

 This book is copyright.

 No part of this publication may be stored or transmitted in any form or by any means, electronic or mechanical, including recording or storage of any information in a retrieval system, without permission in writing from the publisher.

 No reproduction may be made, whether by photocopying or by any other means unless a written license has been obtained from the publisher.

 Printed in New Zealand by NCEAX

 www.nceax.co.nz

 About The Author

 In addition to this book, Rory Barrett is the author of many books published in New Zealand by ESA Publications. He has authored a number of others and has his own website www.nceax.co.nz.

 He was the Head of Mathematics at three high schools in New Zealand: Rutherford High School, Auckland Grammar School, and Macleans College. He was also the Deputy Headmaster at Saint Kentigern College.

 In 2014 and 2015 He was in charge of teaching computing at Motueka High School, near Nelson, New Zealand. This book is based on his experiences in teaching JavaScript to the pupils of this school as well as developing his and other websites.

 Table of Contents

 Introduction

 Chapter 1: Computers, Associated Concepts, and The First JavaScript Program

 Chapter 2: Sequential Programs

 Chapter 3: Iterative Programs

 Chapter 4: Conditional Programs

 Chapter 5: Creating Dynamic Content

 Chapter 6: Problems to do and where to from here

 Conclusion

Introduction

 A few words about the book, “JavaScript”.

 It is necessary before you start your study of JavaScript to have a basic knowledge of HTML, the markup language by which web pages are made. If you lack this then you should learn some basic HTML before you start.

 This book contains essential information as you begin a study of JavaScript.

 Before you start this book ask yourself these questions:

 What do you know about the JavaScript computing language?

 Are you keen to use it?

 This book will tell you about starting JavaScript in a simple yet factual way that does not blind the reader with science.

 It will tell you about basic commands, comments, operations, strings, arrays and many other parts of this computer language.

 There are 6 chapters, which cover basic information, sequential programming, iterative programming, conditional programming, dynamic programming, and problems to try and further investigation. Each chapter will provide a stepping-stone to further exploration if so desired.

 Before you begin you should have a text editor that automatically produces pages for a variety of computer languages. Microsoft Word is useless for this task. If you are a Windows user then get Notepad++. It is an amazing piece of software.

 If you, like me prefer Macs, then there are a number such as Brackets and Komodo.

 I knew of Linux but had no experience with it until I got a Raspberry Pi mini computer, which uses a form of Linux called Raspian. That operating system comes with a built-in programming editor called Geany. I have used Geany and have to admit it is as good as Notepad++.

 All editors I have mentioned are free. I actually use Dreamweaver, which is very good but unfortunately, it is quite expensive.

 Now onto Chapter 1.

 Chapter 1: Computers, Associated Concepts, and The First JavaScript Program

 Definition of a computer

 This is very complicated. All you need to know is that a computer is a device that manipulates data. All useful computers are electronic.

 Computer languages

 Programming languages range from low to high level. The lowest level language is called Machine-Code. It is written in binary using only 1 or 0. Higher programming languages are designed for humans to interact with computers. Low-level languages are almost indecipherable for most people.

 The list below is a sequence of computer languages starting from the lowest, which is Machine-Code to Ruby. Programs are described as having increasing abstraction as their level increases.

 Language

 	 Machine-code

 	 Assembly

 	 C

 	 C++

 	 Java

 	 Python

 	 Perl

 	 JavaScript

 	 Ruby

 Compilers, Interpreters, and Assemblers

 Before use by the computer, languages must be converted to Machine-Code.

 This task is performed by either by a compiler or an interpreter.

 With some languages, the whole program, written in that language, is converted to machine code by compilers. In doing this an executable file is created. Examples of languages which are compiled are C and C++.

 An interpreter changes a program line by line to machine code. Perl, JavaScript, and Ruby are interpreted languages.

 Is a Server a Computer?

 Most people who know about computers regard a server as a computer that provides services to other computers. While this is true the server is actually a program the server computer is running which provides these services.

 If you join computers together to talk with one another then you have a network or computer network.

 Internet?

 The Internet dominates our age. It is an open medium comprised of a vast, global system of networked computers. The process by which computers exchange data is called packet switching. Packet switching is governed by a whole lot of rules called protocols. These are very important but also unnecessary to know about if you are just starting in JavaScript.

 The Internet is a network of domestic, commercial, government etc. networks with services such as email, the transfer of files, SMS, and all the files of the World Wide Web (WWW).

 Definition of a Web Server?

 A computer program which serves requested web pages is called a web server. A Web client is the program of a user which makes the request. A browser is a client program requesting files from Web servers. Common browsers include Chrome, Firefox, and Safari.

 Web Pages

 Files on the Internet with the .html suffix are called web pages. They are opened by browsers. Such files are the basis of the World Wide Web (WWW), probably the most important part of the Internet. The first appearance of HTML was in 1989. It was the invention of the English programmer and scientist Tim Berners-Lee who was employed by the European Laboratory for Particle Physics in Geneva, Switzerland.

 HTML has gone through a number of developments since then. At the moment we are in the fifth version called HTML 5. HTML will be used throughout this book as JavaScript was built for use with HTML.

 JavaScript

 JavaScript is a high-level programming language. Most computer languages have the same program types although some languages are much better for some purposes than for others.

 JavaScript is a perfect language of instruction for the teaching of programming. The reasons are that

 (i) It is not necessary to install JavaScript.

 (ii) It is ideal for courses in programming. Its possibilities vary from the most fundamental to really cutting edge.

 (iii)

 Is It True That JavaScript and Java Are the Same?

 JavaScript and Java are totally different languages even though their names are alike. They are similar when simple programs are made however JavaScript is easier to use and understand. The learning of JavaScript is a great help in learning other more complicated languages such as C++, Java, and Python.

 Is HTML The Same As JavaScript?

 No, they are not the same. They are quite different. HTML is what is known as a markup language for the creation of static web page content. JavaScript is a computer language which makes possible the creation of dynamic content for web pages. This can be confusing because it is possible to place JavaScript code in an HTML file, although you will learn this is not good practice. Despite that, we will initially put JavaScript code in HTML files as it is easier to learn the better practices later.

 Is It Possible To Put JavaScript on the Server?

 Yes, it is and is frequently done. If you do this then you get server-side JavaScript. This extends JavaScript so that it can access files and databases. Client-side JavaScript does not have this capability. This book will consider only the client-side version.

 First task

 Type the following up using notepad or some other equivalent text editor such as notepad++ or a Mac editor such as TextEdit. If you are fortunate enough to have Adobe Dreamweaver then use that however it is quite expensive and is not necessary for a basic course in JavaScript.

 ………………………………………………………………………………………………

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script>

 alert("Hello World.");

 </script>

 </HEAD>

 <BODY>

 The dog sat on a log.

 <hr>

 <p>

 <button type="button">Button</button>

 <hr>

 <p>

 <form>

 Initial first name:

 <input type="text" name="initial">

 Family name:

 <input type="text" name="familyname">

 </form>

 </BODY>

 </HTML>

 ………………………………………………………………………………………………

 Save the file as alert.html

 Click on it or drop the file into the address bar of a browser.

 It is a good idea to write down what you see.

 If you have done this correctly there should first be a little window saying, "Hello World".

 Before we go onto the next chapter it is worth mentioning that the only JavaScript in this first program you wrote was

 alert("Hello World.");

 On seeing <script>, the script tag, the computer knew that some JavaScript would follow.

 The JavaScript command was alert("Hello World.");

 On receiving this command the computer carried out the procedure leading to the little window with " Hello World".

 The </script> tag informed the computer JavaScript was finished so it resumed doing HTML leading to a window showing the sentence, 'The dog sat on a log.' a button and a form containing some text fields into which information about names could be typed.

 It is worth noting that the alert box is a very powerful tool for locating errors in JavaScript code.

 One final point about alert() you can use ' ' instead of " ". Just be consistent. You can't have ' " or " '.

 Finally, it is so easy to use a capital A in alert() instead of a lower case a. If you do this your program won't work. JavaScript is sensitive to lower and upper case. You will probably make this mistake again and again. Most programmers do.

 JavaScript is not the only case sensitive language. Take care!

 Chapter 2: Sequential Programs

 In the last chapter, we introduced you to your first JavaScript program, which was nothing more than the alert command in JavaScript. In this chapter, we will continue our investigation by looking at sequential programming and in the process introduce document.write, the standard math operations in JavaScript, strings, variables, arrays and the printing of pictures.

 In what follows we will frequently refer to a standard HTML file called Txt.HTML.

 By this, we mean an HTML file created with something like Notepad ++ on Windows or TextEdit on a Mac. I use a Mac and use Dreamweaver, however, the latter program is quite expensive.

 Type this

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 </HEAD>

 <BODY>

 </BODY>

 </HTML>

 Save it as Txt.HTML or some other name but always have the .HTML suffix (or .html). You will use this program again and again as you work through this book.

 What is sequential programming?

 Sequential programming is where one command follows another, each doing a particular action. There is NO repetition and NO branching. It is the most straightforward sort of programming.

 document.write

 In between the tags <body> and </body> write the lines :

 <hr>

 <script>

 document.write("The population of India is more than 1 billion");

 </script>

 <hr>

 Save what you wrote then open Txt.HTML with your browser.

 You should see the following output.

 [image:]

 Two comments about this:

 (i) <hr> is an HTML tag instructing the computer to draw a horizontal line. This has nothing to do with JavaScript.

 (ii) document.write(......) is a JavaScript command which tells the computer to write what is between the brackets.

 Standard Math Operations

 Open Txt.HTML in your editor

 and amend the program so that it now reads

 <hr>

 <script>

 document.write("The sum of 5 and 6 is ");

 document.write(5+6);

 </script>

 <hr>

 Save the program then run it. If you do you will get this output.

 [image:]

 In similar fashion, we could subtract 6 from 5.

 We would have to amend the program to

 <hr>

 <script>

 document.write("Subtracting 6 from 5 gives ");

 document.write(5 - 6);

 </script>

 <hr>

 The output is

 [image:]

 Similar changes would allow you to multiply and divide.

 The correct statements would be

 document.write(5*6); for multiply

 and

 document.write(6/5); for divide.

 Outputs should be similar to

 [image:]

 and

 [image:]

 A very interesting mathematical operation is mod; 19 mod 7 = 5. It is the remainder when we divide 19 by 7. We use % for this in JavaScript.

 <script>

 document.write("The remainder when 19 is divided by 7 is ");

 document.write(19%7);

 </script>

 results in

 [image:]

 Two things to notice:

 (i) You don't put ' and ' or "and " around 13 + 25 if you want a calculation.

 (ii) The semicolon (;). JavaScript statements normally work if you haven't got this, but not always. As a result, it is a good idea to always put it at the end of a statement.

 Strings

 A string is a collection of characters enclosed by " " or ' '. Strings are incredibly important in JavaScript, in fact in most computer languages. You will get to use strings in many practical situations as we proceed but before we go on we need to have a look at some string operations. For anyone using databases, string operations are really important no matter what language you are using.

 Open JavaScript.HTML in your text editor and between the <script> and </script> tags write the following

 <script>

 document.write(1+" "+"Trop osphere" .charAt(3)+"
");

 document.write(2+" "+"Trop osphere".charAt(4)+"
");

 document.write(3+" "+"Trop osphere".charAt(5)+"
");

 document.write(4+" "+"Bi"+"os"+"phere"+"
");

 document.write(5+" "+"Trop osphere".indexOf("p ")+"
");

 document.write(6+" "+"Trop osphere".indexOf("ant")+"
");

 document.write(7+" "+"Trop osphere".replace("here","cat")+"
");

 document.write(8+" "+"Trop osphere".search("e ph")+"
");

 document.write(9+" "+"Trop osphere".substring(2,7)+"
");

 document.write(10+" "+"Trop osphere".toLowerCase()+"
");

 document.write(11+" "+"Trop osphere".toUpperCase()+"
");

 </script>

 then run.

 The output should be

 [image:]

 Running through each line.

 1. The letters in a string start from position 0 so the statement "+"Trop osphere" .charAt(3) writes down the character of position 3 which is p.

 2. The letters in a string start from position 0 so the statement "+"Trop osphere" .charAt(4) writes down the character of position 4 which is a blank.

 3 The letters in a string start from position 0 so the statement "+"Trop osphere" .charAt(5) writes down the character of position 5 which is o.

 4 The + signs when dealing with strings join them together. The strings, in this case, are "Bi ", "os" and "phere". When they are joined together you get Biosphere.

 5. This statement instructs the computer to reveal the position of "p ",(p followed by a space), in "Trop osphere". "p " is at position 3 in "Trop osphere" so the computer returns 3.

 6. This statement instructs the computer to reveal the position of the string "ant" in "Trop osphere". The string "ant" is not in "Trop osphere" so the computer gives -1.

 7. This statement instructs the computer to replace "here" in "Trop osphere" by "cat'. This is done and gives the string "Trop ospcat".

 8. This statement instructs the computer to search for "e ph" in "Trop osphere". This is done and is not found so -1 is returned.

 9. This instruction asks for a substring of the string "Trop osphere". This means a set of letters from "Trop osphere". The substring asked for starts from the character at position 2 which is 0 then stops before the character at position 7. This is the substring "op os".

 10. This statement instructs the computer to make all characters lowercase.

 11. This statement instructs the computer to make all characters uppercase.

 You may be mystified by
. It is an HTML tag and without this tag, all output would be horizontal instead of vertical.
 is a very useful HTML tag for causing lines to have vertical alignment.

 The Extremely Important Concept Of Variables

 Open Txt.HTML in your text editor and alter <script> </script> to

 <script>

 var pet = prompt('What animal is your pet?');

 document.write(pet);

 </script>

 After running

 This is what you will see

 [image:]

 Followed by a screen showing the animal you entered. Say you entered Dog then you'd get

 [image:]

 On receiving the line var pet = prompt(What animal is your pet?');

 the computer places what you entered into a slice of memory labeled pet. Each time the program meets the word pet then the pet you entered will be brought up. You have just created a string variable called pet. Note that pet is not enclosed by " " or ' '. The computer understands that it is to write down what is at memory pet and NOT the string 'pet'.

 In the previous example

 <script>

 document.write(1+" "+"Trop osphere" .charAt(3)+"
");

 ...

 ...

 ...

 document.write(11+" "+"Trop osphere".toUpperCase()+"
");

 </script>

 we could have created a variable called str. The code would be

 <script>

 var str = "Trop osphere";

 document.write(1+" "+str .charAt(3)+"
");

 ...

 ...

 ...

 document.write(11+" "+str.toUpperCase()+"
");

 </script>

 Doing this would have saved a lot of time.

 There are number variables which can be created just like string variables.

 var numm = 10; creates an integer variable numm with the value 10.

 var numbar = 6.5; creates a real number variable with the value 6.5.

 Another number type is called boolean. It only takes the values True and False. These are very important in something we study later called conditional computing.

 The Math Object

 JavaScript has a means, which is built in, to get many mathematical functions called the Math object.

 If you need random numbers from 0 to 1 then you use

 Math.random(). Here is how this is done.

 <script>

 var numm = Math.random() ;

 alert(numm);

 </script>

 When running this you would get the output of a little window like this.

 [image:]

 The number you get is probably different but you will get a decimal between 0 and 1.

 The Math object makes a random number between 0 and 1 that is assigned to the variable numm.

 numm is shown by alert.

 What about a random integer between 0 and 10?

 Here is one way of doing this.

 <script>

 var numm = Math.round(10*Math.random()) ;

 alert(numm);

 </script>

 The output for me was

 [image:]

 Pressing close then refreshing the page gives different integers between 0 and 10.

 The Math object makes a random number between 0 and 1 which is multiplied by 10 then this number is rounded by Math.round() and assigned to the variable numm.

 The alert procedure then shows numm.

 There are many other useful functions available through the Math object.

 Here's another example of this.

 <script>

 var num = Math.PI;

 alert(num);

 </script>

 The output is

 [image:]

 The Math object creates the number Pi or π which goes to the variable num.

 The alert procedure then displays num.

 This is of great use if you need to find the circumference (2πr) or area (πr2) of a circle then use them in a program.

 Arrays

 This sub-topic is of great importance, every computer language uses arrays. Basically, an array is a piece of computer memory that holds a set of values.

 Here is a simple example (Don't worry about statements after //. These are comments and don't affect the actual program.)

 <script>

 var numberHold = new Array();//creates new array numberHold

 numberHold[0] = 3;

 numberHold[1] = 6;

 numberHold[2]=-2;//assigns values to numberHold[0] etc

 var numRandom = Math.round(2*Math.random());//creates a number 0,1 or 2 randomly

 alert(numberHold[numRandom]);//shows the value of numHold[numRandom]

 </script>

 If you run this program you will get an output of alert showing one of 3, 6 or -2.

 The program first creates a new array then puts 3, 6 and -2 into the variables numberHold[0], numberHold[1] and numberHold[2].

 var numRandom = Math.round(2*Math.random()) is one of 0,1 or 2.

 Alert demonstrates whichever of numHold[0], numHold[1] and numHold[2] is selected.

 You need to know that an array Ar always begins at 0, the first in the list contained by Ar is Ar[0].

 You will have noticed the //. Any statement following // is a comment. These do not affect the program. We will have more to say about this in the next chapter.

 Another example

 Try this

 <script>

 var girls = ["Jane","Fiona","Mary","April","May","June","Julie","Averill","Shirley","Olive","Nancy","Diana"];

 var numm = Math.round(11*Math.random());

 alert(girls[numm]);

 </script>

 This program if run repeatedly gives a random sequence of windows with one girl's name from the list shown. This is a way of creating arrays when you know the values needed. It is not necessary to use new Array(). You just make a variable and set it equal to square brackets, which contain the contents of the array.

 The next chapter will show you more examples using arrays.

 Printing a picture

 Make sure you have a picture file of a cat with the suffix .png in the same folder as Txt.HTML then change the code to

 <script>

 document.write("
");

 </script>

 When I do this the output is

 [image:]

 The reason for the 20% is to adjust the size of the picture to 20% of the page width. This is an HTML command, not a JavaScript command.

 Chapter 3: Iterative Programs

 In the last chapter, we gave you examples of sequential programming in JavaScript. In the process, we introduced the document.write command, the standard math operations in JavaScript, strings, variables, arrays and the printing of pictures.

 We will continue to refer to a standard HTML file called Txt.HTML.

 In this chapter, we are going to introduce you to writing comments as you program, a very important part of programming called iteration, more commonly known as loops, a concept called functions and JavaScript files with the suffix .js.

 We start with something very simple.

 Suppose you wanted to print the word 'Frog' 6 times going down the page.

 <script>

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 </script>

 will do this.

 Comments

 Although what this piece of code does is almost self-evident this is not always true. Sometimes programs are really complicated. It is always good practice to write comments in the program, which do not affect the running of the program but help someone who has a look at the program later to understand what is going on. The way in which this is done in JavaScript is very similar to what is done in the C, C++, Java and PHP languages.

 Here is how the program above could have comments.

 <script>

 /* This program was written in 2017. The writer was

 Paul Revere*/

 document.write("Frog"+"
"); //This is the first line of the program.

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
");

 document.write("Frog"+"
"); //This is the last line of the program.

 /*This program prints the word Frog

 six times down a page*/

 </script>

 // for single lines

 /*..........*/ if more than one line. Often it is more meaningful to write /*..........*/ before important lines of code. Examples of this will be given later.

 Loops

 The above program could be written much more compactly. If the task was to write Frog down the page 50 times there are fewer inefficient ways of doing this than to write out document.write("Frog"+"
") fifty times. Luckily, there are methods by which this is done called loops. The first method uses a for loop.

 Type the following piece of code into Txt.HTML.

 <script>

 /*This will print FROG 50 times going down the page */

 for (i = 1;i<51;i++)

 {document.write("Frog"+"
"); }

 </script>

 Part of the output is shown below

 [image:]

 Note that there is now a comment above the code. /*This will print FROG 50 times going down the page */

 Are there other loops? Yes! One of the best is the while loop. Here is how a while loop does what for did previously.

 Put this code in Txt.HTML.

 <script>

 /* 50 printings of Frog down page using the while loop*/

 var count = 1; // This variable counts the number of printings

 while (count< 51)

 {

 document.write("Frog"+"
");

 count++; //this increases count by 1 each time a loop is completed

 }

 </script>

 The output is once again.

 [image:]

 These loops are sufficient for most purposes. There are others. Check them with Google if you're interested.

 Which is best? for or while? Neither, a good programmer could use either. The for loop is best if you have a definite beginning and end. The while loop is best when you are uncertain where to stop.

 Let us take a situation where for would be better.

 If we had an array of the 12 months and wanted to print the 3rd month to the 10th then do this.

 <script>

 /* This program prints all months from the 3rd to the 10th*/

 var months = ["January","February","March","April","May","June","July","August","September","October","November","December"]//12 months

 /*This will print months 3-10 down the page*/

 for (i = 2;i<10;i++)

 {document.write(months[i]+"
"); }

 </script>

 The output is

 [image:]

 A couple of points need to be raised.

 (i) Remember that an array always starts from 0 so the 3rd will be number 2 and the 10th will be number 9.

 (ii) I have called the array containing the months months. I could have called it just about anything but in selecting variable names give the variables names that are similar to what they stand for. You must take care in selecting names for variables, as a name may be a reserved word. Reserved words are used by JavaScript and have special meaning. If you named months with the word name instead your results would be strange. The reason is that name is a reserved word.

 Let's use while in a situation where it would be better.

 Suppose you wanted to print all names in the array of months until you encounter one with less than 6 letters.

 str.length is the number of characters in the string str.

 Here is a program which will do this:

 <script>

 /* This program prints all months until there is one with less than 6 letters*/

 var count =0;//This counts the number of loops.

 var months = ["January","February","March","April","May","June","July","August","September","October","November","December"]//12 months

 var howManyLetters = months[count].length ;/*This variable will hold the number of letters in a month as we go through the loop. It starts with the length of the first member of months*/

 while (howManyLetters>6)//This will print required months down the page

 {

 document.write(months[count]+"
");

 count++; //Each time we do a loop count increases by 1

 howManyLetters = months[count].length;//each time we increase count we make howManyLetters the length of the next member of months

 }

 </script>

 The output is shown below

 [image:]

 This is what we expect. March only has 5 letters.

 Indentation

 Something that was done in the previous little program needs stressing. Notice how the program is set out beneath the while.

 while (howManyLetters>6)//This will print required months down the page

 {

 document.write(months[count]+"
");

 count++; //Each time we do a loop count increases by 1

 howManyLetters = months[count].length;//each time we increase count we make howManyLetters the length of the next member of months

 }

 with the brackets and their contents moved to the right. This is called indentation.

 The contents of the {} are a subprogram of the main program. It is good practice and manners to do this. If you are the only person who will ever work on your programs then how you set them out is up to you but if you will have others working on the program then this sort of indentation is of great help in assisting to see what you have done.

 Although indenting is not essential in JavaScript, in some languages, such as Python, you have to indent otherwise the program won't work.

 Functions

 A function is a program that gets used a lot and is made available in a way that other programs can use.

 In the head or some other part of the file Txt.HTML. type

 <script >

 function initials()

 {

 /* This function is a program that gets you to input your first and family names, gets the first initials of each then alerts them as a word */

 var firstName =prompt("What is your first name?");//This gets you to input your first name

 var familyName =prompt("What is your family name?");//This gets you to input your family name

 var namStr = firstName.charAt(0)+ familyName.charAt(0)//This combines first initials of the first and family names

 alert(namStr);

 }//end of function initials()

 </script>

 Now somewhere in the body type <script> initials(); </script>.

 If Txt.HTML has opened then the function initials() operates and we get the expected alert.

 This may seem a fairly simple demonstration so we will make it a bit more interesting by giving what is called a parameter.

 Replace the declaration of initials() with initials(n) in the following way.

 function initials(n)

 {

 /* This program gets you to input your first and family names, gets the nth character of each then alerts them as a word */

 this.n = n;//tells program that the n used by the program is the n given between the brackets

 var firstName =prompt("What is your first name?");//This gets you to input your first name

 var familyName =prompt("What is your family name?");//This gets you to input your family name

 var namStr = firstName.charAt(n)+ familyName.charAt(n)//This combines nth characters to a single string

 alert(namStr);

 }//end of function initials(n)

 The section which used to be <script > initials(); </script> is replaced by

 <script >

 var n = prompt("What is the position of the character in the names?");// we enter n

 initials(n);

 </script>

 We are being hypocritical in using n as a variable name. It would be better to call it charAtPos or something more descriptive.

 The .js file

 We now demonstrate a powerful tool called a JavaScript file. The suffix of a JavaScript file is .js. Often you will repeat the same code over many, even, scores of web pages. The .js file lets you do this efficiently without having to write the same code repeatedly.

 Using a text editor create your functions in a totally distinct file from those with the .HTML suffix. You can name that file how you wish but don't use reserved words.

 To show how this works the initials(n) function is placed in a file called hold.js. The file hold.js must be in the same folder as the HTML file. If you want your program to fail then place the .HTML and .js files in folders, which are different.

 The HTML is now the following

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> ABC </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <hr>

 <script>

 var n = prompt("What is the position of the character in the names?");// we enter n

 initials(n);

 </script>

 <hr>

 </BODY>

 </HTML>

 <script src="hold.js"></script> is the vital line

 This line informs JavaScript that it should inspect the source file (src) hold.js for functions, not the HTML file.

 Chapter 4: Conditional Programs

 In the last chapter, we introduced you to iterative programming in JavaScript. In the process, we introduced you to writing comments as you program, a very important part of programming called iteration, more commonly known as loops, functions, and JavaScript files with the suffix .js.

 In this chapter, we will explore the situation when you have different branches in a program. The branch that is taken depends on conditions. Such programming is called conditional programming. Associated with conditional programming are the logic operators AND(&&), OR(||) and NOT(!). It is very important to see how JavaScript programs handle equality and inequality.

 Continue with the HTML file called Txt.HTML. however, all functions will be placed in hold.js.

 You should have Txt.HTML as

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> TTT </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <script>

 //programs with functions in hold.js

 </script>

 </BODY>

 </HTML>

 The line <TITLE> TTT </TITLE> is optional. If you like you can totally delete this

 We start with something very simple.

 Suppose you randomly generated 0 or 1. If 0 was generated then an alert with 'Meow' would come up. If 1 was generated then the output would be an alert with 'BowWow'.

 Create a new function randomCatDogNoise(n) in hold.js.

 The initial step is to write what is below.

 function randomCatDogNoise(n)

 {

 }

 This is the randomCatDogNoise function. Because there is no code between the curly brackets this function does nothing. If some JavaScript instructions are between the curly braces then randomCatDog(n) may do something. Notice the parameter n.

 The conditional operators, in JavaScript, are if and if/else. The next example uses if/else.

 Type the following.

 function randomCatDogNoise(n)

 {

 this.n = n;// n means the parameter

 if (n ==0)

 {

 alert("Meow");

 }

 else

 {

 alert("BowWow");

 }

 }//end of randCatDogNoise(n)

 Note == we use ' equals ' for a comparison. This is critical.

 Never write (n = 0); if you do this JavaScript assumes you are giving n the value of 0.

 Never forget : == for comparison and = for assignment.

 In the body of Txt.HTML write

 <script>

 var n = Math.round(Math.random());//Randomly create 1 or 0

 randomCatDogNoise(n);//activates the function randomCatDogNoise

 </script>

 Note the use of randomCatDogNoise for the function name. Function names like variable names should be related to their purpose.

 Instead of if/else use if/else if/else if the number of choices exceeds 2.

 As an example consider the random generation of numbers 0,1, 2, 3, 4 and 5. If 0 or 1 you get 'Chair', 2 or 3 are 'Table' and 4,5 are 'Knife'.

 Here is the code. Try it yourself first but don't spend more than half an hour.

 function randomChairTableKnife(n)

 {

 this.n = n; ;// n means the parameter

 if (n <2)

 {

 alert("Chair");//the alert says "Chair" if 0 or 1 are generated

 }

 else if (n<5)

 {

 alert("Table");// the alert says "Table" if 2 or 3 are generated

 }

 else

 {

 alert("Knife");// the alert says "Knife" if 4 or 5 are generated

 }

 }//end of randomChairTableKnife(n)

 The code in the body of JavaScriptCarrier.HTML would be

 <script>

 var n = Math.round(5*Math.random());//Randomly creates 0,1,.....5

 randomChairTableKnife(n);

 </script>

 Note < being used as a comparison operator. The operator < means less than, similarly > is greater than, >= is greater than or equal and <= is less than or equal.

 There are three choices in the program above hence only one else if. For four choices you'd need 2 else ifs, for 7 choices you'd need 5 else ifs etc. It is necessary to end with else.

 You could use a switch operator. The switch operator does this as well. It is not necessary. If you're interested in the switch operator do a Google search.

 What about a program that only uses if and does not need if/else or if/else if/else.

 Suppose you had the array ["elephants","cats","tigers","lions","monkeys","cows", "sheep", "frogs"]

 and needed the printing of all words in the array with a minimum of 6 letters.

 Here is a function does this. Try it yourself before reading what follows.

 In hold.js type the following.

 function typeAnimals(n)

 {

 }

 Now fill it as follows:

 function typeAnimals(n)

 {

 this.n = n;// n in parameter

 var animals= ["elephants","cats","tigers","lions","monkeys","cows", "sheep", "frogs"];//array of animals

 for(i=0;i<animals.length;i++)//animals.length is the number of elements in animals. In this case it is 8

 {

 if (animals[i].length >= n)//if the number of letters in animals[i] is at least n then animals[i] is printed.

 {

 document.write(animals[i]+"
");//instruction to print animals[i]

 }

 }

 }//end of function typeAnimals(n)

 Now type the following code into the body of Txt.HTML.

 <script>

 var n = 6;// We want to print elements in the array which have at least six letters

 typeAnimals(n);

 </script>

 Open Txt.HTML and your output should be

 [image:]

 Conditional Operators

 This too is of great importance. Those who are good at maths and logic find this easy but others may find it difficult.

 AND

 The operator AND is used between two conditions if it is necessary for both to be true. The operator AND is && in JavaScript

 Consider this problem. A computer generates 1 or 0 randomly then selects one of C or D.

 If 1 AND C are picked an alert goes up saying "Congratulations, you picked 1 and C" else an alert goes up saying "Sorry you need 1 and C".

 Type this into hold.js.

 function ranNumLetter()

 {

 var numm = Math.round(Math.random());//selects 0 or 1 randomly

 var lettNum = Math.round(Math.random());//selects 0 or 1 randomly

 var let = "C";

 if (lettNum==1){let = "D";}//the letter is C for letterNum being 0 and D otherwise.

 if ((numm ==1)&&(let=="C")) //both 1 and C have to be generated

 {alert("Congratulations, you picked 1 and C")}

 else

 { alert("Sorry, you need 1 and C")}

 }//end of function ranNumLetter()

 Now type the following code into the body of Txt.HTML

 <script>

 ranNumLetter();

 </script>

 Open Txt.HTML in your favorite browser to see

 [image:]

 or

 [image:]

 OR

 The operator OR goes between two conditions if one or both of them are true. The operator OR is represented by || in JavaScript.

 To demonstrate it we will use the function typeItems(n) used before and modify it so that it prints items of length m OR length n.

 Here is the function that should be typed into hold.js.

 function typeAnimals1(m, n)

 {

 this.m = m;// uses m in parameter

 this.n = n;// uses n in parameter

 var animals= ["elephants","cats","tigers","lions","monkeys","cows", "sheep", "frogs"];//array of animals

 for(i=0;i<animals.length;i++)//things.length is the number of elements in animals. In this case it is 8

 {

 if ((animals[i].length == m)|| (animals[i].length == n))//if the number of letters in animals[i] is m or n then in animals[i is printed.

 {

 document.write(animals[i]+"
");//instruction to print animals[i]

 }

 }

 }//end of function typeAnimals1(m,n)

 Now type the following code into the body of Txt.HTML.

 <script>

 var m = 4;// We want to print elements in the array which have four letters

 var n = 5;// We want to print elements in the array which have five letters

 typeAnimals1(m,n);

 </script>

 After opening Txt.HTML in your favorite browser the output is

 [image:]

 All the animals with 4 or 5 letters!

 NOT

 The operator NOT is used in front of a condition so that the procedure happens when the condition is not true. The operator NOT is represented by ! in JavaScript.

 As an example, we will use the function typeAnimals(n) and alter it so that it prints animals which do NOT have n or more letters.

 Type this function in hold.js

 function typeAnimals2(n)

 {

 this.n = n;// n in parameter

 var animals= ["elephants","cats","tigers","lions","monkeys","cows", "sheep", "frogs"];//array of animals

 for(i=0;i<animals.length;i++)//animals.length is the number of elements in animals. In this case it is 8

 {

 if (!(animals[i].length >= n))//if the number of letters in animals[i] is NOT at least n then animals[i] is printed.

 {

 document.write(animals[i]+"
");//instruction to print things[i]

 }

 }

 }//end of function typeAnimals2(n)

 Now type the following code into the body of Txt.HTML

 <script>

 var n = 5;// We want to print elements in the array which do NOT have at least five letters

 typeAnimals2(n);

 </script>

 After opening Txt.HTML in your favorite browser the output is

 [image:]

 As you can see the words that do not have at least 5 letters have been printed. In this case, there are only 2.

 Chapter 5: Creating Dynamic Content

 In JavaScript, the ability to access, create, destroy or change HTML elements such as text boxes, drop-down lists, tables etc. is one of its most useful features. In order to do this, it uses a technique called the Dom model. This is based on something called object oriented programming which is a method of programming which is quite complicated for beginners. For the purpose of creating dynamic content for web pages knowledge of this type of computing is not absolutely necessary.

 First, we will have a look at accessing and altering existing HTML elements using JavaScript.

 Task one. Alter Txt.HTML so that when the button is pressed an alert showing the word Cat appears.

 This is a really easy thing to do and does not actually use the Dom model. However, it is a good first step in learning about this powerful technique.

 Here is the Txt.HTML code you need.

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 The dog sat on a log.

 <hr>

 <p>

 <form>

 <input type ="button" id = "butt" onclick=" cat() " value ="button"></button>

 Initial first name:

 <input type="text" name="initial" >

 Family name:

 <input type="text" name = "familyName" >

 </form>

 </BODY>

 </HTML>

 For the purposes of the task the vital line is <input type ="button" id = "butt" onclick=" cat() " value ="button"></button>

 By putting in the instruction onClick="cat()" we are informing the computer that if the button is clicked then the function cat() takes place.

 The instructions for the function are not found in Txt.HTML they are found in hold.js.

 The code for this function should be obvious but in case it isn't then it is written below.

 function cat()

 { alert('Cat'); }

 If you type the exact code for Txt.HTML as above and put the function cat() into hold.js then initially you will get the following output.

 [image:]

 Now click on the button and you get the alert window.

 [image:]

 Now we are going to use the Dom model to influence what is on the screen showingTxt.HTML..

 Task two. Alter Txt.HTML so that when the button is pressed a prompt appears asking your first name initial, then a second prompt appears asking for your family name. After you have filled in the prompts the first initial appears in the corresponding textbox and the family name goes in that text box.

 Let the function be called firstLetterFamilyName().

 Here is the code you should have in hold.js.

 function firstLetterFamilyName()//This function gets names and puts data from them in text fields

 {

 var firstNam = prompt("What is your first name?");//obtains first name

 var familyNam = prompt("What is your family name?"); //obtains family name

 var initLetter = firstNam.charAt(0);//gets first letter of first name

 var ob1 = document.getElementById("firstName");//assigns the textfield with the ID "firstName" to the variable ob1

 var ob2 = document.getElementById("familyName");//assigns the textfield with the ID "familyName" to the variable ob2

 ob1.value = initLetter//puts first initial of first name in correct textfield

 ob2.value = familyNam//puts family name in correct textfield

 }//end function firstLetterFamilyName()

 Having put this function in hold.js now you need to make some changes to the file Txt.HTML.

 The code for Txt.HTML is shown below.

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 The dog sat on a log.

 <hr>

 <p>

 <form>

 <input type ="button" id = "butt" onclick=" firstLetterFamilyName() " value ="button"></button>

 Initial first name:

 <input type="text" name="initial" id = "firstName">

 Family name:

 <input type="text" name="familyname" id = "familyName">

 </form>

 </BODY>

 </HTML>

 You will note only 3 changes, which are:

 (i) Changing the name of the function from cat() to firstLetterFamilyName()

 (ii) Giving the text box for first names the id = "firstName"

 (iii) Giving the text box for family names the id = "familyName"

 The id is critical. By using it JavaScript is able to get the required elements using the method (built in function) document.getElementById().

 Once the element has been obtained it has a whole lot of attributes which can be changed. Please note the following.

 It is very easy to write document.getElementById() as document.getElementByID() with a capital D instead of a lower case. If you do this your program won't work. JavaScript is sensitive to lower and upper case.

 The next example shows how the text box for family name can be altered in a variety of ways.

 function changeColorsFamilyName()

 {

 var nam = prompt("What is your family name?"); //obtains family name

 var ob = document.getElementById("familyName");//assigns the textfield with the ID "familyName" to the variable ob

 ob.style.backgroundColor="yellow";//changes the color of the actual textbox

 ob.style.width="50%";//changes the width of the textbox to 50% of the containing screen

 ob.style.color = "red";//changes the font color in the textbox to red

 ob.style.height = "200px"; //changes the height(vertical) of the textbox

 ob.style.fontSize="24pt"; //changes the font size in the textbox

 ob.style.fontFamily="wingdings";//changes the font used in the textbox to wingdings

 ob.value = nam;//enters your family name into the textbox

 }//end of changeColorsFamilyName().

 In the onclick action on the button change =" firstLetterFamilyName() to " changeColorsFamilyName()".

 There are a huge number of attributes you can adjust, far more than in the example.

 The next example shows how the button can be altered in a variety of ways.

 Make sure the button has an ID. I am calling mine butt. Create this function

 function changeButton()

 {

 var nam = prompt("What is your favorite animal?"); //obtains animal name

 var ob = document.getElementById("butt");//assigns the button with the ID "butt" to the variable ob

 ob.style.backgroundColor="blue";//changes the color of the actual button

 ob.style.width="75%";//changes the width of the button to 75% of the containing screen

 ob.style.color = "white";//changes the font color in the button to white

 ob.style.height = "50px"; //changes the height(vertical) of the button

 ob.style.fontSize="30pt"; //changes the font size in the button

 ob.style.fontFamily="arial";//changes the font used in the button to arial

 ob.value = nam;//enters your favorite animal as text on button

 }//end of changeButton()

 Instead of onclick = " changeColorsFamilyName()" change it to onclick=" changeButton()"

 Having dealt with text boxes and buttons let us now have a look at how you might use a dropdown box, a method frequently used for obtaining choices or multi-choice tests.

 Let's add a dropdown box to our Txt.HTML. The code is below.

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 The dog sat on a log.

 <hr>

 <p>

 <form>

 <select id="dropp">

 <option value="volvo">Volvo</option>

 <option value="saab">Saab</option>

 <option value="mercedes">Mercedes</option>

 <option value="audi">Audi</option>

 </select>

 <input type ="button" id = "butt" onclick=" alertSelect()" value ="button"></button>

 Initial first name:

 <input type="text" name="initial" id = "firstName">

 Family name:

 <input type="text" name="familyname" id = "familyName">

 </form>

 </BODY>

 </HTML>

 The function alertSelect() replaces changeButton() or changeColorsFamilyName().

 Here is the code for alertSelect().

 function alertSelect()

 {

 var ob = document.getElementById("dropp");

 alert(ob.value);

 }

 Open Txt.HTML in your favorite browser then click on the button. You should get an alert with the name of the car but in lower case. This is the value of the choice.

 As a final demonstration of the Dom model, we will have a look at tables.

 We fill demonstrate three uses of JavaScript in dealing with tables.

 (1) Given an existing table fill its cells with the members of an array so that one row has yellow writing and another green writing. The background of the table will be blue.

 (2) As for (1) but an extra row will be added. The new row will have red writing.

 (3) A completely new table of the same dimensions as that in (1) will be created. This is often described as being created on the fly. The table will have a black background with white writing.

 Here is the code for Txt.HTML with a table and code for (1).

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 The dog sat on a log.

 <hr>

 <table id="myTable" border="1" >

 <tr>

 <td >Animals</td>

 <td >Continent</td>

 <td >Wild/Tame</td>

 </tr>

 <tr>

 <td > </td>

 <td > </td>

 <td > </td>

 </tr>

 <tr>

 <td > </td>

 <td > </td>

 <td > </td>

 </tr>

 </table>

 <hr>

 <input type ="button" id = "butt" onclick=" fillRows1()" value ="button"></button>

 </BODY>

 </HTML>

 Here is the code for fillRows1()

 function fillRows1()

 {

 document.getElementById('myTable').style.backgroundColor="blue";//changes background color of table

 document.getElementById('myTable').rows[1].style.color="yellow";//changes font color of row 1 to yellow

 document.getElementById('myTable').rows[2].style.color="green";//changes font color of row 2 to green

 document.getElementById('myTable').rows[1].cells[0].innerHTML = "Lion";

 document.getElementById('myTable').rows[1].cells[1].innerHTML = "Africa";

 document.getElementById('myTable').rows[1].cells[2].innerHTML = "W";

 document.getElementById('myTable').rows[2].cells[0].innerHTML = "Dog";

 document.getElementById('myTable').rows[2].cells[1].innerHTML = "Everywhere";

 document.getElementById('myTable').rows[2].cells[2].innerHTML = "T";//previous 6 instructions fill cells

 }//end fillRows1()

 When you open Txt.HTML you will get a funny looking little page as below.

 [image:]

 Clicking on the button activates fillRows1() and you get

 [image:]

 What was required has been done for (1). Now to carry out task (2). Take fillRows1() and add the following lines of code.

 var table = document.getElementById("myTable"); // Find a <table> element with id="myTable"

 var row = table.insertRow(3);// Create an empty <tr> element and add it to the 4th row position of the table

 row.style.color = "red"; //new row has to have red writing

 var cell1 = row.insertCell(0);

 var cell2 = row.insertCell(1);

 var cell3 = row.insertCell(2); // Insert new cells (<td> elements) at the 0,1,2 position of the "new" <tr> element

 cell1.innerHTML = "Tiger";

 cell2.innerHTML = "Asia";

 cell3.innerHTML = "W"; // Add some text to the new cells

 Once again open Txt.HTML click the button and now you get the new row with required information in red.

 [image:]

 Before proceeding to Task (3) notice that the value of textboxes and buttons has been replaced with innerHTML. This has caused a lot of grief to many programmers over the years. If you forget just use Google to remind you and so long as you have comments on your previous work you will soon remember.

 Task (3) requires the creation of a table. While that is quite straightforward it is a good idea, as preparation, to show something really simple, the creation of a button.

 Here is the code for Txt.HTML

 <!DOCTYPE html >

 <head>

 <title>XYZ</title>

 <script src="hold.js"></script>

 </head>

 <body>

 The dog sat on a log.

 <hr>

 <script>

 /* Create a <button> element*/

 var btn = document.createElement("BUTTON");

 /*Create a text node*/

 var t = document.createTextNode("CLICK ME");

 /* Append the text to <button> */

 btn.appendChild(t);

 /*Append <button> to <body>*/

 document.body.appendChild(btn);

 </script>

 <hr>

 </body>

 </html>

 Opening Txt.HTML produces the following output.

 [image:]

 Unfortunately clicking on the button produces nothing, as we haven't put in any functions for it to activate. Here is how you could add something to the program so it produced an alert saying cat.

 We already have a little function called cat() in hold.js which does exactly that.

 Add these lines of code just below document.body.appendChild(btn);

 /*assigns function cat() to btn onclick event*/

 btn.onclick = cat;

 Now run the program and you will get the required cat alert.

 Now to create the table of task (3).

 First let's have a new version of Txt.HTML

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <input type="button" value="Make Table" onclick="makeTable()" />

 <hr />

 <div id="dvTable"> </div>

 </BODY>

 </HTML>

 Note the use of the <div> tag.

 As you probably know from HTML a div is basically a holder of content on a web page. We're going to place the table in it after clicking the button. If you open Txt.HTML before we have created makeTable() then all you will get is

 [image:]

 You can click on the button as much as you like. Nothing happens.

 In hold.js enter the following function. Carefully read the comments to follow the logic of this program.

 function makeTable()

 {

 /*Array to contain student data*/

 var students = new Array();

 /*student data entered into array. Note new method called push of entering into an array. Push is widely used in many computer languages*/

 /* When complete we have an array containing student records. This array is an array of arrays*/

 students.push([" Id", "Name", "Maths"]); //This is going to be the header of the table

 students.push([1, "Mary", 89]);

 students.push([2, "Boris", 65]);

 students.push([3, "Trudy", 53]);

 students.push([4, "Dale", 17]);

 /*Now to create table*/

 var table = document.createElement("TABLE"); //Create a HTML Table element

 table.border = "1";//give the table a border of thickness 1px

 table.id = "myTable";// give the table the id ' myTable'

 var columnCount = students[0].length;//Get the number of columns in the table.

 var row = table.insertRow(-1);//creates a row to put into the table

 for (var i = 0; i < columnCount; i++) {

 var headerCell = document.createElement("TH");

 headerCell.innerHTML = students[0][i];

 row.appendChild(headerCell);

 } //Add the header row

 for (var i = 1; i < students.length; i++)

 { /*for each student we create a row*/

 row = table.insertRow(-1);

 for (var j = 0; j < columnCount; j++)

 {

 var cell = row.insertCell(-1);

 cell.innerHTML = students[i][j];

 }//Add the data rows.

 } //Add the students

 var dvTable = document.getElementById("dvTable");//get div which has been created to hold table

 dvTable.innerHTML = "";//make the HTML of the div non existent. Otherwise any HTML would appear before our table.

 dvTable.appendChild(table);//put the table in the div

 /*change background color of table*/

 document.getElementById("myTable").style.backgroundColor="black";

 /*changes font color of table*/

 document.getElementById("myTable").style.color="white";

 }//end of makeTable()

 At the beginning of this chapter, we mentioned that in addition to the accessing, altering and creation of the elements in HTML we could also destroy them. This is, in actual fact, the easiest thing to do. All you need is the Id of the element to wish to destroy.

 Start with Txt.HTML as below.

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <input type="button" value="Destroy" onclick="removeButton()" id = "rmv"/>

 <hr >

 </BODY>

 </HTML>

 Now to create the code for removeButton().

 In hold.js type the following.

 function removeButton()

 {/* gets button and puts it in variable butn*/

 var butn = document.getElementById("rmv");

 butn.remove()// eliminates butn

 }//end of removeButton()

 Open Txt.HTML and you will see the button showing "Destroy".

 Click it and it disappears.

 In this chapter, we have given the barest bones of all the amazing things you can do with JavaScript to create dynamic content. The sky is the limit. There is a wealth of information on Google. Any question you have about this can probably be answered.

 Some particularly good sites are

 https://www.javascript.com/

 https://www.w3schools.com/js/

 You can also test your knowledge at my site

 http://www.nceax.co.nz/Computing/javascriptMultichoice.html

 Chapter 6: Problems to do and where to from here

 Here are some problems for you to try. If you can do all of them then you have really understood what was taught in the preceding chapters.

 Write JavaScript programs which do the following:

 (1) Allow you to input a string str and a number n (whole) then print str n times going down the page

 (2)Allow you to input certain strings then print a picture with the name of the string inputted. In this problem, you're going to have to get some pictures and name them

 (3)Allow you to input certain strings and allow you to input a whole number less than some upper limit then print a sequence of pictures with the name of the string inputted.

 (4)Allow you to input a string str then print the characters of the string going down the page. So if you inputted ‘CAT' you would output

 C

 A

 T

 (5)Allow you to input a string str and a number n (whole) then print new strings with the characters of the string n times going down the page from 1 up to n characters

 Example you might input ‘Technologies’ and 6 so the program outputs

 T

 Te

 Tec

 Tech

 Techn

 Techno

 (6)Do as in 5 only the output would start from the end so if you inputted ‘Technologies’ and 7 you would get

 s

 es

 ies

 gies

 gies

 ogies

 logies

 (7)As in (5) and (6) but now the output is

 Technologies

 Technologie

 Technologi

 Technolog

 If you inputted ‘Technologies’ and 4

 (8)Allows you to input a string and a number n (whole). If the string starts with a vowel alert ‘Vowel’ otherwise prints the string n times going down the page

 (9)Allows you to input three strings then alerts you with the string having the largest number of characters.

 (10)Allows you to input a number N less than 1000, input another number n less than 10 then create a table which has rows with n cells and is filled with the N numbers. As an example, if your value for N was 18 and your value for n was 5 then the table you create would be

 	 1

 	 2

 	 3

 	 4

 	 5

 	 6

 	 7

 	 8

 	 9

 	 10

 	 11

 	 12

 	 13

 	 14

 	 15

 	 16

 	 17

 	 18

 	

 	

 If there are any problems you can't do go to the email on www.nceax.co.nz and contact the writer of these problems.

 Having mastered the JavaScript of this book how far can you go?

 The sky is the limit as regards this. Here are some things you can learn how to do:

 (i) Learn about timers and how you can use them to make sliders and other picture displays;

 (ii) Learn about Object Oriented Programming using JavaScript;

 (iii) Learn how to create persistent databases in a web page;

 (iv) Learn how to access and manipulate external databases;

 (v) Build apps using several different technologies, including Adobe PhoneGap Build;

 You can do almost anything with JavaScript.

 If there are any problems you can't do go to the email on www.nceax.co.nz and contact the writer of these problems.

 Answers to three problems

 (3)HTML

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <hr>

 <form>

 <input type ="button" id = "butt" onclick ="pix()" value ="button"></button>

 </form>

 </BODY>

 </HTML>

 JavaScript

 function pix()

 {

 var numPix = prompt("How many pictures do you want?");//input number of pictures wanted

 if(numPix>4)// number of pictures must not exceed 4

 { alert("Try again. The number of pictures must be less than 5"); }

 else

 {

 var pic = prompt("What picture do you want? Input C for cat, M for man, R for rectangle."); //input picture wanted

 if (!((pic=="C")||(pic=="M")||(pic=="R")))// pictures must be C,M or R

 { alert("Try again. You must enter C,M or R"); }

 else

 {

 if (pic =="C"){ pic ="
"} else if (pic =="M"){pic = "
"} else {pic = "
"}// change pic to code for picture

 for (i = 1;i<=numPix;i++) { document.write(pic+"
"); }// print pictures

 }

 }

 }//end of pix()

 (7) HTML

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <input type="button" value="Display words" onclick="showWords()" id = "showWords"/>

 <hr >

 </BODY>

 </HTML>

 JavaScript

 function showWords()

 {

 var word = prompt("What word would you like to see displayed?");//inputs word

 var numberLettersInWord = word.length;//finds number of characters in word

 var numSubStrings = prompt("What is the number of substrings of "+word+" that you want displayed?");//inputs number of substrings

 if (numSubStrings>numberLettersInWord) { alert("You must ask for a number of substrings which is no more than the number of letters in your word!"); }//ensures a number which is not too large is inputted.

 else

 {

 //Checks could also be put in for other things but we won't bother. You can research ways you could warn of other invalid inputs

 for(i=0;i<=numSubStrings-1;i++)// prints numSubStrings words (note we're starting from 0)

 { var str = ""; //initially word is empty string

 for(j=0;j<=numberLettersInWord - 1-i;j++)

 { str = str +word.charAt(j);//build up substring

 }

 document.write(str+"
"); //print string just created.
 moves each substring down a line

 } //end of (i=0;i<=numSubStrings-1;i++)

 }//end of else

 }//end of showWords()

 (10) HTML

 <!DOCTYPE HTML>

 <HEAD>

 <TITLE> XYZ </TITLE>

 <script src="hold.js"></script>

 </HEAD>

 <BODY>

 <input type="button" value="Display Table" onclick="makeTable1()" id = "showTable"/>

 <hr >

 <div id = dvTable></div>

 </BODY>

 </HTML>

 JavaScript

 function makeTable1()

 {

 var largestNumberShown = prompt("What whole number less than 1000 do you want in the table?");//input number that is desired

 if(largestNumberShown>=1000)

 { alert("You must enter a whole number less than 1000");//warning if number in excess of 1000 is entered. There could be other checks but we won't bother

 }

 else

 {

 var numberColumns = prompt("How many columns do you want in your table? Enter a whole number less than 13 but more than 4");

 //could put checks in here to make sure restrictions on columns were adhered to

 /*The 2 lines below construct enough rows to accommodate all the numbers. Needs some knowledge of mathematics */

 var numberRows = ((largestNumberShown - largestNumberShown%numberColumns)/numberColumns + 1);

 /* Create a HTML Table element */

 var table = document.createElement("TABLE");

 table.border = "1";

 table.id = "myTable";

 /*Be careful with { and }*/

 for (var i = 0; i < numberRows; i++)

 {

 row = table.insertRow(-1);//insert rows

 for (var j = 1; j <=numberColumns; j++)

 { var cell = row.insertCell(-1);

 if(numberColumns*i+j<=largestNumberShown)

 {cell.innerHTML = numberColumns*i+j;}//puts correct numbers in cells. Needs some knowledge of maths }//Add the data rows.

 }// for (var j = 1; j <=numberColumns; j++)

 var dvTable = document.getElementById("dvTable");//get div which has been created to hold table

 dvTable.innerHTML = "";//make the HTML of the div non existent. Otherwise any HTML would appear before our table.

 dvTable.appendChild(table);//put the table in the div

 }

 }//end of makeTable1()

 In addition to these problems you should also make sure you can do the multi-choice questions at http://www.nceax.co.nz/Computing/javascriptMultichoice.html

 By the end of 2017, the solutions to all problems in the last chapter of this book will be in

 http://www.nceax.co.nz/Computing

 Be sure to make this site a bookmark!

 Conclusion

 JavaScript is a computer language.

 If you wish to master it you must know its basics inside and out.

 This book has thoroughly covered most of those basics.

 Before you proceed further with this language you must master the material in the book to the extent that you can do the problems in the last chapter.

 Once you have mastered the material in this book you are ready for all the other things that can be done with the JavaScript programming language!

 Good Luck.

 images/00011.jpeg

images/00010.jpeg

images/00013.jpeg

images/00012.jpeg

images/00015.jpeg

images/00014.jpeg

cover.jpeg

images/00028.jpeg

images/00027.jpeg

images/00020.jpeg

images/00022.jpeg

images/00021.jpeg

images/00024.jpeg

images/00023.jpeg

images/00026.jpeg

images/00025.jpeg

images/00017.jpeg

images/00016.jpeg

images/00019.jpeg

images/00018.jpeg

images/00002.jpeg

images/00001.jpeg

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg

images/00005.jpeg

images/00008.jpeg

images/00007.jpeg

images/00009.jpeg

