

																							Dedicated	to	my	son	Ayaan

Table	of	contents

Table	of	contents								2

Module	1:	Course	Overview								6

Module	2:	Getting	Familiar	with	Spring	Cloud								7
The	Infamous	Cloud								7
New	Challenges	with	the	Cloud								8
Your	Focus	for	the	book								9
Prerequisites								10

Module	3:	Finding	Services	Using	Service	Discovery								11
What	Is	Service	Discovery?								11
Introducing	Spring	Cloud	Netflix								15
Key	Components	Involved	in	Service	Discovery								17
The	Discovery	Server								19
Demo:	Setting	up	a	Service	Discovery	Server								22
The	Application	Service								28
Demo:	Making	an	Application	Service	Discoverable								32
The	Application	Client								41
Demo:	Finding	and	Calling	Services	as	an	Application	Client								46
Spring	Cloud	Eureka	Dashboard								54
Configuration								58
Health	and	High	Availability								59
AWS	Support								60
Summary								67

Module	4:	Configuring	Services	Using	Distributed	Configuration								68
What	Is	a	Configuration	Server?								68
Introducing	Spring	Cloud	Config	Server								71
Using	the	Spring	Cloud	Config	Server								73

Config	Server	REST	Support:	Parameters								78
Config	Server	REST	Support:	Endpoints								80
Demo:	Setting	up	a	Configuration	Server								83
Using	the	Spring	Cloud	Config	Client								95
Demo:	Retrieving	Configuration	with	the	Config	Client								99
Updating	Configuration	at	Runtime								109
Utilizing	the	@RefreshScope	Annotation								111
Demo:	Refresh	Configuration	Without	Restarting	Your	App								115
Encrypting	and	Decrypting	Sensitive	Configuration								121
Using	the	Encryption	and	Decryption	Support								124
Encrypt	and	Decrypt	REST	Endpoints								127
Summary								129

Module	5:	Mapping	Services	Using	Intelligent	Routing								130
What	Is	Intelligent	Routing?								130
Intelligent	Routing	via	a	Gateway	Service								132
Using	Netflix	Zuul	with	Spring	Cloud								134
Configuring	Routes	in	Netflix	Zuul								138
Demo:	Using	Netflix	Zuul	as	an	Intelligent	Router								141
Creating	Filters	with	Netflix	Zuul	&	Spring	Cloud								155
Demo:	Creating	and	Using	a	ZuulFilter								159
Summary								165

Module	6:	Calling	Services	Using	Client-side	Load	Balancing								166
Module	Introduction								166
Client-side	vs.	Server-side	Load	Balancing								168
Getting	Started	with	Spring	Cloud	and	Netflix	Ribbon								171
Using	the	@LoadBalanced	Annotation								174
Demo:	Load	Balancing	Using	Ribbon	with	Service	Discovery								176
Using	the	@RibbonClient	Annotation								188
Demo:	Load	Balancing	Using	Ribbon	Without	Service	Discovery								191
Customizing	Your	RibbonClient	Configuration:	Introduction								196
Customizing	Your	RibbonClient	Configuration:	The	IRule	Bean								199

Customizing	Your	RibbonClient	Configuration:	The	IPing	Bean								201
Demo:	Customizing	the	RibbonClient	Load	Balancing	Strategy								203
Summary								207

Module	7:	Creating	Self-healing	Services	with	Circuit	Breaker								208
Introduction								208
Cascading	Failures	and	Resource	Overloading								210
Embracing	Failure	with	the	Circuit	Breaker	Pattern								212
Fault	Tolerance	with	Netflix	Hystrix	and	Spring	Cloud								214
Using	Spring	Cloud	and	Netflix	Hystrix								216
Demo:	Implementing	Fault	Tolerance	with	Netflix	Hystrix								220
Metrics	and	Insight	with	the	Hystrix	Dashboard								235
Using	Spring	Cloud	and	the	Netflix	Hystrix	Dashboard								237
Reading	and	Understanding	the	Hystrix	Dashboard								239
Demo:	Monitoring	Fault	Tolerance	Metrics	with	Hystrix
Dashboard								243
Aggregating	Hystrix	Metrics	with	Netflix	Turbine								249
Using	Spring	Cloud	and	Netflix	Turbine								251
Demo:	Aggregating	Multiple	Hystrix	Streams	with	Turbine								255
Summary								262

Module	8:	Bringing	It	All	Together	and	Where	to	Go	Next								263
Introduction								263
How	Does	It	All	Fit	Together?								265
Putting	It	All	Together:	On	Startup								267
Putting	It	All	Together:	On	Request								269
Where	to	Go	Next								271

Module	1:	Course	Overview

The	cloud,	or	cloud	computing,	is	truly	changing	the	way	we,	as	developers,
think	about	design	and	develop	software.	And	that's	where	Spring	Cloud
comes	in.	Spring	Cloud	helps	you	take	full	advantage	of	these	new
paradigms	by	bringing	together	the	best	of	Spring	Boot	with	proven	cloud
strategies	to	help	you	design	and	develop	cloud-native	applications.	Some	of
the	major	topics	we'll	cover	include	service	discovery	using	Spring	Cloud
and	Netflix	Eureka,	distributed	configuration	using	Spring	Cloud	Config
Server,	client-side	load	balancing	using	Spring	Cloud	and	Netflix	Ribbon,
intelligent	routing	via	a	gateway	service	using	Spring	Cloud	and	Netflix
Zuul,	and	fault	tolerance	using	Spring	Cloud	and	Netflix	Hystrix.	By	the
end	of	this	book,	you'll	know	how	to	build	applications	that	take	full
advantage	of	the	cloud.	Before	beginning	the	book,	you	should	be	familiar
with	Java,	Spring	Boot,	and	have	at	least	an	introductory	level
understanding	of	microservices.

Module	2:	Getting	Familiar	with	Spring
Cloud

The	Infamous	Cloud

I'm	sure	you've	heard	of	this	infamous	thing	called	the	cloud	as	it's	often
hyped	as	this	game	changer	or	the	sort	of	magical	solution	to	everything.
It'll	solve	all	your	problems.	And	with	so	many	things	to	learn	these	days,
it's	hard	not	to	ignore	a	lot	of	that	and	just	kind	of	brush	it	off	as	clever
marketing.	But	now	companies	and	enterprises	are	finally	starting	to	truly
embrace	the	cloud,	and	some	of	that	hype	is	actually	becoming	a	reality.
And	it's	more	often	the	norm	to	see	enterprises	and	companies	using	the
cloud	than	it	is	the	exception.	As	software	engineers,	I	think	we	have	some
really	exciting	times	ahead	of	us.	Cloud	computing,	or	the	cloud,	is	really
changing	the	way	that	we	build	software.	We're	moving	from	using	these
centralized	monoliths	to	applications	which	are	distributed	and	use
microservices.	And	not	only	is	the	software	changing,	but	the	hardware	is
changing	as	well.	We're	moving	from	this	managed	and	finite	resource	to
this	infinite	and	on	demand	and	self-service	resource.

New	Challenges	with	the	Cloud

With	the	cloud,	there	comes	these	new	challenges.	We	have	to	think
differently.	Things	are	not	quite	as	static	as	we're	used	to,	and	we	can't	just
design	and	architect	and	use	the	same	principles	or	techniques	that	we're
used	to.	The	cloud	is	this	elastic	and	ephemeral	thing.	Things	can	grow	and
shrink	and	appear	and	disappear	at	any	given	time.	So	we	have	to	consider
that	the	cloud	is	this	ever-changing	and	constantly	evolving	thing,	whereas
we	may	be	used	to	something	that	is	a	bit	more	static.	We	also	can't	just
move	our	existing	applications	to	the	cloud	and	expect	them	to	be
automatically	cloud	enabled.	This	is	often	referred	to	as	the	lift	and	shift
migration.	And	sure	we're	going	to	get	some	benefits	by	moving	to	the
cloud,	but	we're	not	fully	utilizing	the	cloud.	In	order	to	fully	utilize	the
cloud,	it	requires	change.	And	that's	where	Spring	Cloud	helps.	Spring
Cloud	helps	you	build	cloud-native	applications.	Now,	you're	probably
asking	what	is	a	cloud-native	application?	Well,	a	cloud-native	application
means	that	your	application	was	specifically	built	and	engineered	for	the
cloud.	It	means	your	application	fully	utilizes	all	of	the	cloud	computing
paradigms.	Spring	Cloud	itself	is	not	actually	a	framework.	Loosely
speaking,	Spring	Cloud	is	used	to	describe	a	number	of	projects	that	all	fall
under	the	same	umbrella.	In	this	book,	we'll	focus	on	the	fundamentals,
which	is	Spring	Cloud	Config	and	Spring	Cloud	Netflix.

Your	Focus	for	the	book

➢	Service	Discovery
➢	Distributed
➢	Configuration
➢	Intelligent	Routing
➢	Client-side	Load	Balancing
➢	Circuit	Breaker

We're	going	to	specifically	target	a	number	of	key	areas.	First,	we're	going
to	look	at	service	discovery.	How	do	you	dynamically	find	your	application
services	in	the	cloud	at	runtime?	Then,	we'll	move	on	to	distributed
configuration,	or	how	to	manage	common	or	service-specific	configuration
in	a	distributed	system.	Then,	we'll	look	at	intelligent	routing,	or	how	to
make	a	distributed	system	look	as	if	it	were	a	single	cohesive	system	using
Intelligent	Routing.	Then,	we'll	look	at	client-side	load	balancing,	or	how
you	distribute	load	among	several	instances	of	the	same	service.	And	last,
we'll	look	at	how	you	can	use	the	circuit	breaker	pattern	to	build	fault-
tolerant	applications	in	the	cloud.

Prerequisites

➢	Java	8+
➢	Spring	Boot	1.4+
➢	Knowledge	of	Microservices	or	SOA

Let's	talk	prerequisites.	I	assume	that	you	have	a	good	understanding	of
Java	and	particularly	Java	8,	as	well	as	a	good	understanding	of	Spring
Boot	as	Spring	Cloud	is	largely	built	on	top	of	Spring	Boot.	Last,	I	expect
that	you	have	at	least	a	knowledge	or	an	understanding	of	microservices	or
service-oriented	architectures.

Java	8+
Maven	3+
Spring	Tool	Suite	(Eclipse	STS)	3.8+

Next,	let's	talk	about	what	software	you're	going	to	need	to	be	successful	in
this	book.	Of	course	you're	going	to	need	Java,	Java	8,	and	you'll	need
Maven,	at	least	Maven	3,	in	order	to	build	the	Spring	Boot	applications.
And	we're	going	to	be	doing	all	of	our	development	using	Spring	Tool	Suite,
or	Eclipse	STS,	as	it's	called.	Make	sure	you	have	at	least	version	3.8.

Module	3:	Finding	Services	Using	Service
Discovery

What	Is	Service	Discovery?

➢	In	this	module	:
○	Service	Discovery
○	Discovering	Services	with	Spring	Cloud

■	Using	Eureka	client	and	server
■	Configuration
■	Health	&	High	Availability
■	Dashboard
■	AWS	Support

In	this	module	we'll	look	at	how	service	discovery	helps	you	locate	your
application	services	in	the	cloud.	Let's	quickly	start	off	by	talking	about
what	this	module	contains,	and	first	we're	going	to	look	at	service	discovery.
Obviously	this	module's	about	service	discovery,	so	we'll	talk	about	what	it
is	and	why	it's	important.	Then,	we're	going	to	look	at	how	Spring	Cloud
implements	service	discovery.	It	uses	a	project	from	Netflix	that	was	open
sourced,	it's	called	Eureka,	and	we're	going	to	talk	about	the	Eureka	Client
and	the	Eureka	Server.	Then,	we'll	move	on	to	configuration,	configuring
the	Eureka	Client,	the	Eureka	Server,	and	the	Eureka	Instance	and	how
each	of	those	are	different	and	what	you	need	to	do	to	tweak	them	or
configure	them	for	your	needs.	Then,	we'll	move	into	health	and	high
availability.	How	does	the	Eureka	Server	know	when	your	application	is
down	or	when	it's	unhealthy?	And	how	do	you	ensure	that	the	Eureka
Server	is	highly	available?	And	then	we're	going	to	look	at	the	Eureka
Dashboard,	which	is	a	nice	web	UI	that	shows	you	all	of	your	registered
services,	how	many	instances	there	are,	and	whether	they're	up	or	down.

And	last,	we're	going	to	finish	out	with	how	Eureka	has	specific	support	for
AWS.	Let's	get	started	with	the	most	important	question,	what	is	service
discovery	and	why	do	we	need	it?	Remember	that	the	cloud	is	changing	the
way	that	we	build	software.	We're	moving	from	building	these	single	large
applications	and	instead	breaking	them	up	into	smaller	and	smaller	pieces
called	services.	And	each	of	those	individual	services	can	then	be	deployed
and	scaled	on	their	own,	and	together,	as	a	whole,	they	form	the	overall
application.	And	herein	lies	the	problem.	How	does	one	service	know	where
another	service	is	at,	its	host	and	its	port,	so	that	it	can	call	it	and	use	it?	For
starters,	we	could	simply	configure	all	of	our	services	to	know	the	location
and	the	port	of	other	services	that	it	calls.	And,	depending	on	our	needs,	this
actually	might	get	us	pretty	far.	But	after	a	while,	we'll	learn	that	there	are
some	problems	to	this	approach.	What	if,	for	example,	you	had	two
instances	of	a	particular	service?	So,	in	our	example	here,	we	have
Application	Service	A	calling	Application	Service	B.	And	if	we	used
configuration,	every	time	we	added	or	removed	a	new	instance	of
Application	Service	B,	we'd	have	to	update	that	configuration.	And,	well,	in
our	example,	we	only	have	two	instances.	Imagine	if	you	had	hundreds	of
instances.	The	configuration	management	alone	would	be	unsustainable.
Our	simple	configuration	starts	to	break	down	even	further	as	we	move	to	a
cloud	environment.	In	a	cloud	environment,	you	have	instances	of	services
that	can	come	and	go	in	response	to	demand,	for	instance.	So,	for	example,
Application	Service	B	starts	with	two	instances,	and	consider	that	maybe
you	have	this	huge	influx	of	traffic,	maybe	it's	a	flash	sale	on	your
eCommerce	website,	and	an	automated	process	kicks	off	and	starts	two
more	instances	to	handle	all	of	that	demand.	Well,	if	you're	using	simple
configuration,	all	of	the	callers	of	Application	Service	B,	such	as	Application
Service	A,	would	not	even	know	about	the	two	new	instances	that	were
added	in	response	to	that	demand.	As	far	as	they're	concerned,	their
configuration	says	that	there	are	only	two	instances	that	they	know	about.
Another	thing	to	consider	is	that	application	services	will	eventually	fail.
And	regardless	of	the	situation,	whether	it's	a	memory	problem	or	a
hardware	problem,	if	you're	using	simple	configuration,	your	services	are
going	to	continue	to	try	to	send	traffic	to	those	failed	instances.	For	example
here,	we	have	Application	Service	B	being	called	by	Application	Service	A,
and	it	has	two	instances.	And	if	one	of	those	instances	fails,	Application
Service	A	is	not	going	to	know	the	better,	and	it's	going	to	continue	to	send

traffic	to	that	failed	instance.	We	need	something	that	is	more	dynamic.	The
simple	approach	is	just	far	too	static.	It's	too	frozen	in	time	for	our	needs	in
the	cloud.	That's	where	service	discovery	comes	into	play.

➢	Service	discovery	provides
○	A	way	for	a	service	to	register	itself
○	A	way	for	a	service	to	deregister	itself
○	A	way	for	a	client	to	find	other	services
○	A	way	to	check	the	health	of	a	service	and	remove	unhealthy
instances

Service	discovery	typically	provides	the	following	types	of	functionality.	A
way	for	a	service	to	register	itself.	And	what	that	means	is	that	when	a
service	comes	online	it	can	call	out	to	the	Service	Discovery	Server	and	let	it
know	the	location	and	port	of	its	service	so	that	other	application	services
can	call	it.	For	the	exact	opposite	reasons,	service	discovery	provides	a	way
for	a	service	to	deregister	itself.	So	if	a	service	were	to	shut	down	or	go	away
temporarily	for	upgrades,	it	would	want	to	let	the	Service	Discovery	Server
know	that	it's	no	longer	available	for	clients	to	use.	And,	most	importantly,
service	discovery	provides	a	way	for	clients	to	find	other	services.	And	what
do	I	mean	by	clients?	Well	I	mean	other	application	services.	So	if	you're	an
application	service	that	needs	to	use	another	service,	you	need	to	be	able	to
find	the	location	and	port	of	that	service,	and	you	can	ask	the	Service
Discovery	Server	for	that	information.	Lastly,	service	discovery	provides	a
way	to	check	the	health	of	a	service	and	remove	any	unhealthy	instances.	So
each	application	service	would	implement	a	health	check,	typically	via	a
REST	endpoint,	and	then	the	Service	Discovery	Server	would	call	that
endpoint.	And	if	the	health	check	were	to	fail,	it	would	remove	that	instance
from	its	registry.

Introducing	Spring	Cloud	Netflix

Now	that	we	have	a	good	understanding	of	what	service	discovery	is	and
why	it's	important,	let's	learn	how	Spring	Cloud	helps	us	implement	it.

➢	Discover	services	with:
○	Spring	Cloud	Consul
○	Spring	Cloud	Zookeeper
○	Spring	Cloud	Netflix

There	are	actually	several	different	ways	that	you	can	discover	services
using	Spring	Cloud.	There's	the	Spring	Cloud	Consul	project,	there's	the
Spring	Cloud	Zookeeper	project,	and	there's	the	Spring	Cloud	Netflix
project.	We're	going	to	specifically	focus	on	the	last	one,	the	Spring	Cloud
Netflix	project.	The	folks	over	at	Netflix	have	some	serious	experience
building	scalable	applications	in	the	cloud.	And,	in	fact,	you	could	probably
even	argue	they	have	some	of	the	largest	scalability	problems	you	can
imagine.	And	they	built	some	projects	internally	to	handle	these	problems
and	eventually	released	them	as	open	source	projects.

➢	Netflix	OSS	+	Spring	+	Spring	Boot
																									=	Spring	Cloud	Netflix

	The	Spring	Cloud	project	took	the	Netflix	open	source	projects	and	added
some	Spring	and	some	Spring	Boot	features.	They	sort	of	Spring-a-fide	it,	if
you	will.	And	what	was	born	out	of	that	was	the	Spring	Cloud	Netflix
project.	Similar	to	the	Spring	Cloud	project,	the	Spring	Cloud	Netflix
project	is	not	actually	a	project	in	and	of	itself.	Rather,	it's	a	collection	of
projects.	And	for	service	discovery,	we're	interested	in	two	of	those	projects:
the	Spring	Cloud	Netflix	Eureka	Server	and	the	Spring	Cloud	Netflix
Eureka	Client.

Key	Components	Involved	in	Service	Discovery

Before	we	dive	in	to	the	Spring	Cloud	Eureka	Server	and	Client,	it's	helpful
to	understand	the	key	components	that	are	involved	in	service	discovery
and	how	they	interact	with	each	other.	At	a	minimum,	there	are	three
components	involved	in	service	discovery.	There's	the	Discovery	Server,	the
application	service,	and	the	application	client.	It's	helpful	to	get	a	full
understanding	of	how	all	the	components	work	together	and	from	there
we'll	go	deeper	into	each	component	and	see	how	Spring	Cloud	helps	us
implement	that	particular	component.

➢	(1)	Service	registers	location
➢	(2)	Client	looks	up	service	location
➢	(3)	Discovery	server	sends	back	location
➢	(4)	Client	requests	service	at	location
➢	(5)	Service	sends	response

The	first	thing	that	happens	is	the	application	service	starts	up.	And	when	it
starts	up,	it	calls	out	to	the	Discovery	Server,	and	it	registers	itself.	And	it
tells	the	Discovery	Server	its	location,	its	port,	and	a	service	identifier	that
others	can	use	to	find	it.	Then	at	some	point	later,	a	client	needs	to	call	that
application	service,	but	it	doesn't	know	the	location	and	the	port	of	the
service,	so	it	needs	to	ask	the	Discovery	Server.	It	sends	out	a	request	to	the
Discovery	Server	and	sends	along	the	service	identifier.	And	the	Discovery
Server	knows	that	based	on	that	service	identifier	which	service	you're
asking	for,	and	it	responds	back	with	the	location	and	the	port	of	that
service.	From	there,	things	proceed	as	normal,	and	the	client	can	request	the
service	and	its	location,	and	the	service	can	respond	back	with	data.

The	Discovery	Server

We're	going	deeper	with	each	of	the	key	components	in	service	discovery,
and	we're	going	to	start	with	the	Discovery	Server.	At	its	core,	the	Discovery
Server	is	an	actively	managed	registry	of	service	locations.	It	is	responsible
for	allowing	others	to	find	services	and	for	services	to	register	and
deregister	themselves.	It's	the	source	of	truth,	if	you	will.	And	you	would
typically	run	more	than	one	instance	of	the	Discovery	Server	as	it's	the	key
component	to	locate	all	the	other	services.	And	if	you	can't	locate	the	other
services,	then	you	can't	call	the	other	services.	So	this	is	an	important	piece
of	the	overall	architecture.	And	you	can	find	the	Discovery	Server
implementation	within	the	Spring	Cloud	Eureka	Server	project.
Throughout	the	book,	we're	going	to	be	doing	fairly	simple	demos,	things
that	are	easy	to	set	up	and	solidify	the	concepts.	So	in	this	example,	we're
going	to	learn	how	to	create	a	Discovery	Server	using	Spring	Cloud.	And	I'll
detail	out	each	of	the	steps,	and	then	we'll	follow	up	with	a	real	example.
Creating	a	Discovery	Server	with	the	Spring	Cloud	Eureka	Server	project	is
very	easy.	In	fact,	it's	almost	embarrassingly	easy.

pom.xml	:
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type>
<scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement>

In	your	pom.xml	of	your	Maven	project,	in	the	dependencyManagement
section,	define	a	new	dependency	called	spring-cloud-dependencies,	and

make	sure	it's	of	type	pom	and	it	has	a	scope	of	import.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka-server</artifactId>

</dependency>

Still	within	your	pom.xml,	define	a	new	dependency,	spring-cloud-starter-
eureka-server.	And	be	sure	to	place	this	within	the	dependency	section	and
not	within	the	dependencyManagement.

Application.properties	:
spring.application.name=discovery-server

OR

Application.yml	:
spring:application:name:	discovery-server

Within	your	application.properties	or	your	application.yml,	define	a	new
property,	spring.application.name.	And	you	can	give	this	whatever	value
you	want.	In	our	case	here,	we're	going	to	use	discovery-server.

@SpringBootApplication
@EnableEurekaServer
public	class	Application{

public	static	void	main(String[]args){
SpringApplication.run(Application.class,args);

}
}

Then,	in	your	main	Application	class,	you	literally	define	one	annotation.
It's	@EnableEurekaServer.	And	that's	all	there	is	to	it.	Once	you	start	this
application	up,	you	will	having	a	running	instance	of	a	Discovery	Server.

Demo:	Setting	up	a	Service	Discovery	Server

In	this	demo,	we're	going	to	be	creating	and	starting	up	our	own	Service
Discovery	Server	using	the	Spring	Cloud	Eureka	Server	project.	To	start
things	off,	let's	head	over	to	start.spring.io,	and	we're	going	to	use	this
Spring	Initializr	to	create	the	stub	for	our	project.	It's	a	nice	little	skeleton
creator	that	saves	us	a	lot	of	time.
In	the	Group	section	here,	I'm	going	to	put	io.ajay.kumar,	and	for	the
Artifact	I'm	going	to	call	it	the	discovery-server.	In	the	dependencies,	I'm
going	to	add	the	Eureka	Server,	this	is	the	Discovery	Server,	and	I'm	also
going	to	add	DevTools	and	the	Spring	Boot	Actuator	project.

Once	you've	added	all	those	dependencies,	click	the	Generate	Project
button.	After	you	click	that	Generate	Project	button,	it's	going	to
automatically	download	a	zip	file	for	you,	and	this	contains	the	stub	of	our
project.	Go	ahead	and	unzip	the	downloaded	stub	project.	Then	we're	going
to	go	ahead	and	open	up	our	IDE	and	import	it.	I've	switched	over	to	my
IDE,	which	is	Spring	Tool	Suite.	And	on	the	Package	Explorer	tab	in	the
blank	area,	right-click	and	go	to	Import.	And	you're	going	to	want	to	filter
out	the	available	options	by	typing	in	Existing	Maven	Projects.	Go	ahead
and	click	that,	click	Next,	browse	to	the	location	of	the	unzipped	stub
project,	and	click	Open.	Underneath	the	Projects	you	should	see	your

pom.xml.	Go	ahead	and	click	Finish,	and	give	that	a	second,	and	it'll	import
into	the	IDE.

Once	the	project	is	finished	importing,	go	ahead	and	expand	it	and	open	up
the	main	application	class.	It	should	be	called	DiscoveryServerApplication,
and	this	is	where	we're	going	to	add	the	annotation	to	enable	our	Discovery
Server.	So	right	above	this	@SpringBootApplication	annotation,	we	can	add
a	new	one,	@EnableEurekaServer.	Go	ahead	and	save	that.

package	io.ajay.kumar.discoveryserver;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import
org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@EnableEurekaServer
@SpringBootApplication
public	class	DiscoveryServerApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(DiscoveryServerApplication.class,	args);
								}
}

We're	now	ready	to	start	our	Service	Discovery	Server,	so	go	ahead	and
right-click	on	the	main	application	class,	and	go	to	Run	As,	and	choose
Spring	Boot	App.

Once	the	application	has	finished	loading,	go	ahead	and	expand	the	Console
widow.	And	you'll	notice	that	there	are	several	exceptions	in	here.	Go	ahead
and	stop	the	application	server;	otherwise,	it	will	continue	to	throw	those
exceptions.	Let's	scroll	up	to	one	of	these	exceptions	and	see	what	the
problem	is.	Cannot	execute	request	on	any	known	server.	And	if	you	look,
it's	coming	from	this	DiscoveryClient.getAndStoreFullRegistry	method.
And	what's	happening	is	the	Service	Discovery	Server	is	starting	up,	and	it's
trying	to	register	itself	with	a	peer	Service	Discovery	Server.	And	this	is
mainly	for	high	availability	purposes.	However,	when	we're	running	in
standalone	or	development	mode,	it	can	kind	of	be	a	pain	to	have	to	set	up
multiple	instances	every	time.	So	instead,	we're	going	to	configure	the
Eureka	Server	not	to	try	to	register	itself	with	its	peers.	And	you	definitely
only	want	to	do	this	is	development	mode	since	you	want	that	high
availability	in	production.	Let's	go	ahead	and	close	the	Console.	Then,	in	the
Package	Explorer,	navigate	to	src/main/resources	and	open	up	the
application.properties.

application.properties	:
spring.application.name=discovery-server
eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false
server.port=8761

The	first	property	we're	going	to	add	is	actually	one	that	we	forgot
previously,	it's	the	spring.application.name	property,	and	we're	going	to	set
that	to	discovery-server.	The	second	property	we're	going	to	add	is	a	Eureka
Client	property,	so	go	ahead	and	type	eureka.client.register-with-eureka.

And	since	we're	the	Discovery	Server	our	self,	and	we're	running	in
standalone	mode,	we	don't	need	to	register	with	any	other	peers	because
there	aren't	any	other	peers.	So	make	sure	you	set	that	value	to	false.	The
next	property	is	also	a	Eureka	Client	property,	so	go	ahead	and	type
eureka.client.fetch-registry.	And	this	property	controls	whether	or	not	the
Eureka	Client	would	fetch	the	registry	from	the	Eureka	Server,	and	since
we	are	the	only	Eureka	Server,	there's	nothing	else	to	fetch	from	anybody
else,	so	we'll	set	this	to	false.	And	the	last	property	we're	going	to	add	is	the
server.port,	and	we're	going	to	set	that	to	a	value	of	8761,	which	is	the
default	port	for	Eureka	Discovery	Server.	Once	you	get	those	properties	in
place,	head	over	to	the	main	application	class,	right-click	on	it,	and	go	to
Run	As	Spring	Boot	App.	When	your	app	finishes	starting	up,	expand	the
console,	and	you'll	see	that	it	started	the	Eureka	Server	and	it	changed	its
status	to	UP.	So	you	now	have	a	running	Service	Discovery	Server.

The	Application	Service

➢	Provides	some	application	functionality
➢	The	receiver	of	requests
➢	A	dependency	of	other	service(s)
➢	One	or	more	instances
➢	User	of	the	discovery	client

○	Register
○	Deregister

Remember	that	we're	diving	into	each	of	the	components	of	service
discovery,	and	the	next	on	our	list	is	the	application	service.	This	is
whatever	is	providing	the	functionality.	It's	the	thing	that's	receiving	the
requests	from	clients	and	returning	responses.	And	it's	a	dependency	of
other	services.	So	other	services	depend	on	its	functionality	to	perform	their
functionality.	You	would	typically	run	one	or	more	instances	of	the
application	service.	The	application	service	is	a	user	of	the	discovery	client.
It's	going	to	use	that	client	to	call	out	to	the	Discovery	Server	and	register
and	deregister	itself.	Just	like	we	did	for	the	Service	Discovery	Server,	we're
going	to	detail	out	the	steps	needed	to	add	a	Eureka	Client	to	an	application
service,	and	then	we'll	actually	create	one	ourselves.

➢	Using	Spring	Cloud	Eureka	Client	in	a	Service

pom.xml	:
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>

<type>pom</type>
<scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement>

In	the	pom.xml	of	your	Maven	project,	add	a	new	dependencyManagement
section,	and	within	there	add	a	new	dependency	of	spring-cloud-
dependencies.	Again,	make	sure	it's	of	type	pom	and	of	scope	import.

pom.xml:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

Still	within	the	pom.xml,	add	a	new	dependency	within	the	dependencies
elements,	and	this	one	is	called	spring-cloud-starter-eureka.	Then	in	your
application.properties	or	your	application.yml,	add	two	new	properties.

application.properties
spring.application.name=service
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

OR

application.yml
spring:application:name:	service
eureka:client:service-url:defaultZone:	http://localhost:8761/eureka

The	first	property	is	the	spring.application.name	property,	and	again	you
can	set	this	to	whatever	value	you	want.	In	our	case,	we'll	use	service.	The
second	property	tells	the	application	service	where	the	Service	Discovery
Server	is	located,	and	it's	the	eureka.client.defaultZone	property.	And	you
can	see	we	set	that	to	localhost,	but	in	a	production	configuration	you'd
obviously	set	that	to	wherever	your	Service	Discovery	Server	was	located.	If

https://www.google.com/url?q=http://localhost:8761/eureka&sa=D&ust=1546021897244000

you're	wondering	what	the	defaultZone	piece	is	of	the	property,	don't	worry
about	it	for	now.	We'll	explain	more	about	that	in	the	AWS	support	section.

@SpringBootApplication
@EnableDiscoveryClient
publicclassApplication{
publicstaticvoidmain(String[]args){
SpringApplication.run(Application.class,args);
}
}

And	then	in	your	main	Application	class	of	your	application	service,	you
add	one	annotation.	Again,	it's	just	one	annotation.	The	Spring	Cloud	guys
have	made	it	so	easy	for	us.	And	that	is	the	@EnableDiscoveryClient
annotation.	And	what	this	does	is	it	makes	our	application	service	register
itself	with	the	Discovery	Server,	and	then	other	services	can	find	it.

Demo:	Making	an	Application	Service	Discoverable

We'll	use	the	Spring	Initializr	again	to	create	our	application	service,	so	go
ahead	and	head	over	to	start.spring.io.	And	in	the	Group	here	you're	going
to	put	io.ajay.kumar,	and	we'll	give	the	Artifact	name	service.	And	you'll
have	pretty	much	the	same	dependencies,	but	this	time	you'll	want	to	do	the
Eureka	Discovery	dependency	instead	of	the	Eureka	Server	dependency.
And	you	can	go	ahead	and	add	DevTools	and	the	Actuator.

Go	ahead	and	click	Generate	Project.	It'll	automatically	create	and
download	a	zip	file	for	you.	Go	ahead	and	unzip	that	zip	file,	and	we'll
import	that	into	our	IDE.	And	we're	back	in	Spring	Tool	Suite.	In	the
Package	Explorer	tab,	right-click	and	go	to	Import.	And	again,	we	want	to
do	Existing	Maven	Projects.	Click	Next,	browse	to	the	location	of	our
unzipped	file,	and	click	Open.	You	should	see	the	pom.xml	underneath	the
Projects	heading,	and	click	Finish	to	finish	the	import.	That'll	take	a	second,
and	once	that's	finished,	expand	the	service	and	go	to	src/main/java	and
open	up	the	main	application	class.

package	io.ajay.kumar.service;
import	org.springframework.beans.factory.annotation.Value;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;

@EnableDiscoveryClient
@SpringBootApplication
@RestController
public	class	ServiceApplication	{
								@Value("${service.instance.name}")
								private	String	instance;

								public	static	void	main(String[]	args)	{
																SpringApplication.run(ServiceApplication.class,	args);
								}
								
								@RequestMapping("/")
								public	String	message()	{
																return	"Hello	from	"	+	instance;

								}
}

Within	the	main	application	class,	called	ServiceApplication,	we'll	add
@EnableDiscoveryClient.	And	this	is	what's	going	to	turn	our	service
application	into	a	client	of	the	Discovery	Server,	and	it's	going	to	cause	it	to
register	with	the	Discovery	Server	when	it	starts	up.	Underneath	the
SpringBootApplication	annotation,	add	a	new	annotation,	@RestController.
And	remember	that	we're	doing	quick	and	easy	demos	to	solidify	the
concepts,	and	some	of	the	things	that	we're	using	here	are	definitely	not	best
practices,	and	you	shouldn't	use	them	in	your	regular	applications.	So,	for
instance,	you	wouldn't	typically	put	an	@RestController	on	your	main
application	class,	but	since	we're	using	this	to	quickly	demo	something,	it's
okay.	Let's	add	a	new	method	here,	public	String	message.	And	we're	going
to	return	a	message.	And	we're	going	to	want	to	annotate	this	with
@RequestMapping,	and	we'll	just	make	this	the	root.	And	the	plan	is	to	be
able	to	start	multiple	instances	of	this	service	application.	So	we're	going	to
add	a	property	here	called	private	String	instance.	And	we're	going	to
annotate	this	with	@Value,	and	we're	going	to	pass	in	a	placeholder	of
service.instance.name.	Go	ahead	and	save	that,	and	then	in	your	message
return	"Hello	from	"	+	instance;.

application.properties
spring.application.name=service
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

Under	src/main/resources,	open	up	the	application.properties	and	give	this	a
spring.application.name.	And	we'll	call	this	service.	And	we're	going	to	add
one	more	property,	and	that's	the	location	of	the	Discovery	Server.	So	you
can	type	eureka.client.service-url.	And	after	the	service-url,	you	typically
put	a	zone,	and	there's	a	default	zone	which	we'll	use.	It's	called
defaultZone.	And	then	we're	going	to	set	that	to	the	location	of	our	Service
Discovery	Server,	so	http://localhost:8761/eureka.	Since	we're	going	to	be
running	more	than	one	instance	of	our	service	application,	we	have	to	set	up
some	run	configuration	so	that	each	instance	runs	on	a	different	port	and
has	a	different	instance	name.	Right-click	on	your	main	service	application

class,	go	to	Run	As,	and	go	to	Run	Configurations.	Highlight	the	Spring
Boot	App	section	and	click	New.	And	under	Project	we're	going	to	do
service,	and	under	Main	type	we're	going	to	do
io.ajay.kumar.ServiceApplication.	And	under	the	Override	properties
section,	we're	going	to	add	server.port,	and	were	going	to	give	this	a	value	of
8081.	And	then	we're	also	going	to	name	our	instance,	so
service.instance.name.	That's	the	property	that	we	came	up	with.	And	we'll
call	this	instance	1.	And	don't	forget	to	name	your	instance,	so	we'll	call	this
instance	1.

And	then	we're	going	to	copy	this	run	configuration	to	create	our	second
instance.	So	if	you	come	over	here	to	the	Duplicate	button,	click	that,	give	it
a	new	name	of	instance	2.	We're	going	to	change	the	port	to	8082	and	the
instance	to	2.	Click	Apply,	and	close	that.	Before	we	start	the	instances	of
our	service	application,	we	need	to	start	the	Discovery	Server	so	they	can
register	themselves.	So	go	ahead	and	expand	the	discovery-server,	right-
click	on	the	main	application	class,	and	go	to	Run	As	Spring	Boot	App.
Once	the	Service	Discovery	Server	is	started	up,	we	can	start	up	our
application	instances.	So	come	down	to	the	main	ServiceApplication	class,

right-click,	Run	As,	and	go	to	the	Run	Configurations.	Highlight	instance	1
and	click	Run.	And	you	can	do	the	same	thing	for	instance	2.	So	right-click
on	the	ServiceApplication,	Run	As,	Run	Configurations,	highlight	instance
2,	and	click	Run.	You	can	look	at	each	of	the	instances	by	clicking	this	drop-
down	over	here.	And	you	can	see	that	we	have	the	discovery-server	started,
the	instance	1	started,	and	instance	2	started.	And	we're	currently	looking
at	instance	2.	So	if	we	expand	out	the	Console,	scroll	over,	and	we	can	see
that	our	application	successfully	registered	itself	with	the	Discovery	Server.
It	says	registering	service,	and	it	has	a	registration	status	of	204.

DiscoveryClient_SERVICE/DESKTOP-OIHU6JB:service:8082:	registering
service...
DiscoveryClient_SERVICE/DESKTOP-OIHU6JB:service:8082	-
registration	status:	204

	And	we	can	go	look	at	the	other	instance,	instance	1,	scroll	over,	and	we	can
see	the	same	thing,	registering	service	and	a	registration	status	of	204.

DiscoveryClient_SERVICE/DESKTOP-OIHU6JB:service:8081:	registering
service...
Tomcat	started	on	port(s):	8081	(http)	with	context	path	''
Updating	port	to	8081
Started	ServiceApplication	in	7.717	seconds	(JVM	running	for	8.896)
DiscoveryClient_SERVICE/DESKTOP-OIHU6JB:service:8081	-
registration	status:	204

And	then	if	you	go	look	at	the	discovery-server,	and	you'll	see	several
requests	in	there	for	our	service	application	to	register	itself	with	the	Service
Discovery	Server.

Registered	instance	SERVICE/DESKTOP-OIHU6JB:service:8081	with
status	UP	(replication=false)

Registered	instance	SERVICE/DESKTOP-OIHU6JB:service:8081	with
status	UP	(replication=true)
Running	the	evict	task	with	compensationTime	11ms
Registered	instance	SERVICE/DESKTOP-OIHU6JB:service:8082	with
status	UP	(replication=false)
Registered	instance	SERVICE/DESKTOP-OIHU6JB:service:8082	with
status	UP	(replication=true)

The	Application	Client

➢	Calls	another	application	service	to	implement	its	functionality
➢	The	issuer	of	requests
➢	Depends	on	other	service(s)
➢	User	of	the	discovery	client

○	Find	service	locations

Let's	continue	with	our	deep	dive	of	the	components	involved	in	service
discovery.	Up	next	is	the	application	client.	The	application	client	is	the
piece	that	would	call	out	to	another	application	service	to	implement	some
piece	of	functionality	in	its	service.	It's	the	issuer	of	requests,	and	it	depends
on	other	services.	And	similar	to	the	application	service,	the	application
client	is	also	a	user	of	the	discovery	client,	but	it	uses	the	discovery	client	in
a	different	way.	It	doesn't	use	it	to	register	or	deregister	anything.	It	uses	it
to	find	service	locations.	Just	to	be	clear,	it's	perfectly	reasonable	for	an
application	to	be	both	a	service	and	a	client.	An	application	can	be	a	service,
which	provides	services	to	others,	and	at	the	same	time	can	be	a	client,
which	depends	on	other	services.	What	we're	referring	to	here	is	if	the
application	was	just	a	client	and	it	wasn't	a	service.	The	steps	involved	to	set
up	a	client	are	quite	similar	to	the	steps	involved	to	set	up	a	service.

➢	Using	Spring	Cloud	Eureka	Client	in	an	Application	Client

pom.xml	:
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type>

<scope>import</scope>
								</dependency>
				</dependencies>
</dependencyManagement>

	You	add	this	dependencyManagement	section	with	the	spring-cloud-
dependencies,	and	you	add	a	dependency	for	spring-cloud-starter-eureka.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

The	differences	between	an	application	client	and	an	application	service
come	in	the	configuration.

application.properties
spring.application.name=client
eureka.client.service-url.defaultZone=http://localhost:8761/eureka
eureka.client.register-with-eureka=false

OR

application.yml
spring:application:name:	client
eureka:client:service-url:defaultZone:	http://localhost:8761/eureka
register-with-eureka:	false

We	have	the	same	two	properties	that	we	used	within	the	application
service,	the	spring.application.name,	except	this	time	we	set	it	to	client,	and
the	eureka.client.defaultZone	so	that	it	can	know	the	location	of	the	Service
Discovery	Server.	And	since	we're	a	client,	we're	not	interested	in
registering	with	the	Discovery	Server	because	we	don't	need	anybody	to
discover	us.	We're	just	interested	in	discovering	others.	So	you	set	that	value
to	false.

@SpringBootApplication
@EnableDiscoveryClient
public	class	Application{

public	static	void	main(String[]args){
SpringApplication.run(Application.class,args);

}
}

Just	like	we	did	with	the	application	service,	we'll	add	the
@EnableDiscoveryClient	annotation	to	our	main	Application	class	in	our
application	client.	And	then	to	actually	discover	services,	we	have	two
different	options.

➢	@Inject	EurekaClientclient
➢	@Inject	DiscoveryClientclient

We	can	inject	the	EurekaClient	or	we	can	inject	the	DiscoveryClient.	And
just	to	be	clear,	this	is	the	Spring	DiscoveryClient	and	not	the	Netflix
DiscoveryClient.

InstanceInfo	instance=eurekaClient.getNextServerFromEureka(
"service-id",false);
String	baseUrl	=	instance.getHomePageUrl();

The	first	option	is	using	the	EurekaClient,	and	the	EurekaClient	has	a
method,	getNextServerFromEureka.	And	that'll	pick	the	next	instance	in	a
round-robin	fashion	from	the	Discovery	Server.	And	its	first	argument	is	a
virtual	host	name	or	a	service	ID	to	call.	And	this	is	the	same	as	the
spring.application.name	property	that	we've	used	in	our	service	application.
And	the	second	argument	is	whether	or	not	this	is	a	secure	request.	Once	we
get	a	reference	to	the	instance	info,	we	can	call	instance.getHomePageUrl,
and	that'll	give	us	the	base	URL	that	we	can	use	with	our	RestTemplate	to
call	the	service.

List<ServiceInstance>	instances=client.getInstances("service-id");

String	baseUrl=instances.get(0).getUri().toString();

The	second	option	is	to	use	the	Spring	DiscoveryClient,	and	it	has	a	method
called	getInstances,	which	returns	you	all	service	instances	for	a	given
service	ID.	So	that	first	argument	is	the	same	first	argument	that	we	saw	in
the	EurekaClient,	which	is	a	virtual	hostname	or	a	service	ID	of	the	service
you	want	to	call.	And	once	you	have	a	list	of	instances,	you	can	get	one	of
those	instances,	and	you	can	get	the	URI,	turn	it	into	a	string,	and	that's
your	base	URL	that	you	would	use	in	your	RestTemplate.

Demo:	Finding	and	Calling	Services	as	an	Application
Client

In	order	to	create	our	client,	we're	going	to	again	start	off	at	start.spring.io.
And	we're	going	to	give	it	a	group	ID,	the	same	one,	so	io.ajay.kumar,	and
we'll	make	the	Artifact	client.	And	it	will	have	the	exact	same	dependencies
that	we	used	in	the	application	service.	So	we	want	Eureka	Discovery,	want
DevTools,	and	we	want	the	Actuator.

Click	Generate	Project.	That'll	automatically	create	and	download	a	zip	file.
Go	ahead	and	unzip	that	file,	and	we'll	import	that	into	our	IDE.	Within
Spring	Tool	Suite	in	the	Package	Explorer	area,	right-click	in	the	empty
area,	go	to	Import,	choose	Existing	Maven	Projects,	browse	to	the	location
of	your	unzipped	file,	ensure	that	the	pom.xml	shows	up	under	the	Projects
heading,	and	click	Finish	to	import.

Expand	the	client	project,	and	go	to	src/main/java,	and	open	up	the	main
application	class	and	do	the	following	changes.

package	io.ajay.kumar.client;
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.boot.web.client.RestTemplateBuilder;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.http.HttpMethod;
import	org.springframework.http.ResponseEntity;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
import	org.springframework.web.client.RestTemplate;
import	com.netflix.appinfo.InstanceInfo;
import	com.netflix.discovery.EurekaClient;

@EnableDiscoveryClient
@SpringBootApplication

@RestController
public	class	ClientApplication	{
								@Autowired
								private	EurekaClient	client;
								
								@Autowired
								private	RestTemplateBuilder	restTemplateBuilder;

								public	static	void	main(String[]	args)	{
																SpringApplication.run(ClientApplication.class,	args);
								}
								
								@RequestMapping("/")
								public	String	callService()	{
																RestTemplate	restTemplate	=	restTemplateBuilder.build();
																InstanceInfo	instanceInfo	=
client.getNextServerFromEureka("service",	false);
																String	baseUrl	=	instanceInfo.getHomePageUrl();
																ResponseEntity<String>	response	=
																																restTemplate.exchange(baseUrl,	HttpMethod.GET,	null,
String.class);
																return	response.getBody();
								}
}

In	the	main	application	class,	add	a	new	annotation,
@EnableDiscoveryClient.	We'll	also	add	a	@RestController	annotation,
and	we'll	add	a	handler	method,	public	String	callService.	And	we'll	give
this	an	@RequestMapping,	and	we'll	map	this	to	root.	Then	we'll	want	to
autowire	in	our	DiscoveryClient	or	our	EurekaClient.	We'll	use	the
EurekaClient,	so	private	EurekaClient.	We'll	call	it	client.	And	we'll	use
@Autowired.	You	can	also	use	@Inject.	And	we'll	also	need	a	RestTemplate
so	we	can	actually	call	the	service,	so	we'll	say	private	RestTemplateBuilder,
and	we'll	call	this	a	restTemplateBuilder.	We	will	autowire	that	as	well.	And
within	our	callService	method,	we'll	create	a	new	RestTemplate	using	the
RestTemplateBuilder,	so	RestTemplate	restTemplate	=
restTemplateBuilder.build.	And	then	we're	going	to	use	the	client	to	fetch

our	service	URLs,	so	client.getNextServerFromEureka.	And	the
virtualHostname,	remember	we	called	our	spring.application.name	of	our
service.	We	just	called	it	service.	And	it's	going	to	be	a	non-secure	request,
so	put	false.	And	this	returns	an	InstanceInfo,	which	we'll	call	instanceInfo.
And	then	we	can	get	the	base	URL	and	call	the	RestTemplate,	so	String
baseUrl	=	instanceInfo.getHomePageUrl.	And	then	we'll	use	the
RestTemplate	to	call	the	service.	So	the	RestTemplate	returns
ResponseEntity	of	String.	We'll	call	that	response,	and	we'll	say
restTemplate.exchange.	And	we'll	pass	at	the	baseUrl	and	HttpMethod	of
GET.	We	don't	have	any	request	bodies,	so	we'll	do	the	requestEntity	as
null,	the	responseType	as	String,	and	we	don't	have	any	uriVariables	either,
so	we'll	just	get	rid	of	that	parameter.	And	let's	just	go	over	this	again
before	we	finish	up	here.	So	the	EurekaClient	is	calling	out	to	the	Discovery
Server,	and	it's	getting	information	about	a	service	ID	called	service,	and	it's
returning	it	back	to	us	as	an	instanceInfo.	And	then	from	that	instanceInfo,
we're	getting	the	HomePageUrl,	which	is	the	base	URL	of	our	service,	and
then	we're	using	our	restTemplate	to	call	that	service,	specifically	a	GET	on
that	service,	and	it	returns	a	string	back	to	us.	And	then	we're	just	going	to
return	that	response,	so	response.getBody.

application.properties	:

spring.application.name=client
eureka.client.service-url.defaultZone=http://localhost:8761/eureka
eureka.client.register-with-eureka=false

Next,	we	need	to	configure	our	application	client.	So	head	over	to	the
src/main/resources	and	open	up	the	application.properties,	and	we'll	add
the	standard	spring.application.name.	We'll	call	this	client.	And	then	we're
going	to	paste	in	the	service	URL	so	we	don't	have	to	type	it,	and	then	we're
going	to	do	eureka.client.register-with-eureka.	We're	going	to	set	that	to
false.	Remember,	we're	a	client,	and	we	don't	need	to	register	with	Eureka
because	we	don't	need	anybody	to	discover	us.	Now,	before	we	start	our
application	client,	we	need	to	start	the	Discovery	Server	and	each	of	the
application	service	instances,	and	in	that	particular	order.	So,	if	you've	been

following	along,	those	should	be	in	your	run	history.	So	you	can	come	up	to
drop-down	and	choose	each	of	those	to	start	those	up.	And	just	to	confirm,
we'll	check	the	drop-down,	and	we	can	see	that	we	have	the	discovery-
server	running,	and	instance	1	of	the	service	application,	and	instance	2.	So
now	we're	ready	to	start	our	client	application.	We	can	right-click	on	the
main	application	class,	go	to	Run	As,	and	choose	Spring	Boot	App.

Fire	up	a	web	browser	and	visit	localhost:8080.	Hit	Enter,	and	you	should
see	a	response	from	the	client.	And	it'll	say	Hello	from	instance	1.	And	if
you	refresh	it,	it'll	say	Hello	from	instance	2.	And	we	can	continue	to	do	that
over	and	over,	and	each	time	we	can	see	that	it's	getting	a	different	instance
from	the	Eureka	registry.

Spring	Cloud	Eureka	Dashboard

One	of	the	really	useful	things	that	the	Spring	Cloud	Eureka	Server
provides	is	a	dashboard.	It's	enabled	by	default,	and	it's	a	web-based
dashboard.	And	it	displays	a	bunch	of	useful	information,	like	whether	or
not	a	service	is	up	or	down	and	how	many	instances	of	it	are	registered.	If
you	still	have	the	demo	running	from	our	last	demo,	fire	up	a	browser	and
visit	localhost:8761.	You'll	be	presented	with	this	Spring	Eureka	Dashboard,
and	let's	go	through	each	of	these	sections	here.

So	first	we	have	the	System	Status,	and	it	tells	you	things	like	the	current
time,	the	uptime,	and	how	many	renewals	have	happened	in	the	last	minute.
The	DS	Replicas,	or	the	Discovery	Server	Replica	section,	shows	you	all	of
the	peer	instances	of	Eureka	Servers.	So	if	we	had	more	than	one	instance
running,	we	would	see	each	of	those	instances	listed	here.	But	since	we've
only	got	one	instance,	we	just	see	localhost.	The	next	section	is	probably	the
most	useful	section	as	it	shows	you	what	instances	are	currently	registered
with	Eureka.	And	we	have	here	the	service	ID	under	the	Application
heading,	which	is	SERVICE.	AMI	is	for	Amazon	Machine	Image.	We're	not
running	in	Amazon,	so	that's	n/a.	And	Availability	Zones,	there	are	two,	and

both	of	those	instances	are	UP.	You	can	see	the	2	next	to	the	UP,	which
indicates	that	there	are	two	instances	of	this	particular	service,	and	both	of
them	are	UP.	And	right	next	to	that	you	can	see	both	of	those	instances,	one
of	them	running	on	8082	and	one	of	them	running	on	8081.	The	next
section,	the	General	Info	section,	just	gives	you	information	about	the
particular	machine	that	you're	running	on.	So	it	tells	you	things	like	the
number	of	CPUs	and	the	available	memory.	And	the	last	part,	the	Instance
Info,	gives	you	information	about	this	particular	running	instance,	so	things
like	its	IP	address	or	whether	or	not	it's	up	or	down.

Configuration

There	are	several	different	areas	where	you	can	configure	Spring	Cloud
Eureka.	We'll	take	a	look	at	the	three	main	areas.	The	first	is	the
eureka.server	prefix,	the	second	is	the	eureka.client	prefix,	and	the	third	is
the	eureka.instance	prefix.	Let's	go	into	more	detail	into	each	of	these	areas
of	configuration.	The	first	one	is	the	Eureka	Server	Configuration,	and
that's	all	configuration	under	the	eureka.server	prefix.	And	this	is	going	to
control	everything	that's	related	to	configuring	the	Discovery	Server.	The
second	one	is	the	Eureka	Client	Configuration,	and	that's	all	configuration
under	the	eureka.client	prefix.	And	this	is	responsible	for	controlling	how
the	discovery	client	interacts	with	the	Discovery	Server.	So	for	instance,	you
have	things	like	the	eureka.client.eureka-server-connect-timeout-seconds.
This	would	control	how	long	the	client	waits	to	connect	to	the	Eureka
Server	before	it	times	out.	The	third	area	of	configuration	is	the	Eureka
Instance,	and	that's	all	configuration	under	the	eureka.instance	prefix.	And
a	Eureka	Instance	is	anything	that	registers	itself	with	the	Eureka	Server	so
that	it	can	be	discovered	by	others.	The	properties	under	the
eureka.instance	prefix	control	how	the	instance	registers	itself	with	the
Eureka	Server.	So	for	instance,	you	have	things	like	the	eureka.hostname	or
the	eureka.health-check-url,	and	the	instance	could	be	configured	with
custom	values	there,	and	that's	how	it	would	register	with	the	Eureka
Server.

Health	and	High	Availability

The	Spring	Cloud	Eureka	Server	also	has	some	additional	features	around
health	and	high	availability.	It's	constantly	ensuring	that	the	application
services	that	it's	returning	or	handing	back	to	clients	are	healthy	and
available.	And	it	also	ensures	that	in	the	event	that	the	Discovery	Server
goes	down,	all	clients	can	still	continue	to	operate.	Like	I	mentioned,	the
Eureka	Server	is	constantly	concerned	with	the	health	of	the	application
services	that	it's	handing	out	to	clients.	And	it	assesses	that	health,	at	least
by	default,	by	sending	the	clients	a	heartbeat	every	30	seconds.	And	if	it
doesn't	hear	back	from	that	heartbeat	after	90	seconds,	it	removes	it	from
the	registry.	Sending	a	heartbeat	is	the	default	configuration,	but	you	can
also	configure	the	Eureka	Server	to	hit	an	endpoint,	such	as	the	/health
endpoint	that	comes	with	Spring	Boot	Actuator.	Eureka	was	built	with	high
availability	in	mind,	and	one	of	the	ways	that	it	achieves	that	is	when	a
client	requests	a	service	location	from	the	Discovery	Server,	the	Discovery
Server	actually	sends	back	a	copy	of	the	registry.	And	what	ends	up
happening	is	the	registry	gets	distributed	across	all	of	the	clients.	And	if	the
Service	Discovery	Server	goes	down,	those	clients	can	continue	to	operate.
You're	probably	thinking	well	wait	though.	What	if	the	Discovery	Server
has	new	information	or	one	of	the	services	goes	down?	Well,	the	client	has	to
renew	its	lease	or	fetch	a	new	registry	every	so	often,	and	it	does	so	by
fetching	deltas	to	update	its	registry.	So	it's	pretty	smart	about	not	fetching
the	full	registry	again	and	only	getting	the	changes.

AWS	Support

It's	well	known	that	Netflix	is	a	heavy	user	of	AWS.	And	given	that	Eureka
was	born	at	Netflix,	it's	only	fitting	that	it	includes	AWS	support.	Let's	take
a	look	at	the	various	support,	as	well	as	a	typical	deployment	architecture.
When	an	application	that's	using	the	Eureka	Client	starts	up,	it	checks	to
see	if	it's	running	on	an	AWS	instance.	If	it	is,	it	calls	out	to	the	local
metadata	service	and	retrieves	some	metadata	about	that	instance.	And	it
gets	things	that	are	specific	to	AWS,	such	as	the	Amazon	Machine	Image
that's	running	or	what	region	it's	running	in	or	what	zone.	And	then	it
sends	that	information	up	to	the	Discovery	Server	when	it	registers.	Given
the	fact	that	things	can	change	so	often	in	AWS,	it's	important	that	the
Discovery	Server	be	located	at	a	well-known	location.	So	Eureka	adds
support	for	Elastic	IP	binding.	When	a	Eureka	Server	starts	up	and	it
notices	that	it's	running	in	AWS,	it'll	try	to	bind	to	the	next	available	Elastic
IP	so	that	it	has	a	static	or	well-known	IP.	The	Eureka	Client	is	also	zone
aware	with	a	preference	for	the	zone	that	it's	currently	running	in.	So	it'll
try	to	contact	the	Discovery	Server	in	its	current	zone,	and	if	it	can't	reach
one,	it'll	try	the	next	zone	and	try	to	find	the	next	available	Discovery
Server.	And	last,	you	can	configure	the	Eureka	Client	to	fetch	the	registry	of
different	remote	regions.	In	order	to	utilize	the	AWS	support,	it	requires	a
little	bit	of	extra	configuration.

@Configuration
public	class	AppConfig{

@Bean
public	EurekaInstanceConfigBean	eurekaInstanceConfig(
InetUtilsProperties	properties){

EurekaInstanceConfigBean	bean=new
EurekaInstanceConfigBean(newInetUtils(
properties));
AmazonInfo	info=	AmazonInfo.Builder.newBuilder().autoBuild(
"eureka");
bean.setDataCenterInfo(info);

return	bean;
}

}

In	your	@Configuration	class,	you	define	a	new	method	that	returns	a
EurekaInstanceConfigBean,	and	you	annotate	that	with	@Bean.	And	within
the	method,	you	create	a	new	EurekaInstanceConfigBean.	Then	you	create
an	AmazonInfo	object	using	the	AmazonInfo.Builder,	and	you	set	the
DataCenterInfo	on	the	EurekaInstanceConfigBean	to	that	AmazonInfo	and
then	return	that	bean.	If	you	were	to	go	and	look	at	the	source	of	the
AmazonInfo	class,	you	would	see	that	it's	utilizing	the	local	metadata
service	to	fill	in	all	of	the	instance	information.	In	addition	to	the
configuration	in	your	@Configuration	class,	there's	also	some	additional
configuration	in	your	application.properties,	and	that's	around	configuring
the	availability	zones.

➢	Availability	Zones	Configuration	in	application.properties
○	eureka.client.availability-zones.[region]=[az1],[az2],[az3]

The	property	is	the	eureka.client.availability-zones	property,	and	the
pattern	is	eureka.client.availability-zones.region,	and	then	that's	equal	to	a
comma-separated	list	of	availability	zones.

EC2	Dashboard	:

So	for	example,	if	you	have	the	following	where	you	have	one	Discovery
Server	in	the	us-east-1b	zone	and	another	Discovery	Server	in	the	us-east-1e
zone,	you	would	set	up	your	property	as	follows:	eureka.client.availability-
zones,	and	then	the	region	is	us-east-1,	and	then	you	would	set	the	comma-
separated	list	of	us-east-1b	and	us-east-1e.	Similar	configuration	is	required
in	the	application.properties	for	your	service	URLs.

➢	Service	URL	Configuration	in	application.properties
○	eureka.client.service-url.[zone]=http://[eip-dns]/eureka

The	property	is	the	eureka.client.service-url.zone	property,	and	you	set	that
to	the	HTTP	address	of	the	Eureka	Instance	that's	bound	to	an	Elastic	IP.
And	you	want	to	make	sure,	at	least	as	of	version	1.4,	to	use	the	Elastic	IP
DNS	name	as	the	code	is	specifically	aware	of	the	pattern	that	Elastic	IPs
use	for	DNS	names,	and	it's	looking	for	that	specific	pattern	to	recognize	if
it's	using	an	Elastic	IP.

Elastic	IP	Dashboard	:

If,	for	instance,	we	had	the	following	Elastic	IPs	allocated	to	us,	we	could
configure	our	application.properties	as	follows:	with	the	first	one	being	the
us-east-1b	zone	and	then	second	one	being	the	us-east-1e	zone.	And	if	you'll
notice,	each	of	those	is	set	to	the	Elastic	IP	DNS	name	for	the	HTTP	address.
Following	along	with	the	previous	screenshots	of	the	AWS	console	and	how
we	configured	everything,	if	you	were	to	load	up	your	Eureka	Dashboard
after	setting	all	of	that	up,	it	would	look	like	this.

You	would	have	two	instances	under	your	DS	Replicas,	and	then	you	would
have	two	instances	of	Discovery	Servers,	each	in	their	respective	availability
zones.

Likewise,	you'd	be	able	to	pull	up	the	dashboard	on	each	of	those	Discovery
Server	instances,	and	you'd	find	AWS-specific	metadata	filled	in,	like	the
instance-type	or	the	ami-id	or	the	instance-id.

Now	that	we	have	an	understanding	of	the	AWS	support	that	exists	in
Eureka,	let's	take	a	look	at	a	deployment	architecture.	Typically	you	would
have	one	or	more	Discovery	Servers	per	each	availability	zone,	and	then

you'd	have	multiple	availability	zones.	And	within	each	of	those	zones,	you
would	have	one	Elastic	IP	for	each	of	the	Discovery	Servers.	Then	you
would	typically	have	an	auto	scaling	group	set	up	that	evenly	distributes
those	Discovery	Servers	across	the	availability	zones.

Summary

We've	reached	the	end	of	this	module,	so	let's	quickly	go	over	what	we
learned.	We	started	off	by	taking	a	look	at	what	service	discovery	is	and
why	it's	important.	Then	we	learned	how	to	use	the	Spring	Cloud	Eureka
Client	to	discover	services	and	the	Spring	Cloud	Eureka	Server	to	store	a
registry	of	services	so	that	others	could	discover	them.	Then	we	took	a	quick
look	at	the	Spring	Cloud	Eureka	Dashboard	and	saw	an	insight	into	the
Spring	Cloud	Eureka	Server.	From	there,	we	talked	about	health	checks,
high	availability,	and	configuring	Spring	Cloud	Eureka.	And	we	finished	off
by	looking	at	the	AWS	specific	support.

Module	4:	Configuring	Services	Using
Distributed	Configuration

What	Is	a	Configuration	Server?

In	this	module	we'll	talk	about	managing	your	application	configuration	in
a	distributed	system	like	the	cloud.	We'll	jump	right	in	with	configuration
in	a	distributed	system	and	why	its	different	and	more	challenging	than	a
non-distributed	system,	and	more	importantly,	why	we	need	this	thing
called	a	Configuration	Server.	From	there,	we'll	dive	into	the	details	behind
the	way	Spring	Cloud	implements	a	Configuration	Server	with	the	Spring
Cloud	Config	Server.	And	we'll	see	how	you	can	set	up	a	Config	Client	and
a	Config	Server	and	get	them	talking	to	each	other.	We'll	also	quickly	go
over	the	various	back-end	storing	options	for	Spring	Cloud	Config	Server,
such	as	a	Git	repository	or	an	SVN	repository.	Next,	and	one	of	the	things
that	I	think	is	the	coolest,	we'll	learn	how	to	update	our	configuration	on	the
fly	without	ever	restarting	our	application	server.	And	we'll	do	that	with	a
variety	of	methods	including	the	Spring	Cloud	Actuator,	Spring	Cloud	Bus,
and	the	Spring	Cloud	Monitor	projects.	Then	we'll	also	learn	about	the
@RefreshScope	annotation	and	why	it's	needed	and	where	to	use	it.	We'll
finish	out	the	module	on	a	section	about	retrieving	and	storing	your
sensitive	configuration	values	using	symmetric	and	asymmetric	encryption.
So,	what	exactly	is	so	different	about	managing	the	configuration	in	a	cloud-
native	application	versus	a	non-cloud-native	application?	The	answer	to
that	stems	from	the	fact	that	a	cloud-native	application	is	a	distributed
system	and	non-cloud-native	applications	are	not	distributed.	And	in	a	non-
distributed	application,	you	typically	only	have	a	handful	of	configuration
files.	It's	often	a	one-to-one	relationship	between	a	system	and	its
configuration.	And	as	you	move	to	a	distributed	system,	that	configuration
explodes.	You	go	from	having	one	or	more	to	many,	many	configuration	files
because	you	have	many,	many	systems	that	make	up	one	system	as	a	whole.
For	instance,	if	you're	using	microservices,	each	one	of	your	individual

microservices	that	composed	your	overall	application	would	have	its	own
configuration	file.	You	might	be	thinking	no	problem.	We've	got	this.	That's
why	they	make	configuration	tools	like	Puppet	and	Chef	for	managing
configuration	in	many,	many	systems,	right?	Well,	it'll	work,	but	it's	not
ideal	for	the	cloud.	Let's	talk	about	some	of	the	issues	that	you	would	face
with	using	a	typical	configuration	management	system.	The	first	is	that	it's
typically	deployment	oriented.	And	that	means	that	any	time	you	want	to
make	a	configuration	change,	you	have	to	kick	off	a	new	deployment	so	that
the	configuration	is	modified.	And	typically	the	application	is	then	usually
restarted.	What	if,	for	instance,	you	needed	to	make	a	temporary	logging
configuration	change	to	debug	an	issue?	Kicking	off	a	whole	new
deployment	and	restarting	applications	is	a	pretty	heavy	process	just	for	a
temporary	change.	Another	issue	that	you	would	encounter	is	the	way	in
which	configuration	changes	make	it	to	the	application	servers.	And	that's
via	a	push.	Pushing	application	configuration	to	servers	in	a	cloud
environment	is	usually	not	dynamic	enough.	And	by	that,	I	mean	it	needs	to
know	where	to	push	the	configuration	to.	And	in	the	cloud	that's	usually	not
a	straightforward	answer	as	application	instances	can	come	and	go	at	any
given	point	in	time.	When	you	push	configuration,	you	run	the	risk	of
missing	a	newly	started	instance	that,	for	instance,	came	online	as	a	result	of
auto	scaling	during	a	high-traffic	period.	Okay,	so	no	problem.	If	push
doesn't	work,	we	can	just	use	pull,	right?	Well,	that	has	problems	too.	When
you	pull	configuration,	you	typically	use	a	pulling	mechanism	where	you
check	for	changes	every	x	number	of	minutes,	and	if	there	are	changes,	then
you	pull	those	changes	down.	And	that	introduces	latency	from	the	time
that	we	change	our	configuration	to	the	time	that	it	actually	takes	effect.
Well,	if	configuration	management	tooling	doesn't	solve	our	problem,	then
what	exactly	does?	The	answer	to	that	is	something	called	a	Configuration
Server.	Or,	to	be	more	specific,	an	Application	Configuration	Server.	An
Application	Configuration	Server	is	a	dedicated,	dynamic,	and	centralized
key/value	store	for	storing	your	configuration.	And	it	could	be	distributed
or	non-distributed.	And	similar	to	configuration	management,	it's	the
authoritative	source	for	all	configuration.	It	provides	things	like	auditing
and	versioning,	and	it	also	has	cryptography	support	so	that	you	can
encrypt	or	decrypt	those	sensitive	configuration	values.

Introducing	Spring	Cloud	Config	Server

Managing	your	application	configuration	with	help	from	Spring	Cloud	is
really	quite	easy.	By	default,	Spring	Cloud	provides	you	with	several
different	ways	to	implement	a	Configuration	Server	with	almost	no	work	on
your	part.	The	first	two	options,	Spring	Cloud	Consul	and	Spring	Cloud
Zookeeper,	are	integrations	with	third	party	applications,	Consul	and
Zookeeper,	respectively.	You	may	or	may	not	be	familiar	with	Consul	and
Zookeeper,	and	in	case	you're	not,	it's	important	to	note	that	neither	of
them	is	just	a	Configuration	Server.	Both	are	commonly	utilized	for	other
purposes	like	service	discovery.	The	third	option,	Spring	Cloud	Config
Server,	is	an	implementation	that	was	built	by	the	Spring	Cloud	team.	And
it	has	one	sole	purpose,	and	that's	to	be	a	Configuration	Server.	We'll	focus
specifically	on	this	option,	but	it	should	be	pretty	easy	to	utilize	the	others
once	you	have	a	firm	understanding	of	the	concepts.	In	addition	to
including	the	implementation	of	the	Spring	Cloud	Config	Server,	the	Spring
Cloud	Config	project	also	includes	client-side	support	for	connecting	and
interacting	with	the	server.	The	Config	Client,	which	is	usually	imbedded	in
your	application,	fits	perfectly	into	Spring's	Environment	abstraction.	And
that	means	that	all	the	ways	that	you're	already	familiar	with	getting	access
to	configuration	can	be	used	to	get	access	to	configuration	that	was
retrieved	from	the	Configuration	Server.	The	Config	Server	is	usually	a
standalone	application,	and	it	also	fits	perfectly	into	one	of	the	Spring
framework	abstractions,	and	that's	the	PropertySource	abstraction.	So,	if
you're	not	familiar	with	the	PropertySource	abstraction,	you've	probably
actually	already	used	it.	For	instance,	if	you've	ever	referred	to	a	properties
file	in	your	application	using	the	classpath	prefix,	then	you've	already	used
the	PropertySource	abstraction.	And	all	of	the	configuration	that	comes
from	the	Configuration	Server	is	just	another	property	source.	It's	a
property	source	that's	remote.

Using	the	Spring	Cloud	Config	Server

As	we've	already	discussed,	the	Spring	Cloud	Config	Server	is	an
implementation	of	a	Configuration	Server.	Let's	take	a	deeper	look	at	the
functionality	that	it	provides	and	how	to	get	one	set	up.	At	its	core,	the
Config	Server	is	just	another	web	application,	and	it	provides	a	REST-based
interface	for	accessing	your	configuration	files.	So	you	set	up	your
configuration	files,	you	name	them	appropriately,	and	then	you	tell	the
Configuration	Server	where	they're	located,	and	it'll	serve	them	up	for	you.
It's	important	to	point	out	that	the	Config	Server	does	not	facilitate	writing
any	configuration	files,	and	it's	only	mainly	concerned	with	serving	those
configuration	files.	It	has	support	for	various	output	formats,	and	the
default	is	JSON,	but	it	also	supports	properties	and	YAML.	The	Config
Server	doesn't	need	a	database	to	store	the	configuration,	and	instead	it	has
support	for	retrieving	and	reading	your	configuration	files	from	several
different	back-end	storage	configurations	like	Git,	which	is	the	default,	or
SVN,	or	just	the	plain	old	filesystem.	Another	nice	feature	that	the
Configuration	Server	supports	is	it	has	some	notion	of	configuration	scopes.
And	what	I	mean	by	that	is	that	you	can	define	global	configuration	that
applies	to	all	applications,	as	well	as	application-specific	configuration	or
Spring	Profile	specific	configuration.	Using	the	Spring	Cloud	Config	Server,
like	Spring	Cloud's	other	servers,	is	very,	very	easy.

➢	pom.xml:
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type>
<scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement>

First,	in	your	pom.xml,	make	sure	that	you	have	the	spring-cloud-
dependencies	defined	within	your	dependencyManagement	section.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-config-server</artifactId>

</dependency>

	Then,	still	in	your	pom.xml,	in	the	dependency	section,	define	a	new
dependency	on	spring-cloud-config-server.	Next,	create	a	folder	to	store	all
of	your	configuration	that	you	want	the	Configuration	Server	to	serve	up.
And	in	that	folder	you	can	optionally	create	an	application.properties	file	or
an	application.yml	file.	And	this	file	is	for	a	global	configuration	that	should
apply	to	all	applications	and	not	any	one	specific	application.	An	example	of
that	would	be	something	like	your	database	configuration	that	is	shared
across	all	of	your	applications.	You	would	put	it	in	this
application.properties	or	application.yml	file.	Next	you	add	application	and
profile-specific	configuration	files	in	this	folder,	and	you	can	put	them	in
either	properties	or	YAML	format.	And	you	use	a	special	naming	pattern
for	the	file	name,	and	that's	the	application-profile.extension	where
application	is	the	name	of	your	application	and	profile	is	the	Spring	Profile
that	should	apply	for	that	configuration.	If	you're	not	using	a	Spring
Profile,	you	can	omit	the	-profile	section	of	the	file	name	and	just	use	the
application	name.file	extension.	Next	you	would	run	git	init	within	your
folder	that	contains	all	of	your	configuration	files.	And	this	example
assumes	that	you're	using	the	default	back-end	storage,	which	is	Git.	And
from	there	you	would	git	add	your	configuration	files,	git	commit	them,	and
then	the	last	step,	which	is	optional,	but	highly	recommended,	is	to	set	up	a
remote	Git	repository	and	git	push	the	configuration	up	to	the	remote
repository.	Now	we	need	to	configure	the	actual	Configuration	Server	itself.
Now	don't	confuse	this	with	the	configuration	files	that	the	Configuration

Server	will	be	serving.	This	is	the	application	configuration	for	the	actual
Configuration	Server.

application.properties	:
server.port=8888
spring.cloud.config.server.git.uri=<uri_to_git_repo>

OR

application.yml
server:port:	8888
spring:cloud:config:server:git:uri:	<uri_to_git_repo>

In	the	Config	Server's	application.properties	file,	you	specify	the	server.port
property	and	give	that	the	value	8888.	This	isn't	required,	but	that	port	is
the	conventional	port	that's	used	for	the	Configuration	Server.	Then	you
need	to	configure	the	location	of	the	Git	repository	that	contains	all	of	the
configuration	files	that	the	server	will	serve.	And	you	do	that	by	specifying
the	property	spring.cloud.config.server.git.uri,	and	then	you	set	that	to	the
location	of	the	Git	repository.	Now	if	you'd	uploaded	that	to	a	remote
repository,	this	would	be	the	clone	URL	of	your	repository.	If	you	prefer	to
use	YAML	files	for	your	configuration,	I've	included	the	equivalent
application.yml.

@SpringBootApplication
@EnableConfigServer
public	class	Application{

public	static	void	main(String[]	args){
SpringApplication.run(Application.class,args);
}

}

The	next	step	is	to	add	the	@EnableConfigServer	annotation	to	your	main
Application	class.	And	while	you're	in	here,	if	you	wanted	your
Configuration	Server	to	be	discoverable	via	service	discovery,	you	could	add
the	Eureka	Client	dependencies,	configure	the	service	discovery	URL,	and

add	the	@EnableDiscoveryClient	annotation,	and	then	clients	would	be	able
to	discover	the	Configuration	Server.	The	last	step	is	to	ensure	that	your
Configuration	Server	is	set	up	in	a	secure	fashion.	And	it's	very	easy	to	do
that	using	the	Spring	Security	library.	And	any	of	the	methods	that	are
supported	in	Spring	Security	are	also	supported	in	securing	your
Configuration	Server.

Config	Server	REST	Support:	Parameters

Typically	when	you're	interacting	with	the	Config	Server's	REST	endpoints,
you're	doing	so	using	the	Config	Client;	however,	it's	useful	to	understand
the	available	endpoints,	at	least	for	debugging	purposes	and	also	if	you	want
to	use	it	in	another	language.	Each	of	the	available	REST	endpoints	on	the
Config	Server	share	a	common	set	of	parameters.	And	the	values	of	those
parameters	influence	the	configuration	that's	returned.

➢	{application}	maps	to	spring.application.name	on	client
➢	{profile}	maps	to	spring.profiles.active	on	client
➢	{label}	server	side	feature	to	refer	to	set	of	config	files	by	name

The	first	parameter	is	the	application	parameter.	And	if	you're	utilizing	the
Spring	Cloud	Config	Client,	it	uses	the	value	from	the
spring.application.name	property	to	fill	in	the	value	for	that	application
parameter.	The	next	parameter	is	the	profile	parameter.	And	again,	if
you're	using	the	Spring	Cloud	Config	Client,	it's	going	to	pull	the	value
from	the	spring.profiles.active	property	to	fill	in	the	value	for	that	profile
parameter.	So	this	translates	into	the	active	Spring	Profile.	The	last
parameter,	the	label	parameter,	is	a	feature	for	grouping	your	configuration
files	into	kind	of	arbitrary	named	sets.	And	that	could	mean	different	things
depending	on	the	back-end	you're	using.	So	for	instance,	if	you're	using	Git
as	a	back-end,	the	label	translates	to	the	Git	branch.	Now	take	a	second	to
look	at	each	of	these	endpoint	parameters,	and	consider	them	as	a	whole,
and	think	about	how	you	might	combine	one	or	two	or	all	of	them	together
to	identify	a	particular	configuration.

Config	Server	REST	Support:	Endpoints

By	now	we	should	have	a	good	understanding	of	the	purpose	of	each	of	the
path-based	parameters	that	are	involved	in	the	REST	endpoints.	Let's	take
a	look	at	the	actual	REST	services	themselves.

➢	Endpoint	:
○	GET/{application}/{profile}[/{label}]

➢	Example	:
○	/myapp/dev/master
○	/myapp/prod/v2
○	/myapp/default

The	first	endpoint	takes	up	to	three	of	the	parameters	that	we	discussed
with	the	third,	the	label	parameter,	being	optional.	Let's	take	a	look	at	a
couple	of	examples	that	can	make	this	a	bit	more	concrete.	The	first
example	is	/myapp/dev/master.	And	myapp	is	the	application	name,	dev	is
the	Spring	Profile,	and	master	is	the	Git	branch,	which	translates	into	the
label.	We	have	another	example	where	it's	slightly	different	than	the	first
example.	You	have	myapp	as	the	application,	that's	the	same,	but	you	have
a	different	profile,	and	that's	the	prod	profile.	And	you	also	have	a	different
label,	which	is	the	v2	Git	branch.	Now	the	last	example	is	kind	of	important.
We've	got	two	parameters	that	are	required,	the	application	parameter	and
the	profile	parameter.	And	then	that	label	parameter	is	optional.	And	when
you	use	Spring	and	you	don't	set	an	active	profile,	you	might	not	know,	but
it	sets	one	for	you,	and	it's	called	default.	So	if	you	were	wanting	to	get
access	to	the	configuration	that	didn't	apply	to	any	particular	Spring
Profile,	you	would	give	it	your	application	name	and	then	the	value	default.

➢	Endpoint	:
○	GET/{application}-{profile}.(yml|	properties)

➢	Example	:

○	/myapp-dev.yml
○	/myapp-prod.properties
○	/myapp-default.properties

The	next	endpoint	utilizes	only	two	of	the	three	parameters	that	we
discussed,	the	application	parameter	and	the	profile	parameter.	It	allows
you	to	request	either	YAML	or	properties	files,	and	it	doesn't	necessarily
matter	what	the	source	file	is.	So,	for	instance,	if	you	had	a	source	file	in	the
YAML	format,	you	could	still	request	it	in	the	properties	format,	and	it
would	automatically	convert	it	for	you.	The	examples	are	very
straightforward.	You	have	something	like	/myapp-dev.yml	or	something	like
/myapp-prod.properties.	And	just	like	the	last	endpoint,	you	have	to	have	a
profile,	so	you	could	have	something	like	/myapp-default.properties.

➢	Endpoint	:
○	GET/{label}/{application}-{profile}.(yml|	properties)

➢	Example	:
○	/master/myapp-dev.yml
○	/v2/myapp-prod.properties
○	/master/myapp-default.properties

The	last	REST	endpoint	is	very	similar	to	the	one	we	just	looked	at	with	the
exception	that	you	have	to	specify	a	label.	In	fact,	they	can	be	equivalent	if
the	label	you	specified	is	master	as	the	previous	endpoint	always	assumes
that	the	label	is	master.	Just	like	the	other	examples,	it's	pretty
straightforward.	Here's	an	example	where	we	have	/master/myapp-dev.yml
where	master	is	the	label,	myapp	is	the	application,	dev	is	the	profile,	and
you've	chosen	to	use	a	YAML	extension	so	you'll	get	it	back	in	YAML
format.	And	a	very	similar	one,	except	this	time	it	is	a	v2	for	the	label	or	the
branch,	the	Git	branch,	and	myapp-prod,	the	same	application	name,	with
prod	being	a	different	profile.	And	this	time	you've	requested	a	properties
format	so	it'd	be	returned	in	properties.	And	the	last	example	is	a	lot	like
the	first	example	where	you	have	/master/myapp-	and	then	the	profile.	And
since	the	profile	is	a	required	value,	remember	we	need	to	use	the	value

default	to	represent	that	default	profile,	and	then	you're	requesting	it	in	the
properties	format.

Demo:	Setting	up	a	Configuration	Server

In	this	demo,	we're	going	to	be	building	and	starting	up	our	own	Config
Server.	So	the	easiest	way	to	get	started	is	to	head	over	to	start.spring.io.
For	the	Group	ID	we'll	use	io.ajay.kumar.	For	the	Artifact	we'll	use	config-
server.	For	the	dependencies,	we'll	add	the	Config	Server	dependency,	and
then	we'll	also	add	the	Eureka	Discovery	dependency.	Now	this	is	an
optional	dependency,	but	it	will	allow	our	Config	Server	to	register	itself
with	the	Discovery	Server	so	that	Config	Clients	can	find	it.	And	last,	we'll
use	the	Actuator	dependency.

Once	you've	got	everything	selected,	go	ahead	and	click	Generate	Project.
That	will	create	a	zip	file,	and	go	ahead	and	unzip	that,	and	head	over	to
your	IDE.	Within	Eclipse,	or	STS,	right-click	on	the	empty	Package	area,	go
to	Import,	search	for	Existing	Maven	Projects,	select	it,	click	Next,	browse
to	the	location	of	the	downloaded	zip	file,	so	mine's	in	Downloads,	config-
server,	open	that,	and	click	Finish	to	finish	importing	it.

Expand	the	config-server	project	and	navigate	to	the	main	application	class.

package	io.ajay.kumar.configserver;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.config.server.EnableConfigServer;
@SpringBootApplication
@EnableConfigServer
public	class	ConfigServerApplication	{
								public	static	void	main(String[]	args)	{
								SpringApplication.run(ConfigServerApplication.class,	args);
								}
}

	Within	the	main	application	class,	add	the	@EnableConfigServer
annotation.	Save	that	and	close	that	file.	Next,	expand	the
src/main/resources	folder	and	open	up	the	application.properties.

application.properties	:
server.port=8888
spring.cloud.config.server.git.uri=

Within	the	application.properties,	add	a	server.port	property	and	set	that
equal	to	8888.	Next,	we	need	to	configure	the	Config	Server	to	know	where
the	configuration	repository	is	located.	So	we'll	say
spring.cloud.config.server.git.uri,	we're	going	to	use	a	Git	repository,	and
then	we're	going	to	set	that	to	a	config	repository.	Normally	you	would	set
this	to	the	location	of	your	own	configuration	repository,	but	for	this	demo
we're	going	to	use	a	prebuilt	one	that's	on	GitHub.	So	go	ahead	and	open	up
a	browser.	In	the	address	bar,	type	https://github.com/ajaycucek/config-
repository.	We're	going	to	be	forking	this	repository,	which	means	we're
going	to	be	creating	a	local	copy	in	our	own	GitHub	account.	And	that
requires	that	you	have	your	own	GitHub	account.	So	if	you	don't	already,
make	sure	that	you	sign	up	for	one.	And	if	you	do,	make	sure	you	sign	in.
Once	you're	all	signed	in,	click	the	Fork	button	in	the	top	right	corner,	and
that'll	create	a	fork	for	you.	Once	you've	got	your	fork	created,	it'll	look
very	similar	to	the	unforked	version,	but	underneath	the	repository	name	at
the	top	it'll	say	forked	from	ajayscf-config-repository.	Next	we	want	to	grab
the	clone	URL,	so	head	over	to	this	green	button,	click	it,	and	copy	the	clone
URL	to	your	clipboard,	and	head	back	over	to	your	IDE.	Back	in	Eclipse,	or
STS,	we	want	access	to	the	Git	repository's	view.	And	you	can	do	that	by
going	to	Window,	Show	View,	Other,	and	choose	Git	Repositories.	Within
the	Git	Repositories	view,	click	on	the	link	that	says	Clone	a	Git	repository.
It'll	pop	up	a	new	window.	Choose	Clone	URI.	Hit	Next.	Since	we	copied	it
to	our	clipboard,	it	should	automatically	show	up	in	the	URI	section	with
the	host	and	the	repository	path	filled	in	as	well.	If	it's	not,	just	pasted	in
that	clone	URL	that	we	copied	into	the	URI.	Go	ahead	and	click	Next,
choose	the	master	branch,	and	click	Finish.

application.properties	:
server.port=8888
spring.cloud.config.server.git.uri=https://github.com/ajaycucek/config-
repository.git

Since	we	still	have	the	clone	URL	on	our	clipboard,	let's	set	up	the	Config
Server's	Git	URL	by	clicking	in	the	application.properties	and	pasting	in

that	value.	Make	sure	you	save	that,	and	then	you	can	close	that	file.	Head
back	over	to	the	Git	Repositories	view	and	expand	the	repository.	Right-
click	on	the	Working	Tree	and	choose	Import	Projects.	A	new	dialog	box
will	pop	up,	and	just	click	Finish.

application.properties	:
#	Put	all	global	configuration	here
some.property=global
some.other.property=global

config-client-app-prod.properties	:
#	Put	application+profile-specific	config	here	(app	name:	client-config-app)
(profile	name:	prod)
some.property=profile	specific	value
some.other.property=profile	specific	value

config-client-app.properties	:
#	Put	application-specific	config	here	(application	name:	client-config-app)
some.property=app	specific	overridden	value

In	the	Package	Explorer,	expand	the	config	repository	project,	and	you'll
notice	that	there	are	three	configuration	files.	Let's	take	a	look	at	the	first
configuration	file,	the	application.properties.	This	is	where	all	of	the	global
configuration	goes.	The	application.properties	applies	to	any	application
that	asks	for	configuration	from	the	Config	Server.	Next,	open	up	the
config-client-app.properties	file,	and	note	that	this	is	an	application-specific
configuration	file.	So	this	would	only	apply	to	an	application	named	config-
client-app.	When	we	demo	the	Spring	Cloud	Config	Client,	we'll	configure
the	Spring	application	name	of	that	project	to	be	the	config-client-app	so
that	this	configuration	only	applies	to	that	application.	Go	ahead	and	open
up	the	last	configuration	file,	the	config-client-app-prod.properties	file.	And
this	configuration	file	is	similar	to	the	one	we	just	looked	at.	And	it	would

apply	to	the	same	application,	but	instead	it	would	only	apply	to	the
application	if	the	application	was	running	with	the	Spring	Profile	named
prod.	Let's	close	all	of	these	configuration	files	and	start	up	our
Configuration	Server.	So	go	over	here	to	the	config-server,	expand	it,	find
the	main	application	class,	right-click	on	it,	and	go	to	Run	As	Spring	Boot
App.	You	need	to	start	the	discovery-server	too.	Once	the	Configuration
Server	is	started,	let's	open	up	a	browser	and	hit	some	of	the	REST
endpoints.

Formatting	above	response	:
{		
			"name":"config-client-app",
			"profiles":[
						"default"
],
			"label":null,
			"version":"5bbcc634f016351eecb0aaf67650c378e9425200",
			"state":null,
			"propertySources":[
						{		
									"name":"https://github.com/ajaycucek/config-repository.git/config-
client-app.properties",
									"source":{		
												"some.property":"app	specific	overridden	value"
									}
						},
						{		
									"name":"https://github.com/ajaycucek/config-
repository.git/application.properties",
									"source":{		

												"some.property":"global",
												"some.other.property":"global"
									}
						}
]
}

Once	you've	got	your	browser	open,	visit	http://localhost:8888/config-client-
app/default.	And	then	remember	that	it's	the	application	name/profile/label,
so	application	name	will	be	config-client-app.	And	remember	that	the
profile	parameter	is	a	required	parameter,	so	if	we	want	to	see	the	default
configuration	for	the	Config	Client	app	without	any	Spring	Profile,	we	use
the	value	default	as	the	default	profile.	The	default	return	format	is	in
JSON,	and	the	important	points	of	this	are	the	property	sources.	Notice	that
the	bottom	property	source	is	the	application.properties.	That's	the	global
properties	that	applies	to	every	application.	And	then	the	property	source
above	that,	which	overrides	any	of	the	global	property	sources,	is	the	config-
clien-app.properties.

Formatting	above	response	:
{		
			"name":"config-client-app",
			"profiles":[
						"prod"
],
			"label":null,
			"version":"5bbcc634f016351eecb0aaf67650c378e9425200",

			"state":null,
			"propertySources":[
						{		
									"name":"https://github.com/ajaycucek/config-repository.git/config-
client-app-prod.properties",
									"source":{		
												"some.property":"profile	specific	value",
												"some.other.property":"profile	specific	value"
									}
						},
						{		
									"name":"https://github.com/ajaycucek/config-repository.git/config-
client-app.properties",
									"source":{		
												"some.property":"app	specific	overridden	value"
									}
						},
						{		
									"name":"https://github.com/ajaycucek/config-
repository.git/application.properties",
									"source":{		
												"some.property":"global",
												"some.other.property":"global"
									}
						}
]
}

If	we	modify	the	URL	and	replace	default	with	prod,	we'll	see	that	it	brings
in	the	config-client-app-prod.properties	file,	which	overrides	all	of	the
property	sources	below	it.	Don't	forget	that	we	also	have	a	couple	other
endpoints,	like	an	endpoint	to	request	the	.properties	file	or	the	.yml	file.

So	if	we	go	up	here,	we	take	out	/prod	and	we	replace	it	with	.properties,
we'll	see	that	it	returns	back	a	properties	file.	And	you'll	see	that	it's
actually	applied	all	of	the	property	sources	in	the	order	which	take
precedence.	So	you	see	that	some.other.property	is	still	global,	but
some.property	was	overridden	by	the	app	specific	overridden	value.

And	you	can	do	the	same	thing	with	YAML.	It	will	actually	convert	the
source.properties	files	into	YAML	format	for	you.	So	instead	of	.properties,
we'll	replace	this	with	.yml,	and	we	hit	Return,	and	you	can	see	that	it
output	the	same	configuration	in	YAML	format.

Using	the	Spring	Cloud	Config	Client

Now	that	we've	seen	how	the	Spring	Cloud	Config	Server	works	and	how	to
get	one	set	up,	let's	look	at	the	other	end	of	the	equation,	the	Client.	At	its
core,	the	Config	Client	is	responsible	for	bootstrapping	and	fetching
application	configuration.	So	what	do	I	mean	when	I	say	that	the	Config
Client	is	responsible	for	bootstrapping	application	configuration?	Well,
when	a	Spring	application	starts	up,	it	needs	to	resolve	its	property	sources.
And	it	needs	to	do	that	very	early	on	in	the	startup	process.	Some	of	the
reasons	for	that	are	things	like	your	property	placeholders.	When	you
resolve	those,	it	needs	to	actually	have	the	values	to	resolve	the	placeholders.
And	since	the	configuration	lives	on	the	Configuration	Server,	that	means
that	the	Config	Client	needs	to	fetch	the	application	configuration	before
the	Spring	application	context	has	even	technically	started.	If	it	waited	until
the	application	was	fully	started,	it	would	be	too	late	in	the	process.	There
are	two	different	ways	that	you	can	get	the	Config	Client	to	bootstrap	your
application	properties,	and	they	both	use	a	special	file	called	the
bootstrap.properties	or	the	bootstrap.yml.	The	first	way	is	Config	First,	and
you	do	that	by	configuring	a	bootstrap.yml	or	a	bootstrap.properties	that
has	the	application	name,	as	well	as	the	URL	to	the	Configuration	Server.
The	second	way	is	Discovery	First,	and	that's	using	service	discovery.	So
you	would	configure	your	bootstrap.properties	or	bootstrap.yml	to	have	the
application	name	and	then	the	location	of	the	Service	Discovery	Server.	And
it	would	use	that	to	then	find	the	Config	Server	so	that	it	could	fetch	your
configuration.	Setting	up	an	application	to	use	the	Spring	Cloud	Config
Client	is	even	easier	than	setting	up	the	Spring	Cloud	Config	Server.

pom.xml	:
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>

<type>pom</type>
<scope>import</scope>

								</dependency>
						</dependencies>
</dependencyManagement>

In	your	pom.xml,	you	import	the	spring-cloud-dependencies	within	the
dependencyManagement	section.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-config-client</artifactId>

</dependency

Then	within	the	dependency	section,	still	within	your	pom.xml,	define	a	new
dependency	on	spring-cloud-config-client.	Then	we	need	to	configure	how
the	Config	Client	will	bootstrap	the	configuration.	If	you're	using	Config
First,	you	define	a	bootstrap.properties	or	a	bootstrap.yml.

bootstrap.properties	:
spring.application.name=<your_app_name>
spring.cloud.config.uri=http://localhost:8888/

OR

bootstrap.yml	:
spring:application:name:	<your_app_name>
cloud:config:uri:	http://localhost:8888/

And	you	define	the	spring.application.name	property,	and	this	is	the	name
of	your	application.	It	will	use	this	when	it	calls	the	Spring	Cloud	Config
Server's	REST	services	to	find	the	appropriate	configuration.	And	then	the
next	property	is	the	spring.cloud.config.uri	property,	and	you	would	set	that
to	the	location	of	your	Config	Server.	And	in	this	example	I've	just	used
localhost	here.	If	you're	using	a	Discovery	First	configuration	to	bootstrap
the	Config	Client,	the	configuration	is	similar	to	the	one	we	just	looked	at,
but	it's	slightly	different.

https://www.google.com/url?q=http://localhost:8888/&sa=D&ust=1546021897324000

bootstrap.properties	:
spring.application.name=<your_app_name>
spring.cloud.config.discovery.enabled=true

OR

bootstrap.yml	:
spring:application:name:	<your_app_name>
cloud:discovery:enabled:	true

You	of	course	have	your	bootstrap.properties	or	your	bootstrap.yml,	and
note	that	I've	only	included	the	differences	between	the	Config	First
configuration.	And	that's	to	define	the
spring.cloud.config.discovery.enabled	property	and	setting	that	to	true.	And
you	would	define	that	instead	of	the	location	of	the	Config	Server.	You
would	also	need	to	make	sure	that	you	added	your	Eureka	Client
dependencies	and	your	pom.xml.	And	configure	the	service	URL	to	the
Service	Discover	Server,	and	then	add	the	@EnableDiscoveryClient
annotation.

Demo:	Retrieving	Configuration	with	the	Config
Client

In	this	demo,	we'll	see	how	to	use	the	Spring	Cloud	Config	Client	to	retrieve
configuration	at	startup	from	the	Configuration	Server.	To	get	started,	head
on	over	to	start.spring.io.	For	the	Group	ID,	use	io.ajay.kumar.	For	the
Artifact	name,	use	config-client-app.	For	the	dependencies,	we're	going	to
want	the	Config	Client,	of	course,	we're	going	to	want	Eureka	Discovery	so
that	we	can	use	service	discovery	to	find	the	Configuration	Server,	and	we'll
want	the	Spring	Actuator.	Once	you've	got	everything	selected,	click	the
Generate	Project	button.	That	will	generate	a	zip	file.	Click	on	that,	unzip
it,	and	head	over	to	your	IDE.

Within	IntelliJ	or	Eclipse,	right-click	on	the	empty	area	of	the	Package
Explorer,	go	to	Import,	search	for	Existing	Maven	Projects,	choose	that,
click	Next,	browse	to	the	location	of	your	downloaded	zip	file,	mine's	in
Downloads	config-client-app,	hit	Open,	and	click	Finish.
We're	going	to	be	using	service	discovery	to	locate	the	Config	Server	from
the	Config	Client	app.	So	if	you	haven't	already	completed	the	Service

Discovery	module,	you'll	need	the	Discovery	Server	and	import	it	into	your
IDE.	It's	pretty	simple.	Next	we	need	to	make	a	couple	of	modifications	to
the	Config	Server	so	that	it	will	register	itself	with	the	Discovery	Server.

package	io.ajay.kumar.configserver;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.cloud.config.server.EnableConfigServer;
@SpringBootApplication
@EnableConfigServer
@EnableDiscoveryClient
public	class	ConfigServerApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(ConfigServerApplication.class,	args);
								}
}

Expand	the	config-server	and	go	to	the	main	application	class.	Underneath
the	@EnableConfigServer	add	an	@EnableDiscoveryClient	annotation.
Save	that,	and	then	open	up	the	application.properties	in	the
src/main/resources.

application.properties	:
server.port=8888
spring.cloud.config.server.git.uri=https://github.com/ajaycucek/config-
repository.git
spring.application.name=configserver
eureka.client.server-url.defaultZone=https://localhost:8761/eureka

We'll	add	two	different	properties.	The	first	one	is	the
spring.application.name,	and	we're	going	to	set	that	equal	to	configserver.
No	spaces.	And	then	we	also	want	to	set	the	location	of	the	Discovery	Server
so	it	knows	where	to	register	itself.	So	we	do	eureka.client.server-
url.defaultZone,	and	then	we	set	that	to	localhost:8761/eureka.	Next,	expand
the	config-client-app	project,	and	open	up	the	main	application	class.

Remember	that	there's	no	special	annotation	that	we	need	to	add	for	the
Config	Client	to	get	its	configuration.	As	long	as	the	libraries	are	on	the
class	path	and	the	setup	is	correct,	it	should	be	able	to	find	the	configuration
from	the	Configuration	Server.

package	io.ajay.kumar.configclientapp;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
@SpringBootApplication
@EnableDiscoveryClient
public	class	ConfigClientAppApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(ConfigClientAppApplication.class,	args);
								}
}

However,	we	do	want	to	participate	in	service	discovery,	so	let's	add	the
@EnableDiscoveryClient	annotation.	Go	ahead	and	save	that.	Next	let's
create	a	new	class.	So	New,	Class,	and	we're	going	to	call	this	class	the
ConfigClientAppConfiguration	class.	Go	ahead	and	click	Finish.

package	io.ajay.kumar.configclientapp;
import
org.springframework.boot.context.properties.ConfigurationProperties;
import	org.springframework.stereotype.Component;
@Component
@ConfigurationProperties(prefix="some")
public	class	ConfigClientAppConfiguration	{
								private	String	property;
								public	String	getProperty()	{
																return	property;
								}
								public	void	setProperty(String	property)	{
																this.property	=	property;
								}

}

Let's	go	ahead	and	annotate	this	with	@Component	and	also
@ConfigurationProperties.	And	we're	going	to	give	this	a	prefix	equal	to
some.	This	ConfigurationProperties	is	going	to	represent	our	property
that's	named	some.property.	We'll	have	an	instance	variable	that	is	a	string,
so	private	String.	And	the	name	of	it	is	called	property,	again,	to	represent
some.property.	And	make	sure	that	you	don't	forget	the	getters	and	setters.
You	can	do	that	by	going	to	Source,	Generate	Getters	and	Setters,	choose
the	property,	click	OK,	and	save	that	file.	Head	back	to	the	main
application	class,	and	let's	autowire	our	configuration	properties	class.

package	io.ajay.kumar.configclientapp;
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.beans.factory.annotation.Value;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@EnableDiscoveryClient
@RestController
public	class	ConfigClientAppApplication	{
								@Autowired
								private	ConfigClientAppConfiguration	properties;
								@Value("${some.other.property}")
								private	String	someOtherProperty;
								
								public	static	void	main(String[]	args)	{
																SpringApplication.run(ConfigClientAppApplication.class,	args);
								}
								
								@RequestMapping
								public	String	printConfig()	{
																StringBuilder	sb	=	new	StringBuilder();

																sb.append(properties.getProperty());
																sb.append("	||	");
																sb.append(someOtherProperty);
																
																return	sb.toString();
								}
}

	So	go	in	here,	we're	going	to	do	private	ConfigClientAppConfiguration,
and	we'll	call	this	properties.	And	we'll	@Autowired	it.	You	could	also	use
@Inject	here.	We'll	add	another	instance	variable,	private	String
someOtherProperty,	and	we're	going	to	give	this	an	@Value	annotation.
And	we're	going	to	use	the	placeholder	format	to	inject	the
someOtherProperty	value,	so	$	curly	some.other.property	and	end	curly.
Now	we're	going	to	add	an	@RestController	annotation	to	the	main
application	class.	So	come	up	here	underneath	the
@EnableDiscoveryClient,	and	you're	going	to	do	@RestController.	Go
ahead	and	save	that.	And	note	that	you	normally	wouldn't	put	a	REST
controller	on	your	main	application	class;	however,	since	we're	just	demoing
here	and	we're	trying	to	solidify	some	concepts,	it's	okay	for	now.	We	also
need	to	add	the	handler	method,	so	come	down	here	under	main,	do	public
String	printConfig.	And	then	we're	going	to	annotate	this	with
@RequestMapping.	In	the	body	of	the	method,	we're	going	to	construct	a
string	that	has	the	values	of	each	of	the	configuration	properties	that	were
retrieved	from	the	Configuration	Server.	So	we're	going	to	need	a	string
builder,	so	StringBuilder	sb	=	new	StringBuilder.	And	then	we're	going	to
say	sb.append.	And	then	we're	going	to	get	the	first	value,	which	is
properties.getProperty.	And	then	we're	going	to	separate	it	with	a	double
pipe,	so	sb.append,	space,	||,	space,	and	then	sb.append	the
someOtherProperty	value.	And	last,	we	want	to	return	sb.toString.	Next,
let's	go	ahead	and	close	both	of	these	files.	And	within	the
src/main/resources,	create	a	new	file	called	bootstrap.properties.

bootstrap.properties	:
spring.application.name=config-client-app

spring.cloud.config.discovery.enabled=true
eureka.client.server-url.defaultZone=http://localhost:8761/eureka

Within	the	bootstrap.properties,	set	the	spring.application.name	property	to
the	value	config-client-app.	Then	we're	going	to	set	another	property	which
tells	the	Config	Client	to	find	the	Config	Server	via	service	discovery,	so
spring.cloud.config.discovery.enabled=true.	We	have	one	last	property	to
set,	and	that's	the	location	of	the	Discovery	Server.	We've	already
configured	that	in	the	Config	Server,	so	if	you	want,	you	can	open	up	the
application.properties	from	the	config-server,	copy	the	eureka.client.server
URL,	and	paste	that	into	your	bootstrap.properties.	We	can	close	all	of	the
configuration	files	and	minimize	all	of	the	projects.	We're	now	ready	to
start	running	the	applications.	We'll	start	by	starting	the	Discovery	Server.
Navigate	to	the	main	application	class	of	the	Discovery	Server,	right-click	on
it,	Run	As	Spring	Boot	App.	Once	the	Discovery	Server's	started,	we'll	start
the	Configuration	Server	next.	Go	to	the	main	application	class	of	the
Config	Server,	right-click	on	it,	Run	As	Spring	Boot	App.	And	last,	we'll
start	the	Config	Client.	So	go	to	the	main	application	of	the	Config	Client,
right-click	on	it,	and	Run	As	Spring	Boot	App.	Now	you	see	that	the	config-
client-app	shutting	down	unexpectedly	after	registering	with	Eureka	server.
In	console	you	will	see	:

Shutting	down	DiscoveryClient	...
config-client-app	-	registration	status:	204
Unregistering	...
config-client-app	-	deregister		status:	200
Completed	shut	down	of	DiscoveryClient

Now	to	fix	it	add	below	dependency	in	pom.xml:
<dependency>
<groupId>org.springframework.boot</groupId>																<artifactId>spring-
boot-starter-web</artifactId>
</dependency>

Now	start	again.

If	you	expand	the	console	and	scroll	up,	you'll	see	that	it	fetched	the
configuration	from	the	Configuration	Server.	So	let's	open	up	a	browser
and	visit	the	Config	Client	app	and	see	that	it	resolved	those	configuration
values.

In	your	browser,	visit	localhost:8080,	and	you'll	see	that	it's	resolved	the
configuration	values.	The	first	one,	the	app	specific	overridden	value	is	the
value	from	the	some.property	property.	And	remember	we	set	that	to	this
app	specific	overridden	value	in	the	Config	Client	configuration.	And	then
the	next	property,	separated	by	the	||,	the	global,	is	coming	from	the	global
properties,	the	application.properties.

Updating	Configuration	at	Runtime

Updating	configuration	at	runtime	is	easily	one	of	the	best	features	of
Spring	Cloud.	With	it,	you	can	do	things	like	refresh	your
@ConfigurationProperties	at	runtime.	You	can	also	use	it	to	update	the
logging	levels	on	any	piece	of	code.	And	the	changes	happen	almost
instantaneously.	And	the	best	part	is	that	you	can	do	all	of	this	without	ever
restarting	your	application.	So	how	do	you	do	it?	Well,	the	first	step	is
updating	your	configuration.	And	you	do	that	by	cloning	the	configuration
repository	that	your	Config	Server	is	looking	at,	make	your	changes,	and
then	git	add,	git	commit,	and	git	push	your	changes	up	to	the	configuration
repository.	From	there,	there	are	several	different	ways	that	the	application
gets	the	new	configuration,	both	manually	and	automatically.

➢	/refresh			with	spring-boot-actuator
➢	/bus/refresh			with	spring-cloud-bus
➢	VCS	+	/monitor			with	spring-cloud-config-monitor	&	spring-cloud-
bus

The	first	way	is	manually,	and	that's	by	calling	the	refresh	endpoint	that's
included	in	the	Spring	Actuator	project.	And	just	to	be	clear,	you	would
need	to	do	that	for	every	individual	service	that	needs	its	configuration
updated.	The	second	way	is	a	combination	of	both	manual	and	automatic.
And	you	can	imagine	that	if	you	had	a	lot	of	servers,	calling	the	refresh
endpoint	on	each	of	them	manually	could	be	a	pretty	painful	process.
Instead,	if	each	of	the	applications	were	to	subscribe	to	an	event,	and	you
were	to	call	the	bus/refresh	endpoint,	Spring	Cloud	Bus	would	send	out	a
message	to	all	of	the	subscribers	indicating	to	them	that	they	need	to	refresh
their	configuration.	Now	note	that	there	isn't	any	sort	of	intelligence	in
whether	or	not	the	configuration	changed.	Every	subscriber	goes	and	gets
its	new	configuration	regardless.	The	third	way	is	just	like	the	second	except
for	it	adds	a	level	of	intelligence.	And	the	way	it	does	that	is	you	hook	it	up
into	your	virgin	control	system,	like	Git,	and	any	time	you	make	a	commit,
the	changeset	of	the	commit	is	posted	to	a	monitor	endpoint,	and	then	that

monitor	endpoint	can	determine	which	services	need	to	have	their
configuration	updated.	So	let's	visualize	this.	Imagine	that	you	made	a
commit	to	some	configuration,	and	you	pushed	that	up	to	the	configuration
repository.	And	the	repository	knows	what	changed,	and	it	sent	that
changeset	to	the	monitor	endpoint,	and	then	it	decided	that	it	only	needed	to
notify	two	of	the	three	applications	to	update	their	configuration.
Regardless	of	which	method	you	chose	to	notify	your	applications	about
configuration	updates,	there's	one	last	step.	And	that	is	to	celebrate.	You
can	brag	to	your	colleagues	about	making	configuration	changes	on	the	fly
without	ever	restarting	your	application.	And	you	can	do	it	all	at	once	or
even	all	automatically.	And	last,	since	you	used	Git,	you	have	a	full	audit	log
of	all	of	the	changes	that	you've	made	to	your	configuration.

Utilizing	the	@RefreshScope	Annotation

We've	already	talked	about	how	@ConfigurationProperties	and	logging
levels	will	be	updated	when	configuration	is	refreshed,	but	unfortunately
that	doesn't	cover	all	of	the	use	cases.	Anything	that	gets	its	value	only	at
initialization	time,	like	an	@Bean	or	an	@Value,	will	not	be	automatically
refreshed	like	the	others.	To	understand	this	a	little	bit	better,	it	helps	to	see
an	example.

@Configuration
public	class	SomeConfiguration{

@Bean
public	FooService	fooService(FooProperties	properties){
return	new	FooService(properties.getConfigValue());
}

}
Example:	@Bean	Will	Not	See	New	Config	Value	After	a	Refresh

➢	Configuration	updates	are	made
○	Note	that	FooProperties	is	a	@ConfigurationProperties	class

➢	POST	to	/refresh
➢	Result:	FooService	will	still	contain	the	OLD	configuration	value

○	Only	gets	configuration	during	initialization

Suppose	you	have	an	@Configuration	class,	and	it	declares	a	new	bean
called	FooService.	And	to	construct	FooService,	you	need	to	give	it	a
configuration	value	from	FooProperties,	which	is	an	argument	to	the	bean
method.	And	FooProperties	is	an	@Configuration	class.	Then	you	make
some	configuration	changes	to	the	properties	that	are	bound	to
FooProperties,	and	you	issue	a	POST	request	to	the	refresh	endpoint.	If	you
were	to	look	at	FooService	at	this	point,	even	though	you	called	refresh,	it
would	actually	still	have	the	old	configuration	value.	And	that's	because	it
only	gets	its	configuration	during	initialization.	Here's	another	example.

@Configuration
public	class	SomeConfiguration{

@Value("${some.config.value}")
String	configValue;
@Bean
public	FooService	fooService(){

return	new	FooService(configValue);
}

}
Example:	@Value	Will	Not	See	New	Config	Value	After	a	Refresh

➢	Configuration	updates	are	made
➢	POST	to	/refresh
➢	Result:	FooServicewill	still	contain	the	OLDconfiguration	value

○	Only	gets	configuration	during	initialization

Again,	we	have	an	@Configuration	class,	and	this	time	we	have	an	@Value
annotation	that	has	some	configuration	that	needs	to	be	injected.	And	we'll
use	that	configuration	as	a	constructor	argument	to	construct	the
FooService	bean.	So	we	go	through	the	same	process;	we	update	some
configuration,	we	POST	to	the	refresh	endpoint,	and	again	we	realize	that
our	configuration	value	is	still	the	old	value.	It	did	not	get	updated.	By	now
you	have	to	be	wondering	how	do	I	refresh	an	@Bean	or	an	@Value	that
only	gets	its	configuration	during	initialization?	And	the	answer	to	that	is
with	the	@RefreshScope	annotation.	Let's	go	back	to	our	first	example	and
see	how	and	where	we	utilize	the	@RefreshScope	annotation.

@Configuration
public	class	SomeConfiguration{

@Bean	@RefreshScope
public	FooService	fooService(FooProperties	properties){
return	new	FooService(properties.getConfigValue());
}

}
Example:	Utilizing	@RefreshScope

➢	Add	the	@RefreshScope	annotation	to	the	@Bean
➢	POST	to	/refresh

➢	Result:	FooService	will	now	contain	the	NEW	configuration	value!
○	@RefreshScopetells	Spring	to	please	reinitialize	this	@Bean

	In	your	@Configuration	class,	all	you	need	to	do	is	add	the	@RefreshScope
annotation	to	your	@Bean.	And	once	you	POST	to	the	refresh	endpoint,
FooService	will	now	see	the	latest	configuration	value.	RefreshScope	works
just	like	it	sounds.	It's	a	hint	to	Spring	that	this	@Bean	or	this	@Value
should	be	included	in	the	scope	of	the	refresh.

Demo:	Refresh	Configuration	Without	Restarting
Your	App

In	this	demo,	we'll	learn	how	to	refresh	our	configuration	at	runtime,	as
well	as	how	to	use	the	@RefreshScope	annotation.	Before	we	get	started
with	the	demo,	make	sure	that	you	have	a	tool	called	Postman	installed.	You
can	get	it	by	going	to	www.getpostman.com.	And	we'll	use	this	tool	to	call
the	REST	endpoints.	It's	a	nice	little	REST	client.	The	first	thing	we'll	do	is
start	all	of	our	applications,	so	go	ahead	and	start	the	Discovery	Server,	the
Config	Server,	and	the	Config	Client	app..	Now	remember	that	you	need	to
start	them	in	the	correct	order.	So	the	Discovery	Server	first,	then	the
Config	Server,	then	the	Config	Client	app.	So	if	you	have	any	problems	with
starting	them,	make	sure	that	you	start	them	in	that	order.	Open	up	a
browser	and	visit	localhost:8080.

And	you'll	see	the	configuration	values	that	got	resolved	from	the
Configuration	Server.	Now,	we	want	to	update	each	of	these	values,	so	we're
going	to	update	the	first	one,	the	app	specific	overridden	value,	and	the
global	one.	So,	head	back	to	the	IDE.	Back	in	the	IDE,	expand	the	config-
repository	project,	and	open	up	the	config-client-app.properties	file.

config-client-app.properties	:
#	Put	application-specific	config	here	(application	name:	client-config-app)
some.property=coffee
some.other.property=is	good

	And	we're	going	to	change	this	from	the	app	specific	overridden	value	to
coffee.	And	then	we're	also	going	to	set	the	other	one.	We're	going	to
override	the	some.other.property,	and	we're	going	to	say	is	good.	Go	ahead
and	save	those.	Close	that	file.	And	then	we're	going	to	commit	those

changes,	so	right-click	on	the	scf-config-repository,	go	to	Team,	go	to
Commit,	type	in	a	commit	message,	Updating	configuration,	and	click	the
Commit	and	Push.	And	it'll	pop	up	a	new	dialog	showing	you	that	it	pushed
those	changes.	Just	go	ahead	and	click	OK.	And	you	can	exit	out	of	that	Git
Staging	view.	So	now	we've	updated	the	configuration,	and	we've	pushed	it
to	the	configuration	repository.	And	if	you	go	back	to	your	browser	and	you
refresh	the	page,	the	value	should	still	be	the	old	values.

	We	haven't	explicitly	asked	the	application	to	refresh	its	configuration.	In
order	to	do	that,	start	up	the	Postman	application,	and	on	the	New	Tab
where	it	says	GET,	click	that	drop-down	and	choose	POST.	Then	in	the
request	URL	type	http://localhost:8080/refresh.	Once	you've	got	that	typed
in,	hit	Send,	and	the	server	will	respond	back	with	all	of	the	properties	that
changed.	So	there's	an	internal	property	that	it	has	called	the
config.client.verion,	as	well	as	the	two	other	properties	that	we	changed,	the
some.other.property	and	the	some.property.	Head	back	to	your	browser	and
refresh	the	page.

And	ooh,	that's	interesting.	The	first	value	refreshed	for	us,	we	got	the
coffee	value	that	we	set	in,	but	the	second	value	is	still	pointing	to	the	global
configuration	value.	And	the	reason	for	that	is	that	the	second	value	is
retrieved	using	the	@Value	annotation,	and	@Value	annotations	are	not
automatically	refreshed	when	you	call	the	refresh	endpoint.	So	we	can	fix
that	with	the	@RefreshScope	annotation.	Back	within	the	IDE,	stop	the
Config	Client	app.	Then	in	the	main	application	class,	let's	find	the
someOtherProperty.	So	we	have	here	the	@Value	annotation	that	gets	the
some.other.property	value.	So	to	fix	our	problem	of	the	@Value	annotation
not	updating,	let's	add	the	@RefreshScope	to	the	main	application	class.

package	io.ajay.kumar.configclientapp;
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.beans.factory.annotation.Value;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.cloud.context.config.annotation.RefreshScope;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@EnableDiscoveryClient
@RestController
@RefreshScope
public	class	ConfigClientAppApplication	{
								@Autowired
								private	ConfigClientAppConfiguration	properties;
								@Value("${some.other.property}")
								private	String	someOtherProperty;
								
								public	static	void	main(String[]	args)	{
																SpringApplication.run(ConfigClientAppApplication.class,	args);
								}
								
								@RequestMapping
								public	String	printConfig()	{
																StringBuilder	sb	=	new	StringBuilder();
																sb.append(properties.getProperty());
																sb.append("	||	");
																sb.append(someOtherProperty);
																return	sb.toString();
								}
}

So	you	type	@RefreshScope.	Go	ahead	and	save	that	and	restart	the
application.	Now	since	we	restarted	the	application,	the	application's	going
to	fetch	the	latest	configuration	values	when	it	starts	up.	So	we	won't
actually	be	demonstrating	the	use	of	@RefreshScope	because	it's	going	to
get	the	latest	value	regardless.	And	so	what	we	need	to	do	is	we	need	to
update	the	value	again.	So	go	ahead	and	open	up	the	config-client-app,	and
change	this	some.other.property	to	is	really	good.

config-client-app.properties	:
#	Put	application-specific	config	here	(application	name:	client-config-app)
some.property=coffee
some.other.property=is	really	good

Save	that,	close	that	file	out,	and	again	commit	that	up	to	the	Git	repository.
So	Team,	Commit,	updating	configuration	again,	and	click	the	Commit	and
Push	button.	You	can	exit	the	Git	Staging	view.	And	head	back	to	your
browser	and	refresh	the	page.

As	you	can	see,	it	says	coffee	is	good.	And	is	good	is	the	value	that	it
retrieved	on	start	up.	But	once	we	refresh	this	with	the	refresh	scope	now
added,	it	will	fetch	the	latest	value	for	that	@Value	annotation.	So	go	ahead
and	open	up	Postman,	and	on	the	New	Tab	where	it	says	GET,	click	that
drop-down	and	choose	POST.	Then	in	the	request	URL	type
http://localhost:8080/refresh.	Once	you've	got	that	typed	in,	hit	Send,	and
you	can	see	it	changed	the	some.other.property.	Head	back	to	the	browser,
and	refresh	that	page.

And	you	can	see	that	it	changed	our	property	this	time	from	is	good	to	is
really	good.

Encrypting	and	Decrypting	Sensitive	Configuration

Spring	Cloud	Config	Server	also	provides	additional	useful	functionality	for
encrypting	and	decrypting	your	configuration.	It	has	support	for	several
different	features.

Supported	features	:
➢	Encrypted	configuration	at	rest	and/or	in-flight
➢	An	/encrypt	endpoint	to	encrypt	configuration
➢	A	/decrypt	endpoint	to	decrypt	configuration
➢	Encrypting	and	decrypting	with	symmetric	or	asymmetric	keys

It	supports	encrypted	configuration	at	rest	or	in-flight.	And	at	rest,	that
simply	just	means	that	your	configuration	is	encrypted	when	it's	stored	on
disc.	And	in-flight	means	that	it's	encrypted	as	it	travels	between	the	Config
Server	and	the	Config	Client.	It	has	utility	endpoints	for	encrypting	and
decrypting	your	configuration.	And	one	really	important	thing	to	point	out
is	that	by	default	neither	of	these	endpoints	are	secured	unless	you	configure
security	for	your	Configuration	Server.	And	we've	already	talked	about	how
to	secure	your	Config	Server.	And	remember	that	any	of	the	methods	that
are	supported	by	Spring	Security	will	also	work	for	securing	your	Config
Server.	And	last,	it	has	support	for	encrypting	and	decrypting	using	either
symmetric	or	asymmetric	keys.	So	you	can	choose	whatever	works	best	for
your	situation.	Before	we	get	into	the	details	on	encrypting	and	decrypting
configuration,	I	thought	it	would	be	useful	to	see	how	encrypted
configuration	looks.

application.properties	:
my.datasource.username=foobar
my.datasource.password={cipher}ASFIOWRODSKSDFIR32KJL

application.yml	:
my:datasource:username:	foobar

password:	‘{cipher}ASFIOWRODSKSDFIR32KJL’

I've	included	both	an	application.properties	and	an	application.yml.	And
they	both	have	the	same	encrypted	database	password.	Notice	that	before
the	random	letters	and	numbers	there's	a	special	value	of	cipher,	and	it's
surrounded	by	curly	braces.	This	is	what	denotes	that	the	real	value	is	an
encrypted	value.	And	notice	that	there's	one	minor	difference	in	the
application.yml	versus	the	properties.	The	YAML	file	requires	us	to
surround	the	value	in	single	quotes,	whereas	the	properties	file	does	not.
Now	that	you've	seen	what	encrypted	configuration	looks	like,	you're
probably	wondering	at	what	point	is	the	configuration	decrypted?	And
there	are	two	different	options.	The	first	option	is	upon	request,	and	that's
at	the	Configuration	Server.	So	you	make	a	request	for	configuration	for	a
specific	application,	and	the	Config	Server	decrypts	the	values	in	the
configuration	before	sending	it	back.	You'd	only	want	to	use	this	if	the
connection	between	your	Config	Server	and	your	Config	Client	is	secure.	If
it's	not,	you	can	utilize	the	second	option	that	decrypts	the	value's	client
side.	And	this	is	exactly	opposite	of	the	first	option.	Instead	of	decrypting
the	values	before	sending	them	back,	the	Config	Server	sends	them	in
encrypted	format,	and	the	client	is	responsible	for	decrypting	them.	Note
that	the	default	way	is	the	first	option,	upon	request.	And	if	you	want	the
client	to	decrypt	the	configuration,	you	have	to	set	a	property	on	the	Config
Server,	spring.cloud.config.server.encrypt.enabled,	that's	a	big	one,	=false.
And	that	will	tell	the	Config	Server	not	to	decrypt	the	values	before	sending
them	back	to	the	client.

Using	the	Encryption	and	Decryption	Support

Before	we	get	into	the	details	about	configuring	our	Configuration	Server
for	encryption	and	decryption	support,	note	that	it	assumes	we	have	the
Java	Cryptography	Extension	installed,	or	commonly	referred	to	as	JCE.

Step	One:	Choose	Your	Key	Type

➢	Symmetric	Key

➢	Asymmetric	Key

○	Public	Key

○	Private	Key

The	first	step	to	encrypting	your	configuration	is	to	choose	the	key	type,	and
that	could	be	either	symmetric	or	asymmetric.	And	typically	symmetric
keys	are	easier	to	use,	but	less	secure	than	asymmetric	keys.	And	you	can
choose	whatever	works	best	for	your	situation.

Step	Two	(Symmetric):	Configure	the	Config	Server

application.properties	:
encrypt.key=<your_super_secret_key>

application.yml	:
encrypt:key:	<your_super_secret_key>

Step	two,	if	you're	using	a	symmetric	key,	is	to	configure	the	encryption	key.
And	you	can	do	that	in	the	application.properties	or	the	application.yml.
And	the	property	that	is	set	is	encrypt.key.	And	you	would	set	that	to	the
secret	value	you'll	use	to	encrypt	your	configuration.

Step	Two	(Asymmetric):	Configure	the	Config	Server	Option	1

application.properties	:
encrypt.key=<pem_encoded_key_as_text>

application.yml	:
encrypt:key:	<pem_encoded_key_as_text>

Step	two,	if	you're	using	asymmetric	keys,	can	be	done	in	two	different
ways.	The	first	way	is	to	set	the	value	of	the	encrypt.key	property	in	the
application.properties	or	the	application.yml	as	a
pem_encoded_key_as_text.	And	the	PEM	encoded	key	would	contain	both
the	public	and	the	private	key.

Step	Two	(Asymmetric):	Configure	the	Config	Server	Option	2

application.properties	:
encrypt.keyStore.location=<path_to_keystore>
encrypt.keyStore.password=<keystore_password>
encrypt.keyStore.alias=<key_name_in_keystore>

application.yml	:
encrypt:keyStore:location:	<path_to_keystore>
password:	<key_name_in_keystore>
alias:	<key_name_in_keystore>

The	second	way,	if	you're	using	asymmetric	keys,	is	to	use	the	Java
KeyStore.	Once	you've	created	or	imported	your	public	and	private	key	into
an	existing	or	new	keystore,	you	simply	configure	the	location	of	the
keystore,	the	password	to	the	keystore,	and	the	name	of	the	alias	that	you
chose	when	creating	or	importing	the	key	into	the	keystore.	And	you	can	do
that	in	the	application.properties,	of	course,	or	in	the	application.yml.

Encrypt	and	Decrypt	REST	Endpoints

Once	you	have	your	Config	Server	all	set	up	for	cryptography,	you	can
utilize	some	of	the	utility	REST	endpoints	to	encrypt	and	decrypt	values
that	you	will	put	or	take	out	of	your	configuration.	Both	of	the	endpoints
are	really,	really	easy	to	use.

Utility	REST	Endpoints:	Encrypt	Values

➢	Endpoint

○	POST	/encrypt

➢	Example

○	Request:	/encrypt

○	Data:	<value_to_encrypt>

The	first	one	is	the	encrypt	endpoint,	and	you'd	use	this	to	generate	the
encrypted	values	that	you'll	use	in	your	configuration.	And	it's	really	simple
to	use,	like	I	said.	All	you	do	is	send	a	POST	request	to	the	/encrypt
endpoint,	and	you	pass	the	value	that	you	want	to	encrypt	as	the	body	of	the
request.	The	Config	Server	will	use	its	configured	key,	either	the	symmetric
or	the	asymmetric	key,	to	encrypt	that	value.	And	again,	I	can't	stress	this
enough,	make	sure	that	this	endpoint	is	secure	using	Spring	Security	or	any
other	means	to	ensure	that	this	endpoint	is	only	accessed	by	authorized
users.

Utility	REST	Endpoints:	Decrypt	Values

➢	Endpoint

○	POST	/decrypt

➢	Example

○	Request:	/decrypt

○	Data:	<value_to_decrypt>

The	decrypt	endpoint	is	literally	almost	identical	to	the	encrypt	endpoint
with	the	exception	of	the	name	and	the	inputs.	And	you'd	mainly	use	this	for
debugging	purposes.	So	to	decrypt	a	value,	you	would	POST	to	/decrypt,
and	you	would	send	the	encrypted	value	as	the	body	of	the	request,	and	it
would	return	to	you	the	unencrypted	value.

Summary

➢	The	explosion	of	configuration	in	the	cloud	and	the	need	for	a	config
server

➢	Using	the	Spring	Cloud	Config	Server	&	Client

➢	Updating	configuration	at	runtime	without	restarting

➢	Encrypting	and	decrypting	configuration

We've	reached	the	end	of	this	module,	so	let's	take	a	moment	to	review	what
we've	learned.	We've	covered	a	lot	of	topics.	We	first	talked	about	the	need
for	a	Configuration	Server	in	a	cloud	environment	to	manage	the	explosion
of	configuration	that	comes	with	managing	a	distributed	system.	Then,	we
saw	how	to	configure	the	Spring	Cloud	Config	Server	to	serve	our
configuration	files	and	how	to	use	the	Spring	Cloud	Config	Client	along
with	the	bootstrap.properties	or	the	bootstrap.yml	to	retrieve	the
configuration	during	application	initialization.	After	that,	we	saw	how	we
could	brag	to	our	colleagues	about	updating	our	configuration	at	runtime
without	ever	needing	to	restart	our	application	server.	We	also	saw	what
gets	automatically	refreshed	and	what	requires	an	@RefreshScope
annotation.	And	last,	we	finished	out	the	module	with	a	section	on	how	to
utilize	the	encryption	and	decryption	support	within	Spring	Cloud	Config.

Module	5:	Mapping	Services	Using	Intelligent
Routing

What	Is	Intelligent	Routing?

In	this	module	we'll	learn	how	to	map	our	services	in	the	cloud	using
Intelligent	Routing.

➢	Routing	in	cloud	native	apps

➢	Netflix	Zuul

○	Proxy	server

○	Setting	up	routes

○	Setting	up	filters

We'll	begin	by	talking	about	what	Intelligent	Routing	is	and	what	problem
it	solves	for	us.	Then	we'll	introduce	Netflix	Zuul	as	part	of	the	Spring
Cloud	Netflix	project.	And	we'll	see	how	to	set	up	a	proxy	server,	how	to
configure	different	routes,	and	how	to	set	up	filtering.	Remember	that	in
order	to	be	as	dynamic	and	as	scalable	as	possible,	a	cloud-native	system	is
made	up	of	individually	deployable	services,	which	together,	as	a	whole,
form	an	overall	system.	With	that	comes	some	challenges	though.

Challenges	with	Individual	Services

➢	Different	ports

➢	Different	addresses

➢	Different	APIs	&	paths

Each	of	the	individual	services	may	be	running	on	a	different	port,	a
different	address,	or	a	combination	of	both.	And	they'll	also	likely	have
different	paths	and	different	APIs	to	interact	with.	And	as	a	user	or	a	client
of	those	services,	such	as	a	mobile	app	or	a	web	app,	interacting	with	each
of	the	individual	services,	which	could	easily	be	in	the	double	or	triple	digits,
would	be	a	nightmare.	Instead,	we	can	use	Intelligent	Routing	to	make	our
application	appear	as	if	it	were	a	single	system.	Similar	to	how	a	completed
puzzle	appears	as	if	it	were	a	whole,	but	it's	made	up	of	several	different
individual	pieces.

Intelligent	Routing	via	a	Gateway	Service

Routing	is	typically	implemented	via	something	called	a	gateway	service,	or
an	API	Gateway.	And	an	API	Gateway,	or	a	gateway	service,	is	defined	as
the	single	point	of	entry	for	all	clients.	So	in	many	ways	the	gateway	service
is	a	lot	like	the	front	door	to	our	system.	And	each	of	the	individual	services
is	then	located	behind	this	door,	and	all	the	requests	must	enter	through	it.

A	Gateway	Service	Provides

➢	Dynamic	Routing	&	Delivery

➢	Security	&	Filtering

➢	Auditing	&	Logging

➢	Request	Enhancement

➢	Load	Balancing

➢	Different	APIs	for	different	clients

A	gateway	service	not	only	provides	dynamic	routing	and	delivery,	which
means	at	runtime	it	can	decide	where	it	should	route	a	request	and	if	it
should	even	route	a	request	at	all,	but	it	also	provides	an	array	of	other
functionalities.	One	of	those	pieces	of	functionality	is	security.	It	provides
the	ability	to	authenticate	all	of	the	incoming	requests,	as	well	as	filter	out
any	sort	of	illegitimate	or	bad	request.	And	it's	actually	a	really	good
candidate	for	providing	auditing	and	logging	of	requests	since	all	of	the
requests	must	enter	through	the	gateway.	It	also	provides	something	called
request	enhancement,	which	is	just	a	fancy	way	of	saying	that	it	can	add
additional	information	to	the	request,	or	enrich	the	request,	if	you	will.	A

concrete	example	of	this	is	the	way	Netflix	uses	their	gateway.	They	use	their
gateway	service	to	do	a	geolocation	lookup	for	all	incoming	requests,	and
they	add	that	additional	information	as	an	additional	request	header	so	that
it's	available	for	all	downstream	services.	The	gateway	service	can	also	act
as	a	load	balancer	for	the	individual	services	that	are	behind	it.	Another
interesting	feature	of	the	gateway	service	is	the	ability	to	provide	different
APIs	for	different	clients.	APIs	are	not	a	one-size-fits-all	kind	of	thing,	and
different	clients,	such	as	web	clients	or	mobile	clients,	have	different	needs
in	the	way	they	call	your	APIs.	So,	for	instance,	it	may	be	okay	for	a	web
client	to	interact	with	several	endpoints	to	accomplish	some	piece	of
functionality,	but	the	same	may	not	be	true	for	a	mobile	client,	which	may
be	better	served	with	just	a	single	endpoint.

Using	Netflix	Zuul	with	Spring	Cloud

Intelligent	Routing	is	implemented	using	a	combination	of	Spring	Cloud
and	a	project	from	Netflix.	The	project	is	called	Netflix	Zuul,	and	it's
pronounced	zool,	which	rhymes	with	the	word	tool.	The	project	page	for	the
Netflix	Zuul	project	defines	it	as	a	gateway	service	that	provides	dynamic
routing,	monitoring,	resiliency,	security,	and	more.	And	the	name	Zuul	is
actually	a	pretty	good	name	as	Zuul	refers	to	a	fictional,	monster-like
character	in	the	movie	Ghostbusters	that's	the	gatekeeper	just	like	a
gateway	service	is	the	gatekeeper.	We'll	talk	about	how	you	go	about	adding
Spring	Cloud	and	Netflix	Zuul	to	a	project,	and	then	we'll	follow	up	with	a
live	demo.	Just	like	all	of	the	other	Spring	Cloud	projects,	adding	Spring
Cloud	and	Netflix	Zuul	to	your	project	is	really,	really	easy.

Using	Spring	Cloud	&	Netflix	Zuul
pom.xml	:
<dependencyManagement>
				<dependencies>
								<dependency>
												<groupId>org.springframework.cloud</groupId>
												<artifactId>spring-cloud-dependencies</artifactId>
												<version>Camden.SR2</version>
												<type>pom</type>
												<scope>import</scope>
								</dependency>
					</dependencies>
</dependencyManagement>

In	the	dependencyManagement	section	of	the	pom.xml,	define	a	new
dependency	with	a	scope	of	import	on	spring-cloud-dependencies.

<dependency>
				<groupId>org.springframework.cloud</groupId>

				<artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

And	still	within	the	pom.xml,	define	a	new	dependency	in	the	dependency
section	on	spring-cloud-starter-zuul.

@SpringBootApplication
@EnableZuulProxy
public	class	Application{
				public	static	void	main(String[]	args){
								SpringApplication.run(Application.class,	args);
				}
}

Then,	in	your	main	Application	class,	add	the	@EnableZuulProxy
annotation,	and	this	is	the	annotation	that	turns	your	application	into	the
gateway	service.	From	a	configuration	standpoint,	you	have	two	different
options.	You	can	configure	your	gateway	service	to	use	service	discovery	or
you	can	configure	it	without	service	discovery.

Using	Spring	Cloud	&	Netflix	Zuul	with	Service	Discovery

application.properties	:
spring.application.name=gateway-service
eureka.client.defaultZone=http://localhost:8761/eureka

OR

application.yml	:
spring:application:name:	gateway-service
eureka:client:defaultZone:	http://localhost:8761/eureka

If	you're	using	service	discovery,	define	the	usual	parameters	for	the	name
of	the	application	and	the	location	of	the	Service	Discovery	Server.

Using	Spring	Cloud	&	Netflix	Zuul	Without	Service	Discovery

application.properties	:
spring.application.name=gateway-service
ribbon.eureka.enabled=false

OR

application.yml	:
spring:application:name:	gateway-service
ribbon:eureka:enabled:	false

If	you're	not	using	service	discovery,	you	still	define	the	application	name,
and	you	add	an	additional	parameter,	ribbon.eureka.enabled=false.
Remember	how	I	mentioned	that	the	gateway	service	can	serve	as	a	load
balancer	for	your	services?	Well,	the	name	of	the	client-side	load	balancer
project	from	Netflix	is	called	Ribbon.	And	we'll	get	into	more	details	about
what	Ribbon	is	in	the	module	on	client-side	load	balancing.

Configuring	Routes	in	Netflix	Zuul

Once	you	have	everything	configured,	the	next	step	is	to	define	how	Zuul
should	route	requests.	The	default	routing	behavior	when	Zuul	is	set	up
using	service	discovery	is	to	route	requests	by	service	name.

Default	Route	to	Service	Resolution	with	Service	Discovery

Request:				/foo			maps	to	Service:			spring.application.name=foo
Request:			/categories/1			maps	to	Service:		
spring.application.name=categories

So	for	example,	if	you	requested	/foo,	Zuul	would	use	service	discovery	to
find	the	service	with	a	name	of	foo	and	send	that	request	to	that	service.
Here's	another	example.	If	you	were	to	request	/categories/1,	Zuul	would
locate	the	service	with	the	name	categories,	and	it	would	send	the	/1	request
to	that	service.	By	default,	the	prefix	is	stripped	from	the	request,	so	the
service	actually	only	gets	the	/1	part	of	the	request.	If	you	wanted	it	to	send
the	full	request,	the	/categories/1,	you	could	set	the	property	zuul.stripPrefix
to	false,	and	the	service	would	get	the	request	/categories/1.	Also	note	that
all	services	are	added	by	default,	so	you'll	want	to	use	the
zuul.ignoredServices,	and	you	could	set	that	to	a	pattern	to	ignore	specific
services.

Netflix	Zuul	with	Service	Discovery:Precise	Routing

application.properties
spring.application.name=gateway-service
zuul.routes.<route_name>.path=/somepath/**
zuul.routes.<route_name>.serviceId=some_service_id
zuul.ignored-services=some_service_id

OR

application.yml
spring:application:name:	gateway-service
zuul:routes:<route_name>:path:	/somepath/**
serviceId:	some_service_id
ignored-services:	some_service_id

In	addition	to	the	default	configuration,	you	can	also	define	more	precise
configuration	for	specific	services.	First	you	define	the	path	with	the
zuul.routes.route_name.path	property	where	the	route	name	can	be
anything	you	want.	And	the	path	is	defined	as	a	path	that's	using	the	Ant-
style	matchers.	Then	you	define	the	same	property	prefix,	but	end	it	with
service_id	instead	of	path.	And	the	service	ID	is	the	service	identifier	that
Zuul	will	look	for	when	discovering	the	service	via	service	discovery.	You'll
also	need	to	set	the	zuul.ignored-services	property	so	that	Zuul	doesn't	try
to	automatically	add	a	route	for	that	service	ID.

Netflix	Zuul	Without	Service	Discovery:Precise	Routing

application.properties
spring.application.name=gateway-service
zuul.routes.<route_name>.path=/somepath/**
zuul.routes.<route_name>.url=http://some_url_address/

OR

application.yml
spring:
application:
name:	gateway-service
zuul:
routes:
<route_name>:
path:	/somepath/**
url:	http://some_url_address/

The	configuration	for	when	you're	not	using	service	discovery	is	actually
pretty	similar	to	when	you	are.	You	define	the	path,	just	like	you	did	in	the
previous	configuration,	and	then	instead	of	defining	a	service	ID,	you	simply
define	the	URL	to	the	service.

Demo:	Using	Netflix	Zuul	as	an	Intelligent	Router

Head	on	over	to	start.spring.io,	and	we're	going	to	create	three	different
projects	here.	So	for	the	Group	ID	do	io.ajay.kumar,	and	for	the	Artifact,
the	first	one	we're	going	to	create,	we're	going	to	say	gateway-service.	For
the	dependencies,	we'll	want	to	add	Zuul,	and	then	we'll	also	want	to	add
Eureka	Discovery.

And	once	you're	finished	there,	go	ahead	and	click	Generate	Project,	and
that	will	create	a	zip	file	for	you.	And	still	on	the	same	page,	clear	the
dependencies	and	change	the	Artifact	to	hello-service.	And	for	the
dependencies,	we'll	want	to	add	Web	and	Eureka	Discovery.

Go	ahead	and	click	Generate	Project,	and	that	will	create	a	hello-
service.zip.	And	leave	everything	the	same,	but	change	this	from	hello	to
goodbye.	So	we're	going	to	have	a	hello	and	a	goodbye-service.

And	click	Generate	Project.	Go	ahead	and	unzip	all	of	those	zip	files	and
head	over	to	your	IDE.	Within	your	IDE,	right-click	on	the	empty	space	in
the	Package	Explorer,	and	go	to	Import,	and	choose	Existing	Maven
Projects.	Navigate	to	the	location	of	the	downloaded	zip	files,	we'll	use	the
gateway-service	first,	and	click	Open,	and	click	Finish.	And	that	imports	the
project	into	our	IDE,	and	you'll	need	to	do	the	same	for	the	other	two
services.	I	have	all	of	the	services	imported.	We're	also	going	to	need	the
Service	Discovery	Server,	so	if	you	don't	already	have	that	imported	into
your	IDE	from	completing	the	previous	modules,	I'll	quickly	show	you	how

you	can	import	it.	Go	ahead	and	right-click	on	the	empty	area	of	the
Package	Explorer,	and	go	to	New,	and	choose	Other.	In	the	textbox,	go
ahead	and	start	typing	maven,	and	choose	the	option	that	says	Check	out
Maven	Projects	from	SCM.	Click	Next.	We'll	need	to	grab	the	git	clone
URL	from	GitHub,	so	go	ahead	and	fire	up	a	browser	and	visit
github.com/ajaycucek/discovery-server.	On	the	GitHub	page,	locate	the
Clone	or	download	button,	click	it,	and	highlight	the	clone	URL.	Copy	that
to	your	clipboard	and	head	back	to	the	IDE.	In	the	textbox	under	the	SCM
URL,	go	ahead	and	paste	that	and	click	Next,	and	click	Finish.	We	now
have	everything	we	need	to	get	started.

Go	ahead	and	expand	the	gateway-service	project,	and	locate	the	main
application	class.	In	the	main	application	class,	we're	going	to	add	two
annotations.	The	first	one	is	the	@EnableZuulProxy	annotation,	and	the
second	one	is	the	@EnableDiscoveryClient	annotation.

package	io.ajay.kumar.gatewayservice;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.cloud.netflix.zuul.EnableZuulProxy;
@SpringBootApplication
@EnableZuulProxy

@EnableDiscoveryClient
public	class	GatewayServiceApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(GatewayServiceApplication.class,	args);
								}
}

Next,	we'll	open	up	the	application.properties	and	configure	the	properties
for	the	gateway	service.	So	go	ahead	and	expand	src/main/resources	and
open	the	application.properties.

application.properties
spring.application.name=gateway-service
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

The	first	property	we're	going	to	add	is	the	spring.application.name
property,	and	we're	going	to	set	that	to	gateway-service.	And	then	the	other
property	we'll	need	is	the	location	of	the	Service	Discovery	Server.	So	we'll
say	eureka.client.service-url.defaultZone,	and	then	we'll	set	that	to
localhost:8761/eureka.	Next,	you	can	go	ahead	and	close	both	of	those	files
and	minimize	the	gateway-service	project.	Next,	we're	going	to	open	up	the
hello-service	project,	so	go	ahead	and	expand	that,	and	open	up	the	main
application	class.

package	io.ajay.kumar.helloservice;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@EnableDiscoveryClient
@RestController
public	class	HelloServiceApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(HelloServiceApplication.class,	args);
								}

								@RequestMapping
								public	String	hello()	{
																return	"Hello!";
								}
}

In	the	main	application	class,	we're	going	to	add	the
@EnableDiscoveryClient	annotation,	and	we're	also	going	to	make	this	a
RestController.	Now	this	is	normally	a	bad	idea	if	you	were	to	do	this	in	a
real	application,	but	we're	just	doing	this	as	a	simple	example	so	it's	okay
for	now.	So	we'll	go	ahead	and	add	@RestController.	Go	ahead	and	save
that.	And	then	we'll	need	a	handler	method,	so	public	String	hello.	And	this
is	just	going	to	return	Hello!,	and	we'll	annotate	this	with
@RequestMapping.	Now	we	need	to	configure	our	hello-service	application,
so	go	ahead	and	open	up	src/main/resources	and	open	up	the
application.properties.

application.properties
spring.application.name=hello
server.port=1111
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

In	the	application.properties,	the	first	property	we'll	set	is	the
spring.application.name,	and	we'll	set	this	to	hello.	And	we're	also	going	to
set	the	server	port.	Since	we	have	multiple	applications	running	at	the	same
time,	we	don't	want	their	ports	to	conflict.	So	we'll	say	server.port,	and	we'll
set	this	to	1111.	Go	ahead	and	save	that.	And	then	the	last	property	is	setting
the	location	of	the	Service	Discovery	Server.	And	we	can	go	ahead	and	just
copy	that	from	the	gateway	service.	So	open	up	the	application.properties
from	the	gateway	service,	copy	the	configuration	value	that's	setting	the
location	of	the	Service	Discovery	Server,	close	that,	and	then	paste	that	into
your	application.properties.	You're	going	to	repeat	basically	the	same
process	for	the	goodbye-service	except	for	all	of	the	locations	that	it	says
hello	will	be	goodbye.	And	instead	of	using	all	1s	for	the	port,	we'll	use	all

2s.	I	completed	goodbye-service,	so	let's	take	a	look	at	the	main	application
class.

package	io.ajay.kumar.goodbyeservice;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@EnableDiscoveryClient
@RestController
public	class	GoodbyeServiceApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(GoodbyeServiceApplication.class,	args);
								}
								@RequestMapping
								public	String	goodbye()	{
																return	"Goodbye!";
								}
}

We	have	the	@EnableDiscoveryClient	annotation	and	the	@RestController
annotation,	and	then	we	have	one	handler	method,	which	is	goodbye,	and
it's	annotated	with	the	@RequestMapping.

application.properties
spring.application.name=goodbye
server.port=2222
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

In	the	application.properties,	we	have	the	spring.application.name	set	to
goodbye	and	the	server.port	set	to	all	2s.	And	then	the	configuration	for	the
Service	Discovery	Server	is	exactly	the	same.	We're	now	ready	to	start	up
all	of	the	applications	and	try	them	out.	So	go	ahead	and	close	these	files
and	collapse	the	goodbye-service.	Open	up	the	discovery-server	service	as

this	is	the	first	application	we'll	start.	So	right-click	on	that,	go	to	Run	As,
choose	Spring	Boot	App.	After	that,	we'll	go	ahead	and	start	the	gateway
service,	so	right-click	on	the	main	application	of	the	gateway	service,	go	to
Run	As,	Spring	Boot	App.	And	then	we	can	start	the	goodbye-service	next,
so	expand	the	goodbye-service,	and	right-click	on	the	main	application
class,	Run	As,	Spring	Boot	App.	And	last,	we	can	start	the	hello-service
application,	so	right-click	on	its	main	application	class,	Run	As,	Spring	Boot
App.	And	just	to	confirm	that	you	have	all	of	the	applications	started,	you
can	click	little	drop-down	arrow	near	display	selected	console	in	console
window,	and	you'll	see	each	of	the	individual	services	that	you	have
running.	Let's	open	up	a	browser	and	try	things	out.	In	your	browser,	visit
localhost:8080/hello.

And,	as	you	can	see,	it	returned	the	Hello!	string.	And	just	to	confirm,	we'll
also	hit	the	goodbye	endpoint.

And,	as	expected,	it	returned	the	Goodbye!	string.	Now	these	examples	are
very	simplistic,	but	a	lot	is	going	on	in	the	background.	When	we	visited
localhost:8080/goodbye,	the	gateway	service	looked	up	a	service	with	the
name	goodbye	from	the	Service	Discovery	Server	and	then	proxied	the
traffic	to	that	service	and	then	proxied	the	response	back	to	the	browser.

Creating	Filters	with	Netflix	Zuul	&	Spring	Cloud

One	of	the	key	features	in	Netflix	Zuul	is	the	ability	to	define	filters.	Filters
allow	you	to	intercept	and	control	the	requests	and	the	responses	that	pass
through	the	gateway.	Zuul	has	support	for	several	different	types	of	filters.

Filter	Types

●	pre	:	Before	the	request

●	post	:	After	the	request

●	route	:	Direct	the	request

●	error	:	Handle	request	errors

The	first	one	is	the	pre	type	filter,	which	is	executed	before	the	request	is
routed.	Next	comes	the	route	type	filter,	which	allows	you	to	direct	the
request	in	any	way	you	want.	In	fact,	earlier	when	we	defined	the
@EnableZuulProxy	annotation	on	the	main	application	class,	we	were
telling	Spring	to	set	up	some	predefined	route	filters	to	proxy	our	request	to
back-end	services.	After	route	comes	the	post	filters,	and,	as	the	name
suggests,	these	filters	are	executed	after	the	request	is	routed.	And	the	last
one	is	the	error	filter	type.	The	error	filter	type	is	responsible	for	handling
when	any	of	the	previous	filter	types,	the	pre,	route,	or	posts,	results	in	an
error.	To	define	a	Zuul	filter,	you	simply	extend	and	implement	the
ZuulFilter	class.

public	class	MyFilter	extends	ZuulFilter{
//	implement	methods
...

}

And	there	are	four	different	methods	to	implement.

@Override	public	Object	run(){
				//	Filter	logic	goes	here.	Current	implementation	ignores	return
}
@Override	public	boolean	shouldFilter(){
				//	Whether	or	not	the	run()method	should	execute
}
@Override	public	String	filterType(){
				//	The	type	of	filter:	pre,	route,	post,	error
}
@Override	public	int	filterOrder(){
				//	The	order	of	execution	with	respect	to	other	filters	of	the	same	type
}

The	first	is	the	run	method,	and	this	is	where	the	main	logic	of	the	filter
goes.	Note	that	it	returns	an	object,	but	the	current	implementation	ignores
it	so	you	can	just	simply	return	null	from	this	method.	The	next	method	is
the	shouldFilter	method,	and,	as	the	name	suggests,	this	method	allows	you
to	return	true	or	false	indicating	whether	or	not	the	filter	should	be	ran.	The
third	method	is	the	filterType	method,	and	here	you	can	define	one	of	the
four	predefined	values,	either	pre,	route,	post,	or	error.	The	last	method	is
the	filterOrder	method,	and	this	allows	you	to	control	the	execution	of	your
Zuul	filters.

RequestContext	ctx	=	RequestContext.getCurrentContext();
HttpServletRequest	req	=	ctx.getRequest();
HttpServletResponse	res	=	ctx.getResponse();
ctx.set("foobar","PRE_FILTER_EXECUTED");
String	foobar	=	(String)ctx.get("foobar");

Sharing	Between	Filters:	RequestContext	holds	request,	response,	state,	and
data	information.	Only	available	for	the	duration	of	the	request

The	RequestContext	is	an	object	that's	responsible	for	holding	the	request,
the	response,	and	any	state	or	data	information	that	needs	to	be	shared
between	all	of	the	filters.	So	you'd	use	it	to	get	access	to	the
HttpServletRequest	or	Response,	as	well	as	use	it	to	set	or	get	data	for	or
from	other	filters.	The	RequestContext	is	unique	to	every	request	and	only
lasts	the	duration	of	the	request.	Once	you've	defined	and	implemented
your	Zuul	filter,	you	need	to	tell	Spring	about	it.

Creating	a	Filter:	Define	an	@Bean	Which	Returns	the	Filter
@Configuration
public	class	MyConfig{
				@Bean
				public	ZuulFilter	myFilter(){
								return	newMyFilter();
				}
}

In	your	@Configuration	class,	create	a	method	that	returns	the	Zuul	filter
and	annotate	it	with	@Bean.	Spring	Cloud	Netflix	will	pick	up	and	add	any
beans	of	type	ZuulFilter	to	Zuul.

Demo:	Creating	and	Using	a	ZuulFilter

In	this	demo,	we'll	learn	how	to	implement	a	Zuul	filter	to	add	an	additional
header	to	the	incoming	request	so	that	it's	available	for	downstream	services
to	consume.	We'll	start	from	where	we	left	off	in	the	previous	demo.	And
remember	that	we	had	four	different	services.	We	had	the	discovery-server
that	was	doing	service	discovery,	we	had	the	gateway-service,	which	was	our
edge	service,	and	then	we	had	two	application	services,	the	goodbye-service
and	the	hello-service.	Since	we're	building	a	filter,	we'll	start	off	in	the
gateway-service.	So	go	ahead	and	expand	the	gateway-service	and	create	a
new	package.	So	go	ahead	and	New,	Package,	and	we'll	call	this
io.ajay.kumar.filters.	And	within	that	new	package	create	a	new	class,	so
New,	Class,	and	we'll	call	this	AddRequestHeaderFilter.	And	remember	that
we	have	to	extend	the	ZuulFilter	class,	so	the	superclass	for	our	class	will	be
ZuulFilter.

package	io.ajay.kumar.filters;
import	com.netflix.zuul.ZuulFilter;
import	com.netflix.zuul.context.RequestContext;
public	class	AddRequestHeaderFilter	extends	ZuulFilter	{
@Override
public	boolean	shouldFilter()	{
	return	true;
}
@Override
public	Object	run()	{
	RequestContext	ctx	=	RequestContext.getCurrentContext();
	ctx.addZuulRequestHeader("x-location",	"USA");
	return	null;
}
@Override
public	String	filterType()	{
	return	"pre";
}

@Override
public	int	filterOrder()	{
	return	0;
}
}

For	the	first	method,	the	shouldFilter	method,	let's	go	ahead	and	change
that	from	return	false	to	return	true.	We're	always	going	to	apply	this	filter.
And	let's	skip	over	the	run	method	for	right	now	and	go	down	to	the
filterType.	And	this	particular	filter	we're	going	to	create	a	pre	filter,	so	we
can	say	return	pre.	And	then	for	the	filterOrder,	return	0	is	okay,	so	we'll
just	leave	that	the	same.	In	order	to	get	access	to	the	request	to	add	headers
to	it,	we	need	to	get	access	to	the	RequestContext.	So	let's	clear	this	TODO
and	say	RequestContext	ctx	=	RequestContext.getCurrentContext.	And
within	the	RequestContext	there's	the	addZuulRequestHeader	method.	And
image	that	our	use	case	is	to	add	the	location	of	the	incoming	request,	so
we'll	name	this	header	x-location.	And	we're	going	to	mock	this;	we'll	say
that	every	request	comes	from	USA.	And	then	last,	remember	that	the
return	value	is	not	actually	used	in	the	current	implementation,	so	returning
null	is	going	to	be	okay	for	our	purposes.	Let's	close	this	file	and	open	up
our	main	application	class.	And	within	our	main	application	class,	we'll
annotate	this	with	@Configuration.

package	io.ajay.kumar;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import	org.springframework.context.annotation.Bean;
import	org.springframework.context.annotation.Configuration;
import	io.schultz.dustin.filters.AddRequestHeaderFilter;
@SpringBootApplication
@EnableZuulProxy
@EnableDiscoveryClient
@Configuration

public	class	GatewayServiceApplication	{
public	static	void	main(String[]	args)	{
	SpringApplication.run(GatewayServiceApplication.class,	args);
}
@Bean
public	AddRequestHeaderFilter	addRequestHeaderFilter()	{
	return	new	AddRequestHeaderFilter();
}
}

And	then	we're	going	to	want	to	define	the	AddRequestHeaderFilter	as	an
@Bean	here,	so	we'll	say	public	AddRequestHeaderFilter,	and	we're	going
to	return	a	new	AddRequestHeaderFilter.	And	again,	make	sure	we
annotate	this	with	@Bean.	And	that's	all	the	changes	that	we	need	to	make
to	the	gateway-service,	so	let's	go	ahead	and	close	this	and	collapse	the
gateway-service.	And	then	let's	go	ahead	and	open	up	the	hello-service	and
open	up	the	main	application	class.

package	io.ajay.kumar;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.RequestHeader;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@EnableDiscoveryClient
@RestController
public	class	HelloServiceApplication	{
public	static	void	main(String[]	args)	{
	SpringApplication.run(HelloServiceApplication.class,	args);
}
@RequestMapping
public	String	hello(@RequestHeader("x-location")	String	location)	{
	return	"Hello	from	"	+	location	+	"!";

}
}

In	our	handler	method,	we're	going	to	add	a	new	parameter.	We're	going	to
say	String	location.	And	we're	going	to	annotate	this	with	@RequestHeader,
and	then	we're	going	to	give	it	the	name	of	that	request	header	that	the
gateway-service	is	adding	to	the	request,	which	is	x-location.	And	then	we'll
modify	the	string	to	say	Hello	from	location,	and	go	ahead	and	save	that.
And	that's	all	the	changes	that	we	need	to	make	to	our	application	for	this
demo.	So	we	can	go	ahead	and	close	this	and	minimize	the	hello-service,	and
we're	ready	to	start	things	up.	So	we'll	want	to	start	the	discovery-server
first.	So	expand	the	discovery-server,	locate	the	main	application	class,
right-click,	Run	As,	Spring	Boot	App.	After	that,	we'll	start	the	gateway-
service,	so	collapse	that	and	open	the	gateway-service,	highlight	the	main
application	class,	Run	As,	Spring	Boot	App.	And	then	last,	let's	start	up	the
hello-service.	So	collapse	the	gateway-service,	head	over	to	the	hello-service,
right-click,	Run	As,	Spring	Boot	App.	Next,	start	up	your	browser	and	visit
localhost:8080/hello.

And	there	we	have	it.	We	have	the	Hello	and	then	we	have	the	USA,	which
came	from	the	gateway-service,	which	added	it	as	a	request	header,	which
the	hello-service	then	consumed	and	appended	to	it's	Hello	string	to	come
out	with	the	string	Hello	from	USA!

Summary

We've	now	completed	the	module,	so	let's	take	a	quick	moment	to	recap
what	we've	learned.

●	The	need	for	intelligent	routing

●	Gateway	service

●	Netflix	Zuul

○	@EnableZuulProxy

○	Configuring	routes

○	Writing	filters

First,	we	looked	at	the	reasons	why	Intelligent	Routing	is	needed	in	the	first
place	and	why	it's	important.	Then	we	looked	at	how	routing	is
implemented	via	an	API	Gateway,	or	a	gateway	service.	And	last,	we	saw
how	we	can	use	Netflix	Zuul	as	a	gateway	service	to	route	and	filter	our
requests	and	responses	to	and	from	back-end	services.

Module	6:	Calling	Services	Using	Client-side
Load	Balancing

Module	Introduction

In	this	module	we'll	learn	how	to	utilize	client-side	load	balancing	to
distribute	the	workload	of	a	service	in	a	cloud-native	application.

●	Load	balancing

○	Server-side

○	Client-side

●	Netflix	Ribbon

○	With	&	without	service	discovery

■	@Loadbalanced

■	@RibbonClient

○	Custom	Ribbon	configuration

We'll	start	off	with	what	is	load	balancing,	and	what	role	does	it	play	in	a
cloud-native	application?	Then	we'll	talk	about	traditional	server-side	load
balancing,	which	you're	probably	already	familiar	with.	Then	we'll

introduce	client-side	load	balancing,	what	it	is	and	how	it	differs	from
server-side	load	balancing.	Next,	we'll	introduce	Netflix	Ribbon	and	how	we
can	utilize	it	with	Spring	Cloud	to	implement	client-side	load	balancing.
We'll	learn	how	to	implement	it	with	and	without	service	discovery	using
two	new	annotations:	the	@LoadBalanced	annotation	and	the
@RibbonClient	annotation.	We'll	finish	off	the	module	with	a	section	on
how	to	customize	Ribbon's	configuration	for	things	like	different	load
balancing	algorithms	or	different	ways	to	check	the	health	of	a	service
before	sending	a	request	to	it.

Client-side	vs.	Server-side	Load	Balancing

So	what	is	load	balancing?	Simply	put,	load	balancing	is	a	way	to	improve
the	distribution	of	workload	across	multiple	computing	resources.	And	you
probably	already	knew	that,	so	the	more	important	question	is	what	role
does	load	balancing	play	in	a	cloud-native	architecture?	And	the	answer	to
that	is	actually	a	very	important	one,	probably	even	more	important	than	in
a	non-cloud-native	architecture.	And	the	reason	for	that	becomes	clearer
when	you	look	at	the	differences	in	the	architecture.	In	a	non-cloud-native
application,	you	go	from	having	multiple	instances	of	a	single	application
with	a	single	load	balancer	to	multiple	services	with	multiple	instances	and
multiple	load	balancers.	And	you	can	start	to	see	the	importance	of	a	load
balancer	just	by	the	sheer	number	of	load	balancers	that	we	need	in	a	cloud-
native	application.	There	are	typically	two	different	types	of	load	balancers.
There's	the	server-side	load	balancer	where	the	server	is	responsible	for	the
distribution	of	the	load,	and	there's	the	client-side	load	balancer	where	the
caller	is	responsible	for	the	distribution	of	the	load.	Let's	take	a	look	at	each
of	these	in	a	bit	more	detail.	With	server-side	load	balancing,	a	request	to
another	service	doesn't	go	directly	to	the	service	itself	and	instead	goes	to	a
server	in	front	of	the	service,	which	then	decides	which	of	the	multiple
instances	it	should	forward	the	request	to.	With	client-side	load	balancing,
there	is	no	intermediary.	The	client,	or	the	caller	of	the	service,	is	aware	of
all	of	the	instances	of	a	service	via	a	known	list	or	service	discovery.	And	the
client	is	then	responsible	for	deciding	which	of	the	multiple	instances	it
should	send	the	request	to.	To	solidify	our	understanding	of	server-side
versus	client-side	load	balancing,	let's	look	at	each	of	them	side	by	side.

●	Server-side

○	Server	distributes	requests

○	Hardware	or	software	based

○	Extra	hop

○	Various	balancing	algorithms	support

○	Occurs	outside	of	the	request	process

○	Centralized	or	distributed

●	Client-side

○	Client	distributes	request

○	Software	based

○	No	extra	hops

○	Various	balancing	algorithms	support

○	Occurs	within	the	request	process

○	Typically	distributed

	With	server-side	load	balancing,	the	server	obviously	distributes	the
request,	and	with	client-side	load	balancing,	the	client	obviously	distributes
the	request.	Server-side	load	balancing	is	typically	hardware	based,	but	it
can	also	be	software	based.	Client-side	load	balancing,	on	the	other	hand,	is
software	based.	You	incur	an	extra	hop	with	server-side	load	balancing
since	the	request	doesn't	go	directly	to	the	service	and	has	to	go	through	an
intermediary	first.	Whereas	with	client-side	load	balancing,	you	don't	incur
any	extra	hops	once	you	know	the	location	of	the	services.	Both	server-side
and	client-side	load	balancing	have	support	for	various	load	balancing
algorithms.	With	server-side	load	balancing,	the	actual	load	balancing

happens	outside	of	the	request	process,	whereas	with	client-side	load
balancing,	the	actual	load	balancing	happens	within	the	request	process.
And	lastly,	server-side	load	balancing	can	be	either	centralized	or
distributed,	whereas	client-side	load	balancing	is	typically	distributed.
Given	all	of	these	differences,	it's	clear	that	client-side	load	balancing	is	a
natural	fit	for	cloud-native	architectures.

Getting	Started	with	Spring	Cloud	and	Netflix	Ribbon

We've	set	the	stage	for	client-side	load	balancing.	Now	let's	talk	about	how
to	actually	implement	it	with	Spring	Cloud.	As	I	mentioned	in	the
introduction	to	this	module,	we'll	use	a	library	called	Netflix	Ribbon	to
implement	client-side	load	balancing.	And	Netflix	Ribbon	is	an	Inter
Process	Communication	library	that	has	built-in	software	load	balancers.
Spring	Cloud	adds	full	integration	with	Netflix	Ribbon	to	Spring's
RestTemplate	class.	And	we'll	go	into	detail	about	what	this	exactly	means,
but	in	essence	our	RestTemplate	will	now	understand	how	to	balance
requests	across	multiple	instances	of	a	service.	Spring	Cloud	also	adds
features	that	make	it	really	easy	to	declare	different	types	of	load	balancing
algorithms	and	availability	checks.	Next,	let's	talk	about	how	to	use	Spring
Cloud	and	Netflix	Ribbon.	And	before	we	get	started,	just	a	quick	note.	In
each	of	these	sections	I'll	explain	all	of	the	steps	necessary	to	kind	of	get
going,	and	then	at	the	end	we'll	walk	through	a	demo	where	you	can	follow
along.	Using	Netflix	Ribbon	with	Spring	Cloud	is	extremely	easy,	just	like
all	of	the	other	Spring	Cloud	projects.

Using	SpringCloud	&Netflix	Ribbon
pom.xml
<dependencyManagement>
				<dependencies>
								<dependency>
												<groupId>org.springframework.cloud</groupId>
												<artifactId>spring-cloud-dependencies</artifactId>
												<version>Camden.SR2</version><type>pom</type>
												<scope>import</scope></dependency>
					</dependencies>
</dependencyManagement>

In	your	dependencyManagement	section	of	your	pom.xml,	define	a	new
dependency	on	spring-cloud-dependencies.

<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

And	make	sure	that	it's	of	type	pom	and	has	a	scope	of	import.	Still	within
your	pom.xml,	in	the	dependency	section,	define	a	new	dependency	on
spring-cloud-starter-ribbon.	Spring	Cloud's	Netflix	Ribbon	support	adds
two	new	annotations.

●	Two	New	Annotations

○	@LoadBalanced	:	Marks	a	RestTemplate	to	support	load
balancing

○	@RibbonClient	:	Used	for	custom	configuration	and	when
Service	Discovery	is	absent

The	first	one	is	the	@LoadBalanced	annotation,	and	this	annotation	is	used
when	you're	creating	a	RestTemplate.	And	it's	used	to	mark	that	that
RestTemplate	should	be	a	load	balanced	RestTemplate	as	opposed	to	just	a
standard	RestTemplate.	The	second	annotation	is	the	@RibbonClient
annotation,	and	this	annotation	is	mainly	for	configuration	purposes.	You
would	use	it	to	configure	a	custom	Ribbon	client,	as	well	as	when	you're	not
using	service	discovery	to	set	up	an	actual	Ribbon	client.	Let's	look	at	how
to	use	the	@LoadBalanced	annotation	first.

Using	the	@LoadBalanced	Annotation

It's	really	easy	to	get	started	and	create	a	load	balanced	RestTemplate.

Creating	a	Load	Balanced	RestTemplate
@Configuration
public	class	MyConfiguration{
				@Bean
				@LoadBalanced
				public	RestTemplate	restTemplate(){
								return	new	RestTemplate();
				}
}

In	your	@Configuration	class,	you	define	a	new	method	annotated	with
@Bean	that	returns	a	new	RestTemplate.	Then	you	annotate	that	same
method	with	the	@LoadBalanced	annotation.	And	what	this	does	is	it	tells
Spring	that	the	RestTemplate	should	support	load	balancing.	And	what	that
means	behind	the	scenes	is	that	the	RestTemplate	that's	returned	will
actually	have	an	interceptor,	a	RestTemplate	interceptor,	that	utilizes	the
Ribbon	load	balancer	client	to	actually	call	our	services	and	balance
between	the	different	instances.	And,	by	default,	it'll	use	a	round-robin
algorithm	for	distributing	that	load.	Next,	let's	look	at	how	you	would
actually	use	this	load	balanced	RestTemplate	if	you	were	trying	to	call	a
service	and	you	were	using	service	discovery.

Using	a	Load	Balanced	RestTemplate	With	Service	Discovery

Suppose	my-service	is	the	name	of	a	service	running	on	port	9000	at
mycompany.com	and	is	discoverable	via	Service	Discovery.	There	are	2
instances	running.

Instead	of	restTemplate.getForEntity("http://mycompany.com:9000/u/1",...)
or	restTemplate.getForEntity("http://128.168.10.10:9000/u/1",...)

Use	RestTemplate	like	this	instead	restTemplate.getForEntity("http://my-
service/u/1",...)

Suppose	you	had	two	instances	of	a	service	called	my-service	running	on
port	9000	on	multiple	servers	at	mycompany.com.	And	also	suppose	that
my-service	was	discoverable	via	service	discovery.	Instead	of	passing	the
mycompany.com	URL	or	IP	address	to	the	RestTemplate,	you	can	actually
pass	a	URL	that	uses	a	logical	identifier	to	represent	the	service.	In	this	case,
we've	used	the	logical	identifier	my-service.	And	this	is	the	same	name	that
the	service	is	registered	under	at	the	Service	Discovery	Server.	And	at
runtime	the	RestTemplate	will	function	as	the	client-side	load	balancer.	And
it'll	use	service	discovery	to	resolve	the	real	location	of	the	my-service
instances	and	then	use	the	configured	load	balancing	algorithm	to	distribute
the	load	between	them.

Demo:	Load	Balancing	Using	Ribbon	with	Service
Discovery

In	this	demo,	we'll	set	up	a	Ribbon	client	that	utilizes	service	discovery	and
balances	requests	between	multiple	instances	of	a	service.	Since	we'll	be
using	service	discovery	to	locate	the	instances	of	the	service,	we'll	need	to
have	a	Service	Discovery	Server	set	up.	If	you've	been	following	along	in	the
previous	modules	of	the	course,	you	should	already	have	the	discovery
server	set	up	within	your	IDE.	Once	you	have	the	discovery	server	set	up,
we're	ready	to	get	started.	Open	up	a	browser	and	head	over	to
start.spring.io.	In	the	Group	section,	change	this	to	io.ajay.kumar.	And	then
for	the	name	of	the	artifact,	we're	going	to	call	this	ribbon-time-service.	In
the	Dependencies	section,	add	the	Web	dependency	and	the	Eureka
Discovery	dependency.

Once	you	have	everything	filled	out,	click	the	Generate	Project	button,	and
it'll	create	and	download	a	zip	for	you.	Still	on	the	SPRING	INITIALIZR
page,	change	the	artifact	name	from	ribbon-time-service	to	ribbon-tie-app.
Then,	in	the	Dependencies	section,	add	a	new	dependency	on	Ribbon.

Again,	once	you	have	everything	filled	out,	click	the	Generate	Project
button,	and	that'll	create	and	download	a	zip	for	you.	Unzip	both	of	those
zip	files	and	head	back	to	your	IDE.	I've	imported	the	ribbon-time-service
and		ribbon-time-app.	Right-click	on	the	empty	area	within	the	Package
Explorer,	go	to	Import,	choose	Existing	Maven	Projects,	click	Next,	click
Browse,	browse	to	the	location	of	the	downloaded	zip	file,	click	Open,	and
click	Finish.	We'll	work	on	the	ribbon-time-service	first,	so	expand	the
project	and	open	up	the	main	application	class.

Within	the	main	application	class,	add	two	annotations,	the
@RestController	annotation	and	the	@EnableDiscoveryClient	annotation.

package	io.ajay.kumar.ribbontimeservice;
import	java.util.Date;
import	org.springframework.beans.factory.annotation.Value;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.GetMapping;
import	org.springframework.web.bind.annotation.RestController;
@RestController
@EnableDiscoveryClient
@SpringBootApplication
public	class	RibbonTimeServiceApplication	{
								@Value("${server.port}")
								private	int	port;
								public	static	void	main(String[]	args)	{
																SpringApplication.run(RibbonTimeServiceApplication.class,
args);
								}
								@GetMapping
								public	String	getTime()	{
																return	"The	current	time	is	"+	new	Date().toString()
																																+"(answered	by	service	running	on	"+port+")";

								}
}

Then	we	need	to	add	one	request	handler	method,	so	hit	Return	a	few	times
and	do	public	String	getTime.	And	we'll	annotate	that	with	a	shortcut
version	@GetMapping,	which	is	just	a	request	mapping	that's	a	GET.	Then
in	the	body	of	the	method	we'll	return	The	current	time	is,	and	we'll
construct	a	new	Date	object	and	turn	that	into	a	string.	For	demonstration
purposes,	we're	going	to	want	to	know	which	instance	is	responding	to	the
request.	And	currently	we	have	no	way	of	telling.	We	wouldn't	be	able	to	tell
one	from	the	other.	So	we're	going	to	make	one	addition	to	the	response.	So
we're	going	to	say	+	answered	by	service	running	on,	and	then	we'll	have	a
port	variable,	and	then	we'll	close	that	parenthesis.	And	since	each	of	our
services	has	to	be	running	on	a	different	port,	we	can	tell	each	one	of	them
apart.	So	let's	make	sure	that	we	actually	define	that	port	variable.	Come
up	here	and	add	a	private	int	port,	and	then	we'll	annotate	this	with	@Value
annotation.	And	we'll	inject	this	with	the	server.port	variable.	And	before
we	fire	this	up,	we	need	to	configure	a	few	properties	within	our
application.properties.	So	go	ahead	and	close	that	and	open	up
src/main/resources	and	open	up	the	application.properties	file.

application.properties
spring.application.name=time-service
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

In	the	application.properties,	we're	going	to	set	two	properties.	The	first	one
is	the	spring.application.name	property,	and	we're	going	to	set	that	to	time-
service.	And	the	second	property	we'll	set	is	to	configure	the	location	of	the
Service	Discovery	Server,	so	eureka.client.service-url.defaultZone.	And	then
we'll	set	that	to	localhost:8761/eureka.	We	now	have	everything	we	need	to
start	the	ribbon	time-service,	so	we	can	go	ahead	and	close	this	and
minimize	this.	And	the	first	thing	we'll	want	to	do	is	start	the	discovery
server.	So	expand	the	discovery-server	project	and	navigate	to	the	main
application	class.	Right-click	on	the	main	application	class,	and	go	Run	As,
Spring	Boot	App.	Go	ahead	and	minimize	the	discovery-server	and	expand

the	ribbon-time-service,	and	navigate	to	the	main	application	class,	right-
click	on	it,	and	go	to	Run	As,	and	then	choose	Run	Configurations.	Since
we're	starting	up	two	instances	of	the	ribbon-time-service,	we	need	to
configure	two	different	run	configurations.	So	if	you	come	up	here	to	the
New	launch	configuration	button,	click	that,	and	it'll	create	a	new	run
configuration	for	you.	We'll	rename	this	to	ribbon-time-service-1.	And	then
for	the	Project,	we'll	make	sure	that	we	choose	the	ribbon-time-service,	and
for	the	Main	type,	hit	Search	and	locate	the	RibbonTimeServiceApplication.
In	the	Override	properties	section,	we'll	set	the	server.port,	and	we'll	set
that	to	4444.	And	click	Apply,	and	then	we're	going	to	duplicate	this
configuration	and	change	the	server	port	from	all	4s	to	all	5s.	So	come	up
here	to	the	Duplicate	configuration	button,	click	that,	change	the	name	from
ribbon-time-service-1	to	-2,	and	change	the	port	from	all	4s	to	all	5s.	Once
you've	got	everything	configured,	you	can	highlight	the	ribbon-time-service-
1	and	click	Run.	And	then	for	the	second	instance,	right-click	on	the	main
application	class,	go	to	Run	As,	locate	Run	Configurations,	highlight	the
ribbon-time-service-2,	and	click	Run.	Just	to	make	sure	everything's
running	correctly,	open	up	a	browser	and	visit	localhost:4444.

And	do	the	same,	but	change	those	4s	to	all	5s.

You	should	get	a	response	from	each	of	the	services	with	the	current	time
and	then	the	current	time	and	answered	by	service	and	whatever	the
respective	port	is.	We	can	also	quickly	check	that	each	of	the	services
registered	itself	with	the	Service	Discovery	Server.	So	open	up	a	new	tab
and	visit	localhost:8761.

If	you	scroll	down	under	the	heading	Instances	currently	registered	with
Eureka,	you'll	see	the	application	TIME-SERVICE,	and	you'll	see	that
there	are	two	instances.	They're	both	UP.	One	of	them	is	running	on	all	5s
and	another	is	running	on	all	4s.	And	we're	back	within	the	IDE,	and	so	far
all	we've	done	is	we've	set	up	multiple	instances	of	the	ribbon-time-service
and	had	each	of	them	register	with	the	Service	Discovery	Server.	We're	now

ready	to	start	developing	the	piece	where	we'll	use	Ribbon	to	load	balance
between	each	of	the	instances	of	the	ribbon-time-service.	In	the	Package
Explorer	under	the	ribbon-time-app,	expand	it	and	navigate	to	the	main
application	class.	Go	ahead	and	expand	the	main	application	class	just	to
give	us	a	little	bit	more	room.	Just	like	we	did	with	the	ribbon-time-service,
we'll	add	two	annotations:	first,	the	@RestController	annotation,	and
second,	the	@EnableDiscoveryClient	annotation.	Next	we'll	inject	a
RestTemplate,	so	private	RestTemplate,	and	make	sure	you	annotate	it	with
@Inject.	And	there's	nothing	right	now	that's	providing	this	RestTemplate,
so	we're	going	to	create	a	method	that	will	return	that	new	RestTemplate	as
a	load	balance	RestTemplate.	So	if	you	come	down	here	below	the	main,	do
public	RestTemplate.	Then	within	the	body	of	the	method,	you're	going	to
return	new	RestTemplate.	And	then	annotate	this	with	@Bean	and
@LoadBalanced.	Now	we	need	one	more	method,	and	that's	the
RequestMapping	method,	to	actually	handle	the	request	for	our	ribbon-
time-app.	So	come	up	here	and	do	public	String	getTime,	and	we'll	annotate
this	with	the	shortcut	mapping	again,	so	@GetMapping.	And	then	within
the	body	of	the	method,	we're	going	to	use	the	RestTemplate	to	call	our
time-service	and	return	the	result.	So	we'll	say	return
restTemplate.getForEntity.	And	then	we'll	say	http://,	and	remember	we	use
a	logical	identifier	here,	so	we'll	say	time-service.	And	we'll	say	that	the
return	type	is	a	string	and	then	make	sure	that	we	call	getBody	on	the
response.	We're	now	ready	to	start	up	our	ribbon-time-app	and	give	it	a
run.	So	let's	unmaximize	this	and	right-click	on	the	main	application	class,
go	to	Run	As,	and	choose	Spring	Boot	App.	Next,	fire	up	a	browser	and	visit
localhost:8080.

And	you	can	see	the	response	from	the	service	running	with	the	port	on	all
4s.	And	if	we	refresh	that,	we'll	see	the	one	running	on	the	port	with	all	5s.

And	we	can	continue	to	refresh	that,	and	we'll	see	that	it	alternates	between
each	of	the	instances	in	a	round-robin	fashion.

Using	the	@RibbonClient	Annotation

Now	let's	take	a	look	at	the	other	annotation,	the	@RibbonClient
annotation.	First	we'll	see	how	to	use	this	annotation	along	with	the
@LoadBalanced	annotation	to	achieve	client-side	load	balancing	without
service	discovery.

@Configuration
@RibbonClient(name="someservice")
public	class	MyConfiguration{
...
}

In	your	@Configuration	class,	define	the	@RibbonClient	annotation	and	set
the	name	element	to	a	meaningful	value.	You'll	actually	refer	to	this	value	in
the	configuration,	as	well	as	the	URL	of	the	RestTemplate.

application.properties
<ribbon_client_name>.ribbon.eureka.enabled=false
<ribbon_client_name>.ribbon.listOfServers=http://host:9000,
http://host:9001

OR

application.yml
<ribbon_client_name>:ribbon:eureka:enabled:	false
listOfServers=http://host:9000,	http://host:9001

*	Replace	<ribbon_client_name>	with	the	name	field	value	of
@RibbonClient

Then,	in	your	application.properties	or	your	application.yml,	define	two
new	properties.	And	remember	the	name	element	that	we	set	on	the
@RibbonClient	annotation.	You'll	prefix	each	of	your	properties	with	that
value.	So	the	first	property,	the
ribbon_client_name.ribbon.eureka.enabled=false,	tells	Ribbon	to	disable
service	discovery	support.	The	next	property,	the
ribbon_client_name.ribbon.listOfServers,	is	a	comma-separated	list	of
URLs	that	Ribbon	should	use	to	distribute	the	requests	among.	And	in	this
case,	we've	set	the	different	URLs	to	two	different	addresses,	one	running
on	port	9000	and	the	other	running	on	port	9001.

restTemplate.getForEntity("http://someservice/",...)

Once	you	have	everything	configured,	you	can	use	the	RestTemplate	just
like	you	did	with	service	discovery.	Except	this	time	instead	of	calling	the
service	name,	you	use	the	value	of	the	name	element	that	you	set	up	in	the
@RibbonClient	annotation.

Demo:	Load	Balancing	Using	Ribbon	Without	Service
Discovery

In	this	demo,	we'll	learn	how	to	utilize	the	Ribbon	client	without	service
discovery.	Now,	we're	going	to	build	on	the	previous	demo	that	we	did
utilizing	service	discovery	as	each	of	the	demos	share	a	lot	in	common.	The
first	thing	we'll	do	is	expand	the	ribbon-time-service	and	open	up	the	main
application	class.	In	the	main	application	class,	remove	the
@EnableDiscoveryClient	annotation.

package	io.ajay.kumar.ribbontimeservice;
import	java.util.Date;
import	org.springframework.beans.factory.annotation.Value;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.GetMapping;
import	org.springframework.web.bind.annotation.RestController;
@RestController
@SpringBootApplication
public	class	RibbonTimeServiceApplication	{
								@Value("${server.port}")
								private	int	port;
								public	static	void	main(String[]	args)	{
																SpringApplication.run(RibbonTimeServiceApplication.class,
args);
								}
								@GetMapping
								public	String	getTime()	{
																return	"The	current	time	is	"+	new	Date().toString()
																																+"(answered	by	service	running	on	"+port+")";
								}
}

Go	ahead	and	close	that,	and	open	up	the	src/main/resources
application.properties,	and	delete	the	property	that	sets	the	location	of	the
Service	Discovery	Server.

application.properties
spring.application.name=time-service

Once	you've	got	the	property	deleted,	go	ahead	and	close	that.	And	we're
now	ready	to	start	up	the	ribbon-time-service	without	service	discovery.	If
you	come	up	to	the	green	Play	button	and	click	the	little	drop-down	caret,
you'll	see	that	we	have	all	of	our	run	configurations	that	we've	use	in	the
past.	So	we'll	want	to	use	each	of	these	ribbon-time-services	to	start	each	of
the	instances.	So	we'll	start	ribbon-time-service-1,	and	then	we'll	start
ribbon-time-service-2.	Just	to	make	sure	that	our	ribbon-time-service
instances	started	up	correctly,	let's	do	a	quick	sanity	check.	So	visit
localhost:4444,	and	it's	running	there.	And	then	open	up	a	New	Tab	and
visit	localhost:5555,	and	it's	running	there.	So	everything	with	our	ribbon-
time-service	is	good	to	go.	Next,	we'll	minimize	the	ribbon-time-service
project	and	open	up	the	ribbon-time-app.	And	once	you've	opened	it,
navigate	to	the	main	application	class.

@RestController
@RibbonClient(name="time-service")
@SpringBootApplication
public	class	RibbonTimeAppApplication	{
								@Inject
								private	RestTemplate	restTemplate;
								public	static	void	main(String[]	args)	{
																SpringApplication.run(RibbonTimeAppApplication.class,	args);
								}
								@GetMapping
								public	String	getTime()	{

																return	restTemplate.getForEntity("http://time-service",
String.class).getBody();
								}
								@Bean
								@LoadBalanced
								public	RestTemplate	restTemplate()	{
																return	new	RestTemplate();
								}
}

And	just	like	we	did	with	the	ribbon-time-service,	we'll	want	to	delete	this
@EnableDiscoveryClient.	Now	we're	going	to	add	a	new	annotation,	the
@RibbonClient	annotation,	and	we're	going	to	set	the	name	element	to	the
time-service	string.	And	this	is	the	same	time-service	that	we	used	when	we
were	using	service	discovery,	and	we'll	use	it	in	pretty	much	the	same
fashion.	We'll	refer	to	it	in	the	RestTemplate	URL	as	a	logical	service
identifier,	and	then	configure	what	those	particular	instances	are	that
represent	that	service	within	configuration.	Let's	go	ahead	and	close	this
and	open	up	our	src/main/resources	and	our	application.properties.

application.properties
time-service.ribbon.eureka.enabled=false
time-service.ribbon.listOfServers=http://host:4444,	http://host:5555

In	our	application.properties,	we'll	prefix	all	of	the	properties	that	we're
setting	up	to	configure	our	Ribbon	client	with	the	name	of	the	Ribbon	client.
In	our	case,	we	use	time-service.	So	we'll	say	time-service-ribbon-eureka-
enabled=false.	And	this	is	the	property	that'll	tell	Ribbon	not	to	use	service
discovery.	So	we	have	one	more	property	to	set,	so	we'll	say	time-
service.ribbon.listOfServers.	And	we'll	set	this	to	a	comma-separated	list	of
the	location	of	all	of	the	instances	of	our	time-service.	So	we	have
http://localhost:4444,	and	then	we	have	that	exact	same	one	except	for	it's
all	5s.	And	that's	all	the	configuration	we	need	to	get	set	up,	so	we	can	go
ahead	and	close	this.	And	we	can	go	over	to	our	main	application	class,

right-click	on	it,	go	to	Run	As,	and	choose	Spring	Boot	App.	Next,	go	ahead
and	fire	up	a	browser	and	visit	localhost:8080.

And	you	can	see	that	we	got	a	response	from	the	service	running	on	the	port
with	all	4s.	And	if	we	refresh	that,	we'll	see	that	we	get	a	response	from	the
one	on	all	5s.

And	we	can	continue	to	refresh	that	and	see	that	it	round-robins	between
each	of	the	instances	of	the	time-service.

Customizing	Your	RibbonClient	Configuration:
Introduction

In	this	last	section,	we'll	learn	how	to	customize	an	individual	Ribbon	client
using	declarative	configuration.	And	what	this	will	allow	us	to	do	is	define
custom	configuration	that	applies	to	a	specific	Ribbon	client	instead	of	to	all
Ribbon	clients.	And	what	that	buys	us	is	it	allows	us	to	define	different
client-side	load	balancing	behavior	for	different	services.

@Configuration
@RibbonClient(
name="otherservice",
configuration=OtherServiceConfig.class)
public	class	MyConfiguration{
...
}

	In	your	@Configuration	class,	define	the	@RibbonClient	annotation	and
set	the	name	element	just	like	we	did	when	we	configured	the	previous
Ribbon	client.	This	time	though,	you'll	define	an	additional	configuration
element,	and	you'll	set	that	to	another	@Configuration	class.

package	io.ajay.config.kumar;
//Different	package	so	it	is	not	picked	up	by	@ComponentScan
@Configuration
public	class	OtherServiceConfig	{
}

This	additional	@Configuration	class	will	contain	all	of	the	custom
configuration	for	a	specific	Ribbon	client.	And	that	configuration	is	defined
by	methods	that	are	annotated	with	the	@Bean	annotation.	So	this

configuration	is	just	like	any	other	@Configuration	class.	There's	nothing
special	about	it.	You	would	just	configure	your	@Beans	just	like	you	do
normally.	But	since	this	configuration	only	pertains	to	a	specific	Ribbon
client,	it	shouldn't	be	subject	to	any	sort	of	component	scanning.	If	it	were,
the	configuration	that	was	defined	in	that	@Configuration	class	would	end
up	applying	to	all	Ribbon	clients	instead	of	just	a	specific	Ribbon	client.

@Configuration
public	class	OtherServiceConfig	{

@Bean
public	<bean_type>	<method_name>(){...}

}
Default	Ribbon	Client	@Beans
Replace	<bean_type>	and	<method_name>	with	values	to	override:
http://cloud.spring.io/spring-cloud-
static/Camden.SR6/#_customizing_the_ribbon_client
Most	likely	to	be	customized:	IRule	&	IPing

There	are	a	number	of	different	classes	that	are	needed	to	set	up	a	Ribbon
client,	and	by	default	Spring	Cloud	defines	those	as	@Beans	and	then	allows
you	to	override	any	of	them	for	custom	configuration.	Let's	take	a	look	at
the	Spring	Cloud	documentation	to	see	what	@Beans	you	can	override.
I've	loaded	up	the	Spring	Cloud	documentation,	and	we're	looking	at	a
number	of	different	beans	that	are	required	to	set	up	a	Ribbon	client.	And
for	the	most	part,	you	typically	won't	need	to	override	any	of	these	with	the
exception	of	two	of	the	beans.	That's	the	IRule	bean	and	the	IPing	bean.
The	IRule	bean	controls	the	load	balancing	algorithm,	and	the	IPing	bean
controls	the	availability	checks	on	the	instances	that	are	being	load
balanced.	Let's	take	a	look	at	each	of	these	beans	in	a	bit	more	detail.

https://www.google.com/url?q=http://cloud.spring.io/spring-cloud-static/Camden.SR6/%23_customizing_the_ribbon_client&sa=D&ust=1546021897455000

Customizing	Your	RibbonClient	Configuration:	The
IRule	Bean

As	I	mentioned,	the	IRule	bean	is	used	to	control	the	load	balancing
strategy	that's	used	to	balance	the	distribution	of	workload	between	the
instances	that	are	being	load	balanced.	You	can	choose	to	create	your	own
custom	IRule	implementation,	or	you	can	choose	from	one	of	the	several
different	defaults.	Let's	talk	about	a	few	of	our	available	options.

●	IRuleImplementations

○	RoundRobinRule

○	ResponseTimeWeightedRule

○	RandomRule

○	ZoneAvoidanceRule

There's	the	RoundRobinRule	implementation,	which	is	just	like	it	sounds,
an	implementation	of	the	round-robin	balancing	algorithm,	which
distributes	the	workload	evenly	among	all	instances.	There's	the
ResponseTimeWeightedRule	implementation,	which	is	also	a	round-robin
algorithm,	but	it	dynamically	assigns	weights	based	on	the	average	response
time	from	each	of	the	instances.	There's	the	RandomRule	implementation,
which	simply	picks	an	instance	to	send	traffic	to	at	random.	And	there's	the
ZoneAvoidanceRule,	which	is	also	a	round-robin	algorithm	implementation;

however,	it	filters	out	servers	to	send	traffic	to	based	on	the	AWS	zone	and
availability.	Let's	look	at	an	example	to	make	this	a	bit	more	concrete.

@Configuration
public	class	OtherServiceConfig{
				@Bean
				public	IRule	ribbonRule(){
				return	new	RoundRobinRule();
}
}

If,	for	instance,	we	wanted	to	override	the	default	IRule	to	use	the
RoundRobinRule	implementation,	we'd	define	a	new	method	annotated
with	the	@Bean	annotation,	and	we'd	return	a	new	RoundRobinRule.

Customizing	Your	RibbonClient	Configuration:	The
IPing	Bean

The	IPing	bean	is	responsible	for	choosing	the	strategy	to	check	the
liveliness	or	the	availability	of	a	given	instance	that's	being	load	balanced.
Just	like	the	IRule	bean,	you	can	also	implement	your	own	custom	IPing
implementations,	or	you	can	choose	from	one	of	the	several	different
defaults.	Let's	take	a	look	at	what's	available.

●	IPingImplementations

○	DummyPing

○	PingUrl

○	NIWSDiscoveryPing

There's	the	DummyPing	implementation,	which	is	just	as	dumb	as	it
sounds.	It's	simply	always	returning	true	when	it's	asked	about	the
liveliness	of	a	service.	You'd	use	this	if	you	simply	don't	care	to	check	the
liveliness	or	the	availability	and	you	always	want	to	send	traffic	to	all	of	the
instances	regardless.	There's	the	PingUrl	implementation,	which	is	an
implementation	that	allows	you	to	set	an	expected	response	and	then	makes
an	actual	HTTP	call	to	the	service	and	checks	the	result.	So	you'd	typically
point	this	at	something	like	the	service's	health	check	URL.	And	then
there's	the	DiscoveryPing	implementation,	which	would	be	something	that
would	be	automatically	configured	for	you	if	you	were	using	something	like
Eureka	service	discovery.	And	what	this	would	do	is	it	would	just	consult

with	the	discovery	client	to	determine	the	liveliness	of	any	particular
instance.	Again,	let's	look	at	an	example	to	make	this	a	bit	more	concrete.

IPing:	Liveliness	Check
@Configuration
public	class	OtherServiceConfig{
				@Bean
				public	IPing	ribbonPing(){
				PingUrl	pingUrl=new	PingUrl();
				pingUrl.setExpectedContent("true");
				return	pingUrl;
}
}

So	just	like	we	did	with	the	IRule	implementation,	you	would	define	a	new
method	annotated	with	the	@Bean	annotation,	and	then	you	return	the
implementation	of	your	choice.	So	in	this	case,	we're	going	to	return	a
PingUrl.	So	we	create	a	new	instance	of	the	PingUrl,	we	set	the	expected
content	to	true,	and	then	return	that	instance.

Demo:	Customizing	the	RibbonClient	Load	Balancing
Strategy

In	this	demo,	we'll	learn	how	to	customize	our	Ribbon	client	that	we're
using	to	call	the	ribbon-time-service.	And	again,	we're	going	to	be	building
on	the	previous	demo.	So	make	sure	that	you've	completed	the	demo	where
you	set	up	a	Ribbon	client	without	using	service	discovery.	The	first	thing
we'll	do	is	we'll	come	up	here	to	the	green	Play	button	and	start	each	of	the
instances	of	the	ribbon-time-service.	Both	of	the	ribbon-time-service
instances	are	started.	Now	remember,	in	order	to	create	custom
configuration	for	a	Ribbon	client,	we	need	to	create	our	own
@Configuration	class.	Let's	open	the	ribbon-time-app	project	and	create	a
new	package.	So	right-click,	New,	and	come	here	to	Package.	And	we're
actually	going	to	rename	this	from	io.ajay.kumar	to	io.ajay.config.kumar.
Remember	that	we	want	to	have	a	different	package	name	so	that	the
@Configuration	class	isn't	subject	to	component	scanning;	otherwise,	it
would	apply	to	all	of	our	Ribbon	clients.	In	the	new	package,	right-click	and
go	to	New	and	choose	Class.	And	we'll	call	this	our	RibbonTimeConfig
class.	Go	ahead	and	click	Finish.

package	io.ajay.config.kumar;
import	org.springframework.context.annotation.Bean;
import	org.springframework.context.annotation.Configuration;
import	com.netflix.loadbalancer.IRule;
import	com.netflix.loadbalancer.RandomRule;
@Configuration
public	class	RibbonTimeConfig	{
@Bean
public	IRule	ribbonRule()	{
	return	new	RandomRule();
}
}

Then	we're	going	to	annotate	this	class,	of	course,	with	@Configuration.
And	then	for	this	demo,	we're	going	to	customize	the	load	balancing
strategy.	So	we'll	come	down	here	and	we'll	define	a	new	IRule.	So	we'll	say
public	IRule,	and	we'll	call	this	ribbonRule.	And	then	in	the	body	of	the
method,	we'll	say	return	new	RandomRule.	And	what	this	will	do	is	it'll
pick	a	random	instance	to	send	traffic	to	as	opposed	to	what	we	were	using
before	where	we	were	evenly	balancing	between	each	of	the	instances.	And
last,	make	sure	that	we	don't	forget	to	add	the	@Bean	annotation	to	our
method.	We're	done	with	our	custom	configuration,	so	we	can	go	ahead	and
close	that.	And	then	we	can	open	up	the	main	RibbonTimeApplication.

@RestController
@RibbonClient(name	=	"time-service",
configuration=RibbonTimeConfig.class)
@SpringBootApplication
public	class	RibbonTimeAppApplication	{
@Inject
private	RestTemplate	restTemplate;
public	static	void	main(String[]	args)	{
	SpringApplication.run(RibbonTimeAppApplication.class,	args);
}
@GetMapping
public	String	getTime()	{
	return	restTemplate.getForEntity("http://time-service",
String.class).getBody();
}
@Bean
@LoadBalanced
public	RestTemplate	restTemplate()	{
	return	new	RestTemplate();
}
}

And	on	the	RibbonClient	annotation,	add	a	new	configuration	element,	and
set	it	to	the	custom	configuration	class	that	we	set	up,	the
RibbonTimeConfig	class.	We're	now	ready	to	start	up	our	application	and
try	out	our	custom	configuration.	So	go	ahead	and	close	this	and	right-click
on	the	main	application	class,	go	to	Run	As,	and	choose	Spring	Boot	App.
Go	ahead	and	fire	up	a	browser	and	visit	localhost:8080.

And,	as	you	can	see,	we	got	a	response	from	the	instance	running	with	the
port	that's	all	5s.	And	if	we	refresh	that,	we'll	see	that	we	get	an	instance
with	all	4s.

But	if	we	continue	to	refresh	it,	we'll	see	that	it	doesn't	evenly	balance
between	each	of	the	instances	like	it	did	before	and	instead	picks	them	at	a
random	interval.

Summary

We're	at	the	end	of	this	module,	so	let's	quickly	go	over	what	we	learned.

●	Differences	between	client-side	&	server-side	load	balancing

●	Netflix	Ribbon

○	@LoadBalanced	&	@RibbonClient

■	With	&	without	service	discovery

●	Custom	Ribbon	client	configuration

We	first	talked	about	what	is	load	balancing	and	what	are	the	differences
between	client-side	load	balancing	and	server-side	load	balancing.	Then	we
introduced	the	Netflix	Ribbon	project	and	learned	how	to	use	the
@LoadBalanced	and	the	@RibbonClient	annotations	to	set	up	client-side
load	balancing	with	and	without	service	discovery.	In	the	last	section,	we
saw	how	we	could	use	the	@RibbonClient	annotation	with	a	separate
@Configuration	class	to	set	up	custom	configuration	for	a	specific	Ribbon
client.

Module	7:	Creating	Self-healing	Services	with
Circuit	Breaker

Introduction

In	this	module	we'll	learn	how	to	develop	services	in	a	cloud-native
architecture	that	are	both	fault	tolerant	and	self-healing.

➢	Failures	in	a	distributed	system
○	Cascading	failures
○	Circuit	breaker	pattern

➢	Netflix	Hystrix	project
○	@EnableCircuitBreaker
○	@HystrixCommand

➢	Hystrix	Dashboard
○	@EnableHystrixDashboard
○	Turbine	to	aggregate	Hystrix	streams

■	@EnableTurbine

We'll	begin	the	module	with	a	short	section	on	failures	in	a	cloud-native	or
distributed	system.	We'll	look	at	why	failures	are	more	prevalent	and
understand	a	common	side	effect	called	cascading	failures.	Then	we'll
introduce	and	understand	the	Circuit	Breaker	pattern	and	learn	how	it	can
help	us	build	more	fault-tolerant	services.	Next,	we'll	dive	into	Netflix
Hystrix,	which	is	a	fault-tolerance	library	that,	among	other	things,
implements	the	Circuit	Breaker	pattern.	We'll	see	how	Spring	Cloud	makes
it	easy	to	get	started	with	the	@EnableCircuitBreaker	annotation,	and	then
we'll	understand	how	to	use	the	@HystrixCommand	annotation	to
implement	the	Circuit	Breaker	pattern	in	our	own	services.	We'll	finish	the
module	out	by	looking	at	one	of	the	really	nice	features	of	Hystrix	called	the

Hystrix	Dashboard.	We'll	see	how	to	enable	it,	how	metrics	are	collected,
how	to	interpret	those	results,	and	how	to	aggregate	those	results	using
another	project	from	Netflix	called	Turbine.

Cascading	Failures	and	Resource	Overloading

In	a	distributed	system,	if	there's	anything	that	we	can	be	100%	sure	about,
that's	that	failure	is	inevitable.	But	why	though?	Well,	failure	can	happen	at
many	different	levels	in	a	system.

➢	A	Few	Areas	That	Might	Fail
○	Hardware	fails
○	Networks	fail
○	Software	fails

Hardware	can	fail,	networks	can	fail,	and	software	can	definitely	fail.	And	a
distributed	system	is	no	different	in	that	sense,	but	the	likelihood	for	failure
is	just	simply	much	greater.	You	have	more	hardware,	you	have	more
network,	and	you	have	more	software.	And	with	these	increased	numbers
comes	that	increased	probability	for	failure.	Adding	to	that	chance	of	failure
is	the	way	in	which	processes	communicate	in	a	distributed	system.	Process
communication	that	was	once	within	a	process	is	now	done	across	a
network.	And	even	as	resilient	as	our	networks	are	today,	there's	still	a
much	more	likely	chance	of	a	communication	failure	across	a	network
versus	within	a	process.	A	particularly	bad	side	effect	of	failures	in	a
distributed	system	is	something	called	a	cascading	failure.	A	cascading
failure	is	a	failure	in	a	system	in	which	a	failure	in	one	system	can	cascade,
almost	like	dominos,	to	other	parts	of	the	system	causing	them	to	fail	as
well.	To	make	this	a	bit	more	concrete,	imagine	that	you	have	three	services,
Service	A,	Service	B,	and	Service	C.	Service	A	calls	Service	B,	and	Service	B
calls	Service	C.	And	imagine	that	Service	C	runs	out	of	memory	and	is	very
slow	to	serve	requests	to	Service	B.	And	even	though	Service	B	may	have	a
timeout	set	up	for	calling	Service	C,	if	enough	requests	stack	up	against
Service	B,	which	require	the	use	of	Service	C	at	a	fast	enough	rate,
resources	at	Service	B	will	be	entirely	consumed	before	that	timeout	is	ever
reached,	which	in	turn	will	cause	Service	B	to	fail.	This	same	problem	can
happen	all	the	way	up	the	chain.

➢	Multiple	issues	at	play
○	Fault	tolerance	problem
○	Resource	overloading	problem

There	are	multiple	issues	at	play	here.	First,	we	have	a	fault	tolerance
problem.	Calling	services	are	unaware	that	the	service	that	they're	calling	is
likely	to	fail	and	yet	they	still	attempt	to	call	the	service.	And	second,	we
have	a	resource	overloading	problem.	Calling	services	are	allowed	to	invoke
dependent	services	with	pretty	much	unconstrained	resources.

Embracing	Failure	with	the	Circuit	Breaker	Pattern

➢	Learn	to	embrace	failure
○	Tolerate	failures
○	Gracefully	degrade

➢	Limit	resources	consumed
○	Constrain	usage

So	how	do	we	solve	this	problem	of	cascading	failures	and	failures	in
general	in	a	distributed	system?	Well,	we	have	to	learn	to	embrace	and
tolerate	failures	and	degrade	gracefully	when	we	do.	So	in	the	event	that	a
downstream	dependent	service	is	failing,	it's	actually	better	for	the	caller
not	to	attempt	to	make	a	call	to	the	dependent	service,	which	is	likely	to	fail.
And	instead,	the	caller	should	fail	fast	or	degrade	gracefully,	perhaps	by
returning	old	data	or	empty	results,	and	allow	the	failing	service	to	recover.
And	then	periodically	check	if	the	service	has	recovered.	And,	in	turn,	what
this	does	is	it	relieves	pressure	from	any	upstream	services	that	are	waiting
for	a	response.	And	the	other	thing	that	we	need	to	do	is	we	need	to	limit	the
resources	that	are	consumed.	So	clients	should	put	limits	on	the	number	of
resources	allowed	to	call	a	dependent	service.	And	what	this	does	is	it
prevents	those	requests	from	stacking	up	unconstrained,	which	could	cause
the	client	to	fail	itself.	The	first	strategy	for	fault	tolerance	is	actually	a	well-
known	pattern,	so	much	so	that	it	has	its	own	name.	And	it's	called	the
Circuit	Breaker	pattern.	And	the	Circuit	Breaker	pattern	is	a	design
pattern	in	modern	software	used	to	detect	failures	and	encapsulate	the	logic
of	preventing	those	failures	from	reoccurring	constantly.	The	name	Circuit
Breaker	comes	from	the	idea	that	the	pattern	shares	a	lot	of	similarities	with
how	a	real	circuit	breaker	works.	And	you	may	or	may	not	be	familiar	with
what	a	circuit	breaker	is,	so	let	me	quickly	explain.	A	circuit	breaker	is	a
switch	that	prevents	too	much	current	from	flowing	through	a	circuit.	And
if	too	much	current	flows	through	a	circuit,	it	could	cause	damage	or	even
start	things	on	fire.	And	what	the	circuit	breaker	does	is	it	prevents	that	by

opening	the	circuit	when	it	detects	that	there's	too	much	current	flowing
through	it.	And	you	most	likely	have	something	like	this	in	your	residence	to
prevent	your	circuits	from	becoming	overloaded.	And,	if	you	notice,	all	of
the	switches	are	flipped	down,	and	thus	all	of	the	circuits	are	closed.
Suppose	you	accidently	overload	the	rightmost	circuit	by	plugging	in	a
device	that	consumes	a	lot	of	power.	And	the	circuit	breaker	would	detect
this	and	break	the	circuit,	or	open	it,	and	prevent	any	additional	current
from	flowing	through	it.	And	you	can	see	switch	is	flipped	up	indicating	that
the	circuit	has	been	broken	and	there	is	no	more	current	flowing	through	it.
By	now,	I'm	sure	you	can	see	the	common	theme	between	a	real	circuit
breaker	and	the	Circuit	Breaker	pattern.	Both	are	meant	to	detect	and
prevent	failures	that	might	damage	other	components.

Fault	Tolerance	with	Netflix	Hystrix	and	Spring
Cloud

Spring	Cloud	implements	fault	tolerance	with	the	help	of	a	library	from
Netflix	called	Netflix	Hystrix.	Hystrix	is	a	latency	and	fault-tolerance
library,	and	it	was	designed	to	stop	cascading	failures	and	enable	resiliency
in	distributed	systems.

➢	Implements	the	circuit	breaker	pattern
○	Wraps	calls	and	watches	for	failures

■	10	sec	rolling	window
■	20	request	volume
■	>=	50%	error	rate

○	Waits	&	tries	a	single	request	after	5	sec
○	Fallbacks

➢	Protects	services	from	being	overloaded
○	Thread	pools,	semaphores,	&	cascading	failures

It's	a	concrete	implementation	of	the	Circuit	Breaker	pattern,	and	it	allows
you	to	easily	wrap	calls	and	automatically	watches	them	for	failures	that
meet	a	certain	volume	and	air-percentage	threshold	within	a	given	rolling
window.	The	default	for	the	rolling	window	is	10	seconds,	and	the	request
volume	must	be	at	least	20	requests.	And	if	50%	or	more	of	the	requests	are
errors,	then	the	circuit	will	be	tripped	and	no	requests	will	be	allowed
through.	So	if	for	instance	you	had	a	thousand	requests	in	a	10	second
window,	if	500	of	them	were	errors,	then	the	circuit	would	be	tripped.
Hystrix	will	periodically	recheck	if	the	circuit	should	be	closed,	and	it	does
that	by	allowing	a	single	request	through	every	5	seconds.	That's	the
default.	And	if	that	request	succeeds,	then	it	will	close	the	circuit,	and	if	it
fails,	then	it	will	remain	open.	Any	requests	that	are	short-circuited	or
timed-out	or	rejected	or	failed	will	be	given	a	chance	to	execute	what's
called	a	fallback	method.	And,	as	I	mentioned	before,	a	fallback	might	be

something	like	returning	cache	data,	a	default	value,	or	just	something	like
an	empty	response.	In	addition	to	the	Circuit	Breaker	pattern,	Hystrix	also
has	additional	functionality	that	protects	services	from	being	overloaded.
All	Hystrix	wrap	calls	are	bounded	either	by	a	thread	pool	or	a	semaphore.
And	what	this	does	is	it	constrains	the	resource	usage,	like	we	talked	about
earlier,	so	that	requests	don't	stack	up	and	consume	all	of	the	valuable
resources.	And	in	the	event	that	all	of	the	available	resources	are	consumed,
any	new	requests	will	fail	immediately	and	execute	the	fallback	method,	if
one	is	available.

Using	Spring	Cloud	and	Netflix	Hystrix

Using	Spring	Cloud	and	Netflix	Hystrix	is	extremely	easy.	And	before	we
dive	in,	just	a	quick	note.	I'll	explain	all	the	steps	necessary	to	get	going	and
then	walk	you	through	a	demo	at	the	end	where	you	can	kind	of	follow
along.	I'll	follow	that	pattern	throughout	the	remainder	of	this	module,	so
just	keep	that	in	mind.

pom.xml
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type>
<scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement>

Just	like	you	use	all	of	the	other	Spring	Cloud	projects,	you	start	by
including	a	dependency	in	the	dependencyManagement	section	of	your
pom.xml	on	spring-cloud-dependencies.	And,	as	always,	make	sure	that	it's
of	type	pom	and	has	a	scope	of	import.

<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>
<dependency>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-actuator</artifactId>

</dependency>

Then,	still	within	your	pom.xml,	within	the	dependency	section,	define	a
new	dependency	on	spring-cloud-starter-hystrix.	And	if	you'd	like	to	be	able
to	consume	metrics	for	your	Hystrix	calls,	you'll	also	need	to	include	a
dependency	on	the	spring-boot-actuator.

@SpringBootApplication
@EnableCircuitBreaker
public	class	Application{
				public	static	void	main(String[]args){
								SpringApplication.run(Application.class,args);
				}
}

In	your	main	Application	class,	you	define	a	new	annotation,	and	that's	the
@EnableCircuitBreaker	annotation.

@Service
public	class	Service{

@HystrixCommand(fallbackMethod="somethingElse")
public	void	doSomething(){

…
}
public	void	somethingElse(){

…
}

}

And	then	in	either	your	@Component	or	your	@Service	class,	locate	the
method	that	you	want	to	wrap	with	Hystrix,	in	our	case	this	will	be	a
method	called	doSomething,	and	annotate	that	method	with	the
@HystrixCommand.	Then,	on	the	@HystrixCommand	annotation,	define	a

new	attribute	called	fallbackMethod,	and	set	that	to	the	name	of	the	method
that	you	want	to	fall	back	to	in	the	event	of	a	failure.	In	terms	of	code,	that's
all	there	is	to	it.

➢	Be	careful	with	Hystrix	timeouts
○	Ensure	timeouts	encompass	caller	timeouts	plus	any	retries
○	Default:	1000ms
○
hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds=
<timeout_ms>

But	there's	a	gotcha	that	you	have	to	look	out	for,	and	that's	around	the
Hystrix	timeout.	And	you	need	to	make	sure	that	your	Hystrix	timeouts
encompass	the	caller	timeouts	plus	any	of	the	retries	and	then	a	little	bit	of	a
buffer.	And	the	default	timeout	is	set	to	1000ms	or	a	second,	and	if	you	need
to	change	it,	you	can	use	this	big,	long	property	to	set	the	timeout	in
milliseconds.

Demo:	Implementing	Fault	Tolerance	with	Netflix
Hystrix

In	this	demo,	we'll	build	a	simple	weather	service	that	returns	a	random
weather	condition,	and	then	we'll	use	that	in	another	app	called	the	weather
app	that	consumes	that	service.	And	in	the	weather	app	we'll	protect	our
call	to	the	weather	service	with	Hystrix	and	implement	a	fallback	for	when
the	weather	service	is	down	or	not	responding.	We'll	be	using	service
discovery	to	locate	the	weather	service	from	our	weather	app,	so	make	sure
that	you	have	the	Service	Discovery	Server	set	up	within	your	IDE.	And	if
you've	been	following	along	throughout	the	course,	you	should	already	have
this	set	up.	Go	ahead	and	open	up	a	browser	and	head	over	to
start.spring.io.	In	the	Group	section,	change	the	group	to	io.ajay.kumar,	and
then	for	the	name	of	the	artifact,	name	it	weather-service.	In	the
Dependencies	section,	add	the	Web	dependency	and	the	Eureka	Discovery
dependency.

	Once	you	have	everything	filled	out,	go	ahead	and	click	the	Generate
Project	button,	and	it'll	create	and	download	a	zip	file	for	you.	We're	also
going	to	use	this	page	to	generate	the	weather	app	project,	so	still	on	this
page	change	the	name	of	the	artifact	from	weather-service	to	weather-app.
Then	in	the	Dependencies	section,	add	the	Hystrix	dependency	and	the
Actuator	dependency.

Again,	once	you	have	everything	filled	out,	go	ahead	and	click	the	Generate
Project	button,	and	it'll	create	and	download	that	zip	file	for	you.	Go	ahead
and	unzip	both	of	those	zip	files	and	head	back	to	your	IDE.	Back	within
your	IDE,	right-click	on	the	empty	space	and	choose	Import,	choose
Existing	Maven	Projects,	click	Next,	browse	to	the	location	of	your
downloaded	zip	file,	and	click	Finish.	Once	you	have	the	weather	service
imported,	repeat	the	same	process	for	the	weather	app.	I	have	both	projects
imported	into	the	IDE.

We'll	start	by	developing	the	weather	service	first,	so	go	ahead	and	expand
the	weather-service	and	navigate	to	the	main	application	class.

package	io.ajay.kumar.weatherservice;
import	java.util.concurrent.ThreadLocalRandom;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.web.bind.annotation.GetMapping;
import	org.springframework.web.bind.annotation.RestController;
@SpringBootApplication
@RestController
@EnableDiscoveryClient
public	class	WeatherServiceApplication	{
								private	String[]	weather	=	new	String[]	{	"sunny",	"cloudy",	"rainy",
"windy"	};
								public	static	void	main(String[]	args)	{
																SpringApplication.run(WeatherServiceApplication.class,	args);
								}
								@GetMapping("/weather")
								public	String	getWeather()	{
																int	rand	=	ThreadLocalRandom.current().nextInt(0,	4);
																return	weather[rand];
								}

}

In	the	main	application	class,	define	two	new	annotations,	the
@RestController	annotation	and	the	@EnableDiscoveryClient	annotation.
Then,	at	the	top	of	the	class,	define	a	new	string	array,	so	private	String
array.	Go	ahead	and	call	it	weather,	and	then	we're	going	to	set	that	to	four
different	values.	We're	going	to	say	sunny,	cloudy,	rainy,	and	windy.	Next,
we'll	go	ahead	and	define	a	getWeather	method.	So	come	to	the	bottom	here
and	type	public	String	getWeather.	And	this	will	be	our	handler	method,	so
let's	go	ahead	and	annotate	this	with	@GetMapping.	And	we'll	set	the	URL
to	/weather.	In	the	body	of	the	method,	we'll	choose	a	random	number
before	0	and	4	exclusive,	and	then	we'll	use	that	to	pick	a	random	weather
value.	So	we'll	say	int	rand	=	ThreadLocalRandom.current.nextInt	and	give
that	a	bound	from	0	to	4.	And	then	next,	we'll	return	weather	of	rand	to
pick	a	random	weather	value.	And	that's	all	we	have	for	the	coding	part	of
our	weather	service.	Next,	we	have	a	little	bit	of	configuration	to	do.	So	go
ahead	and	navigate	to	the	src/main/resources	and	open	up	the
application.properties.

	application.properties
server.port=9000
spring.application.name=weather-service
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

	In	the	application.properties,	first	we're	going	to	set	the	server.port,	and
we're	going	to	set	that	to	9000.	And	then	we're	going	to	set	the
spring.application.name	property,	and	we're	going	to	set	that	to	weather-
service.	And	the	last	property	we're	going	to	set	is	the	location	of	the	Service
Discovery	Server.	So	set	that	long	eureka.client	property	equal	to
localhost:8761/eureka.	We're	now	finished	with	the	weather	service,	so	let's
quickly	start	it	up	and	make	sure	that	everything	works.	So	go	ahead	and
close	both	of	those	files	and	open	up	the	discovery-server.	Navigate	to	that
main	application	class,	right-click	on	it,	go	to	Run	As,	choose	Spring	Boot
App.	Once	the	Service	Discovery	Server	is	started,	navigate	to	the	main

application	class	of	the	weather-service,	right-click	on	it,	Run	As,	Spring
Boot	App.	Next,	open	up	a	web	browser	and	visit	localhost:9000/weather.

And	just	make	sure	that	you	get	a	response	here.	You	can	refresh	it	a	few
times	to	see	that	you	get	various	responses.	And	now	that	we	have	our
weather	service	working,	let's	head	back	to	the	IDE	and	utilize	it	within	our
weather	app.

Back	within	your	IDE,	expand	the	weather-app	and	navigate	to	the	main
application	class.	Within	the	main	application	class,	we're	going	to	define
three	new	annotations.

package	io.ajay.kumar.weatherapp;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;

import
org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;
import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import	org.springframework.cloud.client.loadbalancer.LoadBalanced;
import	org.springframework.context.annotation.Bean;
import	org.springframework.web.bind.annotation.RestController;
import	org.springframework.web.client.RestTemplate;
@SpringBootApplication
@EnableCircuitBreaker
@EnableDiscoveryClient
@RestController
public	class	WeatherAppApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(WeatherAppApplication.class,	args);
								}
								@Bean
								@LoadBalanced
								public	RestTemplate	restTemplate()	{
																return	new	RestTemplate();
								}
}

The	first	one	is	the	@EnableCircuitBreaker	annotation,	the	next	one	is	the
@EnableDiscoveryClient	annotation,	and	the	last	one	is	the
@RestController	annotation.	Next,	we'll	define	a	RestTemplate	so	that	we
can	call	our	weather	service,	so	come	down	here	and	say	public
RestTempate	and	call	it	restTemplate.	Annotate	it	with	the	@Bean
annotation	and	the	@LoadBalanced	annotation.	And	then,	in	the	body	of
the	method,	return	a	new	RestTemplate.	Now	remember	a	Hystrix
command	can	only	be	defined	in	an	@Component	or	an	@Service	class,	so
let's	go	up	here	and	create	a	new	class.	So	right-click,	go	to	New,	choose
Class,	and	we'll	call	this	the	WeatherService.

package	io.ajay.kumar.weatherapp;
import	javax.inject.Inject;

import	org.springframework.stereotype.Service;
import	org.springframework.web.client.RestTemplate;
import	com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
@Service
public	class	WeatherService	{
								@Inject
								private	RestTemplate	restTemplate;
								@HystrixCommand(fallbackMethod	=	"unknown")
								public	String	getWeather()	{
																return	restTemplate.getForEntity("http://weather-
service/weather",
																																String.class)
																																.getBody();
								}
								public	String	unknown()	{
																return	"unknown";
								}
}

At	the	top	of	the	class,	go	ahead	and	annotate	it	with	@Service.	And	then
next	we'll	need	our	RestTemplate,	so	private	RestTemplate	restTemplate.
And	make	sure	that	we	@Inject	that.	And	next,	we're	going	to	need	a
method	to	call	our	weather	service,	so	come	below	this	and	type	public
String	getWeather.	Then,	in	the	body	of	the	method,	we'll	return
restTemplate.getForEntity.	And	the	URL	we'll	use	is	http://weather-
service/weather.	And	then	the	response	type	will	be	a	string,	so	we'll	say
String.class.	And	then	we'll	make	sure	we	call	a	.getBody	to	get	the	response
body.	This	is	the	method	we'll	want	to	annotate	with	our	Hystrix	command.
So	come	up	to	the	top	of	the	method	and	type	@HystrixCommand,	and
we'll	use	a	fallbackMethod	called	unknown.	And	then	we'll	want	to	make
sure	that	we	define	that	method,	so	come	below	the	getWeather	method	and
define	a	new	method,	public	String	unknown.	And	this	will	be	a	real	simple
method.	It	will	just	return	the	string	unknown.	And	just	to	be	crystal	clear,
we're	going	to	use	this	WeatherService	in	our	main	application	class	to	get
the	actual	weather.	And	if	there's	a	problem	getting	the	weather,	or	the
WeatherService	is	down,	it'll	call	that	fallbackMethod	and	just	return

unknown	for	the	weather.	Let's	head	back	to	the	main	application	class	and
use	the	WeatherService.

@SpringBootApplication
@EnableCircuitBreaker
@EnableDiscoveryClient
@RestController
public	class	WeatherAppApplication	{
								
								@Inject
								private	WeatherService	weatherService;

								public	static	void	main(String[]	args)	{
																SpringApplication.run(WeatherAppApplication.class,	args);
								}
								
								@GetMapping("/current/weather")
								public	String	getWeather()	{
																return	"The	current	weather	is	"	+	weatherService.getWeather();
								}
								
								@Bean
								@LoadBalanced
								public	RestTemplate	restTemplate()	{
																return	new	RestTemplate();
								}
}

So	back	within	the	main	application	class,	define	a	new	instance	variable,
private	WeatherService,	and	we'll	call	that	weatherService.	And	then	don't
forget	to	add	the	@Inject	annotation.	Then	we'll	add	a	new	method	called
getWeather.	So	come	below	the	main	method	here	and	do	public	String
getWeather.	And	then	we're	going	to	return	a	string	here	that	says	the
current	weather	is,	and	then	we'll	call	the	weatherService	and	get	the
weather.	And	this	is	our	handler	method,	so	we'll	need	the	@GetMapping.
So	define	an	@GetMapping	on	the	top	of	this	method,	and	then	we'll	say	the

URL	is	/current/weather.	And	that's	all	we	need	for	the	code	portion	of	our
weather	app,	so	go	ahead	and	close	both	of	these	files	and	navigate	to
src/main/resources	and	open	up	that	application.properties.

application.properties
server.port=8000
spring.application.name=weather-app
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

The	properties	for	the	weather	app	are	very	similar	to	the	ones	in	the
weather	service,	so	I've	just	copied	and	pasted	those	over	here.	And	then
we're	just	going	to	change	some	of	those	values.	So	for	the	server.port,	we'll
change	that	to	8000,	and	for	the	spring.application.name,	we'll	change	that
to	weather-app.	We're	ready	to	start	our	weather	app,	so	go	ahead	and	close
that	file	and	open	up	the	Console.	Just	go	ahead	and	double-check	that	your
discovery	server	and	your	weather	service	are	still	running,	and	then	come
over	to	the	main	WeatherAppApplication	class,	right-click	on	it,	go	to	Run
As,	and	choose	Spring	Boot	App.	Next,	open	up	a	web	browser	and	visit
localhost:8000/current/weather.

And	you	should	get	a	response	here.	And	you	can	refresh	it	a	couple	times	to
see	the	different	values.	And	next,	what	we're	going	to	do	is	we're	going	to
shut	down	the	weather	service.	And	we'll	see	that	Hystrix	takes	over	and
recognizes	that	the	weather	service	is	down	and	returns	our	fallback
method.	So	we	should	be	able	to	see	the	current	weather	is	unknown	after
we	shut	down	the	weather	service.	So	we're	back	within	the	IDE,	and	we
have	the	weather	service	pulled	up	in	the	Console.	We'll	go	ahead	and	stop
the	weather	service	and	head	back	to	the	browser.	Back	within	the	browser,
we'll	go	ahead	and	refresh	the	page,	and	we	can	see	instantly	that	the
current	weather	is	unknown.

Hystrix	has	realized	the	call	to	the	weather	service	is	failing	and	it	should
use	its	fallback	method.

Metrics	and	Insight	with	the	Hystrix	Dashboard

Netflix	Hystrix	tracks	the	execution	status	of	protected	calls	so	that	it	knows
when	to	trip	the	circuit	breaker.	And	one	of	the	advantages	of	this	is	that	we
can	use	those	metrics	to	get	insight	into	how	our	calls	are	functioning.
Reading	those	metrics	in	their	raw	form	wouldn't	be	very	easy	or	efficient.
And	that's	where	the	Hystrix	Dashboard	comes	in.	And	the	dashboard	is	a
web	application	that	helps	you	visualize	all	of	those	metrics	in	a	quick	and
easy-to-use	fashion.	The	dashboard	is	jam-packed	with	information.

➢	Tracks	metrics	such	as
○	Circuit	state
○	Error	rate
○	Traffic	volume
○	Successful	requests
○	Rejected	requests
○	Timeouts
○	Latency	percentiles

➢	Monitor	protected	calls
○	Single	server	or	cluster

It	tracks	and	displays	information	about	the	state	of	the	circuit,	whether	it's
open	or	closed,	the	error	rate	for	the	call,	the	traffic	volume	that	it's
receiving,	how	many	requests	were	successful,	rejected,	or	timed	out,	and
the	latency	percentiles	for	the	call.	And	you	can	also	use	it	to	track	a	single
server	or	a	cluster	of	servers.	To	use	it,	it's	literally	as	easy	as	declaring	a
couple	dependencies	in	your	pom.xml	and	adding	a	single	annotation.

Using	Spring	Cloud	and	the	Netflix	Hystrix
Dashboard

In	order	to	use	the	Hystrix	Dashboard,	you	first,	like	always,	declare	a	new
dependency	within	the	dependencyManagement	section	of	your	pom.xml	on
spring-cloud-dependencies.

pom.xml
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type>
<scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement

And,	as	always	again,	make	sure	that	it's	of	type	pom	and	has	a	scope	of
import.

pom.xml
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>
</dependency

Then,	still	within	your	pom.xml,	in	the	dependency	section,	define	a	new
dependency	on	spring-cloud-starter-hystrix-dashboard.	And	finally,	you	can
probably	guess	it,	add	the	@EnableHystrixDashboard	annotation.

@SpringBootApplication
@EnableHystrixDashboard
public	class	Application{

public	static	void	main(String[]args){
SpringApplication.run(Application.class,args);

}
}

And	that's	all	you	need	to	get	started	with	the	Hystrix	Dashboard.

Reading	and	Understanding	the	Hystrix	Dashboard

Before	we	get	started	with	the	demo	of	setting	up	the	Hystrix	Dashboard,
it'll	be	important	to	understand	how	to	read	the	dashboard	as	it	contains	a
lot	of	information	in	a	very	small	amount	of	space.

We'll	focus	on	the	top	half	under	the	Circuit	heading	as	the	bottom	half,	the
Thread	Pools,	is	pretty	self-explanatory.	The	dashboard	is	quite	literally
jam-packed	with	information.	And	it	can	be	a	little	daunting	when	you	see	it
at	first,	so	let's	break	it	down	by	parts.	At	the	top	right	you	have	the	name
of	the	Hystrix	call	that	is	being	protected,	and	in	this	picture	it's	the
getCurrentWeather	call.

On	the	left	side,	you	have	a	circle	that	represents	both	the	request	volume,
as	well	as	the	health	of	the	call.	And	the	larger	the	circle	gets,	the	more	the
request	volume	is,	and	the	more	red	the	circle	becomes,	the	more	unhealthy
the	call	is.	Then	on	top	of	the	circle,	the	line	is	a	depiction	of	the	request	rate
over	the	last	2	minutes.	Back	on	the	right	side,	beneath	the	name	of	the
protected	call	in	gray,	is	the	error	rate	of	the	call.	And	below	that	you	have
the	number	that	indicates	the	request	per	second	at	the	host	level,	as	well	as
at	the	cluster	level.	Continuing	downward,	still	on	the	right	side,	you	have
the	state	of	the	circuit	for	this	particular	call	and	whether	it's	open	and
rejecting	traffic	or	whether	it's	closed	and	accepting	traffic.	And	then	right
below	that	you	have	the	latency	percentiles	for	this	call.	Moving	back	to	the
top,	underneath	the	name	of	the	protected	call	are	a	bunch	of	numbers	in
columns	with	different	colors.	Let's	zoom	in	on	this	particular	area	so	we
can	explain	each	of	these	individually.	For	the	numbers,	we'll	move	column
by	column	and	row	by	row.	And,	just	in	case	you	forget,	there's	a	legend	at
the	top	of	the	Hystrix	Dashboard	that	looks	just	like	this.

Starting	at	the	first	column	in	the	first	row,	the	dark	green	number
represents	the	number	of	successful	requests.	And	right	below	that,	the	blue
number	represents	the	number	of	short-circuited	requests.	And	these	are

the	requests	that	didn't	even	attempt	to	execute	because	the	circuit	was
open.	Still	in	the	first	column,	on	the	bottom	row,	the	light	green	number
represents	the	number	of	bad	requests.	And	these	requests	are	errors,	but
they're	not	necessarily	due	to	an	execution	failure.	They're	due	to	something
like	an	illegal	argument.	Moving	on	to	the	second	column,	the	first	row,	the
orange	number	represents	the	number	of	timed	out	requests.	And	these	are
requests	where	the	execution	was	attempted,	but	a	response	was	not
received	in	the	allotted	amount	of	time.	Right	below	the	timed	out	request,
the	purple	number	represents	the	number	of	rejected	requests.	And	rejected
requests	happen	when	there	are	no	more	resources	to	serve	a	request,	either
via	the	thread	pool	or	a	semaphore.	And	remember	that	the	request	is
rejected	so	that	requests	don't	stack	up	at	the	caller	and	consume	those
valuable	resources.	And	the	last	number	in	the	second	column,	the	red	one,
is	the	number	of	failed	requests.	And	these	are	requests	that	failed	to
execute	because	they	threw	an	exception.	Now	that	we've	got	a	firm
understanding	of	how	to	read	the	Hystrix	Dashboard,	let's	set	up	and	enable
our	own	so	that	we	can	visualize	some	of	the	metrics	that	are	being	admitted
from	the	call	that	we	protected	with	Hystrix	in	our	previous	demo.

Demo:	Monitoring	Fault	Tolerance	Metrics	with
Hystrix	Dashboard

In	this	demo,	we'll	utilize	the	Hystrix	Dashboard	to	view	some	of	the	metrics
of	the	Hystrix-protected	call	from	the	weather	app	to	the	weather	service.
First	things	first,	if	your	services	and	your	discovery	server	aren't	already
running,	you'll	need	to	start	each	of	them	up.	And	we'll	start	with	the
discovery	server	first.	So	expand	the	discovery-server	project	and	navigate
to	the	main	application	class.	Right-click	on	it,	go	to	Run	As,	and	choose
Spring	Boot	App.	Repeat	that	same	process	for	the	weather	service	and	then
the	weather	app.	The	weather	service	and	the	weather	app	and	the
discovery	server	are	all	running.	And	just	to	double-check,	you	can	click
little	caret	and	see	that	each	of	those	services	is	started.	Next,	go	ahead	and
open	up	a	web	browser	so	we	can	create	and	download	the	Hystrix
Dashboard	project.	In	your	web	browser,	visit	start.spring.io.	In	the	Group
section,	use	io.ajay.kumar,	and	then	for	the	artifact	name	we'll	say	hystrix-
dashboard.	And	then	for	the	dependencies,	we'll	type	Hystrix	Dashboard.

Once	you	have	everything	filled	out,	go	ahead	and	click	the	Generate
Project	button,	and	that'll	create	and	download	that	zip	file	for	you.	Like
always,	extract	that	zip	file	and	head	back	to	your	IDE.	Back	within	your
IDE,	right-click	on	the	empty	space	in	the	Package	Explorer,	go	to	Import,
choose	Existing	Maven	Projects,	click	Next,	click	Browse,	locate	the
downloaded	zip	file,	and	click	Open,	and	click	Finish.

Expand	the	Hystrix	Dashboard	project	and	navigate	to	the	main	application
class.

package	io.ajay.kumar.hystrixdashboard;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import
org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;
@SpringBootApplication
@EnableHystrixDashboard
public	class	HystrixDashboardApplication	{
								public	static	void	main(String[]	args)	{
SpringApplication.run(HystrixDashboardApplication.class,	args);
								}
}

Within	the	main	application	class,	we	will	quite	literally	add	one	annotation,
and	that's	the	@EnableHystrixDashboard	annotation.	Next,	we're	ready	to
start	things	up	and	view	the	dashboard.	So	on	the	main	application	class,
right-click	on	it,	go	to	Run	As,	choose	Spring	Boot	App.	Next,	open	up	a
browser	and	visit	localhost:8080/hystrix.

This	should	load	up	the	Hystrix	Dashboard.	And	before	we	view	any
metrics,	we'll	need	to	actually	generate	some	metrics.	So	open	up	a	new	tab
and	visit	your	weather	app	at	localhost:8000/current/weather.

And	just	go	ahead	and	refresh	that	a	few	times	to	get	some	metrics
generated.	Back	at	the	Hystrix	Dashboard,	we'll	put	in	the	URL	to	the
Hystrix	stream	of	our	weather	app.	So	that's
http://localhost:8000/hystrix.stream.	And	for	the	title	of	our	dashboard,
we'll	say	Weather	App.	Next,	click	the	Monitor	Stream	button,	and	you
should	be	presented	with	some	metrics.

If	you	don't	see	metrics	right	away,	you	can	flip	back	and	forth	between
your	weather	app	and	refreshing	it	to	generate	some	metrics	and	back	to	the

dashboard	to	see	the	effect	of	those	requests.

Aggregating	Hystrix	Metrics	with	Netflix	Turbine

Hystrix	metrics	are	tracked	on	a	service-by-service	basis.	Now	a	single
Hystrix	stream	might	have	metrics	on	more	than	one	Hystrix	protected	call,
but	those	metrics	are	only	for	that	service.	And	the	implications	of	this	are
that	every	service	has	its	own	Hystrix	stream	URL	that	you	need	to	use	if
you	want	to	consume	its	metrics.	If	you	wanted	to	track	the	metrics	for
multiple	services,	you'd	have	to	open	up	multiple	Hystrix	Dashboards	and
track	them	independently.	And	I'm	sure	you	can	imagine	how	big	of	a	pain
that	would	be	if	you	had	tens	or	even	hundreds	of	services	that	made	up
your	application.	To	solve	this,	Netflix	developed	a	tool	called	Turbine	that
aggregates	many	Hystrix	streams	into	one.	To	give	you	a	better
understanding	of	how	this	might	look,	let's	look	at	a	screenshot	from	the
Hystrix	Dashboard.

	In	the	screenshot,	you	can	see	there	are	two	protected	calls,	the
getCurrentWeather	call	and	the	getCurrentDatetime	call.	And	the	protected
call	on	the	left	is	from	a	service	located	on	localhost:8080,	and	the	one	on
the	right	is	from	another	service	located	on	localhost:8181.	And	Turbine	has
brought	both	of	these	metrics	together	from	different	services,	all	viewable
in	the	same	dashboard.

Using	Spring	Cloud	and	Netflix	Turbine

So	how	do	we	start	using	Turbine?	Well,	if	you've	been	following	along
throughout	the	book,	you	can	probably	already	guess.

pom.xml
<dependencyManagement>
				<dependencies>
								<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR2</version>
<type>pom</type><scope>import</scope>

								</dependency>
				</dependencies>
</dependencyManagement>

You	start	by	defining	a	new	dependency	on	spring-cloud-dependencies	in
the	dependencyManagement	section	of	your	pom.xml.	As	always,	make	sure
that	it's	of	type	pom	and	has	a	scope	of	import.

pom.xml
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-turbine</artifactId>
</dependency

Then,	still	within	your	pom.xml,	in	the	dependency	section,	define	a	new
dependency	on	spring-cloud-starter-turbine.	Follow	that	up	by	adding	a

new	annotation	to	your	main	Application	class,	the	@EnableTurbine
annotation.

@SpringBootApplication
@EnableTurbine
public	class	Application{

public	static	void	main(String[]args){
SpringApplication.run(Application.class,args);

}
}

And	last,	we	have	a	little	bit	of	configuration	to	add.	In	your
application.properties	or	your	application.yml,	we're	going	to	add	two	new
properties.

application.properties
turbine.app-config=<list_of_service_ids>
turbine.cluster-name-expression=’default’

OR

application.ymlturbine:appConfig:<list_of_service_ids>
clusterNameExpression:”’default’”

*	In	addition	to	the	standard	spring	application	name	and	discovery	server
location	properties

The	first	property	is	the	turbine.app-config	property,	and	you	set	this	to	a
comma-separated	list	of	service	IDs.	And	these	are	the	same	service	IDs	that
you	use	for	service	discovery.	The	second	property,	the	turbine.cluster-
name-expression	property,	can	be	a	Spring	Expression	Language	value	to
name	your	cluster.	And	in	Turbine,	a	cluster	is	just	a	grouping	of	services
that	need	to	be	monitored	together.	And	for	our	purposes,	to	make	things
easy,	we're	going	to	set	that	value	to	default	surrounded	by	single	quotes.

And	a	note	here	is	if	you're	using	YAML	instead	of	properties,	you'll	need	to
escape	the	single	quotes	with	double	quotes.

Once	you	have	everything	configured	and	your	Hystrix	Dashboard	is
started	up,	instead	of	entering	the	hystrix.stream	URL,	you'd	enter	the	URL
of	your	Turbine	server	and	end	it	with	turbine.stream.	Let's	apply	the	stuff
we	learned	by	created	our	own	Turbine	server,	and	we	can	use	it	to
aggregate	the	stream	of	our	service	we	created	in	the	previous	demo	along
with	a	new	service.

Demo:	Aggregating	Multiple	Hystrix	Streams	with
Turbine

In	this	demo,	we'll	utilize	Turbine	to	combine	the	Hystrix	streams	from	two
different	services	so	that	they're	both	viewable	from	the	same	Hystrix
Dashboard.	We'll	continue	to	utilize	the	weather	app,	the	weather	service,
and	the	discovery	server	from	our	previous	demo,	and	then	we'll	add	two
new	projects	that	you	can	clone	from	GitHub.	The	first	new	project	is	the
datetime-service,	and	you	can	get	that	from	github.com/ajaycucek/hystrix-
datetime-service.	And	the	second	new	project	is	the	datetime-app.	And	you
can	get	that,	again,	at	github.com/ajaycucek/hystrix-datetime-app.	Once
you've	cloned	both	of	those	projects,	make	sure	that	you	import	them	into
your	IDE.	I've	imported	mine,	and	your	IDE	should	look	pretty	similar	to
this.	The	two	new	projects,	the	datetime-app	and	the	datetime-service,	are
literally	identical	to	the	weather	app	and	the	weather	service,	with	the
exception	that	they	return	the	current	datetime	instead	of	the	weather.	So
feel	free	to	browse	around	and	check	out	the	code	for	those.	We'll	need	to
start	each	of	these	applications	starting	with	the	discovery	server	first.
Again,	I	have	all	of	the	applications	started.	And	once	they're	all	started	up,
you	can	verify	by	clicking	little	caret	and	making	sure	that	all	of	the
applications	show	up.	With	all	of	the	applications	started,	we'll	go	ahead
and	start	building	our	Netflix	Turbine	app.	Open	up	a	browser	and	visit
start.spring.io.	In	the	Group	use	io.ajay.kumar,	and	for	the	artifact	name
you	can	just	call	it	turbine.	And	for	the	dependencies,	we'll	obviously	want
to	add	Turbine.

And	once	you	have	everything	filled	out,	click	that	Generate	Project	button,
and	that'll	create	and	download	that	zip	file	for	you.	And,	like	always,	unzip
that	zip	file	and	import	that	into	your	IDE.	We're	back	within	the	IDE
where	we've	imported	the	Turbine	project.

Go	ahead	and	expand	the	project	and	navigate	to	the	main	application	class.

package	io.ajay.kumar.turbine;
import	org.springframework.boot.SpringApplication;
import	org.springframework.boot.autoconfigure.SpringBootApplication;
import	org.springframework.cloud.netflix.turbine.EnableTurbine;
@SpringBootApplication
@EnableTurbine
public	class	TurbineApplication	{
								public	static	void	main(String[]	args)	{
																SpringApplication.run(TurbineApplication.class,	args);
								}
}

In	the	main	application	class,	we'll	add	one	new	annotation,	and	that's	the
@EnableTurbine	annotation.	Next,	we'll	need	to	configure	some	properties,
so	go	ahead	and	close	that	file	and	navigate	to	src/main/resources,
application.properties.

application.properties
server.port=3000
spring.application.name=turbine-aggregator
eureka.client.service-url.defaultZone=http://localhost:8761/eureka

turbine.app-config=weather-app,datetime-app
turbine.cluster-name-expression='default'

In	the	application.properties,	we	have	a	number	of	different	properties	to
set,	so	I'm	going	to	go	ahead	and	paste	those	in	here,	and	then	we're	going
to	go	through	each	one	of	them	one	by	one.	The	first	property,	the
server.port,	we're	going	to	set	that	to	3000.	The	next	property,	the
application.name,	we're	going	to	call	turbine-aggregator.	And	then	the	third
property,	the	eureka.client.service-url,	set	that	to	localhost:8761/eureka.
And	then	below	that,	we	have	the	two	turbine	properties.	And	remember
the	first	one,	the	turbine.app-config	property,	sets	the	applications	or
services	that	you	want	Turbine	to	aggregate	together	as	a	stream.	In	our
case,	we	want	the	weather-app	and	the	datetime-app.	And	then	the	last
property,	the	turbine.cluster-name-expression,	we	just	set	that	to	default
surrounded	by	single	quotes.	And	that's	all	for	our	properties,	so	go	ahead
and	close	that	file,	and	then	we're	going	to	go	ahead	and	start	the	Turbine
application.	So	come	over	to	the	main	application	class,	right-click	on	it,	go
to	Run	As,	and	choose	Spring	Boot	App.	Next,	open	up	a	web	browser,	and
we're	going	to	visit	the	datetime	app	and	the	weather	app	to	generate	some
metrics	for	their	Hystrix	streams	so	that	Turbine	can	them	collect	them.	So
let's	visit	the	datetime	app	first.	So	go	to	localhost:4000/current/datetime.

And	just	refresh	that	a	few	times	to	generate	some	metrics.	And	then	we're
going	to	do	the	same	thing	for	the	weather	service,	so	go	to
localhost:8000/current/weather,	and	then	also	refresh	that	a	few	times	to
generate	some	metrics.

Next,	open	up	a	New	Tab	and	visit	localhost:8080/hystrix.

And	this	time,	instead	of	putting	in	the	hystrix.stream	URL,	we'll	use	the
turbine.stream	URL.	So	go	ahead	and	type
http://localhost:3000/turbine.stream.	And	then	in	the	Title	textbox	just	type
Turbine.	After	that,	click	the	Monitor	Stream	button,	and	you	should	see
metrics	from	the	datetime	app,	that's	the	getCurrentDateTime	call,	and	you
should	also	see	metrics	from	the	weather	app,	and	that's	the	getWeather
call.

And	if	you	don't,	just	go	back	to	those	services	and	refresh	them	a	few	times
to	generate	some	metrics.

Summary

We're	at	the	end	of	this	module	so,	like	always,	let's	do	a	recap	of	what	we
learned.

➢	Fault	tolerance	is	a	requirement
➢	Netflix	Hystrix

○	Circuit	breaker	pattern
○	@HystrixCommand	&
○	@EnableCircuitBreaker

➢	Netflix	Hystrix	Dashboard	&	Turbine
○	Monitor	one	or	several	streams

First,	we	saw	that	failures	in	a	distributed	system	are	pretty	much
inevitable.	And	we	have	to	learn	to	embrace	failures	and	make	handling
failures	a	requirement.	Then	we	introduced	Netflix	Hystrix,	which	is	an
implementation	of	the	Circuit	Breaker	pattern,	among	other	fault-tolerance
patterns.	And	we	saw	how	to	use	the	@EnableCircuitBreaker	annotation
and	the	@HystrixCommand	annotation	to	protect	a	call	that	might	fail.	We
concluded	the	module	by	looking	at	how	we	can	visualize	and	monitor	our
Hystrix-protected	calls	with	the	Hystrix	Dashboard	and	how	we	can
monitor	several	streams	at	once	with	Turbine.

Module	8:	Bringing	It	All	Together	and
Where	to	Go	Next

Introduction

In	this	last	module	we'll	take	a	holistic	approach	to	see	how	each	of	the
individual	ideas	and	technologies	all	fit	together	and	where	you	can	go	next
after	you've	completed	the	book.

➢	How	does	it	all	fit	together?
○	Service	Discovery
○	Distributed	Configuration
○	Client-side	load	balancing
○	Gateway	and	routing
○	Fault	tolerance	and	circuit	breaker

➢	What’s	next?
○	Other	Spring	Cloud	Projects

We'll	begin	with	a	section	on	how	it	all	fits	together.	We've	learned	a	lot
throughout	the	book	covering	new	ideas	and	technologies	in	every	single
module.	And	while	many	of	those	ideas	are	useful	by	themselves,	the	real
advantage	comes	from	using	them	together	as	a	whole.	And	we'll	see	how
each	of	the	main	topics,	service	discovery,	distributed	configuration,	client-
side	load	balancing,	gateway	and	routing,	and	fault	tolerance	and	circuit
breaker,	all	fit	together	to	form	a	cloud-native	system.	And	then,	like	I
mentioned,	we'll	finish	by	briefly	discussing	where	you	can	go	next	to	learn
about	what	additional	Spring	Cloud	projects	are	out	there.	And	don't
discount	the	importance	of	this.	It's	helpful	to	know	exactly	what's	out
there.	It's	almost	like	browsing	the	tool	section	at	your	local	hardware	store,

and	if	you	don't	know	what	tools	are	out	there,	when	you	have	a	problem,
you	might	end	up	using	the	wrong	tool	for	the	wrong	job.

How	Does	It	All	Fit	Together?

The	question	is	how	does	it	all	fit	together	to	form	a	cloud-native	system?
And,	to	start,	let's	recap	everything	that's	involved.	It	all	starts	with	one	or
more	application	services.

And	in	our	example	here	we	have	two	application	services,	application
Service	A	and	application	Service	B,	and	both	of	them	are	running	multiple
instances.	Then,	at	the	heart	of	everything	is	the	Service	Discovery	Server.
It's	the	phonebook	or	the	directory	of	the	system	allowing	everyone	to
register	their	location,	as	well	as	discover	the	location	of	others.	And
remember	that	we	utilized	Netflix	Eureka	throughout	the	book	for	our
service	discovery	needs.	Next,	we	have	the	Config	Server	to	handle	our
dynamic	and	distributed	configuration	needs.	And	remember	that	we	use
the	Spring	Cloud	Config	Server	for	this.	After	that,	we	have	the	gateway,	or
the	front	door,	of	the	system,	and	it's	responsible	for	receiving	and	routing
requests	to	back-end	services.	And	we	use	Netflix	Zuul	for	this.	Then	we
have	a	client-side	load	balancer	to	distribute	requests	among	the	multiple
instances	that	we	run	for	high	availability	purposes.	And	remember	in	our
case	we	used	Netflix	Ribbon.	And	last,	we	have	fault	tolerance	to	be	able	to
tolerate	and	measure	failures	and	prevent	them	from	causing	cascading
failures	to	other	systems.	And	we	use	Netflix	Hystrix	for	this.

Putting	It	All	Together:	On	Startup

Now	that	we've	recapped	all	of	the	pieces	involved,	let's	take	a	moment	to
look	at	how	they	all	interact	with	each	other,	specifically	on	startup.

It	all	starts	with	the	Service	Discovery	Server.	Each	and	every	instance	of
every	piece	of	the	system	registers	itself	with	the	Service	Discovery	Server
upon	startup.	And	then	it	also	receives	a	reply	with	the	location	of	other
registered	services.	For	application	services,	this	reply	is	very	important
because	it	tells	them	where	the	location	of	the	Configuration	Server	is	at.

And	once	they	know	the	location	of	the	Configuration	Server,	they	can
make	a	request	to	retrieve	any	configuration	that	will	ultimately	be	used	to
bootstrap	their	startup	process.

Putting	It	All	Together:	On	Request

Now	that	we	have	all	of	our	application	and	their	supporting	services
started,	let's	look	at	how	they	all	interact	with	each	other	during	a	request.

The	request	for	a	given	path	begins	at	the	gateway	server,	Netflix	Zuul	in
our	case.	And	Zuul	will	match	the	path	to	a	given	service	ID,	and	then	it	will
use	service	discovery,	either	by	requesting	it	from	the	Service	Discovery
Server	or	via	a	previously	cached	result,	to	locate	the	service	that	will
handle	that	path.	Once	the	service	is	located,	it'll	make	a	Hystrix-protected
call	to	the	service	using	Ribbon	to	handle	the	client-side	load	balancing	of
which	instances	it	should	send	the	traffic	to.	In	our	example,	the	request	was
sent	to	Service	A.	Now,	suppose	that	Service	A	also	depends	on	Service	B	to
fulfill	the	request.	Upon	receiving	the	request,	Service	A	will	utilize	service
discovery	to	locate	Service	B.	And	it'll	do	that	either	via	a	previously	cached
result	or	by	requesting	it	from	the	Service	Discovery	Server.	Next,	it'll	make
a	Hystrix-protected	call	using	Ribbon	for	client-side	load	balancing	to	one
of	the	instances	of	Service	B.	Service	B	will	respond	to	Service	A,	and	then
Service	A	will	respond	to	the	gateway,	and	finally,	the	gateway	will	respond
to	the	original	request.

Where	to	Go	Next

Throughout	the	book,	we've	covered	the	core	fundamentals	of	Spring	Cloud
and	given	you	a	good	foundation	to	build	upon.

Fundamentals	we	covered,	they	only	represent	two	of	the	many	pieces	of
Spring	Cloud.

➢	Spring	Cloud	Config
➢	Spring	Cloud	Netflix

And	remember	that	Spring	Cloud	is	a	conglomerate	of	projects,	and	while
the	fundamentals	that	we	covered	was	a	lot	of	information	to	learn,	they
only	represent	two	of	the	many	pieces	of	Spring	Cloud.	And	that's	the
Spring	Cloud	Config	project	and	the	Spring	Cloud	Netflix	project.

➢	Spring	Cloud
○	Spring	Cloud	Bus
○	Spring	Cloud	Task
○	Spring	Cloud	Cluster
○	Spring	Cloud	Consul
○	Spring	Cloud	Sleuth
○	Spring	Cloud	Security
○	Spring	Cloud	Stream
○	More...

There	are	a	whole	bunch	of	other	projects	like	Spring	Cloud	Bus,	Spring
Cloud	Cluster,	and	Spring	Cloud	Stream	that	all	help	you	solve	problems	in
the	cloud.	To	get	the	best	idea	of	what's	available	with	Spring	Cloud,	visit
the	documentation	page	at	http://projects.spring.io/spring-cloud,	and	then
scroll	down	to	the	section	with	the	heading	Main	Projects.	Here	you'll	find
all	of	the	Spring	Cloud	projects	that	sit	under	the	Spring	Cloud	umbrella.
And	I	encourage	you	to	check	them	out,	if	only	so	that	you're	familiar	with
them	and	you	know	that	they	exist	because,	like	I	mentioned	before,	it	can

be	really	helpful	to	know	what	tools	exist	so	that	you	use	the	right	tool	for
the	right	job.

