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Preface

Anomaly detection and isolation have a vital role in modern industrial processes
to enhance productivity, efficiency, and safety, as well as to avoid expensive
maintenance. Therefore, it is important to be able to detect and identify any
possible anomalies or failures in the system as early as possible. Generally,
anomalies in modern automatic processes are difficult to avoid and may result
in serious process degradations. The role of detection is to identify any anomaly
event and indicate a distance from the system behavior compared to its nominal
behavior. Furthermore, anomaly isolation determines the probable source of the
detected anomaly. To illustrate, an accidental or even deliberate contamination
of a drinking water distribution network can lead to financial losses, as well as to
serious health risks. Therefore, early detection of anomalies is crucial not only to
maintain proper process operation but also for the sake of people’s health. Today
engineered and environmental processes have become far more complex due to
advances in technology. Multiple key variables need to be monitored simulta-
neously, and data may have both temporal and spatial aspects. New features of
these processes require new and better statistical tools for process monitoring.

Early detection and isolation of potential faults in complex engineering
and environmental processes have proven to be particularly challenging. In the
absence of a physics-based process model, data-driven statistical techniques
for process monitoring have proved themselves in practice over the past four
decades. These approaches use information derived directly from input data and
require no explicit models for which development is usually costly or time-
consuming. This book is intended to report recent developments in statistical
process monitoring using advanced data-driven and deep learning techniques.
The book is divided into nine chapters, and they are grouped into two parts.
The objective of the first part is to tackle multivariate challenges in process
monitoring by merging the advantages of univariate and traditional multivariate
techniques to enhance their performance and widen their practical applicabil-
ity. The second part aims to merge the desirable properties of shallow learning
approaches, such as a one-class support vector machine, k-nearest neighbors,
and unsupervised deep learning approaches to develop more sophisticated and
efficient monitoring techniques. Throughout the book, the presented approaches
are demonstrated using experimental data from many processes including waste-
water treatment plants at KAUST and Golden, CO, USA, ozone air quality data,

ix



x Preface

and stereovision data for obstacle detection in driving environments. Thus, the
reader will find illustrative examples from a range of environmental and engi-
neering processes.

The book should be of interest to engineering and academic readers from
process chemometrics and data analytics, process monitoring and control, data
scientists, applied statistics, and industrial statisticians. In fact, this book can be
assimilated by advanced undergraduates and graduate students having knowl-
edge of basic multivariate statistical analysis and machine learning.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Motivation: why process monitoring

Recent decades have witnessed a huge growth in new technologies and advance-
ments in instrumentation, industrial systems, and environmental processes,
which are becoming increasingly complex. Diagnostic operation has become
an essential element of these processes and systems to ensure their operational
reliability and availability. In an environment where productivity and safety are
paramount, failing to detect anomalies in a process can lead to harmful effects
to a plant’s productivity, profitability, and safety. Several serious accidents have
happened in the past few decades in various industrial plants across the world,
including the Bhopal gas tragedy [1,2], the Piper Alpha explosion [3,4], the acci-
dents at the Mina al-Ahmadi Kuwait refinery [5] and two photovoltaic plants in
the US burned in 2009 and 2011 (a 383 KWp PV array in Bakersfield, CA and a
1.208 MWp power plant in Mount Holly, NC, respectively) [6]. The Bhopal ac-
cident, also referred to as the Bhopal gas disaster, was a gas leak accident at the
Union Carbide pesticide plant in India in 1984 that resulted in over 3000 deaths
and over 400,000 others gravely injured in the local area around the plant [1,2].
The explosion of the Piper Alpha oil production platform, which is located in
the North Sea and managed by Occidental Petroleum, caused 167 deaths and
a financial loss of around $3.4 billion [3,4]. In 2000, an explosion occurred in
the Mina Al-Ahmadi oil refinery in Kuwait, killing five people and causing seri-
ous damage to the plant. The explosion was caused by a defect in a condensate
line in a refinery. Nimmo [7] has estimated that the petrochemical industry in
the USA can avoid losing up to $20 billion per year if anomalies in inspected
processes could be discovered in time. In safety-critical systems such as nu-
clear reactors and aircrafts, undetected faults may lead to catastrophic accidents.
For example, the pilot of the American Airlines DC10 that crashed at Chicago
O’Hare International Airport was notified of a fault only 15 seconds before the
accident happened, giving the pilot too little time to react; this crash could easily
have been avoided according to [8]. Recently, the Fukushima accident of 2011
in Japan highlighted the importance of developing accurate and efficient moni-
toring systems for nuclear plants. Essentially, monitoring of industrial processes
represents the backbone for ensuring the safe operation of these processes and
to ensure that the process is always functioning properly.

Statistical Process Monitoring using Advanced Data-Driven and Deep Learning Approaches
https://doi.org/10.1016/B978-0-12-819365-5.00007-3
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2 Statistical Process Monitoring

1.1.2 Types of faults

Generally speaking, three main subsystems are merged to form a plant or sys-
tem: sensors, actuators, and the main process itself. These systems’ components
are permanently exposed to faults caused by many factors, such as aging, man-
ufacturing, and severe operating conditions. A fault or anomaly is a tolerable
deviation of a characteristic property of a variable from its acceptable behavior
that could lead to a failure in the system if it is not detected early enough so
that the necessary correction can be performed [9]. Conventionally, a fault, if
it is not detected in time, could progress to produce a failure or malfunction.
Note that there is a distinction between failure and malfunction; this distinc-
tion is important. A malfunction can be defined as an intermittent deviation of
the accomplishment of a process’s intended function [10], whereas failure is a
persistent suspension of a process’s capability to perform a demanded function
within indicated operating conditions [10].

In industrial processes, a fault or an abnormal event is defined as the depar-
ture of a calculated process variable from its acceptable region of operation. The
underlying causes of a fault can be malfunctions or changes in sensor, actuator,
or process components:

• Process faults or structural changes. Structural change usually takes place
within the process itself due to a hard failure of the equipment. The informa-
tion flow between the different variables is affected because of these changes.
Failure of a central controller, a broken or leaking pipe, and a stuck valve
are a few examples of process faults. These faults are distinguished by slow
changes across various variables in the process.

• Faults in sensors and actuators. Sensors and actuators play a very important
role in the functioning of any industrial process since they provide feedback
signals that are crucial for the control of the plant. Actuators are essential for
transforming control inputs into appropriate actuation signals (e.g., forces and
torques needed for system operation). Generally, actuator faults may lead to
higher power consumption or even a total loss of control [11]. Faults in pumps
and motors are examples of actuator faults. On the other hand, sensor-based
errors include positive or negative bias errors, out of range errors, precision
degradation error, and drift sensor error. Sensor faults are generally charac-
terized by quick deviations in a few numbers of process variables. Fig. 1.1
shows examples of the most commonly occurring sensor faults: bias, drift,
degradation, and sensor freezing.

We can also find in the literature another type of anomaly called gross pa-
rameter changes in a model. Indeed, parameter failure occurs when there is a
disturbance entering the monitored process from the environment through one or
more variables. Some common examples of such malfunctions include a change
in the heat transfer coefficient, a change in the temperature coefficient in a heat
exchanger, a change in the liquid flow rate, or a change in the concentration of
a reactant.
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FIGURE 1.1 Commonly occurring sensor faults. (A) Bias sensor fault. (B) Drift sensor fault.
(C) Degradation sensor fault. (D) Freezing sensor fault.

FIGURE 1.2 Fault types. (A) Abrupt anomaly. (B) Gradual anomaly. (C) Intermittent anomaly.

Thus, sensor or process faults can affect the normal functioning of a process
plant. In today’s highly competitive industrial environment, improved moni-
toring of processes is an important step towards increasing the efficiency of
production facilities.

In practice, there is a tendency to classify anomalies according to their
time-variant behavior. Fig. 1.2 illustrates three commonly occurring types of
anomalies that can be distinguished by their time-variant form: abrupt, incipi-
ent, and intermittent faults. Abrupt anomalies happen regularly in real systems
and are generally typified by a sudden change in a variable from its normal op-
erating range (Fig. 1.2A). The faulty measurement can be formally expressed as

M(t) =
{

r(t), t < ta,

r(t) + F, t ≥ ta,
(1.1)

where F is a bias that happens at the time instant ts .
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The drift anomaly type can be caused by the aging or degradation of a sensor
and can be viewed as a linear change of the magnitude of fault in time. Here,
the measurement corrupted with a drift fault is modeled as

m(t) =
{

r(t), t < ta,

r(t) + θ(t − ta), t ≥ ts ,
(1.2)

where θ is a slope of the slow drift and ta is the start time of the occurred fault.
Finally, intermittent faults are faults characterized by discontinuous occurrence
in time; they occur and disappear repeatedly (Fig. 1.2C).

Generally, industrial and environmental processes are exposed to various
types of faults that negatively affect their productivity and efficiency. According
to the form in which the fault is introduced, faults can be further classified as
additive and multiplicative faults. Additive faults often appear as offsets of sen-
sors or as additive bias, while multiplicative faults influence process parameters.
Specifically, in an additive fault, the measurable variable Y(t) is corrupted by
an additive fault, θt , as Y = Yt + θt . On the other hand, a multiplicative fault
influences a measurable variable Y by the product of another variable U with θt

(i.e., Y = (a + f )Ut ), where Ut is the input variable.

1.1.3 Process monitoring

Before automation became commonplace in the field of process monitoring, hu-
man operators carried out important control tasks in managing process plants.
However, the complete reliance on human operators to cope with abnormal
events and emergencies has become increasingly difficult because of the com-
plexity and a large number of variables in modern process plants. Considering
such difficult conditions, it is understandable that human operators tend to make
mistakes that can lead to significant economic, safety, and environmental prob-
lems. Thanks to advancements in technology over recent years, automation of
process fault detection and isolation has been a major milestone in automatic
process monitoring. Automatic process monitoring has been shown to respond
very well to abnormal events in a process plant with much fewer mistakes com-
pared to fault management by human operators.

The demand for a monitoring system that is capable of appropriately detect-
ing abnormal changes (sensor or process faults) has attracted the attention of
researchers from different fields. The detection and isolation of anomalies that
may occur in a monitored system are the two main elements of process monitor-
ing (Fig. 1.3). The purpose of the detection step is to detect abnormal changes
that affect the behavior of the monitored system. Once the anomaly is detected,
effective system operation also requires evaluation of the risk of a system shut-
down, followed by fault isolation or correction before the anomaly contaminates
the process performance [12,13]. The purpose of fault isolation is to determine
the source responsible for the occurring anomalies, i.e., to determine which sen-
sor or process component is faulty. In practice, sometimes it is also essential to
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FIGURE 1.3 Steps of process monitoring.

assess the severity of the occurred fault, which is done by the fault identification
step. Here, we will focus only on fault detection and isolation.

There are two types of anomaly detection:

• Online fault detection. The objective of online anomaly detection is to set
up a decision rule capable of detecting, as quickly as possible, the transition
from a normal operating state to an abnormal operating state. Online detec-
tion is based on the idea that system evolution is considered a succession of
stationary modes separated by fast transitions.

• Offline fault detection. The purpose of offline fault detection is to detect the
presence of a possible anomaly outside the use of the monitored system. The
system is observed for a finite period (the system is in stationary mode), and
then, based on these observations, a decision is made on the state of the mon-
itored system. Offline detection methods rely on an observation number fixed
a priori, where the observations also come from the same law.

1.1.4 Physical redundancy vs analytical redundancy

Process monitoring is essentially based on the exploitation of redundant sources
of information. There are two types of redundancy in the process: physical re-
dundancy and analytical redundancy (Fig. 1.4A–B). The essence of hardware
or physical redundancy, which is a traditional method in process monitoring,
consists of measuring a particular process variable using several sensors (e.g.,
two or more sensors). To detect and isolate simple faults, the number of sensors
to use should be doubled. Specifically, under normal conditions, one sensor is
sufficient to monitor a particular variable, but adding at least two extra sensors
is generally needed to guarantee reliable measurements and monitoring under
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FIGURE 1.4 Conceptual representation of (A) physical and (B) analytical redundancy.

faulty conditions. Typically, fault detection and isolation are achieved by a ma-
jority vote between all the redundant sensors. This strategy has been widely
used in the industry because of its reliability and simplicity of implementation.
In practice, the main disadvantage of hardware redundancy is the additional
cost of equipment and maintenance, as well as the space needed to install the
equipment that increases complexity considerably in the already very complex
systems. In addition, this method is limited in practice to sensor faults and can-
not detect faults in variables that are not measured directly. This approach is
mainly only justified for critical systems, such as nuclear reactors and aero-
nautic systems. Unlike a physical redundancy, which is performed by adding
more sensors (hardware) to measure a specific process variable, the analytical
redundancy does not require additional hardware because it is based on using
the existing relations between the dependent measured variables that are or are
not of the same nature. Analytical redundancy is a more accessible strategy that
compares the measured variable with the predicted values from a mathemat-
ical model of the monitored system. It thereby exploits redundant analytical
relationships among various measured variables of the monitored process and
avoids replicating every hardware separately.

1.2 Process monitoring methods

Today, engineering and environmental processes have become far more complex
due to advances in technology. Anomaly detection and isolation have become
necessary to monitor the continuity and proper functioning of modern industrial
systems and environmental processes. Depending on the field of application, the
repercussions of anomalies become binding and harmful if it concerns human
safety, such as in aeronautical systems and nuclear reactors. Advancements in
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the field of process control and automation over the last few years have yielded
various methods for successful diagnosis and detection of abnormal events. To
meet safety and productivity requirements, extensive theoretical and practical
monitoring methods have been developed. These methods are generally divided
into three families of approaches, depending on the nature of the knowledge
available on the system: model-, knowledge-, and data-based methods. A thor-
ough overview of process fault detection and diagnosis can be found in [5].
Fig. 1.5 shows a summary of various monitoring methods; this section presents
a brief overview of these monitoring techniques.

FIGURE 1.5 A summary of various fault detection approaches.

1.2.1 Model-based methods

Over the past three decades, numerous monitoring methods to improve the
safety and productivity of several environmental and engineering processes
have emerged. Model-based methods have proven especially useful in indus-
trial applications where keeping the desired performance is highly required.
A model-based method involves comparing the process’s measured variables
with the prediction from the mathematical model of the process. The concep-
tual schematic of the model-based fault detection is illustrated in Fig. 1.6. The

FIGURE 1.6 Conceptual schematics of model-based process monitoring.
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backbone of the model-based method is the generation of residuals by compar-
ing the measurement data with their predictions from the analytical model of
the monitored process. Indeed, the residuals play the role of a fault indicator.
Ideally, in the absence of modeling uncertainties and errors, the residual will be
zero and the model will perfectly fit the measurements. Thus, any departure of
the residual from zero indicates the presence of faults. However, in practice, we
cannot avoid the presence of modeling uncertainties and noise measurements.
In other words, a perfectly precise analytical model of an inspected process is
never available. Notice that there is a distinction between a deviation of the real
measurement and its prediction from a reference model, even under no-fault
conditions. Hence, instead of using the departure of residuals from zero as a
fault indicator, detection can be done by constructing a detection threshold that
distinguishes between fault-free residuals and anomalies. The detection perfor-
mance is mainly related to the selected detection threshold. This means that if
the value of the thresholds is too small, then we get repeat false alarms due
to errors and uncertainties when the residuals overpass the threshold and are
consequently flagged as faults; this scenario obviously must be avoided. The
detection threshold should thus be computed so that the frequency of correct
detection is maximized for a given small number of false alarms (e.g., 5% or
1%). To address this concern, several statistical schemes have been proposed
to monitor the residuals vector, including the generalized likelihood ratio ap-
proach, cumulative sum (CUSUM) type schemes, and EWMA schemes. In the
case of multivariate data, when the residuals matrix is generated, multivariate
extensions of CUSUM and EWMA and T 2 are usually used to detect faults in
the mean/variance of process.

In summary, fault detection and isolation using model-based methods usu-
ally take place in two distinct steps:

• The first step consists of residual generation. Ideally, these residuals must be
zero in normal operation and nonzero in the presence of an anomaly. How-
ever, the presence of noise and modeling errors make the residuals fluctuate
around zero. A significant divergence of the residual from zero is an indica-
tion of faults.

• The second step concerns the evaluations of the residuals based on a deci-
sion procedure for detecting and isolating faults. This is done using statistical
detection techniques such as EWMA, CUSUM, and generalized likelihood
ratio (GLR) test [12].

A substantial amount of research work has been carried out on model-
based monitoring methods. Methods that fall into the model-based monitoring
category include parity space approaches [14–17], observer-based approaches
[18,19], and interval approaches [20]. A related discussion and a comprehen-
sive survey on model-based fault detection methods can be found in [21–23].

Essentially, the detection performance of model-based approaches is closely
related to the accuracy of the reference model. The availability of an accurate
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model that mimics the nominal behavior of the monitored process is very help-
ful for facilitating the detection of faulty measurements. However, for complex
processes, such as those of many industrial and environmental processes with
a large number of variables, deriving and developing accurate models is not al-
ways easy and can be time-consuming, which makes them nonapplicable for
many applications. For instance, modeling the inflow measurements of wastew-
ater treatment plants is very challenging because of the presence of a large
number of variables that are nonlinearly dependent and autocorrelated. Addi-
tionally, modeling modern industrial and environmental processes is challenging
because of the complexity and the absence of a precise understanding of these
processes. The successful detection of faults using model-based approaches can,
therefore, be considered a challenging and unsuitable approach. Alternatively,
data-based methods are more commonly used.

1.2.2 Knowledge-based methods

The success of modern industrial systems relies on their proper and safe op-
eration. Early detection of anomalies as they emerge in the inspected process
is essential for avoiding extensive damage and reducing the downtime needed
for reparation [24]. As discussed above, when the information available to un-
derstand the process under fault-free operation is insufficient to construct an
accurate analytical model, analytical monitoring methods are no longer effec-
tive. Knowledge-based methods present an alternative solution to bypass this
difficulty. In the following, we use artificial intelligence methods and available
historical measurements, which inherently represent the correlation of the pro-
cess variables, to extract the underlying knowledge and system characteristics.
In other words, we utilize process characteristic values, such as variance, mag-
nitude, and state variables, for extracting features under fault-free and faulty
conditions based on heuristic and analytical knowledge. Fault detection is then
performed in a heuristic manner. Specifically, the actual features from the on-
line data are compared with the obtained under-lying knowledge. Methods that
fall in this category include expert systems [25], fuzzy logic, Hazop-digraph
(HDG) [5], possible cause and effect graphs (PCEG) [26], neuro-fuzzy based
causal analysis, failure mode and effect analysis (FMEA) [27], and Bayesian
networks [28]. The major drawback of these techniques is that they are more
appropriate for small-scale systems and thus may not be suited to inspect mod-
ern systems.

1.2.3 Data-based monitoring methods

Engineering and environmental processes have undoubtedly become far more
complex due to advances in technology. Consequently, designing an accurate
model for complex, high dimensional and nonlinear systems has also become
very challenging, expensive, and time-consuming to develop. Setting simplifi-
cations and assumptions on models leads to limits in their capacity to capture
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certain relevant features and operation modes, and induces a modeling bias that
significantly degrades the efficiency of the monitoring system. In the absence
of a physics-based process model, data-driven statistical techniques for process
monitoring have proved themselves in practice over the past four decades. In-
deed, data-based implicit models only require an available process-data resource
for process monitoring [5]. Data-based monitoring techniques are mainly based
on statistical control charts and machine-learning methods.

Essentially, these monitoring techniques rely on historical data collected
from the monitoring system. The system is modeled as a black box with in-
put and output data (Fig. 1.7). At first, a reference empirical model that mimics
the nominal behavior of the inspected process is constructed using the fault-free
data, and then this model is used for detecting faults in new data. In contrast to
model-based methods, only historic process data is required to be available in
the data-based fault detection methods, and they are classified into two classes:
qualitative and quantitative methods.

FIGURE 1.7 Data-based methods.

Unsupervised data-based techniques for fault detection and isolation do
not use any prior information on faults affecting the process. Unsupervised
data-based techniques cover a set of methods for monitoring industrial pro-
cesses through tools such as statistical control charts (see Fig. 1.8). Univariate
techniques, such as a Shewhart chart, exponentially weighted moving average
(EWMA) [29], and cumulative sum (CUSUM), are used for monitoring only a
single process variable at a given time instant. Monitoring charts have been ex-
tensively exploited in most industrial processes. CUSUM and EWMA schemes
show good capacity in sensing small changes compared to the Shewhart chart.
In [30], a spectral monitoring scheme is designed based on the information em-
bedded in the coefficients of the signal Fourier. However, these conventional
schemes are designed based on the hypotheses that the data are Gaussian and un-
correlated. To escape these basic assumptions, multiscale monitoring schemes
using wavelets have been developed [31]. Furthermore, the above-discussed
schemes use static thresholds computed using the fault-free data. Recently, sev-
eral adaptive monitoring methods have been developed. These schemes are, in
practice, more flexible and efficient than conventional schemes with fixed pa-
rameters. For more details, see [32–35]. These univariate monitoring schemes
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examine a particular variable at a time instant by assuming independence be-
tween variables. When monitoring multivariate data using several univariates,
even when the number of false alarms of each scheme is small, the collective
rate could be very large [36–38]. In addition, measurements from modern in-
dustrial processes are rarely independent and present a large number of process
variables. Since univariate schemes ignore the cross-correlation between vari-
ables, they consequently suffer from an inflated number of undetected issues
and false alarms, which makes this monitoring scheme unsuitable [36–38].

FIGURE 1.8 Data-based monitoring techniques.

To alleviate this difficulty and to handle high dimensional data effectively,
multivariate monitoring schemes have been developed to take into account the
correlations between the variables, and thus monitor processes with several
variables. These schemes include Hotelling T 2 [39], multivariate EWMA [40],
and multivariate CUSUM [41]. However, the performance of these multivariate
schemes degrades as the number of variables monitored increases, which makes
them unsuitable for high dimensional data.

Multivariate monitoring methods for monitoring multivariate data have been
designed to directly tackle the above limitations. Multivariate statistical meth-
ods are useful for compressing data and retaining relevant information, which
is more appropriate to analyze than the original data. Moreover, these methods
are efficient at handling noise and interactions between variables to effectively
extract pertinent information. The most common multivariate methods for fault
detection are principal component analysis (PCA) [22,42], partial least squares
(PLS), principal component regression (PCR), canonical variate analysis (CVA),
and independent component analysis (ICA) [43]. The essential element of multi-
variate statistical methods, such as PCA, is their ability to transform multivariate
correlated variables to a reduced set of uncorrelated variables. In the past two
decades, these techniques have been extensively used to monitor industrial pro-
cesses. For fault detection purposes, the original data is first projected into a
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latent subspace, where latent variables and residuals are monitored. PCA and
PLS are the two most popular multivariate statistical methods that use latent
variable methods for monitoring because they have a strong mathematical foun-
dation that is available in the literature. Indeed, the PCA or PLS model is
constructed based on historical normal process operations. This empirical model
could be used to monitor the future behavior of the process. Any departure from
the model should be flagged as a potential anomaly, such as sensor fault or pro-
cess drift. PCA is used to reduce dimensionality in the process data and to retain
important features of the data. PCA projects the observations from a higher
dimension on to a lower-dimensional subspace and is optimal in terms of cap-
turing the data variability. The PCA procedure is applied to a single data matrix
only, whereas PLS models the relationship between two data matrices while
compressing them simultaneously. The PCA technique is used to monitor and
detect the faults in a multivariate process, along with the two fault detection in-
dices, T 2 and the squared prediction error (SPE) statistics. The major advantage
of latent variable approaches (i.e., PCA and PLS) is that a limited number of
monitoring schemes are needed for monitoring multivariate data using monitor-
ing indices of T 2 and SPE.

However, data from modern industrial processes are time-dependent, non-
stationary, nonlinear, non-Gaussian, and multiscale [44–47]. Most process mon-
itoring methods assume that the process measurements at a given time are
independent of the observations at a past sampling instant. Industrial pro-
cesses are operated under dynamic conditions and variables have strong auto-
correlation properties. Augmenting observations at a previous sampling time
with observations at the present sampling time is referred to as Dynamic PCA
(DPCA) [48,49]. For high-dimensional and time-dependent industrial data,
using a fixed model monitoring approach could lead to poor diagnostic re-
sults [50]. However, process monitoring for such processes could be improved
by updating the model using a recursive PCA and a moving window PCA tech-
nique [50]. Recursive PCA updates the model continuously online; similarly,
online adaptive PCA updates the model using EWMA [50,51]. For nonlinear
processes, a nonlinear version of data-based methods has been used, such as
kernel PCA, kernel PLS, polynomial PLS and quadratic or fuzzy PLS, to reveal
nonlinear relationships between variables [46]. In practice, most of the data need
not be Gaussian in nature; to handle the non-Gaussian nature of the data, inde-
pendent component analysis (ICA), the Gaussian mixture model (GMM), and
its nonlinear variant have been used [47]. Other extensions have been developed,
such as multiway PCA [45] that permits analyzing data from batch processes,
and multiscale PCA that monitors processes at different frequency bands and
denoises the data and reduces autocorrelation. Overall, these extensions are in-
troduced based on an understanding of the nature of the data gathered from the
inspected process. Accordingly, understanding the process characteristics is a
central factor to meet practical expectations and construct an effective statistical
monitoring system.
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Other approaches that fall into this category are based on machine- and
deep-learning methods, which have recently gained considerable attention from
researchers due to their ability to learn from large and complex datasets. Under
a machine-learning framework, support vector machines (SVM) [52–54] and
artificial neural networks (ANNs) have become an important tool in fault de-
tection literature. Recently, increasing process complexity has resulted in the
development of several monitoring methods based on deep learning that can
account for features such as time dependency, nonlinearity, and nonnormality.
A major strategy has been to extract features from the data using deep-learning
models, such as Restricted Boltzmann Machine (RBM), Deep Belief Network
(DBM), Deep Boltzmann Machine (DBM), Long Short-Term Memory (LSTM),
and recurrent neural network (RNN), and to monitor the extracted features using
binary clustering schemes or traditional monitoring charts. For instance, [55]
introduced an approach that integrated an RNN-RBM model with clustering
algorithms including k-means, spectral clustering, and OCSVM, for anomaly
detection in WWTPs. In [56], several deep learning-based monitoring methods,
such as DBN, deep-stacked auto-encoders, and restricted Boltzmann machines-
based clustering procedures, were applied to detect abnormal ozone pollution.
Deep-learning methods are appealing because of their flexibility to not make
restricting assumptions on the underlying data. Also, applications using deep
learning cover detection in complex data as multivariate time-series data [57],
images and videos [58,59].

1.3 Fault detection metrics

To verify the performance of fault detection methods, several well-know metrics
are commonly employed in the context of binary detection problems. Basically,
many detection performance metrics are computed based on the 2 × 2 confusion
matrix that reports the number of true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN) [60]. The detection quality of the fault
detection methods can be assessed using a false positive rate (FPR) (i.e., false
alarm rate), a true positive rate (TPR) (i.e., detection rate), precision, accuracy,
F-measure, recall, and the area under the curve (AUC). Fig. 1.9 displays a confu-
sion matrix and recapitulate equations of the well-known related metrics that are
frequently used to assess the performance of a binary decision method [60,61].

Also, another metric called average run length (ARL), which is able to char-
acterize both types of error, I and II, is usually used to evaluate detection quality.
Specifically, there are two kinds of ARL: ARL0 and ARL1. ARL0 is the average
number of data points a fault detection method takes to flag out an alarm when
the process is under control. ARL1 refers to the number of data points it takes
a monitoring method to uncover a fault under faulty conditions (i.e., speed of
detection).
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FIGURE 1.9 Fault detection metrics.

1.4 Conclusion

In summary, accurately detecting and isolating faults that can occur in industrial
and environmental processes is essential to minimize downtime, increase safety,
reduce maintenance costs, and extend equipment lifetime. Process monitoring is
required to successfully detect, isolate, and remove the faults before they affect
the process performance. Several aspects should be considered when designing
or using a particular fault detection approach, including the type of fault, process
dynamics, measured variables, available data, and complexity. The simplest and
most common practice is to directly check the limit of a measurable variable.
However, these techniques are limited when monitoring large-scale processes.
This has led to the development of reliable techniques that incorporate informa-
tion from not just one process variable, but that include more knowledge about
the process such as process state and parameters. Some approaches rely on accu-
rate process models whereas others use available historical process data. Process
model-based monitoring that incorporates dynamics information is easy to im-
plement for well-defined systems; however, process model-based monitoring
needs accurate models that are not always easy to obtain, in particular for com-
plex processes. On the other hand, when information on the reliance of faults
and symptoms is available, knowledge-based approaches are preferable; how-
ever, these approaches are limited to small and simple processes. An alternative
approach is to use data-based monitoring techniques, which are flexible and
assumption-free. Of course, when a large amount of process data is available,
and the process is too complex to be explicitly modeled, data-based techniques
are more appropriate because of their flexibility to handle large, noisy, and non-
linear data.
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Chapter 2

Linear latent variable regression
(LVR)-based process monitoring

2.1 Introduction

With the advancement in instrumentation, data acquisition, and rapid develop-
ment in the “Internet-of-Things” technology, which connects a large number of
digital devices, enormous amounts of information have become available from
anywhere at any time, from a multitude of smart devices. Indeed, large datasets
are produced by the collection of large number of measurements from modern
engineering and environmental processes. Exploiting these measurements with
a certain level of redundancy, it becomes feasible to detect abnormal change
and locate its sources in the inspected process. However, in the absence of ef-
fective tools, the information in these datasets cannot be suitably extracted and
exploited for inference and process monitoring.

Over the past decade, the necessity for prediction and fault-detection tools
has resulted in the design of several fault-detection mechanisms, which belong
to either model-based (or analytical) or data-driven methods [1,2]. Analytical
models, based on ideal hypotheses that utilize first principles, could theoreti-
cally explain a system’s behavior; however, they need prior calibration of model
parameters, which is challenging and costly in high-dimensional cases and may
result in ill-conditioning problems [3]. Data-driven approaches can perform sys-
tematic and objective exploration, visualization, and interpretation of data, can
identify essential factors, features, or patterns, and can endorse and optimize
data-supported decision-making [4]. Data-based techniques carry information
on faults by extracting relevant features from data. Data-driven approaches
are more currently commonly applied in engineering and petrochemical pro-
cesses [5]. For instance, in the petrochemical industry where soft-sensors are
widely used, billions of dollars were once lost annually because of the oc-
currence of faults [6]. Environmental data have been exploited by data-driven
approaches for anomaly detection in, for example, meteorological signals [7]
or monitoring of sludge bulking in wastewater treatment plants (WWTPs) [8].
For instance, fault detection in chemical process industries is challenging due
to the large number of variables involved, the dynamic characteristics and noisy
measurements that occur in these processes. Indeed, a large number of variables
leads to collinearity, which increases the uncertainty about the model parame-
ter estimates. The latent variable regression (LVR) model is a commonly used
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modeling framework to remedy such problems. The LVR model can deal with
collinearity among variables, by constructing a model from a reduced number of
variables (which are a linear combination of the original variables) called latent
variables or principal components. This approach results in well-conditioned
models [9,10]. LVR model estimation techniques include principal component
regression (PCR) [11,9] and partial least squares (PLS) [12,13].

The organization of this chapter is as follows. In Sect. 2.2, we present a brief
introduction to inferential modeling methods, including full rank models and
latent variable regression (LVR) techniques. The presented full rank modeling
techniques include ordinary least squares (OLS) regression and ridge regression
(RR), while the latent variable regression techniques include PCR and PLS.
Since the conventional LVR models are static and more appropriate for han-
dling steady-state processes, the dynamic version of the LVR models is also
briefly presented. Section 2.3 is devoted to an overview of some common statis-
tical techniques that are applied in statistical process monitoring. Specifically,
this section presents the basic univariate monitoring schemes, namely Shewhart,
exponentially-weighted moving average (EWMA), cumulative sum (CUSUM),
generalized likelihood ratio (GLR), and distribution-based algorithms, and we
discuss their limitations. Section 2.4 presents the general framework of fault de-
tection based on LVR approaches. In Sect. 2.5, we discuss one of the commonly
used fault isolation approaches, namely contribution plots. We also present an
innovative method that uses the radial visualization RadViz to perform root
cause diagnosis in Sect. 2.5. The main objective of this chapter is to investi-
gate these multivariate monitoring schemes (PCA and PLS) and their practical
applications. In Sect. 2.6, we assess the performances of the developed inferen-
tial modeling technique using simulated and practical examples. In addition, we
evaluate the method of using PCA-based anomaly detection by importing seven
years of influent characteristics (ICs) data from a coastal municipal WWTP
where multiple abnormal events occurred. The chapter concludes with a dis-
cussion and remarks in Sect. 2.7.

2.2 Development of linear LVR models

Measurements from engineering and industrial processes are usually massive
and include a large number of (high-dimensional) variables because of the com-
plexity of the processes involved. Using traditional regression models like least
squares are unsuited to provide reliable predictions due to high colinearity and
ill-conditioning issues. There are a large variety of estimation techniques to ad-
dress this modeling problem, including full-rank methods and latent variable
regression methods. In this section, we present the basic theoretical perspective
of some commonly used linear regression models that are used to design pro-
cess monitoring algorithms, namely, OLS, RR, PCR, and PLS. In this section,
we review the traditional linear correlation models for multivariate data that are
the basis for designing fault detection methods. The basic concepts of each ap-
proach and discussion on their advantages and weaknesses are presented.
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2.2.1 Full rank methods

2.2.1.1 Ordinary least squares regression
We regress the data matrix y ∈ R

n (the measured output) to X ∈R
n×m (selected

group of process variables whose values are known precisely) as

Y = Xβ + ε, (2.1)

where β ∈ R
n is a vector of unknown constants to be estimated, and ε ∈

N(0, σ In) is a zero-mean Gaussian noise with the known variance. The essence
of the ordinary least squares (OLS) regression is to estimate the model parame-
ters by minimizing the following objective function [14,11]:

min
β

(
‖Xβ − y‖2

2

)
. (2.2)

The unbiased maximum likelihood estimate of β, if the matrix XT X is nonsin-
gular and the elements of noise ε are uncorrelated [15,16], is

β̂OLS =
(

XT X
)−1

XT y. (2.3)

When the input process variables are highly correlated, the variances of the
OLS regression coefficients become very high, and the estimates may be inac-
curate. In other words, the determinant of the matrix XT X is then very close to
zero, hence giving unstable values for the variance of the estimated regression
parameters (V (b) = σ 2(XT X)−1). Moreover, the parameter estimates change
considerably if elements of y are changed slightly and thus y is poorly predicted
when utilized with new X measurements.

In summary, when (XT X) is close to being singular, the variance of β̂ is
inflated, which also results in increasing the uncertainty about its estimation.
Even if numerical issues can be surpassed via methods such as pseudo-inverse,
the statistical features of the model are not suited to inflated variance. One way
to cope with this collinearity problem and the ill-conditioning of X is through
regularization methods, such as ridge regression (RR), which is presented in the
following.

2.2.1.2 Ridge regression (RR)
As discussed above, in cases when the input process variables are highly cross-
correlated, the OLS method can result in a poor estimate of the regression
coefficients. One way to mitigate this problem is to relax the condition that
β̂OLS should be an unbiased estimator. There are several methods in the liter-
ature to obtain biased estimators of regression coefficients. The RR approach,
which was originally introduced by Hoerl and Kennard [17], is commonly used
to alleviate the collinearity problem and tuned to obtain good prediction models
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by trading-off bias and variance. The RR estimator is computed by minimizing
the following objective function [17].

min
β

(
‖Xβ − y‖2

2 + λ‖β‖2
2

)
, (2.4)

β̂RR =
(

XT X + λI
)−1

XT y, (2.5)

where λ is a positive constant, and I ∈ R
m×m is the identity matrix. Note that

from Eq. (2.5), the term λI added to (XT X) enhances the conditioning of the
estimation problem. Of course, the RR estimator, β̂RR , is basically a linear trans-
formation of the OLS estimator β̂OLS . Eq. (2.5) can be rewritten as

β̂RR =
(

XT X + λI
)−1

(XT X)β̂OLS = Zλβ̂OLS. (2.6)

Thus, the RR estimator is a biased estimator since

E(β̂RR) = E(Zλβ̂OLS) = Zλβ. (2.7)

The covariance matrix of β̂RR is expressed as

V (β̂RR) = σ 2
(

XT X + λI
)−1

XT
(

XT X + λI
)−1

. (2.8)

The basic concept when using RR is to select a value of λ that guarantees
a greater decrease in the variance term than an increase in the squared bias. If
this is accomplished, the MSE of β̂RR will be less than the variance of β̂OLS .
In [18], it has been demonstrated that there is a positive constant λ for which the
MSE β̂RR is less than the variance of β̂OLS .

In practice, various procedures have been developed to choose the value of λ.
For instance, in [18] the authors proposed to determine a suitable value of λ by
inspecting the ridge trace, which is a plot of elements of β̂RR versus λ, where
λ ∈ [0 1]. The aim is to determine a reasonably small value of λ for which
the ridge estimates are stable. In [19], an appropriate selection of λ is given

as, κ = mσ̂ 2

βT
OLSβOLS

, where βOLS and σ̂ 2 are determined using a least squares

solution.
Of course, these models can be used as an alternative to mitigate the ill-

conditioning problem. However, they are not easily interpretable, whereas an
important purpose of data modeling is interpretability; see [15,16,18].

2.2.2 Latent variable regression (LVR) models

Multivariate statistical projection methods such as PCA, PCR, and PLS are com-
monly utilized to handle a high number of highly correlated process variables by
conducting regression on a smaller number of transformed variables (i.e., latent
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or principal components), which are linear combinations of the raw measure-
ments. After computing the latent variables in the process being investigated,
these fewer number of variables are then used instead of using the raw data. This
latent variables regression (LVR) approach generally results in well-conditioned
parameter estimates and reliable model predictions [20]. In this section, these
LVR methods are briefly presented. For more details, refer to [21–23]. Before
presenting PCR and PLS regression methods, we present PCA, which is a pop-
ular multivariate dimensionality-reduction approach.

2.2.2.1 Principal component analysis

Feature extraction with PCA

PCA, a dimensionality-reduction approach, is an increasingly popular model-
ing framework for discovering relevant and crucial features from multivariate
data. The foundation of PCA can be tracked back to Pearson (1901) [24] and
Hotelling (1933) [25]. By projecting process variables into a lower-dimensional
subspace, PCA reveals the inherent cross-correlation among process vari-
ables [26]. In this regard, PCA latent variables or principal components (PCs)
(also called scores), which consist of linear combinations of physical variables,
can efficiently describe a process in a reduced subspace. PCA-based methods
are currently more commonly applied in data compression [27], pattern recog-
nition, data smoothing, classification [28], and fault detection [29].

PCA does not differentiate between input data X and output data Y. It is ap-
plied to one data set that contains all the process variables involved in the prob-

lem. Here, X is used to represent the whole data set. Let X = [
xT

1 , . . . ,xT
n

]T ∈
R

n×m be a dataset gathered from a process having n observations and m vari-
ables.

Let us first discuss an important point before going into any further in de-
tail. When performing PCA on multivariate data, it is assumed that all the data
are on a comparable scale. If scaling of the data is omitted, then certain vari-
ables in the data have to be adjusted to avoid the occurrence of misleading
dominance. Scaling of data changes the covariance matrix and consequently
affects the principal components. Scaling is important for both the variance and
mean adjustments [30]. When the process variables are measured with different
units, the purpose of the usual scaling is to make the variance the same (i.e., to
give standard units), which gives a correlation matrix. Other variance-stabilizing
transformations, such as log transformation, are used in the literature. The most
commonly used scaling converts the variables to zero mean and unit variance.
Each variable xj ∈ R

n, j = 1, . . . ,m, should be scaled to have zero mean and
unit variance prior to using PCA:

xj,s = xj − μxj

σxj

. (2.9)
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From now on, we consider that autoscaled data is zero-mean centered with
unit variance,

X =

⎛
⎜⎜⎜⎝

x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m

⎞
⎟⎟⎟⎠

n×m

.

The scaled data X can be expressed using singular value decomposition (SVD)
as a product of two factors:

X = t1wT
1 + t2wT

2 + · · · + tmwT
m = TWT , (2.10)

where T ∈ R
n×m represents a matrix of the principal components (PCs) and

W ∈ R
m×m is the loading matrix. The PCs are linear combinations of the orig-

inal data, and each PC is not correlated with the others. The loading matrix is
frequently calculated through SVD of the covariance matrix S of the data X:

S = 1

n − 1
XT X = W�WT with WWT = WT W = In, (2.11)

where, � = diag(σ 2
1 , . . . , σ 2

m) is a matrix comprising eigenvalues of S arranged
diagonally in decreasing magnitude. The eigenvalues λi are equal to the variance
of the PC ti , σ 2

i (i.e., var(wT
i X) = λi).

In the presence of cross-correlated multivariate data, X, the first l PCs (where
k < m) are sufficient for preserving relevant information in the original data.
One important step in PCA model development is to select the number of PCs.

Criteria for selecting the number of principal components to use

A core step in designing LVR approaches is selecting by the number of LVs,
l, to appropriately extract relevant information from the received data. In other
words, the prediction performance of the designed LVR model is influenced by
the choice of the number of LVs, l. Accordingly, an appropriate estimation of
the number of LVs is necessary to avoid the problem of the model underfitting
or overfitting the data. Some of these techniques are briefed below:

• The scree test. The scree plot displays the variance caught by every PC against
the number of the PCs [31]. Then, the number of PCs to retain are obtained
by finding the value of the eigenvalue λ corresponding to the profile with an
elbow shape (i.e., the profile is no longer linear). This identification procedure
is easy to visualize but it could be not easy for automatic implementation.

• Parallel analysis. Parallel analysis compares the variance profile to that ob-
tained by assuming independent variables, to determine the number of PCs.
Specifically, l is determined at the point where the two profiles cross [31,32].

• The cumulative percentage variance (CPV) procedure. The CPV procedure
has been commonly employed to find the number of PCs explaining a certain
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percentage of the total variance (e.g., 90%) [31]:

CPV (l) =
∑l

i=1 λi∑m
i=1 λi

× 100. (2.12)

This procedure is attractive since it is intuitive and easy to implement [31].
• Cross-validation. Basically, the key concept of the cross-validation mech-

anism is splitting the data in training datasets for model construction and
testing datasets for model validation [33]. The model is verified using the
test data, and residuals are generated by comparing the estimated values to
the measured values. In the CV approach, the optimum number of PCs is
determined by using Predictive Sum of Squares (PRESS) statistics [33],

PRESSl =
n∑

i=1

(Xi − X̂l
i)

2, (2.13)

where l is the number of PCs vectors retained to calculate X̂, i.e., the dimen-
sion of the PCs. The dimensionality is determined by finding the number of
PCs corresponding to the minimum of the PRESS [33].

Based on the PCA model, after selecting the appropriate number of PCs
to include in the model, the data matrix X can be expressed as a sum of the
approximated matrix, X̂, and residual data, E (Fig. 2.1),

X = TWT =
k∑

i=1

tiw
T
i +

m∑
i=k+1

tiw
T
i = X̂ + E, (2.14)

where T ∈ R
n×m represents a matrix of the principal components (PCs) and

W ∈R
m×m is the loading matrix.

FIGURE 2.1 Schematic representation of PCA model.
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As described above, the orthogonal eigenvectors of the covariance matrix
are equal to the loading matrix W = (v1,w2, . . . ,wm), and eigenvalue λi is the
variance of score ti . The loading matrix can be partitioned into two parts, Ŵ
and W̃, i.e., W = [Ŵ W̃]. Here W̃ = (w1,w2, . . . ,Wl ), represents the first l

principal loading vectors (PCs) and W̃ = (wl+1,wl+2, . . . ,Wm) represents the
remaining m − l PCs. The partition is shown below:

S = 1

n − 1
XT X =

(
Ŵ W̃

)(
�̂ 0

0 �̃

)(
ŴT

W̃T

)
. (2.15)

The data matrix X can be factorized as

X =
T︷ ︸︸ ︷[

T̂ | T̃
] WT︷ ︸︸ ︷[

Ŵ | W̃
]T = T̂ŴT + T̃W̃T =

X̂︷ ︸︸ ︷
XŴŴT +

E︷ ︸︸ ︷
X
(

Im − ŴŴT
)

.

(2.16)

Here T̂ ∈ R
n×l is the PC matrix (n × l), which describes the values of variables

in the transformed (n × l) basic space spanned by Ŵ, while l is chosen to cap-
ture most of the variability in the data, and no relevant information is lost in E.
The matrices ŴŴT and (Im − ŴŴT ) span the principal component and resid-
ual subspaces, respectively. The row vectors in X and E are orthogonal, i.e.,

X
T

E = 0.
The residual matrix plays a core role in uncovering abnormal features in

process monitoring. For the purpose of anomaly detection, we will evaluate the
generated residuals based on the developed PCA reference model by univariate
or multivariate statistical monitoring schemes. More details on process monitor-
ing are given in the subsequent sections.

2.2.2.2 Principal component regression
PCR is an alternative to OLS regression for addressing the issue of ill-
conditioning or collinearity in multivariate linear regression, which results in
a poor estimation of the model parameters. PCR is a linear regression approach
that can handle highly correlated process variables by latent variables as regres-
sors in the regression. It can be implemented in two steps. The first step in PCR
consists of projecting the input variables via PCA to account for collinearity and
reduce their dimensions. To this end, SVD is frequently employed to compute
the PCs. In the second step, OLS regression is conducted between the retained
PCs and the response [14,11] (Fig. 2.2).

To sum up, the key idea of PCR is to use uncorrelated l score vectors from
the PCA instead of the l columns in X. Specifically, the multicollinearity among
the predictor variables can be eliminated by using a subset of orthogonal PCs
from the input data X via PCA. Then, OLS is performed between the response
variable Y and the retained l PCs of X. From the PCA model, the matrix X can
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FIGURE 2.2 Schematic representation of (A) MLR and (B) PCR models.

be decomposed as follows:

X = TWT =
l∑

i=1

tiw
T
i +

m∑
i=l+1

tiw
T
i = X̂ + E, (2.17)

where T ∈ R
n×m represent a matrix of the PCs and W ∈ R

m×m is the loading
matrix. Then, a subset of these PCs (with the largest variance) are utilized to
build a linear model relating these PCs to the response variable, y, using OLS
regression,

y = T̂β̂, (2.18)

where T̂ = [t1 . . . tl] is the retained PCs (with the largest eigenvalues) used to
construct the model, with l ≤ m; l is selected such that there is no important loss
in process information retained in residuals. The regression matrix β̂ is obtained
by solving the following minimization problem:

min
β

(
‖T̂β − y‖2

2

)
, (2.19)

β̂ =
(

T̂T T̂
)−1

T̂T y. (2.20)

Note that PCR is equivalent to OLS if all PCs are used in designing the PCR
model (i.e., l = m). In the case of uncorrelated input variables, OLS would be
the first option in regression. Note that all PCs in PCR are determined without
taking the model response into consideration. Next we present another approach
to cope with the multicollinearity problem, which takes into account the input–
output relationship when determining the PCs, called partial least squares (PLS).

2.2.2.3 Partial least squares
This section introduces the PLS regression modeling (also known as the pro-
jection on latent structures), which was first proposed in [34] in the field of
econometrics. Later in [35] a detailed PLS algorithm was provided. In [36], the
geometry of two procedures to perform PLS has been illustrated. This technique
is used in chemometrics and chemical engineering for soft sensor develop-
ment [37], process monitoring, and fault diagnosis.

The capacity of PLS to deal with multivariate input–output data with
collinearity is one of its desirable characteristics [38]. When the matrix XT X
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is singular or ill-conditioned, PLS determines an optimum pair of LVs in the
input and output data (X and Y) so that these transformed variables have the
largest covariance. Unlike PCR, PLSR exploits the information in input and out-
put variables by using the covariance between them and reducing the impact of
irrelevant variations of input variables. In other words, PLSR is designed using
both PCs of X and Y. Basically, the PLS model is performed by searching a set
of PCs that explains the maximum cross-correlation between X and Y (Fig. 2.3).

FIGURE 2.3 Schematic representation of PLS model.

Consider an input with n samples and m variables, X ∈ R
n×m, and output

with n samples and p variables, Y ∈ R
n×p. PLS extracts the principal com-

ponents iteratively by maximizing the covariance of the extracted principal
components. PLS model development has two components, one is to develop
inner models and the other is to develop outer models [39,40]. Outer models
have a relationship with the inner model such that{

X =∑l
i=1 tpT

i = TPT + G,

Y =∑l
i=1 uqT

i = UQT + F,
(2.21)

where T ∈ R
n×l and U ∈ R

n×q are matrices of the transformed uncorrelated
variables. The loading matrices of input and output space are P ∈ R

m×l and
Q ∈ R

p×q , respectively. The model residuals are G and F. The number of PCs,
l, is determined by cross-validation.

The retained latent variables of the input and output space are related by the
linear inner model as

U = TB + H, (2.22)

where B is a regression matrix linking the input and response PCs, and H is a
residual matrix. The regression coefficients of B can be obtained by minimiza-
tion of residuals H. The response Y is given as

Y = TBQT + F∗. (2.23)
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Notice that each pair of latent variables in the PLS model (i.e., tj and uj

(j = 1, . . . , l)) is estimated iteratively [35,41]. Various procedures are developed
in the literature to obtain PLS estimators, including nonlinear iterative partial
least squares (NIPALS) and SIMPLS methods. For more details, refer to [35,36,
34,12].

The first pair of latent variable vectors is calculated so that the following
covariance:

arg max
pi ,qi

cov(t1,u1) = tT1 u1 = pT
1 XT Yq1 (2.24)

can be maximized with constraints pT
i pi = 1 and qT

i qi = 1.
The first pair (p1, q1) of loading vectors, which represents the dominant di-

rection, is computed so that the covariance between X and Y is maximized.
Then, the first set of latent variable vectors (t1 = Xp1;u1 = Yq1) is obtained by
projecting X data on p1 and Y data on q1 (the outer model). After that, the inner
model can be established between t1 and u1 (̂u1 = t1b1).

After the first set of scores and loadings are computed, the residuals of the
input and output variables are calculated as{

E1 = X − t1p1,

F1 = Y − u1q1 = Y − t1b1q1.
(2.25)

Overall, PLS iteratively estimates both LVs for X and Y, so that they have
maximal covariance. These pairs of LVs are estimated and added to the model in
an iterative way. The input and output residuals are generated and the procedure
is iterated based on the residual until cross-validation error is minimized [11,35,
34,14]. Fig. 2.4 illustrates the recursive process of determining the LVs in PLS.

FIGURE 2.4 Schematic representation of the recursive procedure to determine the PCs in PLS.

The NIPALS algorithm, which is commonly used to derive PLS models, is
summarized below [42]:

Step 1. Set data X and Y to have mean zero and unit variance
Step 2. Set u equal to a column of Y
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Step 3. Let w = uT X
uT u

Step 4. Normalize u to have unit length
Step 5. Evaluate the scores, t = Xw

wT w

Step 6. Evaluate the new u vector, u = Yq
qT q

Step 7. Check convergence on u: if YES go to Step 8, if NO go to Step 2

Step 8. Evaluate X loading, p = XT t
tT t

Step 9. Evaluate the residual matrices, E = X − tpT and F = Y − tqT

Step 10. If additional PLS dimensions are necessary then replace X and Y by
E and F, respectively, and repeat Steps 1 through 9.

Since PLS is using a covariance objective function, it frequently needs mul-
tiple LVs even in the case of a single output in Y. However, sometimes an
important part of the LV subspace is orthogonal or irrelevant to the output, de-
spite the fact that the subspace includes large variability of the input data [43].
Thus, to further improve PLS, numerous extensions have been developed such
as orthogonalized PLS [44] and concurrent PLS approaches [45].

Note that the above described LVR methods all exploit the latent structured
relationships between the process variables that are linear and static. They es-
tablish the basic framework for further enhancements to nonlinear or dynamic
LVR modeling.

2.3 Dynamic LVR models

From the above discussion, we have shown that LVR models such as PLS and
PCR can be used to handle multivariate data with collinearity among the vari-
ables by designing a model from a reduced number of variables (which are
a linear combination of the original variables) termed latent variables. These
methods result in well-conditioned models. However, LVR models are static
and ignore process dynamics, which make them unsuitable to catch the tempo-
ral evolution of data. In other words, the use of such methods to select the key
variables is performed by assuming that the variables are uncorrelated in time.
Since many practical data produced from engineering and environmental pro-
cesses are correlated in time, it is necessary to have a model incorporating such
information to deal with process dynamics.

For dynamic processes such as engineering and chemical processes, fre-
quently the actual observations of the process variable depend on past observa-
tions. The application of static LVR approaches (e.g., PLS and PCA) to dynamic
data will not give accurate modeling of the relations among the variables, but
just a linear static approximation. To remedy this limitation and consider the
dynamic information, an augmented process dataset, including previously au-
tocorrelated measurements, should be created. A commonly used approach to
bypass such limitations is dynamic PCA (DPCA), which has been introduced
in [46]. Basically, DPCA is the conventional PCA applied to augmented data
including time-lagged measurements of process variables. Specifically, to de-
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scribe the temporal dynamics, the Hankel matrix of the original data, which is
usually employed in time series modeling, is used in [46]. The augmented data
that includes time-lagged variables at time instance k is

Xz = [X(k) X(k − 1) . . . X(k − z)]

=

⎡
⎢⎢⎢⎢⎢⎣

xT (0) xT (1) . . . xT (z)

xT (1) xT (2) . . . xT (z + 1)

...
...

. . .
...

xT (n − z) xT (n − z + 1) . . . xT (n)

⎤
⎥⎥⎥⎥⎥⎦

, (2.26)

where z is the time lags and its length is related to the past memory entered in
the variables.

The DPCA is applied to the augmented process data matrix in a similar way
to conventional PCA [46]. Indeed, this is basically the same as the static PCA
except that the input data is augmented to include past measurements. The se-
lection of the appropriate number of lagged data plays a key role in DPCA to
appropriately model the process dynamics. For highly nonlinear data, the num-
ber of lags, z, to incorporate in the data may take a higher value to achieve better
linear approximation. DPCA modeling can be outlined in the following steps:

(1) Start with z = 0
(2) Compute the augmented data matrix Xz

(3) Design PCA model using the augmented data
(4) Select the optimal PCs to be kept in the model using some known criteria

such as Cumulative Percent Variance (CPV) approach
(5) Check the autocorrelation function (ACF) of the residuals of the PCA model
(6) If ACF is within the threshold, i.e., the residuals are not correlated, go to

Step (8), otherwise, proceed
(7) Increment the number of lags z = z + 1 and go to Step (2)
(8) End

The essence of DPCA is to apply PCA using time-lagged data, thus both
the linear static and dynamic relationships among process variables are cap-
tured. To sum up, DPCA exploits both the desirable characteristics of PCA to
high-dimensional data and the flexibility of the time series model, Autoregres-
sive Integrated Moving Average (ARIMA), to capture the time dependency in
data [47,48].

On the other hand, several approaches are designed in the literature to handle
dynamics in multivariate input–output processes based on dynamic PLS. One
approach consists of incorporating a large number of time-lagged input mea-
surements in the input data matrix X, which conducts to a PLS-Finite Impulse
Response (FIR) model [49]. Analogous to DPCA, both the time-lagged data of
the input and output process variables are included in the input data matrix X,
which results in the PLS-Autoregressive Moving Average (ARMA) model. Both
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PLS-FIR and PLS-ARMA models need a large augmentation in the dimension
of the input data matrix X, which may be cumbersome to handle. To remedy
this difficulty, in [50] a simple and flexible method is presented permitting the
inclusion of the process dynamics as part of inner PLS model and avoiding the
consideration of significant time-lagged input and output variables in the input
data. The key benefit of this approach is that no lagged variables are used in
the PLS outer model. In [51], a dynamic Autoregressive with Exogenous Terms
(ARX) or Hammerstein model is used to account for process dynamics in PLS,
for inner relation between ti and ui instead of a static model.

The aforementioned LVR methods are all extensively used for multivariate
process monitoring. To do so, these LVR methods are combined with fault detec-
tion indices such as the Hotelling T 2 and the squared prediction error schemes.
The general framework of LVR-based process monitoring strategies is presented
in Sect. 2.5.

2.4 Process monitoring methods

Detecting anomalies in industrial processes plays a core role in developing
efficient production systems that have acceptable performance and meet the de-
sired requirements and specifications. Without an efficient detection procedure,
chemical processes such as distillation columns would be damaged by unex-
pected faults and could result in financial losses and serious damages. Univariate
statistical monitoring schemes are widely applied in numerous production pro-
cesses as tools for checking product quality when the inspected variable is
univariate. The goal of statistical process monitoring schemes is to uncover any
deviation of the supervised process from the desired performance. For many
decades, these univariate schemes were frequently applied in quality control
applications, and now they have been extended to many other fields, such as
air quality [29], cybersecurity [52], healthcare systems [53,54], and economics
[53]. In this section, we describe the essence of some basic univariate monitor-
ing schemes, such as Shewhart, CUSUM, EWMA, and GLR charts.

2.4.1 Univariate chart for process monitoring

In this subsection, we summarize univariate process monitoring charts including
Shewhart, CUSUM, EWMA, and GLR.

2.4.1.1 Shewhart-based monitoring scheme
Shewhart introduced the Shewhart monitoring scheme in 1931 to supervise the
product quality at different phases of a manufacturing process [55]. In practice,
this monitoring chart is one of the most frequently applied statistical quality con-
trol schemes [55]. Instead of waiting to examine the quality of the final product,
early inspection and monitoring would enable companies save costs with re-
gards to inspection and rejection of the finished product [55]. This would help
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ensure that uniform quality of products is maintained, thus leading to increased
economic benefits and improved time efficiency. Statistical decisions in She-
whart schemes are based on current observations and no memory about the past
is considered. Thus, they are suitable for detecting relatively large faults. The
Shewhart chart is used online to evaluate the process performance based on the
current measured data.

Consider that (x1, x2, . . . , xn) are individual observations received from the
supervised process. Shewhart schemes are designed under the assumption that
the measurements are uncorrelated and the data under normal operating condi-
tions are normally distributed [55]. If these two assumptions are verified, the
control limits of the Shewhart chart are defined as [55,56]

UCL,LCL = μ0 ± z1− α
2
σ0, (2.27)

UCL and LCL denote the upper control limit (UCL) and the lower control limit
(LCL) while z1− α

2
is the (1 − α

2 )th quartile of the Gaussian distributionN(0,1).
Also μ0 and σ0 represent the mean and standard deviation of the measurements
without anomalies. The term z1− α

2
is usually called the width of the control

limits and it is generally fixed to be 3, which is equivalent to a false alarm rate
of 0.27%. The Shewhart scheme flags a fault if

xt < LCL or xt > UCL. (2.28)

In summary, the performance of the Shewhart charts is limited when utilized
to sense small changes in the process mean. They consider only the current
measurement of the process, thus they are classified as detection charts with-
out memory. To tackle this deficiency, improved mechanisms with increased
process memory would be very helpful. Memory-type monitoring approaches,
such as CUSUM, moving average, and EWMA charts, are designed to detect
small changes.

2.4.1.2 Cumulative sum (CUSUM)-based monitoring schemes
Cumulative sum (CUSUM) monitoring schemes are well reputed in fault de-
tection and were first introduced by Page [57]. Compared to Shewhart-type
approaches, the CUSUM schemes are a suitable alternative for detecting small
changes, which are often a major concern in process monitoring [57]. Instead of
using only the current measurement, the CUSUM scheme exploits all the avail-
able information from previous and current measurements to uncover faults. The
CUSUM statistic (Si) is determined as [58]

Si =
i∑

j=1

(xj − μ0), (2.29)

where Si is the cumulative sum of all available measurements including the
current and previously received measurements, and μ0 is the fault-free process
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mean. The CUSUM decision function is obtained in a recursive manner as [58]

Si = (xi − μ0) + Si−1. (2.30)

One-sided CUSUM statistic is calculated as follows [58]:

Si =
i∑

j=1

[
xj − (μ0 + k)

]
, (2.31)

where k is a parameter that is employed as a reference for detecting a change
in the process mean. If St changes into a negative value, the CUSUM decision
statistic is automatically set to zero. A fault is flagged out when the CUSUM
statistic St overpasses the decision threshold, H . In practice, the threshold H

of 4σ or 5σ , which results in good detection of a deviation of about 1σ in the
process mean, is recommended [59]. Here σ is the standard deviation of the
monitored variable.

Numerous variations of the CUSUM exist; one of the most common forms
is the two-sided CUSUM (tabular) [56]. The recursive formula for high and low
side shifts are:

S+
t = max

[
0, xt − (μ0 + k) + S+

t−1

]
, (2.32)

S−
t + = max

[
0, (μ0 − k) − xt + S−

t−1

]
, (2.33)

where the statistics S+ and S− are respectively the upper and lower one-sided
CUSUMs, and S+

0 = S−
0 = 0, μ0. A fault is declared if either S−

t or S+
t exceeds

the decision threshold H = hσ , where h relies on the shift to be detected.

2.4.1.3 Exponentially weighted moving average (EWMA) schemes
While CUSUM schemes consider all available measurements with equal weight
in process monitoring, EWMA schemes exponentially weight the measure-
ments based on their importance in characterizing the process [60]. The EWMA
shows suitable performance in detecting small changes in the process mean. The
EWMA scheme was first designed by Roberts [61], and was frequently applied
in quality control and process monitoring [56]. The EWMA monitoring statistic
is defined as follows: {

z0 = μ0,

zt = γ xt + (
1 − γ

)
zt−1,

(2.34)

where z0 = μ0 is the mean of fault-free data, γ is a weighting factor with the
range 0 < γ ≤ 1, which defines the temporal memory of the EWMA scheme.
Eq. (2.34) indicates that the EWMA statistic utilizes all the available informa-
tion to sense small anomalies. To highlight this point, the EWMA statistic, zt ,
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can be expressed recursively as:

zt = γ zt + (
1 − γ

) zt−1︷ ︸︸ ︷[
γ zt−1 + (

1 − γ
)
zt−2

]
= γ zt + γ (1 − γ )zt−1 + (1 − γ )2zt−2.

= γ zn + γ (1 − γ )zn−1 + γ (1 − γ )2zn−2 + · · ·
+ γ (1 − γ )n−1z1 + (1 − γ )nz0. (2.35)

The EWMA decision function in (2.35) can be expressed in compact form as

zt = γ

n∑
t=1

(1 − γ )n−t zt + (1 − γ )nz0, (2.36)

where γ (1 −γ )n−t denotes the weight for zt , which exponentially decreases for
previous observations. The parameters L and γ play an important role in design-
ing the EWMA scheme [56,54]. The value of L is frequently fixed in practice to
be 3, which implies a false alarm rate of 0.27%. Generally, a choice of small val-
ues of γ (i.e., where less importance is placed on the newer observations) is used
in order to extend the sensitivity to small deviations, while the use of large val-
ues of γ (i.e., EWMA with short memory) is suited for detecting larger changes
in the process mean [56,62,56]. For the purpose of detecting small changes, in
practice the value of γ is usually selected in the interval [0.1,0.3] [62,56].

In the absence of anomalies, the distribution of the EWMA statistic is
zt ∼ N(μ0, σ

2
zt
), where σzt = σ0

√
γ

(2−γ )
[1 − (1 − γ )2t ] and σ0 represents the

standard deviation of the fault-free measurements. However, when a mean shift
occurs at the time 1 ≤ τ ≤ n, the distribution of the EWMA statistic is computed
as zt ∼N(μ0 + [

1 − (1 − γ )n−τ+1
]
(μ1 − μ0), σ

2
zt
). Accordingly, when faults

happen, the mean of the EWMA decision function, zt , is a weighted average of
μ0 and μ1, and the weight related to μ1 becomes large when n is large. Then,
this clearly highlights that the statistic zt provides pertinent information about
the mean shift. The EWMA scheme flags faults when the monitoring statistic zt ,
as given in (2.34), exceeds the upper and lower control limits defined as

{
UCL = μ0 + Lσzt ,

LCL = μ0 − Lσzt ,
(2.37)

where μ0 is the targeted mean, L is the width of the control limit, and σ is the
standard deviation of the fault-free or preliminary data set.

From σzt , it can be seen that when t becomes larger, the term [1 − (1 − γ )2t ]
is asymptotically equivalent to unity. In other words, the control limits attain
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their steady-state values [56]:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

UCL = μ0 + L

σ︷ ︸︸ ︷
σ0

√
γ

(2 − γ )
,

LCL = μ0 − L

σ︷ ︸︸ ︷
σ0

√
γ

(2 − γ )
.

(2.38)

As described previously, in the Shewhart schemes, anomaly detection is
based only on the current measurement and all past measurements are ignored
(Fig. 2.5). Accordingly, these schemes provide unsatisfactory monitoring re-
sults when used for sensing small changes in the process mean. This limitation
can be mitigated by incorporating the information from the actual and the past
measurements in the decision process such as in EWMA and CUSUM schemes
(Fig. 2.5). In the CUSUM scheme, information from all available measurements
are exploited and the same weight is assigned to all observations (Fig. 2.5). On
the other hand, the EWMA scheme, which is designed by using an exponentially
weighted average of all available measurements, is also sensitive in detecting
small changes in the process mean.

FIGURE 2.5 Univariate process monitoring charts.

In EWMA schemes, a larger value of the smoothing parameter is suited
to rapidly detect faults with a large amplitude, while a smaller value can ef-
ficiently detect small faults in the mean of the process [60]. Therefore, by
using a unique value for the smoothing parameter, monitoring-based EWMA
schemes cannot reach a good detection capacity for both small and large faults
simultaneously [60]. Since the univariate EWMA control schemes assume fixed
thresholds, which may not be suitable for dealing with nonstationary (or time-
varying) data. Therefore, several adaptive EWMA and CUSUM methods have
been designed in the literature by allowing the thresholds of these methods to
vary online to account for the changing nature of the data [63,64]. The idea
behind the adaptive EWMA is to adapt the weight of the past observations, ac-
cording to the magnitude of the error (et = xt − zt−1, see (2.39)), and to detect
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in a more balanced way faults with different sizes:

zt = γ xt + (
1 − γ

)
zt−1

= γ

et︷ ︸︸ ︷
(xt − zt−1)+ zt−1. (2.39)

Also, several adaptive CUSUM (ACUSUM) schemes have been developed in
the literature to achieve suitable detection performance covering a range of mean
change magnitudes [64,65]. For instance, the basic idea behind the ACUSUM
proposed in [64] is to update the reference value (K) in CUSUM based on the
EWMA estimate.

2.4.1.4 Generalized likelihood ratio (GLR) hypothesis testing
approach

The above-described monitoring schemes (i.e., Shewhart, CUSUM, and EWMA)
are more or less suited to some specific range of fault amplitudes. For instance,
Shewhart-type approaches provide satisfactory detection of large faults, but they
are insensitive to small changes in the process mean [54,59]. While CUSUM
and EWMA schemes are effective in detecting small changes, they fail to detect
large faults. However, in practice, the magnitude of occurring faults is unknown.
Accordingly, it is desirable to automatically detect a large range of faults and
thus reduce the rate of missed detection. To this end, one approach to achieve
a reliable detection of different sizes of process anomalies is to base the moni-
toring scheme on a generalized likelihood ratio test (usually called GLR charts)
[66]. The benefits of the GLR approach are its efficiency in separating com-
posite hypotheses, simplicity, and absence of complex computations. Extensive
literature has been dedicated to studying GLR properties. Signficant efforts have
been devoted to establishing different asymptotic optimality properties of this
hypothesis testing approach and can found in [67–71]. The GLR detector is
widely used in several applications including air quality monitoring [29] and
train safety [66].

Here, we consider problems related to binary composite hypothesis test-
ing. When testing two composite hypotheses in which their corresponding data
probability density functions (PDFs) comprise unknown parameters, the GLR
approach is commonly utilized for separating the two possibilities. The null hy-
pothesis generally defines the nominal operating situation, while the alternatives
characterize departures whose presence should be either confirmed or discarded.
The essence of the GLR approach is to maximize the likelihood ratio statistic
over all possible faults to decide between two composite hypotheses [68–71].
In other words, the aim of the GLR approach is to separate two composite hy-
potheses,H0 andH1, based on the observed data.

For the purpose of anomaly detection, let’s consider an observation vector
Y = [y1, y2, . . . , yn] ∈ R

n being generated by one of these Gaussian distribu-
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tions: {
H0 : Y ∼N(0, σ 2In),

H1 : Y ∼N(θ �= 0, σ 2In),
(2.40)

where θ is the value of the anomaly and σ 2 > 0 is the variance. In this chapter,
the null hypothesis, H0, represents the fault-free situation, and the alternative
hypothesis, H1, represents the situation with potential faults. Generally speak-
ing, to decide between the two hypotheses, the GLR approach compares the
decision statistic, L(Y ), to the control limit, h(α):

δ(Y ) =
⎧⎨
⎩ H0 if L(Y ) = 2 log

sup
θ∈Rn

fθ (Y )

fθ=0(Y )
< h(α),

H1 else.
(2.41)

The GLR charting statistic, L(Y ), is given as

L(Y ) = 2 log sup
θ

{
exp

{
−‖Y − θ‖2

2

2σ 2

}
/ exp

{
−‖Y‖2

2

2σ 2

}}
, (2.42)

where ‖ · ‖2 is the Euclidean norm and fθ (Y ) = 1

(2π)
n
2 σn

exp
{
− 1

2σ 2 ‖Y − θ‖2
2

}
is the pdf of Y . Then, (2.42) can be expressed as

L(Y ) = 1

σ 2

{
min

θ
‖Y − θ‖2

2 + ‖Y‖2
2

}
= 1

σ 2

{
‖Y − θ̂‖2

2 + ‖Y‖2
2

}
. (2.43)

After the estimation of θ as θ̂ = arg min
θ

‖Y − θ‖2
2 = Y , L(Y ) can be expressed

as

L(Y ) = 1

σ 2
‖Y‖2

2. (2.44)

The control limit, h(α), is defined to achieve the desired probability of false
alarms, selected a priori:

P0 (L(Y ) ≥ h(α)) =
∫ ∞

h

f0(y)dy = 1 − Fχ2
1
(h) = α. (2.45)

The power function of the GLR approach is determined as

βδ∗(c2) = Pθ (δ
∗(Y ) =H1) = 1 − F1,γ (θ)(h), (2.46)

where F1,γ (Y ) is the non-central χ2(1, γ ) distribution with one degree of free-
dom, and the noncentrality parameter γ (θ) = 1

σ 2 ‖P ⊥
H θ‖2

2.
In summary, a fault is flagged by the GLR approach when the decision statis-

tic, L(Y ), exceeds the control limit, h(α). Otherwise, the supervised process is
performing normally.
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To conclude this section, note that the aforementioned univariate monitor-
ing schemes are designed based on two essential assumptions: the process data
are uncorrelated and normally distributed. However, measurements from en-
vironmental and modern industrial processes are usually autocorrelated and/or
nonnormally distributed. The absence of verification of these two major assump-
tions degrades the monitoring performance of these conventional schemes. To
monitor processes with serially correlated measurements, several monitoring
schemes have been designed in the literature [72–77]. Two major monitoring
approaches to consider correlation in the data can be distinguished [76,58]. The
essence of the first approach, which is known as a residuals-based scheme,
is to describe the autocorrelation in the data by using a mathematical model.
Then, traditional monitoring schemes can be applied to the uncorrelated resid-
uals obtained from the model. The efficiency of these approaches, however, is
very sensitive to the prediction quality of the model, which is not always easy
to build [78,76]. The essence of the second approach to monitoring the auto-
correlated data is to apply the monitoring schemes on the original data, and
adjust their decision thresholds suitably to consider the effect of the correlated
measurements [76,58]. Many authors have investigated the influence of the vi-
olation of the normality assumption on the process monitoring schemes [56,79,
80]. In [79], the impact of a violation of the normality assumption on the She-
whart scheme has been studied by using various known distributions including
the uniform, right triangular, gamma, and bimodal distributions. Also, in [81] the
impact of skewed distribution on the Shewhart chart has been studied. Several
works have designed process monitoring charts for non-Gaussian distribution
when the form of the underlying distribution is known. The authors in [82,
83] have developed the EWMA monitoring scheme for multivariate Poisson-
distributed data. Also, univariate monitoring charts were designed to monitor
nonnormally chi-square distributed processes [84]. However, often in real data,
the form of the underlying distribution is unknown, and then our choice may be
to use the normal theory results [56]. In such a case, ignoring the nonnormal-
ity in the process data can impact the statistical performance of the designed
monitoring scheme.

2.4.2 Distribution-based process monitoring schemes

The most commonly used monitoring techniques detect the changes in the mean
or variance of the process. However, in many real applications, changes fre-
quently affect the distribution of the inspected process while its mean or variance
rests unchanged. This section presents the Kullback–Leibler and Hellinger dis-
tances, which are commonly utilized to quantify the deviation separating two
distributions. The results of this section are essential in designing LVR-based
approaches for monitoring the entire distribution of the process and to broaden
the practical application.
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2.4.2.1 Kullback–Leibler-based monitoring scheme
The essence of Kullback–Leibler divergence is to compute the dissimilarity be-
tween two probability distributions. The KLD was originated in the information
theory domain and has been applied to several disciplines, such as classifica-
tion, speech and image recognition [85,86], transportation [87], telecommuni-
cation [88], industry [89,90], and medicine [91]. As reported in the literature,
KLD has a core role in solving anomaly detection and change detection prob-
lems [89,92,93]. This section presents the basic idea of KL divergence and how
it can be used as an anomaly detector.

Definition 2.1. The Kullback–Leibler information between two probability den-
sity functions (PDFs) p1(x) and p2(x) is defined as

I (p1 : p2) =
∫
Rdx

p1(x) log

[
p1(x)

p2(x)

]
dx, (2.47)

and between p2(x) versus p1(x) is given by:

I (p2 : p1) =
∫
Rdx

p2(x) log

[
p2(x)

p1(x)

]
dx. (2.48)

The KLI is an asymmetric measure (i.e., I (p1 : p2) �= I (p2 : p1)) and non-
negative (i.e., I (p1 : p2) ≥ 0 and I (p2 : p1) ≥ 0). Also, the equality I (p1 :
p2) = 0 is possible only if the two distributions are strictly equal. The KLD
distance represents the symmetric form of KLI [89] and is expressed as

KLD(p1;p2) = I (p1 : p2) + I (p2 : p1). (2.49)

For two Gaussian distributions, p1 ∼N(μ0, σ0) and p2 ∼N(μ1, σ1), character-
ized respectively by their means μ0, μ1 and variances σ 2

0 , σ 2
1 , the KLD distance

has the following analytical expression [94]:

KLD(p1\\p2) = 1

σ0
√

2π

∫
exp

(
(x − μ0)

2

2σ 2
0

)

·
[

log
σ1

σ0
− (x − μ0)

2

2σ 2
0

+ (x − μ1)
2

2σ 2
1

]
dx

= (μ1 − μ0)
2

2σ 2
1

+ 1

2

(
log

σ 2
1

σ 2
0

+ σ 2
0

σ 2
1

− 1

)
. (2.50)

In the case when anomalies occur only in the mean (i.e., σ 2
0 = σ 2

1 ), Eq. (2.50)
can be expressed as

KLD(p1\\p2) = (μ1 − μ0)
2

2σ 2
1

. (2.51)
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From (2.50) we can see that the second term is strictly positive for any σ0 �= σ1.
We conclude that in the case of faults simultaneously affecting the mean and
variance of the monitored Gaussian variable the value of KLD is larger than
its value in the case of a change in the mean alone. Therefore, it is also clear
that detecting anomalies in the mean and variance of process measurements
simultaneously using the KLD is easier than detecting anomalies that occur in
the process mean alone.

If we use KLD to characterize closeness of distributions p1(x) and p2(x), it
turns out that its value becomes close to zero when the two distributions are sim-
ilar; otherwise it deviates significantly from zero. Thus, KLD can be utilized for
anomaly detection. The KLD-based test to choose between the null hypothesis
H0 and the alternativeH1 is given by

δ(Y ) =
{
H0 if KLD(p1\\p2) < HD,

H1 else.
(2.52)

From the distribution of the decision statistic, KLD, the threshold of the
KLD mechanism can be computed nonparametrically as the (1 − α)th quantile
of the approximated distribution of KLD statistic obtained by kernel density
estimation (KDE). The nonparametric threshold is computed using anomaly-
free data. We declare an anomaly when the KLD statistic exceeds the decision
threshold.

2.4.2.2 Hellinger-based monitoring scheme
The test statistic considered here is based on the Hellinger distance (HD) metric.
It was introduced by Ernest Hellinger and can be adapted to measure the similar-
ity among two different probability vectors [95–97]. As with KLD, HD distance
also plays a central role in several problems of mathematical statistics [98,96,
97]. The HD measure has been widely exploited in numerous disciplines, in-
cluding pattern recognition [99], image processing [100], classification [101],
and anomaly detection [102,97,103]. Additionally, the HD metric has been
exploited in different applications including cybersecurity [103] and fraud de-
tection in insurance [104].

Definition 2.2 (Hellinger distance). The HD between two PDFs p1(x) and p2(x)

is the value

HD2(p1,p2) = 1

2

∑
(
√

p1(x) −√
p2(x))2. (2.53)

We can see that HD is the Euclidean norm of the difference between the square
root vectors:

HD2(p1,p2) = 1√
2
‖√p1 − √

p2‖2. (2.54)



42 Statistical Process Monitoring

Note that the HD distance is a symmetric metric of p2 and p1 (i.e.,
HD2(p1,p2) = HD2(p2,p1)). It has all the properties of a metric and
is bounded (i.e., the HD satisfies 0 ≤ HD2(p1,p2) ≤ 1), and the equality
HD2(p2,p1) = 0 is possible only if p1 = p2.

The analytical form of HD between normal distributions p1 ∼ N(μ0, σ0)

and p2 ∼N(μ1, σ1) can easily be obtained as in [94],

HD2(p1,p2) = 1 −
√

2σ0σ1

σ 2
0 + σ 2

1

exp

(
− 1

4

(μ0 − μ1)
2

σ 2
0 + σ 2

1

)
, (2.55)

where μ0, μ1 are the means and σ 2
0 , σ 2

1 the variances for p1 and p2, respectively.
In the case of only mean shift (i.e., σ 2

1 = σ 2
0 ), HD is given as

HD2(p1,p2) = 1 − exp

(
− 1

8

(μ0 − μ1)
2

σ 2
0

)
. (2.56)

Note that a small HD value indicates high similarity between two distributions,
and a high value of HD reflects a significant dissimilarity between them. Sim-
ilar to KLD, the HD metric can be used as an anomaly indicator. To conclude
this subsection, we note that the analytical form of the HD metric exists for cer-
tain non-Gaussian distributions such as Weibull, Poisson, and Beta distributions.
When the HD measure has no closed form, it can be approximated from the data
sets using approaches like KDE [105].

Note that the KLD and HD measures are a special case of the power diver-
gence, which has been first defined in [106,107]. Also, it has been shown that
these two measures are asymptotically identical, up to a constant factor, when
the ratio between distributions p1 and p2, that is, p1/p2, is close to 1 [108].

2.4.2.3 Limitations of univariate monitoring schemes
Today, modern engineering and industrial processes have become more complex
and contain several parts with an important number of measured variables. De-
spite the fact that these univariate monitoring schemes are successfully used in
several applications, they are suited only when each monitored variable is inde-
pendent of the others and thus such schemes ignore the interaction between
correlated variables. However, in engineering and environmental processes,
several variables require to be monitored simultaneously, which results in a
misleading analysis when using univariate monitoring schemes. Applying a sin-
gle monitoring scheme for each process variable is cumbersome and ineffective,
in particular in the presence of a high number of variables. Of course, the use
of multivariate schemes to monitor multivariate processes permits minimizing
the total number of monitoring schemes compared to univariate schemes. For
instance, assume that the inspected process comprises two variables X1 and X2.
Fig. 2.6 illustrates the difficulty of using independent univariate monitoring
schemes to monitor a bivariate process. It can be seen from Fig. 2.6 that the
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observations of X1 and X2 are within their corresponding control limits. Also,
Fig. 2.6 clearly demonstrates the ability of a multivariate scheme to detect this
fault (i.e., the red star in the upper right corner (outside the control ellipse)). This
point clearly represents a mismatch between X1 and X2. Therefore, monitoring
these two process variables separately can be very misleading.

FIGURE 2.6 Illustration of the disadvantage of using univariate schemes for monitoring multivari-
ate data.

Furthermore, the use of univariate charts for monitoring multivariate pro-
cesses has at least two limitations, which are described briefly below:

• Once joint univariate monitoring schemes are applied for multivariate pro-
cess monitoring, each univariate monitoring schemes has its own procedure
parameters that should be tuned before it can be used. For example, if a uni-
variate EWMA is utilized for monitoring a single process variable, then the
univariate EWMA scheme has two parameters involved (i.e., γ and L). Thus,
the joint monitoring scheme to monitor p process variables would have 2p

parameters to determine.
• Suppose we have two variables, X1 and X2, which are monitored individually

with a univariate scheme. For instance, 3-sigma thresholds are applied to each
process variable. Each scheme will result in the value of the probability of a
false alarm of α = 0,27% (type I error). So the overall rate of false alarms
for this case is ά = 0,54%. For instance, if 100 schemes are applied for mon-
itoring simultaneously, the probability of a false alarm will reach 27% (i.e.,
0.27% * 100). In general, if p statistically independent process variables and
monitoring schemes with a false alarm rate are used, the overall false alarm
rate ά is

ά = 1 − (1 − α)p. (2.57)
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However, when several process variables are inspected based on a single mul-
tivariate scheme, the overall rate of false alarms will remain at 0.27%.

Overall, the multivariate monitoring schemes that are constructed in the multi-
variate framework enable more effective fault detection than a joint monitoring
scheme involving multiple univariate monitoring schemes (for details see [109,
59]).

2.4.3 Multivariate process monitoring schemes with parametric and
nonparametric thresholds

To supervise multiple variables simultaneously, multivariate statistical monitor-
ing schemes such as multivariate Shewhart, multivariate EWMA (MEWMA)
and multivariate CUSUM (MCUSUM) have been designed as multivariate
counterparts of their univariate schemes. In this section, the objectives of each
monitoring schemes (i.e., multivariate Shewhart, MCUSUM, and MEWMA)
and comment on their benefits and limitations are outlined.

2.4.3.1 Multivariate Shewhart schemes
The multivariate counterpart of the Shewhart monitoring scheme is one of the
most popular multivariate monitoring techniques to inspect the mean shift of
a normally distributed process. Suppose that we inspect a multivariate process
Xt = (X1,X2, . . . ,Xp)T , where Xi ∈ R

m, and the collected data are normally
distributed with mean μ and covariance matrix �. A multivariate Shewhart
scheme, also known as a T 2 or as a χ2 scheme [110], to monitor the process
mean in multivariate data is based on the following monitoring statistic:

T 2
t = [

(xi − μ)T �−1(xt − μ)
]

(2.58)

where x is a vector of p variables, and μ is a vector of fault-free means of every
variable. The decision threshold of this monitoring scheme, which is derived
using fault-free data, is H = χ2

α,m. For new test measurements, the T 2 scheme
flags an anomaly if the value of T 2 surpasses a threshold value, χ2

α,m [25].
Since this scheme uses only the current observation and ignores all past data,
it shows poor detection performance in the presence of small changes. Note that
this scheme is designed under the assumptions of uncorrelated and multivariate
Gaussian distributed measurements.

2.4.3.2 Multivariate cumulative sum scheme (MCUSUM)
As a remedy to the insensitivity of the Shewhart scheme to small changes,
MCUSUM and MEWMA monitoring schemes have been designed [109]. The
essence of the MCUSUM approach is to exploit information of all available
data by computing the cumulative sum of the differences of each previously ob-
served vector compared to the nominal value for monitoring the means of the
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multivariate process [111]. MCUSUM was first introduced in [112] as a nat-
ural version of the univariate CUSUM scheme to deal with multivariate data.
Numerous extensions of MCUSUM have been developed [112–114]. In this
subsection, to simplify the presentation, we only present the MCUSUM scheme,
which received considerable consideration in the literature, developed in [112].
Let Xt = (X1,X2, . . . ,Xp)T , be a sequence of i.i.d.Np(μ,�), where Xi ∈R

m;
m is the number of variables. The MCUSUM decision statistic to plot is

St =
√

LT
t �−1Lt , (2.59)

where

Lt =
{

0 if Ct ≤ k,

(Lt−1 + Xt − μ0)(1 − k
Ct

) otherwise,
(2.60)

and

Ct =
√

(Lt−1 + Xt − μ0)T �−1(Lt−1 + Xt − μ0). (2.61)

Crosier [109], recommended using L0 = 0 and K =
√

(μ1−μ0)
T �−1(μ1−μ0)

2 . The
MCUSUM scheme signals faults when

St =
√

LT
t �−1Lt > H, (2.62)

where the decision threshold H is computed via simulation to reach the desired
probability of a false alarm.

2.4.3.3 Multivariate exponentially weighted moving average
scheme (MEWMA)

The MEWMA scheme was designed by Lowry et al. [115] as a multivariate
extension of EWMA for detection faults occurring in the mean of multivariate
data. The desirable characteristic of MEWMA is its capacity to detect small
changes in multivariate correlated process variables by incorporating all infor-
mation from the available datasets in the decision function. It has been widely
used in several applications such as renewable energy [116,117], air quality
monitoring [118], industrial processes, and medical healthcare.

Let Xt = (X1,X2, . . . ,Xm)T be an m-dimensional set of measurements at
time t . The MEWMA scheme designed by Lowry et al. [115] is given by{

Z0 = μ0,

Zt = �Xt + (Im×m − �)Zt−1 t = 1,2, . . . , n,
(2.63)

where � = diag(γ1, γ2, . . . , γm) is a diagonal matrix of smoothing parameters,
and m is the number of process variables. Designing an MEWMA scheme needs
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attribution of weight 0 < γ ≤ 1 that is utilized to allocate importance to ob-
servations; Zi is the ith EWMA vector, and Xi is the ith observation vector,
i = 1,2, . . . , n. We see that if � = I, then the MEWMA scheme becomes equal
to the T 2 scheme. Very often, in practice, in the absence of prior reason to assign
a different weight for each component, for simplicity it is convenient to assume
γ1 = γ2 = · · · = γm = γ . Thus (2.63) can be written as

Zt = γ Xt + (1 − γ )Zt−1. (2.64)

For constructing the MEWMA chart, the MEWMA statistic can be com-
puted recursively as [115]

V2
t = ZT

t �−1
Zt

Zt , (2.65)

where �Zt
is the variance–covariance matrix of Zt ,

�Zt
= γ

(2 − γ )

[
1 − (1 − γ )2n

]
�, (2.66)

where � is the covariance matrix of the input data. For large t , the covariance
matrix converges to �Zt

= (
γ

(2−γ )
)�.

Under the hypothesis of no change, the MEWMA statistic is Gaussian dis-
tributed with variance–covariance matrix �Zi

, Z ∼N(0,�Zi
). In the presence

of mean shift, μ1, the distribution of MEWMA statistic is Z ∼N
(
γ
∑n

j=1

[
(1−

γ )n−j θ
]
,�Zi

)
. Hence, it follows that V2

t is distributed as a χ2 with P degrees of

freedom in the absence of change. However, since the variables V2
t , t = 1,2, . . . ,

are correlated, the decision threshold of the MEWMA scheme cannot directly
be chosen as the (1 − α)th quantile of the χ2

P distribution. Numerous proce-
dures have been suggested in the literature to compute the decision threshold h

with respect to the parameters γ , p, and α, such as Monte Carlo simulation and
Markov chain approximation [77,119]. In [120], a procedure implemented in
Fortran to compute the MEWMA threshold is given to achieve a fixed number
of false alarms and a given γ . Also, in [121] a method to compute the optimal γ

and corresponding threshold h for a selected combination of p, the magnitude
of the shift to be detected, and the targeted ARL0 is developed.

Let us comment further on weighting matrix �. In [122], it has been shown
that the detection performance of the MEWMA scheme can be enhanced when
using � with nonzero off-diagonal elements compared to using a single weight-
ing parameter γ . However, in this case, the construction of the MEWMA
scheme is not an easy task, in particular, to properly select the weighting matrix
parameters. This is mainly due to the fact that fault direction and the corre-
lation among the process variables should be considered in the design of the
MEWMA.

Furthermore, to use the MEWMA monitoring schemes to detect anomalies
in the process covariance matrix, there have been several MEWMA extensions
in the literature; we refer to [123–125].
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To conclude this subsection, we note that utilizing the conventional mul-
tivariate monitoring schemes (i.e., multivariate Shewhart, MCUSUM, and
MEWMA) for inspecting high-dimensional processes with collinearities may
be ineffective.

2.5 Linear LVR-based process monitoring strategies

First, let us outline the reason why multivariate monitoring schemes including
multivariate Shewhart, MCUSUM, and MEWMA schemes are not frequently
used alone in applications with numerous correlated process variables. From the
previous section, we note that the design of the decision statistics of these three
multivariate schemes requires the calculation of the inverse covariance matrix.
However, since collected multivariate data from engineering and environmental
processes are correlated, the matrix inversion of the covariance matrix can fre-
quently generate poor numerical results because of the ill-conditioning problem.
Accordingly, it becomes obvious and particularly relevant to use projection-
based monitoring methods, such as PCA and PLS, when the covariance matrix
is ill-conditioned. As described in Sect. 2.2.3, LVR models are well suited
for multivariate monitoring as they mitigate the problem of ill-conditioning in
other multivariate schemes including multivariate Shewhart chart, MCUSUM,
and MEWMA schemes. For instance, to avoid the ill-conditioning problem,
projection-based methods such as PCA can be used to decompose the covari-
ance matrix of the raw data and generate transformed variables having better
numerical characteristics that enable process monitoring via the conventional
multivariate schemes (e.g., MEWMA and MCUSUM). In this section, the gen-
eral framework combining the LVR models and univariate or multivariate mon-
itoring techniques is described.

2.5.1 Conventional LVR monitoring statistics

The general framework of the data-based monitoring approaches such as input-
space models (e.g., PCA) and input–output models (e.g., PLS) consists of two
phases: (i) model construction and (ii) online monitoring as indicated in Fig. 2.7.
The first phase focuses on designing a reference model based on data gathered
from the inspected process when running within nominal conditions. Then the
decision thresholds of the monitoring scheme are computed (e.g., T 2 or another
chart). Generally, thresholds are defined in the subspace of the retained PCs or
the subspace of the residuals. These two subspaces usually serve as a monitoring
subspaces for fault detection. For instance, in PCA, a low-dimensional empir-
ical model that captures information from process data is built by picking the
relevant number of principal components as that catching the most variability in
data. In the second phase, new testing data are projected in the subspace model,
residuals are computed using the designed model, and test statistics, such as T 2

and SPE statistics, are computed and compared with the previously computed
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FIGURE 2.7 A flowchart representing the essence of data-based fault detection.

threshold for fault detection. The variation in the retained PCs and residuals are
frequently verified respectively by the T 2 and SPE schemes to detect abnormal
operations, but MCUSUM and MEWMA may also be used. After a reference
model is built using PCA or another approach, numerous monitoring schemes
can be applied for fault detection. To perform SPE and T 2 analysis, we may use
any model identified using various applicable methods other than PCA.

2.5.1.1 Hotelling’s T 2 statistic
The LVR methods (e.g., PCA and PLS) are usually followed by fault detec-
tion methods using SPE and T 2 statistics. Abnormalities in the process can be
detected by checking whether the measurements are not beyond the region of
the normal operation in the PCs subspace or in the residuals subspace. The T 2

statistic computes the fluctuations in the PCs alone at each time instance. More
specifically, the T 2 value is defined as the sum of the squares of the retained PCs
divided by the corresponding eigenvalue calculated from fault-free data charac-
terizing normal operation as [25]

T 2 = xT P̂ �̂−1P̂ T x =
l∑

i=1

t2
i

λi

, (2.67)

where λi is the eigenvalue (variance) of the PC ti . If the actual covariance matrix
is determined from the sample matrix, the control limit of the T 2 scheme is given
by [25]

T 2
l,n,α = l(n − 1)

n − l
Fl,n−l,α, (2.68)

where α is the level of significance, and Fl,n−l is the Fisher F distribution with
l and n − l degrees of freedom. In the case of multivariate Gaussian distributed
data X, and if the size of the sample is large enough, the T 2 statistic threshold
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can be computed from T 2
α = χ2

l,α . The decision threshold value is computed
using fault-free data.

2.5.1.2 Q statistic or squared prediction error (SPE)
To detect faults in the residual subspace, the SPE (also called Q statistic) is
usually used [22],

Q = eT e. (2.69)

The decision threshold of the Q statistic is defined as [126]

Qα = ϕ1

[
h0cα

√
2ϕ2

ϕ1
+ 1 + ϕ2h0(h0 − 1)

ϕ2
1

]
, (2.70)

where cα is the value of the normal distribution with α level of significance,
ϕi =∑m

j=l+1 λi
j for i = 1,2,3, and h0 = 1 − 2ϕ1ϕ3

3ϕ2
2

.

It should be noted that the Q scheme is sensitive to modeling errors and its
detection quality mainly relies on the number of retained PCs [22].

Fig. 2.8 illustrates an example of a data point “b” with a large T 2 value rep-
resenting the (horizontal) distance between the center of the PC plane and this
point. Also, Fig. 2.8 shows another point with a significant Q value, which rep-
resents the vertical distance between the PC plan and this atypical data point “a”.
Generally speaking, the Q indicates the mismatch between the data sample and
the model.

FIGURE 2.8 Projected measurements (blue [dark gray in print version]) and two observations “a”
and “b” with values of their corresponding T 2 and Q statistics.

To conclude this section, note that the decision thresholds of Q and T 2

schemes are derived based on the fact that the data are uncorrelated and nor-
mally distributed. To remedy this limitation, an alternative solution based on
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kernel density estimation (KDE) can be used [127]. After estimating the distri-
bution of the decision statistic (e.g., Q and T 2), the threshold can be computed
nonparametrically as the (1 − α)th quantile of this estimated distribution.

As we explained in Sect. 2.5.1, in projection-based monitoring approaches,
the PC and residual subspaces are frequently inspected via the Shewhart-type
monitoring chart (i.e., Q and T 2) for detecting abnormal changes. However,
these schemes are designed to detect large faults but they fail to detect small
changes. Alternatively, other types of multivariate schemes, such as MEWMA
and MCUSUM, can be used [118,128]. Furthermore, the capability to detect
small faults can be enhanced by amalgamating univariate schemes (CUSUM
or EWMA) with Q and T 2, but it needs a good selection of the parameters
of CUSUM or EWMA schemes [129]. Instead of the conventional multivariate
monitoring schemes with projection based methods, other approaches exploit
the sensitivity of distribution-based schemes, such as KLD [130,92,131,89] and
HD [102,132], to detect incipient faults.

2.5.2 Fault isolation

Today engineering and environmental processes have become far more complex
due to advances in technology. Multiple relevant process variables require to be
supervised all together at the same time. Once a fault is detected, fault isolation
(attribution) is required to ensure safe operation of the process and to avoid the
risk of process shutdowns by making the necessary correction before the fault
propagates and contaminates the process [133]. Isolating the detected faults,
which is necessary for a systematic diagnosis and maintenance, is not an easy
task because of the large number of variables that need to be inspected. The aim
of fault isolation is finding process variables that contributed to the abnormal
change, thus allowing the operators to concentrate only on the subsystem where
the fault happened. Accordingly, fault isolation is crucial to significantly reduce
the losses in profitability and to facilitate maintenance tasks. In this section,
two basic tools for fault isolation, namely latent variable contribution plots and
RadViz visualizer, are presented. In Chap. 3, more details about fault attribution
in multivariate statistical monitoring will be presented.

2.5.2.1 Fault isolation using modified contribution plots
The underlying intuitive idea behind the contribution plot is to find the pro-
cess variables with large contributions that are potential indicators to locate the
source of abnormalities. Hence, the contribution plot provides relevant informa-
tion to operators for enabling efficient fault diagnosis by focusing their analysis
on a small number of variables which may be the cause of the detected anoma-
lies [134,21,135,136].

Several fault isolation techniques are developed within multivariate statisti-
cal monitoring approaches, including contributions to the T 2 statistic, contribu-
tions to SPE, and contribution to individual scores, which are the most popular
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approaches in fault diagnosis [21,137,138]. The essence of these contribution-
based approaches is that the variables with faults are expected to give significant
contributions to the fault detection statistics. Most of the contribution-based
fault isolation techniques have been summarized and generalized in [136]. How-
ever, this approach investigates the process variables separately without consid-
ering the correlation between them, which make it inappropriate for isolating
faults in multiple variables that simultaneously participate in the fault occur-
rence. Other researchers [139] use the GLR test for fault isolation, which can
also provide an estimate of the size of the isolated sensor fault. In [140], a
reconstruction-based method is introduced to identify single and multiple faults.
Another approach combining the desirable benefits of the contribution analysis
and the reconstruction-based approach has been designed to further enhance the
fault isolation. However, the reconstruction-based contribution approach is suit-
able only for identifying unidimensional faults with relatively large magnitudes.
Recently, in [141], an approach based on exponential smoothing reconstruction
has been designed for isolation of incipient faults. Next, we will review two of
the most commonly used techniques in fault isolation – the contribution meth-
ods.

T 2 contribution approach

The T 2 contribution-based approaches have been broadly applied in the industry
to identify the process variables that significantly contribute to the fault detected
by the T 2 monitoring scheme. The essence of this approach is based on com-
puting the gradient of T 2 with regards to every variable. From Eq. (2.67) the
gradient of the T 2 statistic provides the sensitivity to the variable vector x as

ST 2 = ∂(T 2)

∂x
= 2P(PT

∑
x

P)−1PT x = 2P�−1
p PT x. (2.71)

The constant “2” can be ignored and the contribution from each variable can be
computed as

T 2contxi
=
∑k

j=1(pjxi)
2

λj

= x2
i

k∑
j=1

p2
j

λj

. (2.72)

If T 2contyi
is the largest among all values calculated for i = 1, . . . , n, then yi is

indicated as a potential cause of the fault.

SPE contribution approach

When a fault is flagged by the Q scheme, the Q contribution plot is usually
applied to isolate the fault [135]. Let E = [e1 e2 . . . em] the residual matrix and
ej be the j th columns of the residuals matrix. From (2.69), we have

Qj = eT
j ej . (2.73)
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Indeed, each row of the residual matrix E, ei is the Q contribution for this spe-
cific sample. The fractional contribution of the ith variables to the overall Q at
sample instant j can be computed as

QcontXj
= e2

ij

Qj

. (2.74)

The Q contributions’ plot is helpful to identify the variable making an important
contribution to SPE as the suspected source of the fault.

2.5.2.2 Fault diagnosis using RadViz visualizer
RadViz visualization was first proposed by Patrick Hoffman et al. in [142,143]
as a multivariate data visualization tool to classify DNA sequences. Indeed, Rad-
Viz enables nonlinear projecting of high dimensional data into a 2-dimensional
space and allows direct interpretation of the position of the observation in the
space. It can visualize high dimensional data comprising three or more variables
in a 2-dimensional space. RadViz has been widely used to visualize, interpret,
and cluster high dimensional datasets like microarray data and stock exchange
trends.

Generally speaking, RadViz reaps the benefits of the dimensionality-
reduction methods with scatterplots, where the value of each observation could
be indicated from the distance to the anchors [144]. The anchor points are the vi-
sualized variables uniformly spaced in the circumference of a unit circle. Fig. 2.9
gives an illustrative example showing the basic concept of a RadViz Visualizer.
In this method, each point is linked to every anchor by a virtual spring. Here,
the position of each observation in the circle is calculated based on its relative
influence by the anchors (i.e., spring force for each spring). The coordinates
of each observation are at the point where the system of spring forces attains
equilibrium. The influence of each anchor on the projected observation is rela-
tive to the amplitude of the coordinate for that anchor. The coordinates of each
observation in RadViz are computed as

xi =
∑d

i=1 xi cos θj∑d
i=1 xi

, (2.75)

yi =
∑d

i=1 xi sin θj∑d
i=1 xi

, (2.76)

where xi and yi are the coordinate of the projected observation, and θj denotes
the angular position on the circle for the anchor j ; ai,j represents the value for
dimension j for the observation i; d is the number of dimensions; and n the
number of observations.

The main characteristics of RadViz method can be summarized as follows. In
this 2D space, observations in the center have approximately equal dimensional
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FIGURE 2.9 An illustrative example of the principle of RadViz Visualizer.

values. On the other hand, observations with some coordinate values signifi-
cantly larger than the others are impacted or related to the dimensional anchors
closer to these observations. In other words, the larger the value for a specific di-
mension, the closer the projected observation to the associating anchor, and vice
versa. It is this desirable characteristic that makes RadViz a useful tool to assist
fault diagnosis. In Fig. 2.9, RadViz is utilized for visualizing multidimensional
data in a four-dimensional space (Fig. 2.9). The yellow points (light gray in print
version) in the circumference of the circle, which are called anchor points, repre-
sent the dimension of the data (e.g., process variables or latent variables). In this
example, observation B has coordinates (1,0,0,0) and it is placed at X1, which
means that this observation is fully related to this anchor (variable) without any
ambiguity. Observation C with coordinates (1,1,0,0) has a large correlation
with X1 and X2 and low correlation with X3 and X4. Finally, observation A
with coordinates (1,1,1,1) is placed in the center of the circle, meaning that it
is impacted in a similar way by all anchors.

Until now, the RadViz tool has not been well exploited in fault detection
and diagnose to assist fault isolation. In Sect. 2.6.2, RadViz is used to diagnose
anomalies in influent measurements at water resource recovery facilities.

2.6 Cases studies

2.6.1 Simulated example

Here, the prediction efficacy of the OLS, RR, and the LVR models (PLSR and
PCR) is evaluated using synthetic data sets. The simulated data comprises ten
input variables and one response variable. In this example, the input variables x1
and x2 represent “block” and “heavy-sine” signals, and the other seven variables
are obtained as linear combinations of x1 and x2 (i.e., the input matrix X =
[x1, x2, . . . , x9] is of rank 2):

x3 = x1 + x2; x4 = 0.3x1 + 0.7x2; x5 = 0.3x3 + 0.2x4;
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x6 = 2.2x1 − 1.7x3; x7 = 2.1x6 + 1.2x5; x8 = 1.4x2 − 1.2x7;
x9 = 1.3x2 + 2.1x1; x10 = 1.3x6 − 2.3x9.

Then, the output is obtained as a linear combination of all inputs variables as

y =
10∑
i=1

bixi , (2.77)

where bi = {
0.07,0.03,−0.05,0.04,0.02,−1.1,−0.04,−0.02,0.01,−0.03

}
for i = 1, . . . ,10. First, 128 noise-free samples are generated and then tainted
with zero-mean Gaussian noise. A sample of output measurements with signal-
to-noise ratio (SNR) equal to 20 is given in Fig. 2.10. After constructing the four
models using training data, they are compared in terms of the output prediction
MSE using unseen test measurements.

FIGURE 2.10 A sample of output measurements with SNR = 20.

To study the effect of noisy data on the prediction quality of the four mod-
els, the simulated noise-free data has been tainted with noise SNR levels equal
to 10, 20, and 50. The simulated data are divided into two portions: testing and
training data. For PLSR and PCR, the number of retained PCs is selected using
the cross-validation technique. The developed model performances are assessed
by the model prediction, i.e., MSE using the testing data set. To achieve statisti-
cally valid results, 1000 stochastic simulations have been carried out. Prediction
results of the five models are presented in Table 2.1 and Fig. 2.11. Results in
Fig. 2.11 indicate that RR provided better prediction compared to OLS. Also,
it can be seen that PCR and PLS achieved higher performance compared to the
full rank models (OLS and RR). The use of only a few principal components
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TABLE 2.1 The prediction MSEs of the four models.

Model SNR=10 SNR=20 SNR=50
PLS 2.183 1.111 0.4510

PCR 2.223 1.127 0.4565
RR 2.288 1.148 0.4584

OLS 3.849 1.955 0.7853

FIGURE 2.11 The prediction MSEs of the studied models under different SNR levels.

in LVR models allows removing a portion of the noise in the data and thus im-
proving the prediction quality. From Table 2.1, we can see that the PCR and
PLS models provide comparable prediction performance, which is in agreement
with the literature [145,146].

2.6.2 Monitoring influent measurements at water resource recovery
facilities

Wastewater treatment plants (WWTPs) provide sustainable solutions to water
scarcity. As initial conditions offered to WWTPs, influent characteristics (ICs)
affect treatment units’ states, ongoing processes mechanisms, and product qual-
ity. Anomalies in ICs, often raised by abnormal events, need to be monitored
and detected promptly to improve system resilience. In this section, the abil-
ity of the PCA-based approach to monitor influent measurements at WWTPs is
investigated. For this purpose, historical ICs from the WWTP based in King Ab-
dullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
(Fig. 2.12) were engaged.

In this dataframe, operators have kept seven years of records of 21 features
(Table 2.2). Measurements were performed on samples taken from the headwork
of the WWTP in order to maintain compliance with regulations and standards.
This plant has a sustainability mission to provide all treated effluents for irriga-
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FIGURE 2.12 (A) The pipeline from the campus, (B) the grit chamber and grit classifier inside the
headwork, (C) the neutralization pit.

TABLE 2.2 List of inspected influent variables in KAUST WWTP.

No. Variable name Measurement scopes Limit
1 InFlow-LS1 Wastewater inflow, from the whole campus area, in m3/day –

2 InFlow-LS8 Wastewater inflow, from a desalination plant, in m3/day –

3 InFlow-DP Wastewater inflow, recycled from WRRF itself, in m3/day –

4 InFlow-Total Wastewater inflow, from the whole university, in m3/day 2500–6000

5 Temp Temperature, in Celsius –

6 pH potential of hydrogen, unitless 6–9

7 Conductivity Conductivity, in µS/cm < 2850

8 TDS Total dissolved solid, in mg/L < 2000

9 TSS Total suspended solid, in mg/L < 312

10 CaHardness Calcium hardness, in mg/L –

11 MgHardness Magnesium hardness, in mg/L –

12 TotalAlkalinity Total alkalinity, in mg/L < 200

13 BOD5 5-day Biochemical Oxygen Demand, in mg/L < 264

14 COD chemical oxygen demand, in mg/L < 527

15 FOG Fat, oils and grease, in mg/L –

16 TKN Total Kjeldahl Nitrogen, in mg/L < 40

17 NH3N Ammonia, in mg/L < 25

18 NO3N Nitrate, in mg/L < 10

19 PO4P Phosphate, in mg/L –

20 Cl Chloride, in mg/L –

21 Boron Boron, in mg/L < 2.5

tion reuse across the campus, which greatly reduces the potable water demand
of the university. Abnormal events have occurred, such as intensive rainfalls,
seawater intrusion into the lift station, discharge from construction area, and
hypochlorite dosage. All of them caused effects on the WWTP operation (down-
stream processes compared to the inflow), and therefore were identified and
reported by operators. R package Amelia was imported to impute a few miss-
ing data (132/63,950, less than 1%) during the preprocessing step. By involving
data-driven anomaly detection based monitoring techniques, we aimed to recog-
nize anomalies in the influent, make decisions, and take action before they flow
into the process, and upgrade sustainability of the plant.
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Descriptive statistics of ICs time series data are given in Table 2.3. To statisti-
cally characterize each variable, i.e., mean value, standard deviation, extremes,
and quartiles are computed. Also, symmetry and shape of the distribution of
each variable are checked by computing skewness and kurtosis statistics.

The training data collected from WWTP in the absence of anomalies is au-
toscaled and utilized to design the reference PCA model. Here, the retained PCs
in the PCA model are selected using the CPV technique. Seven PCs catching
80.01% of the variability in the data have been kept in the development of the
PCA model (Fig. 2.13).

FIGURE 2.13 Illustration of the cumulative percent variance. Seven PCs explained 80.01% of the
total variance.

Fig. 2.14 displays a heatmap of the transformation matrix between the orig-
inal variable and the retained PCs. This heatmap enables visual identification
of relations between the original IMs variables and the PCs. Fig. 2.15 shows
a correlation heatmap of Pearson correlation results for the IMs variables. The
dominant PC, which explains 32.54% of total dataset variance, is linked to the
“Flow” and “CNP” blocks. The second dominant PC capturing 17.55% of the
total variance is related to the calcium hardness and the “TDS” block. The third
PC accounts for 9.39% of the variability in the data and is related to the “CNP”
and “Flow” blocks. The fourth PC, which captures 6.78% of the total variabil-
ity, is impacted by the “pH” and “miscellaneous” blocks. The other retained PCs
account for 5.94%, 4.20%, and 3.61% of variance, respectively.

To show the quality of the designed PCA model, Fig. 2.16 presents the plots
of the typical variables with their predictions from the PCA model. Fig. 2.16
indicates that the PCA model presents relatively acceptable predictions of the
IMs time series. However, for some variables, such as BOD5, some modeling
mismatch is noticed. This modeling mismatch is reflected in residuals, which
are used as an indicator of fault detection, and can impact the detection quality.
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TABLE 2.3 A summary of statistics quantitatively describing the training dataframe.

mean std min 0.25 0.5 0.75 max skewness kurtosis
InFlow-LS1 3021.61 535.45 2228.00 2660.00 2851.00 3244.00 5249.00 1.33 1.89

InFlow-LS8 279.31 156.08 64.00 156.00 228.00 366.00 867.00 1.13 0.92

InFlow-DP 47.43 95.79 0.00 9.00 10.00 36.00 749.00 3.80 18.67

InFlow-Total 3512.92 611.00 2558.00 3036.00 3389.00 3853.00 5642.00 0.86 0.34
Temp 29.31 1.59 25.99 28.10 29.20 30.60 32.50 0.27 −0.85
pH 7.40 0.25 6.59 7.25 7.36 7.52 8.56 0.91 3.20

Conductivity 669.37 284.69 264.00 537.00 625.00 719.00 2466.00 3.19 15.37

TDS 459.48 209.08 174.00 363.00 429.00 492.00 1809.00 3.37 16.69

TSS 68.66 27.29 12.00 49.00 64.00 82.00 187.00 1.14 2.10

CaHardness 72.75 30.78 20.00 52.00 72.00 94.00 176.00 0.49 0.17

MgHardness 41.91 27.46 6.00 24.00 36.00 48.00 156.00 1.81 3.59

TotalAlkalinity 120.88 24.98 68.00 100.00 120.00 136.00 196.00 0.22 −0.33

BOD5 99.03 36.95 27.00 71.00 92.00 123.00 224.00 0.58 0.10

COD 152.99 61.83 42.00 102.00 157.00 189.00 329.00 0.50 −0.25

FOG 54.36 53.05 2.90 14.30 37.10 77.10 351.40 1.86 5.25

TKN 17.91 6.18 2.10 13.80 17.30 21.90 37.90 0.30 0.45

NH3N 11.84 4.10 0.94 9.30 12.00 14.50 23.60 −0.06 0.47

NO3N 4.17 1.68 0.10 2.90 4.20 5.10 9.80 0.49 0.47

PO4P 8.25 2.86 1.30 6.40 8.10 10.00 23.50 1.41 6.59

Cl 126.09 75.62 45.00 91.00 107.00 137.00 654.00 4.29 23.37
Boron 1.15 0.33 0.50 0.90 1.10 1.30 2.50 1.40 2.63
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FIGURE 2.14 Heatmap of the Pearson correlation coefficients computed for the IC variables.

FIGURE 2.15 Heatmap of variables and the retained PCs.

The designed PCA model that reflects the nominal behavior of the IMs at
the WWTP is used for fault detection purposes. IM testing data collected from
May 15, 2011, to September 1, 2017, were used to test the PCA-based moni-
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FIGURE 2.16 Time series of typical variables with their predictions produced by PCA modeling:
(A) total inflow, (B) boron, (C) conductivity, (D) BOD5, (E) pH, and (F) total alkalinity.

FIGURE 2.17 Anomalies occurred in KAUST WWTP.

toring scheme. Several abnormal events have been reported during this period,
including seawater intrusion and discharge from construction area over the limit
and leakage (Fig. 2.17).

The designed PCA model that reflects the healthy behavior of the WWTP
will be used for anomaly detection purposes. Anomalies in ICs, often raised
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by abnormal events, need to be monitored and detected promptly to improve
system resilience. Here, the capacity of the PCA-based SPE, T 2, and residuals-
based univariate chart in monitoring ICs are tested. For each scheme, parametric
and nonparametric thresholds are adopted to improve anomaly detection. The
nonparametric threshold is computed as the (1 − α)th quartile of the estimated
distribution of the decision statistic (e.g., Q and T 2) using the KDE technique.
To quantitatively assess the detection efficiency of the proposed procedures,
the following metrics will be used: true positive rate (TPR), false positive rate
(FPR), accuracy, and area under the curve (AUC) [147]. Detection results of the
five monitoring schemes are summarized in Table 2.4.

TABLE 2.4 Accuracy of the PCA-KNN vs others.

Algorithm TPR FPR Precision AUC
PCA-SPEnp 0.853 0.057 0.939 0.898

PCA-T 2
p 0.657 0.059 0.928 0.799

PCA-T 2
np 0.402 0.005 0.969 0.699

PCA-Residualsnp 0.765 0.533 0.480 0.616

PCA-SPEp 0.196 0.001 0.964 0.598

From the detection results in Table 2.4, we realize that the PCA-based resid-
uals scheme is ineffective for monitoring multivariate IM data. In this approach,
each single PCA residual is monitored individually by a nonparametric univari-
ate monitoring scheme. The joint monitoring scheme declares the presence of
an abnormal event if at least one individual scheme signals’ anomalies. This
approach does not consider the correlation among variables and thus results in
weak detection results.

As clearly shown, the detection capacity is greatly enhanced by using the
PCA-based SPE with nonparametric threshold compared to the corresponding
Gaussian distribution-based thresholds. Indeed, the decision thresholds of SPE
and T 2 schemes are computed with the assumption that residuals are Gaussian
distributed, which is invalid for IMs data (Table 2.4). Indeed, the PCA-based
SPE scheme with nonparametric threshold outperforms the other methods (Ta-
ble 2.4) by achieving an AUC up to 0.898, which flags its ability to detect the
vast majority of abnormal events reported by the operator, while avoiding raising
false alarms at the same time. The lowest prediction performance was obtained
for the PCA-based SPE scheme with parametric thresholds since SPE statistic,
which is sensitive to model errors.

The anomalies that are challenging to detect based on the overall outcome
of our algorithms are related to “Water supply shutdown” and “Lift station
maintenance/flushing”. This is because they may raise multiple latent effects
in multiple variables (unlike others that would cause significant single variable
shifting) and therefore were not easy to be captured.
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FIGURE 2.18 RadViz of IMs datasets with anomalies.

It has been shown in [148] that the PCA-based fault detection can be further
improved by using k-nearest neighbors (kNN) algorithm to separate between
normal and abnormal features in IMs dataset. The use of kNN is motivated by its
remarkable success in quantifying the similarity between normal and abnormal
features due to its capability to deal with nonlinear features, and does not involve
assumptions on the underlying data distribution.

It should be clear that the PCA-based monitoring schemes are affected by
the prediction quality of the designed model. The detection results in this appli-
cation highlight that building a nonlinear PCA model may enhance the detection
abilities.

Fig. 2.18 displays a RadViz visualization of IMs datasets with their scores on
principal components set as anchors. Here, the dimensionality reduction benefits
of PCA and the desirable proprieties of multivariate data visualization via Rad-
Viz have been combined. Moreover, prior knowledge of PCs composition from
Fig. 2.15 provided a clear interpretation and diagnosis of detected anomalies.
Observations without anomalies (in gray) are scattered in the center region, and
numerous anomalies from the second to the sixth PC surrounded them in a “V”
shape manner. RadViz is used here to assist analysis of detected anomalies and
identifying their possible sources. From Fig. 2.15, it can be seen that anomalies
generated by “discharge from construction area” and “TDS over the limit” are
close to the second and third anchors, exactly matching their roles as “TDS” and
“Inflow” block-indicators. Also, we can see that observations from “Rainfall”,
“Internal circulation”, and “Lift station flushing” are near to the “Inflow” and the
PC5 which is dominated by FOG and recycled flow. IM abnormalities caused by
“Lime dumping from RO plant”, “pH over the limit”, “Total alkalinity over the
limit”, and “Water supply shutdown” are closer to PC6, which is dominated by
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pH, PC2 anchor and PC4, which is dominated by pH, alkalinity, and calcium
hardness anchor.

Note that RadViz is helpful to understand and identify the source of anoma-
lies.

2.7 Discussion

Prediction, fault detection, and diagnosis using LVR methods are effective for
handling massive and high-dimensional data. As explained in this chapter, the
linear LVR models represent an important tool and have a good capacity to
extract relevant information from multivariate data. These models are amal-
gamated with univariate and multivariate monitoring schemes for detecting
anomalies in multivariate data. However, these models are designed to model
linear relationships, and in practice, modern industry and environmental pro-
cesses exhibit nonlinear behaviors. This has been shown in the WWTP case
study, where the data collected is non-Gaussian distributed and nonlinear. The
linear PCA-based fault detection approach can achieve a detection rate of around
90%, which may be improved by using nonlinear monitoring schemes. Accord-
ingly, the nonlinear LVR approach techniques that can describe and capture
nonlinearity in multivariate processes is needed. Chapter 4 will focus on nonlin-
ear process monitoring.

Although Q and T 2 and their contribution plots are frequently employed
in fault detection and isolation, they frequently lead to the incorrect isolation
of faults. Indeed, Q reduces the degrees of freedom of the test statistics. Com-
monly one-half to two-thirds of the diagnosis information (redundancy) in the
data is lost using Q. The Q contribution plot method does not possess a con-
vincing statistical basis and, in fact, sometimes gives an ambiguous diagnosis.
Numerous lasso and forward variable selection methods have been proposed for
fault attribution. The next chapter will review these techniques and present a
new fused adaptive lasso fault attribution approach that is designed for nonsta-
tionary, temporally dependent multivariate processes.
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Chapter 3

Fault isolation

3.1 Introduction

Monitoring univariate data does not require fault isolation because if a fault is
detected, then the only variable affected is the one being monitored. However,
multiple features are often monitored jointly in complex systems or processes,
and multivariate fault detection does not necessarily provide the user with a list
of the subset of variables that have been affected by the fault. Identifying the
shifted variables is the second in a four-step process that begins with fault de-
tection and ends with returning a system back to its in control (IC) state. First,
fault detection is used to detect irregularities or anomalies in the system. The
performance of a fault detection method is usually measured in terms of detec-
tion speed and occurs on the order of seconds, minutes, or hours depending on
the temporal frequency of the measurements. Fault isolation is used to identify
the variables within the system that have been affected by the fault. Oftentimes,
the ability of methods to correctly identify the shifted variables is only loosely
assessed, but we will review some of the common metrics in this chapter. De-
termining the cause of the fault occurs in the fault diagnosis step, and this could
require expert input, especially in a new, understudied system. Finally, process
recovery is a set of actions needed to return the system to its previous IC state. In
some cases, manual intervention is necessary, for example, to make mechanical
repairs, but in other cases, adjustments to the control of the system can compen-
sate for the fault.

In this chapter, we focus on presenting fault isolation methods, but fault
isolation can occur in multiple contexts, often generated by distinct goals or
available data, so the context and goals should be clarified during the initial
analysis. For example, fault isolation can be done retrospectively, looking back
in time at a period of historical data, or prospectively, analyzing observations as
they are made available in real-time. These two goals are often called Phase I
and Phase II monitoring, respectively. Phase I methods in the fault detection
context are usually used to test if data are fault-free so that the fault-free data
can be used to establish monitoring thresholds and optimal parameter settings
for Phase II monitoring. Similar distinctions can be used in fault isolation, but
a third option exists in which a period of historical data with a known fault(s)
may be examined to determine the cause(s) of the fault without the purpose
of carrying information forward into a Phase II analysis. This may occur im-
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mediately after a fault has been observed or can be applied to historical data
archives.

In terms of available data, we have observed two common settings. In the
first, a process may not be well-studied, and the types, number, and frequency
of faults that will occur are unknown. This is the classic unsupervised setting
in which multivariate observations are available, but the observations are not la-
beled as faulty or not, and the variables are also certainly not labeled as shifted
or not. Alternatively, a very well-studied process may be monitored in which
a wealth of historical data exists, and multiple copies of every type of fault
that could occur have been observed. In such settings, observations are labeled
as faulty or not, and the variables associated with each fault are also known.
This is a supervised setting, so when a new fault is detected, the goal is to
classify the new fault as closely as possible to one of the existing catalogued
faults.

Throughout this chapter, we attempt to standardize notation and nomencla-
ture. For example, we termed variables that have been affected by the fault as
shifted, but many other labels exist in the literature, such as faulty [1], OC [2],
changed [3], responsible [4], abnormal [5], suspicious [6], and altered [7]. The
variables themselves may simply reflect a change in an external input, so the
terms faulty, OC, responsible, suspicious, and abnormal imply that the blame
for the fault lies on those particular variables, which may not be the case. We
prefer the label shifted, which implies that the variable has changed or altered in
some way without assigning any diagnostic responsibility to the variable. Sim-
ilarly, some methods that claim to perform fault isolation truly focus more on
fault detection by removing unimportant variables, so we are very careful with
terminology, and the vocabulary that we use may not match that of the original
source material, but our goal is to be consistent within this text.

Both statistical and machine learning approaches have been applied in fault
isolation. In this chapter, we will present some of the classical approaches to
fault isolation along with some more modern tools. Then, we will present some
common metrics for evaluating fault isolation methods. Finally, we present two
case studies to illustrate some of these methods in practice. However, before
we delve into the details of fault isolation, we first point out some fundamental
issues that often go overlooked in fault isolation.

3.1.1 Pitfalls of standardizing data

Standardizing variables prior to performing fault detection and isolation (FD&I)
is necessary to ensure that those variables with greater ranges or variabilities
do not overwhelm the others. Multiple approaches can be taken to standardize
variables. We let X be an n × p dimensional matrix with n observations on the
rows, and p variables on the columns. We may refer to either xi for i = 1, . . . , n,
which is a p-dimensional set of variables for one observation, or xj for j =
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1, . . . , p, which is an n-dimensional set of observations for one variable. The
standardization can be either univariate or multivariate. The classical univariate
approach is simply

xj − μ̂j

σ̂j

,

for μ̂j and σ̂j the sample mean and standard deviation of variable j , respec-
tively, for j = 1, . . . , p. The classic multivariate approach is

�̂
−1/2

(X − μ̂),

where �̂ is the estimated variance–covariance matrix, and μ̂ is the estimated
vector of means. Robust standardizations can also be considered, as in [8,9],
and these utilize robust estimates of the mean and covariance.

When the variables are related, regardless of whether the relationship is lin-
ear or nonlinear, then the standardization method used can dramatically change
which variables appear to be shifted. In other words, the shifted variables in the
raw data may not be preserved in the transformed data. The stronger the rela-
tionship between two variables, the stronger the propagation of the fault from
one variable to another can be. To illustrate, Fig. 3.1 shows two sets of three
variables. The first set of variables, x1, x2, and x3, are linearly related and are
simulated from a multivariate normal distribution with mean μ = (0,0,0)′ and
covariance

� =
⎡
⎢⎣ 1.00 0.15 −0.30

0.15 1.00 0.85
−0.30 0.85 1.00

⎤
⎥⎦ . (3.1)

The second set of variables are nonlinearly related, governed by the following
equation set, as introduced by [10]:

y1 = s + e1, y2 = s2 − 3s + e2, y3 = −s3 + 3s2 + e3, (3.2)

where the noise factors are e1, e2, e3 ∼ N(0,0.01 × I) with I a 3 × 3 identity
matrix and underlying latent factor s ∼ Unif(0.01,2).

A fault is introduced at the vertical dashed line in Figs. 3.2 and 3.3. For the
linearly related variables, Fig. 3.2 shows a strong drift fault in the first vari-
able, and in the second column wherein a multivariate standardization has been
applied to the data, a slight drift is also apparent in both x2 and x3. The first
variable is most strongly correlated with the third, so a stronger drift is observed
in x3 versus x2. However, no such contamination of x2 and x3 is present for
the univariate standardization. Similarly, Fig. 3.3 shows a sharp downward shift
in the second variable of the nonlinearly related variable set. In the multivari-
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FIGURE 3.1 Pairwise scatterplots of linearly (left) and nonlinearly (right) related variable sets,
each from an IC process. On the left, the variables x1, x2, and x3 are simulated from a multivariate
normal distribution, and on the right, a set of nonlinear equations is used to generate y1, y2, and y3.

ate standardized data, the strength of the shift in y2 is dampened, and a shift
in y1 also appears. On the other hand, the univariate standardization preserves
the fault and its strength in y2. Thus, if fault isolation is a primary goal, cau-
tion must be taken to ensure that the shifted variables are not distorted by the
standardization.

In fact for the multivariate standardization, when the unique symmetric
square-root is computed with the eigenvector-eigenvalue decomposition, it

makes �̂
−1/2

dense, so a fault affecting only one variable in the original data
shifts the mean of all of the variables. If the Cholesky factorization is used,
a fault affecting variable k shifts the mean of variables k, k + 1, . . . , p. Either
way, the fault is not preserved in the original variable unless the fault occurs in

only variable p, and the Cholesky factorization is used to obtain �̂
−1/2

.
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FIGURE 3.2 Linearly related variables with a drift fault in x1 introduced at vertical dashed line (left). The center and right columns show the same variables after
multivariate and univariate standardization, respectively.
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FIGURE 3.3 Nonlinearly related variables with a shift fault in y2 introduced at vertical dashed line (left). The center and right columns show the same variables after
multivariate and univariate standardization, respectively.
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3.1.2 Shortcomings of contribution plots/scores

A very common first approach to isolating the variables associated with a fault
is to use contribution scores or plots that quantify the contribution of each vari-
able to the monitoring statistic [11,12]. Then, those variables with the largest
contribution are deemed shifted. With a small number of features and a single
shifted variable, this approach is simple to implement and interpret, but it is not
advisable for multiple reasons. First, contribution scores are subject to variable
smearing. This occurs when variable i shifts, and its shift contaminates the con-
tribution scores of all other variables. Secondly, even under IC conditions, the
contributions of all variables are unequal, so misdiagnoses can occur when vari-
ables whose contributions are small under IC conditions still do not have the
largest contribution in OC conditions.

We will show the variable smearing effect for the Q statistic, using nota-
tion adapted from [13]. First, the covariance of X is estimated with S = (1/

(n − 1))X′X. Then, principal component analysis (PCA) decomposes S as fol-
lows:

S = P�P′ + P̃�̃P̃′ = Ŝ + S̃,

where Ŝ = P�P′; S̃ = P̃�̃P̃′; P is a matrix of size p × l of eigenvectors termed
principal loadings; P̃ is a matrix of size p × (p − l) of eigenvectors termed
residual loadings; l is the number of principal components (PCs) retained to
explain the variability in S; and � and �̃ are diagonal matrices containing the
principal and residual eigenvalues, respectively. An individual measurement, xi ,
can be rewritten as xi = x̂i + x̃i = PP′xi + P̃P̃′xi = Cxi + C̃xi , where C = PP′ is
the projection matrix into the principal component subspace (PCS), and C̃ = P̃P̃′
is the projection matrix into the residual subspace (RS).

The Q statistic, also commonly known as the Squared Prediction Error
(SPE), measures the goodness of fit in the lower dimensional model (i.e., l < p)
via the squared norm of the residual vector, x̃i , computed as

Q = ||x̃i ||2 = x′
iC̃C̃xi = x′

iC̃xi = ||C̃1/2xi ||2.
The contribution of a variable to the Q statistic is called that variable’s contri-
bution score, with variables with the largest contribution scores presumed to be
those most likely to be shifted. The contribution scores for the Q statistic are

c
Q
j =

(
d′

j C̃xi

)2
,

where dj is a vector of zeroes of length p except for a one in the j th row and is
referred to as the direction vector.

Now, consider that variable j is shifted, resulting in a faulty measurement
with xi = x∗

i + dj δ, where x∗
i is the fault-free part of the measurement, and dj δ

is the faulty part. The faulty part is composed of the fault direction, dj , and δ is
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the scalar magnitude of the fault. Then, the contribution of variable k to the Q

statistic when there is a fault in variable j for the ith observation is as follows:

c
Q
k =

(
d′

kC̃xi

)2 =
[
d′

kC̃(x∗
i + dj δ)

]2

=
[
d′

kC̃x∗
i + d′

kC̃dj δ
]2 =

[
d′

kC̃x∗
i + c̃kj δ

]2
,

where the first term in the brackets on the right-hand side of the equation de-
pends on the observation itself and the contribution of variable k to the score,
but the second term includes c̃kj , the (k, j)th element of C̃. The term c̃kj is
not zero for j �= k, and therefore, the j th variable’s effect is smeared into the
contribution of variable k.

For example, taking the covariance matrix from (3.1) and performing the
eigenvalue-eigenvector decomposition results in

C̃ =
⎡
⎢⎣ 0.10 −0.21 0.22

−0.21 0.43 −0.45
0.22 −0.45 0.47

⎤
⎥⎦ .

Thus, if the contribution score for variable 3 is desired, but a fault is present
in variable 1, then c̃31 = 0.22, which would inflate the contribution score for
variable 3.

Some proposals exist that reduce the smearing effect, such as [13,14]
for reconstruction-based contribution (RBC) scores for PCA and kernel PCA
(KPCA), respectively. For example, the RBC of variable k to Q for PCA is
defined as

c
QRBC

k =
(

d′
kC̃xi

)2

c̃kk

= c
Q
k

c̃kk

,

where c̃kk is the kth diagonal element of C̃. The RBC only differs from the
contribution score by scaling it with c̃kk and still clearly exhibits the smearing
effect. The question becomes whether the contribution scores will be largest for

c
Q
j or c

QRBC

j for a fault in variable j . Alcala and Qin [13] prove that c
QRBC

j is the

largest RBC for a fault in variable j , but the same does not hold for c
Q
j . Even in

the case of single sensor faults, correct variable isolation by c
Q
j cannot be guar-

anteed. Furthermore, the authors of [13] show in simulation that the combined
index statistic, φ, which is a weighted linear combination of T 2 and Q, yields

more accurate fault isolation than either T 2 or Q alone with c
QRBC

j .
While we have defined dj as a vector of zeros with a one in the j th entry,

it could also be a matrix of zeroes with a one in each column, representing a
multidimensional fault in which multiple variables are shifted simultaneously.
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Consequently, δ could be a vector in which each entry corresponds to the mag-
nitude of the fault in the corresponding direction column. Thus, to compute the
RBC, a priori information about the specific combination of potentially shifted
variables is required. Simply testing a single fault direction at a time does not
present this problem (such as a single sensor fault), but oftentimes complex
faults will affect multiple variables simultaneously. Thus, one of the drawbacks
of the RBC is that having knowledge of the fault directions is required to assess
variable contribution. In spite of this drawback, RBC guarantees that the faulty
variable for a single variable fault has the largest score and is a rapid approach
for simple fault isolation. A paper by Yan and Yao [15] improves reconstruction-
based contribution plots by incorporating variable selection.

3.2 Fault isolation

In this section, we will first discuss the premise of using variable selection as
a tool for improving fault detection. Then, we review some of the traditional
and historic approaches for fault isolation. More modern methods using various
penalized regression techniques are covered in Sect. 3.2.3. Examples of both
Phase I and Phase II methods will be presented.

3.2.1 Variable thinning

In some settings, what is referred to as variable isolation is primarily focused
on variable thinning. Meaning, the greater the number of monitored variables,
the more challenging it becomes to detect faults. Typically, only a small subset
of the monitored variables actually shift, so including additional noisy features
diminishes a method’s ability to detect faults. Thus, to improve the power of
fault detection, variable thinning is employed to remove those variables that are
unlikely to have changed [2,6,16–24]. Many of these works do not just perform
variable thinning but also isolate the variables affected by the fault, estimating
the direction and magnitude of the shift in each variable. However, the variable
isolation abilities of these methods are oftentimes not evaluated, instead focus-
ing on the improvement in fault detection that results when reducing the number
of monitored variables.

Similar to a simulation study in [2], we illustrate the effect that including ad-
ditional unshifted variables has on detecting a fault. First, we simulate n = 150
observations of p variables from a multivariate normal distribution with mean
zero and an identity variance–covariance matrix. A downward fault of 1 unit
is introduced at observation number 101 and continues through the end of the
sequence. The T 2 monitoring statistic is computed with the mean and variance–
covariance matrix assumed known. We record (i) whether the fault is detected
and (ii) the number of OC observations (out of 50) that are flagged. This process
is repeated for 200 simulations as p is varied from 1 to 12. Results presented
in Table 3.1 illustrate that the detection probability decreases rapidly from over
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0.90 to less than 0.30 as the number of variables increases. Furthermore, the
strength of the detection, as measured by the average number of observations
flagged across the simulated datasets, also decreases dramatically as p increases.
This illustrates that weak faults become nearly impossible to detect, even with a
very modest number of monitored variables.

TABLE 3.1 Detection probability and average number of ob-
servations flagged in 200 simulations as p varies. The first
variable contains a downward shift of size one.

Detection Average Detection Average
p Probability Flags p Probability Flags
1 0.930 2.580 7 0.455 0.615
2 0.865 1.825 8 0.385 0.460
3 0.725 1.295 9 0.360 0.450
4 0.620 0.990 10 0.315 0.380
5 0.575 0.840 11 0.290 0.365
6 0.500 0.660 12 0.280 0.330

3.2.2 Iterative traditional isolation

Some of the first approaches to fault isolation were to apply a separate procedure
after a control chart signaled a fault. These procedures require a decomposition
of the T 2 statistic or similar step-down procedures. A few popular approaches
are reviewed here [25]. Nearly all of these approaches first require that an OC
signal has been issued by the fault detection method. In particular, the first two
approaches presented assume that xi ∼ Np(μ,�), and the T 2 statistic is of
course T 2 = (xi − x̄)′S−1(xi − x̄). When xi is independent of x̄ and S, then
the distribution of T 2 is

n(n − p)

p(n + 1)(n − 1)
T 2 ∼ Fp,n−p,

and the upper control limit (UCL) uses the upper α quantile of the Fp,n−p dis-
tribution.

3.2.2.1 Mason–Young–Tracy method
The Mason–Young–Tracy method (MYT) is a widely used approach that de-
composes the T 2 statistic into its orthogonal components, which represent the
contribution of each individual variable to the overall T 2 [26,27]. For p vari-
ables, T 2 can be rewritten as follows:

T 2 = T 2
1 + T 2

2.1 + T 2
3.1,2 + · · · + T 2

p.1,2,...,p−1. (3.3)
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The first term in Eq. (3.3) is

T 2
1 =

(
xi,1 − x̄1

s1

)2

, (3.4)

where xi,1 is the first variable in the observation vector of xi , and x̄1 and s1
are the mean and standard deviation of the first variable, respectively. Then, the
additional terms can be written in general as

T 2
j.1,...,j−1 =

(
xi,j − x̄j.1,...,j−1

sj.1,...,j−1

)2

, (3.5)

where

x̄j.1,...,j−1 = x̄j + b′
j

(
x(j−1)
i − x̄(j−1)

)
,

with x̄j being the sample mean of n observations of the j th variable, and bj

a (j − 1)-dimensional vector estimating the regression coefficients of the j th
variable regressed on the prior j − 1 variables. Furthermore, x(j−1)

i is a (j − 1)-
dimensional vector that excludes the j, . . . ,p variables, and x̄(j−1) is the sample
mean of n observations of the first j − 1 variables.

Because the order of the p variables is not unique, there exist p! possible
orderings of the variables in Eq. (3.3), each with its own distinct partition. Thus,
as p gets large, the number of partitions to examine becomes prohibitively large.
Mason et al. [26] do note that the terms of greatest interest tend to be the terms
of the unadjusted contribution of a single variable and the term containing the
adjusted contribution of one of the variables after adjusting for the other p − 1
variables.

When an observation’s T 2 value exceeds the UCL, the following steps can
be followed to isolate the shifted variables, as described by [25]:

1. Compute the individual T 2
j statistic for each variable, as in Eq. (3.4).

a. Classify variables whose T 2
j exceed the UCL as shifted.

b. Remove shifted variables from the observation.
c. Recompute T 2 with k ≤ p, and test it for significance. If it is still signif-

icant, proceed to the next step.
2. Compute all T 2

j.j ′ terms for the remaining k variables, as in Eq. (3.5).

a. If T 2
j.j ′ is high, then this indicates that the pairwise relationship between

variables j and j ′ is unusual.
b. Remove the pairs of variables with a significant T 2

j.j ′ , leaving k′ vari-
ables.

c. Recompute T 2 with k′ ≤ k, and test for significance. If it is still signifi-
cant, proceed to the next step.

3. Repeat the prior step for higher-order terms, beginning with three-way terms,
until either no variables are left in the reduced set or T 2 based on the reduced
set of variables is no longer significant.
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Under the null hypothesis of no shift, the UCL for the partial terms, T 2
j.1,...,j−1,

is based on the distribution

T 2
j.1,...,j−1 ∼ n + 1

n
F1,n−1.

3.2.2.2 Murphy method
Murphy [28] proposed discriminant analysis to identify shifted variables. Once
a fault has been detected with T 2, the following steps can be taken:

1. Calculate the individual charting statistic, T 2
j (xi,j ), for j = 1, . . . , j ,

T 2
j (xi,j ) = (xi,j − x̄j )

2

s2
j

.

a. Calculate the difference between the overall T 2 and each individual one,
D1(j) = [T 2 − T 2

j (xi,j )].
b. Choose the smallest difference, minj D1(j) = D1(r). Then, the rth vari-

able makes the greatest contribution to the overall T 2. If D1(r) is signif-
icant, then classify variable r as shifted and proceed to the next step.

2. Calculate the pairwise charting statistics, T 2
2 (xi,r , xi,j ) for all j variables

except the rth one.
a. Calculate the p − 1 differences D2(r, j) = [T 2 − T 2

2 (xi,r , xi,j )] for all j

variables except the rth one.
b. Choose the smallest difference, minj D2(r, j) = D2(r, s), and test if it is

significant. If so, then also classify variable s as shifted.
3. Continue until either no variables’ differences from T 2 are significant, or all

of them are significant, in which case all variables would be classified as
shifted.

The threshold for significance in each step depends upon the number of variables
used in the reduced subset and whether μ and � are estimated or known. In the
case that the parameters are known, the difference statistics Dk(·) are compared
to a χ2

α,k+1; otherwise, a scaled F -distribution is required.

3.2.2.3 Artificial neural network methods
Several proposals that incorporate Artificial Neural Networks (ANN) into vari-
able isolation have been made [29–31]. Some, similar to the prior methods,
require a fault detection method to detect a fault prior to initiating the fault
isolation. In some cases, only those variables that have shifted are isolated, and
in other cases, the goal is to both isolate the shifted variables and estimate the
size and direction of the shifts. Psarakis [32] gives a short review of the use of
ANN for fault detection in process monitoring and reviews several proposals for
ANN for fault isolation.

As with all ANN, many configurations for building such models are possible,
namely the size of the training data, the number of layers, the number of nodes
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within each layer, and the type of activation function. Thus, ANN require a
large computational commitment to test many variations of models. Bersimis
et al. [25] found that the performance of ANN in variable isolation was highly
variable, depending on the strength and type of correlation present among the
variables.

3.2.2.4 Discussion
There are some drawbacks of these traditional isolation techniques. For ex-
ample, recomputing the monitoring statistics for all possible subsets of the
monitored variables can become computationally infeasible when p is large.
Furthermore, it is still difficult to associate the alarms triggered by MEWMA
or MCUSUM charts with specific variables. Nevertheless, these methods still
prove useful in applied problems [33]. Bersimis et al. [25] provide an overview
of many of these methods and conduct an extensive comparison simulation
study of them across several types of simulated data. However, this study still
displays several shortcomings that should motivate additional research: (i) the
study only simulates p = 3 or 5 variables; (ii) the only metric of interest reported
is whether the method detected at least one of the shifted variables (which does
not reveal if all shifted variables are isolated or if any unshifted variables are
also flagged); and (iii) the overall percentages of identification of at least one
shifted variable are still relatively low in most settings.

3.2.3 Variable selection methods

Some of the more recent works that propose methods to perform fault detection
and isolation simultaneously frame the FD&I problem in terms of a multiple
linear regression model and then use penalized regression variable selection
methods [2,6,16]. To briefly review penalized regression, a multiple linear re-
gression model takes the following form:

yi = xiβ + εi, i = 1, . . . , n,

where yi , xi , β, and εi are the response variable, vector of predictors, vector
of coefficients, and iid random errors with distribution N(0, σ 2), respectively.
To perform variable selection and parameter estimation simultaneously, the fol-
lowing penalized least squares objective function is minimized with respect
to β:

n∑
i=1

(yi − xiβ)2 +
p∑

j=1

gγj

(|βj |
)
, (3.6)

where βj is the j th coefficient of β, γj are regularization parameters, and gγj
(·)

is the penalty function. For an Lq penalty function with q ≤ 1, the variable selec-
tion is performed automatically by setting βj equal to zero for those predictors
with small estimated coefficients.
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Commonly chosen options for gγj
(·) include

• L0 penalty. The L0 penalty is gγj
(·) = γ · I (|βj | �= 0), making the second

term in Eq. (3.6) equal to γ
∑p

j=1 I (βj �= 0). This penalty constrains the
number of predictors that can enter the model to be less than a prespecified
number, denoted s.

• L1 penalty. The L1 penalty is gγj
(·) = γ · |βj |, making the second term in

Eq. (3.6) equal to γ
∑p

j=1 |βj |. This then corresponds to the least absolute
shrinkage and selection operator (lasso) proposed by [34]. As γ → 0, the
estimator converges to the least squares estimator of β.

• Weighted L1 penalty. This penalty weights the coefficients by an initial esti-
mate of the coefficients, as follows:

gγj
(·) = γ

|βj |
|β̃j |α

,

where β̃j is the initial estimate of βj , which can be the least squares estimate,
and α > 0 is a prespecified constant. It is often recommended to set α = 1 [35,
36]. This weighted penalty corresponds to what is called adaptive lasso, and
the weight allows for different shrinkage to be applied to different predictors,
forcing those with already small coefficients to be driven to zero even faster.
Adaptive lasso produces asymptotically unbiased coefficient estimates and
has oracle properties, meaning it identifies the correct subset of variables and
has an optimal estimation rate [35,37].

FIGURE 3.4 Values of the coefficients in a linear model as γ increases.

An excellent overview of lasso and its extensions is given in [38], and a coef-
ficient path as γ changes is shown in Fig. 3.4 to illustrate the impact of γ on
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the coefficients. Choosing γ can be done through cross-validation. In Fig. 3.4,
the dashed vertical line shows γse, which is the largest value of γ such that the
squared error is within one standard error of the minimum. At this point, three
predictors remain in the model out of the initial 17 that were included in the fit.

To employ variable selection techniques for fault isolation, the multiple lin-
ear regression model is reframed so that the mean vector is being monitored and
those variables whose mean is unchanged are filtered out. Several variations of
the penalties presented here have also been employed, and a few specific meth-
ods will be presented in the following subsections.

3.2.3.1 Phase I variable selection
One of the primary goals of a Phase I analysis is to test whether a set of obser-
vations could reasonably be expected to come from an IC process. As such, data
used in a Phase I analysis could be contaminated by multiple faults simultane-
ously. A secondary goal may be to retrospectively analyze a fault or multiple
faults that occurred so that operators may begin to diagnosis them. We present
an example of each type of analysis in this section.

Example method 1, mphase1. Capizzi and Masarotto [8] developed a
distribution-free retrospective change point detection method designed to test
for multiple change-points over a given period of time, called mphase1. Their
approach is designed to first test whether the period of time under consideration
is IC; if not, then the shifted variables can be identified, along with their shift
sizes and directions. Their method assumes that the observations are iid when
the process is IC. It also allows for subgrouped data, in which multiple realiza-
tions of the process are present at a single time points. This allows the user to
detect outlying observations at a single isolated time point in addition to detect-
ing step shifts. For simplicity, we ignore the potential presence of subgrouped
observations in our description of the method.

A user-friendly R package called dfphase1 contains code to implement
mphase1 [8]. It is not assumed that data from an IC period exists. The following
steps are performed:

1. Standardization. The data are standardized and transformed to the multivari-
ate signed ranks using a robust estimate of the center and spread. For the
location estimate, �, the transformation–retransformation spatial median is
applied to subgroup means [39]. For the spread, a robust scatter matrix, Sr ,
is constructed as

Sr = 1

2(n − 1)

n∑
i=1

(xi − xi−1) (xi − xi−1)
′ .

Then, they use � and Sr to standardize the data, zi = S−1/2
r (xi − �), and

compute the multivariate signed ranks ui as follows:
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ui =
⎧⎨
⎩

0, if zi = 0,

F−1
χ2

p

(
gi

1+n

)
zi‖zi‖ , if zi �= 0,

where ‖v‖ = √
v′v is the Euclidean norm of v; gi is the rank of {‖z1‖, . . . ,

‖zn‖}; and F−1
χ2

p
(·) is the quantile function of a χ2 random variable with p

degrees of freedom. A version for subgrouped data is given in [8,40].
2. Screening. Next, an initial screening process using forward selection identi-

fies K locations where a fault is most likely to have occurred, where K is
either selected by the user or is chosen to be the minimum of 50 and the
integer closest to

√
n. For the kth iteration, k = 1,2, . . . ,K , of the forward

selection process, an additional shift at time step i = 2, . . . , n − 1 is added
to the model. This time step is chosen as that with the minimum residual
sum of squares conditional on the previously identified k − 1 shifts, namely∑n

i=1 ||ui − û(k)
i ||2, where û(k)

i comes from a model fitted with a potentially
different mean vector at each time point. Shifts within lmin time steps of the
k −1 shifts already present are not considered. After each step, the explained
variance is computed as

Tk =
n∑

i=1

||û(k)
i ||2 − n||ū||2,

where ū is the overall mean of the signed ranks.
3. Testing. Then, Tk , k = 1, . . . ,K , test statistics are aggregated to form a single

test statistic as follows:

WOBS = max
k=1,...,K

Tk − E0(Tk)√
Var0(Tk)

.

The expected value and variance of Tk are estimated with the sample mean
and variance of Tk , respectively. A permutation-based p-value is computed
by permuting the iid observations to test the null hypothesis that the process
does not display any step or isolated shifts and is stable in its location.

4. Post-signal diagnostic. If the null hypothesis is rejected, fault isolation is per-
formed via adaptive lasso to further prune the estimated coefficients from the
forward selection screening process, which are used as initial estimates [35].
Adaptive lasso drives some of the small shifts to zero. The particular model
fit is as follows: ui = S−1/2

r δ0 +S−1/2
r δ1ξ

(1)
i +· · ·+S−1/2

r δKξ
(K)
i +εi . Here,

δ0 is the intercept while δ1, . . . , δK are the directions of the potential location
shifts to be estimated, and ξ

(k)
i = I (i ≥ τ (k)), k = 1, . . . ,K , corresponds to a

step shift at time τ (k). Then, the penalized objective function to minimize is

n∑
i=1

||ui − S−1/2
r δ0 −

K∑
k=1

S−1/2
r δkξ

(k)
i ||2 + γ

K∑
k=1

g∑
h=1

∣∣∣∣∣δk,h

δ̂ls
k,h

∣∣∣∣∣ , (3.7)
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where δk,h is the hth element of δk , and δ̂ls
k,h is its least squares estimate.

The regularization parameter is selected using the EBIC criterion proposed
by [41],

EBICφ(γ ) = np log

(
RSS(γ )

np

)
+ ν(γ ) log(np) + 2φ log

(
np − 2

ν(γ )

)
, (3.8)

where RSS(γ ) is the residual sum of squares of the model for a given γ ;
ν(γ ) is the number of change points detected; np − 2 is the dimension of the
searched parameter space, or the number of potential change point locations;
and φ ∈ [0,1] is a user-defined parameter that controls the false signal rate.
Setting φ = 1 controls the number of false signals to be low.

Capizzi and Masarotto [8] study the performance of mphase1 extensively in
simulation and find that it performs very well for a variety of underlying mul-
tivariate distributions and for a variety of fault types. It achieves the nominal
false alarm probability in IC data regardless of distribution, and for data contam-
inated with multiple faults, it identifies all of the faults exactly or approximately
(within five time steps). While the authors do not provide a performance as-
sessment of the method’s ability to correctly identify the shifted variables, in
practice, the method appears to properly isolate the correct variables when data
meet the method’s assumptions.

To illustrate mphase1, we simulate 150 observations of ten variables, both
from a multivariate normal with an identity variance–covariance matrix. In the
first case, data are IC, and Fig. 3.5 shows the p-value of 0.359 for testing the null
hypothesis that the mean of the observations is constant. Thus, there is no sig-
nificant evidence that the mean differs from zero, and this dataset could then be
used to estimate parameters and rejection thresholds for a subsequent Phase II
analysis. In a second case, the data are OC with shifts in the mean as shown
in Fig. 3.6. Variables x1, x2, and x3 exhibit step shifts, some of which coincide.
Variable x10 has a drift fault beginning at observation 100. Fig. 3.7 shows the re-
sults. The p-value to test that the mean has shifted for any of the variables is less
than 0.001, indicating significant evidence of at least one shift. The shifts in x1,
x2, and x3 are estimated nearly perfectly with the shifts sometimes detected one
or two time steps earlier or later than when they actually occur. The drift fault
in variable x10 is treated as if multiple step shifts occur, so if a drift is present, it
is often manifested with multiple consecutive shifts in the same direction.

While the mphase1 method provides an approach to directly test if a set of
observations can be used for estimating parameters for Phase II analysis, another
goal may be to isolate variables to diagnose faults that occurred in the past.
Klanderman et al. [42] develop a retrospective change-point detection method
that is also distribution-free, but relies on fused lasso to drive the difference in
adjacent means to zero. Their method is called adjusted flexible fault isolation
(aFFI).

Example method 2, aFFI. Most proposed methods assume that the mean of
the process is stationary and constant, but it is often the case in practice that
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FIGURE 3.5 Plot of ten variables simulated under IC conditions. The p-value at the top of the
figure is for the mphase1 test of the null hypothesis that the observations are location stationary.

the mean is nonzero. A common approach is to remove the trend by fitting a
model to data that are known to be IC, with several examples provided in dy-
namic screening systems [43–46]. In Sect. 3.5.1, an example of detrending in a
complex system is given followed by application of the method in [42], termed
adjusted Flexible Fault Isolation (aFFI), which is described here. This method
does not assume that the observations are stationary, and in addition, tempo-
ral dependence in the observations is also allowed. The detrending occurs for a
training period, and the estimates of the parameters in the trend model are used
to detrend a period for which monitoring is desired. Assuming that the obser-
vations, xi , i = 1, . . . , p, have been suitably standardized and detrended, the set
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FIGURE 3.6 Plot of the mean of the four variables exhibiting OC conditions. The first three vari-
ables have transient or sustained shift faults while the last has a drift fault beginning at observation
100.

of p linear regression models are fit as

xM
j = βj + εj , j = 1, . . . , p, (3.9)

where xM
j , βj , and εj are vectors of length n, and the errors εj have mean zero

and constant variance. The xM
j is the set of observations for variable j in the

monitoring period. The mean of the response for the j th variable at time step t

is βj,t , and a change in the mean of the process is indicated when βj,t �= βj,t+1.
When βj,t �= βj,t+1, time t + 1 is referred to as a change point for variable j .
A variable is classified as shifted at time t + 1 if there is a change point at time
t + 1 versus unshifted if no change occurs at t + 1. The βj for j = 1, . . . , p, are
estimated with fused lasso.

Fused lasso is used when there is a natural ordering to the parameters, such
as parameters that are indexed by time [47]. Fused lasso penalizes the difference
between adjacent coefficients rather than penalizing the coefficients themselves,
driving the small changes between adjacent coefficients to zero [38]. Zhang et
al. [48] also use fused lasso in a Bayesian framework to perform fault isolation
by estimating the fault probability for each variable. The theoretical properties
of change point detection using fused lasso are in [49].

An algorithm to perform fused lasso [50] is implemented in the R package
genlasso [51]. An estimate for βj for j = 1, . . . , p is obtained by minimizing
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FIGURE 3.7 Plot of ten variables simulated under OC conditions. The p-value at the top of the
figure is for the mphase1 test of the null hypothesis that the observations are location stationary.

the following:

1

2

p∑
j=1

n∑
t=1

(
xj,t − βj,t

)2 + γ

p∑
j=1

n−1∑
t=1

|βj,t+1 − βj,t |.

In order to choose γ , the EBIC in Eq. (3.8) can be used again. Within this
framework, the EBIC is

EBICφ(γ ) = np log

(
RSS(γ )

np

)
+ ν(γ ) log(np) + 2φ log

(
np − p

ν(γ )

)
, (3.10)
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where the primary differences are that RSS(λ) is the residual sum of squares
of Eq. (3.9), and np − p is the dimension of the searched parameter space, or
the number of potential change point locations. There cannot be a change point
detected at the first observation, t = 1, so change points can only be detected at
a maximum of np − p locations.

One problem with the EBIC in Eq. (3.10) is that using the sample size, n, in it
implies that the observations are independent. However, if xj are autocorrelated,
then the effective sample size (ESS), or the equivalent number of independent
observations, differs from n. If positive autocorrelation is present, the ESS will
be smaller than the actual sample size, and the stronger the positive autocorrela-
tion, the smaller the ESS. Therefore, the ESS is calculated, which is denoted n′,
as follows:

n′ = n

1 + 1
n

∑
h>0 R(h)

, (3.11)

where R(h) is a user-selected function that models the autocorrelation when
the process is IC between two distinct observations (i.e., h �= 0) that are h time
steps apart [52]. Confirming the presence of autocorrelation and determining the
most appropriate R(h) can be done by investigating the sample autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots of each xj

in the IC training period. This assumes that the strength and structure of the
temporal dependence are the same for each variable. Replacing n with n′ leads
to the adjusted EBIC (aEBIC)

aEBICφ(γ ) = n′p log

(
RSS(γ )

n′p

)
+ ν(γ ) log(n′p) + 2φ log

(
np − p

ν(γ )

)
.

Then, γ is chosen such that aEBIC is minimized, yielding the estimated co-
efficients β̂j for j = 1, . . . , p. Clearly, when the standardized residuals are
independent, R(h) = 0 for h > 0, then n′ = n, so aEBIC can be used to select γ

even in the absence of autocorrelation.
Finally, the estimated coefficients must be converted into a list of times at

which faults may have occurred and a list of shifted variables associated with
each fault. A change point at time t + 1 is identified in variable j when the
estimated βj,t �= βj,t+1. To reduce the number of faults detected within a few
time steps of each other, change points are ordered from first to last and, if
any additional change points are identified within κ time steps of the previous
change point, they are combined into a single fault. The parameter κ is set to
be relatively small so that shifts in multiple variables detected within a small
window in time are associated with the same fault, but two distinct faults are not
combined into a single fault.

An estimate of the shift size and direction in the standardized residuals, δj,t ,
for the j th variable at time t is

δ̂j,t = max
t1,t2∈{t,t+1,...,t+κ}

∣∣β̂j,t1 − β̂j,t2

∣∣ · sign(max difference).
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The size of the shift in the standardized residuals is not the same as the size of the
shift in the original data. Because of the nonstationarity present in the original
data and the difference in scale of the features monitored, the shift sizes should
be compared in the standardized residuals rather than the original data. The shift
sizes may be used by the researcher to assess the size of the contribution of each
of the shifted variables to the fault and to identify which variables to prioritize
in the fault diagnosis step.

In simulation, aFFI is able to accurately detect different types of faults (shift,
drift, or latent fault), and it also accurately isolates the shifted variables under
a variety of conditions (i.e., varying number of variables, nonstationarity, and
temporal dependence). Unlike some methods, there is also no a priori estimate
of the number or structure of the faults required. Such a method could be used
to catalogue and characterize faults from a historical data archive. An example
of this approach applied to a real problem is given in Sect. 3.5.1.

3.2.3.2 Phase II variable selection
Many more options for Phase II fault isolation using variable selection methods
are possible. Here, we will describe three important developments that are more
powerful than the decomposition approaches described in Sect. 3.2.2, particu-
larly when the number of variables is large. We give references for additional
works for more specialized cases.

Example method 1, VS-MSPC. In [2], the monitored observation, xi , is as-
sumed to follow a p-dimensional N(μ,�) distribution. A test of the hypotheses{

H0 : μ ∈ 	0,

H1 : μ ∈ 	1
(3.12)

tests whether the process is IC for 	0 = (0,0, . . . ,0)′ versus OC for 	1 = {μ :
μ = δd, δ > 0}. As before, d is a direction vector such that

√
d′�−1d = 1, and

δ is a scalar indicating the size of the shift. A generalized likelihood ratio test
statistic is formed by writing out the likelihood under both hypotheses as

λ(xi ) = maxμ∈	0 L(xi ,μ)

maxμ∈	1 L(xi ,μ)
,

where L(xi ,μ) is the likelihood of xi . Substituting 	0 = (0,0, . . . ,0)′ in the
numerator, taking the log, and using the assumption of normality for the likeli-
hoods, the rejection region of the test can be written as

�(xi) = min
μ∈�1

(
x′
i�

−1xi + (xi − μ)′�(xi − μ)
)

< log c,

for c some constant. However, the first term does not depend on μ, so the focus
rests on the second term, as follows:

S2 = min
μ∈�1

(
(xi − μ)′�(xi − μ)

)
, (3.13)
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with the solution of Eq. (3.13), denoted μ∗, being an estimator of μ. Assuming
that most of the elements of μ are zero, penalization can be used to force small
coefficients to zero.

The penalized version of Eq. (3.13) used by [2] uses the L0 penalty in order
to constrain the absolute number of nonzero coefficients. Then, decomposing the
positive-definite � using the Cholesky decomposition as � = LL′, Eq. (3.13)
with penalization can be rewritten as{

minμ∈	1

(
(zi − Lμ)′(zi − Lμ)

)
s.t.

∑p

j=1 I (|μj | �= 0) ≤ s,

where zi = Lxi . Wang and Jiang [2] advocate the use of forward selection,
starting with no predictors and adding the predictor that produces the largest
decrease in the sum of squared errors. They use the “F -to-enter” rule whereby
the following F -value is calculated for every predictor, and the one with the
highest value enters the model,

F = (R2
k+1 − R2

k )(n − k − 1)

1 − R2
k+1

,

where R2
k is the R2 of the model with k predictors. No formal hypothesis test is

performed, and once s variables have entered the model, no additional variables
are added. When no prior knowledge of the number of shifted variables exist,
the authors of [2] suggest the use of penalized or sparse PCA to find s, which
takes linear combinations of only a subset of variables [9,53,54].

The control charting scheme proceeds as follows:

1. As each new observation is collected, variable selection is performed, as
described above, finding the solution, μ∗, to Eq. (3.13).

2. Variables with nonzero coefficients identified in step 1 are charted using

�(xi ) = 2x′
i�

−1μ∗ − μ∗�−1μ∗.

Values that exceed the preset control limit are deemed OC.
3. After an OC alarm is issued, those variables with nonzero coefficients iden-

tified in the first step are classified as shifted.

Wang and Jiang [2] test the Average Run Length (ARL) performance of VS-
MSPC in both IC and OC settings with variable dimension ranging from p = 10
to p = 100 and find that it performs better than Hotelling’s T 2 for detecting
medium and large shifts. However, even if s is misspecified, the control chart
still performs well. The performance of the method in detecting the shifted vari-
ables is not evaluated, but the method works well for a particular example.

Example method 2, LEWMA. Zou and Qiu [16] propose an exponen-
tially weighted moving average (EWMA) based charting statistic that gives
less weight to older observations and uses the adaptive lasso penalty. Named
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LEWMA (Lasso EWMA), this approach tests the same overall hypotheses as
the prior method, but they initially formulate a test statistic that is computed
across many values of the tuning parameter, γ . The penalized likelihood func-
tion is written as

L(μ) = n(x̄ − μ)′�−1(x̄ − μ) + nγ

p∑
j=1

1

|x̄j |a |μj |,

in which each variable is shrunk by its respective sample mean, and, as is often
recommended, a = 1. The estimator that minimizes the likelihood is denoted
μ∗

γ , and a lasso-based test statistic for the hypotheses in Eq. (3.12) is

Tγ = n((μ∗
γ )′�−1x̄)2

(μ∗
γ )′�−1μ∗

γ

.

The selection of the correct subset of variables depends on the correct selection
of γ , which can be chosen in a variety of ways, such as cross-validation or
BIC. However, the best γ for estimation does not always produce a powerful
hypothesis test; therefore, Zou and Qiu [16] borrow from the nonparametric
testing framework and create a single test statistic based on several values of γ ,
as follows:

T = max
j=1,...,q

Tγj
− E(Tγj

)√
Var(Tγj

)
,

where E(Tγj
) and Var(Tγj

) are the sample mean and variance of Tγj
under the

null hypothesis. The authors of [16] recommend setting q = r + 1 or q = r + 2
if prior knowledge indicates that shifts occur in at most r variables. When such
knowledge is unavailable, they show that q = p also performs well in practice.

To construct the LEWMA, the multivariate EWMA sequence is defined as

ui = λxi + (1 − λ)ui−1, i = 1,2, . . . , (3.14)

where u0 = 0 and λ ∈ (0,1] is a weight. Then, the EWMA is combined with the
lasso, and q lasso estimators of the following penalized likelihood function for
various values of γ are computed as

(ui − μ)′�−1(ui − μ) + γ

p∑
j=1

1

|uj | |μj |.

Then, using

Wj,γ = 2 − λ

λ[1 − (1 − λ)2j ]
(u′

j�
−1μ∗

γ )2

(μ∗
γ )′�−1μ∗

γ

,
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the control chart signals a shift when

Qj = max
k=1,...,q

Wj,k − E(Wj,γ )√
Var(Wj,γ )

> L,

where L is a control limit chosen to give a particular IC ARL. This L can be
determined through simulation and must be determined by a one-time computa-
tion prior to performing Phase II monitoring. In practice, the 2−λ

λ[1−(1−λ)2j ] factor
in Wj,γ can be replaced with the asymptotic form (2 − λ)/λ.

LEWMA is evaluated through simulation, particularly with respect to its
ARL in OC settings, for p = 5 and p = 15. It is compared to two other EWMA
charting statistics across multiple shift sizes in varying numbers of variables.
The results show that LEWMA provides well-rounded protection against a va-
riety of shifts in terms of ARL. Furthermore, the authors assess the ability of
the method to correctly identify all shifted variables in a set of 15 variables. For
a single shifted variable out of the 15, LEWMA correctly identifies the shifted
variable in approximately 55 to 60% of simulations; however, as the number of
shifted variables increases from 1 to 2 to 3, the highest proportion of simulations
in which the correct shifted variables are identified drops from 60% to 37%, to
24%. Conversely, the proportion of simulations in which an error is made in
identifying shifted variables (either a shifted variable is not identified or an un-
shifted variable is selected) increase as the number of shifted variables in the
simulation increase from 6% for 1 shifted variable to 22% for 2 shifted vari-
ables, to 34% for three shifted variables. Nevertheless, LEWMA still performs
better than its competitors. This study is one of the first to assess the perfor-
mance of fault isolation in addition to fault detection, and similarly to [25], the
results indicate that fault isolation is a very challenging problem, and methods
have room for improvement.

Example method 3, APC-PCSR. Adaptive PC and PC-based Signal Recovery
(APC-PCSR) adaptively chooses principal components (PCs), allowing them
to vary over time, and then incorporates a diagnostic approach that exploits
adaptive lasso [55]. This method tends to works better in high-dimensional set-
tings than [2,6,16,17], which are computationally burdensome as the dimension
grows. It can be used when variables are dependent, and knowledge of the fault
direction, size, and/or number of affected variables are not needed.

To reduce the dimension of the data, PCA is performed. Here, A is the p ×p

matrix of eigenvectors of �, and yi = Axi denotes the PC scores. The eigenvec-
tors in A are ordered such that the corresponding eigenvalues are in decreasing
order with λ1 ≥ λ2 ≥ · · · ≥ λp. Monitoring just the top l PCs (usually those
with the largest eigenvalues) can sometimes miss the fault because the variance
of the top PCs is larger, so the bottom PCs can be more sensitive to the fault. To
account for this, the standardized PC scores are computed as

ỹi,j = yi,j√
λj

, j = 1, . . . , p.
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The IC observations are assumed to be distributed as xi ∼ N(0,�), but
under OC conditions, the distribution becomes xi ∼ N(μ,�). Thus, the
OC process’ PC scores will have distribution yi ∼ N(A′μ,�), where � =
diag(λ1, λ2, . . . , λp). Then, monitoring is conducted using an EWMA statistic,
similar to the one presented in Eq. (3.14) but modified to apply to the standard-
ized PC scores as follows:

ui,j = λỹi,j + (1 − λ)ui−1, i = 1,2, . . . , j = 1,2, . . . , p,

with u0 = 0, and λ ∈ (0,1], as before. Note, a λ with no subscript denotes the
weight in the EWMA statistic, but with a subscript, it denotes an eigenvalue.
Then, an IC process will have ui,j ∼ N

(
0, σ 2 = λ

1−λ

)
, and its squared standard-

ized value is

di,j =
⎛
⎜⎝ ui,j√

λ
1−λ

⎞
⎟⎠

2

∼ χ2
(1).

In an OC process with a mean shift, some of the di,j will become large,
but Ebrahimi et al. [55] recommend filtering out some of the PCs. They simply
threshold the di,j using the α upper-tail quantile from the χ2

(1) distribution and
monitor the new statistic,

Ri =
p∑

j=1

(
di,j − χ2

(1),α

)
+ ,

where (·)+ = max(0, ·). When Ri exceeds some threshold, then an alarm is is-
sued, and this threshold is obtained through simulation under IC conditions to
achieve a prespecified ARL.

Once a fault is detected, the second step is to integrate the PCs into the fault
isolation. Assuming that each observation is measured with noise, the OC state
can be represented as xi = μ + εi with ε ∼ (0,�). Then, the OC PC scores are
yi = Axi = Aμ + ε̃, with ε̃ = Aε. The goal is to estimate a sparse μ, so this is
done with adaptive lasso

μ∗ = argminμ

⎛
⎝(yi − Aμ)′(yi − Aμ) + γ

p∑
j=1

1

x̄j

|μj |
⎞
⎠ ,

where x̄j the least squares mean of the j th variable. However, the covariance
of each variable in yi varies, so the standardized PC scores and PCs are used,
written in matrix form, as follows:

ỹi = �−1/2yi , and Ã = �−1/2A.
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Incorporating these into the adaptive lasso estimation yields the following ob-
jective function:

μ∗ = argminμ

⎛
⎝(ỹi − Ãμ)′(ỹi − Ãμ) + γ

p∑
j=1

1

x̄j

|μj |
⎞
⎠ .

Ebrahimi et al. [55] test their method in simulation with values of p ranging
from 100 to 10,000, so they are able to test very high-dimensional settings. In
IC settings, the percentage of false detections is reported, and this reaches the
nominal setting of α = 0.05 when p ≥ 5000. The ARL is computed for OC set-
tings for varying shift magnitudes, and the APC strongly approach outperforms
the benchmark comparison methods. The ability of the PCSR method to isolate
shifted variables is also evaluated via several metrics, including

• false negative percentage (FN%)—the percentate of shifted variables not de-
tected out of the total number of shifted variables;

• false positive percentage (FP%)—the percentage of the nonshifted variables
identified out of the total number of nonshifted variables; and

• parameter selection score (PSS)—total number of variables incorrectly clas-
sified (either as shifted or nonshifted).

While the FN% is relatively low across multiple shift sizes and simulation set-
tings, the FP% and PSS can be large for small shifts, but both decline rapidly
as the shift size increases. PCSR performs similarly to [3], another lasso-based
fault isolation method, for processes with nonsparse covariance matrices. How-
ever, PCSR is better if the process has a sparse covariance matrix, and the
authors of [55] argue that such settings are common in practice since variables
are usually only correlated with a small subset of the total monitored variables.
Thus, APC-PCSR is a promising method to apply in high-dimensional settings,
and its use is illustrated in a case study in Sect. 3.5.2. Jiang et al. [56] also reduce
variables for use in PCA-based monitoring but with an optimization algorithm.

Additional Phase II Fault Isolation Methods. Many methods for Phase II
fault isolation have been proposed for specific purposes. Jiang et al. [6] propose
a variable selection multivariate EWMA (VS-MEWMA) chart that continues
to use the L0 penalty of the VS-MSPC chart of [2]. Yan et al. [57] propose a
VS-based control chart for high-dimensional Gaussian mixture models. Kuang
et al. [58] incorporate VS into discriminant analysis for multivariate fault iso-
lation. Various types of Kalman filters are used in [59] and [60] to detect and
isolate sensor faults.

The Phase II VS-based control charts described herein assume that the mean
and covariance matrix are known, so Li et al. [61] introduce a robust self-starting
approach that reduces the number of IC observations needed to initiate the VS-
MEWMA chart. Liang et al. [62] propose a version of the LEWMA [16] that
can be applied to any continuous process generated within the family of ellip-
tical distributions, performing better for heavy-tailed and skewed multivariate
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distributions. Li et al. [63] develop a robust self-starting monitoring approach
for multivariate categorical processes that incorporates VS. Zhao and Gao [64]
develop a process control method that monitors changes in the multivariate dis-
tribution of variables with VS in regression to isolate variables associated with
changes in the distribution. Zarzo and Ferrer [65] use VS combined with par-
tial least squares (PLS) in monitoring and isolating variables associated with
changes in variability of a final output variable.

Monitoring the mean and variance are important for processes inside of con-
trol loops. When faults occur in a control loop, the control strategy seeks to
maintain the variables at their target levels and may mask any changes in the
mean of the variable, but correlations among variables may change substantially,
making monitoring of the covariance in addition to the mean very important in
such settings [66]. Capizzi and Masarotto [17] use VS to jointly monitor the
mean and total dispersion. Wang et al. [67] also propose a method to monitor
both the mean and covariance with penalized likelihood estimation. Wang and
Tsung [22] use VS for adaptive dimension reduction, with a special focus on
feedback-controlled processes.

Batch processes are those that operate on a feed input for a given period of
time before switching to the next batch. Some methods for variable isolation
in batch processes have also been developed. Yan et al. [68] incorporate VS
into PLS discriminant analysis. Chu et al. [24] propose a method for batch pro-
cesses combined with a bootstrap-based variable selection. Yao et al. [69] use
two-dimensional PCA for batch processes with a reduced support region.

Some methods have been designed for very high-dimensional settings with
variable numbers in the thousands. Kim et al. [70] developed a penalized
likelihood-based fault detection approach that uses the L2-norm regularization
with the goal of shrinking all of the variable means to zero. While it was not
originally designed for fault isolation, it does perform well in isolating faulty
variables in a case study with ten monitored variables. Turkoz et al. [71] de-
velop a Bayesian approach designed for nonnormal and high-dimensional pro-
cesses that is computationally efficient. Abdella et al. [72] propose a multivariate
CUSUM chart that is designed to detect very small shifts in the mean and isolate
variables in high dimensional settings.

Bayesian methods have been used to handle a variety of problem-specific
challenges. Yan et al. [73] adopt a Bayesian framework to handle the uncertainty
in parameter estimation and to handle the choice of a tuning parameter. They
apply the method to three faults in the Tennessee Eastman (TE) process and can
show when the fault occurs, how long the fault persists, and which variables are
shifted. Ge et al. [74,75] propose Bayesian methods to monitor processes with
nonlinear and multimode features, with both applied to the TE process. Jiang
and Huang [76] use a Bayesian fault diagnosis method for plant-wide process
monitoring via local monitors. The TE process will be described in the next
section.
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3.3 Fault classification

As mentioned in the introduction, a different data structure of interest is when
data streams from multiple copies of the same fault in the same system have been
recorded and labeled. This produces a catalogue of data produced from histor-
ical faults. In new or unstudied systems, such a catalogue is unlikely to exist,
but oftentimes, in processes that are very well-studied, a catalogue is available.
Then, the goal is to take a new set of faulty observations and determine to which
historical fault the new fault is most similar. This is the well-known classifica-
tion problem.

These methods are often only applied to a single set of data and are not
conducive to repeated simulation studies and their corresponding metrics, such
as those discussed in Sect. 3.4. The most commonly used dataset to illustrate
the performance of these methods is the Tennessee Eastman (TE) chemical
engineering process, and every work mentioned in this section uses data gen-
erated from the TE simulation model [77]. With well over 2,000 citations, this
model simulates a large set of variables (over 50) that are nonlinearly related
and change dynamically over time. Some variables are controlled to meet pre-
determined thresholds. Matlab® code is available to simulate data under various
control strategies and with many different types of faults [78].

A multiclass support vector machine (SVM) is used in [79] to determine to
which among a catalogue of historical faults the present set of observations is the
closest. The dimension of the data is first reduced with PCA, and parameters in
the SVM are optimized using a grid search. Zhang et al. [80] use kernel entropy
component analysis (KECA) with one KECA classifier trained for each type
of fault. The authors also seek to accommodate multiscale properties, so they
implement a multiscale PCA as well. Ragab et al. [81] use Logical Analysis
of Data (LAD) to classify faults, comparing their results to many other machine
learning methods, such as ANN, decision trees, random forests, k nearest neigh-
bors, quadratic discriminant analysis, and SVM,

Reducing the dimensionality of variables input into classification methods
has been shown to reduce errors here as well [20,79]. De Assis Boldt et al. [20]
test several cascade feature selection methods to reduce the input features, and
then they apply the Extreme Learning Machine (ELM), which is a feedforward
NN with a single hidden layer and a linear activation function at the output.
Zhao et al. [82] uses a type of recurrent NN, specifically a long short-term
memory (LSTM) neural network, that will directly process the raw data without
needing to perform feature extraction and classifier design. This model can also
account for autocorrelation in the observations. Penalized regression is used in
[58] showing that discriminant analysis is equivalent to penalized regression.

While classification of the faults tends to be the focus of these methods,
isolating variables is often done as a byproduct of fault identification. Some
examples are in [83], where Chiang et al. use genetic algorithms combined with
Fisher discriminant analysis to isolate variables, and de Assis Boldt et al. [20]
identify variables that are frequently selected in their feature selection step.
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3.4 Fault isolation metrics

The metrics used to assess the performance of fault detection methods are stan-
dardized and well-known. For example, there are several variations of Average
Run Length (ARL) that measure the average time that a method requires be-
fore signaling a fault when a process is OC. Metrics for IC processes and both
Phase I and Phase II settings also exist. Metrics for assessing fault isolation
(FI) methods are not as standardized. FI is a multivariate binary classification
problem, aiming to correctly classify variables as shifted or unshifted for a fault
occurring at a particular time point. We let P be the set of all variables; S be the
set of shifted variables; and U be the set of unshifted variables. We denote t∗
and t̂∗ as the time steps at which the fault occurs and is detected, respectively.
Then, Ŝ is the set of variables identified as shifted, and Û is the set of variables
identified as unshifted at t̂∗.

TABLE 3.2 Summary of FI notation for a specific time step at which the fault
occurs and is detected, t∗ and ̂t∗, respectively.

Classified as Shifted Classified as Unshifted p

Truly Shifted s+ s− |S|
Truly Unshifted u− u+ |U|
p− = s− + u− |Ŝ| |Û| p+ = s+ + u+

FI metrics can be framed in terms of the overlap betweenS and Ŝ or between
U and Û. Table 3.2 summarizes the notation for a specific time step at which
the fault occurs and is detected. Boxes shaded in blue (mid gray shaded in print
version) indicate a correctly identified set, and boxes shaded in red (dark gray
shaded in print version) indicate an incorrectly identified set. The total number
of variables correctly identified as shifted is denoted s+, and the total number
of variables incorrectly identified as shifted is denoted u−. Similarly, the to-
tal number of variables correctly identified as unshifted is denoted u+, and the
total number of variables incorrectly identified as unshifted is denoted s−. To-
gether, s++u− = |Ŝ| and s−+u+ = |Û| represent the total number of variables
identified as shifted and unshifted, respectively. The total number of correctly
identified variables is p+ = s+ + u+, and the total number of incorrectly iden-
tified variables is p− = s− + u−.

The choice of FI metric depends on the number of monitored variables. In
the low-dimensional setting, it is reasonable to expect every variable to be iden-
tified correctly, so some metrics only give a method credit if all shifted and
unshifted variables are correctly identified [1,3,7,16,21,46,84,85]. The correct-
ness rate (CR), or simply Correctness, is

CR = 1

B

B∑
k=1

I
[
Ŝk = S] ,
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where B is the number of simulated datasets; Ŝk is the set of variables identified
as shifted for the kth dataset; and I [·] is an indicator function taking the value
one if its argument is true and zero otherwise. In a high-dimensional setting,
CR may be close to zero because it is difficult to perfectly identify all shifted
variables.

Some metrics give “partial credit” to a method when some but not all of
the variables are correctly classified, which is often necessary when p is large.
Often, we are interested in the total number of incorrectly identified variables.
In this case, Zou et al. [3] use the expected number of errors (ENE), which is
defined as

ENE = 1

B

B∑
k=1

p−
k .

A related metric is the expected error rate (EER), which is simply ENE/p [1,3,
55,85].

3.4.1 Fault isolation errors

Typically, it is beneficial to determine which type of errors have been made.
As in FD, there are two types of errors: (1) identifying unshifted variables as
shifted and (2) failing to identify shifted variables as shifted. First, we present
a collection of metrics related to the first type of error. The expected number of
false positives (EFP) is the average number of unshifted variables identified as
shifted [86], which can be written as

EFP = 1

B

B∑
k=1

u−
k .

In addition to averaging the number of unshifted variables identified as shifted,
Li et al. [86] also report the expected number of false positives as a proportion
of all variables, or EFP/p. However, this number may be close to zero if the
number of shifted variables is small relative to p, which can suggest that the
FI method performs better than it does in reality. A preferable metric is the
false positive percentage (FP%) [1,55], which is EFP/|U|. [4] replaceU in the
denominator with S and call their metric the ratio of correct variable selection
(RCVS).

The second type of error is failing to identify shifted variables as shifted. The
false negative percentage (FN%) is the proportion of shifted variables classified
as unshifted [1,55], represented as

FN% = 1

B

B∑
k=1

s−
k

|S| .
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A variant of the FN% is the weighted missed detection rate (wMDR), which
also takes into account the cost of the error associated with misclassifying each
variable using a severity function [86], given as

wMDR =
∑

j I (j ∈ S∩ Û) · sj (δj )∑
j I (j ∈ S) · sj (δj )

,

where sj (δj ) is a user-defined severity function of the shift size for the j th vari-
able. The wMDR weights each shifted variable classified as unshifted by the
severity of the error, where severe errors are weighted more heavily than minor
errors. Li et al. [86] require that sj (0) = 1 and that sj (δj ) be a nondecreasing
function as δj moves away from zero. The severity function may be set based
on knowledge of the system such as economical considerations, external covari-
ates, or prior research [87–90]; if all variables are equally important or there is
no information on the variables a priori, then the same severity function s(·)
may be used for all variables. Setting sj (δj ) = 1 for all j is equivalent to the
FN%.

3.4.2 Precision and recall

Instead of measuring the frequency of errors, an alternative metric that measures
the correct identification of shifted variables is 1 − FN%, which we term Recall.
This is also referred to as probability of correct identification and ratio of correct
variable selection [6,81,91,4]. Using Ŝ rather than S in the denominator, the
Precision is the proportion of variables identified as shifted that are truly shifted
[81,91], or

Precision = 1

B

B∑
k=1

s+
k∣∣Ŝ∣∣ .

The harmonic average of the Precision and Recall is termed the F1-score [55,
91], defined as

F1-score = 2 · Precision × Recall

Precision + Recall
.

3.4.3 Phase I FI metrics

All of the aforementioned metrics are useful when performing FI in Phase II
settings, but Capizzi and Masarotto [8] propose a Phase I method that simulta-
neously performs FD and FI. Their simulation study introduces multiple faults,
some of which involve multiple shifted variables. They consider the average
number of exact and approximate detections, where each shifted variable at each
time step at which a shift occurs is considered to be a separate detection. An ex-
act detection is correctly identifying a shifted variable at exactly the true time
step of the fault, while an approximate detection is identifying a shifted variable
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as shifted within a certain window of the true time step of the fault. For both of
these metrics, the closer the value to the true number of detections in the data
set, the better the performance of the method. While the focus of [8] is FD&I,
these two metrics focus on detection ability of their method.

The detection accuracy and isolation rate (DAIR) proposed by [42] incorpo-
rates the accuracy of FD into an FI metric. The DAIR is defined as

DAIR = 1

B

B∑
k=1

Kη(t
∗, t̂∗k )

(
p+

k

p

)
,

which has two components: (1) the detection accuracy, which penalizes a
method as t̂∗ gets farther from t∗ using a kernel function Kη(t

∗, t̂∗), and (2) the
isolation rate, which measures the proportion of correctly classified variables,
or p+

k /p. A simple kernel function is the rectangular kernel function, or

Kη(t
∗, t̂∗) =

{
1, |t∗ − t̂∗| < η,

0, |t∗ − t̂∗| ≥ η,

which gives a method “full credit” if the fault is detected within η time steps of
the true fault and “no credit” otherwise. Therefore, if the fault is detected more
than η time steps from the true fault location, then DAIR will be zero even if
all variables are correctly classified as shifted or unshifted. This metric assesses
a method’s ability to both detect the fault within the correct timeframe and to
isolate the correct variables.

3.4.4 Discussion

It is important to choose metrics that accurately reflect a method’s performance
and that are based on knowledge of a system, including the number of variables
being monitored and the economic costs of errors in FI. Poorly chosen metrics
may provide an incomplete picture of a method’s performance. For example, a
large ENE does not reveal whether false negatives or false positives are more
prevalent; a small FP% is incomplete without knowledge of a method’s FN%;
and even a small FN% is misleading if a shifted variable that the method failed to
identify as shifted could cause catastrophic damage to a system or result in hefty
fines and lost revenue. Careful consideration should be given so that sufficient
insight is provided by the chosen metrics in a simulation study or case study.

3.5 Case studies

As the demand for water resources grows, a new paradigm of decentralized,
potable reuse focuses on treating and reusing water at smaller, satellite facilities
that collect water close to the source where it is produced. The historical solution
has been to expand and upgrade existing, aging centralized treatment systems
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that collect water and wastewater from an extensive geographic region, which
requires costly maintenance and pumping. Furthermore, centralized facilities
simply release treated wastewater back into the environment, but decentralized
facilities can reuse the water locally for a variety of reuse applications, such as
irrigation or drinking. However, decentralized facilities experience higher vari-
ability in the quality and quantity of the influent, and it is not cost-effective to
have an operator on-site full-time to monitor and maintain the system. Moreover,
there are inherent risks in advanced wastewater treatment for potable reuse, in-
cluding a potential release of contaminants into water supplies, making precise
and robust process monitoring imperative to protect human health, the envi-
ronment, and the facility. Such processes have rarely been a focus of FD&I
methods; instead, most such studies are concerned with full-scale wastewater
treatment facilities with only a few monitored variables or data from simulation
models [11,12,92,93].

FIGURE 3.8 A schematic of the SBR-MBR operating at Mines Park. Single and triple sensor dots
indicate that single and multiple features, respectively, are being recorded at that point in the process.
Features such as dissolved oxygen, pressure, flow, volume, total suspended solids, conductivity, and
turbidity are automatically sensed every minute.

The Mines Park Water Reclamation Test Site (Mines Park) located in
Golden, CO treats approximately 7,000 gallons of municipal wastewater per
day using a combination of physical, chemical, and biological processes. Con-
tinuously operating for the past ten years, over 30 variables are monitored and
recorded every minute, see Fig. 3.8. It receives its wastewater from a student
apartment complex on the campus of Colorado School of Mines. Data from this
facility have been used for case studies to develop and study multivariate pro-
cess monitoring methods [42,94–96]. Both of the following examples use data
that were generated by this facility.

3.5.1 Retrospective fault isolation

In this example, we illustrate a fault that occurred on January 29, 2018, in which
the septic tank influent clogged, causing the sewage level to drop, which in turn
exposed a pump, causing the system to overheat and shutdown. In principle,
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installation of a level switch could have solved this problem, but at the time,
there was not such a sensor installed. Variables that should be isolated as shifted
are sewage_level, bioreactor level, and bioreactor dissolved oxygen, denoted
bio_level, and bio_do, respectively. In this particular system, two bioreac-
tors are operating in parallel, so there are two variables associated with each
of bio_level and bio_do, as shown in Table 3.3.

TABLE 3.3 Response, predictor, and cyclic variables used in the case study.

Response variables Description
bio_1_do, bio_2_do Bioreactor 1 or 2 dissolved oxygen concentration

bio_1_level, bio_2_level Bioreactor 1 or 2 level

bio_1_temp, bio_2_temp Bioreactor 1 or 2 temperature

sewage_flow Sewage flow rate

sewage_level Sewage level

ras_ph Return activated sludge pH concentration

ras_tss Return activated sludge total suspended solids

ras_temp Return activated sludge temperature

Predictor variables Description
after_fault Obs. after fault corrected on Jan. 25 (ras_tss only)

bio_1_blower_flow, Bioreactor 1 or 2 blower flow rate

bio_2_blower_flow

ambient_temp Ambient temperature

bio_1_phase_1, bio_2_phase_1 Bioreactor 1 or 2 in phase 1 (mix-fill)

bio_1_phase_2, bio_2_phase_2 Bioreactor 1 or 2 in phase 2 (react-fill)

mbr_flux_mode Membrane bioreactors 1 and 2 in peak mode

mbr_1_air_scour_valve Membrane bioreactor 1 valve is open

mbr_1_mode_1, mbr_2_mode_1 Membrane bioreactor 1 or 2 in mode 1 (permeate)

mbr_1_mode_2, mbr_2_mode_2 Membrane bioreactor 1 or 2 in mode 2 (backflush)

mbr_1_mode_4, mbr_2_mode_4 Membrane bioreactor 1 or 2 in mode 4 (relaxation)

Cyclic variables Description
cos_hourly, sin_hourly Harmonic components for hourly trend

cos_2hour, sin_2hour Harmonic components for two-hour trend

cos_daily, sin_daily Harmonic components for daily trend

We apply the retrospective change point detection method of [42]. The first
step is to determine the training and monitoring windows. In this problem, the
training window is five days of one-minute data during January 23–27, 2018
and contains 7,195 observations. The monitoring window begins on January 28,
2018 and lasts for two and a half days (3,750 observations). The next step is
to separate the response variables from the predictor and cyclic variables. Re-
sponse variables are those that need to be monitored and can be indicative of a
fault in the process, such as the sewage_flow or bio_level. Predictor variables
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are either (1) controlled by the operator, such as the phase of the bioreactor,
or (2) can explain variability within the system, but are not controllable, such
as ambient_temp. A lagged version of each predictor variable is also included
because there can be a delay in the effect of the predictor variable on the re-
sponse variable. We adjust for a known shift in ras_tss due to the correction
of a prior fault in the membrane bioreactors by including a binary variable to
indicate whether an observation occurs before or after the correction. We also in-
clude cyclic variables that account for daily trends, two-hour trends, and hourly
trends by adding three sine/cosine pairs with corresponding periods. Table 3.3
summarizes the response, predictor, and cyclic variables used in the case study.
Then, we detrend the response variables using adaptive lasso [35] with initial
parameter estimates provided by ridge regression based only on the data in the
training window. Fig. 3.9 gives a heat map of the regression coefficients for each
response variable. The color of the boxes indicates the estimated strength and
sign of the linear relationship between the predictor or cyclic variables and the
response variables; a white box indicates that the variable is excluded from the
model. For example, bio_1_do has a strong positive linear relationship with the
lag of bio_1_blower_flow; ras_tss has a strong daily trend; and the phase of
the bioreactors has a significant impact on the mean of sewage_flow.

FIGURE 3.9 Heat map for regression coefficients of predictor and cyclic variables (columns) used
to model the 11 response variables (rows). A white box corresponds to a predictor or cyclic variable
that is excluded from the model, and predictor names ending with “.l” are the lagged versions of the
predictor variables.

The estimated regression model is then used to detrend the observations in
the monitoring period, and the residuals can be assessed for change points.
Fig. 3.10 gives an example of the detrending process for ras_tss (left) and
bio_1_do (right). In Figs. 3.10A and 3.10B, the models are fit using the data
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FIGURE 3.10 Original features (top) and residuals (bottom) for ras_tss (left) and bio_1_do (right)
with fitted values in red (light gray in print version). The blue vertical dashed line identifies the
end of the IC period and the beginning of the monitoring period. Fitted values to the right of the
blue vertical dashed line are based on coefficient estimates from the IC period. (A) Original feature
for ras_tss (R2 = 0.71); (B) Original feature for bio_1_do (R2 = 0.95); (C) Residuals for ras_tss;
(D) Residuals for bio_1_do.

from the training window to the left of the blue vertical dashed line, which ac-
count for variability in the data over time not indicative of a fault. In Figs. 3.10C
and 3.10D, the residuals still exhibit changes not explained by the fitted model,
such as the gradual increase in ras_tss and increased variability in bio_1_do on
January 29. Note that the large downward shift in Fig. 3.10A is due to a separate
fault that occurred in the membrane bioreactor, but this is easily removed with
an indicator variable.

The training data are also used to estimate the effective sample size to use
in the aEBIC criteria to choose the complexity of the fused lasso model. To
do this, the PACF plot of the residuals of each variable in the training window
is constructed to assess the fit of an AR(1) model, and we see that this model
works well for most variables, so we use the PACF plots to estimate the lag-one
autocorrelation coefficient for each variable. These estimated autocorrelation
coefficients range from 0.35 to 0.99, and they average to 0.83, which indicates
quite strong positive temporal autocorrelation; thus, the effective sample size of
the data in the monitoring window is estimated to be 339, which is substantially
smaller than the observed 3,750 observations.

Finally, the fused lasso model is fit to the residuals in the monitoring period,
and the penalty parameter γ is chosen using the aEBIC. Results are shown in
Fig. 3.11 where a time series of the standardized residuals is plotted for six key
response variables. These six plots depict all but one of the 53 shifts detected
by the method. The green shaded (light gray shaded in print version) region is
the time period during which the fault is suspected to have occurred; blue down
arrows (dark gray in print version) indicate detected decreases; red up arrows
(mid gray in print version) indicate detected increases; and the size of the arrows
indicate small, medium, or large shifts, respectively. We note that if the effective
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FIGURE 3.11 Time series of detrended variables with detected faults identified with red (mid gray
in print version) and blue (dark gray in print version) arrows that are proportional to the size of
the shift. The green shaded (light gray shaded in print version) region identifies the suspected time
frame of the fault.

sample size adjustment had not been made, the fused lasso approach would have
detected 429 shifts, the vast majority of which are spurious. Here, we see that the
method detects a series of downward shifts in sewage_level beginning around
8:00 a.m. on January 29. Four hours later, numerous consecutive downward
shifts are detected in bio_1_level, followed by a set of downward shifts in
bio_2_level an hour later. An increase in bio_1_do is detected at 2:45 p.m., but
there are no analogous shifts identified in bio_2_do. This is expected because
the method is designed to detect a shift in the mean, but it appears that the
variance has changed. Excluding bio_2_do, these results are consistent with
the timeline of the fault given by operators. Additionally, the method detects
a small upward drift fault in ras_tss beginning around 2:30 p.m., which was
not initially identified by operators through visual inspection. Around mid-day
on January 30, all three of the level variables appear to return to their prefault
values, and these are indicated by shifts detected in the upward direction.

3.5.2 Real-time fault isolation

Early in the operation of the SBR-MBR system, two faults occurred within
days of each other. First, there was a rapid decline in the level of the mem-
brane bioreactor (MBR) tanks. This left the system susceptible to a second
change in the influent water quality following a significant precipitation event
that washed deicing salts from the roadways into the sewer system. The pres-
ence of deicing salts led to an increase in permeate conductivity and a decrease
in return activated sludge (RAS) pH concentration, severely damaging the bio-
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FIGURE 3.12 Residuals for the four variables that are suspected to have shifted: MBR 1 and 2
level, RAS pH, and permeate conductivity. The blue vertical dashed line indicates the end of the
training window and the time at which real-time monitoring begins. (A) Residuals for mbr_1_level;
(B) Residuals for mbr_2_level; (C) Residuals for ras_ph; (D) Residuals for perm_cond.

logical community of the system. In this case study, we apply a real-time FD&I
method to demonstrate how advanced process monitoring methods may be used
to identify faults in a system even before they are evident to system operators.

A week of one-minute observations are used as a training data set between
April 10–16, 2010, which consists of 10,045 observations. We begin monitoring
on April 17 and monitor the system for 11 days (14,859 observations). As in the
case study presented in Sect. 3.5.1, we detrend the observations using a set of
predictor variables (and their lags) and cyclic variables. A description of the
data set, additional details on the detrending process, and the variables used for
detrending can be found in [42].

We expect to see a shift in mbr_1_level, mbr_2_level, ras_ph, and
perm_cond. The residuals of the four shifted variables are given in Fig. 3.12.
The residuals for mbr_1_level, mbr_2_level, and ras_ph have a roughly con-
stant mean during the training window; however, there is some nonstationarity
still present in perm_cond. A downward shift in the residuals of mbr_1_level
and mbr_2_level occurs around April 22 and is more severe for the MBR 2
tank. A decrease in the residuals of ras_ph first occurs on April 17 and recovers
by April 19, but it begins to decline again around April 23. Around the same
time, an increase in the residuals of perm_cond begins.

For FD, we apply a dynamic extension of principal component analysis
(PCA) by including a lagged version of each detrended variable for monitoring
[97–100]. For each observation, we retain the principal components that capture
85% of the variability and calculate Hotelling’s T 2 and Q, which is also known
as SPE. If either statistic exceeds a nonparametric threshold using a false alarm
rate of α = 0.01, an observation is flagged as out of control (OC). Additional
details on the method can be found in [94] and [95], who also apply variations
of PCA to this data set for FD. When an observation is flagged as OC, we ap-
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FIGURE 3.13 Monitoring statistics T 2 (top) and Q or SPE (bottom) plotted for the monitoring
period. The red horizontal line (mid gray in print version) indicates the non-parametric threshold
used to classify an observation as OC. (A) T 2 monitoring statistic; (B) SPE monitoring statistics.

ply the FI method proposed by [55] and described in Sect. 3.2.3.2 to identify
the nonzero components of the mean, which correspond to the shifted variables
because the detrended data from the training window have been centered.

Fig. 3.13 gives the monitoring statistics, T 2 and SPE, throughout the moni-
toring period. The nonparametric threshold is determined using a percentile of
the kernel density estimate (KDE) of the monitoring statistic from the train-
ing period, which is given in red (mid gray in print). The two statistics tend
to follow the same pattern, meaning, when one is large, the other is also large,
and the monitoring statistics tend to be large when there is a shift in one or
more of the variables in Fig. 3.12. There are three time periods during which
the statistics consistently exceed their corresponding thresholds: (1) during the
first downward shift in ras_ph between April 17–19; (2) during the fault in
the MBR levels on April 22; and (3) beginning around April 24 through the
end of the monitoring period as ras_ph and perm_cond become more and more
OC.

Now that the FD method has detected a fault in the system, the FI method to
identify the shifted variables is applied. Fig. 3.14 plots the classification of each
variable over the monitoring period as shifted or unshifted, where a black box in-
dicates that the variable is identified as shifted at a given time point and is white
otherwise. The variables that we strongly suspect have shifted are highlighted in
yellow (light gray in print version). Termed a checkerboard plot, these figures
are helpful in tracking changes in shifted variables over time [15,73] and show
how faults can propagate from one variable to another over time, particularly in
those systems with feedback control implemented [66].
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FIGURE 3.14 Checkerboard plot of fault isolation results, where a black box indicates that a vari-
able is identified as shifted at a given time point but is white otherwise. Variables that are suspected
to be truly shifted are highlighted in yellow (light gray in print version).

Between April 17–19, ras_ph is consistently identified as shifted. The shift
in mbr_2_level is also clearly identified, but the shift in mbr_1_level is not; this
is likely due to the fact that the shift is much smaller in magnitude and may have
been masked by some extreme values in the training period. Another shift is
identified in ras_ph at the end of April 23 and is consistently flagged as shifted
until the end of the monitoring period. However, perm_cond is not identified
as shifted, which is likely due to the nonstationarity present in the residuals.
Additional shifts identified in variables such as bio_1_temp, bio_2_temp, and
ras_temp are likely also caused by nonstationarity or noise in the data and can
be disregarded without consistent evidence that the variable is shifted.

Operators were not alerted to the fault until 10:00 a.m. on April 24, and
once the underlying problem was identified, it took two months for the sys-
tem to fully recover and achieve normal operating conditions. Using the FD&I
methods presented in this case study would have detected the fault sooner and
would have also pointed operators to some of the key variables responsible for
the fault, allowing them to more quickly address the problem. In systems with
many complexly related variables, FD is often not sufficient because it can be
difficult for operators to identify the shifted variables, especially in the case of
a drift fault that becomes more severe over time. Therefore, FI is a vital step in
diagnosing a fault before the entire system is impacted.

3.6 Further reading

Some excellent review papers that include references for further reading have
been published. Capizzi [101] summarizes some of the Phase II VS-based
control charts and identifies some open areas of research, such as developing
distribution-free methods, methods for autocorrelated data, and VS methods for
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Phase I analysis. Peres and Fogliatto [102] provide a broad recent review of 30
VS methods integrated into multivariate statistical process monitoring. The lim-
itations of existing methods that are addressed by each of the 30 papers is listed
along with the goal of each one. They divide the methods into those that (i) pre-
process variables by performing VS prior to process monitoring; (ii) postprocess
variables by performing VS after process monitoring; or (iii) iterate between VS
and process monitoring. They close with their own list of future research topics,
some of which overlap with [101]. Additional unique problems include more
work on batch processes and fault diagnosis methods, which Reis and Gins [66]
also cite as an important area of future work. Indeed, Reis and Gins [66] provide
a very nice high-level overview of the developments and future needs in indus-
trial process monitoring that include both VS-based monitoring and isolation
and classification methods. They observe that the speed with which a fault is
detected is low relative to the time necessary to diagnosis a fault, so they advo-
cate for researchers to focus on fault prognosis, which seeks to anticipate faults
and intervene in the system to perform maintenance or repairs before faults oc-
cur. Finally, Qin [103] provides a more technical review with a focus on both
PCA and PLS and the use of reconstruction plots for fault isolation in the context
of controlled systems.

References
[1] M. Turkoz, S. Kim, Y.-S. Jeong, K.N. Al-Khalifa, A.M. Hamouda, Distribution-free adap-

tive step-down procedure for fault identification: non-parametric fault identification approach,
Quality and Reliability Engineering International 32 (8) (2016) 2701–2716.

[2] K. Wang, W. Jiang, High-dimensional process monitoring and fault isolation via variable
selection, Journal of Quality Technology 41 (2009) 247–258.

[3] C. Zou, W. Jiang, F. Tsung, A LASSO-based diagnostic framework for multivariate statistical
process control, Technometrics 53 (3) (2011) 297–309.

[4] C. Zhao, W. Wang, Efficient faulty variable selection and parsimonious reconstruction mod-
elling for fault isolation, Journal of Process Control 38 (2016) 31–41.

[5] N. Shinozaki, T. Iida, A variable selection method for detecting abnormality based on the T 2

test, Communications in Statistics. Theory and Methods 46 (2017) 8603–8617.
[6] W. Jiang, K. Wang, F. Tsung, A variable-selection-based multivariate EWMA chart for pro-

cess monitoring and diagnosis, Journal of Quality Technology 44 (2012) 209–230.
[7] K. Paynabar, C. Zou, P. Qiu, A change-point approach for phase-I analysis in multivariate

profile monitoring and diagnosis, Technometrics 58 (2) (2016) 191–204.
[8] G. Capizzi, G. Masarotto, Phase I distribution-free analysis of multivariate data, Technomet-

rics 59 (2017) 484–495.
[9] M. Hubert, T. Reynkens, E. Schmitt, T. Verdonck, Sparse PCA for high-dimensional data with

outliers, Technometrics 58 (4) (2016) 424–434.
[10] D. Dong, T.J. McAvoy, Batch tracking via nonlinear principal component analysis, AIChE

Journal 42 (1996) 2199–2208.
[11] F. Baggiani, S. Marsili-Libelli, Real-time fault detection and isolation in biological wastewa-

ter treatment plants, Water Science and Technology: a Journal of the International Association
on Water Pollution Research 60 (2009) 2949–2961.

[12] D.S. Lee, P.A. Vanrolleghem, Adaptive consensus principal component analysis for on-line
batch process monitoring, Environmental Monitoring and Assessment 92 (2004) 119–135.



Fault isolation Chapter | 3 113

[13] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring, Automatica
45 (7) (2009) 1593–1600.

[14] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel
principal component analysis, Industrial & Engineering Chemistry Research 49 (17) (2010)
7849–7857.

[15] Z. Yan, Y. Yao, Variable selection method for fault isolation using least absolute shrinkage and
selection operator (LASSO), Chemometrics and Intelligent Laboratory Systems 146 (2015)
136–146.

[16] C. Zou, P. Qiu, Multivariate statistical process control using LASSO, Journal of the American
Statistical Association 104 (2009) 1586–1596.

[17] G. Capizzi, G. Masarotto, A least angle regression control chart for multidimensional data,
Technometrics 53 (3) (2011) 285–296.

[18] Y.-H. Chu, S.J. Qin, C. Han, Fault detection and operation mode identification based on
pattern classification with variable selection, Industrial & Engineering Chemistry Research
43 (7) (2004) 1701–1710.

[19] K. Ghosh, M. Ramteke, R. Srinivasan, Optimal variable selection for effective statistical pro-
cess monitoring, Computers & Chemical Engineering 60 (2014) 260–276.

[20] F. de Assis Boldt, T.W. Rauber, F.M. Varejão, Cascade feature selection and ELM for au-
tomatic fault diagnosis of the Tennessee Eastman process, Neurocomputing 239 (2017)
238–248.

[21] I. González, I. Sánchez, Variable selection for multivariate statistical process control, Journal
of Quality Technology 42 (3) (2010) 242–259.

[22] K. Wang, F. Tsung, An adaptive dimension reduction scheme for monitoring feedback-
controlled processes, Quality and Reliability Engineering International 25 (2009) 283–298.

[23] K. Nishimura, S. Matsuura, H. Suzuki, Multivariate EWMA control chart based on a variable
selection using AIC for multivariate statistical process monitoring, Statistics & Probability
Letters 104 (2015) 7–13.

[24] Y.-H. Chu, Y.-H. Lee, C. Han, Improved quality estimation and knowledge extraction in a
batch process by bootstrapping-based generalized variable selection, Industrial & Engineering
Chemistry Research 43 (11) (2004) 2680–2690.

[25] S. Bersimis, A. Sgora, S. Psarakis, Methods for interpreting the out-of-control signal of mul-
tivariate control charts: a comparison study, Quality and Reliability Engineering International
33 (2017) 2295–2326.

[26] R.L. Mason, N.D. Tracy, J.C. Young, Decomposition of T 2 for multivariate control chart
interpretation, Journal of Quality Technology 27 (1995) 99–108.

[27] R.L. Mason, N.D. Tracy, J.C. Young, A practical approach for interpreting multivariate T 2

control chart signals, Journal of Quality Technology 29 (4) (1997) 396–406.
[28] B.J. Murphy, Selecting out of control variables with the T 2 multivariate quality control pro-

cedure, Journal of the Royal Statistical Society. Series D. The Statistician 36 (5) (1987)
571–581.

[29] F. Aparisi, G.A. no, J. Sanz, Techniques to interpret T 2 control chart signals, IIE Transactions
38 (8) (2006) 647–657.

[30] L.-H. Chen, T.-Y. Wang, Artificial neural networks to classify mean shifts from multivariate
T 2 chart signals, Computers & Industrial Engineering 47 (2) (2004) 195–205.

[31] S.T.A. Niaki, B. Abbasi, Fault diagnosis in multivariate control charts using artificial neural
networks, Quality and Reliability Engineering International 21 (8) (2005) 825–840.

[32] S. Psarakis, The use of neural networks in statistical process control charts, Quality and Reli-
ability Engineering International 27 (5) (2011) 641–650.

[33] M.G. de la Parra, P. Rodriguez-Loaiza, Application of the multivariate T 2 control chart and
the Mason–Tracy–Young decomposition procedure to the study of the consistency of impurity
profiles of drug substances, Quality Engineering 16 (2003) 127–142.

[34] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical
Society, Series B, Methodological 58 (1996) 267–288.



114 Statistical Process Monitoring

[35] H. Zou, The adaptive lasso and its oracle properties, Journal of the American Statistical As-
sociation 101 (2006) 1418–1429.

[36] H. Wang, C. Leng, Unified lasso estimation by least squares approximation, Journal of the
American Statistical Association 102 (479) (2007) 1039–1048.

[37] P. Zhao, B. Yu, On model selection consistency of lasso, Journal of Machine Learning Re-
search 7 (2006) 2541–2563.

[38] T. Hastie, R. Tibshirani, M. Wainright, Statistical Learning with Sparsity: The Lasso and
Generalizations, CRC Press, 2015.

[39] H. Oja, Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs
and Ranks, Springer, 2010.

[40] P. Qiu, Introduction to Statistical Process Control, CRC Press, 2014. [Online]. Avail-
able: https://www.crcpress.com/Introduction-to-Statistical-Process-Control/Qiu/p/book/
9781439847992.

[41] J. Chen, Z. Chen, Extended Bayesian information criteria for model selection with large
model spaces, Biometrika 95 (2008) 759–771.

[42] M.C. Klanderman, K.B. Newhart, T.Y. Cath, A.S. Hering, Fault isolation for a complex de-
centralized wastewater treatment facility, Journal of the Royal Statistical Society, Series C
(2020), submitted for publication.

[43] P. Qiu, D. Xiang, Univariate dynamic screening system: an approach for identifying individ-
uals with irregular longitudinal behavior, Technometrics 56 (2) (2014) 248–260.

[44] P. Qiu, D. Xiang, Surveillance of cardiovascular diseases using a multivariate dynamic screen-
ing system, Statistics in Medicine 34 (14) (2015) 2204–2221.

[45] J. Li, P. Qiu, Nonparametric dynamic screening system for monitoring correlated longitudinal
data, IIE Transactions 48 (8) (2016) 772–786.

[46] J. Li, P. Qiu, Construction of an efficient multivariate dynamic screening system: construction
of an efficient multivariate dynamic screening system, Quality and Reliability Engineering
International 33 (8) (2017) 1969–1981.

[47] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the
fused lasso, Journal of the Royal Statistical Society, Series B, Statistical Methodology 67
(2005) 91–108.

[48] S. Zhang, Z. Yan, P. Wu, Z. Zhang, Fault isolation based on Bayesian fused lasso, in: 2017
Chinese Automation Congress (CAC), IEEE, Jinan, 2017, pp. 2778–2783.

[49] C.R. Rojas, B. Wahlberg, On change point detection using the fused lasso method. [Online].
Available: http://arxiv.org/abs/1401.5408, 2014.

[50] R.J. Tibshirani, J. Taylor, The solution path of the generalized lasso, The Annals of Statistics
39 (2011) 1335–1371.

[51] T.B. Arnold, R.J. Tibshirani, Genlasso: path algorithm for generalized lasso problems,
R package version 1.4. [Online]. Available: https://CRAN.R-project.org/package=genlasso,
2019.

[52] M.B. Priestley, Spectral Analysis and Time Series, Academic Press, 1981.
[53] I.T. Jolliffe, N.T. Trendafilov, M. Uddin, A modified principal component technique based on

the lasso, Journal of Computational and Graphical Statistics 12 (3) (2003) 531–547.
[54] H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis, Journal of Computa-

tional and Graphical Statistics 15 (2006) 265–286.
[55] S. Ebrahimi, C. Ranjan, K. Paynabar, Large multistream data analytics for monitoring and di-

agnostics in manufacturing systems, arXiv:1812.10430 [stat.ML], 2018. [Online]. Available:
http://arxiv.org/abs/1812.10430.

[56] Q. Jiang, X. Yan, B. Huang, Performance-driven distributed PCA process monitoring based
on fault-relevant variable selection and Bayesian inference, IEEE Transactions on Industrial
Electronics 63 (2016) 377–386.

[57] D. Yan, S. Zhang, U. Jung, A variable-selection control chart via penalized likelihood and
Gaussian mixture model for multimodal and high-dimensional processes, Quality and Relia-
bility Engineering International 35 (2019) 1263–1275.

https://www.crcpress.com/Introduction-to-Statistical-Process-Control/Qiu/p/book/9781439847992
http://arxiv.org/abs/1401.5408
https://CRAN.R-project.org/package=genlasso
http://arxiv.org/abs/1812.10430
https://www.crcpress.com/Introduction-to-Statistical-Process-Control/Qiu/p/book/9781439847992


Fault isolation Chapter | 3 115

[58] T.-H. Kuang, Z. Yan, Y. Yao, Multivariate fault isolation via variable selection in discriminant
analysis, Journal of Process Control 35 (2015) 30–40.

[59] B. Pourbabaee, N. Meskin, K. Khorasani, Sensor fault detection, isolation, and identification
using multiple-model-based hybrid Kalman filter for gas turbine engines, IEEE Transactions
on Control Systems Technology 24 (2016) 1184–1200.

[60] K. Villez, B. Srinivasan, R. Rengaswamy, S. Narasimhan, V. Venkatasubramanian, Kalman-
based strategies for fault detection and identification (FDI): extensions and critical evaluation
for a buffer tank system, Computers & Chemical Engineering 35 (5) (2011) 806–816.

[61] W. Li, X. Pu, F. Tsung, D. Xiang, A robust self-starting spatial rank multivariate EWMA
chart based on forward variable selection, Computers & Industrial Engineering 103 (2017)
116–130.

[62] W. Liang, D. Xiang, X. Pu, A robust multivariate EWMA control chart for detecting sparse
mean shifts, Journal of Quality Technology 48 (2016) 265–283.

[63] J. Li, K. Liu, X. Xian, Causation-based process monitoring and diagnosis for multivariate
categorical processes, IISE Transactions 49 (2017) 332–343.

[64] C. Zhao, F. Gao, A sparse dissimilarity analysis algorithm for incipient fault isolation with no
priori fault information, Control Engineering Practice 65 (Aug. 2017) 70–82.

[65] M. Zarzo, A. Ferrer, Batch process diagnosis: PLS with variable selection versus block-wise
PCR, Chemometrics and Intelligent Laboratory Systems 73 (2004) 15–27.

[66] M.S. Reis, G. Gins, Industrial process monitoring in the big data/industry 4.0 era: from de-
tection, to diagnosis, to prognosis, Processes 5 (2017) 1–16.

[67] K. Wang, A.B. Yeh, B. Li, Simultaneous monitoring of process mean vector and covari-
ance matrix via penalized likelihood estimation, Computational Statistics & Data Analysis
78 (2014) 206–217.

[68] Z. Yan, T.-H. Kuang, Y. Yao, Multivariate fault isolation of batch processes via variable selec-
tion in partial least squares discriminant analysis, ISA Transactions 70 (Sep. 2017) 389–399.

[69] Y. Yao, Y. Diao, N. Lu, J. Lu, F. Gao, Two-dimensional dynamic principal component analysis
with autodetermined support region, Industrial & Engineering Chemistry Research 48 (2009)
837–843.

[70] S. Kim, M.K. Jeong, E.A. Elsayed, A penalized likelihood-based quality monitoring via
L2-norm regularization for high-dimensional processes, Journal of Quality Technology
(2019) 1–16 (online).

[71] M. Turkoz, S. Kim, Y.-S. Jeong, M.K.M. Jeong, E.A. Elsayed, K.N. Al-Khalifa, A.M.
Hamouda, Bayesian framework for fault variable identification, Journal of Quality Technol-
ogy 51 (2019) 375–391.

[72] G.M. Abdella, K.N. Al-Khalifa, S. Kim, M.K. Jeong, E.A. Elsayed, A.M. Hamouda, Vari-
able selection-based multivariate cumulative sum control chart: variable selection based
MCUSUM, Quality and Reliability Engineering International 33 (2017) 565–578.

[73] Z. Yan, Y. Yao, T.-B. Huang, Y.-S. Wong, Reconstruction-based multivariate process fault
isolation using Bayesian lasso, Industrial & Engineering Chemistry Research 57 (2018)
9779–9787.

[74] Z. Ge, F. Gao, Z. Song, Two-dimensional Bayesian monitoring method for nonlinear multi-
mode processes, Chemical Engineering Science 66 (2011) 5173–5183.

[75] Z. Ge, M. Zhang, Z. Song, Nonlinear process monitoring based on linear subspace and
Bayesian inference, Journal of Process Control 20 (2010) 676–688.

[76] Q. Jiang, B. Huang, Distributed monitoring for large-scale processes based on multivariate
statistical analysis and Bayesian method, Journal of Process Control 46 (2016) 75–83.

[77] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Computers & Chem-
ical Engineering 17 (1993) 245–255.

[78] N. Ricker, Optimal steady-state operation of the Tennessee Eastman challenge process, Com-
puters & Chemical Engineering 19 (1995) 949–959.

[79] X. Gao, J. Hou, An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee
Eastman process, Neurocomputing 174 (2016) 906–911.



116 Statistical Process Monitoring

[80] H. Zhang, Y. Qi, L. Wang, X. Gao, X. Wang, Fault detection and diagnosis of chemical pro-
cess using enhanced KECA, Chemometrics and Intelligent Laboratory Systems 161 (2017)
61–69.

[81] A. Ragab, M. El-Koujok, B. Poulin, M. Amazouz, S. Yacout, Fault diagnosis in industrial
chemical processes using interpretable patterns based on logical analysis of data, Expert Sys-
tems with Applications 95 (2018) 368–383.

[82] H. Zhao, S. Sun, B. Jin, Sequential fault diagnosis based on LSTM neural network, IEEE
Access 6 (2018) 12929–12939.

[83] L.H. Chiang, R.J. Pell, M.B. Seasholtz, Multivariate analysis of process data using robust
statistical analysis and variable selection, IFAC Proceedings Volumes 37 (2004) 269–274.

[84] Y. Shang, X. Zi, F. Tsung, Z. He, LASSO-based diagnosis scheme for multistage processes
with binary data, Computers & Industrial Engineering 72 (2014) 198–205.

[85] J. Kim, M.K. Jeong, E.A. Elsayed, K.N. Al-Khalifa, A.M.S. Hamouda, An adaptive step-
down procedure for fault variable identification, International Journal of Production Research
54 (11) (2016) 3187–3200.

[86] W. Li, D. Xiang, F. Tsung, X. Pu, A diagnostic procedure for high-dimensional data streams
via missed discovery rate control, Technometrics (2019) 1–27.

[87] P.H. Westfall, S.S. Young, Resampling-Based Multiple Testing, Wiley, New York, 1993.
[88] Y. Benjamini, R. Heller, False discovery rates for spatial signals, Journal of the American

Statistical Association 102 (480) (2007) 1272–1281.
[89] W. Sun, B.J. Reich, T.T. Cai, M. Guindani, A. Schwartzman, False discovery control in large-

scale spatial multiple testing, Journal of the Royal Statistical Society, Series B, Statistical
Methodology 77 (1) (2015) 59–83.

[90] C. Xing, J.C. Cohen, E. Boerwinkle, A weighted false discovery rate control procedure reveals
alleles at FOXA2 that influence fasting glucose levels, American Journal of Human Genetics
86 (3) (2010) 440–446.

[91] H. Yan, K. Paynabar, J. Shi, Real-time monitoring of high-dimensional functional data
streams via spatio-temporal smooth sparse decomposition, Technometrics 60 (2) (2018)
181–197.

[92] C.K. Yoo, K. Villez, S.W. Van Hulle, P.A. Vanrolleghem, Enhanced process monitoring for
wastewater treatment systems, EnvironMetrics 19 (2008) 602–617.

[93] L. Corominas, K. Villez, D. Aguado, L. Rieger, C. Rosén, P.A. Vanrolleghem, Performance
evaluation of fault detection methods for wastewater treatment processes, Biotechnology and
Bioengineering 108 (2011) 333–344.

[94] G.J. Odom, K.B. Newhart, T.Y. Cath, A.S. Hering, Multistate multivariate statistical process
control, Applied Stochastic Models in Business and Industry 34 (2018) 880–892.

[95] K. Kazor, R.W. Holloway, T.Y. Cath, A.S. Hering, Comparison of linear and nonlinear di-
mension reduction techniques for automated process monitoring of a decentralized wastew-
ater treatment facility, Stochastic Environmental Research and Risk Assessment 30 (2016)
1527–1544.

[96] P. Krupskii, F. Harrou, A.S. Hering, Y. Sun, Copula-based monitoring schemes for non-
Gaussian multivariate processes, Journal of Quality Technology (2020), now online.

[97] S.W. Choi, I.-B. Lee, Nonlinear dynamic process monitoring based on dynamic kernel PCA,
Chemical Engineering Science 59 (24) (2004) 5897–5908.

[98] U. Kruger, Y. Zhou, G.W. Irwin, Improved principal component monitoring of large-scale
processes, Journal of Process Control 14 (8) (2004) 879–888.

[99] J. Mina, C. Verde, Fault detection for large scale systems using dynamic principal components
analysis with adaptation, IFAC Proceedings Volumes (2) (2007) 185–194.

[100] W. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic princi-
pal component analysis, Chemometrics and Intelligent Laboratory Systems 30 (1) (1995)
179–196.

[101] G. Capizzi, Recent advances in process monitoring: nonparametric and variable-selection
methods for Phase I and Phase II, Quality Engineering 27 (2015) 44–67.



Fault isolation Chapter | 3 117

[102] F.A.P. Peres, F.S. Fogliatto, Variable selection methods in multivariate statistical process con-
trol: a systematic literature review, Computers & Industrial Engineering 115 (2018) 603–619.

[103] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annual Reviews
in Control 36 (2) (2012) 220–234.



Chapter 4

Nonlinear latent variable
regression methods

4.1 Introduction

Anomaly detection in modern processes is indispensable for ensuring opti-
mal operating conditions and enhancing safety and avoid system crashes. To
monitor many key variables simultaneously in engineering and environmen-
tal processes, multivariate monitoring techniques exploit the high correlation
and redundancy and generate a reduced set of uncorrelated variables. Although
data-driven methods have shown some successes in-process monitoring, their
efficiency is mainly related to the quality of extracted features. In other words,
the accuracy of the model plays an important role in fault detection.

Generally speaking, developing a flexible model faces huge challenges
which include collinearity among the measured variables, nonlinearity, and
noise in the measured data. Latent variable regression (LVR) techniques have
demonstrated good capacity for handling multivariate correlated data by ex-
ploiting a high degree of redundancy in data and generating a reduced number
of uncorrelated variables. Such techniques lead to well-conditioned models [1].
Linear LVR methods have been extensively applied in statistical process mon-
itoring, such as principal component analysis (PCA) [2,3], partial least squares
(PLS) [2,4,5], and regularized canonical correlation analysis (RCCA) [6–9], and
could handle multidimensionality and cross-correlations. The key idea in LVR
methods is to apply appropriate multivariate dimension-reduction techniques
according to the features of a process, and use control charts to monitor more
informative variables in a lower dimension. However, this might not be adequate
for environmental and engineering processes when nonlinearity prevails.

Indeed, because most practical data from various industrial applications are
statistically challenging, due to their high-dimensional character, relationships
among variables are nonlinear, and thus a variety of fault types can occur. De-
spite the successful application of LVR methods, their use is limited to capture
linear information in the data. Thus, they result in poor performance, mislead-
ing insights, and loss of relevant information when used for highly nonlinear
processes modeling and monitoring [10]. Indeed, selecting the optimal number
of LVs when applying the linear LVR-based schemes to nonlinear processes
is not an easy task. This is mainly because of nonlinear effects that distribute
in a nonuniform manner among the LVs (i.e., LVs considered as less rele-
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vant) may actually have a significant impact. Accordingly, flexible methods
are required for suitable feature extraction to handle nonlinear processes. To
capture nonlinearities in data, numerous nonlinear LVR strategies exist in the
literature. Various LVR models for nonlinearity are available, such as Kernel
PCA (KPCA), locally linear embedding (LLE) [11–13], and models based on
polynomial functions, smoothing splines, artificial neural networks, and kernel
learning [14–17].

Despite the successful application of LVR models (PLS and PCA), they are
limited to describe only linear correlations in data and thus can result in a signifi-
cant loss of substantial information when handling process nonlinearity [10]. To
alleviate the limitations of linear LVR methods for nonlinear input–output pro-
cesses, several nonlinear PLS (NLPLS) methods have been designed for improv-
ing the extraction of features in the nonlinear data. Various nonlinear extensions
of the NLPLS have been designed in the literature, such as quadratic, neural
network, fuzzy, and kernel PLS [18–22]. For instance, in [23,24], an improved
NLPLS method has been introduced by applying both smoothers and spline-
based additive nonlinear regression methods to the extracted LVs. In [18,25],
QPLS is developed by modeling the inner relation using a quadratic function.
Nevertheless, quadratic functions are not flexible enough for modeling complex
processes. Similarly, several nonlinear extensions have been designed for mod-
eling the inner relationship in PLS, such as neural network PLS [19,20] and
fuzzy PLS [22,21]. In [26], Malthouse et al. proposed a nonlinear PLS method
using an artificial neural network to model the inner relational. Different non-
linear methods are used to effectively describe the inner relation in PLS, such as
the feed-forward neural network [19,20], the Takagi–Sugeno–Kang (TSK) rela-
tions [21], and the quadratic fuzzy function [22]. Another nonlinear PLS model,
called kernel PLS, is designed by projecting the input data to a feature space
using kernel functions where a linear PLS is performed [16].

For input-space models (such as PCA), nonlinear PCA (NLPCA) is an ex-
tension of PCA that allows extracting nonlinear relationships among the process
variables. This can be obtained by mapping the measured variables onto curves
and surfaces rather than lines and planes, as in the case of linear PCA. Also,
different forms of neural network models have been proposed to capture the non-
linearity among the principal components [27,28,14], where the NLPCA model
parameters are determined by minimizing the mean-squared error between the
model prediction and the measured data. Another way of dealing with nonlin-
earities in process data is by using kernel PCA (KPCA) [20,21,13]. The key
concept of the KPCA is first to project the input space into a high-dimensional
feature space (transformed space) using a nonlinear mapping, and then extract
principal components (PCs) in the feature space [12,29]. Essentially, KPCA can
efficiently calculate PCs in feature spaces, using integral operators and nonlin-
ear kernel functions [11,30]. The main advantage of the KPCA method over
nonlinear PCA methods is that nonlinear optimization is totally avoided.
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Monitoring multivariate nonlinear processes is obviously more challenging
than monitoring linear processes, and anomaly may get smeared in the inspected
process. Since most of the gathered data from environmental and industrial
processes are inherently nonlinear, nonlinear LVR methods with the needed flex-
ibility to represent any nonlinear relationships are required. Recently, nonlinear
LVR-based anomaly detection techniques have gained considerable attention by
researchers and engineers for the monitoring of complex processes. This is be-
cause of the high capability of nonlinear LVR models to extract both linear and
nonlinear correlations among process variables. Generally, for process moni-
toring purposes, nonlinear LVR, such as nonlinear PLS and PCA methods, are
first constructed based on nominal measurements from the monitored process
running under normal conditions. This makes it possible to design a reference
model reflecting the nominal behavior of the inspected process that can be used
to detect potential anomalies. After that, anomalies are flagged if the measure-
ments diverge from the nominal operating region in the latent space or in the
residual space. Indeed, different fault detection schemes can be used to check
generated residuals including SPE, T 2, univariate monitoring techniques, or bi-
nary clustering algorithms.

Here, we review the basic problem formulation and algorithm of the nonlin-
ear PLS method. For a better understanding of NLPLS, two forms of nonlinear
PLS algorithms (polynomial and ANFIS) are presented. For the input-space
model, we present a KPCA method that can be used to model and monitor
nonlinear processes. This chapter provides a detailed case study comparing the
advantages of the KPCA method over the PCA method for monitoring nonlin-
ear processes. Data from an actual WWTP are used for comparison. In addition,
simulated plug flow reactor data are used to show the performance of NLPLS
for detecting various fault types. This chapter concludes with a presentation of
a set of firmly established conclusions and a list of topics of interest for future
research.

4.2 Limitations of linear LVR methods for process monitoring

For large-scale systems, such as wastewater treatment and petrochemical plants,
the design of model-based monitoring approaches requires significant effort.
Data-based techniques, such as LVR methods, provide a better, easier alterna-
tive. Techniques based on dimensionality reduction, such as PCA and PLS, have
received considerable attention. Generally speaking, the successful application
of a monitoring method relies on the quality of the data and the used extracted
features from the measured data. The well-known LVR methods have been suc-
cessfully used to capture the information of the system. Basically, LVR models
project the original data space into a latent space, thus reducing the dimension
of the original data space while considering the correlation among attributes.
This helps predict the output variable in the reduced latent space and results in
an improved prediction ability of the model. The main drawback of the linear
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LVR methods is that it assumes a linear relationship between input and output.
Specifically, every LV is a linear combination of original variables, uncorrelated
to all other LVs. Therefore, most of the LVR model parameter estimation uses
the linear regression technique to estimate the regression coefficients. Thus, the
linear LVR model has a limited ability to capture the linear relationship between
the correlated inputs and outputs. In other words, linear LVR approaches are fa-
vorable, as long as no process nonlinearity can be expected. However, with the
higher requirements for achieving the desired expectations, the process evolu-
tions in modern industrial systems are significant, and the correlation between
the process variables is nonlinear. In practice, processes that feature nonlinearity
introduce more challenges for anomaly detection. Thus, the use of linear LVR
methods to monitor real-world data with nonlinearity can lead to the loss of im-
portant information, resulting in poor model prediction and misleading analysis.
The major limitation of LVR-based approaches is their ability to extract only
linear features from the data; they also fail to describe the actual behavior. To
alleviate this drawback, numerous nonlinear LVR methods have been developed
to allow nonlinear data to be handled. Nonlinear relationships between variables
are better modeled and described by nonlinear (curved) latent variables. Mod-
eling both linear and nonlinear relationships can b achieved, using nonlinear
LVR methods by projecting the original variables onto curves or surfaces in-
stead of lines or planes. Fig. 4.1A–B illustrates the concept of using linear and
nonlinear PCAs. In Fig. 4.1A, one can see that the data can be approximated,
using two PCs; Fig. 4.1B shows that data can be approximated using one non-
linear component. It can be concluded from Fig. 4.1 that the generalization of
the LV from lines to curves offers a better description of nonlinear relationships
between process variables.

FIGURE 4.1 Linear and nonlinear PCA.

In the case of the input–output model, the latent space of the input and out
of the LVR model is used to capture the nonlinearity in the data. Fig. 4.2 offers
an illustrative example showing that the inner model linking score vectors of
the LVR model is represented by a curve, instead of a straight line. It can be
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FIGURE 4.2 Mapping between PLS scores vectors.

observed that the linear model will fail if used to capture the process nonlin-
earity. Thus, it requires a nonlinear mapping between the score vectors of the
LVR model. There are many nonlinear mapping functions that are used to map
between the input and output latent space in the literature. The inner space (i.e.,
latent space) input and output in LVR is mapped as a nonlinear function. In this
chapter, two different nonlinear methodologies are presented. First, we discuss
the nonlinear mapping done through a polynomial function; we then present the
adaptive-network based fuzzy inference system (ANFIS).

4.3 Developing nonlinear LVR methods for process
monitoring

This section introduces first the general concept of nonlinear PLS models, and
then presents two nonlinear PLS models, the polynomial PLS and adaptive
neuro-fuzzy inference system (ANFIS)-PLS models, which both use the origi-
nal iterative linear PLS framework. Lastly, we discuss fault detection schemes
based on nonlinear PLS models.

4.3.1 Nonlinear partial least squares

In modern industrial processes, engineers are frequently required to estimate,
from available data, some important variables that can be expensive to measure
and not easy to collect. Soft sensor techniques have been widely applied for
estimating these key variables based on easily measured variables. For input–
output multivariate data, PLS is a well-known soft sensor technology that has
been successfully used in industry, in order to extract relationships between two
sets of variables, inputs and outputs. Specifically, linear PLS is usually used to
predict key variables that cannot be easily acquired (called outputs) from other
available measurements (called inputs). For instance, PLS models can be used
to predict the compositions in a distillation column, using temperature and pres-
sure measurements at different trays of the column. It can be used to predict
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power production in wind turbines from measurements of various meteorolog-
ical conditions (wind direction, wind speed, etc.). In PLS, the input and output
matrices, X ∈ R

n×m and Y ∈R
n×p, are expressed as follows [31,32]:{

X = ∑l
i=1 tpT

i = TPT + G,

Y = ∑l
i=1 uqT

i = UQT + F,
(4.1)

where matrices T ∈ R
n×l and U ∈ R

n×q contain the retained principal com-
ponents (latent variables) of the input and output data, respectively, matrices
P ∈ R

m×l and Q ∈ R
p×q contain the input and output loading vectors, re-

spectively, and matrices G and F are the input and output residual matrices,
respectively. The model in Eq. (4.1) is usually called the “outer model”. The
representation of the input and output matrices (shown in the outer model (4.1))
is determined by maximizing the covariance between the input and output latent
variables, i.e., T and U. Then, the model relating the input and output principal
components (called inner model) can be obtained as

U = TB + H, (4.2)

where B is a matrix containing the model parameters relating the input and
output principal components, and H is a residual matrix.

However, the natural data from engineering and environmental processes
cannot well meet the linearity assumption and often exhibits significant nonlin-
earity. Accordingly, nonlinear PLS models are required. Two families of nonlin-
ear PLS modeling techniques can be distinguished. The first family consists of
techniques where the input and output data matrices are projected onto nonlin-
ear surfaces [33], while the relationship between T and U (shown in Eq. (4.2))
is assumed to be linear. Methods in this first nonlinear PLS family have received
very limited attention in prediction and process monitoring. This is mainly be-
cause these methods do not retain the properties of the linear methodology, and
the mapping of the input and output data matrices is costly and challenging [33].
In the second family of techniques, on the other hand, the input and output ma-
trices are projected linearly, but the relationship between any input principal
component t and any output principal component u is modeled using a nonlin-
ear function, i.e.,

u = f (t) + h, (4.3)

where f (·) is a continuous nonlinear function relating u to t, and h is the resid-
ual.

Here, the inner relationship between the latent space of the input and output
are mapped using a nonlinear function. This mapping helps capture the non-
linear relationship of the data set, allowing the decomposition of a multivariate
regression problem into a few univariate regression problems. The linear PLS
outer projection is used as a dimension-reduction tool to remove collinearity,
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and the nonlinear mapping (e.g., polynomial function or ANFIS) is used in the
inner model of PLS. The input latent variable ti and the output ui are used to
estimate the inner polynomial or ANFIS model. The parameters of the f (tj ) are
to be chosen for minimizing hj without overfitting.

In summary, by keeping the outer relation, NLPLS maintains the linear PLS
concept that original variables are projected along with the directions that max-
imize the covariance. The conceptual presentation of a nonlinear PLS is given
in Fig. 4.3 and sketched in Table 4.1.

FIGURE 4.3 Nonlinear PLS model.

TABLE 4.1 Main steps of nonlinear PLS modeling procedure.

1. Process the input and output data, i.e., X and Y, to have zero mean and unit variance.
Set J = 1 and assume EXj

= X and EYj
= Y

2. For each J , set u equal to a column of EYJ−1
3. Perform the outer transform of PLS model using NIPALS algorithm:

• w = uT EXj

uT u• Normalize u to have unit length

• Evaluate the scores, t = EXj
w

wT w

• Evaluate the new u vector, u = EYj
q

qT q

4. Find a nonlinear relationship f (·), which predicts the output LV u using input LV t,

u = f (t) + h. (4.4)

Then we get the estimated value û, û = f (t)
5. Determine the input and output space latent variables
6. Calculate the residual matrices EXj

= EXj−1 − tpT and EYj
= EYj−1 − ûqT

7. Update J = J + 1, then return to step 2 until all the latent variables of PLS are evalu-
ated
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In this section, we present only nonlinear PLS models, polynomial PLS and
ANFIS-PLS, that both use the original iterative linear PLS framework.

4.3.1.1 Polynomial PLS modeling algorithm
As discussed above, it is possible to represent the inner model by any con-
tinuous nonlinear function linking u to t . Numerous models have been in-
vestigated in the literature to represent this nonlinear function, and include
polynomial functions, smoothing splines, artificial neural networks, and kernel
learning [17,34,16]. This can be performed by changing only the detail of the
nonlinear regression in step 4 of the algorithm. Here, we present the basic idea
behind the polynomial PLS modeling, which provides simple and first nonlinear
PLS models to capture the nonlinearity in the data by fitting the optimal poly-
nomial function in the latent space of the PLS algorithm. The outer loop of the
PLS model estimation is untouched. The main advantage of this method is that
it will result in the multivariate problem reduction into a univariate regression
problem.

The core concept in a polynomial PLS is to replace the linear inner relation
by a higher-order polynomial function in order to learn nonlinearity in data and
achieve more flexibility. A general form of the inner model can be expressed as

u = f (t, γ ) + h, (4.5)

where f (·) us a polynomial function with a selected degree and γ contains
the coefficients of the polynomial to be estimated. The goal of this model is to
capture nonlinear features and data with more complex curvature characteristics
by using a polynomial function in the inner model of a linear PLS. For instance,
the polynomial PLS method uses a simple quadratic function to describe the
inner model (called Quadratic PLS) presented in [18] as

u = γ0 + γ1t + γ2t
2 + h. (4.6)

However, using a quadratic function may not be sufficient to learn the strong
nonlinearity between LVs. Improved prediction capability could be anticipated
by using polynomial functions of a higher-order [17]. For instance, in [17], a
spline PLS model is proposed by using a cubic spline function for modeling
the PLS inner model. Implementing polynomial PLS with high order will offer
more flexibility to learn the nonlinearity between the PCs of the input and output
variables; however, this makes the implementation of the algorithm challenging
and cumbersome. Table 4.2 summarizes the main steps of the polynomial PLS
algorithm.

Overall, the polynomial PLS, or PLS with a polynomial inner model, is ba-
sically using a polynomial or spline function in the inner model to enhance the
prediction capability of the linear PLS [35]. However, the forms of the poly-
nomial and spline are limited and computationally costly. In [36], fractional
polynomials are used to model the inner relation in PLS. The main reason for
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TABLE 4.2 Main steps of polynomial PLS modeling algorithm.

1. Autoscale the input–output data (faultless data), X and y
2. Let EXj = X, Eyj = y, and j = 1

3. Calculate the loading vector and latent variables for nonlinear PLS using NIPALS
procedure [19]

4. Determine the polynomial function f (·) that predicts the LV response uj using the
input latent variable tj ,

uj = γ0 + γ1tj + γ2t2
j + γ3t3

j + · · · + εj . (4.7)

The estimated model is computed so that the regression error is minimized and overfit
is avoided

5. Calculate the residual matrices EXj
= X − X̂ and Eyj

= y − ŷ
6. Increment j = j + 1 and go to step 3 until all LVs are computed. Cross-validation is

used to find the optimized number of LVs, where the output prediction mean squared
error (MSE) is minimized

using fractional polynomials is their ability to produce a better description of
data with fewer terms than conventional polynomials [37]. Thus, they are rel-
atively flexible and parsimonious, which makes them more suitable to use in
NLPLS than the fixed order polynomials. To alleviate these limitations, other ex-
tensions of nonlinear PLS, for example, those based on neural networks (NN),
have been developed in order to approximate a nonlinear function of the in-
ner model with more flexibility and fewer assumptions [38]. By using NN to
learn and construct the inner model of PLS, the residual can be reduced and
prediction improved [39,40,19]. Such network PLS methods, however, are not
parsimonious and have the tendency to overfit the data [41]; they are also un-
stable [42]. Recently, Liu et al. developed a nonlinear PLS model by using a
Gaussian process regression, a powerful nonlinear model to construct a nonlin-
ear model between each pair of latent variables in the PLS [43]. In their model,
augmented data matrices are included to achieve improved prediction perfor-
mance. In [44], an adaptive neuro-fuzzy inference system (ANFIS) model is
used to model the inner relation between the input and output PCs in order to
construct a reliable nonlinear PLS model.

4.3.2 ANFIS-PLS modeling framework

This section discusses the basic concept of nonlinear PLS, using the ANFIS
method, a robust method to tune the parameters of nonlinear inner relations of
the PLS model. Fuzzy model-based fault detection approaches have sparked a
flurry of research studies over the past decade, in several fields of engineer-
ing [45,46]. In [47], a nonlinear fuzzy PLS using the Takagi–Sugeno–Kang
(TSK) fuzzy model has been introduced and showed better prediction capabil-
ity, compared with the conventional PLS. It has also been shown that the fuzzy
PLS model overcomes the quadratic PLS and the traditional linear PLS when
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applied to nonlinear biological processes [46]. By merging the desirable prop-
erties of fuzzy logic and neural networks, the ANFIS showed greater capacity
to handle process nonlinearity [45]. It should be pointed out that the ANFIS
parameters are optimized online by the self-learning ability of NN. ANFIS is
a hybrid system that combines the subjective knowledge representation using
fuzzy inference and the learning ability of artificial neural networks. Thus, it
provides a greater ability to adapt its membership function of a fuzzy model to
achieve the desired performance [48]. The fuzzy “if–then” rules with assigned
membership functions have been used to relate the inner relationship of the PLS
model. Using the idea of adaptive neural network-based fuzzy inference sys-
tems to develop a relationship of the inner model, it optimizes the parameters
in the premise and consequent part of the fuzzy inference system in an adaptive
framework [48–50].

For reaping the advantages of both PLS and ANFIS, the outer model is kept
as in a linear PLS and the ANFIS is applied to model the inner relation. The
coupled ANFIS-PLS model combines the robust capacity of PLS to learn the
relationship between input–output variables and the adaptive learning of ANFIS
to deal with nonlinearity in internal relations. Details on ANFIS can be found
in [51–53]. The schematic illustration of the ANFIS-PLS is given in Fig. 4.4.
ANFIS is implemented to model the inner relation between each pair of the
input and output LVs,

U = f (T,�) + e, (4.8)

where � represents the parameters of the model, and E the residual vector. In-
deed, after getting the LVs (i.e., Ti and Ui) from the outer model, they will be
used to train and estimate the ANFIS parameters.

FIGURE 4.4 Conceptual illustration of ANFIS-PLS model.
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Importantly, ANFIS first uses a subtractive clustering procedure to find the
initial rules and then applies five layers of the neural network model to tune the
rule parameters [54]. The first layer in the ANFIS architecture focuses on the
fuzzy formation by finding the membership functions for each input value. The
second layer (called rule layer) generates fuzzy rules. The main role of the third
layer is to normalize membership functions. The fourth layer is responsible for
the conclusive part of fuzzy rules, and the last layer provides the final output.
In the model training phase, the least-squares and back-propagation gradient
descent algorithms are used to evaluate the parameters of the fuzzy inference
system [48]. The network weights are trained by minimizing the residuals, ei ,
given as

Ji = ‖ei‖2 = ‖Ui − fi (Ti ,�)‖2. (4.9)

Essentially, by keeping the outer relation unchanged, ANFIS-PLS benefits
from the PLS characteristics by mapping the process variables in the directions
that maximize the covariance. Hence, this allows transforming the multivariate
regression problem to several univariate regressions, which are handled individ-
ually using ANFIS.

4.3.2.1 Nonlinear PLS-based monitoring
Primarily, we have to obtain the model first, then perform fault detection proce-
dures accordingly. The basic point of fault detection using NLPLS approaches
is similar to that of using linear PLS. Importantly, the estimation of the resid-
ual space, crucial in fault detection, depends on modeling with an appropriate
process. Generally, the latent space is monitored by using the Hotelling’s T 2,
whereas the residual space is inspected via the squared prediction error (SPE)
or Q charts [55] (Fig. 4.5). The T 2 statistic is computed as

T 2 =
m∑

i=1

( ti

λi

)2
, (4.10)

FIGURE 4.5 NLPLS-based fault detection methodology.
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where m is the number of factors retained in the NLPLS model, and λi is the ith
eigenvalue of the covariance matrix � of the input data matrix X. The T 2 flags
out the presence of a possible anomaly to indicate that the performance of the
process under monitoring is not running as designed if T 2 > T 2

α , where T 2
α is a

detection threshold defined in [55].
In ANFIS-PLS, the outer model is similar to polynomial PLS, but instead of

using polynomial functions, a more flexible nonlinear model based on ANFIS
is used to learn the nonlinearity between input–output LVs.

The SPE statistic quantifies the information in the data that is not considered
by the model. It is defined as

SPE = ‖e‖2 = ‖x − x̂‖2, (4.11)

where e is the residual, and x̂ is the prediction corresponding to the input data
x using the designed NLPLS model. During the absence of fault, the value of
the Q statistic will be below the detection threshold, Qα at significance level α

given in [55]. However, if the Q statistic exceeds the detection threshold, a fault
is flagged out.

These fault-detection charts are developed with the hypothesis that the un-
derlying variables are uncorrelated and Gaussian. It is worth noting that the
NLPLS model is efficient to monitor nonlinear processes. But using it with
detection thresholds based on the Gaussian distribution can degrade its effec-
tiveness. Numerous extensions of NLPLS-based monitoring have been devised,
recently, in order to extend its detection capabilities. In [44], nonlinear PLS
monitoring based on ANFIS is proposed, and the kernel density estimation
(KDE) is applied to estimate the detection thresholds. This makes it possible
to not use the theoretical assumptions of T 2 and SPE detection thresholds and
handling non-Gaussian data. In [56], an assumption-free ANFIS-PLS method is
developed for fault detection in multivariate input–output processes. To escape
assumptions of ANFIS-PLS’s T 2 and Q, a novel fault indicator with a k-nearest
neighbor (kNN) and exponential smoothing scheme is developed. The exponen-
tially smoothed kNN scheme is applied to residuals for the ANFIS-PLS model
for detecting anomalies. Since kNN is able to separate anomalies from relevant
features without making structural hypotheses on data yields; it is an elegant and
flexible fault indicator, compared with traditional monitoring techniques (T 2

and Q). The key reason for choosing kNN, instead of conventional monitoring
techniques, is that kNN overcomes the Gaussianity and absence of correlation
assumptions that are the backbone of methods such as T 2 and Q [57]. In [58], an
approach merging polynomial PLS and Hellinger distance (HD)-based schemes
has been suggested to improve the sensitivity of NLPLS-based methods to small
faults in nonlinear processes. Here, HD was used because this metric is useful
for assessing the deviation between two distributions. Indeed, the capacity for
detecting small changes could be improved by applying CUSUM or EWMA to
the statistics T 2 and Q, after appropriately selecting the parameters of CUSUM
and EWMA.
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4.3.3 Kernel PCA

Here, we introduce one of the well-known nonlinear input-space models,
KPCA, which we use in this work. First, the basic idea behind KPCA and how
it is used to model multivariate nonlinear processes is introduced. Lastly, the
commonly used conventional monitoring techniques (i.e., SPE and T 2) with the
KPCA model for anomaly detection are presented, along with a recently KPCA-
based one-class SVM for process monitoring.

4.3.4 Kernel principal components analysis (KPCA) model

As discussed above, most environmental and engineering processes possess
nonlinear features, and linear PCAs are not effective in extracting important
information in the nonlinear processes.

To overcome this problem, nonlinear PCA methods, such as KPCA, provide
the possibility to learn process nonlinearity in the data [13,30,29]. Generally
speaking, the KPCA method stands out from the other existing nonlinear PCA
methods in the literature due to its flexibility and simplicity [13]. KPCA can
be viewed as a reformulation of the linear PCA in a high-dimensional space
via kernel function to reveal nonlinear correlations among variables. It has been
primarily used in anomaly detection for avoiding the complexity generated by
nonlinear optimization in nonlinear PCA algorithms with neural networks [30].
The core concept of KPCA consists of projecting the data in the input space to
a high-dimensional feature space (the kernel space) where data becomes more
linear. This transformation is performed using a kernel function. Then, the linear
PCA algorithm can be performed in the feature space, and the costly nonlinear
optimization is avoided. The conceptual schematic of the idea behind KPCA is
sketched in Fig. 4.6. Despite the fact that the KPCA learns linear features in
the kernel space, these features are related to nonlinear features in the original
space (before transformation) as displayed in Fig. 4.6. The original data can be
reconstructed by projecting the features in kernel space onto a low-dimensional
space, spanned by the eigenvectors that caught most of the variability. KPCA

FIGURE 4.6 Basic concept of KPCA mapping.
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can effectively compute PCs in high-dimensional feature spaces based on inte-
gral operators and kernel functions [11].

In summary, KPCA provides an interesting formalism for learning process
nonlinearity in comparison with other nonlinear methods based on neural net-
works. Specifically, KPCA has the ability to learn nonlinear features from the
data without involving a nonlinear optimization. Also, the computation proce-
dures from linear PCA can be directly inherited in kernel PCA [13].

The major benefit of KPCA, in comparison with its linear counterpart, is
shown in Fig. 4.7. It can be seen that the observations cannot be linearly sep-
arated in the original space (Fig. 4.7A). However, the data becomes separable
after the extraction of the nonlinear features, two groups of data are clearly dis-
tinguished (Fig. 4.7B).

FIGURE 4.7 Conceptional representation of (A) PCA and (B) nonlinear PCA.

It should be noted that KPCA can be performed without straightforward
knowledge of the mapping function � or the feature space F . As an alterna-
tive, computation is done on the inner product of pairs of points that are saved
in a kernel matrix. This procedure is called “the kernel trick”, which is a core
part of the KPCA approach.

As indicated before, KPCA provides the possibility of transforming nonlin-
ear features into linear separable features from the input space to feature space
F via kernel mapping and then apply the conventional PCA in the feature space.
Let us consider the training dataset x1,x2, . . . ,xn ∈ R

m, where m is the dimen-
sion of the variable and n is the number of available measurements. The original
data is mapped from the input space to features space via a nonlinear-mapping
function, �(·), defined as

R
m �(·)−−→ F

h, (4.12)

where h is the dimension of the feature space. Thereby, �(xi ) is the image of
the observation xi ∈R

m in the feature space.
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In a similar manner to the conventional PCA, the sample covariance matrix
(with its elements are the inner product of all pairs of points �(xi ) and �(xj ))
in feature space, can be calculated as

�F = 1

n

n∑
i=1

[
�(xi ) − m�

][
�(xi ) − m�

]T
, (4.13)

where m� = ∑n
i=1 �(xi )/n is the sample mean in F. Let us consider �(xi ) =

�(xi ) − m� as the centered nonlinear mapping.
The principal components are found by solving the eigenvalue problem in F

as

λv = �Fv = 1

n

n∑
i=1

[
�(xi )

T v
]
�(xi ), (4.14)

where λ is an eigenvalue, λ > 0, and v is the corresponding eigenvector of the
covariance matrix �F. The first PC in F, which shows the largest variability in
the data, is given along the direction of v with the greatest eigenvalue, and the
PC indicates the direction of v with the lowest eigenvalue.

For nonzero λ, v could be expressed as a linear combination of αi , i =
1, . . . , n, thus

v =
n∑

i=1

αi�(xi ). (4.15)

Multiplying by �(xj ) on both sides of Eq. (4.14) gives

λ(�(xj )v) = �(xj )�Fv. (4.16)

Now, expanding Eq. (4.14), we get

λ

n∑
i=1

αi�(xi )�(xj ) = 1

n

n∑
i=1

αi

(
�(xi )

n∑
i=1

αi�(xj )

)(
�(xi )�(xj )

)
. (4.17)

It should be noted that the eigenvalue problem in (4.14) can be solved using
only scalar products of the mapped vector in F , and that it can be handled based
on a kernel matrix. Therefore, the use of a kernel function can simplify the com-
putational challenges in the higher-dimensional space F to computing scalar
products of vectors in F , which highlights the great power of kernel tricks [59].

The kernel function allows determining in an implicit manner the nonlinear
mapping in F. The kernel matrix K ∈R

n×n is expressed as

K(xi ,xj ) = �(xi )
T �(xj ). (4.18)

Then, from Eq. (4.17), we will get

nλKα = K2α, (4.19)
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where α = [α1, . . . , αn]. Mean-centering in the feature space is essential before
applying KPCA, which is done as follows:

K(xi ,xj ) = �(xi )
T �(xj ), (4.20)

K = K − K1n − 1nK + 1nK1n, (4.21)

where 1n is the following matrix:

1n = 1

n

⎛
⎜⎜⎝

1 . . . 1
...

. . .
...

1 . . . 1

⎞
⎟⎟⎠ ∈R

n×n. (4.22)

To solve the eigenvalue decomposition problem in Eq. (4.19), KPCA now solves
the reformed eigenvalue problem of the centered kernel as [29]

nλα = Kα (4.23)

for nonzero eigenvalues (λ �= 0). This is equivalent to applying the conventional
PCA in feature space, F . Thereby, performing PCA in F allows obtaining eigen-
vectors α1, . . . ,αn, with λ1 ≥ λ2 ≥ · · · ≥ λn as the corresponding eigenvalues.

At last, we can represent the output as

yj =
n∑

i=1

αk
ij K(xj , x), j = 1, . . . , d. (4.24)

Generally speaking, the performance of the KPCA-based method mainly
depends on the selected kernel functions. Numerous kernels are designed in the
literature [60], but, to the best of our knowledge, there is no automated way for
kernel selection. In the existing techniques, the selection of a kernel function
is usually done empirically or experimentally from an ensemble of candidates.
Indeed, inappropriate performance could be achieved in the case of a poor kernel
choice [61,62]. Here are some of the most widely used kernel functions in the
machine learning literature:

Linear kernel,

K(xi ,xj ) = 〈xi ,xj 〉. (4.25)

Polynomial kernels,

K(xi ,xj ) = 〈xi ,xj 〉d, d ∈ Z
+. (4.26)

Cosine kernels,

K(xi ,xj ) = 〈xi ,xj 〉
‖xi‖ ‖xj‖ . (4.27)
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Sigmoid kernels,

K(xi ,xj ) = tanh(β0〈xi ,xj 〉 + β1). (4.28)

Radial basis functions (RBF),

K(xi ,xj ) = e
− ‖xi−xj ‖2

2δ2 = e−γ ‖xi−xj ‖2
, γ ∈R

+, (4.29)

where 2δ2 = 1
γ

is the width of the Gaussian kernel, while d , β0, and β1 are
specified a priori before using the above kernel functions. It should be noted
that similar results are obtained by the above kernels if the values of param-
eters are appropriately selected. The RBF, which is frequently used in fault-
detection, offers more flexibility in selecting the associated parameter; it is also
assumption-free with respect to relationships among the process variables.

4.3.5 KPCA-based fault detection procedures

KPCA monitoring is performed in two broad phases: model development and
anomaly detection. The decision statistics (e.g., Hotelling’s T 2 and Q) and their
detection thresholds are computed in the offline modeling phase. In the anomaly
detection phase, the monitoring statistics are calculated based on the new testing
measurements and compared with the previously established decision thresholds
to verify the status of the process. An anomaly is flagged if a test statistic is
above its detection threshold.

For anomaly-detection purposes, the T 2 and SPE (squared prediction er-
ror) monitoring schemes can be computed by testing online measurements. To
monitor the variation in the KPCA model, T 2 scheme, which uses normalized
squared scores, is employed. Its statistic is computed as

T 2
f = [

t1, . . . , tp
]
�−1 [

t1, . . . , tp
]T

, (4.30)

where tk (k = 1,2, . . . , p) are the retained p PCs, and �−1 is the inverse of the
matrix of eigenvalues corresponding to the retained PCs.

The detection threshold for T 2 is computed from the F distribution as

T 2
α = p(m − 1)

(m − p)
Fp,m−p,α, (4.31)

where Fp,m−p,α is an F-distribution with p and m − p degrees of freedom and
having a significance level of α.

The variations in the smallest m−p PCs can be monitored using the Q statis-
tic. Indeed, the Q statistic is relevant to indicate the variability not described by
the maintained PCs in the KPCA model:

Qf = ∥∥�(x) − �p(x)
∥∥2 =

m∑
j=1

t2
j −

p∑
j=1

t2
j . (4.32)



136 Statistical Process Monitoring

FIGURE 4.8 KPCA monitoring strategy.

The Qf detection threshold is computed as

Qf,lim = θ1

[
cα

√
2θ2h

2
0/θ1 + 1 + θ2h0(h0 − 1)/θ2

1

]1/h0

, (4.33)

where θj = ∑m
p+1(λii)

j (j = 1,2,3), h0 = 1 − 2θ1θ3/3θ2
2 , λi are the eigenval-

ues, and cα represents the 100(1 − α)th normal percentile.
The basic framework of the KPCA fault-detection strategy is performed in

two main stages, offline model building and online fault detection (Fig. 4.8) (for
further details, see [63,64]):

• In offline learning, the initial step is to autoscale the training dataset (fault-
less) by subtracting the mean and dividing by the standard deviation for
each variable (i.e., the column of the input data matrix). As discussed above,
KPCA extracts linear and nonlinear structures by mapping data into high-
dimensional spaces using kernel tricks. Then, we select one kernel function
K(xi ,xj ), and compute the scaled kernel matrix of the data, K. We subse-
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quently determine the eigenvalues and eigenvectors by solving the eigenprob-
lem Kα = nλα and select the number of PCs to retain. We can represent the
outputs as yj = ∑d

i=1 αij k(xi ,x), for j = 1, . . . ,m. Lastly, we compute the
detection thresholds for PCA’s T 2 and Q charts.

• In the online monitoring stage, at first new arrival datasets are scaled with the
mean and variance of the training dataset (faultless). Then, the KPCA’s mon-
itoring statistics T 2 and Q are computed for anomaly-detection purposes.
Finally, the monitoring statistics are compared with the detection thresholds
computed in the training stage. If the monitoring statistics are above the de-
tection thresholds, an anomaly is flagged out; otherwise, the process is run
under normal conditions.

It should be noted that the detection thresholds of the T 2 and Q statistics
are computed based on the hypothesis that process variables are Gaussian-
distributed as in the conventional PCA. However, this hypothesis is not often
valid for datasets from several real industrial processes. Accordingly, adopt-
ing these detection thresholds for process-monitoring based on the multivariate
Gaussian assumption is not suitable, and may give wrong results [65,66]. An
alternative solution to escape the Gaussian assumption in computing detection
thresholds of KPCA’s T 2 and Q charts is to compute these thresholds nonpara-
metrically using the kernel density estimation (KDE) [64]. In this approach, at
first, the KDE is used to estimate the distributions underlying the KPCA’s T 2

and Q statistics based on faultless datasets. Then, the decision threshold is set to
the corresponding (1−α)th quantile. Results in [64] claim that KPCA with non-
parametric thresholds outperforms empirical PCA’s Q and T 2 statistics based on
the Gaussian distribution for effective fault detection in nonlinear processes. Re-
cently in [67], an assumption-free KPCA fault-detection method was introduced
for monitoring nonlinear processes. This method uses a support-vector machine
(OCSVM) to evaluate the extracted features from KPCA. Of course, the KPCA-
OCSVM approach escapes theoretical KPCA assumptions and offers better
monitoring performance in nonlinear processes than thresholds based on the
Gaussian hypothesis. Over the years, several improvements of KPCA were de-
veloped for meeting numerous needs in practical use. In [68], a recursive kernel
PCA, which updates the model continuously online, has been applied in adap-
tive monitoring of nonlinear processes. In [69], a dynamic KPCA was proposed
to identify both spatial and temporal relationships in the data matrix augmented
by time-lagged variables. In [70], a moving window KPCA for adaptive mon-
itoring of nonlinear processes was developed. In [71], methods combining the
advantages of multiscale decomposition using wavelets with KPCA and KPLS
models were developed for nonlinear process monitoring. These methods allow
the extraction of the relevant information at different scales and take the mul-
tiscale nature of data. They provided satisfactory detection performances when
applied to the continuous annealing process and fused magnesium furnace. Au-
thors in [72] proposed multiscale KPCA based on sliding median filter (SFM)
for monitoring nonlinear processes with noise and outliers. Results showed
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that MSKPCA-SFM had a superior fault-detection capacity, compared to the
KPCA. This is mostly due to the capacity of SFM in removing disturbances
and noises and MSKPCA’s ability to provide nonlinear dynamic modeling, un-
like MSPCA. In other applications, KPCA is amalgamated with SVM, ICA,
recursive-weighted PCA, and EWMA, to cite a few, for enhancing monitoring
multivariate nonlinear processes [73–77].

4.4 Cases study: monitoring WWTP

The aim of this case study is to show the detection capabilities of an assumption-
free approach based on the KPCA model and the OCSVM detector. Here, the
amalgamated KPCA-OCSVM is applied to monitor influent measurements from
an actual wastewater treatment plant located in Saudi Arabia. Also, we com-
pared the KPCA-OCSVM methods with conventional PCA-based methods to
detect anomalies in nonlinear multivariate time series data. The influent mea-
surements contain seven years of the daily dataset of 21 variables that include
different flow quantities and water quality values. Measurements were carried
out on samples collected from the headwork of WWTP to keep conformity with
local standards. The supervised WWTP was treated municipal wastewater. Even
with extended efforts and duly inspection by the local technicians, over a hun-
dred anomalous influent conditions were missed. These undetected anomalies
have led to negative impacts on the process due to different reasons causes as
claimed by the practitioners, which highlights the greater necessity of research
on statistical process monitoring.

To illustrate the interactions between the collected variables, a hierarchical
clustering heatmap with a density plot using quarterly averages is displayed
in Fig. 4.9. In this figure, Z scores are summarized as probability density dis-
tribution using KDE, as illustrated in the density plot. Even with the use of
quarterly averages for smoothing and visualization, asymmetric unimodal dis-
tribution having positive skewness and positive kurtosis is clearly visible. It can
be concluded that this dataset is non-Gaussian distributed. This heatmap was
reordered by the hierarchical clustering and the process variables are reordered
in rows. Indeed, palettes having a similar composition in rows imply positive
correlations, whereas the reverse for negative correlations. The total inflow is
largely impacted by the inflow from the lift station. The inflow from lift station
eight “InFlow_LS8”, which is linked to a desalination plant, is negatively cor-
related to Cl, COD, BOD, and alkalinity. This shows the presence of various
compositions of industrial discharges and municipal wastewater in this situa-
tion. It can be seen that the inflow from WWTP inside is related to hardness and
TSS, which could be a result from the sludge-processing events and the regular
cleaning of the membrane with chemicals dosed. On the other hand, the temper-
ature is negatively correlated to all major water quality variables, but positively
correlated to almost all municipal water quantity variables.

Overall, data generated from WWTP are statistically challenging because
they are high dimensional, relationships among variables are nonlinear, vari-
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FIGURE 4.9 Heatmap of WWTP testing data with density plot.

ables are non-Gaussian and nonstationary, and a variety of fault types can occur.
These data would challenge conventional modeling methods that are designed
based on hypotheses such as linear relationships between variables, absence of
autocorrelation, and Gaussian distributions. Thus, to handle the nonlinearity and
non-Gaussian behavior of the WWTP process, nonlinear and flexible methods
such as kernel techniques could be promising.

4.4.1 Anomaly detection using KPCA-OCSVM method

To evaluate the performance of the proposed monitoring schemes, true-positive
rate (TPR, or recall), false-positive rate (FPR), area under the receiver operat-
ing characteristic curve (AUC), accuracy, precision, and F1-score are computed.
Fig. 4.10 summarizes these frequently used metrics in the evaluation of detec-
tion quality. The performance of KPCA-OCSVM methods is summarized in
Fig. 4.11. Previous research on PCA-based methods based on the same WWTP
datasets, which are summarized in Fig. 4.12, is used as a benchmark for com-
parison [78]. In PCA-based methods provided in Fig. 4.12, the reference PCA
model is constructed first, using seven PCs that capture over 80% of the vari-
ance in the data. Then, nine of PCA’s anomaly-detection schemes are derived,
including univariate residuals, squared prediction error (SPE), T2, and k-nearest
neighbor distances (Euclidean or Manhattan), for which parametric/nonpara-
metric thresholds were set to detect anomalies.
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FIGURE 4.10 Commonly used metrics for evaluating detection performance.

Fig. 4.11 shows the detection performance of the KPCA-OCSVM, using dif-
ferent kernels (polynomial, cosine, and RBF) and increasing numbers of PCs.
The columns in the heatmaps represent the evaluation metrics and the rows
represent KPCA-OCSVM with umbers of PCs. In general, to design a refer-
ence KPCA model using faultless datasets describing the nominal behavior of
the process, accurate learning and approximating are achieved when using rel-
atively more PCs. However, excessive PCs also give overfitted solutions and
lead to degradation in the detection performance for later OCSVM processing.
Thus, TPR and FPR are usually increased with a larger number of PCs, while
precision would drop. The better detection performance of AUC, as a weighted
combination of TPR and FPR, and F1-score as the harmonic mean of TPR and
precision, are achieved when tuning. Hence, the perfect detections are realized
with polynomial KPCA when using around 10 PCs, indicating its greater ca-
pacity in learning relevant information in the training dataset. Moreover, the
performance of KPCA with a cosine kernel based on 15 PCs was comparable to
that of polynomial KPCA in this study. In contrast, RBF KPCAs barely capture
the anomalies when using fewer PCs but sufficiently recognize anomalies when
using large counts of PCs in this study, which needs heavy computations or risks
potential overfitting. Thus, in this study, RBF KPCAs is not suited for real-time
monitoring.

The results in Figs. 4.11 and 4.12 indicate that kernel methods capture the
nonlinear relationship in the process variables better than using conventional
PCA-based methods. Also, it is interesting to notice that whereas applying KNN
lazy learning procedure in the PCA-KNN approach to address the nonlinearity
problem outperformed other counterparts, extracted features from PCA are not
adequately pertinent information in data. This degrades the detection capabil-
ities of PCA’s methods in this case mainly due to the process nonlinearity. In
contrast, dealing with nonlinearity could be performed better with polynomial
KPCA and summarized by RBF-based OCSVM than linear PCA, but not highly
nonlinear, compared to outcomes that are obtained when using RBF in KPCA.

In this case study, it has been demonstrated that KPCA-OCSVM methods
to nonlinear multivariate process monitoring of a WTTP compare favorably
with existing linear PCA-KNN methods. The KPCA-OCSVM models could
appropriately extract relevant information in data and reveal linear and non-
linear relationships among the process variables. Then, OCSVM is applied to
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FIGURE 4.11 Heatmap depicting the detection performance of KPCA-OCSVM schemes by ker-
nel: (A) Results of KPCA-OCSVM scheme with polynomial kernel; (B) Results of KPCA-OCSVM
scheme with cosine kernel; (C) Results of KPCA-OCSVM scheme with RBF kernel.
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FIGURE 4.12 Heatmap showing the detection performance of the nine PCA-based monitoring al-
gorithms (in rows) and evaluation metrics (in columns).

KPCA’s extracted features to uncover anomalies. The obtained results on real
data show the efficiency of the kernel techniques in monitoring WWTPs. Fur-
thermore, the major advantage of using this approach is its flexibility to model
a wide range of nonlinearities in the data by using kernel functions, and with-
out involving any nonlinear optimization. As an assumption-free approach, the
KPCA-based approach could be transferred, rebuilt, and adjusted for ICs from
different WWTPs.

4.5 Simulated synthetic data

The aim of this example is to show the prediction performance of nonlinear PLS
models, in comparison with linear PLS. Three PLS algorithms, including linear
PLS, polynomial PLS, and ANFIS-PLS, were compared in terms of data fitting
and prediction. Simulated nonlinear datasets with one response and ten input
(predictor) variables were generated. The first two inputs were simulated using
“randn” signals and the remaining eight inputs were computed as:

x3 = x1 + x2, (4.34)

x4 = x2
3, (4.35)

x5 =√
x3, (4.36)

x6 = 1√
x3

, (4.37)

x7 = 1 − e−x3, (4.38)

x8 = 1.4x2 − 1.2x7, x9 = 1.3x2 + 2.1x1, (4.39)

x10 = 1.3x6 − 2.3x9. (4.40)
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The output was generated based on inputs as follows:

y =
10∑
i=1

bixi , (4.41)

where bi = {0.07,0.03,−0.05,0.04,0.02,−1.1,−0.04,−0.02,0.01,−0.03},
for i = 1, . . . ,10. A noise-free dataset with 256 samples was generated and
then contaminated with zero-mean Gaussian noise.

The performance of the NL-PLS was compared with that of the conventional
PLS model. The cross-validation method was used for selecting the optimum
number of latent variables. The total data were split into two parts, a training
dataset and a testing dataset. The training data was used to develop the model,
the obtained model was tested with a testing dataset, and its mean squared
error (MSE) was evaluated. The optimum number of the latent variable was
selected by choosing the one which gives the minimum MSE. Five latent vari-
ables were selected for PLS, three for poly-PLS and ANFIS-PLS models based
on the minimum MSE values. Table 4.3 summarizes the results of the compari-
son for different signal-to-noise ratio (SNR) and clearly indicates that poly-PLS
and ANFIS-PLS modeling provides a significant improvement over the conven-
tional PLS modeling techniques. This is because the nonlinear PLS algorithm
uses the appropriate mapping function in the inner relation of the PLS algorithm,
thus it avoids overfitting the model and improves the model prediction ability.
Additionally, results showed the strongest predictive capability of ANFIS-PLS
among all the models. In the following section, one more example is considered.

TABLE 4.3 Monte Carlo MSEs for the three models.

Model SNR = 5 SNR = 10 SNR = 20

PLS 0.2189 0.1209 0.0641

Poly-PLS 0.2019 0.1019 0.049

ANFIS-PLS 0.1739 0.08781 0.047

4.5.1 Application of plug flow reactor

Here, the detection performance of NLPLS-based monitoring methods is as-
sessed using simulated plug flow reactor (PFR) data. PFRs, or piston flow reac-
tors, consist of a hollow pipe in which reactants travel [79]. Fig. 4.13 displays an
example of a schematic representation of a PFR having tubular form wrapped
with an acrylic mold that is encased in a tank. To keep a relatively stable reactant
temperature, water at a controlled temperature is passed via the tank. PFRs are
widely used in either gas or liquid-phase systems. Two first-order reactions are
performed in the reactor, based on the reactant species, A:

A → B → C (4.42)
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FIGURE 4.13 Schematic representation of a plug flow reactor.

where B is the intended product and C is an undesired product. As the reaction
is endothermic, the reactor is heated by the fluid in the jacket of the reactor and
its flow rate is controlled to obtain the needed outlet concentration of product B.
The set of model PDE equations (4.43), (4.44), (4.45), and (4.46) is used to
model this process:

∂CA

∂t
= −vl

∂CA

∂x
− k10e

−E1/RTr CA, (4.43)

∂CB

∂t
= −vl

∂CB

∂x
+ k10e

−E1/RTr CA − k20e
−E2/RTr CB, (4.44)

∂Tr

∂t
= −vl

∂Tr

∂x
+ �Hr1

ρmcpm

k10e
−E1/RTr CA

+ �Hr2

ρmcpm

k20e
−E2/RTr CB + Uw

ρmcpmVr

(Tj − Tr), (4.45)

∂Tj

∂t
= −u

∂Tj

∂x
+ Uwj

ρmj cpmjVj

(Tr − Tj ). (4.46)

Next, the prediction ability of nonlinear PLS is used to predict product concen-
tration.

4.5.1.1 Data generation and modeling
In this study, PFR process data is first simulated. Then, the performance of
the nonlinear PLS-based monitoring schemes is assessed through their appli-
cation to detect faults in simulated PFR data (see Table 4.4). To generate FPR
data, the flow rate of the feed stream is perturbed from the nominal steady-state
ranges based on pseudorandom binary signals (PRBS) in the frequency inter-
val of [0,0.05wN ], where wN = π/T denotes the Nyquist frequency. To do so,
we use the function “idinput” of the system identification toolbox of Matlab®.
Here, there are 11 input variables, ten temperatures measured at various loca-
tions of the reactor, and the feed flow. The output variables are the concentration
of the product (i.e., CB ). The PFR input–output perturbation data are presented
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TABLE 4.4 Plug flow reactor: model parameters.

Process variable Value Process variable Value

vl 1 ml/min Cpm 0.231 kcal/(kg K)

L 1.0 m R 1.987 kcal/(min K)

Vr 10.0 lt ρm 0.09 kg/lt

E1 20000 kcal/kmol Uw 0.20 kcal/(min K)

E1 50000 kcal/kmol Cpmj 0.8 kcal/(min K)

k10 5.0 ×1012 min−1 Vj 366 K

k10 5.0 ×102 min−1 ρmj 0.10 kg/lt

Hr1 0.5480 kcal/kmol CA0 4 mol/lt

Hr2 0.9860 kcal/kmol CB0 0 mol/lt

Tr0 320 K Tj0 375 K

FIGURE 4.14 PFR input–output data.

in Fig. 4.14. These data, which are noise-free, are then contaminated with zero-
mean Gaussian noise.

A total of 500 samples of fault-free data generated using the PFR model de-
scribed above were used to construct the NLPLS model. To construct a reference
NLPLS model, the cross-validation method was applied to find the optimal num-
ber of PCs and 4 resulting PCs were retained for the NLPLS model. Fig. 4.15
illustrates the plot of the observed data versus the predicted values from the
NLPLS. Fig. 4.16 shows the scatter graph of the observed and predicted values
obtained by the selected NLPLS model. It can be seen that the selected NLPLS
fits the training data well. Furthermore, this model achieved an R2 of 0.94, and
small root mean squared error (RMSE) and mean absolute error (MAE) (i.e.,
RMSE = 0.22618 and MAE = 0.17). This means that the NLPLS model with 4
PCs possesses good predictive capability.
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FIGURE 4.15 Plots of observed testing data and NLPLS predicted data.

FIGURE 4.16 Scatter graph of test data and NLPLS estimated data.

4.5.1.2 Detection results

After identifying the reference NLPLS model, we used it to detect anomalies in
the PFR process. Three monitoring techniques were considered here based on
the identified NLPLS model: the conventional NLPLS-Q scheme and NLPLS-
based Hellinger distance (HD) using unfiltered residuals and filtered residuals.
In the NLPLS-HD scheme, the HD was used as an indicator of fault by com-
puting the deviation between probability distributions of actual residuals and
residuals obtained using fault-free data. Here, the 3-sigma rule was used to set
up the detection threshold for NLPLS-HD. To improve the robustness of the
NLPLS-HD measurement noise, we applied HD on the filtered residuals with
a wavelet-based filter to reduce the noise in the data and improve the robust-
ness to measurement noise. The residuals, which show a mismatch between the
output of the reference NLPLS model and the measurements, are filtered via a
wavelet-based filter and used as the input for the NLPLS-HD scheme.
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4.5.1.3 Case (A) – abrupt anomaly detection

The testing data set, which was simulated using the same PFR model, consisted
of 500 data samples completely independent from the training data. Here, the
feasibility of the three NLPLS-based schemes was verified to sense atypical
abrupt changes (sensor bias). Three examples are presented to test the detection
capability of NLPLS-based schemes to uncover abrupt faults in PFRs. To assess
the abilities of the three fault detection methods, for data with SNR = 30, an
additive fault was introduced in x5 between samples 300 and 350, which con-
sists of bias of amplitude equal to 10% of the total variation in x5. In practice,
this might be similar to a sudden sensor offset or miss-calibration. Table 4.5
provides a summary of detection performance by method. As the magnitude
of this abrupt fault is relatively large and the level of SNR is also high (i.e.,
SNR = 30), the performance of the three methods is slightly comparable. We
can see an improvement when applying the NLPLS-HD, compared to the con-
ventional NLPLS-Q methods by achieving the highest AUC of 0.975.

TABLE 4.5 Detection performance by method (10% bias, SNR = 30).

Method TPR FPR Accuracy Precision FIScore AUC
NLPLS-Q 0.941 0.000 0.994 1.000 0.970 0.971

NLPLS-HD 0.980 0.031 0.970 0.781 0.870 0.975

NLPS-HD (filtered) 1.000 0.053 0.952 0.680 0.810 0.973

To assess the ability of the various fault detection methods under low SNR
(i.e., SNR = 5). The detection performance of the three methods is given in Ta-
ble 4.6. The conventional NLPLS-Q can recognize this fault but with several
missed detection and moderate AUC (TPR = 0.706 and AUC = 0.853). This
highlights the sensitivity of the Q statistic to noisy data. Here, the NLPLS-HD
statistic with filtered residuals achieves a better performance over the other test
statistics by achieving a higher AUC of 0.983 and F1-score of 0.872. An in-
teresting observation is that the NLPLS-HD is more robust to noise compared
to the NLPLS-Q. Furthermore, applying NLPLS-HD on filtered data using a
wavelet filter, which is a powerful tool to reduce noise in data, significantly im-
proves the detection performance under low SNR values, compared with other
methods.

TABLE 4.6 Detection performance by method (10% bias, SNR = 5).

Method TPR FPR Accuracy Precision FIScore AUC
NLPLS-Q 0.706 0.000 0.970 1.000 0.828 0.853

NLPLS-HD 0.961 0.031 0.968 0.778 0.860 0.965

NLPS-HD (filtered) 1.000 0.033 0.970 0.773 0.872 0.983
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TABLE 4.7 Detection performance by method (intermittent fault, first ex-
ample).

Method TPR FPR Accuracy Precision FIScore AUC
NLPLS-Q 1.000 0.069 0.947 0.811 0.896 0.966

NLPLS-HD 0.971 0.000 0.993 1.000 0.985 0.985

NLPS-HD (filtered) 0.981 0.032 0.971 0.902 0.940 0.974

4.5.1.4 Case (B) – intermittent anomaly detection
Here, we present the capacity of NLPLS-based Q and HD techniques in un-
covering intermittent faults. A bias of amplitude 10% of the total variation in
the temperature variable T5 is added to the testing measurements for samples in
[200,250] and a bias of 15% is injected between [400,450]. Table 4.7 provides
a summary of detection performance for the three methods. Results showed that
the NLPLS-HD had a better detection performance compared to the conven-
tional NLPLS-HD. In the second example, biases of amplitude 3%, 4%, and
5% were injected respectively between samples intervals [200,250], [300,350],
and [400,450]. The NLPLS-Q is not able to detect these faults; it is less sen-
sitive to small changes. Table 4.8 shows a summary of detection performance
for the NLPLS-HD methods based on unfiltered residuals and filtered resid-
uals using the wavelet denoising approach. As no detection is flagged by the
NLPLS-Q approach, its results are not presented in the summary. Results in
Table 4.8 highlight the capability of the NLPLS-HD in uncovering these inter-
mittent faults. Furthermore, the NLPLS-HD based on filtered residuals exhibits
better detection compared to the NLPLS-HD using raw residuals.

TABLE 4.8 Detection performance by method (intermittent faults, second
example).

Method TPR FPR Accuracy Precision FIScore AUC
NLPLS-HD 0.708 0.030 0.880 0.924 0.801 0.839

NLPS-HD (filtered) 0.994 0.114 0.922 0.818 0.897 0.940

4.5.1.5 Case (B) – drift anomaly detection
Now, the capability of the NLPLS-based FD methods in monitoring a sensor
drift fault is investigated. A gradual ramp fault with a slope of 0.01 (resembling
an aging sensor fault) is injected into data of temperature variable T5 at sample
300. Fig. 4.17A–C displays the monitoring results of the three NLPLS-based
methods. Fig. 4.17 indicates that the NLPLS-based Q, HD, and HD using fil-
tered residuals methods sense this drift fault respectively at sample 372, 328,
and 309. The results clearly suggest that the NLPLS-HD scheme is capable
to detect drift fault the earliest compared with the conventional NLPLS-HD
scheme.
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FIGURE 4.17 Results from (A) NLPLS-Q statistic, (B) NLPLS-HD, and (C) NLPLS-HD based
on denoised residuals in the case of a drifting fault.

In summary, this case study demonstrates the capability of the NLPLS model
to describe nonlinearly in the FPR process. Also, results show the superior de-
tection efficiency of the NLPLS-HD compared to the conventional NLPLS-Q in
identifying abrupt, intermittent, and progressive faults. This is mainly due to the
sensitivity of the HD metric to sense the deviation between the distributions of
residual of fault-free data and actual residuals generated by NLPLS. Applying
NLPLS-HD to filtered residuals improves the detection capability, in particular
when dealing with noisy measurements.

4.6 Discussion

To maintain the product quality, efficiency, and reliability of modern and com-
plex processes, anomaly detection is becoming extremely important for process
monitoring. Effective and early detection of process anomalies is vital for avoid-
ing the progression of anomalies and reducing productivity loss; this can help
avoid serious degradations or system crashes. Hence, anomaly detection is a hot
topic attracting the interest of industrial practitioners and researchers.

Linear LVR methods, such as PLS and PCA, are popular tools for monitor-
ing multivariate data with collinearity or redundancy among the variables. LVR
techniques have been widely exploited in modeling and monitoring multivari-
ate industrial data that exhibit correlated/collinear variables. They are, however,
limited due to their ineffective handling of processes nonlinearity by extracting
only linear information from the data. Of course, linear LVR methods are inap-
propriate for data analysis and monitoring from complex nonlinear processes.
To remedy this issue, various nonlinear LVR methods have been designed to
extract nonlinear features and learn any nonlinear relation among process vari-
ables. NLVR-based monitoring methods are generally performed in two main
steps, offline model building and online anomaly detection. In the first step, an
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empirical model of the inspected process is designed from data representing the
nominal behavior of the process, and decision thresholds are computed using
SPE and T 2 charts. Then, the designed model with the decision thresholds is
used to check new testing measurements for anomaly detection purposes. Non-
linear LVR-based monitoring methods, such as KPCA and nonlinear PLS, are
effective tools due to their detection efficiency and ease of implementation.

In this chapter, we showed that KPCA-based monitoring approaches com-
pare favorably with the conventional PCA approach. The performance of these
methods was assessed in terms of FAR and MDR, based on data from WWTP
located in Saudi Arabia. KPCA-based lSVM method could reliably uncover ab-
normal events that occurred in influent flow measurements. Different kernels
were investigated; when applied to WWTP data, KPCA-lSVM using RBF ker-
nel performed better than the considered linear and nonlinear kernels.

In many practical applications such as air quality monitoring, multiple times
series data are collected from different spatial locations with necessary spatio-
temporal dependence, which is rarely considered in monitoring and decision-
making. One direction for improvement is to extend the developed LVR-based
monitoring techniques to account for spatio-temporal evolution of data (i.e., in-
cluding information from spatial lags in the monitoring), and to utilize these
improvements in various applications. Specifically, for the time-dependent data
matrix, Xn×m, the dynamic of the data are considered by incorporating lagged
variables in X. For instance, the data matrix X could comprise the m variables
observed at instant t and instant t − 1. Similarly, observations from different
locations can also be included in X. Careful consideration should be given to
which lags and variables to include. In spatial statistics, it is common to se-
lect the nearest neighbors only; however, the optimal choice depends on the
correlation among variables and the dependence existing in the underlying spa-
tiotemporal process. We will investigate how to adapt the nearest neighbor idea
to multivariate spatio-temporal processes in order to borrow valuable informa-
tion while controlling the dimensionality of X.

In various practical processes (including environmental, biological, and hy-
drological), data are functional in nature. For example, dust measurements for
air quality monitoring can be viewed as a function of time. It has been shown that
PCA for multivariate observations is not suitable for functional data [80–83].
For functional data, functional PCA (FPCA), similar to PCA, captures the most
variations in the data based on the first few orthogonal functional principal com-
ponents [84,82,85]. Although FPCA is a popular statistical method in functional
data analysis, it has not been used for process monitoring, fault detection, and
diagnosis. The challenge is that space-time data are highly correlated and very
high dimensional; in such cases, existing multivariate methods often have lim-
itations, and suitable methods (e.g., control chart methods based on functional
PCA) to deal with functional data are needed. Also, it will be very beneficial to
develop function latent variable methods to monitor functional data.
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Chapter 5

Multiscale latent variable
regression-based process
monitoring methods

5.1 Introduction

Accurate and flexible modeling of process variables based on implicit or explicit
models is necessary for improving system performance monitoring and process
control. In other words, the prediction accuracy of the designed model to mimic
the nominal conditions of the inspected process or plant has a direct effect on
the performance of fault detection and diagnosis. In various practical processes
(including environmental, biological, and hydrological), data are collinear (or
contain redundancy among the variables), tainted with noise, and nonstationary.
However, data generated from multivariate processes are statistically challeng-
ing because they are highly dimensional, the relationships among variables are
nonlinear, the variables themselves are non-Gaussian, and the processes change
over time. Moreover, various types of fault can occur. Thus, the timely detec-
tion of abnormal conditions of complex systems using conventional monitoring
methods can be challenging and ineffective.

Fault detection is of great significance for operators to detect abnormal con-
ditions timely, and to take effective measures to avoid adverse consequences.
In general, the two essential assumptions underlying the design of most con-
ventional process monitoring methods are that the process data need to be
both independent and identically normally distributed. However, data collected
from modern industrial processes often are autocorrelated and/or nonnormally
distributed. The violation of these major assumptions can seriously affect the
monitoring performance of these conventional charts. Due to its core role in in-
dustrial processes, fault detection is extensively studied in academia and indus-
try. Various studies reported in the literature have focused on monitoring charts
for monitoring processes with time-dependent data [1–5]. There are two main
techniques used to monitor processes with autocorrelated data: residuals-based
and adapting model-based methods [4,6]. Residuals-based methods to monitor
processes with autocorrelated data are the pioneer in the fault-detection field,
with a lot of impressive results reported in the literature. The basic idea behind
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these approaches is to describe the autocorrelation in the data, using a math-
ematical model, and to then apply traditional control charts, using computed
uncorrelated residuals obtained from the constructed model. The performance
of residual-based monitoring charts, however, is very sensitive to the predic-
tion quality of the model [4,7]. Other techniques monitor the autocorrelated
data by adapting the model to each sampling time [4,6]. Nevertheless, due to
the high complexity of the modern industry, designing an accurate model is not
always an easy task [8]. In reality, various chemical, environmental, and biolog-
ical processes provide data that are not normally distributed. In such cases, the
normality assumption underlying the conventional statistical monitoring chart is
invalid. Many researchers have studied the impact of departure from normality
on process monitoring charts [8–10]. For example, the author of [9] have in-
vestigated the impact of a violation of normality assumption on the Shewhart
chart, by using various known distributions, namely uniform, right triangular,
gamma, and bimodal distributions. Also, Burrows [11] studied the impact of
skewed distribution on the Shewhart chart. Several works have designed process
monitoring charts for non-Gaussian distribution when the form of the underly-
ing distribution is known. The authors of [12,13] have developed an EWMA
monitoring scheme for multivariate Poisson-distributed data. Also, univariate
monitoring charts were designed to monitor nonnormally chi-square distributed
processes [14]. However, we usually use the normal theory results in the absence
of information regarding the form of distribution of the data [8]. Then, ignoring
the nonnormality in data can result in significant degradation of the detection
quality of the designed monitoring approach [15].

Most real processes, however, are multivariate in nature. The conventional
multivariate fault-detection methods also rely on most of the assumptions made
in univariate techniques, such as the normality, independence of the data or
residuals. The collinearity in the data can lead to a large uncertainty of the model
parameters and degrades the model prediction. The most commonly used strat-
egy to reduce the effect of the collinearity on the model efficacy is to use latent
variable regression (LVR) models. The basic idea behind the LVR models is
that most of the information on the data is captured by transforming the vari-
ables into a smaller set of variables that are used for model development. The
LVR model is developed using a smaller set of variables that linearly combine
the original variables. This leads to improvements in prediction as well as well-
conditioned models for estimation [16]. Some of the well-known LVR model
techniques include principal component regression (PCR) [17,18] and partial
least squares (PLS) [17,19,20].

Another challenge in designing process monitoring schemes is to overcome
the high noise embedded in the measured data. Most of the data measured from
processes are corrupted with noise which is of different forms, including ran-
dom and gross errors. These errors are largely due to disturbances, fluctuations,
sensor degradation, and human errors. These errors may swamp the important
features of the data that are essential to detect anomalies during the estima-
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tion of the model parameters. Thus, measurement noise must be filtered to get
an improved model prediction. Unfortunately, most practical data contain rel-
evant features and noise that have contributions in time and frequency. This
kind of data is multiscale in nature [21]. For example, slow change in the data
covers a wide range in the time domain and a small range in the frequency do-
main. Similarly, a large change in the measured data covers a small range in the
time domain and a wide range in the frequency domain. Conventional filtering
techniques, such as a mean filter or exponentially weighted moving average fil-
ter, fail to separate the feature-noise due to the data being multiscale in nature.
Convectional low pass filters classify the noise as a high-frequency feature and
therefore filter data higher than a defined threshold. Therefore, to take care of
the multiscale nature of the data, it requires the use of multiscale model estima-
tion methods. Wavelet-based techniques are powerful tools to separate pertinent
features from noise.

Various researchers have applied multiscale methods to improve the accu-
racy of prediction of the estimated model [22–28]. For example, Palavajjhala et
al. proposed the wavelet prefilters for modeling purposes using the multiscale
representation of data [23]. Bhakshi [22] have demonstrated the benefits of data
representing in multiscale for empirical modeling and shown that it can enhance
the noise removal capability of the PCA model and its capacity for supervis-
ing multivariate processes. Other researchers showed that collinearity can be
reduced by the multiscale representation of data and also that it is able to shrink
the variations of FIR model parameters [25,26]. In system identification steps,
wavelets have been used as a modulating function for control-relevant system
identification [28]. Unfortunately, parameter estimation of LVR models using
multiscale data has not been exploited much in the literature, which is the main
focus of this chapter.

Motivated by the above-mentioned challenges and hindrances limiting the
mentioned conventional univariate and multivariate fault detection approach, the
aim of this chapter is to present a set of wavelet-based multiscale monitoring and
fault detection methods to address these challenges. In this chapter, we offer a
brief review of the wavelets, present their benefits, and introduce the multiscale
representation of data using wavelets. We then show the impact of ignoring the
basic assumptions underlying the data structure on the detection performance
of a univariate monitoring chart, and subsequently introduce the core idea of
wavelet-based univariate monitoring charts, i.e., multiscale EWMA, CUSUM,
and GLR fault detection methods, that can improve the performance of these
techniques, especially when their assumptions are violated. An illustration of
the concept of wavelet-based multivariate extension of LVR approaches is pro-
vided. In our last section, we highlight the major results obtained when applying
multiscale monitoring approaches to monitor distillation columns. Lastly, we
discuss the challenges that remain when using multiscale approaches.
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5.2 Theoretical background of wavelet-based data
representation

Conventional and well-known monitoring schemes, such as EWMA, CUSUM,
and GLR, would not be effective in monitoring nonstationary, non-Gaussian,
and correlated processes. Some have been improved to handle the possible
correlation among process measurements by describing the correlation via a sta-
tistical model, such as the autoregressive integrated moving average (ARIMA),
which is commonly used and also quite flexible time series model. However,
most of these models are designed by assuming stationarity of the data and they
are effective to detect anomalies only of a certain range. For this reason, we
choose to use wavelet-based methods commonly used to alleviate the stationar-
ity assumption and the limitations encountered in many conventional monitoring
schemes.

Let us first focus on the core idea and benefits of wavelets. Generally speak-
ing, wavelet functions look at data on different scales or frequency components
and are able to analyze every frequency component, via a level-matched reso-
lution. For instance, if we look at the data with a large window, we can notice
essential features. In the same manner, if we look into the data with a small win-
dow, we would notice the small features. Indeed, most of data-based empirical
modeling approaches involve representing the data for each of the variables, us-
ing basis functions that represent all the measured variables individually. A large
part of the methods are currently used to represent data at a single scale or
fixed in time and frequency. This type of representation is useful only for data-
containing contributions with a uniform localization everywhere in time and
frequency. In practical situations, it is rare to find measured data with a uniform
localization or a single scale. Measured data involve stochastic and deterministic
events. Most of practical data that contain stochastic components of the mea-
sured data are a combination of scale and time-dependent parameters, whereas a
deterministic component of the data is at multiple locations of the frequency and
time. Also, measured variables sometimes may have different sampling rates or
may have some missing segments.

Indeed, each occurred event is linked with some frequency band. Wavelet
methods are an efficient tool enabling the decomposition of the original data
into multiple frequency bands and thus permitting the simultaneous analysis
in time and frequency domains. Besides the limitation described above, the
conventional monitoring methods have the other disadvantage of being single-
scale (time scale) and may not be able to efficiently handle multiscale data that
are frequently present in modern industrial processes. Because of the multi-
scale nature of the data from most engineering and environmental processes,
it is necessary to include these features when designing monitoring methods.
This means that some events occur at different localizations in time and fre-
quency, such as processes for which the power spectrum changes with time
and/or frequency, and for variables collected at different sampling rates. Most
of the data-based empirical modeling approaches involve representing the data
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for each of the variables using a basis function that, for example, represents
each measured variable. Wavelet techniques have been shown to be highly com-
petitive when data are multiscale, correlated, and do not follow a Gaussian
distribution. Essentially, wavelet-based monitoring provides more desirable fea-
tures than conventional methods for several reasons; it generates uncorrelated
wavelet coefficients at different scales and decomposes signals into several fre-
quency bands that enable the analysis of data in time and frequency domains
simultaneously.

5.2.1 Wavelet transform

A time-series data can be represented using wavelets as coefficients that corre-
spond to a specific time and frequency [29]. Wavelet decomposition has been
extensively used in data compression, signal and image processing, speech dis-
crimination, model prediction, and process monitoring. Wavelet decomposition
is a sophisticated method that allows obtaining localized components, unlike
other well-known decomposition methods such as the Fourier transform. In
Fourier transform, data is decomposed as a combination of sines and cosines,
where the different frequencies are calculated from the global period of the
signal, thus maintain specificity in frequency alone. Contrary to the Fourier
transform, a localized frequency analysis is obtained by the wavelet decomposi-
tion. Thus, it comes with information about the frequency components that exist
in a signal and their time of occurrence [30]. Additionally, the wavelet filter can
quickly capture high-frequency features and acquire slowly the low-frequency
ones; this makes it very efficient to expose patterns with different magnitudes
and durations in a signal, while preserving the timing very precise.

Another aspect is the fact that the wavelet transform has the ability to distin-
guish the stochastic components from the deterministic components taken from
the data. The deterministic components are captured by a relatively small num-
ber of large coefficients, whereas stochastic changes are distributed among all
coefficients. The major advantage of the wavelet transform is that it represents
the data in varying windows. It should be noted that to overcome the problem
of discontinuity in the signal, very short basis functions are used, and to get
detailed frequency analysis, long basis functions can be used. This way, one
can achieve long low-frequency and high-frequency basis functions. In the fol-
lowing section, we shed more light on the multiscale representation based on
wavelets and its advantages.

5.2.2 Multiscale representation of data using wavelets

Historically, multiresolution time-series decomposition was introduced as the
quintessential mathematical tool for image decoding and compression [31].
In [31], Mallat employed orthogonal wavelets for image compression, because
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FIGURE 5.1 Illustration of the dilation and translation mechanism in wavelets.

of their capacity to easily adapt to patterns of images and to reconstruct them
with reduced space. Nowadays, wavelets are used in numerous applications,
including data compression, image analysis, time–frequency localization, and
process monitoring [32–35]. Wavelets represent a set of mathematical functions
that can offer a localized analysis in both time and frequency [34]:

ψa,b(t) = 1√
a

ψ

(
t − b

a

)
, (5.1)

where a and b are respectively the dilation and translation parameters [32].
The function ψ(t) represents the mother wavelet, which becomes ψ

(
t−b
a

)
when

stretched or shrunk. Fig. 5.1 shows how the mother wavelet is stretched and
shrunk to capture features in time and frequency. In practice, the dyadically dis-
cretized version of the dilation and the translation parameters are commonly
used: a = 2m, b = 2mk, (m, k) ∈ Z

2. Thus, the family of wavelets can be ex-
pressed as ψmn(t) = 2

−m
2 ψ(2−mt − m). Here, m and k respectively denote the

dilation and translation parameters. Numerous families of basis functions are
generated, based on their convolution with different filters, such as the Haar
scaling function and the Daubechies filters [32,36,37]. Generally speaking, the
form of the wavelet function is related to the wavelet family; for instance, the
Haar wavelet is discrete symmetrically square-shaped, and Daublets, symmlets,
and Coiflets are almost symmetric (Fig. 5.2). It should be noted that the dyadic
discretization imposes downsampling, which reduces the number of parameters
dyadically at each decomposition. Indeed, with this discretization, decomposi-
tion of samples at nondyadic locations is performed with a certain time delay.
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FIGURE 5.2 Different form of wavelets: (A) Haar wavelet; (B) Daublet of order 12 wavelet;
(C) Symmlet of order 12 wavelet; (D) Coiflet of order 12 wavelet.

Discrete Wavelet Transform (DWT) is an efficient procedure for separat-
ing deterministic from stochastic components of the input signal [34,38]. Thus,
it is widely used for denoising measurements and changing detection [39,40].
The essence of the DWT is to represent time series data as a combination of
approximation and detail coefficients [38]. Using DWT, the time series can be
decomposed as [28,41,42]:

x(t) =

AJ (t)︷ ︸︸ ︷
n2−J∑
k=1

aJkφJk(t)+
J∑

j=1

Dj (t)︷ ︸︸ ︷
n2−j∑
k=1

djkψjk(t), (5.2)

where AJ (t) and Dj(t) are respectively the approximation and detail coeffi-
cients, and J is the decomposition level.

The detail coefficients are generated by projecting the original signal x(t),
using a set wavelet basis functions defined as ψj,k(t) = √

2−jψ(2−j t − k),
j = 1, . . . , J , k ∈ Z, where k is the shift parameter; ψ is the mother wavelet
used. In other words, the detailed signal Dj(t) at scale j can be obtained by ap-
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FIGURE 5.3 Illustration of DWT of a heavy sine (approximations Si and details di ) using Haar
wavelet; here, L = 3.

plying a high-pass filter (g) on the original and scaled signals. In a similar way,
the approximation coefficients are generated by projecting the signal on a set
of orthonormal scaling functions given by φj,k(t) = √

2−jφ(2−j t − k), j = 1,
. . . , J, k ∈ Z. Similarly, the scale signals are computed by applying a low-pass
filter (h) on the original and scaled signals.

To illustrate the DWT decomposition process, an example of multiscale
representation-based DWT applied to the square-integrable signal is presented
in Fig. 5.3. This figure shows a signal, S, at three scales, using DWT; S1 and
d1 are the respective approximation and detail coefficients at level 1; S1 is rep-
resented by the sum of the approximation and detail coefficients at level 2, S2

and d3, respectively; and so on. The signals in Figs. 5.3B, 5.3D, and 5.3F are
at increasingly coarser levels, in comparison with the original signal presented
in Fig. 5.3A. A low-pass filter (H ) of length, r , is used to obtain scaled signals,
which is equivalent to projecting the original signal on a set of orthonormal
scaling functions, φjk(t). Figs. 5.3C, E, and G represent the detail signals that
capture the details between the signal at a finer scale and the scaled signal.
Projecting the signal onto the wavelet basis function, ψjk(t), is equivalent to
using a high-pass filter of length r , gf = [g1, g2, . . . , gr ] for filtering the scaled
signal at the finer scale. Of course, Fig. 5.3 shows the approximation signal,
S3 (Fig. 5.3F), representing the low frequencies (large scales), and the coeffi-
cients of details D1, D2, D3, and D4 with large variations, especially scales
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FIGURE 5.4 (A) Spanning of time–frequency plane using wavelets with variable aspect ratio;
(B) Fourier transform with fixed aspect ratio.

that represent high frequencies. This decomposition process can be performed
at multiples scales, as many as J = log2(n). Indeed, the number of coefficients
decreases by 2, from one level to the next, due to the down-sampling in DWT
after every filtering step, during which the filtered output is subsampled by two.
In other words, the length of the scaled signal, at level (j), is half the length of
the scaled signal at the previous scale (j − 1).

Fig. 5.4A provides a better understanding of the effect of the dilation pa-
rameter (j ) and translation parameter (k), in the time–frequency plane. It can be
seen that, for a fixed value of j and k, the energy is concentrated at the appropri-
ate box. Fig. 5.4A shows that as k changes, the wavelet is changing in the time
scale whereas energy in the frequency remains unchanged. Similarly, changing
j results in a dilation of the functions φ and ψ , and also it doubles the span in
time [28,41].

By analogy, in Fourier transform, the input signal is decomposed using a si-
nusoidal base. Each sine function corresponds to a given frequency weighted
by coefficients, so-called Fourier coefficients. Thus, Fourier transform-based
methods are not appropriate for data exhibiting features that vary with the fre-
quency [43,44]. Indeed, the major advantage of using the wavelet transform,
in comparison with Fourier transform-based methods, is that the size of the
analysis window (mother wavelet) is variable (Fig. 5.4A). Each dilation or com-
pression of the mother wavelet gives rise to a scale. In addition, the wavelet
transform preserves the temporal information against the Fourier transform, thus
generating a 2D time scale representation (Fig. 5.4A–B).

In [45], fast wavelet transform algorithms with complexity of O(n) for a
discrete signal of dyadic length are presented. It has been shown that wavelets
and scaling functions coefficients at a specific scale (j), aj and dj , are obtained
just by the multiplication of the scaling coefficient vector at the finer scale, aj−1,
by the matrices, Hj and Gj , respectively, i.e.,

aj = Hj aj−1, and dj = Gj aj−1 (5.3)
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where

Hj =

⎡
⎢⎢⎢⎣

h1 . hr . .

0 h1 . hr 0
0 0 . . .

0 0 h1 . hr

⎤
⎥⎥⎥⎦

n2j ×n2j

and

Gj =

⎡
⎢⎢⎣

g1 . gr . .

0 g1 . gr 0
0 0 . . .

0 0 g1 . gr

⎤
⎥⎥⎦

n2j ×n2j

. (5.4)

Overall, wavelet-based multiscale techniques have gained popularity for
handling both stationary and nonstationary data, as they can analyze time and
frequency localized features simultaneously, with a high resolution. In addition,
these methods are adaptable to transient signals. Accordingly, wavelet-based
methods are designed and preferred for various purposes such as denoising, data
compression, and process monitoring.

5.2.3 Advantages of multiscale representation

Autocorrelation and non-Gaussianity of process variables present important
challenges when designing and implementing monitoring techniques. Here, we
show the great potential of wavelet-based multiscale representations to decrease
the autocorrelation degree of autocorrelated process and make the distribution
of wavelet coefficients close to Gaussian, even if input data have non-Gaussian
distributions.

5.2.3.1 Decorrelating autocorrelated measurements
One main characteristic of the multiscale representation is its capacity for decor-
relating autocorrelated measurements at a multiscale level, making it an elegant
and flexible tool for presenting and supervising environmental and engineer-
ing processes over conventional monitoring methods [46]. Generally speaking,
a white noise process, which is uncorrelated with its values at any lag, has an
autocorrelation function (ACF) of zero at all lags except the value of unity at lag
zero. In contrast, time-dependent processes including autoregressive (AR) or au-
toregressive moving average (ARMA) process have nonzero values at lags other
than zero that show a correlation among different lagged measurements [47].
It should be noted that the monitoring quality of conventional fault-detection
methods can be deteriorated in the presence of autocorrelated measurement
noise [1,48,49]. In the literature, two main strategies can be distinguished to
monitor autocorrelated data. In the first strategy, the decision thresholds are
adjusted to consider the time dependence in the data by estimating the true vari-
ance of the process [50]. In the second strategy, a model is first constructed and
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then used to generate residuals that are checked by the conventional monitoring
schemes for anomaly detection [2]. For more details about methods for moni-
toring autocorrelated data, see [51,52].

The advent of the multiscale presentation can alleviate these challenges and
overcome fault detection limitations that occur when using many of the conven-
tional monitoring methods. Here, we show the capacity of wavelet decomposi-
tion to significantly decrease autocorrelation of input data that are normally-like
distributed. An AR model with order 1 is used to generate autocorrelated data.
The time-domain of a signal generated from an AR(1) model with an autoregres-
sion coefficient of a = 0.7 is illustrated in Fig. 5.5A. Fig. 5.5C, which shows the
ACF of the time domain signal, indicates that the AR(1) signal is autocorrelated
as expected. Fig. 5.5 gives an example of the capacity of wavelet decomposition
of decorrelating the autocorrelated AR(1) data at multiple levels. Specifically,
wavelet coefficients corresponding to time-dependent processes become almost
uncorrelated at multiple scales (Fig. 5.5). Detailed representations of the wavelet
signals are presented in Figs. 5.5D, G, and J. The distribution of the time domain
and all detailed signals are close to Gaussian, as shown in the second column in
Fig. 5.5. From Figs. 5.5F, I, and L, it is clear that the detail signals are relatively
uncorrelated; this can be attributed to the application of the high-pass filters in
wavelet decomposition.

FIGURE 5.5 An illustrative example of the capacity of DWT in decorrelating time-dependent mea-
surements generated from AR(1) model at multiple scales.

From a fault detection point of view, the presence of autocorrelated data de-
grades the effectiveness of various fault detection methods. Therefore, having
the noise decorrelated at multiple scales should provide an advantage for any
fault detection method, if it is applied using the detail signals at multiple scales.
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This advantage can be used to develop multiscale univariate and multivariate
fault detection methods with better performance, and to show these improve-
ments through their utilization to monitor various chemical and environmental
systems.

5.2.3.2 Data are closer to normality at multiple scales
As discussed above, another factor affecting the effectiveness of fault detec-
tion is the presence of non-Gaussian errors in the data. In practice, we are
confronted with data that are non-Gaussian distributed (e.g., gamma, χ2, Pois-
son). Several studies have investigated the effect of violating normality on the
performance of the conventional monitoring techniques and showed that poor
performances are obtained in terms of the false alarm rates as well as missed
detection rates [9,10,15]. Four main methods to handle non-Gaussian data have
been reported in the literature. Those involve: (1) transforming the original data
to get approximately Gaussian distributed data using transformation techniques,
such as Box–Cox [53], (2) adjusting the decision thresholds based on statisti-
cal features of data (kurtosis and skewness), (3) designing a specific monitoring
technique to the distribution of the data [54], and (4) using nonparametric or
distribution-free methods [55,56].

Another key reason for choosing a multiscale presentation is its ability
to make the distribution of data close to Gaussian at multiple scales [57,58].
Figs. 5.6 and 5.7 show that the signals of uniform and chi-square data are closer

FIGURE 5.6 ACF and distributions of wavelet coefficients of uniformly distributed data.
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FIGURE 5.7 ACF and distributions of wavelet coefficients of χ2 distributed data.

to normality at multiple scales. As discussed above, the performances of various
fault detection methods can dramatically decrease when the data diverge from
normality. To remedy that, multiscale representation is a potential solution to
help improve the performance of these methods in the presence of non-Gaussian
data. Theoretical demonstrations on the characteristics of multiscale representa-
tion can be found in [59–61].

5.3 Multiscale filtering using wavelets

Eliminating or reducing noise from collected data by keeping the maximum of
underlying process information is an essential task and is usually termed as data
filtering or denoising. This section offers an introduction to multiscale filtering,
which is designed based on a multiscale representation.

5.3.1 Single scale filter method

In general, single scale linear filters are built by calculating the weighted sum
of past data in a window size of finite or infinite length. These conventional de-
noising methods, such as the mean and exponential filters, are known as finite
impulse response (FIR) and infinite impulse response (IIR) filters. The com-
monly used linear filter is expressed by

ŷk =
N−1∑
i=0

wiyk−i , (5.5)
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where
∑

i wi = 1, and N is the filter length. Linear filters include moving av-
erage, CUSUM, Chebyshev, and EWMA filters. For instance, the mean filter is
implemented by using equal weights, i.e., wi = 1

N
, whereas the EWMA filter

proceeds by averaging all the past observations. The EWMA filter is performed
in a recursive way as

ŷk = αyk + (1 − α)ŷk−1, (5.6)

where yk and ŷk are respectively the observation and the filter output at time
step k and α ∈ [0,1] is the smoothing parameter that defines the depth of the
memory of EWMA. From the construction of the EWMA filter, its perfor-
mance would depend on the value of the parameter α. Values of α close to
one would result in less smoothed data and smaller values of α would result in
more smoothed data [62].

It should be noted that in a single scale filtering, the measured data rep-
resented by basis functions have a uniform temporal localization with respect
to the sampling time. In the case of single scale data analysis, the basis func-
tions have uniform time-frequency localization which results in a trade-off be-
tween temporally localized changes and capacity to temporally remove global
noise [24]. In other words, the major limitation of single scale filtering is
their fixed time–frequency localization, i.e., they explore data at a single fre-
quency alone. Moreover, these filters are not suited when the data are time-
dependent and non-Gaussian-distributed. Accordingly, accurate feature extrac-
tion and noise removal are not possible, in an effective manner, using single-
scale filtering strategies [24].

5.3.2 Multiscale filtering methods

Recently, denoising techniques based on wavelet representation received consid-
erable attention from researchers and engineers. The potential of these nonlinear
denoising methods is still being investigated. Indeed, in multiscale denoising
methods using wavelets, the deterministic components of the data (e.g., spikes,
trends, and deviation in mean/variance) are represented by a small number of
coefficients of a wavelet with a higher magnitude, whereas the random compo-
nents of the signal are captured by the remaining coefficients [22,46,63,64]. This
desirable characteristic of wavelets is used to denoise and detect features of the
signals. Thus, the extraction of the stationary Gaussian noise can be performed
by the following three steps [46]:

• Transforming the raw data to the time–frequency domain by decomposing
the input data, using a chosen set of orthonormal wavelet functions.

• Ignoring coefficients that are smaller than the fixed threshold value.
• Converting back the selected coefficients into the original time domain.

In [64], it has been demonstrated that for the denoised signal of a noisy data
with length n there is an error within O(logn) between the noiseless data and the
denoised data with a priori information about the smoothness of the underlying
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data. Therefore, the selection of an appropriate threshold represents a core step
for efficient denoising. Various thresholds have been developed in the literature
including universal threshold, soft and hard thresholding, and adaptive thresh-
olding rules [64,65]. There are many methods available in the literature for this
purpose [65]. Generally speaking, in hard thresholding, the values of the coeffi-
cients exceeding the threshold are kept, whereas in soft thresholding they are set
to zero. It should be noted that hard thresholding can lead to a larger variance
in the reconstructed signal, with infrequent artifacts. However, they are suitable
for representing discontinuities and peaks. On the other hand, soft thresholding,
which results in a larger bias, provides an adequate visual quality of denois-
ing. Bruce and Gao [66] introduced a threshold to get a compromise between
variance and bias, using two threshold values and requiring more computation.
Practically, the universal threshold is mainly based on the input measurements
through the σj estimate. Indeed, for large samples, this threshold is efficient to
reduce noise; however, it can remove a portion of the underlying deterministic
signal. To bypass this limitation, Donoho and Johnstone [65] proposed keeping
coefficients of the first j0 coarse scales irrespective of whether they exceed the
decision threshold or not. However, the selection of j0 impacts the MSE, and the
selection should be based on the smoothness of the underlying data [58,67–69].

The Visushrink method can be used to get better quality of the denoised
signal [65],

tj = σj

√
2 logn, (5.7)

where σj represents the standard deviation the errors at scale j and n is the
length of the signal. Usually, the value of σj is estimated based on the wavelet
coefficients at that level based on the following formula:

σj = 1

0.6745
median

{∣∣djk

∣∣} . (5.8)

Numerous methods were introduced to find the value of the threshold and can
be found in [70].

5.3.3 Advantages of multiscale denoising

The single scale denoising techniques are highly ranked due to their use and
are simple in computation methods. Once proper tuning of the single scale fil-
tering method has been achieved, it can then be used to identify the small shift
in the mean. Thus, they are widely applied in statistical monitoring systems.
The main drawback of single-scale filter parameters is their deficiency to adapt
to the nature of the signal. If the signal contains features at a multiscale level,
single-scale filters are strained for a trade-off of the extent of error removal with
the quality of the maintained local features. Furthermore, if the signal errors
are nonstationary or time-varying, single-scale rectification methods then fail
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to decorrelate the error signal. In addition to the above disadvantage of single-
scale filters, linear filters are not robust for non-Gaussian such as outliers in the
signal.

5.4 Wavelet-based multiscale univariate monitoring
techniques

After filtering noise from the data, various fault detection charts can be used for
detecting abnormal features in the data. Fault detection charts can be catego-
rized into two groups that use single and multiscale methods. Multiscale-based
fault detection methods have been developed for both univariate and multivari-
ate process variables. Here, we discuss how DWT can be used for denoising
and for fault-detection in univariate process data. There are a few different ways
of using DWT for univariate fault detection and diagnosis [58]. Overall, the
core idea is to apply DWT for signal decomposition and then check individ-
ual details and the approximated signal. Other techniques focus on monitoring
the coefficients (see, e.g., [71]), while some others inspect the reconstructed ap-
proximation and details [72]. Here, we provide a general framework integrating
univariate monitoring charts, such as Shewhart, EWMA, and GLRT, that include
desirable features of the wavelet decomposition.

Merging the desirable features of a multiscale representation with conven-
tional univariate monitoring schemes, such as Shewhart, CUSUM, and EWMA,
lead to improved detection performance. The general framework of multiscale
univariate monitoring schemes is illustrated in Fig. 5.8. The core principle of
this methodology is to first decompose the data using a multiscale representation
and to apply the selected monitoring scheme to detailed signals. Specifically, we
use a multiscale representation to decorrelate the autocorrelated features of data.
Then, conventional monitoring schemes are applied to verify the obtained coef-
ficients at each level. Here, decision thresholds are determined at multiple scales
based on data representing a normal operating mode. These thresholds are used

FIGURE 5.8 A general framework of univariate multiscale monitoring.
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to monitor detailed signals of new data, and the fault is flagged when the thresh-
olds are exceeded. In the reconstruction phase, only coefficients exceeding the
thresholds are used, whereas those below the threshold are set to zero. Lastly,
the reconstructed signal is monitored using the monitoring scheme. The multi-
scale monitoring approach is schematically presented in Fig. 5.8. In this chapter,
we use the widely used multiscale monitoring framework [73]. Some methods
reported in the literature focus on monitoring the details and approximations,
using statistical monitoring schemes, such as Shewhart and EWMA [58,74].
One method only monitors the reconstructed signal from the filtered wavelet
coefficients, at all levels, along with the scaling coefficients [58,75].

To simplify, we only present here the main steps to implement a multiscale
EWMA scheme. In a similar way, other univariate charts (i.e., GLR, CUSUM,
and Shewhart) can be performed. The diagrammatic illustration of multiscale
EWMA is given in Fig. 5.9, and the main steps to perform multiscale EWMA
are sketched next.

FIGURE 5.9 Main steps for implementing the multiscale EWMA algorithm.
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1. Training phase

Step 1 Gather fault-free measurements representative of nominal operating
conditions, which are required for computing the decision limits

Step 2 Scale both the training and testing data to zero mean and unit vari-
ance

Step 3 Transform the input data to multiple scales set by decomposing the
scaled data into wavelet coefficients

Step 4 Calculate the EWMA statistic and the control limits
Step 5 Maintain only scales violating the decision thresholds and use them

to reconstruct the data
Step 6 Calculate the control limits for the reconstructed data

2. Testing phase

Step 1 Transform the testing data into multiple scales by applying DWT
Step 2 Calculate the EWMA statistic and apply the detection limits for each

scale computed in the training phase
Step 3 Select only coefficients that overpass the detection threshold
Step 4 Reconstruct data in the time dome using the selected coefficients
Step 5 Flag an anomaly when the EWMA statistic overpasses the detection

limits

Of course, in multiscale monitoring of a univariate process, the input single-
scale data is decomposed into coefficients at every scale, then the details are
monitored using univariate charts, as discussed above. After reconstructing the
data in the time domain, using only the coefficients violating the detection
threshold, the convectional charts are applied to monitor the reconstructed data.

5.4.1 An illustrative example

To illustrate the benefits of using multiscale monitoring charts, we compare the
detection performance of the multiscale Shewhart scheme with its conventional
counterpart under different conditions (i.e., for autocorrelated, non-Gaussian,
and noisy data). The criteria used for comparison are the missed detection rate
and the false alarm rate.

5.4.1.1 Impact of autocorrelated data on the conventional
Shewhart chart

The aim of this example is to demonstrate the capacity of a wavelet-based mon-
itoring scheme to monitor autocorrelated process data. To this end, here we
compare the performance of a single scale and multiscale Shewhart schemes
in detecting process mean faults in the autocorrelated data. To show how this
impacts the statistical performances on the two charts, first the AR(1) model is
used to simulate 500 fault-free data samples, which are used to compute con-
trol limits. The control limits computed based on the training data are then used
for detecting potential faults in the unseen testing dataset. Second, the testing
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dataset, which is generated via the same AR model, consists of 500 data sam-
ples. An additive bias fault is added to the testing data from samples 200 to 300.
This fault is represented by a constant bias of amplitude equal to 3. We repeated
this simulation 5000 times for different values of the AR-parameter taken be-
tween 0.3 and 1. The averages of missed detection rate and false alarm rate of
the two charts as functions of the first-order autoregressive AR(1) parameter, a,
are given in Fig. 5.10.

FIGURE 5.10 Detection performance of Shewhart and multiscale Shewhart schemes in the case of
autocorrelated data.

In this comparative study, in all figures, the Shewhart chart the missed detec-
tion rate is represented by a light-blue solid line with diamonds; the multiscale
Shewhart chart missed detection rate is illustrated by a bold dashed line with
diamonds; the Shewhart chart false alarms rate is shown by a light-green solid
line with circles, and the multiscale Shewhart chart false alarm rate is in bold-
green solid line with circles. Fig. 5.10 indicates that the performance of both
schemes depends highly on the degree of autocorrelation in the data. We ob-
serve that the increase in the degree of autocorrelation negatively impacts on the
detection performance of these two schemes by increasing the number of missed
detections. We also notice that the detection performance of the multiscale She-
whart chart is more robust than that of the conventional Shewhart chart because
the missed detection rate of the multiscale version of Shewhart chart is much
lower than the conventional one for almost all values of correlation parameters,
except for extremely high degrees of autocorrelation where the performance of
both charts is comparable. The multiscale Shewhart scheme provides a clear
improvement over the conventional Shewhart chart by decreasing missed de-
tections. In summary, the multiscale Shewhart scheme, which integrates the
conventional Shewhart chart with the advantages of a multiscale representation
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of data, outperforms the conventional Shewhart scheme for detecting faults in
autocorrelated time-series data.

5.4.1.2 Effect of measurement noise on the conventional
Shewhart chart

Here, the detection efficiency of the conventional Shewhart chart and its multi-
scale version are investigated when the data from the monitored process is noisy.
To do so, we generate 500 random Gaussian data samples, which are being used
to determine the control limits of the two schemes. The testing dataset consists
of 500 data samples that are completely independent of the training data and
contaminated with bias fault of amplitude equal 2 introduced from samples 200
to 300 and from samples 400 to 450 of the testing data. This simulation is repli-
cated 5000 times for different measurement noise levels taken from σ = 0.03
to σ = 2. Fig. 5.11 displays the average value for 5000 missed detection rates
and false alarm rates as a function of the standard deviation of the measurement
noise. In Fig. 5.11, we observe that the detection capacity decreases by increas-
ing the missed detection rate when the noise level increases. This case study
confirms the advantages of the multiscale Shewhart scheme over the single scale
Shewhart scheme when applied to noisy data (Fig. 5.11). This is mainly due to
the capacity of the multiscale representation to separate relevant and irrelevant
features in the data. Thus, combining the advantages of a multiscale representa-
tion with those of a univariate monitoring Shewhart chart, it should be possible
to obtain further improvements in fault detection.

FIGURE 5.11 Comparison of the performance of Shewhart and multiscale Shewhart monitoring
charts for the case of noisy data.
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5.4.1.3 Impact of the violation of normality assumption on the
conventional Shewhart chart

In this case study, we investigate the ability of wavelet-based monitoring to
deal with non-Gaussian data. Specifically, the detection performance of single
and multiscale Shewhart schemes are compared when the normality assump-
tion underlying the univariate monitoring charts is violated. In other words,
we investigate the impact of violating the normality assumption on the con-
ventional Shewhart monitoring chart. The statistical performance of the two
schemes is investigated using the chi-square data, with different values of a
fourth-order cumulant (or kurtosis). The kurtosis is used in this study to quantify
the non-Gaussianity in the data. For univariate data x1, x2, . . . , xN , the formula
for kurtosis is computed as

Kurtosis =
∑N

t=1(xi − μ)4

(N − 1)σ 4
, (5.9)

where μ is the mean, σ is the standard deviation, and N is the number of data
points. In fact, kurtosis quantifies the degree of peakedness of a distribution; it
is 3 for a Gaussian distribution. Generally speaking, if it is greater than 3, the
distribution is termed “super-Gaussian”, i.e., spikier than Gaussian, and if it is
less than 3, such distribution is termed “sub-Gaussian”, i.e., flatter than Gaus-
sian. To investigate the detection performance when the Gaussianity assumption
is invalid, 1024 random fault-free data samples with a chi-square nonnormal
distribution were generated. After computing detection limits of the two charts
using the training data, another testing dataset of 1024 random samples with a
chi-square distribution was generated. A step anomaly is then injected into the
testing data between samples 201–250, 501–525, and 701–725. The magnitude
of the considered step fault is 3σ . For different values of the kurtosis taken be-
tween 3 and 14, each simulation is repeated 5000 times to get more accurate
results. The means of the 5000 missed detection rates and false alarm rates as
functions of kurtosis are presented in Fig. 5.12. It shows that the missed de-
tection rate significantly increased as the departure from Gaussianity increased
(i.e., when we increased the kurtosis of data) while false alarm rate increased
slightly when the kurtosis increased. Fig. 5.12, which shows the average of
missed detection rate and false alarms rate as a function of kurtosis of these
two charts, clearly illustrates the advantages of the multiscale Shewhart chart
over the conventional chart. This case study shows that, in most instances, the
performance of the multiscale Shewhart chart is superior to that of the conven-
tional Shewhart chart in detecting process mean faults.

In essence, the wavelet-based univariate monitoring approaches offer several
advantages compared to single scale monitoring schemes including: (i) decorre-
lating time-dependent data while keeping a Gaussian distribution; (ii) obtaining
Gaussian wavelet coefficients at each scale even with non-Gaussian input data;
(iii) separating noise from relevant features in the data; and (iv) compacting the
deterministic features in a small number of coefficients.
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FIGURE 5.12 Comparison of the performance of Shewhart and multiscale Shewhart monitoring
charts for the case of non-Gaussian data.

5.5 Multiscale LVR modeling

5.5.1 Benefits of multiscale denoising in LVR modeling

Most of the real-world data are multiscale in nature; therefore, a model estima-
tion using such data needs to consider the multiscale modeling methods that take
into account multiscale filtering, using wavelets to increase the efficacy of the
latent variable regression models. In this section, we highlight the major benefits
of using multiscale filtering in LVR modeling [76].

• The presence of noise in the measured data degrades the model parameter es-
timation of the LVR models. The measured data are passed through low- and
high-pass filters constructed from orthonormal basis functions, and subse-
quently reduce the noise embedded in the measurements and results, yielding
in a more precise prediction.

• Most of the measured data contain noise that are correlated in nature, because
the source of noise is not independent and random, like the malfunctioning
or error in sensor calibration, for example. Model parameter estimation be-
comes challenging with the presence of correlated data. Using wavelets for
representing correlated data makes it decorrelated. This property is very help-
ful where measurement errors are not always random [24].

The model is developed by making use of the above advantages, which integrate
the LVR model parameter estimation and multiscale filtering to improve model
prediction.
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5.6 Multiscale LVR modeling

In practice, industrial processes generate multiple time series that need to be
monitored. Monitoring these process variables individually does not take into
account the interrelations among the variables and faults that might occur in
these relationships. Furthermore, the information in the multivariate data is
important for early detection and high detection performance. Hence, in this
section a wavelet-based technique to monitor multivariate processes will be dis-
cussed.

The desirable features of wavelet-based multiscale representation are used
to monitor multivariate processes. Indeed, the majority of monitoring methods,
such as PCA and PLS, employ a single-time scale and are designed without
consideration of the multiscale properties of the data. Moreover, most data from
industrial processes frequently contain relevant features and measurement noise
associated with both time and frequency. Also, several existing techniques as-
sume uncorrelated input data, even though, in practice, time-dependent data are
very common. Thus, combining wavelets and multivariate monitoring methods
(e.g., LVR techniques) results in improved detection performance. Various mul-
tiscale monitoring methods have been applied in the literature for enhancing
the prediction quality and the robustness of monitoring strategies [34,58,77,78].
For instance, Bayesian multiscale monitoring techniques need prior informa-
tion about the nature of the occurred anomalies [79]. However, these methods
are not frequently applied in industrial applications because of a lack of the
required prior information [80]. Several methods have been designed in the liter-
ature based on information extracted from scale-based analysis using wavelets.
In [81], an approach is introduced for defect detection in rotating equipment by
clustering the wavelet coefficients calculated from the measured process data.
In [82], a monitoring method is proposed to detect bearing anomalies of rotat-
ing equipment. This method generates features from the wavelet coefficients and
then applies ANFIS to uncover bearing anomalies. In [83], the features gener-
ated from DWT are used as input to a neural network for anomaly detection and
diagnosis of a gearbox system.

For multivariate process monitoring, multiscale filtering of the raw data im-
proves the FD performance of the conventional PCA method [84]; the multiscale
PCA (MSPCA) algorithm from [34] that constructs multiple PCA models using
the wavelet coefficients at different scales also shows better monitoring abili-
ties. Indeed, multiscale PCA allows the removal of time-dependence by using
wavelet decomposition and employs PCA to remove the cross-correlation be-
tween process variables. In MSPCA, each process variable is first decomposed
using DWT, the details coefficients are obtained at each level from the thresh-
olded coefficients, and then PCA of the details of all variables is performed
for every level. The PCA scores are then supervised via T 2 and SPE charts
to uncover the significant scales that indicate process abnormalities. Generally
speaking, anomalies can be observed at the final levels, and if they persist, the
coarser levels are able to sense them, too. The scaling coefficient of the coarsest
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level is less sensitive to change because it is generated last in the decomposition
procedure. To alleviate this detection delay, the multiscale techniques generally
control the reconstructed data. After reconstructing data in the time domain,
PCA is applied to monitor the data, with T 2 and SPE schemes used respectively
to monitor the principal components and residual subspaces.

Also, several latent variable methods that use the synergy between the abili-
ties of the LVR models are applied to describe the cross-correlation between the
input–output process variables, and the DWT capability for decorrelating time-
dependent processes and separating relevant features embedded in noisy data is
also used [85,86]. In [87,88], multiscale PLS models are developed for modeling
and fault detection. The PLS model is designed using the denoised data obtained
after eliminating the low-frequency scales characterizing low-frequency com-
ponents. However, multiscale PCA and PLS are designed based on a linearity
assumption, which limits their applications. To bypass this limitation, several
multiscale nonlinear methods are used, such as multiscale KPCA and KPLS
methods [89]. Specifically, in these methods, KPCA and KPLS are used to de-
scribe process variable correlations at different levels. Comprehensive studies
of MSPCA and multiscale LVR can be found in [33,87,89,90].

Data collected in many environmental and engineering processes exhibit
complex structures and violate the basic assumptions of conventional ap-
proaches. Therefore, the need to design methods able to handle complex struc-
tures of data is required to overcome some of the limitations of the conventional
approaches. Here, we present the basic idea behind the multiscale latent variable
regression models. The essence behind multiscale LVR models is to amalga-
mate the benefits of multiscale denoising and LVR models parameter estimation
for extracting maximum information from multivariate data, improve the pre-
diction quality and thus enhancing fault detection. This integrated framework
makes it possible to handle complex data structures frequently generated by
environmental and engineering processes (e.g., multivariate input–output and
multiresolution features), and for representing and analyzing data at different
resolutions and time scales. Let the observed input–output data be X and y, and
their multiscale filtered counterpart at a particular scale (p) be Xp ∈ R

n×m and
yp ∈ R

n×1, the LVR model based on the filtered data is obtained as

yp = Xpbp + εp, (5.10)

where b ∈ R
m×1 is the estimated model parameter vector, and εp ∈ R

n×1 is the
model error when using the denoised data at scale (p).

It should be noted that when filtering the data, using wavelets without con-
sidering the relationship between the input–output may result in eliminating
important features that are crucial to the model construction. Thus, a multiscale
filtering algorithm must be combined with LVR model parameter estimation to
proper noise denoising. This can be achieved by the following steps schemati-
cally illustrated in Fig. 5.13:



Multiscale latent variable regression-based process Chapter | 5 179

FIGURE 5.13 Conceptual schematic of multiscale LVR models.

• Split the given raw measurements in training and testing datasets
• Scale the data to have zero mean and unit variance
• Filter the input–output training data at different scales via wavelets as per the

algorithm presented in Fig. 5.13
• Develop an LVR model based on the filtered training data at each scale
• Apply the cross-validation method to select the optimum number of principal

components for the LVR model at each scale
• Validate the estimated model using unseen data set and calculate the mean

squared error
• Choose the LVR model which gives the lowest cross-validation error

The multiscale LVR model is first constructed using anomaly-free measure-
ments and then used for process monitoring. As discussed above, in multiscale
LVR methods, each time series data is first decomposed, based on wavelet de-
composition, and an LVR model is then constructed separately using the coeffi-
cients from all series at each scale (Fig. 5.13). Within the context of multivariate
process monitoring based on multiscale LVR methods, two popular multivari-
ate statistical schemes, the Hotelling T 2 and Q statistics, are generally used to
monitor LV and residual subspaces, respectively. However, these two monitor-
ing schemes are ineffective in sensing small changes and may lead to unreliable
process monitoring [88]. As in single scale methods, it is also needed to uncover
incipient changes. Several methods have been proposed to address this problem
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by combining the multiscale LVR models with sensitive detectors, such as GLR
test and EWMA [88].

5.7 Results and discussions

5.7.1 Application with synthetic data

Now, the prediction capability of the above multiscale LVR models is assessed
and compared with both conventional LVR modeling models and models ob-
tained from single-scale filtering methods. The comparison is performed on two
case studies based on simulated synthetic data and simulated distillation column
data. The model parameters are optimized for both case studies, using a cross-
validation approach; the mean squared error (MSE) is reported, using testing
data set, and computed as follows:

MSE = 1

N

n∑
k=1

(y(k) − ŷ(k))2, (5.11)

where ŷ(k) is model prediction, y(k) is the gathered output at time instant k, and
n is the length of testing samples.

5.7.1.1 Simulation results: synthetic data
Here, simulated data is used for model comparison. The same dataset has been
taken for the study in [76]. Fig. 5.14 displays a sample of the output data, where
SNR = 10.

FIGURE 5.14 Output measurements with SNR = 10, where noisy data are presented using dots,
while the solid line is used to represent noise-free measurements.
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In this section, we present the results obtained from multiscale, single-scale,
and conventional LVR models, and compare them with the different modeling
approaches with respect to their MSE values. We use a Daubechies wavelet
filter with order 3 and a cross-validation method to optimize the parameters re-
quired for the model. To establish statistically valid conclusions, a Monte Carlo
simulation of 1000 repetitions is carried out, and final results are tabulated in
Table 5.1. Results in Table 5.1 show that modeling through EWMA filtering
(EWMA+LVR) and mean filtering (MF+LVR) improves the performance of
prediction over the conventional LVR models. The MSLVR model offers signifi-
cant improvement, in comparison with all the investigated modeling algorithms,
for all noise levels [76].

TABLE 5.1 The achieved MSE from the different studied mod-
eling schemes.

Model type MSLVR EWMA+LVR MF+LVR LVR
SNR = 5

PLS 0.9512 1.4562 1.6106 3.6568

PCR 0.9586 1.4504 1.6101 3.6904

SNR = 10

PLS 0.5930 0.9325 1.0239 1.8733

PCR 0.6019 0.9211 1.0240 1.8876

SNR = 20

PLS 0.3928 0.5994 0.6733 0.9423

PCR 0.3946 0.5872 0.6670 0.9508

In our study, the Daubechies wavelet filter of order 3 is employed in mul-
tiscale filters, and using the cross-validation technique all studied filters are
optimized. To assess the efficiency of the studied methods and guarantee valid
conclusions, 1000 realizations were done and the average results are displayed
in Table 5.1. They indicate that LVR modeling based on EWMA filtering
(EWMA+LVR) and mean filtering (MF+LVR) achieves an important enhance-
ment compared to the conventional LVR models (Table 5.1). Also, results show
that a superior performance has been achieved when using the MSLVR algo-
rithm over all the modeling algorithms for all considered noise levels [76].

Fig. 5.15 shows the prediction performance of the four models being studied
when SNR = 10. Results show the superior prediction capability of MSPLS
over the other single-scale LVR modeling strategies. It should be noted that the
selection of a proper wavelet filter has a greater effect on the prediction ability of
the multiscale model, which is generally related to the type of data. This result
shows the limitation of conventional LVR models, and better prediction results
can be obtained by integrating the wavelet-based multiscale representation with
LVR models.
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FIGURE 5.15 Comparison of the MSPLS model prediction along with other three modeling tech-
niques using synthetic data with SNR = 10: model prediction (solid blue [dark gray in print version]
line ), noise-free measurements (solid red [mid gray in print version] line), and noisy measurements
(blue dots).

5.7.1.2 Simulation results: distillation column
In the second case study, distillation column data are considered to assess and
compare the multiscale LVR method (PLS and PCR) with six single-scale LVR
models. To give a clear picture of the perturbation data with SNR = 10, training
and testing data (Fig. 5.16) are used to develop the considered models. These
perturbations (in the training and testing data) are displayed in Fig. 5.16E–H.
Here, we only present the results obtained from different modeling algorithms.

In this simulation study, ten temperatures measured at different locations
of the column along with flow rates of feed and reflux streams are considered
as the input matrix (input data set). The compositions of the light component
(propane) in the distillate and residue are considered as the output variables
(i.e., xD and xB ,). The prediction capability of the MSLVR modeling frame-
work is then compared to the conventional LVR model and models estimated
using single-scale filtered data. Results are displayed in Tables 5.2 and 5.3 for
the prediction of xD and xB compositions. Results clearly show that modeling
with single-scale filtering can enhance the prediction accuracy of the LVR mod-
els. It is also observed that filtering the multiscale approach further improves
the prediction capability of the LVR model. It is also to be noted that the perfor-
mance of the MSLVR prediction increases for a lower signal-to-noise ratio. The
predictions of the top composition (xD), using MSPLS and PLS-based models,
when SNR = 10, are shown in Fig. 5.17, illustrating that the PLS model with
multiscale filtering is superior to other LVR modeling schemes.
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FIGURE 5.16 Input–output measurements used to train and test the model, where noisy data are
presented using dots, while the solid line is used to represent noise-free measurements.

TABLE 5.2 Prediction quality of the considered models: av-
erage MSEs for xD .

Model type MSLVR EWMA+LVR MF+LVR LVR

×10−4 SNR = 5

PLS 0.0202 0.0288 0.0303 0.0984

PCR 0.0204 0.0288 0.0357 0.0983

×10−5 SNR = 10

PLS 0.1340 0.1790 0.1891 0.5388

PCR 0.1317 0.1778 0.1879 0.5423

×10−5 SNR = 20

PLS 0.0844 0.1130 0.1218 0.3017

PCR 0.0801 0.1112 0.1200 0.3040

5.7.2 Application of monitoring distillation column

To show the benefits of multiscale LVR methods in supervising multivariate
input–output systems, we compare the multiscale PLS (MSPLS)-based GLR
method with the single scale PLS-based monitoring techniques, in order to show
the benefits of combining the desirable features of wavelet-based representa-
tion, the flexibility of the PLS model, and the greater sensitivity of the GLR
test to uncover changes. Specifically, the MSPLS model is constructed to fit
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TABLE 5.3 Prediction quality of the considered models: av-
erage MSEs for xB .

Model type MSLVR EWMA+LVR MF+LVR LVR

×10−5 SNR = 5

PLS 0.0331 0.0702 0.0725 0.1979

PCR 0.0327 0.0708 0.0736 0.1961

×10−5 SNR = 10

PLS 0.0212 0.0448 0.0468 0.1063

PCR 0.0207 0.0444 0.0466 0.1063

×10−6 SNR = 20

PLS 0.1224 0.2785 0.2956 0.5676

PCR 0.1183 0.2736 0.2914 0.5703

FIGURE 5.17 MSPLS and PLS model-based predictions of xD with SNR = 10: model predictions
(solid blue [dark gray in print version] line), noise-free measurements (solid red [mid gray in print
version] line), and noisy measurements (blue dots).

the process data, and the GLR scheme used to monitor the generated residu-
als from the MSPLS model. A simulated distillation column data is used to
verify the detection capacity of the MSPLS approaches and conventional PLS-
based techniques. Fault-free data are generated using the Aspen simulator and
used to design the MSPLS model. The parameters of the nominal conditions
used in the simulated distillation column can be found in [88]. Here, only three
LVs are maintained in the MSPLS model based on the cross-validation method.
Three types of anomaly are considered here: bias sensor anomaly, intermittent
anomaly, and drift anomaly. The MSPLS model is constructed using fault-free
data, and the quality of the fit is represented in Fig. 5.18.
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FIGURE 5.18 (Left) Measured and MSPLS estimated based on training measurements with
SNR = 10. (Right) Scatter graph of observed against estimated values from the fitted MSPLS model.

Now, two different sensor faults (summarized in Fig. 5.19) are considered
to assess the performances of the different FD techniques. In this study, the
evaluation of the detection performance of the PLS and MSPLS is carried out
by using the false alarm rate (FAR) and missed detection rate (MDR).

FIGURE 5.19 Anomalies considered in the simulation study.

Here, the feasibility of the MSPLS-based approach is verified to sense atyp-
ical abrupt changes in distillation column data. First, to simulate the abrupt
congestion, a small bias of 2% of the total variation in temperature, T c3, is
added in the raw measurements, for sample ranging from 100 to 150. For data
with SNR = 5, the performance of the PLS and MSPLS-based Q and GLR
methods is shown in Fig. 5.20A–D, where dashed lines represent a 95% confi-
dence interval used to identify the possible faults. The PLS-based Q and GLR
approaches provide poor results and are unable to detect this fault. Results show
a superior efficiency of the MSPLS-GLR approach, compared with conventional
PLS-based Q and GLR and MSPLS-Q algorithms. The MSPLS-Q detects this
fault but with FAR = 10.43% and MDR = 9%. However, the MSPLS-GRT ap-
proach results in clear detection without false alarms.

The purpose of the second scenario is to analyze the ability of the MSPLS-
based approach to detect changes. To this purpose, a gradual anomaly is simu-
lated by injecting drifting with a slope of 0.01 in the temperature sensor, T c3,
from sample number 250. Fig. 5.21 displays the results obtained with the four
designed methods. Results highlight that the detection capability is improved
by using the MSPLS combined with the GLR approach. This is mainly due to
the flexibility and efficiency of the MSPLS model in capturing relevant features
in the data and generating sensitive residuals and the good ability of the GLR
approach to uncover abnormal changes.
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FIGURE 5.20 Results from (A) PLS-Q, (B) PLS-GLR, (C) MSPLS-Q, and (D) MSPLS-GLR de-
tectors when a bias anomaly has happened in T c3 (SNR = 5).

FIGURE 5.21 Results from (A) PLS-Q, (B) PLS-GLR, (C) MSPLS-Q, and (D) MSPLS-GLR de-
tectors when gradual anomaly has happened in T c3 (SNR = 30).

Overall, this example shows that the MSPLS-based GLR has good capability
in identifying abrupt and progressive anomalies. Also, results show the superior
efficiency of the MSPLS-GLR approach compared with the conventional PLS
approaches (Q and GLR). This is, in large, because of the fact that the MSPLS
integrates the desirable features of wavelet-based representation with PLS, re-
sulting in an extension of the detection performance of GLR, in comparison with
the use of the single-scale PLS model.

5.8 Discussion

Early detection of possible failure in complex engineering systems or moni-
toring networks has proven to be particularly challenging. Conventional fault
detection methods, such as EWMA, CUSUM, and GLR, and their integrated
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versions including the latent variable regression-based EWMA and the CUSUM
methods, have shown greater capacity for fault detection, especially for small
faults. These conventional monitoring schemes are designed on the statistical
assumptions that the measurements are uncorrelated in time and that they follow
a Gaussian distribution. However, in many industrial and environmental appli-
cations, generated measurements are autocorrelated, non-Gaussian, and noisy.
Indeed, a high amount of noise in the data can hide the key features that are
essential to detecting faults, ultimately deteriorating the fault detection capacity
of the monitoring chart. Thus, conventional schemes are unsuited for monitor-
ing autocorrelated or non-Gaussian and noisy processes. It has been shown in
Sect. 5.4.1 that the effectiveness of fault detection in Shewhart charts is degraded
when some or all of its basic assumptions are violated, such as the deviation
from normality, autocorrelation in the data, and the presence of high noise levels.

This flexible wavelet-based modeling approach has been shown to be ap-
propriate for autocorrelated, non-Gaussian, and nonstationary processes while
capturing important features. The wavelet-based multiscale monitoring frame-
work presented in this paper can efficiently deal with time-dependent and non-
Gaussian measurements. Here, it has been shown that the effectiveness of the
Shewhart scheme has been improved by integrating the Shewhart fault detection
scheme with multiscale wavelets. Most real processes, however, are multivariate
in nature. Therefore, in this paper, multiscale LVR-based monitoring schemes
have been discussed to handle multiple process variables simultaneously.

It should be noted that the multiscale univariate and multivariate fault detec-
tion methods presented in this chapter are batches. In other words, they require
the entire data set to be available a priori, which is due to the fact that multi-
scale representation can only be applied on datasets with a dyadic length, i.e.,
2J , where J is an integer. In real plants, however, measurements are continu-
ously gathered, and in most cases, monitoring of their key variables is required
online. Thus, it is necessary for developed multiscale monitoring methods to
be extended to handle online processes. Also, the conventional (and multiscale)
fault detection methods assume that the data or residuals are stationary, i.e.,
their characteristics do not change over time. Examples of nonstationarity in-
clude changes in the variance of residuals (which can be due to wearing or a
change in the sensors used) and changes in the mean of residuals (which can be
due to drifts from one operating condition to another). Applying fault detection
methods to nonstationary data may not provide acceptable performance. There-
fore, adaptive multiscale univariate and multivariate fault detection methods to
deal with nonstationary processes are needed.

Furthermore, the multiscale fault detection methods presented in this pa-
per cannot be directly applied to monitor online processes as they require a
dyadic set of data a priori. This is a limitation of the wavelet-based multiscale
decomposition algorithm used in these methods. Accordingly, developing on-
line multiscale univariate and multivariate monitoring approaches that extend
the benefits of these multiscale techniques for processes where online monitor-
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ing is required. One way to alleviate this challenge is to apply fault detection
on a dataset within the moving window so that a fault captured from the most
recent data sample can be used as a flag or an indicator of a fault in the process.
An advantage of this approach is that it can be used to develop both univariate
and multivariate multiscale fault detection methods. Also, from a fault detection
point of view, since the moving window keeps the largest number of dyadic sam-
ples, a more accurate estimation of the control limits is expected, as more data
become available. However, to avoid having a very large window size (which
may result in computational burden), the size of the window can be fixed after
a large enough window length is reached. Another issue to consider, when us-
ing this approach, is the case when a wavelet filter is not Haar. Accordingly, a
boundary-corrected version of the filter is required to remedy the problem of in-
accuracies at the boundaries. This could be useful because this online multiscale
approach relies more heavily on the more recent data samples inside the moving
window.
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Chapter 6

Unsupervised deep
learning-based process
monitoring methods

6.1 Introduction

Effective detection of anomalies in highly complex processes is indispensable
for managing them efficiently, safely, and in a productive fashion. Essentially,
early detection of anomalies is required to keep the desired performance of the
monitored processes and avoid the progression of anomaly impacts that may
cause a significant loss in process profitability. As major advancements are being
made in areas, such as data acquisition, sensor technologies and the Internet-of-
Things, high-dimensional data from monitored processes are generated. These
available data should be exploited to timely detect atypical behaviors that can be
caused by either faulty sensors or process faults. Recently, machine learning and
deep learning models have become a hotspot of recent research to better repre-
sent the data distribution features. Here, we review some of the unsupervised
anomaly-detection methods based on binary clustering algorithms and unsuper-
vised deep-learning models.

The main challenge for unsupervised anomaly detection methods is that the
anomaly detection methods should be constructed using unlabeled training data.
In supervised learning, models are trained with labeled data, and when a new
observation is present, the trained model assigns it to one of the preestablished
classes. All over the years, numerous classification methods have been devel-
oped for fault classification, including support vector machine (SVM), neural
networks (NN), and k-nearest neighbor (kNN). Nevertheless, if unknown faults
had occurred and been incorporated in the data, the majority of the supervised
classification models can be unsuccessful in detecting them. In other words,
these methods require periodic training to preserve high detection performance.
However, getting labeled data is extremely challenging and time-consuming, in
particular for high-dimensional datasets; moreover, this cannot be performed
in real-time. In other words, getting a large labeled dataset is generally a lot
of work, and is very time-intensive. Furthermore, even with labeled data, we
cannot guarantee that they contain all possible anomalies. All these challenges
suggest that a reasonable solution is to use unsupervised monitoring techniques.
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To alleviate this difficulty, unsupervised anomaly detection techniques based
on binary clustering methods play a significant role in anomaly detection with-
out considering prior data labeling. The essence of clustering schemes for
anomaly detection is to determine clusters characterizing normal behavior based
on the anomaly-free data and then verify whether new unlabeled observations
are within identified clusters or not. Observations that are not attributed to pre-
viously defined clusters are flagged out as anomalies. Essentially, the aim is
to separate the given data into clusters that have high internal similarly and
external dissimilarity, in the absence of prior knowledge. Several clustering
techniques have been developed in the literature including algorithms based on
density (e.g., mean-shift and DBSCAN), algorithms based on partitions (e.g.,
k-means and k-medoids) and algorithms based on hierarchy (e.g., BIRCH and
agglomerative). Alternatively, there are two commonly used unsupervised ma-
chine learning algorithms for anomaly detection, namely one-class SVM and
support vector data description (SVDD) [1–3]. These unsupervised methods use
kernel functions for implicitly mapping the input data to higher-dimensional
feature space to clearly separate normal from abnormal data. Of course, the
main appeal of unsupervised anomaly detection methods has been their ca-
pability to detect unknown anomalies without any prior knowledge or data
labeling.

Practically, detecting anomalies in high-dimensional data using the above-
mentioned methods is very challenging and time-intensive. In fact, high process
variables lead in the curse of dimensionality phenomenon that conducts to the
generalization error of shallow methods, which grows with the number of irrele-
vant and redundant input variables [4–6]. For instance, SVMs are nonparametric
algorithms, whose complexity increases quadratically with the number of obser-
vations [7]. In addition, shallow methods are limited to appropriately represent
some types of function families [8].

An alternative solution to avoid the limitations of the above-mentioned shal-
low methods to detect anomaly in high-dimensional data is to use a model that
can describe the variability in the underlying data. Accordingly, a compacted
representation of data can be used to bypass the problem of high-dimensionality
and decrease the high-computationally cost and complexity in the implementa-
tion [8,9]. In other words, feature extraction is an essential step in unsupervised
anomaly detection, in which data are summarized by a set of characteristics
(called features) that are the most informative and less redundant. Various data
representation methods have been developed to reduce data dimensionality and
extract relevant features including principal component analysis (PCA) as an un-
supervised approach, and partial least squares as a supervised approach. On the
other hand, other methods use nonlinear dimensionality reduction to uncover
the relevant information hidden in the high-dimensional data, such as kernel
PCA [10] and locally linear embedding [11]. However, these learning methods,
either linear or nonlinear, fall within a shallow learning framework that mainly
depends on the features employed for building the prediction model.
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Recently, much interest has been spurred on deep learning methods due to
their great learning capability, in particular for large datasets. An additional ap-
peal of deep learning methods is their strong flexibility and assumption-free
nature. Unlike the shallow methods, deep learning-based methods can usually
achieve improved abstractions of the input data [12]. In other words, deep learn-
ers possess great potential for extracting relevant features from the raw data
to design improved models. Unsupervised deep-learning models, such as deep
belief networks (DBNs), deep Boltzmann machine (DBM), and deep stacked
autoencoder (DSA), discover features from one layer at a given time based on
unlabeled data. The learned features are used to train the next layer, and so on.
In [13], a hybrid stereovision approach combining deep Boltzmann machines
(DBM) and the ability of autoencoders (AE) to reduce the dimensionality of
data is designed to uncover obstacles in a road environment. The aim of this hy-
brid model is to extract relevant features with less redundancy that will be used
as input by OCSVM for obstacle detection.

As previously mentioned, there is a very challenging problem when using
the shallow unsupervised methods to detect anomalies in complex and high-
dimensional datasets. To alleviate this problem, deep learners can be used as
feature extractors; unsupervised shallow algorithms, such as kNN and one-class
SVMs, are then applied to these reduced features for anomaly detection pur-
poses. A variety of hybrid methods have been developed [13] by merging the
benefits of deep-feature extractors and clustering and unsupervised machine
learning algorithms for improving the performance of anomaly detection in
high-dimensional datasets. For instance, the method in [14] uses a deep-stacked
autoencoder as a feature extraction phase for the k-nearest neighbor algorithm to
give a hybrid anomaly detection. This stereovision-based method has been ap-
plied to detect obstacles in the road environment and showed better performance
in comparison to standalone clustering methods. In [13], a hybrid unsupervised
method is used merging the benefits of the DBM with the dimensionality reduc-
tion capability of the AE for stereovision-based obstacle detection in an urban
environment. The aim of this hybrid model is to extract relevant features with
less redundancy that are used by OCSVM for obstacle detection.

First, we present a few binary clustering algorithms, and then briefly describe
two common unsupervised anomaly detection schemes, namely one-class SVM
and support vector data description (SVDD). Then, we present several deep-
learning models with a focus on models based on autoencoders, and probabilis-
tic models and introduce a hybrid framework merging the deep learning models
and clustering algorithms for improving anomaly detection in high-dimensional
complex processes. Lastly, we conclude with remarks and a perspective on fu-
ture research.

6.2 Clustering

The essence of clustering is to find groups of data such that data points from
the same group (cluster) are relatively more similar to each other than those in
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other clusters. Clustering algorithms have been largely exploited in data analy-
sis. Conventional clustering techniques can be classified into different categories
of clustering algorithms including partition-based, density-based and hierarchy-
based clustering. In this section, we briefly present the basic idea of common
clustering.

6.2.1 Partition-based clustering techniques

The essence of the clustering techniques based on the partition concept consists
of considering the center of data as the center of the correspondent cluster. The
two commonly used partition-based clustering techniques are k-means [15] and
k-medoids [16]. Generally speaking, in the k-means algorithm, the center of the
cluster is updated iteratively in such that a selected criterion for convergence is
met. To handle discrete data, k-medoids has been developed as an enhancement
of k-means. Various partition-based clustering algorithms have been developed,
including partitioning around medoids (PAM) [17], clustering for large appli-
cations (CLARA) [17], and clustering large applications based on randomized
search (CLARANS) [18]. More details about partition-based clustering can be
found in [19–21].

6.2.1.1 k-Means clustering
The k-means procedure is an iterative, data-partitioning algorithm that aims to
attribute n observations to one cluster of the k clusters characterized by cen-
troids [22]. The number of clusters k is a priori selected in such a way that every
cluster has its own centroid. Each observation is attributed to the cluster with
the closest centroid, and each cluster updates its own centroid according to new
included observations. The assignments and updates are repeated until stabiliza-
tion of structure where no centroid updates are possible (Fig. 6.1). The principal
steps of the algorithm are as follows:

1. Take k observations randomly as centroids (cluster centers)
2. Attribute each observation to the nearest cluster by computing its distance to

each centroid
3. Find a new cluster center by computing the average of the observations in-

cluding the assigned points
4. Iterate steps 2 and 3 until the assignment of clusters is not changing any more

FIGURE 6.1 Conceptual illustration of the k-means clustering.
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In summary, the main appeal of the partition-based clustering methods is
their high computational efficacy with moderate time-complexity. However,
they are not suited for nonconvex data, sensitive to outliers, and easily fall into
local optimum. In addition, in such methods, the number of clusters should be
specified a priori defined, and the obtained results are highly sensitive to the
number of clusters.

6.2.2 Hierarchy-based clustering techniques

As discussed above, the aim of clustering techniques as unsupervised learn-
ing techniques is to group a set of observations into distinguished subsets.
Hierarchy-based clustering is one of the frequently used clustering techniques.
The key concept of this type of clustering is based on the construction of the
hierarchical relationships among data to cluster it [23]. At first, we assume that
each of the observed data points represents a single cluster, we then merge the
closest clusters in a new cluster until only one cluster is left. There are sev-
eral existing hierarchy-based clustering procedures in the literature, such as
balanced iterative reducing and clustering using hierarchies (BIRCH) [24,25],
CURE [26], ROCK [27], and Chameleon [28]. Essentially, hierarchy-based
clustering methods have the advantage of handling datasets having arbitrary
shape and attributes of arbitrary type. In addition, the hierarchical relationship
between clusters can easily be identified. However, the disadvantage of using
hierarchy-based clustering is its high cost and the fact that the number of clus-
ters should be a priori defined. For more details about hierarchy-based clustering
methods, refer to [29–31].

6.2.2.1 BIRCH (hierarchical)

BIRCH is a hierarchy-based clustering procedure introduced to deal with
streaming data or large datasets [25]. Basically, BIRCH clusters the data by
building the clustering feature tree (CF tree), in which a subcluster is represented
by one node. Specifically, the CF is a triple that summarizes the maintained in-
formation on a cluster. In fact, the CF tree will dynamically rise when a new
observation arrives, and this incrementally improves the quality of subclusters.
However, to obtain a good clustering performance, BIRCH needs the cluster
count as input. More details about BIRCH algorithm can be found in [24,25].

The following describes the main steps in implementing the BIRCH cluster-
ing approach:

1. Construct a CF tree structure after a scan of the whole training data
2. Optimize the initial CF tree and create a compressed version of it
3. Perform global clustering by applying an existing clustering procedure on

the leaves of the CF tree
4. Refine and improve the clustering quality with an additional full scan
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6.2.2.2 Agglomerative clustering
Hierarchical clustering procedures generate a nested sequence of clusters that
can be visualized as a hierarchical tree [32]. The agglomerative hierarchical
scheme is a nonparametric clustering that does not require the number of the
clusters as input. The essence of this scheme is to merge clusters that are similar.
The procedure is repeated until the intended number of clusters is achieved or
the distance between the two closest clusters exceeds a certain threshold distance
(see Fig. 6.2). The basic procedure of agglomerative clustering is outlined as
follows:

FIGURE 6.2 Illustrative example of agglomerative clustering (dendrogram).

• Consider each data point as a cluster and compute the proximity matrix
• Compute similarity/dissimilarity between each pair of data points
• Based on linkage function, group data points into a hierarchical cluster tree
• Combine closer clusters and update the proximity matrix

6.2.3 Density-based approach

The essence of the density-based clustering is to consider the data in a zone with
a high density of the data points to be in the same cluster [33]. Thus, clustering
procedures based on density possess the ability to uncover clusters with arbi-
trary shape and have the advantage of making less assumptions about the data
without needing the number of clusters to be provided a priori. There are several
clustering procedures in the literature designed using the density-based concept,
such as DBSCAN [34], OPTICS [35], and mean-shift [36,37]. For further de-
tails on density-based clustering, we refer to [33,37,38]. The key benefit of this
type of clustering is the greater capability to cluster data points with arbitrary
shape. But, this approach achieves low clustering efficiency in the case when the
density of data space isn’t uniform. Its additional disadvantage is that it requires
big memory when the volume of the data is large, and the clustering outcome is
largely sensitive to the parameters.

Mean shift clustering is one of the commonly used density-based clustering
procedures that will be briefly introduced next.
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FIGURE 6.3 Mean shift clustering.

6.2.3.1 Mean shift clustering
Mean shift clustering is a nonparametric recursive hierarchy-based method. It is
designed based on the concept of kernel density estimation (KDE). This scheme
does not need a prefixed number of clusters. Essentially, the modes of a den-
sity estimate are used as indicators for the densest regions of the data, and these
modes could be suitable cluster center estimates. The main idea of mean shift
clustering is to shift all points belonging to the same region to the mean or the
center of the area, and to repeat this task till convergence (Fig. 6.3). In KDE, the
mean shift clustering is performed via a simple gradient procedure to estimate
the modes of the KDE. There are different kernels to use in the mean shift clus-
tering procedure, including Gaussian, exponential, Tophat, and Epanechnikov.
Essentially, in the mean shift clustering, the kernel bandwidth plays a signifi-
cant role in the clustering result. Indeed, if a large bandwidth is selected, then
fewer clusters will be formed in the mean shift clustering, and vice versa. Ac-
cordingly, the bandwidth selection is a crucial step in the mean shift clustering
procedure because it has a direct impact on the quality of the density estimation,
and thus heavily impacts the mean shift clustering. Specifically, selecting a poor
bandwidth estimate leads to modes that do not appropriately represent the dense
regions of the data. Various schemes have been designed to address the prob-
lem of bandwidth selection [36,39,40]. For more information about shift mean
procedure, we refer to [37,38].

The main steps needed for implementing mean shift clustering are the fol-
lowing:

1. Define a window (i.e., bandwidth of the kernel) and place it on a data points
2. Calculate the mean of all observations within the window
3. Move the center of the window to the position of the mean
4. Iterate steps 2 and 3 until convergence
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6.2.3.2 k-Nearest neighbor clustering

Here, we briefly present the k-nearest neighbor (kNN) method, which is a sim-
ple and effective nonparametric clustering procedure to cluster different fea-
tures [41,42]. kNN is an assumption-free clustering procedure that does not
consider a priori assumptions about the data structure [43]. This makes it very
appealing, in particular to handle non-Gaussian or nonlinear features separation.
Basically, kNN as a distance-based procedure rests on the following intuitive
concept: for a new unlabeled observation, x, the kNN discovers the nearest
observation in the training data and attributes x to the closest class and most
frequently within the k-nearest neighbors.

When kNN procedure is used for anomaly detection, we have only normal
operation data available as training data (i.e., only one class of data). In this case,
kNN computes the distance between the newly arrived unlabeled data point, x,
and the k nearest neighbors in the training data, and if the distance is relatively
close to zero, then the measurement is anomaly-free data. Otherwise, it is con-
sidered as a potential anomaly. Essentially, large kNN distances are used as an
anomaly indicator. Euclidean and Minkowski distances are frequently used to
compute the closeness in kNN-based procedures.

Fig. 6.4 gives a simple example to illustrate the intuitive idea of the kNN
procedure. Two different classes are present in the data represented respectively
with blue circles and yellow squares (i.e., anomaly-free and anomalous); the
green star is the observation to be classified using the kNN procedure. As an
example, in the case when the number of the nearest neighbors is selected to
be k = 1, then the green star is assigned to the yellow square class. Here we
used Euclidean distance to identify nearest neighbors. On the other hand, if we
fix k = 5, the green star will be attributed to the class with blue circles. This is
because the number of blue circles is larger than the number of yellow squares
in this case (within the dashed circles, k = 5). In fact, the kNN procedure does

FIGURE 6.4 kNN clustering procedure.
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not include an explicit training step, the principal computation in such clustering
is the kNN distance to a new data point.

For anomaly detection purposes, the kNN procedure assesses the closeness
between the newly arrived points and the k nearest neighbors in the training
(anomaly-free) data. No labeling is needed for the training stage. At first, for
each data point, xi , compute the kNN distance (e.g., Euclidean) to its nearest
neighbor in the training set, Di ,

Di =
k∑

j=1

dij , (2)

where dij denotes the distance between xi and its j th nearest neighbor. The de-
tection threshold of kNN can be computed nonparametrically as the (1 − α)th
quantile of the estimated distribution of kNN distances calculated using KDE.
Then, for a new data point, the kNN distance is computed and compared to the
detection threshold for anomaly detection. Other approaches, to setup the kNN
detection threshold, apply monitoring charts, such as EWMA and Shewhart,
to the kNN distances [44]. In particular, the detection performance can be im-
proved when using kNN with EWMA because it considers information from
past and actual data in the decision process.

6.2.4 Expectation maximization

Expectation maximization (EM) scheme tries to approximate the input data dis-
tributions for solving the problem of maximum likelihood estimation for data
in which some variables cannot be explicitly observed, called latent variables
that can be inferred from the values of the other observed variables [45]. The
main objective of EM clustering is to approximate the observed data distri-
butions based on mixtures of different distributions in different clusters (see
Fig. 6.5). Suppose that we have a data matrix X, the aim is to find the value of �

maximizing the log-likelihood, L(�) = logP(x|�). Using latent variables Z,

FIGURE 6.5 Expectation maximization.
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the log-likelihood, L, can be expressed as L(�|X,Z) = logP(X|�,Z). The
elements of the observed data X are often assumed follow Gaussian distribu-
tions with the parameters � = {μ,σ }. Generally speaking, EM is an iterative
procedure for obtaining solution to maximum likelihood estimation with latent
variables. To this end, EM iteratively performs expectation (E) and maximiza-
tion (M) steps. The role of the E step is to generate a function for the expectation
of the log-likelihood that is assessed based on the actual estimate for the pa-
rameters. On the other hand, the M step consists of computing parameters that
maximize the expected log-likelihood obtained in the previous E step. For each
cluster, EM attempt to estimate both standard deviations and means of the
observed data (distribution) in order to maximize the likelihood. Expectation
maximization decides about memberships to a cluster through computing prob-
abilities of Gaussian mixture distributions. Every observation can be considered
as a member of each cluster with a certain probability but the probability maxi-
mizing the observed data likelihood is utilized to select the cluster.

6.3 One-class classification

Here, we briefly introduce the basic idea behind two commonly used one-class
anomaly detection methods, SVM and SVDD.

6.3.1 One-class SVM

Supervised support vector machines (SVMs) that have been widely applied for
data classification are not suited for anomaly detection because of their need for
labeled data. To bypass this challenge, unsupervised methods, such as one-class
SVMs (OCSVMs), are designed by building a model that describes only normal
operating conditions and uses it to flag out data points that do not conform to
the reference model [1,2,46]. Generally speaking, the OCSVM procedure uses a
kernel function for projecting input data points to a higher-dimensional feature
space, where the discrimination of normal from anomalous data becomes clearer
and easier. Essentially, a kernel-based procedure has the capacity to model the
process nonlinearity of normal behavior if appropriately used. OCSVM uncov-
ers anomalies in the feature space based on the construction of a hyperplane that
appropriately separates the data from the origin. In fact, the OCSVM procedure
learns decision functionsD(x) that return −1 or 1 to respectively show whether
the data is an anomaly or normal. The detection functionD(x) is given as

D(x) =
{

+1, if x belongs to the area including most of observations,

−1, otherwise.

(6.1)

Consider that x1, . . . , xj ∈ D and j ∈ [1, k] represents the training data.
OCSVM projects the data points into the high-dimensional feature space F
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FIGURE 6.6 Schematic presentation of a one-class SVM (OCSVM).

based on kernel functions (Eq. (6.2)), like the radial basis function (RBF)

K(x, y) = 〈Ψ (x) ,Ψ (y)〉, (6.2)

where x and y refer to the input vectors, Ψ denotes a feature map X→ F and
X denotes set of observed dataset x. As given in Fig. 6.6, the decision function
f (x) intends to maximize the Euclidean distance from the origin to the separat-
ing hyperplaneH . The decision hyperplane separates the training measurements
in the features space F . Thus, we get the objective function f (x) given as

f (x) = sign(〈w,Ψ (x)〉 − ρ), (6.3)

where w denotes a weight vector and ρ refers to an offset. The best hyperplane
is related to the parameters w and ρ that are determined by solving the following
optimization problem:

min
w∈F , ξ∈Rl , ρ∈R

1

2
‖w‖2 + 1

νl

l∑
i

ξi − ρ, (6.4)

s.t. 〈w,Ψ (x)〉 ≥ ρ − ξi, ξi ≥ 0,

where ν ∈ [0,1] refers to a parameter characterizing the solution.

6.3.2 Support vector data description (SVDD)

The SVDD is a one-class classification algorithm introduced by Tax and
Duin [1] as a special case of the standard SVM. This unsupervised algorithm
is beneficial for anomaly detection and has been applied to a wide range of ap-
plications, such as face recognition [47], pattern denoising [48], and anomaly
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detection [49,50]. The essence of the SVDD procedure is to find a spherically
shaped border surrounding the majority of the training datasets while discard-
ing some observations that are excluded as potential anomalies. This makes
it clearly different from the OCSVM procedure in terms of the shape of the
discriminatory boundaries, where OCSVM uses hyperplane while SVDD uses
spheres (hypersphere) for separating normal from abnormal features (Fig. 6.7).

FIGURE 6.7 SVDD vs OCSVM decision boundaries.

Assume xi ∈ R
n, i = 1, . . . , l is a set of training data, the goal of the SVDD

algorithm as a kernel-based method is to find the most tightly fitting hypersphere
that includes most of the data points in the kernel mapping space (Fig. 6.7).
At first, the input data is transformed into the high dimensional space (called
feature space) via the nonlinear mapping function φ(·). In this feature space,
the SVDD scheme attempts to find a hypersphere with radius R and its center
a to encompass the majority of the training data and exclude anomalous data
points (outliers) as much as possible. Due to the possible presence of outliers in
the data, in order to find the hypersphere using the SVDD scheme, we solve the
following optimization problem with the help of slack variables ξi :

min
R,a,ξ

R2 + C

l∑
i=1

ξi (6.5)

s.t. ‖φ(xi) − a‖2 ≤ R2 + ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l.

The role of parameter C is to control the size of the hypersphere and the
amount of the training data excluded from the hypersphere (i.e., outliers). Usu-
ally, it is expressed as 1

νN
, where ν denotes the upper limit to the permitted

outliers and lower limit on the number of support vectors that establish the hy-
persphere frontier, and N denotes the size of data. As the training data may
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contain fewer outliers or anomalies, the slack variables ξi > 0 are used to per-
mit excluding these observations as outliers from the hypersphere. Thus, the
sphere is shrunk to encompass only normal data and getting better optimum for
the criterion in Eq. (6.5).

Instead, the primary problem in (6.5) can be formulated as a dual problem
by solving an optimization problem over {αi, i = 1,2, . . . , n} (0 ≤ α ≤ C) as
follows:

min(αi) =
∑
i,j

αiαj 〈�(xi ),�(xj )〉 −
∑

i

αi〈�(xi ),�(xi )〉

subject to 0 ≤ αi ≤ C,∀i = 1,2, . . . , n,
∑

i

αi = 1. (6.6)

Using the kernel trick, the inner products in (6.6) can be replaced by the
kernel function, k(xi ,xj ) = 〈�(xi ),�(xj )〉, and the optimization problem can
be expressed as:

min L(αi) =
∑
i,j

αiαj k(xi ,xj ) −
∑

i

αik(xi ,xi )

subject to 0 ≤ αi ≤ C,∀i = 1,2, . . . , n,
∑

i

αi = 1. (6.7)

The majority of α∗
i obtained by solving this optimization problem are null.

The nonnull 0 < α∗
i < C represent the support vectors that determine the bound-

ary and size of the hypersphere. The center of the hypersphere, a, is computed
based on all the support vectors as

a =
∑

i

α∗
i �(xi ). (6.8)

The radius of the hypersphere can be computed as

R2 = 1

Nb

Nb∑
k=1

{‖�(xk) − a‖2}

= 1

Nb

Nb∑
k=1

⎧⎨
⎩k(xk,xk) − 2

∑
i

α∗
i k(xk,xi ) +

∑
i,j

α∗
i α∗

j k(xi ,xj )

⎫⎬
⎭ . (6.9)

Here �(xk), k = 1,2, . . . ,Nb denote the support vectors that are the boundary
of the training data, and Nb denotes the total number of support vectors.

The SVDD scheme flags out an observation, x, as an anomaly if

‖φ(x) − a‖2 > R2. (6.10)
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6.4 Deep learning models

We present in this subsection the autoencoders that are among the most used
algorithms to build up deep networks. We briefly present three commonly used
variants of autoencoders, namely undercomplete variational autoencoders, de-
noising autoencoders, and contrastive autoencoders. For a more complete re-
view, refer to [51].

6.4.1 Autoencoders

An autoencoder (AE) is basically a variant of a neural network that consists of
three layers: input, hidden, and output layers that work in an unsupervised learn-
ing paradigm [9]. Essentially, an AE predicts the value of the output x̂ based on
the input x through a hidden layer h (Fig. 6.8) [52–54]. They are frequently ap-
plied in dimensionality reduction and feature extraction. In fact, autoencoders
consist of two components, an encoder and a decoder. The essence of the en-
coder function is to map the input data into the hidden layer, h = f (x). An AE
with nonlinear encoder functions provides more flexibility to extract more fea-
tures, in comparison to principal component analysis [9]. On the other hand,
the role of the decoder component is reconstructing the input data based on
the hidden layer representation, x̂ = g(h). Of course, in the encoding stage, the
AE discovers a compacted representation (or latent variables) of the input data,
while in the decoding stage, the AE tries to reconstruct the input based on en-
coded data.

FIGURE 6.8 Schematic illustration of an autoencoder.

Assume that (x1,x2, . . . ,xk) are unlabeled data points, during the encoding
process, the N -dimension input data, xi , are mapped to M-dimension vectors hi

using the encoding function f . The hidden layer h is computed as

h(x) = f (W1x + b1). (6.11)

The term W1 refers to the weight matrix of the encoder, and b1 denotes the
bias vector. In the decoding phase, the decoding maps every M-dimensional
vector back for reconstructing the input vector, x, expressing the reconstructed
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vector, x̂, as

x̂ = g(W2h(x) + b2), (6.12)

where W2 is the weight matrix of the decoder, and b2 denotes the bias vector.
The reconstruction error, which is the difference between the original data,

x, and the reconstructed data, x̂, is usually in the form of a loss function in the
training stage. Specifically, the training of an autoencoder is usually performed
by minimizing the negative log-likelihood of the reconstruction, given the en-
coding f (x) [9]:

Reconstruction error = − log(P (x|f (x)), (6.13)

where P denotes the probability assigned to the input vector x by the model.
The goal is that f (x) captures the main factors of variation in the data.

In fact, the incorporation of latent variable models makes autoencoders
behave like generative models. Stacked autoencoder models were largely em-
ployed in image denoising [55,56] and content-based image retrieval [57].

6.4.1.1 Variational autoencoder
A variational autoencoder (VAE) has a similar structure as that of a conven-
tional AE in the way that it contains an encoder and a decoder network. The
major shortcoming of the conventional AE is that the inputs are converted to
discrete variables (not continuous) which makes the interpolation a challenging
task. Specifically, as a generative model, the AE randomly takes samples from
the latent space, and this is difficult if it is discontinuous or contains gaps. VAR
is a variant of AE that is designed to estimate the distribution of the feature
data [58–60]. Its training is regularized to avoid overfitting and guarantee that
the latent space possesses suitable properties that enable the generative process.
VAE possesses a continuous latent space which makes it a powerful genera-
tive model. In fact, differing from the conventional AE, a VAE possesses an
additional layer in charge of sampling the latent vector z, and its loss function
contains an extra term that constrains the generation of a latent vector with a
roughly predefined distribution, p(z), frequently considered as a standard Gaus-
sian. Essentially, in the training phase, by using the input data, the encoder
generates vectors of means, μ, and standard deviation, σ of the latent vector
distribution. Then the decoder reconstructs the input data by using the latent
variable, which is sampled from the latent vector distribution (Fig. 6.9).

Generally speaking, VAEs are generative models that use latent space for
mapping the input data to the feature spaces, making them able to generate new
samples based on the learned model parameters [58–60]. In fact, the encod-
ing procedure performed by the VAE is also known as approximate inference
network, the qθ (z|x) is used on the training to get z (i.e., learn a probability
distribution of the underlining input dataset), the next step is the decoder trans-
formation performed using pφ(x|z) to reconstruct the input data.
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FIGURE 6.9 Schematic illustration of VAE.

The central idea behind the VAEs is that its training is performed by mini-
mizing the loss function L(x; θ,φ) associated with data point x.

L(x; θ,φ) =Eqφ(z|x)[log(pθ (x|z))] − DKL(qφ(z|x)||pθ (z)). (6.14)

The first term in this loss function, Eqφ(z|x)

[
logpθ(x, z)

]
, refers to the recon-

struction error. It is basically the expectation of the log-likelihood that the input
can be generated using the sampled values of the inferred distribution. It pushes
the decoder to learn the reconstruction of the input. The key idea behind the
VAE is to train a parametric encoder (called an inference network) that pro-
duces the parameters of q. The second term, DKL(qφ(z|x)||pθ (z)), denotes the
Kullback–Leibler divergence between the distribution of the encoded latent vec-
tors qφ(z|x) and the desired distribution pθ(z) which is usually assumed as the
standard Gaussian. This extra term can be viewed as an adjustment enforced in
the feature space. It should be noted that to minimize the objective function and
get x as close as possible to the input vector x̂, the term DKL(qφ(z|x)||pθ (z)),
enforces μ and σ towards the zero and the unity vectors, respectively.

6.4.1.2 Denoising autoencoder
In this section, we discuss denoising autoencoders (DAE), which are a stochastic
version of conventional autoencoders [55,56,61]. In fact, in the case when the
AE contains more nodes in the hidden layer than inputs, it can lead to learning
identically the input and making the autoencoder useless. This is usually called
learning of identity function that results in the output equaling the input. To
overcome this difficulty, DAE introduces noise to the training data. Then, in
DEA the raw input data are reconstructed from the noisy data after the encoding
and decoding steps. Basically, the essence of the DAE is denoising the noisy
input by reconstructing the original input in a clean version. Essentially, the
DAE learns how to denoise an input by reconstructing a clean input x̂ from a
corrupted version of the original input x (Fig. 6.10).

DAEs have proven to be effective in learning more robust features and able
to reduce sensitivity to small stochastic disturbances. As unsupervised learning
algorithms, they are widely applied in various applications [62,63].
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FIGURE 6.10 Schematic illustration of a denoising autoencoder.

DAE training is performed as follows. At first, the input x is corrupted with
noise by adding some random, x̂ ∼ qD(x̂|x). Then, the corrupted input x̂ is en-
coded as in the conventional AE, the coded features of the hidden layer are given
as y = fθ (x̂). Lastly, the obtained features in the hidden layer are decoded and
the reconstruction of the input is expressed as z = gθ ′(h) = gθ ′(f (x̂)).

The parameters of DAE are obtained in the training phase by minimizing the
following loss function:

arg min
θ,θ ′ L(x, g(f (x̂))) (6.15)

where L refers to a loss function such as the Euclidean norm, and θ and θ ′ are
the DAE parameters.

In summary, by introducing a penalty term to the cost function, the DAE
learns robust features by changing the reconstruction error term of the loss func-
tion. The model parameters are optimized using the same procedure used in the
autoencoder called stochastic gradient descent.

6.4.1.3 Contrastive autoencoder
The aim of the contractive autoencoder (CAE) is to achieve a robust learned
representation that is less sensitive to small variations in the data by introducing
a penalty term to the loss function [64,65]. To this end, an explicit regularizer is
added on the code h = f (x) for encouraging the derivatives of f to be as small
as possible:

‖Jf (x)‖2
F =

∑
ij

(
∂hj (x)

∂hi

)2

. (6.16)

In other words, the loss function of the CAE is based on the penalty term, Frobe-
nius norm of the Jacobian matrix, ‖Jf (x)‖2

F , to make the encoding less sensitive
to small variations in the training dataset. Indeed, Frobenius norm reduces the
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sensitivity of representation learned towards the training input, where penaliz-
ing promotes the feature space mapping to be contractive in the neighborhood
of the training data.

The aim of the training phase of the CAE is to determine parameters θ =
{W,bh, by} for which y is the reconstructed version of x that minimizes the
reconstruction error on a training dataset D, which corresponds to minimizing
the objective function:

JCAE(θ) =
∑
x∈D

(
L(x, g(f (x))) + λ‖Jf (x)‖2

F

)
(6.17)

where L refers to the reconstruction error, the cross-entropy loss when the ac-
tivation function sg used is the sigmoid and with inputs X ∈ [0,1]. The term
L is expressed as follows: L(x,y) = −∑

i log(yi) + (1 − xi) log(1 − yi). To
enforce robustness of the representation f (x) obtained for a training input x,
the penalization is measured as the Frobenius norm of the Jacobian Jf (x) of
the nonlinear mapping applied to the input. The mapping is contracting the data
efficiently and hence the name contractive autoencoder. The central role of the
Jacobian term is a mapping filter by ignoring low variations and focusing more
on significant representations to allow reconstruction of the training with small
errors.

6.4.2 Probabilistic models

In this subsection, we present two commonly used energy-based models Boltz-
mann machine (BM) and restricted Boltzmann machine (RBM) that can be used
to build up deep learning models.

6.4.2.1 Boltzmann machine
A Boltzmann machine (BM) is a stochastic neural network that comprises visi-
ble and hidden units, where the visible units are the input data (Fig. 6.11) [66].
In a BM, every unit is connected to all other units. The hidden units act as a set of
latent variables (features) allowing BM to model distributions over visible state
vectors (Fig. 6.11). The BM model aims to understand the distribution underly-
ing the input data and regenerate the data using that distribution. It is represented
by an undirected graph, part of Markov random field, which forms a network of
symmetrically connected units (neurons), capable to make stochastic decisions
or binary decision (0,1).

The joint probability distribution of BM, which is an energy-based model, is
computed based on an energy function as a Boltzmann distribution [66]:

P(v) = 1

Z(θ)
exp(−E(v)), (6.18)
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FIGURE 6.11 Schematic presentation of a Boltzmann machine.

where P(v) refers to the energy function and Z is the partition function that
guarantees that

∑
v P(v) = 1. The energy function of the BM is expressed as

E(v) = −vT Wv − bT v, (6.19)

where W denotes the weight matrix of model parameters and b refers to the
vector of bias parameters.

In the training stage, the parameters of the BM model (i.e., weights and bi-
ases) are determined so that the likelihood of the observed data is maximized.
Specifically, the gradient descent on the log of the likelihood function is per-
formed to find the BM parameters. In other words, the goal is to retrieve weights
and biases that define a Boltzmann distribution in which the training vectors
have high probability.

BMs are unsupervised models, which involve learning a probability distri-
bution from the training dataset. They are also known as generative models due
to their capability to generate new samples from the learned data distribution.
However, although with fewer nodes, too many connections are needed in a
BM model to make effective computations. To alleviate this problem, numerous
models have been introduced including conditional Boltzmann machines [67]
and Restricted Boltzmann Machine (RBM) [68]. Next, we briefly describe the
RBM model, in which they are no connections between units in the same layer.

6.4.2.2 Restricted Boltzmann machine
RBMs are a special form of Boltzmann machine that have no intralayer con-
nections, that is, connections visible-to-visible and hidden-to-hidden are not
available [69–71] (Fig. 6.12). RBMs are undirected probabilistic graphical mod-
els composed of two layers, namely visible and hidden layers. In RBMs, there
are connections between each visible unit and every hidden unit. RBM is usu-
ally employed as a layerwise training model in the design of deeper models,
such as deep belief networks (DBN) and the hierarchical probabilistic model
deep Boltzmann machine (DBM), by stacking several RBMs [72]. Essentially,
RBMs are stochastic neural networks that possess m visible units, v ∈ {0,1}m
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and n hidden units, h ∈ {0,1}n. Numerous learning procedures have been de-
signed to train RBMs models based on Markov chain Monte Carlo (MCMC)
and Gibbs sampling to get an estimator of the log-likelihood gradient [9].

FIGURE 6.12 Diagrammatic illustration of RBM.

RBMs are a particular kind of energy-based models. The energy function of
the RBM configuration is given as [73]:

E(v,h; θ) = −
m∑

i=1

bivi −
n∑

j=1

ajhj −
m∑

i=1

n∑
j=1

wivihj

= −bTv − aTh − vTWh,

(6.20)

where Wij denotes the weight matrix between visible variable vi and hidden
variable hj , and bi and ai denote respectively bias terms of visible and hid-
den units. The aim of the training is to determine the suitable values of these
parameters based on some datasets.

As an energy-based model, the joint probability distribution for the RBM
model is defined based on energy function as follows:

P(v,h; θ) = 1

Z(θ)
exp(−E(v,h; θ)) (6.21)

= 1

Z

∏
ij

eWij vihj
∏
i

ebivi
∏
j

eaj hj , (6.22)

where Z refers to a partition function defined as

Z(θ) =
∑

v

∑
h

E(v,h; θ). (6.23)

As RBM is restricted to have no connections between units in the same layer,
the visible units are conditionally independent given the state of the hidden units,
and vice versa,

p(h|v) =
n∏

i=1

p(hi |v), (6.24)
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p(v|h) =
m∏

i=1

p(vi |h). (6.25)

The marginal distribution of the visible variables can be easily computed
because hidden units are not connected to visible units:

p(v) = 1

Z

∑
h

p(v,h). (6.26)

In the case of binary visible unit v ∈ {0,1}m and hidden units h ∈ {0,1}n, the
marginal probability distributions of the RBM can be compute as

p(hj = 1|v) = σ

⎛
⎝ m∑

j=1

wij vj + ai

⎞
⎠ , (6.27)

p(vi = 1|h) = σ

⎛
⎝ n∑

j=1

wijhi + bj

⎞
⎠ , (6.28)

σ(x) = 1

1 + exp(−x)
, (6.29)

where σ(·) refers to the logistic function. In [71], an improved version of RBM,
called Gaussian–Bernoulli RBM, has been introduced to handle various data
types, such as real data, rather than binary inputs, where v ∈ R

m and hidden
units h ∈ {0,1}n.

Generally speaking, the core purpose of model training is to tune the model
parameters (weights matrix W) to maximize the probability attributed to the
training data under the model. Formally, proper parameters are obtained by max-
imizing the log-likelihood function, where the derivative of the log-likelihood is
computed with respect to W takes the following form [74–76]:

wij = α(E(vi, hj ) − Ê(vi, hj )). (6.30)

The term α denotes the learning rate and Ê(vi, hj ) refers to the energy expected
from the distribution learned by the model, which is intractable [71], Gibbs sam-
pling is used to overcome this problem. In [77], a learning procedure called
contrastive divergence (CD) that can avoid the expensive computation has been
introduced by Hinton to train RBM. This CD procedure is becoming a standard
way for training RBM and its extensions.

6.4.3 Deep neural networks

In this section, three commonly used deep learning models, namely deep be-
lief network (DBN), deep Boltzmann machine (DBM), and stacked autoencoder
(SAE), are briefly described.
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6.4.3.1 Deep belief networks

DBNs are among the first introduced nonconvolutional models addressing the
training of deep structures [78,79]. DBNs are efficient learning models that com-
bine the advantages of dimensionality reduction and data representation, without
imposing assumptions on the underlying data structures. Basically, DBNs are
multilayer probabilistic generative models that are designed by the stacking of
several RBMs (Fig. 6.13), in which each hidden layer (RBM) is a Markov ran-
dom field. From Fig. 6.13, the first RBM (RBM1) is built up from the input layer
and the first hidden layer, and the second RBM (RBM2) consists of the first and
the second hidden layers, and the third RBM (RBM3) is formed based on the
second and the third hidden layers. That is, a DBN model possesses multiple
hidden layers, h1, . . . ,h� and a single visible layer v. Here, we denote by Wj

the weight matrix between the previous layer j − 1 and the actual layer j .
DBN layers consist of stochastic binary variables (called latent variables)

having weighted connections that play a role of feature detectors. The DBN’s
visible units could be binary or real. Notice that there are no connections be-
tween units in the same layer as in RBM. In addition, there are connections
between units in successive separate layers of DBNs (Fig. 6.13). This allows
constructing more sparse connected DBNs. Moreover, the DBN is characterized
by its hybrid nature that involves directed and undirected connections. Specifi-
cally, undirected connections are used between the top two layers and directed
connections are between all other layers.

FIGURE 6.13 Schematic presentation of a Deep belief networks (DBN).

Essentially, a DBN that possesses � hidden layers comprises � weight ma-
trices (W1, . . . ,W�). It comprises also � + 1 bias vectors, b0, . . . ,b�, where b0

represents the biases from the visible layer.
Hence, for the DBN, the joint distribution of the observed vector x and �

hidden layers hk (k = 1, . . . , �) is calculated as [78]

P(x,h1, . . . ,h�) =
( �−2∏

k=0

P(hk|hk+1)

)
· P(h�−1,h�). (6.31)
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Here x = h0, the term P(hk|hk+1) denotes the conditional distribution of units
of the layer k given the units of the layer k + 1, and P(h�−1,h�) is the joint
distribution in the top-level RBM of the units in the layers � − 1 and �.

At first, the process of constructing a DBN model for parameter-learning
is done based on an unsupervised greedy layer-by-layer method that was
demonstrated to be efficient in extracting important features from the input
data [80,81]. In fact, this proved to be very effective to discover layer-by-layer
complex nonlinearity. Specifically, the first layer is trained like an RBM model
with x = h0. It is used then to represent the input that will be used as input ob-
servation for the second layer. Now, the second layer is trained like an RBM
by using the transformed data from the previous layer as training data. This
process is repeated for the selected number of layers, each time propagating
upward the transformed data. In practice, fine-tuning based on backpropaga-
tion and (stochastic) gradient descent is performed to optimize the DBN model.
Then, the DBN model with the trained weights and biases can be used to predict
new data [82–84].

Deeper DBN architecture can be obtained by incorporating more layers in
the network. Generally speaking, deep architectures could help improve learning
algorithms to achieve a more accurate expression of energy. In addition, it can
reduce the training time because of a one-step can be sufficient to reach the
learning of maximum likelihood [85].

6.4.4 Deep Boltzmann machine

Here, we discuss another type of deep generative model based on the Boltz-
mann machine called deep Boltzmann machine [72]. The DBM model is formed
of several layers of hidden variables with undirected connections in contrast to
RBMs that have just one (Fig. 6.14). The visible layer acquires the input data,
and the hidden layers aim to extract features. Similarly to the RBM, the variables
are mutually independent within each layer and conditioned on the variables in
the precedent layers. Unlike DBN, this model is a fully undirected model. Es-
sentially, the DBM model can be viewed as the result of stacking RBM to form a
fully undirected graph. To handle real-valued data, in [86], a Gaussian–Bernoulli
DBM (GDBM) that employed the Gaussian neurons in the visible layer of the
DBM was introduced.

DBM has proven to be effective in automatically representing complex and
nonlinear data and incorporating uncertainty related to ambiguous and missing
or noisy inputs. In fact, every layer of DBM captures higher-order correlations
between the hidden features in the precedent layer. DBMs are capable to learn
complex statistical structures and have been applied to a variety applications
including object recognition [87], document modeling [88], and computer vi-
sion [89].

Considering a two-layer DBM (Fig. 6.14) with a single visible layer, v, and
two hidden layers, {h1,h2}, the DBM energy function of the state {v,h1,h2} in
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FIGURE 6.14 Illustration of DBM structure with two stacked RBMs.

this case is expressed as

E(v,h1,h2; θ) = −vT W1h1 − hT
1 W2h2, (6.32)

where θ = {W1,W2} refers to the model parameters, the vector of visible units
v ∈ {0,1}D and the vectors of hidden units h1,h2 ∈ {0,1}P . For the sake of sim-
plicity, the bias parameters are omitted below. The joint probability is defined
as

P(v; θ) = 1

Z(θ)

∑
h1

∑
h2

exp(−E(v,h1,h2; θ)). (6.33)

In the general case of DBM with one visible layer and L hidden layers, the
joint probability is expressed as:

P(v, θ) = 1

Z(θ)

∑
h1

. . .
∑
hL

exp(−E(v,h1, . . . ,hL, θ)), (6.34)

where θ = {W1, . . . ,WL} refers to the parameters of the DBM model and the
energy function is given by

E(v,h1, . . . ,hL, θ) = −vT W1h1 −
L∑

l=2

hT
l−1Wlhl . (6.35)

In [72], a greedy layer-by-layer pretraining algorithm for the DBM was consid-
ered by making each successive pair of layers in the DBM as an RBM.

6.4.4.1 Deep stacked autoencoder
A stacked autoencoder (SAE) model is an unsupervised deep-learning method
composed of several layers, each of which is an autoencoder (Fig. 6.15). The
output of each layer is the input of the next layer. The encoding process is per-
formed by encoding every layer in a forwarding order, and the decoding process
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is done in the reverse order. The SAE model is trained based on a layer-by-layer
greedy training procedure. This means that the first autoencoder is trained using
the input data and produces the learned feature vector. The extracted features
are fed to the next layer; this process is repeated until the training is completed.
SAE models have been frequently used in different applications, including gear-
box fault diagnosis [52], image denoising [55,56], and obstacle detection in
autonomous vehicle [14].

FIGURE 6.15 Diagrammatic illustration of a stacked autoencoder.

6.5 Deep learning-based clustering schemes for process
monitoring

As mentioned above, anomaly detection in high-dimensional data based on bi-
nary clustering procedures is challenging and time-consuming. For instance,
OCSVM with a selected kernel function could encounter challenges to learn
from complex datasets, whereas it can get robust decision hyperplanes when
applied to reduced and well-structured features. To overcome this problem, here
we present a hybrid framework by combining the advantages of deep learning
models and unsupervised clustering procedures (Fig. 6.16). In this hybrid ap-
proach, an unsupervised deep learning model, such as DBN, DBM, and SAE,
will be used to extract relevant features from complex and high-dimensional
datasets. The considered deep learning model will be trained in such a way that
the used clustering algorithm (e.g., OCSVM) can efficiently discriminate nor-
mal data from anomalies based on the learned feature space.

Anomaly detection using hybrid methods can be done in two steps. The
deep learning models are constructed through unlabeled training datasets that
are devoid of anomalies. Then, the extracted features from the last layer of the
considered deep-learning model are passed to the used clustering or one-class
machine learning algorithm for training purposes. In the testing step, the learned
model is used to extract features from new arrival unlabeled data, and the clus-



218 Statistical Process Monitoring

FIGURE 6.16 Deep learning-based clustering schemes for process monitoring.

tering approach is applied to extracted features to separate between normal and
anomalies data points.

Several hybrid methods have been developed to benefit from the comple-
mentary advantages of deep learning models and unsupervised binary cluster-
ing procedures. The method in [90] uses the DBN model and the OCSVM to
detect anomalies in an actual wastewater treatment plant. It exhibits good detec-
tion performance in comparison to other hybrid methods including DBN-based
KNN and k-means algorithms. Also, in [91], several hybrid models including
DBNs-based, DSA-based and RBM-based clustering methods (i.e., k-means,
BIRCH, and expectation maximization) have been compared when applied to
abnormal ozone measurements. The results in [91] showed that hybrid models
achieved better results in comparison to the stand-alone binary clustering algo-
rithms. Also, it has been shown that the DBN-OCSVM outperformed the other
hybrid models. Here, the DBN is constructed as a dimensionality-reduction pro-
cedure to generate a lower-dimensional set of features. The computed features
are used as input to train the OCSVM. Subsequently, the established hybrid
DBN-OCSVM is used for testing. Such methods are assumption-free and do
not require any data labeling or assumption related to the distribution under-
lying the datasets. A hybrid anomaly detection algorithm merging DBM and
AE models is employed for obstacle detection in road environments based on
stereovision [13]. The extracted features form this hybrid model are used by
OCSVM for anomaly detection. This model merges the greedy learning features
of DBM with the AE’s dimensionality reduction capability. Results indicate that
anomaly detection performance based on hybrid models is improved compared
to the stand-alone models. In summary, coupling the extraction features capacity
of deep learning models with the sensitivity to changes of the binary clustering
methods is advantageous since it bypasses the complexity issues of clustering
methods in particular when applied to large-scale datasets.

6.6 Discussion

This chapter reviewed the basic features of commonly used clustering algo-
rithms and one-class algorithms (i.e., OCSVM and SVDD). Then, some of deep
learning approaches that effectively analyze and model high-dimensional data,
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such as DBN, RBM and DSA, were presented. To bypass the shortcoming of
binary clustering methods when applied to high-dimensional data, we briefly
presented hybrid methods that combine the benefits of deep learning models
with the clustering approaches to reveal faults in monitored processes. Essen-
tially, extracting relevant and compact information from large datasets using
deep learning models improves the detection and discrimination capacity of bi-
nary clustering methods.

Note that the above discussed deep learning models have been created us-
ing a single scale (i.e., time scale) as they relate process variables only at the
scale of the sampling interval. This single-scale feature extraction is suitable
for the data including contributions at one scale only. However, data from en-
gineering and environmental processes are multiscale in nature. This is mainly
because events can occur with different localization in time and frequency, and
process variables can be gathered at different sampling rates or include missing
values. Wavelet-based multiresolution is a powerful tool for the multiscale rep-
resentation of data. Thus, in the future, an interesting research direction would
be to develop multiscale deep-learning models and use them to further improve
anomaly detection in complex processes.
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Chapter 7

Unsupervised recurrent deep
learning scheme for process
monitoring

7.1 Introduction

Recent advances in network and data acquisition technologies have enabled the
automatic collection of large datasets in engineering and environmental pro-
cesses. Such advances have made multivariate time series measurements ubiqui-
tous in everyday life, such as data outputs from wind turbines plants, the effluent
measurements in wastewater treatment plants (WWTP), and air quality data, to
name just a few. In addition, data on process operations may also be very useful
for prediction and supervision of the quality of end products.

Handling and extracting the relevant features in multivariate time series data
from real processes is challenging because of the dynamic dependencies be-
tween multiple variables. Vector autoregression (VAR) models are commonly
used to capture correlations in multivariate time series data because of their
simplicity [1,2]. As a natural extension of univariate AR models, VAR models
fail to recognize the dependencies among output variables. To address this, a
variety of VAR models have been designed, such as structured VAR models,
to provide a better description of the dependencies between a large number of
variables [3]. However, the main limitation of using VAR for a large dataset is
its linear growth with increasing temporal window size, and its quadratic growth
with the increasing number of variables. Thus, VAR models are unsuitable and
prone to overfitting when handling long-term temporal patterns. In other studies,
linear regression models such as support vector regression and ridge regression
LASSO [4] models have been used for modeling multivariate time series data.
Similarly to VARs, these modeling approaches are not suitable for observing
nonlinear relationships between process variables. Gaussian processes (GP) can
also be applied to model multivariate time series [5]. However, the use of GP
models is restricted by their high computational complexity. For instance, im-
plementing GP models to forecast multivariate time series can have cubic com-
plexity in the number of samples because of the inversion of the kernel matrix.

Deep learning techniques have emerged in recent years as an efficient tool
to extract pertinent information from large and complex datasets. Several deep
learning techniques have been designed to address practical problems such as
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pattern recognition and regression analysis and prediction [6–8]. Indeed, one of
the major limitations of traditional neural networks is their feed-forward struc-
ture with no recurrence, which is inappropriate for handling input data with
periodicity (sequence) and time dependencies. In analogy, the human brain, in
order to better understand information from text, speech, or even video, can
make use of both historical and actual received situations. In text or speech, for
instance, previously received words help in understanding current words and
predicting the following words. The output of the last cycle is used to feed the
new cycle, forming a loop; hence the recurrent architecture. Recurrent neural
networks’ (RNNs) architecture benefits from the inner loop and state (memory)
to maintain information, making them suitable to address time-dependent learn-
ing problems. They were originally designed for language models, due to their
capacity to memorize long-term dependencies. RNNs are considered to be deep
in time, which becomes evident when they are unfolded in time. This property
is helpful for the training phase, especially for updating weights (gradients er-
ror) based on backpropagation through time (BPTT). RNNs have been widely
and successfully exploited by researchers for a wide range of real applications.
Simple RNNs can deal with input data containing short-term dependencies very
well, but they are unfortunately not efficient at learning and discovering depen-
dencies over time when historical information becomes too large. Specifically,
when time lags become too large, gradients of RNNs may disappear through
unfolding RNNs into very deep feed-forward neural networks. In short, RNNs
usually fail to capture very long-term dependencies due to gradient vanishing.

A new extension of RNNs has been designed to address this problem, called
long short-term memory network (LSTM) and gated recurrent unit (GRU), that
incorporate two important mechanisms, the states (memory) and gate, into the
conventional RNNs [9,10]. In LSTM and GRU, the memory cells have the abil-
ity to determine when certain information needs to be forgotten and determine
the optimal time lags. In addition, gates provide a way to regulate the informa-
tion flow-through, using a sigmoid neural network layer followed by a pointwise
multiplication operation. RNNs-based algorithms have been demonstrated to be
efficient in several applications, such as polyphonic music generation, intrusion
detection, and gesture recognition.

In recent years, enhanced extensions have been designed by merging the
desirable features of RNN and LSTM with the function to delineate com-
plex distributions from restricted Boltzmann machines (RBM) and deep belief
networks (DBN). Here, we provide a brief description of hybrid RNN-RBM,
LSTM-RBM, and LSTM-DBM methods. These deep learning hybrid models
have shown promising results in modeling dependency in time series data. The
purpose of this chapter is to design a reliable and flexible anomaly/fault de-
tection scheme to uncover anomalies in multivariate time series data. To this
end, we integrated the powerful RNNs-based models with various clustering
algorithms to uncover temporal dependencies in multivariate time series. We
employed the RNNs models for modeling under normal conditions, and we then
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used the prediction errors to identify anomalies. We assessed the detection sen-
sitivity of RNN, RBM, and hybrid models-based clustering algorithms using
actual measurements from a coastal municipal WWTP.

The chapter is structured as follows. Section 7.2 presents foundational con-
cepts of RNN, LSTM, and GRU models and describes the hybrid deep learning
techniques, including RNN-RBM, LSTM-RBM, and LSTM-DBN. Section 7.3
presents the anomaly detection problem by integrating recurrent deep learning
with binary clustering algorithms. Section 7.4 verifies the effectiveness of the
studied approaches using real data, and conclusions are summarized in Sect. 7.5.

7.2 Recurrent neural networks approach

Accurate modeling of serially dependent sequences is important because data
from engineering and environmental processes are inherently sequential. In tra-
ditional neural networks, such as feedforward neural networks, modeling or
decision-making is based on the actual inputs, and no memory on the past is
considered. In other words, these networks ignore past data and assume the
nonexistence of dependencies since there are no cycle loops in the network.
However, in practice, the decision at time step t can be affected by the output of
the network at time step t − 1. Thus, these models are not suitable for describ-
ing sequential dependent data. This limitation can be mitigated by incorporating
the information from the actual and past measurements in the modeling process.
RNNs can deal with temporal dependencies because their design permits the
consideration of the actual input and also the previously received inputs, and the
possibility of memorizing previous inputs due to its internal memory. Another
important feature of the RNNs approach is the capability to predict and forecast
the future of a sequence based only on historical data.

7.2.1 Basics of recurrent neural networks

As discussed above, RNNs are an efficient tool used to deal with complex and
nonlinear dependencies in multivariate times series data. Generally speaking,
RNNs are able to review information at each time point and choose the pertinent
information to appropriately generate the outputs. RNNs can be trained to retain
information in the long term through discovering features and modeling sequen-
tial (time) dependencies from the training dataset. The efficiency of RNNs has
been proven over the last decade through several applications involving sequen-
tial or temporal data [11,10,12,13]. This success can be attributed to their ability
to extract complex nonlinearity between data point in the training dataset and
project them onto a new feature space. RNNs have been widely exploited in
speech recognition, natural language processing, and machine translation.

The so-called simple RNNs, or vanilla RNNs, with a single hidden layer
comprise a memory h that permits summarizing the past in order to predict
the future. Generally speaking, RNNs predict the output Ot by using the input
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vector, xt , and the memory state, ht . The memory state h of VRNNs is updated
with the recurrence formula

ht = σ(Vht−1 + Uxt ), (7.1)

where σ is the activation function, and matrices V and U are trained to properly
update the history vector h. Then, the predicted output Ot can be obtained by

Ot = Wht , (7.2)

where the weight matrix W is trained to use the history h and predict the next
output. The weights matrices, V, U, and W, represent the internal parameters
of the RNN. The dynamic behavior and prediction of the RNN changes by up-
dating these internal parameters, which can be computed by backpropagation.
RNNs uncover and learn temporal dependencies in time series data by using the
former output as inputs in addition to the actual input and recent past inputs to
generate new outputs, as shown in Fig. 7.1. The architecture of the RNN model
was designed using nonlinear stacked units, where links between units form a
directed cycle (Fig. 7.1).

FIGURE 7.1 A basic illustrative representation of RNN.

Note that RNNs are very deep in time when unrolled [14]. The architecture
of RNNs improves feature extraction and discovery of long-term dependencies
from sequential time-series data. RNN is designed to model time varying or
sequential patterns of input, where the input can have fixed or variable size,
while the size of the RNN output is fixed. Of course, RNNs are characterized by
feedback. RNN topology is represented as closed loop connections, equipped
with a memory that captures and stores the information processed so far.

The ability of multiple mapping schemes is not supported in the traditional
neural network based on the feed-forward mechanism; this kind of network
architecture supports only a fixed input and output size. Another desirable prop-
erty of RNNs is their capability to handle input variables with various sizes,
which makes them very useful for operating over sequences of vectors. In other
words, RNNs are able to map input sequences to produce output sequences,
where the length or size of the inputs depends on data nature and structure
(Fig. 7.2). Below are a few examples to clarify this more concretely.
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FIGURE 7.2 Different configurations of the RNN model.

Single to multiple. In the case of image captioning, the network takes the input
pixels of an image and generates a sequence of words.

Multiple to single. Such a situation appears in sentiment analysis, where the
input is a sequence of words, while for the output the network generates
a single Boolean classification of true or false (i.e., positive or negative
sentiments). Another example is in voice classification which is based on
a sequence of voice records, and the network identifies the speaker.

Multiple to Multiple (a). This happens in the case of language translation, for
instance, from English to Arabic.

Multiple to Multiple (b). This case is of video captioning and video classifi-
cation.

RNNs have been widely exploited to capture relevant dependencies in time
series. However, in training deep neural networks, RNNs can face two common
problems of vanishing and exploding gradients, where the error gradients can
increase to explosion or decrease to vanishing (close to zero). Indeed, the error
gradients are employed for updating weights. The problem becomes more se-
vere when increasing the depth of the network. Several techniques have been
developed to alleviate the problem of exploding gradients: changing the net-
work design to make it shallower, using a gradient clipping approach that aims
to threshold the error gradients, and using weight regularization to reduce the
severity through L1 or L2 penalties on the recurrent weights.

7.2.2 Long short-term memory

Machine learning has been researched extensively over the past three decades.
Conventional neural networks are one such intensively used machine learning
approach. As mentioned above, the main characteristics underlying these net-
works are the presence of full connections between adjacent layers and the
absence of connections between the nodes within the same layer. Thus, this
type of network is suited to handle sequential data and describe temporal de-
pendencies in the data because it considers only the current measurement and
without memorizing past measurements. As discussed above, to overcome this
problem, the internal memory of an RNN has been used to handle sequential
data by considering the actual and previously received measurements. In other
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words, the hidden units in an RNN receive feedback from the previous state to
the current state. Because the depth of the RNN is the time span, information
can be lost through time and the error can propagate back. Accordingly, the ac-
curacy of the RNN can be degraded when the time span becomes longer due to
the vanishing gradient and exploding gradient problems. To address this issue,
long short-term memory (LSTM), which is an extended version of RNN, was
first introduced by Hochreiter and Schmidhuber [15] in 1997. LSTM models
have been largely utilized in many applications, including handwriting recog-
nition [16], language modeling [17] and translation [18,19], acoustic modeling
of speech [20], speech synthesis [21,22], protein structure prediction [23–25],
and analysis of audio and video data [26–30]. Moreover, in the modern LSTM
architecture, there are peephole connections between internal cells and the gates
in the same cell for learning the accurate timing of the outputs [31]. This section
first provides an overview of LSTMs and then discusses how they can be used
for modeling and process monitoring. We also describe gated recurrent units
(GRU), another improved version of RNNs.

The LSTMs are designed as an extension of simple RNNs to solve the
vanishing gradient problem by explicitly incorporating a memory unit into the
network. They are based on memories and gates making them suitable for learn-
ing long-term dependencies. Fig. 7.3 displays a schematic representation of an
LSTM.

FIGURE 7.3 A basic illustrative representation of an LSTM unit.

The principal component of LSTM resides in its cell state, which is the hori-
zontal chain shown in the top of the graph (Fig. 7.4). In LSTM, information can
be removed or added to the cell by using structures called gates.

We designed a common LSTM model as a concatenation of several cell units
instead of conventional neural network layers. We now briefly investigate the
properties of the LSTM unit. As shown in Fig. 7.3, an LSTM cell comprises
three inputs: Xt is the input observation at the current time point, ht−1 repre-
sents the output generated from the preceding LSTM cell, and Ct−1 denotes
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FIGURE 7.4 Cell state in an LSTM model.

FIGURE 7.5 Schematic representation of an LSTM when unrolled in time.

the memory of the preceding cell. Also, each LSTM cell contains two outputs,
ht and Ct , which are the output of the actual network and the memory of the
current unit, respectively. It is composed of three kinds of gates, namely the in-
put gate, the forget gate, and the output gate (Fig. 7.3). Each gate comprises a
sigmoid neural net layer and a pointwise multiplication operation. LSTMs can
be seen when unfolded as a chain-like structure. In other words, it is a loop re-
peating module with a different structure (Fig. 7.5). Depending on the input and
the internal feedback (memory state), the output will be generated in a special
manner based on gates and four embedded layers structure. The layers here have
activation units based on sigmoid and tanh.

This LSTM unit provides a decision based on the actual input, precedent
output and memory, and then produces a new output and upgrades its memory.

Input gate The key role of the input gate is to control the flow of input acti-
vation into the memory cell. Here, the sigmoid layer controls the
flow by generating an output between 0 and 1 into the memory
cell.

Output gate The aim of the output gate is to control the output flow generated
from cell activation to be injected into the network. This gate has
the sigmoid layer that controls how much memory should be fed
into the next LSTM unit.

Forget gate The sigmoid layer output removes information from the cell state
that is no longer required (when the output is 0, otherwise it will
keep it). In other words, the forget gate overcomes the weakness
of LSTM models by preventing them from processing continuous
input streams [32]. By scaling the content of block memory, it
forgets the cell’s memory content in an adaptive way.
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7.2.2.1 LSTM implementation steps
The input of each LSTM cycle is (t − 1)th memory state Ct−1 and hidden layer
units ht−1 (output), but for the first cycle we start with zero or randomized val-
ues. The main steps when implementing LSTM are described below.

• The first step of LSTM consists of deciding which information is to be forgot-
ten or retained in the particular time instant. This step is particularly useful
when the past information is no longer useful for the actual cycle which is
mainly related to the current input. In other words, the aim of this step is
to reveal the information that is not needed and can be omitted from the cell
state. This is achieved by the sigmoid function. It looks at the past state (ht−1)
and the actual input xt and calculates the function accordingly (Fig. 7.6).

ft = σ
(
xtU

f + ht−1W
f
)
, (7.3)

where wf is weight and ht−1 is the output from the previous time.

FIGURE 7.6 First step in LSTM: decide what information is to be forgotten or retained.

• The second step in the LSTM consists of updating the content of the memory
cell. This step selects the new information that will be stored in the cell state
(Fig. 7.7). The second layer (input gate) contains two parts, namely the sig-
moid function and the tanh. The sigmoid layer chooses which values are to be
updated. In the case of 1, the value of the input gate is unchanged, and in the
case of 0 it is dropped. Next, a tanh layer creates a vector of new candidate
values that can be added to the state. It provides weight to the selected values

FIGURE 7.7 Second step in LSTM: updating the content of the memory cell.
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for their level of importance (−1 to 1). After that, the two are combined to
update the state. The Ĉ is combined with Ct−1 to update both the memory
state Ct . The Ht (output) is computed according to the output gate sigmoid
and the tanh of Ct :

it = σ
(
xtU

i + ht−1W
i
)
, (7.4)

C̃t = tanh
(
xtU

g + ht−1W
g
)
, (7.5)

C̃t is the candidate memory cell, Wi , Wg are weight parameters.
• In this step, the old cell state, Ct−1, is actualized with the new cell state, Ct ,

and the past cell state, Ct−1, is actualized with the new cell state, Ct (Fig. 7.8).
To do so, the old state is multiplied by ft to forget the irrelevant information,
and the candidate, C̃t , is added. This represents the new candidate values
scaled by how much we choose to update every state value:

Ct = ft · Ct−1 + it · C̃t . (7.6)

FIGURE 7.8 Step 3 in LSTM modeling.

• Finally, the output is computed in two steps (Fig. 7.9). First, a sigmoid layer
is utilized to select the relevant portions of the cell state to be transmitted to
the output (Eq. (7.7)):

ot = σ
(
xtU

0 + ht−1W
0). (7.7)

FIGURE 7.9 Step 4 in LSTM modeling.
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The cell state is then passed via tanh (for normalizing values within the range
−1 and 1) and multiplied by the output of the sigmoid gate; thus we keep
only the portions we selected to output (Eq. (7.8)):

ht = tanh(Ct ) · ot . (7.8)

At the end of the cycle, the Ht hidden layer units which represent the output
of the cycle and the Ct memory state are ready for the next cycle usage. In
summary, in the LSTM model, the three gates are trained for learning what
information can be maintained in the memory, how long it can be stored, and
when it can be read out. Combining several memory cells into blocks permits
them to share the same gates, and hence the number of adaptive parameters is
reduced.

7.2.3 Gated recurrent neural networks

In this section we present another extended version of RNN, called a gated re-
current unit (GRU), which was primarily introduced by Cho et al. [9]. GRU can
be considered as a reduced version of LSTM. It is also designed to alleviate the
vanishing gradient problem, which is the main weakness of the standard RNN.
GRU is built without a cell state and comprises only two gates instead of three,
as in LSTM [9]. GRU models have demonstrated their efficiency during the last
decade in several applications involving sequential or temporal data [11,10,12,
13]. Their successful application comes from their ability to model complex
nonlinearity between data points and extract relevant features from time series
data.

In comparison with LSTM, GRU comprises two gates instead of three,
i.e., update and forget (also called reset). Indeed, the update gate in GRU can
be viewed as a combination of the forgetting gate and input gate in LSTM
(Fig. 7.10). These two gates consist of a sigmoid layer and a pointwise mul-
tiplication operation represented by two vectors, resulting in values within the
interval [0,1]. Similar to LSTM, the impact of the previous historical informa-
tion on the actual cycle is controlled by these gates. When the output of the reset
gate is zero, the memory information is ignored; otherwise it will influence the
evolution of the final response.

FIGURE 7.10 Gated recurrent unit.
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Generally speaking, the forget or reset gate determines how to merge the
new input with the previous memory [10]. In other words, this gate is employed
to decide the amount of historical information to quash:

rt = σ
(
xtU

r + ht−1W
r
)
. (7.9)

On the other hand, the update gate, which is acting similarly to the forget and
input gate of an LSTM, decides how much of the previous memory to keep and
what new information to add:

zt = σ
(
xtU

z + ht−1W
z
)
. (7.10)

The new hidden state output at the current time point merges current and previ-
ous time points and can be computed as

ht = (1 − zt ) · ht−1 + zt · h̃t . (7.11)

We can see that the complement of gate-update is utilized to decide the informa-
tion to maintain from the ht−1 rather than creating a new gate for this purpose.
The new candidate, h̃t , for hidden layer output is computed as

h̃t = tanh
(
xtU

h + (rt · ht−1)W
h
)
. (7.12)

Here, rt is used to manage what part of ht−1 is needed to incorporate when
computing a new candidate. Table 7.1 summarizes the main features of LSTM
and GRU models.

TABLE 7.1 LSTM versus GRU.

7.3 Hybrid deep models

In practice, several data sequences are high-dimensional, such as words in a
text and images in a video. Thus, using only received observations at the pre-
vious time points cannot guarantee a good prediction of the expected value at
the next time point. With such high-dimensional objects, using RNNs alone to
uncover correlated patterns would be very expensive. To overcome this issue,
energy-based models such as the Boltzmann machine (RBM) are integrated into
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RNN models. This section presents some hybrid deep learning models that com-
bine variants of recurrent neural networks for temporal modeling and shallow or
deep probabilistic and generative models to learn complex and hierarchical fea-
tures with a high level of representation. Specifically, we discuss three flexible
and efficient models to capture temporal dependencies in a multivariate setting:
RNN-RBM, LSTM-RBM, and LSTM-DBN architectures. These architectures
were first designed in the context of polyphonic music generation and transcrip-
tion [33–36].

7.3.1 RNN-RBM

Accurate modeling of sequences plays a core role in several real applications
where collected data is inherently sequential, such as text, speech, and videos.
Extracting the relevant features from these data sources is useful for solving dis-
crimination prediction and anomaly detection tasks. Indeed, since an anomaly
is a deviation from the expected value from the reference model, good modeling
facilitates the anomaly detection.

As hybrid deep models, the recurrent temporal RBM (RTRBM), RNN-RBM
and LSTM-RBM and DBN have proven their ability to learn dependency in tem-
poral patterns. Before we go into details of hybrid models, let us first present
the most simple one, i.e., RTRBM model, which is a probabilistic model. The
structure of this hybrid model is displayed in Fig. 7.11, where in each RNN time
step, the internal feedback is passed to the RBM in order generate an output that
feeds the next cycle of the model. Generally speaking, RTRBM is a succession
of conditional RBMs (Fig. 7.11), and each RBM contains a hidden state that is
obtained from the precedent RBM and employed to modulate its hidden units
bias [33]. At every time point, the learning algorithm tries to extract relevant fea-
tures through a conditional RBM using the contrastive divergence (CD) learning
approach. RTRBM has shown a good ability in describing complex probability
distributions over high-dimensional sequences [33].

In the RTRBM model, the parameters are time dependent. The RTRBM pa-
rameters are bv , bh, W(t), and

M(t) ≡ {v(τ), ĥ(τ )|τ < t} (7.13)

where ĥ(t) represents the value of the mean-field of h(t), and the biases are re-
lated to ĥ(t−1). The joint probability distribution of RTRBM is defined by [33]

FIGURE 7.11 Diagram of a recurrent temporal RBM.
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P(v(t), h(t)) =
T∏

t=1

P(v(t), h(t)|M(t)). (7.14)

In Eq. (7.14), P(v(t), h(t)|M(t)) is the joint probability of the t th RBM, with
Eqs. (7.15) and (7.16) defining its parameters:

bh = bh + W ′ĥ(t−1), (7.15)

bv = bv + W ′′ĥ(t−1). (7.16)

RTRBM contains six parameters: W,bv, bh,W
′,W ′′, ĥ(0). Note that Eq. (7.17)

is defined as a single-layer RNN, with hidden units ĥ(0),

ĥ(t) = σ(Wv(t) + bh) = σ(Wv(t) + W ′ĥ(t−1) + bh). (7.17)

Note that RTRBM is a succession of conditional RBMs whose parameters
are obtained as the deterministic RNN output constrained by the hidden units
required to represent the conditional distributions. Several hybrid models have
been designed to bypass this constraint by merging a complete RNN with dis-
tinct hidden units, such as RNN-RBM and LSTM-based RBM and DBN.

7.3.2 RNN-RBM method

The RNN-RBM model was introduced as a natural extension of RTRBM [33] by
combining the RNN and RBM models [37]. RNN-RBM is an unsupervised gen-
erative model like traditional RBM, which means that it is suitable for directly
modeling the probability distribution of a training dataset without the need for
data labeling. We aimed to further exploit the prediction capacity of the RNN
and RBM models and design a flexible model, allowing to uncover and predict
the temporal dependencies in high-dimensional data [37]. As an energy-based
model, the principle idea of RNN-RBM is to extend the RNN model by includ-
ing an RBM at every time step [37]. The architecture is designed using an RBM
whose parameters are computed from an RNN (Fig. 7.12). In other words, in
the RNN-RBM model, the output layer of the RNN is laying the groundwork
for the parameters for the RBM model, as illustrated in Fig. 7.12. Graphically,
in the RNN-RBM architecture, the lower layer represents the RNN and the up-
per two layers represent the RBM model (Fig. 7.12). The RNN-RBM model
comprises nine parameters: W , bv and bh, ĥ(0), W2 (RBM), W3 and b

ĥ
(RNN

model), W ′ and W ′′ to link the two models. Usually, the matrices W , W2, W3,
W ′ and W ′′ are initialized to small random normalized values, while bv , bh and
ĥ(0) are zero-initialized.

Note that when combining RNN with RBM, the new hybrid model becomes
deep in time when unfolded. An unfolded RNN-RBM can be represented as a
series or chain of RBMs, where each time step instead of generating an output
from sigmoid or tanh layer we invoke the learning of probability distributions
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FIGURE 7.12 Diagram of a single-layer RNN-RBM.

of an input coming from recurrent connection, providing past information to the
current time step. This will have a direct impact on the output of the hybrid
model since its biased with the historical information, which means that the
RBM parameters are determined by an RNN.

The hidden unit ĥ(t) of the RNN layer at time t is connected to its predeces-
sor ĥ(t−1) and to V t and is computed as [37]:

ĥ(t) = f (W2v
(t) + W3ĥ

(t−1) + b
ĥ
), (7.18)

where the activation function, f , is usually taken as the σ function, as pro-
posed in [37]. Also, the tanh function is used as the activation function [38].
By placing ĥ(t) in Eq. (7.14), we can compute the joint probability distribution
of RNN-RBM. Indeed, RTRFM is constrained by the hidden units required for
representing conditional distributions and for transmitting temporal information.
This restriction could be alleviated by merging a full RNN with distinct hidden
units ĥ(t). The model is trained by performing the following steps:

1. Use Eq. (7.18) to generate the hidden unit ĥ(t) of the RNN layer
2. Compute the parameters of RBM (i.e., b

(t)
v and b

(t)
h ) via Eqs. (7.15) and

(7.16) for ĥ(t−1) and realize n-step Gibbs sampling to generate a representa-
tion of the visible units v(t)∗

3. Utilize the contrastive divergence (CD) technique described in [39] to com-
pute the log-likelihood gradient with respect to W , b

(t)
v and b

(t)
h

4. Compute the gradient with respect to W , W2, W3, W ′, W ′′, bv , bh, and ĥ(0)

by propagating the gradient with respect to b
(t)
v , b

(t)
h backwards in time

7.3.3 LSTM-RBM model

This section is dedicated to an overview of a gated recurrent network which
is deep in time with a shallow neural network composed of two layers. More
specifically, we present another hybrid model called LSTM-RBM [34], which
can be viewed as of the RNN-RBM proposed in [37], where the RNN units are
changed by LSTM units, as illustrated in Fig. 7.13. LSTM-RBM combines (1)
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FIGURE 7.13 Diagram of an LSTM-RBM model.

the effectiveness of LSTM equipped with a separate memory component and
gates mechanism for capturing long term temporal dependencies in time series,
with (2) the capacity of RBM to approximate unknown data distribution.

Furthermore, the LSTM-RBM can be understood as an extension of the re-
current temporal RBM (RTRBM), which combines a simple RNN cell and RBM
in the same architecture [34]. As RNN is used in this combination, the RTRBM
is not suited to memorize a long historical range of temporal data dependencies.
Thus, LSTM-RBM was designed to overcome this problem by permitting the
hybrid model to be more flexible and robust. The memory state, also known
as internal feedback, of the recurrent neural networks makes them a suitable
technique for modeling sequence or temporal dependencies, while, on the other
hand, the hybrid model is able to generate new sequences. As discussed above,
LSTM is designed to capture short-term memory with the possibility of decid-
ing what information in the memory is irrelevant and must be replaced with new
information by using the forget gate layer. The RBM make the sequence gen-
eration possible because of its nature as a probabilistic model used as a block
to build a deep learning model such as deep belief networks (DBN) and deep
Boltzmann machine (DBM).

The RBM part in the LSTM-RBM model comprises three parameters: the
weight matrix, W , and the bias vectors for the hidden and visible layers, bh(t)

and bv(t), at time step t . The RBM biases are computed at every time point
based on the LSTM unit at the preceding time point, which can be understood
as the LSTM transmitting temporal information. The RBM’s hidden and visible
layer biases are updated via LSTM at time point t as

bh(t) = bh + W′St , (7.19)

bv(t) = bv + W′′St , (7.20)

where St is the external state of LSTM hidden unit Ut .

7.3.4 LSTM-DBN

Several hybrid recurrent network models have recently been reported to suitably
handle dependencies in multivariate time series data. In this section, we present
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another sophisticated hybrid model called the deep belief network–long short-
term memory (DBN-LSTM) network, which is more complicated and deeper
than the above presented models [36]. This model integrates the ability of DBN
with improved learning features for uncovering relevant nonlinear features, and
LSTM to appropriately describe the temporal dependencies (Fig. 7.14). The
DBN-LSTM model permits a simultaneous deeper description of time series
data and tracking of temporal information in data. Indeed, DBN-LSTM can
be viewed as an improved version of the RNN-DBN model proposed in [35].
Using an LSTM instead of RNN enables an efficient modeling of temporal de-
pendencies across large time points. In other words, this guarantees that the
DBN-LSTM model keeps information on the sequence produced for a longer
period.

FIGURE 7.14 LSTM-DBN.

Combining the capacity of LSTM in modeling long term temporal depen-
dencies and the improved learning capacity of DBN would result in more
expressive RNNs. In the DBN-LSTM architecture, we can see that DBN es-
sentially interacts with LSTM in two points. The first point of interaction is
between the visible layer of DBN, v, which feeds the input to the LSTMs, as
illustrated in the following equation:

qt = φ(bqt ) + Wvqvt + Wqqqt−1. (7.21)

The second interaction is created where the biases of the visible and hidden units
of the DBN are computed as

bvt = bv0 + Wuvut−1 + Wqvqt−1, (7.22)

bht (n) = bh + Wuh(n)ut−1 + Wqh(n)qt−1, (7.23)

where bht (n) and bvt are the bias vector for the nth hidden layer and the bias of
the visible layer at the t th time point of the recurrence for the DBN, respectively.
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7.4 Recurrent deep learning-based process monitoring

Anomaly detection in multivariate processes such as modern industrial pro-
cesses and environmental processes requires a model that efficiently learns and
captures relevant information, thereby summarizing the evolution of the process
under nominal operating conditions. Information learned from anomaly-free
data enables to quantify the degree of deviation from the desired behavior and
specification in the detection stage. An anomaly in an industrial plant can prop-
agate very quickly to reach a critical point and the plant must be shut down
to avoid catastrophic problems. Accordingly, anomaly detection in time series
measurements of technological processes is vital for their reliability and effi-
ciency.

The improved ability of the RNN-based models described above to model
dependencies and learn relevant features in complex multivariate sequences
makes them a promising tool for anomaly detection. They can first be used
to model normal behavior of the inspected process, then applied to detect de-
viations from normal behavior without any labeling of data. RNN-based ap-
proaches have become increasingly important to their capacity to extract com-
plex nonlinear features, and have been employed for an early detection of
anomalies in industrial multivariate time series data [40,41]. In the literature,
RNN-based techniques show an effective performance in different applications
including intrusion detection [41], anomalies in industrial processes [41–44],
aircraft data monitoring [40]. In [40], an RNN-based anomaly detection ap-
proach has been introduced to uncover anomalies in multivariate time-series
data from aircraft’s flight data records, which are very helpful to identify abnor-
mal events that may reduce safety margins. In this approach, the RNN has been
trained in a supervised manner. It has been shown that RNNs-based algorithms
(a simple RNN, LSTM, and GRU) outperform the multiple kernel anomaly de-
tection (MKAD) approach based on one-class SVM, data clustering algorithms,
and machine learning models such as SVM. However, this anomaly detection
system needs more tuning to improve its overall performance. An anomaly de-
tector based on an LSTM method was developed in [41] for intrusion detection
on a car’s controller area network (CAN) bus. The LSTM-based method has
been applied in an unsupervised way to predict the next sequence of commu-
nication and classify it as malicious behavior or not. A deep LSTMs approach
stacking several LSTM units is proposed in [45] for detecting anomalies (car-
diac arrhythmias) in electrocardiography (ECG) signals, which are commonly
utilized to check the health of the human heart. The proposed model here is
built in unsupervised learning. Here, we base detection on the probability dis-
tribution of the prediction errors generated from the deep LSTM in case of
normal or abnormal behavior. In [46], a multiscale LSTM (MS-LSTM) model
is employed for detecting anomalies in border gateway protocol (BGP) traffic,
which is a protocol usually utilized on the internet for autonomous systems to
communicate routing and reachability information to improve the security of
the internet. The model is trained based on the traffic patterns from historical



242 Statistical Process Monitoring

features over a sliding time window. The results indicate that the MS-LSTM
method is promising and helpful in enhancing the security and robustness of
the Internet. In [43], an anomaly detection approach has been presented us-
ing a LSTM-based encoder–decoder scheme. In this approach, the proposed
LSTM-based model is first constructed using normal time series that reflects
the nominal behavior of the inspected process. Then, the reconstruction er-
ror for an unseen dataset is employed to detect anomalies. This approach was
applied to real datasets, including electrocardiogram (ECG), power demand,
and space shuttle, and showed promising anomaly detection results. An unsu-
pervised method using a denoising autoencoder (DAE) that feed bidirectional
LSTM with auditory spectral features is proposed in [47]. The autoencoder is
built using typical in-home situations without abnormal events. Abnormal event
detection is accomplished using the input reconstruction error between the in-
put and the output of the constructed model. In [48], an LSTM-based approach
is designed for anomaly detection and applied for intrusion detection using a
KDD 1999 dataset. First, the LSTM model is constructed based on normal data
and used to predict several time steps ahead of the input data. The anomaly is
detected by checking the predicted error in a circular array, which comprises the
prediction errors from a certain number of recent time points. An anomaly is
flagged if the predicted error exceeds the predetermined decision threshold.

In this section, we present two approaches based on RNN models for
anomaly detection in multivariate time series data, namely residuals-based mon-
itoring approaches and RNN-based clustering approaches.

7.4.1 Residuals-based process monitoring approaches

Anomaly detection in multivariate time-series data from industrial and envi-
ronmental processes is important to identify abnormal events and trends that
reduce safety margins. Here, we briefly describe the basic idea behind the
residuals-based anomaly detection methodology using recurrent models (e.g.,
RNN, LSTM, GRU, and RNN-RBM). As discussed above, the benefits of the
RNN models are due to their simplicity and capability to appropriately capture
time dependencies in multivariate time series data. The used recurrent model
is trained based on anomaly-free data. Only the normal sequences collected
from the supervised process under nominal conditions are used for training.
As the recurrent model is used to model normal behavior, training only has
to be done once offline. The constructed recurrent model is adopted for mon-
itoring new test data. The model is used to generate residuals for anomaly
detection (Fig. 7.15). The residuals, E = [e1, e2, . . . , en], are the difference be-
tween the real measurements, Y = [y1, y2, . . . , yn], and the prediction from the
RNN model Ŷ = [̂y1, ŷ2, . . . , ŷn]. The residuals are defined as

E = Y − Ŷ. (7.24)
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FIGURE 7.15 Residuals-based process monitoring approaches.

Under normal conditions, residual values fluctuate closer to zero, whereas in
the presence of an anomaly, residuals deviate importantly from zero. Univariate
or multivariate monitoring charts (e.g., EWMA, CUSUM, and GLRT) can be
applied to residuals to uncover anomalies. If the charting statistic exceeds the
decision threshold, then it can be inferred that there is an anomaly in the in-
spected process. An unsupervised anomaly detection approach is required that
needs only anomaly-free data to construct the recurrent model and no data la-
beling.

7.4.2 Recurrent deep learning-based clustering schemes for process
monitoring

7.4.2.1 RNN-RBM clustering
In Sect. 7.4.1, we explained that deep recurrent and hybrid deep models can be
used for early detection of anomalies in multivariate time series data, where the
detection is performed by using statistical monitoring charts. Since statistical
monitoring charts generally require that the data must be Gaussian and uncor-
related, here we present an alternative and more flexible strategy. Specifically,
we integrate the desirable features of RNN-based models with binary clustering
algorithms. One major feature of binary clustering algorithms such as OCSVM
is their ability to deal with nonlinear and non-Gaussian data. The primary ob-
jective of this approach is to exploit the deep recurrent models to accurately
describe the anomaly-free time series data and use clustering algorithms to reli-
ably detect the presence of anomalies.

For the sake of simplicity, in this section we focus on early detection with an
RNN-RBM model and an OCSVM clustering algorithm. Other recurrent mod-
els can be combined in a similar way with a binary clustering algorithm for
anomaly detection. We first present the outline of the proposed method and the
training procedure of the RNN-RBM model. Then, we explain the basic concept
of combining OCSVM together with a RNN-RBM model to efficiently detect
anomalies in multivariate time-series data.
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FIGURE 7.16 Illustrative graphic of the RNN-RBM-based OCSVM method.

As described above, the major characteristic of an RNN-RBM is to simul-
taneously combine the desired features of RNNs and RBMs. This model is
based on a powerful data distribution estimator, namely RBM, conditioned by
the RNN to describe local and long-term dependence in the data. The train-
ing of RNN-RBM model is performed in an unsupervised manner where only
anomaly-free data are needed. After the training of the RNN-RBM model has
been accomplished by using anomaly-free data, a feature space is obtained with
the capability of reconstructing the input with small error via encoding and de-
coding tasks. The designed RNN-RBM model can be then applied to predict
the evolution of the inspected system (e.g., inflow characteristics of WRRFs).
To design a suitable RNN-RBM model that captures temporal dependencies in
the data well, minimizing cross-entropy error [49] is used as the cost function
during the training phase. The aim of RNN-RBM is to recreate the inputs as
accurately as possible. Here, the cross-entropy is used to quantify the accuracy
of the designed RNN-RBM during the training phase, by showing the dissimi-
larity between the probability distributions of input and reconstruction from the
RNN-RBM model. Then the designed RNN-RBM model in combination with
OCSVM algorithm is adopted to detect abnormalities in multivariate time series
data (see Fig. 7.16). Here, to detect anomalies, we used the extracted features
from the RNN-RBM model as input to the OCSVM. Of course, the RNN-RBM-
based OCSVM method consists of three main stages: (1) building RNN-RBM
model based on training dataset without anomaly, (2) training in an unsuper-
vised way the OCSVM with the features discovered by the RNN-RBM model,
and (3) applying the constructed approach to new data for anomaly detection.
This approach is outlined in Table 7.2.

7.5 Applications: monitoring influent conditions at WWTP

WWTPs represent promising solutions to mitigate problems of water scarcity.
The quality of influent measurements (IMs) at WWTPs can impact treatment
units states, ongoing process mechanisms, and product qualities. Abnormalities
in IMs, frequently generated by anomalous events, require early detection for
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TABLE 7.2 Main steps of the building the recurrent probabilistic features
extractor of the proposed system.

Stage 1: Modeling

Step 1 Normalize the collected time-series data from the system
Step 2 Determine model parameters based on unsupervised training of the RNN-RBM,

wherein each time-step only one RBM is used
Step 3 Calculate the weights and bias for RNN-RBM model
Step 4 Develop the OCSVM model using the extracted features from the RNN-RBM

model
Step 5 Find the optimum hyperplane that separates normal from abnormal features to

construct the anomaly detector

Stage 2: Detecting anomalies

Step 1 Gather and scale the new test data
Step 2 Perform mapping of the scaled data X̂ into feature space FX̂ via the designed

RNN-RBM model
Step 3 Verify if FX̂ is an anomaly or normal data using the previously defined hyper-

plans

enhancing system resilience. The feasibility of RNN, RBM, and RNN-RBM
based clustering methods is verified by seven years IMs measurements (from
September 1, 2010 to September 1, 2017) from a coastal municipal WWTP.

We utilize measurements collected from September 1, 2010 to May 14, 2011
to build the studied models. The IM data is first smoothed with the exponen-
tial smoothing to reduce the effect of noise measurements and then normalized.
We used this data to train the RNN, RBM, and RNN-RBM-based models and
stand-alone individual algorithms. The selected values of parameters of the three
models are given in Table 7.3.

TABLE 7.3 Parameters in RBM, RNN, and RNN-RBM.

Models Parameter Value

RNN-RBM batch size 10

learning rate 0.001

loss function cross-entropy

number of hidden units by layer 40

number of recurrent hidden units 20

number of visible units by layer 20

optimizer Adam

training epochs 200

RBM Learning rate 0.001

Training epochs 200

DBM Layers 03
Learning rate 0.001

Training epochs 200
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In this study, we apply binary clustering algorithms for anomaly detection,
in which new data in the testing set will either be normal or abnormal. Indeed,
clustering algorithms used here are first trained in an unsupervised way (with-
out involving their labels in learning) using training data, i.e., anomaly-free data
collected when the WWTP is under normal operating conditions. Note that the
clustering procedures used in this study are parametric, and the number of clus-
ters has been fixed in the training phase as binary, where anomaly-free data have
been clustered in a dominant cluster as they have comparable patterns. Further-
more, these unsupervised clustering methods do not require labeled data or prior
knowledge of different types of anomalies to guarantee an appropriate detection
performance, which makes them appropriate for real-time monitoring. Param-
eters of each clustering method are summarized in Table 7.4. To quantitatively
assess the detection efficiency of the proposed procedures, the following met-
rics were employed: true positive rate (TPR, or recall), false positive rate (FPR),
area under the receiver operating characteristic curve (AUC), accuracy, preci-
sion, and F1-score.

TABLE 7.4 Values of parameters employed in the inves-
tigated methods.

Models Parameter Value

OCSVM gamma 2

kernel radial basis function
nu 0.001

Mean-Shift bandwidth 0.44

Agglomerative affinity Euclidean

linkage ward

k-means init k-means++
init 10
iteration 300

Spectral clustering affinity rbf
gamma 1.0

EM covarianceType full
covar 1e–06
iteration 100

Our main objective is to verify the ability of recurrent models, such as RNN
and RNN-RBM models, to detect abnormal changes in IM time series data.
Once these models are built using anomaly-free data, then they are employed
with binary clustering algorithms to detect anomalous observations in IM mea-
surements. We employed the measurements gathered from May 15, 2011 to
September 1, 2017 for testing the detection methods. These data include numer-
ous anomalies including seawater intrusion, and hypochlorite dosage.
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The detection results obtained from RNN-RBM-based clustering approaches
are summarized as radar chart in Fig. 7.17. The detection approach based on
RNN-RBM-based OCSVM method can adequately detect the abnormal con-
ditions by achieving an AUC of 0.98 (Fig. 7.17). This result indicates that
RNN-RBM-based OCSVM uncovers almost all abnormal events in IM mea-
surements declared by the operator KAUST WRRF. In addition, the results show
that OCSVM outperforms the other methods (Fig. 7.17). This is mainly due to
the flexible capacity of RNN-RBM to model time-series data and the ability of
OCSVM to detect small deviations in the features.

FIGURE 7.17 Detection efficiency of RNN-RBM-based clustering approaches based on testing
data.

We then compared the detection results of the hybrid RNN-RBM-based clus-
tering algorithms to other deep models, RNN, RBM, and DBM. In RNN, RBM,
and DBM-based approaches, the binary clustering schemes (i.e., OCSVM, K-
means, BIRCH, mean-shift, maximum expectation, and spectral clustering) are
applied to the output features of the RNN, RBM, and DBM models. A sum-
mary of the performance of RNN, RBM, and DBM-based clustering schemes
are respectively presented in Figs. 7.18, 7.19 and 7.20.

From Figs. 7.17, 7.18, 7.19, and 7.20, we can see that the RNN-RBM-based
approaches have a better detection performance compared to RNN, RBM, and
DBM-based techniques. In fact, RBM and DBM models do not capture time
dependence in modeling time-series data, which misses important features, and
the pattern might be due to unsuited detection performance when they are used
as features extractors (RBM and DBM) for anomaly detection. RNN-RBM
model is a powerful hybrid neural architecture able to model temporal corre-
lation across large time steps in the multivariate data and thus leads to a more
representative model. The results demonstrate that the RNN-RBM-based ap-
proach offers enhanced performance compared to RNN, RBM, and DBM-based
approaches in monitoring ICs of KAUST WRRF. We believe this is because
RNN-RBM model is appropriate for approximating a complicated distribution
for each time step.
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FIGURE 7.18 Detection efficiency of RNN-based clustering approaches based on testing data.

FIGURE 7.19 Detection efficiency of RBM-based clustering approaches based on testing data.

FIGURE 7.20 Detection efficiency of DBM-based clustering approaches based on testing data.

In addition, we also compared the efficiency of the proposed approach with
stand-alone clustering techniques in detecting abnormalities in IC data. Fig. 7.21
presents the results obtained when applying stand-alone clustering techniques
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to IC data. One can see that the achieved monitoring results by the stand-alone
clustering methods to monitor IC data are unsatisfactory. Experimental results
on IC data show that RNN-RBM-based OCSVM outperforms the baseline com-
petitors by a large margin (Fig. 7.21).

FIGURE 7.21 Detection performances of stand-alone clustering detectors.

Furthermore, to make the comparison of the results easier, Fig. 7.22 displays
the AUC comparison between the studied algorithms. The results indicate that
the RNN-RBM-based OCSVM is better at detecting anomalies in comparison
to the other methods presented in this study.

FIGURE 7.22 AUC metric of RNN-RBM, RBM, and DBM.

In summary, the results indicate that the hybrid RNN-RBM model is an
intuitive choice for modeling IMs multivariate time-series data. The RNN-
RBM modeling approach has been combined with binary clustering algorithms
to monitor IMs data of KAUST WWTP. RNN-RBM with OCSVM can ade-
quately distinguish normal observations form abnormal IMs observations. This
study shows that the combination of RNN-RBM and OCSVM results in bet-
ter detection. RNN-RBM are designed to handle multivariate time series data
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and OCSVM is efficient in separating normal from abnormal features. From
the results above, we can summarize that the RNN-RBM-based OCSVM are
more appropriate and efficient than the stand-alone clustering schemes, and the
RBM and DBM-based and RNN-based clustering approaches, which justifies
the superior feature extraction of the RNN-RBM model. Furthermore, OCSVM,
which is trained in an unsupervised way, can accurately distinguish the normal
from abnormal conditions compared to other studied binary clustering algo-
rithms. The power of OCSVM consists is that it is a nonlinear kernel-based
classifier, which defines hyperplane separating anomaly-free samples and ab-
normal samples by means of the projection in features space. The OCSVM
demonstrated its highest performance by dominating the other competitors in
all cases presented in this study.

7.6 Discussion

Anomaly detection has applications in various domains, such as air quality mon-
itoring, intrusion detection, product quality monitoring, and system health mon-
itoring. Recurrent deep learning models present new ways to model complex
time series data due to their extended capability to capture nonlinear interdepen-
dencies, which goes beyond a traditional mindset. As discussed in this chapter,
recurrent models such as RNN, LSTM, GRU are becoming well-reputed with
the recent breakthrough in deep learning and they are very efficient in describ-
ing temporal dependencies in multivariate time series data. It should be noted
that RNN units are subjected to the vanishing/exploding gradient issue, which
degrades the model’s capacity to capture long-term dependencies. To alleviate
these problems, LSTM and GRU units have been designed and yield improved
results as described in Sects. 7.2 and 7.3.

To uncover anomalies in time series data, recurrent models are used to ex-
tract relevant information from massive data and generate residuals which are
then evaluated by existing monitoring tools (e.g., statistical monitoring schemes
and clustering algorithms) that are proven effective. One of the major advan-
tages of using these unsupervised deep recurrent models to detect anomalies is
that they do not need hand-coded features and prior knowledge of anomalies
to work. For the purpose of anomaly detection, residuals generated by the ref-
erence recurrent models can be checked by the statistical monitoring schemes
such as univariate and multivariate CUSUM and EWMA or by using binary
clustering algorithms. In this chapter, we discussed the general framework of
recurrent deep learning based anomaly detection in Sect. 7.4.

In this chapter, to improve process monitoring in case of high-dimensional
data, we have described some hybrid models integrating the benefits of recurrent
models and energy-based models such as RBM and DBN. These recurrent hy-
brid models enjoy certain desirable properties when modeling high-dimensional
time-series datasets. Here, three flexible hybrid models to capture temporal de-
pendencies in a multivariate setting were discussed: RNN-RBM, LSTM-RBM,
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and LSTM-DBN architectures. In this chapter, deep hybrid recurrent models
were coupled with binary clustering algorithms for anomaly detection in multi-
variate times series data.

The efficacy of RNN, RBM, and RNN-RBM based methods, or stand-alone
binary clustering methods, has been verified by using seven years ICs data from
an actual WWTP where more than 150 anomalies happened. Results show that
RNN-RBM-based OCSVM outperformed the state-of-the-art competitors by a
large margin. As a perspective, other powerful architectures that help learn tem-
poral dependencies in data can be explored by merging recurrent models and
energy-based models and autoencoders.
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Chapter 8

Case studies

8.1 Introduction

Efficient management of road traffic is becoming necessary to reduce the eco-
nomic losses caused by traffic congestion and accidents. A survey carried out
by the Organization for Economic Cooperation and Development (OECD) re-
vealed that 10 million people are involved in a road accidents each year globally.
Of these, 20% to 30% are severely injured and 400,000 die. Hence, researchers
and practitioners are working to design intelligent transportation systems and
autonomous vehicles. Numerous technologies have been developed to effec-
tively detect obstacles in road environments using advanced sensors, including
RADAR and LIDAR systems and 3D and 360-degree cameras [1,2]. Reliable
detection and localization of obstacles are central problems that need to be ad-
dressed in order to avoid collision during autonomous driving. Studies have
examined several practical applications involving obstacle detection, including
swarm robotics, unmanned aerial vehicles, agricultural applications, and smart
wheelchairs [2,3]. The aim of this chapter is to detect obstacles faced by au-
tonomous robots in indoor environments using stereovision.

Recently, based on the emerging concept of smart cities, considerable work
has been carried out to improve traffic management and intelligent transporta-
tion systems, such as vehicle-to-vehicle or vehicle-to-infrastructure (e.g., traf-
fic signs) systems, and to build intelligent roads equipped with sensors. This
is intended to considerably reduce the risk of accidents and financial burden
and improve human safety [4–10]. Obstacle detection and localization are the
main challenges that must be overcome in designs for driving assistance sys-
tems (DASs). Over the last two decades, researchers and practitioners have
made efforts to develop real-time obstacle detection techniques for autonomous
vehicles. Currently, most automated decision-making systems that have been
deployed are based on advanced sensors, such as RADAR and LIDAR systems
and 3D cameras [8,1]. In [11], an obstacle detection technique was designed
for an outdoor environment using Microsoft Kinect. In [12], an intelligent fiber
grating (FG)-based 3D vision sensory system was proposed for real-time obsta-
cle detection and tracking using a charge-coupled device (CCD) CCD camera
equipped with laser technology. In [13], the authors proposed two obstacle de-
tection approaches; one used a monocular camera and the other used 360-degree
vertical cameras. Much work has been done to develop improved obstacle de-
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tection techniques using Stixel World [14,15] by looking for free spaces. In this
program, stixels represent 3D scenes in a compact manner, bridging the gap
between objects and pixels [14]. In other words, they offer an efficient way to
encode free space and obstacles in front of the vehicle in which 3D objects are
represented by a set of rectangular sticks called stixels. Stixel-based approaches
are based on image processing for detection and recognition by identifying re-
gions of interest (ROIs), which serve as the input for training a classifier [14,
15]. Semiglobal matching is implemented on the field-programmable gate array
(FPGA) board and a graphics processing unit (GPU) is used to compute dense
optical flow for tracking purposes.

Nadav and Katz introduced an approach for obstacle detection in an off-road
environment based on a monocular camera [16]. This approach used both 2D
and 3D video analysis methods. Woo and Kim also proposed a vision-based ap-
proach to detect obstacles and estimate the collision risk of an unmanned surface
vehicle [17]. It was implemented by transforming visual information regarding
obstacles into motion information [17]. Furthermore, Burlacu et al. designed a
stereovision technique for obstacle detection based on multiple representations
of the disparity map (i.e., V-disparity, U-disparity, θ -disparity) [18]. This tech-
nique identifies obstacles in a 3D environment with disparity processing [18].
Other approaches use descriptors extracted from images, including local binary
patterns, scale-invariant feature transforms, and histograms of oriented gradi-
ents, for obstacle detection [19]. Unfortunately, these approaches require full
processing of images to detect obstacles and involve a high level of computation.

Guaranteeing road safety remains challenging because of the complexity of
this topic. To date, more focus has been placed on vision sensing for obsta-
cle detection, recognition, localization, and tracking systems. Computer vision
provides an efficient way to observe the surrounding environment using dif-
ferent techniques, such as stereovision, which allows a camera to perceive the
world in 3D by estimating depth. Currently, of the computer-vision techniques,
stereovision has attracted the most attention among researchers because of its
simplicity, robustness, low cost of computing, and potential for 3D percep-
tion. Stereovision-based obstacle detection has a central role in the design of
autonomous and intelligent transportation systems to reduce the risk of acci-
dents [20,21,4,7,22].

Recently, detecting obstacles via machine learning approaches has become
a hot research area [23–27]. There are two classes of machine learning ap-
proaches: shallow and deep learning [28,29]. Numerous shallow algorithms
have been applied for supervised obstacle detection and classification, includ-
ing support vector machines (SVMs) and neural networks with one or two
layers [29]. For instance, an approach using a histogram of oriented gradients
(HOG) and SVM was applied for human detection using a single view. Shallow
learning methods are appealing for their simplicity and ease of implementation.
However, they are unsuitable for uncovering relevant features when handling
complex and high-dimensionality data [30,31]. On the other hand, the grow-



Case studies Chapter | 8 257

ing complexity of the gathered data has resulted in the development of deep
learning methods that can account for features such as time-dependent mea-
surements, seasonality, and non-Gaussianity. In comparison to shallow methods,
deeper networks are more accurate and are able to learn more comprehensive
information and relevant features of obstacles from the training data set. Deep
convolutional neural networks (CNNs), which have demonstrated a high ca-
pacity for image classification, have been widely used to detect and recognize
obstacles. In [32], deep CNNs were applied to detect and recognize obstacles
using 2D images. Also, in [27], deep CNNs were used to detect unexpected
obstacles for self-driving cars. Although they were effective for identifying ob-
stacles using 2D images, CNN-based methods were not able to approximate
the distribution of data, reduce dimensionality, or learning in an unsupervised
manner, which are indispensable for real-time obstacle detection [30]. To allevi-
ate these shortcomings, researchers have developed unsupervised deep learning
methods, such as restricted Boltzmann machines and autoencoders [33]. Usu-
ally, in these unsupervised approaches, an image is fully scanned and then the
ROI is surrounded. However, this process can be performed for both free scenes
and scenes that contain obstacles, which makes it computationally costly. In
other methods, the obstacle detection problem is viewed as an anomaly detec-
tion problem. First, a reference model is constructed based on data that is devoid
of obstacles, and then this model is used to detect obstacles in the remainder of
the data.

Congestion phenomena, road traffic monitoring, and management have been
the subject of much research conducted by researchers and engineers during the
last few decades due to their detrimental impacts in many areas, such as hu-
man health, the environment, and economics. Additionally, effective detection
of obstacles is essential for developing reliable autonomous vehicles. Since the
road is shared by several traffic participants (e.g., cars, bikes, and pedestrians),
especially in urban environments, full awareness of obstacles and traffic par-
ticipants is indispensable for avoiding accidents that might lead to catastrophic
scenarios. However, detection in urban environments is challenging due to the
presence of different types of obstacles (i.e., dynamic and static). Additionally,
the similarity of the obstacles to the background and the presence of cast shad-
ows or reflections can make it difficult to detect obstacles. Stereovision is vital
for understanding scenes, as it provides relevant information about obstacles and
traffic participants (e.g., size and shape), which helps with early detection. Also,
deep learning techniques can offer improved detection performance compared
to shallow methods, which are mainly based on hand-crafted features and thus
are difficult and time-consuming to design and limited in their representation
abilities.

This chapter presents an unsupervised deep learning-based obstacle detec-
tion approach based on stereovision. This approach amalgamates the desirable
characteristics of the deep-stacked autoencoders (DSA) model and the detection
capacity of the k-nearest neighbor (kNN) clustering procedure. Specifically, the
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V-disparity data distribution is computed from original images and then is used
as an input for the DSA model, which is a powerful way to model complex
data. V-disparity is used due to its sensitivity to the presence of obstacles [34].
Then, the kNN algorithm is applied to features extracted from the DSA model
for obstacle detection. This coupled approach is implemented in an entirely
unsupervised way. Three available datasets (i.e., the Malaga and Daimler ur-
ban segmentation datasets and the Bahnhof data set) are used to evaluate the
proposed approach. The results demonstrate that this approach has a suitable
capability to detect obstacles.

The main contribution of this research is an effective unsupervised stereo-
vision-based obstacle detection approach for autonomous vehicles in driving
environments. In Sect. 8.2, stereovision and its use in obstacle detection are
briefly introduced, and in Sect. 8.2.1 the DSA-kNN approach is outlined. In
Sect. 8.2.2, the applied data set is presented. Section 8.2.3 presents the results
and some concluding remarks.

8.2 Stereovision

In recent years, there have been great improvements in image processing tools,
computer vision, and vision sensors. For instance, multiple views can be used
to obtain 3D information to estimate the depth and thus determine the distance
of an object from cameras mounted on moving vehicles. Using two views for
3D perception, which is commonly called stereoscopic vision, or simply stereo-
vision, has proven especially useful in applications such as autonomous mobile
robots. Stereovision requires left and right rectified images, which are processed
by applying the epipolar geometry constraint to align the y-axis of the two im-
ages [4,6]. Thus, stereovision can be defined as a procedure that computes depth
information by comparing two rectified images from the same scene. The ex-
tracted information is usually called a disparity map, which encodes deviation in
the horizontal coordinates of corresponding image pairs. In other words, dispar-
ity maps point out disparities that represent the difference in an object’s position
in two corresponding rectified images.

The value of the disparity expresses the distance of an object from the
camera. Small values indicate little distance between the object and camera,
while larger values indicate a greater distance. The disparity map is a ma-
trix of the distances between two corresponding pixels in the image pair (left
and right). It is computed for every image pair to construct 3D data. Numer-
ous techniques have been developed in the literature for computing disparity
maps,D, based on matching correlation metrics, including absolute differences,
squared differences, the sum of absolute differences (SAD), and normalized
cross-correlation [4,6,35,36]. The SAD (defined in Eq. (8.1)) is one of the most
frequently used metrics to compute disparity maps due to the simplicity of im-
plementing it in real time [37,38]. The SAD measures the absolute difference
between the intensity of each pixel in the left image, Ileft, and the corresponding
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pixel in the right image, Iright:

DSAD(i, j, d) =
ω∑

u=−ω

ω∑
u=−ω

∣∣∣∣Ileft(i +u, j +v)− Iright(i +u, j −d +v)

∣∣∣∣ (8.1)

where d represents the disparity interval [dmin, dmax], which is delimited be-
tween the minimum and maximum disparity values (dmin and dmax, respec-
tively), and i, j are the coordinates (rows and columns, respectively) of the
center pixel of the SAD. Differences are summed over the support window, ω,
to obtain a disparity map.

Estimating the position of the road profile is helpful for identifying obstacles
that are standing in the monitored scene. After generating the disparity map, it
is essential to compute the U-disparity and V-disparity maps [39]. V-Disparity
maps that effectively estimate a road’s profile using transform and depth esti-
mation have been developed [4,6]. These maps have shown a good ability to
provide information about obstacles’ height and position in reference to the
ground [4,6]. For illustration purposes, Fig. 8.1A–B depicts V-disparity maps
of a free scene and a busy scene. The steps for computing the V-disparity are
sketched in Algorithm 1.

Algorithm 1: V-disparity computation steps.
Input: Disparity map DispMap(rows, cols)
Input: Dmax: Max disparity value.
Output: V-disparity DispMapv (rows, Dmax)

1 for Each row r in DispMap do
2 for Each column c in DispMap do
3 currentDisparity ← DispMap(r, c)

4 if currentDisparity > 0 then
5 DispMapv(r, c) ← (currentDisparity + 1)

In order to surround obstacles in the ROI, the obstacles’ width must be de-
termined. U-disparity expresses histograms over the disparity values for each
image column (the U coordinate) [4,6,40]. In other words, both the V-disparity
and U-disparity can be defined as the number of pixels with the same level of
disparity at rows’ Y -axis and columns’ X-axis in the disparity map. Algorithm 2
describes the main steps taken to obtain the U-disparity.

Relevant information about urban environments can be learned from the U–
V-disparity. Fig. 8.1A–B illustrates the U–V-disparity by providing examples of
V-disparity and U-disparity analysis of a free scene and a scene containing ob-
stacles, respectively. Interestingly, the road surface is viewed as an inclined line
in the V-disparity map, while the static environment is represented by a vertical
line (cloud of points) on the lower disparity map. Its thickness is related to the
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Algorithm 2: U-disparity computation steps.
Input: Disparity map DispMap(rows, cols)
Input: Dmax: Max Disparity value.
Output: U-disparity DispMapu (Dmax, cols)

1 for Each row r in DispMap do
2 for Each column c in DispMap do
3 currentDisparity ← DispMap(r, c)

4 if currentDisparity > 0 then
5 DispMapu(r, c) ← (currentDisparity + 1)

richness of textures, such as those of buildings and trees (Fig. 8.1A). Based on
the V-disparity map (Fig. 8.1B), we can see that obstacles on a road are repre-
sented by vertical lines with high intensities. The V-disparity map in Fig. 8.1B
highlights obstacles (walking pedestrians) via vertical lines on the road profile.
If the vertical line is near the right part of the V-disparity map, then the obsta-
cle is positioned close to the front of the vehicle, and vice versa. Furthermore,
the length of the vertical line indicates the height of the obstacle in front of
the monitored vehicle, and the thickness of the vertical line is proportional to
the obstacle’s thickness in the image. In Fig. 8.1B, the U-disparity map is dis-
played at the top of the image, clearly showing the presence of obstacles (i.e.,
pedestrians). A major appeal of the U-disparity map is its capability to provide
estimations of obstacles’ width and depth [40–42]. By using both U-disparity
and V-disparity maps, it becomes possible to discriminate between obstacles
and identify ROIs surrounding obstacles, as shown in Fig. 8.1B.

Sometimes, a density map is used in stereovision instead of a V-disparity
map for obstacle detection and localization. Basically, a density map is a com-
pressed version of a V-disparity map without the loss of relevant information.
A major benefit of this compression is a reduction in the computational cost.
After segmenting the V-disparity in numerous cells(Fig. 8.2), the density corre-
sponding to each cell is expressed as follows:

DensityCell =
( Cell∑

I (i, j)
)
/(w · h),

where I (i, j) represents the intensity of the pixel in row i and column j , and w

and h denote the width and height of the cell, respectively.
As shown above, the V-disparity map has good characteristics, and it can be

used to detect obstacles in front of the vehicle at any time point by constructing
a reference model of obstacle-free scenes. Below, we test different approaches
involving deep-learning-based models.
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FIGURE 8.1 (A) Example of V-disparity analysis of a free scene. (B) Example of a U–V-disparity
map of an urban environment with obstacles.

8.2.1 Deep stacked autoencoder-based KNN approach

This section provides a brief overview of autoencoders, which are used to build
deep learning models for obstacle detection. Then, we briefly present a deep-
stacked autoencoders (DSA)-based obstacle detection approach.
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FIGURE 8.2 An illustrative example of the basic principle of density map.

FIGURE 8.3 Diagrammatic illustration of an autoencoder.

8.2.1.1 Preliminary materials: autoencoders
An autoencoder is an extended version of a neural network constituted of a vis-
ible (input) layer, v, and a hidden layer, h [33]. Autoencoders are extensively
used in multivariate processes to resolve problems of dimensionality reduc-
tion and feature extraction (see Fig. 8.3). Generally speaking, an autoencoder is
trained without labeled data (unsupervised), and the main goal is to reconstruct
inputs via two function encoders, E andD. The encoder function is expressed as
h = E(v), which can be either linear or nonlinear. When E is nonlinear, the au-
toencoder will discover and learn more complex data representation than linear
PCA [33]. Essentially, the decoder function is denoted by v̂ =D(h). Its main
objective is to reconstruct inputs based on learned features. The aim of the learn-
ing process is to minimize the negative log-likelihood of the reconstruction,

Reconstruction error = − log(P (v|E(v)), (8.2)

where P denotes the probability attributed to the input vector v by the model.
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FIGURE 8.4 Diagrammatic illustration of a stacked autoencoder.

A stacked autoencoder is formed of several layers (see Fig. 8.4), each of
which is an autoencoder. The outputs of each layer feed the next layer in a
greedy layerwise way. The encoding process is implemented by encoding each
layer in a forwarding order, and the decoding process is performed in reverse
order. Stacked autoencoders have been applied for different purposes, includ-
ing content-based image retrieval, image denoising [43,44], and medical object
recognition [45].

8.2.1.2 The SDA-kNN obstacle detection approach
Several advanced sensors have been designed for concise and effective ob-
stacle detection in autonomous vehicles and robots, including RADAR and
LIDAR systems and 3D cameras [46,1]. However, these sensors have a high
cost and require continuous maintenance. In addition, it is sometimes challeng-
ing to synchronize data from different sources. To overcome these drawbacks,
vision-based methods have been designed to automatically detect and localize
obstacles [42,41,47]. Such methods primarily use multiple views based on vi-
sual sensors that are able to obtain depth information and see 3D components in
a scene. Binocular stereovision, which uses two rectified images (left and right)
to create a disparity map, has attracted much attention among researchers. This
method mimics human eyes by observing one scene from two different view-
points [42,41,40].

An effective solution to all the above-mentioned challenges is to merge the
benefits of deep learning models with nonparametric clustering methods to de-
tect obstacles with stereovision. In this section, we present an approach that
merges DSA modeling with the kNN algorithm. Essentially, the DSA model
is used to model obstacle-free scenes, and the kNN algorithm is applied to
the features extracted using DSA in order to reveal obstacles. This approach
is advantageous because DSA is an assumption-free model, it captures relevant
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features from a V-disparity map, and it has greedy learning properties and the
capacity for dimensionality reduction. In addition, the kNN is an unsupervised
and nonparametric clustering algorithm that does not require linear or Gaussian
distribution of input data.

The DSA-based kNN method detects obstacles as anomalies using a V-
disparity map. The V-disparity of images perceived in urban environments
without obstacles is relatively stable with weak fluctuations due to measure-
ment noise [34,40], and significant variations in V-disparity can be observed
when obstacles are present. The method includes two steps: first, the V-disparity
dataset is used to provide unsupervised greedy layerwise training to the deep en-
coder, and second, kNN is used to reveal potential obstacles. The kNN scheme
is trained using features extracted with the DSA model based on an obstacle-
free scene. This allows the kNN scheme to separate free and busy scenes in the
testing data.

The objective of the monitoring system is to promptly detect any obstacles
in front of an autonomous vehicle or mobile robot that can lead to dangerous
accidents. In summary, in the DSA-kNN approach, obstacle detection is per-
formed as anomaly detection based on features extracted from the DSA model.
The kNN is used to identify deviations between obstacle-free features and newly
extracted features. The DSA-kNN obstacle detection scheme is implemented in
two stages: feature generation and feature evaluation:

Stage 1. The objective of the first stage is to learn relevant information from
the V-disparity map to generate features that are sensitive to the pres-
ence of obstacles. To this end, a normalized V-disparity map is used
as an input for the DSA model. Then, a reference SDA model is con-
structed using unsupervised greedy layer-wise training with unlabeled
data. This model has four layers. The role of each is to learn complex
and hierarchical features, and the output of the ith layer feeds the next
(i +1) layer. Additionally, each layer discovers useful features and re-
duces dimensionality through encoding. Then, the extracted features
are utilized for monitoring. The main advantage of DSA is its capac-
ity to learn pertinent information from complexly distributed data and
produce low-dimensionality outputs. One of the key purposes in train-
ing the DSA model is to minimize reconstruction errors computed
through cross-entropy (represented by L in Eq. (8.3)). Cross-entropy
is a commonly used metric for evaluating deep learning models. Op-
timization is achieved by minimizing cross-entropy by quantifying
the mismatch between two probability distributions of the input data
and the estimation of the DSA model. The DSA model is selected
when the dissimilarity between the two distributions decreases, which
means that cross-entropy converges near zero [44]:

L(X, X̂) = −
n∑
i

m∑
j

(x̂ij log(xij ) + (1 − x̂ij ) log(1 − xij )) (8.3)
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FIGURE 8.5 Illustration of the DSA-based kNN obstacle detection method.

where X is the input (n × m) normalized V-disparity matrix and X̂

is the reconstructed V-disparity matrix via the built model of size
(n × m).

Stage 2. The obstacle detection phase involves evaluating the features extracted
through DSA using the kNN scheme, which is an efficient nonpara-
metric algorithm for separating different features (Fig. 8.5). Briefly,
the kNN algorithm separates normal features from abnormal features
(to identify inliers from outliers) by measuring the distance between
the actual observation and the kNNs of obstacle-free data. The kNN
scheme are applied by computing all distances, dj , in elements of the
training set, S, using the following equation, dj = distance(x,Sj).
The kNN distances with large values are used as indicators of obsta-
cles in front of the vehicle. Euclidean distance is often used to measure
similarity in kNN-based approaches. In scenes with no obstacles in
front of the vehicle, the kNN distance fluctuates near zero, and in
scenes with obstacles, the kNN distance significantly diverges from
zero. Hence, large kNN distances indicate that there is a significant
inconsistency between new observations and the training (obstacle-
free) observations. Specifically, for every observation xi (output of the
DSA) in the training data, the kNN distances to its nearest neighbor
in the training data, Di , are determined, based on which the sample
distributions of distances can be computed:

Di =
k∑

j=1

dij , (8.4)

where dij is the distance from an observation to its j th nearest neigh-
bor. The goal is to find obstacles at any time point within an observed
scene using image pairs (left and right). This can be done by creat-
ing a detection threshold or control limit that distinguishes between
free and busy scenes. We utilize the 3-sigma rule to fix the detection
threshold, UCL, based on the kNN distance. In other words, we aim to
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flag an obstacle in front of the vehicle once the kNN distance passes
the detection threshold. For the selected threshold, the false alarm rate
was 0.27%. Based on the distribution of Di , the parametric threshold
of the kNN-Shewhart approach is computed as follows:

UCL = μD + 3σD, (8.5)

where μD and σD are the mean and standard deviation of kNN dis-
tances based on obstacle-free training data. An outlier (i.e., obstacle)
is identified at the ith time point if the kNN distance, dj , exceeds the
decision threshold,

dj > UCL. (8.6)

8.2.2 Data description

The effectiveness of the previously described algorithms was verified using the
Malaga stereovision urban data set (MSVUD) [48] and the Daimler urban seg-
mentation data set (DUSD) [49]. MSVUD consists of 15 subdatasets (extracts)
with rich urban scenarios. MSVUD data was collected as a vehicle traveled for
more than 20 km in an urban environment, which included a straight path, turns,
road junctions, avenue traffic, and a freeway. The resolution is 800×600 pixels.
DUSD data, which were gathered in urban traffic, include rectified stereo image
pairs with a resolution of 1024 × 440 pixels [49].

The training dataset consists of two subdatasets of MSVUD. The first subset
(called Extract #05 in MSVUD) includes 5,000 pairs of images collected from
an avenue loop closure of around 1.7 km. The second subset (called Extract #08
in MSVUD) includes 10,000 pairs of images collected from a long loop closure
of around 4.5 km. We also used 500 pairs of images from the DUSD dataset. For
model training purposes, we selected datasets known to be devoid of obstacles.

For testing purposes and to verify the performance of the obstacle detection
methods, we used two MSVUD datasets (1437 pairs of images) [48]: FREE-
DST (3563 pairs of images) and the BUSY-DST datasets. The FREE-DST con-
sists of images of free roads, while the BUSY-DST dataset consists of images of
busy scenes with obstacles (e.g., vehicles, motorbikes, and pedestrians). These
two datasets were randomly selected from extracts #10 and #12 of MSVUD.

8.2.3 Results and discussion

The DSA-kNN method was implemented into two steps. In the first step, we
constructed the DSA model and established the detection threshold of the kNN
detector based on training data with no obstacles. In the second step, we used
the kNN detection threshold to detect obstacles in the unseen (remaining) data.
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8.2.4 Model trained using data with no obstacles

Data believed to be devoid of obstacles were used to construct a reference DSA
model. Fig. 8.6 displays four examples of scenes with no obstacles and their cor-
responding V-disparity maps. The inclined line in the V-disparity map represents
the road profile, while the vertical line in the low V-disparity map represents the
static environment (Fig. 8.6). These scenes do not include obstacles, as indi-
cated by the free inclined line, and the vehicle is relatively far from the static
environment, as indicated by the settled vertical lines with low V-disparity.

FIGURE 8.6 Examples of four scenes with no obstacles: (right) the input image; (left) its corre-
sponding V-disparity map.

Fig. 8.7 shows the evolution of the loss function (cross-entropy) in the func-
tion of the number of epochs. An epoch is one forward and backward pass of
the training data over the layers of the deep learning model. The learning rate of
the DSA model was set at 0.01. As can be seen in Fig. 8.7, that model loss con-
verges at a relatively fast rate and reaches its minimum, which is close to zero,
after 120 epochs. Based on this, we conclude that the DSA is able to model and
reconstruct a V-disparity map with small errors. As discussed earlier, DSA has
a good capacity for learning complex data without assuming anything regarding
the underlying input data. Thus, this model will be adopted to detect obstacles
in urban scenes.

The DSA we used has four layers. The V-disparity map is used as an input for
the first, or input, layer, which is comprised of 600 × 256 neurons. The second
layer, called the first hidden layer, is the first layer used to learn important fea-
tures and reduce the dimensionality of the input data by 75% ((600 × 256)/4).
Then, the output data from the first hidden layer is passed to the second hidden
layer, which contains (600 × 256)/64 neurons, in order to extract the remain-
ing information and further reduce dimensionality. The fourth layer, called the
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FIGURE 8.7 Line plot of cross-entropy error loss over training epochs.

output layer, contains 1024 neurons, representing the dimension of the extracted
features.

The process can handle 12 frames per second using a current PC. The PC we
used is equipped with an Intel i7 CPU and Intel Streaming SIMD Extensions
technology, allowing for real-time implementation.

Next, the DSA model was used with the kNN algorithm to reveal obstacles
in an urban environment. To illustrate the efficiency and effectiveness of DSA-
kNN for extracting relevant features from data and distinguishing free scenes
from busy scenes, we tested the DSA-kNN approach using training data sets of
different sizes. Fig. 8.8 depicts the outcome of the DSA-kNN approach when
using differently sized samples of FREE-DST data. Inliers are considered true
positives and outliers are false positives. It is clear from Fig. 8.8 that the ac-
curacy of the DSA-kNN approach is improved when the size of the training
samples is increased. The best performance was achieved with 5,000 training
samples.

FIGURE 8.8 Performance of the proposed DSA-KNN using the FREE-DST dataset.
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8.2.5 Evaluation of performance for busy scenes

We assessed the performance of the DSA-based kNN obstacle detection ap-
proach based on its ability to detect obstacles in busy scenes in an urban envi-
ronment. Fig. 8.9 illustrates two examples of busy scenes from the BUSY-DST
dataset. In the V-disparity maps in this figure, there are vertical clouds of points
settled on the road profile, indicating the presence of obstacles. This characteris-
tic of V-disparity maps could be useful for obstacle detection. This confirms that
the V-disparity map is a sensitive indicator of obstacle detection, as discussed
earlier.

FIGURE 8.9 Examples of scenes with obstacles with V-disparity and U-disparity maps.

We also compared the performance of the DSA-based kNN approach to that
of DSA- and deep belief network (DBN)-based clustering algorithms (i.e., kNN,
KM, MS, EM, BIRCH, SC, AG, and AP) using the same parameters for the clus-
tering schemes (Table 8.1). The DBN model had 600 × 256 neurons in the input
layer and 1024 neurons in the output layer. For more details on DBN, see [26].

Similar to DSA-based methods, in DBN-based methods, the DBN model is
used to extract relevant information from an input V-disparity map and then clus-
tering schemes are applied to the DBN’s features to detect obstacles (Fig. 8.10).
In order to select the most effective approach for detecting obstacles, we used the

FIGURE 8.10 DBN clustering obstacle detector.



270 Statistical Process Monitoring

TABLE 8.1 Values of parameters used in the
studied schemes.

Models Parameter Value

KNN weights uniform

algorithm BallTree

metric minkowski

leaf_size 30

Autoencoder Learning rate 0.01

Training epochs 100

MS bandwidth 0,44

AP damping 0.5
iteration 200
convergence 15

AG affinity euclidean

linkage ward

Birch threshold 0.5

branch 50

KM init k-means++
init 10
iteration 300

SC affinity rbf
gamma 1.0

EM covarianceType full

covar le-06
iteration 100

Operating area Disparity Min 32 (pixels)

Disparity Max 64 (pixels)

following evaluation metrics: true positive rate (TPR), false-positive rate (FPR),
precision, accuracy, area under curve (AUC), and F-measure. The outcomes of
the DSA-based and DBN-based obstacle detection methods for the MSVUD
and DUSD data sets are displayed in Figs. 8.11A and 8.11B, respectively.

The results shown in Fig. 8.11A indicate that the DSA-kNN method
achieved the highest AUC (0.91), followed by DSA-AG (AUC = 0.77) and
DSA-EM (AUC = 0.67). The remaining DSA-based clustering methods did
not achieve suitable results. Thus, we can conclude that obstacle detection is
significantly improved when using the DSA-kNN method.

As shown in Figs. 8.11B and 8.12, DSA-kNN achieves clearer separation
between free scenes and scenes with obstacles compared to DBN-kNN. The
AUCs achieved by DSA-kNN and DBN-kNN are 0.91 and 0.86, respectively.
Based on these results, DSA-kNN is better than DSA-based and DBN-based
clustering algorithms for obstacle detection.
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FIGURE 8.11 Heatmap depicting the detection performance of DSA-based clustering algorithms
when applied to MSVUD and DUSD datasets. (A) DSA-based obstacle detection schemes;
(B) DBN-based obstacle detection schemes.

FIGURE 8.12 Comparison of the performance of the DSA-kNN algorithm and other algorithms in
terms of AUC.

The major reason is due to the great feature extraction ability of DSA and the
extended capacity of the kNN scheme to uncover and separate normal form ab-
normal features. Also, kNN is nonparametric and an assumption-free algorithm
that skips assumption on data convexity (cluster shape) as the case when using
the EM algorithm. Another interesting observation is that there is a priori infor-
mation about the number of clusters when applying kNN and it is insensitive to
data ordering as in the BIRCH scheme. Additionally, kNN is flexible and does
not require the concept of center (centroid), it can deal with high multivariate
data, and it possesses robustness to noise measurements, which is not the case
of some schemes including agglomerative and k-means.

8.2.6 Obstacle detection using the Bahnhof dataset

Then, we evaluated the performance of the previously presented obstacle de-
tection schemes using Bahnhof data sets collected from busy inner-city scenes,
focusing only on pedestrian tracking-by-detection [51]. It is designed to address
the multiperson detection and tracking problem in crowded pedestrian areas us-
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ing a stereo rig placed on a mobile platform. The data consist of 800 stereo
image pairs. We selected 520 scenes with no obstacles and 280 scenes with ob-
stacles. The goal was to reveal obstacles at any time point within the image
pairs by constructing a deep-learning-based model that distinguishes between
obstacle-free and busy scenes. Specifically, we aimed to use the data to check
the performance of DSA- and DBN-based clustering methods for detecting ob-
stacles (i.e., pedestrians) in busy scenes. We first used the data with no obstacles
(i.e., pedestrians) to build the DSA- and DBN-based clustering methods. Then,
the constructed models were applied to the testing data (i.e., 280 scenes with ob-
stacles) for obstacle detection. The extracted features from deep learning models
(i.e., DSA and DBN) served as input for the clustering schemes during the fault
detection task. Fig. 8.13A–B illustrates the outcome of directly applying DSA-
and DBN-based clustering methods to the Bahnhof testing data. The columns
in the heatmaps represent evaluation metrics, and the rows represent the applied
methods. Fig. 8.14 displays the AUC values achieved by the DSA- and DBN-
based obstacle detection methods when applied to the testing data.

FIGURE 8.13 Detection performances of (A) DSA-based, and (B) DBN-based clustering schemes
when applied to Bahnhof dataset: (A) DSA-based obstacle detection schemes; (B) DBN-based ob-
stacle detection schemes.

FIGURE 8.14 Comparison of AUC’s DSA and DBN-based clustering methods.



Case studies Chapter | 8 273

The results show that the DSA-based clustering algorithms have higher de-
tection performance than the DBN-based clustering algorithms. In other words,
the features extracted using DSA based on the V-disparity map are more in-
formative and sensitive to the presence of obstacles than the DBN model. This
confirms the results obtained based on MSVUD and DUSD data sets. Further-
more, compared with the other types of machine learning, DSA-kNN has higher
detection performance and achieved an AUC of 0.94. DBN-kNN achieved an
AUC of 0.82. The obtained results demonstrate that DSA-kNN has a good ca-
pacity to detect obstacles in urban environments and crowded pedestrian zones,
mainly due to the capability of DSA to extract relevant features from the in-
put V-disparity data, which are sensitive to obstacles. In addition, the DSA is
an assumption-free model that can very flexibly extract linear and nonlinear
features from data using greedy learning properties, and it can reduce the dimen-
sionality of input data. Interestingly, applying the kNN lazy learning procedure
to the DSA-kNN method allowed us to handle nonlinear features, leading to
greater performance than the other DSA-based binary clustering methods. Thus,
overall, the combined DSA-kNN detection method outperformed the other al-
ternatives.

In summary, accurately detecting obstacles in an urban environment is in-
dispensable for obstacle avoidance in several applications related to autonomous
vehicles and mobile robots. We presented an unsupervised deep learning method
for obstacle detection that integrated DSA as a modeling framework with the
kNN detection scheme. V-disparity maps computed using the stereo image pairs
were used as inputs for the deep learning model. This approach exploits the sen-
sitivity of V-disparity maps to the presence of obstacles in order to improve
obstacle detection accuracy. New features are constructed and learned by DSA
to lower the dimensionality of the space and improve detection performance. In
addition, kNN is used to identify abnormal features and flag potential obstacles
in front of the autonomous vehicle. The experimental results were obtained with
three publicly available datasets: MSVUD, DUSD, and the Bahnhof data set.
Also, the DSA- and DBN-based binary clustering methods were compared. The
verification results reveal that DSA-kNN is a promising approach to reliable ob-
stacle detection in road environments. Since it achieved acceptable results when
faced with real-time constraints (i.e., processing at least 10 frames per second
using a PC), it is expected that the performance could be further improved by
using a GPU and parallelization for real-time operation.

In this study, obstacle detection in road environments and crowded pedes-
trian zones was performed under good weather conditions. However, changes
in weather conditions and illumination could affect the quality of the collected
stereovision images, reducing obstacle detection performance. Therefore, in fu-
ture work, we will investigate the performance of the aforementioned methods
under poor weather conditions and work to develop a stereovision-based obsta-
cle detection method that effectively detects obstacles under such circumstances.
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8.3 Detecting abnormal ozone measurements using deep
learning

8.3.1 Introduction

In recent years, great attention has been paid to air quality monitoring world-
wide, particularly after the 2015 United Nations Climate Change Conference
(COP 21) [50,51]. Ozone (O3) is a critical air pollutant that has a negative im-
pact on human health [50,51]. It is created by a chemical reaction of volatile
organic compounds (VOCs) and nitrogen [50,51]. High concentrations of ozone,
which are usually observed in the summer under high temperatures and in
bright sunlight conditions, can lead to an air quality issue called photochemi-
cal smog [52–54]. High levels of ozone are frequently reported in urban zones,
particularly in industrial countries, such as China and France [55,56]. Reliable
detection of ozone pollution is crucial for informing and alerting people of the
need to avoid exposure to severe pollution, protecting public health, and man-
aging air quality [57,58].

Over the years, several methods for detecting atypical ozone pollution have
been developed. In [59], the multivariate Seasonal AutoRegressive Moving Av-
erage with eXogenous variable (SARMAX) method was used with a constrained
generalized likelihood (CGLR) approach for detecting abnormal ozone levels,
which may be caused by sensor faults or ozone pollution. SARMAX was used as
a reference model to describe the ambient temperature and generate the residuals
that were used by the CGLR approach for identifying abnormal measurements.
Ozone measurements from the Upper Normandy region of France were used
for validation. However, the SARMAX is a linear model and therefore was not
appropriate to describe nonlinear features of ozone data. In [59,56], a statistical
method for detecting abnormality in ozone concentrations was proposed. This
method is based on the joint use of principal component analysis (PCA) and
the multivariate exponentially weighted moving average (MEWMA). MEWMA
was used to monitor the principal components with the smallest variances (i.e.,
residuals). The sensitivity of MEWMA to incipient changes was investigated
to improve the detection capability of the PCA-based approach. Since the PCA
is a static model, it failed to describe dynamic features in data. Additionally,
the MEWMA scheme was designed based on the assumption of Gaussianity,
which limits the efficiency of this approach for detecting non-Gaussian data.
The method described in [60] used stochastic modeling and a generalized like-
lihood ratio (GLR) test to detect biases in the sensors used to measure ozone
concentrations and, in doing so, to improve the quality of the gathered ozone
measurements. To obtain a reasonable ozone model, nitrogen dioxide concen-
trations and temperature values were used as input variables. The GLR detec-
tion threshold was determined based on Monte Carlo simulations. This kind of
algorithm could be implemented to further improve the maintenance of air pol-
lution monitoring sites by detecting faulty instruments, but it is not designed for
promptly detecting abnormal ozone pollution. Other works focused on assess-
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ing data quality to minimize the costs of managing ozone air-quality monitoring
networks [61–63]. For instance, In [63], an approach using a winner filter and
hypothesis testing was introduced to detect sensor malfunctions in air quality
monitoring networks. Daily ozone measurements from the Houston air quality
monitoring network were used for validation. The proposed method involves
applying individual thresholds to every sensor so that the false alarm rate can be
approximately fixed within a network. Based on the analysis performed in [63],
studying real-time detection of abnormal ozone measurements is important for
not only checking the accuracy of monitoring sensor networks and checking the
quality of collected data but also for alerting the population when ozone pollu-
tion exceeds the warning limits.

Real-time detection of atypical ozone measurements can prevent further
damage to sensor networks and offer relevant information to people in order
to improve human safety and avoid undesirable consequences. Ozone pollu-
tion can be detected using model-based or data-based monitoring techniques.
Designing an accurate analytical model of ozone variation is not always fea-
sible and is time-consuming due to the complex process through which ozone
is produced in the troposphere and high measurement uncertainty [64,65]. In
many studies, when an analytical model describing ozone variations was not
available, data-driven methods were applied to predict ozone pollution. These
methods include time-series models (e.g., the autoregressive moving average,
or ARMA) [66,67]; multiple linear regression methods [60, 69]; and multivari-
ate latent variable regression methods, such as PCA, partial least squares, and
principal component regression [59,68]. Recently, modeling and predicting air
pollutant concentrations using machine learning techniques have become pop-
ular research areas. Several shallow learning models, including support vector
regression (SVR) [69,70], fuzzy logic modeling [71], classification and regres-
sion trees (CART) [72], and artificial neural networks (ANNs) [66,70], have
been applied to improve the quality of ozone measurement predictions due to
their ability to capture nonlinear features. However, as these methods have a
one- or two-layer structure, they are limited in capturing relevant features from
complex and high-dimensionality data [73,74].

Due to the limitations of the above-mentioned shallow methods, deep learn-
ing methods such as stacked autoencoders [75] and DBNs have attracted in-
creasing attention in recent years, becoming some of the most widely used meth-
ods for feature extraction and prediction. Unlike shallow methods, deep learning
methods generally lead to an improved abstraction of the original data for mod-
eling and prediction. A major advantage of deep learning models is their ability
to learn the desired features from complex processes layer by layer. Further-
more, they are flexible, simple, and assumption-free. For these reasons, when
extracting important characteristics, it is imperative to use deep structures [73,
74]. Successful large-scale applications of deep learning have improved traffic
management [76,77], health informatics [78], pattern recognition [79], detection
of cerebral microbleed voxels [80], and air quality modeling [81].
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As the concentration of ozone pollutants is increasing in industrial countries,
such as those in Europe, and is frequently surpassing safe limits, particularly
in the summer, it is crucial to monitor these pollutants to avoid harmful ef-
fects on human health. Shallow methods achieve unsatisfactory accuracy when
used to predict pollution [64,65]. Therefore, as discussed above, deep learn-
ing models are essential for modeling and anomaly detection purposes, as they
can effectively extract useful features from multivariate processes. To overcome
the limitations of shallow methods regarding the detection of abnormal ozone
measurements, we suggest using a deep learning model combined with an unsu-
pervised binary detector. In our study, DBNs, which are efficient for dimension-
ality reduction and feature extraction, are used to model multivariate time series
ozone measurements. This model is trained using greedy layerwise pretraining,
and it is employed to learn features of the ozone level. To detect anomalies,
the DBN model is coupled with a one-class support vector machine (OCSVM).
This method benefits from both DBN’s capability to extract features from high-
dimensionality data and OCSVM’s capacity to discriminate between normal
and atypical features. OCSVM is a preferred algorithm for anomaly detection
due to its flexibility to discriminate between linear and nonlinear features with-
out constraints related to the distribution of data. In the detection methodology
applied in this case study, ozone concentration measurements were collected
from one monitoring site of the Isère monitoring network. Then, we compared
the performance of DBN-based methods to DSA- and RBM-based clustering
methods.

Section 8.3.2 presents a brief description of the ozone data we used. Sec-
tion 8.3.3 introduces the main idea underlying the DBN-OCSVM detection
approach. In Sect. 8.3.4, we apply and illustrate the used methodology using
real ozone datasets. Then, we provide some concluding remarks.

8.3.2 Data description

The ozone data considered in this study was collected from the Isère region of
France. Fig. 8.15 shows the geographical location of the studied site. The air
quality network in this urban region is managed by the Atmo Auvergne-Rhône-
Alpes Association. Ozone data are measured every hour by 14 stations: eight
urban stations, five peri-urban stations, and one rural station (Table 8.2). The
stations are labeled S1–S14, as shown in Table 8.2. The spatial distribution of
the measurement stations is shown in Fig. 8.16.

There are two kinds of anomalies in ozone data, true ozone pollution and
abnormalities related to sensor defects (called false anomalies). There is a clear
distinction between these two types of abnormalities. True ozone pollution re-
sults from chemical reactions in the atmosphere under certain conditions, such
as sunny days with humid air conditions and high temperatures [56]. This type
of ozone pollution is characterized by a progressive increase in the concentration
of ozone within a few hours (Fig. 8.17A). On the other hand, false anomalies
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FIGURE 8.15 Geographic location of the studied site.

TABLE 8.2 Investigated ozone measurement sensors
in the Isère region.

Network Type Label
Sud grenoblois/Champ sur Drac Peri-urban S1

Fontaine les Balmes Urban S2

Voiron Urbain Urban S3

Saint-Martin d’Heres Urban S4

Grenoble les Frenes Urban S5

Sud grenoblois/Vif Peri-urban S6

Est grenoblois/Grésivaudan Peri-urban S7

Grenoble Caserne de Bonne Urban S8

Roussillon Urban S9

Les Roches de Condrieu ZI Peri-urban S10

Vienne Centre Urban S11

Sud roussillonnais/Sablons Peri-urban S12

Bourgoin-Jallieu Urban S13

Plateau de Bonnevaux Rural S14

due to sensor anomalies are mainly generated by biases in the measurement
sensors. These anomalies are characterized by an unusually high level of ozone
concentration in a very short time period (i.e., less than an hour; Fig. 8.17B).
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FIGURE 8.16 Spatial distribution of ozone measurement stations.

The goal of this study is to apply a deep-learning-based monitoring algo-
rithm to detect abnormal ozone measurements and malfunctions in sensor net-
works. The monitoring technique adopted in this study is a DBN-based OCSVM
technique, which is briefly introduced in the next section.

8.3.3 Ozone monitoring based on deep learning approaches

As discussed previously, in cases in which an analytical model is not available
to describe process variations, data-driven models can be applied. In this study,
we used unsupervised deep-learning-based approaches to monitor ozone pollu-
tion. In this section, we describe the structure of the proposed DBN-OCSVM
monitoring method (Fig. 8.18). DBN is employed to capture the relevant fea-
tures of ozone concentrations, and OCSVM is applied to detect anomalies. This
monitoring method is nonparametric because it does not require specification
related to the distribution of process data, making it able to very flexibly handle
ozone data.

As mentioned above, DBN models are assumption-free, and they are able
to extract important information from high-dimensionality data and reveal the
nonlinearity of processes [82]. In the DBN model applied in this study, which
contains five layers of RBMs, learning is based on greedy layerwise pretraining
and the outputs of each layer are employed as inputs by the next layer [83]. This
means that every layer of the DBN is trained independently. The data used to
train the first layer are gathered from sensors. It is essential to use deep structures
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FIGURE 8.17 (A) Atypical ozone pollution and (B) high ozone concentration due to sensor failure.

to efficiently represent data. Then, more hidden units are stacked to the input
layer to enhance the flexibility and efficiency of the DBN model. In the first step
of feature extraction using the DBN model, input data are passed through the
first (i.e., visible) layer, producing the first features. In the next step, the same
operation is performed, passing the previously extracted features through the
second layer to obtain new features. This process is repeated for all subsequent
layers; each layer learns from the input data and produces new extracted features
that to be used by the next layer. This method, called greedy layerwise training,
was introduced to construct DBN models in [84]. In this study, the OCSVM was
trained using the features generated by the last layer of the DBN model. Then,
the hybrid model was used for anomaly detection in new testing data.
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FIGURE 8.18 Hybrid DBN-OCSVM monitoring framework.

8.3.3.1 Results and discussion
In this section, we first present a preliminary analysis of the considered ozone
dataset. Then, the performance of the deep-learning-based methods for detecting
abnormal ozone measurements is evaluated. Finally, we compare the detection
results of the DBN-OCSVM approach to those of the standalone clustering
methods and the DSA-based clustering methods.

The data chosen to develop the DBN model is anomaly-free, and it was
collected from January 1 to March 4, 2015 (see Fig. 8.19). A heatmap of the cor-
relation matrix of the ozone data is presented in Fig. 8.20. As can be seen in the
figure, data from the majority of stations are highly cross-correlated. Addition-
ally, there are three clear groups: stations S1–S8, stations S9–S13, and station
S14. The data within the first and second groups shows high cross-correlation
because they are in close proximity to each other (Fig. 8.16). The data from sta-
tion S14 have a relatively low correlation with data from the other stations. This
is because the data from station S14 were collected from a rural zone, and the
variation of ozone in rural zones differs from the variation in urban and peri-
urban zones. Specifically, in rural zones, the level of ozone is higher at night
because of the low presence of ozone destroyers.
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FIGURE 8.19 Hourly concentrations of O3 (mg/m3) without anomalies.

FIGURE 8.20 Heatmap of the correlation matrix of the O3 training measurement.

Fig. 8.21 shows a boxplot of the training data set by station. Based on the
analysis of this boxplot, we can confirm that the behavior of the ozone concen-
trations in the rural zone (S14) is different than that of the ozone concentrations
in urban and peri-urban zones (S1–S13). Moreover, the distribution of data from
all stations is almost symmetrical.

Fig. 8.22 illustrates the autocorrelation function (ACF) plots of the ozone
concentrations at each location. Fig. 8.22 shows the distribution of the hourly
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FIGURE 8.21 Boxplot graphs of the O3 training measurements for all the 14 stations.

FIGURE 8.22 ACF of O3 training measurements by stations.

ozone variations for each station. As expected, the hourly mean shows a bell-
shaped distribution with a peak around noon, indicating a diurnal ozone cycle
resulting from the diurnal temperature cycle. A cycle is determined by the time
distance between two respective maxima in the ACF. In this ozone data set,
the cycle is one day. There is a clear cycle in the variation of ozone concen-
trations, with maximum values late at night and minimum values around noon
(Fig. 8.17). The ozone level starts to increase after sunrise and reaches its max-
imum by the afternoon. This is mainly due to the photochemical formation of
ozone due to the oxidation of volatile organic compounds (VOC) with a suffi-
cient quantity of NOx under sunlight conditions. Particularly high ozone levels
can be observed in the summer period.
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In this study, the ozone data set at the training stage was collected from
January 1 to March 4, 2015. This training data set is known to be devoid of
anomalies. The DBN model was trained based on the manually selected param-
eters presented in Table 8.3. During the training process, the hyperplane of the
OCSVM was established based on the features extracted from the DBN model.
OCSVM was used with a radial basis function (RBF) kernel with parameter
values of γ = 0.1 and ν = 0.001.

TABLE 8.3 Selected parameters
for the trained DBN model.

Models Parameter Value

DBN Layers 3
Units 17
Learning rate 0.001

Epochs 1000

To identify a satisfactory model for the ozone measurements, the loss be-
tween the input ozone measurements and the model predictions was computed
within a fixed number of batches. For this purpose, we used the cross-entropy
error function, which is commonly used to verify the quality of the model pre-
dictions so that the weights of the parameters for the deep learning model can
be updated to reduce loss in the next evaluation. Generally, the model is trained
until the cross-entropy error converges near zero. Fig. 8.23 displays the cross-
entropy loss over the 180 training epochs, demonstrating that the cross-entropy
exhibited good convergence.

FIGURE 8.23 Line plot of cross-entropy error loss over the training epochs.

Next, we will use the previously identified DBN model with the OCSVM to
detect anomalies in ozone measurements, which may result from photochemical
ozone pollution or malfunctions in the sensor network.
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8.3.4 Detection results

8.3.4.1 Sensor anomaly detection: false anomalies
In the following section, we assess the ability of the DBN-OCSVM method to
detect malfunctions and bias in measurement instruments (i.e., faults in sensor
readings), which may be due to sensor failure or calibration problems. Sensor
faults lead to unusually high ozone levels (150 to over µg/m3) measured during
the night and outside the summer season, which are not typically the peaks for
photochemically produced ozone.

To test the performance of the previously constructed DBN-SVM detection
method, three types of sensor faults are considered: bias or fault in a single sen-
sor, biases in multiple sensors, and intermittent faults. This method, which uses
DBN with three layers, is compared to RBM; DBN2 (which features two hidden
layers); DSA-based OCSVM; and the DBN-based expectation-maximization
(EM) [85], BIRCH [86], and k-means [87] methods. The parameters selected
for the considered methods are presented in Table 8.4.

TABLE 8.4 Values of the selected parameters
for the considered methods.

Models Parameter Value

Autoencoder weights uniform
Learning rate 0.01

Training epochs 100

BIRCH branch 50

k-means init k-means++
init 10
iteration 300

EM covarianceType full
covar 1e–06
iteration 100

8.3.4.1.1 Case A: single abrupt fault

In the first scenario, we focused on assessing the performance of the DBN-
OCSVM method in the presence of a bias sensor fault due to a degradation of the
measurement instrument. We first introduced different levels of bias (between
5% and 100% of the total variation found in the raw data of S2 measurements).
Then, we applied the DBN-OCSVM scheme and calculated AUC for different
levels of bias. Every phase of the DBN-OCSVM method provided complemen-
tary information to enable fault detection. This monitoring method is beneficial
due to its desirable properties and the possibility of adapting it to more com-
plex processes. The AUC values achieved from the DBN3-, DBN2-, RBM-, and
DSA-based OCSVM methods and OCSVM alone with different levels of bias
are displayed in Fig. 8.24.
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FIGURE 8.24 Comparison of the performance of DBN-OCSVM with other algorithms in terms of
AUC at different levels of bias (Case A).

FIGURE 8.25 Comparison of the performance of the DBN-based detection algorithms in terms of
AUC at different levels of bias (Case A).

This method outperformed the RBM-, DBN2-, and DSA-OCSVM methods,
as well as the shallow OCSVM algorithm, which was applied directly to the
ozone measurements without including the feature extraction steps. The results
demonstrate that the method with a deeper network (DBN3-OCSVM) achieved
better detection results than RBM-OCSVM or DBN2-OCSVM. This demon-
strates the benefits of deep learning methods over shallow OCSVM, such as the
ability to reveal information that is more useful for detecting abnormalities in
ozone data. In addition, it was found that the DBN model extracted more infor-
mative features for anomaly detection than the DSA model.

The second comparison was conducted between DBN-OCSVM and the
DBN-based EM, k-means, and BIRCH algorithms. The results are presented in
Fig. 8.25. In this experiment, the clustering algorithms use the features extracted
from the last layer of the DBN model. It was found that combining DBN with
OCSVM resulted in a significantly greater detection ability than when DBN was
combined with the other clustering algorithm (i.e., EM, k-means, and BIRCH).
OCSVM is an assumption-free algorithm that, unlike the EM algorithm, does
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not assume data convexity. It maps the input ozone data to higher-dimensional
space using a kernel function to separate normal and abnormal features. More-
over, OCSVM is not sensitive to the rank of data records, unlike the BIRCH
algorithm. Further, it is easy to implement and requires only a training data set
that is devoid of anomalies. No labeling is required in the training phase. Over-
all, DBN-OCSVM showed a better ability to identify abrupt changes in ozone
time-series data than the other considered algorithms.

8.3.4.1.2 Case B: multiple abrupt faults

Case B was used to verify the ability of DBN-OCSVM to detect multiple sensor
faults. To this end, a bias fault was incorporated into the ozone measurements
of sensors S3 and S6 with a time interval [240,300] between the measurements.
The detection results of the DBN3-, DBN2-, RBM-, and DSA-based OCSVM
algorithms and the shallow OCSVM algorithms (in terms of AUC values at dif-
ferent fault levels) are shown in Fig. 8.26. The results confirm that it is crucial to
use deep learning models (e.g., DBN3) to effectively learn the features of ozone
data and improve anomaly detection. DBN-OCSVM successfully distinguished
between normal data and faulty data, achieving an AUC of 0.916 when the mag-
nitude of the fault was relatively small (20%). As expected, DBN3-OCSVM
detected faults better than the other considered schemes. The shallow OCSVM
algorithm was not effective for sensing small changes (AUC = 0.559 in the
presence of a fault with a magnitude of 20%). Fig. 8.27 compares the detection
performance of the DBN-OCSVM, EM, k-means, and BIRCH algorithms. The
results indicate the superiority of DBN-OCSVM for detecting multiple anoma-
lies in ozone data.

FIGURE 8.26 Comparison of the performance of the DBN-OCSVM algorithm with other algo-
rithms in terms of AUC at different fault levels (Case B).

8.3.4.1.3 Case C: intermittent faults

Case C involved more subtle sensor malfunctions, such as intermittent sensor
faults, that repeatedly appear and disappear. Intermittent shifts were incorpo-
rated in the ozone measurements of sensor S5 at time intervals of [410,440] and
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FIGURE 8.27 Comparison of the performance of the DBN-based detection algorithms in terms of
AUC at different fault levels (Case B).

FIGURE 8.28 Comparison of the performance of the DBN-OCSVM algorithm with other algo-
rithms in terms of AUC at different fault levels (Case C).

[502,520]. Fig. 8.28 depicts the detection performance of the five algorithms
(in terms of AUC) as a function of fault level. The results demonstrate that
DBN-OCSVM has a good ability to detect intermittent sensor bias. Also, the re-
sults confirm that combining the deeper learning model (DBN3) with OCSVM
led to better performance than the RBM-, DBN2-, and DSA-based OCSVM
algorithms. The results depicted in Fig. 8.29 also confirm that DBN-OCSVM
outperforms the DBN-based EM, k-means, and BIRCH algorithms.

8.3.4.2 Conclusion
In this section, we discussed some unsupervised deep-learning-based anomaly
detection methods for monitoring ozone measurements. In particular, we fo-
cused on the hybrid DBN-based OCSVM monitoring approach to detect abnor-
malities in ozone measurements. This approach makes a decision about ozone
pollution based on observed ozone data collected from the air quality sensor
network without the need for prior labeling of data. It is simple to build and
convenient to use. The DBN model has a strong ability to learn pertinent fea-
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FIGURE 8.29 Comparison of the performance comparison of the DBN-based detection algorithms
in terms of AUC at different fault levels (Case C).

tures from data without specifying the data distribution, and OCSVM is an
assumption-free algorithm that evaluates the input features obtained from the
DBN model using only actual input data. For these reasons, OCSVM and DBN
are especially popular in the literature. We verified the performance of the DBN-
OCSVM approach using ozone data from a regional air quality network in
France. The results indicate that it is able to accurately detect different types
of sensor faults and that it has better detection performance than RBM and the
DSA-based k-means, EM, and BIRCH algorithms.

8.4 Monitoring of a wastewater treatment plant using deep
learning

8.4.1 Introduction

Treating wastewater by removing pollutants is crucial for ensuring the health of
communities and the environment. Treated wastewater can be safely discharged
or reused for cleaning, irrigation, and industrial purposes [88]. Practically, it
is more advantageous to recycle and reuse treated wastewater instead of dis-
charging it [89]. In water-stressed countries, reusing wastewater is vital, as it
is a substantial source of water and is associated with a lower cost than desalt-
ing seawater [90,91]. Recently, monitoring WWTPs using data-driven methods,
such as computational intelligence and machine learning techniques, has gained
attention among researchers and engineers.

To guarantee the effective running of WWTPs, several important variables,
including pH, dissolved oxygen, and nitrogen, must be continuously moni-
tored [92,93]. To ensure efficient monitoring, a good model that describes the
dynamics and variability of WWTP data is indispensable. However, as the
WWTP process is complex and uncertain due to changes in physical features,
developing a model that produces reliable and accurate descriptions of vari-
ability in WWTP data is very challenging. Many methods for understanding
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wastewater processes, including ASM1, ASM2, first principals can describe lin-
ear and nonlinear variation and reveal important process features, but it is chal-
lenging to construct a realistic model because it requires prior parameters for
calibration and incurs a great time cost, especially for complex processes such
as WWTPs [94–96]. For instance, in the ASM1 model, there are 13 nonlinear
differential equations involving 19 parameters that are not easy to predict [97].
Generally speaking, analytical models based on first principals could describe
linear and nonlinear variation, reveal important process features, but there is
a major challenge in constructing a realistic model because it demands prior
parameters for calibration and time-costly in particular for complex processes
such as WWTPs. The computational complexity of these models constitutes an
obstacle to the simulation and design process [98].

Although WWTPs utilize advanced technologies, they are exposed to
anomalies and failures that limit their capability and productivity. Misdetected
anomalies in WWTPs could seriously affect the health of a WWTP and may
result in safety issues. Therefore, accurately detecting anomalies is required
to ensure normal operating conditions and achieve the desired performance
[99–101]. Much prior research has focused on developing improved anomaly
detection methods for monitoring WWTPs [102,103]. Recently, monitoring
WWTPs using data-driven methods, such as computational intelligence and ma-
chine learning, has gained special attention from researchers and engineers. In
data-driven methods, measurements from the WWTPs devoid from anomalies
are used to construct an empirical model that is used to verify new measure-
ments.

In the literature, several data-based anomaly detection methods are designed
using dimensionality reduction techniques, such as In the literature, several
data-based anomaly detection methods have been designed using dimension-
ality reduction techniques, such as PCA [104], PLS [105], linear discriminant
analysis (LDA) [106] and locally linear embedding (LLE) [93]. Kernel exten-
sions of some linear dimensionality reduction algorithms, such as kernel PCA
and kernel PLS, have been considered for nonlinear process monitoring because
of their ability to extract linear and nonlinear features from nonlinear processes
like WWTPs [93,107–112]. For instance, in [102] a method combining PCA
and multiple regression was introduced for modeling a WWTP. In addition,
the method described in [104] integrated PCA with kNN to monitor influent
measurements in a coastal municipal WWTP. In [113], a PLS-based method
was applied to monitor effluent quality and filamentous bulking in an activated
sludge process. In recent years, numerous machine learning methods have been
designed to model and monitor WWTPs [114,115,103,116]. For example, the
method described in [103] coupled an ANN with neural fuzzy models to mon-
itor WWTPs. Also, in [116], a neural ANN model was used to monitor an
anaerobic WWTP. In [117], a hybrid method using multiple linear regression
and ANNs was developed to predict the influence of biochemical oxygen de-
mand, which is costly and challenging to measure. In [118], kernel PCA was
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coupled with a one-class SVM algorithm containing several kernels to examine
a WWTP with influent characteristics (ICs). In [114], a method combining an
optimization forecast component model and SVM algorithm was proposed for
the detection and diagnosis of faults in WWTPs. However, the above-mentioned
data-based methods (both linear and nonlinear) involve shallow learning frame-
works.

Recently, numerous deep-learning-based methods with a high learning ca-
pability have been developed to serve as advanced versions of neural networks
for modeling and monitoring the operating conditions of WWTPs [119–123].
Generally speaking, deep learning models have shown promising results when
applied to a variety of fields because of their ability to learn how to effectively
represent data. In addition, these models proved efficacious for automatically
extracting relevant features from input data. The method described in [123] was
based on a recurrent neural network (RNN) and was used to predict TSS, BOD,
and NO3 based on time series data. However, this study was based on data
with only one source of inlet water with stable quality. In [120], a deep learn-
ing model based on a CNN was applied to model membrane fouling during
nanofiltration and reverse osmosis filtration using image data obtained from op-
tical coherence tomography. In [121], a hybrid deep learning prediction model
combining CNN and LSTM (called CNN-LSTM) was applied to predict dy-
namic chemical oxygen demand (COD), which is an important indicator of the
health of WWTPs. The CNN-LSTM model showed an improved prediction abil-
ity compared to the CNN or LSTM models alone when applied to data from an
urban WWTP. In [119], an unsupervised deep learning method combining the
benefits of the RNN, RBM, and OCSVM methods was proposed for detecting
abnormal ICs in a WWTP. This unsupervised deep learning approach achieved
good detection performance when applied to data from a coastal WWTP.

In this case study, we present an unsupervised deep learning model to mon-
itor the health status of a WWTP. This model uses the strong learning ability of
DBNs to learn important features of data from WWTPs and applies OCSVM
to distinguish between normal and abnormal features. We applied the model to
data collected from a decentralized WWTP in Golden, CO, USA. The follow-
ing section briefly describes the methodology used in this study. Section 8.4.3
presents the results of the DBN-OCSVM method and compares them with the
results of the kNN-EWMA and k-means schemes.

8.4.2 Proposed DBN-based kNN, OCSVM, and k-means algorithms

This section describes the DBN-OCSVM model, which was used to detect
anomalies in a decentralized WWTP. The DBN model has a great learning ca-
pacity because it possesses greedy learning features and the ability to reduce
dimensionality. It was coupled with the OCSVM algorithm to detect faults in
multivariate data (Fig. 8.30). The approach was implemented in two steps. First,
a DBN model possessing four layers was trained based on a sample data set
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FIGURE 8.30 Framework of the hybrid DBN-OCSVM monitoring scheme.

collected from the WWTP under normal conditions. Then, the OCSVM was ap-
plied to the features extracted by the DBN model. The approach was performed
in an unsupervised way without any data labeling.

As mentioned above, it is necessary to use a deep learning model to extract
important features of data. In this study, we investigate the application of the
DBN-OCSVM approach to detect anomalies in multivariate data collected from
a WWTP.

8.4.3 Real data application: monitoring a decentralized wastewater
treatment plant in Golden, CO, USA

Data gathered from a decentralized WWTP facility in Golden, CO, USA, was
used to verify the detection capability of the considered algorithms. The WTTP
facility treats wastewater gathered from 400 units of a student housing complex
at Mines Park via a sewer diversion [124]. The process generates effluent that
can be used for landscape irrigation [124,125]. Small-scale decentralized facil-
ities are gaining more attention, and it is expected that they will be common in
the future since the treated wastewater can be locally reused. Practically, since
the quality and quantity of influent can highly fluctuate, decentralized processes
need an efficient and accurate monitoring system to identify changes or mal-
functions early.

The data considered in this study include the ten-minute averages of 28
variables gathered from April 10 to May 10, 2010. This dataset contains real
anomalies in both pH and salinity that required the system to be shut down for a
period of two months to recover. The data used for monitoring purposes contains
seven selected variables: membrane bioreactor (MBR) permeate pressure, MBR
dissolved oxygen (DO), permeate turbidity, return activated sludge (RAS) DO
content, RAS pH, RAS total suspended solids (TSS), and permeate tank con-
ductivity (Fig. 8.31). Variable selection was based on expert recommendations.
The selected variables were spread across the system and had the ability to pro-
vide relevant information about the operating state of the examined WWTP. For
instance, RAS DO content, RAS pH and RAS TSS provide information about
the water circulating in the first set of tanks. pH is a potentially useful indicator



292 Statistical Process Monitoring

FIGURE 8.31 Training data sets that are devoid of anomalies. (A) MBR 2 permeate pressure;
(B) BIO 2 dissolved oxygen; (C) Permeate turbidity; (D) Return activated sludge dissolved oxy-
gen content; (E) Return activated sludge pH; (F) Total suspended solids in return activated sludge;
(G) Permeate tank conductivity.

because variation within a certain range is required by biological organisms. In
addition, DO and TSS provide pertinent information about the health of biolog-
ical organisms that are indispensable for transforming ammonia into nitrogen.
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The MBR permeate pressure, permeate turbidity, and permeate tank conduc-
tivity are directly related to the second half of the process, in which water is
spread through a membrane. Transmembrane pressure is vital for verifying the
health status of the membrane, while turbidity and conductivity can be useful
for checking the quality of the water issued out of the bioreactors. Finally, the
level of MBR DO inside the bioreactor tank is a very important variable that
should be monitored due to its impact on health status, treatment efficiency, and
operating expenses [125].

The monitored system possesses two MBRs that operate in a similar manner.
In this study, we inspected the second one. More details about the system are
presented in [126]. Here, we used 500 observations devoid of anomalies to train
the DBN-based methods (Fig. 8.31).

Table 8.5 summarizes the descriptive statistics of the training data. The
mean provides an indication of the location of the distribution of every variable,
while the standard deviations, extremes, and quartiles provide useful informa-
tion about the spread in the data. We used skewness and kurtosis to quantify
the symmetry and flatness of the data distribution. Generally speaking, the
kurtosis value for Gaussian data is 3. Values larger than 3 indicate a highly non-
Gaussian (i.e., super-Gaussian) distribution, while values smaller than 3 indicate
a flatter (i.e., sub-Gaussian) distribution. Skewness quantifies the symmetry of
the distribution in comparison to the sample mean. Symmetric distributions,
like Gaussian, are characterized by the skewness of zero. Distributions that are
skewed to the right are characterized by positive skewness, while distributions
that are skewed to the left are characterized by negative skewness. As shown
in Table 8.5, the training data considered in this study are non-Gaussian (i.e.,
kurtosis values deviated from 3 and the skewness values deviated from zero).

A heatmap of the correlation matrix of the training data is depicted in
Fig. 8.32. As shown, the data from the majority of the training variables are
weakly cross-correlated, except for the permeate variables, which show a mod-
erate correlation.

As we explained previously, this WWTP data is multivariate, non-Gaussian,
and very dynamic. Thus, developing a satisfactory analytical model is not easy.
We chose a data-based method based on the DBN model and OCSVM detec-
tion algorithm for modeling and detecting anomalies in the WWTP data. One
of the reasons we used this approach is the efficiency of the DBN model for
learning and discovering relevant features in multivariate data. Once the DBN
model is trained, it can be used to extract features from new WWTP data. These
features serve as the inputs for the OCSVM algorithm, which can then reveal
anomalies in the MBR system that may reduce system performance. The algo-
rithm provides good separation of normal and abnormal features by constructing
a hyperplane for discrimination during the training phase. We used the DBN-
based kNN and k-means algorithms as benchmarks for comparison. Table 8.3
summarizes the selected parameters for the DBN-based methods.
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TABLE 8.5 Statistical features of the training data set.

Mean STD Min Q1 Median 3Q Max Skewness Kurtosis
X1 13.029 0.629 10.722 12.654 12.802 13.515 14.031 0.049 2.953
X2 0.132 0.189 0.000 0.043 0.100 0.160 1.880 5.378 39.142
X3 0.092 0.051 0.038 0.058 0.069 0.107 0.248 1.523 4.212
X4 0.271 0.528 0 0.100 0.100 0.100 3.200 3.751 16.893
X5 7.315 0.060 7.097 7.300 7.300 7.300 7.500 0.324 4.009
X6 13362.718 2837.318 0 11414.500 12510 14966 19925 0.631 3.748
X7 831.34 33.320 779.5 808 824 852 898 0.444 2.211
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FIGURE 8.32 Heatmap of the correlation matrix of the training data.

As discussed above, the extraction of relevant features from the WWTP
data was managed by the DBN model. We used the learned parameters from
the training data to extract features from the testing data. Then, the OCSVM
algorithm was used to separate normal and abnormal features using the pa-
rameters learned during the training phase. We also combined DBN with two
common unsupervised clustering algorithms, kNN and k-means, for compar-
ison purposes. The detection threshold in the DBN-kNN algorithm was fixed
by applying an exponentially weighted moving average (EWMA) to the kNN
distances. The EWMA was chosen for its ability to sense small deviations in
time-series data [127]. Fig. 8.33A–C depicts the detection results of the three
anomaly detection methods. All three methods were able to identify significant
anomalies. As expected, the number of detections (i.e., alarms) was higher when
using the OCSVM and kNN-EWMA algorithms compared to the k-means al-
gorithm due to the flexibility and sensitivity of OCSVM and kNN-EWMA. The
first alarm was triggered by the three schemes on April 18th, indicating that an
abnormal event was taking place. This supports the outcomes of [93], in which
the authors used all 28 variables of the process for monitoring WWTP using sev-
eral data-based methods. They used other feature learning algorithms intended
to reduce dimensionality, such as the static, dynamic, adaptive, and adaptive-
dynamic versions of PCA, KPCA, and LLE. A T 2 chart based on parametric
and nonparametric detection thresholds was used for detection. However, all the
methods described in [93], both linear and nonlinear, have a shallow learning
framework. These shallow methods triggered an alarm at 1:40 p.m. on April
21st and again on April 22nd [93]. The DBN-based methods detected an abnor-
mal event earlier, on April 18th. The operator did not detect this anomaly until
April 24th. Practically, detecting this anomaly at the time as an operator or ear-
lier is crucial for avoiding the progression of the fault and serious degradation
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FIGURE 8.33 Monitoring results from the DBN-k-means approach (A), the DBN-kNN-EWMA
approach (B), and the DBN-OCSVM approach (C) for a pH data set.

of the system. This fault caused the WWTP to shut down for two months for
reparations. The integration of the greedy learning features of the DBN model
and the flexibility of the OCSVM algorithm resulted in a remarkable capacity
for fault detection in WWTP.

In summary, deep learning has recently received much attention from re-
searchers because of its widespread application. In the previous sections, we
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presented an unsupervised deep learning approach for monitoring multivariate
process variables. In this approach, the DBN model is coupled with the OCSVM
algorithm to monitor the operation of a WWTP. The DBN model is used to learn
complex features from the WWTP data, and the OCSVM algorithm is used to
achieve good separation of normal and abnormal features. The DBN-OCSVM
method showed a good detection ability when applied to real data from a decen-
tralized WWTP in the USA.

8.4.4 Conclusion

In this chapter, we described successful applications of deep-learning-based
methods for anomaly detection. In particular, we focused on utilizing the ad-
vantages of deep learning models to learn features and efficiently represent data
in order to further improve anomaly detection. We showed that deep learning
models, as opposed to shallow models, are required for efficient data repre-
sentation. Three applications were used to demonstrate the benefits of deep
learning models for enhancing anomaly detection performance. We merged
shallow learning approaches with desirable properties, such as one-class SVM,
kNN, and unsupervised deep learning, with more sophisticated and efficient
monitoring techniques, applying the developed approaches to several processes:
detecting obstacles in driving environments for autonomous vehicles; moni-
toring ozone pollution; and monitoring the operating conditions of wastewater
treatment plants in Golden, CO, USA.
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[65] B. Özbay, G.A. Keskin, Ş.Ç. Doğruparmak, S. Ayberk, Multivariate methods for ground-level
ozone modeling, Atmospheric Research 102 (1–2) (2011) 57–65.

[66] K. Moustris, P. Nastos, I. Larissi, A. Paliatsos, Application of multiple linear regression mod-
els and artificial neural networks on the surface ozone forecast in the greater Athens area,
Greece, Advances in Meteorology 2012 (2012).

[67] N.R. Awang, N.A. Ramli, A.S. Yahaya, M. Elbayoumi, Multivariate methods to predict
ground level ozone during daytime, nighttime, and critical conversion time in urban areas,
Atmospheric Pollution Research 6 (5) (2015) 726–734.

[68] A. Lengyel, K. Héberger, L. Paksy, O. Bánhidi, R. Rajkó, Prediction of ozone concentration
in ambient air using multivariate methods, Chemosphere 57 (8) (2004) 889–896.



Case studies Chapter | 8 301

[69] E. Ortiz-García, S. Salcedo-Sanz, Á. Pérez-Bellido, J. Portilla-Figueras, L. Prieto, Prediction
of hourly O3 concentrations using support vector regression algorithms, Atmospheric Envi-
ronment 44 (35) (2010) 4481–4488.

[70] P. Hájek, V. Olej, Ozone prediction on the basis of neural networks, support vector regression
and methods with uncertainty, Ecological Informatics 12 (2012) 31–42.

[71] R. Mintz, B.R. Young, W.Y. Svrcek, Fuzzy logic modeling of surface ozone concentrations,
Computers & Chemical Engineering 29 (10) (2005) 2049–2059.

[72] W.R. Burrows, M. Benjamin, S. Beauchamp, E.R. Lord, D. McCollor, B. Thomson, CART
decision-tree statistical analysis and prediction of summer season maximum surface ozone
for the Vancouver, Montreal, and Atlantic regions of Canada, Journal of Applied Meteorology
34 (8) (1995) 1848–1862.

[73] Y. Bengio, O. Delalleau, On the expressive power of deep architectures, in: International
Conference on Algorithmic Learning Theory, Springer, 2011, pp. 18–36.

[74] N. Cohen, O. Sharir, A. Shashua, On the expressive power of deep learning: a tensor analysis,
in: Conference on Learning Theory, 2016, pp. 698–728.

[75] Y. Bai, Y. Li, B. Zeng, C. Li, J. Zhang, Hourly PM2.5 concentration forecast using stacked
autoencoder model with emphasis on seasonality, Journal of Cleaner Production 224 (2019)
739–750.

[76] A. Koesdwiady, R. Soua, F. Karray, Improving traffic flow prediction with weather informa-
tion in connected cars: a deep learning approach, IEEE Transactions on Vehicular Technology
65 (12) (2016) 9508–9517.

[77] Y. Jia, J. Wu, Y. Du, Traffic speed prediction using deep learning method, in: Intelligent
Transportation Systems (ITSC), 2016 IEEE 19th International Conference on, IEEE, 2016,
pp. 1217–1222.

[78] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, G.-Z. Yang, Deep
learning for health informatics, IEEE Journal of Biomedical and Health Informatics 21 (1)
(2017) 4–21.

[79] J. Wang, X. Zhang, Q. Gao, H. Yue, H. Wang, Device-free wireless localization and activity
recognition: a deep learning approach, IEEE Transactions on Vehicular Technology 66 (7)
(2017) 6258–6267.

[80] Y.-D. Zhang, Y. Zhang, X.-X. Hou, H. Chen, S.-H. Wang, Seven-layer deep neural network
based on sparse autoencoder for voxelwise detection of cerebral microbleed, Multimedia
Tools and Applications 77 (9) (2018) 10521–10538.

[81] F. Harrou, A. Dairi, Y. Sun, F. Kadri, Detecting abnormal ozone measurements with a deep
learning-based strategy, IEEE Sensors Journal 18 (17) (2018) 7222–7232.

[82] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep net-
works, in: Advances in Neural Information Processing Systems, 2007, pp. 153–160.

[83] G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Sci-
ence 313 (5786) (2006) 504–507.

[84] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural
Computation 18 (7) (2006) 1527–1554.

[85] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the
EM algorithm, Journal of the Royal Statistical Society, Series B, Methodological (1977) 1–38.

[86] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very
large databases, in: ACM Sigmod Record, vol. 25(2), ACM, 1996, pp. 103–114.

[87] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Indus-
trial and Applied Mathematics, 2007, pp. 1027–1035.

[88] S.B. Grant, J.-D. Saphores, D.L. Feldman, A.J. Hamilton, T.D. Fletcher, P.L. Cook, M. Stew-
ardson, B.F. Sanders, L.A. Levin, R.F. Ambrose, et al., Taking the ‘waste’ out of ‘wastewater’
for human water security and ecosystem sustainability, Science 337 (6095) (2012) 681–686.

[89] L. Castellet, M. Molinos-Senante, Efficiency assessment of wastewater treatment plants: a
data envelopment analysis approach integrating technical, economic, and environmental is-
sues, Journal of Environmental Management 167 (2016) 160–166.



302 Statistical Process Monitoring

[90] S. Dolnicar, A.I. Schäfer, Desalinated versus recycled water: public perceptions and profiles
of the accepters, Journal of Environmental Management 90 (2) (2009) 888–900.

[91] P. Côté, S. Siverns, S. Monti, Comparison of membrane-based solutions for water reclamation
and desalination, Desalination 182 (1–3) (2005) 251–257.

[92] I. Boujelben, Y. Samet, M. Messaoud, M.B. Makhlouf, S. Maalej, Descriptive and multivari-
ate analyses of four Tunisian wastewater treatment plants: a comparison between different
treatment processes and their efficiency improvement, Journal of Environmental Management
187 (2017) 63–70.

[93] K. Kazor, R.W. Holloway, T.Y. Cath, A.S. Hering, Comparison of linear and nonlinear dimen-
sion reduction techniques for automated process monitoring of a decentralized wastewater
treatment facility, Stochastic Environmental Research and Risk Assessment 30 (5) (2016)
1527–1544.

[94] M. Henze, Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Scientific and
Tech. Rep., 2000.

[95] G. Mannina, D. DiTrapani, G. Viviani, H. Ødegaard, Modelling and dynamic simulation of
hybrid moving bed biofilm reactors: model concepts and application to a pilot plant, Bio-
chemical Engineering Journal 56 (1) (2011) 23–36.

[96] M. Plattes, E. Henry, P. Schosseler, A. Weidenhaupt, Modelling and dynamic simulation of a
moving bed bioreactor for the treatment of municipal wastewater, Biochemical Engineering
Journal 32 (2) (2006) 61–68.

[97] D. Dochain, P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment
Processes, IWA Publishing, 2001.

[98] P. Vanrolleghem, H. Spanjers, B. Petersen, P. Ginestet, I. Takacs, Estimating (combinations
of) activated sludge model No. 1 parameters and components by respirometry, Water Science
and Technology 39 (1) (1999) 195–214.

[99] I. Skrjanc, L. Teslic, Monitoring of waste-water treatment plant using Takagi–Sugeno fuzzy
model, in: The 14th IEEE Mediterranean Electrotechnical Conference, MELECON 2008,
IEEE, 2008, pp. 67–70.

[100] J.-M. Lee, C.-K. Yoo, I.-B. Lee, New monitoring technique with an ICA algorithm in the
wastewater treatment process, Water Science and Technology 47 (12) (2003) 49–56.

[101] J.-P. Steyer, D. Rolland, J.-C. Bouvier, R. Moletta, Hybrid fuzzy neural network for diagnosis-
application to the anaerobic treatment of wine distillery wastewater in a fluidized bed reactor,
Water Science and Technology 36 (6–7) (1997) 209–217.

[102] X. Wang, H. Ratnaweera, J. Holm, V. Olsbu, Statistical monitoring and dynamic simulation
of a wastewater treatment plant: a combined approach to achieve model predictive control,
Journal of Environmental Management 193 (2017) 1–7.

[103] A. Dias, M. Alves, E. Ferreira, Application of computational intelligence techniques for mon-
itoring and prediction of biological wastewater treatment systems, in: Proceedings of the Int.
IWA Conf. on Automation in Water Quality Monitoring, vol. 3, Gent, Belgium, Springer,
2007, pp. 1–8.

[104] T. Cheng, F. Harrou, Y. Sun, T. Leiknes, Monitoring influent measurements at water resource
recovery facility using data-driven soft sensor approach, IEEE Sensors Journal 19 (1) (2018)
342–352.

[105] B. Mali, S. Laskar, PLS-based multivariate statistical approach for soft sensor development
in WWTP, in: Control Instrumentation Systems, Springer, 2020, pp. 123–131.

[106] I. González, A. Serrano, J. García-Olmo, M.C. Gutiérrez, A.F. Chica, M.Á. Martín, As-
sessment of the treatment, production and characteristics of WWTP sludge in Andalusia by
multivariate analysis, Process Safety and Environmental Protection 109 (2017) 609–620.

[107] Y. Liu, Y. Pan, Z. Sun, D. Huang, Statistical monitoring of wastewater treatment plants us-
ing variational Bayesian PCA, Industrial & Engineering Chemistry Research 53 (8) (2014)
3272–3282.

[108] M. Huang, Y. Ma, J. Wan, H. Zhang, Y. Wang, Modeling a paper-making wastewater treatment
process by means of an adaptive network-based fuzzy inference system and principal compo-
nent analysis, Industrial & Engineering Chemistry Research 51 (17) (2012) 6166–6174.



Case studies Chapter | 8 303

[109] K. Villez, M. Ruiz, G. Sin, J. Colomer, C. Rosen, P. Vanrolleghem, Combining multiway
principal component analysis (MPCA) and clustering for efficient data mining of historical
data sets of SBR processes, Water Science and Technology 57 (10) (2008) 1659–1666.

[110] J.-M. Lee, C. Yoo, S. Choi, P. Vanrolleghem, I.-B. Lee, Nonlinear process monitoring using
kernel principal component analysis, Chemical Engineering Science 59 (1) (2004) 223–234.

[111] C. Rosén, J. Lennox, Multivariate and multiscale monitoring of wastewater treatment opera-
tion, Water Research 35 (14) (2001) 3402–3410.

[112] D. Lee, P. Vanrolleghem, Monitoring of a sequencing batch reactor using adaptive multiblock
principal component analysis, Biotechnology and Bioengineering 82 (4) (2003) 489–497.

[113] S.-P. Mujunen, P. Minkkinen, P. Teppola, R.-S. Wirkkala, Modeling of activated sludge plants
treatment efficiency with PLSR: a process analytical case study, Chemometrics and Intelligent
Laboratory Systems 41 (1) (1998) 83–94.

[114] H. Cheng, Y. Liu, D. Huang, B. Liu, Optimized forecast components-SVM-based fault diag-
nosis with applications for wastewater treatment, IEEE Access 7 (2019) 128534–128543.

[115] M. Miron, L. Frangu, S. Caraman, L. Luca, Artificial neural network approach for fault recog-
nition in a wastewater treatment process, in: 2018 22nd International Conference on System
Theory, Control and Computing (ICSTCC), IEEE, 2018, pp. 634–639.

[116] S. Wilcox, D. Hawkes, F. Hawkes, A. Guwy, A neural network, based on bicarbonate moni-
toring, to control anaerobic digestion, Water Research 29 (6) (1995) 1465–1470.

[117] J.-J. Zhu, L. Kang, P.R. Anderson, Predicting influent biochemical oxygen demand: balancing
energy demand and risk management, Water Research 128 (2018) 304–313.

[118] T. Cheng, A. Dairi, F. Harrou, Y. Sun, T. Leiknes, Monitoring influent conditions of
wastewater treatment plants by nonlinear data-based techniques, IEEE Access 7 (2019)
108827–108837.

[119] A. Dairi, T. Cheng, F. Harrou, Y. Sun, T. Leiknes, Deep learning approach for sustainable
WWTP operation: a case study on data-driven influent conditions monitoring, Sustainable
Cities and Society 50 (2019) 101670.

[120] S. Park, S.-S. Baek, J. Pyo, Y. Pachepsky, J. Park, K.H. Cho, Deep neural networks for model-
ing fouling growth and flux decline during NF/RO membrane filtration, Journal of Membrane
Science 587 (2019) 117164.

[121] Z. Wang, Y. Man, Y. Hu, J. Li, M. Hong, P. Cui, A deep learning based dynamic COD predic-
tion model for urban sewage, Environmental Science: Water Research & Technology 5 (12)
(2019) 2210–2218.

[122] F. Harrou, A. Dairi, Y. Sun, M. Senouci, Statistical monitoring of a wastewater treatment
plant: a case study, Journal of Environmental Management 223 (2018) 807–814.

[123] N.V. Bhattacharjee, E.W. Tollner, Improving management of windrow composting systems
by modeling runoff water quality dynamics using recurrent neural network, Ecological Mod-
elling 339 (2016) 68–76.

[124] A. Prieto, D. Vuono, R. Holloway, J. Benecke, J. Henkel, T. Cath, T. Reid, L. Johnson, J.
Drewes, Decentralized wastewater treatment for distributed water reclamation and reuse: the
good, the bad, and the ugly—experience from a case study, in: Novel Solutions to Water
Pollution, ACS Publications, 2013, pp. 251–266.

[125] R.L. Siegrist, Decentralized Water Reclamation Engineering. A Curriculum Workbook,
Springer International Publishing AG, Charm, 2017.

[126] D. Vuono, J. Henkel, J. Benecke, T. Cath, T. Reid, L. Johnson, J. Drewes, Flexible hybrid
membrane treatment systems for tailored nutrient management: a new paradigm in urban
wastewater treatment, Journal of Membrane Science 446 (2013) 34–41.

[127] A. Zeroual, F. Harrou, Y. Sun, N. Messai, Monitoring road traffic congestion using a macro-
scopic traffic model and a statistical monitoring scheme, Sustainable Cities and Society 35
(2017) 494–510.



Chapter 9 

Conclusion and further research 

directions 

Developing efficient anomaly detection and isolation schemes that offer early 

detection of potential anomalies in the monitored process and identify and iso

late the source of the detected anomalies is indispensable to monitor process 

operations in an efficient manner. This will further enhance availability, opera

tion reliability, and profitability of monitored processes and reduce manpower 

costs. This book is mainly devoted to data-driven fault detection and isolation 

methods based on multivariate statistical monitoring techniques and deep learn

ing methods. 

The focus of this book is to offer a recent overview of anomaly detection 

and isolation methods, and it provides some new methods for the process mon

itoring purposes. Specifically, in the first part of this book, the objective was to 

tackle multivariate challenges in-process monitoring by merging the advantages 

of univariate and traditional multivariate techniques to enhance their perfor

mance and widen their practical applicability. Univariate monitoring schemes, 

such as EWMA (exponentially-weighted moving average) and CUSUM (cu

mulative sum) control charts, are widely used univariate control charts. The 

key ingredient to apply such tools to multivariate data is to apply appropriate 

multivariate dimension reduction techniques (e.g., partial least squares (PLS) 

and canonical correlation analysis (CCA)), according to the features of a pro

cess, and use control charts to monitor more informative variables in a lower 

dimension. Particularly, we presented methods, when relationships among vari

ables are linear by developing latent variable regression (LVR)-based univariate 

monitoring techniques (EWMA, generalized likelihood ratio (GLR) test, and 

CUSUM), especially for detecting small faults in highly correlated multivari

ate data. Most commonly used monitoring techniques detect the anomaly as 

a shift in the means or variances of the process. In many real processes, the 

presence of an anomaly may manifest itself by a change in the process distribu

tion (quantiles!extremes) rather than an additive bias in the means or variances. 

Thus, distribution-based process monitoring schemes (e.g., Kullback-Leibler, 

Hellinger metrics) were briefly presented to improve the monitoring perfor

mance of LVR-based approaches. To handle processes nonlinearity, we used 

a nonlinear LVR modeling approach, which is a powerful tool for processing 

nonlinearities. In this direction, nonlinear functions using an adaptive network

based fuzzy inference system are used as the inner relation of the LVR model 

Statistical Prnc�ss Monitodng u.�ing Ad'·anced Datll·Driven and Do!ep I.�arnjng Appruachl'S 
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(Le., mapping nonlinear relation between latent variable and output). Also, the 

nonlinear process monitoring using kernel PCA has been presented. Nonlin

ear LVR-based univariate (EWMA, CUSUM, GLR, Hellinger distance (HD), 

and Kullback-Leibler distance (KLD)) and multivariate (multivariate CUSUM 

(MCUSUM) and multivariate EWMA (MEWMA)) monitoring approaches with 

parametric and nonparametric thresholds have been developed to further im

prove process monitoring and the profitability of the developed mechanisms in 

practice. However, data observed from environmental and engineered processes 

are usually noisy and correlated in time, which makes fault detection (FD) more 

difficult as the presence of noise degrades FD quality, and most methods are 

developed for independent observations. Thereby, wavelet-based multiscale rep

resentation of a process are used to decorrelate data and reduce noise and then 

combine with LVR-based EWMA and CUSUM for both linear and nonlinear 

processes. In addition, we have presented fault isolation, which is an important 

component in-process monitoring, to identify variables that have been affected 

by the occurred fault. In this book, both traditional and modern fault isolation 

methods have been reviewed. We also briefly reviewed some metrics that may 

be used to verify the efficiency of fault isolation approaches along with two case 

studies for illustration. 

In the second part of this book, we merged the desirable properties of shallow 

learning approaches, such as a one-class support vector machine and k-nearest 

neighbors and unsupervised deep learning approaches to develop more sophis

ticated and efficient monitoring techniques. First, we provide an overview of 

some shallow machine learning approaches used in anomaly detection and out

lier detection in data mjning, namely data clustering techniques. Afterwards, we 

introduced deep learning-based approaches to handle dependence in time series 

data. The efficiency of the RNN-RBM approach relies on the combination of a 

powerful type of deep learning model designed to handle dependence in time se

ries data, namely RNN, with the well-known RBM model. Here, RNN plays the 

role of recurrent features extractor that learns from a high-dimensional sequence 

of complex temporal dependencies. It also relies on the detection capability of 

binary clustering schemes. Specifically, the output of the mixed RNN-RBM 

model is fed to the clustering algorithms for anomaly detection. Thereafter, 

we presented different energy-based deep learning models and stacked autoen

coders. FUl1hermore, many monitoring approaches based on deep probabilistic 

models such as DBN and deep autoencoder have been presented. Later, we ap

plied some of the presented approaches to monitor many processes, such as 

wastewater treatment plants at KAUST and Golden, CO, USA, detection of ob

stacles in driving environments for autonomous robots and vehicles, and ozone 

pollution. 

As discussed above, there is no doubt that machine leaming and deep learn

ing have obtained a significant position in the existing state-of-the-art in-process 

monitoring field. As demonstrated in the previous chapters, the greater learning 

ability and the flexibility to approximate nonlinear functions make deep learning 
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models a promising tool for modeling and monitoring multivariable linear and 

nonlinear processes. However, the work presented in this book raises a num

ber of questions and provides some directions for future work. In particular, the 

following topics merit consideration from researchers: 

• Widespread, successful applications of deep learning provide evidence that 

the depth of deep learning methods provides significant advantages for moni

toring schemes. However, there are many problems with deep-learning-based 

monitoring frameworks. For instance, applications of deep learning have pro

gressed faster than theory, which leads to some gaps and questions that must 

be addressed. For example, what is the optimal number of layers and hyper
parameters for deep structures? Much future research is required to furnish 

practical and theoretical guidelines that address such questions. Moreover, 

due to the rapid advancement of computational technologies, deep learning 

could involve various kinds of learning, such as unsupervised, transfer, and 

reinforcement learning. It would be interesting to research a way to combine 

different types of learning to design a unified learning framework, as this may 

improve the feature learning capability of deep learning and, in turn, improve 

anomaly detection performance. 

• Data-based methods using deep learning have shown to be effective for large 

and complex moniLOring processes. However, in various practical processes 

(e.g., environmental processes, biology, and hydrology), data are functional 

in nature. For example, dust measurements for monitoring air quality can 

be viewed as a function of time. It has been shown that peA for multi

variate observations is not suitable for functional data [1-4]. For these data, 

functional PCA (FPCA) captures the most variation based on the first few 
orthogonal functional principal components [4-7]. Although FPCA is a pop

ular statistical method for functional data analysis, it has not been used for 

process monitoring or fault detection and diagnosis. There are some existing 

monitoring charts that can handle functional data, but in order to design ef

ficient methods to detect anomalies in functional data, much research is still 

required. For instance, in most existing charts for statistical monitoring of 

functional data, observations are assumed to be uncorrelated. However, they 

may be naturally autocorrelated over time or space (which is taken into con

sideration in conventional monitoring methods). Therefore, time-dependent 
information should be integrated when designing monitoring methods for 

functional data. 

• Moreover, existing deep learning methods should apply a functional data 
structure for anomaly detection. To handle this issue, functional data analysis 

may be helpful as it can be integrated with deep learning to develop innova

tive methods for process monitoring. Future research should aim to develop 
deep-learning-based monitoring methods that integrate functional data. 

• In this chapter, we proposed a deep-learning-based monitoring approach for 

detecting abnormal ozone measurements at the regional scale. We did not 

consider the spatiotemporal correlalion in the air quality monitoring network. 
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When monitoring approaches are used to monitor spatial data, the spatial data 

structure should be wen accommodated in the monitoring method. There is a 

need to develop a more flexible deep learning model that considers spatiotem

poral cOlTelations, as such a model will be more accurate, able to capture spa

tiotemporal features, and exhibit improved anomaly detection performance. It 

is also important for researchers to extend existing deep-learning-based mon

itoring techniques to account for the spatiotemporal evolution of data (i.e., 

by including information from spatial lags in monitoring) and to utilize these 

improvements in various applications . 

• Traditionally, deep learning and machine learning models are designed to 

achieve suitable results under the condition that the training and testing 

datasets are drawn the same distribution. On the assumption that the distri

bution of data changes, then a new model needs to be designed. However, 

designing a new model every time gathering new training data is time

consuming. To alleviate this challenge, transfer learning can be used for 

reducing the requirement to gather a large amount of training data. Gener

ally speaking, the essence of transfer learning is to store knowledge obtained 

when solving one problem and apply it to another related problem. For in

stance, a deep learning model used for one task could be applied for a differ

ent task or another domain. Recently, the reinforcement learning concept has 

been widely applied in many disciplines including game theory, autonomous 

vehicles, and swarm intelligence [8-10]. As future work, it is of interest to 

develop other sophisticated technologies for process monitoring based on 

transfer learning and extreme learning . 

• Few statisticians are engaged in this stream of research, but there is a need to 

understand and improve deep learning models based on the promising com

bination of a deep learning framework and statistical methods. 

References 

[I] N. Das, Non-parametric control chart for controlling variability based on rank test, Economic 
Quality Control 23 (2) (2008) 227-242. 

12] F. FerralY, P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice. Springer 
Science & Business Media, 2006. 

131 J.O. Ramsay, Functional data analysis, in: Encyclopedia of Statistical Sciences, vol. 4, 2004. 
l4J H.L. Shang, A survey of functional principal component analysis, AStA Advances in Statistical 

Analysis 98 (2) (2014) 121-142. 

15] J.R. Berrendero. A. Justel, M. Svarc, Principal components for multivariate functional data, 
Computational Statistics & Data Analysis 55 (9) (2011) 2619-2634. 

161 Y. Sun, M.G. Genton, D.W. Nychka, Exact fast computation of band depth for large functional 
datasets: how quickly can one million curves be ranked?, Stat - The lSI's Journal for the Rapid 
Dissemination of Statistics Research I (I) (2012) 68-74. 

P1 F. Yao, H.-G. MUller. J.-L. Wang, Functional data analysis for sparse longitudinal data, Journal 
of the American Statistical Association 100 (470) (2005) 577-590. 

181 H.-W Ng. VD. Nguyen, V Vonikakis, S. Winkler. Deep learning for emotjon recognition 
on small datasets using transfer learning. in: Proceedings of the 2015 ACM on International 
Conference on Multimodal Interaction, 2015. pp. 443-449. 



Conclusion and further research directions Chapter I 9 309 

[91 S. Khan, N. Islam, Z. Jan, LV. Din. J.J.c. Rodrigues. A novel deep learning based framework 
for the detection and classification of breast cancer using transfer learning, Pattern Recognition 
Letters 125 (2019) 1--6. 

[10] M. Long, H. Zhu, J. Wang. M.1. Jordan, Deep transfer learning with joint adaptation networks, 

in: Proceedings oflhe 341h International Conference on Machine Learning. vol. 70. JMLR.org. 

2017, pp, 2208-2217, 



Index

A
Abnormal

event, 4, 7, 55, 56, 60, 61, 241, 242, 247
features, 62, 204, 250, 265, 271, 286,

290, 293, 295, 297
Abrupt

anomaly, 3, 147
faults, 147, 284, 286

Actuator faults, 2
Adaptive EWMA, 36
Adaptive monitoring methods, 10
Advanced process monitoring, 109
Anaerobic WWTP, 289
Anomaly, 1, 3, 4, 6, 8, 9, 34, 35, 37, 55,

57, 60–63, 121, 140, 149, 193,
194, 205, 217, 218, 241, 243,
246, 250, 264, 276, 277, 283,
286, 289, 293

Anomaly detection, 5, 6, 13, 19, 26, 36,
37, 119, 122, 131, 135, 177,
193, 194, 227, 236, 241, 257,
264, 276, 279, 305–307

Area under curve (AUC), 270
Artificial neural networks (ANN), 13, 82,

275
Autoencoders, 195, 206–208, 216, 217,

257, 261–263
Automatic process monitoring, 4
Average run length (ARL), 13, 93, 100

B
Bias fault, 174, 284, 286
Bidirectional LSTM, 242
Boltzmann machine (BM), 210, 211, 215,

235, 239
Border gateway protocol (BGP), 241

Busy scenes, 264–266, 268, 269, 272

C
Canonical correlation analysis (CCA),

305
Canonical variate analysis (CVA), 11
Chemical oxygen demand (COD), 290
Classification and regression trees

(CART), 275
Clustering algorithms, 193, 195, 196, 218,

226, 227, 241, 243, 246,
249–251, 306

Coastal WWTP, 290
Collinearity, 19, 20, 26, 27, 30, 119, 149,

156, 157
Collinearity problem, 21
Complexly related variables, 111
Conditional RBMs, 236, 237
Continuous latent space, 207
Contractive autoencoder, 206, 209, 210
Contrastive divergence (CD), 213, 236,

238
Control limits, 33, 35, 43, 172, 174, 188
Controller area network (CAN), 241
Conventional

autoencoders, 208
LVR, 20, 47, 180–182
monitoring, 50, 130, 131, 155, 158,

164–166, 170, 187, 307
PLS modeling techniques, 143
RNNs, 226
Shewhart, 172–175

Convolutional neural networks (CNN),
257

Cumulative percent variance (CPV), 24,
31

311



312 Index

CUSUM, 8, 10, 20, 32–34, 36, 37, 50,
130, 157, 158, 168, 170, 171,
186, 305, 306

decision statistic, 34
Cyclic variables, 106

D
Decentralized WWTP, 290, 291, 297
Deep belief network (DBN), 195, 211,

213–215, 218, 226, 239, 269,
273, 275, 276, 278, 279

Deep Boltzmann machines (DBM), 13,
195, 211, 213, 215, 239

Deep learning, 13, 193, 195, 206, 210,
213, 217–219, 225–227, 236,
239, 250, 256, 257, 261, 263,
264, 267, 272–275, 306–308

Deep learning methods, 195, 257, 275,
285, 305, 307

Deep stacked autoencoder (DSA), 195
model, 258, 263, 264, 266–268, 285

Denoising autoencoders, 206, 208
Designing monitoring, 158, 307
Detection

efficiency, 61, 174, 246
performance, 8, 13, 37, 46, 140, 143,

147, 148, 157, 172, 173, 175,
185, 186, 201, 218, 246, 273,
286, 287

sensitivity, 227
threshold, 8, 130, 135–137, 146, 172,

201, 265, 266, 274, 295
Discrete wavelet transform (DWT), 161
Dissolved oxygen (DO), 291
Driving assistance systems (DAS), 255
DSA, see Deep stacked autoencoder

E
Effective sample size (ESS), 91
Environmental processes, 1, 4, 6, 9, 14,

19, 30, 42, 47, 50, 63, 119,
124, 225, 227, 241, 242, 307

EWMA, see Exponentially weighted
moving average

Expectation maximization (EM), 201
Expected error rate (EER), 101
Exponentially weighted moving average

(EWMA), 8, 10, 12, 20, 32,

34–37, 50, 93, 94, 130, 138,
158, 168, 170, 171, 180, 186,
201, 243, 250, 295, 305, 306

charting statistics, 95
charts, 33
decision function, 35
filter, 168
monitoring scheme, 39, 156
monitoring statistic, 34
multiscale, 157, 171
multivariate, 11, 44, 94, 97, 306

Expressive RNNs, 240
Extreme learning machine (ELM), 99

F
False alarm rate (FAR), 185
False negatives (FN), 13
False positive rate (FPR), 13, 61, 246
False positives (FP), 13
Fault

classification, 99
diagnosis, 27, 50–53, 71, 92, 98, 112
identification, 5, 99
location, 103
management, 4
measurement, 3, 9, 77
probability, 89
prognosis, 112

Fault detection (FD), 306
Fault isolation (FI), 4, 20, 50, 51, 53, 71,

72, 74, 78–80, 82, 85–89, 92,
95–98, 100, 101, 104, 108,
112, 306

Faultless datasets, 136, 137, 140
Fiber grating (FG), 255
Finite impulse response (FIR), 31, 167
Fraud detection, 41
Functional principal components, 150

G
Gated recurrent unit (GRU), 226, 230, 234
Gaussian mixture model (GMM), 12
Gaussian processes (GP), 225
Generalized likelihood ratio (GLR), 8, 20,

37, 274, 305

H
Hellinger distance (HD), 41, 130, 146,

306



Index 313

Hidden layer, 206, 208, 209, 211,
214–216, 227, 232, 234, 235,
240, 262, 267, 284

Hidden units, 210, 212, 213, 216, 230,
236–238, 240

Historical faults, 99
Human detection, 256

I
In control (IC), 71
Independent component analysis (ICA),

11, 12
Independent variables, 24
Industrial process, 2, 10, 12, 20, 32, 42,

45, 121, 137, 155, 177
Industrial process monitoring, 1, 10, 11,

112
Influent characteristics (IC), 20, 55, 290
Inspected process, 8–10, 12, 19, 39, 42,

47, 121, 150, 241–243
Intermittent

anomaly detection, 148
sensor faults, 286

Intrusion detection, 226, 241, 242, 250

K
Kernel density estimation (KDE), 41, 50,

110, 130, 137, 199
Kernel entropy component analysis

(KECA), 99
Kernel principal components analysis

(KPCA), 12, 120, 131, 132,
134, 136–138, 140, 142, 150,
289, 306

detection thresholds, 137
monitoring, 135
multiscale, 137

KPCA, see Kernel principal components
analysis

L
Lagged variables, 32, 150
Lasso EWMA (LEWMA), 93–95, 97
Latent space, 121–124, 126, 129, 207
Latent variable, 12, 19, 20, 22, 23, 26, 28,

29, 119, 122, 124, 125, 127,
143, 156, 176, 178, 187, 201,
202, 206, 207, 210, 305, 306

Latent variable regression (LVR), 19, 20,
22, 23, 119, 156, 305

Linear discriminant analysis (LDA), 289
Linear LVR methods, 119–122, 149
Linear LVR models, 20, 63, 122
Linear PLS, 120, 123–126, 128, 129, 142
Local monitors, 98
Locally linear embedding (LLE), 120, 289
Long short-term memory, see LSTM
Lower control limit (LCL), 33
LSTM, 13, 226, 227, 230, 231, 234, 235,

239–242, 250
LVR, see Latent variable regression

M
Markov chain Monte Carlo (MCMC), 212
MCUSUM, 44, 45, 47, 48, 50, 306

decision statistic, 45
Mean absolute error (MAE), 145
Mean squared error (MSE), 143, 180
Missed detection, 37, 173, 175
Missed detection rate (MDR), 102, 166,

172–175, 185
Monitoring, 5, 10, 12, 19, 32, 39, 43, 71,

83, 88, 95, 96, 119, 121, 130,
148–150, 157, 170, 171, 177,
183, 264, 275, 287, 288, 290,
291, 297, 307, 308

air quality, 307
autocorrelated data, 165
industrial processes, 10
influent measurements, 55
KPCA, 135
multiscale, 172
nonlinear processes, 121, 137
ozone measurements, 287
ozone pollution, 297
univariate schemes, 39

Multiperson detection, 271
Multiple kernel anomaly detection

(MKAD), 241
Multiscale

EWMA, 157, 171
KPCA, 137
LSTM, 241
monitoring, 10, 157, 171, 172, 177
PLS models, 178
representation, 157, 159, 164, 167, 170,

173, 174, 187



314 Index

Multivariate
CUSUM chart, 98
distributions, 87, 98
fault detection, 71, 157, 166, 187
fault isolation, 97
normal distribution, 73, 79
process monitoring, 32, 43, 104, 140,

177, 179
process variables, 170
statistical monitoring techniques, 305
statistical process monitoring, 112

Multivariate EWMA (MEWMA), 11,
44–48, 50, 83, 94, 97, 274, 306

monitoring schemes, 44, 46

N
Neural networks (NN), 127, 193
Nonlinear

LVR models, 121, 122, 305
process monitoring, 63, 289, 306

Nonlinear PLS (NLPLS), 120, 121, 125,
127, 143–145, 149, 150

Nonparametric threshold, 41, 61, 109, 110
Nonshifted variables, 97

O
Obstacle detection, 217, 218, 255–258,

260, 261, 263–265, 269–273
OCSVM, 13, 137, 140, 202, 204, 217,

218, 243, 244, 247, 249, 250,
276, 278, 279, 283, 285, 286,
288, 290, 291, 295

detection algorithm, 293
detector, 138

Offline detection methods, 5
One-class SVM, see OCSVM
Online detection, 5
Ordinary least squares (OLS), 20, 21
Outlier detection, 306
Ozone monitoring, 278
Ozone pollution, 13, 274–276, 287, 306

P
Parameter selection score (PSS), 97
Partial least squares (PLS), 11, 20, 27, 98,

119, 156, 305
Partitioning around medoids (PAM), 196

Performance
KPCA, 140
monitoring, 39, 155, 305
NLPLS, 121
obstacle detection, 273

Performance assessment, 87
Photochemical ozone pollution, 283
PLS, see Partial least squares
Plug flow reactor (PFR), 143
Polynomial PLS, 12, 123, 126, 130, 142
Postprocess variables, 112
Potential anomalies, 204
Prediction performance, 181
Predictor variables, 26, 105, 109
Principal component analysis (PCA), 11,

77, 109, 119, 194, 274
Principal component regression (PCR),

11, 20, 156
Principal component subspace (PCS), 77
Principal components (PC), 20, 23–25,

28, 47, 55, 62, 77, 95, 109,
120, 124, 131, 133, 178, 179

Probability density functions (PDF), 37,
40

Process
faults, 4
WWTP, 139, 288

Progressive faults, 149

R
Radial basis function (RBF), 135, 203,

283
RadViz, 52, 53, 62, 63
Ramp fault, 148
Raw residuals, 148
RBM, see Restricted Boltzmann

machines
Recurrent deep learning, 227
Recurrent neural network (RNN), 13,

226–230, 244, 290
Regularized canonical correlation analysis

(RCCA), 119
Residual subspace (RS), 77
Residuals, 8, 12, 25–29, 31, 47, 48, 57,

61, 106, 107, 109, 111, 129,
130, 146, 149, 156, 165, 184,
185, 187, 242, 243, 250

uncorrelated, 39, 156
Response variables, 105–107



Index 315

Restricted Boltzmann machines (RBM),
13, 210–212, 215, 226, 237,
244

model, 211, 212, 215, 237
Ridge regression (RR), 20, 21
RNN, see Recurrent neural network
Road traffic monitoring, 257
Root mean squared error (RMSE), 145

S
Satisfactory detection performances, 137
Shallow OCSVM algorithm, 285, 286
Shewhart

fault detection, 187
multiscale, 174
scheme, 33, 36, 39, 44, 174, 187

Shifted variables, 71, 73, 74, 77, 79,
81–83, 85, 87, 91–93, 95, 97,
100–103, 110

Single fault, 79, 91
Singular value decomposition (SVD), 24
Spline PLS model, 126
Squared prediction error (SPE), 12, 49,

129, 139
Stacked autoencoder, 195, 207, 213, 216,

263, 275
Stacking several RBMs, 211
Standardized residuals, 91, 92, 107
Step fault, 175
Superior performance, 181
Supervised WWTP, 138
Support vector data description (SVDD),

194, 195, 203
Support vector machine (SVM), 13, 99,

193, 202, 256
Support vector regression (SVR), 275
SVM, see Support vector machine

T
Temporal dependencies, 226–229, 236,

237, 239, 240, 244, 250, 251,
306

Tennessee Eastman (TE) process, 98, 99
Termed variables, 72
Timely detection, 155

Total suspended solids (TSS), 291
True negatives (TN), 13
True positive rate (TPR), 13, 61, 270
True positives (TP), 13

U
Uncorrelated residuals, 39, 156
Uncovering intermittent faults, 148
Undercomplete variational autoencoders,

206
Undetected anomalies, 138
Undetected faults, 1
Unfiltered residuals, 146, 148
Univariate

CUSUM scheme, 45
EWMA, 43
EWMA scheme, 36, 43
monitoring schemes, 10, 20, 32, 39,

42–44, 170, 305
process monitoring, 32

Unshifted variables, 79, 83, 95, 100, 101
Unsuited detection performance, 247
Unsupervised anomaly detection, 194,

195
Unsupervised anomaly detection

methods, 193, 194
Unsupervised deep learning, 217, 257,

273, 290, 297, 306
Upper control limit (UCL), 33, 80

V
Vanilla RNNs, 227, 228
Variational autoencoder, 207
Visible layer, 214–216, 239, 240
Visualization RadViz, 20
Visualized variables, 52
Volatile organic compounds (VOC), 274,

282

W
Wastewater treatment plants (WWTP), 19,

55, 57, 59, 60, 63, 138, 225,
244, 246, 288–291, 296, 297

Weak detection, 61
WWTP, see Wastewater treatment plants




	Cover
	Statistical ProcessMonitoring usingAdvanced Data-Drivenand Deep LearningApproaches:Theory and Practical Applications
	Copyright
	Contents
	Preface
	Acknowledgments
	1 Introduction
	1.1 Introduction
	1.1.1 Motivation: why process monitoring
	1.1.2 Types of faults
	1.1.3 Process monitoring
	1.1.4 Physical redundancy vs analytical redundancy

	1.2 Process monitoring methods
	1.2.1 Model-based methods
	1.2.2 Knowledge-based methods
	1.2.3 Data-based monitoring methods

	1.3 Fault detection metrics
	1.4 Conclusion
	 References

	2 Linear latent variable regression (LVR)-based process monitoring
	2.1 Introduction
	2.2 Development of linear LVR models
	2.2.1 Full rank methods
	2.2.1.1 Ordinary least squares regression
	2.2.1.2 Ridge regression (RR)

	2.2.2 Latent variable regression (LVR) models
	2.2.2.1 Principal component analysis
	Feature extraction with PCA
	Criteria for selecting the number of principal components to use

	2.2.2.2 Principal component regression
	2.2.2.3 Partial least squares


	2.3 Dynamic LVR models
	2.4 Process monitoring methods
	2.4.1 Univariate chart for process monitoring
	2.4.1.1 Shewhart-based monitoring scheme
	2.4.1.2 Cumulative sum (CUSUM)-based monitoring schemes
	2.4.1.3 Exponentially weighted moving average (EWMA) schemes
	2.4.1.4 Generalized likelihood ratio (GLR) hypothesis testing approach

	2.4.2 Distribution-based process monitoring schemes
	2.4.2.1 Kullback-Leibler-based monitoring scheme
	2.4.2.2 Hellinger-based monitoring scheme
	2.4.2.3 Limitations of univariate monitoring schemes

	2.4.3 Multivariate process monitoring schemes with parametric and nonparametric thresholds
	2.4.3.1 Multivariate Shewhart schemes
	2.4.3.2 Multivariate cumulative sum scheme (MCUSUM)
	2.4.3.3 Multivariate exponentially weighted moving average scheme (MEWMA)


	2.5 Linear LVR-based process monitoring strategies
	2.5.1 Conventional LVR monitoring statistics
	2.5.1.1 Hotelling's T2 statistic
	2.5.1.2 Q statistic or squared prediction error (SPE)

	2.5.2 Fault isolation
	2.5.2.1 Fault isolation using modiﬁed contribution plots
	T2 contribution approach
	SPE contribution approach

	2.5.2.2 Fault diagnosis using RadViz visualizer


	2.6 Cases studies
	2.6.1 Simulated example
	2.6.2 Monitoring inﬂuent measurements at water resource recovery facilities

	2.7 Discussion
	 References

	3 Fault isolation
	3.1 Introduction
	3.1.1 Pitfalls of standardizing data
	3.1.2 Shortcomings of contribution plots/scores

	3.2 Fault isolation
	3.2.1 Variable thinning
	3.2.2 Iterative traditional isolation
	3.2.2.1 Mason-Young-Tracy method
	3.2.2.2 Murphy method
	3.2.2.3 Artiﬁcial neural network methods
	3.2.2.4 Discussion

	3.2.3 Variable selection methods
	3.2.3.1 Phase I variable selection
	3.2.3.2 Phase II variable selection


	3.3 Fault classiﬁcation
	3.4 Fault isolation metrics
	3.4.1 Fault isolation errors
	3.4.2 Precision and recall
	3.4.3 Phase I FI metrics
	3.4.4 Discussion

	3.5 Case studies
	3.5.1 Retrospective fault isolation
	3.5.2 Real-time fault isolation

	3.6 Further reading
	 References

	4 Nonlinear latent variable regression methods
	4.1 Introduction
	4.2 Limitations of linear LVR methods for process monitoring
	4.3 Developing nonlinear LVR methods for process monitoring
	4.3.1 Nonlinear partial least squares
	4.3.1.1 Polynomial PLS modeling algorithm

	4.3.2 ANFIS-PLS modeling framework
	4.3.2.1 Nonlinear PLS-based monitoring

	4.3.3 Kernel PCA
	4.3.4 Kernel principal components analysis (KPCA) model
	4.3.5 KPCA-based fault detection procedures

	4.4 Cases study: monitoring WWTP
	4.4.1 Anomaly detection using KPCA-OCSVM method

	4.5 Simulated synthetic data
	4.5.1 Application of plug ﬂow reactor
	4.5.1.1 Data generation and modeling
	4.5.1.2 Detection results
	4.5.1.3 Case (A) - abrupt anomaly detection
	4.5.1.4 Case (B) - intermittent anomaly detection
	4.5.1.5 Case (B) - drift anomaly detection


	4.6 Discussion
	 References

	5 Multiscale latent variable regression-based process monitoring methods
	5.1 Introduction
	5.2 Theoretical background of wavelet-based data representation
	5.2.1 Wavelet transform
	5.2.2 Multiscale representation of data using wavelets
	5.2.3 Advantages of multiscale representation
	5.2.3.1 Decorrelating autocorrelated measurements
	5.2.3.2 Data are closer to normality at multiple scales


	5.3 Multiscale ﬁltering using wavelets
	5.3.1 Single scale ﬁlter method
	5.3.2 Multiscale ﬁltering methods
	5.3.3 Advantages of multiscale denoising

	5.4 Wavelet-based multiscale univariate monitoring techniques
	5.4.1 An illustrative example
	5.4.1.1 Impact of autocorrelated data on the conventional Shewhart chart
	5.4.1.2 Effect of measurement noise on the conventional Shewhart chart
	5.4.1.3 Impact of the violation of normality assumption on the conventional Shewhart chart


	5.5 Multiscale LVR modeling
	5.5.1 Beneﬁts of multiscale denoising in LVR modeling

	5.6 Multiscale LVR modeling
	5.7 Results and discussions
	5.7.1 Application with synthetic data
	5.7.1.1 Simulation results: synthetic data
	5.7.1.2 Simulation results: distillation column

	5.7.2 Application of monitoring distillation column

	5.8 Discussion
	 References

	6 Unsupervised deep learning-based process monitoring methods
	6.1 Introduction
	6.2 Clustering
	6.2.1 Partition-based clustering techniques
	6.2.1.1 k-Means clustering

	6.2.2 Hierarchy-based clustering techniques
	6.2.2.1 BIRCH (hierarchical)
	6.2.2.2 Agglomerative clustering

	6.2.3 Density-based approach
	6.2.3.1 Mean shift clustering
	6.2.3.2 k-Nearest neighbor clustering

	6.2.4 Expectation maximization

	6.3 One-class classiﬁcation
	6.3.1 One-class SVM
	6.3.2 Support vector data description (SVDD)

	6.4 Deep learning models
	6.4.1 Autoencoders
	6.4.1.1 Variational autoencoder
	6.4.1.2 Denoising autoencoder
	6.4.1.3 Contrastive autoencoder

	6.4.2 Probabilistic models
	6.4.2.1 Boltzmann machine
	6.4.2.2 Restricted Boltzmann machine

	6.4.3 Deep neural networks
	6.4.3.1 Deep belief networks

	6.4.4 Deep Boltzmann machine
	6.4.4.1 Deep stacked autoencoder


	6.5 Deep learning-based clustering schemes for process monitoring
	6.6 Discussion
	 References

	7 Unsupervised recurrent deep learning scheme for process monitoring
	7.1 Introduction
	7.2 Recurrent neural networks approach
	7.2.1 Basics of recurrent neural networks
	7.2.2 Long short-term memory
	7.2.2.1 LSTM implementation steps

	7.2.3 Gated recurrent neural networks

	7.3 Hybrid deep models
	7.3.1 RNN-RBM
	7.3.2 RNN-RBM method
	7.3.3 LSTM-RBM model
	7.3.4 LSTM-DBN

	7.4 Recurrent deep learning-based process monitoring
	7.4.1 Residuals-based process monitoring approaches
	7.4.2 Recurrent deep learning-based clustering schemes for process monitoring
	7.4.2.1 RNN-RBM clustering


	7.5 Applications: monitoring inﬂuent conditions at WWTP
	7.6 Discussion
	 References

	8 Case studies
	8.1 Introduction
	8.2 Stereovision
	8.2.1 Deep stacked autoencoder-based KNN approach
	8.2.1.1 Preliminary materials: autoencoders
	8.2.1.2 The SDA-kNN obstacle detection approach

	8.2.2 Data description
	8.2.3 Results and discussion
	8.2.4 Model trained using data with no obstacles
	8.2.5 Evaluation of performance for busy scenes
	8.2.6 Obstacle detection using the Bahnhof dataset

	8.3 Detecting abnormal ozone measurements using deep learning
	8.3.1 Introduction
	8.3.2 Data description
	8.3.3 Ozone monitoring based on deep learning approaches
	8.3.3.1 Results and discussion

	8.3.4 Detection results
	8.3.4.1 Sensor anomaly detection: false anomalies
	8.3.4.1.1 Case A: single abrupt fault
	8.3.4.1.2 Case B: multiple abrupt faults
	8.3.4.1.3 Case C: intermittent faults

	8.3.4.2 Conclusion


	8.4 Monitoring of a wastewater treatment plant using deep learning
	8.4.1 Introduction
	8.4.2 Proposed DBN-based kNN, OCSVM, and k-means algorithms
	8.4.3 Real data application: monitoring a decentralized wastewater treatment plant in Golden, CO, USA
	8.4.4 Conclusion

	 References

	9 Conclusion and further researchdirections
	References

	Index
	Back Cover

