy (spin STM) as described in Sec. 6.2.3. These results are summarized in
Table 6.1.

6.2.2 Schottky Diodes

By depositing a ferromagnetic metal layer directly onto a semiconductor sub-
strate, a Schottky barrier is known to be formed intrinsically at the interface.
Since the barrier is formed at the surface region of the semiconductor, the

Table 6.1 List of recent optical spin injection studies.

Structures Spin polarisation Refs.

Ferromagnet/semiconductor hybrid structures:

Co/Al2O3/p-GaAs ∼ 1.2%(RT) [8]

(NiFe, Co and Fe)/n-GaAs ∼ 2 ± 1%(RT) [9]

(FeCo and Fe)/GaAs QW ∼ 0.5% ∼ MCD (10 K) [10]

MOS junctions:

(Ni and Co)/Al2O3/p-GaAs ∼ 2.5 and 1.0% (RT) [11]

Epitaxial Fe/GaAs −4 ∼ +4% (RT) [21]

Spin STM:

Ni STM tip/GaAs < 10% (RT) [12]

p-GaAs STM tip/Co/mica ∼ 10%(RT) [13]

p-GaAs STM tip/NiFe/Si ∼ 7%(RT) [14]
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electron flow can be prevented depending on the bending shape of the bar-
rier, resulting in current rectification. The Schottky barrier acts as an intrinsic
tunneling barrier for electrons traveling across the interface. This offers a
way to overcome the conductance mismatch, which fundamentally reduce the
spin polarization of the current across a ferromagnet/semiconductor interface
[15, 16].

Accordingly, evidence for RT spin filtering of spin-polarized electrons has been
systematically investigated at the ferromagnet/semiconductor interface in for-
ward bias [9, 17]. The bias and GaAs doping density dependence of spin-filtering
signals suggest that electron tunneling is the spin-dependent transport mech-
anism. Further proof of this picture has been added by temperature-dependent
measurements of band gap engineered NiFe/AlGaAs barrier/GaAs structured
[18]. Spin-dependent effects were only observed in the bias and temperature
range where electron tunneling occurs. In addition, strong optical magnetocur-
rent effects at RT have been observed in spin-valve/semiconductor structures.
The difference in the optical magnetocurrent obtained between parallel and anti-
parallel spin-valve configurations was extremely large (up to 2400%) [19]. This
indicated that the spin-dependent electron transport across the spin-valve struc-
tures was determined by the relative spin alignment of the ferromagnetic layers
and the initial spin polarization of the photoexcited electrons. The spin filtering
effect can be used for future spintronic devices, such as an optically assisted
magnetic sensor [20].

The photon energy dependence of the optical magnetocurrent also proved that
the photoexcited electrons tunnel into the ferromagnet ballistically as shown in
Fig. 6.6 [21]. This result shows the possibility of tuning the spin polarization at
the epitaxial Fe/GaAs interface using the interfacial resonant states. Dery and
Sham proposed a spin switch by using spin filtering through localized electron
states in a heavily doped semiconductor [22]. In their model, s conduction elec-
trons tunnel through a Schottky barrier and carry positive spin polarization into
a ferromagnet. Localized d electrons transfer negative spin polarization as the
spin DOS for the down spins at EF is larger than that for the up spins. Chantis
et al. also predicted negative spin polarization in a range of bias voltages across
an Fe/GaAs (8 ML)/bcc Cu structure due to the formation of interface resonant
states for down spin electrons formed at the interface to the Fe layer [23]. Since
the spin polarization is found to be dependent upon the photoexcitation energy,
a new model has been proposed by Honda et al. as shown in Fig. 6.7 [24]. It is
shown that band matching of resonant interface states within the Schottky bar-
rier defines the sign of the spin polarization of the electrons transported through
the barrier. The results agree very well with experimental results including those
for the tunneling of photoexcited electrons [21] and suggest that spin polariza-
tion (from -100% to 100%) is dependent on the Schottky barrier height. They
also suggest that the sign of the spin polarization can be controlled with a bias
voltage.
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6.2.3 Spin-Polarized Scanning Tunneling Microscopy (spin STM)

Spin STM was proposed in 1993 by Molotkov [25], and Laiho and Reittu [26].
This technique was using a direct band-gap semiconductor tip. This is expected
to be used to observe the surface magnetic configurations with almost atomic
resolution in theory.

Spin-polarized electron tunneling from a Ni STM tip into a GaAs substrate
was first demonstrated by Alvarado and Renaud [27]. The Ni tip was magnetized
by an electromagnet and was used as a spin injector. It scans over the sample
surface in its measurement sate. Spin-polarized electron tunneling through the
vacuum was detected as circularly polarized electroluminescence (EL) signals, in
which the change is ∼ 30% at RT. This value corresponds to a minority electron
spin polarization of Ni(001) at the Fermi level. This suggests that the minority
spin electrons provide the dominant contribution to the tunneling current.

After the first photoexcitation measurement by Prins et al. [8], modulated
circularly polarized light has been used to excite spin-polarized electrons in a
semiconductor (e.g., GaAs). Although optically excited electrons are scattered
mainly at the semiconductor surface with back illumination [28], Sueoka et al.
demonstrated the possibility of detecting spin-polarized signals by scanning a
Ni STM tip over a GaAs film with circularly polarized light shone through
an AlGaAs membrane [12]. Suzuki et al. also performed a similar observation
by scanning a p-GaAs STM tip over a Co film with back illumination through
mica/Au/Co film, and obtained magnetic domain images [13]. The GaAs tip was
fabricated using photolithography and anisotropic etching to prevent limitation
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due to facets {105}. A 3 monolayer (ML) Co film exhibited perpendicular mag-
netization, and showed less than the MCD effect of 0.14%, which was much
smaller than the observed polarization response of about 10%. Polarization
modulation response images of the spin STM showed very good agreement with
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magnetic force microscopy (MFM) images. In order to avoid the MCD effect
and possible light scattering through the sample structures, Kodama et al. then
introduced photon helicity into a GaAs tip in the vicinity of the sample, which
is equivalent of front illumination [14]. They detected a change of approximately
7% in I-V curves between right and left circular light irradiation of NiFe films.

6.3 Optical Spin Detection
6.3.1 Spin-Polarized Lasers

Circularly polarized light emission was initially studied in InGaAs QW [29]. A
vertical cavity surface emitting laser (VCSEL) was fabricated with circular po-
larization in Voigt geometry, showing 35 mW power under a magnetic field of 2
T. The VCSEL operation was then demonstrated both by optical and electrical
injection [30]. By optimizing the structure to reduce spin–orbit coupling, just a
4% spin polarization of injected carriers led to a nearly complete (96%) polar-
ization of emitted light reported with a QW-VCSEL [30], demonstrating that
such lasers can be highly efficient spin filters and spin amplifiers, as predicted
theoretically [31]. The behavior of the spin lasers were analyzed by the bucket
model [32]. The model offers a way to design a desirable spin laser for both
QW and QD configurations. Spin-injection modulation was also demonstrated
to be able to eliminate parasitic frequency modulation (chirp) and to enhance
the modulation bandwidth [33], improving the two key parameters in lasers. The
operation frequency can be over 11 GHz, which is highly advantageous for future
spintronic communications via circularly polarized light at RT [34]. The mech-
anism of VCSEL can also be described using a spin-flip model [35]. Elliptically
polarized fields are investigated and the spin polarization is determined by the
initial pump power.

These spin-polarized lasers are limited by their constituent materials. Re-
cently, Fe3O4 nanoparticles dispersed on GaN nanorods have been reported to
emit spin-polarized laser with spin polarization up to 28.2% at room temperature
under a low magnetic field of 0.35 T [36]. This emission is induced by the select-
ive charge transfer of electrons with opposite spins at the Fe3O4/GaN interfaces.
Similar laser emission may be realized using a wide range of materials.

6.3.2 Spin-Polarized Light-Emitting Diodes (spin LED)

By inversing the photoexcitation process, one can detect the spin polarization
of an electrically injected current using an optical method. For such a case, a
highly spin-polarized ferromagnet is necessary to inject a large degree of spin po-
larization as an electrical current. Since a dilute magnetic semiconductor (DMS)
shows a large Zeeman splitting and ferromagnetism [37], DMS can be used as
a spin aligner to inject spin-polarized carriers, i.e., spin-polarized electrons or
holes, into a semiconductor. This is an alternative method to avoid the inter-
facial conductance mismatch [15]. Spin polarization of the injected carriers is
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detected optically through circularly polarized EL from the semiconductor. Such
structures are called spin-polarized light-emitting diodes (spin LEDs). With
ferromagnetic p-GaMnAs as a spin aligner, spin-polarized hole injection was
reported at low temperature [38]. At forward bias, spin-polarized holes from the
p-GaMnAs as well as unpolarized electrons from the n-GaAs layer were injected
into the InGaAs quantum well (QW), so that the recombination of the spin-
polarized holes created circularly polarized EL emission from the QW. However,
as the spin relaxation time for the holes is much shorter than that for the elec-
trons [39], the spin polarization signal through the recombination process in
the GaAs was very small (about ±1%) [38]. On the other hand, using para-
magnetic n-BeMnZnSe as a spin aligner, highly efficient electron spin injection
has been achieved with the applied field of ∼ 3 T (spin polarization in EL ∼
90%) [40]. This is because the spin-diffusion length of the electrons has been
reported to be above 100 μm in the GaAs [41]. Similar results were obtained
using CdMnTe [42], ZnMnSe [43, 44], ZnSe [45] and MnGe [46] but only at low
temperatures (typically T < 80 K). Since RT ferromagnetism has been predicted
in several DMS compounds [47] but not yet observed, spin injection at RT with
a DMS may be achievable in the near future. These results are summarized in
Table 6.2.

6.3.3 Schottky Diodes

A ferromagnet/semiconductor Schottky diode, consisting of an Fe (20 nm)/
GaAs/InGaAs QW LED structure, was also used to measure circularly polarized
EL by Zhu et al. [48]. Spin injection from the Fe to the GaAs was achieved with
an efficiency of about 2% at 25 K, which was found to be independent of tem-
perature. However, the right and left circularly polarized EL intensity did not
show a clear difference. Therefore, by examining the tails of the Gaussian-like
EL intensity distributions, a heavy hole excitation contribution was estimated.
On the other hand, Hanbicki et al. [49] performed a similar experiment with a
Fe (12.5 nm)/AlGaAs/GaAs QW LED and observed a spin injection efficiency
of 30%. They clearly observed a significant difference between the right and left
circular EL intensity. The spin polarization was estimated to be 13% at 4.5 K
(8% at 240 K). Taking the spin relaxation time in the QW into account, they
reported a small temperature dependence in the spin injection efficiency, which
was consistent with spin-polarized electron tunneling theory.

Crooker et al. measured the spin polarization of 32% at an Fe/GaAs Schottky
junction as shown in Fig. 6.8 [54]. In Fe/GaAs/Fe junctions, more up spin elec-
trons were injected on one side and more down spins are ejected from the other
end by flowing current across the junction. This indicated that positive spin po-
larization was achieved in reversed bias, while negative polarization was achieved
in forward bias. This is similar to the observation of both positive and nega-
tive spin polarization have been measured in a Fe/GaAs Schottky junction by
introducing spin-polarized electrons by circularly polarized photoexcitation [21].
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Table 6.2 List of recent optical spin detection studies.

Structures Spin polarisation Refs.

Spin laser (spin-polarized electron injection):

GaAs/AlGaAs ∼ 2% (RT) [29]

GaAs/AlGaAs ∼ 96% (RT) [30]

Fe3O4 nanoparticles/GaN ∼ 28% (RT) [36]

Spin LED (spin-polarized electron injection):

BeMgZnSe+BeMnZnSe/n-AlGaAs/i-GaAs
QW/. . . /p-GaAs

∼ 42% (< 5 K) [40]

CdMnTe/CdTe ∼ 30% (5 K) [42]

n-ZnMnSe/AlGaAs/GaAs QW/AlGaAs ∼ 83% (4.5 K) [43], [44]

Fe/GaAs/InAs QW/GaAs ∼ 2% (25 K) [48]

Fe/AlGaAs/GaAs QW/GaAs ∼ 13% (4.5 K)
[49]

∼ 8% (240 K)

NiFe+CoFe/AlOx/AlGaAs/GaAs QW/GaAs ∼ 9.2% (80 K) [50]

FeCo/AlOx/AlGaAs/GaAs QW/.../p-GaAs ∼ 21% (80 K)
[51]

∼ 16% (300 K)

CoFe/MgO/AlGaAs/GaAs QW/.../p-GaAs ∼ 57% (100 K)
[52]

∼ 47% (290 K)

Co2.4Mn1.6Ga/n-AlGaAs/.../InAs QW/GaAs ∼ 13% (5 K) [53]

Fe/n-GaAs ∼ 30% (4 K) [54]

Fe/Al2O3/n-Si/.../GaAs QW ∼ 5.5% (20 K)
[57]

∼ 3% (125 K)

Spin LED (spin-polarized hole injection):

p-GaMnAs/GaAs/InAs QW ∼ 1% (<31 K) [38]

Spin STM:

Ni STM tip/GaAs ∼ 30% (RT) [27]

6.3.4 Spin Injection into Si

Since Si has an indirect band-gap, poor spin injection has been expected. It
has long been believed that intrinsic spin polarization in Si is typically a few
percent at RT. However, present nano-electronic devices predominantly depend
on Si-based technology, indicating the importance of spin injection into Si with
high efficiency. A junction of Co/Al2O3/Si has been used to demonstrate that
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the resistance-area RA product can be tuned over eight orders of magnitude by
inserting an ultrathin Gd layer, which has a lower work function against Si [55].
Such tunability in the RA product is very useful to realize a spin MOS field effect
transistor (FET), which requires a narrow RA window against the Si doping
density. Recently, spin injection into Si has been successfully demonstrated by
Jonker et al. in an Fe/Al2O3/n-Si with an LED structure underneath [56, 57].
As seen in Fig. 6.9, circular light polarization of 5.6% at 20 K (2.8% at 125 K)
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was measured, indicating an injected spin polarization of approximately 30%
in Si. This experiment has opened the door to Si spintronics, which possesses
a significant advantage for implementation of spintronics into current Si-based
nano-electronics.

6.4 Optical Spin Modulation
6.4.1 Electric Field Operation

The spin-orbit interaction Hamiltonian is derived from the Dirac equation [58]:

q�

4m2c2
(σ · [E× p]), (6.3)
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Fig. 6.10. Schematic structure of a spin FET with required dimensions.

where q, �, m, c, σ, E and p represent the electron charge, Planck’s constant,
the electron mass, the velocity of light, Pauli matrices, electric field and electron
momentum, respectively. By comparing with the Rashba Hamiltonian, HR =
η (σ × k) · v (k: wave vector and v: unit vector perpendicular to the film) [59],
the spin-orbit interaction constant η is η = q�VG

/
4m2c2d, where VG and d

correspond to a gate voltage and distance of the spin-polarized electron path
from the gate electrode. Commonly used in GaAs 2-dimensional electron gas
(2DEG), 180◦ phase shift can be achieved for a separation between an injector
and a detector: l = Δθ�2

/
2m∗η ≈ 3 μm, and gate length: w = �

2
/

2m∗η ≈ 1 μm.
Therefore, the required electric-field is

VG

d
=

4m∗2c2η
q�2

≈ 4.3× 1010 [V/m] , (6.4)

where m∗ is the electron effective mass. This provides d ∼ 1 nm and VG ∼ 43 V
for instance (see Fig. 6.10), which are very difficult to realize with present nano-
fabrication techniques and require further improvement in spin-orbit interaction
constant η to achieved realistic spin transistor. Recently, electrical field operation
has been demonstrated in InAs QW with achieving the spin rotation in 0.54 μm
[60], which was not suitable for the device-level miniaturization.

6.4.2 Magnetic Field Operation

A lateral spin-valve structure has been fabricated using a non-magnetic Cu nano-
ring in order to split a diffusive spin-current path for operation as shown in
Fig. 6.11 [61]. By providing Larmor precession independently onto each spin path
with respect to the distance from a dc current path, the dc current introduces a
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perpendicular Ampère field and acts as a gate in a three-terminal device. We have
successfully demonstrated modulation in a non-local signal, which is much more
effective than that expected from the conventional simple Larmor precession,
i.e., the Hanle effect. This is predominantly due to the shorter oscillation period
observed as a result of arithmetic operation of the spin currents. The modulation
in the non-local signal gives∼ 30% increase in the spin diffusion length under a dc
current application. A similar estimation can also be applied to a semiconductor
nano-ring for magnetic-field operation. It is therefore important to minimize the
device dimensions to operate a spin-polarized electron current effectively.

6.4.3 Optical Gate Operation

Circularly polarized light will also be used as a gate for a nano-spin motor [62].
A variable wavelength continuous-wave laser with a photo-elastic modulator was
used to introduce a circularly polarized beam to a non-local Fe/n-GaAs device.
A time-resolved Kerr rotation technique was employed to obtain the n-GaAs
excitation wavelength (822 nm), the spin dephasing time (2.9 ns), and the
electron g-factor (−0.43) (see Fig. 6.12). In order to test the feasibility of optical
gating, the circularly polarized beam has been illuminated to the region of pure
spin current (between the injector and the detector ferromagnets as similar to
the conventional electric field gate applications in Sec. 6.4.1), while observing the
changes in the non-local voltage so that spin-FET-type operation can be verified
(see Fig. 6.13). The linear increase of the non-local voltage with the laser power
is observed, which can be accounted to both heating and photoexcitation. How-
ever, there are no significant changes between the circularly polarized and the
unpolarized lights, which suggests that the observed increase can be solely
from the magnetic circular dichroism. More experiments with different vari-
ables (changing separation of the ferromagnet injector/detector, the light pulse
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duration and the injection biases of the injector) is necessary to fully assess the
optical spin modulation effect. The optical gating technique is expected to have
significant advantages over conventional electric and magnetic field operation
due to a lower power consumption of at least 25%.
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7 Spinmotive force

J. Ieda and S. Maekawa

7.1 Introduction

This chapter overviews “spinmotive force” (SMF), which is an emerging concept
that is responsible for generating spin current and electric voltage in mag-
netic conductors. The SMF is mediated by the exchange interaction between
conduction-electron spin and magnetization and thus has the same roots as
spin-transfer torque (STT) [1, 2] (i.e., they are two sides of a coin). Whereas
STT is responsible for the angular-momentum-transfer between spin current
and magnetization, SMF enables the energy-transfer in the interacting system.
Therefore, SMF is expected to give rise to an important contribution to energy
management in future spintronics applications.

Motivated by the experimental demonstration of the STT driving a domain
wall (DW) in a ferromagnetic nanowire in the early 2000s [3], the implementation
of SMF in a similar system and its magnetic memory device applications were
proposed in 2006 [4]. Soon after, the general aspect of the SMF was clarified in
terms of a concept of the accumulation of Berry phase [5] by pointing out that
SMF can be regarded as a generalization of Faraday’s law of induction to include
the electron’s spin degree of freedom [6]. Since then, a series of experimental
demonstrations [7–15] and theoretical investigations [16–46] of the SMF effects
have appeared.

These are some striking features of the SMF:

• In contrast to the inductive electromotive force (EMF) where the time
variation of magnetic flux is required, static magnetic fields can generate
electric voltages.

• As a new source for an electric voltage the conversion rate is given by
fundamental constants apart from the spin polarization of ferromagnetic
materials, enabling efficient energy conversion.

• The SMF provides for a powerful tool for exploring the dynamics and the
nature of magnetic textures such as domain walls, magnetic vortices, and
skyrmions.

• Active devices that use this effect can operate with zero stand-by power and
their efficient power conversion between the magnetic and electric systems
provides a unique functionality in magnetic nanostructures.
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As an introduction to the SMF, we select several topics ranging from the basic
concepts to recent experimental progress. Some potential applications of the
SMF will also be discussed from a theoretical viewpoint.

7.2 Description of spinmotive force

This section describes the SMF from various viewpoints. After some retrospect-
ive remarks, we start with a simple argument based on the conservation laws to
deduce the existence of the SMF. To this end and for simplicity, we neglect in this
section all the dissipation process (except in Fig. 7.2). Next we explain the con-
nection to the Berry phase. Finally, we briefly introduce the spin electromagnetic
fields and describe it with a numerical approach.

7.2.1 Historical remarks

The earlier work related to the SMF (before the discovery of the STT ef-
fect) occurred repeatedly but quite independently in different contexts. In 1977,
Korenmann et al. [47] constructed a theory of the spin fluctuation in itinerant
ferromagnets in which they first wrote down the widely quoted expressions for
spin electromagnetic fields. These fields, however, played less important roles in
their formalism and they did not identify the SMF. A decade later, Volovik [48]
studied a paradox in the linear momentum of the coherent magnetization motion
that couples to the incoherent fermionic excitations and re-derived the same spin
electromagnetic fields implicated to restore conservation of linear momentum.1

Technically, however, no measurable SMF was expected because the only internal
magnetic energy (exchange stiffness) was incorporated as the source of total en-
ergy. Berger [49] was the first to insist that a precessing DW could generate an
electric voltage, regarding it as a ferromagnetic analogue of the AC Josephson
effect. Stern [5] first identified the possibility of such a spin version of the EMF
in terms of the Berry phase in a nonmagnetic ring with a nonuniform magnetic
field where the net electrical voltage vanishes after spin averaging. Thus, mater-
ials with a finite spin polarization P are required to convert the pure spin force
to a measurable electrical voltage.

7.2.2 Conservation laws

An instructive example involving the SMF is a single DW in a conducting ferro-
magnetic nanowire with only uniaxial anisotropy. When we apply a magnetic
field H along the easy axis of the wire a positive or negative Zeeman energy
shift arises for each of the magnetic domains separated by the DW. Next, we
consider that conduction electrons couple to the magnetic system, thereby allow-
ing the exchange of energy and angular momentum. In the presence of a magnetic
field, the total Zeeman energy of the nanowire depends on the DW position, and

1 Note that the STT term already appeared in Eq. (7.10) of Ref. [48].
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the magnetic energy changes when the DW moves with the velocity vDW. The
rate of change in magnetic energy per unit area of wire cross section is given
by −2μ0MsHvDW, where μ0 is the magnetic constant and Ms is the saturation
magnetization. Here we employ STT to drive a DW.2 Due to conservation of an-
gular momentum, the rate of change in angular momentum carried by the spin
polarized current and the rate of change of the localized moment must balance
leading to a relation between the DW velocity vDW and the applied current dens-
ity J as, vDW = −gμBPJ/(2eMs), where g is the Landé g factor, μB is the Bohr
magneton, e > 0 is the elementary charge and the spin polarization P is defined
by the spin-dependent conductivity σs (s =↑, ↓) as P = (σ↑−σ↓)/(σ↑+σ↓). This
is the DW velocity due to the STT effect [3]. Conservation of energy requires the
rate of the magnetic energy change is balanced by a work done on the current
J (per unit time and area) as −2μ0MsHvDW + JV = 0, where V is the induced
electric voltage. Using the STT current-velocity relation for vDW we obtain

V = −PgμB

e
μ0H. (7.1)

The sign of the SMF, which ultimately depends on the definition of a meas-
urement setup, is specified by a spin version of Lenz’s law. In other words, the
polarity of the induced voltage is determined by the current it must drive to
oppose to the applied current and thereby restore the original DW position via
the STT effect. For the field-induced DW the voltage drop develops along the
direction of DW motion.3 Equation (7.1) gives a simple conversion rate between
the input field and output voltage as � P × 100 μV/T.

The SMF associated with field-driven DW dynamics was measured for the
first time by Yang et al. who used a modulated-drive-field technique in a 500-
nm-wide, 20-nm-thick, and 35-μm-long permalloy nanowire [7, 24]. By using
Eq. (7.1), they determined the spin polarization of the permalloy sample to be
P ∼ 0.85. Reference [50] further discusses the SMF induced by DW motion.

7.2.3 Time-dependent spin Berry phase

To obtain Eq. (7.1), we only assume conservation of angular momentum and
energy between the conduction electrons and the magnetization. We now show
that Eq. (7.1) is identical to the general expression of the SMF [6],

V =
P�

e

dγs

dt
, (7.2)

where � is the Planck’s constant divided by 2π and γs is the so-called Berry
phase associated with the spin degree of freedom of an electron.

2 Without energy dissipation, the DWs do not move along the wire due to a relaxation
process.

3 For P < 0 the voltage polarity reverses because the STT DW velocity changes the sign.
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The Berry phase reflects the geometric aspects of the system in general, which
plays an important role in the understanding of phenomena in recent spintronics,
such as the quantum spin Hall effect and the anomalous Hall effect [51]. Here it
is related to the solid angle Ω subtended by the trajectory of the spin direction
in spin space as γs = −Ω/2 [52]. To calculate the SMF, the time variation of
the solid angle is needed and, for a DW under a uniform magnetic field H, this
is given by twice the Larmor precession frequency: dΩ/dt = 2γH where γ is
the gyromagnetic ratio. By using γ = gμBμ0/�, one can show that Eq. (7.1)
is identical to Eq. (7.2). This expression is a generalization of Faraday’s law of
induction since the Berry phase associated with the charge degree of freedom
(the Aharonov–Bohm phase) is given by γe = (−e/�)Φ where Φ is the magnetic
flux and Eq. (7.2) with γe reproduces the conventional expression.

Another simple example where the spin Berry phase can be obtained analyt-
ically is a system of two precessing macro spins. Consider a single ferromagnet
film with two uniform magnetic domains that precess about the applied field H
with the frequency ω but different corn angles, θi (i = 1, 2). The magnetization
direction between two domains continuously changes as in a DW. In this case,
the time derivative of the spin Berry phase acquired by a conduction electron
traversing the film is given by

V =
P�ω

2e
(cos θ2 − cos θ1). (7.3)

If θ1 �= θ2 a voltage appears between two contacts attached to each side of the
film.

This situation is experimentally realized in a comb-shaped permalloy thin
film, as shown in Fig. 7.1 [9]. Due to the shape magnetic anisotropy, the wide
region (pad) and narrow region (wire) of the single film sample have different

ω

permalloy

V

H

θpad

Fig. 7.1. Schematic illustration of the
permalloy comb sample used in
Ref. [9].
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resonance conditions for a fixed applied microwave frequency ω. This fact enables
the selective excitation of the ferromagnetic resonance (FMR) of the pad or wire.
For example, if the pad resonance condition is fulfilled, the cone angle of the pad
is finite, θ1 = θpad �= 0, and that of the wire is θ2 = θwire = 0. For θpad � 1, we
expand Eq. (7.3) to obtain

V � P�ω

4e
θ2pad, (7.4)

which is proportional to the applied microwave power. On the other hand, when
the wire is excited resonantly the voltage sign should be reversed. These pre-
dictions are confirmed experimentally and numerically [9], demonstrating the
continuous generation of SMF that can convert ac magnetic fields to dc electrical
voltages.

Equation (7.2) is also evaluated for a sliding motion of a chiral soliton
lattice [35].

7.2.4 Spin electromagnetic fields

As we noted, the SMF can be regarded as a spin version of Faraday’s law of
induction. Thus one may expect a local expression for a spin version of elec-
tromagnetic fields. Generally, appearance of an EMF requires a nonconservative
force acting on electrons; a force that cannot be described as a spatial gradient
of any potentials. An EMF is given by

V =
1
−e
∮

f · dx , (7.5)

where the integral
∮
dx is taken along an electric circuit through which the

electron passes, and f is the force that acts on the electron. The right-hand side
of Eq. (7.5) corresponds to the total energy supplied to the electron (divided by
−e) while the electron travels and conservative forces do not contribute to this
quantity.

In electromagnetism, the time-derivative of a U(1) vector potential gives rise
to a nonconservative electric field, resulting in an inductive EMF. This EMF is
described by Faraday’s law of induction (i.e., the time derivative of a magnetic
flux) and its energy source is the applied electromagnetic fields E and B , which
couple to the electrons via the Lorentz force f e = −e(E + v × B), where v is
the electron velocity.

Conversely, the spin degree of freedom of the electron in a ferromagnet
couples to the magnetization via the exchange interaction. Through this inter-
action the electron can receive magnetic energy from the magnetization, which
can be an additional source for the EMF (7.5). The exchange interaction with
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the magnetization acts as a SU(2) potential for the electrons, giving rise to a
spin-dependent nonconservative force f ± acting on the electrons,

f ± = −e [±E + v × (±B)] , (7.6)

where + (−) corresponds to the majority (minority) electrons, and the so-called
spin electric and spin magnetic fields, E and B, are given by

Ei =
�

2e
m ·

(
∂m

∂t
× ∂m

∂xi

)
, Bi = −εijk

�

4e
m ·

(
∂m

∂xj
× ∂m

∂xk

)
, (7.7)

where m denotes the unit vector of the magnetization direction, εijk is the
Levi–Civita symbol, and the dot and cross products are taken over the vector
components of m . We will see the derivation of Eqs. (7.6) and (7.7) in the next
section.4

This spin electric field E is nonzero when magnetization depends on both time
and space. Such conditions are fulfilled for the field-induced DW motion and the
spatially modulated FMR as seen in the previous subsections. By integrating E
for the particular cases we recover Eqs. (7.1) and (7.3) respectively.

The spin magnetic field B is produced by a noncoplanar magnetization con-
figuration. The Lorentz-type force −e[v × (±B)] gives rise to the transverse
conductivity. This effect is called the anomalous Hall effect due to the spin
chirality [53–56].

The forces on the majority spin and minority spin are opposite and the net
force acting on electrons are averaged over the spin bands. This implies that
a force exerted on electrons is associated with the spin polarization P of the
ferromagnet5 as

f nc = −P�

2
m ·

(
∂m

∂t
×∇m

)
. (7.8)

This is the nonconservative force exerted on electrons from dynamical
magnetization.

7.2.5 Numerical approach

We see that the SMF reflects the local magnetization texture. In reality, the
magnetization dynamics show complex spatiotemporal profiles that depend on
sample geometry, applied magnetic fields, and other conditions. Tracing in detail
the time evolution of the magnetization structure requires a numerical analysis

4 Note that the use of the unit vector n ≡ −m instead of the magnetization vector m
reverses the overall signs of Eq. (7.7) as adopted in some publications [27, 37].

5 More accurate treatments involving the spin diffusion with f ± are given in Refs. [19, 20,
22–27].
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using the finite element method. The numerical analysis of the magnetization dy-
namics is referred to as micromagnetics. For this purpose we use the open-access
cords such as the object oriented micromagnetic framework (OOMMF) [57].

Numerical methods for evaluating SMFs was first developed by Ohe et al. [21],
who applied their method to the system of a gyrating magnetic vortex core. The
procedure is as follows: First, based on information of the magnetization obtained
by micromagnetics, the spin-electric field E is calculated at every time step. In
electron equilibrium, the nonconservative force derived above is balanced by a
conservative force [a U(1) electric field] E c = −∇V [i.e., f nc + (−e)E c = 0].
Finally, using this relation the Poisson equation

ΔV = −1
e
∇f nc, (7.9)

is numerically solved under certain boundary conditions, which enables a
quantitative evaluation of the SMF in a given ferromagnetic nanostructure.

Figure 7.2 shows an example of numerical simulations of DW motion and the
associated voltage profile in a permalloy nanowire. Here the moving DW exhibits
a complex two-dimensional magnetization configuration [Fig.7.2(a)] and the as-
sociated potential distribution changes significantly around the DW [Fig. 7.2(b)].
By monitoring the potential difference between the electrodes attached to any
two positions of the sample, the voltage signal due to SMF can be detected in
real time. For the simulation result shown in Fig. 7.2, the time-averaged volt-
age drop is calculated to be ∼ 0.9 μV, which is consistent with Eq. (7.1) with
μ0H = 14 mT and P = 0.6. A more detailed numerical analysis of the SMF
generated by DW motion is found in Ref. [38].

H
+1

+2.5 μV

–2.5 μV

–1

mx
(a)

(b)

V

y

x

Fig. 7.2. Numerical results for field-induced DW motion in a permalloy nanowire
(1000×100 nm2). (a) Snapshot of magnetization profile (mx component dis-
played in gray scale). Solid arrows represent local magnetization directions.
(b) The electric potential profile associated with panel (a). Here we use
μ0H = 14 mT, μ0Ms = 1 T, P = 0.6, the Gilbert damping constant is 0.01,
and the exchange stiffness is 1.3× 10−11 J/m.
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7.3 Theory of spinmotive force

In this section, we derive the spin electromagnetic fields (7.7) and their exten-
sions. There are several practically equivalent ways to do this, for example,
in terms of the Berry curvatures [6, 24, 36], the Onsager reciprocal rela-
tions [17, 19, 44], and the linear response to magnetization dynamics [27, 37]. In
this section, to clarify the origin of the SMF, we introduce an approach based
on the equation of motion [28].

7.3.1 s–d model

We begin with the Hamiltonian of the s–d model6 for the conduction electrons
in a ferromagnetic material,

H =
p2

2me
+ Jexσ ·m , (7.10)

where p and me are the linear momentum operator and electron mass, respect-
ively. The second term represents the exchange interaction, with Jex(> 0) being
the exchange coupling energy, σ being the Pauli matrices indicating the electron-
spin operator defined in the laboratory frame, and m being the unit vector of
the magnetization direction. The magnetization generally depends on time and
space.

By the correspondence principle, a quantum-mechanical “force” operator
acting on the conduction electrons is given by the Heisenberg equation of motion

f =
me

i�
[v ,H] +mev̇ , (7.11)

where v = [r ,H]/(i�) = p/me is the velocity operator and the dot denotes the
partial derivative with respect to time, v̇ ≡ ∂v/∂t. Next, the expectation value
of the force operator is determined by that of the spin operator 〈σ〉 and the
magnetization as

〈f 〉 = −Jex〈σ〉 · ∇m . (7.12)

For uniform magnetization (∇m = 0), the force acting on the electron spin van-
ishes, so no SMF is generated in the system described by the Hamiltonian (7.10).

Let us now consider the case in which nonuniform magnetization is in motion.
The dynamics of m is described by the Landau–Lifshitz–Gilbert (LLG) equation:

ṁ = −γm ×H eff + αm × ṁ , (7.13)

where α is the Gilbert damping constant and the effective magnetic field is
defined as

6 An approach based on the Stoner model was developed in Ref. [6] and in the 1st ed. of
this chapter.
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H eff = − 1
μ0Ms

δF [m ]
δm

, (7.14)

where F [m ] is the free energy of the ferromagnet, which comprises the exchange,
anisotropy, dipole, and Zeeman energies. By solving the LLG equation, Eq. (7.12)
is evaluated at each point and time.

7.3.2 Adiabatic contribution

Let us calculate the expectation value of the conduction-electron spin. To this
end, by a local gauge transformation in the spin space, we rotate the spin quant-
ization axis, which is originally the z axis of the laboratory frame, ẑ , so that
it aligns with the magnetization m . The direction m in the laboratory frame
is specified by the Euler angles (θ, ϕ) as m = t(sin θ cosϕ, sin θ sinϕ, cos θ). By
using a unitary matrix U ≡ ei θ

2 σyei ϕ
2 σz , the Hamiltonian (7.10) is transformed

as follows,

H′ =
1

2me
(p + A)2 + Jexσz +A0, (7.15)

where the SU(2) gauge potentials (connection 1-forms)

A ≡ �

i
U∇U† =

�

2
(sin θ∇ϕσx −∇θσy − cos θ∇ϕσz), (7.16)

A0 ≡ �

i
UU̇† =

�

2
(sin θϕ̇σx − θ̇σy − cos θϕ̇σz) (7.17)

arise for nonuniform and time-varying magnetization, respectively. Compared
with the original Hamiltonian (7.10), the exchange interaction becomes diagonal
in the new local frame spanned by x̂ ′ = t(cos θ cosϕ, cos θ sinϕ,− sin θ), ŷ ′ =
t(− sinϕ, cosϕ, 0), and ẑ ′ = m whereas, to compensate, A and A0 have off-
diagonal components.7

To proceed, it is convenient to introduce the unitary matrix UO(3) ≡
(x̂ ′, ŷ ′, ẑ ′)†, which changes the basis from

{
x̂ , ŷ , ẑ

}
to
{
x̂ ′, ŷ ′, ẑ ′}. One can

show that U(σ ·a)U† = σ ·(UO(3)a
)

for a three-dimensional vector a . Collecting
the spin-dependent terms of the new Hamiltonian (7.15) we obtain

Hex = Jexσ ·
{[

1− �

2Jex

(
cos θϕ̇+

1
2

(v · cos θ∇ϕ+ cos θ∇ϕ · v)
)]

m ′

− �

2Jex

[
(m × ṁ)′ +

1
2

[v · (m ×∇m)′ + (m ×∇m)′ · v ]
]}

,

(7.18)
7 Such gauge fields associated with the coordinate transformation are called pure gauges

and do not produce any new forces by themselves [58].
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where m ′ = UO(3)m = t(0, 0, 1) and (m × ṁ)′ = UO(3) (m × ṁ) =
t(− sin θϕ̇, θ̇, 0) denotes the vectors represented in the rotated frame of refer-
ence. Equation (7.18) shows that the conduction spin interacts not only with
the longitudinal field parallel to the instantaneous magnetization direction m ′

but with the transverse fields being proportional to (m × ṁ)′ and (m ×∇m)′.
Now we assume smooth and slow variations of the magnetization satisfying

|ṁ | � �
−1Jex and |(vF ·∇)m | � �

−1Jex, with vF being the Fermi velocity of the
conduction electrons. These adiabatic conditions allow the systematic expansion
with respect to Jex of the problem described by Hamiltonian (7.18). Taking the
leading contributions is referred to as the adiabatic approximation.

The dynamics of conduction-electron spin obeys the Heisenberg equation

d

dt
σ =

1
i�

[σ,Hex], (7.19)

and the instantaneous one-electron eigenstates with momentum k , |k±〉 can
be constructed, where + (−) denotes the majority (minority) spin state. The
expectation value of the spin operator up to O(J−1

ex ) is then given by (in the
original basis)

s± ≡ 〈k ± |σ|k±〉 � ±
[
−m +

�

2Jex
(m × ṁ) +

�

2Jex
[m × (vk · ∇)m ]

]
.

(7.20)

Equation (7.20) indicates that, when the magnetization dynamics is induced
(ṁ �= 0) or when the electron flows in a nonuniform magnetization texture
(vk ·∇)m �= 0, the direction of the spin expectation value slightly deviates from
the magnetization axis (∓m), giving rise to the misalignment of the conduction-
electron spin δs±, as shown in Fig. 7.3. Substituting Eq. (7.20) into Eq. (7.12),
we obtain the spin force as

f ± ≡ 〈k ± |f |k±〉 = ∓e(E + vk ×B), (7.21)

where the spin electric and magnetic fields are given by

E =
�

2e
m · (ṁ ×∇m) , (7.22)

B =
�

2e

⎡
⎢⎢⎢⎢⎣
m ·

(
∂m
∂z × ∂m

∂y

)
m ·

(
∂m
∂x × ∂m

∂z

)
m ·

(
∂m
∂y × ∂m

∂x

)

⎤
⎥⎥⎥⎥⎦ . (7.23)

These fields are the adiabatic contribution to the spin electromagnetic fields.
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majority
spin s+ minority

spin s–

δs+

δs–

m

Fig. 7.3. The normalized expectation
value of the spin, s±, and the
magnetization unit vector m . When m
depends on time or when the electron
moves in the spatially nonuniform m , the
directions s± deviate from ∓m by δs±,
as indicated by the small arrows.

Note that omitting the transverse fields in Eq. (7.18) results in no misalignment
δs± = 0 and the null result.8 The transverse parts of the spin gauge fields rep-
resent the generators of translation with respect to the magnetization texture,9

and the resulting misalignment is the key ingredient in the process transferring
both angular momentum (STT)10 and energy (SMF) between magnetization and
conduction spin.

7.3.3 Nonadiabatic contribution

Next we extend the spin electric field (7.22) to include the nonadiabatic cor-
rection due to spin-flip process. Duine [17] and Tserkovnyak and Mecklenburg
[19] introduced such a nonadiabatic contribution on the basis of the Onsager
reciprocal relation between the dynamics of magnetization and the conduction
electrons as follows:

E = β
�

2e
ṁ · ∇m , (7.24)

where β is a dimensionless phenomenological parameter. Shibata and Kohno [27]
obtained the same expression from a linear response approach by carefully
accounting for spin-relaxation effects.

Here we derive the above expression by extending the preceding argument. In
the derivation of the spin-dependent force (7.21), we assumed that electron spin
aligns the instantaneous field direction adiabatically, resulting in the expectation
value

s± = ∓m + δs±, (7.25)

where the second term on the right-hand side represents the deviation from ∓m .
In general, δs± can be decomposed into two directions perpendicular to m ,

δs± = X±m × dm

dt
+ Y±

dm

dt
, (7.26)

8 The role of the transverse fields on the local band theory was studied in Ref. [47].
9 The detailed arguments are found in the 1st ed. of this chapter.
10 The derivation of the STT term along with the present scenario is explained in Ref. [59].
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where X± and Y± are the spin-dependent constants and d/dt = ∂/∂t + v · ∇.
The equation of motion for the electron-spin vector (7.25) is given by

d

dt
s± = −2Jex

�
s± ×m − δs±

τsf
, (7.27)

where τsf is the spin-flip relaxation time. The first term on the right-hand side of
Eq. (7.27) is the Larmor precession of the electron spin around the magnetization
axis. Conversely, the second term represents the spin relaxation describing the
nonadiabatic dynamics of the electron spin. Substituting Eqs. (7.25) and (7.26)
into Eq. (7.27), we obtain the following explicit expression for X± and Y±:

X± = ± �

2Jex
, Y± = ± �

2Jex

�

2Jexτsf
. (7.28)

In the derivation of Eq. (7.28), the term ∂δm±/∂t is discarded because it gives
a higher order term compared to the other terms. X± is O(J−1

ex ) whereas Y± is
O(J−2

ex ). Substituting the obtained spin expectation value into Eq. (7.12), the
spin electric field is given by

E =
�

2e
(m × ṁ) · ∇m +

�

2Jexτsf

�

2e
ṁ · ∇m . (7.29)

The first term on the right-hand side of Eq. (7.29), which is equivalent to
Eq. (7.22), comes from the adiabatic component X±. The second term in
Eq. (7.29), which goes to zero in the adiabatic limit τsf/(�J−1

ex ) → ∞, comes
from the nonadiabaticity in the electron-spin dynamics and also depends on the
spatial and temporal derivatives of the magnetization. By comparing Eqs. (7.24)
and (7.29), we identify

β =
�

2Jexτsf
. (7.30)

When the spatial and temporal changes in the magnetization are parallel (i.e.,
ṁ ×∇m = 0), the nonadiabatic SMF becomes the leading term and the adia-
batic SMF vanishes. Such a condition is fulfilled, for example, for a sliding DW
motion in external fields less than the Walker breakdown field [17].

Experimentally, it is rather challenging to observe this nonadiabatic contri-
bution to the SMF because the nonadiabatic parameter (7.30) is quite small,
typically β ∼ 10−2. Currently, no measurement has been reported of this effect.
One interesting proposal for its detection is to use the collective motion of a
magnetic bubble array [41] to geometrically separate the adiabatic and nonadia-
batic SMF and accumulate the SMF output from each bubble motion. A similar
mechanism is anticipated in a lattice of skyrmions [40].
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7.3.4 Spin-orbit coupling

In the previous subsections, we derived adiabatic and nonadiabatic contributions
to the spin electric field, which depend on both ṁ and ∇m . Therefore, magnetic
textures such as a DW or magnetic vortex are required. Note, however, that in
a system with Rashba spin-orbit (SO) coupling [60] there exist additional spin
electric fields even for uniform magnetization [32, 37, 39, 44].

In the nonrelativistic limit up to the order of 1/c2 (where c is the speed of
light), the Hamiltonian of a conduction electron in a ferromagnetic conductor is

H =
p2

2me
+ Jexσ ·m − eηso

�
σ · (p ×E) . (7.31)

In addition to the exchange interaction between electron spin and the magnet-
ization, we introduce a SO interaction in the third term, with the SO coupling
parameter ηso = �

2/(4m2
ec

2) for the free-electron model (in real materials ηso
can be enhanced by several orders of magnitude).

The velocity operator v = [r ,H]/(i�) is now given by

v =
p

me
+
eηso
�

σ ×E , (7.32)

where the second term in the last line is the so-called anomalous velocity. The
force f acting on the electron is given by Eq. (7.11), which is now extended as

f = −Jexσ · ∇m +
emeηso

�
σ × Ė +

emeηsoJex

�
[σ ×E ,σ ·m ]. (7.33)

The first term reproduces Eq. (7.11) whereas the second term originates from
the time-derivative of the anomalous velocity. The third term is due to the non-
commutative nature of the anomalous velocity and the exchange coupling. The
expectation value of the force f ± ≡ 〈k ± |f |k±〉 is determined by the electron-
spin dynamics [Eq. (7.27)]. Here we assume the condition Jex � eηso|k ||E |,
where the electron spin follows mostly the direction of ∓m due to the strong
exchange coupling, whereas the SO interaction provides spin relaxation through
the nonadiabatic spin-flip process.

The misalignment δs± is again essential for f ±. One can easily see that the
values 〈k ±|σ ·∇m |k±〉 and 〈k ±|[σ×E ,σ ·m ]|k±〉 appearing in the force are
zero if s± = ∓m . Substituting Eq. (7.26) with Eq. (7.28) into the expectation
value of Eq. (7.33), we obtain f ± = ∓eE, where the spin electric field reads

E =
�

2e
(m × ṁ + βṁ) · ∇m +

meηso
�

∂

∂t
(m ×E) + β

meηso
�

(m × ṁ)×E .

(7.34)
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Here we use Eq. (7.30) and the velocity-dependent terms are discarded for sim-
plicity by considering an open circuit condition where the ensemble average of
〈k ±|v |k±〉 is zero. The first term in Eq. (7.34) comes purely from the exchange
coupling and depends on ∇m , requiring nonuniform magnetization texture for
the appearance of the SMFs as shown in the previous subsections. Conversely,
the last two terms in Eq. (7.34), which contain the SO parameter ηso, do not
involve ∇m .

Kim et al. [32] showed that the spin electric field is proportional to ṁ×E and
the resulting AC electric voltage can be produced in Rashba SO coupled systems,
where the electric field E due to the inversion asymmetry is assumed to be static.
This prediction was confirmed by FMR experiments in a ferromagnetic semicon-
ductor (Ga,Mn)As [14]. Later, this contribution was found to be a part of a spin
electric field proportional to ∂(m ×E)/∂t [39], i.e., the third term in Eq. (7.34);
an additional spin electric field proportional to m × Ė appears. Note that, since
the latter SMF can be induced with static and uniform magnetization, one can
investigate the SMF electrically in detail with no disturbance arising from the
inductive voltage, in contrast with the other SMF originating in ṁ . In addition,
the SMF is tuned via the electric fields with variable frequencies [39, 45], whereas
the time-dependence of the other SMFs is restricted by the characteristics of the
magnetization dynamics. The fourth term reflects the nonadiabatic dynamics
of electron spin and was derived in Rashba SO-coupled systems by elaborating
the diagrammatic calculation by Tatara et al. [37]. The Onsager reciprocal re-
lations between the charge current induced by Eq. (7.34) and the STT effects
are discussed by Hals and Brataas [44]. Shibata and Kohno [23] also studied the
SO-coupled ferromagnetic system in Eq. (7.31) and predicted that the inverse
Hall effect arises from the first term of Eq. (7.34).

7.3.5 Antiferromagnet

So far we have discussed the SMF only in ferromagnets. In this subsection, we
consider a possibility of the SMF being generated in antiferromagnets (AFMs).

AFM spintronics is attracting more attention because of its potential to be-
come a key player in technological applications where AFMs play an active role
[61]. This motivates the demand for reliable methods to observe dynamical AFM
textures that are often difficult to see directly by the conventional methods used
in ferromagnet-based structures because of their small magnetization. SMFs,
if present, would enable the detection of AFM dynamics by electrical means.
Systems involving antiferromagnetic resonance (AFMR) are good candidates for
pursuing larger SMFs [9, 32] because the resonance frequencies are typically as
high as terahertz.

Cheng and Niu [36] formulated a theory of electron dynamics in two-sublattice
AFMs. One of their predictions is that no SMF appears unless a nonequilib-
rium spin polarization is introduced externally (e.g., by injecting spin into the
AFM from an attached ferromagnet). This result is supported by the numerical
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research of Okabayashi and Morinari [42]. These two studies focus on the adia-
batic contribution to SMF without SO couplings, which is an odd function of
m and its sublattice average cancels out if the sublattice magnetizations are
perfectly collinear.

In contrast, Ref. [46] shows that the nonadiabatic contribution to the SMF,
which is even in m , survives and becomes a leading contribution in textured
AFMs. For example, the electric voltage induced by AFM DW motion is given by

V = −�Pβ

eΔ
vDW, (7.35)

where Δ is the DW width, and vDW is the DW velocity. In addtion, the SO
coupling contributions to the SMF remain. It is predicted that ac voltages are
predicted to arise when the AFMR is excited in a Rashba SO system [46]. This
effect would be more prominent for locally noncentrosymmetric AFM mater-
ials such as Mn2Au and CuMnAs where the Rashba couplings are sublattice
dependent and change its sign [62].

7.4 Experiments

In the previous section, we describe the origin of the SMF. In this sec-
tion we review experiments for observing SMFs in DWs, pattered thin films,
magnetic vortices, skyrmions, the Rashba SO-coupled systems, and magnetic
nanoparticles.

7.4.1 Domain-wall motion in a ferromagnetic nanowire

As noted in § 7.2.2, the SMF was first measured in a setup of the field-induced
DW motion in a permalloy nanowire by Yang et al. [7]. Here, we describe the
real-time observation of SMF induced by DW motion by Hayashi et al. [11].

The experiment may be summarized as follows: First, we prepared permalloy
nanowires (two samples with thickness of 20 nm and width of 300 and 600 nm)
and attached electrodes to them for measuring voltage as shown in Fig. 7.4. Next,
we created DWs in the permalloy nanowire by using a pulsed magnetic field and
monitored with an oscilloscope the real-time voltage signals generated between
the electrodes under an external constant magnetic field. The measurement se-
quence was repeated about 16000 times for different propagation directions of
the DW (left or right) and different DW types: Head-to-head (HH) or tail-to-tail
(TT) DW, and the data in each of the four measurement conditions (Fig. 7.4)
were averaged. The four combinations were measured to separate the contribu-
tion of the SMF and an inductive EMF generated in the measurement circuit.
For the in-plane magnetization configuration, the negative (positive) magnetic
charges are accumulated at both ends of the nanowire for a HH (TT) DW,
whereas positive (negative) magnetic charges are concentrated around the DW
region, giving rise to magnetic flux. Therefore, when a HH (TT) domain wall
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(a) V V V V

VDW VDW

VDW VDW

(b) (c) (d)

H
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–H

Fig. 7.4. Measurement setup for separating the inductive EMFs and SMFs. By
changing the magnetic field directions (a), (c) HH-DW and (b), (d) TT-DW
are led into the measurement circuit from the left and right, respectively.
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Fig. 7.5. Real time voltage signals due to DW motion [11]. Experimental data
(a), (c), and numerical results (b), (d), for two nanowires with the wire width
of 600 and 300 nm.

passes through the electrodes and enters the measurement circuit, the magnetic
flux in the circuit increases (decreases), resulting in an inductive EMF in the
circuit at that moment. Inversely, an inductive EMF in the opposite sense is
measured when the DW leaves the circuit. This inductive EMF changes sign
depending on the DW type but does not depend on the propagation direction
of the DW. Conversely, the sign of the SMF is determined by the direction of
the DW motion and is independent of the type of DW. Thus, the average of the
difference between the output voltages for the TT and HH DWs driven by the
same magnetic field is the inductive EMF whereas that of the sum corresponds
to the SMF component.

Figure 7.5 shows the real-time voltage signal due to the SMF observed in the
experiment together with the corresponding numerical results. We find that, for
the external magnetic field, μ0H ∼ 10 mT, a dc voltage of about 1 μV appears
in the time interval expected theoretically. When comparing the measurement
results in nanowires of two different widths, the wider nanowire has the faster
onset time and the shorter duration of the voltage signal. This result is attributed
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to the dependence of the DW speed on wire width (in permalloy nanowires,
the DW mobility for magnetic fields is approximately proportional to the wire-
width [3]).

This experiment confirms the following important theoretically predicted fea-
tures of the SMF due to the field-induced DW motion: (1) The voltage drop
occurs in the direction of the DW motion. (2) The SMF does not depend on the
absolute value of DW speed and its magnitude is determined by the magnetic
field. Moreover, the numerical results based on the experimental parameters are
consistent with the results of dc measurements.

7.4.2 Ferromagnetic resonance in a patterned thin film

The SMFs generated by the field-induced DW are intermittent because the volt-
age appears only during DW propagation between the two electrodes. For device
applications, a continuous SMF was anticipated.

Yamane et al. [9] addressed this demand by using an asymmetrically patterned
thin film. The sample is a comb-shape single permalloy film that consists of a
wide flat pad and many wires as shown in Fig. 7.6(a) (see also Fig 7.1 for the
setup). Relying on the difference in the shape magnetic anisotropy, the FMR is
excited either in the wire or in the pad. As a result, the magnetization depends
both on time and space and the conditions for generating the SMF are fulfilled.
Figure 7.6(b) shows the output dc voltage as a function of microwave power in
a permalloy thin film together with the corresponding numerical analysis.
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Fig. 7.6. Continuous SMF generation by FMR [9]. (a) A SEM image of the
junction area of the comb shape permalloy thin film. (b) Output voltage as
a function of microwave power. Black open (solid) circles represent experi-
mental data (numerical results) for the FMR in the pad part, and gray open
(solid) squares are the same for the FMR in the wire part.



86 Spinmotive force

A similar idea was employed by Nagata et al. [15] to excite a local FMR in a
wedged thin film of a magnetite (Fe3O4) with negative spin polarization (P < 0).
The observed voltage in Fe3O4 is opposite to that of permalloy with P > 0.

A dc voltage is generated by exciting the FMR in a lateral ferromag-
netic/nonmagnetic (F/N) junction [63], which is explained by a spin pumping
mechanism (i.e, the voltage is due to the spin accumulation at the F/N interface).
In contrast, for the submillimeter-size comb sample, within which no well-defined
interface exists, a negligibly small spin accumulation arises around the junction
between the pad and wire, making it hard to explain this experiment in terms
of the spin pumping.

7.4.3 Vortex core gyration in a magnetic disk

According to Eq. (7.22), rapid motion of a steep magnetization structure is fa-
vorable for generating a larger spin electric field. This is shown in Fig. 7.2(b),
where a large potential difference appears locally around the complex magnet-
ization structure. Such a situation can be more stably realized in the gyrating
motion of a magnetic vortex core in a nanodisk. Upon applying an ac magnetic
field, the core is resonantly excited. Calculations show that a sizable electric field
of the order of kV/m appears in the direction perpendicular to the motion of the
core [21]. The output voltage patterns patterns depend on the core polarization
direction [21] and, with the aid of the Rashba SO coupling, even on the chiral-
ity [33], which can be used in possible spintronic devices to read out information
coded in the core polarization and chirality.

Tanabe et al. [12] detected the ac voltage generated locally around the vortex
core by attaching 100 nm electrodes to a permalloy disk with a diameter of
4.2μm. Again, the SMF and inductive EMF were separated with special care.
The period of the voltage signal coincides with that of gyrating motion of the
core, indicating that the observed voltage originates from the SMF associated
with gyration of the vortex core.

7.4.4 Skyrmion lattice motion in chiral magnets

In chiral magnets such as MnSi and other B20 transition-metal compounds,
skyrmion lattice phases arise as a new form of magnetic order with nonuniform
magnetization texture. When the magnetization texture translates rigidly with
the drift velocity vd as m ≡m(x − vdt), the time derivative is replaced by the
space derivative: ṁ = −(vd · ∇)m . The net force given by Eqs. (7.21)–(7.23)
is then rewritten as f ± = ∓e(vk − vd)× B, which induces the topological Hall
effect provided that vk �= vd [30].

Schulz et al. [10] prepared a skyrmion lattice in MnSin single crystals and
drove skyrmion motion by applying electrical currents via the STT effect. They
measured the Hall effect and found an excess component of the Hall voltage only
when the skyrmions flowed along the current direction, confirming the predicted
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topological Hall effect. In contrast with the previous examples, which involved
excitation by magnetic fields, the energy of the transverse voltage (SMF) in this
experiment is supplied by the external current source and impurity potentials
are essential for fulfilling the condition vk �= vd.

We note with interest that accumulating SMF outputs by using the skyrmion
lattice [40] and similar structures [41] have been proposed. Furthermore, Shimada
and Ohe [43] numerically studied the SMF induced by skyrmion dynamics in a
confined geometry, taking into the edge effect.

7.4.5 Ferromagnetic resonance in a film with spin-orbit couplings

As noted, SMFs induced purely by the exchange interaction require magnet-
ization textures (∇m �= 0). This requirement is relaxed when the SO coupling
is introduced, as explained in §7.3.4. The effects of SO couplings generally be-
come prominent in systems with the broken spatial inversion symmetry, such as
(Ga,Mn)As and in heterostructures comprising ferromagnetic metals.

Ciccarelli et al. [14] excited the FMR in rectangular microbars of compress-
ively strained (Ga,Mn)As via the STT effect by using ac currents, and then
measured the ac voltages with a homodyne detection technique. The output
voltages scale linearly with respect to precession amplitude, as predicted in the
previous section (7.3.4). The reciprocal relations between the STT and SMF [44]
in this system were also examined.

7.4.6 Spin-flip tunneling in magnetic nanoparticles

By using molecular beam epitaxy, Hai et al. [8] fabricated a single-crystal mag-
netic tunnel device in which one of the electrodes consists of zinc-blende MnAs
nanoparticles. They applied a static magnetic field to the device and observed
the shift of the I-V curve indicating the generation of an effective EMF. The
magnetization reversal of MnAs nanoparticles by the applied magnetic field de-
rivers their Zeeman energy to conduction electrons via the SMF mechanism. In
this system, the SMF effect combines with the Coulomb blockade effect that
occurs in the nanoparticles, resulting in an extremely large magnetoresistance
(MR) effect (MR ratio >100,000%) at low temperature.

Compared with typical magnetic textures such as DWs and vortices, systems
of ferromagnetic nanoparticles have several advantages: The inductive EMFs
need not be separated and the output voltage is quite large value (up to 22 mV).
The key ingredient for the large output voltage is that nanoparticles simultan-
eously exhibit macroscopic quantum tunneling among the spin states together
with spin-dependent tunneling through the nanoparticles. The requirement for
such quantum tunneling phenomena is that the system should be cooled down
to cryogenic temperature. If the device is regarded as a type of battery, the
total power generated by the static magnetic field is proportional to the num-
ber of nanoparticles. In the experiment, the output lasts over several tens of
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minutes, whereas the estimated duration calculated from the total magnetic en-
ergy stored in the nanoparticles is only a few seconds [64]. In a quantum well of
Al sandwiched by double spin-filtering EuS layers, Miao et al. [13] observed a
similar long-lasting dc voltage output under static magnetic fields. These issues
underscore the need for further investigation into the SMF in this system both
experimentally and theoretically.

7.5 Applications

In this section, we briefly remark on some applied topics related to the SMF.

7.5.1 Dependence on materials

From Eq. (7.1), the output voltage of the SMF caused by DW motion is de-
termined by the magnitude of applied magnetic fields apart from the spin
polarization. However, as shown in the previous subsection, attempts to raise
the output voltage by increasing the applied magnetic field lead to the struc-
tural deformation of a DWs in permalloy nanowires and result in the onset of
high-frequency noise in the voltage signals. Given this situation, what principles
guide the choice of materials for stabilizing a “large” SMF?

One answer to this question is to use ferromagnetic materials with a large
magnetic anisotropy. In such materials, the DW is very “rigid” compared with
permalloy and disturbance of the DW structure by the applied magnetic field
is suppressed. Therefore, stable generation of SMFs even with a large magnetic
field is expected.

For example, L10-ordered FePt and Co/Ni multilayer film are known for their
large perpendicular magnetic anisotropy. Numerical simulation [31] shows that
stable DW motion can occur in the range of several hundred mT for a Co/Ni
multilayer nanowire and up to several T for a FePt nanowire. With such magnetic
fields, the Co/Ni shows tens of microvolts, and the FePt is expected to reach
hundreds of microvolts, which is about 100 times larger than those reported
in the permalloy samples so far. Moreover, DWs in these materials are narrow
and have relatively low DW mobility. These properties are also advantageous in
terms of downsizing of devices that use SMFs.

7.5.2 Shape effect

For the SMF introduced so far, external magnetic fields are used to drive DWs.
Considering the spin electric field in Eq. (7.22), however, one can see that it
does not matter what causes the magnetization dynamics. For example, a DW
has a certain surface energy, which is proportional to the cross-sectional area
of a magnetic nanowire [65]. Therefore, in a magnetic nanowire with a nonuni-
form cross-sectional area, a DW moves spontaneously in the direction in which
the DW energy is lowered (i.e., the cross-sectional area decreases). In such a
nonuniform magnetic nanowire, the generation of voltages originating from the
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internal magnetic energy of the ferromagnet can be expected without requiring
an external magnetic field.

To demonstrate this idea, numerical simulations of a shaped permalloy
nanowire were done [29]. The DW was found to move spontaneously in a region
where the wire width tapers off without the aid of an external magnetic field
and, in turn, the SMF signals of several microvolts were obtained. This result
indicates that the internal magnetic energy stored in the DW of ferromagnetic
materials may be used for generating an EMF and its output characteristic can
be controlled by nanoprocessing of the wire shape. Magnetic nanodevices such
as a memory elements and current amplifiers have been proposed based on this
concept [4].

Another porposal is to use the shape effect in a “magnetic power in-
verter,” [34], which is a device that converts dc magnetic fields to ac electric
voltages. This device consists of a magnetic nanowire with the width modula-
tion. In such a patterned wire, a DW behaves like an elastic membrane and the
DW energy varies as a function of the DW position. Accordingly, a DW intro-
duced in the nanowire is subjected not only to an applied dc magnetic field but
also to an effective magnetic field arising from the modulation of the DW energy
and that is proportional to the wire width. In this case, the output voltage has
an ac component that reflects the alternating DW energy in addition to a normal
dc component due to the input static magnetic field. Characteristics of the ac
component such as amplitude (several μV) and frequency (MHz to GHz) can be
tuned by design of the wire shape, choice of materials, and magnitude of applied
static magnetic fields.

7.6 Summary and outlook

We have seen that the SMF is induced in magnetic nanostructures via the ex-
change interaction between conduction spin and magnetization. Various types
of the spin electric fields are possible: adiabatic, nonadiabatic, and their SO
coupled equivalents. In experiment, the adiabatic contributions with/without
SO coupling have been observed whereas detecting nonadiabatic effects is chal-
lenging. The SMF offers electrical detection of magnetization dynamics, which
would allow us to monitor the elusive dynamics of antiferromagnets.

In spintronics applications, the current drive is to obtain higher performance
of existing devices, such as magnetic memory, magnetic head, and magnetic sen-
sors, has been pursued so far. Today they are widely recognized as promising
candidates for ultimate “energy-saving” technology. Additionally, SMF intro-
duces the basic concept of “energy-harvesting” technology in spintronics and
opens a new pathway to the conversion between magnetic and electric energy by
using magnetic materials.

In contrast, the magnitude of the SMF realized so far is limited to at most
a few microvolts at room temperature. For practical use, the weakness of the
output voltage signals remains a major challenge. To solve this problem, two
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directions may be pursued: The first is to elucidate the SMF-amplification mech-
anism in the systems of magnetic nanoparticles, as discussed in §7.4.6. The
second is to regard the SMF as an effective change in resistance rather than
as a voltage signal. The former provides an interesting research theme in con-
densed matter physics and the latter can be applied to magnetic heads and
high-sensitivity magnetic sensors.
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8 Spin pumping and spin transfer

A. Brataas, Y. Tserkovnyak, G. E. W. Bauer,
and P. J. Kelly

8.1 Introduction
8.1.1 Technology pull and physics push

The interaction between electric currents and the magnetic order parameter
in conducting magnetic micro- and nanostructures has developed into a ma-
jor subfield in magnetism [1]. The main reason is the technological potential of
magnetic devices based on transition metals and their alloys that operate at am-
bient temperatures. Examples are current-induced tunable microwave generators
(spin-torque oscillators) [2, 3], and nonvolatile magnetic electronic architectures
that can be randomly read, written, or programmed by current pulses in a scal-
able manner [4]. The interaction between currents and magnetization can also
cause undesirable effects such as enhanced magnetic noise in read heads made
from magnetic multilayers [5]. While most research has been carried out on me-
tallic structures, current-induced magnetization dynamics in semiconductors [6]
or even insulators [7] has been pursued as well.

Physicists have been attracted in large numbers to these issues because on top
of the practical aspects the underlying phenomena are so fascinating. Berger [8]
and Slonczewski [9] are in general acknowledged to have started the whole field
by introducing the concept of current-induced magnetization dynamics by the
transfer of spin. The importance of their work was fully appreciated only after
experimental confirmation of the predictions in multilayered structures [10, 11].
The reciprocal effect, i.e. the generation of currents by magnetization dynamics
now called spin pumping, was expected long ago [12, 13], but it took some time
before Tserkovnyak et al. [14, 15] developed a rigorous theory of spin pump-
ing for magnetic multilayers, including the associated increased magnetization
damping [16].

8.1.2 Discrete versus homogeneous

Spin-transfer torque and spin pumping in magnetic metallic multilayers are
by now relatively well understood and the topic has been covered by a num-
ber of review articles [15, 19, 20]. It can be understood very well in terms
of a time-dependent extension of magneto-electronic circuit theory [19, 21],
which corresponds to the assumption of spin diffusion in the bulk and quantum
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mechanical boundary conditions at interfaces. Random matrix theory [22] can
be shown to be equivalent to circuit theory [19, 23, 24]. The technologically
important current-induced switching in magnetic tunnel junctions has recently
been the focus of attention [25]. Tunnel junctions limit the transport such that
circuit issues are less important, whereas the quantum-mechanical nature of the
tunneling process becomes essential. We will not review this issue in more detail
here.

The interaction of currents and magnetization in continuous magnetization
textures has also attracted much interest, partly due to possible applications
such as nonvolatile shift registers [26]. From a formal point of view the physics of
current–magnetization interaction in a continuum poses new challenges as com-
pared to heterostructures with atomically sharp interfaces. In magnetic textures
such as magnetic domain walls, currents interact over length-scales correspond-
ing to the wall widths that are usually much longer than even the transport
mean-free path. Issues of the in-plane vs. magnetic-field-like torque [27] and
the spin-motive force in moving magnetization textures [28] took some time to
get sorted out, but the understanding of the complications associated with con-
tinuous textures has matured by now. There is now general consensus about
the physics of current-induced magnetization excitations and magnetization-
dynamics induced currents [29, 30]. Nevertheless, the similarities and differences
of spin torque and spin pumping in discrete and continuous magnetic systems
has to our knowledge never been discussed in a coherent fashion. It has also
only recently been realized that both phenomena are directly related, since they
reflect identical microscopic correlations according to the Onsager reciprocity
relations [31–33].

8.1.3 This chapter

In this chapter, we (i) review the basic understandings of spin-transfer torque
vs. spin pumping and (ii) knit together our understanding of both concepts for
heterogeneous and homogeneous systems. We discuss the general phenomen-
ology guided by Onsager’s reciprocity in the linear response regime [34]. We will
compare the in- and out-of-plane spin-transfer torques at interfaces as governed
by the real and imaginary parts of the so-called spin-mixing conductances with
that in textures, which are usually associated with the adiabatic torque and its
dissipative correction [27], usually described by a dimensionless factor β in or-
der to stress the relation with the Gilbert damping constant α. We argue that
the spin pumping phenomenon at interfaces between magnets and conductors is
identical to the spin-motive force due to magnetization texture dynamics such as
moving domain walls [28]. We emphasize that spin pumping is on a microscopic
level identical to the spin-transfer torque, thus arriving at a significantly simpli-
fied conceptual picture of the coupling between currents and magnetization. We
also point out that we are not limited to a phenomenological description relying
on fitting parameters by demonstrating that the material dependence of crucial
parameters such as α and β can be computed from first principles.
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8.2 Phenomenology

In this section we explain the basics physics of spin pumping and spin-
transfer torques, introduce the dependence on material and externally applied
parameters, and prove their equivalence in terms of Onsager’s reciprocity
theorem.

8.2.1 Mechanics

On a microscopic level electrons behave as wave-like fermions with quantized
intrinsic angular momentum. However, in order to understand the electron wave-
packets at the Fermi energy in high-density metals and the collective motion of
a large number of spins at not too low temperatures classical analogues can be
useful.

Spin-transfer torque and spin pumping are on a fundamental level mechanical
phenomena that can be compared with the game of billiards, which is all about
the transfer of linear and angular momenta between the balls and cushions. A
skilled player can use the cue to transfer velocity and spin to the billiard ball in a
controlled way. The path of the spinning ball is governed by the interaction with
the reservoirs of linear and angular momentum (the cushions and the felt/baize)
and with other balls during collisions. A ball that for instance hits the cushion at
normal angle with top or bottom spin will reverse its rotation and translation,
thereby transferring twice its linear and angular moment to the frame of the
billiard table.

Since the work by Barnett [35] and Einstein and de Haas [36] almost a century
ago, we know that magnetism is caused by the magnetic moment of the elec-
tron, which is intimately related with its mechanical angular momentum. How
angular momentum transfer occurs between electrons in magnetic structures can
be imagined mechanically: just replace the billiard balls by spin-polarized elec-
trons and the cushion by a ferromagnet. Good metallic interfaces correspond to
a cushion with high friction. The billiard ball reverses angular and linear mo-
mentum, whereas the electron is reflected with a spin flip. While the cushion
and the billiard table absorb the angular momentum, the magnetization ab-
sorbs the spin angular momentum. The absorbed spins correspond to a torque
that, if it exceeds a critical value, will set the magnetization into motion. Analo-
gously, a time-dependent magnetization injects net angular momentum into a
normal metal contact. This “spin pumping” effect, i.e. the main topic of this
chapter, can also be visualized mechanically: a billiard ball without spin will
pick up angular momentum under reflection if the cushion is rotating along
its axis.

8.2.2 Spin-transfer torque and spin pumping

Ferromagnets do not easily change the modulus of the magnetization vector
due to large exchange energy costs. The low-energy excitations, so-called spin
waves or magnons, only modulate the magnetization direction with respect to the
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equilibrium magnetization configuration. In this regime the magnetization dy-
namics of ferromagnets can be described by the Landau–Lifshitz–Gilbert (LLG)
equation,

ṁ = −γm×Heff + α̃m× ṁ, (8.1)

where m (r, t) is a unit vector along the magnetization direction, ṁ = ∂m/∂t,
γ = g∗μB/� > 0 is (minus) the gyromagnetic ratio in terms of the effective
g-factor and the Bohr magneton μB , and α̃ is the Gilbert damping tensor that
determines the magnetization dissipation rate. Under isothermal conditions the
effective magnetic field Heff = −δF [m] /δ(Msm) is governed by the magnetic
free energy F and Ms is the saturation magnetization. We will consider both
spatially homogeneous and inhomogeneous situations. In the former case, the
magnetization is constant in space (macrospin), while the torques are applied
at the interfaces. In the latter case, the effective magnetic field Heff also in-
cludes a second-order spatial gradient arising from the (exchange) rigidity of the
magnetization and torques as well as motive forces that are distributed in the
ferromagnet.

Equation (8.1) can be rewritten in the form of the Landau–Lifshitz (LL)
equation:

(
1 + α̃2

)
ṁ = −γm×Heff − γα̃m× (m×Heff) . (8.2)

Additional torques due to the coupling between currents and magnetization dy-
namics should be added to the right-hand side of the LLG or LL equation, but
some care should be exercised in order to keep track of dissipation in a consistent
manner. In our approach the spin pumping and spin-transfer torque contribu-
tions are most naturally added to the LLG equation (8.1), but we will also
make contact with the LL equation (8.2) while exploring the Onsager reciprocity
relations.

In the remaining part of this section we describe the extensions of the LLG
equation due to spin-transfer and spin-pumping torques for discrete and bulk
systems in Sections 8.2.2.1 and 8.2.2.2, respectively. In the next section we dem-
onstrate in more detail how spin-pumping and spin-transfer torque are related
by Onsager reciprocity relations for both discrete and continuous systems.

8.2.2.1 Discrete systems Berger and Slonczewski predicted that in spin-valve
structures with current perpendicular to the interface planes (CPP) a dc current
can excite and even reverse the relative magnetization of magnetic layers separ-
ated by a normal metal spacer [8, 9]. The existence of this phenomenon has been
amply confirmed by experiments [10, 11, 20, 37–41]. We can understand current-
induced magnetization dynamics from first principles in terms of the coupling of
spin-dependent transport with the magnetization. In a ferromagnetic metal ma-
jority and minority electron spins often have very different electronic structures.
Spins that are polarized noncollinear with respect to the magnetization direction
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are not eigenstates of the ferromagnet, but can be described as a coherent linear
combination of majority and minority electron spins at the given energy shell.
If injected at an interface, these states precess on time- and length-scales that
depend on the orbital part of the wavefunction. In high electron-density transi-
tion metal ferromagnets like Co, Ni, and Fe a large number of wavevectors are
available at the Fermi energy. A transverse spin current injected from a diffuse
reservoir generates a large number of wavefunctions oscillating with different
wavelength that lead to efficient destructive interference or decoherence of the
spin momentum. Beyond a transverse magnetic coherence length, which in these
materials is around 1 nm, a transversely polarized spin current cannot persist.
[21] This destruction of transverse angular momentum is per definition equal to
a torque. Slonczewski’s spin-transfer torque is therefore equivalent to the absorp-
tion of a spin current at the interface between a normal metal and a ferromagnet
whose magnetization is transverse to the spin current polarization. Each electron
carries an electric charge −e and an angular momentum of ±�/2. The loss of
transverse spin angular momentum at the normal metal–ferromagnet interface is
therefore � [Is − (Is ·m) m] /(2e), where the spin current Is is measured in units
of an electrical current, e.g. in amperes. In the macrospin approximation the
torque has to be shared with all magnetic moments or MsV of the ferromagnetic
particle or film with volume V. The torque on magnetization equals the rate
of change of the total magnetic moment of the magnet ∂ (mMsV)stt /∂t, which
equals the spin current absorption [9]. The rate of change of the magnetization
direction therefore reads:

τ stt =
(
∂m
∂t

)
stt

= − γ�

2eMsVm× (m× Is) . (8.3)

We still need to evaluate the spin current that can be generated, e.g. by the
inverse spin Hall effect in the normal metal or optical methods. Here we con-
centrate on the layered normal metal–ferromagnet systems in which the current
generated by an applied bias is polarized by a second highly coercive magnetic
layer as in the schematic of Fig. 8.1. Magneto-electronic circuit theory is es-
pecially suited to handle such a problem [21]. For simplicity we disregard here
extrinsic dissipation of spin angular momentum due to spin–orbit coupling and
disorder, which can be taken into account when the need arises [43, 44]. We al-
low for a nonequilibrium magnetization or spin accumulation V(s)

N in the normal
metal layer. V(s)

N is a vector pointing in the direction of the local net magnet-
ization, whose modulus V (s)

N is the difference between the differences in electric
potentials (or electrochemical potentials divided by 2e) of both spin species. In-
cluding the charge accumulation V

(c)
N (local voltage), the potential experienced

by a spin-up (spin-down) electron along the direction of the spin accumulation
in the normal metal is V ↑

N = V
(c)
N + V

(s)
N

(
V ↓

N = V
(c)
N − V (s)

N

)
. Inside a ferro-

magnet, the spin accumulation must be aligned to the magnetization direction
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Normal metalFerromagnet

Interface

V
(s)

N
τ

Fig. 8.1. Illustration of the
spin-transfer torque in a layered
normal metal–ferromagnet system. A
spin accumulation V(s)

N in the normal
metal induces a spin-transfer torque
τ stt on the ferromagnet.

V(s)
F = mV

(s)
F . Since V (s)

F does not directly affect the spin-transfer torque at
the interface we disregard it for convenience here (see Ref. [19] for a complete
treatment), but retain the charge accumulation V

(c)
F . We can now compute the

torque at the interface between a normal metal and a ferromagnet arising from a
given spin accumulation V(s)

N . Ohm’s law for the spin-current projections aligned
(I↑) and anti-aligned (I↓) to the magnetization direction then read [21, 42] (posi-
tive currents correspond to charge flowing from the normal metal towards the
ferromagnet)

I↑ = G↑
[(
V

(c)
N − V (c)

F

)
+ m ·

(
V(s)

N −mV
(c)
F

)]
, (8.4)

I↓ = G↓
[(
V

(c)
N − V (c)

F

)
−m ·

(
V(s)

N −mV
(c)
F

)]
. (8.5)

where G↑ and G↓ are the spin-dependent interface conductances. The total
charge current I(c) = I↑+I↓, is continuous across the interface, I(c)

N = I
(c)
F = I(c).

The (longitudinal) spin current defined by Eqs. (8.4) and (8.5) (I↑ − I↓) m is po-
larized along the magnetization direction. The transverse part of the spin current
can be written as the sum of two vector components in the space spanned by the
m,V(s)

N plane as well as its normal. The total spin current on the normal metal
side close to the interface reads [19, 21]:

I(s,bias)
N = (I↑ − I↓) m− 2G(R)

⊥ m×
(
m×V(s)

N

)
− 2G(I)

⊥
(
m×V(s)

N

)
, (8.6)

where G
(R)
⊥ and G

(I)
⊥ are two independent transverse interface conductances.

I(s,bias)
N is driven by the external bias V(s)

N and should be distinguished from
the pumped spin current addressed below. (R) and (I) refer to the real and
imaginary parts of the microscopic expression for these “spin mixing” interface
conductances G↑↓ = G

(R)
⊥ + iG

(I)
⊥ .
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The transverse components are absorbed in the ferromagnet within a very
thin layer. Detailed calculations show that transverse spin-current absorption in
the ferromagnet happens within a nanometer of the interface, where disorder
suppresses any residual oscillations that survived the above-mentioned destruc-
tive interference in ballistic structures [45]. Spin transfer in transition metal
based multilayers is therefore an interface effect, except in ultrathin ferromag-
netic films [46]. As discussed above, the divergence of the transverse spin current
at the interface gives rise to the torque

τ
(bias)
stt = − γ�

eMsV
[
G

(R)
⊥ m×

(
m×V(s)

N

)
+G

(I)
⊥
(
m×V(s)

N

)]
. (8.7)

Adding this torque to the Landau–Lifshitz–Gilbert equation leads to the
Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation

ṁ = −γm×Heff + τ
(bias)
stt + αm× ṁ. (8.8)

The first term in Eq. (8.7) is the (Slonczewski) torque in the
(
m,V(s)

N

)
plane,

which resembles the Landau–Lifshitz damping in Eq. (8.2). When the spin accu-
mulation V(s)

N is aligned with the effective magnetic field Heff, the Slonczewski
torque effectively enhances the damping of the ferromagnet and stabilizes the
magnetization motion towards the equilibrium direction. On the other hand,
when V(s)

N is antiparallel to Heff, this torque opposes the damping. When ex-
ceeding a critical value it leads to precession or reversal of the magnetization.
The second term in Eq. (8.7) proportional to G

(I)
⊥ modifies the magnetic field

torque and precession frequency. While the in-plane torque leads to dissipation
of the spin accumulation, the out-of-plane torque induces a precession of the
spin accumulation in the ferromagnetic exchange field along m. It is possible to
implement the spin-transfer torque into the Landau–Lifshitz equation, but the
conductance parameters differ from those in Eq. (8.7).

Since spin currents can move magnetizations, it is natural to consider the re-
ciprocal effect, viz. the generation of spin currents by magnetization motion. It
was recognized in the 1970s that spin dynamics is associated with spin currents in
normal metals. Barnes [47] studied the dynamics of localized magnetic moments
embedded in a conducting medium. He showed that the dynamic susceptibil-
ity in diffuse media is limited by the spin-diffusion length. Janossy and Monod
[12] and Silsbee et al. [13] postulated a coupling between dynamic ferromag-
netic magnetization and spin accumulation in adjacent normal metals in order
to explain that microwave transmission through normal metal foils is enhanced
by a coating with a ferromagnetic layer. The scattering theory for spin currents
induced by magnetization dynamics was developed by Tserkovnyak et al. [14]
on the basis of the theory of adiabatic quantum pumping [48], hence the name
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Normal metalFerromagnet

Interface

ISm(t)

Fig. 8.2. Spin pumping in normal
metal–ferromagnet systems. A
dynamical magnetization “pumps” a
spin current I(s) into an adjacent
normal metal.

“spin pumping.” Theoretical results were confirmed by the agreement of the spin-
pumping induced increase of the Gilbert damping with experiments by Mizukami
et al. [16]. A schematic picture of spin pumping in normal|ferromagnetic systems
is shown in Fig. 8.2. At not too high excitations and temperatures, the ferromag-
netic dynamics conserves the modulus of the magnetization Msm. Conservation
of angular momentum then implies that the spin current I(s,pump)

N pumped out of
the ferromagnet has to be polarized perpendicularly to m, viz. m · I(s,pump)

N = 0.
Furthermore, the adiabatically pumped spin current is proportional to

∣∣ṁ∣∣.
Under these conditions, therefore, [14, 15]

e

�
I(s,pump)
N = G

′(R)
⊥ (m× ṁ) +G

′(I)
⊥ ṁ, (8.9)

where G
′R
⊥ and G

′I
⊥ are two transverse conductances that depend on the ma-

terials. Here the sign is defined to be negative when I(s,pump)
N implies loss of

angular momentum for the ferromagnet. For
∣∣ṁ∣∣ �= 0, the right-hand side of the

LLGS equation (8.8) must be augmented by Eq. (8.9). The leakage of angular
momentum leads e.g. to an enhanced Gilbert damping [16].

Onsager’s reciprocity relations dictate that conductance parameters in
thermodynamically reciprocal processes must be identical when properly nor-
malized. We prove below that spin-transfer torque (8.7) and spin pumping (8.9)
indeed belong to this category and must be identical, viz. G(R)

⊥ = G
′(R)
⊥ and

G
(I)
⊥ = G

′(I)
⊥ . Spin-transfer torque and spin pumping are therefore opposite

sides of the same coin, at least in the linear response regime. Since spin-mixing
conductance parameters governing both processes are identical, an accurate
measurement of one phenomenon is sufficient to quantify the reciprocal process.
Magnetization dynamics induced by the spin-transfer torque are not limited to
macrospin excitations and experiments are carried out at high current levels
that imply heating and other complications. On the other hand, spin pump-
ing can be directly detected by the line width broadening of FMR spectra of
thin multilayers. In the absence of two-magnon scattering phenomena and a
sufficiently strong static magnetic field, FMR excites only the homogeneous mac-
rospin mode, allowing the measurement of the transverse conductances G′(R)

⊥
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and, in principle, G′(I)
⊥ . G′(I)

⊥ . Experimental results and first-principles calcu-
lations [14, 15] agree quantitatively well. Rather than attempting to measure
these parameters by current-induced excitation measurements, the values G′(R)

⊥
and G′(I)

⊥ should be inserted, concentrating on other parameters when analyzing
these more complex magnetization phenomena. Finally we note that spin-mixing
conductance parameters can be derived as well from static magnetoresistance
measurements in spin valves [46] or by detecting the spin current directly by the
inverse spin Hall effect [78, 79].

8.2.2.2 Continuous systems The coupling effects between (spin-polarized)
electrical currents and magnetization dynamics also exist in magnetization tex-
tures of bulk metallic ferromagnets. Consider a magnetization that adiabatically
varies its direction in space. The dominant contribution to the spin-transfer
torque can be identified as a consequence of violation of angular momentum
conservation: in a metallic ferromagnet, a charge current is spin polarized
along the magnetization direction to leading order in the texture gradients. In
the bulk, i.e. separated from contacts by more than the spin-diffusion length,
the current polarization is P = (σ↑ − σ↓)/(σ↑ + σ↓), in terms of the ratio of the
conductivities for majority and minority electrons, where we continue to measure
spin currents in units of electric currents. We first disregard spin-flip processes
that dissipate spin currents to the lattice. To zeroth order in the gradients, the
spin current j(s) flowing in a specified (say x-) direction at position r is polarized
along the local magnetization, j(s) (r) = m(r)j(s)(r). The gradual change of the
magnetization direction corresponds to a divergence of the angular momentum
of the itinerant electron subsystem, ∂xj(s) = j(s)∂xm + m∂xj

(s), where the lat-
ter term is aligned with the magnetization direction and does not contribute to
the magnetization torque. The former change of spin current does not leave the
electron system but flows into the magnetic order, thus inducing a torque on the
magnetization. This process does not cause any dissipation and the torque is re-
active, as can be seen as well from its time reversal symmetry. To first order in the
texture gradient, or adiabatic limit, and for arbitrary current directions [49, 50]

τ
(bias)
stt (r) =

g∗μBP

2eMs
(j · ∇) m , (8.10)

where j is the charge current density vector and the superscript “bias” indicates
that the torque is induced by a voltage bias or electric field. From symmetry
arguments another torque should exist that is normal to Eq. (8.10), but still
perpendicular to the magnetization and proportional to the lowest order in
its gradient. Such a torque is dissipative, since it changes sign under time
reversal. For isotropic systems, we can parameterize the out-of-plane torque by
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a dimensionless parameter β such that the total torque reads [27, 51],

τ
(bias)
stt (r) =

g∗μB

2eMs
σP [(E · ∇) m + βm× (E · ∇) m] , (8.11)

where we have used Ohm’s law, j = σE. In the adiabatic limit, i.e. to first order
in the gradient of the magnetization ∂imj , the spin-transfer torque Eq. (8.11)
describes how the magnetization dynamics is affected by currents in isotropic
ferromagnets.

Analogous to discrete systems, we may expect a process reciprocal to (8.11)
in ferromagnetic textures similar to spin pumping at interfaces. Since we are
now operating in a ferromagnet, a pumped spin current is transformed into a
charge current. To leading order a time-dependent texture is expected to pump
a current proportional to the rate of change of the magnetization direction and
the gradient of the magnetization texture. For isotropic systems, we can express
the expected charge current as

j
(pump)
i =

�

2e
σP ′ [m× ∂im + β′∂im] · ṁ, (8.12)

where P ′ is a polarization factor and β′ an out-of-plane contribution. Note that
we have here been assuming a strong spin-flip rate so that the spin-diffusion
length is much smaller than the typical length of the magnetization texture.
Volovik considered the opposite limit of weak spin dissipation and kept track
of currents in two independent spin bands [49]. In that regime he derived the
first term in (8.12), proportional to P ′ and proved that P = P ′. This result
was re-derived by Barnes and Maekawa [28]. The last term, proportional to the
β-factor, was first discussed by Duine [52] for a mean-field model, demonstrating
that β = β′. More general textures and spin relaxation regimes were treated
by Tserkovnyak and Mecklenburg [31]. In the following we demonstrate by the
Onsager reciprocity relations that the coefficients appearing in the spin-transfer
torques (8.11) are identical to those in the pumped current (8.12), i.e. P = P ′

and β = β′.
The proposed relations for the spin-transfer torques and pumped current in

continuous systems form a local relationship between torques, current, and elec-
tric and magnetic fields. For ballistic systems, this is not satisfied since the
current at one spatial point depends on the electric field in the whole sample
or global voltage bias and not just on the local electric field. The local assump-
tion also breaks down in other circumstances. The long-range magnetic dipole
interaction typically breaks a ferromagnet into uniform domains. The magnet-
ization gradually changes in the region between the domains, the domain wall.
When the domain wall width is smaller than the phase coherence length or the
mean free path, one should replace the local approach by a global strategy for
magnetization textures in which the dynamics is characterized by one or more
dynamic (soft) collective coordinates {ξa(τ)} that are allowed to vary (slowly)
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in time

m(rτ) = mst(r; {ξa(τ)}), (8.13)

where mst is a static description of the texture. In order to keep the discus-
sion simple and transparent we disregard thermoelectric effects, which can be
important in principle [53]. The thermodynamic forces are −∂F/∂ξa, where F
is the free energy as well as the bias voltage across the sample V . In linear re-
sponse the rate of change of the dynamic collective coordinates and the charge
current in the system are related to the thermodynamic forces −∂F/∂ξ and V
by a response matrix

(
ξ̇

I

)
=

(
L̃ξξ L̃ξI

L̃Iξ L̃II

)(
−∂F/∂ξ

V

)
, (8.14)

where L̃ξV describes the bias voltage-induced torque and L̃Iξ the current pumped
by the moving magnetization texture. These expressions are general and in-
clude, e.g. effects of spin–orbit interaction. Onsager’s reciprocity relations imply
L̃Iξi
{m,H} = L̃ξiI

{−m,−H
}

or L̃Iξi

{
m,H

}
= −L̃ξiI

{−m,−H
}

depending
on how the collective coordinates transform under time reversal. The coefficient
L̃Iξ can be easily expressed in terms of the scattering theory of adiabatic pump-
ing as discussed below. This strategy was employed to demonstrate for (Ga,Mn)
As that the spin–orbit interaction can enable a torque arising from a pure charge
current bias in Ref. [43] and to compute β in Ref. [32].

8.2.2.3 Self-consistency: Spin battery and enhanced Gilbert damping We have
discussed two reciprocal effects: torque induced by charge currents (voltage or
electric field) on the magnetization and the current induced by a time-dependent
magnetization. These two effects are not independent. For instance, in layered
systems, when the magnetization precesses, it can pump spins into adjacent
normal metal. The spin pumping affects magnetization dynamics depending on
whether the spins return into the ferromagnet or not. When the adjacent normal
metal is a good spin sink, this loss of angular momentum affects the magnetiza-
tion dynamics by an enhanced Gilbert damping. In the opposite limit of little
or no spin relaxation in an adjacent conductor of finite size, the pumped steady-
state spin current is canceled by a diffusion spin current arising from the build-up
of spin accumulation potential in the adjacent conductor. The build-up of the
spin accumulation can be interpreted as a spin battery [54]. Similarly, in magnet-
ization textures, the dynamic magnetization pumps currents that in turn exert
a torque on the ferromagnet.

In the spin battery the total spin current in the normal metal consists of the
diffusion-driven Eq. (8.6) and the pumped Eq. (8.9) spin currents [54]. When
there are no other intrinsic time-scales in the transport problem (e.g. instant-
aneous diffusion) and in the steady state, conservation of angular momentum
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dictates that the total spin current in the normal metal must vanish,

I(s,bias)
N + I(s,pump)

N = 0,

which from Eqs. (8.6) and (8.9) results in a spin accumulation, which can be
called a spin-battery bias or spin-motive force:

eV(s)
N = �m× ṁ. (8.15)

This is a manifestation of Larmor’s theorem [15]. In diffusive systems, the diffu-
sion of the pumped spins into the normal metal takes a finite amount of time.
When the typical diffusion time is longer than the typical precession time, the
ac component averages out to zero [54]. In this regime, the spin-battery bias is
constant and determined by

[
eV(s)

N

](DC)

=
∫

τp

dt

τp
m× �ṁ, (8.16)

where τp is the precession period. Without spin-flip processes, the magnitude of
the steady-state spin bias is governed by the FMR frequency of the magnetization
precession eV(s)

N = �ωFMR and is independent of the interface properties. Spin-
flip scattering in the normal metal reduces the spin bias eV(s)

N < �ωFMR in a
nonuniversal way [15, 54]. The loss of spin angular momentum implies a damping
torque on the ferromagnet. Asymmetric spin-flip scattering rates in adjacent left
and right normal metals can also induce a charge potential difference resulting
from the spin battery, which has been measured. [55, 56] The spin-battery effect
has also been measured via the spin Hall effect in Ref. [57].

In the opposite regime, when spins relax much faster than their typical in-
jection rate into the adjacent normal metal, (8.3), the net spin current is well
described by the spin-pumping mechanism. According to Eq. (8.9), in which
primes may be removed because of the Onsager reciprocity,

τ
(pump)
stt =

γ�
2

2e2MsV
[
G

(R)
⊥ m× ṁ +G

(I)
⊥ ṁ

]
. (8.17)

We use the superscript “pump” to clarify that this torque arises from the emis-
sion of spins from the ferromagnet. The first term in Eq. (8.17) is equal to
the Gilbert damping term in the LLG equation (8.1). This implies that the spin
pumping into an adjacent conductor maximally enhances the Gilbert damping by

α
(pump)
stt =

γ�
2

2e2MsVG
(R)
⊥ . (8.18)

This damping is proportional to the interface conductance G(R)
⊥ and thus the

normal metal–ferromagnet surface area as well as inversely proportional to the
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volume of the ferromagnet and therefore scales as 1/dF , where dF is the thickness
of the ferromagnetic layer. The transverse conductance per unit area agrees
well with theory [15]. The microscopic expression for G(R)

⊥ > 0 and therefore
α

(pump)
stt > 0. The second term on the right-hand side of Eq. (8.17), modifies the

gyromagnetic ratio and ωFMR. For conventional ferromagnets like Fe, Ni, and
Co, G(I)

⊥ � G
(R)
⊥ by near cancellation of positive and negative contributions

in momentum space. In these systems G(I)
⊥ is much smaller than G

(R)
⊥ and the

effects of G(I)
⊥ might therefore be difficult to observe.

A similar argument leads us to expect an enhancement of the Gilbert damping
in magnetic textures. By inserting the pumped current Eq. (8.12) into the torque
Eq. (8.11) in place of σE, we find a contribution caused by the magnetization
dynamics [58–60]

τ
(drift)
stt (r) =

γ�
2

4e2Ms
P 2σ [([m× ∂im + β∂im] · ṁ)

+ βm× ([m× ∂im + β∂im] · ṁi)] ∂im, (8.19)

which gives rise to additional dissipation of the order γ�
2P 2σ/4e2Msλ

2
w, where

λw is the typical length-scale for the variation of the magnetization texture such
as the domain wall width or the radius of a vortex. Equation (8.19) inserted into
the LLG equation also renormalizes the gyromagnetic ratio by an additional
factor β. The additional dissipation becomes important for large gradients as in
narrow domain walls and close to magnetic vortex centers [58, 60].

Finally, we point out that the fluctuation–dissipation theorem dictates that
equilibrium spin-current fluctuations associated with spin pumping by thermal
fluctuations must lead to magnetization dissipation. This connection was worked
out in Ref. [61].

8.2.3 Onsager reciprocity relations

The Onsager reciprocity relations express fundamental symmetries in the lin-
ear response matrix relating thermodynamic forces and currents. In normal
metal–ferromagnetic heterostructures, a spin accumulation in the normal metal
in contact with a ferromagnet can exert a torque on the ferromagnet, see Eq.
(8.7). The reciprocal process is spin pumping: a precessing ferromagnet induces
a spin current in the adjacent normal metal as described by Eq. (8.9). Both these
effects are nonlocal since the spin-transfer torque on the ferromagnet arises from
the spin accumulation potential in the normal metal and the pumped spin cur-
rent in the normal metal is a result of the collective magnetization dynamics.
In bulk ferromagnets, a current (or electric field) induces a spin-transfer torque
on a magnetization texture. The reciprocal pumping effect is now an electric
current (or emf) generated by the texture dynamics. In the next two subsections
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we provide technical details of the derivation of the Onsager reciprocity relations
under these circumstance

8.2.3.1 Discrete systems As an example of a discrete system, we consider a
normal metal–ferromagnet bilayer without any spin–orbit interaction (see Ref.
[43] for a more general treatment that takes spin-flip processes into account) and
under isothermal conditions (the effects of temperature gradients are discussed
in Refs. [33, 62, 63]). The spin-transfer physics is induced by a pure spin accumu-
lation in the normal metal, whose creation does not concern us here. The central
ingredients for Onsager’s reciprocity relations are the thermodynamic variables
with associated forces and currents that are related by a linear response matrix
[34]. In order to uniquely define the linear response, currents J and forces X
have to be normalized such that Ḟ =

∑
XJ . This is conventionally done by

the rate of change of the free energy in the nonequilibrium situation in terms of
currents and forces [34].

Let us consider first the electronic degrees of freedom. In the normal metal
reservoir of a constant spin accumulation V(s)

N the rate of change of the free
energy FN in terms of the total spin sN (in units of electric charge e) reads

ḞN = −ṡN ·V(s)
N . (8.20)

This identifies V(s)
N as a thermodynamic force that induces spin currents Is = ṡN ,

which is defined to be positive when leaving the normal metal. In the ferromag-
net, all spins are aligned along the magnetization direction m. The associated
spin accumulation potential V (s)

F can only induce a contribution to the longi-
tudinal part of the spin current, e.g. a contribution to the spin current along
the magnetization direction m. In our discussion of the Onsager reciprocity re-
lations, we will set this potential to zero for simplicity and disregard associated
change in the free energy, but it is straightforward to include the effects of a
finite V (s)

F [19].
Next, we address the rate of change of the free energy related to the magnetic

degrees of freedom in the ferromagnet,

Ḟ (m) = −MsVHeff · ṁ,

where F (m) is the magnetic free energy. The total magnetic moment MsVm is a
thermodynamic quantity and the effective magnetic field Heff = −∂F/∂(MsVm)
is the thermodynamic force that drives the magnetization dynamics ṁ.

In linear response, the spin current Is = ṡ and magnetization dynamicsMsVṁ
are related to the thermodynamic forces as

(
MsVṁ

I(s)
N

)
=

(
L̃(mm) L̃(ms)

L̃(sm) L̃(ss)

)(
Heff

V(s)
N

)
, (8.21)
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where L̃(mm), L̃(ms), L̃(sm), and L̃(ss) are 3 × 3 tensors in, e.g. a Cartesian
basis for the spin and magnetic moment vectors. Onsager discovered that micro-
scopic time-reversal (anti-)symmetry leads to relations between the off-diagonal
components of these linear-response matrices. Both the magnetization in the
ferromagnet and the spin-accumulation in the normal metal are antisymmetric
under time reversal leading to the reciprocity relations

L
(sm)
ij (m) = L

(ms)
ji (−m). (8.22)

Some care should be taken when identifying the Onsager symmetries in spin
accumulation-induced magnetization dynamics. Specifically, the LLGS equation
(8.8) cannot simply be combined with the linear response relation (8.21) and Eq.
(8.22). Only the Landau–Lifshitz–Slonczewski (LL) Eq. (8.2) directly relates ṁ
to Heff as required by Eq. (8.21). In terms of the 3× 3 matrix Õ e.g.

Õij(m) =
∑

k

εikjmk, (8.23)

where εijk = 1
2 (j − i) (k − i) (k − j) is the Levi-Civita tensor, m×Heff = ÕHeff,

and the LLGS equation (8.8) can be written as

(
1− αÕ

)
ṁ = Õ (−γHeff) + τ stt. (8.24)

By Eq. (8.21), the pumped current in the absence of spin accumulation (V(s)
N =

0) is I(s)
N = L̃(sm)Heff. Then, by Eq. (8.9), I(s)

N = X̃(sm)ṁ, where the 3×3 tensor
X̃(sm) has components

X̃
(sm)
ij (m) = −�

e

[
G

′(R)
⊥

∑
n

εinjmn +G
′(I)
⊥
∑
nkl

εinkmnεkljmk

]
. (8.25)

From the LLG equation (8.24) for a vanishing spin accumulation (V(s)
N = 0) and

thus no bias-induced spin-transfer torque (τ (bias)
stt = 0), the pumped spin current

can be expressed as I(s)
N = X̃(sm)Õ

[
1− αÕ

]−1

(−γHeff), which identifies the

linear response coefficient L̃(sm) in terms of X̃(sm) as

L̃(sm) = −γX̃(sm)Õ
[
1− αÕ

]−1

. (8.26)
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Using the Onsager relation (8.22) and noticing that Õij(m) = Õji(−m) and
X̃

(sm)
ij (m) = X̃

(sm)
ji (−m)

L̃(ms) = −γ
[
1− αÕ

]−1

ÕX̃(sm). (8.27)

The rate of change of the magnetization by the spin accumulation therefore
becomes

ṁstt =
1

MsV L̃
(ms)V(s)

N

= − γ

MsV
[
1− αÕ

]−1

ÕX(sm)V(s)
N . (8.28)

Furthermore, the LLGS equation (8.24) in the absence of an external magnetic
field reads

[
1− αÕ

]
ṁstt = τ

(drift)
stt . Inserting the phenomenological expression

for the spin-transfer torque (8.7), we identify the linear response coefficient L̃(ms):

τ
(drift)
stt = − γ

MsV ÕX
(sm)V(s)

N

=
γ

MsVe
[
G

′(R)
⊥ m×

(
m×V(s)

N

)
+G

′(I)
⊥
(
m×V(s)

N

)]
. (8.29)

This agrees with the phenomenological expression (8.7) when

G
′(R)
⊥ = G

(R)
⊥ ; G

′(I)
⊥ = G

(I)
⊥ . (8.30)

Spin pumping as expressed by Eq. (8.9) is thus reciprocal to the spin-transfer
torque as described by Eq. (8.7). In Section 8.3.1.1 these relations are de-
rived by first principles from quantum-mechanical scattering theory, resulting
in. G′(R)

⊥ = G↑↓ = (e2/h)
∑

nm

[
δnm − r↑nm

(
r↑nm

)∗] for a narrow constriction,

where r↑nm (r↓nm) is the reflection coefficient for spin-up (spin-down) electrons
from waveguide mode m to waveguide mode n. For layered systems with a
constant cross section the microscopic expressions of the transverse (mixing)
conductances should be renormalized by taking into account the contributions
from the Sharvin resistances [23, 81], which increases the conductance by roughly
a factor of two and is important for a quantitatively comparison between theory
and experiments [15, 19].

8.2.3.2 Continuous systems The Onsager reciprocity relations also relate the
magnetization torques and currents in the magnetization texture of bulk mag-
nets. Following Refs. [31, 32], the rate of change of the free energy related to
the electronic degrees of freedom in the ferromagnet is ḞF = − ∫ drq̇V , where
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q is the charge density and eV = μ is the chemical potential. Inserting charge
conservation, q̇ +∇ · j = 0 and by partial integration,

ḞF = −
∫
drj ·E (8.31)

which identifies charge as a thermodynamic variable, while the electric field
E = ∇V is a thermodynamic force which drives the current density j. For the
magnetic degrees of freedom, the rate of change of the free energy (or entropy) is

Ḟm = −Ms

∫
drṁ(r) ·Heff(r). (8.32)

Just like for discrete systems, Heff(r), is the thermodynamic force and MSm is
the thermodynamic variable to which it couples. In a local approximation the
(linear) response depends only on the force at the same location:(

Msṁ

j

)
=

(
L̃(mm) L̃(mE)

L̃(Em) L̃(EE)

)(
MsHeff

E

)
, (8.33)

where L̃(mm), L̃(mj), L̃(jm), and L̃(jj) are the local response functions. Onsager’s
reciprocity relations dictate again that

L̃
(jm)
ji (m) = L̃

(mj)
ij (−m). (8.34)

Starting from the expression for current pumping (8.12), we can determine the
linear response coefficient L̃(Em) from

[
L̃(Em)

[
1− αÕ

]
Õ−1

]
ij

= −γ �

2e
σP ′ [εjklmk∂iml+β′∂imj ] , (8.35)

where the operator Õ is introduced in the same way as for discrete systems (8.23)
to transform the LLG equation into the LL form (8.24). According to Eq. (8.34)

[
Õ−1

[
1− αÕ

]
L̃(mj)

]
ij

= −γ �

2e
σP ′ [εiklmk∂jml−β′∂jmi] . (8.36)

The change in the magnetization induced by an electric field is then
Msṁ

(bias)
stt = L̃(mj)E so that the spin-transfer torque due to a drift current

τ
(bias)
stt =

[
1− αÕ

]
ṁ(bias)

stt can be written as

τ
(bias)
stt = − γ�

2eMs
σP ′εimnmm [εnklmkEj∂jml−β′Ej∂jmn], (8.37)

τ
(bias)
stt = γ

g∗μB

2eMs
σP ′ [(E · ∇) m + β′m×E · ∇m]. (8.38)
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This result agrees with the phenomenological expression for the pumped current
(8.12) when P = P ′ and β = β′. Therefore, the pumped current and the
spin-transfer torque in continuous systems are reciprocal processes. The pumped
current can be formulated as the response to a spin-motive force [28].

In small systems and thin wires, the current-voltage relation is not well
represented by a local approximation. A global approach based on collective
coordinates as outlined around Eq. (8.13) is then a good choice to keep the
computational effort in check. Of course, the Onsager reciprocity relations be-
tween the pumped current and the effective current-induced torques on the
magnetization then hold as well [32].

8.3 Microscopic derivations
8.3.1 Spin-transfer torque
8.3.1.1 Discrete systems—Magneto-electronic circuit theory Physical proper-
ties across a scattering region can be expressed in terms of the region’s scattering
matrix, which requires a separation of the system into reservoirs, leads, and a
scattering region, see Fig. 8.3. In the lead with index α, the field operator for spin
s-electrons at longitudinal and transverse coordinates (x,ρ) and time t is [62]

Ψ̂(s)
α =

∫
dε√
2π

∑
n

[
v(ns)

α

]−1/2

ϕ(ns)
α (�)e−iε(nks)

α t/�

[
eikxâ(ns)

α (ε) + e−ikxb̂(ns)
α (ε)

]
(8.39)

in terms of the annihilation operators â(ns)
α (b̂(ns)

α ) for particles incident on (out-
going from) the scattering region in transverse waveguide modes with orbital
quantum number n and spin quantum number s (s =↑ or s =↓). Furthermore,
the transverse wavefunction is ϕ(ns)

α (�), the transverse coordinate �, the lon-
gitudinal coordinate along the waveguide is x, and v

(ns)
α is the longitudinal

velocity for waveguide mode ns. The positive definite momentum k is related to

left

reservoir
lead(N) lead(F)

N-F scattering

region

right

reservoir

Fig. 8.3. Schematic of how transport between a normal metal and a ferromagnet
is computed by scattering theory. The scattering region, which may contain
the normal metal–ferromagnet interface and diffusive parts of the normal
metal as well as ferromagnet, is attached to real or fictious leads that are in
contact with a left and right reservoir. In the reservoirs, the distributions of
charges and spins are assumed to be equilibrated and known via the charge
potential and spin accumulation bias.
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the energy ε by �k = (2mε)1/2. The annihilation operators for incident and
outgoing electrons are related by the scattering matrix

b̂(ns)
α (ε) =

∑
βms′

S
(nsms′)
αβ (ε)â(ms′)

β (ε). (8.40)

In the basis of the leads (α = N (normal metal) or α = F (ferromagnet)), the
scattering matrix is

S =

(
r t

t′ r′

)
,

where r (t) is a matrix of the reflection (transmission) coefficients between the
waveguide modes for an electron incident from the left. Similarly, r′ and t′

characterize processes where the electron is incident from the right.
In terms of the field operators defined by Eq. (8.39) and the scattering matrix

Eq. (8.40), at low frequencies, the spin current that flows in the normal metal
α = N in the direction towards the scattering region is

I(s)
α (t) =

e

h

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2
∑
βγ

∑
nml

∑
σσ′

exp(i (ε1 − ε2) t/�)

A(nm,nl),(σ,σ′)
αβ,αγ (ε1, ε2)â(mσ)†

β (ε1)â(lσ′)
γ (ε2), (8.41)

where

A(nm,nl)(σ,σ′)
αβ,αγ (ε1, ε2) =

∑
ss′

[
δαβδ

(nm)δ(sσ)δαγδ
(nl)δ(s

′σ′)

−S(ns,mσ)∗
αβ (ε1)S(ns′,lσ′)

αγ (ε2)
]
σ(ss′)

and σ(ss′) is a vector of the 2×2 Pauli matrices that depends on the spin indices
s and s′ of the waveguide mode. The charge current can be found in a similar
way. We are interested in the expectation value of the spin current (8.41) when
the system is driven out of equilibrium. In equilibrium, the expectation values are〈

â(ns)†
α (ε)â(ms′)

β (ε′)
〉

eq
= δ(ε− ε′)δαβδ

(ss′)δ(nm)fFD(ε), (8.42)

where fFD(ε) is the Fermi–Dirac distribution of electrons with energy ε. A non-
equilibrium spin accumulation in the normal metal reservoir is not captured
by the local equilibrium ansatz in Eq. (8.42), however. A spin accumulation in
the normal metal reservoir can still be postulated when spin-flip dissipation is
slow compared to all other relevant time-scales. We assume the normal metal
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and ferromagnet have an isotropic distribution of spins in orbital space, and for
clarity consider no charge bias. The expectation for the number of charges and
spins in the waveguide describing normal metal leads attached to the normal
reservoirs are〈

â
(ns)†
N (ε)â(ms′)

N (ε′)
〉

= δ(ε− ε′)
[
δ(mn)δ(ss′)fFD(ε) + δ(mn)f

(s′s)
N (ε)

]
. (8.43)

The spin accumulation V(s)
N is related to the 2×2 out-of-equilibrium distribution

matrix f (s′s)
N (ε) by

σ(ss′) ·V(s)
N =

∫ ∞

−∞
dεf

(ss′)
N (ε)/e . (8.44)

For the spin-transfer physics, a bias voltage in the ferromagnet does not contrib-
ute since it only gives rise to a charge current and a longitudinal spin current.
As in the previous section, we therefore set this voltage to zero for simplicity, so
that in the ferromagnetic lead attached to the ferromagnetic reservoir〈

â
(ns)†
F (ε)â(ms′)

F (ε′)
〉

= δ(ε− ε′)δ(ms)δ(s
′s)fFD(ε). (8.45)

Furthermore, the expectation values of the cross-correlations remain zero also
out-of-equilibrium,

〈
â
(ns)†
N (ε)â(ms′)

F (ε′)
〉

= 0 because we assume that phase
coherence is broken in the leads. The spin current in lead α is then

I(s)
α (t)=

e

h

∫ ∞

−∞
dε
∑
nml

∑
ss′σσ′

[
δ(nm)δ(sσ)δ(nl)δ(s

′σ′) − r(ns,mσ)∗
NN r

(ns′,lσ′)
NN

]
σ(σσ′)f (σ′σ).

(8.46)
Without spin-flip scattering, the reflection coefficient can be expressed as

rnsmσ
NN =

(
rnm,↑
NN + rnm,↓

NN

)
δ(sσ)/2 + m · σsσ

(
rnm,↑
NN − rnm,↓

NN

)
/2 (8.47)

which can be represented in spin space as

rnsmσ
NN = r

nm,(c)
NN 1 + r

nm,(s)
NN m · σ (8.48)

since the scattering matrix can be decomposed into components aligned and
anti-aligned with the magnetization direction. These matrices only depend on
the orbital quantum numbers (n and m). Using the representation of the out-
of-equilibrium spin density in terms of the spin accumulation (8.44) [21],

I(s)
N = (G↑ +G↓) m

(
m ·V(s)

N

)
−2G(R)

⊥ m×
(
m×V(s)

N

)
− 2G(I)

⊥
(
m×V(s)

N

)
(8.49)
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in agreement with (8.6) when there is no bias voltage in the ferromagnet (VF = 0)
which we have assumed for clarity here. We identify the microscopic expressions
for the conductances [21] associated with spins aligned and anti-aligned with the
magnetization direction

G↑ =
e2

h

∑
nm

[
δnm −

∣∣∣rnm,↑
NN

∣∣∣2], (8.50)

G↓ =
e2

h

∑
nm

[
δnm −

∣∣∣rnm,↓
NN

∣∣∣2], (8.51)

and the transverse (complex-valued) spin-mixing conductance

G⊥ =
e2

h

∑
nm

[
δnm − rnm,↑

NN rnm,↓∗
NN

]
. (8.52)

These results are valid when the transmission coefficients are small such that
currents do not affect the reservoirs. Otherwise, the transverse conductance
parameters should be renormalized by taking into account the Sharvin resist-
ances, as described above [23, 81]. In the limit we consider here, the expression
for the spin current depends only on the reflection coefficients for transport from
the normal metal towards the ferromagnet and not on the transmission coeffi-
cients for propagation from the normal metal into the ferromagnet. This follows
from our assumption that the ferromagnet is thicker than the transverse coher-
ence length as well as our disregard of the spin accumulation in the ferromagnet.
Both assumptions can be easily relaxed if necessary [15, 19].

8.3.1.2 Continuous systems Spin torques in continuous spin textures can be
studied by either quantum kinetic theory, [65] imaginary-time [66] and functional
Keldysh [67] diagrammatic approaches, or the scattering-matrix formalism [32].
The latter is particularly powerful when dealing with nontrivial band structures
with strong spin–orbit interactions, while the others give complementary insight,
but are mostly limited to simple model systems. When the magnetic texture is
sufficiently smooth on the relevant length-scales (the transverse spin coherence
length and, in special cases, the spin–orbit precession length) the spin torque
can be expanded in terms of the local magnetization and current density as well
as their spatial-temporal derivatives. An example is the phenomenological Eq.
(8.11) for the electric-field-driven magnetization dynamics of an isotropic ferro-
magnet. While the physical meaning of the coefficients is clear, the microscopic
origin and magnitude of the dimensionless parameter β has still to be clarified.

The solution of the LLG equation (8.1) appended by these spin torques
depends sensitively on the relationship between the dimensionless Gilbert damp-
ing constant α and the dissipative spin-torque parameter β: the special case
β/α = 1 effectively manifests Galilean invariance [68] while the limits β/α � 1
and β/α � 1 are regimes of qualitatively distinct macroscopic behavior. The
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ratio β/α determines the onset of the ferromagnetic current-driven instability
[65] as well as the Walker threshold [69] for the current-driven domain-wall
motion [51], and both diverge as β/α → 1. The subthreshold current-driven
domain-wall velocity is proportional to β/α [27], while β/α = 1 at a special
point, at which the effect of a uniform current density j on the magnetiza-
tion dynamics is eliminated in the frame of reference that moves with velocity
v ∝ j, which is of the order of the electron drift velocity [70]. Although
the exact ratio β/α is a system-dependent quantity, some qualitative aspects
not too sensitive to the microscopic origin of these parameters have been
discussed in relation to metallic systems[65, 66, 68, 71]. However, these ap-
proaches fail for strongly spin–orbit coupled systems such as dilute magnetic
semiconductors [32].

Let us outline the microscopic origin of β for a simple toy model for a fer-
romagnet. In Ref. [65], we developed a self-consistent mean-field approach, in
which itinerant electrons are described by a single-particle Hamiltonian

Ĥ = [H0 + U(r, t)] 1̂ +
γ�

2
σ̂ · (H + Hxc) (r, t) + Ĥσ , (8.53)

where the unit matrix 1̂ and a vector of Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z) form
a basis for the Hamiltonian in spin space. H0 is the crystal Hamiltonian in-
cluding kinetic and potential energy. U is the scalar potential consisting of
disorder and applied electric-field contributions. The total magnetic field con-
sists of the applied, H, and exchange, Hxc, fields that, like U , are parametrically
time dependent. Finally, the last term in the Hamiltonian, Ĥσ, accounts for
spin-dephasing processes, e.g. due to quenched magnetic disorder or spin–orbit
scattering associated with impurity potentials. This last term is responsible for
low-frequency dissipative processes affecting dimensionless parameters α and β
in the collective equation of motion.

In the time-dependent spin-density-functional theory [72–74] of itinerant
ferromagnetism, the exchange field Hxc is a functional of the time-dependent
spin-density matrix

ραβ(r, t) = 〈Ψ̂†
β(r)Ψ̂α(r)〉t, (8.54)

where Ψ̂’s are electronic field operators, which should be computed self-
consistently as solutions of the Schrödinger equation for Ĥ. The spin density
of conducting electrons is given by

s(r) =
�

2
Tr [σ̂ρ̂(r)] . (8.55)

We focus on low-energy magnetic fluctuations that are long ranged and trans-
verse and restrict our attention to a single parabolic band. Consideration of
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more realistic band structures is also in principle possible from this starting point
[75]. We adopt the adiabatic local-density approximation (ALDA, essentially the
Stoner model) for the exchange field:

γ�Hxc[ρ̂](r, t) ≈ Δxcm(r, t), (8.56)

with direction m = −s/s locked to the time-dependent spin density (8.55).
In another simple model of ferromagnetism, the so-called s-d model, con-

ducting s electrons interact with the exchange field of the d electrons that are
assumed to be localized to the crystal lattice sites. The d-orbital electron spins
account for most of the magnetic moment. Because d-electron shells have large
net spins and strong ferromagnetic correlations, they are usually treated classic-
ally. In a mean-field s-d description, therefore, conducting s orbitals are described
by the same Hamiltonian (8.53) with an exchange field (8.56). The differences
between the Stoner and s-d models for the magnetization dynamics are subtle
and rather minor. In the ALDA/Stoner model, the exchange potential is (on
the scale of the magnetization dynamics) instantaneously aligned with the total
magnetization. In contrast, the direction of the unit vector m in the s-d model
corresponds to the d magnetization, which is allowed to be slightly misaligned
with the s magnetization, transferring angular momentum between the s and
d magnetic moments. Since most of the magnetization is carried by the latter,
the external field H couples mainly to the d spins, while the s spins respond
to and follow the time-dependent exchange field (8.56). As Δxc is usually much
larger than the external (including demagnetization and anisotropy) fields that
drive collective magnetization dynamics, the total magnetic moment will always
be very close to m. A more important difference of the philosophy behind the
two models is the presumed shielding of the d orbitals from external disorder.
The reduced coupling with dissipative degrees of freedom would imply that their
dynamics are more coherent. Consequently, the magnetization damping has to
originate from the disorder experienced by the itinerant s electrons. As in the
case of the itinerant ferromagnets, the susceptibility has to be calculated self-
consistently with the magnetization dynamics parametrized by m. For more
details on this model, we refer to Refs. [76] and [65]. With the above differences
in mind, the following discussion is applicable to both models. The Stoner model
is more appropriate for transition-metal ferromagnets because of the strong
hybridization between d and s, p electrons. For dilute magnetic semiconduct-
ors with deep magnetic impurity states the s-d model appears to be a better
choice.

The single-particle itinerant electron response to electric and magnetic fields
in Hamiltonian (8.53) is all that is needed to compute the magnetization dy-
namics microscopically. Stoner and s-d models have to be distinguished only at
the final stages of the calculation, when we self-consistently relate m(r, t) to the
electron spin response. The final result for the simplest parabolic-band Stoner
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model with isotropic spin-flip disorder comes down to the torque (8.11) with
α ≈ β. The latter is proportional to the spin-dephasing rate τ−1

σ of the itinerant
electrons:

β ≈ �

τσΔxc
. (8.57)

The derivation assumes ω, τ−1
σ � Δxc/�, which is typically the case in real

materials sufficiently below the Curie temperature. The s-d model yields the
same result for β, Eq. (8.57), but the Gilbert damping constant

α ≈ ηβ (8.58)

is reduced by the ratio η of the itinerant to the total angular momentum when
the d-electron spin dynamics is not damped. (Note that Eq. (8.58) is also valid
for the Stoner model since then η = 1.)

These simple model considerations shed light on the microscopic origins of
dissipation in metallic ferromagnets as reflected in the α and β parameters. In
Section 8.4 we present a more systematic, first-principles approach based on the
scattering-matrix approach, which accesses the material dependence of both α
and β with realistic electronic band structures.

8.3.2 Spin pumping
8.3.2.1 Discrete systems When the scattering matrix is time dependent, the
energy of outgoing and incoming states does not have to be conserved and
the scattering relation (8.40) needs to be appropriately generalized [77]. We
will demonstrate here how this is done in the limit of slow magnetization dy-
namics, i.e. adiabatic pumping. When the time dependence of the scattering
matrix Ŝ

(nm)
αβ [Xi(t)] is parameterized by a set of real-valued parameters Xi(t),

the pumped spin current in excess of its static bias-driven value (8.49) is given
by [14]

Is
α(t) = e

∑
i

∂nα

∂Xi

dXi(t)
dt

, (8.59)

where the “spin emissivity” vector by the scatterer into lead α is [80]

∂nα

∂Xi
=

1
2π

Im
∑

β

∑
mn

∑
ss′σ

∂S
(ms,nσ)∗
αβ

∂Xi
σ̂(ss′)S

(ms′,nσ)
αβ . (8.60)

Here, σ̂(ss′) is again the vector of Pauli matrices. In the case of a magnetic
monodomain insertion and in the absence of spin–orbit interactions, the spin-
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dependent scattering matrix between the normal-metal leads can be written in
terms of the respective spin-up and spin-down scattering matrices:[21]

S
(ms,ns′)
αβ [m] =

1
2
S

(mn)↑
αβ

(
δ(ss′) + m · σ̂(ss′)

)
+

1
2
S

(mn)↓
αβ

(
δ(ss′) −m · σ̂(ss′)

)
.

(8.61)
Here, m(t) is the unit vector along the magnetization direction and ↑ (↓) are
spin orientations defined along (opposite) to m.

Spin pumping due to magnetization dynamics m(t) is then found by substi-
tuting Eq. (8.61) into Eqs. (8.60) and (8.59). After straightforward algebra:[14]

Is
α(t) =

(
�

e

)(
G

(R)
⊥ m× dm

dt
+G

(I)
⊥
dm
dt

)
. (8.62)

As before, we assume here a sufficiently thick ferromagnet, on the scale of the
transverse spin-coherence length. Note that the spin pumping is expressed in
terms of the same complex-valued mixing conductance G⊥ = G

(R)
⊥ + iG

(I)
⊥ as

the dc current (8.49), in agreement with the Onsager reciprocity principle as
found on phenomenological grounds in Section 8.2.3.

Charge pumping is governed by expressions similar to Eqs. (8.59) and (8.60),
subject to the following substitution: σ̂ → δ (Kronecker delta). Finite charge
pumping by monodomain magnetization dynamics into normal-metal leads, how-
ever, requires a ferromagnetic analyzer or finite spin–orbit interactions and
appropriately reduced symmetries, as discussed in Refs. [43, 82–84].

An immediate consequence of the pumped spin current (8.62) is an en-
hanced Gilbert damping of the magnetization dynamics [14]. Indeed, when
the reservoirs are good spin sinks and spin backflow can be disregarded, the
spin torque associated with the spin current (8.62) into the αth lead, as dic-
tated by the conservation of the spin angular momentum, Eq. (8.3), contributes
(cf. Eq. (8.18)):

α′ = g∗
�μB

2e2
G

(R)
⊥

MsV (8.63)

to the Gilbert damping of the ferromagnet in Eq. (8.1). Here, g∗ ∼ 2 is the g
factor of the ferromagnet, MsV its total magnetic moment, and μB is the Bohr
magneton. For simplicity, we neglected G

(I)
⊥ , which is usually not important for

intermetallic interfaces. If we disregard energy relaxation processes inside the
ferromagnet, which would drain the associated energy dissipation out of the
electronic system, the enhanced energy dissipation associated with the Gilbert
damping is associated with heat flows into the reservoirs. Phenomenologically,
the dissipation power follows from the magnetic free energy F and the LLG Eq.
(8.1) as

P ≡ −∂mFm · ṁ = MsVHeff · ṁ =
αMsV
γ

ṁ2 (8.64)
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or, more generally, for anisotropic damping (with, for simplicity, an isotropic
gyromagnetic ratio), by

P =
MsV
γ

ṁ · α̃ · ṁ . (8.65)

Heat flows can be also calculated microscopically by the scattering-matrix
transport formalism. At low temperatures, the heat-pumping rate into the αth
lead is given by [85–87]

IE
α =

�

4π

∑
β

∑
mn

∑
ss′

∣∣∣Ṡ(ms,ns′)
αβ

∣∣∣2 =
�

4π

∑
β

Tr
(

ˆ̇S†
αβ

ˆ̇Sαβ

)
, (8.66)

where the carets denote scattering matrices with suppressed transverse-channel
indices. When the time dependence is entirely due to the magnetization dynam-
ics, Ṡ(ms,ns′)

αβ = ∂mS
(ms,ns′)
αβ · ṁ. Utilizing again Eq. (8.61), we find for the heat

current into the αth lead:[88]

IE
α = ṁ · G̃α · ṁ , (8.67)

in terms of the dissipation tensor [88]

G̃ij
α =

γ2
�

4π
Re
∑

β

Tr

(
∂Ŝ†

αβ

∂mi

∂Ŝαβ

∂mj

)
. (8.68)

In the limit of vanishing spin-flip in the ferromagnet, meaning that all dissipation
takes place in the reservoirs, we find

G̃ij
α =

γ2
�

4π
Re
∑

β

Tr

(
∂Ŝ†

αβ

∂mi

∂Ŝαβ

∂mj

)
= γ2 1

2

(
�

e

)2

G
(R)
⊥ δij . (8.69)

Equating this IE
α with P above, we obtain a microscopic expression for the

Gilbert damping tensor α̃:

α̃ = g∗
�μB

2e2
G

(R)
⊥

MsV
↔
1, (8.70)

which agrees with Eq. (8.63). Indeed, in the absence of spin–orbit coupling the
damping is necessarily isotropic. While Eq. (8.63) reproduces the additional
Gilbert damping due to the interfacial spin pumping, Eq. (8.69) is more general,
and can be used to compute bulk magnetization damping, as long as it is of a
purely electronic origin [88, 89].
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8.3.2.2 Continuous systems As has already been noted, spin pumping in con-
tinuous systems is the Onsager counterpart of the spin-transfer torque discussed
in Section 8.3.1.2 [31]. While a direct diagrammatic calculation for this pump-
ing is possible [52], with results equivalent to those of the quantum-kinetic
description of the spin-transfer torque outlined above, we believe that the
scattering-matrix formalism is the most powerful microscopic approach [32]. The
latter is particularly suitable for implementing parameter-free computational
schemes that allow a realistic description of material-dependent properties.

An important example is pumping by a moving domain wall in a quasi-one-
dimensional ferromagnetic wire. When the domain wall is driven by a weak
magnetic field, its shape remains to a good approximation unaffected, and only
its position rw(t) along the wire is needed to parameterize its slow dynamics.
The electric current pumped by the sliding domain wall into the αth lead can
then be viewed as pumping by the rw parameter, which leads to [80]

Ic
α =

eṙw
2π

Im
∑

β

Tr

(
∂Ŝαβ

∂rw
Ŝ†

αβ

)
. (8.71)

The total heat flow into both leads induced by this dynamics is according to
Eq. (8.66)

IE =
�ṙ2w
4π

∑
αβ

Tr

(
∂Ŝ†

αβ

∂rw

∂Ŝαβ

∂rw

)
. (8.72)

Evaluating the scattering-matrix expressions on the right-hand side of the above
equations leads to microscopic magnetotransport response coefficients that de-
scribe the interaction of the domain wall with electric currents, including spin
transfer and pumping effects.

These results lead to microscopic expressions for the phenomenological re-
sponse [32] of the domain-wall velocity ṙw and charge current Ic to a voltage V
and magnetic field applied along the wire H:

(
ṙw
Ic

)
=
(
Lww Lwc

Lcw Lcc

)(
2AMsH

V

)
, (8.73)

subject to appropriate conventions for the signs of voltage and magnetic field and
assuming a head-to-head or tail-to-tail wall such that the magnetization outside
of the wall region is collinear with the wire axis. 2AMsH is the thermodynamic
force normalized to the entropy production by the magnetic system, where A
is the cross-sectional area of the wire. We may therefore expect the Onsager’s
symmetry relation Lcw = Lwc. When a magnetic field moves the domain wall
in the absence of a voltage Ic = (Lcw/Lww)ṙw, which, according to Eq. (8.71),
leads to the ratio Lcw/Lww in terms of the scattering matrices. The total energy
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dissipation for the same process is IE = ṙ2w/Lww, which, according to Eq. (8.72),
establishes a scattering-matrix expression for Lww alone. By supplementing these
equations with the standard Landauer-Büttiker formula for the conductance

G =
e2

h
Tr
(
Ŝ†

12Ŝ12

)
, (8.74)

valid in the absence of domain-wall dynamics, we find Lcc in the same spirit since
G = Lcc − L2

wc/Lww. Summarizing, the phenomenological response coefficients
in Eq. (8.73) read [32]:

L−1
ww =

�

4π

∑
αβ

Tr

(
∂Ŝ†

αβ

∂rw

∂Ŝαβ

∂rw

)
, (8.75)

Lcw = Lwc = Lww
e

2π
Im
∑

β

Tr

(
∂Ŝαβ

∂rw
Ŝ†

αβ

)
, (8.76)

Lcc =
e2

h
Tr
(
Ŝ12Ŝ

†
12

)
+
L2

wc

Lww
. (8.77)

When the wall is sufficiently smooth, we can model spin torques and pump-
ing by the continuum theory based on the gradient expansion in the magnetic
texture, Eqs. (8.11) and (8.12). Solving for the magnetic-field and current-driven
dynamics of such domain walls is then possible using the Walker ansatz [69, 90].
Introducing the domain-wall width λw:

α =
γλw

2AMsLww
and β = − eλw

�PG

Lwc

Lww
. (8.78)

When the wall is sharp the adiabatic approximation underlying the leading-order
gradient expansion breaks down. These relations can still be used as definitions
of the effective domain-wall α and β. As such, these could be distinct from the
bulk values that are associated with smooth textures. This is relevant for dilute
magnetic semiconductors, for which the adiabatic approximation easily breaks
down [32]. In transition-metal ferromagnets, on the other hand, the adiabatic
approximation is generally perceived to be a good starting point, and we may
expect the dissipative parameters in Eq. (8.78) to be comparable to their bulk
values discussed in Section 8.3.1.2.

8.4 First-principles calculations

We have shown that the essence of spin pumping and spin transfer can be cap-
tured by a small number of phenomenological parameters. In this section we
address the material dependence of these phenomena in terms of the (reflection)
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mixing conductance G⊥, the dimensionless Gilbert damping parameter α, and
the out-of-plane torque parameter β.

For discrete systems the (reflection) mixing conductance G⊥ was studied the-
oretically by Xia et al. [91], Zwierzycki et al. [45] and Carva et al. [92]. G⊥
describes the spin current flowing in response to an externally applied spin ac-
cumulation eVs that is a vector with length equal to half of the spin-splitting of
the chemical potentials e|Vs| = e(V↑ − V↓)/2. It also describes the spin torque
exerted on the moment of the magnetic layer [9, 21, 45, 91–94]. Consider a spin
accumulation in a normal metal N , which is in contact with a ferromagnet on
the right magnetized along the z-axis. The spin current incident on the interface
is proportional to the number of incident channels in the left lead, IN

in = 2GSh
N Vs,

while the reflected spin current is given by

IN
out = 2

⎛
⎜⎜⎝
GSh

N −G(R)
⊥ −G(I)

⊥ 0

G
(I)
⊥ GSh

N −G(R)
⊥ 0

0 0 GSh
N − G↑+G↓

2

⎞
⎟⎟⎠Vs, (8.79)

where Gσ are the conventional Landauer–Büttiker conductances. The real and
imaginary parts of GSh

N − G⊥ = (e2/h)
∑

mn r
↑
mnr

↓
mn are related to the compo-

nents of the reflected transverse spin current and can be calculated by considering
a single N–F interface [91]. When the ferromagnet is a layer with finite thick-
ness d sandwiched between normal metals, the reflection mixing conductance
depends on d and it is necessary to consider also the transmission mixing con-
ductance (e2/h)

∑
mn t

′↑
mnt

′↓
mn. In Ref. [45], both reflection and transmission

mixing conductances were calculated for Cu–Co–Cu and Au–Fe–Au sandwiches
as a function of magnetic layer thickness d. The real and imaginary parts of the
transmission mixing conductance and the imaginary part of the reflection mix-
ing conductance were shown to decay rapidly with increasing d implying that
the absorption of the transverse component of the spin current occurs within a
few monolayers of the N–F interface for ideal lattice matched interfaces. When a
minimal amount of interface disorder was introduced the absorption increased.
The limit G⊥ → GSh

N corresponds to the situation where all of the incoming
transverse polarized spin current is absorbed in the magnetic layer. The torque
is then proportional to the Sharvin conductance of the normal metal. This turns
out to be the situation for all but the thinnest (few monolayers) and cleanest
Co and Fe magnetic layers considered by Zwierzycki et al. [45] However, when
there is nesting between Fermi surface sheets for majority and minority spins so
that both spins have the same velocities over a large region of reciprocal space,
then the transverse component of the spin current does not damp so rapidly and
G⊥ can continue to oscillate for large values of d. This has been found to occur
for ferromagnetic Ni in the (001) direction [92].

Equation (8.17) implies that the spin pumping renormalizes both the Gil-
bert damping parameter α and the gyromagnetic ratio γ of a ferromagnetic
film embedded in a conducting nonmagnetic medium. However, in view of the
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results discussed in the previous paragraph, we conclude that the main effect
of the spin pumping is to enhance the Gilbert damping. The correction is dir-
ectly proportional to the real part of the reflection mixing conductance and is
essentially an interface property. Oscillatory effects are averaged out for real-
istic band structures, especially in the presence of disorder. G(R)

⊥ determines
the damping enhancement of a single ferromagnetic film embedded in a perfect
spin-sink medium and is usually very close to GSh

N for intermetallic interfaces
[91, 93].

8.4.1 Alpha

We begin with a discussion of the small-angle damping measured as a function of
temperature using ferromagnetic resonance (FMR). There is general agreement
that spin–orbit coupling and disorder are essential ingredients in any descrip-
tion of how spin excitations relax to the ground state. In the absence of intrinsic
disorder, one might expect the damping to increase monotonically with tem-
perature in clean magnetic materials and indeed, this is what is observed for
Fe. Heinrich et al. [95] developed an explicit model for this high-temperature
behavior in which itinerant s electrons scatter from localized d moments and
transfer spin angular momentum to the lattice via spin–orbit interaction. This
s− d model results in a damping that is inversely proportional to the electronic
relaxation time, α ∼ 1/τ , i.e. is resistivity-like. However, at low temperatures,
both Co and Ni exhibit a sharp rise in damping as the temperature decreases.
The so-called breathing Fermi surface model was proposed [96–98] to describe
this low-temperature conductivity-like damping, α ∼ τ . In this model the elec-
tronic population lags behind the instantaneous equilibrium distribution due
to the precessing magnetization and requires dissipation of energy and angular
momentum to bring the system back to equilibrium.

Of the numerous microscopic models that have been proposed [99] to explain
the damping behaviour of metals, only the so-called “torque correlation model”
(TCM) [100] is qualitatively successful in explaining the nonmonotonic damp-
ing observed for hcp Co that results from conductivity-like and resistivity-like
behaviors at low and high temperatures, respectively. The central result of the
TCM is the expression

G̃ =
g2μ2

B

�

∑
n,m

∫
dk

(2π)3

∣∣∣〈n,k—[σ−, Ĥso]—m,k〉
∣∣∣2Wn,m(k) (8.80)

for the damping. The commutator [σ−, Ĥso] describes a torque between the spin
and orbital moments that arises as the spins precess. The corresponding matrix
elements in (8.80) describe transitions between states in bands n and m induced
by this torque whereby the crystal momentum k is conserved. Disorder enters
in the form of a phenomenological relaxation time τ via the spectral overlap

Wn,m(k) = − 1
π

∫
An(ε,k)Am(ε,k)

df

dε
dε (8.81)
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where the electron spectral function An(ε,k) is a Lorentzian centered on the
band n, whose width is determined by the scattering rate. For intraband tran-
sitions with m = n, integration over energy yields a spectral overlap which is
proportional to the relaxation time, like the conductivity. For interband tran-
sitions with m �= n, the energy integration leads to a spectral overlap that is
roughly inversely proportional to the relaxation time, like the resistivity.

To interpret results obtained with the TCM, Gilmore et al. [100–104]
used an effective field approach expressing the effective field about which the
magnetization precesses in terms of the total energy

μ0Heff = − ∂E
∂M

(8.82)

and then approximated the total energy by a sum of single-particle eigenvalues
E ∼∑n,k εnkfnk, so that the effective field naturally splits into two parts

Heff =
1

μ0M

∑
n,k

[
∂εnk

∂m
fnk + εnk

∂fnk

∂m

]
(8.83)

the first of which corresponds to the breathing Fermi surface model, intraband
transitions and conductivity-like behavior while the second term could be related
to interband transitions and resistivity-like behaviour. Evaluation of this model
for Fe, Co, and Ni using first-principles calculations to determine εnk including
spin–orbit coupling yields results for the damping α in good qualitative and
reasonable quantitative agreement with the experimental observations [101].

In spite of this real progress, the TCM has disadvantages. As currently formu-
lated, the model can only be applied to periodic lattices. Extending it to handle
inhomogeneous systems such as ferromagnetic substitutional alloys like permal-
loy (Ni80Fe20), magnetic multilayers or heterojunctions, disordered materials or
materials with surfaces, is far from trivial. The TCM incorporates disorder in
terms of a relaxation time parameter τ and so suffers from the same disadvan-
tages as all transport theories similarly formulated, namely, that it is difficult to
relate microscopically measured disorder unambiguously to a given value of τ .
Indeed, since τ in general depends on the incoming and scattered band index n,
the wavevector k, as well as the spin index, assuming a single value for it is a
gross simplification. An improved theoretical framework would allow us to study
not only crystalline materials such as the ferromagnetic metals Fe, Co, and Ni
and substitutional disordered alloys such as permalloy (Py), but also amorphous
materials and configurations such as magnetic heterojunctions, multilayers, thin
films, etc. which become more important and are more commonly encountered
as devices are made smaller.

The scattering–theoretical framework discussed in Section 8.3.2 satisfies these
requirements and has recently been implemented by extending a first-principles
scattering formalism [105, 106] based upon the local spin density approximation



124 Spin pumping and spin transfer

(LSDA) of density functional theory (DFT) to include noncollinearity, spin–
orbit coupling (SOC), and chemical or thermal disorder on equal footings [89].
Relativistic effects are included by using the Pauli Hamiltonian. To calculate
the scattering matrix, a “wavefunction matching” (WFM) scheme [105–107] has
been implemented with a minimal basis of tight-binding linearized muffin-tin or-
bitals (TB-LMTOs) [108, 109]. Atomic-sphere-approximation (ASA) potentials
[108, 109] are calculated self-consistently using a surface Green’s function (SGF)
method also implemented [110] with TB-LMTOs.

8.4.1.1 NiFe alloys The flexibility of the scattering–theoretical formulation
of transport can be demonstrated with an application to NiFe binary alloys
[89]. Charge and spin densities for binary alloy A and B sites are calculated
using the coherent potential approximation (CPA) [111] generalized to layer
structures [110]. For the transmission matrix calculation, the resulting spherical
potentials are distributed at random in large lateral supercells (SC) subject to
maintenance of the appropriate concentration of the alloy [105, 106]. Solving the
transport problem using lateral supercells makes it possible to go beyond effective
medium approximations such as the CPA. As long as one is only interested in
the properties of bulk alloys, the leads can be chosen for convenience and Cu
leads with a single scattering state for each value of crystal momentum, k‖, are
very convenient. The alloy lattice constants are determined using Vegard’s law
and the lattice constants of the leads are made to match. Though NiFe is fcc
only for the concentration range 0 ≤ x ≤ 0.6, the fcc structure is used for all
values of x.

To illustrate the methodology, we begin by calculating the electrical resist-
ivity of Ni80Fe20. In the Landauer–Büttiker formalism, the conductance can
be expressed in terms of the transmission matrix t as G = (e2/h)Tr

{
tt†
}

[112, 113]. The resistance of the complete system consisting of ideal leads sand-
wiching a layer of ferromagnetic alloy of thickness L is R(L) = 1/G(L) =
1/GSh+2Rif+Rb(L) where GSh =

(
2e2/h

)
N is the Sharvin conductance of each

lead with N conductance channels per spin, Rif is the interface resistance of a
single N–F interface, and Rb(L) is the bulk resistance of a ferromagnetic layer of
thickness L [81, 106]. When the ferromagnetic slab is sufficiently thick, Ohmic
behavior is recovered whereby Rb(L) ≈ ρL as shown in the inset to Fig. 8.4
and the bulk resistivity ρ can be extracted from the slope of R(L). For currents
parallel and perpendicular to the magnetization direction, the resistivities are
different and have to be calculated separately. The average resistivity is given
by ρ̄ = (ρ‖ + 2ρ⊥)/3, and the anisotropic magnetoresistance ratio (AMR) by
(ρ‖ − ρ⊥)/ρ̄.

For Ni80Fe20 we find values of ρ̄ = 3.5±0.15 μOhm cm and AMR = 19±1%,
compared to experimental low-temperature values in the range 4.2–4.8 μOhm-
cm for ρ̄ and 18% for AMR [114]. The resistivity calculated as a function of x is
compared to low-temperature literature values [114–117] in Fig. 8.4. The overall
agreement with previous calculations is good [118, 119]. In spite of the smallness
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Fig. 8.4. Calculated resistivity as a function of the concentration x for fcc
Ni1−xFex binary alloys with (solid line) and without (dashed-dotted line)
SOC. Low-temperature experimental results are shown as symbols [114–117].
The composition Ni80Fe20 is indicated by a vertical dashed line. Inset: re-
sistance of Cu–Ni80Fe20–Cu as a function of the thickness of the alloy layer.
Dots indicate the calculated values averaged over five configurations while
the solid line is a linear fit.

of the SOC, the resistivity of Py is underestimated by more than a factor of
4 when it is omitted, underlining its importance for understanding transport
properties.

Assuming that the Gilbert damping is isotropic for cubic substitutional alloys
and allowing for the enhancement of the damping due to the F–N interfaces
[14, 45, 120, 121], the total damping in the system with a ferromagnetic slab
of thickness L can be written G̃(L) = G̃if + G̃b(L) where we express the bulk
damping in terms of the dimensionless Gilbert damping parameter α G̃b(L) =
αγMs(L) = αγμsAL, where μs is the magnetization density and A is the cross-
section. The results of calculations for Ni80Fe20 are shown in the inset to Fig. 8.5.
The intercept at L = 0, G̃if, allows us to extract the damping enhancement
[45] but here we focus on the bulk properties and leave consideration of the
material dependence of the interface enhancement for later study. The value of
α determined from the slope of G̃(L)/(γμsA) is 0.0046 ± 0.0001 that is at the
lower end of the range of values 0.004–0.013 measured at room temperature for
Py [120–131].

Fig. 8.5 shows the Gilbert damping parameter as a function of x for Ni1−xFex

binary alloys in the fcc structure. From a large value for clean Ni, it decreases
rapidly to a minimum at x ∼ 0.65 and then grows again as the limit of clean fcc
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Fig. 8.5. Calculated zero-temperature (solid line) and experimental room tem-
perature (symbols) values of the Gilbert damping parameter as a function
of the concentration x for fcc Ni1−xFex binary alloys [120–131]. Inset: total
damping of Cu–Ni80Fe20–Cu as a function of the thickness of the alloy layer.
Dots indicate the calculated values averaged over five configurations while
the solid line is a linear fit.

Fe is approached. Part of the decrease in α with increasing x can be explained
by the increase in the magnetic moment per atom as we progress from Ni to
Fe. The large values of α calculated in the dilute alloy limits can be understood
in terms of conductivity-like enhancement at low temperatures [132, 133] that
has been explained in terms of intraband scattering [100–102, 104]. The trend
exhibited by the theoretical α(x) is seen to be reflected by experimental results
obtained at room temperature. In spite of a large spread in measured values,
these seem to be systematically larger than the calculated values. Part of this
discrepancy can be attributed to an increase in α with temperature [122, 134].

Calculating α for the end members, Ni and Fe, of the substitutional alloy
Ni1−xFex presents a practical problem. In these limits there is no scattering
whereas in experiment there will always be some residual disorder at low tem-
peratures, and at finite temperatures, electrons will scatter from the thermally
displaced ions. We introduce a simple “frozen thermal disorder” scheme to study
Ni and Fe and simulate the effect of temperature via electron–phonon coupling
by using a random Gaussian distribution of ionic displacements ui, correspond-
ing to a harmonic approximation. This is characterized by the root-mean-square
(RMS) displacement Δ =

√〈—ui—2〉 where the index i runs over all atoms.
Typical values will be of the order of a few hundredths of an angstrom. We will
not attempt to relate Δ to a real lattice temperature here.
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Fig. 8.6. Calculated Gilbert damping and resistivity for fcc Ni as a function
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constant, a0 = 3.524 Å.

We calculate the total resistance R(L) and Gilbert damping G̃(L) for ther-
mally disordered scattering regions of variable length L and extract the resistivity
ρ and damping α from the slopes as before. The results for Ni are shown as a
function of the RMS displacement in Fig. 8.6. The resistivity is seen to increase
monotonically with Δ underlining the correlation between Δ and a real tempera-
ture. For large values of Δ, α saturates for Ni in agreement with experiment [132]
and calculations based on the torque-correlation model [101, 103, 104] where no
concrete scattering mechanism is attached to the relaxation time τ . The ab-
solute value of the saturated α is about 70% of the observed value. For small
values of Δ, the Gilbert damping increases rapidly as Δ decreases. This sharp
rise corresponds to the experimentally observed conductivity-like behavior at
low temperatures and confirms that the scattering formalism can reproduce this
feature.

8.4.2 Beta

To evaluate expressions (8.78) for the out-of-plane spin-torque parameter β given
in Section 8.3.2 requires modeling domain walls (DW) in the scattering region
sandwiched between ideal Cu leads. A head-to-head Néel DW is introduced inside
the permalloy region by rotating the local magnetization to follow the Walker
profile, m(z) = [f(z), 0, g(z)] with f(z) = cosh−1[(z − rw)/λw] and g(z) =
− tanh[(z − rw)/λw] as shown schematically in Fig. 8.7(a). rw is the DW center
and λw is a parameter characterizing its width. In addition to the Néel wall, we
also study a rotated Néel wall with magnetization profile m(z) = [g(z), 0, f(z)]
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Fig. 8.7. (a) Sketch of the configuration of a Néel DW in Py sandwiched by two
Cu leads. The arrows denote local magnetization directions. The curve shows
the mutual angle between the local magnetization and the transport direction
(z-axis). (b) Magnetization profile of a rotated Néel wall. (c) Magnetization
profile of a Bloch wall.

sketched in Fig. 8.7(b) and a Bloch wall with m(z) = [g(z), f(z), 0] sketched in
Fig. 8.7(c).

The effective Gilbert damping constant α of permalloy in the presence of all
three DWs calculated using (8.78) is shown in Fig. 8.8. For different types of
DWs, α is identical within the numerical accuracy indicating that the Gilbert
damping is isotropic due to the strong impurity scattering [103]. In the adia-
batic limit, α saturates to the same value (the dashed line in Fig. 8.8) calculated
for bulk permalloy using (8.68). It implies that the DWs in permalloy have lit-
tle effect on the magnetization relaxation and the strong impurity scattering is
the dominant mechanism to release energy and magnetization. This is in con-
trast to DWs in (Ga,Mn) As where Gilbert damping is mostly contributed by
the reflection of the carriers from the DW [30]. At λw < 5 nm, the nonadia-
batic reflection of conduction electrons due to the rapidly varying magnetization
direction becomes significant and results in a sharp rise in α for narrow DWs.

The out-of-plane torque is formulated as β(�γP/2eMs)m × (j · ∇)m in the
Landau–Lifshitz–Gilbert (LLG) equation under a finite current density j. In
principle, the current polarization P is required to determine β. Since the spin-
dependent conductivities of permalloy depend on the angle between the current
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and the magnetization, P is not well defined for magnetic textures. Instead, we
calculate the quantity Pβ, as shown in Fig. 8.9 for a Bloch DW. For λw < 5 nm,
Pβ decreases quite strongly with increasing λw corresponding to an expected
nonadiabatic contribution to the out-of-plane torque. This arises from the spin-
flip scattering induced by the rapidly varying magnetization in narrow DWs
[135] and does not depend on the specific type of DW. For λw > 5 nm, which
one expects to be in the adiabatic limit, Pβ decreases slowly to a constant value
[27, 32, 51, 66, 75, 135–143]. It is unclear what length-scale is varying so slowly.
Unfortunately, the spread of values for different configurations is quite large for
the last data point and our best estimate of Pβ for a Bloch DW in permalloy
is ∼ 0.008. Taking the theoretical value of P ∼ 0.7 for permalloy [89], our best
estimate of β is a value of ∼ 0.01.
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8.5 Theory versus experiments

Spin-torque induced magnetization dynamics in multilayers and its reciprocal
effect, spin pumping, are experimentally well established and quantitatively
understood within the framework described in this chapter, and need not be
discussed further here [15, 20]. Recent FMR experiments also confirm the spin-
pumping contribution to the enhanced magnetization dissipation [144]. Spin
pumping occurs in magnetic insulators as well [7, 145].

The parameters that control the current-induced dynamics of continuous tex-
tures are much less well known. Most experiments are carried out on permalloy
(Py). It is a magnetically very soft material with large domain wall widths of the
order of 100 nm. Although the adiabatic approximations appears to be a safe as-
sumption in Py, many systems involve vortex domain walls with large gradients
in the wall center, and, therefore, possibly sizable nonadiabatic corrections. An
effective description for such vortex dynamics has been constructed in Ref. [60],
where it was shown, in particular, that self-consistent quadratic corrections to
damping (which stem from self-pumped currents inducing back-action on the
magnetic order) is generally nonnegligible in transition-metal ferromagnets.

Early experimental studies [146, 147] for the torque-supplemented [Eq. (8.11)]
LLG equation describing current-driven domain-wall motion in magnetic wires
reported values of the β/α ratios in Py close to unity, in agreement with simple
Stoner-model calculations. However, much larger values β/α ∼ 8 were ex-
tracted from the current-induced oscillatory motion of domain walls [148]. The
inequalityβ �= α was also inferred from a characteristic transverse-to-vortex wall
structure transformation, although no exact value of the ratio was established
[149]. In Ref. [150], vanadium doping of Py was shown to enhance β up to nearly
10α, with little effect on α itself. Even larger ratios, β/α ∼ 20, were found for
magnetic vortex motion by an analysis of their displacement as a function of an
applied dc current in disk structures [151, 152].

Eltschka et al. [153] reported on a measurement of the dissipative spin-torque
parameter β entering Eq. (8.11), as manifested by thermally activated motion
of transverse and vortex domain walls in Py. They found the ratio βv/βt ∼ 7
for the vortex vs transverse wall, attributing the larger β to high magnetization
gradients in the vortex wall core. Their ratio βt/α ∼ 1.3 turns out to be close to
unity, where α is the bulk Gilbert damping. The importance of large spin-texture
gradients on the domain-wall and vortex dynamics was theoretically discussed
in Refs. [58, 60].

The material dependence of the current-induced torques is not yet well investi-
gated. A recent study on CoNi and FePt wires with perpendicular magnetization
found β ≈ α, in spite of the relatively narrow domain walls in these materials
[154]. Current-induced domain-wall dynamics in dilute magnetic semiconductors
[155] generally exhibit similar phenomenology, but a detailed discussion, espe-
cially of the domain wall creep regime that can be accessed in these systems, is
beyond the scope of this review.
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Finally, the first term in the spin-pumping expression (8.12) has been meas-
ured by Yang et al. [156] for a domain wall moved by an applied magnetic field
above the Walker breakdown field. These experiments confirmed the existence
of pumping effects in magnetic textures, which are Onsager reciprocals of spin
torques and thus expected on general grounds. Similar experiments carried out
below the Walker breakdown would also give direct access to the β parameter.

8.6 Conclusions

A spin-polarized current can excite magnetization dynamics in ferromagnets
via spin-transfer torques. The reciprocal phenomenon is spin pumping where a
dynamic magnetization pumps spins into adjacent conductors. We have discussed
how spin-transfer torques and spin pumping are directly related by Onsager
reciprocity relations.

In layered normal metal–ferromagnet systems, spin-transfer torques can be
expressed in terms of two conductance parameters governing the flow of spins
transverse to the magnetization direction and the spin accumulation in the nor-
mal metal. In metallic systems, the field-like torque is typically much smaller
than the effective energy gain/damping torque, but in tunnel systems they might
become comparable. Spin pumping is controlled by the same transverse conduct-
ance parameters as spin-transfer torques, the magnetization direction, and its
rate of change. It can lead to an enhanced magnetization dissipation in ultrathin
ferromagnets or a build-up of spins, a spin battery, in normal metals where the
spin-flip relaxation rate is low.

Spin-transfer torque and spin-pumping phenomena in magnetization textures
are similar to their counterparts in layered normal metal–ferromagnet systems. A
current becomes spin polarized in a ferromagnet and this spin-polarized current
in a magnetization texture gives rise to a reactive torque and a dissipative torque
in the lowest gradient expansion. The reciprocal pumping phenomena can be
viewed as an electromotive force; the dynamic magnetization texture pumps a
spin current that in turn is converted to a charge current or voltage by the giant
magnetoresistance effect. Naturally, the parameters governing the spin-transfer
torques and the pumping phenomena are also the same in continuously textured
ferromagnets.

When the spin–orbit interaction becomes sufficiently strong, additional effects
arise in the coupling between the magnetization and itinerant electrical currents.
A charge potential can then by itself induce a torque on the ferromagnet and
the reciprocal phenomenon is that a precessing ferromagnet can induce a charge
current in the adjacent media. The latter can be an alternative way to carry out
FMR measurements on small ferromagnets by measuring the induced voltage
across a normal metal–ferromagnet–normal metal device.

These phenomena are well known and we have reviewed them in a uni-
fied physical picture and discussed the connection between these and some
experimental results.
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[98] J. Kuneš and V. Kamberský, First-principles investigation of the damping
of fast magnetization precession in ferromagnetic 3d metals, Phys. Rev. B
65, 212411 (2002).

[99] B. Heinrich, Spin relaxation in magnetic metallic layers and multilayers,
in Ultrathin Magnetic Structures III (J.A.C. Bland and B. Heinrich, eds.),
Springer, New York, 2005, pp. 143–210.
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9 Spin Caloritronics

G. E. W. Bauer

9.1 Introduction

The coupling between spin and charge transport in condensed matter is studied
in the lively field referred to as spintronics. Heat currents are coupled to both
charge and spin currents [1, 2]. “Spin caloritronics” is the field combining ther-
moelectrics with spintronics and nanomagnetism, which recently enjoys renewed
attention [3, 4]. The term “caloritronics” (from “calor” the Latin word for heat)
describes the endeavor to control heat transport on micro- and nanometer scales.
Alternative expressions such as “(mesoscopic) heattronics” or “caloric transport”
have also been suggested. “Spin caloritronics” is specifically concerned with new
physics related to spin, charge and entropy/energy transport in materials and
nanoscale structures and devices. Examples are spin dependence of thermal con-
ductance, Seebeck and Peltier effects, heat current effects on spin transfer torque,
thermal spin and anomalous Hall effects, etc. Heat and spin are also coupled by
the dissipation and noise associated with magnetization dynamics giving rise to
the spin (wave) Seebeck and related effects (see also Ch. 18).

The societal relevance of the topic is given by the imminent breakdown of
Moore’s Law by the thermodynamic bottleneck: Further decrease in feature
size and transistor speed goes in parallel with intolerable levels of Ohmic en-
ergy dissipation associated with the motion of electrons in conducting circuits.
Thermoelectric effects in meso- [5] and nanoscopic [6] structures might help in
managing the generated heat. Spin caloritronics is intimately related to possible
solutions to these problems by making use of the electron spin degree of freedom.

Spin caloritronics is as old as spin electronics, starting in the late 1980’s
with M. Johnson and R. H. Silsbee’s [1] visionary theoretical insights into
the non-equilibrium thermodynamics of spin, charge and heat in metallic het-
erostructures with collinear magnetization configurations. Except for a few
experimental studies on the thermoelectric properties of magnetic multilayers
in the CIP (currents in the interface plane) configuration [7] in the wake of
the discovery of the giant magnetoresistance, the field remained dormant for
many years. The Lausanne group started systematic experimental work on what
we now call spin caloritronics in magnetic multilayer nanowires and further
developed the theory [8].

Several discoveries in the field of spin caloritronics excite the community, such
as the spin (wave) Seebeck effect in and signal transmission through magnetic
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insulators, the spin-dependent Seebeck effect in magnetic nanostructures, the
magnonic thermal Hall effect, giant Peltier effect in constantan/gold nanopillars,
and the thermal spin transfer torque. After a brief introduction into the basics
of how the spin affects classical thermoelectric phenomena, these topics will
appear in the following sections. While the first edition written in 2011 has been
fairly complete. The present update include recent developments but does not
do justice to the enormous amount of research carried out in the past five years,
for which I apologize.

9.2 Basic physics

We learn from textbooks that the electron-hole asymmetry at the Fermi energy
in metals generates thermoelectric phenomena. A heat current Q̇ then drags
charges with it, thereby generating a thermopower voltage or charge current J
for open or closed circuit conditions, respectively. Vice versa a charge current is
associated by a heat current, which can be used to heat or cool the reservoirs.
In a diffusive bulk metal the relation between the local driving forces, i.e. the
voltage gradient or electric field E = ∇rV and temperature gradient ∇rT reads

(
J
Q̇

)
= σ

(
1 S
Π κ/σ

)( ∇rV
−∇rT

)
. (9.1)

where σ is the electric conductivity, S the Seebeck coefficient, and κ the heat
conductivity [9]. The Kelvin-Onsager relation between the Seebeck and Peltier
coefficients Π = ST is a consequence of Onsager reciprocity [10, 11]. In the
Sommerfeld approximation, valid when the conductivity as a function of energy
varies linearly on the scale of the thermal energy kBT or, more precisely, when
L0T

2
∣∣∂2

εσ (ε) |εF

∣∣� σ (εF ),

S = −eL0T
∂

∂ε
lnσ(ε)|εF

, (9.2)

where the Lorenz constant L0 =
(
π2/3

)
(kB/e)2 and σ (ε) is the energy-

dependent conductivity around the Fermi energy εF . In this regime the
Wiedemann-Franz Law

κ = σL0T (9.3)

holds. Thermoelectric phenomena at constrictions and interfaces are obtained by
replacing the gradients by differences and the conductivities by conductances.

The spin dependence of the thermoelectric properties in isotropic and
monodomain metallic ferromagnets can be expressed in the two-current model
of majority and minority spins [1, 8, 13–15]:
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where Jc(s) = J(↑)±J(↓) and Q̇ = Q̇
(↑)

+Q̇
(↓)

are the charge, spin, and heat cur-
rents, respectively. P and P ′ stand for the spin-polarization of the conductivity
and its energy derivative

P =
σ(↑) − σ(↑)

σ(↑) + σ(↑)

∣∣∣∣
εF

; P ′ =
∂εσ

(↑) − ∂εσ
(↑)

∂εσ(↑) + ∂εσ(↑)

∣∣∣∣
εF

. (9.5)

μc =
(
μ(↑) + μ(↓)) /2 is the charge electrochemical potential and μs = μ(↑)−μ(↓)

the difference between chemical potentials of the two-spin species, i.e. the spin
accumulation. The spin-dependent thermal conductivities obey the Wiedemann-
Franz law κ(α) ≈ L0Tσ

(α) when S↑(↓) � √L0 and the total thermal conductivity
κ = κ(↑) + κ(↓). In Eq. (9.4) the spin heat current Q̇s = Q̇

(↑) − Q̇
(↓)

does not
appear. This is a consequence of the implicit assumption that there is no spin
temperature (gradient) Ts = T (↑) − T (↓) due to effective interspin and electron-
phonon scattering [13]. This approximation does not necessarily hold at the
nanoscale and low temperatures [16–18].

Above equations presume that the spin projections are good quantum num-
bers, which is not the case in the presences of non-collinear magnetizations [19] or
significant spin-orbit interactions [20]. Both complications give rise to new phys-
ics in spintronics, such as the spin Hall effect and current-induced spin transfer
torques. Both have their spin caloritronic equivalents.

The study and control of spin and heat currents carried by spin waves
(magnons) is referred to as “Magnonics” [21]. Lattice vibrations (phonons) pro-
vide a parallel channel for heat currents. The coupling of these modes can be
important for thermoelectric phenomena, causing for instance the phonon-drag
effect on the thermopower at lower temperatures. The heat current carried by
magnons is a spin current and may affect the Seebeck coefficient by a magnon
drag [22, 23]. In metallic ferromagnets the spin wave heat current appears to be
smaller than the thermoelectric heat current discussed above, but is the dom-
inant mode of spin transport in magnetic insulators [24, 25], but the coupling
between magnons and phonons plays a role as well (see §18.7 and the Ch. 18).

9.3 Spin dependent thermoelectric phenomena in metallic
structures

A consequence of the basics physics sketched above is the existence of
thermoelectric generalizations of the giant magnetoresistance (GMR), i.e., the
modulation of the electric charge and heat currents by the spin configuration of
magnetic multilayers, spin valves and tunneling junctions as well as a family of
thermal spin Hall effects.
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9.3.1 Magneto-Peltier and Seebeck effects

The magneto-Peltier and magneto-Seebeck effects are caused by the spin-
dependence of the Seebeck/Peltier coefficients in ferromagnets [1, 8, 13]. The
magnetothermopower has been observed in multilayered magnetic nanowires [8]
and granular cluster material [26, 27]. A large Peltier effect in constantan (CuNi
alloy)/Au [28] has been associated with magnetism in the phase-separation mag-
netic phase [29]. An enhancement of the Peltier effect in magnetic nanopillars
has been observed but not yet fully understood [30, 31].

A magneto-Seebeck effect in lateral spin valves has been demonstrated [32].
Here a temperature gradient is intentionally applied over an intermetallic inter-
face. The spin-dependence of the Seebeck coefficient induce a spin-polarized
current into the normal metal, in which Slachter et al. [32] detect the accompany-
ing spin accumulation by an analyzing ferromagnetic contact. The associated
spin-dependent Peltier effect was detected by Flipse et al. [33]. A spin-dependent
thermopower has been predicted for molecular spin valves from first-principles
theory [34]. A magneto Seebeck effect in magnetic tunnel junctions has been ob-
served [35, 36] and modeled by ab initio calculations [37, 38]. A spin-dependent
Seebeck effect in Py|Si tunneling junctions has been observed by Le Breton et
al. [39] by analyzing the magnetic field dephasing (Hanle effect) of a thermally
injected spin accumulation. Hu et al. found the spin Seebeck coefficient to be
larger than the charge Seebeck coefficient or P ′ > 1 [40] The thermoelectric
figure of merit can possibly be improved by employing the conducting edge and
surface states of topological insulators [41].

9.3.2 Thermal Hall effects

Thermal Hall effects exist in normal metals in the presence of external magnetic
fields and can be classified into three groups [42]. The Nernst effect stands for
the Hall voltage induced by a heat current. The Ettingshausen effect describes
the heat current induced transverse to an applied charge current. The Hall heat
current induced by a temperature gradient goes by the name of Righi-Leduc.
The spin degree of freedom opens a family of spin caloritronic Hall effects in
the absence of an external field which are not yet fully explored. We may add
the label spin in order to describe effects in normal metals (spin Hall effect,
spin Nernst effect, etc.). In ferromagnets we may distinguish the configuration
in which the magnetization is normal to both currents (anomalous Hall effect,
anomalous Nernst effect, etc.) from the configuration with in-plane magnetiza-
tion (planar Hall effect, planar Nernst effect, etc.) as sketched in Figure 9.2.
Theoretical work has been carried out with emphasis on the intrinsic spin-orbit
interaction [43–45].

Seki et al. [46] found experimental evidence for a thermal Hall effect in
Au|FePt structures, which can be due either to an anomalous Nernst effect in
FePt or a spin Nernst effect in Au. In GaMnAs the planar [47] and anomalous
[48] Nernst effects have been observed, with intriguing temperature dependences.
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Fig. 9.1. A sketch of the configurations for the anomalous (left figure) and planar
(right figure) Hall effects in ferromagnets. S and D denote source and drain
contacts and L and R left and right Hall contacts. The arrow denotes the
magnetization direction.

Slachter et al. [49] identified the anomalous Nernst effect and anisotropic mag-
netoheating in multiterminal permalloy|copper spin valves. Recently, the spin
Nernst effect in Pt has been observed in terms of a magnetothermopower of a
Pt|YIG bilayer [50]. The experiments confirm that the spin Nernst angle is of
the same order of magnitude but with opposite sign from the spin Hall angle as
predicted by first-principles calculations [51].

9.4 Thermal spin transfer torques

A spin current is in general not conserved. In a metal, angular momentum can be
dissipated to the lattice by spin-flip scattering. In the presence of a non-collinear
magnetic texture, either in a heterostructure, such as a spin valve and tunnel
junction, or a magnetization texture such as a domain wall or magnetic vortex,
the magnetic condensate also absorbs a spin current, which by conservation
of angular momentum leads to a torque on the magnetization that, if strong
enough, can lead to coherent magnetization precessions and even magnetization
reversal [52]. Just like a charge current, a heat current can exert a torque on
the magnetization [12], which leads to purely thermally induced magnetization
dynamics [53]. Such a torque can be measured under closed circuit conditions,
in which part of the torque is exerted by the spin-dependent thermopower, and
in an open circuit in which a charge current is suppressed [12].

9.4.1 Spin valves

The angular dependence of the thermal torque can be computed by circuit theory
[12, 13]. Thermal spin transfer torques have been detected in spin valves [6, 55].
Slonczewski [56] proposed a memory device based on the spin transfer torque
in spin valves with magnetic insulators that exerts a torque on a free magnetic
layer in the presence of a temperature gradient, i.e., by the spin Seebeck effect
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(§9.7 and Ch. 18). He concludes that the thermal torque can be more effective
in switching magnetizations than a charge current-induced torque.

9.4.2 Magnetic tunnel junction

Large thermal torques have been predicted by first-principles calculations for
magnetic tunnel junctions with thin MgO barriers that compare favorable with
those obtainable by an electric bias [57, 58]. Experimental evidence for thermal
spin transfer torques in magnetic tunnel junctions have been reported [59, 60].

9.4.3 Texture

Charge current-induced magnetization in magnetic textures have enjoyed a lot of
attention in recent years. Domain wall motion can be understood easily in terms
of angular momentum conservation in the adiabatic regime, in which the length
scale of the magnetization texture such as the domain wall width is much larger
than the scattering mean free path or Fermi wave length, as appropriate for most
transition metal ferromagnets. In spite of initial controversies, the importance of
dissipation in the adiabatic regime [61] is now generally appreciated. In analogy
to the Gilbert damping factor α the dissipation under an applied current is
governed by a material parameter βc that for itinerant magnetic materials is
of the same order as α [62]. In the case of a heat-current induced domain wall
motion, the adiabatic thermal spin transfer torque [12] is also associated with a
dissipative βT -factor that is independent of the charge-current βc [63–66]. Hals
et al. computed βT explicitly for GaMnAs [67]. Non-adiabatic corrections to
the thermal spin transfer torque in fast-pitch ballistic domain walls have been
calculated by first-principles [68]. Laser induced domain wall pinning might give
clues for heat current effects on domain wall motion [69].

In insulating ferromagnets, domain wall still be moved since part of the heat
current is carried by spin waves, and therefore associated with angular momen-
tum currents. In contrast to metals in which the angular momentum current can
have either sign relative to the heat current direction, in insulators the mag-
netization current flows always against the heat current, which means that the
adiabatic torque moves the domain wall to the hot region [70–72], as observed
in the yttrium iron garnet films [73]. Amplification of spin waves by the thermal
spin-transfer torque were reported in [74].

9.5 Magneto heat resistance

The heat conductance of spin valves is expected to depend on the magnetic con-
figuration, similar to the GMR, giving rise to a giant magneto-heat resistance
[12] or a magnetotunneling heat resistance. In contrast to the GMR, the mag-
netoheat resistance is very sensitive to inelastic (interspin and electron-phonon)
scattering [16, 17]. Additionally, also magnetic domain walls can affect the heat
current, giving rise to a magneto-heat resistance [75].



Magneto heat resistance 149

F

E

(a)

(b)

(b)

μ

μ

N F

Fig. 9.2. A temperature difference over a spin valve with half-metallic contacts
and an antiparallel configuration of the magnetic contacts. Plotted are the
electron distribution functions in the ferromagnets and the normal metal
spacer (μ is the chemical potential). In (a) the spins in the spacer are non-
interacting, in (b) they are strongly interacting, thereby allowing a heat
current flow through the right interface.

Inelastic scattering leads to a breakdown of the Wiedemann-Franz Law in spin
valves. This is most easily demonstrated for half-metallic ferromagnetic contacts
as sketched in Fig. 9.2 for a finite temperature bias over the sample. In the figure
the distribution functions are sketched for the three spatial regions. Both spins
form eigenstates in N, but in F only the majority spin exists. In Fig. 9.2(a) we
suppose absence of inelastic scattering between the spins, either by direct Cou-
lomb interaction or indirect energy exchange via the phonons. When a strong
interaction is switched on both spins in N will adopt the same temperature as
sketched in Fig. 9.2(b). The temperature gradient on the right interface will in-
duce a heat current, while a charge current is suppressed, clearly violating the
Wiedemann-Franz Law. A spin heat valve effect can therefore only exist when
the spin-spin and spin-phonon interactions are sufficiently weak. It is implies the
existence of a spin temperature or spin heat accumulation as discussed above.
Dejene et al. [18] was able to measure the latter parameters by comparing the
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Fig. 9.3. The dependence of the heat
conductance of a magnetic tunnel
junction or spin valve on the
magnetic configuration can be used
to control possible overheating of a
substrate, such as a hot spot in an
integrated circuit.

heat conductance for parallel and antiparallel metallic spin valves. An alterna-
tive model in terms of the spin Seebeck effect (see §9.7) for magnetic metals
is possible, but not consistent with the measured relaxation lengths that were
significantly reduced compared that of the GMR.

The heat conductance of tunnel junctions is expected to be less sensitive to
inelastic scattering. A useful application for on-chip heat management could be
a tunneling heat valve, i.e. a switchable heat sink as illustrated in Fig. 9.3.

9.6 Spin caloritronic heat engines and motors

Onsager’s reciprocal relations [10] reveal that seemingly unrelated phenomena
can be expressions of identical microscopic correlations between thermodynamic
variables of a given system [11]. The archetypal example is the Onsager-Kelvin
identity of thermopower and Peltier cooling mentioned earlier. We have seen that
spin and charge currents are coupled with each other and with the magnetization.
Furthermore, mechanical and magnetic excitations are coupled by the Barnett
and Einstein-de Haas effects [76, 77]. The thermoelectric response matrix in-
cluding all these variables can be readily formulated for a simple model system
consisting of a rotatable magnetic wire including a domain wall as sketched in
Fig. 9.4.

The linear response matrix then reads J = L̂X, where the generalized currents
J and forces X

J =
(
Jc, JQ, ϕ̇, ṙw

)T (9.6)

X =
(−ΔV, −ΔT

T , τmech
ext , −2AMsHext

)T
(9.7)
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Fig. 9.4. Magnetic nanowire of length l in electrical and thermal contact with
reservoirs. A domain wall is centered at position rw. The wire is mounted
such that it can rotate around the x-axis. A magnetic field and mechanical
torque can be applied along x.

are related by the response matrix

L̂ =

⎛
⎜⎜⎝
Lcc LcQ Lcϕ Lcw

LQc LQQ LQϕ LQw

Lϕc LϕQ Lϕϕ Lϕw

Lwc LwQ Lwϕ Lww

⎞
⎟⎟⎠ . (9.8)

Onsager reciprocity implies that Lxy = ±Lyx. The elements can be computed
by scattering theory [64].

The matrix relation between generalized forces and currents implies a large
functionality of magnetic materials. Each of the forces can give rise to all cur-
rents, where a temperature gradient is especially relevant here. The response
coefficient LcQ clearly represents the Seebeck effect, LQQ the heat conduct-
ance, LϕQ a thermally driven (Brownian) motor, and LwQ a heat current driven
domain wall motion [63]. Onsager symmetry implies that LwQ = LQw and
LϕQ = −LQϕ. E.g. a Peltier effect can be expected by moving domain walls
[63, 64] and mechanical rotations [64].

9.7 Spin Seebeck and related effects

The most spectacular phenomenon in the field of spin caloritronics is arguably
the spin Seebeck effect, discovered first in metals [78], and later in electrically
insulating Yttrium Iron Garnet (YIG) [79] and ferromagnetic semiconductors
(GaMnAs) [80, 81], all with Pt contacts. The spin Seebeck effect stands for the
electromotive force generated by a ferromagnet with a temperature bias over a
strip of heavy metal normal to the heat current. This effect is interpreted in
terms of a thermally induced spin current injected into the normal metal that
is transformed into a measurable voltage by the inverse spin Hall effect [82–84].
The inverse spin Hall effect is not essential for the spin Seebeck effect, since
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the thermally generated spin accumulation can be detected in principle by spin
valves [85] or by the spin accumulation-induced anomalous Hall effect [86]. A
review [87] and separate Chapter of this book are devoted to the spin Seebeck
effect, so the present Section is kept brief.

It is important to point out the difference between the spin Seebeck effect
and the magneto- or spin-dependent Seebeck effect measured by Slachter et al.
[32] (see § 9.3.1). Both are generated at an interface between a ferromagnet and
a metal. In the magneto-Seebeck effect a temperature gradient is intentionally
applied over an intermetallic interface, which is quite different from the spin
Seebeck effect, and it can be explained by traditional spin caloritronics concepts
Johnson and Silsbee [1]. On the other hand, in the spin Seebeck effect the ISHE
contact is thermally floating and a standard thermoelectric explanation fails [88]
(see, however, [89]).

There is consensus by now that the origin of the spin Seebeck effect is a
net spin pumping current over the ferromagnet/metal interface induced by a
non-equilibrium magnon distribution [90, 91, 93]. For a quantitative modeling of
typical experimental sample thicknesses the bulk-spin Seebeck effect appears to
dominate the interface contribution. The phonon-magnon drag has been found
to be important at lower temperature [92, 94, 95]. In magnetic insulators con-
ventional thermoelectrics cannot be applied. In the “longitudinal” configuration
for the spin Seebeck effect, the temperature gradient is applied normal to the
interface [96]. Slachter et al.’s [32] and subsequent experiments in metal struc-
tures are in principle also affected by the spin Seebeck effect, but at present
there is not conclusive comparison of its magnitude relative to spin-dependent
thermoelectrics.

As mentioned in Sec. 9.4.1, the physics of the thermal torque induced by
heat currents in spin valves with an insulator as polarizing magnet as pro-
posed by Slonczewski [56] is identical to the longitudinal spin Seebeck effect [96],
as explained theoretically by Xiao et al. [90]. The “loose” magnetic monolayer
model hypothesized by Slonczewski appears to mimic the solution of the Landau-
Lifshitz-Gilbert equation, which predicts a thin magnetically coherent layer that
effectively contributes to the spin pumping. Slonczewski’s claim that the heat
current-induced spin transfer torque through magnetic insulators should be large
is supported by first-principles calculations that predict that the spin-mixing
conductance at the interface between YIG and silver is close to the intermetallic
value [97]. This results is in stark contrast to the expectations from a Stoner
model for the magnetic insulator [90], but can be explained by local magnetic
moments at the interface [97].

Onsager relations as discussed above for spin-dependent thermoelectrics ex-
ist as well for insulating ferromagnets. Consequently, a spin Peltier effect exists
that has indeed been successfully observed [98, 99]. The Onsager matrix also
contains a diagonal element that relates the spin current over the interface with
a spin accumulation in the metal contact that is polarized parallel to the mag-
netization [85, 98, 100, 101] that becomes possible by the thermal agitation of
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the magnetization. This allows electric injection and detection of magnons into
magnetic insulators as observed in Pt|YIG lateral nanostructures [102–104] and
perpendicular spin valves [105, 106]. The observed long-range transmission of a
spin signal can be explained by diffusive magnon transport that is governed by
gradients of the magnon chemical potential [107]. A related non-local transverse
spin Seebeck effect confirms an important role of the magnon chemical potential
in spin transport of insulators. These experiments can be considered the first
steps towards electrical and thermal control of magnon Bose condensates and
the associated spin superfluidity [107]. A natural extension of the non-local elec-
tric magnon injection is the non-local transverse spin Seebeck effect in which the
magnons are injected by temperature gradients [108, 109].

The thermal equilibrium spin dynamics of YIG can be well understood by
atomistic spin simulations based on a classical Heisenberg model [110] The spin
Seebeck effect has been used successfully as an analytical tool to measure spin
correlations in magnetic insulators [111–113]. The high-temperature sign of the
spin Seebeck effect in gadolinium iron garnet occurs at the compensation point
[114], while the low temperature sign change [111] can be well explained in
terms of the temperature dependence of the exchange gap between the acoustic
and optical magnon bands. However, the temperature dependence of the spin
Hall effect close the Curie temperature [115] obeys a power law that cannot be
explained by equilibrium dynamics [110]. Anomalies in the spin Seebeck effect
as a function of applied magnetic field are well explained by a strong-coupling
magnon-phonon Boltzmann theory [113] under the assumption that the acoustic
quality of YIG is better than the magnetic one.

9.8 Conclusions

After completing of the first edition of this review, the field of spin caloritron-
ics has expanded rapidly. Many theoretical concepts have been experimentally
confirmed, new effects have been discovered and the understanding of known
effects moved from qualitative to quantitative. While initial hopes that spin
effects might lead quickly to new thermoelectric devices with improved effi-
ciency have been tempered a bit, the search for applications is still going strong
[116, 117]. While initial experiments focused on room temperature phenomena,
many groups are moving to study phenomena at low temperatures. This will
lead to new discoveries and a better understanding of the microscopic physics of
spin transport, especially in magnetic insulators.
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10 Multiferroics

N. Nagaosa

10.1 Introduction

Recent developments in the physics of multiferroics are discussed from the view-
point of the spin current and “emergent electromagnetism” for constrained
systems. Starting from the Dirac equation, the projection of the wavefunctions
onto the low-energy subspaces leads to a gauge structure analogous to elec-
tromagnetism. When the SU(2) spin space is preserved, it leads to a SU(2)
non-abelian gauge field which is coupled to the spin current, corresponding to
the spin–orbit interaction (SOI). When the wavefunctions are further projected
onto one of the spin states assuming the magnetic ordering, the gauge field
becomes a U(1) abelian gauge field similar to the electromagnetic field (emf).
Therefore, there are three sources of U(1) gauge fields, i.e. (i) the Berry phase
associated with the noncollinear spin structure, (ii) the spin-orbit interaction
(SOI), and (iii) the usual emf. These three fields interact with each other, and
lead to a variety of nontrivial phenomena in solids. In this chapter, we review
multiferroic phenomena in noncollinear magnets from this viewpoint. Theories
of multiferroic behavior of cycloidal helimagnets are discussed in terms of the
spin current or vector spin chirality. Relativistic SOI leads to a coupling between
the spin current and the electric polarization, and hence the ferroelectric and
dielectric responses are a new and important probe for the spin states and their
dynamical properties. Microscopic theories of the ground state polarization for
various electronic configurations, collective modes including the electromagnon,
and some predictions including photoinduced chirality switching are discussed
with comparison to experimental results.

The current is one of the most important concepts in physics. It can carry
physical quantities and information, and the conservation law for the charge
and electric current is fundamental to all electromagnetic phenomena. The basic
theory describing electrons coupled to an electromagnetic field (emf) is quan-
tum electrodynamics (QED), where the Dirac relativistic electrons and their
charge current are minimally coupled to the emf. Therefore, it appears that
there is no chance of the spin current playing role in a electromagnetic phenom-
ena. More explicitly, in natural units where � = c = 1, the QED Lagrangian
reads [1]

L = ψ̄†[iγμD̂μ −m]ψ (10.1)

N. Nagaosa, ‘Multiferroics’, in Spin current. Second Edition. Edited by S. Maekawa,

S.O. Valenzuela, E. Saitoh, and T. Kimura. Oxford University Press (2017).

c© Oxford University Press.
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where ψ is the four-component spinor field operator, ψ̄ = ψ†γ0, γμ are the Dirac
matrices, and D̂μ = ∂μ−ieAμ is the gauge covariant derivative with μ = 0, 1, 2, 3.
The four-component charge current density is defined as

jμ = − ∂L

∂Aμ
= −eψ̄γμψ (10.2)

whose zero-component is the charge density ρ, while the spatial components are
the current density �j. From gauge invariance, the conservation law of the charge
is derived through Noether’s theorem as

∂μj
μ =

∂ρ

∂t
+∇ ·�j = 0. (10.3)

By taking the variation, one can derive the Maxwell equation

∂μF
μν = jν (10.4)

and Dirac equation

[iγμD̂μ −m]ψ = 0. (10.5)

As is well known, the solutions to the Dirac equation are classified into two
classes, i.e. the positive energy and negative energy states separated by twice
the rest-mass energy of the electrons, 2mc2. Since the energy mc2 is of the order
of MeV , for low-energy phenomena typically of the order of ∼eV , the nega-
tive energy states are not relevant. Therefore, the nonrelativistic Schrödinger
equation is usually used, which describes the dynamics of the two-component
spinor wavefunctions for positive energy states. However, one needs to take into
account one important aspect of “projection”. Namely, the neglect of the nega-
tive energy states means the projection of the wavefunctions onto the positive
energy states, i.e. sub-Hilbert space. Usually the subspace is not flat but curved,
and associated geometrical structure is introduced. The derivation of the effect-
ive Lagrangian describing the low-energy physics is achieved by expansion with
respect to 1/(mc2), and the result reads [2, 3]

L = iψ†D0ψ + ψ† �D
2

2m
ψ +

1
2m

ψ†
[
eqτa �A · �Aa +

q2

4
�Aa · �Aa

]
ψ (10.6)

where ψ is now a two-component spinor, D0 = ∂0 + ieA0 + iqAa
0

τa

2 , and Di =
∂0− ieAi− iqAa

i
τa

2 (i = 1, 2) are the gauge covariant derivatives with q being the
quantity proportional to the Bohr magneton [2, 3]. Aμ is the vector potential for
the emf, while the SU(2) gauge potential is defined as Aa

0 = Ba, Aa
i = εia�E�. The

former is coupled to the charge current, and the latter to the four-component spin
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current ja
0 = ψσaψ, ja

i = 1
2mi [ψ

†σaDiψ −Diψ
†σaψ]. Note that the spin current

is a tensor quantity with one suffix for the direction of the spin polarization while
the other is for the direction of the flow. Note, however, an important difference
between the emf and the SU(2) gauge field. The former has gauge symmetry, i.e.
the freedom to choose the arbitrary gauge for the vector potential Aμ, while the
“vector potential” Aa

μ for the latter is given by the physical field strength �B and
�E. Actually, the relation ∂μAa

μ = 0 holds. Therefore, the SU(2) gauge symmetry
is absent. This is the basic reason why the spin is not conserved in the presence
of the relativistic SOI. (Note that SU(2) gauge theory is a nonlinear theory and
the gauge field is “charged,” and the sum of the spin current by the matter field
and the gauge field is conserved in the non-abelian gauge theory as Yang and
Mills first showed [1].) Instead, the spin current is “covariantly” conserved and
satisfies [2, 3]

D0J
a
0 + �D · �Ja = 0. (10.7)

This means that in the co-moving frame the spin is conserved while in the labora-
tory frame the spin source or sink appears when the electron forms a loop and
comes back to the same position in space since the frame has changed. Zaanen
et al. [3] studied the physical meaning of this conservation law by separating the
spin current into two parts, i.e. the coherent part and the noncoherent part. The
former is associated with order such as magnetism or superfluidity, and recovers
its conservation law thanks to the single-valueness of the order parameter, and
is irrelevant to spin accumulation. The noncoherent part, on the other hand, is
associated with particle transport, and does not give any “soft” modes. The spin
current discussed in this chapter corresponds to the former, associated with the
noncollinear spin structure, while spin-current transport such as the spin Hall
effect (SHE) [4] is due to the latter, as described briefly below.

Even though the usual conservation law for the spin current is absent, the
coupling between Aa

μ and ja
μ leads to several interesting phenomena. For ex-

ample, it is suggested that the electric field drives the spin current perpendicular
to it, i.e.

ja
i ∝ εia�E�, (10.8)

This is the simplest form of the spin Hall effect (SHE) [4] even though the band
structure and disorder effect are important in discussing the SHE in real mater-
ials. On the other hand, the electric polarization �P is given by the derivative of
the Lagrangian with respect to �E, i.e.

Pi ∝ εia�j
a
� , (10.9)

which means that the spin current produces the ferroelectric moment.
When magnetic ordering occurs, the wavefunctions are further projected on

to the spin component at each site. In the continuum approximation,

ψσ = zσf (10.10)
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with f being the spinless fermion corresponding to the charge degrees of freedom.
This leads to the three “electromagnetic fields” in magnetic systems, i.e. (i) the
Berry phase associated with the noncollinear spin structure, (ii) the spin-orbit
interaction (SOI), and (iii) the usual Maxwell emf as described below. We call
these U(1) gauge fields “emergent electromagnetism.”

Putting Eq. (10.10) into Eq. (10.6), we obtain the effective Lagrangian for the
f field as

Leff. = f†
[
i∂0 + aB

0 + aSO
0 +A0 +

(�∇+ i�aB + i�aSO + ie �A)2

2m

]
f (10.11)

where aB
μ = i〈z|∂μ|z〉 is the U(1) field originating from the Berry connection

of the spin wavefunctions, and aSO
α = Aa

α〈z|τa∂α|z〉, aSO
0 = Aa

0〈z|τa|z〉 are the
U(1) field coming from the SOI. These three U(1) gauge fields and their interplay
describe a variety of novel phenomena in magnets as listed below.

(i) The spin chirality induced anomalous Hall effect where �b = ∇ × �aB is
produced by the noncoplanar spin and induces the Chern–Simon term
∝ εμνλAμ∂νAλ for the Maxwell emf [5].

(ii) The U(1) gauge field of SOI can lead to a fictitious magnetic field which
cancels within the unit cell of the crystal, but gives rise to the dis-
tribution of the Berry curvature in momentum space, leading to the
anomalous Hall effect. Especially near the band (anti)crossing structures,
the Berry curvature is enhanced giving the dominant contribution to the
Hall conductivity [5].

(iii) The Dzyaloshinskii–Moriya (DM) spin–orbit interaction leads to the
SU(2) gauge field and hence �aSOin the CP1 representation, which un-
der a magnetic field produces the Skyrmion lattice structure with the
effective magnetic field ∇× �aB , which supports the topological Hall ef-
fect [6, 7]. This is an example where three gauge fields are entangled with
each other.

(iv) The electromotive force due to spin. The time dependence of the spin
Berry phase �bB = ∇×�aB leads to the effective electric field �eB and hence
the voltage drop �E in metallic magnets [8–10].

These are just a few examples and many more are unexplored. In the follow-
ing, we study the physical consequences of this emergent electromagnetism in
insulating magnetic systems. In an insulator, there is no transport current [11].
However, the current and spin current have a non-dissipative nature, which leads
to various interesting phenomena. Multiferroics is the most representative arena
from this viewpoint, and is discussed in most of the sections below. In the last
section, we also mention other possible systems for emergent electromagnetism.
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10.2 Multiferroics—a generic consideration

The close relation between the electric and magnetic fields has the essence of
electromagnetism described by the Maxwell equations. Namely, the electric and
magnetic fields are two sides of the single field Aμ (vector potential). In solids, the
charge and spin of electrons determine the electric and magnetic properties. More
explicitly, the electromagnetic responses are described by the function Kμν(q, ω)
(μ, ν = 0, 1, 2, 3, q: momentum; ω: frequency) which relates the current Jμ to
the external electromagnetic field Aν as Jμ = KμνAν . The Onsager reciprocal
theorem gives the constraint that

Kμν(q, ω,B) = Kνμ(−q, ω,−B) (10.12)

where B is the magnetic field representing time-reversal symmetry breaking and
can be replaced by the magnetization M [12].

The SOI in the previous section is written in the case of a spherically
symmetry potential as

HSO = λ�� · �s (10.13)

with �� being the orbital angular momentum �� = �r × �p, and λ is the spin–orbit
interaction strength, and is proportional to Z4 with Z being the atomic number.
Compared with free electrons in a vacuum, the strength of the relativistic SOI
can be enhanced by a factor of ∼ 106 which is the ratio of the rest mass of the
electrons, mc2, and the band gap. For 3d electrons in transition metal atoms, λ is
typically of the order of ∼20–50 meV, while it becomes ∼ 0.5 eV for 5d electrons.
The electron correlation energy, on the other hand, decreases from 3d to 5d
since the wavefunction is more expanded for 5d electrons. In the cubic crystal
field in transition metal oxides, the five-fold degeneracy of d orbitals is lifted
due to the ligand field of oxygen atoms. As a result, three-fold degenerate t2g

orbitals (xy, yz, zx orbitals) with lower energy, and doubly degenerate eg orbitals
(x2 − y2, 3z2 − r2 orbitals) with higher energy are formed. The matrix elements
of the orbital angular momentum �� are zero within the eg orbitals. On the other
hand, they are nonzero among the t2g orbitals and also between the eg and
t2g orbitals. This SOI is the origin of the relativistic coupling between magnetism
and electric polarization.

The linear magneto-electric (ME) effect is given by the formula [13, 14]

P = αH

M = αtE (10.14)

where α is the ME tensor and αt is its transpose. This relation can be de-
rived from the term −αijEiHj in the free energy F , Pi = −∂F/∂Ei, and
Mj = −∂F/∂Hj . For this term to be present, the symmetries of time rever-
sal T and space-inversion I need to be broken because P (M) is T -even and
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I-odd (T -odd and I-even), while the free energy should be even for both sym-
metries. The I-symmetry breaking in insulators is naturally accompanied by
ferroelectricity, while the T -symmetry is associated with magnetism. Therefore,
the coexistence of both orders, i.e. multiferroics, is most relevant to the giant
ME effect [15].

However, the coexistence of ferroelectric and magnetic orders has been con-
sidered to be difficult, because magnetism requires partially filled d-orbitals
while ferroelectricity was assumed to be driven by completely filled or empty
d-orbitals or lone-pair electrons. Even if both orders coexist, usually they are
almost decoupled from each other with separate transition temperatures.

This situation has changed since the discovery of multiferroic behavior in
RMnO3(R = Gd,Tb,Dy) [16]. In this material, the spontaneous electric polar-
ization Ps is induced by the magnetic order and they are necessarily strongly
coupled. In RMnO3, there are two successive magnetic phase transitions, and Ps

appears only below the second one [16–18]. This fact suggests that a particular
type of magnetic order is responsible for ferroelectricity. From this viewpoint,
Eq. (10.9) gives a clue, i.e. the spin current associated with the magnetic order
induces the electric polarization. Based on this idea, the spin-current model of
ferroelectricity has been theoretically developed as described in the next section.

10.3 Spin-current model of ferroelectricity

Let us start with a schematic explanation why the spin current is related to the
electric polarization. We base our discussion on duality in electromagnetism. It is
well known that a charge current produces a circulating magnetic field around it.
Two slightly shifted opposite charges produce an electric dipole, and its motion
produces a magnetic field, which is obtained by superimposing the two magnetic
fields on the two charges, perpendicular to both the direction of the motion and
the electric polarization. By duality, we can replace the charge by a magnetic
charge (monopole) and the magnetic field by an electric field. Although there
are no magnetic monopoles in nature, a magnetic dipole exists and its motion is
nothing but the spin current. Therefore, the spin current is expected to produce
the electric polarization as described in Eq. (10.9). Then the next question is
how the spin current flows in magnets. As discussed in Section 10.1 the spin
current is classified into two categories, i.e. coherent and non-coherent. We are
interested in the equilibrium state, and hence only the coherent part is possible.

The key idea is that the quantum nature of the spin operator leads to a spin
current for noncollinear spin structures. The commutation relation of the spin
components

[Sα, Sβ ] = i�εαβγS
γ (10.15)

is translated into

[Sz, S±] = ±i�S±, (10.16)
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where S± = Sx±iSy. Let us define the “phase” θ relative to the xy-component of
the spin as S± ∼ e±iθ. Then the commutation relation (10.16) can be translated
to

[Sz, θ] = i�. (10.17)

This is analogous to the relation between the particle number n and the phase
ϕ of a bosonic field operator, and a magnetically ordered state, i.e. the fixed θ
state, corresponds to a superfluid of spin current. Therefore, the spatial gradient
of the phase ∇θ leads to a super-spin-current. Combining this with Eq. (10.9),
one concludes that the electric polarization �P is given by

�P = η�eij × (�Si × �Sj), (10.18)

where η is a coupling constant proportional to the SOI [19]. This is the spin–
current mechanism of electric polarization.

To embody this schematic consideration, the cluster model of magnetic ions
sandwiching an oxygen ion has been studied theoretically by taking into account
the SOI when deriving the superexchange interaction [19]. Since this theory has
already been reviewed in several articles [20], we only quote its final results. As
mentioned above, the spin current flows between the two noncollinear spins �Si

and �Sj , which produces an electric polarization �P given by

�P ∼= −4e
9

(
V

Δ

)3

I�e12 × (�e1 × �e2). (10.19)

where I = 〈px|z|dzx〉, �e12 is a unit vector connecting the two magnetic ions,
and Δ (V ) is the energy difference (hybridization) between the p orbitals and
the d orbitals. The SOI is implicitly included in this model by picking up one
doublet after splitting by the SOI. Applying this result to various magnetic
structures, one can easily predict the presence or absence, and the direction,
of the polarization. This theory does not contradict the symmetry argument
developed for magnets [12], but stresses the physical mechanism of the spin-
current-induced polarization. One needs to be careful that this is not the only
mechanism of the magnetic origin electric polarization as will be discussed below.

After the present theory was published, it was revealed that the magnetic
structure is cycloidal and the above scenario has been established in RMnO3 [21–
24]. On the theory side, there are some other works related to this spin-current
model. Mostovoy [25] wrote down the form of the free energy for the spin-current
mechanism, and discussed furthermore the charge accumulation ∇· �P due to the
spin texture such as the vortex. Also a theory taking into account the atomic
displacements has been developed [26]. A detailed group-theoretical analysis of
multiferroics can be found in [27].

After this spin-current model succeeded in explaining multiferroic behavior
in RMnO3, extensive experimental studies have been done to look for other sys-
tems, and Ni3V2O8 [28], Ba0.5Sr1.5Zn2Fe12O22 [29], CoCr2O4 [30], MnWO4 [31],
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CuFeO2[32], LiCuVO4 [33], and LiCu2O2 [34] were discovered to be multiferroics.
Multiferroics is not a special phenomenon but is a rather universal phenomenon
in insulating correlated electrons. These experimental findings urged system-
atic theoretical studies of the microscopic mechanisms of spin-related electric
polarization.

For this purpose, we have considered the more general case of the cluster
model taking into account the five d orbitals, and also other possible origins of
the electric polarization [35, 36]. The perturbative approach in both V /Δ and
λ/Δ is employed, where V and Δ represent the transfer integral and the charge
transfer energy between the transition metal (TM) d and ligand (L) p orbitals.
The SOI at the ligand oxygen site is also considered. Therefore, the electric
polarization due to the SOI is proportional to λ in first-order perturbation, which
is more realistic because λ ∼ 20 meV is smaller than the energy denominators
such as Δ, which are of the order of a fraction of an eV at least.

This analysis concludes that the polarization �P�r+�e
2

appearing at the bond
between the sites �r and �r + �e is given by

�P�r+�e
2

= Pms(�m�r · �m�r+�e)�e+ P sp�e× (�m�r × �m�r+�e)

+P orb [(�e · �m�r)�m�r − (�e · �m�r+�e)�m�r+�e] , (10.20)

where �m�r is the spin direction at �r. The first term Pms ∝ (V /Δ)3 is the polar-
ization due to magnetostriction, which is nonzero when the inversion symmetry
between �r and �r + �e is absent because the two intermediate states of doubly
occupied d-orbitals becomes inequivalent. This term does not require the SOI,
and hence is considered to be larger than the rest of the terms if it exists. The
second term P sp ∝ (λ/Δ)(V /Δ)3 is due to the spin-current mechanism already
discussed. The third term P orb ∼ min(λ/V, 1)(V /Δ) is nonzero for the partially
filled t2g orbitals and comes from the modification of the single-spin anisotropy
due to the electric field [35, 36]. These three contributions appear differently
depending on the wavevector of the polarization. Therefore, experiments with
momentum resolution such as X-ray and neutron scattering can contribute to
the identification of the microscopic mechanism of the electric polarization.

A recent development is the microscopic studies of the polarization �Ps in
multiferroic materials by first-principles band structure calculations [37, 38]. It
is well known that the electric polarization is related to the Berry phase of the
Bloch wavefunctions [39, 40], which enabled the estimation of �Ps even for periodic
boundary conditions. By applying this method to TbMnO3 with LDA+U, two
groups examined the origin of the polarization. The obtained conclusions are:

(i) the calculated polarization with atomic displacements is an order
of magnitude larger than the purely electronic one without atomic
displacements;

(ii) the direction of the polarization is in accordance with the prediction of
the spin-current model [19], but its sign depends on the details of the
electronic states; and
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(iii) the atomic displacements are determined by various mechanisms and
not only by the Dzyaloshinski–Moriya (DM) interaction. Therefore, the
identification of the microscopic mechanisms requires a detailed analysis
for each material, but it also turns out that the spin-current model cap-
tures the qualitative features of the polarization. On the other hand, the
other approach to this problem is to consider the effective spin Hamilton-
ian which is consistent with the phase diagram and electric polarization
value observed experimentally. In the next section, we pursue this direc-
tion for RMnO3. Note here that the third term in Eq. (10.20) is thought
to be the origin of the multiferroic polarization in delafossite compounds
Cu(Fe,Al)O2 [41].

10.4 Spin Hamiltonian for RMnO3

Although the spin-current model has been successful in explaining the various
features of the multiferroic behavior ofRMnO3 as described above, a quantitative
understanding is desired as the next step. For that purpose, we have constructed
a realistic spin Hamiltonian for RMnO3 including the spin–phonon coupling, and
reproduced the entire phase diagram in the plane of the temperature and Mn-
O-Mn bond angle. This offers the basis of an electromagnon spectrum in the
following section.

In RMnO3, the nearest neighbor spin exchange interaction is rather small
(∼1 meV) compared with that in other perovskite compounds (e.g. ∼15 meV in
LaTiO3) because of the cancellation among various contributions from t2g and
eg orbitals [42]. Therefore, the next-neighbor antiferromagnetic (AF) coupling
becomes comparable to the nearest neighbor ferromagnetic (FM) coupling, which
leads to various competing phases including multiferroic phases with nontrivial
spin structures and the ferroelectric polarization �P [15, 16]. Also the magnetic-
field-induced �P flops [16, 43], and colossal magnetocapacitance [43–45] has been
experimentally observed.

The electronic configuration of Mn3+ is d4 with three electrons in t2g orbitals
and one electron in eg orbitals, whose spins are aligned parallel due to Hund’s
coupling forming the spin S = 2. We treat this spin as classical vectors on a
cubic lattice [42, 46], and the spin Hamiltonian reads

H =
∑
〈i,j〉

Jij
�Si · �Sj +D

∑
i

S2
ζi

+E
∑

i

(−1)ix+iy (S2
ξi
− S2

ηi
)

+
∑
〈i,j〉

�dij · (�Si × �Sj) +K
∑

i

(δ2i,i+x̂ + δ2i,i+ŷ), (10.21)

where ix, iy, iz represent integer coordinates of the i-th Mn ion with respect to
the cubic x, y and z axes.
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Fig. 10.1. (a) Superexchange interactions in RMnO3. See Eq. (10.21) in the
text. The small spheres are Mn atoms, while large spheres are O atoms. (b)
Modulations of the in-plane nearest neighbor ferromagnetic exchanges under
�E‖a. (c) Those under �E ‖ b. Here FM and AFM denote ferromagnetic and
antiferromagnetic exchanges. (Reproduced from Ref. [46].)

Figure 10.1(a) schematically shows the location of each interaction. The first
term in Eq. (10.21) is the spin-exchange interactions, while the second and third
terms represent the single-ion anisotropies. For the local axes ξi, ηi and ζi at-
tached to the MnO6 octahedron, we use the structural data of DyMnO3 [47].
The fourth term denotes the DM interaction with DM vectors �dij being given
by five DM parameters, αab, βab, γab, αc, and βc [48]. The last term represents
the elastic energy of the lattice with K being the elastic constant. Here δi,j
is the shift of the oxygen ion between the i-th and j-th Mn ions normalized
by the MnO bond length, which modulates the in-plane exchange coupling as
Jij = Jab + J ′

abδi,j leading to the spin–phonon interaction (J ′
ab=∂Jab/∂δ).

The values of Jab, Jc, Jb, D, E, and the five DM parameters have been
microscopically determined in Ref. [42] for several RMnO3 compounds. Except
for Jb, they are almost unchanged upon variation of the R-site in the vicinity
of the multiferroic phases. We take Jab = −0.8, Jc = 1.25,D = 0.2, E = 0.25,
(αab, βab, γab) = (0.1, 0.1, 0.14), and (αc, βc)=(0.42, 0.1) in energy unit of meV.
We also found that very weak FM exchange Ja is required to realize the E phase,
and adopt Ja = −0.1. The value of K is chosen to reproduce the experimental
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Fig. 10.2. Theoretical phase diagram of RMnO3 in the plane of Jb and T . ICS
denotes the incommensurate spiral phase. The E and ICS states coexist in
the shaded area. The inset shows the spin configuration in the E phase. The
ion shifts due to the electric polarization of (�S × �S)-type magnetostriction
are shown by gray arrows. (Reproduced from Ref. [50].)

P in the E phase as described below (see Fig. 10.3 a), which mostly comes from
the (�S · �S)-type contribution. We estimated J ′

ab=−2 from the Δo-dependence of
Jab for several R species (see Fig. 10.1 c). J ′

ab=∂Jab/∂Δo=−2. We choose Jb as
a variable which increases (decreases) as rR decreases (increases).

By the replica exchange Monte Carlo method [49] applied to Eq. (10.21), we
obtain the phase diagram in the T -Jb plane given in Fig. 10.2, which is in good
agreement with experiments. Four phases successively emerge at high T as Jb

decreases; the A, ab spiral, bc spiral, and E phases. In the A (E) phase, the FM
(up-up-down-down) Mn-spin layers stack antiferromagnetically, while in the ab
(bc) spiral phase, the Mn spins rotate within the ab (bc) plane (Pbnm setting)
to form transverse cycloids [21, 23]. As T increases, these four phases turn into
the sinusoidal collinear phase. Here the magnetic structure is commensurate (C)
with qb = 0.5 in the E phase, whereas it is incommensurate (IC) in the ab and
bc spiral phases. Note that the sinusoidal collinear state is also IC even above
the E phase (e.g. qb = 0.458 for Jb = 2.4), and the spin–phonon coupling is a
source of the IC-C transition between them with lowering T .

As for the magnitude of the electric polarization in each phase, we consider
both �PS due to (�Si · �Sj)-type magnetostriction, and �PAS of (�Si × �Sj)-type due
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Fig. 10.3. (a) Polarizations P vs Jb at low temperature, i.e. the (�S · �S) contri-
bution PS, the (�S × �S) contribution PAS, and experimentally measured P
in Eu1−xYxMnO3 and Y1−yLuyMnO3 [51]. The total polarization PS+PAS

reproduces well the experimental value. (b) Alternation of the spin directions
in the ab spiral state due to the staggered DM vectors where � (⊗) denotes
the positive (negative) c-component of the vector. Shifts of the oxygen ions
by (�S · �S)-type magnetostriction are shown by gray arrows. (Reproduced
from Ref. [50].)

to a spin current. The magnitude of the magnetostriction is estimated in the
point-charge model [50].

In Fig. 10.3(a), we show the calculated PS and PAS , and their sum as T→0 as
functions of Jb. There is a finite PS in the ab spiral phase (e.g. PS ∼ 500μC/m2

for Jb = 0.7), while it is zero in the bc spiral phase. We also plot the experimen-
tally measured P for the solid solutions Eu1−xYxMnO3 and Y1−yLuyMnO3 for
comparison [51]. The calculated sum PS+PAS reproduces well the experimental
P . Here the only fitting parameter is the elastic constant K ∼= 500, which is
determined to reproduce the experimental P in the E phase. It turns out that
PS can be comparable to or even larger than PAS, which explains why P is much
larger in the ab spiral phase than in the bc spiral phase. This is consistent with
the experiment in DyMnO3.
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In the E phase, we find that the spin structure is noncollinear with a spiral
modulation within the ab plane as shown in the inset of Fig. 10.2. Single-ion
anisotropy or the alternation of the in-plane easy magnetization axes due to
d3x2−r2/d3y2−r2-type orbital ordering is the origin of the cycloidal deformation.

With dominant up-up-down-down spin b-axis components, the oxygen ions
between nearly (anti)parallel Mn-spin pairs shift positively (negatively) to modu-
late the FM exchanges leading to the ferroelectric polarization (see the inset
of Fig. 10.2) [52, 53]. In Fig. 10.3(a), we indeed see a very large PS (∼4600
μC/m2) and a finite PAS due to this cycloidal deformation in the E phase in
agreement with the experimental observations [51]. As shown in Fig. 10.3 (a),
the nonmonotonic behavior of the spontaneous polarization as a function of Jb

is well reproduced by the two types of exchangestriction, i.e. (�S · �S)-type and
(�S × �S)-type.

10.5 Electromagnons in multiferroics

Up to now we have discussed the ground state properties or thermal equilibrium
properties of the multiferroics. The next important direction is their dynamics
and nonequilibrium properties. The small-amplitude fluctuations are the first
issue to be studied, which is discussed in this section. The small-amplitude vi-
bration around the ground state spin configuration is called a spin wave or
magnon. Its dynamics is different for different ground states. For the ferromag-
netic state with spontaneous magnetization along the z-axis, the commutation
relation Eq. (10.15) leads to the commutation relationship

[Mx,My] = i�Mz
∼= i�〈Mz〉 (10.22)

where the z-component of the uniform magnetization Mz is replaced by its ex-
pectation value, i.e. the spontaneous magnetization. This is justified by the
long-range ordering where the quantum mechanical operator can be regarded
as a classical variable when it happens to be the order parameter. Equation
(10.22) means that Mx and My are canonical conjugate variables and constitute
a harmonic oscillator with Hamitonian

H = D[(Mx)2 + (My)2] (10.23)

where D is the easy-axis spin anisotropy energy. The uniform magnetization has
the meaning of the generators of the uniform spin rotations, which correspond
to the Goldstone modes of the ordered state. In the ferromagnetic state given
above, Mx and My acting on the ground state produce different (excited) states,
while Mz does not change the ground state. (Note that when D = 0, rotations by
Mx and My generate other possible ground states.) In the case of an antiferro-
magnet, on the other hand, the order parameter is the staggered magnetization
�Ms. Suppose that �Ms ‖ ẑ; again Mx and My are the generators of the Goldstone

modes. Therefore, in this case, there are two sets of canonical conjugate pairs,
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i.e. Mx, Msx and My, Msy, to constitute the harmonic oscillators. In the case
of noncollinear magnets, all three components Mx, My, and Mz are the gener-
ators of the Goldstone modes [54]. Therefore, the number of Goldstone modes
is determined by the pattern of the symmetry breaking.

In the case of multiferroics, the spinwave is coupled to the electric polarization
and/or the atomic displacements, and hence is called an electromagnon [55, 56].
In the case of a cycloidal magnet, the fluctuation of the electric polarization
�P is coupled to the rotation of the spin plane along the direction of the spiral
wavevector �q, leading to infrared absorption perpendicular to both �P and �q.

Experimentally, Pimenov et al. [57] observed the peak of �ε at around
20 cm−1 with a magnitude of 1–2 in GdMnO3 and TbMnO3. This 20 cm−1 is
identified with ω−, and the integration of −Imεyy(ω) over ω gives I− ∼ 12 cm−1.
An interpretation of the experiments on the infrared absorption of RMnO3 in
teta-Hz region [57] in terms of these electromagnons was proposed [56], but the
observed oscillator strength was a bit larger than the theoretical estimate. Also
a neutron scattering experiment [58] reported the identification of one of the
spin wave mode branches as the electromagnon. However, recent experiments
have revealed that the oscillator strength grows and this discrepancy increases
even more as the temperature is further lowered [59–61]. An even more serious
puzzle is that the anisotropy of the optical absorption does not change even when
the spiral plane changes from the bc to ac plane, while the electric polarization
associated with the electromagnon should change direction.

Recently, this puzzle has been resolved [62]; it is shown that the conventional
exchange-striction effect, i.e.

�P =
∑
ij

�Πij
�Si · �Sj (10.24)

contributes to the single magnon absorption. In RMnO3, the vector �Pij in
Eq. (10.24) is nonzero since the inversion symmetry is absent at the center
of the Mn-O-Mn bond because of the orthorhombic lattice distortion and/or
the staggered 3x2 − r2/3y2 − r2 orbital ordering. This contribution cancels out
in the ground state due to symmetry, but the dynamical fluctuations of �P in
Eq. (10.24) contribute to the optical absorption. In particular, when the ground
state spin configuration is noncollinear, it gives a one-magnon absorption pro-
cess, while it gives only two-magnon absorption in the collinear case. This is
easily understood as

�Si · �Sj = (〈�Si〉+ δ�Si) · (〈�Sj〉+ δ�Sj)

= 〈�Si〉 · 〈�Sj〉+ 〈�Si〉 · δ�Sj + δ�Si · 〈�Sj〉+ δ�Si · δ�Sj (10.25)

where the second and third terms correspond to the one-magnon process while
the last term corresponds to the two-magnon process in the second line. Consid-
ering the fact that the fluctuation δ�Si is perpendicular to 〈�Si〉, the one-magnon
contriution survives only when 〈�Si〉 and 〈�Sj〉 are not collinear. However, in the
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experimental data analyzed for RMnO3 in Ref. [62] the dominant absorption
occurs at higher energy (∼ 8 meV ) while the spectral shape depends rather
sensitively on the material, and the lower energy peak around ∼ 2–3 meV is
stronger than that at higher energy. This problem can be addressed only with
the accurate spin Hamiltonian obtained in the previous section.

A clue to this issue is the proximity to collinear spin phases, i.e. the A-type
and E-type spin phases. Near the phase boundary, the spin configuration is not a
simple spiral but suffers from significant elliptical modulation and involves higher
harmonics, which is sensitively enhanced by the tiny spin–phonon coupling or
by the weak magnetic anisotropy. We employ the realistic spin model discussed
in the last section. The only difference is that the phonon degrees of freedom are
integrated out to result in the bi-quadratic interaction as given by

Hbiq = −Bbiq

ab∑
〈i,j〉

(�Si · �Sj)2, (10.26)

which replaces the terms containing phonon coordinates in Eq. (10.21). We study
the electromagnon optical spectra (OS) and the phonon diepsersion which can be
detected by neutron scattering experiments. We perform the calculations using
two sets of model parameters ( (a) and (b)) corresponding to the ab plane spiral
in Eu1−xYxMnO3 (x = 0.45) with qb ∼ 0.3π and the bc plane spiral in DyMnO3

with qb = 0.39π, respectively.
We solve numerically the following Landau–Lifshitz–Gilbert equation by the

Runge–Kutta method,

∂�Si

∂t
= −�Si × �Heff

i +
αG

S
�Si × ∂�Si

∂t
, (10.27)

where α G(= 0.1–0.2) is the dimensionless Gilbert damping coefficient. The coup-
ling term − �E · �P between the electric field �E and the polarization �P given by
Eq. (10.24) is taken into account following Ref. [62]. This coupling effectively
modulates the nearest neighbor ferromagnetic exchanges in the ab plane as shown
in Fig. 10.1(b) (Fig. 10.1c) in Section 10.4.

We apply the delta-functional pulse of the electric field �E ‖ a or �E ‖ b at
t = 0, and calculate the time evolution of �P . The electromagnon spectrum Im
ε(ω) is obtained from the Fourier transformation of �P (t), as shown in Fig. 10.4,
with the parameter sets corresponding to Eu0.55Y0.45MnO3 and DyMnO3, re-
spectively. Independent of the spiral-plane orientation, a large spectral weight
emerges at low energy when �E ‖ a. No response to �E ‖ b is observed for both
cases in agreement with the experimental observations. The experimental results
for each material are shown in the insets, which are in good agreement with the
theoretical calculations.

The two-peak structure is due to the folding of the magnon dispersion due to
the higher harmonics of the ground state spin configuration. Namely, due to the
E-term in Eq. (10.21) and the bi-quadratic term in Eq. (10.26), the spin rotation
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angle is not uniform, and the higher harmonic components lead to Umklapp
scattering and hence the folding of the spin wave dispersion as shown in Fig. 10.5.
Note that this higher harmonic, i.e. the deviation from the uniform rotation of

the spin, is experimentally detected by the ratio η =
√
Ŝa(�qb)/Ŝb(�qb) where

Ŝi(�qb) is the spin structure factor along the i(= a, b)-direction. This quantity
is usually regarded as the “ellipticity,” but it does not necessarily mean the
modulation of the spin length. The deviation of η from unity originates also
from the nonuniform rotation of the spins with fixed length as in the case of
the present calculation. The above results suggest that as 1 − η increases, the
oscillator strength of the lower energy peak increases, which seems to be the case
experimentally also.

The concept of the electromagnon can be extended in many directions. One
interesting direction is to consider the quantum and thermal fluctuation beyond
the small-amplitude vibration. A Ginzburg–Landau theory has been developed
to study this problem for thermal fluctuation, and the self-consistent mode-
coupling approximation leads to a chiral spin liquid with a finite vector chirality
above the magnetic transition temperature [63]. Recently, an experiment on
Gd(hfac)3NITEt has been reported which found the two-step phase transition
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and suggested the chiral spin liquid state [64]. This is a quasi-one-dimensional
system and Gd has spin 7/2. Therefore, it can be regarded as a strongly fluc-
tuating classical helimagnet, and offers an ideal arena to test the theory in
Ref. [63].

10.6 Ultrafast switching of spin chirality by optical excitation

Since we have obtained an accurate spin Hamiltonian describing RMnO3, it is
possible to predict some new phenomena based on it. Here we study the nonlinear
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processes driven by the intense light pulse irradiation of picosecond order, which
excites the electromagnons. As mentioned in the last section, there are basically
two peaks in the optical absorption spectrum of an electromagnon at around
3 meV and 8 meV due to the mechanism of the exchange-striction. We solve
the Landau–Lifshitz–Gilbert equation (10.27) with this strong pulse and trace
the resulting change of the spin structure using the fourth-order Runge–Kutta
method.
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We assume that the electric field is along the a-axis, i.e. the direction of the
polarization for the strongest absorption, as

Ea = −E0 sinωt exp
[
− (t− t0)2

2σ2

]
(10.28)

where ω is taken to be 2.1 THz (8.2 meV), while the half-width of the pulse
2
√

2 log 2σ is taken to be 0.5 psec. Figure 10.6 shows the time evolution of the
three components of the vector spin chirality defined as �C = 1

2N

∑
i[�Si× �Si+x +

�Si × �Si+y]. It is shown that a chirality switch occurs from �C ‖ −a to �C ‖ +a
for E0 = 14 MV/cm while a chirality flop occurs from �C ‖ −a to �C ‖ +c
for E0 = 13 MV/cm. The microscopic mechanism of this phenomenon is the
combination of the change in the spin tilting angle due to the change in Jij

and the DM interaction, which modulates the relative energy of the various
chirality states. The process, however, is highly dynamical by the intensive and
nonlinear excitation of the electromagnon with large amplitude followed by the
inertial motion of the spins due to the mass generated by the SOI. The domain
structure emerges during the phase change with the spins parallel to the b-axis
acting as the nodes of the spin configuration. By the shape and intensity of
the optical pulse, one can control the chirality switch processes. For example,
one can reverse the direction of the rotation of the vector spin chirality �C by
reversing the sign of Ea. Usually, the chirality is determined by the structure of
the molecules or crystals and is difficult to change. In the spin system, on the
other hand, it can be switched in picoseconds as predicted theoretically above.

10.7 Quasi-one-dimensional quantum multiferroics

Quantum fluctuation in quasi-one-dimensional systems is also of great interest.
In particular, there have appeared quasi-one-dimensional [34, 66], and quasi-
two-dimensional [28] helimagnetic systems. Schwinger boson theory to treat this
problem has been developed, and the length of the spin can be “soft” in the
quantum spin case [67]. The two-step transition from paramagnetic to collinear,
and from collinear to spiral states is interpreted in the following way. The collin-
ear ordering is described by the spin density wave of the Schwinger bosons, while
the spiral spin state appears once the bose condensation occurs. Therefore, the
elliptic ratio is interpreted as the ratio of the classical condensed part and the
quantum mechanical fluctuating part of the Schwinger bosons [67]. Experimen-
tally, there has been no signature of the quantum fluctuation up to now, and
further studies, both theoretically and experimentally are desired.

Quasi-one-dimensional multiferroics are not restricted to spiral magnets. The
spin-Peierls systems in donor–acceptor mixed stack charge transfer compounds
are genuine ferroelectrics when the interchain coupling is ferroic. Because the
inversion symmetry between the donor and acceptor is absent, the polarization
due to the exchange-striction reads [68]

�P =
∑

i

�Π�Si · �Si+1. (10.29)
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The idea is that the spinon (spin-1
2 object) is the most fundamental par-

ticle in the 1D antiferromagnetic Heisenberg model [69], which turns into the
electro-spinon and governs the infrared activity [70]. By a Jordan–Wigner trans-
formation, the spin operator can be represented by fermion operators. The
XY-interaction corresponds to the transfer of fermions while the Ising model
corresponds to the fermion–fermion interaction. Spin excitations are described
as the particle–hole excitations of the fermions, and the Ising interaction leads
to the attraction between the particle and hole. This interaction leads to the
Tomonaga–Luttigner behavior for the undimerized gapless case. In the dimer-
ized case, the gap opens, and the interaction gives the particle–hole attractive
force and hence the bound states, i.e. exciton formation. These ideas can be
formulated more rigorously as follows.

In the undimerized state, the low-energy asymptotic behavior of the optical
spectrum σ(ω) can be analyzed by conformal field theory (CFT) with c = 1 [69].
c = 1 CFT is characterized by the exponent K, and the AF Heisenberg model
corresponds to K = 1. This leads to the following conclusion: for ω � T , σ(ω) ∝
ω2TK−3, while σ(ω) ∝ ωK−1 for ω � T . It is noted that σ(ω) is asymptotically
constant at the Heisenberg point (K = 1).

In the low-temperature dimerized case, one can map the model into the quan-
tum sine-Gordon model, which can be solved by the Bethe ansatz and form factor
expansion [71]. In the sine-Gordon model, the “exciton” is described as breath-
ers, i.e. the bound states of a soliton and anti-soliton. The energy and the form
factor for this breather are known, and one can predict the exact energy position
and oscillator strength of this excitation. For more details, readers are referred
to the original paper [70].

10.8 Summary and conclusions

In this chapter, we have reviewed theoretical studies of multiferroic helimagnets
from the viewpoint of the spin current or the vector spin chirality. This introduces
a new point of view to frustrated spin systems, i.e. the ferroelectric and dielectric
responses associated with the vector spin chirality. The ground and excited states
of the spin systems are characterized by the electric polarization, and it is now
recognized that the charge degrees of freedom in Mott insulators are not silent
at all even in the low-energy region, and rich physics is there. Here we discuss
some of the important issues left for future studies, and perspectives.

From the viewpoint of spintronics, it is highly desirable to develop the spin-
tronics without dissipation. The spin current in insulating magnets is an ideal
laboratory to develop this idea. The magneto-electric effect in insulators is a
promising direction for this purpose. The enhancement due to dynamical res-
onance is a possible direction of future research although the electromagnon is
rather heavily damped experimentally. The theoretical analysis of this damping
is still lacking, and is desired. As for the dynamical aspect, a recent preprint [72]
has studied the most generic mechanism for the coupling between the electric
field and the spins in multi-orbital systems by considering the dynamics of the
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spins in the intermediate states for the exchange interaction. Roughly speak-
ing, this can be understood as �e · �E with �e being the “electric field” associated
with the time-dependent Berry connection of the spins. This is analogous to the
spin-motive force in metallic ferromagnetic systems by which the domain wall
or vortex motions produce the voltage drop [8–10].

The other direction is to pursue the physics of noncollinear spin structures,
i.e. spin textures. The scalar spin chirality defined as S = �Si · (�Sj × �Sk) is
another important physical quantity to characterize the noncollinear spin struc-
ture. This scalar spin chirality corresponds to the solid angle subtented by the
three spins, and acts as the effective magnetic field for the conduction electrons
coupled to these spins. Therefore, it is expected that the Hall effect, especially
the anomalous Hall effect, occurs due to the spin chirality [5].

The DM interaction in noncentrosymmstric magnets often leads to spiral spin
structures. A typical example is the MnSi with B20 structure. Recently, a neu-
tron scattering experiment identified the mysterious A-phase in MnSi as the
Skyrmion crystal state stabilized by the external magnetic field and thermal
fluctuations [73–75] . Note that the conical spin structure is the most stable
state in all the other regions of the phase diagram. However, when one reduces
the thickness of the sample to smaller than the wavelength of the spiral, the
conical state is not possible when the external magnetic field is perpendicular
to the film. Actually, a Monte Carlo simulation of the 2D magnet with DM
interaction concluded that the Skyrmion crystal state is stable in a much wider
region of the phase diagram including the zero-temperature case[76]. Motivated
by these expectations, a recent experiment using Lorentz microscopy succeeded
in real-space observation of the Skyrmion crystal in a thin film of (Fe,Co)Si [6].
This finding offers an ideal arena to study the manipulation of spin textures by
an electric current or an electric field, which will be an important issue in the
future.

The topological nature of the multiferroic behavior is, even though implicit,
the background of the discussion given above. From this viewpoint, the recently
discovered topological insulators (TIs) offer an interesting possibility for the
multiferroic phenomenon. First, the topological magneto-electric effect has been
proposed using the three-dimensional TI, which is described by the following
effective action

Sθ =
(
θ

2π

)(
α

2π

)∫
d3xdt �E · �B (10.30)

for the electromagnetic field [77]. (α ∼= 1
137 is the fine structure constant.) This

action is similar to the θ term discussed for QCD [1], and there is a periodicity
with respect to θ → θ ± 2π. If the system is time-reversal symmetric, θ and −θ
should be equivalent, which restricts the θ value to be 0 or π (or plus an integer
times 2π). TI corresponds to θ = π, while an ordinary insulator corresponds to
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θ = 0. Since �E · �B can be written as the divergence of the Chern–Simons term,
it does not affect the equations of motion in the system without the boundary,
i.e. the system with periodic boundary conditions. When the boundary is there,
which is usually the case for real materials, the surface current density and charge
density are proportional to ∇θ(r) which is localized at the surface of the sample:

�j ∝ ∇θ × �E

ρ ∝ −∇θ · �B (10.31)

and the integrated 2D current density or charge density is proportional to the dis-
continuity of θ inside and outside of the sample, i.e. Δθ = ±π. This is described
by the 2D Chern–Simons term for the surface, which is obtained by integrat-
ing over the Dirac fermions with the mass m corresponding to the time-reversal
symmetry breaking and assuming the Fermi energy being within the mass gap.
Therefore, the value θ = ±π is dictated by the topological property of the bulk
states, but the choice of θ is determined by the surface. The magneto-electric
(ME) effect derived from Eq. (10.30) gives rise to the bulk orbital magnetization
by the surface current, and is different from the conventional ME effect in which
the bulk magnetism is required. Also the quntization of the ME effect from the
defnite value of θ = ±π is a unique feature of this topological insulator. As
argued in Ref. [77], the TI is related to the second Chern form in higher dimen-
sions, i.e. (4+1)D. Interestingly, the spin-current mechanism of the polarization
discussed above is also related to the second Chern form [78], which suggests a
deep connection between the multiferroic behavior and the topological structure
of the electronic states. This direction is worth exploring more in the future.

In summary, we have discussed recent developments in the research into multi-
ferroic phenomena and materials from the viewpoint of the relativistic spin–orbit
interaction as the gauge field. The concept of the spin current emerges as a con-
sequence of the projection onto the positive energy subspce of the solutions to
the Dirac equation, which results in the relativistic spin–orbit interaction as a
gauge field. This idea leads to various interesting phenomena interpreted from the
geometrical viewpoint, and multiferroics is one of the representative examples.
These gauge structures offer an interesting direction of the future research in
condensed matter physics.
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Part II Spin Hall effect





11 Introduction

S. O. Valenzuela

11.1 Historical background

Spin Hall effects are a group of phenomena that result from spin-orbit inter-
action, which links orbital motion to spin direction and acts as a spin-dependent
magnetic field. In its simplest form, an electrical current gives rise to a transverse
spin current that induces spin accumulation at the boundaries of the sample, the
direction of the spins being opposite at opposing boundaries. It can be intuitively
understood by analogy with the Magnus effect where a spinning ball in a fluid
deviates from its straight path in a direction that depends on the sense of rota-
tion. Spin Hall effects can be associated to a variety of spin-orbit mechanisms,
which can have intrinsic or extrinsic origin, and depend on the sample geometry,
impurities band structure and carrier density but do not require a magnetic field
or any kind of magnetic order to occur.

The phenomena was predicted by Dyakonov and Perel in 1971 [1, 2]. This
prediction was scarcely noticed until 1999, when Hirsch rediscovered it and intro-
duced the term “spin Hall effect” [3]. The effect is indeed analogous to the normal
Hall effect, where charges of opposite sign accumulate at the boundaries of the
sample due to the Lorenz force in a magnetic field (Fig. 11.1). In order to predict
its existence Hirsch simply argued that the presence of the familiar anomalous
Hall effect in ferromagnetic metals [4], known since 1880, was an experimental
proof that electrons carrying a spin are subject to a transverse force when they
are moving. Possible mechanisms for this force include the side-jump and Mott-
skew scattering by impurities and phonons. Because of the magnetic order in the
ferromagnet, an electric current will be spin polarized. Thus the transverse force
results in charge accumulation perpendicular to the current flow direction, and
therefore to the anomalous Hall effect. Following this argument, in a paramag-
net, or in the same ferromagnet above its Curie temperature, the same scattering
mechanisms that induce the anomalous Hall effect should scatter electrons with
spin up and spin down preferentially in opposing directions. Given that there
is an equal number of spin-up and spin-down electrons no charge accumulation
but spin accumulation occurs.

This simple reasoning motivated a vast body of theoretical, and later on, ex-
perimental research. Two and three dimensional electron systems with spin-orbit
interaction were studied theoretically in order to clarify the possible competing
mechanisms involved [5]. Experimentalists have been able to demonstrate and
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Fig. 11.1. (a) In the Hall effect, the presence of a magnetic field B and the asso-
ciated Lorentz force F generates charge accumulation. The electrochemical
potential for spin-up and spin-down carriers, assumed to be electron-like,
are the same. A voltage difference VH between the two edges is built up.
(b) In the spin Hall effect, spin-orbit coupling causes spin accumulation.
The electrochemical potential for spin-up and spin-down carriers is different.
A voltage difference VSH between the two edges is built up for each spin
orientation but with opposite sign.

quantitatively study the spin Hall effect and its inverse (i.e., the generation of a
transverse charge current by a spin current) in a variety of systems, which include
semiconductors like GaAs and metals like Al, and Pt [6–11] (see Chapters 14,
15, and 16). The effect is very robust and has been observed at room tempera-
ture. In the bulk of the aforementioned materials, early experiments pointed to
a spin Hall effect of extrinsic origin, that is, due to side-jump and Mott-skew
scattering mechanisms, as the phenomenology of early theories of the anomalous
Hall effect would suggest. As scattering mechanisms are understood and sam-
ples that engineer it are fabricated, larger effects are obtained and it is becoming
clear that the extrinsic spin Hall effect can play an important role in spintronic
applications.

The possibility of an intrinsic spin Hall effect was also put forward [13, 14].
Here the mechanism depends only on the electronic structure of the material
with scattering playing a minor role. The intrinsic effect would be relatively large
and potentially allow control of spin currents with electric fields, which could
flow without dissipation. Two model Hamiltonians were originally considered,
a p-doped three-dimensional system (spin 3/2 valence band in GaAs [13]) and
a two-dimensional electron gas with Rashba-type coupling [14]. Experiments in
two-dimensional layers of p-GaAs have shown results which are consistent with
these predictions [7, 8] (Chapters 13, 16).

In the intrinsic spin Hall effect, the origin of the spin current can be traced to
a topological phase collected by the carriers as they move through momentum
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space. This is the result of an effective gauge field due to spin-orbit coupling that
acts as a spin-dependent magnetic field and leads to an anomalous velocity as in
the quantum Hall effect. This effective magnetic field acts differently on the two
spin orientations leading to a net spin current. The possibility of a dissipationless
character of the spin current is a consequence of time reversal. Charge currents,
which have units of charge times velocity, are odd under time reversal, while
electric fields are even. The coupling between them (i.e. the conductivity) has
to be odd and therefore dissipative. However, spin currents have dimensions of
angular momentum times velocity, therefore they are even under time reversal
just like the electric fields. The coupling between them is therefore even and not
necessarily dissipative.

Similar ideas were applied to insulators with time reversal symmetry, leading
to the concepts of spin Hall insulator [15], and the quantum spin Hall effect
in two dimensional systems [16–18]. The quantum spin Hall phase is a topo-
logical phase in the sense that certain fundamental properties are insensitive
to small changes in material parameters [17]. For these fundamental properties
to change there should be a phase transition. The phase was later generalized
to three dimensions [19–21] and is usually known as a “topological insulator”
[20] (Chapter 17). It is characterized by an insulating bulk and gapless states
localized in the system boundaries when placed in vacuum or in contact with
an ordinary insulator. These metallic boundaries originate from topological in-
variants and cannot change as long as the bulk remains insulating and time
reversal symmetry is not broken. It is remarkable that topological insulators can
be understood in the framework of the band theory of solids and more than 50
compounds have already been predicted [22–25].

In a simple two dimensional (2D) picture, topological insulators can be under-
stood as two copies of the integer quantum Hall effect (Fig. 11.2). The quantum
Hall effect occurs in semiconductors at low temperatures when a magnetic field
is applied. There the electrons only travel at the edge in one direction, therefore
they cannot scatter back when they encounter an impurity and their motion is
non dissipative (Fig. 11.2a). In the idealized quantum spin Hall effect, or 2D
topological insulator, spin-up and spin-down electrons are in oppositely directed
quantum Hall states. That is, spin-up electrons are in an integer quantum Hall
effect induced by an effective magnetic field pointing up, while spin-down elec-
trons are in an equivalent state induced by an effective magnetic field pointing
down (Fig. 11.2b). Because the magnetic fields are in opposite direction, the
direction of motion of spin-up and spin-down electrons at the edge is also oppos-
ite. A system with such edge states is said to be in a quantum spin Hall state
because edge currents carry spin instead of charge. As opposed to the quantum
Hall effect, there are both forward and backward movers. However, in a backscat-
tering event, the change of direction should be accompanied by change in spin
orientation, which in this system cannot occur unless time reversal is broken.
Backscattering by nonmagnetic impurities is thus forbidden (Fig. 11.2c).
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Fig. 11.2. (a) Edge states of the integer quantum Hall effect with one propagat-
ing mode. Electrons propagate in one direction determined by the orientation
of the magnetic field. There are no back movers and therefore the state is
robust and goes around and impurity without scattering. (b) In an idealized
two dimensional topological insulator or quantum spin Hall state, spin-up
and spin-down electrons move in opposite directions. They are equivalent
to two independent quantum Hall effects with opposite magnetic fields. (c)
Backscattering by a nonmagnetic impurity in the quantum spin Hall effect.
It is possible in principle because there are backward and forward movers.
The left and right graph show two possible paths. In the left path spin ro-
tates by π, while in the right path, it rotates by −π. Overall a geometrical
(Berry) phase factor of -1 associated with the total rotation of 2π of the
spin leads to destructive interference and suppression of backscattering. The
states are robust against backscattering as long as time reversal symmetry
is not broken. Adapted from [26].

In the simplest three dimensional case, the surface state (or interface with an
ordinary insulator) can be described by two-dimensional massless Dirac fermions
with a dispersion forming a Dirac cone with the crossing point located at the time
reversal invariant momentum k = 0 and a spin arrangement as shown in Fig. 11.3.
The degeneracy at k = 0 and the surface metallic states are protected by time
inversion symmetry and electrons traveling on such a surface state are weakly
sensitive to localization and their spins have opposite orientation at momenta k
and -k. The spin arrangement contributes a Berry phase of π to the wavefunction
protecting the surface states against backscattering by nonmagnetic impurities.
Nothing prevents carriers from scattering in all other directions (Fig. 11.3b),
however, the reduction of backscattering compared with ordinary metals has
major consequences for electron localization.
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Fig. 11.3. (a) Energy and momentum dependence of the local density of states
for an idealized three dimensional topological insulator. (b) In a normal
metal a point-like scattering center can scatter a carrier in any direction.
In a topological insulator backscattering is suppressed. In a backscattering
process, the carrier motion is reversed (say from k to -k). If the scatter-
ing center is nonmagnetic, the spin remains unaffected. However, the only
spin state available at -k is opposite to the one of the incident carrier and
backscattering cannot occur (see also Fig. 11.2c).

Experiments have demonstrated the presence of the boundary states in
topological insulators. A series of experiments in HgTe quantum wells that
studied charge transport detected the edge states [27, 28], while experiments
using angle-resolved photoemission spectroscopy (ARPES) in BixSb1−x alloys,
and Bi2Se3 and Bi2Te3 crystals mapped the unusual surface bands [29, 30].

All of these phenomena are fascinating and the physics is extremely rich. The
rest of this chapter will be dedicated to introduce basic concepts and describe
early experimental observations of the spin Hall effects. The chapters that follow
will provide a thorough description of these concepts and of recent experimental
progress.

11.2 Spin-orbit interaction

The spin-orbit interaction (SOI) is a relativistic effect in which the magnetic
moment of a moving particle in an electric field couples to an effective magnetic
field. In vacuum, the Dirac equation can be reduced to the Pauli equation which
contains the spin-orbit interaction as a correction with the following form:

HSO = −ηsoσ · [k×∇Vvac(r)], (11.1)
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where ηso = (�/2mc)2 ≈ 3.7× 10−6Å2, k = p/�, Vvac(r) is the potential acting
on the electron with momentum p, σ is the vector of the Pauli matrices and m
and c are the free electron mass and the velocity of light.

In practice the previous equation is an starting point to define an effective
spin-orbit Hamiltonian. For instance, in a solid the potential acting on the elec-
tron can be split into two components: A periodic one related to the lattice
VL(r), and a nonperiodic one, V (r) which reflects the influence of impurities,
boundaries, and external applied fields. In analogy to atoms, where the effective
interaction is proportional to the dot product between spin and the angular mo-
mentum ∼ S · L, the periodic potential leads to the appearance of an effective
interaction of the form,

HSO,int = −1
2
σ ·B(k), (11.2)

where B(k) is an effective k-dependent magnetic field for the electron band
considered, which depends on VL(r), and k is now the crystal wavevector. This
spin-orbit contribution arises even in the absence of impurities and is usually re-
ferred to as intrinsic. When considering the nonperiodic component, the coupling
has a similar form to that in vacuum Eq. 11.1,

HSO,ext = −η̄soσ · [k×∇V (r)], (11.3)

where η̄so can be orders of magnitude larger than ηso because of the interaction
of electrons with the nuclei at velocities that are nearly relativistic. This spin-
orbit contribution is usually referred to as extrinsic. Together with the intrinsic
contribution, they give place to the spin Hall effects.

As a consequence of spin-orbit interaction the velocity and coordinate op-
erators become spin dependent. When an electron scatters with an impurity
(Eq. 11.3), the scattering cross section depends on the spin state and results in
different scattering angles for spin-up and spin-down electrons, as represented in
Fig. 11.4a. This effect is known as Mott-skew scattering and has been recognized
a a source for the spin Hall effects in early predictions [1–3]. Additionally, for
impurity scattering with momentum transfer δk, a lateral displacement of the
electron δr = −η̄so[δk× σ] occurs, which is known as the side-jump mechanism
(Fig. 11.4b)(see also Chapter 12).

The spin Hall effect can also arise from the intrinsic spin-orbit coupling in
the band structure, Eq. 11.2. The basic mechanism depends on the effect of the
k-dependent magnetic field B(k). When an electric field is applied, the charge
carriers in the material are accelerated. As the carrier momentum k changes, so
does the effective spin-orbit field B(k) (see Fig. 11.4b and further explanation
below).
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Fig. 11.4. (a) Schematic picture of the skew scattering mechanism. An electron
with spin-up (-down) scatters preferably with a positive (negative) angle.
(b) Schematic picture of the side-jump mechanism. The path of electrons is
shifted to the left (right) side of the scattering center for spin down (down)
states. (c) Schematic picture of intrinsic spin orbit generated spin-currents.
An electric field in -x direction displaces the Fermi distribution by δk. Car-
riers experience a torque that tilts them according to their spins. The tilting
is opposite for opposite momenta and it generates a spin current in the y
direction.

The effect appears in the conduction band of asymmetric quantum wells and
in the spin-3/2 valence band of GaAs described by the Luttinger model [13, 14].
The first case is described by the Rashba Hamiltonian [31],

HSO,R = α(k× σ) · ẑ, (11.4)

which corresponds to B(k) = 2αẑ × k. The coupling parameter α depends on
the well confining potential and on an external field that may be applied by
gates. There, the effective magnetic field is perpendicular to the momenta and
leads to Rashba splitting for the two spin orientations (Fig. 11.5). Due to its
simplicity, this model has attracted great attention and can be used to visualize
the mechanism of the intrinsic spin Hall effect described above, as illustrated in
Ref. [14] and reproduced in Fig. 11.4c. The electric field along the x direction
displaces the Fermi surface. The electric field changes k and forces the electrons
out of alignment with B(k). Therefore, while moving in momentum space, elec-
trons experience an effective torque which tilts the spins up for ky > 0 and down
for ky < 0. Because the spins tilt in opposing directions on opposite sides of the
Fermi surface, it creates a spin current in the y direction (see Chapter 16).

Because the spin-orbit interaction in solids is influenced by the nuclei, it has
been reasoned that large effects should be observed in heavy elements or when
heavy impurities are present. Such simple argument is supported by experiments,
which find that the magnitude of the effect is largest in materials such as Pt or
Au or in light materials such as Cu with heavy impurities such as Ir or Bi. The
efficiency of converting charge current to spin current is commonly expressed in
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Fig. 11.5. (a) Dispersion relation and spin splitting induced by Rashba-type
spin-orbit interaction in a two-dimensional electron system. (b) The effective
magnetic field causes the spin (black arrows) to align perpendicular to the
momenta (gray arrows).

terms of the spin current per unit charge current, the spin Hall angle [26]. See
Chapters 12 and 14 for a detailed description and comparison.

Surface and edge states in topological insulators are also the result from a large
coupling between orbital and spin motion. However, even though large spin-orbit
effects are expected in heavy elements, not all heavy compounds turn out to be
topological insulators. A topological insulator is an insulator that has a boundary
that is metallic when placed in contact to an ordinary insulator or vacuum. The
boundary states originate from topological invariants. Systems that have an
energy gap separating the ground states from excited states can be topological
classified and topological and ordinary insulators have different topologies: All
time reverse invariant insulators classified by a Z2 order parameter fall into two
distinct classes (see Chapter 17). Any smooth change of the Hamiltonian would
not close the gap and therefore does not change the topology of the insulator.
However, because the invariants have to change at an interface between ordinary
and topological insulators, such interface cannot remain insulating.

The first experimental observation of a topological insulator was realized in
HgTe/CdTe quantum wells where an inverted electronic gap occurs because of
spin-orbit interaction [27]. CdTe has a band ordering similar to GaAs with a
s-like conduction band and p-like valence band. HgTe, on the other hand, has
inverted bands, where the p levels are above the s levels. In a CdTe/HgTe/CdTe
structure with thin HgTe the behavior is similar to that of CdTe but if the
thickness of HgTe is increased, a critical value dc should be reached where
the gap closes and the bands become inverted. At this point a quantum phase
transition from the ordinary to the topological insulator with protected edge
states occurs [18].
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11.3 The family of spin Hall effects

From the previous discussion it is clear that spin Hall effects form a large family of
phenomena, which exist in the absence of magnetic fields and have the spin-orbit
coupling and spin currents as a common link between them. They can be extrin-
sic or intrinsic, depending on the origin of the spin-orbit interaction. They are
observed in insulators, in metals or in semiconductors. From symmetry consid-
erations it has been reasoned that, if one can generate spin currents from charge
currents, the opposite should be possible and for each direct spin Hall effect, an
inverse spin Hall effect is in order [1, 3]. Sometimes the experimental techniques
that are used sense an indirect consequence of the spin Hall effect or a different
probe to isolate it is used. In those situations, and in order to avoid confusion
with other experiments, a different name for the effect is coined. In this section,
we briefly summarize the main effects discussed above and the used terminology
found in the literature.

The oldest and most widely known effect is the anomalous Hall effect in
ferromagnets [4]. Here both a transverse Hall voltage and a transverse spin
accumulation are present. This is due to the combination of asymmetric spin
scattering and the presence of spin polarization in the current that is inherent
to ferromagnets. In the spin Hall effect, such spin polarization does not exist
and therefore only the spin accumulation remains. In the inverse spin Hall effect
(or spin-current induced Hall effect [32]), a spin polarized current is applied and
therefore a transverse charge current and associated Hall voltage are induced.
Normally this term is used when the spin current is “pure,” that is, not ac-
companied by a charge current. More recently, when both charge currents and
spin currents are present but the spin current originates from spin injection (op-
tical or electrical), the term spin-injection Hall effect has been used [33] (see
Chapter 16).

For each of the above effects there is a related topological state, which is of
intrinsic origin. In particular, the equivalent to the spin Hall effect in two dimen-
sions is known as the quantum spin Hall effect, quantum spin Hall insulator or
just two-dimensional topological insulator. It is also referred to as the quantum
version of the spin Hall effect, following the comparison between the quantum
Hall and conventional Hall effects. Although time reversal symmetry is essential
in a quantum spin Hall state, it has been predicted that a related state should
exist where time reversal symmetry is broken [34]. This state is known as the
quantum anomalous Hall state in analogy to the classical equivalent and it was
observed in magnetically doped topological insulators [74] and [75]. Its main
signature is to have only one spin-up (or spin-down) edge state. In three dimen-
sional systems, the predominant term is just topological insulator, although the
surface states has been refereed to as a Kramers metal.

11.4 Experimental observation

Experimental evidence of the spin Hall effect in semiconductors came
simultaneously from spatially resolved electron spin polarization measurements
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near the edges of n-type GaAs channels using Kerr rotation microscopy (Fig.
11.6) and by the polarization of the recombination radiation of holes in a light
emitting diode (LED) structure (Fig. 11.7) [6–8].

The former experiments [6] were performed on n-GaAs samples grown by
molecular beam epitaxy, on (001) semi-insulating GaAs substrates. They were
Si-doped with n = 3× 1016 cm−3 in order to obtain long spin lifetimes. Static
Kerr rotation measurements were achieved with a pulsed Ti:sapphire laser tuned
to the absorption edge of the semiconductor with normal incidence to the sam-
ple. In this technique, the laser beam is linearly polarized and the polarization
axis of the reflected beam is determined. The rotation angle is proportional to
the net magnetization along the beam direction. Figure 11.6a shows a schematic
representation of the experimental geometry. An electric field was applied along

(a) (b) ns (a.u.) Reflectivity (a.u.)

(c)

(d)

Bext

E

Kerr rotation (μrad)

E = 10 mV μm–1

T = 30 K

–2 –1 0

40

150

–2 –1 1 20 1 2 3 4 5

100

50

P
o
s
it
io

n
 (

μm
)

0

–50

–100

–150

–40 –20 200 –40 4040 –20 200

20

2
1
0

–1

–2

–20

–40

0

1 2

Position (μm)
Position (μm) Position (μm)

B
e
x
t 
(m

T
)

A
0
 (

μr
a
d
)

–40 –20 0 20 40

Fig. 11.6. (a) Schematics of the GaAs sample and the experimental geometry in
Kerr rotation detection of the spin Hall effect. (b) Two-dimensional images of
spin density ns (left) and reflectivity (right) for the unstrained GaAs sample
measured at T = 30 K and E = 10 mV μm−1. (c) Kerr rotation as a function
of x and Bext for E = 10 mV μm−1. (d) Spatial dependence of peak Kerr
rotation A0 across the channel. Adapted from Ref. [6].
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Fig. 11.7. Spin Hall experiment in a two dimensional hole gas. (a) Scanning elec-
tron microscopy image of the device. The top (LED 1) or bottom (LED 2)
n contacts are used to measure the electroluminiscence at opposite edges of
the hole gas p channel. The current Ip is along the channel. (b) Polarization
along z axis measured with active LED 1 for two opposite Ip current orien-
tations. (c) Polarization along z axis measured with fixed Ip and for biased
LED 1 or LED 2. Adapted from Ref. [8].

the channel while a magnetic field B could be applied perpendicular to it in the
sample plane. Figure 11.6b shows a two dimensional scan of the sample, which
demonstrates the existence of spin accumulation close to the edges. The polariza-
tion has opposite sign at the two edges and decreases rapidly with the distance
from the edge as expected from the spin Hall effect. This is clearly seen in the
one dimensional profile in Fig. 11.6c. The magnitude of the polarization reached
about 0.1 %. Further experiments demonstrated the effect of spin precession
under the influence of an applied B.

Measurements were repeated in strained n-InGaAs channels but no signifi-
cant crystal orientation dependence was observed, which indicates that the spin
Hall effect observed in these experiments is of extrinsic origin. This is consistent
with the order of magnitude of the spin Hall conductivity of about 1 (Ωm−1)
as expected from modeling based on scattering by screened and short-range
impurities [5, 36]. Follow-up experiments demonstrated that the observed spin
accumulation is due to a transverse bulk electron spin current, which can drive
spin polarization tens of microns into a region in which there is minimal elec-
tric field [37]. More recently, time-resolved measurement of the dynamics of spin
accumulation generated by the extrinsic spin Hall effect was also studied in a
n-GaAs using pumped time-resolved Kerr rotation [38]. Researchers succeeded
to image the spin accumulation, precession and decay dynamics. Additional ex-
periments using the same methods investigated the spin Hall effect in a two
dimensional electron gas in (110) AlGaAs quantum wells [39] and in bulk ZnSe
[40], at room temperature. All of these experiments were in close agreement with
extrinsic theory.
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The experiments performed in a two-dimensional hole gas in p-type GaAs
(Fig. 11.7) were ascribed to the intrinsic mechanism [7, 8, 41]. The device com-
prised coplanar p− n junction light emitting diodes (LED) that were fabricated
in (Al,Ga)As/GaAs heterostructures grown by molecular beam epitaxy. The de-
tection of spin-polarization at the sides of a p channel, while a current Ip was
applied, was performed by measuring the circular polarization of emitted light
due to recombination near p− n junctions. By using two LEDs in the opposite
sides of the channel, it was possible to compare the polarization of the light in
the two edges and the behavior under current reversal (see also Chapter 16). The
intrinsic character of the effect was further tested in Ref. [42] where polarization
in the order of 1% were observed. The signal was independent of the channel
width as expected from the theory of the spin Hall effect.

The electrical detection of the spin Hall effect was elusive because the trans-
verse spin currents do not lead to a measurable voltage. The first experiments
aiming at an electrical measurement in metals therefore focused on the detec-
tion of the inverse spin Hall effect [9, 10]. They used spin pumping (Fig. 11.8a)
and nonlocal lateral spin injection and detection techniques (Fig. 11.8b). Both
methods rely on the injection of a spin polarized current. In the nonlocal devices
this current is provided by a ferromagnetic injector. A current from the in-
jector is applied into the paramagnetic metal, which creates a pure spin current
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N

500 nm
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–
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Fig. 11.8. (a) Schematic picture of spin pumping. The precession of the mag-
netization M in the ferromagnet (left) injects a spin current in the normal
metal (right). Due to the inverse spin Hall effect charge is accumulated in
the lateral walls. See Ref. [9] (b) Nonlocal spin device for the detection of the
inverse spin Hall effect. A Hall cross of a normal metal N (Al in this case)
is contacted with two ferromagnetic electrodes widths (FM1 and FM2). A
current I is injected out of FM1 into the N film and away from the Hall
cross. A spin Hall voltage is measured between the two Hall probes. The
second ferromagnetic electrodes in this device is for control measurements.
Adapted from Ref. [10].
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towards a remote Hall cross. As the spin current flows in the metal the in-
verse spin Hall effect converts it into a measurable voltage (see Chapters 12
and 14). The spin spin-pumping method operates by ferromagnetic resonance
(see Chapter 15). In this case, the magnetization-precession results in the emis-
sion of a spin current into a paramagnetic metal in contact to the ferromagnet
and again a voltage signal develops in the metal due to the inverse spin Hall
effect. These experiments are related to pioneer work in semiconductors where
the spin injection is obtained by optical orientation [43] and to the detection
of the inverse spin Hall effect with optically generated spin currents in intrin-
sic GaAs using a two-color optical technique with orthogonally polarized laser
pulses [44]. In the early 1980s, Fert and collaborators studied diluted magnetic
alloys based on nonmagnetic hosts, such as Au and Cu, and magnetic impurities
such as Mn, Fe, or Cr [45]. They found that in CuMn the exchange scattering by
polarized Mn impurities created a spin-polarized current, that combined with
skew scattering by unpolarized impurities, gave rise to variations of the Hall
coefficient.

The electrical methods are extremely useful from a practical point of view.
Recent advances permitted the study of spin Hall effects in a variety of metals
and semiconductors [46] and to engineer the spin Hall angle by the addition of
impurities [47] (for an extensive overview see Refs. [12, 48]). Methods combin-
ing spin injection with the spin Hall effect and spin detection with the inverse
spin Hall effect were also proposed [3, 49]. The first successful experiments were
realized in semiconductors [50] following the design in Ref. [49] on a planar
structure shaped as the letter H. An electric current is applied in one of the
legs of the H and generates a transverse spin current owing to the spin Hall
effect; the spin current propagates toward the other leg through the connect-
ing part and produces a nonlocal voltage via the inverse spin Hall effect. An
H-shape structure was also used in graphene devices [51]). There a large Hall
response was observed near the graphene neutrality point in the presence of an
external magnetic field. The results were ascribed to spin currents that resulted
from the imbalance of the Hall resistivity for the spin-up and spin-down carriers
induced by the Zeeman splitting; a process that does not involve a spin-orbit
interaction and that is largest for the cleanest graphene. More recently, very
large nonlocal voltages were reported by the controlled addition of a variety
of ad-atoms [52, 53]. The results were interpreted as being related to the spin
Hall effect. If the interpretation was proven to be correct, the spin Hall angles
in modified graphene would have a magnitude comparable to the largest values
ever reported in metals. However, other experimental works suggested that the
nonlocal voltages could be unrelated to spin phenomena [54, 55]. Indeed, fully
quantum simulations demonstrate multiple background contributions, unrelated
to the spin, while providing guidance to separate the fraction of the signal origin-
ating from the spin Hall effect [56]. Because theoretical estimations still predict
large spin Hall effects in modified graphene [57], its unambiguous experimental
demonstration remains a key challenge in the field.
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In addition, spin Hall effects manifest themselves in new types of magneto-
resistance signatures in bilayers containing a magnetic element. Due to different
physical mechanisms, they are observed in heavy metals deposited onto magnetic
insulators [58], in heavy-metal/ferromagnet bilayers [59] and (Ga,Mn)As-based
structures [60]. For more details, see the previous references and Ref. [12].

The electrical measurement of the inverse spin Hall effect opened the door
for the discovery of novel phenomena such as the spin-Seebeck effect [62], which
belongs to an emerging field, coined “spin caloritronics,” that studies the inter-
play between charge, spin and heat currents [61]. The spin-Seebeck effect is the
aggregate generation of a spin current in a magnetic material, which is driven
by a heat current, and its subsequent conversion to a voltage by means of the
inverse spin Hall effect. A crucial aspect of such thermoelectric conversion is the
possibility of using a magnetic insulator, as opposed to an electric conductor as
implemented in conventional thermoelectricity. This unique feature of the spin
Seebeck effect is expected to lead to a variety of spintronic and thermoelectric
applications (see Chapter 18).

For sufficiently large current densities, the spin currents generated by the
spin Hall effect can reverse the magnetization of a ferromagnetic element placed
on top of the current carrying line. The first magnetic switching demonstration
was reported in [63] using Co/Pt/AlOx trilayers, which triggered an intense
research on similar structures due to the implications for memory technologies.
It was noted that the measurements were consistent with the spin accumulation
induced by the Rashba spin-orbit interaction owing to the asymmetric Pt and
AlOx interface layers (see Chapter 24). However, it was also pointed out that the
symmetry of the switching field was consistent with the torque induced by the
spin Hall effect in the Pt layer [63]. The relevance of the spin Hall effect in spin
transfer torque experiments was addressed in Ref. [64], while magnetic switching
was also reported in Ref. [65] using CoFeB/Ta/MgO trilayers. In the latter, the
large resistivity of the CoFeB layer ensures that a significant fraction of the
applied current flows in the Ta layer, which produces the pure spin current.
An important feature is the capping with MgO, which both induces a large
perpendicular anisotropy in CoFeB and can be part of magnetic tunnel junction
for reading out the magnetization of CoFeB. In these early studies, the interfacial
spin-orbit interaction described by the strictly two-dimensional transport in the
Rashba model was typically associated to the observation of field-like torques,
while the bulk spin Hall effect was similarly associated to (anti) damping-like
torques. However, such a distinction is not straightforward. Three-dimensional
studies of the interface effects in the ferromagnet/heavy metal bilayers suggest
that carriers can gain a net spin polarization that exerts a field-like torque,
as in the Rashba models [66]. In addition, a spin current can flow away from
the interface into the ferromagnet and exert a damping-like torque [66]. The
latter torque is driven by interfacial spin-orbit effects rather than the bulk-spin
Hall effects and can be the dominant contribution to the spin Hall angle [67].
Moreover, spins that are transferred into the ferromagnet are thought of driving
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Fig. 11.9. (a)Conductance as a function of gate voltage that tunes the Fermi
energy through the bulk gap. Sample I (d < dc) is insulating. Sample II and
IV (d < dc) show quantized transport associated to the edge states. Inset:
HgTe/CdTe quantum well structure. Adapted from Ref. [27] (b) ARPES
data for the dispersion of the surface states of Bi2Se3 along directions Γ−M
(left) and Γ−K in the Brillouin zone. Adapted from Ref. [30].

a damping-like torque in the magnetization. However, they can also drive torques
that are perpendicular to the damping-like direction because spins can rotate
when they reflect of the interface.

Finally, the first signatures of the quantum spin Hall state in HgTe were
obtained from measurements of the electrical conductance [27] (Fig. 11.9a). A
quantized conductance of 2e2/h was observed and associated to the pairs of
states in the edges. This and subsequent experiments, which established the
nonlocality of the edge states, can be understood within the Landauer-Buttiker
formalism [28]. The experiments addressed the transport of HgTe/(Hg,Cd)Te
quantum wells as a function of thickness, gate voltage and external magnetic
field. Only thick samples d > dc showed near quantization behavior while thin
samples d < dc were insulating. Application of a small magnetic field perpen-
dicular to the quantum well in the thick films resulted in a transition to an
insulating behavior, which agrees with theoretical expectations. The edge states
are robust under time reversal symmetry. A magnetic breaks this symmetry and
turns on a gap on the otherwise degenerate edge states [18]. Evidence of such
edge states were also reported in inverted InAs/GaSb quantum wells [68] and
predicted to exist in a number of systems, including two dimensional systems
such as stanene and some transition-metal dichalcogenides.

Three dimensional topological insulators were first observed by ARPES
[29, 30]. In ARPES experiments, a high energy photon ejects an electron from
the crystal. The analysis of the momentum of this emitted electron provides in-
formation on the surface and bulk electronic structure. The surface states were
first observed in BixSb1−x alloys, and then in Bi2Se3, Bi2Te3 and α-Sn, amongst
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others. The quantized Hall effect was also studied from the 2D single cone Dirac-
like topological surface states in strained HgTe [69]. Bi2Se3 and Bi2Te3 show
topological behavior with the simplest surface state allowed. With a band-gap
in excess of 0.1 eV they conserve the topological behavior up to higher temperat-
ures than BixSb1−x alloys and strained HgTe, which have a gap of order 0.01 eV.
Figure 11.9b shows the measured surface state of Bi2Se3, which is similar to the
idealization shown in Fig. 11.3. Interference patterns near defects or steps on
the surface show that electrons are never completely reflected, as observed with
scanning tunneling microscope measurements [70, 71]. This property also pro-
tects the surface states from Anderson localization. Surface dominated transport,
however, have been so far limited to low temperature measurements presumably
due to the strong suppression in the mobility of surface carriers due to the ac-
tivation of phonons [72, 73]. Doping of (Bi,Sb)2Te3 with Cr and V allowed for
the observation of the quantum anomalous Hall effect [74, 75]. As expected, the
anomalous Hall resistance was found to have a quantized value of h/e2 and it is
accompanied by a much smaller longitudinal resistance, even at zero magnetic
field. Currently, the potential for metrology and dimensionless electronics are
being evaluated. Further experimental results are reviewed in Chapter 17 and
Refs. [22–25].
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12 Spin Hall Effect

S. Takahashi and S. Maekawa

12.1 Introduction

Conduction electrons in metals and semiconductors are scattered by local poten-
tials due to impurities and defects in a crystal. Relativistic interaction between
spin and orbital motion of electrons is spin-orbit interaction which causes a
spin-asymmetric scattering of conduction electrons at local potentials. In ferro-
magnetic materials (F), the electrical current is carried by up-spin (majority)
and down-spin (minority) electrons, in which the flow of up-spin electrons is
slightly deflected in a transverse direction while that of down-spin electrons in
the opposite direction, resulting in the electron flow in the perpendicular dir-
ection to both the applied electric field and the magnetization directions. Since
up-spin and down-spin electrons are strongly imbalanced in ferromagnets, both
spin and charge currents are generated in the transverse direction, the latter of
which is observed as an electrical Hall voltage and is called the anomalous Hall
effect (AHE) [1, 2].

In nonmagnetic metals (N), the situation is different; the electrical current is
carried by unpolarized electrons with the equal amount of up-spin and down-
spin, which are deflected by spin-orbit scattering in the opposite directions,
thereby creating a spin current without accompanying a charge current, i.e.,
a pure spin current, in the transverse direction. This is called the spin Hall ef-
fect (SHE). Inversely, in the presence of pure spin current in N, the up-spin and
down-spin currents flows in the same amount but in the opposite directions,
which are deflected by spin-orbit scattering in the same direction to induce a
charge current in the transverse direction. This is called the inverse spin Hall
effect (ISHE). The SHE and ISHE play an important role in the spin-dependent
transport of spintronic devices [3–5].

Nonlocal spin injection in nanostructured lateral devices consisting of non-
magnetic conductors and a ferromagnetic injector [6–14] provides an opportunity
for investigating the spin Hall effect of nonmagnetic conductors [15–27]. Non-
local spin injection is a convenient method to create a pure spin current in a
nonmagnetic nanowire; the created pure spin current is converted to a trans-
verse charge current by ISHE, resulting in a charge accumulation at the edges
of the nanowire, which is probed as a Hall voltage by Hall bars [8]. This method
is restricted to materials with a relatively large spin-diffusion length such as Al.
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To investigate the spin Hall effect in heavy metals with short spin-diffusion
lengths, such as Pt, it is useful to employ the method of nonlocal spin-current
absorption by using a heavy metal wire as a detector (spin-sink) electrode, be-
cause the absorbed spin current in heavy metals is efficiently converted to the
charge current owing to strong spin-orbit interaction, resulting in a Hall voltage
between the ends of heavy metal wire [9]. Inversely, applying a charge current
along the detector electrode, a spin accumulation is generated in the heavy metal
nanowire by SHE, transferred through a normal metal nanowire such as Cu and
Ag, and probed by a injector ferromagnet [9–12]. Another method of creating
pure spin current is spin pumping from a ferromagnetic layer into a normal-metal
layer provides a useful method to investigate the spin dynamics of ferromagnets
as well as the spin-orbit interaction of normal metals using ISHE [28].

In this chapter, we consider the effect of spin-orbit scattering on spin and
charge transports in nonmagnetic metals, such as Al, Cu, Ag, and Pt, and dis-
cuss SHE by taking into account the side jump (SJ) and skew scattering (SS)
mechanisms [29, 30], and derive formulas for the SHE induced by spin-orbit scat-
tering in nonmagnetic metals. In addition to these extrinsic SHE discussed in this
chapter, intrinsic SHE has been intensively studied in metals and semiconductors
which do not require impurities or defects [31–37].

12.2 Spin Hall effect due to spin-orbit scattering in metals

The spin-orbit interaction in the presence of nonmagnetic impurities in a metal
is derived as follows [38]. The impurity potential u(r) gives rise to an additional
electric field E = −(1/e)∇u(r). When an electron passes through the field with
velocity p̂/m = (�/i)∇/m, the electron feels an effective magnetic field Beff =
−(1/mc)p̂×E, which leads to the spin-orbit coupling

uso(r) = μBσ̂ ·Beff = ηsoσ̂ · [∇u(r)×∇/i] , (12.1)

where σ̂ is the Pauli spin operator, μB is the Bohr magneton, and ηso is the
spin-orbit coupling parameter. Though the value of ηso = (�/2mc)2 in the
free-electron model is too small to account for SHE as well as AHE observed
in experiments, the value of ηso in real metals may be enhanced by several
orders of magnitude for Bloch electrons [1]. In the following, ηso is treated
as a phenomenological (renormalized) parameter. The total impurity potential
U(r) is the sum of the ordinary impurity potential and the spin-orbit potential:
U(r) = u(r) + uso(r).

The one-electron Hamiltonian H in the presence of the impurity potential
U(r) is given by

H =
∑
k,σ

ξka
†
kσakσ +

∑
k,k′

∑
σ,σ′
〈k′σ′|U |kσ〉a†k′σ′akσ. (12.2)
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where a†kσ(akσ) is the creation (annihilation) operator of an electron with mo-
mentum k and spin σ (σ= ↑, ↓). Here, the first term is the kinetic energy of
conduction electrons with one-electron energy ξk = (�k)2/2m − εF measured
from the Fermi level εF, and the second term describes the scattering of conduc-
tion electrons between different momentum and spin states with the scattering
amplitude

〈k′σ′|U |kσ〉 = uk′kδσ′σ + iηsouk′k
[
σ̂σ′σ ·

(
k′ × k

)]
, (12.3)

where uk′k = 〈k′|u|k〉 and the first and second terms are the the matrix
elements of ordinary and spin-orbit potentials, respectively. For short-range
impurity potential, u(r) ≈ uimp

∑
i δ(r − ri) at position ri and uk′k ≈

(uimp/V )
∑

i e
i(k−k′)·ri , where V is the volume.

The velocity vσ
k of an electron in the presence of spin-orbit potential is

calculated by taking the matrix element vσ
k = 〈k+σ|v̂|k+σ〉 of the velocity

operator [39]

v̂ = dr/dt = (i�)−1[r,H] = p̂/m+ (ηso/�)[σ̂ ×∇u(r)] (12.4)

between the scattering state |k+σ〉 = |kσ〉+∑k′ uk′k(ξk−ξk′ +iδ)−1|k′σ〉 within
the Born approximation, and becomes

vσ
k = vk + ωσ

k, ωσ
k = θSJ

SH (σ̂σσ × vk) , (12.5)

where vk = �k/m is the usual velocity, ωσ
k is the anomalous velocity, σ̂σσ is the

diagonal component representing the polarization direction of spin σ, and θSJ
SH

is the spin Hall angle due to side jump

θSJ
SH =

�η̄so
2εFτ0

tr

=
η̄so
kFl

, (12.6)

where τ0
tr = [(2π/�)nimpN(0)u2

imp]−1 is the scattering time due to impurities,
nimp is the impurity concentration, η̄so = k2

Fηso is the dimensionless spin-orbit
coupling parameter, kF is the Fermi momentum, and l is the mean-free path.

Introducing the current operator Ĵσ = e
∑

k (vk + ωσ
k) a†kσakσ for the spin

channel σ, the total charge current Jc = J↑ + J↓ and the total spin current
Js = J↑ − J↓ are expressed as

Jc = J′
c + θSJ

SH

(
es × J′

s

)
, Js = J′

s + θSJ
SH

(
es × J′

c

)
, (12.7)

where es = σ̂↑↑ = −σ̂↓↓ = (0, 0, 1) is the spin-polarization direction and

J′
c = e

∑
k

vk (fk↑ + fk↓) , J′
s = e

∑
k

vk (fk↑ − fk↓) , (12.8)
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are the charge and spin currents for electrons with velocity vk and the distribu-
tion function fkσ = 〈a†kσakσ〉 of momentum k and spin σ. The second terms in
Eqs. (12.7) are the charge and spin currents due to side jump. In addition to the
side jump contribution, there is the skew-scattering contribution, which origin-
ates from the modification of fkσ in J′

c and J′
s due to the asymmetric scattering

by the spin-orbit interaction.
The distribution function fkσ is calculated based on the Boltzmann transport

equation in the steady state,

vk · ∇fkσ +
eE
�
· ∇kfkσ =

(
δfkσ

∂t

)
scatt

, (12.9)

where E is the external electric field and the collision term due to impurity
scattering is written as [40]

(
δfkσ

∂t

)
scatt

=
∑
k′σ′

[
P σσ′

kk′ fk′σ′ − P σ′σ
k′k fkσ

]
, (12.10)

where the first and second terms in the bracket represent the scattering-in
(k′σ′ → kσ) and the scattering-out (kσ → k′σ′), respectively,

P σ′σ
k′k = (2π/�)nimp|〈k′σ′|T̂ |kσ〉|2δ(ξk − ξk′)

is the scattering probability from state |kσ〉 to state |k′σ′〉, and T̂ is the scatter-
ing matrix, whose matrix elements are calculated up to the second-order Born
approximation as

〈k′σ′|T̂ |kσ〉=
[
uk′k +

∑
k′′

uk′k′′uk′′k

ξk − ξk′′ + iδ

]
δσ′σ + iηsouk′k(k′ × k) · σ̂σ′σ. (12.11)

After averaging over impurity positions, we find that the scattering probability
has the symmetric (non-skew) contribution

P σ′σ
k′k

(1)
=

2π
�

nimp

V
u2

imp

(
δσσ′ + η2

so

∣∣(k′ × k) · σ̂σσ′
∣∣2) δ(ξk′ − ξk), (12.12)

and the asymmetric (skew) contribution

Pσ′σ
k′k

(2)
= − (2π)2

�
ηso

nimp

V
u3

impN(0)δσσ′
[
(k′ × k) · σ̂σσ′

]
δ(ξk′ − ξk). (12.13)

The skew contribution arises from the third order with respect to the scattering
potential, i.e., the first order in the asymmetric potential uso(r) and the second
order in the symmetric potential u(r).
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In solving the Boltzmann equation, it is convenient to separate fkσ into three
parts

fkσ = f0
kσ + g

(1)
kσ + g

(2)
kσ , (12.14)

where f0
kσ is a non-directional distribution function, and g

(1)
kσ and g

(2)
kσ are the

directional distribution functions which vanish by averaging with respect to the
solid angle Ωk of k, i.e.,

∫
g
(i)
kσdΩk = 0, and are related with the symmetric and

asymmetric contributions, respectively.
We first consider the spin transport in the absence of skew scattering, in which

case the the Boltzmann equation becomes [17, 41]

vk · ∇fkσ +
eE
�
· ∇kfkσ = −g

(1)
kσ

τtr
− f0

kσ − f0
k−σ

τsf(θ)
, (12.15)

where τ−1
tr =

∑
k′σ′ P σσ′

kk′
(1)

= (1/τtr0)
(
1 + 2η̄2

so/3
)

is the transport relaxation

time, τ−1
sf (θ) =

∑
k′ P

↑↓
kk′

(1)
= (η̄2

so/3τtr0)
(
1 + cos2 θ

)
is the spin-flip relaxation

time, and θ is the angle between k and the z axis. In Eq. (12.15), the first
term on the right-hand side describes the momentum relaxation due to impurity
scattering and the second term the spin relaxation due to spin-flip scattering.
Since τtr � τsf, the momentum relaxation occurs first, followed by slow-spin
relaxation.

The distribution function f0
kσ describes the spin accumulation by the shift in

the chemical potential εσ
F from the equilibrium one εF and is expanded as

f0
kσ ≈ f0(ξk) +

(
−∂f0
∂ξk

)
(εσ

F − εF), (12.16)

where f0(ξk) is the Fermi-distribution function. Replacing fkσ in Eq. (12.15)
with f0

kσ and disregarding the term of order of τtr/τsf, we obtain

g
(1)
kσ ≈ −τtr

(
−∂f0
∂ξk

)
vk · ∇μσ

N, (12.17)

where μσ
N = εσ

F + eφ is the electrochemical potential (ECP) and φ is the electric
potential (E = −∇φ).

Substituting Eqs. (12.16) and (12.17) into the Boltzmann equation (12.15)
and summing over k, one obtains the spin diffusion equation

∇2δμN =
1
λ2

N

δμN, (12.18)
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where δμN = (μ↑
N−μ↓

N) is the chemical potential splitting which represents spin
accumulation, λN =

√
DτS is the spin-diffusion length, D = (1/3)τtrv2

F is the
diffusion constant, vF is the Fermi velocity, τS = τsf/2 is the spin relaxation
time, and τsf is the spin-flip relaxation time defined by τ−1

sf = 〈τ−1
sf (θ)〉

av
. The

ratio of the transport relaxation time to the spin-flip relaxation time is related
to the spin-orbit coupling parameter:

τtr/τsf ≈ (4/9)η̄2
so. (12.19)

The asymmetric part of the distribution function g
(2)
kσ due to skew scat-

tering is determined by the asymmetric terms of the Boltzmann equa-
tion

∑
k′σ′ [−P σ′σ(1)

k′k g
(2)
kσ +P

σ′σ(2)
k′k g

(1)
k′σ′ ] = 0, which together with Eqs. (12.12),

(12.13), and (12.17) yields

g
(2)
kσ = θSS

SHτtr

(
−∂f0
∂ξk

)
(es × vk) · ∇μσ

N(r), (12.20)

where θSS
SH is the spin Hall angle due to skew scattering

θSS
SH = −(2π/3)η̄soN(0)uimp. (12.21)

Therefore the distribution function fkσ becomes

fkσ ≈ f0(ξk) +
(
−∂f0
∂ξk

)
(εσ

F − εF) (12.22)

− τtr
(
−∂f0
∂ξk

)[
vk + θSS

SH(es × vk)
] · ∇μσ

N(r).

In this section, the spin accumulation direction es is taken parallel to the
z-axis. In an arbitrary Cartesian coordinate, it is convenient to introduce the
vector form δμN = δμNes for spin accumulation.

12.3 Spin and charge currents

Using the distribution function fkσ of the preceding section in Eq. (12.8), we
can calculate the contribution from skew scattering as J′

c = jc + θSS
SH (es × js)

and J′
s = js + θSS

SH (es × jc), where the first terms are the Ohmic charge current
and the diffusive spin current:

jc = σNE, js = −(σN/2e)∇δμN, (12.23)

with the electrical conductivity σN = 2e2N(0)D, and the second terms are the
skew scattering contribution due to ISHE and SHE, respectively. Therefore, the
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total charge and spin currents in Eq. (12.7) including both skew-scattering and
side-jump contributions are written as

Jc = jc + θSH (es × js) , (12.24)

Js = js + θSH (es × jc) , (12.25)

where θSH = θSJ
SH + θSS

SH. Equations (12.24) and (12.25) indicate that the spin
current js induces the transverse charge current jSH

c = θSH(es × js), and the
charge current jc induces the transverse spin current jSH

s = θSH(es × jc).
Taking explicitly into account that spin current is a tensor quantity jk

si with
flow direction i and polarization direction k (i, k = x, y, z), the spin and charge
currents may be rewritten as [24]

Jci = jci + θSH

∑
k

(ek × jks)i = jci − θSH

∑
jk

εijkj
k
sj , (12.26)

Jk
si = jk

si + θSH(ek × j)i = jk
si + θSH

∑
l

εikljcl, (12.27)

with the Ohmic charge current and the diffusive spin current:

jci = σNEi, jk
si = −σN

2e
∇iδμ

k
N, (12.28)

where ek is the unit vector in the k direction, εikl is the unit antisymmetric
tensor, and δμk

N is the component of spin accumulation δμN in the k direction.
Note that spin current is defined to have the same units as charge current; it is
transformed by multiplying 2e/� to the conventional definition of spin current
having the units of spin angular momentum.

Figures 12.1 (a) and (b) show the SHE and ISHE in a stripe film of width wN

and thickness dN. In the case of SHE, the external current jc in the x direction is
converted to the spin current jSH

s in the y direction, thereby accumulating spins
polarized along ez near the edges of the stripe and generating the counter-spin
current js so as to satisfy the boundary condition that the spin current vanishes
Js(y = ±wN/2) = 0 at the edges. The resulting spin accumulation is polarized
along ez and antisymmetrically distributed along the y direction as [17]

δμN(y) = 2eθSHρNλNjc
sinh(y/λN)

cosh(wN/2λN)
ez, (12.29)

up to the first order in θSH, showing that the spin accumulation is built up within
the spin diffusion length from the stripe edges, which has been observed with
the use of Kerr rotation in GaAs films [35].

In addition, jc is converted to jSH
s along the z direction via SHE, thereby

accumulating spins polarized along ey near the top and bottom surfaces of the
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Spin Hall effect (SHE) Inverse spin Hall effect (ISHE)
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Fig. 12.1. (a) Spin Hall effect (SHE). Applied charge current jc induces spin
current jSH

s in the transverse direction to create spin accumulation (�,⊗)
and diffusive spin current js within the spin diffusion length from the sample
edges. (b) Inverse spin Hall effect (ISHE). Injected spin current js with out-
of-plane polarization induces charge current jSH

c in the transverse direction to
create charge accumulation (+,−) at the sample edges and charge current jc.
The spin polarization direction is parallel to z axis.

film and generating the counter spin current to satisfy the boundary condition
Js(z = ±dN/2) = 0 at the surfaces. The resulting spin accumulation is polarized
along ey and antisymmetrically distributed along the z direction as

δμN(z) = 2eθSHρNλNjc
sinh(z/λN)

cosh(dN/2λN)
ey. (12.30)

This result is relevant in films of heavy metals like Pt with the film thickness dN

comparable to the spin-diffusion length λN.
In the case of ISHE in Fig. 12.1 (b), the spin current js flowing in the x

direction is converted to the charge current jSH
c in the y direction to accumulate

surface charge at the stripe edges, by which the transverse electric field builds up
to generate the counter charge current jc so as to make the total charge current
vanishing Jc = 0. The resulting Hall voltage is given in Eq. (12.37) in a later
section.

The spin Hall conductivity is given by the sum of the side-jump and skew-
scattering contributions: σSH = σSJ

SH + σSS
SH. The SJ conductivity

σSJ
SH = θSJ

SHσN = (e2/�)ηsone (12.31)

(ne is the carrier density) is independent of the impurity concentration. By
contrast, the SS conductivity

σSS
SH = θSS

SHσN = −(2π/3)η̄so[N(0)uimp]σN (12.32)

depends on the strength, sign, and distribution of impurity potentials. When
the impurities have a narrow distribution of potentials with definite sign, as in
doped impurities, the SS contribution is dominant for SHE, whereas when the
impurity potentials are distributed with positive and negative and their average
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over the impurity distribution vanishes (〈uimp〉 ≈ 0), then SJ contribution is
dominant. The spin Hall resistivity ρSH ≈ σSH/σ2

N, has linear and quadratic
terms in ρN representing the contributions from side jump and skew scatterings,
respectively:

ρSH = aSSρN + bSJρ
2
N, (12.33)

where aSS = −(2π/3)η̄soN(0)uimp and bSJ = (2/3π)η̄so(e2/h)kF.

12.4 Spin-orbit coupling

The electrical resistivity and the spin-diffusion length are key parameters for the
spin and charge transports [43]. By making the product of the resistivity ρN and
the spin diffusion length λN, we obtain ρNλN = (

√
3π/2k2

F)(h/e2)(τsf/2τtr)1/2,
where kF is the Fermi momentum, h/e2 = 25.8 kΩ, and (τtr/τsf) = (4/9)η̄2

so.
Thus, we have a simple relation between η̄so and ρNλN [22, 44]:

η̄so =
3
√

3π
4
√

2
1
k2
F

h

e2
1

ρNλN
, (12.34)

which implies that the spin-orbit coupling parameter η̄so is readily obtained by
measuring ρN and λN, providing a useful method of evaluating the spin-orbit
coupling in nonmagnetic metals. Table 12.1 shows the experimental data of ρN

and λN for various metals and the values of the spin-orbit coupling parameter
η̄so estimated from Eq. (12.34). It is noteworthy that η̄so is small for Al (light
metal), large for Pt (heavy metal), and intermediate for Cu, Ag, and Au. In
the case of Al, the spin-orbit coupling parameters of different samples are very
close to each other, despite the scattered values of λN and ρN in those samples.
The values of η̄so extracted from the spin injection method are several orders of
magnitude larger than the value of η̄so = (�kF/2mc)2 in the free-electron model.

In the side jump, with the aid of the relation (l/λN) = (6τtr/τsf)1/2 =
(8/3)1/2η̄so in Eq. (12.6), the spin Hall angle of SJ is rewritten in the form

θSJ
SH =

(3/8)1/2

kFλN
≈ 0.6
kFλN

(12.35)

which depends only on the Fermi momentum and the spin-diffusion length, en-
abling us to estimate the spin Hall angle θSJ

SH and spin Hall conductivity σSJ
SH

directly from the measured values of λN and σN. Using the data in Table 12.1,
one can obtain the magnitude of θSJ

SH and σSJ
SH. For Al, θSJ

SH ∼ (5–8)× 10−5 and
σSJ

SH ∼ (8–9) (Ωcm)−1, which are two or three times smaller than the experimen-
tal values of Valenzuela and Tinkham [8], suggesting that SS is comparable to or
larger than SJ in Al. For Pt, θSJ

SH ∼ (4–6)× 10−3 and σSJ
SH ∼ (320–600) (Ωcm)−1

[10, 54], which are much larger than those of Al since Pt is a heavy metal element
with large η̄so and short λN, and are consistent with the experimental values of
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Table 12.1 Spin-orbit coupling parameter η̄so = k2
Fηso for Al, Mg, Cu, Ag, Au

and Pt. Here, the Fermi momenta, kF = 1.75× 108cm−1 (Al), 1.36× 108cm−1

(Mg, Cu), 1.20× 108cm−1 (Ag), and 1.21× 108cm−1 (Au) are taken [42], and
1× 108cm−1 (Pt) is assumed.

λN (nm) ρN (μΩcm) τsf/τtr η̄so Ref.

Al (4.2K) 650 5.90 5.6 ×104 0.0063 [7]

Al (4.2K) 455 9.53 7.2 ×104 0.0056 [8]

Al (4.2K) 705 5.88 6.5 ×104 0.0059 [8]

Al (4.2K) 850 4.00 4.4 ×104 0.0072 [45]

Mg (10K) 720 4.00 5.8 ×103 0.014 [46]

Cu (4.2K) 1000 1.43 2.8 ×103 0.028 [6]

Cu (50K) 1300 0.76 1.1 ×103 0.045 [47]

Cu (4.2K) 546 3.44 4.9 ×103 0.021 [48]

Ag (4.2K) 162 4.00 3.7 ×102 0.079 [49]

Ag (4.2K) 195 3.50 4.1 ×102 0.075 [49]

Ag (10K) 920 1.22 1.7 ×103 0.046 [51]

Ag (77K) 3000 1.10 9.2 ×103 0.016 [50]

Au (4.2K) 168 4.00 3.8 ×102 0.077 [52]

Au (10K) 63 1.36 6.2 0.27 [53]

Au (<10K) 40 4 21.6 0.32 [54]

Pt ( 5K) 14 12.4 13 0.42 [10]

Pt (<10K) 10 10 4 0.75 [54]

Pt (10K) 10.1 6.66 1.84 1.11 [56]

Pt (10K) 0.75 44.2 0.45 2.25 [56]

Otani group [10, 54], suggesting a side jump origin of SHE in Pt. In particu-
lar, high resistivity Pt gives a high spin Hall angle θSJ

SH ∼ 0.08 due to SJ [56].
Furthermore, Eq. (12.35) indicates that the spin Hall angle of SJ is inversely
proportional to the spin-diffusion length, in consistent with experimental results
which show θSJ

SH ∝ 1/λN in Pt [55, 56].

12.5 Nonlocal spin Hall effect

In nonlocal spin-injection devices, a pure spin current is created in a nonmagnetic
metal [6, 7]. It is fundamentally important to verify the spin current flowing in
a nonmagnetic metal. A most simple and direct proof for the existence of the
spin current is made by using a nonlocal spin Hall device shown in Fig. 12.2
[22, 44, 58]. In this device, the magnetization of the ferromagnet (F) is in the
z direction perpendicular to the plane. Spin injection is made by applying the
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current I from F to the left end of N, while the Hall voltage (VSH) is measured
by the Hall bar at distance L, where the pure spin current js = (js, 0, 0) flows
in the x-direction. Thus, from Eq. (12.24)

Jc = σNE + θSH (ez × js) , (12.36)

where the second term is the Hall current induced by the spin current. In an
open-circuit condition in the transverse direction, the ohmic current builds up in
the transverse direction as opposed to the Hall current such that the y component
of Jc in Eq. (12.36) vanishes, resulting in the relation between the Hall electric
field Ey and the spin current js, Ey = −θSHρNjs, which is integrated over the
width wN of N to yield the Hall voltage

VSH = θSHwNρNjs, (12.37)

indicating that the induced Hall voltage is proportional to the spin current. The
spin current at x = L is given by

js ≈ 1
2
Peff(I/AN)e−L/λN , (12.38)

where Peff is the effective spin polarization which takes the tunnel spin polar-
ization PT for a tunnel junction and Peff = [pF/(1− p2

F)](RF/RN) for a metallic
contact junction, where pF is the current spin-polarization of F and RF and RN

are the spin-accumulation resistances of F and N electrodes, respectively [13].
Therefore, the nonlocal Hall resistance RSH = VSH/I becomes [22, 44, 58]

RSH =
1
2
PeffθSH

ρN

dN
e−L/λN . (12.39)

For typical values of device parameters (Peff ∼ 0.3, dN ∼ 10 nm, and ρN ∼
5μΩ cm), and θSH ∼ 0.1–0.0001 for η̄so = 0.5–0.005 (Table 1), kFl ∼ 100, and
uimpN(0) ∼ 0.1–0.01, the expected value of RSH at L = λN/2 is of the order of
0.05–5 mΩ, indicating that SHE is measurable using nonlocal Hall devices. Using
a finite element method in three dimensions, a more realistic and quantitative
calculation is possible to investigate the spin Hall effect and reveal the spatial
distribution of spin and charge currents in a nonlocal device by taking into
account the device structure and geometry [54, 59].

Recently, the spin Hall effect was observed by using nonlocal spin injec-
tion devices: CoFe/I/Al (I = Al2O3) under high magnetic fields perpendicular
to the device plane by Valenzuela and Tinkham [8, 60], Py/Cu/Pt using strong
spin absorption by Pt [9, 10], and FePt/Au using a perpendicularly magnetized
FePt [11], and by using ferromagnetic resonance (FMR) in Py/Pt bilayer films
[28, 63, 64].
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Fig. 12.2. Nonlocal spin Hall device with a ferromagnet (F) and a normal con-
ductor (N). The magnetization M of F is pointed in the perpendicular
direction to the plane. The injected spin current js generates the spin Hall
voltage VSH = V +

SH − V −
SH in the transverse direction at distance L.

In the CoFe/I/Al devices, the measured spin Hall conductivity is σSH =
34 Ω−1cm−1 and 27 Ω−1cm−1 for the Al thickness of 12 nm and 25 nm, respect-
ively, and the spin Hall angle is θSH = (1–3)×10−4 [8]. In the Py/Cu/Pt devices,
σSH = 350 Ω−1cm−1 and θSH = 4 × 10−3 [10]. These values of Al and Pt are
comparable to those of the side jump contribution expected from the formula of
Eq. (12.35). By contrast, the measured spin Hall angle θSH = 0.1 in the FePt
/Au device [11] is much larger than that of the side jump contribution expected
from Eq. (12.6), indicating that the skew scattering dominates the SHE.

It has been pointed out that a large-spin Hall effect is caused by the reson-
ant skew-scattering mechanism in nonmagnetic metals with impurities of heavy
elements [61, 62, 70, 71]. Recently, based on a first principle band structure cal-
culation [65] and a quantum Monte Carlo simulation [66] for Fe impurities in a
Au host metal, a novel type of Kondo effect due to strong electron correlation
at iron impurities tremendously enhances the spin-orbit interaction of the or-
der of the hybridization energy (∼ eV), leading to a large enhancement of the
spin Hall angle comparable to that observed in experiments of giant spin Hall
effect [11]. The sign change of spin Hall angle in CuIr originates form resonant
skew scattering with electron correlations [72]. Furthermore, the spin Hall ef-
fect in itinerant ferromagnets is strongly influence by cooperative effects which
causes an anomaly near the Curie temperature coming from high-order spin
fluctuations [73, 74].



220 Spin Hall Effect

12.6 AHE in a ferromagnet

The anomalous Hall effect (AHE) in ferromagnetic metals has long history and
has been discussed numerously based on various theoretical models and calcu-
lation techniques [1, 2, 29–31, 67–69]. Here we briefly discuss the anomalous
Hall effect in ferromagnets based on a Stoner model of ferromagnets, in which
the up-spin and down-spin bands are split by the exchange energy. This simple
model enables us to calculate the side jump and skew scattering contributions
by the straightforward extension of the spin Hall effect in nonmagnetic conduct-
ors to the case of the exchange splitting bands. Since up-spin (majority) and
down-spin (minority) electrons are imbalanced in ferromagnets, the flows of the
majority and minority electrons by applied electric field (Ex) are deflected in
the opposite directions by spin-orbit scattering to induce a charge current in the
transverse direction (jcy), which is measured as the anomalous Hall conductivity
σAH = jcy/Ex of ferromagnets.

The skew-scattering contribution to the Hall conductivity is calculated as

σSS
AH = −(2π/3)

[(
n↑ − n↓
n↑ + n↓

)
+
(
σ↑ − σ↓
σ↑ + σ↓

)]
η̄souimpNeff(0)σxx, (12.40)

where Neff(0) = (m/4π2
�

2)(k↑3F + k↓3F )/k̄2
F is the effective density of states and

k̄F = (k↑F + k↓F)/2. It is interesting to note that the skew-scattering contribution
depends on the spin polarizations of electron density and electrical conductivity.

The side jump contribution to σxy is

σSJ
AH =

e2

�
ηsone

(
n↑ − n↓
n↑ + n↓

)
, (12.41)

where ne = n↑ +n↓. Since the magnetization Mz is given by Mz = μB(n↑−n↓),
the side jump contribution is proportional to the magnetization σSJ

AH ∝ Mz.
On the other hand, the skew-scattering contribution depends not only on the
magnetization but also the asymmetry in the conductivities of up-spin and down-
spin electrons, so that the Hall resistivity of skew scattering is no longer scaled
to the magnetization.

12.7 Summary

In this chapter, we briefly discussed the basic aspect of the spin Hall effect in
diffusive metallic conductors based on the semiclassical Boltzmann transport
theory. The spin Hall effect makes it possible to interconvert the spin and charge
current owing to the spin-dependent asymmetric scattering of conduction elec-
trons by spin-orbit interaction in nonmagnetic conductors. The electrical current
in nonmagnetic conductors creates spin current in the transverse direction by the
SHE and accumulates spin near the sample edge, which provides a spin source
without use of magnetic materials. In an inverse way, “pure” spin current in



References 221

nonmagnetic conductors generates charge current in the transverse direction by
the ISHE, which is detected as an electric signal. Recent observation of SHE
and ISHE have demonstrated the interconversion between charge and spin cur-
rents, and gives information for the spin Hall angle due to the skew scattering
and side jump contributions, or intrinsic contribution. In addition, the spin-
diffusion length and the electrical conductivity enable us to estimate the strength
of spin-orbit coupling in each specific sample of nonmagnetic conductors. Fur-
ther experimental and theoretical studies for the mechanism of SHE with large
spin Hall angle will open a new avenue in the field of spintronics.
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13 Spin generation and manipulation based
on spin-orbit interaction in semiconductors

J. Nitta

Motivated by the tremendous commercial success of spintronics in metallic sys-
tems, the electron spin degree of freedom has also become the center of interest
in semiconductor spintronics [5]. Exploitation of spin degree of freedom for the
conduction carriers provides a key strategy for finding new functionalities. Espe-
cially the electrostatic control of the spin degree of freedom is an advantageous
technology over the metal-based spintronics. However, carriers in semiconduct-
ors are not spin polarized, and generation of spin polarized carrier is crucial for
semiconductor spintronics. The key word of this chapter is spin-orbit interaction
which gives rise to an effective magnetic field. Especially the Rashba spin-orbit
interaction (SOI) [10], [47] is important since the strength is controlled by the
gate voltage on top of the semiconductor two dimensional electron gas (2DEG).
By utilizing the effective magnetic field induced by the SOI, spin generation
and manipulation are possible by electrostatic ways. In this chapter, we will
discuss the origin of spin-orbit interactions in semiconductors and the electrical
generation and manipulation of spins by electrical means The long spin coher-
ence is achieved by special spin helix state where both strengths of Rashba and
Dresselhaus SOI are equal.

13.1 Origin of spin-orbit interaction (SOI) in semiconductors

Spin-orbit interaction (SOI) plays important roles for the generation of spin cur-
rent and for the electrical manipulation of the electron spins. The essence of SOI
is that the moving electrons in an electric field feel an effective magnetic field
even without any external magnetic field. This effective magnetic field can be
used for generation and manipulation of spins. In the III–V compound semicon-
ductor heterostructure, the main contributions of the SOI are the Dresselhaus
SOI caused by bulk inversion asymmetry (BIA) [13] and the Rashba SOI caused
by structural inversion asymmetry (SIA) [10], [47]. The internal electric field of
the Dresselhaus SOI originates from the microscopic Coulomb potential gradient
of the atomic core region, the strength of which is generally difficult to modulate.
The Dresselhaus SOI is considered to be a material-constant parameter. On the
other hand, the internal electric field of the Rashba SOI originates from both the
microscopic Coulomb potential induced by the atomic core and the macroscopic
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potential gradient caused by the heterointerface and the band bending in the
semiconductor heterostructure [65]. Although the microscopic electric field is a
material-constant parameter, as is the Dresselhaus SOI, the macroscopic electric
field can be modulated by applying an external gate bias voltage on top of the
two-dimensional electron gas (2DEG). This enables us to electrically control the
effective magnetic field [15, 43]. It should be noted that the SOI effect in solids
is much enhanced in contrast to that in vacuum. This is because the electric
field near the atomic core is large and the electron wavefunction varies rapidly
in space.

In vacuum, the SOI is described by the Thomas term in the Pauli equation,

HSO = − 1
2m0c2

μBσ · (�p×∇V0) = −μBσ ·
(
�p× �E

2m0c2

)
. (13.1)

Here μB, σ and V0 are the Bohr magneton, the Pauli spin matrix, and the
scalar potential, respectively. In analogy to the Zeeman Hamiltonian, HZ =
(1/2)g0μBσ · �B, the effective magnetic field of the SOI is

Beff =
�p× �E

2m0c2
, (13.2)

It is clear that the effective magnetic field is induced perpendicular to both the
electron momentum and the electric field. In the relativistic quantum theory,
2m0c

2 is the energy gap between an electron and a positron, which is a negative
energy particle with the negative mass predicted by Dirac. The energy scale of
2m0c

2 is ∼1 MeV ; thus, the SOI is negligible for a particle with non-relativistic
momentum in a vacuum. On the other hand, in crystalline solids, the energy-
band gap is reduced to ∼1 eV in typical semiconductors. Since the Dirac gap is
replaced by the energy-band gap according to the k · p perturbation theory [65],
it results in an enhancement of about six orders of the SOI in semiconductors.

The electron wave function in semiconductors is characterized by both a Bloch
function and an envelope function. In the Bloch part, the electron wave is rapidly
modulated by the atomic core potential, while the electron wave in the envelope
part is gradually modulated by the periodic crystalline structure. The origin
of the enhancement of the SOI in semiconductors is due to the Bloch part,
where both the electron momentum and the electric field are enlarged by the
fast oscillation of the electron wave and the strong confinement near the atomic
core, respectively [65].

In the III–V semiconductor heterostructures, the spin degeneracy is lifted due
to the SIA of the confining potential of 2DEG QW. The schematic band profile of
QW is shown in Fig. 13.1. When the confinement potential of QW is symmetric
as shown in Fig. 13.1 (a), the Rashba SOI caused by macroscopic electric field
in the QW is zero. By applying an external gate bias on top of 2DEG, the
potential profile can be modulated, and the asymmetric QW potential causes a
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Fig. 13.1. Electrical control of the Rashba SOI. The band profile of QW can
be tuned by an external gate bias voltage. When the QW potential is sym-
metric, the Rashba SOI caused by an electric field in QW is zero and spin
states are degenerated. An asymmetric potential profile in QW by tuning
the gate voltage lifts the spin degeneracy since the electric field in QW is
finite. The spin configuration at Fermi energy is shown in right bottom fig-
ure. Fermi momentum difference Δk = kF↑− kF↓between spin up and down
is proportional to the Rashba SOI parameter α.

finite Rashba SOI that lifts the spin degeneracy as shown in Fig. 13.1 (b). The
advantage of the Rashba SOI is that the strength of SOI can be controlled by
the gate voltage [15, 44, 56]. The Hamiltonian of the Rashba SOI in a 2DEG is
given by

HR = α (kxσy − kyσx) , (13.3)

where α is the Rashba SOI parameter, � is Planck’s constant, σi(i = x, y) are
the x and y components of the Pauli spin matrix, and the x and y axes are
parallel to the 2DEG plane. The Rashba SOI parameter α depends on the band
parameters and the electric field in the QW.

According to the k ·p perturbation theory [56, 65], the Rashba SOI parameter
α is given by the following equation

α =
�

2Ep

6m0
〈Ψ(z)| d

dz

(
1

EF − EΓ7(z)
− 1
EF − EΓ8(z)

)
|Ψ(z)〉 (13.4)

where Ψ(z)is the wave function for the confined electron, Ep is the inter-band
matrix element, EF is the Fermi energy in the conduction band, and EΓ7(z) and
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EΓ8(z) are positions of the band edge energies for Γ7 (spin split off band) and
Γ8 (the highest valence band) bands, respectively. Contribution to Eq. (13.4)
can be split into two parts: (i) the field part, which is related the electric field in
the QW and (ii) interface part, which is related to band discontinuities at the
heterointerface.

For many years, there has been an intense discussion about the Rashba SOI.
It was thought that the Rashba SOI should be very small because the average
electric field for the bound state is zero i.e. 〈E〉 = 0 in order to satisfy the
condition that there is no force acting on a bound state. In fact this controversy is
resolved by Eq. (13.4). It is clear that the Rashba spin splitting in the conduction
band originates from the electric field in the valence band [56, 65]. Equation
(13.4) also shows that the strength of Rashba SOI can be controlled by the gate
electric field on top of the 2DEG [15, 44, 56].

The spin splitting energy at the Fermi energy, Δ = 2αkF , is calculated
from Eq. (3), where kF is the Fermi wave number. By comparing the Zeeman
energy, an effective magnetic field is given by Beff = 2αkF /μB , and momen-
tum difference between spin up and down at Fermi energy is described by
kF↑ − kF↓ = 2αm∗/�

2, where m∗ is an effective mass of electron. The spin
precession angle Δθ is given by

Δθ =
2αm∗

�2
L (13.5)

when an electron spin travels in a length of L. The field effect spin transistor
[12] was proposed with an assumption of the gate controlled Rashba SOI.

In III–V compound semiconductors, the electric field due to the ionized atoms
in the crystal can be an origin of SOI in Eq. (13.1). This is the so called
Dresselhaus SOI. The derivation of Dresselhaus SOI is obtained from the k·p per-
turbation theory based on Hamiltonian with 14 x 14 matrix and is too complex.
Here, the linear Dresselhaus SOI is given by the following equation.

HD = β (kxσx − kyσy) . (13.6)

It should be noted that the Dresselhaus cubic term is negligible when the QW
confinement kz ≈ π/dQW is larger than Fermi wavenumber. Here, dQW is a
thickness of QW. The Dresselhaus SOI parameter is given by β = γ

〈
k2

z

〉
. Here,

γ is bulk Dresselhaus SOI parameter, which is a material constant.

13.2 Gate-controlled Rashba SOI

One of the ways to obtain the Rashba SOI parameter α is to measure the beating
pattern in the Shubnikov de-Haas (SdH) oscillations [15, 44]. The origin of the
beating in the SdH oscillations comes from the spin-split two Fermi circle in
the momentum space as shown in Fig. 13.1 (a). Note that one should be careful
about the origin of the beating when we have a second subband in a QW since
the magneto inter-subband scattering (MIS) also makes a beating pattern in the
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SdH oscillations [49]. In the present QW as shown below, the Fermi energy ob-
tained from the carrier density range is much below the second subband energy
level, and we can exclude the beating pattern due to MIS. The oscillations plot-
ted as longitudinal resistance R vs 1/B have a characteristic frequency f which
is proportional to the carrier density, ne = f/Φ0 (where f has the unit of Tesla,
and Φ0 = h/2e). If there is SOI the two spin directions have slightly different
densities with two slightly different frequencies, visible as a beating pattern in the
SdH oscillations in Fig. 13.2 (a). Thus, we can calculate α with the formula [15]

|α| = Δne�
2

m∗

√
π

2 (ne −Δne)
=
f1 − f2

2m∗

√
e�3

f2
, (13.7)

where f1 and f2 are the high and low frequencies, respectively, and Δne is the
difference between spin concentrations, respectively.

The 2DEG channel in the present experiment is formed in an InP/InGaAs
(10 nm)/ In AlAshetero structure. A Hall bar sample was made by standard lift-
off techniques. A 50 nm SiO2 insulator was deposited by an electron cyclotron
resonance (ECR) sputtering, and on top of that was an Au gate, used to control
the carrier density and the SOI parameter α. We measured the SdH oscillations
in a wide range of carrier densities.

Figure 13.2 shows the gate voltage dependence of SdH oscillations at 0.3 K.
The magnetic field was applied perpendicular to the 2DEG. Beating patterns are
observed in the SdH oscillations because of the existence of two closely spaced
SdH frequency components with similar amplitudes. These observed beating
patterns are attributed to the spin splitting since the second sub-band is not
occupied in the QW, therefore we can rule out MIS. When the gate voltage

560

540

520

500

480

460

440

420

400

R
e

s
is

ta
n

c
e

 (
Ω)

0.90.80.70.60.50.4

Magnetic field (T)

(a) (b)

Curves are shifted vertically

Vg = 1 V

Vg = 2 V
Vg = 2.5 V

1.0

0.8

0.6

0.4

0.2

0.0

F
F

T
 p

o
w

e
r 

(a
.u

.)

3025201510

Frequency (T)

Vg = 2.5 VVg = 2 VVg = 1 V

Fig. 13.2. (a) Gate voltage dependence of the beating pattern appeared in the
Shubunikov-de Haas (SdH) oscillations. Curves are vertically shifted for
clarity. (b) Fast Fourier Transform (FFT) spectra of the SdH oscillations.



Spin relaxation and its suppression for long-spin coherence 231

8

7

6

5

4

3

1.61.41.21.00.80.60.4

Carrier density (10
16

 m
–2

)

α 
(1

0
–

1
2
 e

V
m

)

 SdH Oscillations

AC Spin Interference

Fig. 13.3. The SOI
parameter α dependence
of carrier density ne.
Black dots and square
symbols are obtained
from the SdH oscillations
and from the zero
crossing points of the AC
spin interference,
respectively.

is decreased, the node position shifts to a higher magnetic field. Although the
beating pattern was not very pronounced, the FFT spectra showed clear double
peaks as shown in Fig. 13.2 (b), therefore, the spin-orbit interaction parameters
α were obtained from Eq. (13.7) using the double peaks in the FFT spectra. The
carrier density ne dependence of the spin-orbit interaction α is plotted as black
dots in Fig. 13.3. The spin-orbit interaction parameter decreases with increasing
ne since the potential profile of the QW becomes more symmetric. This result
shows that the SOI parameter α can be controlled by the gate voltage. It has
been also confirmed that the spin-orbit interaction can be controlled by the
design of asymmetry in QWs from the weak anti-localization (WAL) analysis
[25, 35].

The SdH oscillation and WAL analyses are not so accurate to evaluate the
SOI parameter when the Rashba and Dresselhaus SOI strengths are close to
each other. Recently, a novel concept to determine the Rashba and Dresselhaus
SOI ratio without any fittings was proposed and experimentally demonstrated
in InGaAs wires by utilizing in-plane Zeeman field [53]. By using this method,
the gate-controlled persistent spin helix was confirmed.

13.3 Spin relaxation and its suppression for long-spin coherence

Spins of electrons in solids are not conserved quantity in contrast to charges of
electrons. The information of spins is lost and leads to so-called spin relaxation
by several reasons. In the expitaxially grown III-V compound QWs with the
Rashba and DresselhausSOIs, the D’yakonov-Perel (DP) mechanism is generally
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dominant for spin relaxation [14]. The Rashba SOI causes an effective magnetic
field Beff which is pointing perpendicular to the momentum direction in the
2DEG plane. The spin of electrons is precessing around the effective field. In
a diffusive 2DEG, the momentum direction of electron changes frequently, and
hence so does the direction of Beff . Due to the random change in Beff , the
spin orientation is randomized and the spin looses the memory of its initial spin
direction. The DP spin relaxation is caused not only by the Rashba SOI but also
by the Dresselhaus SOI. Generally speaking, the DP spin relaxation is expected
if the system has a momentum dependent effective field Beff due to SOI spin
splitting energy Δ.

From the DP spin relaxation picture, we can estimate the spin relaxation time.
The spin is initially precessing around a certain effective magnetic field direction
with a typical frequency of ω = Δ/� and during a typical scattering time τ .
After a scattering event, the direction of Beff is randomly changed, and the spin
starts to precess around the new Beff direction. Hence, after a certain number
of scattering events there is no correlation anymore between the initial and final
spin states. The precise time scale on which the spin loses its memory depends
on the typical spin precession angle between scattering events δφ = ωτ = Δτ/�.
For δφ << 1, the precession angle is small between succeeding scattering events,
so that the spin vector experiences a slow angle diffusion. During a time interval
t, the number of random steps is t/τ . For uncorrelated steps in the precession
angle we have to sum the squared precession angles δφ2 = (Δτ/�)2, and the
total squared precession angle after time t is (Δτ/�)2 t/τ . The spin relaxation
time τs can be defined as the time at which the total precession angle becomes
of the order of unity. Hence the spin relaxation time is given by τs ≈ �

2/Δ2τ .
Gate controlled SOI, which gives rise to an effective magnetic field, provides an

electrical way to manipulate spins. On the other hand, a momentum-dependent
effective magnetic field due to the SOI randomizes spin orientations after sev-
eral momentum-scattering events. The SOI is a double-edged sword because it
can be used for spin manipulation, however, at the same time it causes spin
relaxation. Therefore, it is very crucial to suppress the spin relaxation while
keeping the strength and the controllability of SOI. One of the ways to sup-
press spin relaxation is to confine electrons to moving one-dimensionally by
narrow wire structures whose width is of same scale of bulk spin diffusion length
LSO = �

2/αm∗ due to the Rashba SOI. This suppression of spin relaxation
due to lateral confinement effect has theoretically been investigated [24, 36]
and have experimentally been demonstrated with an optical way [18] and weak
anti-localization analysis [33, 56].

The most effective way to suppress the DP spin relaxation is to utilize the
so-called persistent spin helix (PSH) condition [8, 58], where the Rashba SOI
strength α is equal to linear Dresselhaus SOI β. In this PSH condition, con-
servation of spin polarization is preserved even after scattering events. This
conservation is predicted to be robust against all forms of spin-independent
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scattering, including electron-electron interaction, but is broken by the spin-
dependent scattering and the cubic Dresselhaus term. The PSH in semiconductor
quantum wells was confirmed by optical transient spin-grating spectroscopy by
Koralek et al. [31]. They found enhancement of spin life time by two orders
magnitude near the exact PSH point.

Under the PSH state (α = β), the effective magnetic field is unidirectional,
resulting in coherent spin propagation with helical spin texture. This helical spin
texture pattern was observed by optical measurements [21, 63]. Furthermore, it
has been demonstrated that the helical spin coherence is enhanced by introducing
the drift motion of spins by in-plane electric field [32]. The gate-controlled PSH
state [28] and gate-controlled switching between PSH and inverse PSH (−α = β)
[68] were confirmed by transport measurement. Schematic image of PSH and i-
PSH is shown in Fig. 13.4. These experimental demonstrations are breakthroughs
toward minimizing and controlling spin relaxation. Spin complementary-field
effect transistor design was proposed on the basis of gate-tunable spin helix
states [34].
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Fig. 13.4. Directions and strength of effective magnetic field in the PSH (a)
and the i - PSH (b) states. The effective magnetic field is not momentum -
dependent but unidirectional in both cases. Long spin coherent precession is
realized even with momentum scattering events in the PSH (c) and the i -
PSH (d) states.



234 Spin generation and manipulation based on spin-orbit interaction

13.4 Spin generation by spin Hall effect and Stern-Gerlach effect
using SOI

In contrast to metal systems, a band structure affected by the spin-orbit
interaction in semiconductor systems lead to an intrinsic spin Hall effect even in
the absence of scattering events. The intrinsic spin Hall effect in valence-band
holes was first predicted by Murakami et al. [40]. A universal intrinsic spin Hall
effect in a ballistic Rashba 2DEG system was calculated by J. Sinova et al. [59].
The universal spin Hall conductivity is given by e/8π. It is important to note
that the spin Hall conductivity vanishes in a diffusive Rashba 2DEG system [19].
The spin Hall effect in heavy holes in confined QW was studied by Schielmann
et al. [57]. In contrast to the Rashba 2DEG system, the intrinsic spin Hall effect
in a hole system does not vanish even in a diffusive case.

Intuitive picture of the spin Hall effect in the Rashba 2DEG system is provided
by the spin transverse force [19]. Using the Heisenberg equation of motion and the
commutation relation of Pauli spin matrix, the second derivative of the position
operator gives the following spin transverse force on a moving electron [19].

m∗ ∂
2�r

∂t2
= −2m∗α2σz

�3
�p× ẑ (13.8)

This spin transverse force tends to form a σz spin current perpendicular to the
momentum direction.

Experimental observation of the spin Hall effect in bulk GaAs and strained
InGaAs was demonstrated with the use of Kerr rotation microscopy [23]. With-
out applying any external magnetic field, the out-of-plane spin polarized carriers
with opposite sign were detected at the two edges of the sample. The amplitude
of the spin polarization was so weak, and the mechanism was originated by the
extrinsic spin Hall effect. The spin Hall effect in a GaAs 2D hole system was
observed by Wunderlich et al. [67]. The out-of-plane spin polarized carriers were
detected by light emitting diodes, and sign of the spin polarization was switched
by the electric field direction. The authors claimed that the intrinsic spin Hall
effect is responsible for their system.

The experimentally observed spin polarization due to the spin Hall effect
was very small. So the Stern-Gerlach spin filter was proposed (Fig. 13.5) by
using the spatial gradient of the Rashba SOI [45]. A spatial gradient of the
effective magnetic field due to the Rashba SOI causes the Stern-Gerlach type spin
separation. Almost 100% spin polarization can be realized even without applying
any external magnetic fields and without attaching ferromagnetic contacts. In
this case, the spin polarized orientation is not out-of-plane but in-plane. The
spin polarization persists even in the presence of randomness.

This Stern-Gerlach spin filter based on inhomogeneous SOI was demonstrated
in semiconductor quantum point contacts [29]. In this experiment, the spin po-
larization of 70 % was confirmed by shot noise measurements. Such a spin-filter
device can be also used for electrical spin detection.
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Fig. 13.5. Schematic structure of the proposed Stern-Gerlach spin filter. The
spatial gradient of the Rashba SOI is induced by two gate electrodes.

13.5 Spin manipulation by Aharonov-Casher spin interference:
Theory

A rotation operator for spin 1/2 produces minus sign under 2π rotation [51]. Neu-
tron spin interference experiments performed by two groups have verified this
extraordinary prediction of quantum mechanics [48, 64]. In solids, an electron
spin interference experiment in an n-GaAs interference loop has been conducted
using optical pump and probe methods [22]. A local magnetic field due to dy-
namic nuclear-spin polarization caused spin precession of the wave packet in
one of the interference paths. In the above spin interference experiments, spin
precession was controlled by a local magnetic field.

An electron acquires a phase around magnetic flux due to the vector potential
leading to the Aharonov-Bohm (AB) effect in an interference loop [1, 60]. From
the view point of inherent symmetries between magnetic field and electric field
in the Maxwell equations, Aharonov and Casher have predicted that a magnetic
moment acquires a phase around a charge flux line [2]. It should be noted that the
original Aharonov-Casher (AC) effect was proposed for charge neutral particle
since the electric field modifies the trajectory of charged particle in the same
sense as the original AB effect was predicted in the situation where magnetic
flux should not exist in an electron path. It is pointed out that the AC phase
shift can be derived from spin-orbit interaction (SOI) [6]. A. G. Aronov and Y.
B. Lyanda-Geller have derived a spin-orbit Berry phase in conducting rings with
SOI [4]. T. Qian and Z. Su have obtained the AC phase, which is the sum of
spin-orbit Berry phase and spin dynamical phase in a one-dimensional ring with
SOI [46]. The major difference of the AC effect from the AB effect is that the
AC effect is not observable if the electric field is not in the paths although the
AB effect can take place even if there is no magnetic field in the electron paths.
Cimmino et al. [11] managed to perform the AC interference experiment in a
neutron (having spin 1/2 but no charge) beam loop using a voltage of 45 kV to
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create the electric field. However, modified precession angle of neutron spin was
only 2.2 mrad since the SOI is not strong in vacuum.

Mathur and Stone have theoretically shown [38] that the effects of SOI in
disordered conductors are manifestations of the AC effect in the same sense as
the effects of weak magnetic fields are manifestations of AB effect. They have
proposed the electronic AC effect in a mesoscopic interference loop made of
GaAs 2DEG with the Dresselhaus SOI. It is emphasized that a thousand-fold
improvement in its experiment can be expected in the electronic AC effect since
the SOI in semiconductors is much enhanced compared with that in vacuum.
The AC spin interference was not reported by utilizing the Dresselhaus SOI since
the strength is not controlled by an electrostatic way.

Electrostatic manipulation of spins is of crucial for spintronics. An AC spin-
interference device was proposed on the basis of the gate controlled Rashba SOI
[44]. The schematic structure of the spin interference device is shown in Fig. 13.6.
The spin interference can be expected in an AB ring with the Rashba SOI
because the spins of electrons process in opposite directions between clockwise
and counter clockwise travelling directions in the ring. The relative difference in
spin precession angle at the interference point causes the phase difference in the
spin wave functions. The gate electrode, which covers the whole area of the AB
ring, controls the Rashba SOI, and therefore, the interference. The advantage
of this proposed spin-interference device is that conductance modulation is not
washed out even in the presence of multiple modes.

The total Hamiltonian of a one-dimensional ring with the Rashba SOI in
cylindrical coordinates reads [39]

H(φ) =
�

2

2m∗r2

(
−i ∂
∂φ

+
Φ

Φ0

)2

+
α

r
(cosφσx + sinφσy)

(
−i ∂
∂φ

+
Φ

Φ0

)
.

− i α
2r

(cosφσy − sinφσx) +
�ωB

2
σz (13.9)

Here an external magnetic field Bz is applied in the z-direction which is per-
pendicular to the ring plane, and magnetic flux through the ring is given by
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InGaAs/InAIAs 2DEG

Beff

Beff

p

p

Fig. 13.6. Schematic
structure of the proposed
spin interference device.
The Rashba SOI is
tunable by a gate
voltage.
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Φ = Bzπr
2 with ring radius r, Φ0 = h/e is the flux quantum. The azimuthal

angle is given by φ. ωB = 2μBBz/� is the Larmor frequency. In an isolated ring,
the wave function is given by the following form

Ψ =
1√
2π

(
C+

n e
inφ

C−
n e

inφ

)
(13.10)

where C+
n and C−

n are coefficients of spin-up and spin-down eigenstates, respect-
ively. When the Zeeman term is negligible, the energy eigenvalues can be written
as [18, 46, 68]

En,s = �ω0

[
n+

Φ

Φ0
− Φs

AC

2π

]2
(13.11)

with ω0 = �/2m∗r2, n integer, and the AC phase Φs
AC . The AC phase is given

by [16, 44, 66]

Φs
AC = −π

⎡
⎣1 + s

√(
2rm∗α

�2

)2

+ 1

⎤
⎦ , s = ±. (13.12)

This AC phase can be viewed as an effective spin dependent magnetic flux
through the ring which modulates the conductance of the ring. Here s = ±
corresponds to spin-up and spin-down along the effective magnetic field. From
the above calculation, the conductance when electrons travel halfway around the
ring at Bz = 0 is written as [16, 44, 66]

G =
e2

h

⎡
⎣1− cos

⎧⎨
⎩π
√

1 +
(

2mαr
�2

)2
⎫⎬
⎭
⎤
⎦

=
e2

h

[
1 + cos

{
2πr

mα

�2
sin θ − π (1− cos θ)

}] (13.13)

The acquired AC phase can be written as the sum of two phases,
2πrm∗/�

2π and (1−cos θ), as is shown in the last expression in Eq. (13.13). The
former term is sometimes called the dynamical part of the AC phase, because
of its dependence on the distance traveled by the electrons. The latter term
is a geometrical phase since it only depends on the solid angle θ, and not on
spatial parameters. Such geometrical phases were discovered by Berry from the
basic laws of quantum mechanics [9], and received considerable attention. Berry
showed that the wave function obtains a non-trivial phase when a parameter in
the Hamiltonian is changed in a cyclic and adiabatic way.
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From the above expression it follows that the conductance of the ring de-
pends crucially on the Rashba SOI strength α. This equation shows that the
conductance of the ring oscillates as a function of α. This SOI dependence is
very similar to the conductance of the Spin-FET proposed by Datta and Das, in
which they need ferromagnetic electrodes for spin injection and detection [12].
This proposed spin interferometer works without ferromagnetic electrodes. It is
worth pointing out that the above described spin interference effect is expected
to be robust since the acquired phase-difference does not depend on the Fermi en-
ergy. Furthermore, the independence of the phase difference on the Fermi energy
also implies that the conductance modulation will be present in a multi-mode
ring if the different radial mode does not mix in the interference process, the
conductance modulation of a multi-mode ring is still given by Eq. (13.13).

A geometric phase of the most fundamental spin-1/2 system, the electron
spin, had not been observed directly and controlled independently from dy-
namical phases. The geometrical phase shift and its topological transition by
in-plane Zeeman field was theoretically investigated in the AC spin interference
device [50].

13.6 Spin manipulation by Aharonov-Casher spin interference;
Experiment

The resistance of a mesoscopic ring is affected by several quantum interference
effects. The well-known AB effect results in a resistance oscillation with a mag-
netic flux period of h/e. The AB effect is sample specific and very sensitive to
the Fermi wave length, therefore, the interference pattern is rapidly changed by
the gate voltage. In order to detect the AC effect we used another quantum
interference phenomenon, the Al’tshuler-Aronov-Spivak (AAS) effect [3]. The
AAS effect is an AB effect of time reversal symmetric paths, where the two
wave function parts go all around back to the origin on identical paths, but in
opposite directions. In this situation any phase which is due to path geometry
will be identical and will not affect the interference. This also means that it is
independent of the Fermi energy EF (and consequently the carrier density ne).
However, the AAS effect is sensitive to the spin phase when the SOI plays a
role. If there is magnetic flux inside the paths the resistance will oscillate with
the period of h/2e. When the flux is increased the resistance oscillates with the
period h/2e, but the AAS oscillation amplitude decays after a several periods
because of averaging between different paths in the ring, with different areas.
If there is SOI in the ring, the electron spin will start precessing around the
effective magnetic field and change the interference at the entry point. Note that
the effective magnetic field due to the SOI is much stronger than the external
magnetic field to pick up AAS oscillations. The precession axes for the two parts
of the wave function are opposite and therefore the relative precession angle is
twice the angle of each part. If the relative precession angle is π the spins of the
two parts are opposite and can’t interfere, and the AAS oscillations disappear. If
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the relative angle is 2π the two parts will have the same spin but opposite signs
because of the 1/2 spin quantum laws (a 4π rotation is required to return to the
original wave function), effectively changing the phase of the AAS oscillations
by π, which we interpret as a negative amplitude.

By using arrays rather than single rings we get a stronger spin signal and
we average out some of the universal conductance fluctuations (UCF) and sam-
ple specific AB oscillations [61]. Complex gate voltage dependence has been
reported in an Aharonov-Bohm type AC experiment in a single ring fabricated
from HgTe/HgCdTe QWs [30]. Therefore, a detailed analysis is necessary to
compare with the AC theory.

The ring arrays were etched out in an electron cyclotron resonance (ECR) dry-
etching process from an InP/InGaAs/InAlAs based 2DEG, the same as used for
the SdH measurements as shown in Fig. 13.2. The electron mobility was 711
m2/Vs depending on the carrier density and the effective electron mass m∗

was 0.050m0 as determined from the temperature dependence of SdH oscillation
amplitudes. Figure 13.7 shows an example of the ring array which consists of
4×4 rings of 1.0 μm radius. Note that the actually measured sample was a 5×5
ring array. The rings were covered with a 50 nm thick SiO2 insulator layer, and
an Au gate electrode, used to control the carrier density and the SOI parameter
α. In the present sample, we design the array with a small number of rings
in order to escape a gate tunneling-leakage problem. The advantage of using a
small number of rings rather than a large array is that the gate tunneling leakage
is much smaller and we can use a relatively high-gate voltage [7]. This makes
it possible to see several oscillations of AC interference. Earlier experiments
on square loop arrays with very large number of loops showed convincing spin
interference results, but only up to one interference period [26].

The experiment was carried out in a 3He cryostat at the base temperature
which varied between 220 mK and 270 mK. The sample was put in the core of
a superconducting magnet with the field B perpendicular to the 2DEG plane.
We measured the resistance R of the ring array simultaneously with the Hall

Gate Electrode

5 μm

Fig. 13.7. An SEM image of an
array of rings with 1 μm radius.
The whole area is covered by
gate electrode.
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resistance RH of the Hall bar close to the rings, while stepping the magnetic
field and the gate voltage VG. Close to the arrays and in the same current path
and under the same gate was a Hall bar, 5 μm wide and 20 μm long, used to
measure the carrier density. We calculated the carrier density ne from the slope
of the RH vs B (n−1

e = e dRH/dB) and the carrier concentration was linearly
increased with the gate voltage VG.

In order to reduce noise and UCF effects we averaged ten resistances versus
magnetic field (R vs B) curves with slightly different gate voltages. This aver-
aging preserves the AAS oscillations but the averaging of M curves reduces the
AB amplitude roughly as M−1/2. We took the FFT spectrum (using an Exact
Blackman window) of this average and got a spectrum with two peaks, corres-
ponding to the AB oscillations and the AAS oscillations at twice the frequency.
We integrated the area of the AAS peak to get the amplitude and determined
the sign by analyzing the phase of the central part of the filtered R vs B data.

In Fig. 13.8, we display the h/2e magneto resistance oscillations due to the
AAS effect at five different gate voltages. The oscillations in the top and bottom
curves are reversed compared to the middle one because of the AC effect. The
second and fourth ones have almost no oscillations the spin precession rotates
the spins of the two wave function parts to opposite directions. Figure 13.9 shows
the color scale plot after digital band-pass filtering of the AAS oscillations which
are visible as vertical stripes in the figure. We can clearly see the oscillations
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to the middle one because of the Aharonov-Casher effect. The oscillation
amplitudes for second and fourth curves are suppressed. These gate voltage
dependent AAS oscillations are due to the AC effect.
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effect.

switching phase as we increase the gate voltage. We then plotted the amplitude
against the gate voltage as shown in Fig. 13.10. The AAS amplitude oscillates
as a function of the gate voltage which changes the SOI parameter α. As we
discuss below using Eqs. (13.5) and (13.13) the amplitude crosses zero, inverting
the AAS oscillations. Each period represents one extra 2π spin precession of an
electron moving around a ring.

In the FFT spectra there is also a small peak at h/4e. This is due to the
wave function parts going twice around the ring before interfering. If we do the
same analysis on this peak we get an oscillating amplitude with half the period
compared to the h/2e amplitude. This is expected because the distance is twice
and therefore the precession angle is also twice. Both h/2e and h/4e oscillation
amplitudes increase with increasing the gate voltage VG. This is because the
phase coherence length of ring becomes longer with increasing diffusion constant
which depends on the carrier density.

The precession angle θ of an electron moving along a straight narrow channel
is given by Eq. (13.5). The modulation of the h/2e oscillation amplitude can be
expressed as a function of α,

δRα

δRα=0
= cos

⎧⎨
⎩2π

√
1 +

(
2m ∗ α

�2
r

)2
⎫⎬
⎭ (13.14)

where δRα and δRα=0 is the h/2e amplitude with and without SOI, respectively.
In relating the result of the spin interference experiment to the spin precession
angle, the argument of cosine in Eq. (13.13) reduces to the spin precession angle
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argument of the cosine in Eq. (13.14).

θ in the limit of strong SOI or large ring radius because the distance traveled
around the ring is 2πr.

As shown in Fig. 13.3, the SOI strength α obtained from the beating pattern of
the SdH oscillations show carrier density dependence. The gate voltage sensitiv-
ity Δα/ΔVG is about 0.51 x 10−12eVm/V in the present hetero-structure. From
the gate voltage dependence of SOI α we estimate the spin precession angles at
several different gate voltages. The estimated spin precession angles at the peak
and dips of the AC oscillations are shown in Fig. 13.10. These precession angles
correspond to the argument of the cosine in Eq. (13.14). It is found that the
spin precession angle is controlled over the range of 4π by the gate electric field.
We could observe a more than 20π spin precession angle. Squares in Fig. 13.3
are α values obtained from the consecutive zero-crossing points of the AC spin
interference experiment, which are consistent with the SdH measurement result.

This clear demonstration of the AC interference controlled by the gate electric
field can be attributed to the fact that the SOI is much enhanced in semi-
conductor hetero-structures compared to the SOI in vacuum. The AC effect is
of fundamental importance for quantum interference phenomena and quantum
interactions.

Recently, much attention is focused on topologically protected phases. Control
of the geometric phase appeared in Eq. (13.13) was demonstrated by gate voltage
[42] and Zeeman in-plane field [41]. It was also shown that the Aharonov-Casher
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oscillations in various radius arrays collapse onto a universal curve if the radius
and the strength of Rashba SOI are taken into account. The result is interpreted
as the observation of the effective spin-dependent flux through a ring.

13.7 Summary

Electrical spin generation, manipulation, and detection are prerequisite for fu-
ture spintronics, and these spin functionalities can be realized solely by utilizing
SOI. Spin polarized carriers have been generated by spin Hall effect and Stern-
Gerlach spin filter. Both spin Hall effect and spin filter can be also utilized for
electrical spin detection. Gate-controlled spin precession is confirmed in the AC
spin interference device. Generation of both static and oscillating SOI effective
fields is possible in an optimized winding channel since the SOI induced field
is momentum dependent. Magnetic-field-free electron spin resonance (ESR) has
been demonstrated in the winding channel [52]. This ESR technique without any
real magnetic field can be applicable for quantum information. Although SOI
is an origin of spin relaxation, long spin coherence in the PSH state has been
realized by making Rashba and Dresselhaus SOI equal strength. It should be em-
phasized that the concept of SOI demonstrated in semiconductors has inspired
metal spintronics devices such as magnetization reversal using SO torque, dis-
coveries of new topological materials and innovative concepts such as Majorana
fermions [37].
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H., J. Appl. Phys. 83, 4324 (1998).
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14 Experimental observation of the spin Hall
effect using electronic nonlocal detection

S. O. Valenzuela and T. Kimura

14.1 Observation of the spin Hall effect

Owing to its technological implications and its many subtleties, the experimental
observation of the spin Hall effect (SHE) has received a great deal of attention
and has been accompanied by an extensive theoretical debate [1, 2]. The SHE has
been described as a source of spin-polarized electrons for electronic applications
without the need of ferromagnets or optical injection. Because spin accumulation
does not produce an obvious measurable electrical signal, electronic detection
of the SHE proved to be elusive and was preceded by optical demonstrations
[3, 4]. Several experimental schemes for the electronic detection of the SHE had
been originally proposed [5–8], including the use of ferromagnetic electrodes to
determine the spin accumulation at the edges of the sample. However, the diffi-
culty of sample fabrication and the presence of spin-related phenomena such as
anisotropic magnetoresistance or the anomalous Hall effect in the ferromagnetic
electrodes could mask or even mimic the SHE signal in those sample layouts. The
first successful experiments, which took these effects into account, were reported
in 2006 and 2007 [9–12]. They used nonlocal lateral spin-injection structures,
which can be shaped easily into multi-terminal devices with output signals that
are only determined by the spin degree of freedom. In the following, we first
describe briefly the basic aspects of spin injection, transport, and detection in
conventional lateral structures [13–16], which are commonly used as a reference
in spin Hall experiments [16]. We then describe the experimental advantages for
nonlocal spin Hall detection which is the main focus of the rest of the chapter.
We place particular emphasis on device fabrication and the different device lay-
outs that have been designed for SHE detection. We also review the experimental
values of the spin Hall angles for specific materials and discuss the origin of the
SHE for each of them.

14.2 Nonlocal spin injection and detection

In 1985 Johnson and Silsbee first reported [13] the injection and detection of
nonequilibrium spins using a device that consisted of a nonmagnetic metal N
with two ferromagnetic (F1, F2) electrodes attached (Fig. 14.1(a)). In this device,

S.O. Valenzuela and T. Kimura, ‘Experimental observation of the spin Hall effect using electronic
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Fig. 14.1. (a) Nonlocal spin detection and spin accumulation. (a) Schematic il-
lustration of the device layout. An injected current I on the source (F1)
generates spin accumulation in the normal metal (N) which is quantified by
the detector (F2) voltage VNL. The sign of VNL is determined by the relative
magnetization orientations of F1 and F2. The current is injected away from
F2. Electron spins diffuse isotropically from the injection point. (b) Sche-
matic representation of the spin splitting in the electrochemical potential
induced by spin injection. The splitting decays over characteristic lengths
λN over the N side. (c) Detector behavior for an idealized Stoner ferromag-
net with a full spin subband. The electrochemical potential in F2 equilibrates
with the N spin-up electrochemical potential for the parallel magnetization
orientation (top) and with the spin-down electrochemical potential for the
antiparallel magnetization orientation (bottom) resulting in a voltage VSH

between C and D.

spin-polarized electrons are injected from F1 into N by applying a current I from
F1 that results in spin accumulation in N. The population of, say, spin-up elec-
trons in N increases by shifting the electrochemical potential by δμN, while the
population of spin-down electrons decreases by a similar shift of −δμN. Over-
all, this corresponds to a spin-accumulation splitting of 2δμN (Fig. 14.1(b)).
The spin accumulation diffuses away from the injection point and reaches the
F2 detector, which measures its local magnitude. As first suggested by Silsbee
[17], the spin accumulation in N can be probed by the voltage VNL, which is
induced at F2. The magnitude of VNL is associated to δμN, while its sign is
determined by the relative magnetization orientation of F1 and F2. If we con-
sider the pedagogical case where both F1 and F2 are half-metallic, when the
magnetization of F2 is parallel to that of F1, the electrochemical potential of F2
coincides with the spin-up electrochemical potential of N, and when the magnet-
ization is antiparallel, it coincides with the spin-down electrochemical potential
(Fig. 14.1(c)).

Because the current is applied to the left on N, there is no charge current
towards the right, where the detector F2 lies. Therefore, the detection is imple-
mented nonlocally, where no charge current circulates by the detection point, and
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thus VNL is sensitive to the spin degree of freedom only. Accordingly, nonlocal
measurements eliminate the presence of spurious effects such as anisotropic
magnetoresistance or the Hall effect that could mask subtle signals related to spin
injection. Therefore, nonlocal devices usually exhibit a small output background
allowing sensitive spin-detection experiments.

Nonlocal spin injection and detection was originally performed in a non-
magnetic strip (bulk aluminum, Al) with two ferromagnetic (permalloy) elec-
trodes attached and spin transport was reported over lengths of several μm. More
recent demonstrations in thin-film devices using advanced nanolithography tech-
niques [18–25] increased the interest in nonlocal structures. A number of research
groups used different geometries, materials, and interfaces between the ferromag-
netic electrodes and the nonmagnetic metal. In the last few years, the nonlocal
detection technique has been successfully utilized in diverse systems comprising
one [19–21, 23–31] and zero-dimensional [32] metallic structures, superconduct-
ors [22, 33], graphene [34, 35], and a variety of semiconductors [36–38], using both
transparent and tunneling interfaces. These devices shed light on spin transport
in many materials, demonstrated electrical detection of spin precession [9, 19, 32],
the study of the spin polarization of tunneling electrons as a function of the bias
voltage [25], the ferromagnet–nonmagnetic metal interface properties [21, 27, 39],
and the implementation of magnetization reversal of a nanoscale ferromagnetic
particle with pure spin currents [40].

A common characteristic of these conventional nonlocal devices is that detec-
tion is sensitive to the local spin accumulation [13, 14], whereas the bulk spin
current is determined only indirectly. Below, we describe electrical detection of
spin currents and the spin Hall effect using the nonlocal geometry described
in Section 12.5. The detection technique is based on a spin-current induced
Hall effect, which is the reciprocal of the spin Hall effect [5, 41, 42] or inverse
spin Hall effect (ISHE). By using a ferromagnetic electrode, a spin-polarized
current is injected in a nonmagnetic strip, while measuring the laterally in-
duced voltage that results from the conversion of the injected spin current into
charge imbalance owing to the spin–orbit coupling in the nonmagnetic strip
(Fig. 14.2).

These ideas were first introduced in Refs. [9, 11, 43]. As described below,
a similar device was later used to measure both the SHE and the ISHE (see
Fig. 12.1). Note that, according to the Onsager symmetry relations, the SHE
and the ISHE are mathematically equivalent [5, 8, 44]. This is schematic-
ally shown in Fig. 14.2. The spin-polarized current IAB between contacts A
and B induces a voltage VCD = RAB,CD(M)IAB between contacts C and D.
As explained in Section 12.5, the coefficient RAB,CD(M) is a function of the
nonmagnetic metal properties, the orientation of the magnetization M of the
ferromagnetic electrode, and the degree of polarization of the electrons trans-
mitted through the interface. Alternatively, if a current ICD between C and D
is applied, spin accumulation builds up underneath the ferromagnet, owing to
the SHE, and this results in a voltage VAB = RCD,AB(M)ICD between A and



250 Experimental observation of the spin Hall effect

js

F V=0

L

B A

D

C

x

z
y

N

Fig. 14.2. Spin-current induced Hall effect or inverse spin Hall effect (ISHE).
Schematic representation of an actual device where the pure spin current is
generated by spin injection through a ferromagnet with out-of-plane mag-
netization. Due to spin–orbit interaction a transverse charge current and an
associated voltage are induced.

B with RCD,AB proportional to the SHE coefficient of the nonmagnetic metal
(Fig. 14.2). Therefore, VAB is a direct consequence of the SHE. According to the
Onsager symmetry relations, the measurements of both experiments are equiva-
lent with RAB,CD(M) = RCD,AB(−M) [8, 44], a relationship that has been
proved experimentally.

14.3 The electronic spin Hall experiments

Nonlocal spin Hall devices are prepared either with single-step (shadow) or
multiple-step electron-beam lithography processing. For example, the device
shown in Fig. 14.3 is fabricated with a two-angle shadow-mask evaporation
technique to produce tunnel barriers in situ between the ferromagnet and the
nonmagnetic metal. It was first fabricated to demonstrate the ISHE in Al.
The shadow mask is made on a Si/SiO2 substrate with a methyl-methacrylate
(MMA)–polymethyl-methacrylate (PMMA) bilayer, using the fact that the base
resist (MMA) has a sensitivity that is ∼5 times larger than the top resist
(PMMA) [9, 11, 45]. This way, suspended masks with controlled undercut can be
fabricated by selective electron-beam exposure. A nonmagnetic cross of N (Al),
is first deposited at normal incidence onto the Si/SiO2 substrate using electron
beam evaporation. The voltage leads are much narrower than the main channel
in order not to affect the spin diffusion in the latter. Next, insulating barriers
for tunneling injection are generated. In the present device Al is oxidized in pure
oxygen (150 mtorr for 40 min) to grow a thin layer of Al2O3. After the vacuum
recovers, two ferromagnetic electrodes, F1 and F2, of different widths are depos-
ited at an angle of 45–50◦, measured from the normal to the substrate surface.
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Fig. 14.3. Scanning electron microscope picture of a nonlocal spin Hall device
(CoFe/Al). F1 and F2 appear brighter than the N cross. The diagonal dashed
line represents the axis of rotation for shadow evaporation.

N is deposited through all of the mask features but no image of the Hall cross
appears when depositing F1 and F2. The axis of rotation (indicated by a dashed
line in Fig. 14.3) is selected such that the ferromagnet deposits on the wall of
the top resist and it is removed by lift-off, except for the lines that define the
ferromagnet electrodes, and for some features that are far away from the Hall
cross and that are not relevant for the experiment (see [9, 11] for details). The
ferromagnetic electrodes in the final device form tunnel junctions where they
overlap with the N strip. For the ferromagnetic electrodes, Co, Fe, or alloys are
commonly used because they provide a large polarization when combined with
Al2O3 as a tunneling barrier [21, 46]. The tunnel barrier is also relevant to gener-
ate a uniformly distributed injection current. The difference in the ferromagnetic
electrode widths is necessary to obtain different coercive fields.

The device layout in Fig. 14.3 is more sophisticated than that represented in
Fig. 14.2, where only F1 is required. The second electrode (F2), together with F1
and the N strip, form a spin-injection/detection device (Fig. 14.1) for the purpose
of calibration. Calibration procedures are necessary to demonstrate consistency
with standard nonlocal methods, and are common in nonlocal SHE experiments.
Explicitly, this device can be utilized to measure the spin accumulation in the
nonmagnetic metal and then determine its associated spin relaxation length λN,
the spin polarization of the injected electrons P , and the magnetization orien-
tation of the ferromagnetic electrodes θ in the presence of an external magnetic
field (perpendicular to the substrate). For this purpose, batches of samples are
commonly used where the distance between the two ferromagnets, LF , is modi-
fied. The distance of F1 relative to the Hall cross, L, is also modified in order to
test the consistency of the spin relaxation results.
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Measurements are usually performed using standard lock-in techniques in a
set-up where the angle of the substrate relative to an external magnetic field
can be readily controlled. In Ref. [9, 11] samples with different N thickness dN

(12 and 25 nm) were fabricated in order to study the spin-current induced Hall
signal in devices with different λN.

Device characterization As mentioned above, F1 and F2 are used to obtain P ,
λN, and θ at B⊥ �= 0. In this case, the current I is applied from F1 towards
the Hall cross and the voltage is measured between F2 and the end of the wide
nonmagnetic arm that is opposite to the Hall cross. Both P and λN are obtained
by measuring the spin transresistance ΔRNL = ΔV /I as a function of LF, where
ΔV is the difference in the output voltage between parallel and antiparallel
magnetization configurations of the ferromagnetic electrodes at zero magnetic
field. P and λN are obtained by fitting to [13, 14, 19, 47]:

RNL = P 2
eff

λN

σNA
e−LF/λN . (14.1)

where σN = (ρN )−1 is the nonmagnetic metal conductivity and A its cross
sectional area.

Spin injection in the nonmagnetic film occurs with a defined spin direction
given by the magnetization orientation of the ferromagnetic electrode. Con-
sequently, in the SHE experiments VSH is expected to vary when a magnetic
field perpendicular to the substrate, B⊥, is applied and the magnetization M of
the electrode is tilted an angle θ out of the substrate plane. For arbitrary spin
orientation, Eq. (12.35) can be generalized by adding a factor sin θ:

RSH =
1
2
Peff

αSH

σNdN
e−L/λN sin θ. (14.2)

As long as M is parallel to B or B is perpendicular to the Hall-cross plane, the
output signal is not affected by spin precession as the component of the spins
perpendicular to the substrate is not modified by this effect. The tilting angle
can be obtained from spin precession measurements under a variable magnetic
field using F1 and F2 and the original spin injection and detection technique
[13, 14]. Examples of these measurements are shown in Fig. 14.4(a) for two
different Al samples with LF = 1 and 2 μm, showing consistent results. At
B⊥ = 0, θ = 0 due to the shape anisotropy of the ferromagnetic electrodes.
When B⊥ is applied, the magnetization follows the Stoner–Wohlfarth model
[48] with a saturation field Bsat

⊥ of about 1.55 T for which sin θ approaches
one, and the magnetization aligns with the field. The magnetization can also
be rotated in-plane, which usually requires smaller applied magnetic fields [10,
12]. Moreover, recent experiments used FePt ferromagnetic contacts where the
magnetization is naturally pointing out of plane and thus the magnetic field can
be eliminated altogether [49]. The latter samples were fabricated by a multiple
step lithography process where first a FePt ferromagnetic layer was epitaxially
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2 μm, for open and full circles, respectively. (b) Spin Hall resistance RSH

versus the perpendicular field B⊥, L = 590 nm. For comparison, the meas-
ured sin θ in (a) is also shown. ΔRSH is the overall change of RSH between
negative and positive magnetic fields at magnetization saturation.

grown on a MgO substrate and patterned to form the spin injector using electron
beam lithography with a negative resist and ion etching. Subsequently, an N layer
(Au in this case) was deposited on the sample surface, which was also patterned
into the shape of the Hall cross by electron beam lithography and ion etching.

Experimental results and interpretation Having determined P , λN, and θ, the
ISHE can be studied using the measurement configuration shown in Fig. 14.3 by
injecting current from F1 away from the Hall cross and measuring the induced
lateral voltage VSH. Figure 14.4(b) shows typicalRSH measurements as a function
of B⊥ for an Al sample with L = 590 nm (circles). A positive B⊥ is pointing
out of the page in the ẑ-direction. B⊥ is swept between −3.5 and 3.5 T, enough
to saturate the magnetization of the F1 along the field [Fig. 14.4(a)]. A linear
response is observed around B⊥ = 0, followed by a saturation on the scale of
Bsat

⊥ , both for positive and negative B⊥. The saturation in RSH for |B⊥| > Bsat
⊥

demonstrates that the device output is related to the magnetization orientation
of the ferromagnetic electrode and the spin Hall effect, an idea that is reinforced
by comparing RSH(B⊥) with the magnetization component perpendicular to
the substrate, which as discussed above is proportional to sin θ(B⊥) [the lines in
Fig. 14.4(b)].

Figure 14.5(a) shows the overall change of RSH, ΔRSH, at magnetic field
values beyond saturation. Different points correspond to different orientations
of the magnetic field relative to the substrate that determine the magnetiza-
tion orientation at saturation and the angle θ. The measurements shown were
performed in two samples with L = 480 nm and dN = 12 nm. The line shows a
fit to ∼ sin θ, which closely follows the experimental results.
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Figure 14.5(b) shows ΔRSH as a function of L in a semilogarithmic plot for the
magnetic field perpendicular to the substrate. Consistent with Eq. (14.2), ΔRSH

decreases exponentially as a function of L. By fitting the data to Eq. (14.2), λN

and σSH can be obtained and compared with the results obtained independently
with the reference devices described previously.

Direct inspection of Eqs. (14.1), and (14.2) shows that RSH differs by a factor
RSH/RNL ∼ αSH/Peff when compared with RNL of spin accumulation devices
with tunnel barriers (Eq. 14.1). The spin Hall angle αSH for different materials
is in the range 0.0001–0.1 [16], indicating that RSH can vary significantly when
using different materials but it could be as large as RNL for spin accumulation
devices with tunnel barriers (P ∼ 0.1). There is, however, a fundamental dis-
tinction in the origin of RSH and RNL in spite of the similarities of Eqs. (14.1),
and (14.2). The voltage output of the SHE device is directly proportional to
the spin current js [Eq. (12.33)]. In contrast, nonlocal spin accumulation de-
vices are sensitive to the spin accumulation but are not explicitly affected by
the spin flow. The spin accumulation and SHE based detection techniques are
thus complementary and the magnitudes of their respective device outputs are
not directly comparable. It is possible to envision situations where, although the
local spin accumulation is zero, i.e. δμN = (μ↑

N − μ↓
N) = 0, there exists a local

spin current, i.e. js = −(σN/2e)∇ | δμN |�= 0, or vice versa.
The Onsager relation RAB,CD(M) = RCD,AB(−M) has been experimentally

verified using a second device layout (Fig. 14.6). This device structure is similar
to that in Fig. 14.2, but enables us to access the electrical detection of SHEs
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Fig. 14.6. (a) Schematic illustration of a nonlocal device to measure the direct
and inverse spin Hall effect in materials (N2) with short λN. (b) Transform-
ation from spin to transverse charge current (left) and from spin to charge
current (right).

in materials with short λN less than 10 nanometers. Here, the transverse arm
consisting of the material with the large spin–orbit coupling metal N2 acts as
either a spin current source for the SHE or a spin current absorber for the ISHE.
The longitudinal arm, on the other hand, is made of a metal N1 with a long spin
diffusion length that fulfils the purpose of transporting spin information between
the ferromagnet electrode (F) and N2.

The way the measurements are performed is sketched in Fig. 14.6(b). To study
the ISHE, a charge current is injected from F into N1 that induces a spin current
towards N2 [Fig. 14.6(b), left]. When the distance between F and the cross is
smaller than the spin diffusion length of N1, the spin current is preferentially
absorbed into the transverse arm N2 because of the strong spin relaxation of N2.
(see Section 21.1). The injected spin current into N2 vanishes in a short distance
from the N1/N2 interface because of the short spin diffusion length of N2 and
generates a voltage via the ISHE as in Fig. 14.2. To study the SHE, the bias
configuration is modified as shown in Fig. 14.6(b) (right). Here, N2 acts as a
spin-current source, which induces a spin accumulation in N1 that is detected
with the ferromagnetic electrode. Examples of measurements where N1 = Cu
and N2 = Pt are presented in Fig. 14.7 [12]. As before, consistency checks with
conventional nonlocal devices (Fig. 14.1) are carried out in order to determine
λN and the degree of spin absorption in N2 [12].

Using the above techniques, the spin Hall angle αSH and spin Hall conduct-
ivities σSH were determined in a large variety of materials, which are listed in
Table 14.1. For completeness, we have also included in Table 3.2 the αSH obtained
via ferromagnetic resonance techniques (see Chapter 15).

The SHE in Al is well explained via extrinsic [side-jump, Eq. (12.31)]
mechanisms. The predicted σSH, when considering δ-like scattering centers, is
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Fig. 14.7. (a) Scanning electron microscope image of a typical device for SHE
measurements as illustrated in Fig. 14.6. (b) Direct and inverse spin Hall
effect (SHE and ISHE) recorded at 10 K in a Pt device with thickness 20
nm (top). Anisotropic magnetoresistance (AMR) from the injector consist-
ing of a Permalloy (Py) wire is measured under the same conditions. SHE
measurement corresponds to VBC/IAE , and ISHE to VEA/IBC ; with V the
voltage, I the applied current; and A, B, C and E are the contact leads as
denoted in (a) (see also Fig. 14.2).

η̄so�e2N0/3m [6, 7], where � is Planck’s constant divided by 2π, N0 = 2.4×1028

states/eV m3 is the density of states of Al at the Fermi energy [51], η̄so ∼
0.006–0.008 is the dimensionless spin–orbit coupling constant of Al [52], and e
and m are the charge and mass of the electron. Without free parameters, we
obtain σSH ∼ 1–1.4 × 103 (Ω m)−1 and αSH = σSH/σN ∼ 0.4–1.4 ×10−4, in
reasonable agreement with the experimental results. The difference between the
spin Hall angles for the two thin-film thicknesses reported can be attributed
to the larger influence of the surface in spin scattering events for the thinner
films [21].

The most frequently studied material using electrical methods has been Pt.
For Pt, the reported αSH varies considerably and is in the range between 0.004
and 0.02 at room temperature. The lower end of this range, however, could be
compromised due to underestimations that stem from the wrong assumption
about complete spin current absorption into the Pt wire [10] and from improper
boundary conditions at the Pt interface with N (Cu in this case) [12]. The more



The electronic spin Hall experiments 257

Table 14.1 Experimental spin Hall angles αSH for Al, Au, CuIr, Mo, Pd, Pt,
and Ta. CuIr parameters aggregate the results for Ir concentrations in the
range between 1% and 12%. References marked with the symbol (†) are based
on spin-pumping and spin-torque methods. The values marked with (∗) are not
measured but assumed from literature in the corresponding references. To
calculate the spin–orbit coupling parameter η̄so = k2

Fηso, the Fermi momenta,
kF = 1.75× 108 cm−1 (Al), 1.21× 108 cm−1 (Au), and 1.18× 108 cm−1 (Nb),
are taken [50], and 1× 108 cm−1 (Mo, Pd, Ta, Pt) is assumed.

λN σN η̄so αSH Ref.
(nm) (Ωcm)−1 (%)

Al (4.2K) 455 ± 15 1.05 ×105 0.0079 0.032 ± 0.006 [9, 11]
Al (4.2K) 705 ± 30 1.70 ×105 0.0083 0.016 ± 0.004 [9, 11]
Au (295K) 86 ± 10 3.70 ×105 0.3 11.3 [49]
Au (295K) 35 ± 3∗ 2.52 ×105 0.52 0.35 ± 0.03 [56]†
CuIr (10K) 5 − 30 2.1 ± 0.6 [61]
Mo (10K) 10 3.03 ×104 0.32 −0.20 [69]
Mo (10K) 10 6.67 ×103 0.07 −0.075 [69]
Mo (10K) 8.6 ± 1.3 2.8 ×104 0.34 −(0.8 ± 0.18) [53]
Mo (295K) 35 ± 3∗ 4.66 ×104 0.14 −(0.05 ± 0.01) [56]†
Nb (10K) 5.9 ± 0.3 1.1 ×104 0.14 −(0.87 ± 0.20) [53]
Pd (295K) 9∗ 1.97 ×104 0.23 1.0 [68]†
Pd (10K) 13 ± 2 2.2 ×104 0.18 1.2 ± 0.4 [53]
Pd (295K) 15 ± 4∗ 4.0 ×104 0.28 0.64 ± 0.10 [56]†
Pt (295K) 6.41 ×104 0.74 0.37 [10]
Pt (5K) 14 8.0 ×104 0.61 0.44 [12]
Pt (295K) 10 5.56 ×104 0.58 0.9 [12]
Pt (10K) 11 ± 2 8.1 ×104 0.77 2.1 ± 0.5 [53]
Pt (295K) 7∗ 6.4 ×104 0.97 8.0 [55]†
Pt (295K) 3 − 6 5.0 ×104 0.88-1.75 7.6+8.4

−2.0 [57]†
Pt (295K) 10 ± 2∗ 2.4 ×104 0.25 1.3 ± 0.2 [56]†
Ta (10K) 2.7 ± 0.4 3.0 ×103 0.17 −(0.37 ± 0.11) [53]

refined analysis [53] probably gives the best estimate of αSH ∼ 0.021, which is
considerably larger than those reported in the first experiments. In addition,
the results gathered with ferromagnetic resonance techniques [54–57] are within
a factor of 4 of the latter value with 0.013 < αSH < 0.076. The discrepancy
between these results can be related to the assumed λN, which spreads over 3
and 10 nm; a better agreement would be obtained using the largest estimates
for λN.

The origin of the spin Hall effect in 4d and 5d transition metals is still a matter
of debate. Early measurements in Pt indicated that the side-jump mechanism
was dominant [12]. As expected in the side-jump origin of the SHE, the spin Hall
resistivity was found to be proportional to the resistivity of Pt squared [12] and
the values for σSH and αSH were comparable to those obtained from Eq. (12.31).
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However, a recent report in various 4d and 5d transition metals (Mo, Nb, Pd, Pt,
and Ta) shows that the sign of the spin Hall conductivity changes systematically
depending on the number of d electrons, as shown in Fig. 14.8.[53] This is in
agreement with calculations based on the intrinsic properties of the materials
[58, 59], namely the degeneracy of d orbits, and together with the experimental
results suggest an intrinsic origin of the SHE.

The spin Hall angle can be enhanced by introducing impurities in a host metal
[60]. In this way a large αSH ∼ 0.02 has been obtained in CuIr throughout an
Ir concentration range between 1% and 12% [61]. Similarly, the large discrep-
ancy between the results obtained with Au (Table 14.1) would result from a
strong enhancement of the spin-orbit interaction due to Fe impurities in Au [62]
(Section 12.5).

The spin Hall effect has also been observed experimentally in semiconduct-
ors combining optical and electrical techniques (see also Chapter 16). Electrical
currents in n-GaAs layers induced a spin Hall effect which was detected op-
tically, at low temperatures (30 K), using Kerr microscopy [3]. The spin Hall
angles are similar to those in Al, αSH ∼ 2 × 10−4. Because the results showed
little dependence on crystal orientation, it was concluded that the origin of
the effect was extrinsic. The data can indeed be well described by extrinsic
models based on scattering by impurities [63, 64]. Subsequent experiments in
ZnSe at room temperature [65] present effects of similar magnitude, which are
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also in agreement with extrinsic modeling. In another experiment performed in
two-dimensional layers of p-GaAs, the spin accumulation due to the spin Hall
effect at the edge of the sample is revealed by detecting the polarization of the
recombination radiation of holes [4]. The magnitude of the spin accumulation is
larger, and was ascribed to the intrinsic mechanism as supported by theoretical
results [66, 67]. More recently, fully electrical measurements have also been used
in semiconductors such as GaAs [70] and HgTe [71].
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15 Experimental observation of the spin Hall
effect using spin dynamics

E. Saitoh and K. Ando

15.1 Inverse spin Hall effect induced by spin pumping

In one of the first reports on the inverse spin Hall effect (ISHE), the spin-pumping
effect was used for spin-current generation [1]. Spin pumping is the generation of
spin currents as a result of magnetization M (t) precession [2, 3]; in a ferromag-
netic/paramagnetic bilayer system, a conduction-electron spin current is pumped
out of the ferromagnetic layer into the paramagnetic conduction layer in a ferro-
magnetic resonance (FMR) condition as shown in Fig. 15.1(b). In the standard
model of spin pumping [3], the dc component of the generated spin current
density js is expressed as

js =
ω

2π

∫ 2π/ω

0

�

4π
g↑↓r

1
M2

s

[
M (t)× dM(t)

dt

]
z

dt, (15.1)

where ω, �, g↑↓r , and Ms are the angular frequency of the magnetization
precession, the Dirac constant, the spin mixing conductance [3], and the sat-
uration magnetization. Here, [M (t) × dM (t)/dt]z denotes the z-component of
M (t) × dM (t)/dt. The z-axis is directed along the magnetization-precession
axis.

In the following, we describe an experiment on the ISHE induced by spin
pumping [1, 4–6]. The sample is a Ni81Fe19/Pt bilayer film comprising a 10-nm-
thick ferromagnetic Ni81Fe19 layer and a 10-nm-thick paramagnetic Pt layer as
shown in Fig. 15.1(a). The surface of the Ni81Fe19 layer is of a 1.0 mm × 1.2
mm rectangular shape. The Pt layer was sputtered on a thermally oxidized Si
substrate and then the Ni81Fe19 layer was evaporated on the Pt layer in a high
vacuum. Two electrodes are attached to both ends of the Pt layer.

For the measurement, the sample system is placed near the center of a TE011

microwave cavity at which the magnetic-field component of the microwave mode
is maximized while the electric-field component is minimized. During the meas-
urement, a microwave mode with frequency f = 9.44 GHz exists in the cavity
and an external magnetic field H along the film plane is applied perpendicular
to the direction across the electrodes, as illustrated in Fig. 15.1(a). Since the
magnetocrystalline anisotropy in Ni81Fe19 is negligibly small, the magnetization
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Fig. 15.1. (a) A schematic illustration of the Ni81Fe19/Pt film used in the pre-
sent study. H is the external magnetic field. (b) A schematic illustration of
the spin pumping and the inverse spin Hall effect in the Ni81Fe19/Pt film.
M (t) is the magnetization in the Ni81Fe19 layer. E ISHE, J s, and σ denote
the electromotive force due to the inverse spin Hall effect, the spatial direc-
tion of the spin current, and the spin-polarization vector of the spin current,
respectively. (c) Field (H) dependence of the FMR signals dI(H)/dH for
the Ni81Fe19/Pt film and the Ni81Fe19 film. Here, I denotes the microwave
absorption intensity. HFMR is the resonance field. The inset shows the defin-
ition of the spectral width W in the present study. (d) H dependence of the
electric-potential difference V for the Ni81Fe19/Pt film under 200 mW micro-
wave excitation. The open circles are the experimental data. The curve shows
the fitting result using a Lorentz function for the V data. (e) The spectral
shape of the electromotive force due to the inverse spin Hall effect (ISHE)
and the anomalous Hall effect (AHE). (f) The microwave power, PMW, de-
pendence of the electromotive force, VISHE, for the Ni81Fe19/Pt film. VISHE

is estimated as the peak height of the resonance shape in the V spectrum as
shown in (d).
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in the Ni81Fe19 layer is uniformly aligned along the magnetic field direction.
When H and f fulfill the FMR condition, a pure spin current with a spin po-
larization σ parallel to the magnetization-precession axis in the Ni81Fe19 layer
is injected into the Pt layer by spin pumping [see Fig. 15.1(b)] [1]. This injected
spin current is converted into an electric voltage due to the strong ISHE in the
Pt layer as shown in Fig. 15.1(b). By measuring the electric voltage, we can
detect the ISHE induced by spin pumping. We measured the FMR signal and
the electric potential difference V between the electrodes attached to the end of
the Pt layer. All the measurements were performed at room temperature.

Figure 15.1(c) shows the FMR spectra dI(H)/dH measured for the
Ni81Fe19/Pt film and a Ni81Fe19 film where the Pt layer is missing. Here, I
denotes the microwave absorption intensity. The spectral width W [see the inset
to Fig. 15.1(c)] for the Ni81Fe19 film is clearly enhanced by attaching the Pt layer.
This result shows that the magnetization-precession relaxation is enhanced by
attaching the Pt layer, since the spectral width W is proportional to the Gil-
bert damping constant α [7]. This spectral width enhancement demonstrates the
emission of a spin current from the magnetization precession induced by the spin
pumping; since a spin current carries spin angular momentum, the spin-current
emission deprives the magnetization of its spin angular momentum and thus
gives rise to additional magnetization-precession relaxation, or enhances α.

Figure 15.1(d) shows the dc electromotive force signal V measured for the
Ni81Fe19/Pt film under 200 mW microwave excitation. In the V spectra, an
electromotive force signal appears around the resonance field HFMR. Notable is
that the spectral shape of this electromotive force is well reproduced using a
Lorentz function, as expected for the ISHE induced by spin pumping [8].

The symmetric Lorentz shape of the electromotive force signal shows that
extrinsic electromagnetic effects are eliminated in this measurement; the electro-
motive force observed here is due to the ISHE induced by the spin pumping [8].
The in-plane component of the microwave electric field may induce a rectified
electromotive force via the anomalous Hall effect (AHE) in cooperation with
FMR [1]. The electromotive force due to the ISHE and AHE can be distinguished
in terms of their spectral shapes [8]. Since the magnitude of the electromotive
force due to the ISHE induced by spin pumping, VISHE(H), is proportional to
the microwave absorption intensity, VISHE(H) is maximized at the FMR condi-
tion. In contrast, the sign of the electromotive force due to the AHE, VAHE(H),
is reversed across the ferromagnetic resonance field, since the magnetization-
precession phase shifts by π at the resonance. Therefore, the electromotive force
due to the ISHE and AHE are of the Lorentz shape and the dispersion shape,
respectively, as shown in Fig. 15.1(e).

Figure 15.1(f) shows the microwave power, PMW, dependence of the volt-
age, VISHE, where VISHE is estimated as the peak height of the resonance shape
in the V spectra as shown in Fig. 15.1(d). Figure 15.1(f) shows that VISHE

increases linearly with the microwave power, which is consistent with the pre-
diction of a direct-current-spin-pumping model. Equation (15.1) shows that the
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dc component of a spin current generated by spin pumping is proportional to
the projection of M(t)×dM (t)/dt onto the magnetization-precession axis. This
projection is proportional to the square of the magnetization-precession ampli-
tude. In this case, therefore, the induced spin current or the electromotive force
due to the ISHE is proportional to the square of the magnetization-precession
amplitude or the microwave power, PMW.

To further buttress the above result, we show that the ISHE voltage appears
also in an Y3Fe4GaO12/Pt film, in which the metallic Ni81Fe19 layer is replaced
by an insulator magnet Y3Fe4GaO12 [9]. This result strongly supports the view
that the ISHE induced by spin pumping is responsible for the electromotive force
observed in ferromagnetic/paramagnetic bilayer systems.

Figure 15.2(a) shows a schematic illustration of an Y3Fe4GaO12/Pt bilayer
film. Here, Y3Fe4GaO12 is a ferrimagnetic insulator. A polycrystalline 100-
nm-thick Y3Fe4GaO12 film was grown on a 0.5-mm-thick Gd3Ga5O12 (111)
single-crystal substrate by metal organic decomposition. Then, a 10-nm-thick
Pt layer was sputtered on the Y3Fe4GaO12 layer. Immediately before the sput-
tering, the surface of the Y3Fe4GaO12 film was cleaned by Ar-ion bombardment
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Fig. 15.2. (a) A schematic illustration of the Y3Fe4GaO12/Pt film. H is the
external magnetic field. φH is the in-plane magnetic field angle. (b) Field
(H) dependence of the microwave absorption signal dI(H)/dH and the
electric-potential difference V for the Y3Fe4GaO12/Pt (YIG/Pt) film and
the Y3Fe4GaO12/Cu (YIG/Cu) film under 200 mW microwave excita-
tion. (c) The in-plane magnetic field angle, φH , dependence of V for the
Y3Fe4GaO12/Pt film. (d) The in-plane magnetic-field-angle, φH , depend-
ence of the ISHE signal measured for the Y3Fe4GaO12/Pt film. VISHE/Vmax

is the normalized spectral intensity. The filled circles are the experimental
data. The solid curve shows cosφH .
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in a vacuum. The surface of the Y3Fe4GaO12 layer is of a 1.0 mm × 4.0 mm
rectangular shape. Two electrodes are attached to both ends of the Pt layer as
shown in Fig. 15.2(a).

Figure 15.2(b) shows the microwave absorption signal dI(H)/dH and the
electric-potential difference V measured for the Y3Fe4GaO12/Pt film when φH =
0 at PMW = 200 mW. Here, the in-plane magnetic field angle φH is defined in
Fig. 15.2(a). In the V spectrum, an electromotive force signal appears at the
resonance field. This indicates that the electromotive force is induced in the Pt
layer concomitant with FMR in the Y3Fe4GaO12 layer. This electromotive force
is found to disappear in a Y3Fe4GaO12/Cu film [see Fig. 15.2(b)], where the
Pt layer is replaced by a Cu layer in which the spin–orbit interaction is very
weak [10], indicating that the spin-orbit interaction in the Pt layer is responsible
for the voltage generation.

In Fig. 15.2(d), the normalized ISHE signal VISHE/Vmax is plotted as a func-
tion of the in-plane magnetic field angle φH . With increasing magnetic field
angle φH from φH = 0, VISHE decreases monotonically and changes its sign when
90◦ < φH < 180◦. Notably, this variation is well reproduced using cosφH , being
consistent with the model of the ISHE: E ISHE ∝ J s ×σ, where E ISHE, J s, and
σ denote the electromotive force due to the inverse spin Hall effect, the spatial
direction of the spin current, and the spin-polarization vector of the spin cur-
rent, respectively [1, 11]. Since the spin polarization σ of the dc component of a
spin current generated by the spin pumping is directed along the magnetization-
precession axis, or the external magnetic field direction, the ISHE model predicts
VISHE ∝| J s×σ |x∝ cosφH . Here, | J s×σ |x denotes the x-component of J s×σ.
The x-axis is parallel to the direction across the electrodes. These results indicate
that the electromotive force observed in the Y3Fe4GaO12/Pt film is attributed to
the ISHE induced by the spin pumping due to the finite mixing conductance of
the conduction electrons in the Pt layer [9]. The appearance of the electromotive
force in the Y3Fe4GaO12/Pt film is direct evidence that the electromotive force
observed in ferromagnetic/paramagnetic bilayer films is due to the ISHE induced
by spin pumping; electromagnetic artifacts are irrelevant in the measurement,
since Y3Fe4GaO12 is an insulator.

15.2 Spin-Hall-effect induced modulation of magnetization
dynamics

In the above experiment, we found that, in the Ni81Fe19 film, the spectral width
W , or Gilbert damping constant α, is enhanced by attaching the Pt layer as
shown in Fig. 15.1(c). This enhancement is due to the emission and the absorp-
tion of a spin current induced by spin pumping. Now, consider the inverse of
the above electric current generation due to the ISHE induced by spin pumping;
what happens when an electric current is injected in the Pt layer attached to the
Ni81Fe19 layer? One may expect from reciprocity that spin relaxation α, namely,
the width of the FMR spectra, may be modulated via the SHE in the Pt layer,
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enabling manipulation of the magnetization-precession relaxation of the ferro-
magnetic film in an electric manner. In the following, we demonstrate that this
is actually the fact. In a Ni81Fe19/Pt film, spin relaxation is manipulated by an
electric current due to the macroscopic spin transfer induced by the SHE. The
model calculation based on the standard Valet–Fert model and the spin torque
well reproduces the experimental results [10].

In this Pt layer, the SHE converts an electric current J c into a pure spin
current, J s, which propagates into the Ni81Fe19 layer through the Ni81Fe19/Pt
interface. The spin polarization of this spin current is directed along J c × n
[see Fig. 15.3(a)], where n represents the normal vector of the interface. During
the measurement, a microwave mode with frequency of f = 9.44 GHz exists
in the cavity, and an external magnetic field H is applied along the film plane
at the angle θ to the direction across the electrodes. The FMR spectra were
measured by applying J c through electrodes attached to both ends of the Pt
layer. All the measurements were performed at room temperature.

In Fig. 15.3(b), we plot ΔW ≡W ∗(Jc)−W ∗(−Jc): the asymmetric component
of the spectral widthW ∗ with respect to Jc, which enables us to eliminate heating
effects from the FMR spectra. Here, W ∗(Jc) ≡W (Jc)/W (0). ΔW at θ = 0 [see
the inset to Fig. 15.3(b)] is almost zero for all the Jc values as shown in the
inset to Fig. 15.3(b). In contrast, when θ = 90◦, ΔW clearly increases with Jc in
the Ni81Fe19/Pt film, demonstrating that the spin relaxation α is manipulated
electrically.

The J c-induced modulation of the spin relaxation observed in the Ni81Fe19/Pt
film cannot be attributed to magnetic-field effects; the J c dependence of ΔW
for a Ni81Fe19/Cu film and a plain Ni81Fe19 film show no ΔW modulation even
when an electric current is applied at θ = 90◦ as shown in Fig. 15.3(b), indicating
that the observed J c-induced modulation of spin relaxation in the Ni81Fe19/Pt
film is not attributed to a possible small flow of electric currents in the Ni81Fe19

layer or the inhomogeneity of the magnetic field (Oersted field) induced by the
electric current.

The observed modulation of the spin relaxation is interpreted in terms of the
macroscopic spin transfer induced by the strong SHE in the Pt layer. Notable
is that, when θ = 90◦, at which the J c-induced FMR modulation is observed,
the external magnetic field is along the spin-polarization direction of the spin
current J c × n [see Fig. 15.3(a)] generated from the SHE. This spin current
is injected into the whole Ni81Fe19 layer. In this situation, the spin torque
acting on the magnetization in the Ni81Fe19 layer draws the magnetization to-
ward (Jc > 0) or away from (Jc < 0) the external magnetic field direction.
Since this torque is parallel or antiparallel to the Gilbert damping torque, it
modulates the relaxation of the magnetization precession in the whole Ni81Fe19

layer.
To describe this effect quantitatively, we performed a model calculation based

on the standard Valet–Fert model [12], in which the SHE parameterized by the
spin-Hall angle θSHE (the ratio of the spin-Hall conductivity to the electrical
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Fig. 15.3. (a) A schematic illustration of the spin Hall and the spin-torque
effects. H and J c represent the external magnetic field and the applied
electric current, respectively. M , J s, and σ denote the magnetization in
the Ni81Fe19 layer, the flow direction of the spin current, and the spin
polarization vector of the spin current, respectively. (b) The Jc depend-
ence of ΔW ≡ W ∗(Jc) − W ∗(−Jc) for the Ni81Fe19/Pt bilayer film, the
Ni81Fe19/Cu bilayer film, and the simple Ni81Fe19 film at θ = 90◦. Here,
W ∗(Jc) ≡ W (Jc)/W (0). The inset shows ΔW for the Ni81Fe19/Pt bilayer
film at θ = 0. Js is the spin-current amplitude injected into the Ni81Fe19

layer in the Ni81Fe19/Pt film estimated using Eq. (15.3).
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conductivity) is considered. The spin relaxation coefficient α is calculated using
the generalized LLG equation for local spins in the Ni81Fe19 layer [13]:

dM

dt
= −γM ×H eff +

α

Ms
M × dM

dt
− γJs

M2
s VF

M × (M × σ) , (15.2)

where Js and VF are the spin current injected into the ferromagnet and the vol-
ume of the ferromagnet, respectively. By ignoring the second-order contribution
of the precession amplitude, we obtained α as α = α0 + ΔαSHE at θ = 90◦,
where α0 is independent of Jc and

ΔαSHE =
(

γ

2πfMsVF

)
Js. (15.3)

The asymmetric component of the relaxation coefficient is given by Δα ≡ α(Jc)−
α(−Jc) = 2ΔαSHE owing to the cancellation of α0, and therefore ΔαSHE is
directly related to the W modulation, since α = (

√
3γ/4πf)W [7]. When θ =

0, ΔαSHE vanishes because the spin torque due to the SHE is canceled out
during the precession motion. These Jc-dependent features are consistent with
the experimental results shown in Fig. 15.3(b).

The calculated W modulation, i.e. W (Jc)−W (−Jc) = (4πf/
√

3γ)2ΔαSHE =
(4/
√

3MsVF)Js, is directly proportional to the amplitude of the spin current
injected into the Ni81Fe19 layer and the proportionality coefficient comprises
macroscopic parameters only. This situation allows us to know the spin-current
amplitude by monitoring W without assuming any microscopic material param-
eters. This modulation can thus be used as a spin-current meter. In Fig. 15.3(b),
we show the amount of the spin current injected into the Ni81Fe19 layer estimated
from the W modulation and Eq. (15.3).
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16 Spin-injection Hall effect

J. Wunderlich, K. Olejńık, L. P. Zârbo, V. P. Amin,
J. Sinova, and T. Jungwirth

16.1 Spin-dependent Hall effects

In this chapter we will discuss the spin-injection Hall effect (SiHE), yet another
member of the spin-dependent Hall effects and closely related to the anomalous
Hall effect (AHE), the spin Hall effect (SHE) and the inverse spin Hall effect
(iSHE) as illustrated in Fig. 16.1. The microscopic origins responsible for the
appearance of spin-dependent Hall effects are due to the spin-orbit (SO) coup-
ling related asymmetrical deflections of spin-carriers. Depending on the relative
strength of the SO-coupling compared to the energy-level broadening of the
quasi-particle states due to disorder scattering, scattering-related extrinsic mech-
anisms [1], or intrinsic-band structure related deflection [2, 100], are dominating
the spin-dependent Hall response [4].

The AHE, reviewed by Nagaosa et al., [5], is the component of the Hall ef-
fect that exists in magnetic materials because electrical currents in ferromagnets
are spin-polarized (Fig. 16.1(a)). The charge accumulation at sample bound-
aries transverse to the spin-polarized current can be detected by a voltage
measurement.

Unlike the AHE, the SHE (Fig. 16.1(b)) occurs also in non-magnetic mater-
ials and is generated by an unpolarized charge current. Here, the asymmetrical
deflection of spin-carriers results in the accumulation of spins at sample boundar-
ies transverse to the unpolarized current. The SHE was first detected by optical
techniques [6, 7] and was measured electrically using non-local spin-valves [8, 9].

Both the iSHE (Fig. 16.1(c)) and the SiHE (Fig. 16.1(d)) require spin in-
jection into a nonmagnetic system. The iSHE generated by a diffusive spin
current electrically injected into aluminium was first measured by Valenzuela and
Tinkham [10]. Similar to the AHE, a spin-polarized charge current is flowing in
case of the SiHE and the SO-coupling generates the spin-dependent Hall signal.
However, the SO-coupling can also affect the spin dynamics during the electron
propagation yielding a variation of the Hall response along the electron propa-
gation channel. Precessing spin polarization was observed with the SiHE when
spins where optically generated in the depletion layer of a quasi-lateral p-n junc-
tion [12] and injected into a two-dimensional electron gas (2DEG) [13, 15]. In the
2DEG, the SO-coupling can be modulated electrically with electrostatic gates al-
lowing to control locally the spin-polarziation. This concept of spin-manipulation
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Fig. 16.1. Schematics of spin-dependent Hall effects: (a) Anomalous Hall effect
(AHE), (b) spin Hall effect (SHE), (c) inverse spin Hall effect (iSHE), and
(d) spin-injection Hall effect (SiHE). A common property is their existence at
zero external magnetic field (i.e., no ordinary Hall effect present) originating
from the SO-coupling. The variants of the spin-dependent Hall effects differ
in the nature of the currents involved and the method of detection. In case
of the iSHE and SiHE, the Hall response can be combined with precessing
spins due to, e.g., the single-particle transport analogue of the persistent spin
helix (PSH) state [27].

via SO-coupling in an electrically tunable semiconductor layer, originally pro-
posed by Datta and Das [14], was tested using the iSHE [15]. Electrically driven
spin-manipulation without SO-coupling is also possible, for example, by adding
a drift component to an otherwise purely diffusive spin-current [17].

In the following we will describe experiments in Refs. [13] and [15] and their
theoretical analysis. Besides the spin-dependent Hall effects, we will review a
concept which is a single-particle transport analogue of the persistent spin helix
(PSH) [19, 26, 28], and which allows for long spin-relaxation lengths even in sys-
tems with strong SO-coupling where otherwise fast spin relaxation is caused by
the Dyakonov-Perel mechanism [20]. We will discuss that spin-relaxation lengths
of several micrometers can be achieved without satisfying the PSH conditions
but by restricting the spin-propagation to quasi-one-dimensional transport. We
will show the utility of the spin-dependent Hall effect combined with coherent
spin-precession in a microelectronic device geometry where a spin transistor with
electrical detection directly along the gated semiconductor channel is realized
and can be used to demonstrate a spin AND logic function in a semiconductor
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channel with two gates. Finally, we will discuss electric modulation of spin-
current and spin-distribution in a semiconductor micro-channel by applying an
additional drift current [16], and the simultaneous detection of spin-current and
spin-accumulation by the SiHE and non-local spin-valves, respectively [17].

16.2 The spin injection hall effect experiment

In the experiment in Ref. [13] a polarized current is injected optically through
a lateral p-n junction [18, 21] and its polarization is detected by transverse
electrical SiHE signals along the semiconducting channel.

The lateral p-n junction devices are fabricated in GaAlAs/GaAs heterostruc-
tures grown by molecular-beam epitaxy and using modulation donor (Si) and
acceptor (Be) doping in the (Ga,Al)As barrier materials. The specifications of
the GaAlAs/GaAs heterostructures can be found in Ref. [13]. A schematic of
the wafer and numerical simulations of conduction and valence band profiles are
shown in Figs. 16.2(a) and 16.2(b), respectively. The heterostructure is p-type
in the as grown wafer. Here, the band bending leads to the formation of a partly
depleted rectangular quantum well in the conduction band at the lower interface
and to an occupied triangular quantum well near the upper interface, forming a
two-dimensional hole gas (2DHG). The lateral p-n junction is created by select-
ively removing the acceptor layer from the top of the wafer. The band-bending
in the etched part leads to a populated 2DEG in the conduction band well.
The mobility of the 2DEG in the devices used for the SiHE experiments is only
∼ 3 × 103 cm2/Vs because of the close proximity of the ionized donors to the
quantum well.

In darkness, the lateral p-n junction has a strongly rectifying I-V charac-
teristic and no current is flowing at zero or reverse bias. Shining light with
sub-bandgap photonenergy, about 100 meV lower than the band-gap of GaAs,
excites only 2D-hole to 3D-electron transitions near the etch step. The other
parts of the wafer remain optically inactive at this wavelength. Owing to the op-
tical selection rules, the out-of-plane spin polarization of the optically generated
electrons and holes is determined by the sense and the degree of the circular
polarization of the vertically incident light. A highly spin-polarized photocur-
rent of up to 100 % can be generated when carriers from only one hole subband
are excited, as illustrated in Fig. 16.2(c). The electric field in the depletion
layer accelerates the photo-generated electrons vertically towards the 2DEG and
counter-propagating electron and hole currents are flowing through the 2DEG
and 2DHG, respectively, as illustrated in Fig. 16.2(d).

In Figs. 16.2(e, f) we show measurements on a device type used in Ref. [13].
It has a depleted 2DEG on the unetched p-side of the sample which is optically
inactive. The co-planar p-n junction acts as a self-focusing optical injection area
(∼ 100 nm around the selective etch step) increasing the resolution of the spin-
injection point beyond the size of the focused light-spot diameter of about 1-
2 μm. The transverse Hall signal measured in a Hall bar when a photo-generated
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Fig. 16.2. (a) Schematics of the reverse-biased lateral p-n junction containing
a 2DHG in the as grown part of the wafer and a populated 2DEG in the
region, where the p-GaAlAs layer is removed. (b) Calculated conduction
and valence band profile at a lateral position close to the etch step: the
populated triangular quantum well in the valence band at z = −50 nm can
be excited optically with sub-band-gap light generating free electrons in the
conduction band which get accelerated towards the 2DEG quantum well at
z = −140nm. (c) Schematics of optical transitions from a 2DHG quantum
well, where the degeneration between heavy- and light hole states is lifted. (d)
Schematics of a Hall bar device used in the experiments: at zero or reverse
bias, photo-excited electrons and holes are counter-propagating along the
2DEG and 2DHG, respectively. (e) Hall voltage VH measured as a function
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electron current of about 1 μA is flowing through a 1 μm wide 2DEG channel
is shown in Fig. 16.2(e). The Hall bar is 4 μm seperated from the injection
point. The measured signal increases linearly with the degree of circular light
polarization and changes sign at opposite chirality. To verify that the detected
transverse voltage is the response to the spin-part of a spin-polarized electron
current, the Hall signal is continuously recorded as the bias voltage at the lateral
p-n junction is changing polarity. At negative (reverse) bias, the electron current
is generated optically with a spin-polarization depending on the sense and the
degree of the circular polarization of the laser light. At forward bias, unpolarized
electrons are flowing through the 2DEG channel and recombine with holes in the
p-n junction. As it becomes apparent from Fig. 16.2(f), a nonzero Hall signal
is only detected when photo-generated spin-polarized electrons are propagating
through the Hall bar. Furthermore, simultaneous Hall measurements on two
adjacent Hall bars labeled as H1 and H2, 2 μm apart from each other, show
signals of opposite signs. This is due to spin-precession caused by the SO-coupling
when spins propagate through the 2DEG channel.

In Fig. 16.3, measurements on a device type used in Ref. [15] are shown. Here,
the 2DEG is not completely depleted on the unetched p-side of this sample and
the optically active region on the p-side extends over a several μm range from
the etch step into the unetched p-type side of the epilayer. A focused laser beam
of ∼1–2 μm spot diameter at the lateral p-n junction or near the junction on
the p-side of the epilayer was used to define the injection point. By shifting the
focused laser spot the position of the spin-injection point is smoothly changed
with respect to the detection Hall crosses. This results in damped-oscillatory
Hall resistance, RH = VH/IPH , measured at each of the two successive Hall
crosses labeled as H1 and H2, placed 6 and 8 μm from the lateral p-n junction.
The oscillations at each Hall cross and the phase shift between signals at the two
Hall crosses are consistent with a micron-scale spin precession period and with
a spin-diffusion length which extends over more than one precession period.

Experiments in Fig. 16.3 are performed in two distinct electrical measure-
ment configurations. In Fig. 16.3(a), data obtained with the source and drain
electrodes at the far ends of the p and n-type sides of the lateral junction are

�
Fig. 16.2. (Continued) of the degree of the circular polarization of the light used

to excite the photocurrent IPH . Light intensity, bias voltage and correspond-
ing photocurrent remained constant during the experiment. (f) Hall voltages
and electrical current I (which corresponds to the photocurrent IPH at zero
and reverse bias, or to the recombination current ID at forward bias) in de-
pendence of bias polarity for unpolarized light σ0 and circularely polarized
light σ−, measured simultaneously at two Hall bars H1 and H2, 4 μm and
6 μm away from the injection point. (Data presented in (e, f) are taken from
Ref. [13].)
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Fig. 16.3. (a) Schematics of the measurement setup with optically injected
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responding experimental Hall effect signals at crosses H1 and H2. The Hall
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indicated by the yellow cylinder in the schematics.) The optical current IPH

is independent of the helicity of the incident light and varies only weakly
with the light spot position. (b) Same as (a) for a measurement geometry
in which electrical current is closed before the first detecting Hall cross H1.
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shown, respectively. In this geometry, spin-polarized electrical currents reach
the detection Hall crosses, similar to experiments performed in Ref. [13]. In
Fig. 16.3(b) the electrical current is drained 4 μm before the first detection Hall
cross H1. In this case only pure spin-current [8, 10, 11] reaches crosses H1 and
H2 and generate transverse Hall signals. This demonstrates that in the 2DEG
micro-channel Hall effect detection of injected spin-polarized electrical currents,
as well as diffusive spin currents can be realized.

The possibility to observe and utilize spin precession of an ensemble of
electrons in the diffusive regime is demonstrated by numerical Monte Carlo
simulations [44] shown in Fig. 16.3(c). The numerically obtained spin-precession
period is well described by an analytical formula derived from the dynamics
of the spin-density matrix [44], LSO = π�

2/m(|α| + |β|); m = 0.067me is the
electron effective mass in GaAs and α and β are the Rashba and Dresselhaus
SO-coupling parameters, respectively (see the following section). There are two
regimes in which spin precession can be observed in the diffusive transport re-
gime. In one regime the width of the channel is not relevant and a spin-diffusion
length larger than the precession length occurs as a result of the single-particle
transport analogue of the PSH state [26, 27] realized at 2DEG Rashba and
Dresselhaus spin-orbit fields of equal or similar strengths, α ≈ −β for the bar
orientation used in Refs. [13, 15]. We will discuss this scenario in the beginning of
the following theory paragraph. When the two spin-orbit fields are not tuned to
similar strengths, the spin-diffusion length is approximately given by ∼ L2

SO/w
and spin-precession is observable only when the width w of the channel is com-
parable or smaller then the precession length [44–46]. As shown in Fig. 16.3(c),
several precessions are readily observable in this quasi 1D geometry even in the
diffusive regime and for α �= −β. As also demonstrated in Fig. 16.3(c), the
spin-precession and spin-diffusion lengths are independent in this regime of the
mean-free-path, i.e., of the mobility of the 2DEG channel. In Figs. 16.3 (d, e),
laser-spot shift measurements at 4 K and at room temperature are compared.
The finite spin Hall signals measured at high temperatures indicate the inde-
pendence of the spin-diffusion length on the mobility in the diffusive regime.

�
Fig. 16.3. (Continued) (c) Schematics of the diffusive transport of injected spin-

polarized electrons and Monte-Carlo simulations (explained in the next
paragraph) of the out-of-plane component of the spin of injected elec-
trons averaged over the 1 μm bar cross-section assuming Rashba field
α = 5.5 meVÅ, Dresselhaus field β = −24 meVÅ, and different values of
the mean-free-path l. (d, e) Measurements of the Hall signal at the first Hall
cross in the n-channel placed 2 μm from the co-planar p-n junction as a
function of the laser spot position at 4 K (d) and at room temperature (e).
(Data presented in the figure are taken from Ref. [15].)
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Note, that the precession length is temperature dependent which is attributed
to the effective temperature dependence of the confining potential due to Fermi
broadening and to corresponding variation of the effective internal spin-orbit
field.

16.3 Theory discussion

The theoretical approach is based on the observation that the micrometer length
scale governing the spatial dependence of the non-equilibrium spin-polarization
in the experiments of Refs. [13, 15] is much larger than the ∼ 100 nm mean-free-
path in the 2DEG which governs the transport coefficients. This allows to first
calculate the steady-state spin-polarization profile along the channel and then
consider the iSHE or SiHE as a response to the local out-of-plane component of
the polarization.

The calculations start from the electronic structure of GaAs whose conduction
band near the Γ-point is formed dominantly by Ga s-orbitals. This implies that
spin-orbit coupling originates from the mixing of the valence-band p-orbitals and
from the broken inversion symmetry in the zincblende lattice. In the presence of
an electric potential V (r) the corresponding 3D spin-orbit coupling Hamiltonian
reads

H3D−SO = [λ∗Γ · (k×∇V (r))] +
[Bkx(k2

y − k2
z)σx + cyclic permutations

]
,

(16.1)

where σ are the Pauli spin matrices, k is the momentum of the electron, B ≈
10 eVÅ3 , and λ∗ = 5.3 Å2 for GaAs [22, 23]. Eq. (16.1) together with the
2DEG confinement yield an effective 2D Rashba and Dresselhaus SO-coupled
Hamiltonian [24–26],

H2DEG =
�

2k2

2m
+α(kyσx−kxσy)+β(kxσx−kyσy)+Vdis(r) +λ∗σ ·(k×∇Vdis(r)),

(16.2)

where β = −B〈k2
z〉 ≈ −0.02 eVÅ and α = eλ∗Ez ≈ 0.01 − 0.03 eVÅ for

the strength of the confining electric field, eEz ≈ 2 − 5 × 10−3 eV/Å point-
ing along the [001] direction, Vdis is the disorder potential. The strength of
the confinement is obtained from a self-consistent Schrödinger-Poisson simu-
lation of the conduction band profile of the GaAs/GaAlAs heterostructure
[7]. Typically the strength of the Rashba SO-term α can be tuned whereas
the strength of the Dresselhaus SO-term β is a material dependent parameter
fixed by the choice of growth direction and, to a smaller extent, the degree of
confinement.
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16.3.1 Non-equillibrium polarization dynamics along the [11̄0] channel

The realization of the original Datta-Dass device concept in a purely Rashba
SO-coupled system has been unsuccessful until recently due to spin coherence
issues; i.e., in the required length scales in which transport is diffusive, no oscil-
lating persistent precession states are present [14]. However, in a 2DEG where
both Rashba and Dresselhaus SO-coupling have similar strengths a long lived
precessing excitation of the system has been shown to exist along a particular
direction [26, 28]. When α and β are equal in magnitude the component of the
spin along the [110] direction for α = −β or along the [11̄0] direction for α = β
is a conserved quantity [24], as well as a precessing spin-wave, the PSH, of wave-
length λspin-helix = π�

2/(2mα) in the direction perpendicular to the conserved
spin component [26, 27]. This PSH state has been observed through optical
transient spin-grating experiments [19, 28].

Intuitively, one can visualize the PSH by considering electron-spin precession
around an k-dependent effective internal magnetic field consisting of Rashba
and Dresselhaus SO-fields as shown in Figs. 16.4(a, b). In the lowest order,
their magnitudes increase linearly with k. In the particular case of α = −β,
the effective SO field is oriented along the [110] direction for all k-vectors and
its magnitude depends only on the [11̄0] component of k (Fig. 16.3(c)). Let us
consider that electron spins are injected at the point r0 with up-polarization
(along the [001]-direction) and that the spins are detected at the point r1 dis-
placed from r0 by a finite amount along the [11̄0] direction. At the point r1,
all electron spins have precessed by exactly the same angle independent of the
particular path each individual electron took and of the number of scattering
events each electron experienced along its path. Therefore, spins of an ensemble
of spin-polarized electrons will not dephase but precess along the [11̄0] direction
in such a way that they are all polarized along the same direction at a given
point in position space.

For α = (+/−)β, the Rashba-Dresselhaus Hamiltonian exhibits the U(1)
symmetry which means that an in-plane spin state parallel to this SO field dir-
ection is infinitely-long lived. This state will be dephased if the cubic Dresselhaus
term is present in the system. [29–31] Randomness in the SO-coupling induced
by remote impurities would cause additional spin relaxation[32]. Nevertheless,
infinite spin lifetimes are theoretically still possible in SO-coupled 2DEGs if
the spatially varying SO field can be described as a pure gauge and, thus, re-
moved by a gauge transformation [33]. Furthermore, it was shown [27] that the
many-electron system whose individual particles are described by the above U(1)
symmetric single-particle Hamiltonian displays a SU(2) symmetry which is ro-
bust against both spin-independent disorder and electron-electron interactions.
Owing to this symmetry, a collective spin state excited at a certain wave vector
would have an infinite lifetime.

Let us now consider the strong scattering regime consistent with the structures
used in the experiments in Refs. [13, 15]. In this case, αkF and βkF ∼0.5 meV
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are much smaller than the disorder scattering rate �/τ ∼5 meV, so that the
system obeys a set of spin-charge diffusion equations [16, 26] for arbitrary ratio
of α and β:

∂tn = D∇2n+B1∂x+Sx− −B2∂x−Sx+ ,

∂tSx+ = D∇2∂tSx+ −B2∂x−n− C1∂x+Sz − T1Sx+ ,

∂tSx− = D∇2∂tSx− +B1∂x+n− C2∂x−Sz − T2Sx− ,

∂tSz = D∇2∂tSz + C2∂x−Sx− + C1∂x+Sx+ − (T1 + T2)Sz,

where x+ and x− correspond to the [110] and [11̄0] directions, B1/2 = 2(α ∓
β)2(α±β)k2

F τ
2, T1/2 = 2

m (α±β)2 k2
F τ
�2 , D = v2

F τ/2, and C2
1/2 = 4DT1/2. For the

present device, where α ≈ −β, the 2DEG channel is patterned along the [11̄0]
direction which corresponds to the direction of the PSH propagation. Within this
direction the dynamics of Sx− and Sz couple through the diffusion equations as
already detailed. Seeking steady state solutions of the form exp[qx−] yields the
transcendental equation (Dq2 + T2)(Dq2 + T1 + T2) − C2

2q
2 = 0 which can be

reduced to q4 + (Q̃2
1 − 2Q̃2

2)q2 + Q̃2
1Q̃

2
2 + Q̃4

2 = 0, where Q̃1/2 ≡
√
T1/2/D =

2m|α± β|/�
2. This yields a physical solution for q = |q| exp[iθ] of

|q| =
(
Q̃2

1Q̃
2
2 + Q̃4

2

)1/4

and θ =
1
2

arctan

⎛
⎝
√

2Q̃2
1Q̃

2
2 − Q̃4

1/4

Q̃2
2 − Q̃2

1/2

⎞
⎠. (16.3)

The resulting damped spin precession of the out of plane polarization component
for the parameter range of the device, where we have set β = −0.02 eVÅ and
varied α from −0.5β to −1.5β, is shown in Fig. 16.3(d).

These results are in agreement with Monte-Carlo calculations on similar
systems (modeling a InAs 2DEG) but with higher applied biases [34]. In the
Monte-Carlo calculations longer decaying lengths where observed at higher bi-
ases. However, the experiments in Refs. [13, 15] are well within the linear regime
with very low driving fields; this results in shorter decay length scales of the
oscillations as compared to Ref. [34].

We note that Monte-Carlo simulations including temperature broadening of
the quasiparticle states confirm the validity of the above analytical results up
to the high temperatures used in the experiment. The theoretical results show
good agreement with the steady-state variations (changes in the length scale of
1− 2μm ) in the out of plane non-equillibrium polarization of the experimental
system, observed indirectly through the Hall signals.

16.3.2 Hall effect

The Hall effect signal can be understood within the theory of the anomalous Hall
effect. The contributions to the anomalous Hall effect in SO-coupled systems
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with non-zero polarization can be classified in two types: the first type arises
from the SO-coupled quasiparticles interacting with the spin-independent dis-
order and the electric field, and the second type arises from the non-SO-coupled
part of the quasiparticles scattering from the SO-coupled disorder potential
(last term in Eq. 16.2). The contributions of the first type have been stud-
ied in 2DEG ferromagnetic systems with Rashba SO-coupling [35–38]. These
have shown that, within the regime applicable to the present devices, the anom-
alous Hall effect contribution due to the intrinsic and side-jump mechanisms
vanish even in the presence of moderate disorder. In addition, the skew scat-
tering contribution from this type of contribution is also small (with respect
to the contribution shown below) and furthermore is not linear in polarization
[35]. Hence we can disregard the contributions of the first type in the SiHE
experiments.

This is not surprising since in the devices in Refs. [13, 15] αkF , βkF � �/τ and
hence these contributions arising from the SO-coupling of the bands are not ex-
pected to dominate. Instead the observed signal originates from contributions of
the second type, i.e., from interactions with the SO-coupled part of the disorder
[39, 40]. Within this type one contribution is due to the anisotropic scattering,
the extrinsic skew-scattering, and is obtained within the second Born approxi-
mation treatment of the collision integral in the semiclassical linear transport
theory [39, 40]:

|σxy|skew =
2πe2λ∗

�2
Vdisτn(n↑ − n↓), (16.4)

where n = n↑ + n↓ is the density of photoexcited carriers with polarization
pz = (n↑ − n↓)/(n↑ + n↓). Using the relation for the mobility μ = eτ/m and the
relation between ni, Vdis, and τ , �/τ = niV

2
dism/�

2, the extrinsic skew-scattering
contribution to the Hall angle, αH ≡ ρxy/ρxx ≈ σxy/σxx, can be written as

αskew
H = 2πλ∗

√
e

�niμ
n pz(x[11̄0])

= 2.44× 10−4 λ∗[Å
2
](n↑ − n↓)[1011cm−2]√

μ[103cm2/Vs]ni[1011cm−2]

∼ 1.1× 10−3pz, (16.5)

where we have used n = 2×1011cm−2, pz is the polarization, μ = 3×103cm2/Vs,
and ni = 2 × 1011cm−2; the last estimate is introduced to give a lower bound
to the Hall angle contribution within this model. In addition to this contribu-
tion, there exists also a side-jump scattering contribution from this SO-coupled
disorder term given by
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αs−j
H =

2e2λ∗

�σxx
(n↑ − n↓) (16.6)

= 3.0× 10−4 λ∗[Å2]
μ[103cm2/Vs]

pz ∼ 5.3× 10−4pz. (16.7)

As expected this is an order of magnitude lower than the skew-scattering con-
tribution within this system. We can then combine the above result with the
results from the previous section to predict, in this diffusive regime, the result-
ing theoretical αH along the [11̄0] direction for the relevant range of Rashba
and Dresselhaus parameters corresponding to the experimental structure [13].
This is shown in Fig. 16.4(d). We have assumed a donor impurity density ni

of the order of the equilibrium density n2DEG =2.5×1011 cm−2 of the 2DEG
in dark, which is an upper bound for the strength of the impurity scattering in
the modulation-doped heterostructure and, therefore, a lower bound for the Hall
angle. For the mobility of the injected electrons in the 2DEG channel one can
consider the experimental value determined from ordinary Hall measurements
without illumination, μ = 3× 103 cm2/Vs. The density of photoexcited carriers
of n ≈ 2 × 1011 cm−2 was obtained from the measured longitudinal resistance
between successive Hall probes under illumination assuming constant mobility.

16.3.3 Spin diffusion and spin procession in narrow 2DEG bars

Long spin-diffusion lengths in 2DEGs can be achieved not only when the PSH
state conditions are approximately satisfied but also when the device geom-
etry restricts the spin-transport to quasi one-dimensional propagation. As we
will discuss in this section, the relevant confinement length is not related to
the scattering mean-free path of the electrons but quasi-one-dimensional spin-
transport takes place in 2DEG channels whose width is smaller than the length
of a full spin-precession which is inverse proportional to the strength of the in-
ternal spin-orbit fields. One can understand intuitively by considering the SO
fields in the 2DEG as momentum-dependent magnetic fields that couple to the
electronic magnetic moment. If the channel is not one-dimensional, the k-states
which are not collinear to the channel orientation cause decoherence of the spin-
polarization along the channel. However, if the SO fields are weak enough so
that the corresponding spin-precession length is large compared to the channel
width, the decoherence is reduced. Roughly speaking, the electron spin of elec-
trons moving towards the channel edges have not precessed sufficiently to cause
decoherence before they scatter back from the boundaries.

A more quantitative analysis of the channel width dependence of the spin
dynamics of an ensemble of spin-polarized electrons injected in a diffusive
microchannel with linear Rashba and Dresselhaus SO-coupling is shown by nu-
merical ensemble Monte Carlo (EMC) calculations where electron orbital degrees
of freedom are described by classical momentum and position and the spin degree
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Fig. 16.5. (a) Schematic depiction of the EMC method as described in detail by
Zârbo et al. [44]: Spin-up polarizaed electrons are injected from the source
electrode in a Rashba and Dresselhaus SO-coupled channel. The time evolu-
tion of each particle belonging to the ensemble is sampled at equal intervals
t called subhistories. The particle spin precesses in the SO field during the
free flight time but is unaffected by collisions. (b-d) EMC calculation results
of the spin-density distribution Sz(r) in [11̄0]-oriented 2DEG channels with
fixed Dresselhaus SO-coupling β = −2.0 × 10−12 eVm for (b) 800 nm, (c)
400 nm wide channels with α = −0.5β and for a 400 nm wide channel with
α = 0 (d). The colour plots show the 2D distribution of Sz(r) in the chan-
nels, the bold black line corresponds to the y[110]-averaged spin density as a
function of x[11̄0]. (Data presented in (b-d) are taken from Ref. [44].)

of freedom by quantum-mechanical spin-density matrix, Fig. 16.5(a) [44]. In the
diffusive regime momentum and position of electrons can be treated as classical
variables. We emphasize that the direct correspondence between the suppressed
spin relaxation in the single-particle transport problem and the collective PSH
state is valid only in this diffusive regime. Here the group velocity of an elec-
tron in the Rashba-Dresselhaus 2DEG can be approximated by its momentum
divided by the mass. The spin-precession angle of such a particle depends then
only on the distance traveled along the direction perpendicular to the SO field
and the resulting spin-density pattern of an ensemble of injected electron spins
coincides with the spin-density pattern of the PSH spin wave [15]. In the oppos-
ite limit of strong SO-coupling and weak disorder, the velocity and momentum
are not simply proportional to each other and the direct link is lost between
the one particle and collective physics. This is because the expression of velocity
of SO-coupled electrons contains terms proportional to SO-coupling strength.
For example, the velocity along the [11̄0] direction of Rashba and Dresselhaus
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SO-coupled electrons in the PSH regime (α = −β) is v[11̄0] = �k[11̄0]/m± 2β/�

for states with spins along [1̄1̄0] and along [110], resepctively.
In Fig. 16.5 (b-d), we show EMC calculations of the spin-density distribution

Sz(r) in [11̄0]-oriented 2DEG channels as described in Ref. [44] with chosen
SO-parameter matching the experimental observations. In case that the PSH-
conditions are not satisfied, e.g., for α = −0.5β, the shorter spin relaxation
length in the 800 nm bar compared to the narrower 400 nm bar is due to the
more efficient randomization of the spin orientations in the wider bar. Even in
the extreme case of the absence of the Rashba-SO field (α = 0), the ∼ 1μ m spin
relaxation length makes a full spin-precession possible along the narrow 400 nm
2DEG bar.

16.4 Spin Hall effect transistors
16.4.1 Spin current controlled by electric field

The theoretical proposal of electrical manipulation and detection of electrons
spin in a semiconductor channel is more than 20 years old [14]. However, its
experimental realization [48] turned out to be unexpectedly difficult because
of the fundamental physical problems related to the resistance mismatch [49]
between ferromagnetic contacts for spin-injection/detection and the requirement
that the electron dwell time in the semiconductor channel must be shorter than
the spin lifetime [50].

In this paragraph, we demonstrate the applicability of the iSHE in a new
type of a spin transistor, the SHE-transitor. Similar to the Datta-Das proposal
of the spin transistor, the active semiconductor channel in the SHE-transistor is
a two-dimensional electron gas (2DEG) in which the SO-coupling induced spin
precession is controlled by external gate electrodes. The gates are realized by the
p-type surface layer areas of the heterostructure which were locally masked and
remained unetched during the fabrication of the n-channel Hall bar [21]. The de-
tection is provided by transverse iSHE voltages measured along the 2DEG Hall
bar. For spin injection the optical method is utilized. This way all three compo-
nents of the spin transistor are realized within an all-semiconductor structure.
The optical injection method is less scalable than electrical injection from ferro-
magnetic contacts but, on the other hand, it does not require any magnetic
elements or external magnetic fields for the operation of the device. Because of
the nondestructive nature of the iSHE detection, one semiconductor channel can
accommodate multiple gates and Hall cross detectors and is therefore directly
suitable for realizing spin-logic operations.

The conventional field-effect transistor functionality in the 2DEG channel
achieved by the p-layer top gate is demonstrated in Fig. 16.6(a) where the gate
voltage dependence of the channel current and mobility underneath the gate are
shown. At zero-gate voltage, only a small residual channel current consistent with
the partial depletion of the 2DEG in the unetched part of the heterostructure is
detected. By applying forward or reverse voltages of an amplitude less than 1 V
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the 2DEG channel is opened or closed, respectively, at negligible gate-channel
leakage current. Within the range of measurable signals, a gate voltage induced
changes of the channel current by 5 orders of magnitude is detected while the
mobility changes by 2 orders of magnitude. The main effect of the gate voltage
on the channel current is therefore via direct charge depletion/accumulation of
the 2DEG but mobility changes are also significant. With increasing reverse-
gate voltage the mobility decreases because the 2DEG is shifted closer to the
ionized donors on the other side of the GaAlAs/GaAs heterojunction and be-
cause screening of the donor impurity potential by the 2DEG decreases with
depletion.

The sensitivity of the measured Hall signal at the cross placed behind the gate
on the voltage applied to the gate electrode is shown in Fig. 16.6(b). In order
to exclude any potential gate voltage dependence of spin-injection conditions
in the device the experiments are performed with the electrical current drained
before the gated part of the channel. The data show two regimes of operation
of the SHE transistor. At large reverse voltages the Hall signals disappear as
the diffusion of spin-polarized electrons from the injection region towards the
detecting Hall cross is blocked by the repulsive potential of the intervening gate
electrode. Upon opening the gate, the Hall signal first increases, in analogy to
the operation of the conventional field-effect transistor. While the optically gen-
erated current IPH is kept constant, the electrical current in the manipulation
and detection parts of the transistor channel remains zero at all gate voltages.
The onset of the output transverse electrical signal upon opening the gate is a
result of a pure-spin current. The initial increase of the detected output signal
upon opening the gate shown in Fig. 16.6(b) is followed by a non-monotonic
gate-voltage dependence of the Hall voltage. This is in striking contrast to the
monotonic increase of the normal electrical current in the channel observed in
the conventional field-effect-transistor measurement in Fig. 16.6(a). Apart from
blocking the spin current at large-reverse gate voltages, the intermediate gate
electric fields are modifying spin precession of the injected electrons and there-
fore the local spin polarization at the detecting Hall cross when the channel is
open. This is the spin manipulation regime analogous to the original Datta-Das
proposal. The presence of this regime in the device is further demonstrated by
comparing two measurements shown in Fig. 16.6(b), one where the laser spot is
aligned close to the lateral p-n junction on the p-side (red, bold line) and the
other one with the spot shifted by approximately 1 μm in the direction away
from the detecting Hall crosses (green, bold line). The reverse voltage at which
the Hall signals disappear is the same in the two measurements. For gate voltages
at which the channel is open, the signals are shifted with respect to each other in
the two measurements, have opposite sign at certain gate voltages, and the over-
all magnitude of the signal is larger for smaller separation between injection and
detection points, all confirming the spin precession origin of the observed effect.
Further evidence of the gate-voltage dependent variation of the spin precession
underneath the gate electrode is shown in Fig. 16.6(c), where the phase shifted
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Fig. 16.6. Spin Hall effect transistor: (a) Schematics of the measurement setup
corresponding to the conventional field-effect transistor and experimental
dependence of the electrical current (blue) through the channel and mobility
(black) underneath the gate on the gate voltage. (b) Schematics of the setup
of the spin Hall transistor and experimental Hall signals as a function of the
gate voltage at a Hall cross placed behind the gate electrode for two light spot
positions with a relative shift of 1 μm and the green curve corresponding to
the spot shifted further away from the detection Hall cross. (c) Hall signals as
a function of the spot-positions for two different gate voltages, VG = 0 (green)
and VG = 0.7V (red). The thin green and red curves in (b, c) correspond
to the respective photo-currents. (Data presented in (a-c) are taken from
Ref. [15].)
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Hall signal variations as a function of the spot position for two different gate
voltages, VG = 0 (green bold line) and VG = 0.7V (red, bold line) are compared.
The photocurrents (thin green and red lines) drop down to zero when exceeding
a light-spot position of 2 μm away from the etch-step in the p-region.

One of the important attributes of this non-destructive spin detection method
integrated, together with the electrical spin manipulation, along the semicon-
ductor channel is the possibility to fabricate devices with a series of Hall cross
detectors and also with a series of gates. In Fig. 16.7 the feasibility of this con-
cept and of the ensuing logic functionality on a SHE transistor structure with
two gates, first placed before cross H1 and second before H2, is demonstrated.
The scanning electron micrograph of the device is shown in Fig. 16.7(a). The
measured data plotted in Fig. 16.7(b) demonstrate that Hall cross H1 responds
strongly to the electric field on the first gate, with a similar gate voltage char-
acteristics as observed in the single-gate device in Fig. 16.6. As expected for the
relative positions of the injection point, of Hall cross H1, and of the two gates
in the device, the dependence of the signal at cross H1 on the second gate is
much weaker. On the other hand, Hall cross H2 responds strongly to both gates
(Fig. 16.7(c)). Before the spin can reach the detecting Hall cross H2 it is ma-
nipulated by two external parameters. This is analogous to the measurement in
Fig. 16.6(b) in which the position of the injection point played the role of the
second parameter.

In Fig. 16.7(d), a simple AND logic functionality is demonstrated by operating
both gates and by measuring the Hall electrical signal at cross H2. Intermediate
gate voltages on both gates represent the input value 1 and give the largest
electrical signal at H2 (positive for σ− helicity of the incident light), representing
the output value 1. By applying to any of the two gates a large reverse (negative)
gate voltage, representing input 0, the electrical signal at H2 disappears, i.e., the
output is 0. Note that additional information is contained in the polarization
dependence of the detected Hall signals, as illustrated in Fig. 16.6(d).

The strength of the confining electric field of the 2DEG underneath the gate
changes by up to a factor of ∼2 in the range of applied gate voltages in the
experiments. It implies comparably large changes in the strength of the internal
SO fields in the 2DEG channel. The dependence on the SO field strength con-
firmed by MC simulations [44] (and the independence on the momentum of
injected electrons) implies also comparably large changes of the spin-precession
length. These estimates corroborate the observed spin-manipulation in the SHE
transistor by external electric fields applied to the gates.

16.4.2 Spin current controlled by electric current

We now discuss the manipulation of the iSHE signal by spin-unpolarised
electrical current in a three-dimensional bulk channel, where long-range spin
propagation does not require quasi-one-dimensional spin-transport or PSH con-
ditions. In the experiments performed by Olejńık et al. [17], optical spin-injection
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Fig. 16.7. (a) Scanning electron micrograph image and schematics of the device
with two detecting Hall crosses H1 and H2 and one gate placed before cross
H1 and the second gate placed behind cross H1 and before cross H2. Gates
and p-side of the lateral p-n junction are highlighted in red. The focused
laser beam is indicated by the yellow spot. (b) Hall signals at cross H1
measured as a function of the first gate voltage. These gating characteristics
are similar to the single-gate device in Fig. 16.6(b) and have much weaker
dependence on the second gate voltage. (c) Hall signals at cross H2 measured
as a function of the second gate voltage. The curves show strong dependence
on the voltages on both gates. (d) Demonstration of the spin AND logic
function by operating both gates (input signals) and measuring the response
at Hall cross H2 (output signal). Measured data at cross H1 are also shown
for completeness. (Figure is taken from Ref. [15].)

is replaced by spin-injection using Fe contacts epitaxially grown on the GaAs
spin transport channel. The electrical spin injection and detection is combined
with an applied electrical drift current to modulate the spin distribution and spin
current in the channel. The magnetic anisotropy of the ultra-thin Fe contacts
has a strong out-of-plane component (2 T) due to the thin-film shape anisotropy,
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a cubic magnetocrystalline component, and an additional uniaxial interface an-
isotropy originating from the broken [11̄0]/[110] symmetry of the GaAs surface.
The anisotropies make the [110] crystal direction the easy magnetic axis with
an anisotropy field of 0.2 T required to align the magnetization with the [11̄0]
in-plane hard-axis. Using Fe contacts patterned along the easy anisotropy axis
and applying a weak in-plane hard-axis magnetic field allow to perform out-of-
plane spin-precession Hanle experiments where spins injected from the in-plane
magnetized Fe electrode precess out of the sample plane during their motion
along the GaAs channel.

Both the iSHE signal proportional to the out-of-plane polarisation component
of the spin-current and the non-local spin-valve signal related to the spin accu-
mulation component collinear to the magnetisation orientation of the detecting
Fe electrode [8, 52–55] are measured simultaneously in devices as sketched in
Fig. 16.8(a). The ordinary Hall contributions to the measured Hall signal gen-
erated by the perpendicular stray-field of slightly tilted contact magnetization
during the magnetic hard axis field sweep of up to 50 mT are separated from
the iSHE contribution [8].

In the experiment, a bias current IB driven between the injection (right)
Fe/GaAs Schottky contact and the left Au electrode generates spin-accumulation
underneath the spin-injection contact. If no drift current between the two outer
Au electrodes is applied, ID = 0, a purely diffusive spin-current propagates into
the unbiased part of the semiconductor channel with the central Hall cross and
the detection (right) Fe electrode. In the biased part of the channel, both the
diffusion and drift are present. Applying a bias between the two Au electrodes
causes an additional drift current component ID on both sides of the injection
electrode.

Non-local measurements on the Fe detection electrode in magnetic fields Bx

applied along the Fe in-plane hard axis are shown in Fig. 16.8b. The curves
were obtained by setting the magnetizations in the Fe injection and detec-
tion electrodes in the parallel configuration before sweeping Bx. The Hanle
dependence of the non-local signal on Bx reflects the precession and deph-
asing of spins in the GaAs channel. The injected spins precess in the plane
perpendicular to Bx, i.e., acquire an out-of-plane component. The observation
of the iSHE signal in the GaAs is demonstrated in Fig. 16.8d. Consistent with
the iSHE interpretation, the signal is zero at zero applied field since in this
case the in-plane polarized injected spins do not precess in the GaAs chan-
nel. The variations of the iSHE signal in Fig. 16.8b and of the Hanle non-local
signal in Fig. 16.8d occur at a comparable magnetic field scale. This con-
firms the precession origin of the out-of-plane spin component detected by
the iSHE.
IB driven through the injection Fe electrode is kept constant (300 μA) while

the additional current ID is set to 0 and ±100 μA. As seen in Figs. 16.8b,d, both
the spin polarization measured underneath the Fe detection electrode and the
spin-current measured by the iSHE depend on ID.
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Fig. 16.8. (a) Schematics of the experimental setup. (b), (d) Experimental non-
local spin valve and iSHE signals in the in-plane hard-axis field measured at
constant spin-injection bias current IB = 300 μA and at three different drift
currents ID depicted in (a). (c), (e) Calculations of the non-local spin valve
and iSHE signals.
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The data can be explained by a shift of the injected spin polarization profile
from the injection electrode in the direction towards the Fe detection electrode in
the case of ID = +100 μA. In the experiment with ID = −100 μA, the drift acts
against diffusion on both sides of the injection electrode which makes the spin
polarization profile decay more rapidly as we move away from the injection point.
Our experiments use a method for modulating the output spin signal by electrical
means which is distinct from the previous iSHE device with optical injection into
a 2D GaAs channel. The field applied across the dielectric, separating the 2D
channel from a gate, controlled the spin precession via field dependent spin-
orbit coupling [15]. In the present device, by applying the drift current, the
non-uniform spin-polarization profile along the channel can be shifted and the
corresponding spin-current increased or decreased which causes the electrically
controlled modulation of the output signal. Note that the modulation by applied
current was also used, e.g., in a Si-spin channel in which case the electron transit
time through the channel relative to the Hanle precession time in an external
magnetic field was controlled by the current [16].

The spin dynamics in the GaAs channel can be modeled by the spin drift-
diffusion equations. For the applied in-plane hard-axis field Bx, the spins precess
in the y − z plane and the corresponding Hanle curves are obtained by solving,

dsy/z(x)
dt

+
d

dx

(
−Ddsy/z(x)

dx
+ vd(x)sy/z(x)

)
+
sy/z(x)
τs

+gμBB
eff
x sz/y(x) = Ṡy/zδ(x) (16.8)

where Ṡy = Ṡ0, Ṡz = 0, and the nuclear Overhauser field is included in the total
effective field Beff

x .
In Eq. (16.8), D is the diffusion constant, vd is the drift velocity, τs is the spin-
dephasing time, g is the Landé-factor of electrons in GaAs, and μB is the Bohr
magneton. The right-hand side of Eq. (16.8) for the sy component describes the
rate of spins parallel to the Fe-magnetic easy axis (ŷ-axis) injected from the Fe
contact to the GaAs channel at x = 0.

In the experiments, the drift velocity can be different on the right and left
side of the injection electrode, vd(x) = θ(x)vR

d − θ(−x)vL
d , and is determined by

the corresponding currents driven on either side of the injector. For a special
case of vR

d = vL
d , the steady-state spin-density solving Eq. (16.8) is given by the

commonly used expression [52],

sy(x) =
∫ ∞

0

Ṡ0dt√
4πDt

e−(x−vdt)2/4Dt−t/τs cos(ωBt), (16.9)

where ωB = gμBBx/�. sz(x) is obtained by replacing cosine by sine. Assuming
the step-like discontinuity in the drift velocity at the injection point, which
corresponds to our experimental geometry, the solution of Eq. (16.8) outside the
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injection point must have the same functional form as the expression (16.9), up
to a normalizing factor. The origin of the renormalization due to vd(x) with a
sharp step at the injection point is that this form of vd(x) is equivalent to an
additional source/sink term in the drift-diffusion equation at the injection point
(dθ(x)/dx = δ(x)). As confirmed numerically, the two normalization factors for
the right and left spin densities are obtained by matching the spin densities at
the injection point and by requiring the same total integrated spin density as
in the case of the constant drift velocity, i.e.,

∫∞
−∞ dxsy(x) = τsṠ0/[1 + (ωBτs)2]

and
∫∞
−∞ dxsz(x) = τsṠ0(ωBτs)/[1 + (ωBτs)2].

This procedure is valid for spatially independent spin-dephasing time and
magnetic field in Eq. (16.8).

The drift velocities corresponding to our experiments in Figs. 16.8b, d are
given by, vR

d = ID/enA and vL
d = (ID + IB)/enA (see Fig. 16.8a). Here e is

the electron charge, n is the electron density in the GaAs channel, and A is the
cross-sectional area of the channel.

The diffusion constant is given by the expression for a degenerate semicon-
ductor, D = μen/eg(EF ), where μe is the electron mobility and g(EF ) is the
density of states at the Fermi level in GaAs conduction band with effective
mass m∗ = 0.067. The mobility μe = 3.5 × 103 cm2V−1s−1 and density n =
1.1×1017 cm−3, and the corresponding diffusion constant D = 2.9×10−3 m2s−1

and drift velocities were determined using the ordinary Hall measurements in the
GaAs channel. The spin-dephasing time τs = 1.65 ns is obtained by matching
the width of the theoretical and experimental Hanle curves. We determined τs
from measurements in the applied out-of-plane hard-axis field Bz, i.e., in the
geometry where the Overhauser field is negligible because Bz << ∼ 2T , the
out-of-plane anisotropy field. The remaining input parameter needed for ob-
taining the quantitative values of the theoretical non-local Hanle curves, shown
in Fig. 16.8c, is the overall normalization factor of the continuous solution
of Eq. (16.8) (or equivalently the value of Ṡ0). This is obtained by matching
the theoretical and experimental spin densities in GaAs underneath the detec-
tion electrode. The experimental value is inferred from the difference between
the zero field non-local spin-valve voltages at parallel and antiparallel magnet-
ization configurations of the injection and detection Fe electrodes considering
[52], ΔVNL = 2ηPFePGaAsEF /3e. Here η = 0.5 is the spin-transmission effi-
ciency of the interface, PFe = 0.42 is the polarization of the Fe electrode, and
PGaAs = 2sy(xd)/n is the polarization in GaAs underneath the Fe detection
electrode (x = xd).

The iSHE is proportional to the ẑ-component of the spin-current given
by js

z(x) = −D�∇sz(x) + vd(x)sz(x). Since js
z(x) depends on the spatial co-

ordinate we have to consider also the response function Fcross(x) of the
finite-size Hall cross when interpreting the experiments. Fcross(x) can be
evaluated numerically for the sample geometry using conformal mapping
theory [57, 58]. The measured iSHE signal is then proportional to Js

z =∫∞
−∞ dxjs

z(x)Fcross(x)/
∫∞
−∞ dxFcross(x). The spin-current and the iSHE voltage
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are related as, VH = ewαJs
z /σ, where α is the spin Hall angle and σ = neμe

is the electrical conductivity of the GaAs channel. The theoretical VH plotted
in Fig. 16.8e is obtained by taking α = 1.5 × 10−3 which is a value consistent
with the estimates of the skew-scattering Hall angle for the disordered weakly
spin-orbit coupled GaAs channel. The value is also consistent with spin Hall
angles in diffusive GaAs channels reported in optical and electrical spin Hall
measurements [6, 8, 56].

16.5 Prospectives of spin-injection Hall effect

The spin injection Hall effect in non-magnetic semiconductor structures with
the ability to control the SO-coupling, offer unprecedented possibilities to study
coupled spin-charge dynamics without intervening spin and charge propagation.
SiHE and iSHE enable to detect locally the polarization of spin- or spin-polarized
current with high spatial resolution limited only by the nano-fabrication cap-
abilities, which is 1-2 orders of magnitude higher than the resolution of current
magneto-optical scanning probes. Moreover, studying the spin-dependent Hall
effects both in the diffusive regime [13, 15] and in the strong spin-orbit coupling,
weak disorder regime [36] will enable to analyze the different microscopic origins
of the spin-dependent Hall effects.

From the application perspective, spin-injection Hall effect devices can be
directly implemented as light-polarization sensors, so-called polarimeters, which
convert the degree of light-polarization into a directly proportional electrical
signal. Moreover, in the last section we have shown that SiHE and iSHE can
be implemented in a spin transistor type of device. An important next step
towards a practical implementation of such devices is the replacement of op-
tical spin-injection by other solid state means of spin-injection as discussed in
the last section. These lightless devices utilizing the spin-injection Hall effect
can be fabricated in a broad range of materials including indirect-gap Si/Ge
semiconductors [51]. Since the magnitude of the spin-injection Hall effect scales
linearly with the spin-orbit coupling strength we expect ∼ 100× weaker signals
in the Si/Ge 2DEGs as compared to the measurements in GaAs/AlGaAs in Refs.
[13, 15], which is still readily detectable.
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17 Quantum spin Hall effect and topological
insulators

S. Murakami and T. Yokoyama

17.1 Quantum spin Hall systems
17.1.1 Introduction

Topological insulators (quantum spin Hall systems) are a new quantum state of
matter theoretically proposed in 2005 [7, 42, 43], and have been experimentally
observed in various methods later. Topological insulators can be realized in both
two dimensions (2D) and in three dimensions (3D), and they are nonmagnetic
insulators in the bulk, but have gapless edge states (2D) or surface states (3D)
(see Fig. 17.1). These edge/surface states carry pure spin current and they are
sometimes called helical. The novel property for these edge/surface states is that
they originate from bulk topological order, and are robust against nonmagnetic
disorder [7, 43, 119, 121].

We first explain how topological insulators are related to other spin transport
phenomena. The spin–orbit coupling in solids arises from relativistic effects.
The electrons are moving around the nuclei with a speed close to the speed of
light. This spin-orbit coupling gives rise to spin-dependent orbital motions of the
electrons, which enable us to manipulate spins by purely electric means. One of
the methods to manipulate spins electrically is the spin Hall effect [64, 100],
schematically shown in Fig. 17.2. In this effect, the electric field applied to the
system induces a transverse spin current. After the theoretical predictions of the
intrinsic spin Hall effect due to the band structure, the spin Hall effect has been
observed in various semiconductors and metals with various methods.

The quantum spin Hall effect is the “quantum” version of the spin Hall effect,
in a similar sense to the quantum Hall effect compared with the Hall effect. The
(charge) Hall effect occurs in a system in a magnetic field. The Hall effect has a
novel and interesting variant, called the quantum Hall effect. The quantum Hall
effect is realized in a two-dimensional electron gas in a strong magnetic field. In
this case the electrons form Landau levels, and the Fermi energy is between the
Landau levels. Thus there are no bulk states at the Fermi energy, and the bulk is
insulating. Nevertheless, at the Fermi energy there are some other states which
are localized on the edge of the system. In integer quantum Hall states, these
edge states are chiral, i.e. they go along the whole edge only in one direction,
but not in the other. These states are responsible for the quantized Hall effect.
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[edge state]

spin current

[surface state]

2D TI(a) 3D TI(b)

Fig. 17.1. Schematics for (a) 2D topological insulator and (b) 3D topological
insulator.

down spin up spin

pure spin current

electric current,

electric field

Fig. 17.2. Schematic of the spin Hall effect.

The number of chiral edge states N is a topological number, and it is independent
of the details of the edge. This number N is called the Chern number. The Chern
number gives the quantized Hall conductivity σxy = Ne2/h.

The quantum Hall effect can be regarded as an insulator version of the Hall
effect, because the bulk is insulating. In a similar sense, we can consider the
insulator analog of the spin Hall effect: the quantum spin Hall effect [7, 42, 43].
Systems showing the quantum spin Hall effect are called topological insula-
tors. Topological insulators can be schematically expressed as the lower panel
of Fig. 17.3. This is a superposition of the two subsystems; the electrons with
up-spins are under the +B magnetic field and form σxy = e2/h quantum Hall
states (Chern number N = 1), and electrons with down-spins are under the
−B magnetic fields and form σxy = −e2/h quantum Hall states (Chern number
N = −1). To realize this system as a whole, we have to apply the magnetic field
which is opposite for the up- and down-spins. This cannot be the usual mag-
netic field, but can be realized by the spin–orbit coupling inherent in solids. The
resulting edge states consist of counterpropagating states with opposite spins.

These edge states constructed in this way are eigenstates of sz, i.e. the spins
in the edge states are perpendicular to the 2D plane. Nevertheless, it is not a
necessary condition in general 2D topological insulators. In general the spins
of edge states are not always perpendicular to the plane. To consider the spin
directions of edge states, we note that in topological insulators time-reversal
symmetry is assumed. Because of time-reversal symmetry, the edge state going
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spin

B B

Quantum spin Hall state » Quantum Hall state ×2

σxy =
h
e2

for up spin σxy =
h
e2

for down spin

Zero magnetic field

Spin-orbit coupling
(spin-dependent)

effective magnetic field

Fig. 17.3. Construction of a quantum spin Hall system (topological insulator)
as a superposition of two subsystems, one is for up-spin and the other for
down-spin.

clockwise and that going counter-clockwise are transformed to each other by
the time-reversal operation, and therefore they have opposite spins (which may
not be necessarily perpendicular to the plane). They are called “helical.” They
are degenerate due to Kramers’ theorem, and are called Kramers pairs. They
have a special property that any time-reversal-symmetric perturbation (such as
nonmagnetic impurities or electron–electron interaction) cannot open a gap [119,
121]. These gapless edge states are topologically protected. This protection is due
to the topological number, originating from the topological characterization of
the band structure. Therefore, a topological insulator is insulating only in its
bulk, and it is distinct from an ordinary insulator because of the topologically
protected gapless states at the boundaries of the system.

As we have seen, the quantum Hall states are characterized by the Chern
number N . This is an integer, and cannot be changed continuously. In a similar
way, topological insulators are characterized by Z2 topological numbers, taking
two values, 0 and 1 (which are also called “even” and “odd”). When the Z2

topological number is odd, it is a topological insulator and if it is even it is an
ordinary insulator. The edge/surface states of topological insulators are char-
acterized by the topological numbers calculated from the bulk wavefunctions
[31, 74].

The two necessary conditions for topological insulators are (i) time-
reversal symmetry, and (ii) strong spin–orbit coupling [7, 43]. Condition (i),
time-reversal symmetry, is equivalent to nonmagnetic materials without an ex-
ternal magnetic field. As for (ii), systems without spin–orbit coupling are not
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topological insulators but ordinary insulators. Nevertheless, not all materials
with strong spin–orbit coupling are topological insulators; one has to calculate
the topological numbers in order to distinguish between topological and ordinary
insulators.

17.1.2 Topology and topological insulators

Here we intuitively explain what “topology” in topological insulators means,
without going into rigorous mathematical definitions. One of the well-known
examples for “topology” is as follows. If one is allowed to do only a continuous
deformation of a three-dimensional object, without detaching or attaching any
parts, one can deform a doughnut into a coffee cup, but not to a ball. With these
kinds of continuous deformation within some restrictions (i.e. without detaching
or attaching), we can classify objects; the theory for this classification is called
topology. Topology is a way to classify objects by identifying those which are
connected by continuous change, within some restriction. In the above example,
the classification is done in terms of the number g of holes (genus) in the three-
dimensional objects. The doughnut and the coffee cup have g = 1, and the ball
has g = 0. Two objects with the same g can be continuously deformed into
each other, whereas those with different g cannot. In other words, g is invariant
under continuous deformation, and is called a topological number or topological
invariant.

The meaning of topology in topological insulators is similar. The idea is to
classify nonmagnetic insulators by identifying those which can be continuously
deformed into each other. The restriction is that the time-reversal symmetry
is retained throughout the continuous change, and that the band gap does not
close. The conclusion is that in two dimensions the classification is done by
the Z2 topological number ν, taking two values, ν = 0 and ν = 1 [20, 43].
Here Z2 is a set of integers modulo 2, i.e. the set

{
0, 1
}

, and 0 and 1 can be
called “even” and “odd.” ν = 0, it is an ordinary insulator, and if ν = 1, it
is a topological insulator. Now several questions arise: (i) how can we classify
systems as topological insulators or ordinary insulators, and (ii) what properties
do these two insulators have?

Question (i), namely the calculation of the Z2 topological numbers, has been
discussed in general in [20, 43], and we briefly explain the results in the follow-
ing. We define here time-reversal invariant momenta (TRIM) as the momenta
that satisfy k ≡ −k (modG), where G is a reciprocal lattice vector. In the
two-dimensional Brillouin zone there are four TRIM: k = 1

2 (n1b1 + n2b2)
(n1, n2 = 0, 1), where b1 and b2 are primitive vectors of the reciprocal lat-
tice (see Fig. 17.4a). Let k = Γi (i = 1, 2, 3, 4) denote the four TRIM. When
the system is inversion-symmetric, the formula for the topological number is
very simple. In this case the Hamiltonian satisfies [H,P ] = 0, where P is the
inversion operation. If we convert this into Bloch form with Hamiltonian H(k),
we have PH(k)P−1 = H(−k). At the TRIM Γi, Γi ≡ −Γi (modG) yields
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Fig. 17.4. (a) Four TRIM for 2D systems. (b) Eight TRIM for 3D systems. (c)
Schematic of the bulk band structure of the system with time- and space-
inversion symmetry.

PH(Γi) = H(Γi)P . Therefore, the eigenstate at TRIM Ψ(Γi) is an eigenstate
of P , and its eigenvalue (parity eigenvalue) can be either ξ = 1 (symmetric) or
ξ = −1 (antisymmetric), because P 2 = 1. For the respective TRIM k = Γi,
we consider the product of parity eigenvalues of Kramers pairs below the Fermi
energy:

δi =
N∏

m=1

ξ2m(Γi), (17.1)

where ξm(Γi) denotes the parity eigenvalue of the mth eigenstate from the lowest
energy states at Γi. The (2m− 1)th and (2m)th states are Kramers degenerate
by time- and space-inversion (Fig. 17.4c), and they share the same parity eigen-
values: ξ2m−1(Γi) = ξ2m(Γi). In Eq. (17.1) we used only the (2m)th eigenstates
in order to avoid the double counting between the (2m−1)th and (2m)th states.

For 2D topological insulators the Z2 topolological number ν is expressed in
terms of these indices δi (i = 1, 2, 3, 4) as

(−1)ν =
4∏

i=1

δi. (17.2)

For 3D topological insulators, there are eight TRIM (see Fig. 17.4b), out of
which four Z2 topological numbers are defined. They are written in the form
ν0; (ν1ν2ν3), where the νk’s are either 0 or 1, defined as a product of some of the
indices δi:

(−1)ν0 =
8∏

i=1

δi, (−1)νk =
∏

i=(n1n2n3),nk=1

δi (k = 1, 2, 3). (17.3)
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Hence there are 24 = 16 different phases. ν0 is the most important among the
four topological numbers, and we call the topological insulators with ν0 = 1
and those with ν0 = 0 strong topological insulators (STI) and weak topological
insulators (WTI), respectively. On the other hand, ν1, ν2, and ν3 depend on
the crystallographic axes, and will become ill defined when the crystallographic
translational symmetry is violated by (nonmagnetic) impurities, whereas ν0
remains well-defined even in the presence of nonmagnetic disorder.

17.1.3 Topological numbers

We discuss how the edge states of 2D topological insulators are different from
those of 2D ordinary insulators. Let us consider for example a semi-infinite
plane of a 2D system in order to discuss edge states. We assume here trans-
lational symmetry along the boundary of the semi-infinite plane (edge), and the
Bloch wavenumber k along this direction is a good quantum number. The band
structure of the system with this geometry may have edge states. For ordin-
ary insulators, even if there are edge states, they are as shown in Fig. 17.5(a);
namely, the edge states come out of the conduction band (or valence band) and
are absorbed back into the same conduction (or valence) band. In the presence
of the spin–orbit coupling, these states are spin-split, as shown in Fig. 17.5(a).
This is called Rashba splitting in the case of surface states. Because of the time-
reversal symmetry, the states which are symmetric with respect to k = 0 are
Kramers degenerate, and have opposite spins.

On the other hand, the band structure of the semi-infinite plane of the 2D
topological insulator is schematically shown in Fig. 17.5(b). We note that the
dispersion of the edge states traverses across the bulk gap, and connects the bulk
valence and conduction bands. We can see that Figs. 17.5(a) and (b) cannot be
transformed into each other by continuous deformation of the band structure,
without closing the bulk gap. This holds as long as the time-reversal symmetry
is preserved, which guarantees Kramers’ theorem.

Figures 17.5 (a) and (b) are schematic diagrams showing only the simplest
cases, and we can consider various types of edge states other than these. We

conduction band

valence band

[edge state]

E

k

(a)

E

k

(b)

0 0

conduction band

[edge state]

valence band

Fig. 17.5. Schematic
diagram of edge states for
(a) a 2D ordinary
insulator and (b) a
topological insulator.
Solid and broken lines
denote the edge states
with opposite spin
directions, because of the
time-reversal symmetry.



Two-dimensional (2D) topological insulators 305

can then ask ourselves how we can distinguish between ordinary insulators and
topological insulators. This can be understood by introducing the topological
number. We explain here with some examples how the “Z2-ness” appears here in
an intuitive way. For detailed explanations, readers are referred to Refs. [20, 21].
When the system is time-reversal symmetric, Kramers’ theorem says that every
state at k = 0 and k = π is doubly degenerate. Therefore, in Fig. 17.5(b), the
degeneracy (band crossing) in edge states at k = 0 will not be lifted unless
the time-reversal symmetry is broken. On the other hand, when there are two
Kramers pairs of edge states, the crossings at k �= 0 are not protected, and
they will open a gap. When we draw this kind of band structure for several
cases with various numbers of Kramers pairs of edge states, we can see that
when the number of Kramers pairs is odd, the edge states are robust against
time-reversal-invariant perturbations.

These arguments are based on the cases with wavenumber k being a good
quantum number. The edge states remain gapless even when we include time-
reversal-invariant perturbations which break translational symmetries, such as
nonmagnetic impurities. Even in such cases Z2 topological numbers remain well
defined and such classifications are meaningful [43, 119, 121]. We note that simi-
lar arguments hold for surface states of 3D topological insulators when we replace
k by k‖, the wavenumber along the surface. A detailed classification will be given
in Section 17.3.

17.2 Two-dimensional (2D) topological insulators
17.2.1 Edge states of 2D topological insulators

In two-dimensional topological insulators, the Z2 topological number and the
edge states are related in the following way. When the Z2 topological number
is ν = 1, the number of Kramers pairs of edge states at the Fermi energy is
odd, whereas it is even, when ν = 0 [20]. The reason why we cannot know the
exact number but only know whether it is even or odd is that (time-reversal-
invariant) perturbations can change the number of Kramers pairs by multiples of
2. Therefore the even-ness or odd-ness is unchanged under perturbations, while
the number itself can change. In other words, whether there are even or odd num-
bers of Kramers pairs of edge states is a topological property. This topological
number ν never changes under continuous change of some parameters, unless
the bulk gap closes. When the bulk gap closes at some point, the topological
number may change. The closing event of the bulk gap by changing parameters
can be classified, and one can see whether the topological number changes or
not [62, 65].

These edge states are not degenerate, and have fixed spin directions, which

usually depend on the wavenumber k. Because the velocity v =
1
�

∂E

∂k
is the

slope of the dispersion, the two edge states in Fig. 17.5(b) are propagating in
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[general backscattering allowed]

Edge of 2D TI (b)(a) Surface of 3D TI

[no backscattering]

[no perfect backscattering]

nonmagnectic

impurity

Fig. 17.6. Comparison of transport properties for (a) edge states of a 2D
topological insulator and (b) surface states of a 3D topological insulator.

opposite directions, and they have opposite spins because of the time-reversal
symmetry. As a result, these edge states carry pure spin current [64, 100].

As we mentioned earlier, these edge states are not backscattered by non-
magnetic impurities (see Fig. 17.6a). This can be explained intuitively in the
following way. Scattering by nonmagnetic impurities is elastic, and the electron
energy is invariant at the scattering. From Fig. 17.5(b), it follows that the two
edge states with equal energy have opposite spins and thus the scattering between
them is necessarily accompanied by spin flip. Therefore, nonmagnetic impur-
ities cannot cause backscattering. A more general proof is in Refs. [119, 121].
Hence the edge-state transport becomes perfectly conducting. In a HgTe quan-
tum well this perfect conduction of edge states has been experimentally observed
[44, 45, 83].

Because the gapless edge states are protected by time-reversal symmetry, if
one attaches a ferromagnet on the edge, the edge states become gapped and
the system eventually becomes insulating when the Fermi energy is within the
gap. In addition, when two ferromagnets are attached on the edge with some
separation, some amount of charge is accumulated, and the amount of charge
determined by the direction of the magnetizations of two ferromagnets becomes
fractional, which can be less than the electronic charge [75].

Even if an interaction is introduced, a gap does not open in the helical edge
states unless the time-reversal symmetry is spontaneously broken [48, 119, 121].
The helical edge states show perfect conduction, whereas the transport properties
across junctions or constrictions will be affected by interactions [36, 101, 104,
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109]. As a related subject, interactions may help systems to become topological
insulators. In the presence of on-site interactions in the Hubbard model on a
honeycomb lattice, a topological Mott insulator phase is theoretically predicted,
which is due to a spontaneously generated spin–orbit coupling [79].

17.2.2 Experiments on edge states of 2D topological insulators

The CdTe/HgTe/CdTe quantum well was theoretically proposed to be a 2D
toplogical insulator [8]. Compared with the usual cubic semiconductors such as
GaAs and InSb, HgTe has an inverted band structure due to its strong spin–
orbit coupling. In the usual cubic semiconductors, the conduction band and
the valence band belong to Γ6 and Γ8 irreducible representations of the cubic
group, respectively. The strong spin–orbit coupling pushes down the energy of
the Γ6 band below the Γ8 band, and the resulting band structure has a zero
gap within the Γ8 band, with the degeneracy residing at k = 0. This is called
a zero-gap semiconductor. On the other hand, CdTe belongs to the class of
usual cubic semiconductors. When HgTe is incorporated into a quantum well by
sandwiching it between CdTe, the subband structure arises. When the thickness
d of the HgTe layer is thinner than dc = 60 Å, the subband structure is like that
of CdTe; when d is thicker than dc = 60 Å, the subband structure is like that of
HgTe. It then follows that the quantum well with d < dc is an ordinary insulator
and that with d > dc a 2D toplogical insulator. These can be distinguished
by transport measurements. In the ordinary 2D insulator phase, there are no
conducting channels when the Fermi energy is in the band gap and the charge
conductance is zero. On the other hand, in a 2D topological insulator, there are
two channels on the two sides of the system, and the system shows the two-
channel conductance G = 2e2/h. These have been confirmed in experiments
[44, 45].

When we apply a magnetic field and break time-reversal symmetry, charge
conductance has been observed to be rapidly suppressed [44, 45]. This is consist-
ent with the theoretical proposal. These kinds of edge channels also lead to novel
behavior of nonlocal transport properties. For example, multi-terminal conduct-
ance becomes e2

h times a simple fraction determined from the geometry of the
terminals [83], which agrees with calculation by the Landauer–Büttiker formula.
These experiments are good evidence for the existence of gapless helical edge
states.

A similar theoretical proposal has been made for Type-II semiconductor quan-
tum wells in InAs/GaSb/AlSb as well [55]. There is also a theoretical proposal
for a bismuth ultrathin film [61], though it awaits experimental observation.
In the bismuth ultrathin film the edge states consist of three Kramers pairs,

and two-terminal conductance is predicted to be three times G =
2e2

h
[115].

Such perfectly conducting channels affect not only charge transport but also
thermoelectric transport such as the Seebeck coefficient [103].
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17.3 Three-dimensional (3D) topological insulators
17.3.1 Surface states of three-dimensional topological insulators

In three dimensions, the four Z2 topological numbers convey information on
the surface states for arbitrary directions of surfaces. The surface states obey
the following rule [26, 60, 85]. In order to know the surface states of a certain
crystallographic surface, we first have to project the TRIM indices δi onto this
surface. In this process, the TRIM in the original 3D crystal are mapped to the
TRIM of the surface Brillouin zone. We then multiply the two indices δi for the
two TRIM, which are mapped onto the identical point on the surface TRIM,
and we associate each surface TRIM with the corresponding product (= ±1).
The resulting products (= ±1) give information on the surface Fermi surfaces in
the following way. We compare the products of the indices between two surface
TRIM: (i) if they have opposite signs, there are odd numbers of surface Fermi
surfaces intercepting between the two surface TRIM, and (ii) if they have the
same signs, then there are even numbers of surface Fermi surfaces between them
[26, 110]. Under a continuous change of parameters, these topological numbers
will not change unless the bulk gap closes and unless the translational symmetry
is not broken. When the bulk gap closes at some points in the Brillouin zone
as parameters are changed, some of the Z2 topological numbers can change [62,
63]. By classifying various cases of such gap closings, universal phase diagrams
between topological and ordinary insulators have been found [63].

17.3.2 Properties of surface states of 3D topological insulators

One of the typical forms of surface states of a topological insulator is the single
Dirac cone. As we will see later, in Bi2Se3 and Bi2Te3 the topological numbers are
1; (000), and the simplest possibility for the surface Fermi surface on the (111)
surface is a single Fermi surface encircling the Γ-point. This is the case realized
in these materials. The dispersion is linear in the wavenumber k‖, schematically
shown in Fig. 17.7(a). This is called a Dirac cone. The typical form of the surface
Hamiltonian is the Dirac type:

H‖ = λ(σ × k‖)z (17.4)

where σi are the Pauli matrices representing spins, k‖ is the wavevector along the
surface, and z is the axis normal to the surface. The eigenvalues are E = sλk‖
(s = ±1) with eigenstates given by

|ψs〉 =
1√
2

(
ise−iφ

1

)
, (17.5)

where eiφ = (kx + iky)/k‖. Thus the eigenstates have fixed directions of spins in
the direction sk/k × ẑ.



Three-dimensional (3D) topological insulators 309

E

kx
ky

K´ K

K´

K´

K K

Γ

(b)(a)

surface (e.g.:Bi2 Se3)

E

kx
ky

Fig. 17.7. Comparison between (a) the Dirac cone on the topological insulator
surface and (b) the Dirac cones in graphene. The thick arrows in (a) represent
the directions of spins.

The Dirac cones can be found in other systems such as graphene. As compared
with purely two-dimensional systems such as graphene, the surface Dirac cone
of the 3D topological insulator has a unique property, that the number of Dirac
cones in the Brillouin zone is odd. For example, on the (111) surface of Bi2Se3

there is a single Dirac cone at the Γ-point (see Fig. 17.7a). In contrast, in
graphene (Fig. 17.7b), the Dirac cones are located at points K and K′, and
they are spin-degenerate. Thus the total number of Dirac cones within the Bril-
louin zone is four. In fact the Nielsen–Ninomiya theorem says that the number
of Dirac cones in the two-dimensional system is always even. In this sense, the
odd number of Dirac cones is unique to the surface of the topological insulators.

This odd number of Dirac cones exactly corresponds to the case of Z2

topological number ν0 = 1. As in the 2D topological insulator, perturbations
preserving time-reversal symmetry do not open a gap in the Dirac cone. It has
been shown theoretically that the electrons in this single Dirac cone will not
localize even if we increase nonmagnetic disorder [5, 70, 71, 86]. This is attrib-
uted to the π Berry phase when the electron wavefunction goes around the Dirac
point. Another interesting effect of disorder is to induce a topological insulator
from an ordinary insulator by disorder [28, 29, 49, 98].

On the other hand, a gap opens at the Dirac point, if we include perturbations
which break time-reversal symmetry, for example by attaching a magnetic film
onto the surface. For example, in the lowest order in k‖, the Hamiltonian under
the Zeeman field is given by

H(k) = λ(σ × k‖)z −B · σ (17.6)

where B represents the Zeeman splitting due to the magnetic film. We can eas-
ily see that the eigenenergies are E(k) = ±√(λky −Bx)2 + (λkx +By)2 +B2

z .
Hence the gap between the valence and the conduction bands is 2|Bz|. Thus the
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Fig. 17.8. A ferromagnetic film wrapped
around a topological insulator is radially
magnetized. When the electric field is
applied in the axial direction, a
magnetization is induced as a result of the
Hall effect. This is the magnetoelectric
effect.

Zeeman coupling in the z-direction opens a gap, while that in the xy-direction
does not. This Dirac cone with a gap shows a Hall effect with half the quantum

Hall conductivity, σxy ∼ sgn(Bz)
1
2
e2

h
.

This half-quantum Hall effect gives rise to the magnetoelectric effect [17, 76,
77]. Following Ref. [76], we consider a ferromagnetic film wrapping around the
cylindrical 3D topological insulator, with the magnetization pointing radially
outward (see Fig. 17.8). Then the surface states on the surface facing the fer-

romagnet will open a gap, showing the half-quantum Hall effect σxy =
1
2
e2

h
.

Suppose we apply an electric field along the cylindrical axis of the topological
insulator. It then induces a charge current around the cylinder with the current
density j = σxyE, and it will eventually induce a magnetic field H = j = σxyE

= ±1
2
e2

h
E. Thus the whole system gives rise to the magnetoelectric effect with

coefficient ±1
2
e2

h
(= αε0c where is the fine structure constant, c is the speed of

light, and ε0 is the vacuum permittivity).
As a similar effect to this magnetoelectric effect, if one attaches a ferromag-

netic film on the surface of the topological insulator, an external charge close to
the surface will induce a magnetic field [17, 77]. In analogy to a mirror charge
induced by an external charge close to the surface of a dielectric, this case
corresponds to a mirror magnetic monopole. This effect awaits experimental
verification.
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There are other types of topological phases, such as topological superconduct-
ors. These topological phases are realizable only in systems with bulk gaps. The
quantum Hall systems and topological insulators are among these topological
phases. In addition, for example, the A phase in superfluid 3He and p + ip
type superconductors belongs to these topological phases. These systems have
a bulk gap, and they necessarily have boundary states characterized by topo-
logical numbers. Classification of such topological phases is possible, based on
the symmetries of the system [95, 96]. By these methods, the topological surface
states can be understood in a systematic way.

In some 3D topological insulators, dislocations in the crystal are accompanied
with helical gapless states in some cases [80]. When the Burgers vector B for
the dislocation satisfies the condition B · Mν = π (mod 2π), where Mν =
1
2 (ν1b1 + ν2b2 + ν3b3), there necessarily appear helical gapless states along
the dislocation. Hence, whether helical states appear on the dislocation or not
depends only on the “weak” indices ν1, ν2, and ν3, but not on ν0. Among the
strong topological insulators, Bi2Se3 and Bi2Te3 have Mν = 0, and dislocations
do not accompany helical states. On the other hand, Bi1−xSbx (0.07 < x <
0.22) has Mν = (b1 + b2 + b3)/2 and some dislocations such as B = a1 are
accompanied by helical states. Other types of topological objects such as π-flux
(flux with half the flux quantum) threading through the topological insulator
are accompanied by bound states with spins and charges separated [73, 81].

17.3.3 Materials for 3D topological insulators
17.3.3.1 Experiments of 3D topological insulators We explain some materials
for 3D topological insulators. The first material which is experimentally observed
to be a 3D topological insulator is Bi1−xSbx (0.07 < x < 0.22) [37, 69]. The host
material bismuth (Bi) is a semimetal, having small electron and hole pockets, and
not an insulator. In order to create a topological insulator out of Bi, one should
make it insulating. There are two ways to do this. One is to make it very thin,
and it is proposed that it becomes a 2D topological insulator [61, 115], but this
awaits experimental verification. The other way is to dope with antimony (Sb).
The carrier pocket disappears by doping by some amount of Sb, and Bi1−xSbx

with 0.07 < x < 0.22 is expected to be a topological insulator [21].
In terms of the topological number, the host material Bi is trivial, and has the

topological number 0; (000). We note that although Bi is a semimetal, there is a
direct gap everywhere in the Brillouin zone, and Z2 topological numbers are well
defined (whereas they are not directly related to physical properties such as the
robustness of the surface states). As a function of doping x, at x = 0.04 there
occurs a band inversion at the L-points in the Brillouin zone, which involves
the change of the parities of the occupied bands, giving rise to a change of
topological number from 0; (000) to 1; (111). Then at x = 0.07 an indirect gap
opens and the system becomes a 3D topological insulator. The system remains
a 3D topological insulator up to x = 0.22 where the indirect gap closes again.
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In the topological insulator phase (0.07 < x < 0.22), the indices for the TRIM
are +1 for three L-points, and −1 otherwise. Because Bi and Bi1−xSbx cleaves
at the (111) surface, we consider the (111) surface Brillouin zone, where the
products of the indices turn out to be +1 for the Γ-point and −1 for the three
M-points. Thus we expect that there are odd numbers of surface Fermi surfaces
between the Γ- and M -points. In experiments the number of observed Fermi
surfaces between the Γ- and M -points is five [37] or three [69], which completely
agrees with the above calculation from topological numbers.

Experimental observation of the Fermi surface has been done by angle-
resolved photoemission spectroscopy (ARPES) [37] and spin-resolved ARPES
[38, 69]. The absence of backscattering has also been observed directly in ex-
periments. Scanning tunnel spectroscopy (STS) can be used to detect the local
density of states (LDOS) on the surface. When we take the Fourier transform
of the observed STS image, we can identify the electronic waves of the surface
scattered by disorder. This Fourier transform has a complicated interference pat-
tern, which reflects various scattering processes between the wavenumbers on the
Fermi surface. One can compare the Fourier transform of the STS image with
the Fermi surface, which has been known either experimentally or theoretically.
In Bi0.9Sb0.1, the Fourier transform of the STS image agree with the data from
the Fermi surface quite well, only when we consider the spin directions of the
states, and suppress the backscattering which involves spin flip. This means that
the states on the surface Fermi surface are indeed spin-filtered, i.e. having a fixed
direction of spins, and the backscattering is indeed suppressed [84].

Transport measurements have been done for Bi1−xSbx under a strong mag-
netic field [106, 107]. It is concluded that the magnetic oscillation is partially
due to the surface carriers. There are also signals from bulk carriers, which are
residual carriers in Bi1−xSbx due to inhomogeneity. These bulk carriers also con-
tribute to transport. On the other hand, when we make it into a thin film and
vary the film thickness, we can in principle separate the bulk and surface trans-
port as a function of the film thickness [32]. Nevertheless, to observe the surface
transport, we need a sample of very good quality, so that the bulk transport is
much suppressed. This kind of transport measurement is highly desired.

In Bi2Se3 and Bi2Te3 [39, 40, 120, 124], the TRIM on the surface Brillouin
zone on the (111) surface consist of one Γ-point and three M -points. Therefore,
the product of projected indices is equal to −1 at the Γ-point and +1 at the
other M -points (see Fig. 17.9). The surface states observed in experiments form a
single Fermi surface around the Γ-point, which is the simplest possibility from the
above consideration using the topological numbers. These surface states form a
single Dirac cone (Fig. 17.7a).

The linear dispersion of surface Dirac cones in Bi2Se3 has been observed by
ARPES [120]. The spin states have also been measured [40], and they have
fixed directions nearly perpendicular to the surface wavenumber k‖ described in
Fig. 17.7(a). As shown in Fig. 17.6(b), in this Dirac cone, perfect backscattering
by nonmagnetic impurities is prohibited because the state with k and that with
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Fig. 17.9. Calculation of surface Fermi surface for Bi2Se3, out of the 3D Z2
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−k have opposite spins, while partial backscattering is suppressed but not pro-
hibited. On the other hand, in Bi2Te3, the dispersion is linear only within close
vicinity of the Γ-point. For larger wavenumber k, on the other hand, the higher
order terms (k3) become larger, and the surface Fermi surface becomes no longer
a circle, but like a snowflake shape with six vertices [12]. This kind of deformation
of the Fermi surface is called warping [18]. These materials have a rather large
band gap (∼ 0.3eV for Bi2Se3). The surface states are topologically protected,
and only spin-conserving scattering is allowed, as observed by STS measurements
[125]. Under a strong magnetic field, the surface Dirac cones form Landau levels.
Similarly to the Dirac cones in graphene, the energy levels of the n-th Landau
levels are roughly proportional to

√
n, as is experimentally confirmed [14, 30].

As for transport magnetoresistance [11, 16, 106, 107] and cyclotron resonance
[4, 102], measurements have been done. Some of them may involve bulk carriers,
which complicates the theoretical analysis of the experimental data.

The relationship between 2D topological insulators and 3D topological insu-
lator is usually complicated. When a 3D topological insulator is made into thin
film, there occurs hybridization between the surface states of the top and the
bottom surface, and the surface states become gapped. In some cases there re-
main edge states along the periphery of the thin film, which evolve into helical
edge states in the thin limit. It typically occurs that as a function of film thick-
ness, the 2D Z2 topological number oscillates between 1 and 0 [52, 56, 57]. In
Bi2Se3 such oscillating behavior has been observed [87, 126].

The search for ordered states by doping into Bi2Se3 is another interesting
subject. Bi2Se3 doped with Cu becomes superconducting at low temperature
[34], and Bi2Se3 doped with Mn becomes a ferromagnet [13, 35]. These doped
systems are promising for making a junction with Bi2Se3 to open a gap in the
surface states of Bi2Se3.

The search for materials for topological insulators is interesting and promising,
because there might be a number of candidate materials. Recent experiments
have revealed that TlBiSe2 is also a 3D topological insulator. Its (111) surface
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has a Dirac cone, similar to Bi2Se3, with the bulk gap of 0.35 eV [46, 50, 93]. In
addition, some Heusler alloys such as LuPtSb are theoretically proposed to be
zero-gap semiconductors, similar to HgTe. If a gap is opened in these materials
by making a quantum well or applying pressure, 2D topological insulators are
expected to appear [10, 51].

17.3.3.2 Towards new materials for topological insulators In topological in-
sulators, the spin–orbit coupling should be large, and should exceed the gap
without spin–orbit coupling. In the first paper by Kane and Mele [43], graphene
is shown to be a 2D topological insulator. In graphene, the spin-orbit coupling
is very weak and is usually neglected, resulting in the Dirac cones at the K and
K′ points with a vanishing gap. When the spin–orbit coupling is included, a gap
opens at the K and K′ points, which is theoretically estimated to be 10 mK.
Although 10 mK is very tiny, it is still larger than zero, namely the size of the
gap of graphene without spin–orbit coupling. Therefore, a 2D topological insula-
tor is realized. In reality, however, because 10 mK is very small, it can be easily
masked by other extrinsic effects such as disorder.

As another example, the usual cubic semiconductors such as Si or GaAs are
ordinary (not topological) insulators. This is because the gap in these semicon-
ductors is primarily by covalent bonds, not by the spin–orbit coupling; therefore,
if we take a fictitious limit to reduce the spin–orbit coupling to zero in these ma-
terials, the gap remains open. The original gap (usually larger than 1 eV) is
larger than the spin–orbit coupling. On the other hand, when the spin–orbit
coupling is increased, it may exceed the original gap size; this may cause the
band gap to close and then open again. This corresponds to the band inversion
mentioned earlier, and causes a phase transition from ordinary to topological
insulators. This occurs when the HgTe well thickness is varied through d = dc.
In general this band inversions may occur simultaneously at more than one point
in the Brillouin zone. If the number of band inversions in the Brillouin zone is
odd, this generally corresponds to a phase transition, whereas if it is even, it is
not accompanied by a phase transition [62, 63].

Therefore, a necessary condition for a topological insulator is to choose ma-
terials with spin–orbit coupling larger than the original gap size, i.e. the gap
size where the spin–orbit coupling is neglected. This implies that for judiciously
chosen materials such that the original gap size is small, the spin–orbit coupling
is not necessarily very large, in order to be a topological insulator. On the other
hand, for experiments and potential applications, a larger band gap is better,
because robustness as a topological insulator is determined by the size of the
band gap. In this sense, a stronger spin–orbit coupling is important.

So far we have neglected interactions in topological insulators. Topological
insulators with electron correlations have been discussed [48, 119, 121]. There
are theoretical proposals for topological insulators spontaneously induced by
electron–electron interactions [79, 127], and their applications to Ir oxides
[72, 99].
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It is an interesting coincidence that there is a close overlap between topological
insulator materials and good thermoelectric materials. From this viewpoint,
thermoelectric transport has been calculated for edge states of 2D topological
insulators [103], surface states of 3D topological insulators [27], and helical states
on the dislocations of 3D topological insulators [111]. For the edge states of 2D
topological insulators [103] or the dislocation states of 3D topological insula-
tors [111], the electrons do not undergo elastic backscattering, which is good
for thermoelectric transport. Nevertheless, at finite temperatures, inelastic scat-
tering causes decoherence of these 1D helical states, and the otherwise good
thermoelectric transport will be reduced. It is therefore predicted that at lower
temperature, such helical 1D states become gradually dominant over transport
by bulk carriers, and the thermoelectric figure of merit increases.

17.3.4 3D topological insulators and Majorana fermions

Interface phenomena on the surface also feature topological insulators. For ex-
ample, suppose one attaches two ferromagnets on the surface of a topological
insulator. When their magnetizations are along the z and −z directions, i.e. per-
pendicular to the surface, chiral edge channels are predicted to appear at the
interface between the two ferromagnets [67]. On the other hand, when a super-
conductor is attached onto the topological insulator, the surface state hosts
superconductivity as a result of the proximity effect. The cases of particular
interest are Majorana fermions at an interface. They are predicted to emerge
at the vortex core, at the interface of the superconductors, or at the interface
between the ferromagnet and superconductor [22, 88] on the surface of topo-
logical insulator (see Fig. 17.10). Majorana fermions are characterized by their
self-Hermitian nature: the second-quantized field operator γ satisfies γ = γ†. To
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Fig. 17.10. Chiral modes generated at the interface on the surface of a topo-
logical insulator.



316 Quantum spin Hall effect and topological insulators

satisfy this equality, particle–hole symmetry and the absence of the spin degree
of freedom are required [117]. As mentioned, a topological insulator has a single
Fermi surface near the Dirac point. In contrast, in conventional superconduct-
ors, there are two Fermi surfaces corresponding to the two directions of spins
when time-reversal symmetry is respected. There are then two possibilities to
form Cooper pairs in conventional superconductors: pairing between an electron
with momentum k and spin ↑ and that with momentum −k and spin ↓, and
also pairing between an electron with momentum k and spin ↓ and that with
opposite momentum and spin. On the other hand, on the surface of a topo-
logical insulator, there is only a single choice of pairing on the Fermi surface,
since momentum and spin are related to each other. This reduction of the de-
grees of freedom—down to half—makes it possible to create Majorana fermions
with the help of superconductivity, since particle–hole symmetry is respected at
zero energy in superconductors. These Majorana excitations obey non-abelian
statistics, which has potential applications to fault-tolerant topological quantum
computation and hence has received great attention [3, 66]. Majorana fermions
are also predicted to appear in other superconducting systems, such as edge
or vortex cores in chiral p-wave superconductors [15, 41], fractional quantum
Hall systems [82], s-wave [92] and p-wave [58, 112] superfluids, films of a semi-
conductor with s-wave superconductivity and Zeeman splitting induced by the
proximity effect [2, 94], nodal superconductors with spin–orbit interactions [91],
and superconductors with pointlike topological defects [108].

When Majorana fermions are present, how are they reflected in physical quan-
tities? In fact, some interesting behavior of physical quantities has been predicted
in superconducting junctions formed on the surface of a topological insulator,
regarding, for instance, crossed Andreev reflection [68], tunneling conductance
[47, 59, 105], and the Josephson effect [23, 105]. Majorana bound states facili-
tate charge transport and hence lead to a zero-bias conductance peak of the
tunneling conductance in ferromagnet/superconductor junctions on the surface
of a topological insulator [105], similar to chiral p-wave superconductor junctions
[33, 122]. An interferometer composed of a ferromagnet and a superconductor
on the topological insulator enables us to break one complex fermion into two
Majorana fermions and then to combine them again into a complex fermion;
this process can be verified as a change in conductance [1, 24]. In addition, in
various types of junctions, theoretical proposals have been given to observe the
behavior of the Majorana fermions [19, 23, 123], and a junction with non-s-wave
superconductors [24].

In addition to s-wave superconductivity treated in the above work, uncon-
ventional superconductivity on the surface of a topological insulator has been
investigated [25, 53, 54, 89]. It has recently been shown [53, 54] how the interplay
between unconventional superconductivity and ferromagnetism on the surface of
a topological insulator gives rise to a number of effects with no counterpart in
conventional metallic systems. In particular, zero-energy states on the surface
of a dxy-wave superconductor are demonstrated to be Majorana fermions, in
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contrast to the topologically trivial high-Tc cuprates. The dispersion of these
states is highly sensitive to the orientation of the applied magnetic field [53, 54].
Besides topological insulators, the topological structure of superconductors also
provides us with intriguing topics [6, 77, 90, 97, 113, 114, 116].

At present, the experimental study of topological insulators is in the early
stages. However, in view of the recent experimental realization of superconduct-
ivity in the topological insulator Bi2Se3 by copper intercalation [34, 118] and also
the magnetism of Bi2Se3 by magnetic dopants [13, 35], exciting experimental
results on Majorana fermions are expected in the near future.

17.4 Summary

The field of topological insulators has been in rapid progress for several years,
thanks to the interaction between theory and experiment. It has been a surprise
that these kinds of topological phases are possible in ambient situations among
known materials such as Bi2Te3. The well-known example of topological phases
is the quantum Hall systems. As compared with quantum Hall states, the topo-
logical insulators are found not in extreme situations such as low temperature
or high pressure. The number of candidate materials for topological insulators
might be large, and the search for new materials will be a promising and import-
ant subject in the coming years. It is desired to search for topological insulators
with a larger gap, those in which the carrier control is easier, or those which can
become magnetic or superconducting by doping.

The edge states in 2D topological insulators or the surface states in 3D
topological insulators are unique states, which cannot be easily realized in
other systems. These states offer unique stages for novel phenomena, and are
interesting for theory and experiment.
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18 Spin Seebeck effect

K. Uchida, R. Ramos, and E. Saitoh

18.1 Introduction

The emerging field called “spin caloritronics” [1, 2] focuses on the study of the
interplay among spin, charge, and heat currents. This area bridges two active
research fields of spintronics and thermoelectrics which have the potential to
reduce the energy consumption of modern electronic devices. Thermoelectric
phenomena, such as the Seebeck and Peltier effects, emerge from the interaction
between heat and charge currents, manifesting themselves as coupled transports
of heat and electricity in electrically conductive materials (Fig. 18.1(a)) [3, 4].
Meanwhile, spintronics deals with the fundamental role of electron spins in solid
state physics and its potential applications [5–7]. The pioneering work of Johnson
and Silsbee in 1987 [8] started the field of spin caloritronics; they performed a
theoretical study to include spin transport in the description of thermoelectric
effects at the interface of a junction comprising ferromagnetic and normal metals.
Despite this initial effort, activity in the spin caloritronics field remained low for
many years with only few experimental studies in metallic magnetic multilayers
[9, 10], mainly related to the study of giant magnetoresistive effects. Recently,
the field has gained renewed interest after the discovery of a spin counterpart of
the Seebeck effect [11]. The “spin Seebeck effect” (SSE) refers to the generation
of a spin current as a result of a heat current in a magnetic material (Fig.
18.1(b)). Since the SSE appears not only in ferromagnetic conductors but also in
magnetic (mostly, ferrimagnetic) insulators [12, 13], it enables “insulator-based
thermoelectric conversion” [14–16], which was impossible if only conventional
thermoelectric technologies were used.

A basic structure for measuring the SSE consists of a ferromagnet
(F)|paramagnetic metal (PM) junction system. When a temperature gradient is
applied to F, a spin current is thermally injected into PM through the interfacial
spin-exchange interaction, i.e., spin-mixing conductance [17], at the F|PM inter-
face (Fig. 18.1(b)). The injected spin current is then converted into a measurable
electric voltage (SSE voltage) by means of the inverse spin Hall effect (ISHE) as
a result of the spin-orbit interaction of PM [18–22] (Fig. 18.1(c)). The electric
field induced by the ISHE, EISHE, in PM can be expressed according to the
following relation:

K. Uchida, R. Ramos, and E. Saitoh, ‘Spin Seebeck effect’, in Spin Current. Second Edition.

Edited by S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura. Oxford University Press (2017).

c© Oxford University Press.

DOI 10.1093/oso/9780198787075.003.0018



Introduction 323

(a) Seebeck effect
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Fig. 18.1. (a) A schematic illustration of the conventional Seebeck effect. When
a temperature gradient ∇T is applied to a conductor, an electric field E
(electric voltage V ) is generated along the ∇T direction. (b) A schematic
illustration of the spin Seebeck effect (SSE). When ∇T is applied to a ferro-
magnet, a spin voltage is generated via magnetization (M) dynamics, which
pumps a spin current Js with the spin polarization σ into an attached para-
magnetic metal. In the paramagnetic metal, this spin current is converted
into an electric field EISHE due to the inverse spin Hall effect (ISHE). (c) A
schematic illustration of the ISHE.

EISHE =
θSHρ

A

(
2e
�

)
Js × σ, (18.1)

where θSH, ρ, and A are the spin Hall angle of PM, electric resistivity of PM,
and contact area between F and PM, respectively. Js is the spatial direction of
the spin current, perpendicular to the F|PM interface and parallel to ∇T , and
σ is the spin-polarization vector, parallel to the magnetization M of F.

After the first measurement of the SSE in a Ni81Fe19 film [11], the experi-
ments using other metallic systems were subsequently reported [23, 24]. Then,
Jaworski et al. also reported the observation of the SSE at low temperatures in
the ferromagnetic semiconductor GaMnAs [25, 26]. The SSE was initially dis-
cussed in terms of conduction-electrons’ spin transport, i.e., the spin dependence
of the Seebeck coefficient [27]. However, the observation of the SSE in ferrimag-
netic insulators, such as LaY2Fe5O12 (La:YIG) [12], Y3Fe5O12 (YIG) [13], and
other garnet ferrites [28], demonstrated that the effect is still present even in the
absence of charge carriers. This result pointed to the SSE originating from the
thermally driven magnetization dynamics of the ferromagnet and not from the
conduction-electron-driven spin currents. The effect has been also subsequently
reported in ferrimagnetic spinel ferrites [29–34] and other oxides [35–40], thus
establishing the SSE as a general non-equilibrium transport phenomenon in mag-
netic materials. Furthermore, the Onsager reciprocal of the SSE, the spin Peltier
effect, has also been experimentally confirmed in YIG [41, 42].
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The observation of the SSE in magnetic insulators opens the possibility
of using electrically insulating materials for thermoelectric conversion, bridg-
ing spintronics and thermoelectric conversion technology. The thermoelectric
generation based on the SSE has potential advantages over conventional thermo-
electric devices, such as the possibility of lower energy dissipation using
insulating ferromagnets. However, the present values of the SSE voltage are
still far from realistic applications and various efforts are devoted not only to
further understand the physics of the SSE but also to increase the magnitude of
the SSE voltage.

In this chapter, we mainly focus on the SSE from its initial measurements
to recent experimental developments. We start with introducing the basic phys-
ical mechanism of the SSE (Section 18.2). Then, in Section 18.3, we explain
the measurement configuration and basic characteristics of the SSE, followed
by showing the exclusive establishment of the SSE in Section 18.4. In Section
18.5, we present the magnetic-field-induced suppression of the SSE, which is
explained by the field dependence of the magnon dispersion in ferromagnetic
materials. In Section 18.6, we show the enhancement of the SSE in multilayer
systems; recent experiments demonstrate that the SSE is strongly enhanced in
the structure comprising alternately-stacked F|PM multilayer films. In Section
18.7, we briefly review recent experimental developments of the SSE in various
magnetic materials including compensated ferrimagnets, antiferromagnets, and
paramagnets. Finally, other spin caloritronic phenomena, such as spin-dependent
Seebeck and Peltier effects, are briefly discussed in Section 18.8. The last Section
18.9 is devoted to the conclusions and prospects.

18.2 Basic mechanism of spin Seebeck effect

The SSE was initially formulated in terms of spin-polarized conduction-electron
currents [11, 27]. However, the observation of the SSE in magnetic insulators
upset this conventional interpretation and pointed to the thermal excitation
of localized spins in the ferromagnet, i.e., magnons [43], as the possible origin
of the observed effect. The theoretical model for the magnon-driven SSE was
first proposed by Xiao et al. [44] using a scattering theory, and subsequently
developed by Adachi et al. [45, 46] using a linear response theory. The SSE has
also been formulated using other approaches, which explain different aspects of
the magnon-driven SSE [47–58]. A mechanism for the phonon-mediated SSE has
also been described [59, 60].

In the pioneer work by Xiao et al., the SSE is explained as a result of the
thermal non-equilibrium between the magnon and electron systems in F and
PM, respectively. The thermal excitation of the magnon and electron systems at
the F|PM interface can be described in terms of an effective magnon temperature
in F (TF) and an effective electron temperature in the attached PM (TP). The
fluctuation-dissipation theorem connects these effective temperatures to thermal
fluctuations of the magnetization in F and thermal noise in PM, which are
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described in terms of the random fields h and l, respectively. The random field
in F satisfies the white noise position-time correlator of the form:

〈
hμ

i (t)hν
j (t′)

〉
=

2kBTFα

γMs
δijδμνδ(t− t′), (18.2)

where kB is the Boltzmann constant, γ is the gyromagnetic ratio, Ms is the
saturation magnetization, and α is the Gilbert damping constant. The thermal
noise field in F, h, injects a spin current from F to PM proportional to TF, which
is known as the spin pumping component Jpump

s [17]. A similar expression of the
aforementioned white noise correlator relates the noise field, l, to the effective
electron temperature in PM; this field generates a spin current flowing back from
PM to F proportional to TP, which is known as the backflow component Jback

s

[61]. The total spin current (Js) at the F|PM interface is given by the difference
between the spin-pumping and backflow components, which is proportional to
the difference between the effective magnon and electron temperatures:

Js = Jpump
s − Jback

s ∝ TF − TP. (18.3)

Equation (18.3) means that, in the thermal equilibrium condition (TF = TP), no
spin current is generated. If an external temperature gradient is applied to F,
an effective magnon-electron temperature difference is induced [62], and a spin
current is generated across the F|PM interface.

More recently, Rezende et al. [63, 64] and Zhang et al. [65, 66] have inde-
pendently formulated the SSE in terms of a bulk magnon spin current thermally
induced in F, not at the F|PM interface. Here, we will briefly introduce their
model. When a temperature gradient is applied to F, a number of magnons
are excited out of thermal equilibrium: δnk(r) = nk(r) − n0

k, where n0
k is the

number of magnons in thermal equilibrium, described by the Bose-Einstein dis-
tribution: n0

k = 1/[exp(εk/kBT )− 1] with εk = �ωk being the k-magnon energy.
The density of magnons in excess of equilibrium defines the magnon accumula-
tion: δnm(r) = 1/(2π)3

∫
d3k[nk(r) − n0

k] [65, 66]. Then, the bulk magnon spin
current propagating with the velocity vk can be defined as [63–67]

Jm =
�

(2π)3

∫
d3kvk[nk(r)− n0

k]. (18.4)

In order to estimate the magnon spin current in the above equation, one needs
to know the magnon distribution under an applied temperature gradient. This
can be calculated using the Boltzmann transport equation. In the relaxation
approximation and in the absence of external forces, one obtains the following
solution in the steady state

nk(r)− n0
k = −τkvk · ∇nk(r), (18.5)
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where τk is the relaxation time of k-magnon. Considering the expression of the
magnons excited out-of-thermal equilibrium (δnk(r) = nk(r) − n0

k), the above
solution to the Boltzmann equation can be written as

nk(r)− n0
k = −τkvk ·

[
∇δnk(r) +

∂n0
k

∂T
∇T
]
. (18.6)

By substitution of Eq. (18.6) into Eq. (18.4), one obtains the magnon spin current
as the sum of two terms: Jm = J∇T

m + Jδn
m . The first term is due to the flow of

magnons driven by the applied temperature gradient

J∇T
m = − �

(2π)3

∫
d3kτk

∂n0
k

∂T
vk[vk · ∇T ], (18.7)

which is proportional to the temperature gradient: J∇T
m = −C∇T . The second

term is due to the spatial variation of the magnon accumulation

Jδn
m = − �

(2π)3

∫
d3kτkvk[vk · ∇δnk(r)]. (18.8)

This equation can be expressed as a magnon diffusion current (see [64] for a
detailed derivation). For magnons propagating in the z direction,

Jm(z) = −�Dm
∂

∂z
δnm(z), (18.9)

where Dm is the magnon diffusion coefficient. The relaxation of the magnon
accumulation into the lattice can be described by a magnon-phonon relaxation
time τmp. Therefore, by considering the conservation of angular momentum, one
has ∂Jm

∂z = −�
δnm(z)

τmp
. Using this relation in Eq. (18.9), a diffusion equation for

the magnon accumulation is obtained

∂2δnm(z)
∂z2

=
δnm(z)

Λ2
, (18.10)

where Λ =
√
Dmτmp is the magnon diffusion length. Then, the spatial variation

of the magnon accumulation has the solution δnm(z) = Aez/Λ + Be−z/Λ. By
inserting this expression in Eq. (18.9), we can see that the magnon spin current
in F is given by

Jm(z) = −C∇zT − �
Dm

Λ
Aez/Λ + �

Dm

Λ
Be−z/Λ. (18.11)

The coefficients A and B can be obtained by considering the boundary con-
ditions in the F|PM structure, which are given by the conservation of angular
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momentum flow, implying the continuity of the spin current at the F|PM inter-
face [63–67] and vanishing the spin current at the top and bottom surfaces of
the F|PM structure. By considering these boundary conditions and the fact that
the physics of the magnon thermal properties are mostly described by the dis-
persion relation in the acoustic branch [68], the magnon spin current density at
the F|PM interface can be described as [63, 64]

Jm(0) = −F B1BS√
B0B2

ρg↑↓eff∇T, (18.12)

where F is a prefactor dependent on material parameters, ρ = cosh(tF/Λ)−1
sinh(tF/Λ) de-

scribes the effect of the F layer thickness (tF), g↑↓eff is the real part of effective spin
mixing conductance that accounts for the spin-pumping and backflow compo-
nents, and Bi(q, ηq) (i = 0, 1, 2, S) are the integrals dependent on the normalized
wave number q = k/km, and on the magnon lifetime through the relaxation rate
ηq = τ0/τk with τ0 being the magnon lifetime near k ≈ 0. Equation (18.12)
describes the essential features of the SSE in the bulk of F, and can be used to
explain a variety of recent experimental results of the SSE, such as the depend-
ence of the SSE on the F thickness [69], temperature dependence [63, 70], SSE
suppression at high magnetic fields [70–73], and SSE in magnetic multilayers [74].

18.3 Experimental configurations and fundamental properties

There are mainly two experimental geometries employed for the measurements
of the SSE, which are called the transverse and longitudinal SSE configurations.
The transverse SSE was originally employed in the observation of the SSE in
Ni81Fe19 films [11]. In this configuration, the directions of the injected spin cur-
rent and applied thermal gradient are perpendicular to each other. Figure 18.2
shows a schematic illustration of the transverse SSE geometry, consisting of a
F film with a PM wire attached near the end of the F surface, where the PM
wire (F film) has the long axis along the y (x) direction. The temperature gra-
dient and magnetic field are applied along the x direction. The temperature
gradient in the F film results in a spin current injection across the F|PM inter-
face, parallel to the z direction. The SSE is detected by means of the ISHE by
measuring the voltage in the PM wire along the y direction (see Eq. (18.1)).
The transverse measurement geometry can be used for the detection of the SSE
in all the types of magnetic systems: metals, semiconductors, and insulators.
However, this configuration requires careful thermal design of the sample and
measurement system. For instance, inappropriate choice of substrate can result
in out-of-plane thermal gradients (∇Tz) arising from thermal conductivity mis-
match between the substrate and the F|PM sample. As a result, spurious voltage
signals due to conventional thermoelectric effects, such as the anomalous [75–79]
and planar Nernst effects [80], contaminate the SSE signals. Furthermore, there
are still some unanswered questions about the transverse SSE, such as the length
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scale (in the mm range) over which the effect can be observed, much longer than
the spin diffusion length of ferromagnetic metals (in the nm range) [81]. There
are several experimental evidences that this unconventional length scale might
be related to phonon transport through the substrate; the transverse SSE sig-
nal was found to appear even when the F film is cut (suppressing any possible
spin transport) [25] and when only phonon transport through a single crystal
substrate is possible [82]. These experiments suggest that the microscopic mech-
anisms to explain the length dependence of the transverse SSE can possibly be
related to phonon transport [60] or magnon-phonon drag [59]. However, this is
still a matter of debate.

Because of the aforementioned complications with the transverse SSE, the lon-
gitudinal SSE is the configuration mainly employed for the investigation of the
SSE, owing to its simplicity and versatility. All the results shown in this chapter
were obtained in the longitudinal SSE. Figure 18.2(b) shows the experimental
geometry for the longitudinal SSE measurement: The applied temperature gradi-
ent is parallel to the injected spin current, perpendicular to the F|PM interface,
along the z direction, the magnetic field is directed along the x direction, and the
output voltage is detected along the y direction. Since this configuration is simi-
lar to that of the anomalous Nernst effect (ANE) in a ferromagnetic conductor,
the longitudinal SSE measurements have been performed using insulating ma-
terials to separate the SSE contribution from the ANE contribution. In fact,
the first observation of the longitudinal SSE was reported in 2010 by using an
YIG|Pt junction system. To measure the longitudinal SSE in conductive fer-
romagnets, one has to perform control experiments shown in Section 18.4 and
analysis of short-circuit effects [30], since the electric field in the PM layer is
shunted through the conductive F layer.

The YIG|Pt junction system is recognized as a model system for studying
SSE physics, since Pt and YIG enable efficient spin-charge conversion and pure

(b) Longitudinal configuration(a) Transverse configuration

∇T

V

∇T

V

M

ferromagnet

paramagnetic metal

x
y

z

x
y

z

H

M

H

Fig. 18.2. Schematic illustrations of the transverse (a) and longitudinal (b) con-
figurations for measuring the SSE. H denotes the external magnetic field
vector.
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detection of spin-current effects, respectively. Here, we show the fundamental
properties of the longitudinal SSE using the YIG|Pt system. The sample used
here consists of a single-crystalline YIG slab and a Pt film sputtered on the top
surface of the YIG. To generate ∇T along the z direction, the temperatures of
the heat baths attached to the top and bottom of the YIG-slab|Pt sample were
stabilized to 300 K and 300 K + ΔT , respectively. The external magnetic field
H (with the magnitude H) was applied to the YIG-slab|Pt sample in the x-y
plane at an angle θ to the y direction (see the inset to Fig. 18.3(a)).

Figure 18.3(a) shows the voltage V between the ends of the Pt film in the
YIG|Pt sample as a function of ΔT at H = 1.2 kOe. When H was applied along
the x direction (θ = 90◦), the magnitude of V was found to be proportional to
ΔT . As shown in Fig. 18.3(b), the sign of V for finite values of ΔT is reversed
in response to the sign reversal of H, indicating that the V signal in the Pt
film is affected by the magnetization direction of the YIG slab. The V signal
was observed to vary with θ in a sinusoidal pattern and vanish when θ = 0
and 180◦, a situation consistent with the symmetry of the ISHE induced by the
longitudinal SSE (see Fig. 18.3(c) and Eq. (18.1)).

18.4 Separation of spin Seebeck effect from anomalous Nernst effect

The experiments in Fig. 18.3 indicate that the observed voltage signals are attrib-
uted to the longitudinal SSE. However, to exclusively establish the longitudinal
SSE, the spin-current contribution has to be separated from that of the ANE.
Since Pt is a paramagnetic metal and YIG is a very good insulator, the ANE
does not seemingly exist in the YIG|Pt system. However, in this system, weak
ferromagnetism may be induced in the Pt layer in the vicinity of the YIG|Pt
interface due to a static magnetic proximity effect because Pt is near the Stoner
ferromagnetic instability. If the proximity-induced ferromagnetism induces the
ANE in the Pt layer, the ISHE voltage induced by the longitudinal SSE in the
YIG|Pt system may be contaminated by the proximity-induced ANE in the Pt
layer; this possibility was pointed out by Huang et al. in 2012 [83]. Here, the
electric field induced by the ANE is generated according to the relation [15]

EANE = SANEM×∇T, (18.13)

where SANE is the anomalous Nernst coefficient. This configuration is similar
to that of the longitudinal SSE since EANE is generated along the y direction
when ∇T || z and M || x (Fig. 18.4). Followed by the problem presentation by
Huang et al., the pure detection of the longitudinal SSE in YIG|Au systems was
reported [84, 85], where Au is believed to be free from the magnetic proximity
effect because its electronic structure is far from the Stoner instability.

The clear separation of the longitudinal SSE from the proximity-induced
ANE was reported in [71, 85] by comparing transverse thermoelectric voltages in
the YIG|Pt system in in-plane and perpendicularly magnetized configurations.
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Fig. 18.3. (a) The temperature-difference ΔT dependence of the voltage V in
the YIG-slab|Pt sample at the magnetic field H = 1.2 kOe and θ = 90◦,
measured when ∇T ||−z. θ denotes the angle between H and the y direction.
The lengths of the YIG slab (Pt film) along the x, y, and z directions are
Lx = 2 mm (2 mm), Ly = 6 mm (6 mm), and Lz = 1 mm (10 nm),
respectively. (b)H dependence of V in the YIG-slab|Pt sample at ΔT = 30 K
and θ = 90◦. (c) θ dependence of V in the YIG-slab|Pt sample at ΔT = 10 K
and H = 1.2 kOe.

In the in-plane (perpendicularly) magnetized configuration, H is applied parallel
(perpendicular) to the YIG|Pt interface and ∇T is applied perpendicular (paral-
lel) to the interface, as shown in Fig. 18.5(a) (18.5(b)). The in-plane magnetized
configuration is the same as the longitudinal SSE setup, where both the longitu-
dinal SSE and ANE can appear if they exist. In the perpendicularly magnetized
configuration, the ANE signal can appear since the temperature gradient,
magnetization, and inter-electrode direction are at right angles to one another
(Eq. (18.13)), while the SSE voltage should disappear because of the symmetry
of the ISHE (Eq. (18.1)), where σ || Js in the perpendicularly magnetized
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Fig. 18.4. Schematic illustrations of the longitudinal SSE in a ferrimagnetic
insulator (FI)|paramagnetic metal (PM) junction system (a), anomalous
Nernst effect (ANE) in a ferromagnetic conductor (b), and proximity-induced
ANE in the FI|PM junction system (c). EANE denotes the electric field
generated by the ANE.

configuration. Therefore, the quantitative comparison of the voltage between
these configurations enables the estimation of the ANE contamination in the
YIG|Pt system.

In Fig. 18.5, we show the H dependence of the voltage normalized by the
device length along the y direction and the temperature gradient in the YIG
slab, V /(Ly∇T ), in the YIG-slab|Pt sample in the in-plane and perpendicu-
larly magnetized configurations [15, 71]. The magnitude of V /(Ly∇T ) in the
in-plane magnetized configuration was found to be much greater than that
in the perpendicularly-magnetized configuration. Here, the magnitude of the
normal Nernst voltage, which is the H-linear component of V /(Ly∇T ), in
the YIG-slab|Pt sample in the perpendicularly magnetized configuration is
comparable to that in a plain Pt film and plate [71], confirming that the
in-plane temperature gradient is generated in the YIG-slab|Pt sample in the
perpendicularly-magnetized configuration. The voltage behavior in the YIG-
slab|Pt sample is completely different from that in a ferromagnetic metal film,
where the isotropic ANE voltage was observed in both the in-plane and perpen-
dicularly magnetized configurations [15, 71]. The above results clearly show that
the transverse thermoelectric voltages in the YIG|Pt system is dominated by the
ISHE voltage induced by the longitudinal SSE and that the proximity-ANE con-
tamination is negligibly small. In [71], the contribution of the proximity-induced
ANE voltage in the YIG|Pt system was estimated to be less than 0.1 % of the
SSE voltage.

18.5 Suppression of spin Seebeck effect by magnetic fields

The observation of the SSE in insulators revealed that the magnon excitation
plays a key role in this phenomenon. As mentioned in Section 18.2, a variety of
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the in-plane (perpendicularly) magnetized configuration, where ∇T and M
are along the z (x) and x (z) directions, respectively [15, 71].

theoretical models based on thermal magnon excitations have been developed.
However, microscopic understanding of the relation between the magnon exci-
tation and thermally generated spin current is yet to be fully established, and
more detailed studies are necessary. Since the magnon excitation is modulated
by a magnetic field due to the Zeeman gap gμBH with g and μB respectively
being the g-factor and Bohr magneton, the ISHE voltage induced by the SSE can
also be affected by the magnetic field. Therefore, systematic measurements of the
magnetic-field-induced response of the SSE become powerful tools for unraveling
the thermo-spin conversion mechanism based on the magnon excitation. In this
subsection, we will review the experimental results reported by Kikkawa et al.
[70, 71] in YIG|Pt junction systems and discuss its interpretation, although the
measurements of the SSE under high magnetic fields have been independently
reported by several groups [72, 73].
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Fig. 18.6. (a) H dependence of the SSE thermopower S in the YIG-slab|Pt
sample and the magnetization M of the YIG slab at T = 300 K and 5 K.
The sample consists of a 5-nm-thick Pt film sputtered on the top surface of a
single-crystalline YIG slab. (b) T dependence of the suppression of the SSE
voltage by magnetic fields δSSE in the YIG-slab|Pt sample (circles). A black
line shows the T dependence of δSSE calculated based on the conventional
SSE model. (c) YIG-thickness dependence of Smax at T = 300 K. (d) YIG-
thickness dependence of δSSE at T = 300 K. The details of the experiments
and analyses are shown in [70].

In Fig. 18.6(a), we show the transverse thermopower S ≡ (V /ΔT )(Lz/Ly)
in the YIG-slab|Pt sample in the longitudinal configuration as a function of H
at T = 300 K and 5 K, measured when H was swept between ±90 kOe. The
clear SSE voltage was observed in the YIG-slab|Pt sample at room and low
temperatures and its magnitude at each temperature gradually decreases with
increasing H after taking the maximum value, while the magnitude of M is
almost constant after the saturation.
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The magnetic-field-induced suppression of the SSE voltage in the YIG-slab|Pt
sample increases with decreasing the temperature. Figure 18.6(b) shows the T
dependence of the suppression of the SSE thermopower δSSE in the same YIG-
slab|Pt sample, where δSSE is defined as (Smax − S80kOe)/Smax with Smax and
S80kOe respectively being the S values at the maximum point and atH = 80 kOe.
The field-induced suppression in the YIG-slab|Pt sample was observed to be
almost constant above 30 K and strongly enhanced below 30 K. The SSE sup-
pression for T > 30 K cannot be explained by the conventional SSE models,
while that for T < 30 K seemingly agrees with numerical calculations based
on the thermal spin pumping mechanism (Fig. 18.6(b)) (see [70] for details).
The inconsistency between the observed suppression of the SSE voltage and
the conventional formulation at relatively high temperatures comes from the
fact that the small Zeeman energy is defeated by thermal fluctuations when
gμBH � kBT in the conventional models (note that the magnon gap energy
at H = 80 kOe corresponds to gμBH/kB = 10.7 K); to affect the magnon
excitation by magnetic fields, the magnon energy has to be comparable to or
less than the Zeeman energy. In contrast, the observed large suppression of the
SSE voltage in the YIG-slab|Pt sample indicates that the magnon excitation
relevant to the SSE is affected by magnetic fields even at around room tem-
perature. This result suggests that low-frequency magnons of which the energy
is comparable to the Zeeman energy provide a dominant contribution to the
SSE; the thermo-spin conversion efficiency of the SSE has magnon-frequency
dependence, which is not included in the conventional SSE theories. In [64]
and [70], the origin of this spectral non-uniform thermo-spin conversion is dis-
cussed in terms of the frequency dependence of a magnon diffusion length and
a magnon thermalization (energy relaxation) length, respectively. It is not-
able that lower frequency magnons exhibit the longer characteristic lengths in
general.

The above results and discussions indicate that, to maximize the SSE voltage,
the thickness of the magnetic insulator has to be greater than the characteris-
tic lengths of low-frequency magnons providing a strong contribution to the
SSE, since the contribution from the long-range magnons can be limited by
boundary conditions in thin magnetic insulators [70]. In fact, several research
groups demonstrated that, by using the YIG-slab|Pt and YIG-film|Pt systems,
the magnitude of the SSE thermopower monotonically decreases with decreasing
the thickness of YIG (Fig. 18.6(c)) [14, 33, 69, 70]. Significantly, the suppres-
sion of the SSE by high magnetic fields, δSSE, also monotonically decreases with
decreasing the YIG thickness (Fig. 18.6(d)). This behavior indicates that the
contribution of low-frequency magnons, which govern the SSE suppression in the
YIG-slab|Pt sample, fades away in the YIG-film|Pt samples when the YIG thick-
ness is less than their characteristic lengths and that only remaining contribution
from high-frequency magnons, which have energy much greater than the Zee-
man energy and provide a weak contribution to the SSE, appears in the thin
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YIG-film samples. As reviewed in this subsection, the measurements of the high-
magnetic-field response of the SSE are useful for investigating the mechanism of
the SSE associated with magnon excitation.

18.6 Enhancement of spin Seebeck effect in multilayers

The SSE offers a potential alternative to conventional thermoelectric conversion
by means of heat-induced spin transport. The fact that the SSE appears in elec-
trically insulating materials is attractive due to the possibility of thermoelectric
generation free from Joule heating in the thermal part of the devices. The SSE
also opens the opportunity to study various oxide materials, which were not con-
ventionally used for thermoelectric investigations. Moreover, since SSE devices
comprise a F|PM junction, it has the advantage that the thermally excited part
(F) and voltage generating parts (PM) can be optimized independently, which
is quite different from the case for conventional thermoelectric devices, where
both the heat and charge currents flow in the same part of the devices [16]. An-
other advantage lies in the SSE measurement geometry in which the heat and
charge current paths are perpendicular to each other. This device configuration
increases the versatility of SSE devices, which can be easily implemented by sim-
ple coating and spraying processes [14, 34]. However, the main roadblock for the
application of the SSE is the low magnitude of the thermopower. Therefore, vari-
ous efforts, such as the improvements of the spin Hall angle of PM [86–91] and
of the F|PM interface quality [92–94], are devoted to enhance the thermoelectric
conversion efficiency of the SSE.

A direct approach to enhance the performance of the spin-current-driven
thermoelectric generation is to improve the SSE itself: the heat-to-spin current
conversion efficiency. One of the promising methods is the use of multilayer sys-
tems comprising alternately-stacked F|PM films (Fig. 18.7(a)) [74, 95–97]. The
recent studies have revealed that the SSE voltage in [F|PM] × n systems sig-
nificantly and monotonically increases with increasing the number of the F|PM
bilayers n. For example, in [74], the magnitude of the SSE voltage in [Fe3O4|Pt]
× 6 systems (Fig. 18.7(b)) was observed to be enhanced by a factor of 4–6
compared with that in [Fe3O4|Pt] × 1 bilayer systems (Fig. 18.7(c)). Since this
SSE-voltage enhancement is accompanied by the reduction of the internal resist-
ance, the output power strongly increases with increasing n [97] (Fig. 18.7(d)),
a situation different from the case of the SSE-voltage enhancement by the spin
Hall thermopile [15, 98]. The observed n dependence of the SSE voltage in the
[F|PM] ×n multilayer systems is beyond conventional expectations based on the
situation that the systems are merely regarded as several independent F|PM
bilayers electrically connected in parallel, where the output voltage is not en-
hanced while the output power is enhanced owing to the reduction of the internal
resistance [74]. Importantly, this SSE-voltage enhancement cannot be explained
even when the spin-current injection into PM from both the top and bottom F
layers is taken into account, where the upper limit of the SSE enhancement is
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Fig. 18.7. (a) A schematic illustration of the multilayer SSE device. (b) A scan-
ning transmission electron microscope image of the cross section of the
[Fe3O4|Pt] × 6 system, where the thickness of the Fe3O4 (Pt) layers is 34
nm (17 nm) [74]. (c) H dependence of V /ΔT in the [Fe3O4|Pt] × n systems
for various values of the Fe3O4|Pt-bilayer number n at T = 300 K, where
the thickness of the Fe3O4 (Pt) layers is 34 nm (17 nm) [74]. The inset to
(c) shows the n dependence of S in the [Fe3O4|Pt] × n systems. (d) On-load
power V 2

L /RL induced by the SSE in the [Fe3O4|Pt] × n systems for vari-
ous values of n as a function of the load resistance RL at T = 300 K and
ΔT = 1 K [97]. VL denotes the on-load voltage. Here, the thickness of the
Fe3O4 (Pt) layers is 23 nm (7 nm).

twice of the voltage in the single F|PM bilayer; as shown in Fig. 18.7(c), the
observed enhancement is much greater than this conventional upper limit.

Our current interpretation of the mechanism of the SSE enhancement in the
F|PM multilayer systems is summarized as follows [74]. The essence of the SSE
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enhancement is the boundary conditions for spin currents flowing normal to the
F|PM interfaces, which affect the magnitude and spatial profile of the spin cur-
rents generated by the SSE. Here, the following two boundary conditions are
assumed: (i) Spin currents must disappear at the top and bottom surfaces of the
multilayer systems and (ii) spin currents in the PM and F layers are continuous
at the interfaces. Although spin currents in PM and F are respectively carried
by conduction electrons and magnons, the boundary condition (ii) allows us to
treat these spin currents in the same manner in the following phenomenological
discussions. Let us now compare a spin-current profile in a PM1|F1|PM2|F2 sys-
tem with that in a F1|PM2|F2 system without the top PM1 layer (Fig. 18.8(a)),
where PM1 and PM2 are good spin sinks. According to the boundary condition
(i), the spin current is eliminated at the top of the F1 layer in the F1|PM2|F2

system. However, this is not the case for the PM1|F1|PM2|F2 system; the spin
current remains a large value at the PM1|F1 interface, while it must disappear
at the top of the PM1 layer. As shown in Fig. 18.8(a), this difference results
in the enhancement of the spin currents near the PM1|F1 interface, a situation
consistent with the prediction in [49]. By applying the above discussion, one
can calculate out-of-plane spin-current profiles in the [F|PM] × n systems for
various values of n (Fig. 18.8(b)) and the n dependence of the spin-current
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Fig. 18.8. (a) Comparison of the spin-current js profiles induced by the SSE
between PM1|F1|PM2|F2 and F1|PM2|F2 systems. F (PM) denotes the ferro-
magnet (paramagnetic metal) layer. (b) js profiles calculated for the [F|PM]
× n multilayer systems for various values of the F|PM-bilayer number n. The
inset to (b) shows the n dependence of the spin-current magnitude averaged
over all the PM layers 〈js〉. The discussion on these calculation results is
detailed in [74].
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magnitude averaged over all the PM layers 〈js〉 [the inset to Fig. 18.8(b)] (note
that 〈js〉 can be regarded as an observable quantity in the measurements of the
SSE in the F|PM multilayer systems [74]). Importantly, the magnitude of 〈js〉
monotonically increases with increasing n. The physics behind this mechanism
is that thanks to the multilayer structure, the spin current in the PM interlayers
acquires a new length scale and boundary value. This phenomenological inter-
pretation is consistent with the experimental results; similar n dependence of
the SSE voltage was observed in the [Fe3O4|Pt] × n systems (compare the inset
to Fig. 18.8(b) with that to Fig. 18.7(c)) [74]. Since the enhancement of the SSE
based on this mechanism strongly depends on the magnon diffusion length (spin
diffusion length) of the F (PM) layer, the determination of optimum thicknesses
of each layer and optimum F|PM material combination is crucial for further
improvement of the thermoelectric performance of the SSE.

18.7 Spin Seebeck effect in various materials

As reviewed in this chapter, the SSE has been usually investigated in a junc-
tion system comprising a ferromagnetic or ferrimagnetic material with a net
spontaneous magnetization and a paramagnetic metal with a strong spin-orbit
interaction. Although the YIG|Pt system is still most widely used for the SSE
studies, different types of materials are beginning to be used. In this section, we
will briefly review recent observations of the SSE in various materials.

Magnetic insulators used for the SSE studies usually comprise a ferrimagnetic
oxide, consisting of two non-compensated magnetic sublattices resulting in non-
vanishing total magnetic moments; therefore, the materials can be effectively
treated as ferromagnets. The dependence of the SSE on the magnetization of the
sublattices was recently investigated by using a bilayer film formed by Gd3Fe5O12

(GdIG) and Pt [99], where GdIG is a ferrimagnet with a magnetic compensation
point at the temperature of around TC ∼ 288 K. The experimental results show
that the SSE in the GdIG|Pt system exhibits two sign reversals at TC and a lower
temperature related to the sublattice dependence of the spin-current generation
efficiency.

The SSE in antiferromagnetic insulators was also reported both theoretically
[100] and experimentally [101, 102]. It was shown that, upon application of
a magnetic field along the antiferromagnet easy axes, a spin-flop transition is
induced in the antiferromagnet, thus generating a net magnetic moment that
can be electrically detected by means of the SSE voltage in an attached Pt
layer.

Although the SSE is theoretically explained in terms of the thermal magnon
excitation in magnetic materials, the SSE has been observed even in paramag-
netic insulators, specifically in gadolinium gallium garnet (Ga3Ga5O12) and
dysprosium scandium oxide (DyScO3) [103]. This result suggests that short-
range magnetic interactions can still generate a measurable spin current at the
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interface with the attached metal, challenging the current theoretical under-
standing of the SSE. It is also interesting to highlight that the giant SSE was
observed in a non-magnetic semiconductor [104] at low temperatures and high
magnetic fields, although the origin of the effect is fundamentally different from
the SSE phenomena discussed in this chapter.

In addition to the spin-current-generation layer, to realize the efficient spin-
to-charge current conversion, the ISHE has been investigated in various metals
including ferromagnetic and antiferromagnetic materials, alloys, semiconduct-
ors, oxides, and organic materials. These studies open the possibility to explore
a wider range of materials which are fundamentally interesting and can also lead
to increased thermoelectric conversion efficiency of the SSE devices. The com-
binations of magnetic insulators and conductive films used for the observation
of the longitudinal SSE are listed in [16].

18.8 Spin-dependent thermoelectric transport in metallic
structures

In this chapter, we have mainly focused on the SSE, a phenomenon driven
by heat-induced collective excitations of spins in magnetic materials. As sum-
marized in “spin caloritronics” chapter, in addition to the SSE, the interaction
between spin and heat currents induces various intriguing phenomena, such as
thermally-induced spin transfer torque [105–108], domain wall motion [109, 110],
and heat flow control by spin waves [111], and so on. In this section, we will fo-
cus on spin caloritronic phenomena related to incoherent spin currents carried
by conduction electrons: Spin-dependent Seebeck and Peltier effects. Since the
conduction-electron spin currents and spin accumulation disappear within a spin-
diffusion-length scale [81] from boundaries, these effects occur only in nano-scale
devices, typically in metallic spin-valve systems [112, 113] and magnetic tunnel
junctions [114]. Here, we briefly discuss the former.

In ferromagnetic metals (FMs) and near FM|PM interfaces, the conduction-
electrons’ transport in a nonequilibrium state can be argued in terms of a spin-
dependent conductivity σ↑,↓ and a spin-dependent Seebeck coefficient S↑,↓. A
spin-dependent electric current density is described as

j↑,↓ = −σ↑,↓

(
1
e
∇μ↑,↓ + S↑,↓∇T

)
, (18.14)

where μ↑,↓ is spin-dependent electrochemical potential. Therefore, when a
temperature difference is applied across the FM|PM interface, the conduction-
electron spin current j↑ − j↓ with accompanying spin accumulation μ↑ − μ↓ is
generated near the interface.

To demonstrate the thermal spin injection by the spin-dependent Seebeck
coefficient S↑,↓, Slachter et al. proposed a configuration schematically illustrated
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Fig. 18.9. (a) A schematic illustration of the lateral spin-valve structure for
measuring the thermal spin injection by the spin-dependent Seebeck effect
[112]. (b) Distribution of the thermally induced spin accumulation in the
lateral spin-valve structure. (c) A schematic illustration of the magnetic field
dependence of R2, where R2 is defined as V = R1I +R2I

2 + · · · with I and
V being a charge current applied to FMA and an electric voltage difference
between FMB and PM. HA(HB) denotes a coercive force of FMA(FMB).

in Fig. 18.9(a) [112]. The sample has a lateral spin-valve structure comprising two
ferromagnetic metal (FMA and FMB) and a PM wire. A temperature difference
is generated between FMA and PM via the Joule heating by applying a charge
current to FMA (Fig. 18.9(a)). When the interval between FMA and FMB is
shorter than the spin-diffusion length of PM, the spin accumulation μ↑ − μ↓
thermally generated at the FMA|PM interface subsists at the FMB|PM interface
(Fig. 18.9(b)). In this condition, the voltage V between FMB and PM was shown
to be dependent on whether the alignment of magnetizations of FMA and FMB

is parallel or antiparallel, as depicted in Fig. 18.9(c), due to the thermal spin
current injected into FMB. This sample structure enables the pure detection of
the thermally induced spin signals since no charge current flows in PM [112].

The thermal spin-current injection was also demonstrated in a
FM|oxide|silicon tunnel junctions by Le Breton et al. [115]. Here, spin
currents injected into a silicon film through an insulating tunnel barrier were
detected by means of spin-detection technique based on the Hanle effects. The
observed phenomenon allows the spin-current injection into silicon simply by
applying a temperature gradient between the silicon and the attached FM.
Therefore, it may form a bridge between spin caloritronics and silicon-based
semiconductor electronics.
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The Onsager reciprocal of the spin-dependent Seebeck effect, the spin-
dependent Peltier effect, has also been observed in 2012 [113]. The spin-
dependent Peltier effect is attributed to the difference in the Peltier coefficients
between up-spin and down-spin electrons ΠS = Π↑ − Π↓, where Π↑ (Π↓) is the
Peltier coefficient for the up-spin (down-spin) conduction channels; in FMs and
near FM|PM interfaces, the amount of heat carried by up-spin electrons is differ-
ent from that by down-spin electrons. When a pure spin current is injected into
PM from FM, the up-spin and down-spin electrons travel in opposite directions
and the net charge flow is zero. However, when ΠS �= 0, a net heat current can
be generated due to the spin-dependent Peltier effect.

To measure the spin-dependent Peltier effect, a spin-valve pillar structure con-
sisting of two FM layers separated by a PM layer was used. The spin current was
driven by applying a charge current to the spin-valve pillar perpendicular to the
FM|PM|FM interfaces, where the charge and spin parts of the Peltier effect are
separated [113, 116]. If the spin-dependent Peltier effect appears, the tempera-
ture difference between the top and bottom of the pillar should be dependent
on whether the alignment of magnetizations of the two FM layers is parallel or
antiparallel. Flipse et al. detected this spin-dependent temperature change by
means of a microfabricated thermocouple adjacent to the pillar. The authors
have also proved the Kelvin-Onsager relation between the spin-dependent See-
beck and Peltier coefficients, therefore demonstrating the expected reciprocity
between these spin-dependent thermoelectric effects.

18.9 Conclusions and prospects

In this chapter, we have reviewed the field of spin caloritronics with a spe-
cial emphasis on the spin Seebeck effect (SSE), from its basic mechanism and
measurement geometry to recent experimental progresses. After introducing the
fundamental characteristics of the SSE in ferrimagnetic insulator|paramagnetic
metal junction systems, we have focused on the high magnetic field response
of the SSE, which confirms magnon origin of the SSE and clarifies its spectral
non-uniform nature. Then, we have shown one of the promising demonstrations
of the SSE for future thermoelectric applications. Here we have focused on the
SSE in alternately-stacked magnetic insulator|metal multilayer systems, which
dramatically improve the spin-current generation efficiency and thermoelectric
performance of the SSE.

In the field of spin caloritronics, in addition to the SSE, a variety of novel phe-
nomena in which the interplay of spin and heat plays a crucial role were recently
discovered. Some of the thermo-spin phenomena, such as the spin-dependent
Seebeck effect, are also potentially applicable to thermoelectric generation in
nano-structured spintronics devices. Furthermore, at low temperatures, giant
thermopower was observed in transverse SSE devices comprising nonmagnetic
semiconductors, representing a great potential of spin-based thermoelectric tech-
nologies. However, these thermo-spin phenomena appear only in conductors;
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the utilization of insulators is an exclusive feature of the SSE. We anticipate
that this unique feature of the SSE will lead to various spintronic and thermo-
electric applications. Both the fundamental and application researches of the
SSE are still developing, and the thermo-spin and thermoelectric conversion
efficiencies are very small at present. However, there is plenty of scope for
performance improvement; the SSE voltage can be enhanced, for example, by
improving the spin Hall angle of the metal layer and spin-mixing conductance at
the insulator|metal interface, reducing the thermal conductivity of the insulator
layer, and optimizing the thickness and material combination of the multilayer
structure.
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Part III Spin-transfer torque





19 Introduction of spin torques

T. Kimura

19.1 Introduction

When a spin current enters a ferromagnet, a transfer of the spin angular momen-
tum between the conduction electrons and the magnetization of the ferromagnet
occurs because of the conservation of the spin angular momentum. This is known
as a spin transfer effect. The concept of the spin transfer effect is introduced by
L. Berger in 1984 [1]. Berger considers the exchange interaction between the con-
duction electron and the localized magnetic moment (s-d exchange interaction)
and predicted that a magnetic domain wall can be moved by flowing the spin cur-
rent. Unfortunately, at that time, since the micro-fabrication techniques required
for the preparation of the ideal sample had not been developed, it was very dif-
ficult to distinguish such an effect from other spurious effects which are induced
by the Oersted field and Lorenz force. However, the spin transfer effects were
brought into the limelight by the progress of the microfabrication technique and
the discovery of giant magneto-resistance (GMR) effects in magnetic multilayers
[2, 3]. Especially, after Slonczewski prediction that the magnetization can be
reversed by the spin transfer effect in the magnetic multilayered system, [4] this
phenomenon has attracted much attention for a novel manipulation technique
of magnetization. At the same time, Berger separately studied the spin-transfer
torque in a similar system and predicted the spontaneous magnetization preces-
sion [5]. After their proposals, the first experimental demonstration of spin-wave
excitation due to the spin-transfer torque was achieved by measuring a point of
contact magnetoresistance in a magnetic multilayer in 1998 [6]. And in 1999, first
experimental report of magnetization reversal due to the spin-transfer torque
was achieved by using a Co/Cu/Co sandwich structure [8]. Thus, this innov-
ation opens up a new paradigm for magneto-electronic device applications such
as magnetic random access memory (MRAM), fast programmable logic circuit,
high-density recording media and high frequency devices for telecommunications.
Particularly, the magnetization switching due to the spin-transfer torque is an
attractive alternative to the conventional field induced switching in nanomag-
netic devices since the electrical power consumption required for the switching
decreases with decreasing the size of nanomagnetic elements. This provides archi-
tectural innovations for low-power writing information with spintronic devices,
also novel spintronic devices. In this chapter, we introduce the theoretical and
experimental studies on spin torques in nanostructured ferromagnetic systems.
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19.2 Theoretical description of spin-transfer torque

We consider the spin-transfer effect in a ferromagnetic (F1) / nonmagnetic (N) /
ferromagnetic (F2) trilayer structure, which is a typical structure for the ver-
tical spin devices, shown in Fig. 19.1. Here, the thickness of the F1 d1 is very
thin, typically in a few nm, while that of the F2 d2 is very thick over tens of
nms. We assume that the magnetization M 1 for F1 tilts at an angle from the
magnetization M 2 at the initial state. When the positive voltage is applied in
the sample, the electrons are injected from F2 to F1. Then, the electron spins
whose directions tilts at an angle from M 1 are injected into F1. The spin direc-
tions for the injected electrons are aligned with the direction of M 1 because of
the s-d exchange interaction. It should be noted that the electrons also exert the
torque on M 1 because of the action-reaction law (Newton’s third law of motion).
Therefore, the rotation of the magnetization M 1 is induced by the torque due to
the spin-current injection. This is known as the spin-transfer torque. According
to Slonczewski’s model, [4] this spin-transfer torque is caused by transferring
the transverse spin angular momentum from the electron into the magnetiza-
tion. The transfer process acts like a mechanical torque on the magnetization,
where the direction of the torque is given by M 1 × (M 1 ×M 2) [9, 10]. This
enables us to switch the magnetization only by changing the polarity of the
current.

When the injected spin current is not so large, the electron spins are aligned
with the direction of M 1 and M 1 does not change the direction. When a large
amount of the spins are injected into F1, the torque from the electron spins
overcomes the torque from the magnetization (the damping torque). As a result,
M 1 becomes parallel to the direction of the electron spin by the spin-transfer

(c)

F1

F1

F2

F2

e e e

e
e e

e

N

N

Spin transfer

torque
M

1 
× (M

1 
× M

2
)

Damping torque
M

1 
× (H

eff 
× M

1
)

d
2

d
1(a)

(b)
H

eff M
1

Fig. 19.1. Spin currents in a ferromagnetic (F1) /nonmagnetic(N) /ferromag-
netic (F2) trilayered structure for (a) positive current and (b) negative
current. (c) Schematic illustration of the spin-transfer torque and the
damping torque.
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torque. This means that M 1 becomes parallel to M 2. Oppositely, when the
negative voltage is applied, the electrons should be injected from M 1 to M 2.
In the ballistic model, the electrons anti-parallel to M 2 are reflected at the
N/F2 interface, then return back to F1. Such electrons should exert the torque,
which rotates M 1 anti-parallel to M 2. Thus, the direction of the torque can be
switched by reversing the polarity of the flowing current.

Here, we analyze the influence of the spin-transfer torque more quantitatively.
As described above, an additional torque, whose direction is given by M 1 ×
(M 1 × M 2), is exerted on the magnetization M 1. Since an electron has a
spin-angular momentum of �/2 [11], the spin-transfer torque Ts is given by

Ts =
�

2e
ISS1 × (S1 × S2), (19.1)

where Is is the spin current injected into F1, S1 and S2 are the unit vectors
for M 1 and M 2, respectively. So, (�/2e)IS corresponds to the spin-angular
momentum deposition per unit time.

According to Slonczewski’s model based on the ballistic transport [4, 9, 10],
IS can be expressed as

IS = gIe =
Ie

−4 + (1 + P )3(3 + S1 · S2)/4P
3
2

(19.2)

Here, g is the spin-transfer efficiency. Then, we analyze the magnetization dy-
namics under the spin-transfer effect. By assuming a single domain (macro spin)
approximation with taking into account the contribution of the spin-transfer
torque and the uniform torque in the entire film, the Landau-Lifschitz-Gilbert
(LLG) equation for the free layer M 1 is modified as

dM 1

dt
= γM 1 ×H eff − αS1 × dM 1

dt
− �

2e
ISS1 × (S1 × S2), (19.3)

where γ and α are, respectively, the gyromagnetic ratio and the Gilbert damping
parameter. H eff is the effective magnetic field on M1, which corresponds to the
sum of the applied, anisotropy, demagnetizing and exchange fields.

In order to roughly understand the dynamical motion of M 1 under the spin-
transfer torque, we consider the case where α � 1 and Heff is anti-parallel to
M 2. In this case, Eq. 19.3 can be deduced as

dM 1

dt
= γM 1 ×H eff − α̃γS1 × (M 1 ×H eff) (19.4)

Here, α̃ is the effective dumping parameter, which is given by

α̃ =
(
α− �

2e
IS

1
γM1Heff

)
. (19.5)

Thus, the damping parameter is effectively reduced by the spin-transfer torque.
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The positive-damping torque means the dissipation process of the magnet-
ization, which suppresses the precession motion. The negative-damping torque
means the amplification process of the precession motion. Therefore, the spin
torque amplifies the precession for the positive Ie, but attenuates the precession
for the negative Ie. Using the relation α̃ = 0, the threshold current Ith can be
calculated as [11]

Ith =
2e
�

αγM1Heff.

g
(19.6)

One can understand the magnetization dynamics under the spin-transfer torque
more clearly by solving Eq. 19.3 numerically. In the calculation, the uni-axial
anisotropy along x and the demagnetizing field from z direction are considered.
Figure 19.2(b) show the trajectory of the magnetization M 1 during the reversal
process by the spin current injection. Here, the initial magnetization is aligned
with −x direction and no external magnetic field is applied. First, the magnet-
ization starts to precess at a small-cone angle, and promotes the precession with
gradually increasing the opening angle of the precession, giving rise to the amp-
lification of the spin precession. Once the magnetization during the precession
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Fig. 19.2. Time-dependent vector components of the magnetization and trajec-
tories during the magnetization reversal induced by (a) external magnetic
field and (b) spin-current injection.
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reaches at the angle φ = π/2, which is the in-plane hard axis, the direction of the
damping torque is reversed. After the reversal of the precession axis, the mag-
netization quickly aligns with the x direction. This is the magnetization reversal
process by the spin-transfer torque and therefore the damping torque has an
important role for the determination of the threshold of the switching current.

For a comparison, the trajectory of the field-induced magnetization reversal
is shown in Fig. 19.2(a). It should be noted that the magnetic potential energy
is modified by the external magnetic field. In this case, the external field directly
modifies the precession axis of magnetization. In the field-induced reversal, when
the magnetic field is larger than the other effective fields, the magnetization can
be reversed. At first, the magnetization reaches at the angle φ = π/2, and
then the magnetization rotates to the field direction attenuating the precession
angle. Thus, largely different features are seen in the trajectories between the
spin-transfer-induced and the field-induced switchings.

In the spin-current-induced switching, the threshold current Ith is propor-
tional to Heff and damping parameter as described in Eq. 19.6 [11]. Since the
largest term for Heff is the perpendicular demagnetizing field in conventional
ferromagnetic thin films, the threshold current does not depend on the magni-
tude of the anisotropy so much. On the other hand, in the field-induced switching,
the switching field is directly related to the uni-axial anisotropy and strongly de-
pends on the magnitude. Therefore, the switching field is not directly related to
the switching current. From this view point, a perpendicularly aligned ferromag-
netic dot has great advantages over the in-plane aligned one because of its small
demagnetizing field. Indeed, the substantial reduction of the critical switching
current density has been demonstrated in the magnetic tunnel junction with
a perpendicular magnetic anisotropy [12–14]. Since the perpendicularly aligned
ferromagnetic dot has great thermal stability and no restriction of its in-plane
shape, this structure will be the mainstream in highly integrated spin-based
electronic devices.

Another important feature is the switching time τsw of the magnetization
reversal due to the spin-current injection. τsw is defined by the time that the open
angle of the magnetization precession reaches to π/2. By solving the equation,
τsw is roughly estimated as

τsw ≈ 2e
�

MS

g

1
I − Ith ln

π/2
φ0

(19.7)

Here, φ0 is the initial angular deviation of the magnetic moment from its easy
axis. The switching time reduces with increasing the injecting spin current.
Therefore, injecting the large spin current is a key for developing the ultra-
fast operation of spintronic devices. However, in general, there is a limitation
of the magnitude of the spin current injecting into the ferromagnet because
the spin current includes the charge current, which induces the extra electro-
migration under the high-bias current. Using the pure spin current, which does
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not include the charge current, may allow us to inject spin current larger than the
above limitation [15–17].

19.3 Perpendicular spin torque

The quantitative analysis of the spin-transfer torque is still controversial issue.
Equation 19.3 comes from the Slonzewski model, where he developed a theory
that combines a density-matrix description of the spacer layer with a circuit
theory. Stiles provided more clear picture by solving the simplified Bolztman
equation with non-collinear spin configuration [9, 10]. Although the system is
restricted only in the ohmic junction, this model allows us to treat the situations
where the interface resistance does not necessarily dominate the transport and
also where the layer thicknesses are less than relevant mean-free paths. The
model was found to explain well the experimental results done by the Cornell
Group [8, 18].

Heide pointed out an another important effect due to the spin current injection
into a ferromagnetic material [19, 20]. According to his theory, a non-equilibrium
spin-current induces the exchange interaction between the magnetic films which
is quite different from Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange coup-
ling. The effective torque due to the spin-current-induced exchange interaction
is proportional to Is(m × s). This interaction causes the torque, which is per-
pendicular to the Slonzewski spin-transfer torque and can be understood as
the effective magnetic field along s direction. Therefore, this term is called a
”perpendicular spin torque” or a ”field-like term” (Fig. 19.3).

Zhang et al. deviated the above two terms with more clear physical picture
by using a quasi-classical spin diffusion model [21]. They have shown that the
key point is the spin accumulation associated with spin-dependent transmis-
sion/reflection at the interfaces. More importantly, they have shown that it is the
transverse component of the spin accumulation that contributes to the torque al-
though the longitudinal part of spin accumulation does not induce any torque on
the magnetization. They have also shown that the transverse component of the
spin accumulation relaxes much faster than the longitudinal one because of the

mm

[m × s ]
→

s→s→
TST

→
TNEXI

→

H ⊥ (p,m) H / / p

Fig. 19.3. Vertor direction of spin tranfer torque TST and perpendicular spin
torque TNEXI.
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exchange interaction between the conduction electrons and local moments. Ac-
cording to their theory, the magnetization dynamics under the non-equilibrium
spin current can be described by using the following equation

dm

dt
= γm × (H eff + Jm⊥) + αm × dm

dt
, (19.8)

where J is the magnitude of the spin current and m⊥ is the transverse compo-
nent for the unit vector of the spin injector. The influence of the spin current
is expressed by the additional effective field Jm⊥. By solving the spin-diffusion
equation, they found that Jm⊥ = as ×m + b(m × s)×m . Then, the equation
becomes

dm

dt
= γm × (He + bs)− γam × (s ×m) + αMsm × dm

dt
, (19.9)

Thus, the transverse spin accumulation produces two effects. γam × (s ×m) is
the in-plane torque, which corresponds to the spin-transfer torque introduce by
Slonzewski. γbm × s is a perpendicular spin torque or field-like term due to the
spin current, which is introduced by Heide. However, Zhang’s theory stands that
the field-like term originates from the spin relaxation. So far, many mechanisms
have been proposed for the origins of the field-like torque. Momentum transfer,
interlayer exchange coupling under a finite bias voltage, and a current-induced
Oersted field induced from wiring, could all be origins of the effect. Therefore, it
is very important to specify the mechanism of the field-like torque to understand
the effect of current on the spin dynamics.

In metallic spin-valve structures, it has been shown that the field-like term is
known to be very small [22]. However, in magnetic-tunnel junctions, the field-
like term becomes important especially under a high-bias voltage. Kubota et al.
[23] and Sankey et al. [24] have reported that the field-like term is proportional
to the square of the voltage and it reaches 10 % to 30 % of the spin-transfer
torque for a voltage bias about 0.3 V. Furthermore, the sign of the field-like term
is independent of the polarity of the bias. The obtained quadratic dependence
is in agreement with the first-principle calculations by Heileger and Stiles [25].
Deac et al. demonstrated the field-like term is also quadratic in applied voltage
by their thermally excited FMR experiment. [26] However, Petit et al., observed
that the field-like term changes the sign when the voltage bias reverses [27].
Thus, it remains a highly debated topic about the dependence of field-like term
on the applied bias voltage.

19.4 Diffusive picture for injecting spin current

The spin current injected into F2 can be evaluated also by using the spin dif-
fusion model when M 1 and M 2 are the collinear configuration (parallel or
anti-parallel). The spatial distribution of the spin current is simply calculated in
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Fig. 19.4. Diffusive spin currents induced by non-equlibrium spin accumulation
in F/N/F/N structure with the collinear magnetic configurations. In (a) and
(b) (c and d), the current flows from the right- (left-)-hand side to the left-
(right-)-hand side.

a F1/N1/F2/N2 structure using the spin resistance model. Here, the thicknesses
of F1, F2, and N1 are d1, d2, and dN1 respectively. dN1 and d2 are thinner than
their spin diffusion lengths, while dF1 and dN2 are much longer than the spin
diffusion length. In the structure, there are three F/N interfaces. Since each F/N
interface plays a source of the non-equilibrium spin current, the system includes
three diffusive spin current sources. In order to simplify the situation, the system
is divided into the three simple circuits shown in Fig. 19.4. Here, each circuit
includes one spin-current source. From the superposition principle, the distribu-
tion of the spin current can be obtained by the sum of the distributions of the
non-equilibrium spin current in the individual circuit. There are four situations
consisting of the parallel and anti-parallel alignments with positive and negative
currents. The top figure at each configuration corresponds to a spin injection
from F1 and the middle two figures correspond to the backflows of the spin
current due to the N1/F2 and F2/N2 interfaces. Thus, the non-equilibrium spin
current injected into F2 consists not only of the spin injection from F2 but also
of the backflows from F1 itself. However, since the backflows of the spin current
from both interfaces induce the opposite spin torque to each other, the influence
of the backflow on M 2 can be neglected. Therefore, the spin current injected
into F2 is mainly dominated by the spin current generated from the F1/N1
interface. When the current flows from the right-hand side to the left-hand side,
the injected spin current into F2 is parallel to M 1. This means that the stable
magnetization configuration is in a parallel state. On the other hand, when the
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current flows from the left-hand side to the right-hand side, the injected spin
current is antiparallel to M 1. Therefore, the anti-parallel alignment becomes
stable when the current direction is reversed. Thus, Figs. 19.4 (b) and 19.4 (c)
are unstable situations for F2 and F2 is reversed by increasing the injecting
current.

Although the magnitudes of the injected spin current in Figs. 19.4(b) and
19.4(c) are same in the above explanation, the influence of the backflow of
the spin current should be considered for more quantitative explanation. In
Fig. 19.4(b), the spin current injected from F1 and the spin current due to N1/F2
interface (2nd figure from the top) are in the same direction. On the other hand,
in Fig. 19.4(c), these are in the opposite direction, resulting in the reduction
of the magnitude of the spin current effectively. Therefore, the absolute value
of the switching current from anti-parallel to parallel becomes larger than that
from parallel to anti-parallel. This tendency is consistent with the experimental
result in the metallic vertical devices. When d2 is thicker than the spin-diffusion
length for F2, the sign of the injecting spin current depends on the position.
This makes it difficult to reverse the magnetization by the spin-transfer torque.

19.5 Experimental study on magnetization reversal
due to spin torque

In order to realize the magnetization reversal due to the spin-current injection,
one has to flow the current into the confined small area. This restriction comes
from the following two reasons. One is that the magnitude of the critical cur-
rent density required for exciting the magnetization is quite large. In order to
reduce the total current, the current flowing area should be small. The other one
is that the effect of the Oersted field induced by the flowing current should be
reduced compared to the spin-transfer effect. The current flowing vertically in
the film produces the circular Oersted field, which can create the different stable
magnetization condition [29, 30]. The coercive fields for such domain structures
reduce with increasing the lateral dimension of the film. On the other hand, the
critical current for the magnetization switching due to the spin-transfer torque
decreases with decreasing the volume of the film. From the theoretical and ex-
perimental studies, the lateral dimension for the magnetization switching due to
the spin-transfer torque is around 100 nm. However, it should be noted that the
Oersted-field effects were non-negligible even in such small structures since they
play an important role for increasing the initial spin-transfer torque [28].

To realize such conditions, the following three types of the magnetic multi-
layered structures are used in most of the experiments for spin-transfer effects.
The first one is a mechanical point contact, where a magnetic thin film or multi-
layer are contacted by a metallic sharp tip, shown in Fig. 19.5(a). This produces
a nano-sized point contact whose diameter is typically few tens nanometer. The
second one is a multi-layered magnetic thin film with a lithography-defined point
contact, where the metallic film is contacted to the magnetic multilayer through
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Fig. 19.5. Cross sections for three repesentative device structures (a) point
contact, (b) lithographycally defined point contact, and (c) nanopillar
structures.

a nano hole in the insulator with the diameter of a few tens nanometer, as shown
in Fig. 19.5(b). These two techniques locally produce an area with high current
density in the magnetic multilayer, resulting in the excitation of the magnet-
ization. However, since the excited area is magnetically connected to the large
ferromagnet via the strong exchange interaction, the current required for exciting
the magnetization becomes quite large. The third one is a nanopillar structure,
which is fabricated by the lithography and Ar ion milling (Fig. 19.5(c)). The
typical lateral dimension of the nanopillar is 100 nm. Since the objective nano-
magnet is isolated from the other ferromagnetic layer, the nanopillar is the most
suitable structure. In fact, this structure has been utilized in most of the experi-
ments. However, it may be difficult for the lateral dimension down to 50 nm in
the nanopillar structures.

The first clear experimental demonstration of the spin-current-induced mag-
netization switching has been done by Cornell group at 4.2 K, where the
lithographically defined point contact (Fig. 19.5(b)) has been applied for a
Co/Cu/Co tri-layered structure. [8] Followed by this pioneering experiment, the
second demonstration using a nanopillar structure (Fig. 19.5(c)), which pro-
vides a better manipulation of the magnetization, has been performed by the
same group at room temperature [18]. They showed that the experimental results
quantitatively agree with the theoretically calculated values based on Slonzewski
model. After the several experimental reports from Cornnel group, similar ex-
periments have been reported from Orsay [31]. There have been numerous
experimental studies of these systems in the last decade [32, 33].

A typical experimental result of the magnetization reversal due to spin current
injection is shown here. In order to observe the spin-transfer-induced magnet-
ization reversal, as mentioned above, a nano-pillar structure consisting of a
magnetic multilayer has been utilized, in general [34, 35]. Figure 19.6 shows an
the nano-pillar structure consisting of Cu(100 nm)/Co(40 nm)/Cu(6 nm)/Co(2
nm)/Au(20 nm). Here, the shape of the nano-pillar is a ellipse with the dimen-
sions of 120 nm × 390 nm. This structure enables us to flow a large amount of the
current above 20 mA perpendicularly to the magnetic layer because the Joule
heating of the ferromagnetic layer can be suppressed by the top and bottom Cu
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Fig. 19.6. Typical experimental result of the spin-current-induced magnetiza-
tion reversal. (a) Schematic illustration of the nano-pillar device together
with the measured probe configuration, (b) scanning electron microscope
image of the top view for the fabricated nano-pillar, (c) four terminal resist-
ance as a function of the external magnetic field and (d) differential resistance
as a function of the injection dc current [34, 35].

electrodes with large dimensions. More importantly, the magnetization switching
(the magnetization direction) can be detected by measuring the voltage between
the current probe because of the giant magnetoresistance effect. The resistance
of the nano-pillar and the differential resistance under the DC current is meas-
ured by the standard four terminal method using a lock-in amplifier. Here, a
dc current flowing from the bottom to the top is defined as positive “+” . A
magnetoresistance loop consists of the low and high resistance states with 8 %
resistance change, indicating that the parallel and anti-parallel magnetic con-
figurations are well stabilized. The differential resistance loop also shows the
sharp magnetic switching between the parallel and anti-parallel states. As ex-
pected from the spin torque model, the positive and negative current stabilize
the anti-parallel and parallel configurations, respectively.

The spin-injection experiments were mainly performed in the metal-
lic magnetic multi-layered structures before 2004. However, in the metallic
layered structures, the two-terminal resistance is typically several Ohm and
magnetoresistance ratio is less than 10 percent. This results in a small volt-
age change ΔV less than 1 mV. These poor voltage changes are serious obstacle
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for the integration with semiconductor technology. By using magnetic tunnel
junctions instead of the metallic one, the large voltage change over hundreds
mV can be obtained. However, the magnetic tunnel junction was considered to
produce the large power consumption for the spin-current-induced magnetiza-
tion switching because of the large resistances of the tunnel junctions and the
inelastic scattering processes of the tunneling process at the high bias. First ex-
perimental demonstration of the spin-current induced magnetization switching
has been performed by Huai et al. using CoFe/Al2O3 barrier [36]. They found
that the critical current density was smaller than that in the metallic junction.
This is because the injection efficiency in the tunnel junctions is larger than
that in the metallic junctions. Shortly afterwords, the Cornel group also dem-
onstrated the spin-current-induced magnetization switching in the MTJ [37].
In the magnetic tunnel devices, two terminal resistances are typically in the
kilo ohm range and the magnetoresistance changes are much larger than 10
%. These characteristics produce much larger voltage changes over hundreds of
mVs, which are suitable for the high-speed read operation with semiconductor-
integrated devices. Especially, recent developments of the MgO tunnel junctions
provide the giant magnetoresistance change over 500 % even at room tempera-
ture [38, 39]. Moreover, the two terminal resistance and the magnetoresistance
ratio can be adjusted by MgO thickness [38]. These technological jumps
open new possibilities for high-performance spin-transfer-torque random access
memory.

It also should be noted that that the present experimental results open a
distinct interest for spin-transfer physics since the transport in magnetic-tunnel
junctions at finite bias involves a significant range of electronic state energies
both above and below the Fermi level. These situations are quite different from
the metallic systems, where the transport is localized on the Fermi surface. In
fact, as described in the previous section, the field-like term becomes large in the
magnetic tunnel junction at the finite bias. Essentially all the theoretical mod-
els proposed so far to obtain the spin-transfer torque from electronic transport
calculations based on either quantum-mechanical or semi-classical description
have been derived in the limit of weak non-equilibrium situation. Establishing
the proper theoretical description of the spin-transfer torque in the magnetic
tunnel junctions at finite biases is a challenging and important issue from both
the fundamental and technological viewpoints.

Apart from such vertical structures, laterally configured ferromag-
netic/nonmagnetic structures also produce the spin currents [15]. Interestingly,
one can generate a pure spin current, which does not include any charge current,
by using nonlocal injection scheme. This prevents the influence of the Oersted
field[29] and the electro-migration-induced failures, leading to the injection of
the large amount of the spin current. The experimental demonstrations of the
magnetization switching due to the pure-spin-current injection have been carried
out by using the Py/Cu lateral structures [16, 17].
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19.6 Magnetization dynamics due to spin-current injection

In the vertical magnetic device structures shown in Fig. 19.5, when a strong
external magnetic field is applied to the device, the magnetizations of the two
ferromagnetic layers align in parallel. In principle, the spin torque is zero because
the injected spin direction is parallel to the magnetization. However, the thermal
fluctuation of the magnetization and the self-induced Oersted field induce the
small deviation of the magnetization from the completely parallel state. By in-
creasing the injection-spin current, the deviation is enhanced. In this situation,
when the current flows from the bottom to the top electrode, the magnetization
starts to process with the axis parallel to the external magnetic field by the
spin-transfer torque. When the magnitude of the spin-polarized current is not so
large, the magnetization precession attenuates because of the Gilbert damping
effect. However, the solution of Eq. 19.3 contains the steady state of the magnet-
ization precession. So, when the a large amount of the spin current is injected
into the free magnetic layer, a precession of the magnetization is stabilized by
balancing the spin transfer torque and Gilbert damping torque. The experimen-
tal demonstration of the steady-state precession mode was done by Tsoi et al. as
a spin wave excitation [6]. Interestingly, this experiment was performed earlier
than the magnetization reversal due to the spin-transfer torque. They used a
point contact in the Co/Cu multilayer. The spin-wave excitation was confirmed
as the peak of the differential resistance in the static measurements. It should
be noted that similar peaks of the differential resistance have been observed in
the experiments of the spin-current-induced magnetization switching [8]. As an
interesting experiment, Ji et al. demonstrated that the similar resistance peak
can be observed in the absence of the second ferromagnetic layer [40]. This can
be understood by assuming the formation of the non-uniform magnetic domain
structure due to the strong non-uniformity current injection in the vicinity of
the ferromagnetic/nonmagnetic interface.

Kiselev et al. reported a first observation of the steady state precession of
the magnetization in the microwave frequency range driven by a dc electrical
current using a pillar structure of magnetic multilayers as shown in Fig. 19.7
[41]. Following this measurement, Rippard et al. observed similar high frequency
magnetization resonance with large quality factor by using point-contact spin in-
jection technique [42]. They showed that the oscillation frequency can be tuned
from 5 to above 40 GHz by adjusting the external magnetic field. Important
progresses of these two reports from the previous experiments are the dynamic
measurements of the current-induced magnetization excitation in frequency do-
main using the spectrum analyzer. The magnetization precession in GHz range
was clearly observed from the voltage signal originating from the GMR effects.

According to Ref. [41], the magnetization dynamics in a nanopillar under the
spin torque can be summarized by the phase diagram shown in Fig. 19.7(c).
Here, “S” state corresponds to the precession state with a small open angle.
This state can be obtained both in theoretically and experimentally. “L”
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corresponds to the precession state with a large open angle, which also can be
obtained both in theoretically and experimentally. “W” state corresponds to a
weakly microwave emitting mode. Numerical simulations based on macro-spin
model well explains the experimental results (Fig. 19.8). Here, two type in-plane
precession (S-mode and L-mode) have been reproduced, as shown in Fig. 19.8.
Interestingly, “W” state obtained in the experiment cannot be reproduced
by the simulation. Instead of this, out-of-plane precession mode has been
obtained under high bias current in a numerical simulation with a single domain
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approximation (Fig. 19.8). Therefore, “W” state is probably caused by the
excitation of the non-uniform mode.

It should be noted that the steady-state precession driven by the spin-transfer
torque has rather different properties from the conventional precession driven
by the external magnetic field. The most interesting feature in the spin-transfer-
induced precession is that the frequency of the precessional motion depends on
the damping constant. Since the magnetization precession is in the GHz range,
the property can be utilized for a submicron macro wave generator called a
spin-torque nano oscillator (STNO). STNO is one of the promising candidates
in future nano spintronic devices and magnetic recording technology because the
oscillation frequency and emitting microwave power can be tuned by changing
the bias current and the external magnetic fields. Moreover, the STNO has a
great potential for novel active microwave devices such as broadband high-quality
STNO. However, the output power is limited because of the small resistance and
resistance change in the conventional metallic junction. STNOs based on mag-
netic tunnel junctions have been demonstrated with relatively large microwave
power. Although the emission power is around one nW in the case of a STNO
based on the metallic junction, it can reach 1 μW using the tunnel magnetoresist-
ance effect [26]. The synchronization of an array of STNOs is a possible approach
for increasing the emission power. Mutual phase locking between STNOs medi-
ated by spin waves has been demonstrated by Kaka et al. [43] and simultaneously
by Mancoff et al. [44]. Also theoretical study predicted that an array of oscillators
could be synchronized using electrical rather than magnetic coupling. Especially,
the output power in the N oscillators becomes N2 times as large as that for the
single oscillator. In addition, the frequency line width is reduced by a factor of
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1/N2. Therefore, the combination between the STNOs with magnetic tunnel
junctions and the phase locking technique is a powerful tool for enhancing the
output power of the oscillator.

The time-resolved studies of dynamics excited by spin-transfer torques has
also reported by Krivorotov et al. [45]. These measurements allow a direct view
of the process of spin-transfer-driven magnetic reversal, and they determine the
possible operating speeds for practical spin-transfer devices. The results provide
rigorous tests of theoretical models for spin transfer and strongly support the
spin-torque model over competing theories that invoke magnetic heating.

The ferromagnetic resonance can be excited by injecting the rf current, and
can be electrically detected by observing the rf power absorption using a network
analyzer. The precession of the free-layer magnetization due to the resonance
yields the large oscillation of the resistance of the device. Therefore, when the
resistance asymmetrically changes with respect to the magnetization angle, the
voltage excited by the rf current injection produces the rectified effect analogous
to the homodyne detection. This is known as the spin-torque diode effect [46, 47].

A schematic illustration of the spin-torque diode effect is shown Fig. 19.9.
The magnetization of the free layer is perpendicular to that of the fixed layer at
an equilibrium condition. When a negative current is applied, the magnetization
of the free layer rotates parallel to that of the fixed layer because of the spin-
transfer torque. As a result, the resistance of the junction becomes small and
the junction induces a small negative voltage for a given current. On the other
hand, when the positive current is applied, the magnetization of the free layer
favorably rotates to the anti-parallel state. Therefore, the junction resistance
becomes high and a large positive voltage is induced across the junction for a
given current. By alternating the current direction with high speed, a positive
voltage is induced in the junction as an average. This is a kind of homodyne
detection. While the spin-transfer torque induces the in-plane rotation of the
magnetization, the field-like torque induces a rotation perpendicular to a plane.
As a result, only the resonance excited by the spin-transfer torque can contribute
to rectify the rf current at the resonance frequency.

The dc voltage spectra observed in the experiment are shown in Fig. 19.9.
The spectra consist of a single bell-shaped peak, a dispersion-type curve. The
bell-shape peak is induced by the spin-transfer torque and the dispersion curve
is due to the field-like torque. This clear difference provides us with an elegant
method to distinguish spin-transfer torque from field-like torque.

19.7 Domain wall displacement due to spin-current injection

As described in the above section, the magnetization in small ferromagnets can
be switched by the spin-transfer torque. In such systems, non-equilibrium spin
currents are produced by the sudden change of the spin-dependent conductivity
at an F/N interface. Since the periodical domain structure in a magnetic thin
film resembles the magnetic multi-layered structure, the similar spin-transfer
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torque is thus expected to take place in the domain structure. As described
in the previous section, L. Berger predicted that a magnetic domain wall can
be moved by flowing a spin current through the domain wall before the pre-
diction of the magnetization reversal of the small nanomagnet [1]. Moreover,
his group experimentally investigated such effects in Permalloy films by using
pulsed current and succeeded in observing the domain-wall displacement due to
the current pulse applications. Although their experimental studies were really
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pioneering works, the detailed domain structures were not examined because of
the limitation of the nanofabrication and domain-imaging technique. Moreover,
the current required to produce the domain wall displacement is extremely large
because of the large sample dimension. Therefore, it was difficult to distinguish
from other spurious effects such as Oersted field. Recent nanofabrication tech-
niques made it possible to control the magnetic domain structure precisely. We
are now able to control the magnetic configuration in nanostructured magnets
using the geometrically-induced magnetostatic interaction. This allows a precise
manipulation of a magnetic domain wall. Especially, lithographically defined
ferromagnetic nanowires offer greater control of magnetic domain walls. Since
the spin-current-induced domain wall motion expects high potential applications
such as race-track memory [48] and logic devices [49], this has been massively
studied both in theoretically and experimentally in the last decade.

Gan et al. reported the current induced domain wall motion in the patterned
ferromagnetic structure by means of the MFM for the first time [50]. They found
that the magnetic domain structure changes by the application of the strong
current pulse with the magnitude of 2.5. It should be noted that the direction of
the domain wall motion is always opposite to the flowing direction of the current.
This seems to be consistent with the picture of the spin transfer torque. Grollier
et al. reported the current-induced domain wall motion in a 1 μm-wide magnetic-
multilayerd wire [51]. They found that the magnetic domain wall trapped around
a notch was depinned by the current application. In this structure, however, a
part of the current flows through the highly conductive Cu layer, whereby the
current induced Oersted field may have given an additional contribution to the
domain wall displacement, as suggested in their article. Tsoi et al. reported that
a similar current induced domain wall motion in a single ferromagnetic wire
with several notches [52]. Klaui et al. performed an experimental study on the
current induced domain wall displacement in ferromagnetic ring structures [53].
After these experiments, numerous experimental studies have been performed by
various group and similar results have been reported [54, 55]. However, in most
of the experiments, the magnetic domain wall did not move only by the current
injection. In order to induce the domain wall motion, the external magnetic
field, which is much smaller than the value without the current injection, was
required. This is because the domain wall in the nanowire was trapped in the
strong pinning potential. So, the weak pinning potential should be used for the
current-induced domain wall motion.

The most elegant experiment of the current-induced domain wall motion has
been demonstrated by Yamaguchi et al. [56]. They used a special L-shaped mag-
netic wire with a round corner as schematically illustrated in Fig. 19.11. Here,
one end of the L-shaped magnetic wire is connected to a diamond-shaped pad
which facilitates a DW nucleation, while the other end is a needle shape to pre-
vent the nucleation of a DW from this end. By the application of the magnetic
field at an angle after initializing the domain structure, a magnetic domain wall
is introduced in the vicinity of the corner. This enables it to exist the domain
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wall in the magnetic wire without any artificial pinning site. After the formation
of the domain wall, they apply the current pulse. They showed that the domain
wall moved along the flowing direction of the electros by real space observation
of the domain wall position using MFM. In such a situation, the domain wall
can easily move without the application of the magnetic field.

Another elegant experiment has been done by Saitoh. et al. [57]. By using a
semi-circular-shaped wire, they showed that the potential profile for the domain
wall can be tuned by the magnitude of the external magnetic field. They demon-
strated that the domain wall motion can be resonantly excited by applying the
high-frequency AC current whose current density is much smaller current than
the dc current density required for exciting the domain-wall motion. This innova-
tive demonstration that spin can be effectively excited by using the resonance
was also really important for developing the spin-torque application.

19.8 Theoretical description of the spin-current-induced domain
wall displacement

The spin-current-induced domain wall motion is simply described as follows.
The spin currents flowing carried by moving the electron adiabatically follow
the magnetization direction because the magnetization exerts a torque on the
spin currents. There is a reaction torque on the magnetization that is propor-
tional to the spin current. If the spin currents uniformly flow, this torque density
simply translates the domain wall in the direction of the electron flow with a
speed that is proportional to the spin current. However, in realistic case, the
complicated motions of the domain wall, which cannot be understood by the
above description, have been observed in the experiments.
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The discrepancies between the simple description and the realistic situation
are mainly caused by the unconsiderable factors such as the current-induced
Oersted field, including damping, non-adiabatic torques, and extrinsic effects like
pinning. The most important and outstanding issue concerns the non-adiabatic
spin-torque component. Although the magnitude is much smaller than the adia-
batic term, this plays an important role in wall dynamics. Zhang and Li have
developed the LLG equation with the spin-transfer torque in a inhomogeneous
domain structure [58]. They derive the LLG equation with spin-transfer torque
under with adiabatic and non-adiabatic terms.

∂M

∂t
= −γM ×H eff +

α

Ms
M × ∂M

∂t
− bJ
M2

s

M ×
(
M × ∂M

∂x

)
− cJ
Ms

M × ∂M
∂x

(19.10)

The third and forth terms are, respectively, the adiabatic and non-adiabatic spin
transfer torques. The non-adiabatic term is arising from the same mechanism of
the field-like term discussed in the previous section. Microscopic description of
the spin-transfer torque for a magnetic domain wall have been carried out by
several authors [59–61]. Espscially, Tatara et al. deviate the generation formula
of the spin torque including adiabatic and nonadiabatic torque from the s-d ex-
change interaction with the spin-conservation low. They also provide an elegant
theoretical review for the theoretical study on the current-driven domain wall
motion [62]. However, at moment, theoretical description of the non-adiabatic
term does not reach a consensus. Since the non-adiabatic term is not intrinsic to
the material, it is highly sensitive to the micromagnetic structure of the wall [63].

19.9 Dynamics of magnetic domain wall under spin-current
injection

In the first half 2000s, most experimental studies were the current-driven mo-
tion of domain walls under quasi-static conditions. However, since the domain
walls must be moved on much shorter timescales, the investigation of the sub-
nanosecond dynamics of the domain wall is important. It is also important
to minimize the influence of the thermal activation due to Joule heating on
the domain-wall motion, By using a short-pulsed current, one can suppress the
heating effect. Luc Thomas et al. studied the domain wall motion due to the ap-
plication of the nano-second pulse with changing the pulse duration [65]. They
showed that the probability of dislodging a domain wall, confined to a pinning
site in a Permalloy nanowire, oscillates with the length of the current pulse,
as shown in Fig. 19.12. The oscillation period corresponds to the precessional
period of the domain wall, which is determined by the wall’s mass and the slope of
the confining potential. These results are the direct evidence of the precessional
nature of the domain-wall dynamics.

Estimation of the critical current of the domain-wall motion is an important
issue for experimental and theoretical physicists in the past few years. This is
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strongly related to the adiabatic and non-adiabatic torques. In the field-driven
domain wall motion, the existence of this propagation field is caused by the
extrinsic effect such as defects or roughness. On the other hand, the original the-
ories of spin torque considering only the adiabatic term suggested the existence
of an intrinsic critical current density, even for an ideal ferromagnetic nanowire
[59]. However, the critical current is reduced to zero by considering the non-
adiabatic term. In such cases, the domain wall dynamics becomes similar to the
field-induced dynamics. IBM group investigate the relationship between the crit-
ical current and strength of the pinning potential [48]. As shown in Fig. 19.12,
when the pinning potential is weak, the critical current can be controlled by
the magnitude of the pinning potential. When the pinning potential becomes
strong, the critical current seems to saturate, implying the existence of the in-
trinsic threshold. However, it is difficult to explain the phenomena because other
spurious effects such as pinning and the Oersted field are superimposed under
such high current densities.

The velocity of the domain wall driven by the spin current is also important
parameter, especially for applications such as racetrack memory. Zhang and Li
show that the domain wall is accelerated by the adiabatic spin torque and the
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non-adiabatic term causes the wall to continually move [58]. Thiaville et al. nu-
merically investigate the influence of the non-adiabatic term on the domain wall
velocity driven by the current [63]. According to their micromagnetic calculation,
when the damping torque is equal to the domain wall velocity linearly increases
as a function of the spin current. When the beta is larger than the damping
torque, the current-dependence of the domain wall velocity becomes similar to
the field-dependence of the velocity, where the velocity has a peak at a entertain
magnetic field (Walker break down). Hayashi et al. reported that the domain
wall velocity driven by the current exceeds 100 m/s [68]. They also showed that
the velocity shows the breakdown behavior at a certain current density.

Yamanouchi et al. demonstrated the spin-current-induced domain-wall motion
in diluted magnetic semiconductor systems using GaMnAs film for the first time
[70]. They showed that a domain wall in GaMnAs can be drive by the current
with the density of 108 A/m2, which is two or three orders of magnitude smaller
than those for metallic wires. The valued of the domain-wall velocity obtained
from the pulse-current experiment was quite consistent with the adiabatic spin-
transfer model. Moreover, the intrinsic pinning appears, however, there is an
important difference between the metallic ferromagnetic wires such as Py wire
and GaMnAs is the p-d exchange interaction and s-d exchange interaction. The
theoretical model does not consider the strong spin-orbit interaction in GaMnAs.
Thus, the detailed mechanism is still unsolved.

Recently, Koyama et al. performed the beautiful experiment about the in-
trinsically induced threshold current by using a Co/Ni wire with perpendicular
magnetic anisotropy [73]. The width dependence and the external magnetic
field dependence of the threshold current are quite consistent with the predic-
tion of the adiabatic spin transfer model. Since the threshold current in the
magnetic wires with perpendicular magnetic anisotropy becomes much lower
than in the magnetic wires with in-plane magnetic anisotropy, a highly spin-
polarized magnetic wire with perpendicular magnetic anisotropy may provide
high controllability the domain wall by spin current.

19.10 Vortex motion due to spin current injection

The magnetic vortex structure, which is stabilized in a ferromagnetic circular
disk with a diameter less than a micron as shown in Fig. 19.13, has a potential
as a unit cell of high density magnetic storage because of negligible magneto-
static interaction and high thermal stability. A magnetic vortex with a single
vortex core can be described by two topological quantities. One is the polarity,
which corresponds to the magnetization direction of the vortex core. The polarity
strongly correlates to the dynamical gyration motion of the vortex core and the
displacement of the vortex core induced by the spin current. The other one is
the chirality, which is the rotational direction of the magnetic moment whirling
either clockwise (CW) or counterclockwise (CCW). The chirality determines the
direction of the vortex shift induced by the in-plane magnetic field. Since such a
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The parabolic component is caused by the Joule heating. The inset shows the
SEM image of the fabricated device together with the probe configuration.
Reproduced partly from [75].

magnetic vortex is a kind of a confined vortex-like wall, the vortex motion due to
the spin torque can be expected. Moreover, a large spin torque will be exerted on
a vortex core of the exchange length in the order of a few nanometers. The vortex
motion due to the adiabatic spin torque has been investigated theoretically [74].
According to the theory based on adiabatic spin torque, the spin torque induces
the force normal to the applied current expressed as G×vs , where G and vs are,
respectively, the gyrovector, defined as the product of the vortex polarity and
vorticity and the drift velocity of the electron spins. The vortex displacement is
expected to be proportional to the spin current density, as shown in Fig. 19.13.
The important difference from the current-induced domain wall in a magnetic
wire is that there is no threshold current to induce the vortex displacement in
a magnetic disk. This is due to the symmetric spin structure of the magnetic
vortex.

Ishida et al. experimentally investigated the steady-state displacement of a
vortex in a Permalloy circular disk driven by a DC current. They analyzed
the small vortex motion due to DC current injection from the differential pla-
nar Hall resistance measurement combined with micro Kerr measurement. They
showed that the vortex linearly moves with increasing the DC current without
the threshold current (Fig. 19.13). It was also showed that annihilation field of
the vortex can be tuned by DC current injection.
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Kasai et al. observed the magnetic vortex resonance excited by the RF current
injection [77]. The electrical measurement based on the anisotropic magneto-
resistance with the RF current successfully detects the resonant gyration motion
of the vortex in a Permalloy circular disk. They also study the real space ob-
servation of the vortex resonance by using time resolved X-ray microscopy with
high spatial resolution less than 25 nm [78]. They estimated the spin polarization
of the Permalloy from the oscillation amplitude of the vortex core. Interestingly,
they showed that the polarity of the vortex can be reversed by the applica-
tion of the large RF current with a resonant frequency [80]. Since an extremely
large quasistatic out-of-plane magnetic field was required for switching of the
vortex core’s polarity traditionally, this novel manipulation method opens up
a novel method for efficient writing of the information in a memory device
based on the magnetic vortex. Their analysis was based on on the adiabatic
spin transfer model. Bolte et al. also performed the similar experiment using
a Py square dot [81]. They carefully analyzed the phase of the oscillation and
found that the current-induced Oersted field also plays an important role for
exciting the vortex core in the system direct RF current injection. The magni-
tude of the driving force due to the Oersted field was found to be 30 % for the
total driving force. Therefore, in the RF current excitation, optimization of the
current-induced Oersted field together with the spin-transfer torque may pro-
vide more efficient and reliable manipulation method for the dynamical vortex
motion.

19.11 Other new phenomena

Recent theoretical work suggests that the Rashba effect or Dresselhaus effect
provides a radically new mechanism for manipulating the magnetization in
ferromagnetic systems. These current-induced spin-orbit effects are caused by
the effective magnetic field induced by spin-orbit coupling between the spin of
the electron and its momentum in the structural inversion asymmetry system
[83, 84]. Electrons moving in an electric field experience a relativistic magnetic
field in the electron’s rest frame, as shown in Fig. 19.14. The direction of the spin
can be manipulated by the electric field or unpolarized currents. Recently, the
evidence of the Rashba effect has been reported in magnetic metallic systems.
Mirron et al. studied the Rashba effect in the Co/Pt wires with the perpendicu-
lar magnetic anisotropy. They studied the magnetization process of the Co/Pt
wire under the transverse magnetic field together with the Rashba field by mean
of a micro-magneto-optical Kerr effect [85]. They clearly observed the reduction
(enhancement) of the coercive field at room temperature when the Rashba field
was parallel (anti-parallel) to the transverse magnetic field (Fig. 19.14). Pi et al.
observed a change of the magnetization direction due to the Rashbe effect by
using a homodyne detection technique. The important thing is that the current
density is less than 1.0 A/cm2 which is much smaller than the critical current
density for the spin-transfer torque. The method, based on intrinsic spin-orbit
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Fig. 19.14. (a) Conceptual image of the spin torque induced by Rashba effect.
(b) Scanning electron micrograph detail of the patterned Pt/Co/AlOx wire
array and schematic vertical cross-section of the layer. (c) Differential Kerr
microscopy images recorded after current pulse injection Reproduced partly
from [85].

interaction, may become an alternative way to induce a spin torque using an
electric current.

Liu et al. performed the innovative demonstration of the magnetization
switching based on the spin Hall effect. [85] As shown in Fig. 19.15, they fabri-
cated a ferromagnetic nano dot on the top of the tungsten (W) film. By passing
the current in the W layer, they showed that the magnetization of the ferromag-
netic dot can be switched by changing the current direction. The relationship
between the magnetization and current directions can be well explained by the
spin current generated by the spin-Hall effect from the W film. Surprisingly, the
critical switching current is quite low, indicating a highly efficient manipulation
of the magnetization. However, Rashba interaction at the interface previously
described also induces similar effective magnetic field. [84] Therefore, the de-
tailed mechanism of the magnetization switching in this kind of bilayer system
is still under discussion.

Magnetic domain walls have also been manipulated by extending the similar
bilayer systems with large spin-Hall effects. [86, 87] In these experiments, the
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Ferromagnetic dot

Nonmagnetic metal
Fig. 19.15. Spin-Hall-driven
magnetization switching.

control of the domain wall chirality is key for the proper manipulation of the
domain wall. For example, as shown in Fig. 19.16, in a perpendicularly aligned
ferromagnetic thin film, two type domain walls, Neel and Bloch walls, can be sta-
bilized. However, in the film with the reduced dimension, the Neel wall becomes
more energetically stable because of its lower magneto-static interaction. The
chirality of the domain wall is determined by Dzyaloshinskii-Moriya interaction
(DMI) at the ferromagnetic and nonmagnetic metal interface, which is expressed
by Di,j ·(Si×Sj ). Here, Di,j is the DMI vector, Si and Sj are the spin moments
located on neighboring atomic sites i and j. It should be noted that the average
magnetization MDW in the domain wall is x or −x direction. By passing the
current in the nonmagnet, the spin Hall current is injected into the ferromagnet,
similarly in the aforementioned switching device. Since the effective field of the
spin Hall current on the domain wall is proportional to S ×MDW, the domain
walls moves along or against the x axis depending on its chirality.

Fernandez-Rossier et al. investigate the influence of the spin transfer effect on
the spin wave excitation and predicts that the spin-transfer torque induces the
frequency shifts of the spin wave. [88] They call this effect “spin-wave doppler
shift.” The spin-wave doppler shift is simply understood by the spin current in-
duced by the periodically-modulated domain structures. As shown in Fig. 19.17,

Néel wall

CW
CW

CCW
CCW

Bloch wall

Fig. 19.16. Two types of magnetic domain walls stablized in a perpendicularly
magnetized ferromagnetic thin film. Each domain wall has two opposite
chirality.
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effect. (b) Optical micrograph of the device consisting of Py strip with a pair
of the antennae. (c) k-normalized frequency shifts as a function of the current
density [89].

when the electrons flow from the left to the right, the precession is accelerated by
the spin-transfer torque, resulting in enhancement of the spin-wave frequency.
Oppositely, the spin-wave frequency decreases by the negative flows of the elec-
trons. Vlaminck and Bailleul have observed the spin-wave doppler effect for the
first time [89]. The relation between the frequency shift and the spin current is
simply given by the following equation.

Δf = −PμB

eMs
J · k . (19.11)

Here, k is the wave vector of the spin wave. Thus, the spin polarization can be
determined from the frequency shift.
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20 Spin torque in uniform magnetization

Y. Suzuki

20.1 Torque and torquance in magnetic junctions

In this chapter, we discuss effects of a spin current injected into a uniformly
magnetized ferromagnetic cell. In Fig. 20.1, a schematic of a typical magneto-
resistive junction with in-plane magnetization is shown. The junction consists
of two ferromagnetic layers (e.g., Co and Fe) separated by a nonmagnetic metal
interlayer (e.g., Cu, Cr, etc.) or insulating barrier layer (e.g., AlO and MgO).
With nonmagnetic metal interlayer, the junction is called as a giant magneto-
resistive (GMR) nano-pillar, and with an insulating barrier layer a magnetic
tunnel junction (MTJ).

Lateral shape of the pillar with in-plane magnetization is an ellipse or a rect-
angle with dimensions of about 200 nm ×100 nm or less. The spin angular
momentum in the fixed layer, �S1, which is opposite to the magnetization, is
fixed along the long axis of the ellipse through an exchange interaction with an
antiferromagnetic layer (e.g., PtMn). Without current injection, the spin angu-
lar momentum in the free layer, �S2, also lies along the long axis of the ellipse
because of magneto-static shape anisotropy and is either parallel (P) or antipar-
allel (AP) with respect to �S1. To induce asymmetry between the two magnetic
layers, the thickness of the free layer is often less than that of the fixed layer.

When charge current is passed through this device, the electrons are first spin-
polarized by the fixed layer and then spin-polarized current is injected into the
free layer through the nonmagnetic interlayer. This spin current interacts with
the spins in the host material by an exchange interaction and exerts a torque.
If the exerted torque is large enough, magnetization in the free layer is reversed
or continuous precession is excited.

Such an electric current induced spin torque in magnetic multilayers was
first predicted theoretically [1, 2] and subsequently observed experimentally in
metallic nano-junctions by excitation of spin waves [3] and spin-injection mag-
netization switching (SIMS) [4, 5]. The effects of the spin torque was also claimed
to be observed in a perovskite system [6]. Further, spin-injection magnetization
switching was observed in magnetic tunnel junctions (MTJs) with an Al-O bar-
rier [7], and a MgO barrier with in-plane [8, 9] and out-of-plane magnetization
[36]. SIMS was also observed in magnetic semiconductor systems [10].

To simplify the problem, let us imagine an electron system in which the
conduction electrons (s electrons) and the electrons that hold local magnetic
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Fig. 20.1. Typical structures of magnetic nano-pillars designed for spin injection
magnetization switching (SIMS) experiments. The upper magnetic layer in
the bird’s-eye-view images acts as a magnetically free layer, whereas the lower
magnetic layer is thicker than the free layer and act as a spin polarizer. The
spins in the lower layers are usually pinned to an antiferromagnetic material,
which is placed below the pinned layer (not shown), as a result of exchange
interaction at the bottom interface. Therefore, the spin polarizer layer is often
called the “pinned layer,” “fixed layer,” or “reference layer.” The interlayer
between the two ferromagnetic layers is made of insulators such as MgO or
nonmangetic metals such as Cu. Here, the diameter of the pillar is around
100 nm. The free layer is typically a few nanometers thick. The large arrows
indicate the direction of the total spin moment in each layer, and the two
small arrows indicate two different spin-torques.

moments (d electrons) interact with each other through exchange interactions
(Fig. 20.2a). The exchange interaction (s-d exchange interaction) conserves the
total spin angular momentum. Therefore, a decrease in the sub-total angular mo-
mentum of the conduction electrons equals the increase in the sub-total angular
momentum of the d electron system. In the magnetic pillar, if the spin angular
momentum of a conduction electron changes because of the s-d interaction dur-
ing transport through the free layer, this amount of angular momentum should
be transferred to the d electrons in the free layer. Therefore,

d�S2

dt
= �IS

1 − �IS
2 , (20.1)

where �S2 is the total angular momentum in the free layer. The spin currents �IS
1

and �IS
2 are obtained by integrating the spin current density flowing in the non-

magnetic interlayer or insulating barrier layer and non-magnetic capping layer,
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Fig. 20.2. (a) A simple s-d model to describe the spin-transfer effect. s-Electrons
flow among the localized d-electrons and contribute to a charge and spin cur-
rent, while d-electrons create a single large local magnetic moment because of
strong d-d exchange interaction. s-d exchange interaction causes a precession
of s- and d-electrons. Since d-electrons create a single large spin moment, the
precession angle of the d-electron system is considerably smaller than that
of s-electrons. (b) The injected spin shows a precession in a ferromagnetic
layer as a consequence of an exchange interaction with d-local moments.

respectively, over the cross-sectional area of the pillar. Since the free layer is
very thin, we neglected the spin orbit interaction in it. Equation (20.1) indicates
that a torque can be exerted on the local angular momentum as a result of spin-
transfer from the conduction electrons. This type of the torque, which appears
in Eq. (20.1), is called the “spin-transfer torque.”

Slonczewski showed an intuitive way to evaluate the spin-transfer torque in
MTJs [11, 12] by evaluating the spin currents inside ferromagnetic layers. We
assume that the fixed layer is sufficiently thick; therefore, at cross-section P in
the fixed layer (see Fig. 20.2(b)), the conducting spins are relaxed and aligned
parallel to �S1. Those spin-polarized electrons are injected into the free layer. The
injected spins are subjected to an exchange field made by the local magnetization
and show precession motion. Here, we also assume that at cross-section Q inside
free layer, the spins of the conducting electrons have already lost their transverse
spin component on average because of the decoherence of the precessions and
the spins have aligned parallel to �S2 on average. Therefore, the spin currents at
P and Q, �I ′S1 and �I ′S2 , are parallel to �S1 and �S2, respectively. Since the spins of
the conduction electrons at P and Q are either the majority or minority spins of
the host material, the total charge current in the MTJ can be expressed as a sum
of the following four components of the charge current as shown in Fig. 20.3:
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Fig. 20.3. Circuit model
of a magnetic tunnel
junction (after Ref. [12])

IC = IC
++ + IC

+− + IC
−+ + IC

−− (20.2)

Here, the suffixes + and − indicate the majority and minority spin channels,
respectively. For example, IC

+− represents a charge current flow from the fixed
layer minority spin band into the free layer majority spin band. These charge
currents are expressed using the conductance for each spin sub channel, G±±.

⎧⎪⎨
⎪⎩
IC
±± = V G±± cos2

θ

2
IC
∓± = V G∓± sin2 θ

2

. (20.3)

Here, V is the applied voltage. The angle dependence of the conductions can
be derived from the fact that the spin functions in the free layer are |maj .〉 =
cos (θ/2) |↑〉 + sin (θ/2) |↓〉 for the majority spins and |min .〉 = sin (θ/2) |↑〉 −
cos (θ/2) |↓〉 for the minority spins, and those in the fixed layer are |↑〉 and |↓〉,
respectively. Since the spin quantization axes at P and Q are parallel to �S1 and
�S2, respectively, the spin currents at P and Q are obtained easily as follows:

⎧⎪⎨
⎪⎩
�I ′S1 =

�

2
1
−e

(
IC
++ + IC

+− − IC
−+ − IC

−−
)
�e1

�I ′S2 =
�

2
1
−e

(
IC
++ − IC

+− + IC
−+ − IC

−−
)
�e2

, (20.4)

where unit vectors �e1 and �e2 are parallel to the majority spins in the fixed layer
and the free layer, respectively. −e and �/2 = h/ (4π) are charge and angular
momentum of a single electron, respectively. Now, we apply the total angular
momentum conservation between the P and Q planes, i.e.,

(
d

dt

(
�S1 + �S2

))
ST

= �I ′S1 − �I ′S2 . (20.1’)
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Here, we include angular momentum outside the planes since �S1 and �S2 move
as macro spins. Then, after a straightforward calculation, the total current and
spin-transfer torque are obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IC =

(
G++ + G−− + G+ − + G− +

2
+

(G++ + G−−) − (G+ − + G− +)

2
�e2 · �e1

)
V

=

(
GP + GAP

2
+

GP − GAP

2
cos θ

)
V

(
d�S2

dt

)
ST

=
�

2

1

−e

(
G++ − G−−

2
+

G+ − − G− +

2

)
(�e2 × (�e1 × �e2)) V

= TST (�e2 × (�e1 × �e2)) V

,

(20.5)
The first equation in Eq. (20.5) shows the cos θ dependence of the tunnel con-
ductance. The second equation shows the sin θ dependence of the spin-torque
(note that |�e2 × (�e1 × �e2)| = sin θ). Slonczewski called TST the “torquance”,
which is an analogue of “conductance.” In particular, in MTJs, the spin-torques
should be bias voltage dependent because G±± is bias voltage dependent. The
direction of the spin-transfer torque is shown in Fig. 20.1 (a) for TST < 0. This
direction is the same as that in CPP GMR junctions (current perpendicular to
the plane GMR junction). For GMR junction, we should replace second equation
in eq. (20.5) by following equation,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d�S2

dt

)
ST

= g (θ) IC

−e
�

2
�e2 × (�e1 × �e2)

g (θ) = 2
[
−4 +

(
P− 1

2 + P
1
2

)3

(3 + cos θ)/4
]−1

, (20.5’)

where IC/ (−e) is the number of electrons flowing per unit time (IC is a charge
current). g(θ) expresses the efficiency of spin-transfer obtained for free electron
case [1] and is dependent on the spin polarization, P , of the conduction electron
in the ferromagnetic layers and the relative angle between �S1 and �S2, i.e., θ.

20.2 Voltage dependence and field like torque

One of the important features in the MTJs is that the torque has a bias voltage
dependence because G±± has bias voltage dependence. In Fig. 20.4 (a), the
theoretically predicted spin-transfer torque is plotted as a function of the bias
voltage by fine lines [13]. As shown in the figure, the bias dependence of the spin-
transfer torque is neither monotonic nor symmetric. The torque will be much
higher at a large negative bias even if the magnetoresistance is smaller at such
a high bias. This slightly complicated behavior can be explained as follows from
the second line in Eq. (20.5). Assume that the FM1 and FM2 are made of the
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Fig. 20.4. Bias dependence of the spin-torques. (a) Bias dependence of the spin-
transfer torque. (b) Bias dependence of field-like torque. Fine curves were
obtained from the theoretical model calculations (after Ref. [13]) with dif-
ferent spin splitting parameters, ε. The points show the experimental results
obtained for a CoFeB/MgO/CoFeB MTJ by exploiting the spin-torque diode
effect (after Ref. [15]).

same material. Now if we apply voltage, due to the symmetric conditions for
tunneling, the conductances G++ and G−− do not depend on the sign of the
voltage. Thus the contribution to the torque from (G++ −G−−) × V term is
odd with respect to the voltage. The conductances, G+− and G−+ are equal
at 0 bias. For positive voltage, G+− decreases, where as G−+ increases, thus
giving a positive contribution to the spin-torque. For negative voltage, due to
the symmetry, we have opposite situation and (G+− −G−+) changes sign. But
as the voltage is also negative, the net contribution is again positive. Therefore,
(G+− −G+−) × V term is an even function of the voltage. This combination
of odd and even terms, gives an asymmetry in the spin-torque as a function of
voltage.

Sankey et al. [14], and Kubota et al. [15] experimentally observed the bias de-
pendence of the torques. In Fig. 20.4(a), the experimentally obtained bias voltage
dependence of the spin-transfer torque in a CoFeB/MgO/CoFeB magnetic tun-
nel junction is plotted by large circles [15]. The torque was measured by using
the “spin-torque diode effect,” which will be explained later in this chapter. The
experimental observations [14, 15] essentially agree with the model calculation.
Recent measurements also provide high accuracy torque values avoiding possible
considerable error in high bias region [16].

The direction of �S2 may change in two different ways. One is along the
direction parallel to the spin-transfer torque, (�e2 × (�e1 × �e2)). The other is
the direction parallel to (�e1 × �e2) (see Fig. 20.1a). If the torque is parallel to
(�e1 × �e2), it has the same symmetry as a torque exerted by an external field.
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Therefore, the latter torque is called a field-like torque. It can also be called an
“accumulation torque” based on one of its possible origins, or a “perpendicular
torque” based on its direction with respect to the plane that includes both �e1

and �e2.
It has been pointed out that one of the important origins of the field-like

torque in MTJs is the change in the interlayer exchange coupling through the
barrier layer at a finite biasing voltage [13, 17]. In Figure 20.4(b), the theoretic-
ally obtained strength of the field-like torque is plotted as a function of the bias
voltage [13]. As theoretically predicted for the symmetrical MTJs, the field-like
torque is an even function of the bias voltage. Its strength itself is less than 1/5
that of the spin-transfer torque. The experimental results obtained so far [15]
seems to agree with this prediction.

The field-like torque could originate from other mechanisms that are similar to
those responsible for the “β-term” in magnetic nano wires. Several mechanisms,
such as spin relaxation [18, 19], Gilbert damping itself [20], momentum transfer
[21], or a current induced ampere field have been proposed for the origin of the
β-term

20.3 Landau-Lifshitz-Gilbert (LLG) equation in Hamiltonian form

To treat the dynamic property of the free layer spin angular momentum, here,
we introduce the Landau-Lifshitz-Gilbert (LLG) equation including the spin-
transfer torque and field-like torque as follows [1, 12, 22]:

d�S2

dt
= γ�S2× �Heff−α�e2× d

�S2

dt
+TST (V ) V �e2×(�e1 × �e2)+TFT (V )V (�e2 × �e1) ,

(20.6)

The first term is the effective field torque; second, Gilbert damping; third, spin-
transfer torque; and fourth, field-like spin-torque. �S2 = S2�e2 is the total spin
angular momentum of the free layer and is opposite to its magnetic moment,
�M2. If we may neglect a contribution from an orbital moment, μ0

�M2 = γ�S2,
where μ0 = 4π×10−7 [H / m] is the magnetic susceptibility of vacuum and γ is
the gyromagnetic ratio, where γ < 0 for electrons (γ = −2.21× 105 [m / A · sec]
for a free electron). �e2 (�e1) is a unit vector that expresses the direction of the
spin angular momentum of the free layer (fixed layer). For simplicity, we neglect
the distribution of the local spin angular momentum inside the free layer and
assume that the local spins within each magnetic cell are aligned in parallel and
form a coherent “macrospin” [23, 24]. This assumption is not strictly valid since
the demagnetization field and current-induced Oersted field inside the cells are
not uniform. Such nonuniformities introduce incoherent precessions of the local
spins and cause domain and/or vortex formation in the cell [24–26]. Despite
the predicted limitations, the macrospin model is still useful, because of both
its transparency and its validity for small excitations. The effective field, �Heff ,
is the sum of the external field, demagnetization field and anisotropy field. It
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should be noted that the demagnetization field and the anisotropy field depend
on �e2. �Heff is derived from the magnetic energy, Emag, and the total magnetic
moment, M2, of the free layer:

�Heff =
1

μ0M2

∂Emag

∂�e2
. (20.7)

The first term in Eq. (20.6) determines the precession motion of �S2. In the second
term, α is the Gilbert damping factor (α > 0, α ≈ 0.007 for Fe for example).
V is the applied voltage, TST (V ) = �

2
1
−e

1
2 (G++ −G−,− +G+− −G−+) is the

“torquance” that was defined in the second line in Eq. (20.5), while TFT (V ) is
an unknown coefficient that expresses the size of the “field-like torque”.

The directions of the torques are illustrated in Fig. 20.5. The effective field
torque promotes a precession motion of �S2 around − �Heff , while the damping
torque tends to reduce the opening angle of the precession smaller. By the effect-
ive field and damping torques, �S2 exhibits a spiral trajectory and finally aligns
antiparallel to the effective field if a junction current, IC , is absent (Fig. 20.5a).
It must be noted that the direction of �S2 is opposite to that of its magnetic mo-
ment. Direction of the spin-transfer torque is also illustrated in Fig. 20.5(b) for

Precession

Torque

Damping Torque(a) (b)

Spin Transfer

Torque

VTSTe2 × (e1 × e2)⃗ ⃗ ⃗ 

⃗ Heff 

⃗ ⃗ ⃗ −αγe2 × (S2 × Heff )

⃗ ⃗ γS2 × Heff 
⃗ S2

⃗ S2

⃗ e2 ⃗ e2 

Z Z

Fig. 20.5. Illustration of the direction of each torque and trajectory of the free
layer spin momentum for a nano-pillar with perpendicular remnant mag-
netization. (a) In the absence of an electric current, the precession of the
free layer spin is damped. (b) Under an electric current, if the spin-transfer
torque overcomes the damping torque, the precession of the free layer spin
is amplified.
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the case where both Tst ·V is negative. If the current, V, is sufficiently large, the
spin-transfer torque overcomes the damping torque, resulting in negative effect-
ive damping. This negative damping results in an increase in the opening angle
of the precession motion, i.e., an amplification of the precession takes place. De-
pending on the angular dependence of the effective damping, the amplification of
the precession motion leads to a limit cycle (spin-transfer oscillation (STO)) or to
a total magnetization reversal (spin-injection magnetization switching (SIMS)).

To analyze the dynamics of the macro-spin system, we develop Hamilton’s
equation of motion of the system. Using spherical coordinate, i.e. (φ, θ), La-
grangian and Rayleigh’s dissipation function of the LLG equation (without spin
torques) are expressed as follows [27];

⎧⎨
⎩
L
(
φ, φ̇, θ, θ̇

)
= S2φ̇ (cos θ − 1)− Emag (φ, θ)

W
(
φ̇, θ̇
)

=
α

2
S2

(
θ̇2 + φ̇2 sin2 θ

) . (20.8)

The kinetic energy term in the Lagrangian is known as a spin Berry phase
term. In classical mechanics, this term also results equation of motion of angular
momentum. From above Lagrangian, we may find following Hermitian conjugate
valuables.

{
x1 ≡ φ
x2 ≡ S2 (cos θ − 1)

. (20.9)

Using this new coordinate system, Eq. (20.6) can be rewritten as,

ẋi =
2∑

j=1

εij (∂jEmag − TFTV ∂j (�e2 · �e1) + αS2ẋj) + S−1
2 TSTV ∂

i (�e2 · �e1) ,

(i = 1, 2) , (20.10)

where

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂i ≡ ∂

∂xi
, ∂i ≡

2∑
j=1

gij∂j

(
εij
) ≡ ( 0 1

−1 0

)

(gij) =
(

sin2 θ 0
0 1

S2 sin2 θ

)
=
(
gij
)−1

. (20.11)

Here, ε is the Levi-Civita’s symbol and g a metric tensor. Explicit form of Eq.
(20.10) with respect to ẋi can be obtained easily.
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ẋi = F i,

where

⎧⎪⎪⎨
⎪⎪⎩
F i ∼=

2∑
j=1

εij∂jEmag+FT − αS−1∂iEmag+ST

Emag+FT ≡ Emag − TFTV (�e2 · �e1)
Emag+ST ≡ Emag − α−1TSTV (�e2 · �e1)

. (20.12)

Here, terms with α2, αTST and αTFT are neglected. We also assumed ∂jTFT =
∂jTST = 0. In Eq. (20.12), we clearly see that the spin-transfer term that is a con-
sequence of the spin-current, directly affects to the damping term. This Hamilton
type equation of motion on the orthogonal curvilinear coordinate is useful to
obtain analytic understanding of the dynamics under spin-transfer torque.

20.4 Small amplitude dynamics and anti-damping
20.4.1 Linearized LLG equation

Equations (20.6), (20.10) and (20.12) are all equivalent and describes non-linear
response of a macro spin in the junction under an applied magnetic field and a
voltage. Before a discussion about non-linear behavior like switching, we derive
a linearized equation of motion and discuss infinitesimal excitations [22].

The equilibrium point of the macro spin,
(
x1

0, x
2
0

)
, under static external field

and dc bias voltage, (Hext
0 , V0), can be obtained by solving,

(
∂2Emag − TFTV0∂2 (�e2 · �e1) + S−1TSTV0 ∂

1 (�e2 · �e1)
−∂1Emag + TFTV0∂1 (�e2 · �e1) + S−1TSTV0 ∂

2 (�e2 · �e1)

)∣∣∣∣
(x1

0,x2
0)

= 0. (20.13)

The linearized equation of motion is obtained taking deviation
from the equilibrium point as new coordinates, i.e.

(
x1 (t) , x2 (t)

)
=(

x1
0 + δx1 (t) , x2

0 + δx2 (t)
)
.

δẋi (t) =
2∑

j=1

δxj (t) ∂jF
i
∣∣
(x1

0,x2
0)

+
∂F i

∂V
δV (t)

∣∣∣∣
(x1

0,x2
0)

, (20.14)

where δV (t) is a time dependent part of the bias voltage. The solution of
the linearized LLG equation (20.14) is a forced oscillatory motion around the
equilibrium point, driven by a small rf voltage with frequency ω. Using Fou-
rier transformation, δx (t) =

∫
dωδx (ω) e−iωt, above equation can be solved as

follows:

(
δx1 (ω)
δx2 (ω)

)
∼= 1

(ω2 − ω2
0 + iωΔω)

(
iω −Ω22

Ω11 iω

)(−S−1
2 T ′

FT

T ′
ST sin2 θ

)
δV (ω) , (20.15)



392 Spin torque in uniform magnetization

where ⎧⎨
⎩

Ω̂ ≡ (Ωi,j) ≡ ∂j∂iEmag

T ′
FT ≡ ∂

∂V TFTV
T ′

ST ≡ ∂
∂V TSTV

.

Here, for a simplicity, we assumed an orthogonal symmetry (Ωmag,12 =
Ωmag,21 = 0) of the system and took a north pole of the spherical coordinate
parallel to the spin direction of the fixed layer, i.e. �e1 = �ez and (�e2 · �e1) = cos θ.
The resonance frequency, ω0, and the full width at half maximum (FWHM) of
the resonance, Δω, are given by following equations.

⎧⎪⎨
⎪⎩
ω2

0
∼= det

[
Ω̂
]

= det [∂j∂iEmag]

Δω ∼= αS−1
2
�∇ · �∇Emag+ST = αS−1

2

2∑
i=1

∂i∂
iEmag + 2S−1

2 TSTV0 cos θ
.

(20.16)
Equation (20.15) shows that both the spin-transfer torque and the field-like

torque can excite a uniform mode (FMR mode) in the free layer. However, the
phases of the FMR excitations differ by 90◦. This difference in the precession
phase is a result of the different directions of the respective torques (Fig. 20.1).
In addition, the width of the resonance, Δω, is affected only by the spin-transfer
torque exerted by the direct voltage, V0. This is the (anti)damping effect of
the spin-current injection. For a large dc bias, if Δω becomes negative, the
system is no more stable and a magnetization switching or an auto-oscillation
will take place. The field-like torque exerted by the direct voltage, V0, changes
the resonance frequency, ω0, through a change in an equilibrium point.

20.4.2 Spin-torque diode effect

Both spin-transfer torque and field like torque may excite a uniform mode of the
magnetic free layer in magnetoresistive junctions. We also may observe it only
by measuring a dc voltage across the junction as a function of the frequency of
the applied rf voltage.

In Fig. 20.6, a mechanism of the rectification effect in magnetic tunnel junc-
tions is schematically explained. To observe the spin-torque diode effect, we may
apply an external field to set a specific relative angle between the free layer
and fixed layer magnetizations. In Fig. 20.6(b), we show a case in which the
free layer and fixed layer magnetizations are in-plane but perpendicular to each
other. We then apply an alternative current to the junction. A negative current
induces a preferential parallel configuration of the spins. Thus, the resistance
of the junction becomes smaller and we observe only a small negative voltage
across the junction for a given current (Fig. 20.6a). A positive current of the
same amplitude induces a preferential antiparallel configuration and the resist-
ance becomes higher. We observe a larger positive voltage appearing across the
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Fig. 20.6. Schematic explanation of the spin-torque diode effect: (a) negative
current; (b) null current; (c) positive current (after Ref. [28]).

junction (Fig. 20.6c). As a result, we observe a positive voltage on average. This
is the spin-torque diode effect. This effect can be large if the frequency of the
applied current matches the FMR frequency of the free layer. In other words,
this effect provides a sensitive FMR measurement technique for the nano-pillar
moment excited by the spin-torque and provides a quantitative measure of the
spin-torques.

From equation (20.15), an applied rf voltage across the MTJ of δV cosωt
may cause a precession in the free layer magnetization with the same frequency,
δθ (t) = δθ0 cos (ωt+ φ). This also results in an oscillation of the junction re-
sistance at the same frequency δR (t) = δθ (t) ∂θR (θ). The voltage across the
junction induced by an application of the rf voltage is obtained by multiplying
oscillating part of the resistance and the current, i.e.;

δθ0 cos (ωt+ ϕ) (∂θR)
δV cosωt

R
= δθ0 (∂θR)

δV

2R
(cosϕ+ cos (2ωt+ ϕ)) .

(20.17)
Here, the frequencies of the induced voltages are zero (dc) and 2ω. This implies
that, under spin-torque FMR excitation, the MTJs may possess a rectification
function and a mixing function. Because of these new functions, A. A. Tulapulkar
et al. referred to these MTJs as spin-torque diodes and to these effects as spin-
torque diode effects [28]. These are nonlinear effects that result from two linear
responses, i.e. the spin-torque FMR and Ohm’s law.

When the MTJ is placed at the end of a waveguide, the explicit expression of
the rectified dc voltage under a small bias voltage is given as follows:

Vdc,out
∼= η

∂θ log (R (θ))
2S2 sin θ

Re

[−iωT ′
ST sin2 θ + S−1

2 T ′
FT Ω11

ω2 − ω2
0 + iωΔω

]
δV 2 (20.18)

where δV is the rf voltage amplitude applied to the emission line and η is the
coefficient used to correct the impedance matching between the MTJ and the
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waveguide with a characteristic impedance of Z0, where

η =
(

2R (θ)
R (θ) + Z0

)2

. (20.19)

If the emission line and the MTJ include some parasitic impedances (capacitance
in most cases), we should employ an appropriate value of η to correct this effect
[15].

This is a type of homodyne detection and is, thus, phase-sensitive. The motion
of the spin, illustrated in Fig. 20.6, corresponds to that excited by the spin-
transfer torque at the resonance frequency. However, the motion of the spin
excited by the field-like torque shows a 90◦ difference in phase. As a consequence,
only the resonance excited by the spin-transfer torque can rectify the rf current
at the resonance frequency. In Fig. 20.7, the dc voltage spectra predicted for the
spin-transfer torque excitation and for the field-like torque are both shown. The
spectrum excited by the spin-transfer torque exhibits a single bell-shaped peak
(dashed line), whereas that excited by the field-like torque is of a dispersion type
(dotted line). This very clear difference provides us with an elegant method to
distinguish a spin-transfer torque from a field-like torque [28].

Figure 20.8 shows a schematic illustration of the measurement setup for
spin-torque diode effect measurements with a cross-sectional view of the MTJ
employed in ref. [28]. The rf voltage was applied through a bias-T from a high-
frequency oscillator and the dc voltages across the MTJ was detected using a dc
nanovoltmeter.
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Fig. 20.7. Spin-torque diode spectra for a CoFeB/MgO/CoFeB MTJ. Data
(closed dots) are well fitted by a theoretical curve that includes contribu-
tions from both the spin-transfer torque and the field-like torque. The inset
shows an rf noise spectrum obtained for the same MTJ (after Ref. [28]).
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In Fig. 20.7, an example of the diode spectrum (closed dots) is shown together
with a fitting curve based on the theoretical expression (Eq. (20.18)). The data
were taken at room temperature (RT) without applying dc bias voltage. The
observed spectrum has an asymmetrical shape and was well fitted by Eq. (20.18).
By this fitting, the spectrum was decomposed to a contribution from the spin-
transfer term and from the field-like term. The intensity and even the sign of the
field-like term contribution at zero bias varied from sample to sample, while those
of the spin-transfer term were reproducible. Therefore, it is thought that the
contribution from the field-like term at zero bias voltage is very sensitive to small
defects in the magnetic cell. By taking a sample that does not show a contribution
from the field-like term at zero bias, Kubota et al. have investigated the dc bias
voltage dependence of the spectra [15]. The results, that were already shown in
Figure 20.4, were well explained by band theory, in which bias-dependent spin-
subchannel conductivities and bias-dependent interlayer magnetic coupling were
taken into account [13].

An expression for the rectified dc voltage at the peak of the spectrum for
θ = π/2 is shown below together with that for p − n junction semiconductor
diodes:

(Vdc,out)peak =

⎧⎪⎪⎨
⎪⎪⎩

1
4
GP −GAP

GP +GAP

δV 2

Vc
; (spin - torque diode)

1
4

δV 2

kBT/e
; (p - n junction semiconductor diode)

, (20.20)

where kBT/e is the thermal voltage (25mV at RT). For both cases, the recti-
fied voltage is a quadratic function of the applied rf voltage. Therefore, these
detectors are referred to as quadratic detectors. Output voltage is scaled by the
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critical switching voltage, Vc, for the spin-torque diode and by kBT/e for the
p−n junction semiconductor diode. A typical critical switching voltage for MTJs
was about 300mV and was about 10 times larger than kBT/e for the experiments
in ref. [8, 28]. Therefore, the output of the spin-torque diode was smaller than
that of the semiconductor diode. An reduction of the critical switching voltage
by using perpendicular magnetic anisotropy and magnetic field may enhance the
performance of the spin-torque diode [29].

20.5 Spin transfer magnetization switching

In Fig. 20.9, a typical fabrication process for nano-pillars from a magnetic tunnel
junction (for research purposes) is shown. First, (a) a magnetic multilayer in-
cluding a magnetic tunnel junction is sputter deposited. The multilayer consists
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Fig. 20.9. An example of the sample fabrication process for a SIMS (spin in-
jection magnetization switching) experiment. (a) A magnetic multilayer
including the tunneling barrier is first deposited under vacuum by a sputter-
ing method. For memory applications, the film is deposited onto a C-MOS
and wiring complex after a chemical-mechanical planarization process. (b)
After resist coating is applied using a spin coater, the resist is patterned by
the electron beam lithography. Using the patterned resist, a part of the film
is etched by ion beam bombardment. (c) Interlayer insulator (SiO2) depos-
ition using a self-alignment technique. (d) A lift-off process to open a contact
hole. (e) Deposition of the upper electrode.
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Fig. 20.10. A typical SIMS (spin injection magnetization switching) hysteresis
loop obtained for a CoFeB/MgO/CoFeB MTJ (magnetic tunnel junction)
(After Kubota et al. [8]). The junction area, free layer thickness, resistance
area product, and MR ratio are 100 nm x 200 nm, 3 nm, 3Ωμm2, and about
100 %, respectively. Measurements were performed at room temperature
using electric current pulses of 100 msec duration. The resistance of the
junction was measured after each pulse to avoid the effect of the heating on
the sample resistance.

of a bottom electrode layer, an antiferromagnetic exchange bias layer (MnPt,
for example), a synthetic antiferromagnetic pinned layer (CoFeB/Ru/CoFe, for
example), an MgO barrier layer, a magnetic free layer (CoFeB, for example),
and a capping layer. The multilayer is then covered by a resist layer using a spin
coater and transferred to an electron beam lithography machine. (b) After ex-
posure and development, the sample with micro patterned resist is transferred
to an ion beam milling machine to remove parts of the multilayers and form
magnetic pillars. (c) The outer side of the pillar is filled by a SiO2 insulating
layer. (d) The SiO2 layer on the junction is lifted-off with the resist by using
a chemical solvent and ultrasonic scrubbing. Finally, (e) the top electrodes are
deposited onto the junction under the vacuum.

A hysteresis loop obtained for a magnetic nano-pillar comprising a
CoFeB/MgO/CoFeB tunneling junction is shown in Fig. 20.10 [8]. The pillar
has in-plane magnetization and elliptical cross section with the dimensions 100
nm x 200 nm. A current was applied as a series of 100 msec wide pulses. In
between the pulses, the sample resistance was measured to check the magnetiza-
tion configuration while the pulse height was swept between −1.5 mA and +1.5
mA. By this method, the effect of temperature increase during the application
of the current on the resistance measurement could be eliminated. For the data
shown in Fig. 20.10, the hysteresis measurement started at a zero pulse height
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for the P state (285 Ω). An increase in the pulse height caused a jump from the
P state to the AP state (560 Ω) at +0.6 mA. Further increase in the pulse height
followed by a reduction to zero current did not affect to the state. Subsequently,
negative pulses were applied to the sample. At -0.35 mA, the sample switched its
magnetization from the AP state to the P state. The average switching current
density was about 6 × 106 A/cm2. An intermediate resistance states between
the P and the AP states were not observed during either of the two switching
events: the switching events were always abrupt and complete. The slope of the
hysteresis loop at the switching point is only due to discrete measurement points
that were not regularly placed because of the large change in the resistance. P
to AP and AP to P switching events occurred at different current levels because
of the dipole and the so-called orange peel coupling field from the pinned layer.
In the experiment, an external field of -4.8 kA/m was applied to cancel these
coupling fields. After the cancellation of the coupling fields, the hysteresis still
exhibited a certain shift because of the following intrinsic mechanisms. For the
MTJ nano-pillars, the asymmetrical voltage dependence of the torque, which
was discussed in the previous section, causes a horizontal shift in the hyster-
esis curve. For the GMR nano-pillars, in contrast, the angle dependence of the
spin-transfer efficiency results in a significant shift in the hysteresis loop.

From Eq. (20.16), critical current to make parallel (P) or antiparallel
configuration (AP) unstable can be obtained putting Δω = 0.

Ic0 =
Vc0

R
=
S2Δω0

2RTST
, (20.21)

where Δω0 is the linewidth for zero bias voltage. Above this voltage, P or AP
configuration becomes unstable and magnetization switching or auto-oscillation
takes place.

Many efforts have been done to reduce threshold current of the switching. The
first attempt is to reduce total spin angular momentum, S2, in the free layer.
SIMS requires effective injection of spin angular momentum that is equal to that
in the free layer. Therefore, reduction in S2 results a reduction in Ic0. Albert
showed that threshold current of the SIMS is proportional to the free layer thick-
ness [30]. Reduction in the free layer thickness reduces S2 and Ic0. S2 can be also
reduced by reducing the magnetization of the ferromagnetic material. Especially
in the nano-pillar with in-plane magnetization, since magnetization also affects
to the size of the anisotropy field, Ic0 is a quadratic function of the magnet-
ization. Yagami et al. reduced Ic0 considerably by changing a material of the
free layer from CoFe (1.9× 106 A/m) to CoFeB (0.75× 106 A/m) and obtained
1.7× 107 A/cm2 [31]. Second attempt is to use double spin filter structure. This
method was originally proposed by Berger [32]. By using this structure, Huai et
al. observed substantial reduction of the threshold current to 2.2 × 106 A/cm2

[33]. Third attempt is to use perpendicular magnetic anisotropy, which can re-
duce the size of the anisotropy field [34]. Yakata et al. pointed that a free layer
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with a Fe rich composition in FeCoB/MgO/FeCoB stacking posses a perpen-
dicular crystalline anisotropy and results in reduction of switching current [35].
The perpendicular crystalline anisotropy partially cancels demagnetization field
and reduces size of the anisotropy field. By this method, Nagase el al. obtained
a significant reduction of the threshold current under the required thermal sta-
bility factor for the MTJ nano-pillars with the CoFeB/[Pd/Co]x2/Pd free layer
and FePt/CoFeB pined layer [36].

In Fig. 20.11, a trajectory for SIMS (a) is compared with trajectory for a mag-
netic field-induced magnetization switching (b) in a nano-pillar with in-plane
magnetization. The figure also illustrates the magnetic potential shapes during
switchings. In the absence of a current and an external magnetic field, the poten-
tial shows a double minimum for parallel (P) and antiparallel (AP) configurations
of the local spin. For a particular case of SIMS, the spin-transfer torque does not
affect the shape of the magnetic potential but amplifies the precession thereby
providing energy to the local spin system. Once the orbital crosses the equator,
it converges rapidly to opposite direction since the spin-transfer torque extracts
energy from the local spin system. In other words, the spin-transfer torque amp-
lifies the precession in the front hemisphere, while enhancing the damping in the
back hemisphere. In contrast to this process, the external magnetic field deforms
the magnetic potential and the minimum on the P side disappears. Therefore,
the local spin turns toward AP side. The local spin system, however, keeps excess
energy in the back hemisphere. As a result, it cannot stop at once and shows
precessional motion (ringing) in the back hemisphere.
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Fig. 20.11. Comparison of the magnetization processes driven by (a) spin-
transfer torque and (b) external magnetic field for in-plane magnetized
nano-pillars.
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The interesting aspects of the spin injection magnetization switching (SIMS)
phenomenon are the small energy consumption and very high precession speed.
To investigate the high-speed properties of the SIMS, high speed pulse and time
domain high speed observations have been performed [35–41]. The first direct
observation of the precession switching was performed by Krivorotov et al. for
a Ni80Fe20 4 nm/Cu 8 nm/Ni80Fe20 4nm GMR nano-pillar at 40K [38]. A free
layer was micro fabricated in an elliptical shape with dimensions of 130×60 nm2.
To obtain reproducible trajectories for adiabatic switching, they maintained the
initial angle between the fixed layer spin and the free layer spin at about 30◦

by using an antiferromagnetic under layer to pin the spins in the fixed layer.
Since the GMR nano-pillars provide a very small output voltage, the authors
averaged more than ten thousands of traces using a sampling oscilloscope with
a 12-GHz bandwidth. After a background subtraction process, they obtained
a transient signal that corresponds to the adiabatic switching of the free layer
spin, as shown in figure 12 [38]. The precession of the free layer spin was clearly
observed. The amplitude of the precession was amplified in the early stage of the
switching and was then damped before the transition from the P state to the AP
state at around 2 nsec. The observed behavior was slightly different from that
predicted by the simple macrospin theory according to which continuous ampli-
fication of the precession should be observed until the transition. Krivorotov et
al. explained this deviation by a dephasings among the traces. If the precession
contains phase noise, the averaging process carried out by the sampling oscillo-
scope decreases the observed precession amplitude. The authors stated that the
spectrum linewidth of about 10 MHz obtained from the dephasing rate agreed
with that obtained from precession noise spectrum measurement. This fact im-
plies that in their sample the phase noise dominated the spectrum linewidth of
the precession. Krivorotov et al. also clearly showed [36] that, for large applied
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Fig. 20.12. Time resolved
measurement of the spin injection
magnetization switching (SIMS)
at 40 K. The observation was
performed using a sampling
oscilloscope. More than ten
thousands traces were averaged
for a NiFe/Cu/NiFe nano-pillar
with elliptical cross-sectional
dimensions of 130× 60 nm2. The
initial angle between the free layer
spin and the fixed layer spin was
about 30◦. (After Krivorotov et al.
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current, the switching time becomes multiples of the precession period (200 psec,
for example) as that was already pointed by Devolder et al. from their high speed
pulse measurements [43]. This also means that only one extreme point out of
two in the orbital (see Fig. 20.11 (a)) was responsible for the switching. They
explained this fact from their asymmetrical configuration of the magnetization.
Tomita et al., showed a high speed switching for the nano-pillar with perpen-
dicular magnetization (Fig. 20.13) down to 500 psec [44]. This is a very high
speed switching as for the perpendicular magnetization. They also found about
150 psec initial delay of the switching and attributed it to a possible domain
formation/annihilation process.

20.6 Large amplitude dynamics and auto-oscillation

From the beginning, it was thought that the electric current inside a ferromag-
netic material may interact with the collective modes of spins and excite spin
waves [1, 2, 45]. Actually, before the confirmation of the spin injection magnetiza-
tion reversal (SIMS), spin dynamics in magnetic nano-pillars resulting from spin
injection were observed as anomalies in derivative conductance spectra [3, 4, 46].
The first and complete observation of microwave emission from magnetic nano-
pillars with in-plane magnetization was performed by Kiselev et al. in 2003 [47].
They employed Co/Cu/Co GMR nano-pillar with a 130 x 70 x 2 nm free layer
and applied a direct current (more than I)

c0 and an external magnetic field (more
than Hc) at the same time. The external field preferred parallel (P) configuration
of the spins, while the direct current preferred antiparallel (AP) configuration.
Under such a situation, the P state is unstable and the switching from P to AP
state is prevented by the external field. As a result, the free layer spin is driven
into a cyclic trajectory (limit cycle) with frequency typically in GHz range. Be-
cause of the GMR effect, the resistance of the pillar also oscillates with the
continuous precession of the free layer spins. The oscillation of the resistance
under a direct current bias results an rf (radio frequency) voltage that can be
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detected by a spectrum analyzer or rf diode. For current up to 2.4 mA, the spec-
trum intensity normalized by the square of the current is almost unchanged. The
peak frequency matches with the FMR (ferromagnetic resonance) frequency of
the free layer and does not shift significantly under this magnitude of the current.
A further increase in the applied current, however, results in a strong increase
in the peak height and significant lowering of the peak frequency (red shift).
Such behavior was understood as the spontaneous excitation of the precession
motion of the macro spin. The maximum rf power obtained was about several
tens of pW. This is the spin-transfer oscillation (STO), a manifestation of the
spin-current.

Clearer evidence of the on-set of auto-oscillation in an MTJ is shown in
Fig. 20.14 [48]. When the injection current is less than Ic,0, an increase in the in-
jection current results in a linear reduction in the peak width, as it was explained
previously from Eq (16) (Fig. 20.14b). The threshold current (Ic,0), which is in-
dicated by an arrow in Fig. 20.14(b), corresponds to the current at which the
peak width reduces to zero, if a leaner reduction holds until Ic,0. In practice,
when the injection current is around the threshold current, there is a sudden in-
crease in the peak width. The peak width has its maximum value slightly below
Ic,0. Further increase in the injection current reduces the peak width and results
a sudden increase in the out-put power. These observations provide clear evi-
dence of the threshold properties, which are in good agreement with the theory
developed by Kim et al. [49]. The width of the spectral lines are, however, very
wide when compared to the width of the spectral lines for the CPP-GMR nano-
pillars and nano-contacts. Often MTJs provide much larger output power but
also much larger linewidth compared with those in GMR nano-pillars and point
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contacts [50]. Application of an external field along hard axis in the magnetic
cell, fabrication of MTJ with high current density contribute to obtain narrower
lines keeping out pout power large [51–56] (see Fig 20.15).

Condition to have a limit cycle can be understood using the LLG equation
involving the spin-transfer torque (Eq. (20.6)) and magnetic energy of the macro
spin. Change in the magnetic energy during one cycle of iso-energy trajectory of
the free layer spin is estimated as follows [24]:

ΔEmag (E) = −γS2

∮
Emag=E{

−α (−γ)
∣∣∣ �Heff × �e2

∣∣∣2 +
TSTV

S2
(�e1 × �e2) ·

(
�Heff × �e2

)}
dt, (20.22)

where integral should be done for one cycle of an iso-energy trajectory with
energy E by taking time as a parameter. The first term in the integral is always
negative and expresses energy consumption through the Gilbert damping. The
second term in the integral can be positive depending on the sign of the current
and expresses energy supply from the current source through the spin-transfer
torque. The condition to have a stable limit cycle at energy E is as follows:
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{
ΔEmag (E) = 0
dΔEmag (E)

dE
< 0

. (20.23)

As it can be seen in above equations, the condition is sensitive to the angle θ
dependence of Emag and spin-transfer torque. Especially, in the nano-pillar with
perpendicular magnetization, a higher order crystalline anisotropy can also play
a role. The conditions to describe threshold current of SIMS (Eq. (20.21)) and
the condition to obtain STO (Eq. (20.23)) separate possible dynamic phases
appearing in magnetic nano-pillars.

The phase diagram of a nano-pillar with in-plane magnetization under ex-
ternal field and a current injection obtained by Kiselev et al. [47] is illustrated
in Fig. 20,16. For a zero external field and zero current the system is in the
bistable state (P/AP in the figure). The application of a positive (negative) cur-
rent causes the SIMS to undergo a transition from P (AP) to AP (P) state and
stabilizes AP (P) state (dotted line (i)). The system shows hysteresis along the
line (i). For zero current, if we apply a negative (Positive (not shown)) external
field, the system switches to P (AP) state (dotted line (ii)). The system again
shows a hysteresis along the line (ii). Now, we apply large negative external field,
-2 kOe for example. At zero applied current, the system is in P state with small
precession of the spin caused by a thermal excitation. Under such large field, even
if we supply a positive current larger than the threshold current of the SIMS,
switching does not occur. Alternatively, the precession starts to be enhanced sig-
nificantly and spontaneous oscillation starts. Further increase in current changes
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the orbital form from small angle oscillation to large angle oscillation and then
out-of-plane oscillation (dotted line (iii)). Corresponding to the change in the
orbital form, the oscillation frequency first shows a significant red shift and then
a blue shift. Along the line (iii), the system does not show hysteresis.

In Fig. 20.17, iso-energy contours of a rectangular shape magnetic nano-pillar
with in-plane magnetization are shown. Magnetic energy is lowest if magnet-
ization points point P and P’. Those points are stable equilibrium points. The
small angle oscillation trajectory corresponds to an iso-energy contour around
P and P’. Larger bias current may sustain higher energy orbital and it may ap-
proaches R point (Large angle orbital). R point places at a saddle point in energy
landscape. This is an unstable equilibrium point. The trajectory that includes R
point separates a region that includes small angle oscillation orbits and a region
that includes out-of-plane orbits. Therefore, it is called as a separatorix. Since
infinite time is needed to approach a saddle point, period in the separatorix
is also infinite. As a result, red shift occurs when trajectory approaches to the
separatorix. A large enough bias voltage may excite an out-of-plane orbit. The
out-of-plane orbit shows blue shift when it estranges from the separatorix. Both
north and south poles are unstable equilibrium points.

When an intermediate negative field and a large positive current were ap-
plied, a new phase “W” shown in Fig. 20.16 appeared. The very wide spectra
observed in region W were attributed to a chaotic motion of the spins. The over-
all phase diagram was well explained by the micromagnetic simulation including
the region “W”. It was shown that vortex generations and annihilations were
the main origin of the chaotic behavior in “W” [26]. Deac extended the phase
diagram to positive field case using a nano-pillar with pinned layer and showed
that a combination of a positive field and a negative current also produces STO
[57]. Phase diagram of a nano-pillar with perpendicular magnetization was ob-
tained by Mangin et al. [34] and was quite different from the in-plane case. The
obtained phase diagram was quite different from that in in-plane case. STO from
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a nano-pillar consisting of a free layer with in-plane magnetization, a perpen-
dicularly magnetized polarizer and a reference layer with in-plane magnetization
was observed by Houssameddine et al. [58].

Apart from magnetic nano-pillars, the STO have also been observed in the
case of magnetic nano-contacts. In 2004, Rippard et al. demonstrated that the
line width of the rf emission spectrum emitted by a magnetic nano-contact can
be as narrow as 1.89 MHz by applying a perpendicular magnetic field [59]. The
obtained line width corresponds to a very large Q-factor of about 18,000. Here Q
is defined as Q=(peak frequency)/(line width). After this report the line width
of the STO was investigated both experimentally [54, 60–63] and theoretically
[51, 64–66]. Kim et al. employed a general model of non-linear oscillator and
showed that the special point in STO compared to the other oscillators is a strong
amplitude dependence of the oscillation frequency. This non-linear coupling and
thermal fluctuations produce a significant phase noise and dominate the line
width. Therefore, the line width is proportional to the absolute temperature and
depends on the size of the non-linear coupling between amplitude and frequency.
By finding a configuration with small amplitude-frequency coupling one may
achieve in principle very small line width.

20.7 Spin-orbit torques
20.7.1 Spin-orbit torque (SOT)

The schematic of a 3-terminal device comprises a magnetic tunnel junction and a
non-magnetic heavy metal wire is shown in Figure 20.18 [67]. The electric current
in the wire causes spin Hall effect and spin current can be injected into the MTJ
on top as shown in Fig. 20.18(a) [68–71]. The orientation of the injected spins is
in-plane and normal to the direction of the charge current. A spin-transfer torque
results when the lower magnetic layer of the magnetic tunnel junction absorbs
the spin current. In 2012, Liu et al. of Cornell University found a surprisingly
large charge-to-spin conversion efficiency, i.e., a spin-Hall angle of 0.3 [67]. One
may use such a large spin current in order to switch the magnetization [67], or to
conduct it toward an auto-oscillation [72, 73]. Since the spin-current is induced
by the SOI in this device, the generated torque is regarded as spin-orbit torque
(SOT). For 3-terminal devices which utilize the SOT, one may separate the read
circuit from the write circuit, and may avoid the read disturbance in MRAM
circuit.

In the device, part of the charge current penetrates into the interfaces be-
tween the ferromagnetic and adjacent non-magnetic layers where the inversion
symmetry is broken. The electric current flowing through such interface states
may produce a torque [74]. This torque is also called an SOT, or Rashba-torque,
since the torque was predicted from the Rashba Hamiltonian [75, 76]. Owing
to a considerable SOI in the system, eigenstates of the Rashba Hamiltonian
are under spin-locking to the k-vectors, as shown in Figure 20.19(a). Here, for
simplicity, we show an example for a non-magnetic system. In this system, if a
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Fig. 20.18. Schematic construction of a 3-terminal device comprising a magnetic
tunnel junction and a non-magnetic metal wire. The electron flow inside the
wire (charge current: white arrow) is converted to a vertical spin current
in the wire and injected into the lower magnetic layer of the MTJ. After
Ref. [67].

charge current exists, the Fermi surfaces shift to oppose the current direction and
spin accumulation takes place (Edelstein effect), as shown in Figure 20.19(b).
This accumulated non-equilibrium spin may exert a torque on the ferromagnetic
spins. In order to distinguish between the two types of torques mentioned above,
the former can be regarded as a damping-like torque, while the latter can be
mentioned as a field-like torque.

SOI has also role in tunneling current. SOI effect in tunneling magneto-
resistance is called as Anisotropic tunneling magnetoresistance (ATMR) [77–79].
Torque associated with this phenomenon is theoretically predicted [80] and
experimentally explored [81].

20.7.2 Voltage Control of Magnetic Anisotropy (VCMA)

A term “Rashba” torque can be also used for a torque caused by a magnetic an-
isotropy change by an application of voltage[82]. Electric field in the Rashba
system directly modifies SOI and magnetic anisotropy. Such voltage driven
modulation of magnetism can be a principle of new spintronic devices. Voltage-
based devices are expected to exhibit ultralow power consumption, similar to
that in voltage driven CMOS circuits, in which electric field transistors (FETs)
are utilized.

The spin-orbit interaction (SOI) is, in principle, an interaction between the
electron’s spin and the electric field. Therefore, it is expected that we may control
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Fig. 20.19. (a) Fermi surfaces of a 2-dimensional Rashba electron system. Due
to a large SOI in the Rashba system, the spin quantization axis is locked in k-
space. (b) If a charge current exists in the Rashba system, the Fermi surfaces
shift to oppose the current flow and an imbalance between the numbers of
electrons with momenta +k and −k appears. The imbalance results in a spin
accumulation due to spin locking.

the SOI by the application of a voltage. Magnetic properties of ferromagnetic
semiconductors [83, 84] and multiferroic crystals [85] are known to be control-
lable by an application of voltage. Among these observations, voltage control of
magnetic anisotropy (VCMA) in 3d transition metal ferromagnet at room tem-
perature [86–88] is attracting much attention because of its potential for room
temperature operation and its expected unlimited endurance. Recently, for 3d
transition metal, voltage control of asymmetric exchange interaction (i.e., the
Dzyaloshinskii-Moriya Interaction) [89]; and magnetic domain size [90, 91] are
also reported.

In Fig. 20.20(a) and (b), the effect of voltage on the magnetic hysteresis loop
of an FeCo ultrathin film is shown. The hysteresis clearly shows a transition
from an in-plane to out-of-plane magnetization on the application of ±200 V at
room temperature [92]. The magnitude of this effect was measured quantitatively
by considering the VCMA in typical MTJs from the voltage dependence of the
MR-curve [93], and from the bias voltage dependence of the voltage-driven FMR
frequency [94]. The size of the VCMA was approximately dKs

dE = 20−30fJ/V m,
where Ks is surface magnetic anisotropy, and E is electric field at the surface.
This value roughly agrees with that expected from first-principle calculations
[95–98]. By application of voltage, we may change the anisotropy field as follows:

δHani =
1

μ0M2

v

d

dKs

dE sin 2θ × E . (20.24)

where v is volume of the magnetic cell, d is the film thickness, θ is the angle
between the film’s normal and the magnetization. δHani can be 60 [kA/m] ∼=
750 [Oe], for typical condition.
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Fig. 20.20. (a) Structure of the multilayer used to observe VCMA. (b) Under
a bias voltage of +200 V (−200 V), the film shows in-plane (out-of-plane)
magnetic anisotropy. After Ref. [92].

Shiota et al. have reported on the observation of coherent magnetization
switching induced by the application of pulse voltages to an MTJ comprising
an Au (50 nm) / Fe80Co20 (0.70 nm) free layer / MgO (1.5 nm) / Fe (10 nm)
epitaxial layer stack [99]. The size of their junction was 800× 200 nm2. Without
a bias magnetic field and at zero bias voltage, the free layer magnetization is
aligned in-plane and parallel to the long axis of the junction due to the shape
anisotropy of the junction. For the experiment, a small perpendicular fixed bias
field was applied to make θ in Eq. 20.24 non-zero.

In the Fig. 20.21a, experimentally observed toggle switching between parallel
(P) and antiparallel (AP) state initiated by voltage pulses of 0.55 ns in duration,
and −0.76 V in height is shown. We note that the pulse height is twice that of
the MTJ due to pulse reflection which occurs at the high impedance terminal.
Even so, the applied voltage is much smaller than that shown in the previous
experiment of Fig. 20.20, since the voltage was applied through the ultrathin
MgO barrier layer (1.5 nm). Figure 20.21b shows the switching probability as a
function of the pulse duration and bias field. In the figure, a clear oscillation as
a function of pulse duration can be seen. Such voltage-driven dynamic switching
was also observed in an MTJ with perpendicular magnetization [100]. Shiota
et al. demonstrated that by employing a perpendicularly magnetized MTJ and
an even larger VCMA, a very small writing error of the order of 10−5 could be
achieved [101].
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Fig. 20.21. Experimental dynamic magnetization switching using short voltage
pulse results. (a) Repeated application of pulses causes toggle-type switching
of the magnetization. (b) Switching probabilities as a function of bias field
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of the pulse duration is a consequence of precessional switching. After Ref.
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Laan has discussed the second order perturbation energy of the SOI in a ferro-
magnetic system with C4v symmetry, and has derived the following anisotropy
energy [102]:

ΔE ∼= λ

4μB

(
Δm−

L,↓ΔmL,↑
)
− 21

2μB

λ2

Eex
Δm,

T (20.25)

where λ is the SOI parameter, μB is the Bohr magneton, and Eex is the mag-
nitude of the exchange splitting. The quantities, ΔmL,s

(
= m⊥

L,s −m//
L,s

)
and

ΔmT

(
= m⊥

T −m//
T

) ∼= −3μBQzz 〈S〉/7�, are the changes in the orbital mo-
ment and the spin-dipole moment between the perpendicularly magnetized state
and the in-plane magnetized state, respectively. Qzz is the dimensionless zz -
component of an electric quadrupole tensor. The first term in Equation 20.25 is
the so-called Bruno term, which appears in the magnetic anisotropy if the orbital
magnetic moment is anisotropic. Through the application of a voltage one may
dope electrons toward the electric states at the Fermi surface. Since the density
of states (DOS) at the Fermi energy is different for states with different lz, this
doping causes changes in the orbital moment. At the surface of the film, this
change should be different for different magnetization directions, and therefore,
one may obtain the VCMA.
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The second term in Equation 20.25 contributes to the magnetic anisotropy if
the magnetic dipole moment is anisotropic. Miwa et al. reported that the term is
large for atoms with a large SOI, and for certain induced moments such as those
found in Pt [103]. The spin dipole can be approximated as a product between
the electric quadrupole and spin moment. Since the electric field at the surface is
extremely inhomogeneous due to the strong shielding effect present in the metals,
such an inhomogeneous electric field may couple with the electric quadrupole,
and one may thus control the spin dipole at the surface by the application of a
voltage. This is the second mechanism used in order to achieve the VCMA.

Much effort has been made in order to increase the effects of VCMA. It
has shown that the inclusion of heavy metals like Pt [103], Pd [104], and Ir
[105] results in an increased voltage effect of up to 300 fJ V−1 m−1at room
temperature. Such contributions can be considered as an increase in the orbital
moment of the 3d transition metal due to adjacent heavy metal atoms, or as a
contribution from the second mechanism mentioned above. Duan et al. have also
predicted a large VCMA effect at a ferromagnetic metal/ferroelectric insulator
interface [106]. Similar kinds of attempts were performed by Bi et al. [107],
and by Bauer et al. [108]. Their results showed an extremely large VCMA that
corresponds to more than 5000 fJ V−1 m−1in a GdO/Co/Pt system. Here, the
application of a voltage controls the oxygen migration in the multilayer system,
resulting in such a huge VCMA effect. However, due to the large size of the effect,
the response speed is as slow as 25 ms at room temperature, since it requires
thermal activation.
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21 Magnetization switching due to nonlocal
spin injection

T. Kimura and Y. Otani

21.1 Generation and absorption of pure spin current

A laterally configured ferromagnetic (F)/nonmagnetic (N) hybrid structure com-
bined with nonlocal spin injection allows us to create a flow of spins without
accompanying a flow of electrical charges, i.e. a pure spin current [1–8]. Fig-
ure 21.1 shows a schematic illustration of nonlocal spin injection. A bias voltage
for the spin injection is applied between the ferromagnet and the left-hand-side
nonmagnet. In this case, the spin-polarized electrons are injected from the fer-
romagnet and are extracted from the left-hand side of the nonmagnet. This
results in the accumulation of nonequilibrium spins in the vicinity of the F/N
junctions. Since the electrochemical potential on the left-hand side is lower than
that underneath the F/N junction, the electron flows by the electric field. On the
right-hand side, although there is no electric field, the diffusion process from the
nonequilibrium into the equilibrium state induces the motion of the electrons.
Since the excess up-spin electrons exist underneath the F/N junction, the up-
spin electrons diffuse into the right-hand side. On the other hand, the deficiency
of the down-spin electrons induces the incoming flow of the down-spin electrons
opposite to the motion of the up-spin electron. Thus, a pure spin current, which
carries the spin angular momentum without electric charges, can be induced by
the nonlocal spin injection.

The induced pure spin current can be detected by using another ferromagnetic
voltage probe. When the pure spin current is injected into the ferromagnet,
a shift of the electrostatic potential of the ferromagnet is induced because of
the spin-dependent conductivity. The sign of the potential shift depends on the
relative angle between the spin direction of the injecting spin current and the
magnetization direction. When the direction of the injecting spin is parallel to
the majority (minority) spin for the spin detector, the electrostatic potential
of the spin detector shifts positively (negatively). Therefore, when the voltage
between the ferromagnet and the right-hand side of the nonmagnet is measured
by sweeping the magnetic field, a clear voltage change is observed. The voltage
normalized by the exciting current is known as a spin signal [1].

As described above, the driving force of the spin current in the N is the
diffusion of the nonequilibrium electrons into the equilibrium state. Since the
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Fig. 21.1. Schematic illustration of the nonlocal spin injection together with the
density of states for the up-spin and down-spin electrons in a nonmagnetic
metal for the left-hand, center, and right-hand sides.

spatial distribution of the nonequilibrium spin accumulation in the N is modified
by connecting the additional structure, the distribution of the spin current is also
modified. For example, in a single F/N junction shown in Fig. 21.2(a), the spatial
distribution of the spin accumulation symmetrically decays from the junction.
Therefore, the spin current flows symmetrically also into both sides. On the
other hand, when one connects an additional material on the right-hand side
through a low resistive ohmic junction as in Fig. 21.2(b), the spatial distribution
of the spin accumulation is strongly modified. Thus, one can selectively extract
the spin current.

To demonstrate the above spin current absorption effect, two kinds of lateral
spin valves (LSVs) have been prepared [9]. One is a conventional lateral spin valve
consisting of the Py injector and the detector bridged by a Cu strip (device A).
The other one is a lateral spin valve with a middle Py wire (device B). Here,
the center–center distance between the injector and the detector for device A
is 600 nm while that for the device B is 460 nm. The thickness and width of
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(a)

(b)
Fig. 21.2. Schematic illustrations of
the flow of the spin current in (a) a
single F/N junction and (b) an F/N
junction with an F contact.
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Fig. 21.3. (a) Nonlocal spin-valve signal for a conventional lateral spin valve and
that for a lateral spin valve with a middle Py wire. The insets show SEM
images of the measured device and the probe configurations for the nonlocal
spin-valve measurements.

the Py wires are 30 nm and 100 nm, respectively. The Cu strip is 80 nm in
thickness and 300 nm in width. Although the geometrical disorder due to the
additional ferromagnetic contact may also violate the spin coherence and the spin
accumulation, such an effect should be negligible because of the large difference
in thickness between Cu and Py.

Figure 21.3(a) shows the spin signal observed in device A, where a spin valve
signal with a magnitude of 0.2 mΩ is clearly observed. Since the center–center
distance between the injector and detector for device B is shorter than that for
device A, one may naively expect that a larger spin signal is expected to be
observed in device B. However, as in Fig. 21.3(b), a quite small spin signal, less
than 0.05 mΩ, is observed in device B. This is due to the influence of the spin
current absorption into the middle Py wire. Since the nonequilibrium spins want
to diffuse into the equilibrium states as fast as possible, the spins are preferably
absorbed into the middle Py wire which has much stronger spin relaxtion than
that of the Cu wire. These results clearly suggest that the spin accumulation in
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Fig. 21.4. Nonlocal spin-valve signals
for Cu, Au, and Pt middle wires
measured at room temperature.

the Cu is strongly suppressed by the middle Py2 wire connected to the Cu. It
should be noted here that in the spin signal shown in Fig. 21.3(b) no change is
observed at the switching field of the middle wire. This implies that the mag-
nitude of the spin current absorption does not depend on the magnetization
configuration of the middle wire.

It was also demonstrated that the spin accumulation in the Cu is sup-
pressed by connecting the nonmagnetic wire with a strong spin relaxation [10].
Figure 21.4 shows the spin signals with various nonmagnetic middle wires. Here,
the center-center distance between the injector and detector is fixed at 600 nm.
For the middle Cu wire, the obtained spin signal is 0.18 mΩ, which is almost
the same as that without the middle wire. Large reductions of the spin signals
are obsereved in the Au and Pt middle wires. These indicate that the nonequi-
librium spin currents are strongly relaxed by the Pt and Au wires while the Cu
gives weak relaxation of the spin current. Thus, one can evaluate the magnitude
of the spin relaxation of a material from the magnitude of the spin signal.

21.2 Efficient absorption of pure spin current

In the F/N junction shown in Fig. 21.1, the injection efficiency ηI of the spin
current is given by the following equation [3, 10]

ηI =
2RSF

2RSF +RSN
PF, (21.1)

where RSF and RSN are the spin resistances for the F and N, respectively. The
spin resistance is a measure of the difficulty of flow of the spin current and
is defined by 2ρλ/((1 − P 2)S) with resistivity ρ, spin diffusion length λ, spin
polarization P , and effective cross-section for the spin current S. RSF is, in
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Fig. 21.5. Efficiency of spin current absorption as a function of the spin
resistance for various separation distances.

general, much smaller than RSN because of the extremely short spin diffusion
length for the F. Therefore, ηI becomes quite small. When one connects an
additional material on the right-hand side of the N, whose spin resistance is
RSA, the injection efficiency is modified as

ηI =
RSF

RSF +RS1
PF (21.2)

where RS1 is the effective spin resistance and is given by

RS1 = RSN
RSA cosh(d/λN) + (RSA +RSN) sinh(d/λN)

2RSA +RSN
e−

d
λ . (21.3)

So, in order to increase ηI, RS1 should be smaller than RSF. As in Eq. (21.2),
RS1 can be reduced by connecting an additional material. When the material
has a small spin resistance, ηI drastically decreases.

Figure 21.5 shows ηI as a function of RSA for various distances d in Py/Cu
LSVs, assuming RSPy/RSCu ≈ 0.05. ηI increases with decreasing RSA, especially
when d is much shorter than λCu. Thus, the spin current induced in the N is
effectively extracted by connecting the material with a small spin resistance
nonlocally.

21.3 Efficient injection of spin current

In the previous section, the injection efficiency ηI of the spin current is enhanced
by reducing the effective spin resistance RI of the injecting part. As in Eq. 21.1,
ηI is determined by the balance between RSF and RSI. Therefore, ηI also increases
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by increasing RSF. Although RSF is mainly determined by the material, the ef-
fective cross-section A for the spin current can be geometrically controlled. Since
the spin diffusion length for Fs is extremely short, A for Fs is given by the size of
the F/N junction. In this section, we introduce the experimental demonstration
that the size of the ohmic F/N junction is an important geometrical factor for
obtaining large spin polarization in Ns and that both the spin polarization and
the spin resistance of the F are enhanced by adjusting the junction size [11].

As mentioned above, the difference in the junction size between injector and
detector gives rise to a significant difference in the spin resistance. Then, the
spin signal ΔR in the present device can be given by

ΔR ≈ P 2
PyR

P
SPyR

W
SPy

RSCu sinh
(

d
λCu

) , (21.4)

where, RP
SPy and RW

SPy are, respectively, the spin resistances of the Py pad and
the Py wire. Here, the spin current diffusions into the horizontal Cu arms are
neglected because the vertical Cu arms are connected to the Py with the small
spin resistances.

As mentioned above, reducing the size of the ohmic junction between the Py
pad and the Cu wire increases the spin resistance of the Py pad. To change the
junction size between the Py pad and the Cu wire, the length of the Cu wire on
the Py pad is adjusted, as seen in the SEM images in Figs. 21.6(a) and 21.6(b).
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Fig. 21.6. Nonlocal spin-valve (NLSV) signals of (a) a large-junction device and
(b) a small-junction device with the probe configurations. (c) Spin signal in
the NLSV measurement as a function of the junction size lpw. The dotted
curve is the best fit to the data points using Eq. (21.4).
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The junction size dependence of the spin signal has been investigated by chan-
ging the spin resistance of the Py pad while keeping the same electrode spacing
of 600 nm. The obtained spin signal is plotted as a function of the junction size
in Fig. 21.6(c). The spin signal increases by reducing the junction size and is
well reproduced by Eq. 21.4, where the spin signal is inversely proportional to
the junction size. From the fitting parameters, the spin diffusion length of the
Cu wire, that of the Py wire, and the spin polarization are, respectively, found
to be 1.5 μm, 0.25, and 3.5 nm at 77 K.

21.4 Magnetization switching due to injection of pure spin current

The switching mechanism due to spin torque is explained by a model proposed by
Slonczewski in which the torque exerted on the magnetization is proportional to
the injected spin current. This clearly indicates that the spin current is essential
to realizing magnetization switching due to spin injection. Most of the present
spin-transfer devices consist of vertical multilayered nanopillars in which typic-
ally two magnetic layers are separated by a nonmagnetic metal layer [12, 13]. In
such vertical structures, the charge current always flows together with the spin
current, during which undesirable Joule heat is generated. As mentioned above,
by optimizing the junction, the pure spin current can be effectively injected into
the nanomagnet because of the spin absorption [11]. Therefore, the magnetiza-
tion of the nanomagnet can be switched nonlocally. To test this idea, a nanoscale
ferromagnetic particle is configured for a lateral nonlocal spin injection device
as in Figs. 21.7(a) and (b) [14].

The device for the present study consists of a large Permalloy (Py) pad 30
nm in thickness, a Cu cross 100 nm in width and 80 nm in thickness, and a Py
nanoscale particle, 50 nm in width, 180 nm in length, and 6 nm in thickness. A
gold wire 100 nm in width and 40 nm in thickness is connected to the Py particle
to reduce the effective spin resistance, resulting in high spin current absorption
into the Py particle. The magnetic field is applied along the easy axis of the Py
particle. Here, the dimensions of the Py pad and Cu wires are chosen large so
that a charge current of up to 15 mA can flow through them.

To confirm that the spin current from the Py injector is injected into the Py
particle, nonlocal spin-valve measurements are performed. As in Fig. 21.7(c),
the field dependence shows a clear spin signal with a magnitude of 0.18 mΩ,
ensuring that the spin current reaches the Py particle. Then, the effect of the non-
local spin injection into the Py particle was examined by using the same probe
configuration. Before performing the nonlocal spin injection, the magnetization
configuration is set in the antiparallel configuration by controlling the external
magnetic field.

The nonlocal spin injection is performed by applying large pulsed currents up
to 15 mA in the absence of the magnetic field. As shown in Fig. 21.7(d), when the
magnitude of the pulsed current is increased positively in the antiparallel state,
no signal change is observed up to 15 mA. On the other hand, for the negative
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Fig. 21.7. (a) Scanning electron microscope image of the fabricated lateral spin
valve. The device consists of a large 30 nm thick Py injector, a Cu cross
100 nm wide and 80 nm thick, and a Py nanoscale particle, 50 nm wide,
180 nm long, and 6 nm thick. (b) Schematic illustration of nonlocal spin
injection using a lateral spin-valve geometry. Pure spin current is effectively
absorbed into the nanomagnet. (c) Field dependence of the nonlocal spin
signal. The changes in resistance at low and high fields correspond to the
relative magnetic switching of the Py injector and particle, from parallel
to antiparallel states and vice versa. (d) Nonlocal spin-valve signal after
the pulsed current injection as a function of the current amplitude with
corresponding magnetization configurations.

scan, an abrupt signal change is observed at −14 mA. The change in resistance
at −14 mA is 0.18 mΩ, corresponding to that of the transition from antiparal-
lel to parallel states. This means that the magnetization of the Py particle is
switched only by the spin current induced by the nonlocal spin injection. The
spin current for switching is estimated from the experiment to be about 200 μA,
which is reasonable compared with the values obtained for conventional pillar
structures. However, the switching from the parallel to antiparallel state has not
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Fig. 21.8. (a) SEM image and schematic illustration of the improved nonlocal
spin injection device. (b) Giant spin signal and (c) reversible magnetization
switching by pure spin current injection observed in the improved device.

been achieved in the present device. This is mainly due to the low spin-injection
efficiency.

To improve the efficiency of the injecting spin current, a newly designed sam-
ple has been fabricated, as shown in Fig. 21.8(a) [15]. The new sample consists of
two Py/Au nanopillars on a Cu wire. As shown in Fig. 21.8(a), the junction size
between the Py/Cu in the new sample is effectively diminished, leading to the
efficient generation of the pure spin current. Figure 21.8(b) shows the nonlocal
spin-valve signal as a function of the external field. The obtained spin signal
is around 4 mΩ, much larger than that of the previous device. Then, nonlocal
spin injection with variable dc current between contacts 3 and 6 is applied to
perform the magnetization switching. The sample is preset to a parallel state
at which both magnetizations are aligned in the positive field direction. As can
be seen in Fig. 21.8(b), when the current is increased, the nonlocal spin-valve
signal sharply decreases at about 4.5 mA, indicating a clear magnetization re-
versal. According to the change in the nonlocal spin-valve signal, the parallel
state is transformed into an antiparallel state (denoted B), which is switched
back to the parallel state by a negative dc current of 5 mA. Thus, reversible
magnetization switching between antiparallel and parallel states is realized by
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means of nonlocal spin injection with the specially developed device consisting
of perpendicular nanopillars and lateral magnetic nanostructures.

Very recently, Zou and Ji have demonstrated nonlocal switching of a Py nan-
odot by using a specially developed LSV structure [16, 17]. They prepared a
lateral spin valve with a 5 nm thick ferromagnetic Py detector. This structure
enabled them to inject the pure spin current entirely into the Py detector. As
a result, the magnetization of the Py detector is reversed by a sufficiently large
spin torque. The interesting thing is that the structure includes the interface
barriers both at the injecting and detecting junctions. According to the spin
diffusion model, the interface resistance strongly suppresses the spin-current dif-
fusion into the ferromagnet. To understand the result more quantitatively, other
effects such as the magnetic interface anisotropy may have to be considered.
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22 The dynamics of magnetic vortices
and skyrmions

R. Antos and Y. Otani

One of the most remarkable manifestations of the recent progress in magnet-
ism is the establishment of microfabrication procedures employed for modern
magnetic materials. Electron or ion beam lithographies combined with the con-
ventional thin film deposition techniques yield a variety of laterally patterned
nanoscale structures such as arrays of magnetic nanodots or nanowires [1, 2].
Among them, submicron ferromagnetic disks have drawn particular interest due
to their possible applications in high density magnetic data storage [3], magnetic
field sensors [4], and logic operation devices [5]. In this way control of magnetic
domains and domain wall structures is one of the most important issues from the
viewpoints of both applied and basic researches. Although there are a variety
of nanoscale micromagnetic structures, we limit our discussion in this article to
the static and dynamic properties of magnetic vortex structures.

It has been revealed both theoretically and experimentally that for particular
ranges of dimensions of cylindrical and other magnetic elements (Fig. 22.1) a
curling in-plane spin configuration (vortex) is energetically favored, with a small
spot of the out-of-plane magnetization appearing at the core of the vortex [6–8].
Such a system, which is sometimes referred to as a magnetic soliton [9] and whose
potentialities have already been discussed in a few recent review papers [10, 11],
is thus characterized by two binary properties (“topological charges”), a chirality
(counter-clockwise or clockwise direction of the in-plane rotating magnetization)
and a polarity (the up or down direction of the vortex core’s magnetization),
each of which suggests an independent bit of information in future high-density
nonvolatile recording media.

For this purpose various properties have been investigated such as the ap-
pearance and stability of vortices when subjected to quasistatic or short-pulse
magnetic fields and variations of those properties when the dots are densely ar-
ranged into arrays. The properties are identified with experimentally measured
and theoretically calculated quantities called nucleation and annihilation fields,
effective magnetic susceptibilities, etc.

More recently, the time-resolved response to applied magnetic field pulses
or spin-polarized electrical currents with sub-nanosecond resolution has been
extensively studied, providing results on the time-dependence of the location,
size, shape, and polarity deviations of the vortex cores, eigenfrequencies and
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(a) (b) (c)

(d) (e) (f)

Fig. 22.1. Examples of vortices appearing in a cylindrical (a), rectangular (b),
elliptic (c), multilayered (d), and ring-shaped (e) elements. Each vortex’s
center contains an out-of-plane polarized core except for the ring. Clas-
sical multidomain structures appear in larger elements where the anisotropy
energy is predominant (f).

damping of time-harmonic trajectories of the cores, the switching processes, and
the spin waves involved.

During several past years, even smaller particle-like magnetic domains than
ferromagnetic vortices have received large attention [12–14]. Magnetic skyrmi-
ons, a novel type of chiral magnetic order induced by the spin-orbit coupling,
were extensively studied for their attractive topological properties and poten-
tial applications in spintronics-based information storage and logic devices. The
quasiparticles are named after T. Skyrme, a nuclear physicist who invented
their mathematical concept for the sake of the quantum-field theory of inter-
acting pions. The name skyrmion is also used for other analogous topologies in
condensed-matter systems.

In this chapter we will review the recent achievements in this research area
with a particular interest in submicron cylindrical ferromagnetic disks with neg-
ligible magnetic anisotropy, for which Permalloy (Py) has been chosen as the
most typical material. We will demonstrate the theoretical background of the
research topic according to the description by Hubert and Schäfer [6] (Sec. 22.1)
and briefly describe the achievements in analytical approaches (Sec. 22.2) and
experimental techniques (Sec. 22.3). Then we will review the research of vari-
ous authors devoted to steady-state excitations (Sec. 22.4), dynamic switching
of vortex states (Sec. 22.5), excitations of magnetostatically coupled vortices
(Sec. 22.6), and the dynamics of magnetic skyrmions (Sec. 22.7). Finally we will
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summarize the present state of the research with respect to future prospects
and possible applications (Sec. 22.8). We will accompany our description by our
simulations using the Object-Oriented Micromagnetic Framework (OOMMF)
[15], and in some cases by demonstrative examples provided by their original
authors.

22.1 Micromagnetic equations

The unique spin distributions favored in ferromagnetic materials are governed
by the exchange interaction between nearest neighbor spins si, sj described by
the Hamiltonian

H = HH +HDM = −
∑
i,j

Ji,jsi · sj −
∑
i,j

D i,j · (si × sj) (22.1)

or by more general formulas if particular anisotropies are taken into account. The
first term, HH, is the Heisenberg Hamiltonian [16] of isotropic exchange energy,
which favors the parallel orientation of neighboring spins. The second term,
HDM stands for the Dzyaloshinskii–Moriya (DM) interaction [17, 18], a much
weaker anisotropic exchange interaction which occurs in certain materials and
geometric configurations where electrons experience spin-orbit coupling. Unlike
the Heisenberg interaction, the DM interaction prefers perpendicular spins, so
that if the total energy results from a competition between both interactions,
the material can possess chiral spin textures called skyrmions, which will be
discussed in Sec. 22.7.

For the sake of solving many-spin problems, the discrete-spin distribution is
replaced by magnetization M (r , t), a continuous function of space and time, or
by unit magnetization m = M /Ms, where Ms is a saturation magnetization.
Accordingly, the total energy of a ferromagnet is determined as the sum

Etot = Eexch + Ean + Ed + Eext + . . . , (22.2)

which demonstrates the competition among exchange, anisotropy, demagnetiz-
ing, external-field, and other forms of energy (such as magneto-elastic interaction
or magnetostriction which we do not consider in our discussion). More precisely,
the total energy can be written as an integral per the volume of a ferromagnet

Etot = A

∫ [
(∇m)2 +

K

A
f(m)− M2

s

2μ0A
m(r) · hd +

MsHext

A
m(r) · hext

]
dV

(22.3)

= A

∫ [
(∇m)2 +

1
ξ2K

f(m)− 1
ξ2M

m(r) · hd +
1
ξ2H

m(r) · hext

]
dV (22.4)

where A is the exchange stiffness constant, μ0 the permeability of vacuum, Hd

and Hext are the demagnetizing (stray) and external magnetic field, respectively,
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and hd and hext are the unit vector of the corresponding magnetic fields. The
function f(m) describes the magnetic anisotropy energy landscape spatially
varying with the unit magnetization m .

Here one should notice that the coefficients for the energy terms K/A,
M2

s /(2μ0A) and MsHext/A have units of the inverse square of length. The
inverse-square root of these three coefficients define respectively the anisotropy
characteristic length ξK(=

√
A/K) given by the magnetic anisotropy energy,

the magnetostatic characteristic length ξM (=
√

(2μ0A)/M2
s ) given by the mag-

netostatic energy, and the external field characteristic length ξH(=
√
A/MsHext)

given by the external magnetic field. The length ξK means the length required for
twisting a unit angle (radian), and is for example about 4 nm for Fe. Therefore a
ferromagnet gets homogeneously magnetized when the size of the ferromagnet is
smaller than ξK , whereas inhomogeneous magnetic distribution such as domain
walls appears when the size is larger than ξK . The domain-wall width and the
wall energy can be respectively expressed as πξK and 2A/ξK + 2KξK using ξK .
The second characteristic length ξM represents the length determined as a result
of competition between the exchange energy and magnetostatic energy, corres-
ponding to the core radius (∼ 4 nm) of the magnetic vortex confined in an Fe
disk structure. The last characteristic length ξH indicates an apparent effect of
the externally applied magnetic field in length scale. Therefore the above two
other characteristic lengths ξK and ξM are influenced by the application of the
external field such that 1/ξ2K ⇒ 1/ξ2K0±1/ξ2H and 1/ξ2M ⇒ 1/ξ2M0±1/ξ2H , where
the subscript K0 or M0 represents the initial state.

The exchange interaction forces the nearest spins to align into a uniform
distribution, the demagnetizing field makes the opposite effect on the long-range
scale. It can be evaluated via a potential Φd as

H d = −∇Φd, ∇2Φd = −Msρd, (22.5)

whose sources are volume and surface “magnetic charges”

ρd = −∇ ·m , σd = m · n , (22.6)

where n is a unit vector normal to the surface of the magnetized element. Hence,
the magnetization tends to align parallel to the surface in order to minimize the
surface charges, leading to the occurrence of vortex distributions as depicted in
Fig. 22.1(a–e). Moreover, the singularity at the center of a vortex is replaced
by an out-of-plane magnetized core in order to reduce the exchange energy. On
the other hand, in large samples, where the anisotropy energy predominates the
surface effects of the disk edges, the magnetization forms conventional domain
patterns with magnetization aligned along easy axes [Fig. 22.1(f)].

When we slowly apply an external magnetic field, the competition among all
the energies breaks the symmetry of the vortex, shifting its core so that the area
of magnetization parallel to the field enlarges, until the vortex annihilates (at
the “annihilation field”), resulting in the saturated (uniform) state. Then, when
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Fig. 22.2. Hysteresis loop representing the process of quasistatic switching of a
cylindrical Py disk.

we reduce the external field, the uniform magnetization changes into a curved
“C-state,” until the vortex nucleates again (at the “nucleation field”). Reducing
the field further to negative values causes the symmetrically analogous process,
as depicted in Fig. 22.2.

For the vortex dynamics the main area of interest is the range of states before
the vortex annihilates, which is represented in Fig. 22.2 by the slightly curved
line whose tangent χ = δM/δH is called the effective magnetic susceptibility
defined both statically and dynamically as a function of frequency χ(ω). The
dynamic response to fast changes of external field is considerably different from
that described by the hysteresis loop, and is in general governed by the Landau–
Lifshitz–Gilbert (LLG) equation

∂m

∂t
= −γm ×H eff + αm × ∂m

∂t
, (22.7)

where γ denotes the gyromagnetic ratio, α the Gilbert damping parameter, and
t the time.

Instead of applying external field, the vortex distribution can be excited by
an electrical current propagating through the ferromagnetic disk [19–21]. It has
been revealed that this process, referred to as spin-transfer torque (STT), can
be (in the adiabatic approximation) evaluated as an additional term on the
right-hand side of the LLG equation
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T
(1)
STT = −(v s · ∇)m , (22.8)

T
(2)
STT = −g�Ie

2e
m2 × (m2 ×m1), (22.9)

where the first equation corresponds to the in-plane current with the velocity
v s = j ePgμB/2eMs whereas the second corresponds to the perpendicular current
propagating through a multilayer depicted in Fig. 22.1(d) from the bottom to the
top ferromagnetic layer (with magnetization distributions m1, m2, respectively),
both of which are separated by a thin nonmagnetic interlayer (F/N/F). Here j e,
P , g, μB, e, �, and Ie denote the current density, spin polarization, g value of an
electron, Bohr magneton, electronic charge, Planck constant, and total electrical
current, respectively.

22.2 Analytical approaches

Although most authors have adopted OOMMF for its generality, simplicity, and
accuracy, the development of analytical approaches is very useful for analyzing
various fundamental aspects of dynamic processes. Among many attempts to
reduce the number of parameters involved in vortex dynamics, perhaps the most
used is treating the vortex as a quasiparticle whose motion (or motion of its
center a = [ax, ay]) is described by an equation derived from the LLG equation
by Thiele [22] for magnetic bubbles and adopted by Huber [23] to vortex systems,

G × da
dt

=
1
R2

∂Etot

∂a
−

↔
D ·da

dt
, (22.10)

where G = −2πpLμ0Msẑ/γ is the gyrovector with p = ±1 denoting the vortex’s
polarity (the positive value stands for the up direction, parallel to the unit vec-

tor ẑ ) and L denoting the disk’s thickness, and where
↔
D = − 2πLαμ0Ms(x̂ x̂ +

ŷ ŷ)/γ is the dissipation tensor of the 2nd order. Thiele’s equation of motion
thus found the use as one of the most convenient approaches of dealing with
vortex dynamics and has further been generalized to include an additional term
of “mass times acceleration” [24, 25] or to take into account STT [26].

To perform simulation with Thiele’s equation, one needs to evaluate Etot(a)
as a function of the vortex center’s position. For this purpose, two approxima-
tions have been utilized, the “rigid vortex” model [27–30], assuming the static
susceptibility, and the “side charges free” model, [31] which assumes the mag-
netization on the disk edges to be constantly parallel to the surfaces. It has
been revealed that the latter approximation applied to an isolated disk gives
considerably better agreement with rigorous numerical simulations [32]. How-
ever, when applied to a pair or arrays of magnetostatically coupled disks, the
rigid vortex model gives a reasonable tendency while the other model fails due
to the absence of the side-surface charges which are particularly responsible for
the magnetostatic interaction between disks [33].
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To study excitations of vortices more precisely, some authors have analytic-
ally solved the LLG equation by assuming small deviations of the static vortex
distribution. They start with the description of the unit magnetization vector
m(r, χ) by angular parameters θ(r, χ), φ(r, χ),

mx + imy = sin θ eiφ, mz = cos θ, (22.11)

where r, χ are polar coordinates determining the lateral position within the
disk. The small deviations of the static magnetization distribution [described as
θstat = θ0(r), φstat = φ0(χ) = qχ, where q denotes the vorticity of the system
being +1 for a normal vortex or −1 for an antivortex] can be written as

θ(r, χ) = θ0(r) + ϑ(r, χ), (22.12)

φ(r, χ) = qχ+ [sin θ0(r)]−1μ(r, χ), (22.13)

leading to the solution in the form [34]

ϑ(r, χ) =
∑

n

+∞∑
m=−∞

fnm(r) cos(mχ+ ωnmt+ δm), (22.14)

μ(r, χ) =
∑

n

+∞∑
m=−∞

gnm(r) sin(mχ+ ωnmt+ δm), (22.15)

where [n,m] is a full set of numbers labeling magnon eigenstates and δm are
arbitrary phases. This approach has been successfully applied to both antiferro-
magnets [35, 36] and ferromagnets [37–47], and has revealed eigenfrequencies
and eigenfunctions of spin wave modes propagating in cylindrical disks and
S-matrices of magnon–vortex scattering.

22.3 Experimental techniques

Experimental measurements of quasistatic properties of magnetic elements giv-
ing clear evidence of vortex structures, including the core’s shapes and quasistatic
switching processes, have been carried out by magnetic force microscopy (MFM)
[7], spin-polarized scanning tunneling microscopy [8], magnetoresistance and Hall
effect measurements [48–53], Lorentz transmission electron microscopy [54, 55],
magneto-optical Kerr effect (MOKE) measurements [56–64], photoelectron emis-
sion microscopy [65–67], scanning electron microscopy with spin-polarization
analysis (SEMPA) [68, 69], and others.

On the other hand, different techniques have to be employed for time-resolved
dynamic measurement such as time-resolved Kerr microscopy (TRKM) in the
scanning [70–77] or wide-field mode [78–80], photoemission electron microscopy
combined with pulsed x-ray lasers [81], Brillouin light scattering (BLS) [82],
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(c) (d)

FM
NM
FM

(e)

Fig. 22.3. Various types of ultrafast excitations: In-plane (a) or out-of-plane
(b,c) magnetic field pulses are generated by electrical current pulses propa-
gating through transmission lines with appropriate geometries; out-of-plane
(d) and in-plane (e) currents induce excitations based on spin-transfer
torque.

time-resolved MFM [83], ferromagnetic resonance (FMR) technique [84, 85],
vector network analyzers [86], superconducting quantum interference device
magnetometry [87], and others.

The most typical measurement technique, TRKM, often referred to as a
“pump–probe” technique, combines a Kerr microscope of high space–time
resolution achieved by ultrashort-pulse laser light source and high-quality micro-
scopic imaging (the “probe”), and a system for operating ultrafast pulse
excitations achieved practically via various transmission line configurations as
depicted in Fig. 22.3 (the “pump”). The source for the excitation current can be
generated either by a pulse generator (triggered by the laser control device) or by
a photoconductive switch (when laser pulses are split between probe and pump
pulses). The wavelength of light is often halved by a second harmonic-generation
device to increase the spatial resolution of measurement. The time dependence
of magnetization evolution after excitation is determined by changing the delay
time between the pump and the probe. To obtain an appropriate signal-to-noise
ratio, the pump–probe measurement must be repeated many times with exactly
the same initial condition, referred to as a stroboscopic method. An example of
TRKM measurement [68, 69], showing radial modes propagating from the edges
of a Co cylindrical dot excited by out-of-plane field, is displayed in Fig. 22.4.
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Fig. 22.4. Example of TRKM measurement performed by Acremann et al. [68,
69] on a Co disk with an optical micrograph (a), SEMPA measurement of
the static domain configuration (b), multilayer specification of the sample
(c), time-resolved evolution of the Mz, My differences (d), and snapshots of
Mz at particular times revealing the propagation of radial modes from the
edges (which are excited by out-of-plane field) towards the center.

22.4 Steady-state motion phenomena

Various authors have studied dynamic excitations of vortices in cylindrical disks
to observe a rich spectrum of modes [88]. Besides the existence of the radial
modes excited by out-of-plane field (Fig. 22.4) [68, 69], it has been also revealed
that low-energy modes (those near the ground state) excited by in-plane field
can be classified into two elementary types.

The first type, referred to as the gyrotropic mode, is an oscillatory motion
of the vortex core around its position in equilibrium, whose numerical simula-
tion is displayed in Fig. 22.5 for a Py disk with the diameter of 100 nm and
thickness of 20 nm. This type of motion has been predicted as the solution of
Thiele’s equation [Eq. (22.10)], as the analytical solution of the LLG equation in
the angular variables [Eqs. (22.14) and (22.15)], and has been extensively stud-
ied by micromagnetic simulations and various experiments. It has been revealed
that the core’s initial motion is parallel or antiparallel to the applied magnetic
field pulse, depending on the vortex’s “handedness” (the polarity relative to the
chirality) [81]. However, the clockwise or counter-clockwise sense of the core’s



436 The dynamics of magnetic vortices and skyrmions

0
–0.4

–0.2

0

0.2

0.4

(b)

N
o
rm

a
liz

e
d
 m

o
m

e
n
t

0.5 1

Mx

Mz

My

1.5 2
Simulation time [ns]

30

(a)

20

10

0

200

–10

–20

–20

–30

Fig. 22.5. Trajectory of the vortex core during and after an externally applied
in-plane magnetic field pulse of the strength of Bx = 60 mT and duration
of 200 ps (a). After turning the field off, the vortex core exhibits a typical
spiral motion around its equilibrium position at the disk’s center ([0,0] nm).
Red asterisks denote the time points of 0.2, 0.5, 1, and 1.5 ns. The time
evolution of the normalized total magnetic moment is displayed in (b). For
the simulation the typical values for Py were used, Ms = 860 · 103 A/m,
A = 1.3 · 10−11 J/m, γ = 2.2 · 105 m/As, and α = 0.01.

spiral motion only depends on the vortex’s polarity and is independent of the
chirality. Owing to this rule, the vortex polarity can be magneto-optically meas-
ured via this dynamic motion, even though the small size of the vortex core
makes the static magneto-optical measurement very difficult. In our example
(Fig. 22.5) the motion’s frequency is slightly above 1 GHz, and is decreased with
reducing the disk’s aspect ratio (thickness over diameter) [32].

The second type, referred to as magnetostatic modes, are high-frequency spin-
wave excitations. It has been theoretically predicted [34] and experimentally
evidenced [89] that there are azimuthal modes with degenerated frequency (fre-
quency doublets), corresponding to the two values of the azimuthal magnon
number m = ±|m| in Eqs. (22.14) and (22.15). In small disks (where the size
of the out-of-plane polarized core becomes comparable to the entire size of the
disk) this degeneracy is lifted (i.e., the frequency doublet becomes split), which
has been explained via spin wave–vortex (or magnon–soliton) interactions [90].
However, it has also been shown that removing the core (replacing the disk by
a wide ring or introducing strong easy-plane anisotropy) retains the degeneracy
of the doublet, so that no splitting occurs [89, 91]. The whole process of the
gyrotropic motion and a higher-frequency doublet is displayed in Fig. 22.6.

The dynamic manipulation of vortex states by means of STT has become
one of the most attractive subjects from both the fundamental and the appli-
cation viewpoints. Therefore, the current-induced motion of vortices has also
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Fig. 22.6. Trajectory of the vortex core obtained by Ivanov et al. [34] using
the analytical approach as described by Eqs. (22.11)–(22.15) with damping
neglected, showing that the spiral motion is affected by high-frequency os-
cillations. The inset in the middle shows the eigenfrequency spectrum of the
doublet |m| = 1 (denoting the “quantum number of the angular momen-
tum”) as functions of intrinsic easy-plane anisotropy λ. For λ < λc (high
easy-plane anisotropy) the vortex only possess the in-plane components of
magnetization (no out-of-plane core appears); for λ > λc (low anisotropy) the
vortex with an out-of-plane polarized core becomes responsible for significant
frequency splitting.

been investigated to reveal phenomena analogous to those managed by the field
excitation [92, 93].

22.5 Dynamic switching

Since about 2006, immensely intensive work has been carried out to study the
process of dynamic switching of vortex polarities and chiralities, which is par-
ticularly important for the data storage application. Traditionally, to switch the
vortex core’s polarity, an extremely large quasistatic out-of-plane magnetic field
was required. Moreover, to control chirality, the disk had to be fabricated with a
geometric asymmetry, e.g., with a “D-shape” [54, 94] or other shapes [66]. Unlike
that, dynamic processes have revealed considerable advantages.

Several authors have recently demonstrated [95–97] that a short pulse of in-
plane magnetic field of a certain amplitude and duration excites the vortex
so that a pair of a new vortex and an antivortex is created, the new vortex
possessing the opposite polarity, and that the antivortex annihilates together
with the old vortex core, as depicted in Fig. 22.7 for a cylindrical disk with the
diameter of 200 nm and thickness of 20 nm. This process is fully controllable by
applying an appropriate filed pulse whose amplitude is considerably smaller that
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(a) (b) (c)

(d) (e) (f)

Fig. 22.7. Process of dynamic switching of the vortex polarity. An external field
pulse of the strength Bx = 100 mT and duration of 30 ps is applied to
the vortex at t = 0 (a). Shortly after turning the field off (t = 33 ps) the
vortex distribution becomes slightly deviated (b), at t = 57 ps a pair of a new
vortex and an antivortex is created (c), at t = 67 ps the antivortex annihilates
together with the old vortex (d) which creates a point source of spin waves
which are scattered by the new vortex at t = 78 ps (e). Finally, (f) shows a
later distribution of the new vortex with the opposite polarity at t = 1 ns.
Each arrow in (b–e) represents the in-plane component of the magnetization
vector in a grid of 2× 2 nm, whereas the red–blue color corresponds to the
out-of-plane component.

those which are necessary for quasistatic switching. The process has also been
successfully observed by experimental measurements [98], and its variations and
further details are presently researched [99, 100].

For applications in spintronics, to control the switching process via an elec-
trical current is of particular interest. In this respect various authors have
recently carried out theoretical [101–104] end experimental [83] studies to re-
veal that the similar dynamic switching processes are possible by applying STT
excitations in the both configurations as described by Eqs. (22.8) and (22.9).

Similarly to the quasistatic case, to change the vortex chirality requires intro-
ducing some geometric asymmetry into the process. For this purpose, Choi et al.
[105] have applied a perpendicular current pulse to an F/N/F nanopillar, where
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Fig. 22.8. Process of dynamic switching of the vortex chirality. The series of
disks demonstrates the time evolution of magnetization distribution after
applying a pulse of magnetic field Bx = 51 mT with two examples of tem-
poral duration of 836 and 988 ps. The color scale of My and the geometric
orientation are displayed on the left; the field pulses are displayed in the
middle. The top disks demonstrate the evolution during the nonzero field,
applied from t = 0. The blue (solid) curve displays the evolution of the
shorter pulse (toff = 836 ps). The red (dashed) frame displays the evolution
of the longer pulse (t′off = 988 ps). Obviously, only the shorter pulse enabled
the chirality switching.

the asymmetry is due to the magnetostatic interaction between the vortices in
the two ferromagnetic layers. Other authors utilized an asymmetric mask [106]
or exchange bias [66].

Later the authors of this chapter demonstrated that introducing an external
asymmetry into the process of chirality switching is not necessary, because such
asymmetry can be represented by the chirality itself [108]. The vortex chirality
of a symmetric nanodisk can simply be switched by an in-plane field pulse of
an appropriate duration, because the information about the original state is
still present inside the disk for a certain time (before arriving at the saturated
equilibrium) so that a vortex with the opposite chirality can be nucleated after
turning the field off at a suitably chosen moment toff, as depicted in Fig. 22.8.

22.6 Magnetostatically coupled vortices

Many studies of quasistatic processes have been performed on pairs, chains, and
two-dimensional arrays of magnetostatically coupled vortices, but little attention
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was paid to their dynamic properties, although putting magnetic disks near each
other is of high importance for improving the density of data storage and study-
ing the propagation of micromagnetic excitations through such arrays. Among
dynamic studies, the pioneering experiments have been performed by means of
BLS [109, 110].

Recently the dynamics of magnetostatically coupled vortices was studied in
pairs of disks placed near each other laterally [33], vertically (as an F/N/F
nanopillar) [111], and as a pair of two vortices located inside a single elliptic dot
[112, 113]. It has been revealed, e.g., that the eigenfrequency of the synchronized
steady-state motion of two vortices in the lateral arrangement is split into four
distinct levels whose values depend on the lateral uniformity of the vortices’
excitation and on the combination of their polarities (but are independent on
chiralities) [33], as depicted in Fig. 22.9.

Large arrays of coupled vortices have also been investigated to reveal a close
analogy with crystal vibrations (or phonon modes) in two-dimensional atomic
lattices [114, 115]. The dispersion relations and the corresponding densities of
states of propagating waves of vortex excitations were found to vary with dif-
ferent ordering of vortex polarities regularly arranged within nanodisk arrays.
Moreover, for arrays of disks with two different alternating diameters a forbidden
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Fig. 22.10. Schematic diagram (a), dispersion relation in the 1st Brillouin zone
(b), and density of states (c) of a vortex array within magnetostatically
coupled disks with two different alternating radii (100 and 120 nm) and
uniform polarities and chiralities (pij = Cij = 1) throughout the lattice
[116, 117].

band gap has been observed (Fig. 22.10), pointing at the analogy with the
band gap between the acoustic and optical phonon branches in atomic lattices
[116, 117]. Collective excitation modes have also been studied in small (3 × 3)
arrays of nanodisks [118] and as analytical calculations using the Bloch theorem
which enables dealing with infinite arrays [46].

22.7 Magnetic skyrmions

Magnetic skyrmions are small, topologically very stable chiral spin structures
with a whirling configuration. Although their existence was theoretically pre-
dicted already in 1994 by Bogdanov and Hubert [119], they were first observed
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experimentally in 2009 [120–123] in bulk materials (including ferromagnets such
as MnSi [120], multiferroics, and antiferromagnets) and in thin films [124].

The skyrmion phase usually appears in the B–T phase diagram in only a
narrow range of temperatures and magnetic fields, as depicted in Fig. 22.11 (a)
on an example of MnSi [120], although in some materials the skyrmion phase
has been observed for considerably larger ranges of temperature. The chiral
texture of skyrmions is based on the competition of the both Heisenberg and
DM interactions as described by Eq. (22.1), the latter of which only occurs in
atomic lattices with missing or broken inversion symmetry (such as the B20
lattice of MnSi crystals) or on interfaces of magnetic films.

For ultrathin magnetic films the interfacial DM interaction is based on an
indirect exchange interaction of three neighboring atoms, the two spins si and
sj and an atom with a large spin-orbit coupling [12]. The DM vector D i,j is
then perpendicular to the plane of the triangle formed by the three atomic sites
and hence perpendicular to the ultrathin film. In this case the skyrmion’s spin
structure has only the out-of-plane and radial in-plane components, starting for
example from the downward orientation at the center, rotating around the axis
perpendicular to the diameter, and finally having the upward orientation at the
edge of the skyrmion, as depicted in Fig. 22.11 (b).

Skyrmions can also appear on the interface between a ferromagnetic thin layer
and a metallic layer with a large spin-orbit coupling. In this case the triangle
of the three interacting atoms is formed so that the two spins si and sj are
located in the upper, ferromagnetic layer, whereas the atom with the large spin-
orbit coupling is in the lower, metallic layer. Since the DM interaction vector
D i,j is still perpendicular to the plane of the triangle (and hence parallel to the
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Fig. 22.11. Schematic phase diagram of MnSi [120] (a) and two possibilities of
skyrmion spin structure (b,c).
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interface), it causes a different skyrmion structure, which now only possess the
out-of-plane and azimuthal in-plane components, as depicted in Fig. 22.11 (c).

For the effective use of skyrmions in spintronic devices, their current-driven
dynamics is of high advantage when compared to other magnetic nanostructures.
It has been, e.g., discovered that slow skyrmion motion can be driven by ultralow
current with the density of about 106 Am−2, which is about 5–6 orders smaller
than that of domain wall or helical structure motion [125]. On the other hand,
high-speed skyrmion motion requires a driving current of comparable strength
as in the case of domain walls.

To predict the existence of skyrmions and theoretically analyze their dynam-
ics, a modified version of the LLG equation can be used [13, 126],

∂m

∂t
+ v s · ∇m = −γm ×H eff + m ×

(
α
∂m

∂t
+ βv s · ∇m

)
, (22.16)

where m is the unit magnetization vector, v s is the velocity of conduction elec-
trons, H eff = −∇Etot is the effective magnetic field derived from the total
energy Etot, and β is a new parameter, referred to as the ratio of nonadiabacity
of spin transfer.

To understand the dynamics of skyrmions, a generalized form of Thiele’s
equation of motion for the center of the effective mass a can be used [13],

Msk
dv
dt

+ G × (j − v) + κ(αv − βj ) = −∇U, (22.17)

where v = da/dt is the skyrmion’s velocity, Msk is its efefctive mass, κ is a
dimensionless constant of the order of unity, j is the current density of conduction
electrons, U is the skyrmion’s potential caused by boundary effects, magnetic
fields, and impurities, and G = 2πNskẑ is the gyrovector, with

Nsk =
1

4π

∫ ∫
m ·

(
∂m

∂x
× ∂m

∂y

)
dxdy (22.18)

denoting the skyrmion’s topological number. The mass term in Thielle’s equation
appears due to the deformation of skyrmions during their motion and has an
important role in the dynamics of skyrmions bounded in circular disks. It can
be, however, neglected for low frequencies, which causes canonical conjugate
relation between the skyrmion coordinates ax and ay. The skyrmion velocity
v is then perpendicular to the driving force, analogously to the motion of an
electron subjected to magnetic field.

Thiele’s equation of motion also predicts the skyrmion Hall effect, which is
the presence of a velocity component transverse to the applied current, provided
that the α and β parameters are nonzero [127–129].

Thiele’s equation can also be straightforwardly generalized to an array of
many skyrmions, in particular to a hexagonal skyrmion crystal, where collective
excitations of spins propagate like phonons, analogously to an array of coupled
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spin vortices [130–132]. Since the translation symmetry of the skyrmion crystal
is broken by external magnetic field, spin-wave modes are gaped into phonon
branches, with the exception of the Goldstone mode, which is a low-lying mode
without a gap with the dispersion ω(k) ∝ k2. Experimental studies of collective
modes of a hexagonal skyrmion crystal were carried out by the magnetic reson-
ance in insulating Cu2OSeO3 [133]. In the thin-film form, the skyrmion-lattice
excitations (with applied out-of-plane field) can be divided into three skyrmion-
optical modes with k = 0; anticlockwise and clockwise rotation of skyrmion cores
and breathing modes (gradual changes of the skyrmion core size).

Other authors numerically investigated current-driven motion of a skyrmion
crystal and the helical phase using a model taking into account the impurity
pinning effect due to the easy-axis anisotropy [127]. They found a universal
relation between the driving current and the skyrmion velocity, independent of
α, β, and impurity pinning, displayed in Fig. 22.12. The current-velocity relation
for the helical phase is, on the other hand, similar to those for domain walls.
The reduced critical current in the case of the skyrmion crystal was explained
by the deformation of both skyrmions and their lattice to reduce the impurity
potential, as displayed in Fig. 22.13.
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Fig. 22.12. Velocities of the current-driven motions for the helical (HL) and
skyrmion crystal (SkX) phases as functions of the current density for several
values of β [127]. Concerning the impurity effects, the clean case without im-
purity (x = 0) and the dirty case with impurities (x = 0.1 %) are examined,
where x is the impurity concentration. Lines for the SkX are all identical
and overlapped within the accuracy of the numerical simulation, irrespect-
ive of the presence or absence of nonadiabatic effects (the β term) and
impurities.
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Fig. 22.13. Simulated current-driven motions of spin textures [127]. Snapshots
of the dynamical spin configurations at selected times: (a) Helical phase
(HL) at t = 4.55 × 10−8 s, (b) HL at t = 4.87 × 10−8 s, (c) Skyrmion
crystal (SkX) at t = 1.30 × 10−8 s, (d), SkX at t = 2.60 × 10−8 s, and (e)
t = 4.87 × 10−8 s. (f), Magnified view of (e) in which skyrmions distorted
from their original circular shape can be seen. The numerical simulation was
performed for β = α with the current density j = 6.0 × 1010 Am−2 for
HL and j = 4.0 × 1010 Am−2 for SkX in the presence of impurities with
x = 0.1 %. Positions of the impurities are indicated by green dots.
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Fig. 22.14. Simulated motion of skyrmions in 500×40×0.4 nm3 Co stripes with
the DM interaction of 1.4 meV per atom for the interface atoms and different
spin current densities [12]. The positions are indicated at t = 0 and either
t = 2.8 ns or 1 ns, the corresponding velocity is also shown. (a, b) Individual
skyrmions in perfect stripes (a) and stripes with pinning (b) shown by the
top triangle of enhanced anisotropy. (c) Individual skyrmions and chains of
skyrmions exhibit the same velocity. The spacing between skyrmions can be
smaller than shown in the figure and of the order of their diameter.

The reduction of the critical current density and the ultimate small size of
skyrmions can be advantageously applied in novel memory and logic operation
devices requiring high-data density and low-consumption power. Although the
current-velocity ratio would not be very different from that of the domain wall
motion, the short distance between two adjacent skyrmions and their small
sizes could allow faster information transfer and/or smaller driving currents.
For this purpose, the current-driven motion of individual skyrmions and their
pairs and chains were also numerically studied in narrow stripes [12], as depicted
in Fig. 22.14.
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22.8 Conclusions and perspectives

We have reviewed the most fundamental achievements on the dynamic properties
of magnetic vortices (with a particular interest in soft cylindrical ferromagnetic
disks) and skyrmions. We have demonstrated the basic theoretical background
widely used in analytical and numerical simulations, and briefly listed the utilized
experimental approaches (including a description of TRKM as the most typical
method of measurement). Then we have demonstrated the most significant re-
sults achieved by various authors. First, we have shown that the elementary
excitations near the ground vortex state (steady-state motions) are the import-
ant starting point to understand the whole principle of spin vortex dynamics.
Then we have reported the recent results of ultrafast magnetic-field and STT
based switching of the vortex binary properties (polarity and chirality) which are
of high importance for the possible future application in nonvolatile magnetic
recording media. We have also briefly presented a few potentialities of vortices
densely arranged into arrays or multilayers, which were found important, e.g.,
for designing novel artificial metamaterials which possess propagation modes
based on magnetostatic interactions between nearest neighbor elements. Finally
we have summarized recent the theoretical and experimental discoveries on the
origin and the dynamical properties of magnetic skyrmions.

The contemporary research continues in the tendency of pushing the limits of
the up-to-date theoretical and measurement capabilities and exploring new dir-
ections of studying fundamental physical phenomena and utilizing them in new
or higher-level applications. As regards the theoretical capabilities, reducing the
element sizes to the true nanoscale requires the generalization of models to allow
for the effect of surfaces and interfaces on atomic scale [134], quantum and non-
linear effects (such as nonlinear optical excitations of spins usable for entirely
optical switching [135, 136]), etc., for which the first-principle calculation will
probably be employed. As regards experiment, the tendency of reducing sizes
will require not only the improvement of the spatial resolution [137] (for which
novel techniques are interesting such as magnetic exchange force microscopy with
atomic resolution [138]), but also further increase of the time resolution of dy-
namic measurements [11]. Moreover, since the stroboscopic measurement of the
ultrafast dynamics requires repetition with always equal initial conditions, this
method cannot be used to study possible stochastic processes, which determines
a challenge to develop new experimental conceptions. Another challenge from
both the theoretical and the experimental viewpoints is the modulation of the
dynamic properties of vortices by virtual fab [10] or artificial defects designed
by tricky methods of deposition [139] or etching [140], leading to considerable
increase of vortices’ sensitivity to fields with particular strengths or frequencies.
We can thus conclude that the results of numerous dynamics studies have pointed
out various advantages and new potentialities in data storage, nanoscale probing
of magnetic thin-film structures, and other types of sensing or controlling.
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23 Spin-transfer torque in nonuniform
magnetic structures

T. Ono

23.1 Magnetic domain wall

Weiss pointed out in his paper on spontaneous magnetization in 1907 that
ferromagnetic materials are not necessarily magnetized to saturation in the ab-
sence of an external magnetic field [1]. Instead, they have magnetic domains,
within each of which magnetic moments align. The formation of the magnetic
domains is energetically favorable because this structure can lower the mag-
netostatic energy originating from the dipole–dipole interaction. The directions
of magnetization of neighboring domains are not parallel. As a result, between
two neighboring domains, there is a region in which the direction of magnetic
moments gradually changes. This transition region is called a magnetic domain
wall (DW).

Recent developments in nanolithography techniques make it possible to pre-
pare nanoscale magnets with simple magnetic domain structure which is suitable
for basic studies on magnetization reversal and also for applications. For ex-
ample, in a magnetic wire with submicron width, two important processes in
magnetization reversal, nucleation and propagation of a magnetic DW, can be
clearly seen. As shown in Fig. 23.1(a), in a very narrow ferromagnetic wire, the
magnetization is restricted to being directed parallel to the wire axis due to the
magnetic shape anisotropy. When an external magnetic field is applied against
the magnetization, a magnetic DW nucleates at the end of the wire and mag-
netization reversal proceeds by the propagation of this DW through the wire
(Fig. 23.1b, c). This textbook DW motion has been observed experimentally
thanks to the developments of nanotechnology, and there are many interesting
reports even on the magnetic field-driven DW motion [2–13].

23.1.1 Magnetic vortex

Another typical example of nonuniform magnetic structure is a magnetic vortex
which is realized in a ferromagnetic disk. As mentioned above, ferromagnetic ma-
terials generally form domain structures to reduce their magnetostatic energy. In
very small ferromagnetic systems, however, the formation of DWs is not energet-
ically favored. Specifically, in a disk of ferromagnetic material of micrometer or
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domain wall

H

(a)

(b)

(c)

Fig. 23.1. Schematic illustration of
the magnetization reversal process in
a magnetic wire.

submicrometer size, a curling spin configuration—that is, a magnetization vor-
tex (Fig. 23.2)—has been proposed to occur in place of domains. When the dot
thickness becomes much smaller than the dot diameter, usually all spins tend to
align in-plane. In the curling configuration, the spin directions change gradually
in-plane so as not to lose too much exchange energy, but to cancel the total
dipole energy. In the vicinity of the dot center, the angle between adjacent spins
then becomes increasingly larger when the spin directions remain confined in-
plane. Therefore, at the center of the vortex structure, the magnetization within
a small spot will turn out-of plane and parallel to the plane normal [14].

Figure 23.2 is the first proof of such a vortex structure with a nanometer-scale
core where the magnetization rises out of the dot plane [15, 16].The sample is
an array of 3 × 3 dots of permalloy (Ni81Fe19) with 1 μm in diameter and 50
nm thickness. At the center of each dot, bright or dark contrast is observed,
which corresponds to the positive or negative stray field from the vortex core.
The direction of the magnetization at the center turns randomly, either up or
down, as reflected by the different contrast of the center spots. This is reason-
able since up and down-magnetizations are energetically equivalent without an
external applied field and do not depend on the vortex orientation: clockwise
or counterclockwise. MFM observations were performed also for an ensemble of
permalloy dots with varying diameters, nominally from 0.3 to 1 μm (Fig. 23.3).
The image in Fig. 23.3(a) was taken after applying an external field of 1.5
T along an in-plane direction. Again, the two types of vortex core with up
and down magnetization are observed. In contrast, after applying an exter-
nal field of 1.5 T normal to the substrate plane, the center spots exhibit the
same contrast (Fig. 23.3b) indicating that all the vortex core magnetizations
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1 μm

Fig. 23.2. MFM image of an array of permalloy dots 1 μm in diameter and
50 nm thick with the schematic spin structure (magnetic vortex and vortex
core) in a disk [15].

(b)(a)

1 μm 1 μm

Fig. 23.3. MFM images of an ensemble of 50-nm-thick permalloy disks with
diameters varying from 0.3 to 1 μm: (a) after applying an external field
of 1.5 T along an in-plane direction and (b) parallel to the plane normal,
respectively [15].
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have been oriented into the field direction. The size of the core cannot be de-
termined from the images since the spatial resolution of MFM is much larger
than the theoretical core size. The core size was determined to be 9 nm by
using spin-polarized scanning tunneling microscopy which has an atomic-scale
resolution [17].

The experimental confirmation of the existence of the vortex core by MFM
studies [15, 16] stimulated the subsequent intensive studies on the dynamics of
the vortex core. It has been clarified that a vortex core displaced from the stable
position (dot center) exhibits a spiral precession around it during the relaxation
process [18–20]. This motion has a characteristic frequency which is determined
by the shape of the disk. Thus, the disk functions as a resonator for the vortex
core motion. Excitation of a magnetic vortex by the spin-transfer torque will be
discussed in Section 23.3.

23.2 Current-driven domain wall motion
23.2.1 Basic idea of current-driven domain wall motion

As a typical and instructive example of spin-transfer torque in a nonuniform
magnetic structure, let us consider the interaction between an electric current
and a DW. Figure 23.4(a) is an illustration of a DW between two domains in a
magnetic wire. Here, the arrows show the direction of local magnetic moments.
The magnetic DW is a transition region of the magnetic moments between do-
mains, and the direction of the moments gradually changes in the DW. What
will happen if an electric current flows through a DW? Suppose a conduction
electron passes though the DW from left to right. During this travel, the spin of
the conduction electron follows the direction of local magnetic moments because

DW

(a)

(b)

(c)

Fig. 23.4. Schematic illustration of
current-driven DW motion. (a) A DW
between two domains in a magnetic
wire. The arrows show the direction
of the magnetic moments. The
magnetic DW is a transition region of
the magnetic moments between
domains, and the direction of the
moments gradually changes in the
DW. (b) The spin of a conduction
electron follows the direction of the
local magnetic moments because of
the s-d interaction. (c) As a reaction,
the local magnetic moments rotate in
reverse, and in consequence, the
electric current displaces the DW.
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of the s-d interaction (Fig. 23.4b). As a reaction, the local magnetic moments ro-
tate reversely (Fig. 23.4c), and, in consequence, the electric current can displace
the DW.

The current-driven DW motion described above was first discussed by Berger
in a space-integrated form from the change of angular momentum of the con-
duction electrons after crossing a DW [21, 22]. Then, Bazaliy et al. proposed an
expression for the local torque due to the spin transfer inside a DW [23]. For
a wide DW, the conduction electrons’ spin is expected to follow the direction
of the local magnetic moment. In this adiabatic limit, the spin-transfer torque
is obtained as the differential change of the angular momentum of conduction
electrons, and can be expressed as

− JgμBP

2eMs

∂m

∂x
≡ −(u · �)x, (23.1)

where J is the current density, g is the g-value, P is the spin polarization of
current, e is the electron charge, Ms is the saturation magnetic moment, and
m is a unit vector along the local magnetization. Therefore, the magnetiza-
tion dynamics is governed by the following modified Landau–Lifshitz–Gilbert
equation

ṁ = γHeff ×m+ αm× ṁ− (u · �)m, (23.2)

where γ is the gyromagnetic ratio, Heff is the effective magnetic field, α is the
Gilbert damping constant, and an overdot is used to denote the time derivative.
The adiabatic torque moves a DW by changing its structure periodically between
the Bloch wall and Nl wall (Fig. 23.5). The energy barrier to be overcome to
change the domain wall structure is called intrinsic pinning, which determines
the threshold current density, Jc, for the DW motion [24].

Berger and his collaborators performed several experiments on magnetic films
[25, 26]. It needed huge currents to move a DW in a magnetic film due to the
large cross-section. Recent developments in nanolithography techniques make
it possible to prepare nanoscale magnetic wires, resulting in a review of their
pioneering work. The current-driven DW motion provides a new strategy to
manipulate a magnetic configuration without any assistance from the magnetic
field, and will improve drastically the performance and functions of recently pro-
posed spintronic devices, whose operation is based on the motion of a magnetic
DW [27–30]. Reports on this subject have been increasing in recent years from
both the theoretical [31–35] and experimental [36–69] points of view because of
its scientific and technological importance. However, most of the results cannot
be reviewed here due to the limitation of space.



Current-driven domain wall motion 459

Bloch wall

Néel wall

intrinsic pinningK⊥

Fig. 23.5. Schematic of Bloch and Néel domain walls. A current flowing in the
wire exerts a spin-transfer torque on the local spins inside the domain wall
and rotates them in the sample plane, resulting in a periodic change of
the domain wall structure between the Bloch and Néel walls. K⊥ is the
energy density of magnetic anisotropy associated with the rotation of the
domain wall spins, which determines the intrinsic pinning for the current-
driven domain wall motion.

23.2.2 Direct observation of current-driven domain wall motion
by magnetic force microscopy

The result of direct observation of the current-driven DW motion by means of
magnetic force microscopy (MFM) is shown in Fig. 23.6 [40]. The sample is
a magnetic wire of 10 nm thick Ni81Fe19 with the width of 240 nm. A single
DW is imaged as a bright contrast, which corresponds to the stray field from a
positive magnetic charge (Fig. 23.6a), an indication that a head-to-head DW is
realized as illustrated schematically in Fig. 23.6(d). The position and the shape
of the DW were unchanged after several MFM scans, indicating that the DW
was pinned by a local structural defect, and that a stray field from the probe was
too small to change the magnetic structure and the position of the DW. After
the observation of Fig. 23.6(a), a pulsed current was applied through the wire in
the absence of a magnetic field. The current density and the pulse duration were
7.0 × 1011 A/m2 and 5 μs, respectively. Figure 23.6(b) shows an MFM image
after the application of the pulsed current from left to right. The DW is displaced
from right to left by the application of the pulsed current. Thus, the direction of
the DW motion is opposite to the current direction. Furthermore, the direction
of the DW motion can be reversed by switching the current polarity as shown in
Fig. 23.6(c). These results are consistent with the spin-transfer mechanism that
is described in Section 23.3.1.

The same experiments for a DW with different polarities, a tail-to-tail DW,
were performed to examine the effect of a magnetic field generated by the electric
current (Oersted field). The introduced DW is imaged as a dark contrast in
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(a)

(c)

(b)

(d)
Current

Current

DW

1 μm

Fig. 23.6. (a) MFM image after the introduction of a head-to-head DW. The
DW is imaged as a bright contrast, which corresponds to the stray field from
positive magnetic charge. (b) MFM image after an application of a pulsed
current from left to right. The current density and pulse duration are 7.0×
1011A/m2 and 5 μs, respectively. The DW is displaced from right to left by
the pulsed current. (c) MFM image after the application of a pulsed current
from right to left. The current density and pulse duration are 7.0×1011A/m2

and 5 μs, respectively. The DW is displaced from left to right by the pulsed
current. (d) Schematic illustration of a magnetic domain structure inferred
from the MFM image. The DW has a head-to-head structure [40].

Fig. 23.7(a), which indicates that a tail-to-tail DW is formed as schematically
illustrated in Fig. 23.7(d). Figures 23.7(a), (b), and (c) show that the direction
of the tail-to-tail DW displacement is also opposite to the current direction.
The fact that both head-to-head and tail-to-tail DWs are displaced opposite
to the current direction indicates clearly that the DW motion is not caused by
the Oersted field. The successive MFM images with one pulsed current applied
between each consecutive image shown in Figs. 23.8(a)–(k) demonstrate that a
DW can be displaced in any position in the nanowire by the current-driven DW
motion.

23.2.3 Beyond the adiabatic approximation: Non-adiabatic torque

It was shown that the DW position in a wire can be controlled by tuning the
intensity, the duration, and the polarity of the pulsed current, and thus the
current-driven DW motion has the potentiality for spintronic device applica-
tions such as novel memory and storage devices [27–30]. However, there was
a big discrepancy between the experimental results and the theoretical predic-
tion. The experimentally obtained threshold current densities for NiFe wires are
the order of 10 11–1012 A/m2 [40, 45]. These values are more than an order of
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(a)

(c)

(b)

(d)

Current

Current

DW

1 μm

Fig. 23.7. (a) MFM image after the introduction of a tail-to-tail DW. The DW is
imaged as a dark contrast, which corresponds to the stray field from negative
magnetic charge. (b) MFM image after the application of a pulsed current
from left to right. The current density and pulse duration are 7.0×1011A/m2

and 5 μs, respectively. The DW is displaced from right to left by the pulsed
current. (c) MFM image after the application of a pulsed current from right
to left. The current density and pulse duration are 7.0×1011A/m2 and 5 μs,
respectively. The DW is displaced from left to right by the pulsed current.
(d) Schematic illustration of a magnetic domain structure inferred from the
MFM image. The DW has a tail-to-tail structure [40].

magnitude smaller than the theoretical value and also that obtained from the
micromagnetic simulation [24, 34, 35]. To solve this discrepancy, a new term
called the non-adiabatic spin transfer term or beta term was proposed to be in-
cluded in the Landau–Lifshitz–Gilbert (LLG) equation. Because DWs are never
infinitely wide, the adiabatic spin-transfer torque (Eq. 23.1) is a kind of ap-
proximation, and the deviation from adiabaticity should be taken into account.
From the mathematical point of view, the form of the only possible other torque
is m × [(u · �)m], because ṁ has to be orthogonal to m . Therefore, the LLG
equation is modified to

ṁ = γHeff ×m+ αm× ṁ− (u · �)m+ βm× [(u · �)m]. (23.3)

Because this equation can be rewritten as

ṁ = [γHeff − β(u · �)m]×m+ αm× ṁ− (u · �)m, (23.4)

the nonadiabatic torque works like an effective magnetic field. This is the reason
that the nonadiabatic torque is often called the field-like torque. For a wire with
DW pinning potentials due to defects, Jc is expected to increase linearly with the



462 Spin-transfer torque in nonuniform magnetic structures

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Current
DW

1 μm

Fig. 23.8. Successive MFM images with one pulse applied between each consecu-
tive image. The current density and the pulse duration were 7.0×1011A/m2

and 5 μs, respectively. Note that a tail-to-tail DW is introduced, which is
imaged as a dark contrast [40].

strength of the DW pinning potential, because the nonadiabatic torque works
as the effective field, which has been experimentally observed in NiFe wires [61].
Another important consequence of the inclusion of the nonadiabatic torque is
the theoretical prediction that the DW velocity is proportional to β/α Therefore,
the value of β is crucial for Jc and the DW velocity, although there have been
only a few reports of the estimation of β [51, 68]

23.2.4 Domain wall motion by adiabatic torque and intrinsic pinning

As discussed in the previous sections, both adiabatic and nonadiabatic torques
should be taken into account in the current-driven DW motion. The question is
which torque dominates the current-driven DW motion. The current-driven DW
motion in NiFe wires is believed to be dominated by the nonadiabatic torque, be-
cause Jc is proportional to the strength of the DW pinning [61]. Recently, clear
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Fig. 23.9. (a) The threshold current density as a function of the width of the
Co/Ni wire. (b)–(e) Histograms of the domain wall resistance in wires with
w = 92, 76, 59, and 40 nm. The measurement of domain wall resistance was
repeated 30 times in each wire.

evidence has been reported that the intrinsic pinning determines the thresh-
old, and thus that the adiabatic spin torque dominates the DW motion, in a
perpendicularly magnetized Co/Ni nanowire as described below [69].

The dependence of Jc on the wire width w was investigated, and the result
is summarized in Fig. 23.9(a) [69]. Jc reduces from 5 × 1011 A/m2 to 2 × 1011

A/m2 as w reduces, and then increases below w = 70 nm. Thus Jc has a clear
minimum value around w = 70 nm. For the stationary DW in a perpendicularly
magnetized film like a Co/Ni multilayer, generally the Bloch wall is stable. In
the nanowire, however, the energy of the Bloch wall increases as w reduces, and
finally the Néel wall is expected to be stable, because the demagnetizing field of
the transverse direction of the wire increases. The energy difference between the
Bloch and Néel walls is lowest at the boundary. As discussed in Section 23.3.1,
the energy difference between the Bloch and Néel walls determines the intrinsic
pinning, which determines Jc for the DW motion (Fig. 23.5). Therefore, the
observed minimum of Jc in Fig. 23.9(a) suggests the existence of the intrinsic
pinning of a DW.

To confirm the above scenario, it is necessary to identify the structure of the
stationary DW in the wires. For this purpose, the resistance of a DW in the
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wire was measured. The resistance of the Néel wall is expected to be larger than
that of the Bloch wall due to the anisotropic magnetoresistance effect, because
the local spin inside the DW points in the parallel direction with respect to the
measuring current, whereas it points in the perpendicular direction in the Bloch
wall. Figures 23.9(b)–(e) show the histograms of the DW resistance measured
for the wires with w = 92, 76, 59, and 40 nm, respectively. For w = 92 and 76
nm, the DW resistance is distributed in the vicinity of zero. Then, it split up
into two peaks for w = 59 nm. Finally a single peak at around 0.4 Ω appears
when w = 40 nm. These results indicate that the DW structure changes from
Bloch to Néel in the vicinity of w = 59 nm by reducing w. The minimum Jc

is observed near this border. It was also confirmed that there is no systematic
correlation between the w dependence of Jc and that of the DW pinning field.
This is in clear contrast to the result for NiFe wires, that Jc is proportional to
the DW pinning field. Therefore, these results offer strong evidence that Jc is
dominated by the intrinsic pinning in the Co/Ni nanowires.

23.2.5 Toward applications of current-driven domain wall motion

There are several proposals for application of current-driven DW motion to spin-
tronic devices such as novel memory and storage devises [27–30], and device
operations have already been demonstrated [61, 67]. However, there are sev-
eral issues to be overcome for practical applications: (1) low threshold current
density; (2) high DW velocity; and (3) stability of DW position. These three
conditions should be simultaneously satisfied to realize practical devices.

Although the high velocity of 100 m/s has been demonstrated for NiFe
nanowires [59], it has also been shown that the threshold current density
increases with the DW pinning field [61]. This could become a problem in
applications, because the DW position should be stabilized with high pinning
potential against the thermal agitation. Recently very attractive simulation re-
sults have been coming out, which suggest that it is possible to reduce the
threshold current density while keeping the high thermal stability of the DW
position for nanowires with perpendicular magnetic anisotropy [62, 63]. Prom-
ising experimental results, which support these simulations, have been reported
[64–66, 69–72]. It was shown that a single nanosecond current pulse can control
precisely the DW position from notch to notch in a Co/Ni wire with perpen-
dicular magnetic anisotropy in spite of the large DW depinning field from the
notch of 400 Oe [65]. It was also revealed that both Jc and the DW velocity are
insensitive to the external magnetic field which certifies the robust operation of
DW devices [69, 70]. A stable domain wall motion was observed up to the tem-
perature at which perpendicular magnetic anisotropy vanishes [72]. Moreover,
the current required for domain wall motion was independent of the device tem-
perature [71, 72]. A relatively high DW velocity of 60 m/s was reported for the
current density of 1.0 × 1012 A/m2, which can be understood by the adiabatic
spin-transfer model [70]. These observed characteristics make the Co/Ni system
a promising candidate for practical applications.
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23.3 Current-driven excitation of magnetic vortices
23.3.1 Current-driven resonant excitation of magnetic vortices

As is clear from Fig. 23.4, the underlying physics of the current-driven DW
motion is that the electric currents can apply a torque on the magnetic moment
when the spin direction of the conduction electrons has a relative angle to the
local magnetic moment. This leads us to the hypothesis that any type of spin
structure with spatial variation can be excited by a spin-polarized current in a
ferromagnet.

The ideal example of such a noncollinear spin structure is a curling magnetic
structure (“magnetic vortex”) realized in a ferromagnetic circular nanodot de-
scribed in Section 23.1.2. In this section, current-induced dynamics of a vortex
core in a ferromagnetic dot will be discussed. It is shown that a magnetic vor-
tex core can be resonantly excited by an ac current through the disk when the
current frequency is tuned to the resonance frequency originating from the con-
finement of the vortex core in the disk [73]. The core is efficiently excited by the
ac current due to the resonant nature and the resonance frequency is tunable
by the disk shape. It is also demonstrated that the direction of a vortex core
can be switched by utilizing the current-driven resonant dynamics of the vortex
[76, 78].

Figure 23.10(a) shows the simulation results of the time evolution of the core
position when an ac current (f = f0 = 380 MHz and J0 = 3 × 1011A/m2) is
applied to a disk with r = 410 nm and h = 40 nm [73]. Once the ac current is
applied, the vortex core first moves in the direction of the electron flow or spin
current. This motion originates from the spin-transfer effect. The off-centered
core is then subjected to a restoring force toward the disk center. However, be-
cause of the gyroscopic nature of the vortex (i.e. a vortex moves perpendicularly
to the force), the core makes a circular precessional motion around the disk
center [18]. The precession is amplified by the current to reach a steady orbital
motion where the spin transfer from the current is balanced with the damping,
as depicted in Fig. 23.10(a). The direction of the precession depends on the dir-
ection of the core magnetization as in the motion induced by the magnetic field
[18, 20]. It should be noted that the radius of the steady orbital on resonance is
larger by more than an order of magnitude as compared to the displacement of
the vortex core induced by a dc current of the same amplitude [74]. Thus, the
core is efficiently excited by the ac current due to resonance.

Figure 23.10(b) shows the time evolutions of the x -position of the vortex core
for three different excitation frequencies f = 250, 340, and 380 MHz. The steady
state appears after around 30 ns on resonance (f = 380 MHz). For f = 340
MHz slightly off resonance, the amplitude beats first, and then the steady state
with smaller amplitude appears. The vortex core shows only a weak motion for
f = 250 MHz, which is quite far from resonance. Figure 23.10(c) shows the radii
of the steady orbitals as a function of the current frequency for the disks with
r = 410, 530, and 700 nm. Each dot exhibits the resonance at the eigenfrequency
of the vortex motion.
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Fig. 23.10. (a) Time evolution of the magnetic vortex under application of an
ac current. The magnetization direction m = (mx, my, mz) inside the disk
on the xy plane was obtained by micromagnetic simulation. The 3D plots
indicate mz with the mx −my vector plots superimposed. The plot on the
left represents the initial state of the vortex core situated at the center of
the disk with r = 410 nm. The 3D plots on the right show the vortex on
the steady orbital at t = 80.6, 81.5, and 82.3 ns after applying the ac current
(f0 = 380 MHz and J0 = 3 × 1011A/m2). These plots are close-ups of the
square region around the disk center indicated by the black square in the
plot on the left. The time evolution of the core orbital from t = 0 to 100
ns is superimposed only on the t = 82.3 ns plot. (b) Time evolution of the
vortex core displacement (x) for three excitation frequencies f = 250, 340,
and 380 MHz (r = 410 nm and J0 = 3×1011A/m2). (c) Radius of the steady
orbital as a function of the frequency for the disks with r = 410, 530, and
700 nm [73].
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Fig. 23.11. Scanning electron microscope image of the sample along with a sche-
matic configuration used for the measurements. The detection of the vortex
excitation was performed by resistance measurements with a lock-in tech-
nique (223 Hz and current Imes = 15 μA) under the application of an ac
excitation current Iexe = 3× 1011A/m2 [73].

In order to experimentally detect the resonant excitation of a vortex core pre-
dicted by the micromagnetic simulation, the resistance of the disk was measured
while an ac excitation current was passed through it at room temperature in the
configuration shown in Fig. 23.11. A scanning electron microscope image of the
sample is shown in Fig. 23.11. Two wide Au electrodes with 50 nm thickness,
through which an ac excitation current is supplied, are also seen. The ampli-
tude of the ac excitation current was 3 × 1011 A/m2. Figure 23.12(a) shows
the resistances as a function of the frequency of the ac excitation current for
the disks with three different radii r = 410, 530, and 700 nm. A small but clear
dip is observed for each disk, signifying the resonance. The radius dependence
of the resonance frequency is well reproduced by the simulation, as shown in
Fig. 23.12(b).

Following the indirect evidence of the excitation of the current-induced vortex
core described above, the current-induced gyration motion of a vortex core was
directly observed by using time-resolved soft X-ray transmission microscopy [79].
By analyzing the radius of the vortex core gyration as a function of the exci-
tation frequency, the spin polarization of the current in the disk was estimated
to be 0.67.

23.3.2 Switching a vortex core by electric current

It was found that higher excitation currents induce even the switching of the core
magnetization during the circular motion [76]. Figures 23.13(a)–(f) are successive
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Fig. 23.12. (a) Experimental detection of the current-driven resonant excitation
of a magnetic vortex core. The resistances are indicated as a function of the
frequency of the AC excitation current for the disks with three different radii
r = 410, 530, and 700 nm. (b) Radius dependence of the resonance frequency.
The open rectangles and the filled diamonds indicate the simulation and the
experimental results, respectively. The experimental results for eight sam-
ples are plotted. The dashed line is the averaged value of the experimental
data [73].

snapshots of the calculated results for the magnetization distribution during the
process of core motion and switching, showing that the reversal of the core
magnetization takes place in the course of the circular motion without going
out of the dot. Noteworthy is the development of an out-of-plane magnetization
(dip) which is opposite to the core magnetization (Figs. 23.13a–d).

The predicted current-induced switching of the vortex core was confirmed by
the magnetic force microscopy (MFM) observation as described below [76]. First,
the direction of the core magnetization was determined by MFM observation.
A dark spot at the center of the disk in Fig. 23.14(b) indicates that the core
magnetization is directed upward with respect to the plane of the paper. The
core direction was checked again after the application of an ac excitation current
of frequency f = 290 MHz and amplitude J0 = 3.5 × 1011A/m2 through the
disk, with a duration of about 10 sec. As shown in Fig. 23.14(c), the dark spot
at the center of the disk changed into a bright spot after the application of the
excitation current, indicating that the core magnetization has been switched.
Figures 23.14(b)–(l) are successive MFM images with an excitation current ap-
plied between each consecutive image. It was observed that the direction of
the core magnetization after application of the excitation current was changed



Current-driven excitation of magnetic vortices 469

(a) t = 0ns

(d) t = 19.67ns

(b) t = 19.07ns

(e) t = 19.97ns

(c) t = 19.37ns

(f) t = 20.40ns

Fig. 23.13. Perspective view of the magnetization with a moving vortex struc-
ture. The height is proportional to the out-of-plane (z) magnetization
component. (a) Initially, a vortex core magnetized upward is at rest at the
disk center. (b) On application of the ac current, the core starts to make a
circular orbital motion around the disk center. There appears a region with
downward magnetization (called a “dip” here) on the inner side of the core.
(c), (d), (e) The dip grows slowly as the core is accelerated. When the dip
reaches the minimum, reversal of the initial core starts. (f) After the comple-
tion of the reversal, the stored exchange energy is released to a substantial
amount of spin waves. A positive “hump” then starts to build up, which will
trigger the next reversal. Calculation with h = 50 nm, R = 500 nm and
J0 = 4× 1011A/m2 [76].

randomly. This indicates that the switching occurred frequently compared to
the duration of the excitation current (about 10 s) and the core direction was
determined at the last moment when the excitation current was turned off.

Figure 23.15 shows the core velocity as a function of excitation time which
was obtained by the micromagnetic simulation. The sudden decreases of velocity
correspond to the repeated core-switching events. Worth noting is that the core
switches when its velocity reaches a certain value, vswitch ≈ 250 m/s here, re-
gardless of the value of the excitation current density. This is the crucial key to
understanding the switching mechanism together with the existence of the dip
structure which appears just before the core switching. The rotational motion
of the core is accompanied by the magnetization dynamics in the vicinity of the
core. This magnetization dynamics in the disk plane produces a so-called damp-
ing torque perpendicular to the plane according to the second term of Eq. (23.2),
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Fig. 23.14. MFM observation of electrical switching of a vortex core. (a) AFM
image of the sample. A permalloy disk fills the white circle. The thickness of
the disk is 50 nm, and the radius is 500 nm. Two wide Au electrodes with
50 nm thickness, through which an ac excitation current is supplied, are also
seen. (b) MFM image before the application of the excitation current. The
dark spot at the center of the disk (inside the small circle) indicates that
the core magnetization is directed upward with respect to the plane of the
paper. (c) MFM image after the application of the ac excitation current at
a frequency f = 290 MHz and amplitude J0 = 3.5× 1011A/m2 through the
disk with a duration of about 10 s. The dark spot at the center of the disk
in (b) changed ia the bright spot, indicating the switching of the core mag-
netization from up to down. (b)–(l) Successive MFM images with excitation
current applied similarly between consecutive images. The switching of the
core magnetization occurs from (b) to (c), (f) to (g), (h) to (i), (i) to (j), and
(k) to (l) [76].

which generates the dip structure seen in Figs. 23.13(b)–(e). The higher core vel-
ocity leads to the stronger damping torque, and eventually the core switching
occurs at the threshold core velocity. If the core switching is governed by the
core velocity, the switching should occur regardless of how the core achieves
the threshold velocity. In fact, the core switching was also observed by resonant
excitation with an ac magnetic field [77].

The current necessary for the switching is only several mA, while the core
switching by an external magnetic field needs a large magnetic field of several kOe
as described [16]. Although the repeated vortex core switching by a continuous
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ac current was presented here, it will be possible to control the core direction by a
current with an appropriate waveform. In fact, it was shown that a nanosecond
single current pulse can switch the core magnetization [78]. This method has
advantages over core switching by using the resonance effect described above; it
gives a short switching time as well as controllability of the core direction which
is indispensable in applications. Current-induced vortex core switching can be
used as an efficient data writing method for a memory device in which the data
are stored in a nanometer size core. To realize such a vortex core memory, it
is indispensable to develop techniques for electrically switching and detecting
the direction of the core magnetization. While the current-induced vortex core
switching corresponds to the electrical writing method, it was demonstrated
recently that the core direction (information) can be detected by using a three-
terminal device in which the tunneling magnetoresistance junction is integrated
onto a ferromagnetic disk [80].
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24 Theory of Rashba Torques

A. Manchon and S. Zhang

24.1 Introduction

Magnetic systems lacking inversion symmetry display unique properties both
in their ground state and out-of-equilibrium. Bulk non-centrosymmetric ferro-
or antiferromagnets (such as (Ga,Mn)As, MnSi etc.) as well as asymmetrically
grown magnetic multilayers all exhibit some level of chiral magnetic textures
(either under the form of skyrmion crystals, metastable isolated skyrmions, or
homochiral Néel domain walls) and some sort of current-driven spin-orbit torques
(either through inverse spin galvanic effect or spin Hall effect). Since the original
prediction of current-induced spin torque in a Rashba spin-orbit coupled inter-
face [1], the research on the interplay between various spin-orbit torques and
chiral magnetic textures has resulted in outstanding experimental observations
[2–7] and is currently opening thrilling perspectives for novel spin devices [8, 9].

In this chapter, we focus our attention on the theory of current-driven Rashba
torques in a number of magnetic systems. We first introduce the nature of spin-
orbit coupling in systems lacking inversion symmetry, then discuss the important
features of the Rashba torque in ferromagnetic two-dimensional-electron gases.
In the third section, we review recent theories of spin-orbit torques in other
forms of non-centrosymmetric magnets (dilute magnetic semiconductors, anti-
ferromagnets, topological insulators). We conclude this chapter by reviewing
recent experimental results that support the emergence of Rashba torques in
magnets lacking inversion symmetry.

24.2 Spin-orbit coupling in systems lacking inversion symmetry

Spin-orbit coupling locks the linear momentum of a carrier p̂ with its spin angular
momentum σ̂, via the potential gradient of the environment (usually a crystal),

Ĥso = ξσ̂ · (p̂×∇V ). (24.1)

In other words, spin-orbit coupling acts like a momentum-dependent magnetic
field on the itinerant spin, such that Ĥso = −μBσ̂ ·Bk. Since spin-orbit coupling
preserves time-reversal symmetry, in crystals lacking spatial inversion symmetry
the spin-orbit field Bk must be odd in momentum, i.e., B−k = −Bk.
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The first example of such an odd-in-k spin-orbit coupling was proposed by
Dresselhaus in ZnS crystal structure. In this crystal, the inversion symmetry is
broken by the presence of a two-atomic motif in the unit cell. By applying the
k · p theory around the Γ-point, the spin-orbit term becomes [10]

ĤD3 = β3((k2
x − k2

y)kzĴz + (k2
z − k2

x)kyĴy + (k2
y − k2

z)kxĴx). (24.2)

This Hamiltonian is linear in angular-momentum operator Ĵ and cubic in linear-
momentum k. If strain is applied along the (001) direction [11],

Ĥ001
D1
≈ β1(kxĴx − kyĴy), (24.3)

where β1 = β3〈k2
z〉. These terms are now linear in momentum k, and enable

several fascinating effects such as (inverse) spin galvanic effect and spin helix
phenomena in semiconductors [12]. In the case of wurtzite crystal structures
such as GaN, the elongated hexagonal structure results in a bulk Rashba-like
spin-orbit coupling [13].

In pioneering works addressing the transport properties of a low-doped two-
dimensional electron gas (2DEG), Vasko [14] and Bychkov and Rashba [15]
proposed that the sharp asymmetric potential drop at the interfaces of the
2DEG, ∇V ≈ ∂zV z, results in a very simple form of spin-orbit coupling

ĤR =
αR

�
σ̂ · (p̂× ẑ), (24.4)

where αR ≈ �
2∂zV /4m2c2. In low-doped semiconductor quantum wells, where

only a few bands are present around the Γ-point, the Rashba parameter can be
calculated using the k · p theory (i.e., the envelope function approach [17]). In
III-V semiconductors, it is related to the spin-orbit splitting Δso of the valence
p bands and the gap Eg between the s conduction and p valence bands [16, 18],

αR = c〈∂zU〉
[

1
E2

g

− 1
(Eg + Δso)2

]
(24.5)

where c is a numerical constant, and U is the total potential acting on the
holes of the valence band. Since U can be tuned by the gate voltage, the
Rashba coupling can be electrically controlled in experiments [19, 20]. Rashba
spin-orbit coupling has also been recently confirmed at hetero-oxides inter-
faces such as LaAlO3/SrTiO3 [21–23]. As a reference, the Rashba parameter of
InAlAs/InGaAs and LaAlO3/SrTiO3 can be as large as 0.01-0.07 eV·Å [21, 24].

Rashba spin-orbit coupling has also been reported at the surface and interfaces
of certain metals using Angle-Resolved Photo Emission Spectroscopy (ARPES).
These measurements have confirmed the existence of spin-split surface states in
Au [25, 26], Ag [27], Bi compounds [28–30], Gd [31] or even metal-based quantum
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wells [32–34]. Rashba-type spin-orbit splitting up to 3 eV·Å has been observed in
Bi/Ag surface alloy [29]. The physics underlying the emergence of a Rashba-type
spin splitting at metallic surfaces and interfaces is still under intense investiga-
tion but recent progress has shed some light on this problem. Several authors
recently pointed out that the phenomenological picture stating that Rashba
parameter is controlled by interfacial potential drop fails to quantitatively (even
qualitatively) account for the experimental observations. Indeed, the Rashba spin
splitting induced by the interfacial drop [i.e., the Rashba Hamiltonian given in
Eq. (24.4)] is at least two orders of magnitude too small compared to experi-
mental observations. Actually, while the spin-orbit coupling itself remains mostly
unperturbed by the interfacial symmetry breaking, the wavefunction around the
nucleus is strongly distorted [35–37]. In other words, the redistribution of the
charge density close to the nucleus determines the sign and strength of the split-
ting [31, 38]. The orbital character (p orbitals in Bi compounds, d orbitals in
transition metals) is therefore crucial to determine the strength and sign of the
Rashba parameter at metallic surfaces and depends on the band index [39]. The
existence of Rashba-type spin-splitting at normal metal/ferromagnet interfaces
has been recently confirmed by ab initio calculations [39–41].

Another class of systems that presents a very strong spin-momentum lock-
ing is the conductive surface of topological insulators [42–45]. Such materials
are insulating in their bulk and possess topologically protected conducting sur-
faces, where spin angular momentum is locked to the linear momentum. In their
simplest version, the Hamiltonian of the surface reads

ĤD = vσ̂ · (p̂× ẑ), (24.6)

which strikingly resembles the Rashba Hamiltonian. The equivalent Rashba par-
ameter ranges from ∼2 eV.Å for Bi2Te3 [46] to 4.1 eV.Å for Bi2Se3 [47] and 5.7
eV.Å for Kawazulite [i.e., Bi2(Te,Se)2(Se,S)] [48].

24.3 Rashba torques in magnetic two-dimensional electron gas
24.3.1 Free electron model

A convenient model to investigate the current-driven spin-orbit torques in an
inversion symmetry broken ferromagnet is the magnetic 2DEG in the presence
of Rashba spin-orbit coupling. The model Hamiltonian reads

Ĥ =
p̂2

2m
− αR

�
σ̂ · (z× p̂) +

Δ
2

σ̂ ·m (24.7)

where the first term is the kinetic energy, the second term is Rashba spin-orbit
coupling and the last term accounts for the coupling between itinerant electrons
spin σ̂ (sp-like) and the local magnetization m (from d-like electrons - here
|m|=1). The eigenstates of this Hamiltonian are
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|+〉 =

(
eiγk cos χk

2

sin χk

2

)
, |−〉 =

(
−eiγk sin χk

2

cos χk

2

)
, (24.8)

εsk =
�

2k2

2m
+ s

√
Δ2

4
+ α2

Rk
2 + αRkΔ sin(ϕk − ϕ) sin θ, (24.9)

where

cosχk =
Δ cos θ√

Δ2 + 4α2
Rk

2 + 4ΔαR sin(ϕk − ϕ) sin θ
, (24.10)

tan γk =
2αRk cosϕk −Δ sinϕ sin θ
2αRk sinϕk + Δ cosϕ sin θ

. (24.11)

The eigenstates, Eq. (24.8), are helical in spin space and the interplay between
Rashba spin-orbit coupling and s-d exchange results in a distortion of the energy
dispersion (and henceforth, of the Fermi surface) depending on the magnetiza-
tion direction [see Eq. (24.9)]. For instance, if one considers a perpendicularly
magnetized ferromagnet (θ = 0), the spin density of state s(=±) is

ss
k = −s 2αR√

Δ2 + 4α2
Rk

2
z× k + s

Δ√
Δ2 + 4α2

Rk
2
z. (24.12)

24.3.2 Current-induced Rashba spin torques

The above simple solution of the momentum-dependent spin density, Eq. (24.12),
does not generate a net magnetic moment in equilibrium and without exchange
interaction since the summation of all k is zero. However, when a current is
applied, a net magnetic moment appears. In a nutshell, 〈k〉 ∼ j, and from
Eq. (24.12) the non-equilibrium spin accumulation reads S∝ z× j, an effect
called inverse spin galvanic effect [49] or Rashba-Edelstein effect [50]. In 2008,
Manchon and Zhang proposed that such current-induced spin accumulation
could yield a novel spin torque on the contacting magnetic layers [1]: First,
the spin accumulation serves as an effective magnetic field through the direct
exchange coupling with the ferromagnetic magnetization m and thus

TFL = Δm× S ∝m× (z× j). (24.13)

This term is known as the field-like SOT. Second, the interface spin accumulation
can diffuse into the ferromagnetic layer and subsequently being absorbed; this
process is known as the spin-transfer torque (or Slonczewski-spin torque, or
damping-like torque) which could be simply expressed by

TDL = G↑↓m× (S×m) ∝m× [(z× j)×m], (24.14)
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where G↑↓ is the spin conductivity of the interface (or mixing conductance), S
is the interfacial spin accumulation. We point out that the damping-like torque
could also come from another competing mechanism known as the spin Hall
torque: a spin current generated by the spin Hall effect [71] could produce the
mathematically identical forms of the SOT [40, 72]. Sometimes, the experimen-
tally observed damping-like torque has been attributed to the spin Hall effect;
this is an erroneous assertion since the interface Rashba effect alone could also
generate the damping-like torque. To determine the relative contributions from
the bulk spin Hall and interface Rashba for the damping-like torque, geometrical
(e.g., thickness) and material dependence of the spin torque should be analyzed
in detail.

Since the intial prediction of the above Rashba torques and subsequently
verified experimentally [2, 51], much studies on the SOT have been carried out
in the past eight years in both homogeneous metallic ferromagnets [52–60] and
magnetic textures [61–70]. In the following, we discuss an improved calculation
of the Rashba spin torques.

Boltzmann transport equation [1, 52, 53, 55, 59], or quantum kinetics [56–
58, 60] have been used to compute the non-equilibrium property. Although
formally equivalent, these methods involve different levels of approximations
(relaxation time approximation, first Born approximation, vertex corrections
etc.) resulting in quantitative differences between the computed Rashba torques.
For instance, using Kubo formalism one can compute the non-equilibrium spin
density assuming spin-independent scattering rate and in the limit of weak
(αRkF � Δ) and strong ferromagnetism (Δ� αRkF) [58]

TαRkF�Δ ≈ αRnF

4Γ
Δ
εF

(
m× (z× eE) +

ΔΓ
α2

Rk
2
F

mzm× (z× eE)
)
, (24.15)

TΔ�αRkF ≈
αRnF

2Γ
Δ
εF

(
m× (z× eE)− 2Γ

Δ
m× [(z× eE)×m]

)
. (24.16)

Here Γ is the (spin-independent) impurity broadening, nF is the total electron
density and εF is Fermi energy. A similar form was derived by various authors
using different approximations [55–57, 59, 60]. The fact that the torque is com-
posed of two components, one odd in magnetization ∝ m × (z × E) and one
even in magnetization ∝ m × [(z × E) ×m] is a general feature of SOTs, not
limited to Rashba gases. The field-like torque, ∝m× (z×E), is simply the con-
sequence of inverse spin galvanic effect explained above (i.e., Rashba-Edelstein
effect) [1, 50]. The origin of the damping-like torque, ∝m×[(z×E)×m], is more
subtle. Two main origins have been identified. First, as mentioned above, spin
dephasing and relaxation distorts the spin dynamics in the two-dimensional gas,
resulting in a correction to the inverse spin galvanic effect. This general principle
has been originally pointed out in the case of spin-valves [73] and ferromagnetic
domain walls [74], and applies consistently to systems with broken inversion



480 Theory of Rashba Torques

symmetry. The second origin of the damping-like torque is related to the Berry
curvature of the electronic band structure in the mixed spin-momentum phase
space [55, 58, 59, 75, 76]. This contribution does not vanish in the limit of weak
disorder and is quite sensitive to “hot spots” in the band structure, i.e., points
where neighboring bands get very close to each other and where contributions of
the form ∼ 1/(εn − εn′)2 become very large [58]. We emphasize that the results
discussed in the context of the Rashba model have been qualitatively confirmed
by ab initio calculations on realistic transition metal interfaces [40, 76, 77].

We conclude this section by mentioning the diffusive spin dynamics in a mag-
netic Rashba gas. In the limit of strong disorder (εF � Γ � Δ, αRkF), the
spin-charge coupled drift-diffusion equations in the two-dimensional magnetic
Rashba gas read [56]

∂n

∂t
= D∇2n+Ksc(z×∇) · S +R∇z ·m(S ·m) + G(z×∇) ·mn, (24.17)

∂S
∂t

= D∇2S− S
τsf
− Szz

τz
− 1
τΔ

S×m− 1
τϕ

m× (S×m) (24.18)

+ Ksc(z×∇)n+ 2Kp∇z × S + G [m× ((z×∇)× S)

+ (z×∇)× (m× S)] + 2R[m · (z×∇)]nm.

Let us comment these equations briefly. The first equation, Eq. (24.17), con-
cerns the diffusion of the charge density n, driven by the spin-charge coupling
∼ Ksc: a gradient in spin density (z ×∇) · S produces a change in the charge
density. Physically, this equation states that a spatial gradient in spin density
produces a charge current: this is the spin-injection Hall effect [78]. The two add-
itional terms, ∼ G and ∼ R, are higher order corrections that account for the
precession of the non-equilibrium spin density S around the local magnetization
m. The second equation, Eq. (24.18), describes the spin dynamics induced by a
charge gradient (i.e., an electric field). The spin-dynamics involves anisotropic
spin relaxation, ∼ 1/τsf and ∼ 1/τz (i.e., the well-known D’yakonov-Perel spin
relaxation in Rashba gases [79]), the spin precession around the magnetization
∼ 1/τΔ and some spin dephasing ∼ 1/τϕ. In addition, spin-charge conversion
processes take place, such as the spin Hall effect ∼ Ksc [71] and the inverse
spin galvanic effect ∼ Kp [49]. The other terms are higher order corrections.
The competition between these different terms gives rise to a fairly complex
spin dynamics, and most importantly to a torque that possesses both field-like
and damping-like components, as discussed above and consistently with Kubo
formula derivations [56].

24.3.3 Rashba torque in magnetic textures

Besides the investigation of Rashba torque in homogeneous ferromagnets, the
physics of SOT-driven magnetic domain walls has also attracted substantial
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interest [5, 6]. The impact of Rashba torque on the dynamics of domain walls
has been initially studied by Obata and Tatara [61]. The authors showed that
the Rashba field promotes the motion of in-plane Bloch walls whose hard axis
is oriented along the current direction. Such a prediction has been followed by
several publications focusing on the dynamics of domain walls under both field-
like and damping-like SOTs [62–70].

For instance, it was shown that Rashba field-like torque can stabilize perpen-
dicularly magnetized Bloch walls, thereby suppressing the Walker breakdown
and resulting in gigantic domain wall velocities [5] (see also [63, 69]). Kim et al.
[80, 81] also showed that Rashba spin-orbit coupling enables charge pumping,
enhances the magnetic damping and can mediate antisymmetric Dzyaloshinskii-
Moriya interaction. The latter interaction turns out to be a crucial ingredient
of non-centrosymmetric magnets. One of the most important outcomes of these
studies has been the prediction that the combination between Dzyaloshinskii-
Moriya interaction (that stabilizes homochiral Néel walls) and damping-like
SOT (that drives the motion of such walls) leads to extremely fast domain wall
velocities [82], of highest importance for applications [6].

24.4 Beyond the magnetic two-dimensional electron gas
24.4.1 Bulk dilute magnetic semiconductors

III-V dilute magnetic semiconductors such as (Ga,Mn)As present an interesting
paradigm for SOTs as they display large bulk spin-orbit coupling together with
inversion asymmetry. As such, they constitute the first class of systems in which
SOTs have been observed [51, 83, 84]. The theory of current-driven torques in
dilute magnetic semiconductors was first studied by Bernevig and Vafek [85].
The authors considered the Kohn-Luttinger Hamiltonian in the spherical ap-
proximation with an exchange energy, augmented by a spin-orbit coupling term
of the form λ(k) · Ĵ where λx(k) = C4(εxyky− εxzkz) and λy,z are obtained from
cyclic permutation of indices. The current-driven spin density reads

S = 〈Ĵ〉 = −
(

3n
π

)1/3
τ

�3

15
2
m

γ1

(∑
s=±1

1
(1 + 2sγ2/γ1)3/2

)2/3

(eE ·∇k)λ,

(24.19)

where γ1,2 are the Luttinger parameters defining the band structure, τ is the
momentum relaxation time, n is the charge density and E is the applied elec-
tric field. The torque induced by this inverse spin galvanic effect is therefore a
field-like torque. A similar torque has been numerically computed in [86, 87]. A
few years later, combining both theory and experiments, Kurebayashi et al. [75]
proposed that intrinsic contributions could result in damping-like torque. These
contributions were not considered in previous works [85–87] and have been dis-
cussed extensively recently [58]. It is quite interesting to notice that the torques
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computed in dilute magnetic semiconductors exhibit properties qualitatively
similar to the ones featured by SOTs in the magnetic Rashba gas.

24.4.2 Dirac Torques in topological insulators

Three-dimensional topological insulators are a new class of materials that have
an insulating bulk and spin-momentum-locked metallic surface states [43, 108].
They exhibit strong spin-orbit coupling and are expected to show large charge-to-
spin current conversion efficiency, as reported by recent experiments [109–112].
A wide disparity exists between the various results and the physics behind spin-
charge conversion at the surface of topological insulators is still a matter of
debate: The nature of interfacial states and the importance of spin Hall effect
remain essentially unknown.

In its simplest version, the low-energy Hamiltonian of the surface of a
topological insulator reads

Ĥ0 = vσ̂ · (p̂× z) +
Δ
2

σ̂ ·m, (24.20)

where v is the Fermi velocity, and Δ is the exchange coupling between the spin
and the magnetization m. This Hamiltonian looks very similar to the Rashba
Hamiltonian, Eq. (24.7), in the absence of kinetic term. Two remarks are in or-
der though. First, since the kinetic term is solely given by the Dirac coupling,
∼ σ̂ · (p̂ × z), the spin density and charge current density are directly propor-
tional to each other, j ∼ z×S. In other words and quite unsurprisingly, the Dirac
term produces inverse spin galvanic effect, similar to the case of Rashba. Sec-
ond, and most importantly, the in-plane magnetization mx,my can be removed
from Eq. (24.20) by a simple gauge transformation. This means that only the
magnetization component normal to the surface, ∼ mz, impacts the transport
properties of the topological insulator.

As a matter of fact, a perpendicular magnetization opens a gap in the Dirac
cone, thereby driving a topological phase transition [113]. When the Fermi energy
lies in the gap and the system is in the insulating regime, a magnetic topo-
logical insulator exhibits two effects that are the hallmark of three-dimensional
topological insulators: quantum anomalous Hall effect [115], and quantum mag-
netoelectric effect [113, 114]. The former is the emergence of a quantized
anomalous Hall conductance, σH = Ce2/h (C being the Chern number character-
izing the topological insulator), while the latter is the emergence of a quantized
spin density aligned along the electric field direction, S = −(σH/ev)E [114].
Because of the gap opening, magnetic-domain walls or magnetic vortices are
accompanied by electric charging, which has a direct impact on their dynamics
[117–119].

The nature of SOT in the metallic regime has been the object of numerous
theoretical investigations [120–127]. The electric field-induced SOT reads [128]



Beyond the magnetic two-dimensional electron gas 483

T = −�vnF
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(24.21)

Here β = Δ/2εF is the polarization and the calculation assumes εF > Δ/2.
The first term ∼ m × (z × eE) is simply the field-like torque due to in-
verse spin galvanic effect, while the second term is the damping-like torque
due to magnetoelectric effect. This structure is actually very similar to the
Rashba torque given in Eq. (24.15), i.e., in the large Rashba limit, although
of opposite sign [121]. Interestingly, the damping-like torque vanishes when the
magnetization lies in the surface plane. Furthermore, a strong angular depend-
ence is expected. We note that a strong, but opposite angular dependence
of the torque has been experimentally identified in magnetically-doped topo-
logical insulators [110]: In this experiment the magnitude of the torque is larger
when the magnetization lies perpendicular to the plane of the surface. In other
words, the toy model presented above, Eq. (24.20), is insufficient to explain the
experimental data.

24.4.3 Antiferromagnetic two-dimensional electron gas

Up till recently, antiferromagnets were mainly studied under two different per-
spectives, one fairly applied, the exchange bias [88], and one quite fundamental,
the nature of certain exotic states [89]. In 2006, Nuñez et al. [90, 91] suggested
that spin-transfer torque could be achieved in a spin-valve device composed
of two antiferromagnetic electrodes. In the course of the search for such spin-
transfer torques, it was realized that in order to control the order parameter of
a collinear bipartite antiferromagnet, one needs a torque that is even in magnet-
ization, in other words a damping-like torque [92]. Such a damping-like torque
can be obtained by several ways, using a ferromagnetic polarizer [93], spin Hall
effect [94, 95] or SOTs [96, 97]. The recent demonstration of current-driven SOT
in CuMnAs [7] has opened thrilling avenues for the development of this field
[98, 99].

The SOT in antiferromagnet can be computed analytically in a toy model con-
sisting of a two-dimensional electron gas with both Rashba spin-orbit coupling
and antiferromagnetism. In the present case, we consider a G-type antiferromag-
net with nearest neighbor hopping only, i.e., each magnetic site A is surrounded
by sites B whose magnetic moment is aligned antiparallel. The low energy
Hamiltonian of such a system reads [96]

H̃ = γk τ̂x − αR

�
σ̂ · (z× p̂)τ̂x +

Δ
2

n · σ̂τ̂z, (24.22)

where γk = (�2/2m)
(
k2 − k2

0

)
. Here, σ̂ and τ̂ are Pauli spin operators describing

the real spin
{| ↑〉, | ↓〉} and the sublattice

{|A〉, |B〉} spaces, respectively, and n
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is the Néel order parameter. In the case where the magnetic order parameter n is
normal to the plane (n ≈ z), one can determine the Rashba torque on sublattice
i analytically (i = ±1 for A and B sublattices, respectively),

Ti =
αRnF

4Γ
Δ
εF

(
(−1)in× (z× eE) +

ΔΓ
ε2F

n× [(z× eE)× n]
)
. (24.23)

This expression has been derived to the lowest order of αR (Δ� αkF), close to
the extremum of the band (top or bottom), and assuming a spin-independent
impurity broadening Γ.

One can compare these formulae with Eq. (24.16). The structure of the torque
is quite similar to the one obtained in the ferromagnetic Rashba gas. The first
term, ∼ (−1)in× (z×eE), is a torque that changes sign on opposite sublattices,
i.e., it is simply a field-like torque, as expected from inverse spin galvanic effect. In
other words, it cannot torque the antiferromagnetic order parameter. The second
term has the same sign on opposite sublattices and is therefore associated with
a staggered field [96, 97]. This one can efficiently torque the antiferromagnetic
order parameter.

24.4.4 Two-dimensional-hexagonal lattices

The theoretical investigation of inverse spin galvanic effect and SOTs has been
recently extended towards two-dimensional-hexagonal lattices such as, but not
limited to, graphene, silicene, germanene, stanene, transition metal dichalcogen-
ides etc. [100–102]. The parametric dependence of the torque in these materials
does not significantly differ from the toy model of the Rashba two-dimensional-
electron gas or from the richer three-dimensional-dilute magnetic semiconductors
discussed above. A few remarkable aspects are worth noticing though. First of
all, the charge transport in two-dimensional-hexagonal lattices is driven by two
independent valleys. As long as intervalley scattering remains weak, one can
generate two torques of different magnitudes on each valley. Second, such two-
dimensional-hexagonal lattices are handy platforms to explore topological phase
transition between normal metals to band insulators and quantum (spin, valley,
anomalous) Hall regimes.

24.4.5 Semi-magnetic tunnel junctions

Let us conclude this section by addressing a last interesting setup. Consider a
magnetic tunnel junction composed of a ferromagnet and a normal metal sep-
arated by a tunnel barrier. In this set-up, the current is injected perpendicular
to the plane of the layer, i.e., through the tunnel barrier. If spin-orbit coup-
ling is strong in the ferromagnet, such a system exhibits tunneling anisotropic
magnetoresistance: Although only one ferromagnet is involved, the overall resist-
ance of the device depends on the orientation of the magnetization with respect
to the crystallographic directions of the system [103–105]. A minimal model to
describe tunneling anisotropic magnetoresistance assumes some form of Rashba
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spin-orbit coupling at the interface between the ferromagnet and the barrier.
One can show easily that such a spin-orbit coupling also enables SOT on the
ferromagnet [106, 107]. Following the symmetry of the system, the torque is on
the form T ∼m× z + m× (z×m), where z is the normal to the interface.

24.5 Experimental evidence of Rashba torques
24.5.1 Transition metal interfaces

SOTs have been massively studied in asymmetric transition metal multilayers
[3, 4, 6] (such as Pt/Co/AlOx, Ta/NiFe/MgO etc.,) and we do not intend to
review all these important works here (see e.g., [129]). In general, the SOTs
observed in these systems adopt the form T ∼m× (z×E) +m× [(z×E)×m],
which is in principle consistent with the Rashba torque described in the previous
sections. Although it is clear that very large Rashba spin-orbit coupling exists at
heavy metal surfaces [41], it remains very difficult to accurately determine the
origin of the SOT as spin Hall effect is usually present in these systems.

One way to obtain Rashba torques is to consider a system where spin Hall
effect is absent or vanishingly small. In our original theory [1], we suggested
that Rashba torque at the interface between Co and AlOx could be sizable.
The physical picture behind this idea was elaborated based on experiments on
perpendicular magnetic anisotropy at Co/AlOx interfaces [130, 131]. These ex-
periments demonstrated that upon varying the oxidation of the AlOx layer, one
could significantly enhance the perpendicular magnetic anisotropy, and as we
though at that time, the Rashba spin-orbit coupling. Although quite naive in
regard to the recent developments of the field, this initial guess has been con-
firmed by two experiments. Recently, Emori et al. [132] investigated the nature
of the SOT a thin NiFe film sandwiched between Ti and AlOx. Here, Ti has
a small spin-orbit coupling and spin Hall effect is expected to be vanishingly
small. The authors obtained a field-like torque significantly larger than the Oer-
sted field that they attributed to the Rashba effect at NiFe/AlOx interface.
In another work, Qiu et al. [133] reported that tuning the amount of oxygen
at the CoFeB/MgO interface could lead to a complete change of sign of SOT,
thereby demonstrating that Rashba torque as CoFeB/MgO interface can be quite
significant.

24.5.2 Non-centrosymmetric magnets

Bulk non-centrosymmetric magnets constitute the first class of materials in
which SOT has been predicted [85–87] and observed[51, 83, 84]. They also pre-
sent a unique platform for the investigation of SOTs: Since no spin Hall effect is
present, SOT entirely comes from the bulk of the materials, i.e., from inverse spin
galvanic effect. The exact form of the torque can be deduced from the crystal
symmetries of the magnet following Neumann’s principle [97, 134]. This has been
recently extended to NiMnSb [135] and CuMnAs [7], as previously discussed.
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24.5.3 Oxide heterostructures

Oxide heterostructures such as LaAlO3/SrTiO3 have attracted a significant
amount of attention in the past ten years due to their ability to support
high-mobility two-dimensional electron gases [136–138]. Most interestingly for
spintronics applications, these structures exhibit both sizable magnetism [139–
141], efficient spin injection [142, 143], as well as large Rashba spin-orbit coupling
[21–23]. Although, to the best of our knowledge, no SOTs experiments have
been performed to date, room temperature measurement of the Rashba field
has been recently reported. By probing the anisotropic magnetoresistance of
LaAlO3/SrTiO3 superlattices, Narayanapillai et al. [144] extracted a Rashba
field as large as 2 Telsa.

24.6 Conclusion

The electrical control of small magnetic objects mediated by spin-orbit coupling
has driven a lot of excitation in the spintronics community. Among the most
fascinating directions pursued nowadays, antiferromagnets, topological materials
and potentially oxide interfaces seem to carry the most promising perspectives.
The present chapter focused on one aspect only, the current-driven Rashba
torque, and disregarded the spin Hall torque. As mentioned in this chapter,
distinguishing between Rashba and spin Hall torques remains a matter of de-
bate and an extensive discussion is out of the scope of the present review. The
development of novel materials with strong spin-orbit coupling as well as the
realization of room temperature non-trivial magnetic topologies (such as, but
not limited to, magnetic skyrmions) will undoubtedly maintain a very high level
of interest in this extremely rich field.
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25 Spin-Mechatronics—mechanical generation
of spin and spin current

M. Matsuo, E. Saitoh, and S. Maekawa

25.1 Introduction

In conventional electronics, the coupling of the dynamics of electric charges and
mechanical motion such as rotation and vibration is well-known. Devices such as
generators or piezoelectric sensors that convert rotational or vibrational motion
into charge current, and motors that convert current into rotation are quite famil-
iar. Furthermore, applications exploiting devices in which electronic circuits are
integrated with mechanical elements, actuators, and sensors by microfabrication
technology are actively being developed in the field of MEMS (Micro-Electro-
Mechanical Systems) or NEMS (Nano-Electro-Mechanical Systems). This is
also true of spintronics. If devices can be realized whereby spin-angular mo-
mentum and mechanical motion can be coupled, the path to MEMS/NEMS
and spintronics-blended devices will open up. In this chapter, we introduce
the phenomena associated with this coupling of spin- and mechanical-angular
momentum in moving objects.

Let us start by updating our intuitive notion of electrons and to think about
the mechanics of coupling spin and motion and vice versa. The conventional
image for an electron is a sphere with an electric charge (Fig. 25.1). With this
image, one can think of a variety of electric phenomena, which one does not
directly see or touch using this sphere analogy of scattering charges. However,
with this image, the spin of the electron is unfortunately absent. We therefore
need to propose a new image for this electron. Spin endows each electron with a
magnetic moment. This property can be best represented as a spinning gear with
a magnet whose poles aligned along the spinning axis (Fig. 25.1). The magnet
represents the spin property of the electron; the spinning gear represents its
angular momentum. In spintronics research, the main focus at present has been
on manipulating electrons as small magnets. To control them, a magnetic field
is indispensable. Also, by creating effective magnetic fields, making use of the
magnetization structure or spin–orbit interactions as well as electromagnetic
fields, spins and spin currents are generated by orienting the magnets.

Now, let us focus on the nature of the spinning gear. Imagine a situation where
spinning gears are buried in a medium. If the medium is stationary, the gears in
general are not aligned. In contrast, if the medium is moving rotationally, it may
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Fig. 25.1. Visualization of
an electron. An electron has
electric charge as well as
spin and can be visualized
as a small magnet with a
spinning gear.

align the gears and moreover, in executing mechanical motion, may prompt them
all to move in unison in a certain direction. This is the new intuitive image for
the mechanical generation of spin and spin current. In the same way as creating
effective magnetic fields to control magnets, we shall show that with such a spin–
mechanical effect it is possible to create mechanical motion within a medium to
control the spinning gears.

25.2 Gyromagnetic effects

In 1915, Barnett discovered a gyromagnetic effect—when a magnet is rotated,
spins spontaneously align along the rotation axis [1]. He measured the magnet-
ization M of a ferromagnet rotating with angular velocity Ω, and found that M
is linearly proportional to Ω; specifically, M = χΩ/γ, where χ is the magnetic
susceptibility and γ is the gyromagnetic ration. Called the Barnett effect, this
result implies that the magnetization is caused by an emergent magnetic field
BΩ = Ω/γ in the rotating object, and an effective Zeeman coupling is induced
as H = −S · γBΩ = −S ·Ω. This is known as the spin–rotation coupling, which
is responsible for the gyromagnetic phenomena.

There exists a reciprocal effect to the Barnett effect, i.e., a rotation by mag-
netization. Einstein and de Haas discovered this effect following what is now
referred as “Einstein’s only experiment” performed in 1915 when general rela-
tivity was announced [2]. When applying an external magnetic field, spins in a
freely suspended magnet are relaxed in the magnetic field direction, and the total
angular momentum of the magnet is modulated. In consequence of the conserva-
tion law of angular momentum, a mechanical angular moment is simultaneously
induced to compensate the modulation of the total angular momentum due to
the conservation law. As a result, the magnet starts to rotate. This is called the
Einstein–de Haas effect and is a phenomenon that couples spin and mechanical
rotation.

As mentioned above, the origin of all gyromagnetic effects is the spin–rotation
coupling [3–5]:

HSRC = −S ·Ω. (25.1)
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Barnett effect:
magnetization by rotation

Einstein — de Haas effect:

rotation by magnetization

Fig. 25.2. Gyromagnetic effects.

This is the quantum version of the Coriolis force, HCor = −L · Ω, where L
is the mechanical angular momentum. Combining the spin–rotation coupling
with the Coriolis force results in H = −(L + S) · Ω, which shows that the
total angular momentum J couples to the angular velocity Ω. In contrast, for
electrons in a vacuum, the magnetic moment is coupled to a magnetic field
as H = − e

2m (L + 2S) · B. In general, the magnetic moment of a substance
is different from the total angular momentum. Therefore, the contribution of
the orbital angular momentum and that of the spin angular momentum to the
magnetism of the substance can be separated using gyromagnetic effects and
magnetic resonance methods together.

25.3 Direct observation of the spin–rotation coupling by spinning
NMR

Although the spin–rotation coupling emerges universally in a rotating object,
and has been studied extensively, theoretically, and experimentally [6–22], the
direct observation of the coupling has not been established for a long time.
Recently, Chudo et al. demonstrated that the field BΩ, called the Barnett field,
arising from the coupling between nuclear spin and mechanical rotation can
be observed from resonance frequency shifts in NMR measurements [23–25].
The experiment has revealed that spin–rotation coupling not only occurs with
electron spins in a rotating body but also occurs with nuclear spins.

The Barnett field acting on the nuclear spin in the substance rotating at the
angular velocity Ω canbe represented by BΩ = Ω/γN , where γN is the nuclear
gyromagnetic ration. Because the nuclear gyromagnetic ratio is three orders of
magnitude larger than the electron gyromagnetic ratio, the Barnett field acting
on nuclear spins is larger by three orders of magnitude than that on electron
spins.

In a conventional NMR experiment, a sample is placed within the coiling
of a wire connected to an NMR spectrometer, and an external magnetic field
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B0 is applied perpendicular to the coil axis. By applying an oscillating radio
frequency (RF) field to the coil, nuclear spins in the sample are excited and
precess with resonance frequency Ω0 = γNB0. The voltage in the coil induced by
the precession of the nuclear magnetic moment is the measured NMR signal. The
frequency is determined by the Zeeman coupling, H = −S ·γNB0, in the absence
of a mechanical rotation. When applying a mechanical rotation Ω, the coupling
changes as H = −S · γN (B0 + BΩ) because of the Barnett field BΩ = Ω/γN ,
and then, the resonance frequency shifts to ω0 = γNB0 + Ω.

To observe the expected shift, a new coil-spinning NMR method has been
developed (Fig. 25.3). The circuit built into the high-speed rotator. The RF
wave generated at the spectrometer is transmitted to the inner tuning circuit
through mutual induction between the stationary coil and the coupling coil.
The coils are electromagnetically coupled while mechanically isolated, thereby

rotor

Ω

capacitor

coupling coil

stationary coil

sample

sample coil B0

Z

Fig. 25.3. Illustration of the
experimental assembly.
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Fig. 25.4. Observation of the Barnett field acting on 115In nuclei. (a, b)
NMR intensity obtained without and with rotation, respectively, at
Ω/2π= + 10kHz at a measurement frequency of 27.365 MHz. (c) 115In
NMR intensity spectra as functions of external magnetic field at measured
frequencies.

ensuring that this coupling is maintained during high-speed rotation of the inner
circuit. This replicates the NMR measurement in a rotating object.

They measured the 115In NMR spectra as a function of the external magnetic
field B0 with and without sample rotation (see Fig. 25.4). In the absence of
the rotation, the nuclear gyromagnetic ratio γN is found to be |115In|/2π =
9.330 MHz/T. On rotating the sample at an angular velocity of Ω/2π = 10
kHz, the field dependence of the NMR center frequency parallel to the external
field is measured [Fig. 25.4 (b)]. The data can be fitted to the NMR frequency
ω0 = γN (B0 + BΩ) , and the Barnett field BΩ is estimated to be +1.1 ± 0.10
mT [Fig. 25.4 (c)]. This is the first direct measurement of the Barnett field. In
addition, this result reveals that the spin–rotation coupling emerges in nuclear
spin systems.

25.4 Barnett effect in paramagnetic states

Here, let us estimate the magnitude of the Barnett field acting on electron spins.
When the angular velocity Ω/2π = 10 kHz, the Barnett field becomes about
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30 nT, which is almost the same as the daily variation in geomagnetism in Tokyo.
In contrast, the centrifugal force from a 10-kHz rotation acting 1 mm from the
rotation axis is about 105 G, which is comparable to the surface gravitational
field on a white dwarf star. For this reason, the measurement of the Barnett
effect in a material with a low magnetic susceptibility such as a paramagnetic
material requires a strong magnetic shield as well as a strong rotating body that
is able to withstand the huge centrifugal force.

Recently, Ono et al. observed the Barnett effect in paramagnetic states by
mechanically rotating gadolinium (Gd) metal by an in situ magnetic measure-
ment setup comprising a high–speed rotational system and a fluxgate magnetic
sensor (Fig. 25.5). The rotational system is driven by airflow and a cylindrical
polycrystalline Gd sample of size of φ6 × 20 mm3 was inserted in a rotor
comprising a ZrO2 capsule.

In Fig. 25.6, we plotted the rotational-frequency dependence of MΩ/χ, where
MΩ is the magnetization resulting from the Barnett effect and χ is the mag-
netic susceptibility. Within the experimental accuracy, all data follow a linear
dependence with respect to the rotation frequency. The dotted line in the graph
represents the linear fit of the data. As the magnetization MΩ is induced by the
Barnett field BΩ = Ω/γ, the magnetization increases with rotation frequency
as MΩ = χBΩ = χΩ/γ. Therefore, one concludes that the linear dependence
originates from the Barnett effect in paramagnetic states. Moreover, the inverse
of the line’s slope gives the gyromagnetic ratio γ/2π = −29 ± 5 GHz/T. This
value is comparable to γe/2π = −28 GHz/T for an electron in a vacuum or Gd
compounds [27–29].

25.5 Emergent spin-dependent gauge fields in non-inertial frames

We next describe the spin-current generation induced by the mechanical motion.
To analyze the effects of mechanical motion on spin current, one must extend the

driving air

capsule

sample

fluxgate

sensor

MΩ

–ΔH

air turbine

(b)(a)
Ω

Fig. 25.5. Experimental setup for paramagnetic Barnett effect.



Emergent spin-dependent gauge fields in non-inertial frames 499

80

M
Ω/

x
 (

n
T

)

Ω/2π (Hz)

60

40

20

0

–20

–40

–60

–80

–1500 –1000 –500 0 500 1000 1500

Fig. 25.6. Plot of
magnetization MΩ/χ
versus angular frequency Ω
for a Gd sample.

theory of condensed matter by replacing the inertial frame with a non-inertial
frame.

Let us start with the general relativistic Lagrangian, which is fundamental to
the theory of Dirac’s spinor fields in the presence of gravitational fields as well
as inertial effects, [30]

L = Ψ̄
[
ieμ

aγ
ac(pμ + eAμ + i�Γμ)−mc2

]
Ψ, (25.2)

where Ψ is the 4-spinor wave function, γa (a = 0, 1, 2, 3) is the Dirac matrices,
and eμ

a is the vierbein that is related to the metric tensor gμν(x) as eμ
aη

abeν
b =

gμν . The space-time dependent Dirac matrices are given by γμ(x) = eμ
a(x)γa,

which satisfy the anti-commutation relation
{
γμ(x), γν(x)

}
= 2gμν(x).

The most important feature of Eq. (25.2) is that the Lagrangian contains
the spin connection given by Γμ = ω ab

μ Σab, where ω ab
μ = e a

λ (∂μδ
λ
ν + Γλ

μν)eνb

are determined by the Christoffel symbol Γλ
μν and the generator of the Lorentz

transformations Σab = 1
4 [γa, γb]. In particular, the generators labeled by spatial

indices are the spin operators for the 4-spinors, specifically, Σij = 1
2εijk

(
σkO
Oσk

)
,

where σk (k = 1, 2, 3) are the Pauli matrices. This implies that the spin con-
nection Γμ represents a spin-dependent gauge field, which originates from a
non-trivial coupling between spin and space-time and is responsible for the
mechanical generation of the spin current as we shall see.

It should be noted that the Lagrangian has a local U(1) gauge symmetry as
well as a local Poincaré gauge symmetry [31]. The local U(1) symmetry ensures
the conservation law of electric charge and gives rise to the coupling between a
spinor field Ψ and an electromagnetic field Aμ. In contrast, the local Poincaré
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symmetry, i.e., the invariance under local space-time rotations and translations,
yields the coupling between a spinor field and a spin-dependent gauge field Γμ

due to a gravitational field and an inertial effect arising in a non-inertial frame.

25.6 Spin current driven by rigid acceleration

Equation (25.2) is reduced to the Pauli equation using the low-energy approxi-
mation [32, 33]. In particular, we consider a rigidly accelerating system with
rigid rotation Ω and linear acceleration a. From the low-energy approximation
of the Dirac equation, we obtain the Hamiltonian describing an electron with
respect to a rigidly accelerating frame [5, 34–36]

HG = H0 −ma · r− L ·Ω− �

2
σ ·Ω− eλ

�
σ ·
(
π ×EG

)
, (25.3)

where L = r × π, EG = (Ω × r) × B + a/γ0 with γ0 = e/m, and H0 is the
conventional Pauli Hamiltonian in an inertial frame given by

H0 =
π2

2m
− eA0 − e�

2m
σ ·B− eλ

�
σ · (π ×E), (25.4)

with gauge potential (A0,A), electric field E = −∇A0 − (1/c)∂tA, magnetic
field B = ∇ × A, kinetic momentum π = p + eA and spin–orbit coupling
λ. Here the Darwin term is omitted because it is irrelevant to spin-transport
phenomena. The fourth term −�

2σ ·Ω in Eq. (25.3) is the spin–rotation coupling
and the last term is the mechanically induced spin-orbit coupling [5, 34–36,
38, 39] which reproduces the spin-dependent inertial forces resulting from rigid
acceleration [36]. The Hamiltonian HG can be rewritten in compact form [37]

HG ≈ 1
2m

(
p + e(A + AG) + A + AG

)2

− e(A0 +AG,0) +A0 +AG,0, (25.5)

where the emergent U(1) gauge field from inertial effects AG,μ = (AG,0,AG) is
given by

AG,0 = −γ−1
0 a · r− γ−1

0 (Ω× r)2/2, AG = γ−1
0 Ω× r, (25.6)

the conventional SU(2) gauge field Aμ = (A0,A) is given by

A0 = −�

2
σ · γB, A =

meλ

�
σ ×E, (25.7)

and the emergent SU(2) gauge field AG,μ = (AG,0,AG) is given by

AG,0 = −�

2
σ ·Ω, AG =

meλ

�
σ ×EG. (25.8)
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Equation (25.5) indicates that the inertial effects can be categorized into two
types containing the U(1) gauge field AG and the SU(2) gauge field AG. The
scalar component of the U(1) field AG,0 reproduces the linear acceleration and
the centrifugal force, and the vector component AG reproduces the Coriolis
force that corresponds to −L · Ω in the Hamiltonian HG. In contrast, for the
conventional SU(2) gauge field A, the scalar component A0 associated with
Zeeman coupling and the vector component A with spin–orbit coupling, are
modified by the emergent SU(2) field AG. The scalar part AG,0 corresponds to
spin–rotation coupling whereas the vector part AG corresponds to mechanically
induced spin–orbit coupling.

In particular, the vector component AG leads to the spin Hall effect due to
the inertial effects. Even in the absence of an electric field E, the velocity of an
electron in the accelerating frame depends on spin as

v =
1
i�

[r,HG] =
1
m

(
p + eAG + AG

)
= v0 + vσ, (25.9)

where v0 = 1
m

(
p+eAG

)
and vσ = eλ

�
σ×EG. As a result, a pure spin current is

generated perpendicular to the EG in a rigidly accelerating material with strong
spin–orbit coupling such as Pt [34–36].

25.7 Spin current driven by spin–vorticity coupling

Next, we consider another mechanism for spin-current generation involving a
mechanical motion, where the spin–vorticity coupling is used. The vorticity ω is
defined by ω = ∇×v, where v is a velocity field of the lattice in elastic materials
or a fluid velocity field. The vorticity represents a local rotational motion and is
related to a rigid rotation Ω = ω/2.

The spin–vorticity coupling arises in a local rest frame in an elastic material
or a liquid metal. The Dirac Hamiltonian is then [40]

HD = βmc2 + cα · π − eA0 +
e

2
A · v− 1

2
{v,π} − �

2
Σ · ω, (25.10)

and for a low-velocity electron reduces to the corresponding Hamiltonian,

He =
π2

2m
− eA0 − e�

2m
σ ·B +

e

2
A · v− 1

2
{
v,π

}− �

2
σ · ω

2
. (25.11)

The last term is the spin–vorticity coupling, which is responsible for spin-current
generation driven by the motion of elastic materials and fluids.
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In the presence of spin–vorticity coupling, the gradient of the vorticity gives
rise to a spin-dependent force,

FS = −∇HSVC = S · ∇ω, (25.12)

implying that a pure spin current can be generated along the vorticity gradient.
This is the mechanical analogue of the Stern–Gerlach effect.

In the presence of the mechanical Stern–Gerlach effect, spin transport
phenomena are described with the extended spin diffusion equation, [40–42, 46]

(∂t −Ds∂
2
x + τ−1

sf )δμS =
�

2
∂tωz +

2ξ
�DF

ωz. (25.13)

where δμS is the spin accumulation, Ds the diffusion constant, τsf the spin life-
time, DF the density of states at the Fermi level, and ξ is defined by ξ = χzz

0
8τωγ

with susceptibility χ and relaxation time τω for the angular momentum carried
by vorticity. This assumes that the vorticity gradient is along the x-direction,
and spins are polarized along the z-component of the vorticity ωz. The gener-
ated pure spin current can be estimated by solving Eq. (25.13) under certain
conditions. This gives Js = (σ0/e)∇δμS , where σ0 is the conductivity.

Spin current generation by surface acoustic wave Here, let us consider spin-
current generation from the motion of elastic non-magnetic materials [37, 40–43].

Our setup (Fig. 25.7) involves exciting a surface acoustic wave (SAW), which
then travels along the x-axis. The vorticity of the SAW is given by [44, 45]

ω(x, y, t) =
ω2

su0

2ct
exp

{− kty + i(kx− ωst)
}
, (25.14)

where ωs and u0 are the frequencies of the mechanical resonator and
amplitude, respectively, ct is the transverse velocity of sound, k the wave
number, kt = k

√
1− ξ2 the transverse wave number with ξ defined as

ξ= (0.875 + 1.12ν)/(1 + ν) given Poisson201A00C400F4s ratio ν, and ωs = ctkξ
the frequency.

In the GHz-frequency range of the mechanical resonator, the first term on
the right-hand side of Eq. (25.13) is dominant. By solving the equation, the
generated spin current reads

Jz
s ≈

�σ0

2e
τsfω

4
s

u0

c2t

√
1− ξ2
ξ

exp[−kty + i(kx− ωst)], (25.15)

where the condition ωsτsf � 1 holds. The result indicates that the generated spin
current is proportional to the spin lifetime τsf. Conventionally, materials with
strong spin–orbit coupling, or short lifetime, have been used for spin-current
generation because the spin Hall effect is used. By contrast, the mechanism via
the spin–vorticity coupling permits the use of materials with small spin–orbit
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Table 25.1 Spin current generated by SAWs

σ0 [107Ω−1m−1] τsf [ps] Js/Js(Pt) (2.5GHz)

Pt 0.96 0.3 1

Al 1.7 100 250

Cu 7 42 650

Ag 2.9 3.5 34

Au 2.5 2.8 33

GaAs 3.3 × 10−4 105 0.05

z

y

Vorticity

gradient

Spin current

x

Fig. 25.7. Spin current generated by surface acoustic wave in nonmagnetic
metal/semiconductors. The spin current is generated along the vorticity
gradient.

couplings (Table 25.1), such as Al and Cu as well as carbon nanotubes [43] for
generating spin current.

Spin current generation by fluid motion Spin–vorticity coupling also emerges in
liquid metals. Figure 25.8 shows a typical vorticity gradient in a pipe flow. Near
the wall, the fluid velocity near is very low because of viscosity, and hence the
vorticity is large; near the center of the pipe, though, vorticity vanishes. Hence a
vorticity gradient is induced perpendicular to the flow direction. Because of the
mechanical Stern–Gerlach effect, a spin current is generated along the vorticity
gradient.

This fluid-mechanical generation of a spin current was demonstrated by Taka-
hashi et al., using liquid metal flows of Hg and GaInSn in a fine quartz pipe [46].
Applying a pulsed pressure, vorticity fields were induced, and using a nano-
voltmeter attached to the pipe, an inverse-spin Hall voltage resulting from the
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generated spin current was measured. In Fig. 25.9, the voltage signals generated
in Hg are shown. The measurement was performed in a pipe with a 0.2-mm
inner radius and an 80-mm length. The voltage signal is observed only when the
mercury is flowing, and its sign depends on the flow direction, being consistent
with a sign reversal expected from the inverse-spin Hall effect.

To confirm that the voltage signal originates from the fluid-mechanical spin
current generation, a scaling behavior is predicted from the spin transport theory.
In this setup, the first term on the right-hand side of Eq. (25.13) is negligible and
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the second term describes the spin-current generation. In the non-equilibrium
steady state, the spin diffusion equation is written as

(
∇2 − 1

λ2

)
δμs = −4e2ξ

σ0�
ω, (25.16)

where λ is the spin-diffusion length, and vorticity ω is given by the solution of
the Navier–Stokes equation. For a turbulent pipe flow, the scaling law for voltage
VSHD is given by [46]

r0
L
× VSHD =

4e
�
× θSHλ

2

σ0
× ξ × v2

∗
κ
, (25.17)

where L is the pipe length, r0 the pipe radius, κ the Karman constant, θSH

the spin Hall angle, and v∗ the friction velocity. This relation indicates that
the scaled signal (r0)VSHD is proportional to v2

∗ and can be fitted by a single
parameter, θSHλ

2ξ. The dependence of the signal on friction is measured using
pipes of different sizes. All of the data can be fitted by a single scaling curve for
Hg as well as GaInSn as shown in Fig. 25.10. The results show good agreement
with the theoretical prediction.

Hg(Simple, r0 0.2, L 80)
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Fig. 25.10. Scaling behavior of inverse-spin Hall voltage generated in a pipe
flow.
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25.8 Summary

In this chapter, we briefly reviewed the mechanical generation of spin and spin
currents. In moving objects, the spin-gauge field arising from inertial effects
produce angular momentum transfer between mechanical motion and spin. The
spin-gauge field emerging in a rotating object has been detected employing dir-
ectly a spinning NMR method, and is exploited to manipulate electron spins in
paramagnetic states. This spin-gauge field is also used for spin-current generation
by the motion of rigid and elastic materials and fluid. In particular, the fluid-
mechanical generation of the spin current has been experimentally confirmed
in the flow of a liquid metal. These spin–mechanical effects that arise via the
spin-gauge fields open up a new field of spintronics, coined “spin-mechatronics,”
where spin and mechanical motion couple harmoniously.
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Néel domain wall (DW) 127–9, 376, 458–9,

463–4
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