

Swift Programming: The Big Nerd Ranch Guide
by Mikey Ward

Copyright © 2020 Big Nerd Ranch

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch
200 Arizona Ave NE, Suite 200
Atlanta, GA 30307

(770) 817-6373
https://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat is a trademark of Big Nerd Ranch.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
https://www.informit.com/

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0135266327
ISBN-13 978-0135266328

Third edition, first printing, September 2020
Release D.3.1.1

iii

Dedication
For Matt Mathias and John Gallagher; I stand on their shoulders. For Aaron
Hillegass, who took a chance on hiring me. And for my parents, for their eternal
loving support.

— M.W.

v

Acknowledgments
Writing a book is a team effort, and thanks are due.

First and foremost, thanks to Matt Mathias and John Gallagher, who wrote the the first two editions of
this book. Their vision and creativity are still evident in its pages. Thank you Matt and John for all of
the heart and soul that you poured into it.

Thank you also to Jacob Bullock, Juan Pablo Claude, Chris Downie, Nicole Hinckley, Chris Morris,
and Zachary Waldowski, who went above and beyond in their contributions to this edition. Their words
and wisdom have markedly improved its quality.

Over time, many colleagues have contributed to the continuous evolution of this book and our Swift
training materials. They have provided a wealth of thoughtful suggestions and feedback. Thank you,
Pouria Almassi, Matt Bezark, Amit Bijlani, Nate Chandler, Step Christopher, Kynerd Coleman,
Matthew Compton, Mark Dalrymple, Joseph Dixon, Robert Edwards, Sean Farrell, Drew Fitzpatrick,
Brian Hardy, Florian Harr, Tom Harrington, Gabe Hoffman, David House, Jeremiah Jessel, Bolot
Kerimbaev, Christian Keur, Jake Kirshner, Drew Kreuzman, JJ Manton, Bill Monk, Chris Morris,
Adam Preble, Kevin Randrup, Scott Ritchie, Jeremy Sherman, Steve Sparks, Rod Strougo, TJ Usiyan,
Thomas Ward, Michael Williams, and Mike Zornek.

Colleagues in operations, marketing, and sales have provided instrumental support. Classes would
literally never be scheduled without their work. Thank you Holly Avila, CJ Best, Nick Gravino,
Mathew Jackson, Shannon Kroll, Anja McKinley, Thomas Moore, Q. Elle Mosley, Rodrigo Velasco,
Don Wedington, Eric Wilson, and Madison Witzler.

And, of course, thank you to the many talented honorary Big Nerds who worked on the book.

Liz Holaday, editor extraordinaire, worked tirelessly to help refine, transform, and crystallize these
ideas into prose. Your voice is integral to the quality of our work.

Anna Bentley jumped in to copyedit, correcting errors and inconsistencies. Thank you for your eagle
eye and for accommodating the schedule crunch as the book raced toward completion.

Ellie Volckhausen designed the the cover; thanks for that rad skateboard!

Chris Loper designed and produced the print book and the EPUB and Kindle versions. Your hard work
in the unglamorous part of production is extremely appreciated.

Finally, from all of us at Big Nerd Ranch, thank you to our students. We learn with you and for you.
Teaching is part of the greatest thing that we do, and it has been a pleasure working with you. We hope
that the quality of this book matches your enthusiasm and determination.

vii

Table of Contents
Introduction .. xv

Learning Swift .. xv
Why Swift? .. xv
What About Objective-C? .. xvi
Prerequisites .. xvi
How This Book Is Organized ... xvi
How to Use This Book ... xvii
Challenges and For the More Curious .. xviii
Typographical Conventions ... xviii
Necessary Hardware and Software ... xviii
Before You Begin ... xviii

I. Getting Started .. 1
1. Getting Started .. 3

Getting Started with Xcode ... 4
Playing in a Playground ... 6
Running Your Code ... 7
Troubleshooting Playgrounds ... 8
Varying Variables and Printing to the Console .. 8
Adding Comments ... 11
You Are on Your Way! ... 11
Bronze Challenge .. 12

2. Types, Constants, and Variables .. 13
Types ... 13
Constants vs Variables .. 15
String Interpolation .. 16
Bronze Challenge .. 17

II. The Basics ... 19
3. Conditionals .. 21

if/else .. 21
Ternary Operator ... 24
Nested ifs ... 25
else if .. 26
Bronze Challenge .. 26

4. Numbers ... 27
Integers .. 27
Creating Integer Instances ... 29
Operations on Integers .. 31

Integer division ... 32
Operator shorthand .. 33
Overflow operators .. 33

Converting Between Integer Types .. 35
Floating-Point Numbers .. 36
Ranges of Numbers ... 38
Bronze Challenge .. 39
For the More Curious: Numeric Literals .. 39

Swift Programming

viii

5. Switch .. 41
Switch Syntax ... 42

Ranges ... 44
Value binding .. 45
where clauses .. 47

Tuples and Pattern Matching ... 48
switch vs if/else .. 50
Bronze Challenge .. 52
Silver Challenge .. 52

6. Loops ... 53
for-in Loops ... 54

where .. 57
while Loops .. 59
repeat-while Loops .. 60
Control Transfer Statements in Loops ... 61
Silver Challenge .. 64

7. Strings ... 65
Working with Strings ... 65

Characters .. 67
Unicode ... 68

Unicode scalars ... 68
Canonical equivalence .. 70

Bronze Challenge .. 74
Silver Challenge .. 74
For the More Curious: Substrings ... 74
For the More Curious: Multiline Strings .. 77

III. Collections and Functions .. 79
8. Arrays .. 81

Creating an Array .. 82
Accessing and Modifying Arrays ... 84
Combining Arrays ... 87
Array Equality .. 88
Immutable Arrays .. 89
Documentation .. 89
Bronze Challenge .. 92
Silver Challenge .. 92

9. Optionals .. 93
Optional Types .. 94
Optional Binding ... 96
Implicitly Unwrapped Optionals ... 99
Optional Chaining .. 100
Modifying an Optional in Place .. 101
The Nil Coalescing Operator ... 102
Bronze Challenge ... 103
Silver Challenge .. 103
Gold Challenge .. 103

10. Dictionaries ... 105
Creating a Dictionary ... 106

Swift Programming

ix

Accessing and Modifying Values .. 107
Adding and Removing Values .. 109
Looping over a Dictionary ... 110
Immutable Dictionaries ... 111
Translating a Dictionary to an Array ... 111
Silver Challenge .. 112
Gold Challenge .. 112

11. Sets .. 113
What Is a Set? ... 113
Getting a Set ... 114
Working with Sets .. 115

Unions ... 116
Intersections .. 117
Disjoint .. 118

Moving Between Types ... 119
Bronze Challenge ... 121
Silver Challenge .. 121

12. Functions .. 123
A Basic Function ... 124
Function Parameters ... 125

Parameter names .. 126
Default parameter values ... 127
In-out parameters ... 129

Returning from a Function .. 130
Nested Function Definitions and Scope .. 131
Multiple Returns .. 132
Optional Return Types .. 133
Exiting Early from a Function .. 134
Function Types .. 135
Bronze Challenge ... 136
Silver Challenge .. 136
For the More Curious: Void ... 137
For the More Curious: Variadic Parameters ... 138

13. Closures .. 139
Closure Syntax .. 139
Closure Expression Syntax .. 141
Functions as Arguments .. 144
Closures Capture Their Enclosing Scope .. 146
Functional Programming ... 150
Higher-Order Functions .. 150

map(_:) .. 151
filter(_:) .. 152
reduce(_:_:) ... 153

Bronze Challenge ... 154
Silver Challenge .. 154
Gold Challenge .. 154
For the More Curious: Functions as Return Types .. 155

IV. Enumerations, Structures, and Classes .. 157

Swift Programming

x

14. Enumerations ... 159
Basic Enumerations .. 159
Enumerations with Raw Values .. 163
Methods ... 165
Associated Values .. 169
Bronze Challenge ... 172
Silver Challenge .. 172
For the More Curious: Recursive Enumerations ... 172

15. Structs and Classes ... 175
A New Project .. 175
Structures ... 181
Instance Methods ... 184

Mutating methods .. 185
Classes ... 186

A Monster class ... 186
Inheritance .. 187

Looking Ahead: What Is the Real Difference? .. 194
Bronze Challenge ... 197
Silver Challenge .. 197
For the More Curious: Type Methods .. 197

16. Properties .. 199
Basic Stored Properties ... 200
Nested Types ... 201
Lazy Stored Properties .. 201
Computed Properties .. 204

A getter and a setter ... 205
Property Observers ... 206
Type Properties .. 208
Access Control .. 211

Controlling getter and setter visibility .. 213
Bronze Challenge ... 215
Silver Challenge .. 215
Gold Challenge .. 215
For the More Curious: Key Paths .. 216

17. Initialization ... 217
Initializer Syntax .. 217
Struct Initialization ... 218

Default initializers for structs ... 218
Custom initializers for structs ... 219

Class Initialization ... 223
Default initializers for classes .. 223
Initialization and class inheritance ... 224
Required initializers for classes .. 230
Deinitialization .. 231

Failable Initializers ... 232
A failable Town initializer ... 233

Initialization Going Forward .. 235
Silver Challenge .. 236

Swift Programming

xi

Gold Challenge .. 236
For the More Curious: Initializer Parameters ... 237

18. Value vs Reference Types .. 239
Value Semantics .. 239
Reference Semantics ... 242
Constant Value and Reference Types ... 244
Using Value and Reference Types Together .. 246
Copying ... 247
Equality vs Identity .. 249
What Should I Use? ... 251
For the More Curious: Copy on Write ... 252

V. Advanced Swift ... 261
19. Protocols ... 263

Formatting a Table of Data .. 264
Protocols .. 268
Protocol Conformance .. 271
Protocol Inheritance ... 273
Protocols as Types ... 274
Protocol Composition ... 276
Mutating Methods .. 278
Bronze Challenge ... 280
Silver Challenge .. 280
Electrum Challenge .. 280
Gold Challenge .. 280

20. Extensions ... 281
Extending an Existing Type ... 282
Extending Your Own Type .. 283

Using extensions to add protocol conformance .. 284
Adding an initializer with an extension .. 285
Nested types and extensions .. 286
Extensions with methods ... 287

Bronze Challenge ... 288
Silver Challenge .. 288

21. Generics .. 289
Generic Data Structures .. 290
Generic Functions and Methods ... 292
Type Constraints .. 295
Associated Types ... 297
Type Constraints in where Clauses .. 300
Generic Composition and Opaque Types .. 303
Bronze Challenge ... 308
Silver Challenge .. 308
Gold Challenge .. 308
For the More Curious: Understanding Optionals .. 309

22. Protocol Extensions ... 311
Modeling Exercise ... 312
Extending Exercise ... 313
Self Types and Type Values ... 315

Swift Programming

xii

Protocol Extension where Clauses ... 316
Default Implementations with Protocol Extensions ... 318
Implementation Conflicts .. 320
Bronze Challenge ... 322
Silver Challenge .. 322
Gold Challenge .. 322
For the More Curious: Polymorphism and Protocol-Oriented Programming 323

23. Error Handling ... 325
Classes of Errors ... 325
Lexing an Input String .. 326
Catching Errors ... 336
Parsing the Token Array ... 337
Handling Errors by Sticking Your Head in the Sand ... 342
Swift Error-Handling Philosophy .. 344
Bronze Challenge ... 346
Silver Challenge .. 346
Gold Challenge .. 346
For the More Curious: Storing Failable Results for Later 347

24. Memory Management and ARC .. 349
Memory Allocation .. 349
Strong Reference Cycles ... 350
Breaking Strong Reference Cycles with weak ... 358
Reference Cycles with Closures ... 359
Escaping and Non-Escaping Closures .. 364
Tin Challenge .. 366
Bronze Challenge ... 366
Gold Challenge .. 366
For the More Curious: A Bit of History ... 367
For the More Curious: Do I Have the Only Reference? ... 368

25. Equatable, Comparable, and Hashable .. 369
Equatable .. 369

Infix operators ... 372
Buy one method, get another free! .. 372

Comparable ... 373
Protocol inheritance .. 375

Hashable .. 376
Custom hashing ... 377

Bronze Challenge ... 379
Silver Challenge .. 379
Gold Challenge .. 380
Platinum Challenge .. 380
For the More Curious: Custom Operators ... 381

26. Property Wrappers .. 385
Defining a Property Wrapper ... 386

Additional configuration .. 389
Accessing the Wrapper Itself ... 391
Projecting Related Values .. 392
Bronze Challenge ... 394

Swift Programming

xiii

Silver Challenge .. 394
Gold Challenge .. 394

VI. Writing Applications ... 395
27. Command-Line Utilities ... 397

Introduction to the Command Line ... 397
Building the Word Finder .. 400

Loading the words from disk ... 405
Retrieving Command-Line Arguments ... 406
Receiving Input Interactively ... 409
Running Your App from the Command Line .. 412
Parsing Command-Line Arguments with ArgumentParser 413

Adding ArgumentParser to your project ... 413
Declaring arguments for ArgumentParser to parse .. 417

Silver Challenge .. 421
Gold Challenge .. 421

28. iOS and macOS Apps ... 423
Getting Started with TahDoodle .. 424
That is some View ... 427
Displaying Dynamic Data .. 431
Accepting User Input .. 438

Sharing references to value-type data .. 441
Interlude: Troubleshooting with property observers 446

Observing Changes to the Store ... 447
Saving and Loading User Data ... 449
Supporting macOS ... 454
Bronze Challenge ... 457
Silver Challenge .. 457
Gold Challenge .. 457

29. Conclusion .. 459
Where to Go from Here? .. 459
Shameless Plugs .. 459
An Invitation to the Community ... 460

Index ... 461

xv

Introduction

Learning Swift
Apple introduced the Swift language for the development of iOS and macOS applications in 2014.
It was a dramatic shift from Objective-C, the previous development language for Apple’s platforms.
There is a lot to learn in a relatively new language, and this is especially true for Swift.

Swift continues to evolve even six years after its release. As new features are added, Swift users can
collaboratively determine its best practices. You can be part of this conversation, and your work with
this book will start you on your way to becoming a contributing member of the Swift community.

Why Swift?
You may be wondering why Apple released a new language. After all, developers had been producing
high-quality apps for OS X and iOS for years. Apple had a few things in mind.

First, the syntax of Objective-C dates back to 1984, before the rise in the 1990s of prominent scripting
languages that popularized more streamlined and elegant syntax (like JavaScript, Python, PHP, Ruby,
and others). As a result, Objective-C syntax is not as accessible or familiar to developers as more
modern languages. Also, while the language pioneered many ideas in object-oriented programming
and allowed a lot of flexibility for programs to change their behavior while running, a tradeoff was that
fewer bugs were discoverable during development. Instead, bugs often revealed themselves as crashes
once a program was in the hands of its users.

In addition to adopting more modern patterns and paradigms, Swift is designed to be more safe by
strictly requiring that developers follow certain safety rules that, in Objective-C, are only suggestions.
Objective-C did not aim to be unsafe, of course, but industry best practices have changed quite a bit
since it was released. For example, the Swift compiler aims to minimize undefined behavior and save
the developer time debugging code that failed at runtime.

Another goal of Swift is to be a suitable replacement for the C family of languages (C, C++, and
Objective-C). That means Swift has to be fast. Indeed, Swift’s performance is comparable to these
languages in most cases.

Swift gives you safety and performance, all in a clean, modern syntax. The language is quite
expressive; developers can write code that feels natural. This feature makes Swift a joy to write and
easy to read, which makes it great for collaborating on larger projects.

Last, Apple wants Swift to be a general-purpose programming language. In December 2015, it open-
sourced Swift and its compiler, inviting developer involvement to help the language progress and
making it easier for developers to port the language to systems beyond macOS and iOS. Apple hopes
that developers will use Swift to write apps for a variety of mobile and desktop platforms and to
develop back-end web applications as well.

Introduction

xvi

What About Objective-C?
So do you still need to know Objective-C to develop for Apple’s platforms? The answer is “a little.”
Being familiar with it can be helpful for the same reason that knowing some history is helpful: So you
understand why things are the way they are and what decisions went into the modern way of doing
things. But also, many Apple frameworks that you will use are written in Objective-C; even if you
interact with them using Swift, the error messages that they produce will have an Objective-C “accent,”
so debugging will be easier if you understand that language. And Apple has made it easy to mix and
match Objective-C with Swift in the same project, so as you become a more advanced developer for
Apple’s platforms, you might encounter Objective-C.

But do you need to know Objective-C to learn Swift or to write robust, useful apps? Not at all. At the
end of this book, you will write a command-line tool and a task list app for iOS and macOS – entirely
in Swift. Swift coexists and interoperates with Objective-C, but it is its own language. If you do not
know Objective-C, it will not hinder you in learning Swift or starting your development career.

Prerequisites
This book was written for all types of macOS and iOS developers, from platform experts to first-
timers. Having some development experience will be helpful, but it is not necessary to have a good
experience with this book. For readers just starting software development, this book highlights and
implements best practices for Swift and programming in general. Its strategy is to teach you the
fundamentals of programming while learning Swift.

For more experienced developers, this book will serve as a helpful introduction to the language.
Depending on the platform you are coming from, some of the fundamentals of Swift might already be
familiar. The section called How to Use This Book, below, lists some chapters that you might only need
to skim – and some that you should not skim.

How This Book Is Organized
This book is organized in six parts. Each is designed to help you accomplish a specific set of goals.
By the end of the book, you will have built your knowledge of Swift from that of a beginner to a more
advanced developer.

Getting Started This part of the book focuses on the tools that you will need to write Swift code
and introduces Swift’s syntax.

The Basics The Basics introduces the fundamental data types that you will use every day as
a Swift developer. This part of the book also covers Swift’s control flow features
that will help you to control the order your code executes in.

Collections and
Functions

You will often want to gather related data in your application. Once you do, you
will want to operate on that data. This part of the book covers the collections
and functions Swift offers to help with these tasks.

How to Use This Book

xvii

Enumerations,
Structures, and
Classes

This part of the book covers how you will model data in your own development.
You will examine the differences between Swift’s enumerations, structures, and
classes and see some recommendations on when to use each.

Advanced Swift Swift provides advanced features that enable you to write elegant, readable, and
effective code. This part of the book discusses how to use these features to write
idiomatic code that will set you apart from more casual Swift developers.

Writing
Applications

This part of the book walks you through writing your first real applications for
iOS and macOS.

How to Use This Book
Programming can be tough, and this book is here to make it easier. It does not focus on abstract
concepts and theory; instead, it favors a practical approach. It uses concrete examples to unpack
the more difficult ideas and also to show you best practices that make code more fun to write, more
readable, and easier to maintain. To get the most out of it, follow these steps:

• Read the book. Really! Do not just browse it nightly before going to bed.

• Type out the examples as you read along. Part of learning is muscle memory. If your fingers know
where to go and what to type without too much thought on your part, then you are on your way to
becoming a more effective developer.

• Make mistakes! In our experience, the best way to learn how things work is to first figure out what
makes them not work. Break our code examples and then make them work again.

• Experiment as your imagination sees fit. Whether that means tinkering with the code you find in
the book or going off in your own direction, the sooner you start solving your own problems with
Swift, the sooner you will become a better developer.

• Do the challenges at the end of each chapter. Again, it is important to begin solving problems with
Swift as soon as possible. Doing so will help you to start thinking like a developer.

Remember that learning new things takes time. Dedicate some time to going through this book when
you are able to avoid distractions. You will get more out of the text if you can give it your undivided
attention.

More experienced developers coming to Swift from another language might not need to go through
some of the earlier parts of the book. The tools and concepts introduced in Getting Started and The
Basics might be very familiar to some developers – but you should still skim them, as Swift’s strong
and strict type system means that certain problems are solved differently than in other languages.

In the Collections and Functions section, do not skip or skim the chapter on optionals. They are at the
heart of Swift, and in many ways they embody what is special about the language.

Other chapters in Collections and Functions and Enumerations, Structures, and Classes might seem
like they will not present anything new to the practiced developer. But Swift’s approach to topics on
topics like arrays, dictionaries, functions, enumerations, structs, and classes is unique enough that
every reader should at least skim these chapters.

Introduction

xviii

Challenges and For the More Curious
Most of the chapters in this book conclude with Challenge sections. These are exercises for you to
work through on your own and provide opportunities for you to challenge yourself. In our experience,
true learning happens when you solve problems in your own way.

There are also For the More Curious sections at the end of many chapters. These sections address
questions that may have occurred to the curious reader while working through the chapter. Sometimes
they discuss how a language feature’s underlying mechanics work or explore a programming concept
not quite related to the heart of the chapter.

Typographical Conventions
You will be writing a lot of code as you work through this book. To make things easier, this book
uses a couple of conventions to identify what code is old, what should be added, and what should be
removed. For example, in the function implementation below, you are deleting print("Hello") and
adding print("Goodbye"). The line reading func talkToMe() { and the final brace } were already in
the code. They are shown to help you locate the changes.

func talkToMe() {
 print("Hello")
 print("Goodbye")
}

Necessary Hardware and Software
To build and run the applications in this book, you will need a Mac running macOS Catalina (macOS
10.15.6) or newer. Screen captures in the book are taken using macOS Big Sur (macOS 11). You will
also need to install Xcode, Apple’s integrated development environment (IDE), which is available on
the Mac App Store. Xcode includes the Swift compiler as well as other development tools you will use
throughout the book.

Swift is still under rapid development. This book is written for Swift 5.3 and Xcode 12. Many of the
examples will not work as written with older versions of Xcode. If you are using a newer version of
Xcode, there may have been changes in the language that will cause some examples to fail.

If future versions of Xcode do cause problems, take heart – the vast majority of what you learn will
continue to be applicable to future versions of Swift even though there may be changes in syntax or
names. You can check out our book forums at forums.bignerdranch.com for help.

Before You Begin
Swift is an elegant language, and it is fun to make applications for the Apple ecosystem. While
writing code can be extremely frustrating, it can also be gratifying. There is something magical and
exhilarating about solving a problem – not to mention the joy that comes from making an app that
helps people and brings them happiness.

The best way to improve at anything is with practice. If you want to be a developer, then let’s get
started! If you find that you do not think you are very good at it, who cares? Keep at it and you will
surprise yourself. Your next steps lie ahead. Onward!

https://forums.bignerdranch.com

Part I
Getting Started

This part of the book introduces Xcode, the Swift developer’s primary development tool. You will
begin by exploring Xcode’s playgrounds, which provide a lightweight environment for trying out code.
These initial chapters will also help you become familiar with some of Swift’s most basic concepts,
like constants and variables, to set the stage for the deeper understanding of the language you will build
throughout this book.

3

1
Getting Started

In this chapter, you will set up your environment and take a small tour of some of the tools you will use
every day as an iOS and macOS developer. Additionally, you will get your hands dirty with some code
to help you get better acquainted with Swift and Xcode.

Chapter 1 Getting Started

4

Getting Started with Xcode
If you have not already done so, download and install the latest version of Xcode available for macOS
on the App Store.

When you have Xcode installed, launch it. The welcome screen appears; close it. It has options that are
not relevant right now.

You are going to create a document called a playground.

Playgrounds provide an interactive environment for rapidly developing and evaluating Swift code and
have become a useful prototyping tool. A playground does not require that you compile and run a
complete project. Instead, playgrounds evaluate your Swift code on the fly, so they are ideal for testing
and experimenting with the Swift language in a lightweight environment.

You will be using playgrounds frequently throughout this book to get quick feedback on your Swift
code. In addition to playgrounds, you will create native command-line tools and even an app for iOS
and macOS in later chapters. Why not just use playgrounds? You would miss out on a lot of Xcode’s
features and would not get as much exposure to the IDE. You will be spending a lot of time in Xcode,
and it is good to get comfortable with it as soon as possible.

From Xcode’s File menu, open the New submenu and select Playground... (Figure 1.1).

Figure 1.1 Creating a new playground

Getting Started with Xcode

5

In the configuration window that appears, you have some options to choose from. For the platform
(iOS, macOS, or tvOS), select macOS, even if you are an iOS developer (Figure 1.2). The Swift
features you will be exploring are common to both platforms. Select the Blank document template from
this group and click Next.

Figure 1.2 Picking a playground template

Finally, you are prompted to save your playground. As you work through this book, it is a good idea to
put all your work in one folder. Choose a location that works for you and click Create (Figure 1.3).

Figure 1.3 Saving a playground

Chapter 1 Getting Started

6

Playing in a Playground
Figure 1.4 shows a new Swift playground. It opens with three sections. On the left is the navigator
area. In the middle, you have the Swift code editor. And on the right is the results sidebar. The code in
the editor is evaluated and run, if possible, every time the source changes. The results of the code are
displayed in the results sidebar.

Figure 1.4 Your new playground

For the most part, you will not be using the navigator area in the playgrounds you create as you work
through this book. You can close it with the button just above it in the window toolbar.

Let’s take a look at the code in your new playground. At the top, the playground imports the
Cocoa framework. This import statement means that your playground has complete access to all
the application programming interfaces (APIs) in the Cocoa framework. (An API is similar to a
prescription – or set of definitions – for how a program can be written.)

Below the import statement is a line that reads var str = "Hello, playground". The equals sign,
which is called the assignment operator, assigns the result of code on its righthand side to a constant
or variable on its lefthand side. In this case, on the lefthand side of the equals sign is the text var str.
Swift’s keyword var is used to declare a variable. This is an important concept that you will see in
greater detail in the next chapter. For now, a variable represents some value that you expect to change
or vary.

On the righthand side of the assignment operator, you have "Hello, playground". In Swift, the
quotation marks indicate a String, an ordered collection of characters. The template named this new
variable str, but variables can be named almost anything. Of course, there are some limitations. Swift
reserves certain words for its own use. What would happen if you changed the name str to be var? Try
it and see; be sure to change the name back to str before moving on.

Running Your Code

7

Running Your Code
A playground is a place for you to write and experiment with Swift code on your terms. You get to
choose when the code you write will actually be run by Xcode. By default, a new playground will only
execute code when you tell it to.

Notice the small play button () in the lefthand gutter next to your code (Figure 1.4). This symbol
means that the playground is currently paused at this line and has not executed it. If you move your
cursor up and down the gutter (without clicking), the button will follow you. Clicking the play button
next to any line in the playground will execute all the code up to that line.

Click the play button next to the line var str = "Hello, playground" (Figure 1.5). The playground
evaluates the declaration of str, which will make its value appear in the righthand sidebar.

Figure 1.5 Executing instructions

Manually executing some or all of your code is a convenient feature of playgrounds when you are
exploring on your own, but it can become cumbersome when working through a book like this one.
Good news: You can tell Xcode to automatically run your playground every time you make changes.

Click and hold the play button in the bottom-left of the playground window (Figure 1.6). (It may be a
square if you just ran your playground.) In the pop-up, select Automatically Run. This will cause Xcode
to reevaluate your whole playground every time you make changes, so that you do not have to do it
yourself.

Figure 1.6 Automatically running your playground

Enable Automatically Run on every playground you create for this book.

Chapter 1 Getting Started

8

Troubleshooting Playgrounds
Xcode is an app like any other. Sometimes it has bugs and other strange behavior. At the time of this
writing, a playground may sometimes “hang” – stop running or updating the sidebar. If this happens to
you, one of these troubleshooting steps might help:

• Close and reopen your playground.

• Quit and relaunch Xcode.

• Switch the playground back to Manually Run and use the play button in the gutter to periodically
run your code up to the selected line.

• Copy your code into a new playground.

These steps might also be useful if you encounter a different problem with a playground.

Varying Variables and Printing to the Console
String is a type, and we say that the str variable is “an instance of the String type.” Types describe
a particular structure for representing data. Swift has many types, which you will meet throughout
this book. Each type has specific abilities (what the type can do with data) and limitations (what it
cannot do with data). For example, the String type is designed to work with an ordered collection of
characters and defines a number of functions to work with that ordered collection of characters.

Recall that str is a variable. That means you can change str’s value. Let’s append an exclamation
point to the end of the string. (Whenever new code is added in this book, it will be shown in bold.
Deletions will be struck through.)

Listing 1.1 Proper punctuation
import Cocoa

var str = "Hello, playground"
str += "!"

To add the exclamation point, you are using the += addition assignment operator. The addition
assignment operator combines the addition (+) and assignment (=) operations in a single operator. You
will learn more about operators in Chapter 3.

Varying Variables and Printing to the Console

9

You should see a new line in the results sidebar showing str’s new value, complete with an
exclamation point (Figure 1.7).

Figure 1.7 Varying str

From now on, we will show the sidebar results on the righthand side of code listings.

Next, add some code to print the value of the variable str to the console. In Xcode, the console
displays text messages that you create and want to log as things occur in your program. Xcode also
uses the console to display warnings and errors as they occur.

To print to the console, you will use the print() function. Functions are groupings of related code that
send instructions to the computer to complete a specific task. print() prints a value to the console
(followed by a line break). Unlike playgrounds, Xcode projects do not have a results sidebar – but the
console is always available. So you will use the print() function frequently when you are writing
fully featured apps.

One thing the console is useful for is checking the current value of a variable. Use print() to check
the value of str:

Listing 1.2 Printing to the console
import Cocoa

var str = "Hello, playground" "Hello, playground"
str += "!" "Hello, playground!"
print(str) "Hello, playground!\n"

Chapter 1 Getting Started

10

After you enter this new line and the playground executes the code, the console will open at the bottom
of the Xcode screen. (If it does not, you can open the debug area to see it. Click on View → Debug
Area → Show Debug Area, as shown in Figure 1.8. You can also type Shift-Command-Y, as the menu
shows, to open the debug area.)

Figure 1.8 Showing the debug area

Now that you have your debug area open, you should see something like Figure 1.9.

Figure 1.9 Your first Swift code

Adding Comments

11

Adding Comments
Sometimes you want to include text in your project code that is not part of the program, such as an
explanation of what is happening in nearby code.

Insert a new line above print(str) and add the following explanatory text:

Listing 1.3 Adding invalid text
import Cocoa

var str = "Hello, playground" "Hello, playground"
str += "!" "Hello, playground!"
Print the string to the console
print(str)

Xcode will indicate an error in this line, because it does not contain valid Swift code. (The error is also
shown in the console.) Now, add two slashes // to the beginning of the line:

Listing 1.4 Using a comment
import Cocoa

var str = "Hello, playground" "Hello, playground"
str += "!" "Hello, playground!"
//Print the string to the console
print(str) "Hello, playground!\n"

The error disappears. The slashes signify to the compiler that the whole line is a comment: text for the
developer’s benefit that should be ignored by the compiler.

Developers use comments to leave notes for themselves (or collaborators) about what is going on in the
surrounding code. You can also turn code into a comment to temporarily remove it from your program
without deleting it completely.

With the cursor still in the line with the comment, press Command-/. The slashes disappear. Use the
same keyboard shortcut to toggle them back. (If you just installed Xcode and Command-/ does not
work, restart your computer and try again.)

You Are on Your Way!
Let’s review what you have accomplished so far. You have:

• installed Xcode

• created and gotten acquainted with a playground

• used a variable and modified it

• learned about the String type

• used a function to print to the console

That is a lot! You will be making your own apps in no time.

Chapter 1 Getting Started

12

Bronze Challenge
Many of the chapters in this book end with one or more challenges. The challenges are for you to work
through on your own to deepen your understanding of Swift and get a little extra experience. Your first
challenge is below.

You learned about the String type and printing to the console using print(). Use your new
playground to create a new instance of the String type. Set the value of this instance to be equal to
your last name. Print its value to the console.

13

2
Types, Constants, and Variables

This chapter will introduce you to Swift’s basic data types, constants, and variables. These elements are
the fundamental building blocks of any program. You will use constants and variables to store values
and to pass data around in your applications. Types describe the nature of the data held by the constant
or variable. There are important differences between constants and variables, as well as each of the data
types, that shape their uses.

Types
Variables and constants have a data type. The type describes the nature of the data and provides
information to the compiler on how to handle the data. Based on the type of a constant or variable,
the compiler knows how much memory to reserve and will also be able to help with type checking, a
feature of Swift that helps prevent you from assigning the wrong kind of data to a variable.

Let’s see this in action. Create a new macOS playground. From within Xcode, choose File → New →
Playground.... Choose the blank template and name the playground Variables.

Do not forget to set the playground to Automatically Run as you make changes (Figure 2.1).

Figure 2.1 Automatically running your playground

Suppose you want to model a small town in your code. You might want a variable for the
number of stoplights. Remove the code that came with the template, create a variable called
numberOfStoplights, and give it a value. (Remember that code you are to delete is shown struck
through.)

Listing 2.1 Assigning a string to a variable
import Cocoa

var str = "Hello, playground"
var numberOfStoplights = "Four" "Four"

Chapter 2 Types, Constants, and Variables

14

Swift uses type inference to determine the data type of a variable. In this case, the compiler knows
the variable numberOfStoplights is of the String type because the value on the right side of the
assignment operator is an instance of String. How does it know that "Four" is an instance of String?
Because the quotation marks indicate that it is a String literal.

Now add the integer 2 to your variable, using += as you did in the last chapter.

Listing 2.2 Adding "Four" and 2
import Cocoa

var numberOfStoplights = "Four" "Four"
numberOfStoplights += 2

The compiler gives you an error telling you that this operation does not make sense. You get this error
because you are trying to add a number to a variable that is an instance of a different type: String.
What would it mean to add the number 2 to a string? Does it put “2” on the end and give you “Four2”?
Hard to say.

If you are thinking that it does not make sense to have numberOfStoplights be of type String in the
first place, you are right. Because this variable represents the number of stoplights in your theoretical
town, it makes sense to use a numerical type. Swift provides an Int type to represent whole integers
that is perfect for your variable. Change your code to use Int instead.

Listing 2.3 Using a numerical type
import Cocoa

var numberOfStoplights = "Four"
var numberOfStoplights: Int = 4 4
numberOfStoplights += 2 6

Before, the compiler relied on type inference to determine the data type of the variable
numberOfStoplights. Now, you are explicitly declaring the variable to be of the Int type using Swift’s
type annotation syntax, indicated by the colon followed by the type name.

Note that type annotation does not mean that the compiler is no longer paying attention to what is on
each side of the =. What if the type you specify is incompatible with the value that you assign? Try
changing the explicit type of numberOfStoplights from Int to String.

Listing 2.4 Using the wrong type
import Cocoa

var numberOfStoplights: Int String = 4 4
numberOfStoplights += 2 6

This produces an error: Cannot convert value of type Int to specified type String. Swift is telling you “I
see that 4 is an Int, but you are asking me to store it in a String variable. I cannot do that.”

You can add explicit type annotations when you think they will make your code more readable, but
Swift checks your variable types whether or not it infers them.

Revert the type back to Int to fix the error.

Constants vs Variables

15

Swift has a host of frequently used data types. You will learn more about numeric types in Chapter 4
and strings in Chapter 7. Other commonly used types represent collections of data; you will see those
beginning in Chapter 8.

Now that you have changed numberOfStoplights to be an Int with an initial value of 4, the errors
have disappeared. It makes sense to add one integer to another, and in fact it is something you will do
quite often in your code.

Recall from Chapter 1 that you used += to put two strings together. Here you use it to add two integers.
Swift knows how to apply this operator to most of its built-in types.

Constants vs Variables
We said that types describe the nature of the data held by a constant or variable. What, then, are
constants and variables? Up to now, you have only seen variables. Variables’ values can vary: You can
assign them a new value, as you have seen.

Often, however, you will want to create instances with values that do not change. Use constants for
these cases. As the name indicates, the value of a constant cannot be changed.

A good rule of thumb is to use variables for instances that must vary and constants for instances that
will not. For example, if you did not expect the value of numberOfStoplights to ever change, it would
be better to make it a constant.

Swift has different syntax for declaring constants and variables. As you have seen, you declare a
variable with the keyword var. You use the let keyword to declare a constant.

Change numberOfStoplights to a constant to fix the number of stoplights in your small town.

Listing 2.5 Declaring a constant
import Cocoa

var numberOfStoplights: Int = 4
let numberOfStoplights: Int = 4 4
numberOfStoplights += 2

You declare numberOfStoplights to be a constant via the let keyword. Unfortunately, this change
causes the compiler to issue an error. You still have code that attempts to change the number of
stoplights: numberOfStoplights += 2. Because constants cannot change, the compiler gives you an
error when you try to change it.

Fix the problem by removing the addition and assignment code.

Listing 2.6 Constants do not vary
import Cocoa

let numberOfStoplights: Int = 4 4
numberOfStoplights += 2

Chapter 2 Types, Constants, and Variables

16

Now, create an Int to represent the town’s population.

Listing 2.7 Declaring population
import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int

Your town’s population is likely to change over time, so you declare population with the var keyword
to make this instance a variable. You also declare population to be an instance of type Int, because a
town’s population is represented by a number. But you did not initialize population with any value. It
is therefore an uninitialized Int.

Swift will not allow you to use any variable or constant without first assigning it a value. Use the
assignment operator to give population its starting value.

Listing 2.8 Giving population a value
import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int
population = 5422 5422

String Interpolation
Every town needs a name. Your town is fairly stable, so it will not be changing its name any time soon.
Make the town name a constant of type String.

Listing 2.9 Giving the town a name
import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int
population = 5422 5422
let townName: String = "Knowhere" "Knowhere"

It would be nice to have a short description of the town that the Tourism Council could use. The
description is going to be a constant String, but you will be creating it a bit differently than the
constants and variables you have created so far. The description will include all the data you have
entered, and you are going to create it using a Swift feature called string interpolation.

String interpolation lets you combine constant and variable values into a new string. You can then
assign the string to a new variable or constant or just print it to the console. You are going to print the
town description to the console.

(Because of the limitations of the printed page, we have broken the string assigned to
townDescription onto multiple lines. You should enter it on one line.)

Bronze Challenge

17

Listing 2.10 Crafting the town description
import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int
population = 5422 5422
let townName: String = "Knowhere" "Knowhere"
let townDescription = "Knowhere has a populat...
 "\(townName) has a population of \(population)
 and \(numberOfStoplights) stoplights."
print(townDescription) "Knowhere has a populat...

We have truncated the sidebar results to make them fit. Xcode also truncates sidebar results to fit the
window; you can drag the divider between the editor pane and the sidebar left or right to see more or
less of the results.

The \() syntax represents a placeholder in the String literal that accesses an instance’s value and
places it (or “interpolates” it) within the new String. For example, \(townName) accesses the constant
townName’s value and places it within the new String instance.

The result of the new code is shown in Figure 2.2.

Figure 2.2 Knowhere’s short description

Bronze Challenge
Add a new variable to your playground representing Knowhere’s elevation. Which data type should
you use? Give this variable a value and update townDescription to use this new information.

Part II
The Basics

Programs execute code in a specific order. Writing software means having control over the order that
code executes in. Programming languages provide control flow statements to help developers organize
the execution of their code. This part of the book introduces the concepts of conditionals and loops to
accomplish this task.

The chapters in this part of the book will also show you how Swift represents numbers and text in
code. These types of data are the building blocks of many applications.

21

3
Conditionals

In previous chapters, your code led a relatively simple life: You declared some constants and variables
and then assigned them values. But of course, an application really comes to life – and programming
becomes a bit more challenging – when the application makes decisions based on the contents of its
variables. For example, a game may let players leap a tall building if they have eaten a power-up. You
use conditional statements to help applications make decisions like these.

if/else
if/else statements execute code based on a specific logical condition. You have a relatively simple
either/or situation, and depending on the result one branch of code or another (but not both) runs.

Consider Knowhere, your small town from the previous chapter, and imagine that you need to buy
stamps. Either Knowhere has a post office or it does not. If it does, you will buy stamps there. If it does
not, you will need to drive to the next town to buy stamps. Whether there is a post office is your logical
condition. The different behaviors are “get stamps in town” and “get stamps out of town.”

Some situations are more complex than a binary yes/no. You will see a more flexible mechanism called
switch in Chapter 5. But for now, let’s keep it simple.

Create a new blank macOS playground and name it Conditionals. Set it to Automatically Run. Enter the
code below, which shows the basic syntax for an if/else statement:

Listing 3.1 Big or small?
import Cocoa

var str = "Hello, playground"
let population: Int = 5422 5422
let message: String

if population < 10000 {
 message = "\(population) is a small town!" "5422 is a small town!"
} else {
 message = "\(population) is pretty big!"
}
print(message) "5422 is a small town!\n"

You first declare population as an instance of the Int type and assign it a value of 5,422. You also
declare a constant called message that is of the String type. You leave this declaration uninitialized at
first, meaning that you do not assign it a value. Swift requires you to assign it a value before you can
use it, but that assignment can be in a separate step.

Chapter 3 Conditionals

22

Next comes the conditional if/else statement. This is where message is assigned a value based
on whether the “if” statement evaluates to true. (Notice that you use string interpolation to put the
population into the message string.)

Figure 3.1 shows what your playground should look like.

Figure 3.1 Conditionally describing a town’s population

The condition in the if/else statement tests whether your town’s population is less than 10,000 via the
< comparison operator. If the condition evaluates to true, then the value of message is set to the first
string literal ("X is a small town!"). If the condition evaluates to false – if the population is 10,000
or greater – then the value of message is set to the second string literal ("X is pretty big!"). In this
case, the town’s population is less than 10,000, so message is set to "5422 is a small town!".

Table 3.1 lists Swift’s comparison operators.

Table 3.1 Comparison operators
Operator Description

< Evaluates whether the value on the left is less than the value on the right.

<= Evaluates whether the value on the left is less than or equal to the value on the right.

> Evaluates whether the value on the left is greater than the value on the right.

>= Evaluates whether the value on the left is greater than or equal to the value on the right.

== Evaluates whether the value on the left is equal to the value on the right.

!= Evaluates whether the value on the left is not equal to the value on the right.

=== Evaluates whether the two references point to the same instance.

!== Evaluates whether the two references do not point to the same instance.

You do not need to understand all the operators’ descriptions right now. You will see many of them in
action as you move through this book, and they will become clearer as you use them. Refer back to this
table as a reference if you have questions.

if/else

23

Sometimes you want to execute code if a certain condition is met and do nothing if it is not. Enter the
code below to see an example. (Notice that new code, shown in bold, appears in two places. Also, we
will no longer show the line import Cocoa unless it is needed to help you position new code.)

Listing 3.2 Is there a post office?
let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true

if population < 10000 {
 message = "\(population) is a small town!" "5422 is a small town!"
} else {
 message = "\(population) is pretty big!"
}
print(message) "5422 is a small town!\n"

if !hasPostOffice {
 print("Where do we buy stamps?")
}

Here, you add a new variable called hasPostOffice. This variable has the type Bool, short for
“Boolean.” Boolean types can take one of two values: true or false. In this case, the Boolean
hasPostOffice variable keeps track of whether the town has a post office. You set it to true, meaning
that it does.

The ! is a logical operator known as logical NOT. It tests whether hasPostOffice is false. The !
returns the opposite of a Boolean value. So if a Boolean’s value is true, the ! operator returns a value
of false, and vice versa.

So in the code above, after setting the value of hasPostOffice, you ask whether it is false. If
hasPostOffice is false, you do not know where to buy stamps, so you ask. If hasPostOffice is true,
you know where to buy stamps and do not have to ask, so nothing happens.

Because hasPostOffice was initialized to true, the condition !hasPostOffice is false. That is, it is
not the case that hasPostOffice is false. Therefore, the print() function never gets called.

Table 3.2 lists Swift’s logical operators.

Table 3.2 Logical operators
Operator Description

&& Logical AND: true if and only if both are true (false otherwise).

|| Logical OR: true if either is true (false only if both are false).

! Logical NOT: evaluates whether a condition is false (returns true for a false operand and
vice versa).

Chapter 3 Conditionals

24

Ternary Operator
The ternary operator is very similar to an if/else statement, but it has the more concise syntax
a ? b : c. In English, the ternary operator reads something like, “If a is true, then do b. Otherwise, do
c.”

Rewrite the town population check to use the ternary operator instead.

Listing 3.3 Using the ternary operator
...
if population < 10000 {
 message = "\(population) is a small town!"
} else {
 message = "\(population) is pretty big!"
}

message = population < 10000 ? "5422 is a small town!"
 "\(population) is a small town!" :
 "\(population) is pretty big!"
...

Your result is unchanged: message is still set to "5422 is a small town!"

The ternary operator can be a source of controversy: Some programmers love it; some programmers
loathe it. We come down somewhere in the middle. This particular usage is not very elegant. The
ternary operator is great for concise statements, but if your statement starts wrapping to the next line,
we think you should use if/else instead.

Hit Command-Z to undo, removing the ternary operator and restoring your if/else statement.

Listing 3.4 Restoring if/else
...
message = population < 10000 ?
 "\(population) is a small town!" :
 "\(population) is pretty big!"
if population < 10000 {
 message = "\(population) is a small town!" "5422 is a small town!"
} else {
 message = "\(population) is pretty big!"
}
...

Nested ifs

25

Nested ifs
You can nest if statements for scenarios with more than two possibilities. You do this by writing an
if/else statement inside the curly braces of another if/else statement. To see this, nest an if/else
statement within the else block of your existing if/else statement.

Listing 3.5 Nesting conditionals
let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true

if population < 10000 {
 message = "\(population) is a small town!" "5422 is a small town!"
} else {
 if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
 } else {
 message = "\(population) is pretty big!"
 }
}
print(message) "5422 is a small town!\n"

if !hasPostOffice {
 print("Where do we buy stamps?")
}

Your nested if clause uses the >= comparator (that is, the comparison operator) and the && logical
operator to check whether population is within the range of 10,000 to 50,000. Because your town’s
population does not fall within that range, your message is set to "5422 is a small town!", as
before.

Try bumping up the population to exercise the other branches.

Nested if/else statements are common in programming. You will find them out in the wild, and you
will be writing them as well. There is no limit to how deeply you can nest these statements. However,
the danger of nesting them too deeply is that it makes the code harder to read. One or two levels are
fine, but beyond that your code becomes less readable and maintainable.

There are ways to avoid nested statements. Next, you are going to refactor the code that you have just
written to make it a little easier to follow. Refactoring means changing code so that it does the same
work but in a different way. It may be more efficient, be easier to understand, or just look prettier.

Chapter 3 Conditionals

26

else if
The else if conditional lets you chain multiple conditional statements together. else if allows you
to check against multiple cases and conditionally executes code depending on which clause evaluates
to true. You can have as many else if clauses as you want. Only one condition will match.

To make your code a little easier to read, extract the nested if/else statement to be a standalone clause
that evaluates whether your town is of medium size.

Listing 3.6 Using else if
let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true

if population < 10000 {
 message = "\(population) is a small town!" "5422 is a small town!"
} else if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
} else {
 if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
 } else {
 message = "\(population) is pretty big!"
 }
}
print(message) "5422 is a small town!\n"

if !hasPostOffice {
 print("Where do we buy stamps?")
}

You are using one else if clause, but you can chain many more. This block of code is an
improvement over the nested if/else above. As we mentioned, you will see another Swift feature
that allows you to cover multiple conditional possibilities later in this book – switch, described in
Chapter 5.

Bronze Challenge
Add an additional else if statement to the town-sizing code to see if your town’s population is very
large. Choose your own population thresholds. Set the message variable accordingly.

27

4
Numbers

Numbers are the fundamental language of computers. They are also a staple of software development.
Numbers are used to keep track of temperature, count the letters in a sentence, and track the number of
zombies infesting a town. Numbers come in two basic flavors: integers and floating-point numbers.

Integers
You have worked with integers already, but we have not yet defined them. An integer is a number that
does not have a decimal point or fractional component – a whole number. Integers are frequently used
to represent a count of “things,” such as the number of pages in a book.

A difference between integers used by computers and numbers you use elsewhere is that an integer
type on a computer takes up a fixed amount of memory. Therefore, integers cannot represent all
possible whole numbers – they have a minimum and maximum value.

We could tell you those minimum and maximum values, but we are going to let Swift tell you instead.
Create a new macOS playground, name it Numbers, set it to Automatically Run, and enter the following
code.

Listing 4.1 Maximum and minimum values for Int
import Cocoa

var str = "Hello, playground"

print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")

The sidebar results are too long to show on this page. In the console, you should see the following
output:

 The maximum Int value is 9223372036854775807.
 The minimum Int value is -9223372036854775808.

Why are those numbers the minimum and maximum Int values? Computers store integers in binary
form with a fixed number of bits. A bit is a single 0 or 1. Each bit position represents a power of 2; to
compute the value of a binary number, add up each of the powers of 2 whose bit is a 1.

Chapter 4 Numbers

28

For example, the binary representations of 38 and -94 using an 8-bit signed integer are shown in
Figure 4.1. (Note that the bit positions are read from right to left. Signed means that the integer can
represent positive and negative values. More about signed integers in a moment.)

Figure 4.1 Binary numbers

Modern versions of iOS and macOS only support 64-bit software, so on these operating systems Int is
a 64-bit integer. That means it has 264 possible values. Imagine Figure 4.1, only 64 bits wide instead of
8. The power of 2 represented by the top (left-most) bit would be -263 = -9,223,372,036,854,775,808,
which is the value you see for Int.min in your playground. And, if you were to add up 20, 21, …, 262,
you would arrive at 9,223,372,036,854,775,807 – the value you see for Int.max.

If you need to know the exact size of an integer, you can use one of Swift’s explicitly sized integer
types. For example, Int32 is Swift’s 32-bit signed integer type. Use Int32 to see the minimum and
maximum value for a 32-bit integer.

Listing 4.2 Maximum and minimum values for Int32

...
print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

Also available are Int8, Int16, and Int64, for 8-bit, 16-bit, and 64-bit signed integer types. You use
the sized integer types when you need to know the size of the underlying integer, such as for some
algorithms (common in cryptography) or to exchange integers with another computer (such as sending
data across the internet). You will not use these types much; good Swift style is to use an Int for most
use cases.

All the integer types you have seen so far are signed, which means they can represent both positive
and negative numbers. Swift also has unsigned integer types to represent whole numbers greater than
or equal to 0. Every signed integer type (Int, Int16, etc.) has a corresponding unsigned integer type
(UInt, UInt16, etc.). The difference between signed and unsigned integers at the binary level is that the
power of 2 represented by the top-most bit (27 for 8-bit integers) is positive and negative, respectively.
For example, Figure 4.2 shows the same bit pattern (1010 0110) represented as an 8-bit signed integer
and an 8-bit unsigned integer.

Creating Integer Instances

29

Figure 4.2 Signed vs unsigned integers

Test a couple of unsigned integer types.

Listing 4.3 Maximum and minimum values for unsigned integers
...
print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

print("The maximum UInt value is \(UInt.max).")
print("The minimum UInt value is \(UInt.min).")
print("The maximum value for a 32-bit unsigned integer is \(UInt32.max).")
print("The minimum value for a 32-bit unsigned integer is \(UInt32.min).")

Like Int, UInt is a 64-bit integer on modern iOS and macOS. The minimum value for all unsigned
types is 0. The maximum value for an N-bit unsigned type is 2N - 1. For example, the maximum value
for a 64-bit unsigned type is 264 - 1, which equals 18,446,744,073,709,551,615.

Some quantities seem like they would naturally be represented by an unsigned integer. For example,
it does not make sense for the count of a number of objects to ever be negative. However, Swift style
is to prefer Int for all integer uses (including counts) unless an unsigned integer is required by the
algorithm or code you are writing. The explanation for this involves topics we are going to cover later
in this chapter, so we will return to the reasons behind consistently preferring Int soon.

Creating Integer Instances
You created instances of Int in Chapter 2, where you learned that you can declare a type explicitly or
implicitly. Refresh your memory by declaring a couple more Ints in your playground:

Listing 4.4 Declaring Int explicitly and implicitly
...
let numberOfPages: Int = 10 10
let numberOfChapters = 3 3

The compiler always assumes that implicit declarations with integer values are of type Int, so both
numberOfPages and numberOfChapters are Ints. However, you can create instances of the other
integer types using explicit type declarations.

Chapter 4 Numbers

30

Listing 4.5 Declaring other integer types explicitly
...
let numberOfPages: Int = 10 10
let numberOfChapters = 3 3

let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000

What happens if you try to create an instance with an invalid value? What if, for example, you try to
create a UInt with a negative value, or an Int8 with a value greater than 127? Try it and find out.

Listing 4.6 Declaring integer types with invalid values
...
let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000

let badValue: UInt = -1

The console output will indicate an error (Figure 4.3).

Figure 4.3 Integer overflow error

The compiler reports that the value you have typed in “overflows when stored into” a constant of type
UInt. “Overflows when stored into…” means that when the compiler tried to store your number in the
type you specified, the number did not fit in the type’s allowed range of values.

All numerical types have limits on the numbers that they can store, dictated by their size in bits. An
Int8, for example, can hold values from -128 to 127; 200 is outside that range, so trying to store 200
into an Int8 overflows. The highest signed Int64 is over 9 quintillion, though, so it is unlikely that this
limitation will ever be a problem for you.

Remove the problematic code.

Listing 4.7 No more bad value
...
let badValue: UInt = -1

Operations on Integers

31

Operations on Integers
Swift allows you to perform basic mathematical operations on integers using the familiar operators +
(add), - (subtract), and * (multiply). You can include these operations in your code; in a playground,
you can also just enter them to see the result. Try it.

Listing 4.8 Performing basic operations
...
let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000

10 + 20 30
30 - 5 25
5 * 6 30

A quick aside: Usually, the whitespace in your code (like the number of spaces you indent or any blank
lines you leave) does not matter. If you prefer more or less indentation or blank lines than this book
shows, that is fine. But occasionally whitespace does matter, and now is one of those times. When
you are using an operator like + or * that takes two operands (also called a binary operator), you can
include space between the operator and its operands or not, but you have to make the same choice on
both sides.

For example, your last print statement could be print(5 * 6) or print(5*6), but not print(5 *6). If
you tried that, the compiler would think you were giving the multiplication operator only one operand
– and, since * requires two, the compiler would give up. It is stylish to put spaces on both sides of a
binary operator, so we will do that in this book.

Back to operations on integers. The compiler respects the mathematical principles of precedence
and associativity, which define the order of operations when there are multiple operators in a single
expression. For example:

Listing 4.9 Order of operations
...
10 + 20 30
30 - 5 25
5 * 6 30

10 + 2 * 5 20
30 - 5 - 5 20

Both of these expressions above result in 20. In 10 + 2 * 5, 2 * 5 is evaluated first; in
30 - 5 - 5, 30 - 5 is evaluated first. You could memorize the rules governing precedence and
associativity. However, we recommend taking the easy route and using parentheses to make your
intentions explicit, because parentheses are always evaluated first.

Listing 4.10 Parentheses are your friends
...
10 + 2 * 5 20
30 - 5 - 5 20
(10 + 2) * 5 60
30 - (5 - 5) 30

Chapter 4 Numbers

32

Integer division
What is the value of the expression 11 / 3? You might (reasonably) expect 3.66666666667, but try it
out.

Listing 4.11 Integer division can give unexpected results
...
(10 + 2) * 5 60
30 - (5 - 5) 30

11 / 3 3

The result of any operation between two integers is always another integer of the same type;
3.66666666667 is not a whole number and cannot be represented as an integer. Swift truncates the
fractional part, leaving just 3. If the result is negative, such as -11 / 3, the fractional part is still
truncated, giving a result of -3. Integer division always rounds toward 0.

It is occasionally useful to get the remainder of a division operation. The remainder operator,
%, returns exactly that. (If you are familiar with the modulo operator in math and some other
programming languages, be warned: The remainder operator is not the same, and using it on a negative
integer may not return what you expect.)

Listing 4.12 Remainders
...
11 / 3 3
11 % 3 2
-11 % 3 -2

Of course, Swift also provides a way to work with numbers that include fractional values, which you
will see shortly.

Operator shorthand

33

Operator shorthand
All the operators that you have seen so far return a new value. There are also versions of all these
operators that modify a variable in place. For example, a common operation in programming is to
increase or decrease the value of an integer by another integer. You can use the += operator, which
combines addition and assignment, or the -= operator, which combines subtraction and assignment.
Try them out.

Listing 4.13 Combining addition or subtraction and assignment
...
11 % 3 2
-11 % 3 -2

var x = 10 10
x += 10 20
x -= 5 15

As the results in the sidebar show, the expression x += 10 is equivalent to x = x + 10, and x -= 5 is
equivalent to x = x - 5.

There are also shorthand operation-and-assignment combination operators for the other basic math
operations: *=, /=, and %=, each of which assigns the result of the operation to the value on the lefthand
side of the operator.

Overflow operators
What do you think the value of z will be in the following code? (Think about it for a minute before you
type it in to find out for sure.)

Listing 4.14 Solving for z
...
let y: Int8 = 120 120
let z = y + 10

If you thought the value of z would be 130, you are not alone. But type it in, and you will find that
instead Xcode is showing you an error. Click on it to see a more detailed message (Figure 4.4).

Figure 4.4 Execution interrupted when adding to an Int8

Chapter 4 Numbers

34

What does “Execution was interrupted” mean? Let’s break down what is happening:

1. y is an Int8, so the compiler assumes y + 10 must be an Int8, too.

2. Therefore, the compiler infers the type of z to be Int8.

3. When your playground runs, Swift adds 10 to y, resulting in 130.

4. Before storing the result back into z, Swift checks that 130 is a valid value for an Int8.

But Int8 can only hold values from -128 to 127; 130 is too big! Your playground therefore hits a trap,
which stops the program from running. We will discuss traps in more detail in Chapter 23. For now,
know that a trap results in your program stopping immediately and noisily, which indicates a serious
problem you need to examine.

Swift provides overflow operators that have different behaviors when the value is too big (or too
small). Instead of trapping the program, they “wrap around.” To see what that means, try it now. The
overflow addition operator is &+. Substitute it into your code:

Listing 4.15 Using an overflow operator
...
let y: Int8 = 120 120
let z = y + 10
let z = y &+ 10 -126

The result of overflow-adding 120 + 10 and storing the result into an Int8 is -126. Was that what you
expected?

Probably not. (And that is OK!) To understand the logic of this result, think about incrementing y one
at a time. Because y is an Int8, once you get to 127 you cannot go any higher. Instead, incrementing
one more time wraps around to -128. So 120 + 8 = -128, 120 + 9 = -127, and 120 + 10 = -126.

There are also overflow versions of the subtraction and multiplication operators: &- and &*. It
should be apparent why there is an overflow version of the multiplication operator, but what about
subtraction? Subtraction clearly cannot overflow, but it can underflow. For example, trying to subtract
10 from an Int8 currently holding -120 would result in a value too negative to be stored in an Int8.
Using &- would cause this underflow to wrap back around and give you positive 126.

Integer operations overflowing or underflowing unexpectedly can be a source of serious and hard-to-
find bugs. Swift is designed to prioritize safety and minimize these errors.

Swift’s default behavior of trapping on overflow calculations may come as a surprise to you if you
have programmed in another language. Most other languages default to the wraparound behavior that
Swift’s overflow operators provide.

The philosophy of the Swift language is that it is better to trap (even though this may result in a
program crashing) than potentially have a security hole. There are some use cases for wrapping
arithmetic, so these special operators are available if you need them.

Converting Between Integer Types

35

Converting Between Integer Types
So far, all the operations you have seen have been between two values with exactly the same type.
What happens if you try to operate on numbers with different types? See for yourself:

Listing 4.16 Adding values of different types
...
let a: Int16 = 200 200
let b: Int8 = 50 50
let c = a + b

This is a compile-time error. You cannot add a and b, because they are not of the same type. Some
languages will automatically convert types for you to perform operations like this. Swift does not.
Instead, you have to manually convert types to get them to match.

You could either convert a to an Int8 or convert b to an Int16 – but only one of these will succeed.
(Reread the previous section if you are not sure why.)

Listing 4.17 Converting type to allow addition
...
let a: Int16 = 200 200
let b: Int8 = 50 50
let c = a + b
let c = a + Int16(b) 250

Requiring you, the programmer, to decide how to convert variables in order to do math between
different types is another feature that distinguishes Swift from other languages. Again, this requirement
is in favor of safety and correctness.

The C programming language, for example, will convert numbers of different types in order to perform
math between them, but the conversions it performs are sometimes “lossy” – you may lose information
in the conversion. Swift code that requires math between numbers of different types will be more
verbose, but it will be more clear about what conversions are taking place. The increase in verbosity
will make it easier for you to reason about and maintain the code.

We can now return to the recommendation to stick with Int for almost all integer needs in Swift, even
for values that might naturally only make sense as positive values (like a count of “things”). Swift’s
default type inference for literals is Int, and you cannot typically perform operations between different
integer types without converting one of them. Using Int consistently throughout your code will greatly
reduce the need for you to convert types, and it will allow you to use type inference for integers freely.

Chapter 4 Numbers

36

Floating-Point Numbers
To represent a number that has a decimal point, like 3.2, you use a floating-point number.

Bear in mind that floating-point numbers are often imprecise because of how they are stored in
memory. There are many numbers that cannot be stored with perfect accuracy in a floating-point
number. The computer will store a very close approximation to the number you expect. (More on that
in a moment.)

Swift has two basic floating-point number types: Float, which is a 32-bit floating-point number, and
Double, which is a 64-bit floating-point number. The different bit sizes of Float and Double do not
determine a simple minimum and maximum value range as they do for integers. Instead, the bit sizes
determine how much precision the numbers have. Double has more precision than Float, which means
it is able to store more accurate approximations.

The default inferred type for floating-point numbers in Swift is Double. As with different types of
integers, you can also declare Floats and Doubles explicitly:

Listing 4.18 Declaring floating-point number types
...
let d1 = 1.1 1.1
let d2: Double = 1.1 1.1
let f1: Float = 100.3 100.3

All the same numeric operators work on floating-point numbers (except the remainder operator, which
is only used on integers).

Listing 4.19 Operations on floating-point numbers
...
let d1 = 1.1 1.1
let d2: Double = 1.1 1.1
let f1: Float = 100.3 100.3

10.0 + 11.4 21.4
11.0 / 3.0 3.6666666666666667

Floating-Point Numbers

37

The fact that floating-point numbers are inherently imprecise is an important difference from integer
numbers that you should keep in mind. Let’s see an example. Recall the == operator from Chapter 3,
which determines whether two values are equal to each other. Try it out to compare two floating-point
numbers.

Listing 4.20 Comparing two floating-point numbers
...
let d1 = 1.1 1.1
let d2: Double = 1.1 1.1
let f1: Float = 100.3 100.3

10.0 + 11.4 21.4
11.0 / 3.0 3.6666666666666667

if d1 == d2 {
 print("d1 and d2 are the same!") "d1 and d2 are the same!"
}

d1 and d2 were both initialized with a value of 1.1. So far, so good. Now, let’s add 0.1 to d1. You
would expect that to result in 1.2, so compare the result to that value. The result you get may be
surprising.

Listing 4.21 Unexpected results
...
if d1 == d2 {
 print("d1 and d2 are the same!") "d1 and d2 are the same!"
}

print("d1 + 0.1 is \(d1 + 0.1)") "d1 + 0.1 is 1.20...02\n"
if d1 + 0.1 == 1.2 {
 print("d1 + 0.1 is equal to 1.2")
}

The print() inside the if statement does not run. Why not? Isn’t 1.2 equal to 1.2?

Well, sometimes it is, and sometimes it is not.

As we said before, many numbers – including 1.2 – cannot be represented exactly in a floating-point
number. Instead, the computer stores a very close approximation to 1.2. As the sidebar indicates, when
you add 1.1 and 0.1 the result is really something like 1.2000000000000002. The value stored when
you typed the literal 1.2 is really something like 1.1999999999999999. Swift will round both of those
to 1.2 when you print them. But they are not technically equal, so the print() inside the if statement
does not execute.

All the gory details behind floating-point arithmetic are outside the scope of this book. The moral of
this story is just to be aware that there are some potential pitfalls with floating-point numbers. One
consequence is that you should never use floating-point numbers for values that must be exact (such as
calculations dealing with money). There are other tools available for those purposes.

Chapter 4 Numbers

38

Ranges of Numbers
Sometimes you want to represent a range of numbers. Imagine that you are handing out 1,000
numbered raffle tickets, and you want to represent the collection of ticket numbers. The closed-range
operator (...) lets you do just that:

Listing 4.22 Defining a range of integers
...
let ticketCount = 1_000 1000
let ticketNumbers = 1 ... ticketCount {lowerBound 1, upperBoun...

The sidebar results represent the value of ticketNumbers as {lowerBound 1, upperBound 1000}. A
closed range includes a lower bound, an upper bound, and everything in between, so ticketNumbers
includes 1, 2, 3, … 998, 999, and 1,000.

What if you want to create a range that represents the numbers up to – but not including – the upper
bound? You could do that by subtracting 1 from the upper bound:

 let ticketNumbers = 1 ... ticketCount - 1

You could. But it would not be stylish. Instead, use the half-open range operator (..<) to exclude the
upper bound from your range:

Listing 4.23 Make that 999 tickets
...
let ticketCount = 1_000 1000
let ticketNumbers = 1 ... ticketCount
let ticketNumbers = 1 ..< ticketCount {lowerBound 1, upperBoun...

The sidebar results show that the ticketNumbers has the same lower and upper bounds ({lowerBound
1, upperBound 1000}). But the upper bound is now excluded from the range, so ticketNumbers
includes 1, 2, 3, … 997, 998, and 999 – but not 1,000.

You will see how useful ranges can be starting in Chapter 5.

Bronze Challenge

39

Bronze Challenge
Set down your computer and grab a pencil and paper for this challenge. What is the binary
representation of -1 using an 8-bit signed integer?

If you took that same bit pattern and interpreted it as an 8-bit unsigned integer, what would the value
be?

For the More Curious: Numeric Literals
Earlier in the chapter we looked at a few examples of creating both integer and floating-point instances
with a literal value. Each of those examples involved creating numeric instances with base-10 (also
known as decimal) numbers. You will typically create numeric types using the base-10 numeral
system, because it is the numeral system most people are accustomed to using.

Computers actually store information in base-2. But if you try to use a binary number like 10100110 in
your code, Swift will infer it as an Int. However, by prefixing a value with 0b, you can create a binary
literal that can then be represented as another numeric type.

Listing 4.24 Binary literals
let binaryFail = 10100110 10100110
let binaryInt = 0b10100110 166

There is also literal syntax in Swift for scientific notation, which begins with the mantissa followed
by the character e and finally the exponent. As with other numeric values, you can let Swift infer the
appropriate type or declare the type explicitly.

Listing 4.25 Scientific notation in numeric literals
let scientificInt = 1.66e5 166000
let fractionalFloat: Float = 1.66e-2 0.0166

Swift has support for one additional literal format that comes in handy. Base-16, or hexadecimal, is
a numeral system that has 16 symbols for each position value. The first 10 symbols are the digits 0
through 9, and the letters a through f are the final six.

Hex, as it is sometimes called, can be thought of as a compromise between humans and computers.
Binary, which computers use to store data, can be overly verbose and cumbersome to read as a human.
But decimal, which we are used to reading, is a poor fit for displaying computers’ bit-based data. Hex
is the best of both: succinct (for humans) and accurate when represented in bits (for computers).

For example, these three numbers represent the same value:

• 255 (decimal)
• 1111 1111 (binary)
• FF (hexadecimal)

Chapter 4 Numbers

40

And these three numbers also represent the same value:

• 2,343,432,205 (decimal)
• 1000 1011 1010 1101 1111 0000 0000 1101 (binary)
• 8BAD F00D (hexadecimal)

The syntax for working with hexadecimal values in Swift is similar to the binary literal syntax you just
saw: Hex literals are prefixed with 0x.

Listing 4.26 Hexadecimal literals
let hexLiteral = 0xff 255
let hexSpeak = 0x8BADF00D 2343432205

Whatever number base you are using, you can separate groups of digits with underscores to make large
numbers more legible in code. The program completely ignores underscores used this way; they are
just for you.

Listing 4.27 Large numbers
let lightSpeed = 299_792_458 // m/s 299792458

41

5
Switch

In Chapter 3, you saw one sort of conditional statement: if/else. Along the way, we mentioned that
if/else is not great for scenarios that have more than a few conditions. This chapter looks at the
switch statement, which is ideal for handling multiple conditions. As you will see, Swift’s switch
statement is a flexible and powerful feature of the language.

if/else statements execute code based on whether the condition under consideration evaluates to
true. switch statements consider a particular value and attempt to match it against a number of
expressions, called cases. If there is a match, the switch executes the code associated with that case.
In this chapter, you will explore the use of switch statements for evaluating an expression against
multiple possible matching values.

Chapter 5 Switch

42

Switch Syntax
Create a new macOS playground called Switch that is set to Automatically Run and write your first
switch to see how its syntax works. (From this point forward, we will only show sidebar results when
they are helpful and fit on the page.)

Listing 5.1 Your first switch
import Cocoa

var str = "Hello, playground"

var statusCode: Int = 404
var errorString: String

switch statusCode {
case 401:
 errorString = "Unauthorized"

case 403:
 errorString = "Forbidden"

case 404:
 errorString = "Not found"

default:
 errorString = "None"
}

Whether or not you have ever worked with HTTP status codes directly, you have undoubtedly
encountered pages that say something like “404 Not Found” while browsing the web. There are
many status codes that web servers send to their clients (such as apps or web browsers) to indicate
the success or failure of a request. Your switch statement compares statusCode, an Int variable
representing an HTTP status code, against four cases to assign a String instance describing the error.
To keep this example from getting too complex, this exercise will focus only on codes that represent
errors.

The type in each of the cases must match the type being compared against. Here, the Int value
of statusCode is compared to 401, 403, and 404, in that order. If statusCode matches any of the
comparison cases, then the body of that case will be executed. Usually, the switch will then be done,
and no more cases will be checked (though you will see an exception to this later in this chapter).

Because case 404 matches statusCode, errorString is assigned the value "Not found", as you can
see in the sidebar.

Notice the default case, which is executed when the comparison value does not match any of the other
cases. Switch cases must be exhaustive – every possible value of the input type must match at least one
case. So it is sometimes necessary to use a default case to ensure the exhaustiveness of the switch.

Try changing the value of statusCode to see the other results. When you are done, set it back to 404.

Suppose you want to use a switch statement to build up the text description of an error. Update your
code to do that.

Switch Syntax

43

Listing 5.2 switch cases can have multiple values
var statusCode: Int = 404
var errorString: String = "The request failed: "

switch statusCode {
case 401:
 errorString = "Unauthorized"

case 403:
 errorString = "Forbidden"

case 404:
 errorString = "Not found"

default:
 errorString = "None"
case 401, 403, 404:
 errorString += "There was something wrong with the request."
 fallthrough
default:
 errorString += " Please review the request and try again."
}

There is now only one case for all the error status codes (which are listed and separated by commas).
If the statusCode matches any of the values in the case, the text "There was something wrong with
the request." is added to the errorString.

You have also added a control transfer statement called fallthrough. Control transfer statements let
you modify the order of execution in a control flow by transferring control from one chunk of code to
another.

fallthrough tells the switch statement to “fall through” the bottom of a case to the next one. If a
matching case has a fallthrough statement at its end, it will execute its code and then transfer control
to the case immediately below. That case will execute its code – whether or not it matches the value
being checked against. If it also has a fallthrough statement at the end, it will hand off control to the
next case, and so on.

In other words, fallthrough statements allow you to enter a case and execute its code without having
to match against it.

Without the fallthrough keyword, the switch statement would have ended execution after the first
match. Because of the fallthrough, the switch statement does not stop, even though the first case
matches. Instead, it proceeds to the default case, which adds a recommendation to the errorString.
The use of fallthrough in this example allows you to build up errorString without having to use
strange logic that would guarantee that the comparison value matched all the cases of interest.

The end result of this switch statement is that errorString is set to "The request failed: There
was something wrong with the request. Please review the request and try again.". If the
status code provided had not matched any of the values in the case, errorString would have been set
to "The request failed: Please review the request and try again.". (Try it and see.)

If you are familiar with other languages like C or Objective-C, you will see that Swift’s switch
statement works differently. switch statements in those languages automatically fall through from one
case to the next. Those languages require a break control transfer statement at the end of the case’s

Chapter 5 Switch

44

code to break out of the switch. Swift’s switch works in the opposite manner. If you match on a case,
the case executes its code and the switch stops running.

Ranges
You have seen a switch statement in which the cases had single values to check against the comparison
value and another with a case that had multiple values. switch statements can also compare to a range
of values using the syntax valueX...valueY. Update your code to see this in action.

Listing 5.3 Cases can match ranges of values
var statusCode: Int = 404
var errorString: String = "The request failed with the error: "

switch statusCode {
case 401, 403, 404:
 errorString += "There was something wrong with the request."
 fallthrough
default:
 errorString += " Please review the request and try again."
case 401:
 errorString += "Unauthorized"

case 400...417:
 errorString += "Client error, 4xx."

case 500...505:
 errorString += "Server error, 5xx."

default:
 errorString = "Unknown status. Please review the request and try again."
}

The switch statement above takes advantage of the ... syntax of range matching to create inclusive
ranges for categories of HTTP status codes. 400...417 is a range that includes 400, 417, and
everything in between. And 500...505 is a range that includes 500, 505, and everything in between.

You also have a case with a single HTTP status code (case 401) and a default case. These are formed
in the same way as the cases you saw before. All the case syntax options can be combined in a switch
statement.

You may have noticed that a status code of 401 would match more than one case: both case 401 and
case 400...417. Since a switch evaluates cases in the order that they are written, the switch will
execute the first case that matches and then exit, unless the matched case has a fallthrough. So, if
the statusCode were 401, then case 401 would be executed and case 400...417 would not – not
because case 401 is more specific, but because case 401 comes first.

The result of this switch statement is that errorString is set to "The request failed with the
error: Client error, 4xx." Again, try changing the value of statusCode to see the other results.
Be sure to set it back to 404 before continuing.

Value binding

45

Value binding
Suppose you want to include the actual numerical status codes in your errorString, whether the status
code is recognized or not. You can build on your previous switch statement to include this information
using string interpolation, which you learned about in Chapter 2, and Swift’s value binding feature.

Value binding allows you to bind the matching value in a case to a local constant or variable. The
constant or variable is available to use only within the matching case’s body. Update your switch to use
value binding:

Listing 5.4 Using value binding
...
switch statusCode {
case 401:
 errorString += "Unauthorized"

case 400...417:
 errorString += "Client error, 4xx."
 errorString += "Client error, \(statusCode)."

case 500...505:
 errorString += "Server error, 5xx."
 errorString += "Server error, \(statusCode)."

default:
 errorString = "Unknown status. Please review the request and try again."

case let code:
 errorString = "\(code) is not a known error code."
}

Here you use string interpolation to pass statusCode into the errorString in each case. Your result
now reads "The request failed with the error: Client error, 404."

Take a closer look at the last case. When the statusCode does not match any of the values provided in
the cases above, you create a temporary constant, called code, and bind it to the value of statusCode.
For example, if statusCode had a value of 444, then your switch would set errorString to "444 is
not a known error code.".

Notice also that a default case is not needed for this switch. Because code’s value was bound from
statusCode, it is guaranteed to match, so the switch cases are exhaustive.

This example shows you the syntax of value binding, but it does not really add much. You will see
where value binding shines shortly. In this case, the standard default case can produce the same result.

Chapter 5 Switch

46

Replace the final case with a default case.

Listing 5.5 Reverting to the default case
...
switch statusCode {
case 401:
 errorString += "Unauthorized."

case 400...417:
 errorString += "Client error, \(statusCode)."

case 500...505:
 errorString += "Server error, \(statusCode)."

case let code:
 errorString = "\(code) is not a known error code."

default:
 errorString = "\(statusCode) is not a known error code."
}

where clauses

47

where clauses
The code above is fine, but it is not great. Every possible value of Int has to be handled by the switch
statement, but some Int values do not correspond to status codes at all. In fact, status codes only range
from 100 to 599.

Right now, a statusCode value like 13 (which is not a possible error code) produces the same result as
a value like 418 (which is a status code, but not one you want to handle). You might want to treat status
codes that you do not handle differently from status codes that do not exist. For example, if the server
sent a status code of 13, you would know there was a problem with the server.

To fix this, use value binding and a where clause to make sure the value being checked is not out of
bounds. where allows you to check for additional conditions that must be met for the case to match and
the value to be bound. This feature creates a sort of dynamic filter within the switch.

Listing 5.6 Using where to create a filter
var statusCode: Int = 404 13
var errorString: String = "The request failed with the error: "

switch statusCode {
case 401:
 errorString += "Unauthorized."

case 400...417:
 errorString += "Client error, \(statusCode)."

case 500...505:
 errorString += "Server error, \(statusCode)."

case let code where code < 100 || code >= 600:
 errorString = "\(code) is an illegal status code."

default:
 errorString = "\(statusCode) is not a known error code."
 errorString = "Unexpected error encountered."
}

Recall that || is the logical OR operator, so your new case sets the value of code to equal the value
of statusCode if the value is less than 100 or greater than 599. You can represent the where clause’s
expression more simply, but this example illustrates that you can use complex Boolean expressions in a
where clause.

Value bindings are especially useful when combined with where clauses to say “I do not have a value
to compare, but as long as this other expression is true, go ahead and match this case.” Unlike the
previous example involving value binding, this case is not exhaustive, since it only matches if the
clause is true. But this is not a problem, because you also have a default case.

When statusCode’s value is 13, errorString is set to "13 is an illegal status code.".

Change statusCode to exercise the other cases and confirm that it works as expected.

Chapter 5 Switch

48

Tuples and Pattern Matching
Now that you have your statusCode and errorString, it would be helpful to pair those two pieces.
Although they are logically related, they are currently stored in independent variables. A tuple can be
used to group them.

A tuple groups values as a single, compound value. The result is an ordered list of elements. The
elements can be of the same type or of different types.

Create your first Swift tuple that groups statusCode and errorString.

Listing 5.7 Creating a tuple
var statusCode: Int = 13 418
var errorString: String = "The request failed with the error: "

switch statusCode {
 ...
}

let error = (statusCode, errorString)

You made a tuple by grouping statusCode and errorString within parentheses and assigned
the result to the constant error. The sidebar shows its value: (.0 418, .1 "Unexpected error
encountered.").

The .0 and .1 in the value of your tuple are the elements’ indices, which you can use to access the
elements:

Listing 5.8 Accessing the elements of a tuple
...
let error = (statusCode, errorString)
error.0
error.1

It is not very easy to keep track of what values are represented by error.0 and error.1. You can also
assign names to the elements of a Swift tuple to make your code more readable. Change your tuple to
use more informative element names.

Listing 5.9 Naming the tuple’s elements
...
let error = (statusCode, errorString)
error.0
error.1
let error = (code: statusCode, msg: errorString)
error.code
error.msg

Now you can access your tuple’s elements by using their related names: code for statusCode and msg
for errorString.

Tuples and Pattern Matching

49

You have already seen an example of pattern matching when you used ranges in the switch statement’s
cases. That form of pattern matching is called interval matching, because each case attempts to match a
given interval against the comparison value. Tuples are also helpful in matching patterns.

Imagine, for example, that you have an application that is making multiple web requests. You save the
HTTP status code that comes back with the server’s response each time. Later, you would like to see
which requests, if any, failed with the status code 404 (the “requested resource not found” error). Using
a tuple in the switch statement’s cases enables you to match against very specific patterns.

Add the following code to create and switch on a new tuple. (Do not split the strings in the new cases;
enter them each on a single line.)

Listing 5.10 Pattern matching in tuples
...
let error = (code: statusCode, msg: errorString)
error.code
error.msg

let firstErrorCode = 404
let secondErrorCode = 418
let errorCodes = (firstErrorCode, secondErrorCode)

switch errorCodes {
case (404, 404):
 print("Both error codes were 404.")
case (404, _):
 print("Only the 1st code is 404, and we don't care about the 2nd code.")
case (_, 404):
 print("Only the 2nd code is 404, and we don't care about the 1st code.")
default:
 print("Neither code is 404.")
}

You first add a few new constants. firstErrorCode and secondErrorCode represent the HTTP status
codes associated with two web requests. errorCodes is a tuple that groups these codes.

The new switch statement matches against several cases to determine what combination of 404s
the requests might have yielded. The underscore (_) in the second and third cases is a wildcard that
matches anything, which allows these cases to focus on a specific request’s error code.

The first case will match only if both of the requests failed with status code 404. The second case will
match only if the first request failed with status code 404. The third case will match only if the second
request failed with status code 404. Finally, if the switch has not found a match, that means none of the
requests failed with the status code 404.

Because firstErrorCode did have the status code 404, you should see "Only the 1st code is 404,
and we don't care about the 2nd code.".

Chapter 5 Switch

50

switch vs if/else
switch statements are primarily useful for comparing a value against a number of potentially matching
cases. if/else statements, on the other hand, are best for checking against a single condition. switch
also offers a number of powerful features that allow you to match against ranges, bind values to
local constants or variables, and match patterns in tuples – to name just a few features covered in this
chapter.

Sometimes you might be tempted to use a switch statement on a value that could potentially match
against any number of cases, but you really only care about one of them. For example, imagine
checking an age constant when you are looking for a specific demographic: ages 18-35.

Go ahead and write a switch statement with a single case to accomplish this:

Listing 5.11 Single-case switch
...
let age = 25
switch age {
case 18...35:
 print("Cool demographic")
default:
 break
}

If age is in the range from 18 to 35, then age is in the desired demographic and some code is executed.
Otherwise, age is not in the target demographic and the default case matches, which simply transfers
the flow of execution outside the switch with the break control transfer statement.

Notice that you had to include a default case, because switch statements have to be exhaustive. You
do not really want to do anything here, but every case must have at least one executable statement, so
you fill the requirement with a break. This works, but it may not feel elegant.

Swift provides a better way. In Chapter 3, you learned about if/else statements. Swift also has an if-
case statement that provides pattern matching similar to what a switch statement offers. Replace your
switch with an if-case statement:

Listing 5.12 if-case
...
let age = 25
switch age {
case 18...35:
 print("Cool demographic")
default:
 break
}

if case 18...35 = age {
 print("Cool demographic")
}

This syntax is much more elegant. It simply checks to see whether age is in the given range. You did
not have to write a default case that you did not care about. Instead, the syntax of the if-case allows
you to focus on the single case of interest: when age is in the target range.

switch vs if/else

51

if-cases can also include more complicated pattern matching, just as with switch statements. Say, for
example, you wanted to know if age was greater than or equal to 25.

Listing 5.13 if-cases with multiple conditions
...
let age = 25

if case 18...35 = age {
 print("Cool demographic")
}
if case 18...35 = age, age >= 25 {
 print("In cool demographic and can rent a car")
}

The new code adds something to the if-case statement: After the comma, it also checks to see
whether age is 25 or greater. In the United States, this often means that the person in question can rent
a car.

if-cases provide an elegant shorthand for switch statements with only one case to consider. They also
enjoy all the pattern-matching power that make switch statements so wonderful. The choice between
them is usually a stylistic one. With practice, you will discover which syntax you find most readable
for your different comparison needs.

Chapter 5 Switch

52

Bronze Challenge
Review the switch statement below. What will be logged to the console? After you have decided, enter
the code in a playground to see whether you were right.

let point = (x: 1, y: 4)

switch point {
case let q1 where (point.x > 0) && (point.y > 0):
 print("\(q1) is in quadrant 1")

case let q2 where (point.x < 0) && point.y > 0:
 print("\(q2) is in quadrant 2")

case let q3 where (point.x < 0) && point.y < 0:
 print("\(q3) is in quadrant 3")

case let q4 where (point.x > 0) && point.y < 0:
 print("\(q4) is in quadrant 4")

case (_, 0):
 print("\(point) sits on the x-axis")

case (0, _):
 print("\(point) sits on the y-axis")

default:
 print("Case not covered.")
}

Silver Challenge
You can add more conditions to the if-case by supplying a comma-separated list. For example, you
could check whether the person is: a) in the cool demographic, b) old enough to rent a car in the United
States, and c) not in their thirties. Add another condition to Listing 5.13 to check whether age meets all
three criteria.

53

6
Loops

Loops help with repetitive tasks. They execute a set of code repeatedly, either for a given number of
iterations or for as long as a defined condition is met. Loops can save you from writing tedious and
repetitive code, and you will use them a lot in your development.

In this chapter, you will use two sorts of loops:

• for loops
• while loops

for loops are ideal for iterating over the elements of an instance or collection of instances if the
number of iterations to perform is either known or easy to derive. while loops, on the other hand, are
well suited for tasks that execute repeatedly as long as a certain condition is met. Each type of loop has
variations.

Let’s start with a for-in loop, which performs a set of code for each item in a range, sequence, or
collection.

Chapter 6 Loops

54

for-in Loops
Create a new macOS playground called Loops and set it to Automatically Run. Create a loop as shown.

Listing 6.1 A for-in loop
import Cocoa

var str = "Hello, playground"

var myFirstInt: Int = 0 0

for i in 1...5 {
 myFirstInt += 1 (5 times)
 print(myFirstInt) (5 times)
}

Ignore the warning about an unused value for now; you will address it shortly.

First, you declare a variable called myFirstInt that is an instance of Int and is initialized with a value
of 0. Next, you create a for-in loop. Let’s look at the components of the loop.

The for keyword signals that you are writing a loop. You next declare an iterator called i that
represents the current iteration of the loop. The iterator is constant within the body of the loop and only
exists here; it is also managed for you by the compiler.

In the first iteration of the loop, its value is the first value in the range of the loop. Because you used
... to create an inclusive range of 1 through 5, the first value of i is 1. In the second iteration, the
value of i is 2, and so on. You can think of i as being replaced with a new constant set to the next
value in the range at the beginning of each iteration.

Notice that i is not declared to be of the Int type. It could be, as in for i: Int in 1...5, but an
explicit type declaration is not necessary. The type of i is inferred from its context (as is the let). In
this example, i is inferred to be of type Int because the specified range contains integers.

Type inference is handy, and when you type less you make fewer typos. In general, we recommend
that you take advantage of type inference whenever possible, and you will see many examples of it in
this book. However, there are a few cases in which you need to specifically declare the type. We will
highlight those when they come up.

The code inside the braces ({}) is executed at each iteration of the loop. For each iteration, you
increment myFirstInt by 1. After incrementing myFirstInt, you print the variable’s name to log its
value to the console. These two steps – incrementing and logging – continue until i reaches the end of
the range: 5. This loop is represented in Figure 6.1.

for-in Loops

55

Figure 6.1 Looping over a range

To see the results of your loop, find and click the Show Result button () on the right edge of the
results sidebar on the line with the code myFirstInt += 1 (Figure 6.2).

Figure 6.2 The Show Result button

This opens a results view that displays the instance’s value history. You can grow or shrink the graph
window by clicking and dragging its edges.

Chapter 6 Loops

56

Move your mouse pointer into this new window and you will see that you can select individual points
on this plot. For example, if you click the middle point, the playground will tell you that the value of
this point is 3 (Figure 6.3).

Figure 6.3 Selecting a value on the plot

You can access i, the iterator you declared, inside each iteration of the loop. Change your output to
show the value of i at each iteration.

Listing 6.2 Printing the changing value of i to the console
...
for i in 1...5 {
 myFirstInt += 1 (5 times)
 print(myFirstInt)
 print("myFirstInt = \(myFirstInt) at iteration \(i)") (5 times)
}

If you do not want an explicitly declared iterator, you can ignore it by using _ to silence the warning
you saw before. Replace your named constant with this wildcard and return your print() statement to
its earlier implementation.

Listing 6.3 Replacing i with _
...
for i in 1...5 {
for _ in 1...5 {
 myFirstInt += 1 (5 times)
 print("myFirstInt = \(myFirstInt) at iteration \(i)")
 print(myFirstInt) (5 times)
}

This implementation of the for-in loop ensures that a specific operation occurs a set number of times.
But it does not check and report the value of the iterator in each pass of the loop over its range. Use the
explicit iterator i if you want to refer to the iterator within your loop’s code block or the wildcard _ if
you do not.

where

57

where
Swift’s for-in loop supports the use of where clauses similar to the ones you saw in Chapter 5. Using
where allows for finer control over when the loop executes its code. The where clause provides a
logical test that must be met to execute the loop’s code. If the condition established by the where clause
is not met, then the loop’s code is not run.

For example, imagine that you want to write a loop that iterates over a range but only executes its code
when the loop’s iterator is a multiple of 3.

Listing 6.4 A for-in loop with a where clause
...
for _ in 1...5 {
 myFirstInt += 1 (5 times)
 print(myFirstInt) (5 times)
}

for i in 1...100 where i % 3 == 0 {
 print(i) (33 times)
}

As before, you create a local constant i that you can now use in the where clause’s condition. Each
integer in the range of 1 to 100 is bound to i. The where clause then checks to see whether i is
divisible by 3. If the remainder is 0, the loop will execute its code. The result is that the loop will print
out every multiple of 3 from 1 to 100.

Figure 6.4 demonstrates the flow of execution for this loop.

Figure 6.4 where clause loop diagram

Chapter 6 Loops

58

Imagine how you might accomplish this same result without the help of a where clause.

 for i in 1...100 {
 if i % 3 == 0 {
 print(i)
 }
 }

The code above does the same work as the loop with the where clause, but it is less elegant. There are
more lines of code, and there is a nested conditional within the loop. Generally speaking, we prefer
fewer lines of code, so long as the code is not overly complex to read. Swift’s where clauses are very
readable, so we typically choose this more concise solution.

while Loops

59

while Loops
A while loop executes the code inside its body for as long as a specified condition is true. You can
write while loops to do many of the same things you have seen in for loops above. Start with a while
loop that replicates the for loop in Listing 6.1:

Listing 6.5 A while loop
...
var i = 1
while i < 6 {
 myFirstInt += 1 (5 times)
 print(myFirstInt) (5 times)
 i += 1 (5 times)
}

Figure 6.5 shows the flow of execution in this code.

Figure 6.5 while loop diagram

This while loop initializes a control variable (var i = 1), evaluates a condition (i < 6), executes code
if the condition is valid (myFirstInt += 1, print(myFirstInt), i += 1), and then returns to the top
of the while loop to determine whether the loop should continue iterating.

i is declared as a variable because the condition you evaluate (i < 6) must be able to change.
Remember, the while loop will run as long as the condition it checks is true. If the condition never
changes (or is always true), then the while loop will execute forever. Loops that never end are called
infinite loops, and they are usually bugs.

while loops are best for circumstances in which the number of iterations the loop will pass through
is unknown. For example, imagine a space shooter game with a spaceship that continuously fires its
blasters as long as the spaceship has shields. Various external factors may lower or increase the ship’s
shields, so the exact number of iterations cannot be known. But if the shields have a value greater than
0, the blasters will keep shooting. The code snippet below illustrates a simplified implementation of
this idea.

 while shields > 0 {
 // Fire blasters!
 print("Fire blasters!")
 }

Chapter 6 Loops

60

repeat-while Loops
Swift also supports a type of while loop called the repeat-while loop. The repeat-while loop is
called a do-while loop in other languages. The difference between while and repeat-while loops is
when they evaluate their condition.

The while loop evaluates its condition before stepping into the loop. This means that the while loop
may not ever execute, because its condition could be false when it is first evaluated. The repeat-
while loop, on the other hand, executes its loop at least once and then evaluates its condition. The
syntax for the repeat-while loop demonstrates this difference.

 repeat {
 // Fire blasters!
 print("Fire blasters!")
 } while shields > 0

In this repeat-while version of the space shooter game, the code block that contains the line
print("Fire blasters!") is executed first. Then the repeat-while loop’s condition is evaluated to
determine whether the loop should continue iterating. Thus, the repeat-while loop ensures that the
spaceship fires its blasters at least one time.

Control Transfer Statements in Loops

61

Control Transfer Statements in Loops
Let’s revisit control transfer statements in the context of loops. Recall from Chapter 5 (where you used
fallthrough and break) that control transfer statements change the typical order of execution. In the
context of a loop, you can control whether execution iterates to the top of the loop or leaves the loop
altogether.

Let’s elaborate on the space shooter game to see how this works. You are going to use the continue
control transfer statement to stop the loop where it is and begin again from the top.

Listing 6.6 Using continue
...
var shields = 5 5
var blastersOverheating = false false
var blasterFireCount = 0 0
while shields > 0 {

 if blastersOverheating {
 print("Blasters overheated! Cooldown initiated.") "Blasters overheated! ...
 sleep(5)
 print("Blasters ready to fire")
 sleep(1)
 blastersOverheating = false
 blasterFireCount = 0
 }

 if blasterFireCount > 100 {
 blastersOverheating = true true
 continue
 }

 // Fire blasters!
 print("Fire blasters!") 101 times

 blasterFireCount += 1 101 times
}

(We are showing the sidebar results as they appear the first time execution pauses. More about that in a
moment.)

You have added a good bit of code, so let’s break it down. First, you added some variables to keep
track of certain information about the spaceship:

• shields is an Int that keeps track of the shield strength; it is initialized with a value of 5.

• blastersOverheating is a Bool that keeps track of whether the blasters need time to cool down;
it is initialized to false.

• blasterFireCount is an Int that keeps track of the number of shots the spaceship has fired; it is
initialized with a value of 0.

After creating your variables, you wrote two if statements, both contained in a while loop with a
condition of shields > 0. The first if statement checks whether the blasters are overheating, and the
second checks the fire count (which determines whether the blasters are overheating).

Chapter 6 Loops

62

For the first, if the blasters are overheating, a number of code steps execute. You log information to the
console, and the sleep() function tells the system to wait for 5 seconds, which models the blasters’
cooldown phase. You next log that the blasters are ready to fire again, wait for 1 more second (simply
because it makes it easier to see what logs to the console next), set blastersOverheating to false,
and also reset blasterFireCount to 0.

With shields intact and blasters cooled down, the spaceship is ready to fire away.

The second if statement checks whether blasterFireCount is greater than 100. If this conditional
evaluates to true, you set the Boolean for blastersOverheating to be true. At this point, the blasters
are overheated, so you need a way to jump back up to the top of the loop so that the spaceship does not
fire. You use continue to do this. Because the spaceship’s blasters have overheated, the conditional in
the first if statement will evaluate to true, and the blasters will shut down to cool off.

If the second conditional is evaluated to be false, you log to the console as before. Next, you
increment the blasterFireCount by 1. After you increment this variable, the loop will jump back up
to the top, evaluate the condition, and either iterate again or hand off the flow of execution to the line
immediately after the closing brace of the loop. Figure 6.6 shows this flow of execution.

Figure 6.6 while loop diagram

Control Transfer Statements in Loops

63

Note that this code will execute indefinitely – it is an infinite loop. There is nothing to change the value
of shields, so while shields > 0 is always satisfied. If nothing changes, and your computer has
enough power to run forever, the loop will continue to execute. In the time you have been reading this
explanation, the sidebar results for the code in your loop have likely increased several times.

But all games must come to an end. Let’s say that the game is over when the user has destroyed 500
space demons. To exit the loop, you will use the break control transfer statement.

Listing 6.7 Using break
...
var shields = 5 5
var blastersOverheating = false false
var blasterFireCount = 0 0
var spaceDemonsDestroyed = 0 0
while shields > 0 {

 if spaceDemonsDestroyed == 500 {
 print("You beat the game!") "You beat the game!\n"
 break
 }

 if blastersOverheating {
 print("Blasters overheated! Cooldown initiated.") (4 times)
 sleep(5) (4 times)
 print("Blasters ready to fire") (4 times)
 sleep(1) (4 times)
 blastersOverheating = false (4 times)
 blasterFireCount = 0 (4 times)
 }

 if blasterFireCount > 100 { (4 times)
 blastersOverheating = true
 continue
 }

 // Fire blasters!
 print("Fire blasters!") (500 times)

 blasterFireCount += 1 (500 times)
 spaceDemonsDestroyed += 1 (500 times)
}

Here, you add a new variable called spaceDemonsDestroyed, which is incremented each time the
blasters fire. (You are a pretty good shot, apparently.) Next, you add a new if statement that checks
whether the value of spaceDemonsDestroyed is 500. If it is, you log victory to the console.

Note the use of break. The break control transfer statement will exit the while loop, and execution
will pick up on the line immediately after the closing brace of the loop. The user has destroyed 500
space demons, and the game is won: The blasters do not need to fire anymore.

Now, your loop is no longer infinite. The sidebar results in Listing 6.7 show the final results.

Chapter 6 Loops

64

Silver Challenge
Fizz Buzz is a game used to teach division. Create a version of the game that works like this: For every
value in a given range, print out “FIZZ” if the current number is evenly divisible by 3. If the number is
evenly divisible by 5, print out “BUZZ.” If the number is evenly divisible by both 3 and 5, then print
out “FIZZ BUZZ.” If the number is not evenly divisible by 3 or 5, then simply print out the number.

For example, over the range of 1 through 10, playing Fizz Buzz should yield this: “1, 2, FIZZ, 4,
BUZZ, FIZZ, 7, 8, FIZZ, BUZZ.”

Computers love to play Fizz Buzz. The game is perfect for loops and conditionals. Loop over the range
from 0 through 100 and print “FIZZ,” “BUZZ,” “FIZZ BUZZ,” or the number appropriately for each
number in the range.

For bonus points, solve Fizz Buzz with both an if/else conditional and a switch statement. When
using the switch statement, make sure to match against a tuple in its various cases.

65

7
Strings

In programming, text content is represented by strings. You have seen and used strings already.
"Hello, playground", for example, is a string that appears at the top of every newly created
playground. In this chapter, you will see more of what strings can do.

Working with Strings
In Swift, you create strings with the String type. Create a new macOS playground called Strings and
add the following new instance of the String type.

Listing 7.1 Hello, playground
import Cocoa

var str = "Hello, playground"
let playground = "Hello, playground" "Hello, playground"

You have created a String instance named playground using the string literal syntax, which encloses a
sequence of text with quotation marks.

This instance was created with the let keyword, making it a constant. Recall that being a constant
means that the instance cannot be changed. If you try to change it, the compiler will give you an error.

Create a new string, but make this instance mutable.

Listing 7.2 Creating a mutable string
let playground = "Hello, playground" "Hello, playground"
var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...

mutablePlayground is a mutable instance of the String type. In other words, you can change the
contents of this string. Use the addition and assignment operator to add some final punctuation.

Listing 7.3 Adding to a mutable string
let playground = "Hello, playground" "Hello, playground"
var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...
mutablePlayground += "!" "Hello, mutable playgro...

You should see in the results sidebar that the instance has changed to "Hello, mutable playground!"

Chapter 7 Strings

66

You have used the \() string interpolation syntax in previous chapters. The leading backslash is
called an escape character, and it tells the compiler to treat the parentheses (and their contents)
differently than it otherwise would. Together, the backslash and the specially treated text form an
escape sequence.

There are several escape sequences you can use to insert different types of content into a string. Here
some worth knowing:

• \() interpolates an expression into a string.
• \n inserts a new line when printing the string.
• \" inserts a quotation mark in a string (otherwise it would prematurely close the string).
• \\ inserts a backslash in a string (otherwise it would begin an escape sequence).

To see some of them in action, add this code to your playground:

Listing 7.4 Using escape sequences in a string
...
var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...
mutablePlayground += "!" "Hello, mutable playgro...
let quote = "I wanted to \"say\":\n\(playground)" "I wanted to "say":\nHe...
print(quote)

Run your playground and take a moment to examine the effect that each escape sequence has on the
printed result:

 I wanted to "say":
 Hello, playground

The first two backslashes escape the quotation marks, so that they are taken as part of the string rather
than terminating it. The third escape sequence, \n, creates a line break in the console output. The last
escape sequence interpolates the value of another string instance, as you have used before. Feel free to
experiment with the positioning and usage of these escape sequences.

Sometimes, you do not want the compiler to do anything at all to the contents of a string. No escaping,
no string interpolation. Creating a raw string like this is as easy as wrapping it with hash symbols (#):

Listing 7.5 Creating a raw string
...
let quote = "I wanted to \"say\":\n\(playground)"
let quote = #"I wanted to \"say\":\n\(playground)"# "I wanted to \\"say\\":...
print(quote) "I wanted to \\"say\\":...

This prints the string as you wrote it, with no processing:

 I wanted to \"say\":\n\(playground)

In the sidebar, you can see the hidden truth: The compiler processes the string after all, but only to
escape out your escape sequences, so that they are instead taken as parts of the string literal.

Characters

67

Characters
When talking about text, the term “string” is short for “string of characters,” where a character is a
single symbol or glyph – something that a reader would consider to be the smallest unit of written
language. A, ḉ, ., 1, and © are all characters. In Swift, a String is a collection of instances of the
Character type.

Loop through the mutablePlayground string to see its Character instances:

Listing 7.6 mutablePlayground’s Characters
...
let quote = #"I wanted to \"say\":\n\(playground)"# "I wanted to \\"say\\":...
print(quote) "I wanted to \\"say\\":...
for c: Character in mutablePlayground {
 print("'\(c)'") (26 times)
}

This loop iterates through every Character c in mutablePlayground. The explicit type annotation of
Character is unnecessary. Swift’s type inference knows that c is a Character. It knows this because
Swift’s String type conforms to a set of rules, a protocol, called Collection. (You will learn more
about protocols in Chapter 19.) This protocol organizes a sequence’s elements in terms of subscriptable
indices.

The Collection protocol helps the String organize its contents as a collection of characters. This is
how each iteration of the loop can access an individual character to log to the console. Every character
is logged to the console on its own line because print() prints a line break after logging its content.

Your output should look like this:

 'H'
 'e'
 'l'
 'l'
 'o'
 ','
 ' '
 'm'
 'u'
 't'
 'a'
 'b'
 'l'
 'e'
 ' '
 'p'
 'l'
 'a'
 'y'
 'g'
 'r'
 'o'
 'u'
 'n'
 'd'
 '!'

Chapter 7 Strings

68

Unicode
Unicode is an international standard that encodes characters so they can be seamlessly processed
and represented regardless of the platform. Unicode represents human language (and other forms
of communication, like emoji) on computers. Every character in the Unicode standard is assigned a
unique number.

Swift’s String and Character types are built on top of Unicode, and they do the majority of the heavy
lifting. Nonetheless, it is good to have an understanding of how these types work with Unicode. Having
this knowledge will likely save you some time and frustration in the future.

Unicode scalars
At their heart, strings in Swift are composed of Unicode scalars. Unicode scalars are 21-bit numbers
that represent a specific character in the Unicode standard. The text U+1F60E is the standard way of
writing a Unicode character. (The 1F60E portion is a number written in hexadecimal.) For example,
U+0061 represents the Latin small letter a. U+2603 represents a snowman.

Create a constant to see how to use specific Unicode scalars in Swift and the playground.

Listing 7.7 Using a Unicode scalar
...
for c: Character in mutablePlayground {
 print("'\(c)'") (26 times)
}

let snowman = "\u{2603}" "☃"

This time, you used a new syntax to create a string. The quotation marks are familiar, but what is inside
them is not a string literal, as you have seen before. It does not match the results in the sidebar.

The \u{} syntax is an escape sequence that resolves to the Unicode scalar whose hexadecimal number
appears between the braces. In this case, the value of snowman is the Unicode character of a snowman.

How does this relate to more familiar strings? Swift strings are composed of Unicode scalars. So why
do they look unfamiliar? To explain, we need to discuss a few more concepts.

Every character in Swift is an extended grapheme cluster. Extended grapheme clusters are sequences
of one or more Unicode scalars that combine to produce a single human-readable character. One
Unicode scalar generally maps onto one fundamental character in a given language, but there are also
combining scalars. For example, U+0301 represents the Unicode scalar for the combining acute accent:
´. This scalar is placed on top of – that is, combined with – the character that precedes it.

In your playground, use this scalar with the Latin small letter a to create the character á:

Listing 7.8 Using a combining scalar
...
let snowman = "\u{2603}" "☃"
let aAcute = "\u{0061}\u{0301}" "á"

Making characters extended grapheme clusters gives Swift flexibility in dealing with complex script
characters.

Unicode scalars

69

Swift also provides a mechanism to see all the Unicode scalars in a string. For example, you can
see all the Unicode scalars that Swift uses to create the instance of String named playground that
you created earlier using the unicodeScalars property, which holds all the scalars that Swift uses to
make the string. (Properties, which you will learn about in Chapter 16, are constants or variables that
associate values with an instance of a type.)

Add the following code to your playground to see playground’s Unicode scalars.

Listing 7.9 Revealing the Unicode scalars behind a string
...
let snowman = "\u{2603}" "☃"
let aAcute = "\u{0061}\u{0301}" "á"
for scalar in playground.unicodeScalars {
 print("\(scalar.value)") (17 times)
}

You should see the following output in the console: 72 101 108 108 111 44 32 112 108 97 121
103 114 111 117 110 100. What do all these numbers mean?

The unicodeScalars property holds on to data representing all the Unicode scalars used to create the
string instance playground. Each number on the console corresponds to a Unicode scalar representing
a single character in the string. But they are not the hexadecimal Unicode numbers. Instead, each is
represented as an unsigned 32-bit integer. For example, the first, 72, corresponds to the Unicode scalar
value of U+0048, or an uppercase H.

Chapter 7 Strings

70

Canonical equivalence
While there is a role for combining scalars, Unicode also provides already combined forms for
some common characters. For example, there is a specific scalar for á. You do not actually need to
decompose it into its two parts, the letter and the accent. The scalar is U+00E1. Create a new constant
string that uses this Unicode scalar.

Listing 7.10 Using a precomposed character
...
let aAcute = "\u{0061}\u{0301}" "á"
for scalar in playground.unicodeScalars {
 print("\(scalar.value) ") (17 times)
}

let aAcutePrecomposed = "\u{00E1}" "á"

As you can see, aAcutePrecomposed appears to have the same value as aAcute. Indeed, if you check
whether these two characters are the same, you will find that Swift answers “yes.”

Listing 7.11 Checking equivalence
...
let aAcute = "\u{0061}\u{0301}" "á"
for scalar in playground.unicodeScalars {
 print("\(scalar.value) ") (17 times)
}

let aAcutePrecomposed = "\u{00E1}" "á"

let b = (aAcute == aAcutePrecomposed) true

aAcute was created using two Unicode scalars, and aAcutePrecomposed only used one. Why does
Swift say that they are equivalent? The answer is canonical equivalence.

Canonical equivalence refers to whether two sequences of Unicode scalars are the same linguistically.
Two characters, or two strings, are considered equal if they have the same linguistic meaning
and appearance, regardless of whether they are built from the same Unicode scalars. aAcute and
aAcutePrecomposed are equal strings because both represent the Latin small letter a with an acute
accent. The fact that they were created with different Unicode scalars does not affect this.

Canonical equivalence

71

Counting elements
Canonical equivalence has implications for counting the elements of a string. You might think that
aAcute and aAcutePrecomposed would have different character counts. Write the following code to
check.

Listing 7.12 Counting characters
...
let aAcutePrecomposed = "\u{00E1}" "á"

let b = (aAcute == aAcutePrecomposed) true

aAcute.count 1
aAcutePrecomposed.count 1

You use the count property on String to determine the character count of these two strings. count
iterates over a string’s Unicode scalars to determine its length. The results sidebar reveals that the
character counts are the same: Both are one character long.

Canonical equivalence means that whether you use a combining scalar or a precomposed scalar, the
result is treated as the same. aAcute uses two Unicode scalars; aAcutePrecomposed uses one. This
difference does not matter since both result in the same character.

Chapter 7 Strings

72

Indices and ranges
Because strings are ordered collections of characters, if you have worked with collections in other
languages, you might think that you can access a specific character in a string like so:

 let playground = "Hello, playground"
 let index = playground[3] // 'l'?

The code playground[3] uses the subscript syntax. In general, the brackets ([]) after a variable name
indicate that you are using a subscript in Swift. Subscripts allow you to retrieve a specific value within
a collection.

The 3 in this example is an index that is used to find a particular element within a collection. The
code above suggests that you are trying to select the fourth character from the collection of characters
making up the playground string (fourth, not third, because the first index is 0). And for other Swift
collection types, subscript syntax like this would work. (You will learn more about subscripts below
and will also see them in action in Chapter 8 on arrays and Chapter 10 on dictionaries.)

However, if you tried to use a subscript like this on a String, you would get an error: "'subscript'
is unavailable: cannot subscript String with an Int." The Swift compiler will not let you
access a specific character on a string via a subscript index.

This limitation has to do with the way Swift strings and characters are stored. You cannot index a
string with an integer, because Swift does not know which Unicode scalar corresponds to a given index
without stepping through every preceding character. This operation can be expensive. Therefore, Swift
forces you to be more explicit.

Swift uses a type called String.Index to keep track of indices in string instances. (The period in
String.Index just means that Index is a type that is defined on String. You will learn more about
nested types like this in Chapter 16.)

As you have seen in this chapter, an individual character may be made up of multiple Unicode code
points (another term for Unicode scalars). It is the job of the Index to represent these code points as a
single Character instance and to combine these characters into the correct string.

Because Index is defined on String, you can ask the String to hand back indices that are meaningful.
To find the character at a particular index, you begin with the String type’s startIndex property. This
property yields the starting index of a string as a String.Index. You then use this starting point in
conjunction with the index(_:offsetBy:) method to move forward until you arrive at the position of
your choosing. (A method is like a function; you will learn more about them in Chapter 12.)

Say you want to know the fifth character of the playground string that you created earlier.

Listing 7.13 Finding the fifth character
let playground = "Hello, playground" "Hello, playground"
...
aAcute.count 1
aAcutePrecomposed.count 1

let start = playground.startIndex String.Index
let end = playground.index(start, offsetBy: 4) String.Index
let fifthCharacter = playground[end] "o"

Canonical equivalence

73

You use the startIndex property on the string to get the first index of the string. This property yields
an instance of type String.Index. Next, you use the index(_:offsetBy:) method to advance from the
starting point to your desired position. You tell the method to begin at the first index and then add 4 to
advance to the fifth character.

The result of calling index(_:offsetBy:) is a String.Index that you assign to the constant end.
Finally, you use end to subscript your playground string, which results in the character o being
assigned to fifthCharacter.

Character ranges, like indices, depend upon the String.Index type. Suppose you wanted to grab the
first five characters of playground. You can use the same start and end constants.

Listing 7.14 Pulling out a range
...
let start = playground.startIndex String.Index
let end = playground.index(start, offsetBy: 4) String.Index
let fifthCharacter = playground[end] "o"
let range = start...end {{_rawBits 1}, {_rawBit...
let firstFive = playground[range] "Hello"

The result of the syntax start...end is a constant named range. It has the type
ClosedRange<String.Index>. A closed range, as you saw in Chapter 4, includes a lower bound, an
upper bound, and everything in between. <String.Index> indicates the type of the elements along
the range – the type that strings use for their indices. (In Chapter 4, the ranges you used were of type
Range<Int> and ClosedRange<Int>.)

Your range’s lower bound is start, which is a String.Index whose value you can think of as being 0.
The upper bound is end, which is also a String.Index whose value you can think of as 4. (The actual
values are more complicated, as the sidebar results hint at, and are outside the scope of this book.)
Thus, range describes a series of indices within playground from its starting index up to and including
the index offset by 4.

You used this new range as a subscript on the playground string. The subscript grabbed the first five
characters from playground, making firstFive a constant equal to "Hello".

In addition to closed ranges and the half-open ranges you also saw in Chapter 4, there is a third type of
range you can use in Swift: the one-sided range. Update your playground to use one:

Listing 7.15 Using a one-sided range
...
let start = playground.startIndex String.Index
let end = playground.index(start, offsetBy: 4) String.Index
let fifthCharacter = playground[end] "o"
let range = start...end
let range = ...end PartialRangeThrough<Str...
let firstFive = playground[range] "Hello"

By removing the lower bound from your range, you tell the compiler that the range should begin with
the lowest possible value; in this case, the beginning of the string. A one-sided range can be created
with either the lower or upper bound removed and using either range operator (... or ..<).

Because strings are such a central part of communicating with your user, it is no surprise that they have
so many features for examining and working with their contents.

Chapter 7 Strings

74

Bronze Challenge
Create a new String instance called empty and give it an empty string (a string with no characters):
let empty = "". It is useful to be able to tell if a string has any characters in it. For example, you may
be designing a form for data input and want to prevent the user from submitting a blank entry. Use the
startIndex and endIndex properties on empty to determine whether this string is truly empty.

Silver Challenge
Replace the "Hello" string with an instance created out of its corresponding Unicode scalars. You can
find the appropriate codes on the internet.

For the More Curious: Substrings
In this chapter, you created a ClosedRange and used it to subscript the String playground. Doing
so meant that you grabbed the word “Hello” from the String within the playground constant and
assigned it to firstFive.

But here is a question: What is the type of firstFive? You might expect its type to be String, but it
is not. Option-click firstFive. This opens a pop-up where you can see the variable’s full declaration,
including its type (Figure 7.1).

Figure 7.1 Substrings

firstFive is a String.SubSequence. What is that? Click SubSequence in the pop-up to open a page
about the type in Apple’s developer documentation (Figure 7.2).

For the More Curious: Substrings

75

Figure 7.2 SubSequence documentation

The documentation says that SubSequence is a typealias for something called Substring. (You can
ignore what a typealias is for now. That will be covered in Chapter 20.) Click on Substring to see the
documentation for this type.

Take some time to read through the documentation. You will find that firstFive is what is called
a “slice” of the original String contained by the playground constant. A slice represents some
subcomponent of the original sequence.

Since firstFive is a slice of playground, it is a substring carved out of the original “Hello,
playground” String. Slicing a substring from an existing String does not create a new instance of
that type. This is efficient, because it means that firstFive does not need its own storage. It shares
its storage with playground. And Substring presents the same API as String, so you do not need to
worry about loss of functionality.

Imagine that you need to subscript the playground String for the word “play.” You would write code
like this:

 let startPlay = playground.index(playground.startIndex, offsetBy: 7)
 let endPlay = playground.index(startPlay, offsetBy: 3)
 let playRange = startPlay...endPlay
 let play = playground[playRange]

You offset the start index of playground by 7 to get the index for the letter p. Next, you offset this
index by 3 to get to the letter y. These indices formulate the ClosedRange that allows access to the
word “play” within the source String named playground. With the range in hand, you subscript the
playground to slice the word “play” from the original string.

Chapter 7 Strings

76

Figure 7.3 shows the relationships and types of the five variables.

Figure 7.3 The layout of substrings

For the More Curious: Multiline Strings

77

For the More Curious: Multiline Strings
You learned in Chapter 4 that sometimes the whitespace in your code (like spaces and line breaks)
matters, such as when putting space on either side of a binary operator. Declaring a string is another
situation where whitespace – in this case, line breaks – matters.

As you learned above, you can use the \n escape sequence to cause a string to insert a new line when
printing to the console. But if you try to split a string across multiple lines in your code, you get a
compiler error. For example, this code yields multiple errors:

 let tale = "It was the best of times,
 it was the worst of times."
 print(tale)

The compiler sees an unterminated string on the first line, generating one error. And it does not realize
that the second line is part of a string, so it tries to compile that line like any other code, generating
more errors.

If you want to split a string across multiple lines in your code, use three quotation marks at the start
and end of the string:

 let tale = """
 It was the best of times,
 it was the worst of times.
 """
 print(tale)

There are a couple important rules about multiline strings:

• The opening quotation marks must be followed by a new line and the first line of the string.

• The closing quotation marks must begin a new line.

The indentation level of the closing quotation marks establishes the leading margin of the text. The
string above will be indented when printed to the console, because the text is indented relative to the
closing quotation marks. The string below will not be indented when printed, since the text and closing
quotation marks are aligned:

 let tale = """
 It was the best of times,
 it was the worst of times.
 """
 print(tale)

When you have a lot of text that you want to store in a String, using this multiline string syntax can
save you some headaches (and lots of horizontal scrolling).

Part III
Collections and Functions

As a programmer, you will often have a collection of related values that you need to keep together.
This part of the book will introduce you to Swift’s collection types, which help you do this.

This part of the book also introduces the concept of optionals in Swift. Optionals play an important
role in the language and provide a mechanism to represent the concept of nothing in a safe way. As you
will see, how Swift deals with optionals highlights the language’s approach to writing safe and reliable
code.

Finally, these chapters describe how to use the system functions provided by Swift to transform and
understand your data, as well as how to create your own functions to accomplish your goals.

81

8
Arrays

An important task in programming is to group together logically related values. For example, imagine
that your application keeps lists of a user’s friends, favorite books, travel locations, and so on. It is
often necessary to be able to keep those values together and pass them around your code. Collections
make these operations convenient.

Swift has a number of collection types. The first we will cover is called Array.

An array is an ordered collection of objects or values. Because it is ordered, each position in an array
is identified by an index. Arrays are typically used when the order of the values is important or useful
to know. The items in a Swift Array can be of any type – objects and values alike. And while all the
elements of an array must be of the same type, they do not need to be unique; a value can appear
multiple times in an array.

To get started, create a new macOS playground called Arrays.

Chapter 8 Arrays

82

Creating an Array
In this chapter, you will create an array that represents your bucket list: the things you would like to do
in the future. Begin by declaring your first array.

Listing 8.1 Creating an array
import Cocoa

var str = "Hello, playground"

var bucketList: Array<String>

Here, you create a new variable called bucketList that is of the Array type. As you have seen, the var
keyword means that bucketList is a variable. Arrays declared with var are called mutable – another
way of saying they can be changed. There are also immutable arrays, which we will discuss later in this
chapter.

The <String> part of the declaration tells the bucketList array what sort of instances it can accept.
Arrays can hold instances of any type; bucketList will accept instances of String.

There is a shorthand syntax for declaring an array. Make the following change in your playground:

Listing 8.2 Changing the syntax
var bucketList: Array<String>
var bucketList: [String]

This syntax does the same work, but it is more convenient. Here, the brackets identify bucketList as
an instance of Array, and the String syntax tells bucketList what sort of values it can accept.

Your bucketList is declared, which means you have made a place to put an array – but you have not
yet created the array itself. If you were to try to put an item in your bucketList, you would get an
error saying that you are trying to add something before your bucketList is initialized.

Initialize the array with your first bucket list goal:

Listing 8.3 Initializing the array
var bucketList: [String]
bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]

You use the assignment operator = in conjunction with the Array literal syntax ["Climb Mt.
Everest"]. An Array literal is a shorthand syntax that initializes an array with whatever instances you
include. In this case, you initialize bucketList with an array containing a single item: "Climb Mt.
Everest".

Creating an Array

83

By the way, you are not required to initialize your variable with an array that contains elements. If you
did the bronze challenge in Chapter 7, you saw that you can create an empty string with no characters:
var empty = "". You can also create an empty array using [] to represent a literal array with no
elements. You would then have an initialized array variable, ready for use.

As you have seen previously, you can declare and initialize on the same line. Update your declaration
to also provide a value for your bucketList.

Listing 8.4 Initializing the array alongside its declaration
var bucketList: [String] = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList = ["Climb Mt. Everest"]

There is one more way you can simplify your declaration. As with other types, Array instances can be
declared by taking advantage of Swift’s type inference capabilities. Remove the type declaration from
your code to use type inference.

Listing 8.5 Using type inference
var bucketList: [String] = ["Climb Mt. Everest"] ["Climb Mt. Everest"]

Your bucketList will still only accept instances of the String type, but now it infers the variable’s
type based on the type of the instance used to initialize it. If you were to try to add an integer to this
array, you would see an error telling you that you cannot add an instance of Int to your array, because
it is expecting instances of the String type. In this way, your variable is of a single, compound type: an
array of strings.

Note that if you are initializing an empty array using literal syntax, the compiler cannot infer the type
of instance that the array contains. You need to declare it explicitly, as in var emptyStringArray:
[String] = []. You can also use Swift’s constructor syntax, if you prefer: var emptyStringArray =
[String]().

Now that you know how to create and initialize an array, it is time to learn how to access and modify
your array’s elements.

Chapter 8 Arrays

84

Accessing and Modifying Arrays
So, you have a bucket list? Great! Sadly, you do not have many ambitions in it yet. But you are an
interesting person with a zest for life, so let’s add some values to your bucketList. Update your list
with another ambition.

Listing 8.6 Reading the classics
var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append("Read War and Peace") ["Climb Mt. Everest", "...

You are using append(_:) to add a value to bucketList. The append(_:) method takes an argument
of whatever type an array accepts and makes it a new element in the array. Arguments are data given to
a method for it to work with; you will learn more about them in Chapter 12.

The sidebar shows the value of bucketList, which now includes two strings.

Add more future adventures to your bucketList using the append(_:) function.

Listing 8.7 So many ambitions!
var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append("Read War and Peace") ["Climb Mt. Everest", "...
bucketList.append("Go on an Arctic expedition") ["Climb Mt. Everest", "...
bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "...

An Array like bucketList can hold many items – as many as you can dream up. But it is easy to find
out the number of items in an array. Arrays keep track of the number of items in them via the count
property. Use this property to access the number of bucket list items.

Listing 8.8 Counting items in the array
...
bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "...
bucketList.count 5

What happens when you accomplish one of the items on your list and are ready to take it off? Because
Arrays are ordered, you can access specific items in an Array via their indices.

Suppose you worked your way through War and Peace. Remove that goal from your list with the
function remove(at:), specifying the index position of "Read War and Peace". Arrays are zero-
indexed, so "Climb Mt. Everest" is at index 0 and "Read War and Peace" is at index 1.

Listing 8.9 Removing an item from the array
var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append("Read War and Peace") ["Climb Mt. Everest", "...
bucketList.append("Go on an Arctic expedition") ["Climb Mt. Everest", "...
bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "...
bucketList.count 5
bucketList.remove(at: 1) "Read War and Peace"
bucketList ["Climb Mt. Everest", "...

Accessing and Modifying Arrays

85

To confirm that the value in the first index was removed from your bucketList, mouse over the sidebar
next to the final line (bucketList) and click the Quick Look button (). The Quick Look window
will appear (Figure 8.1).

Figure 8.1 Checking the Quick Look window

Scroll down in the Quick Look window to see that the count of items in your array is now four. The
item formerly at the first index is gone. "Go on an Arctic expedition" now occupies the first index.

The ordered nature of arrays also means that you can use subscripting to get a handle on the values
they contain. Print the first three items in your bucketList array:

Listing 8.10 Subscripting to find your top three items
...
bucketList.remove(at: 1) "Read War and Peace"
bucketList ["Climb Mt. Everest", "...
print(bucketList[...2]) ["Climb Mt. Everest", "...

You have seen the subscripting bracket syntax before. Here, you use a half-open range to specify the
first three items in the array, which print to the console. You could also have used a closed range, like
bucketList[0...2], to access the same top three items or the basic subscripting syntax to log a single
item, such as bucketList[2].

Chapter 8 Arrays

86

Subscripting is a powerful feature. You can also use it to change an item at a particular index (or range
of indices). Add some detail to the second item in your bucketList:

Listing 8.11 Subscripting to append new information
...
bucketList ["Climb Mt. Everest", "...
print(bucketList[...2]) ["Climb Mt. Everest", "...
bucketList[1] += " with friends"
bucketList[1] "Go on an Arctic expedi...

You use the addition and assignment operator (+=) to add some text to the item at index 1. This
assignment works because the instance at index 1 is of the same type as the instance you added to it –
"Go on an Arctic expedition" and " with friends" are both Strings. As the sidebar shows, the
value at index 1 is now "Go on an Arctic expedition with friends".

Subscripting also allows you to replace an item in an array. Suppose you decide to climb a different
mountain, instead of Everest. You can replace the string at index 0 using the assignment operator:

Listing 8.12 Replacing an array item
...
print(bucketList[...2]) ["Climb Mt. Everest", "...
bucketList[1] += " with friends"
bucketList[1] "Go on an Arctic expedi...
bucketList[0] = "Climb Mt. Kilimanjaro" "Climb Mt. Kilimanjaro"
bucketList ["Climb Mt. Kilimanjaro...

Finally, suppose you decide on a new goal that is more important than going on an Arctic expedition
but less important than climbing Kilimanjaro. You can use the insert(_:at:) function to add a new
element to your array at a specified index.

Listing 8.13 Inserting a new ambition
...
bucketList[1] "Go on an Arctic expedi...
bucketList[0] = "Climb Mt. Kilimanjaro" "Climb Mt. Kilimanjaro"
bucketList.insert("Toboggan across Alaska", at: 1) ["Climb Mt. Kilimanjaro...
bucketList ["Climb Mt. Kilimanjaro...

The insert(_:at:) function has two arguments. The first argument takes the instance to add to the
array. The second argument takes the index where the new element should be added. Use the Quick
Look window (or the results sidebar) to confirm that your array now has five elements, with "Toboggan
across Alaska" in the second position.

Combining Arrays

87

Combining Arrays
You added items to your array using bucketList.append (and bucketList.insert, when you wanted
to add an element at a specific index). You can also add the contents of one array to another by looping
over the contents and passing them, one by one, to append(_:). Create a new list of adventures to add
to your bucketList:

Listing 8.14 Using a loop to append items from one array to another
...
bucketList.insert("Toboggan across Alaska", at: 1) ["Climb Mt. Kilimanjaro...
bucketList ["Climb Mt. Kilimanjaro...

var newItems = [["Bike across America",...
 "Bike across America",
 "Make a perfect souffle",
 "Solve Fermat's enigma"
]

for item in newItems {
 bucketList.append(item) (3 times)
}
print(bucketList) ["Climb Mt. Kilimanjaro...

You create an array for the bucket list items that you want to add, called newItems. Next, you make a
for-in loop that iterates through each item in the array and appends it to your bucketList. You use
the item variable in the local scope of the loop to append it to your bucketList array.

The console shows your complete array:

 ["Climb Mt. Kilimanjaro", "Toboggan across Alaska", "Go on an Arctic expedition
 with friends", "Scuba dive in the Great Blue Hole", "Find a triple rainbow",
 "Bike across America", "Make a perfect souffle", "Solve Fermat\'s enigma"]

This works, as the console shows, but it can be simplified. While there are times when looping over an
array makes sense, in this case you really just want to add one array to another. And just as you can use
+= to add one integer to another, you can use it to add one array to another.

Listing 8.15 Refactoring with the addition and assignment operator
...
var newItems = [["Bike across America",...
 "Bike across America",
 "Make a perfect souffle",
 "Solve Fermat's enigma"
]

for item in newItems {
 bucketList.append(item)
}
bucketList += newItems ["Climb Mt. Kilimanjaro...
print(bucketList) ["Climb Mt. Kilimanjaro...

The += operator makes for an easy way to add your array of new items to your existing bucket list.
Your console output should be unchanged.

Chapter 8 Arrays

88

Array Equality
You have seen that the equality operator == can be used to check whether two strings or two numeric
values are equal. It can also be used to check the equality of two arrays. Create a new array and use ==
to compare it to newItems.

Listing 8.16 Checking two arrays for equality
...
var newItems = [["Bike across America",...
 "Bike across America",
 "Make a perfect souffle",
 "Solve Fermat's enigma"
]

bucketList += newItems ["Climb Mt. Kilimanjaro...
print(bucketList) ["Climb Mt. Kilimanjaro...

var anotherList = [["Bike across America",...
 "Bike across America",
 "Solve Fermat's enigma",
 "Make a perfect souffle"
]

newItems == anotherList false

Because the contents of the two arrays are the same, you might expect this check to resolve to true.
But the sidebar shows that it is false. Why?

Remember that arrays are ordered. That means two arrays that have the same values are not equal if the
ordering is different, and anotherList reverses the order of the second and third items. Put the items in
the same order to make the two lists equal.

Listing 8.17 Fixing anotherList
...
var anotherList = [["Bike across America",...
 "Bike across America",
 "Solve Fermat's enigma",
 "Make a perfect souffle",
 "Solve Fermat's enigma"
]

newItems == anotherList true

If you get an error, double-check the commas that separate the elements in your array. It is legal (but
uncommon) to have a trailing comma after the last element, but it is illegal to be missing a comma
between two elements.

Immutable Arrays

89

Immutable Arrays
You have been doing a lot of tinkering with your bucket list array. As we mentioned early in this
chapter, you can also create an array that cannot be changed – an immutable array. Here is how.

Let’s say you are making an application that allows users to keep track of the lunches they eat each
week. Users will log what they ate and generate reports at a later time. You decide to put these meals
in an immutable array to generate the reports. After all, it does not make sense to change last week’s
lunches after they have been eaten.

Create an immutable array and initialize it with a week’s worth of lunches.

Listing 8.18 An immutable array
...
let lunches = [["Cheeseburger", "Veggi...
 "Cheeseburger",
 "Veggie Pizza",
 "Chicken Caesar Salad",
 "Black Bean Burrito",
 "Falafel Wrap"
]

You use the let keyword to create an immutable array. If you were to try to modify the array in any
way, the compiler would issue an error stating that you cannot mutate an immutable array. If you even
try to reassign a new array to lunches, you would get an error from the compiler telling you that you
cannot reassign an instance to a constant created via the let keyword.

Documentation
The documentation for any programming language is an indispensable resource, and Swift’s is
no exception. Open the documentation that shipped with Xcode by clicking Help → Developer
Documentation at the top (Figure 8.2).

Figure 8.2 Help menu

Chapter 8 Arrays

90

A new documentation window will open. In the search bar at the top, type in “Array” and wait just a
moment. You will see some live search results populate, showing different documentation references
(Figure 8.3).

Figure 8.3 Searching for “Array”

Documentation

91

Select the suggested item, which comes from the Swift standard library (the set of features, types, and
functions baked into the Swift language itself, as opposed to additional frameworks). This will open
the documentation for Swift’s Array type, as in Figure 8.4.

Figure 8.4 Array documentation

Take some time to explore the documentation for Array. Do not worry if you do not recognize or
understand all the syntax you see here yet. Get to know the organization of the documentation to save
yourself a lot of time in the future. You will be visiting these pages regularly.

Chapter 8 Arrays

92

Bronze Challenge
Look at the array below.

 var toDoList = ["Take out the trash", "Pay bills", "Cross off finished items"]

Use the documentation to find a property defined on the Array type that will tell you whether toDoList
contains any elements.

Silver Challenge
Enter the toDoList array from the bronze challenge in your playground. Use a loop to reverse the order
of the elements of this array. Log the results to the console.

Then, examine the Array documentation to see whether there is a more convenient way to do this
operation. (There is.)

Finally, use the Array documentation to find an easy way to rearrange the items in your toDoList into
a random order.

93

9
Optionals

In Swift, it is illegal to use a variable before you have given it a value. And once a value has been
set, it is impossible to take the value away; you can only assign another value of the same type. But
sometimes you need to represent the absence of a value, or a value that might go away, without
crashing your app.

If you ask someone “How many beans are in this jar?”, you might expect an integer answer (and
declare an Int variable to store it). But if they answer “I don’t know,” what should you put in your
variable? 0? Some other number? If your variable can only store values of type Int, what do you do so
that you can move on with your program and deal with the lack of an answer later?

You need a way to declare a variable that might have an Int or might be empty – or might become
empty later, after a value has been assigned.

Swift has a type called Optional to represent the possible absence of a value. You can think of
Optional as a small container type that can hold either a ready-for-use instance of another type or
nothing at all. If an instance of type Optional has no value associated with it, we say that its value is
nil.

This chapter covers how to declare optionals, how to use optional binding to extract the value from an
optional that is not nil, and how to use optional chaining to query a sequence of optional values.

Chapter 9 Optionals

94

Optional Types
Create a new macOS playground and name it Optionals.

There is both a long-form syntax and a shorter, more convenient syntax for declaring and using an
optional. In practice, developers exclusively use the shorthand syntax. You are going to start with the
long form because it more clearly demonstrates how optionals work, and then you will switch to using
the more convenient syntax for the rest of this book. Declare your first optional instance:

Listing 9.1 Declaring an optional instance
import Cocoa

var str = "Hello, playground"

var errorCodeString: Optional<String>
errorCodeString = Optional("404") "404"

Optional<String> indicates that your variable is of type Optional, and the angle bracket syntax –
like in the declaration of an Array – indicates that it is designed to hold a value of the String type.
This means your optional will contain either an instance of String or the value nil. The second line,
errorCodeString = Optional("404"), creates an instance of the Optional type and stores the string
"404" in it.

As with Array and other container types, there is a shorthand syntax for Optionals that is more stylish.
Update your playground to use it:

Listing 9.2 Using shorthand optional syntax
var errorCodeString: Optional<String>
errorCodeString = Optional("404")
var errorCodeString: String? nil
errorCodeString = "404" "404"

This preferred syntax does exactly the same work as before, but it hides some of the details of what
is really happening. The ? in String? tells the compiler that you want an Optional that will hold a
String or nil.

A more surprising change has happened on the second line: The constructor syntax (Optional(…))
has disappeared. Now, the value of errorCodeString (which, remember, is of type Optional) is
assigned to "404" – which is a String.

Normally, assigning a value of one type to a variable of a different type is a type mismatch and causes
a compiler error. But the compiler has no problem with this assignment. Why is this case different?

Optionals are a common feature of Swift code. The creators of Swift knew that creating lots of
optionals manually would be cumbersome for developers, so they overloaded the assignment operator
(=) to allow an optional on the lefthand side and an instance of the optional’s associated type (String,
in this case) on the right. (“Overloading” means creating an additional implementation of an operator
or function.)

The compiler takes care of the rest, creating the Optional instance and putting the assigned String in
it. The result is that you have a much more concise and convenient way to create and use optionals.

Optional Types

95

When you need to store a value that may come and go, you should use Optional. When you see an
optional in code, you know that the value is impermanent – and, as you will see, the compiler will
force you to check for a value before trying to use it. This system of purpose-built types and forced
checks helps make Swift an expressive, safe language.

Now that you have declared an optional and given it a value, log the value of the optional to the
console.

Listing 9.3 Logging the value of the optional to the console
var errorCodeString: String? nil
errorCodeString = "404" "404"
print(errorCodeString) "Optional("404")\n"

(You can ignore the compiler warning that appears; you will see it again later in this book.)

Logging the value of errorCodeString to the console shows Optional("404"). What would
happen if you did not give errorCodeString a value? Try it! Comment out the line assigning a
value to errorCodeString. (Remember that you can use the keyboard shortcut Command-/ to toggle
commenting on and off.)

Listing 9.4 Logging the nil value of the optional to the console
var errorCodeString: String? nil
// errorCodeString = "404"
print(errorCodeString) "nil\n"

Checking the console, you will see that it has logged the value nil.

As you work through this chapter, you might find it helpful to comment this line out periodically so
that you can see how variables with a nil value behave. Just be sure to uncomment the line before
moving forward.

On its own, logging nil to the console is not very helpful. As a developer, you will often want to know
when your variables are nil so that you can execute code based on whether there is a value. In those
circumstances, you can use a conditional to check whether a variable’s value is nil.

For example, let’s say that if some operation generated an error, you would want to assign that error to
a new variable and log it to the console. Add the following code to your playground.

Listing 9.5 Adding a condition
var errorCodeString: String? nil
// errorCodeString = "404" "404"
print(errorCodeString)
if errorCodeString != nil {
 let theError = errorCodeString! "404"
 print(theError) "404\n"
}

You can compare an optional value to nil to determine whether it contains a value, and here you set up
a conditional with code that executes if errorCodeString is not nil. (Remember that != means “is not
equal to.”)

Chapter 9 Optionals

96

In the body of the conditional, you create a new constant called theError to hold the value of
errorCodeString. To do this, you append ! to errorCodeString. The exclamation mark here does
what is called forced unwrapping.

Forced unwrapping accesses the value stored inside the Optional, which allows you to grab "404"
and assign it to the constant theError. It is called “forced” unwrapping because it tries to access the
underlying value whether or not there is actually a value there at all. That is, the ! assumes there is a
value; if there is no value, unwrapping the value in this way would lead to a runtime error.

There can be danger in forced unwrapping. If there is no value inside the optional, your program
will trap at runtime. In this case, you check to make sure that errorCodeString is not nil, so force-
unwrapping it is not dangerous. Nonetheless, we suggest that you use forced unwrapping cautiously
and sparingly.

Finally, you log this new constant’s value to the console.

What would have happened if you had not unwrapped errorCodeString’s value but simply assigned
the optional to the theError constant? The value of theError would still have been logged to the
console correctly. So, why unwrap the optional’s value and assign it to a constant? The answer requires
a better understanding of the optional type.

If you had omitted the exclamation mark at the end of errorCodeString, you would have assigned
errorCodeString, an optional String, to the constant theError. Both errorCodeString and
theError would have been of type String?.

Try it yourself: Delete the exclamation mark, then Option-click theError. Observe its inferred type:
String?. Replace the exclamation mark and Option-click theError again. Its inferred type is now just
String.

So by using the exclamation mark to forcibly unwrap the optional, you are assigning the actual String
value held by errorCodeString to theError. In your code, errorCodeString’s type is String?, and
theError’s type is String. These are not the same types – if you have a String variable, you cannot
set it to the value of a String? without unwrapping the optional.

Creating a constant inside the conditional is a little clunky. Fortunately, there is a better way to
conditionally bind an optional’s value to a constant. It is called optional binding.

Optional Binding
Optional binding is a useful pattern to detect whether an optional contains a value. If there is a value,
you assign it to a temporary constant or variable and make it available within a conditional’s first
branch of execution. This can make your code more concise while also retaining its expressive nature.
Here is the basic syntax:

 if let temporaryConstant = anOptional {
 // Do something with temporaryConstant
 } else {
 // There was no value in anOptional - anOptional is nil
 }

Optional Binding

97

With this syntax in hand, refactor the example above to use optional binding.

Listing 9.6 Optional binding
var errorCodeString: String? nil
errorCodeString = "404" "404"
if errorCodeString != nil {
 let theError = errorCodeString!
if let theError = errorCodeString {
 print(theError) "404\n"
}

As you can see, the syntax for optional binding is more or less the same as the syntax that creates
a constant within a conditional. The constant theError moves from the body of the conditional to
its first line. This makes theError a temporary constant that is available within the first branch of
the conditional. In other words, if there is a value within the optional, a temporary constant is made
available for use in the block of code that is executed if the condition is evaluated as true.

(Note that you could have declared theError with the var keyword if you needed to manipulate the
value inside the first branch of the conditional.)

Also, you no longer forcibly unwrap the optional. If the conversion is successful, then this operation is
done for you, and the optional’s value is made available in the temporary constant you declared.

Suppose you wanted to convert errorCodeString to its corresponding integer representation. You
could accomplish this by nesting if let bindings.

Listing 9.7 Nesting optional binding
var errorCodeString: String? nil
errorCodeString = "404" "404"
if let theError = errorCodeString {
 print(theError)
 if let errorCodeInt = Int(theError) {
 print("\(theError): \(errorCodeInt)") "404: 404\n"
 }
}

Notice that the second if let is within the first, which makes theError available to use in the second
optional binding.

Here, you use Int(theError) to initialize a new Int instance with the value of theError. But
initializing an Int from a String can fail; for example, the string "Hello!" does not naturally translate
to an integer. Therefore, Int(theError) returns an optional, in case the string contains non-numeric
characters.

The result of Int(theError) is unwrapped and assigned to errorCodeInt in the second binding,
which makes the integer value available for use. You can then use both of these new constants in a call
to print() to log them to the console.

Nesting optional binding can be convoluted. While it is not too bad with just a couple of optionals, you
can imagine how complicated this strategy can get if you have several more optionals that need to be
unwrapped. Programmers call deeply nested syntax the “Pyramid of Doom,” a reference to the many
indentation levels.

Chapter 9 Optionals

98

Thankfully, you can unwrap multiple optionals in a single if let binding. This feature helps you
avoid the need for nesting multiple if let calls. Refactor your playground to unwrap both optionals in
one line. (We have broken them across two lines to fit on the page.)

Listing 9.8 Unwrapping multiple optionals
var errorCodeString: String? nil
errorCodeString = "404" "404"
if let theError = errorCodeString,
 let errorCodeInt = Int(theError) {
 if let errorCodeInt = Int(theError) {
 print("\(theError): \(errorCodeInt)") "404: 404\n"
 }
}

You now unwrap two optionals in a single line with if let theError = errorCodeString, let
errorCodeInt = Int(theError). First, errorCodeString is unwrapped, and its value is given to
theError. You use Int(theError) to try to convert theError into an Int. Because this results in an
optional, you next unwrap that optional and bind its value to errorCodeInt.

If either of these bindings returns nil, then the success block of the conditional will not execute. In
this case, errorCodeString does have a value and theError can be successfully unwrapped, because
theError can be converted into an integer.

Optional binding can even perform additional checks that work very similarly to what you have already
seen with standard if statements. Imagine that you only care about an error code if the value is 404.

Listing 9.9 Optional binding and additional checks
var errorCodeString: String? nil
errorCodeString = "404" "404"
if let theError = errorCodeString,
 let errorCodeInt = Int(theError),
 errorCodeInt == 404 {
 print("\(theError): \(errorCodeInt)") "404: 404\n"
}

(Do not overlook the added comma in this code.)

Now, the conditional evaluates to true only if errorCodeInt is equal to 404. And the final clause
(errorCodeInt == 404) is only executed if both optionals are successfully unwrapped. Because
theError is "404", and that string can be converted to the integer 404, all conditions are met and 404:
404 is logged to the console.

Implicitly Unwrapped Optionals

99

Implicitly Unwrapped Optionals
At this point it is worth mentioning implicitly unwrapped optionals, though you will not use them
much until we discuss classes and class initialization later in this book. Implicitly unwrapped optionals
are like regular optional types, with one important difference: You do not need to unwrap them. How
is that the case? It has to do with how you declare them. Take a look at the code below, which refactors
the example above to work with an implicitly unwrapped optional.

 var errorCodeString: String!
 errorCodeString = "404"
 print(errorCodeString)

Here, the optional is declared with !, which signifies that it is an implicitly unwrapped optional. The
conditional is removed because using an implicitly unwrapped optional signifies a great deal more
confidence than its more humble counterpart. Indeed, much of the power and flexibility associated with
the implicitly unwrapped optional is related to the idea that you do not need to unwrap it to access its
value.

But note that this power and flexibility comes with some danger: Accessing the value of an implicitly
unwrapped optional will result in a runtime error if it does not have a value. For this reason, we suggest
that you do not use an implicitly unwrapped optional if you believe that the instance has any chance of
becoming nil. Indeed, implicitly unwrapped optionals are so unsafe that Swift will attempt to give you
regular optionals if you are not specific about wanting an implicitly unwrapped optional.

Let’s revisit the example above to see this in action. Suppose you set errorCodeString to be nil.
What would happen if you declared a constant named anotherErrorCodeString with type String
and tried to assign to it the contents (or lack thereof) of errorCodeString? If you were to assign
errorCodeString to another instance, what type do you think Swift would infer for that new instance,
if you were not explicit about the type?

 var errorCodeString: String! = nil
 let anotherErrorCodeString: String = errorCodeString // Will this work?
 let yetAnotherErrorCodeString = errorCodeString // Optional? Implicitly unwrapped?

For the first question, you would see a trap. If errorCodeString is nil, assigning that value to
anotherErrorCodeString, which is of type String, results in a runtime error. Why? Because
anotherErrorCodeString cannot be optional, due to its explicitly declared type.

As for the second question, Swift will infer the safest thing possible: a regular optional.
yetAnotherErrorCodeString would be a String? whose value is nil. You would have to unwrap the
optional to access its value. This feature makes type inference safe by default – and therefore increases
the safety of all your code.

If you want yetAnotherErrorCodeString to be an implicitly unwrapped optional, then the compiler
requires you to be explicit. You need to declare that the type of optional that you want is implicitly
unwrapped, as in let yetAnotherErrorCodeString: String! = errorCodeString.

Using implicitly unwrapped optionals is best limited to somewhat special cases. As we indicated, the
primary case concerns class initialization, which we will discuss in detail in Chapter 17. For now, you
know enough of the basics of implicitly unwrapped optionals to understand what is going on if you
find them in the wild.

Chapter 9 Optionals

100

Optional Chaining
Like optional binding, optional chaining provides a mechanism for querying an optional to determine
whether it contains a value. One important difference between the two is that optional chaining allows
the programmer to chain numerous queries into an optional’s value. If each optional in the chain
contains a value, then the call to each succeeds, and the entire query chain will return an optional of the
expected type. If any optional in the query chain is nil, then the entire chain will return nil.

Let’s begin with a concise example. Imagine that your app has a custom error code. If you encounter a
404, you want to use your custom error code instead, as well as an error description you will display to
the user. Add the following to your playground.

Listing 9.10 Optional chaining
var errorCodeString: String? nil
errorCodeString = "404" "404"
var errorDescription: String? nil
if let theError = errorCodeString,
 let errorCodeInt = Int(theError),
 errorCodeInt == 404 {
 print("\(theError): \(errorCodeInt)")
 errorDescription =
 "\(errorCodeInt + 200): resource not found." "604: resource not found."
}

var upCaseErrorDescription =
 errorDescription?.uppercased() "604: RESOURCE NOT FOUND."

You add a new var named errorDescription. Inside the if let success block, you create a new
interpolated string and assign that instance to errorDescription. When you create the interpolated
string, you increase 404 to your custom error code value of 604 using \(errorCodeInt + 200) (this
is arbitrary and theoretically unique to your app). Last, you add some more informative text about the
error.

Next, you use optional chaining to create a new instance of the error description in all uppercase text,
perhaps to indicate its urgency. This instance is called upCaseErrorDescription.

The question mark appended to the end of errorDescription signals that this line of code initiates the
optional chaining process. If there is no value in errorDescription, then there is no string to make
uppercase. In that case, upCaseErrorDescription would be set to nil. (Remember: Optional chaining
returns an optional.)

Because errorDescription does have a value in it, you made the description uppercase and reassigned
that new value to upCaseErrorDescription. The results sidebar should display the updated value:
"604: RESOURCE NOT FOUND."

Modifying an Optional in Place

101

Modifying an Optional in Place
You can also modify an optional “in place” so that you do not have to create a new variable or constant.
Add a call to the append(_:) method on upCaseErrorDescription.

Listing 9.11 Modifying in place
...
var upCaseErrorDescription =
 errorDescription?.uppercased() "604: RESOURCE NOT FOUND."
upCaseErrorDescription?.append(" PLEASE TRY AGAIN.") ()
upCaseErrorDescription "604: RESOURCE NOT FOUN...

The sidebar result does not fit on the page, but it reads "604: RESOURCE NOT FOUND. PLEASE TRY
AGAIN."

Modifying an optional in place can be extremely helpful. In this case, all you want to do is update a
string inside an optional. You do not need anything returned. If there is a value inside the optional, then
you want to add some text to the string. If there is no value, then you do not want to do anything.

This is exactly what modifying an optional in place does. The ? at the end of
upCaseErrorDescription works similarly to optional chaining: It exposes the value of the optional
if it exists. If upCaseErrorDescription were nil, then the optional would not have been modified
because no value would exist to update.

It is worth mentioning that you can also use the ! operator in the code above. This operation
would forcibly unwrap the optional – which can be dangerous, as you have learned. If
upCaseErrorDescription were nil, then upCaseErrorDescription!.append(" PLEASE TRY
AGAIN.") would lead to a runtime crash.

As we said earlier, it is best to use ? most of the time. The ! operator should be used only when you
know that the optional will not be nil or that the only reasonable action to take if the optional is nil is to
crash.

To observe how nil propagates through your program, comment out the assignment of
errorCodeString: errorCodeString = "404". Try to understand each change that you see in the
sidebar in the context of what you have learned so far. Which other values became nil, and why?

Uncomment the assignment before continuing.

Chapter 9 Optionals

102

The Nil Coalescing Operator
A common operation when dealing with optionals is to either get the value (if the optional contains
a value) or to use some default value if the optional is nil. For example, when extracting the error
information from errorDescription, you might want to default to "No error." if the string does not
contain an error. You could accomplish this with optional binding.

Listing 9.12 Using optional binding to parse errorDescription
...
upCaseErrorDescription?.append(" PLEASE TRY AGAIN.") ()
upCaseErrorDescription "604: RESOURCE NOT FOUN...
let description: String
if let errorDescription = errorDescription {
 description = errorDescription "604: resource not found."
} else {
 description = "No error."
}

This is another good time to try commenting out errorCodeString = "404" to see the difference nil
makes in the following code. Remember to uncomment the line before continuing.

This technique works, but it has a problem. You had to write a lot of code for what should be a simple
operation: Get the value from the optional or use "No error." if the optional is nil. This can be solved
via the nil coalescing operator: ??. Let’s see what that looks like.

Listing 9.13 Using the nil coalescing operator
...
let description: String
if let errorDescription = errorDescription {
 description = errorDescription
} else {
 description = "No error."
}

let description = errorDescription ?? "No error." "604: resource not found."

The lefthand side of ?? must be an optional – errorDescription, in this case, which is an optional
String. The righthand side must be a value of type the optional holds – "No error.", in this case,
which is a String. If the optional on the lefthand side is nil, ?? returns the value on the righthand side.
If the optional is not nil, ?? returns the value contained in the optional.

Try changing errorDescription so that it does not contain an error and confirm that description gets
the value "No error.".

Listing 9.14 Changing errorDescription
...
errorDescription = nil
let description = errorDescription ?? "No error"

Even if you are already a programmer, optionals may be an entirely new concept. Be patient with
yourself if they feel strange – you will get lots of practice with them throughout the rest of this book.
This chapter was fairly involved, and you learned a lot of new material.

Bronze Challenge

103

Here is the bottom line: As a developer, you will often need to represent nil in an instance. Optionals
help you keep track of whether instances are nil and provide a mechanism to respond appropriately. If
optionals do not quite feel comfortable yet, do not worry. You will be seeing them quite a bit in future
chapters.

Bronze Challenge
Optionals are best used for things that can literally be nil. That is, they are useful in representing the
complete absence of something.

But nonexistence is not the same as zero. For example, if you are writing code to model a bank account
and the user has no balance in a given account, the value 0 is more appropriate than nil. The user does
not lack an account – what they are missing is money! Take a look at the examples below and select
which type would model them best.

• A person’s age: Int or Int?

• A person’s middle name: String or String?

• A person’s kids’ names: [String] or [String]? or [String?]

Silver Challenge
Earlier in the chapter we told you that accessing an optional’s value when it is nil will result in a
runtime error. Make this mistake by force-unwrapping an optional when it is nil. Next, examine the
error and understand what the error is telling you.

Gold Challenge
Open your playground from Chapter 8, Arrays.playground.

Consult the documentation to find a method on Array that will locate the index of "Go on an Arctic
expedition" in your bucketList. This method will return an Index?. Unwrap that value and use it to
compute the index that is two positions later in the array. Last, use this new index to find the String at
that position within your bucketList.

Look at the documentation for the String and Array types. What other properties and methods work
with optionals? Why?

105

10
Dictionaries

Chapter 8 introduced you to Swift’s Array type. The Array type is a useful collection when the order
of the elements in the collection is important.

But order is not always important. Sometimes you simply want to hold on to a set of information in a
container and then retrieve the information as needed. That is what dictionaries are for.

A Dictionary is a collection type that organizes its content by key-value pairs. The keys in a dictionary
map onto values. A key is like the ticket you give to the attendant at a coat check. You hand your
ticket over, and the attendant uses it to find your coat. Similarly, you give a key to an instance of the
Dictionary type, and it returns to you the value associated with that key.

The keys in a Dictionary must be unique. This requirement means that every key will uniquely map
onto its value. To continue the coat check metaphor, a coat check might have several navy blue coats.
So long as each coat has its own ticket, you can be sure that the attendant will be able to find your navy
blue coat when you return with your ticket.

In this chapter, you will see how to:

• create and initialize a dictionary

• loop through dictionaries

• access and modify dictionaries via their keys

You will also learn more about keys and how they work, especially as they pertain to Swift. Last, you
will see how to create arrays out of your dictionary’s keys and values.

Chapter 10 Dictionaries

106

Creating a Dictionary
The general syntax to create a Swift dictionary is var dict: Dictionary<Key, Value>. This code
creates a mutable instance of the Dictionary type called dict. The declarations for what types the
dictionary’s keys and values accept are inside the angle brackets (<>), denoted here by Key and Value.

The values stored in a dictionary can be of any type, just like the values in an array. The only type
requirement for keys in a Swift Dictionary is that the type must be hashable. You will learn more
about hashability in Chapter 25, but the basic concept is that each Key type must provide a mechanism
to guarantee that its instances are unique. Swift’s basic types, such as String, Int, Float, Double, and
Bool, are all hashable.

Before you begin typing code, let’s take a look at the different ways you can explicitly declare an
instance of Dictionary:

 var dict1: Dictionary<String, Int>
 var dict2: [String:Int]

Both options yield the same result: an uninitialized Dictionary whose keys are String instances and
whose values are of type Int. The second example uses the dictionary literal syntax ([:]).

As with Swift’s other data types, you can also declare and initialize a dictionary in one line. In that
case, you can explicitly declare the types of the keys and values or take advantage of type inference:

 var companyZIPCode: [String:Int] = ["Big Nerd Ranch": 30307]
 var sameCompanyZIPCode = ["Big Nerd Ranch": 30307]

Again, these two options yield the same result: a dictionary initialized with a single key-value pair
consisting of a String key, "Big Nerd Ranch", and an Int value, 30307.

It is useful to take advantage of Swift’s type-inference capabilities. Type inference creates code that is
more concise but just as expressive. Accordingly, you will stick with type inference in this chapter.

Time to create your own dictionary. Start with a new macOS playground called Dictionary. Declare a
dictionary called movieRatings and use type inference to initialize it with some data.

Listing 10.1 Creating a dictionary
import Cocoa

var str = "Hello, playground"

var movieRatings = ["Tron": 4, "WarGames":...
 ["Tron": 4, "WarGames": 5, "Sneakers": 4]

(Since dictionaries are not ordered, the sidebar result may show the key-value pairs in a different order
each time your code executes.)

You created a mutable dictionary to hold movie ratings using the Dictionary literal syntax. Its keys are
instances of String and represent individual movies. These keys map onto values that are instances of
Int that represent the ratings of the movies.

As an aside, just as you can create an array literal with no elements using [], you can create a
dictionary with no keys or values using [:]. As with arrays, this syntax omits anything the compiler
could use to infer the key and value types, so that information would have to be declared explicitly.

Accessing and Modifying Values

107

Accessing and Modifying Values
Now that you have a mutable dictionary, how do you work with it? You will want to read from and
modify the dictionary. Begin by using count to get some useful information about your dictionary.

Listing 10.2 Using count
var movieRatings = ["Tron": 4, "WarGames":...
 ["Tron": 4, "WarGames": 5, "Sneakers": 4]
movieRatings.count 3

Now, read a value from the movieRatings dictionary.

Listing 10.3 Reading a value from the dictionary
var movieRatings = ["Tron": 4, "WarGames":...
 ["Tron": 4, "WarGames": 5, "Sneakers": 4]
movieRatings.count 3
let tronRating = movieRatings["Tron"] 4

The brackets in movieRatings["Tron"] are the subscripting syntax you have seen before. But because
dictionaries are not ordered, you do not use an index to find a particular value. Instead, you access
values from a dictionary by supplying the key associated with the value you would like to retrieve. In
the example above, you supply the key "Tron", so tronRating is set to 4 – the value associated with
that key.

Option-click the tronRating instance to get more information (Figure 10.1).

Figure 10.1 Option-clicking tronRating

Xcode tells you that its type is Int?, but movieRatings has type [String: Int]. Why the
discrepancy? When you subscript a Dictionary instance for a given key, the dictionary will return an
optional matching the type of the Dictionary’s values. This is because the Dictionary type needs a
way to tell you that the value you asked for is not present. For example, you have not rated Primer yet,
so let primerRating = movieRatings["Primer"] would result in primerRating having type Int?
and being set to nil.

Chapter 10 Dictionaries

108

A dictionary’s keys are constants: They cannot be mutated. The informal contract a dictionary makes
is something like “Give me a value, and a key to store it by, and I’ll remember both. Come back with
the key later, and I’ll look up its value for you.” If a key were able to mutate, that could break the
dictionary’s ability to find its related value later.

But values can be mutated. Modify a value in your dictionary of movie ratings:

Listing 10.4 Modifying a value
...
movieRatings.count 3
let tronRating = movieRatings["Tron"] 4
movieRatings["Sneakers"] = 5 5
movieRatings ["Sneakers": 5, "WarGam...

As you can see, the value associated with the key "Sneakers" is now 5.

There is another useful way to update values associated with a dictionary’s keys: the
updateValue(_:forKey:) method. It takes two arguments: The first, value, takes the new value. The
second, forKey, specifies the key whose value you would like to change.

There is one small caveat: updateValue(_:forKey:) returns an optional, because the key may not
exist in the dictionary. But that actually makes this method more useful, because it gives you a handle
on the last value to which the key mapped, using optional binding. Let’s see this in action.

Listing 10.5 Updating a value
...
movieRatings["Sneakers"] = 5 5
movieRatings ["Sneakers": 5, "WarGam...
let oldRating: Int? = 4
 movieRatings.updateValue(5, forKey: "Tron")
if let lastRating = oldRating, let currentRating =
 movieRatings["Tron"] {
 print("old rating: \(lastRating)") "old rating: 4\n"
 print("current rating: \(currentRating)") "current rating: 5\n"
}

Adding and Removing Values

109

Adding and Removing Values
Now that you have seen how to update a value, let’s look at how you can add or remove key-value
pairs. Begin by adding a value.

Listing 10.6 Adding a value
...
if let lastRating = oldRating, let currentRating =
 movieRatings["Tron"] {
 print("old rating: \(lastRating)") "old rating: 4\n"
 print("current rating: \(currentRating)") "current rating: 5\n"
}
movieRatings["Hackers"] = 5 5

Here, you add a new key-value pair to your dictionary using the syntax movieRatings["Hackers"] =
5. You use the assignment operator to associate a value (in this case, 5) with the new key ("Hackers").

Next, remove the entry for Sneakers.

Listing 10.7 Removing a value
...
if let lastRating = oldRating, let currentRating =
 movieRatings["Tron"] {
 ...
}
movieRatings["Hackers"] = 5 5
movieRatings.removeValue(forKey: "Sneakers") 5

The method removeValue(forKey:) takes a key as an argument and removes the key-value pair that
matches what you provide. Now, movieRatings has no entry for Sneakers.

Additionally, this method returns the value the key was associated with, if the key is found and
removed successfully. In the example above, you could have typed let removedRating: Int? =
movieRatings.removeValue(forKey: "Sneakers"). Because removeValue(forKey:) returns an
optional of the type that was removed, removedRating would be an optional Int. Placing the old value
in a variable or constant like this can be handy if you need to do something with the old value.

However, you do not have to assign the method’s return value to anything. If the key is found in the
dictionary, then the key-value pair is removed whether or not you assign the old value to a variable.

You can also remove a key-value pair by setting a key’s value to nil.

Listing 10.8 Setting the key’s value to nil
...
if let lastRating = oldRating, let currentRating =
 movieRatings["Tron"] {
 ...
}
movieRatings["Hackers"] = 5 5
movieRatings.removeValue(forKey: "Sneakers")
movieRatings["Sneakers"] = nil nil

The result is essentially the same, but this strategy does not return the removed key’s value.

Chapter 10 Dictionaries

110

Looping over a Dictionary
You can use for-in to loop through a dictionary. Swift’s Dictionary type provides a convenient
mechanism to loop through the key-value pairs for each entry. This mechanism breaks each entry
into its constituent parts by providing temporary constants representing the key and the value. These
constants are placed within a tuple that the for-in loop can access inside its body.

Listing 10.9 Looping through your dictionary
...
movieRatings["Hackers"] = 5 5
movieRatings["Sneakers"] = nil nil
for (key, value) in movieRatings {
 print("The movie \(key) was rated \(value).") (3 times)
}

Notice how you use string interpolation to combine the values of key and value into a single string.
You should see that each movie and its rating was logged to the console.

You do not have to access both the key and the value of each entry. A Dictionary has properties for its
keys and values that can be accessed separately if you only need the information from one.

Listing 10.10 Accessing just the keys
...
movieRatings["Sneakers"] = nil nil
for (key, value) in movieRatings {
 print("The movie \(key) was rated \(value).") (3 times)
}
for movie in movieRatings.keys {
 print("User has rated \(movie).") (3 times)
}

This new loop iterates through movieRatings’s keys (in an unpredictable order, since dictionaries are
unordered) and logs each movie the user has rated to the console.

Immutable Dictionaries

111

Immutable Dictionaries
Creating an immutable dictionary works much the same as creating an immutable array. You use the
let keyword to tell the Swift compiler that you do not want your instance of Dictionary to change.
Convert movieRatings into an immutable dictionary by changing var to let in its declaration (you
will change it back shortly).

Listing 10.11 Making the dictionary immutable
var let movieRatings = ["Tron": 4, "WarGames":...
 ["Tron": 4, "WarGames": 5, "Sneakers": 4]
...

The playground should now show an error on each line where a change has been made to the
dictionary, regardless of the nature of the change. An immutable dictionary cannot be modified in any
way.

Go ahead and change the declaration back to var to make the errors go away.

Listing 10.12 Making the dictionary mutable again
let var movieRatings = ["Tron": 4, "WarGames":...
 ["Tron": 4, "WarGames": 5, "Sneakers": 4]
...

Translating a Dictionary to an Array
Sometimes it is helpful to pull information out of a dictionary and put it into an array. Suppose, for
example, that you want to list all the movies that have been rated (without their ratings).

In this case, it makes sense to create an instance of the Array type with the keys from your dictionary.

Listing 10.13 Sending keys to an array
...
for movie in movieRatings.keys {
 print("User has rated \(movie).") (3 times)
}
let watchedMovies = Array(movieRatings.keys) ["WarGames", "Tron", "H...

You use the Array() syntax to create a new [String] instance. This is not the first time that you have
initialized a new instance of a type with a value of another type. You will learn how this works under
the hood in Chapter 17, but for now it is enough to recognize that some types can be initialized by
passing arguments into this parenthetical syntax.

In this case, inside the (), you pass the dictionary’s keys. The result is that watchedMovies is a
constant instance of the Array type representing all the movies a user has in the movieRatings
dictionary.

Chapter 10 Dictionaries

112

Silver Challenge
It is not uncommon to place instances of the Array type inside a dictionary. Create a dictionary that
represents a league of sports teams. Each dictionary key will be the name of an individual team (three
teams is enough), and each value will be an array of the names of five players on that team. (You can
make up the team and player names.)

Nesting data structures like this allows you to organize hierarchical data within a single object.

In the console, log only the dictionary’s player names. Your result should look something like the
output below. (We have formatted the array so that the names fit on the page. Your array of names may
appear in a single long line.)

 The NWSL has the following players: ["Jane", "Michaela", "Rachel", "Allysha",
 "Janine", "Sydney", "Toni", "Shelina", "Emily", "Chioma", "Kailen",
 "McKenzie", "Thaisa", "Shea", "Jen"]

Gold Challenge
Combine your knowledge of dictionaries with some of the previous lessons in this book.

Output the members of each team with formatting that looks like this:

 Sky Blue FC members:
 Kailen
 McKenzie
 Thaisa
 Shea
 Jen

 Orlando Pride members:
 Sydney
 Toni
 Shelina
 Emily
 Chioma

 Houston Dash members:
 Jane
 Michaela
 Rachel
 Allysha
 Janine

Each team’s members should appear one per line, with no other punctuation. There should be an
additional new line between teams. For added difficulty, make your solution work using only one
print() statement (inside a loop is fine). Writing extremely concise code in this way often harms your
ability to read the code later, but it can be fun and satisfying to flex your understanding in a playground
environment like this.

Some hints: Search the documentation for how to represent special characters in String literals.
(For example, how do you add a tab or new line in a string?) Also, look at the documentation for the
print() function. There are different ways you can call the function to control its output. Lastly, look
at the documentation for the Array type. What are the different ways you can make a single string from
an array’s elements?

113

11
Sets

Swift provides a third collection type called Set. Set is not frequently used, but we do not think that
this should be the case. This chapter will introduce Set and show off some of its unique advantages.

What Is a Set?
A Set is an unordered collection of distinct instances. This definition sets it apart from an Array, which
is ordered and can accommodate repeated values.

A Set has some similarities to a Dictionary, but it is also a little different. Like a dictionary, a set’s
values are unordered within the collection. Also, like a dictionary’s keys, the values in a Set must be
unique; a value can only be added to a set once. To ensure that elements are unique, Set requires that
its elements follow the same rule as a dictionary’s keys – being hashable (which you will learn about in
Chapter 25).

However, while dictionary values are accessed via their corresponding key, a set only stores individual
elements, not key-value pairs.

Table 11.1 summarizes Swift’s three collection types.

Table 11.1 Comparing Swift’s collections
Collection Type Ordered? Unique? Stores

Array Yes No Elements

Dictionary No Keys Key-value pairs

Set No Elements Elements

Chapter 11 Sets

114

Getting a Set
Create a new macOS playground called Groceries and create an instance of Set.

Listing 11.1 Creating a set
import Cocoa

var str = "Hello, playground"

var groceryList = Set<String>(["Apples", "Oranges"]) {"Apples", "Oranges"}

Your sidebar results might show the elements of the set in a different order. That is fine – sets are
unordered, so the order shown is irrelevant.

Here you make an instance of Set and declare that it will hold instances of the String type. It is a
mutable Set called groceryList and has two elements: apples and oranges. You initialized your
set with an array. (As with other types, a set can also be immutable, and you could have declared it
uninitialized. Also, like many other types, you can initialize an empty set for later use.)

Set does not have its own literal syntax like Array and Dictionary. However, recall from learning
about numbers in Chapter 4 that a value like 1.21 could be either a Double or a Float, and the
compiler will infer it to be a Double unless you specify otherwise. Set can borrow array literal syntax
in the same way. Update your playground to use an explicit Set type annotation with array literal
syntax:

Listing 11.2 Creating a set using array literal syntax
var groceryList = Set<String>(["Apples", "Oranges"])
var groceryList: Set = ["Apples", "Oranges"] {"Oranges", "Apples"}

This code explicitly declares groceryList to be a Set, then uses the Array literal syntax to create an
instance of Set. The compiler would otherwise infer that a collection created with [] syntax was an
Array. However, the compiler can still infer the type of instance that the set will contain: in this case,
strings.

In earlier chapters, you relied heavily on type inference for your collection types. Set does not offer
quite as much flexibility to use type inference, but you do have a few choices for how to declare your
instances. Which form you choose to declare your collection type instances does not matter. Choose
a style that you find comfortable and readable. It should be a goal of any developer to write code that
they – and other developers they work with – can easily read and understand.

You can add groceries to your groceryList using the insert(_:) method.

Listing 11.3 Adding to a set
var groceryList: Set = ["Apples", "Oranges"] {"Apples", "Oranges"}
groceryList.insert("Kiwi") (inserted true, memberA...
groceryList.insert("Pears") (inserted true, memberA...

The results sidebar shows something like (inserted true, memberAfterInsert "Pears") for each
insertion into your groceryList. This is because insert(_:) returns a tuple including a Boolean
(indicating whether the instance was successfully inserted into the set) and the instance that was (or
was not) inserted.

Working with Sets

115

Now groceryList has a few items in it. As with arrays and dictionaries, you can loop through a set to
see its contents.

Listing 11.4 Looping through a set
var groceryList: Set = ["Apples", "Oranges"] {"Apples", "Oranges"}
groceryList.insert("Kiwi") (inserted true, memberA...
groceryList.insert("Pears") (inserted true, memberA...

for food in groceryList {
 print(food) (4 times)
}

Each item in your groceryList is logged to the console.

Seeing that console output, you might remember that you already have pears at home. You can remove
them from your set with remove():

Listing 11.5 Removing an element from a set
...
for food in groceryList {
 print(food) (4 times)
}

groceryList.remove("Pears") "Pears"

Working with Sets
Now that you have an instance of Set, you might be wondering what to do with it. The Set offers
a number of methods that allow you to work on sets alone or in combination with another set – or,
sometimes, a different collection type. Some (but not all) of these operations are also available for
arrays; most are not available for dictionaries. The features of the various types are streamlined for
their most common use cases.

For example, you might want to know if your groceryList contains a particular item. The Set type
provides a method called contains(_:) that looks inside a set instance for a particular item.

Listing 11.6 Has bananas?
...
for food in groceryList {
 print(food) (3 times)
}

groceryList.remove("Pears") "Pears"
let hasBananas = groceryList.contains("Bananas") false

hasBananas is false; your groceryList set does not have "Bananas" in it.

Chapter 11 Sets

116

Unions
Often, you will want to compare one set to another set or an array. For example, suppose you bump
into a friend while you are shopping. While talking about the things in your lists, you decide to
compare them.

First, you wonder what you would have if you combined your separate grocery lists into a new one,
leaving out the duplicate groceries. You can do that with Set’s union(_:) method:

Listing 11.7 Combining sets
...
for food in groceryList {
 print(food) (3 times)
}

groceryList.remove("Pears") "Pears"
let hasBananas = groceryList.contains("Bananas") false
let friendsGroceryList = {"Cereal", "Oranges", "...
 Set(["Bananas", "Cereal", "Milk", "Oranges"])
let sharedList = groceryList.union(friendsGroceryList) {"Cereal", "Apples", "P...

You add a new constant Set instance representing your friend’s grocery list and use the union(_:)
method to combine the two sets. union(_:) takes a list of values as its argument and compares the
list to its own values. The return value is a Set that includes the elements of both collections, less any
duplicates.

So you can pass arrays and sets to union(_:) and get back a set with every element that appears in
either of the input collections.

Here, sharedList is a Set that contains the unique elements of groceryList and
friendsGroceryList. Figure 11.1 depicts the union of the two sets.

Figure 11.1 Union of two sets

Intersections

117

Intersections
The union(_:) method eliminates duplicates. What if, instead, you want a list of just the duplicates
– the elements that appear in both sets? Compare your grocery list and your friend’s list using the
intersection(_:) method to identify the duplicate items.

Listing 11.8 Intersecting sets
...
let friendsGroceryList = {"Cereal", "Oranges", "...
 Set(["Bananas", "Cereal", "Milk", "Oranges"])
let sharedList = groceryList.union(friendsGroceryList) {"Cereal", "Apples", "P...

let duplicateItems = {"Oranges"}
 groceryList.intersection(friendsGroceryList)

Set’s intersection(_:) method identifies the items that are present in both collections and returns
those duplicated items in a new Set instance. Figure 11.2 shows this relationship. In this case, you and
your friend both have oranges in your grocery lists.

Figure 11.2 Intersecting sets

Chapter 11 Sets

118

Disjoint
You have seen how to combine two sets into a new, all-inclusive set via the union(_:) method. You
also used the intersection(_:) method to find the common elements of two sets and place them into
a new set. What if you just want to know whether two sets contain any common elements?

The isDisjoint(with:) method checks whether two sets exclusively contain different items.

Listing 11.9 Detecting intersections in sets
...
let duplicateItems = {"Oranges"}
 groceryList.intersection(friendsGroceryList)

let disjoint = false
 groceryList.isDisjoint(with: friendsGroceryList)

Set’s isDisjoint(with:) method returns true if no members of the set (here, groceryList) are in the
sequence provided to isDisjoint(with:)’s argument (here, friendsGroceryList) and false if there
are any members in common. In this case, disjoint is false, because both sets include "Oranges".

There are other ways to compare grocery lists and other sets. For example, you could compute the
symmetricDifference(_:), which would tell you about all the items that appear in one and only one
of your lists (Figure 11.3).

Figure 11.3 Two sets’ symmetric difference

You make a note to look up the Set documentation for some light bedtime reading later, to find out
what other interesting methods sets can use to compare their contents that arrays and dictionaries
cannot. But for now, it is getting late, so you go home to enjoy your fruit salad.

Moving Between Types

119

Moving Between Types
As you have seen, each collection type has a feature set appropriate to the type’s primary uses: arrays
as ordered lists, dictionaries as key-value pairs, and sets modeling mathematical sets as bags of unique
values. Some of these types can be initialized with data from the others. It will be especially common
for you to want to compare the data from two arrays in a way that only sets support. The good news
is that you can create sets from your arrays – but you must bear in mind the differences between those
types.

For example, imagine playing some games with friends after you arrive home from your grocery trip.
Create an array of players and an array to track who won each game:

Listing 11.10 Playing games
...
let players = ["Anna", "Vijay", "Jenka"] ["Anna", "Vijay", "Jenka"]
let winners = ["Jenka", "Jenka", "Vijay", "Jenka"] ["Jenka", "Jenka", "Vij...

Jenka won three games and Vijay has won one. Because values can repeated in arrays, an array is a
suitable type for tracking who won each game.

Suppose you want to know who has not won any games yet. Array does not, on its own, have a good
way to tell you that. But the Set type has a method, subtracting(_:), that will give you a set that
represents what is left when you subtract the values in one set from another set. So you could subtract
the winners from the players to see who has not yet won a game.

But you don’t have sets. You have arrays. No problem! Create two new arrays by initializing them with
your sets:

Listing 11.11 Initializing sets using arrays
...
let players = ["Anna", "Vijay", "Jenka"] ["Anna", "Vijay", "Jenka"]
let winners = ["Jenka", "Jenka", "Vijay", "Jenka"] ["Jenka", "Jenka", "Vij...

let playerSet = Set(players) {"Jenka", "Vijay", "Anna"}
let winnerSet = Set(winners) {"Vijay", "Jenka"}

Here, you create two instances of Set and initialize them with the data from instances of Array.
Because the source arrays were of type Array<String>, the compiler will infer the types of the new
sets to be Set<String>. Notice that winnerSet only contains two values, because values in a set
must be unique. Also, because sets are unordered, the names may appear in a different order in the
playground results than they did in the source arrays.

Since the set is unordered and does not contain duplicates, winnerSet represents the list of players who
have won at least one game, rather than the list of players who won each game.

Chapter 11 Sets

120

Now, to find out who has not won any games yet, you can subtract the winnerSet from the playerSet:

Listing 11.12 Subtracting one set from another
...
let players = ["Anna", "Vijay", "Jenka"] ["Anna", "Vijay", "Jenka"]
let winners = ["Jenka", "Jenka", "Vijay", "Jenka"] ["Jenka", "Jenka", "Vij...

let playerSet = Set(players) {"Jenka", "Vijay", "Anna"}
let winnerSet = Set(winners) {"Vijay", "Jenka"}

playerSet.subtracting(winnerSet) {"Anna"}

Anna, being the only value in the playerSet that is not also in the winnerSet, is the only player who
has not won any games yet. Figure 11.4 illustrates the subtraction:

Figure 11.4 Subtracting sets

You can also go the other way, creating a set from an array using code like let players2 =
Array(playerSet). But note that if you do, the order of the items in the resulting array may be
different every time you run your code, since values from the set will be copied to the array in no
particular order.

You have now met the most commonly used data types in the Swift standard library. In the coming
chapters, you will build your experience working with these types and the methods on them. You will
also implement your own functions and methods – and then begin defining your own custom data
types.

Bronze Challenge

121

Bronze Challenge
Consider the following code that models the cities two people have visited as sets.

 let myCities: Set = ["Atlanta", "Chicago", "Jacksonville", "New York", "Denver"]
 let yourCities: Set = ["Chicago", "Denver", "Jacksonville"]

Find a method on Set that returns a Bool indicating whether myCities contains all the cities contained
by yourCities. (Hint: This relationship would make myCities a superset of yourCities.)

Silver Challenge
In this chapter, you used methods like union(_:) and intersection(_:) to create new sets.
Sometimes you may prefer to modify an existing instance instead of creating a new one.

Look through the Set documentation and rework the examples in the chapter for union(_:) and
intersection(_:) using methods that mutate the set directly.

123

12
Functions

A function is a named set of code that is used to accomplish some specific task. The function’s name
describes the task the function performs. You have already used some functions, such as print(),
which is a function provided to you by Swift. Other functions are created in code you write.

Functions execute code. Some functions define arguments that you can use to pass in data to help the
function do its work. Some functions return something after they have completed their work. You
might think of a function as a little machine. You turn it on and it chugs along, doing its work. You can
feed it data and, if it is built to do so, it will return a new chunk of data that results from its work.

Functions are an extremely important part of programming. Indeed, a program is mostly a collection of
related functions that combine to accomplish some purpose. So, there is a lot to cover in this chapter.
Take your time and make sure that you are comfortable with each new concept before moving on.

Let’s start with some examples.

Chapter 12 Functions

124

A Basic Function
Create a new macOS playground called Functions and enter the code below.

Listing 12.1 Defining a function
import Cocoa

var str = "Hello, playground"

func printGreeting() {
 print("Hello, playground.")
}
printGreeting()

Here, you define a function with the func keyword followed by the name of the function:
printGreeting(). The parentheses are empty because this function does not take any arguments.
(More on arguments soon.)

The opening brace ({) denotes the beginning of the function’s implementation. This is where you write
the code that describes how the function will perform its work. When the function is called, the code
inside the braces is executed.

The printGreeting() function is fairly simple. You have one line of code that uses print() to log the
string Hello, playground. to the console.

Finally, you call the function to execute the code inside it. To do this, you enter its name,
printGreeting(). Calling the function executes its code, and Hello, playground. is logged to the
console.

Now that you have written and executed a simple function, it is time to move on to more sophisticated
varieties.

Function Parameters

125

Function Parameters
Functions take on more life when they have parameters. A function’s parameters name the inputs
that the function accepts, and the function takes the data passed to its parameters to execute a task or
produce a result.

Create a function that prints a more personal greeting by using a parameter.

Listing 12.2 Using a parameter
func printGreeting() {
 print("Hello, playground.")
}
printGreeting()

func printPersonalGreeting(name: String) {
 print("Hello, \(name). Welcome to your playground.")
}
printPersonalGreeting(name: "Step")

printPersonalGreeting(name: String) has a single parameter, as indicated in the parentheses
directly after the function name. The parameter is called name, and it is an instance of the String type.
You specify the type after the : that follows the parameter’s name, just as you specify the types of
variables and constants. When it is called, the function will declare its own new constant called name to
store a copy of the value provided by the caller.

When you call a function, you include the parameter name and a value of the correct type, called an
argument. (By the way, although the terms “parameter” and “argument” technically have different
meanings, people often use them interchangeably.) If you tried to pass an argument of some other type,
the compiler would give you an error telling you that the type you passed in was incorrect. This is an
example of type safety – the compiler’s insistence that all uses of a variable agree on its type.

In this case, the argument passed to the parameter name must be an instance of String. That string
value will be interpolated into the string that is logged to the console. Check it out: Your console
should say Hello, Step. Welcome to your playground.

Functions can – and often do – take multiple arguments. Write a new function that does a little math.

Listing 12.3 A function for division
...
func printPersonalGreeting(name: String) {
 print("Hello, \(name). Welcome to your playground.")
}
printPersonalGreeting(name: "Step")

func divisionDescriptionFor(numerator: Double, denominator: Double) {
 print("\(numerator) divided by \(denominator) is \(numerator / denominator)")
}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)

The function divisionDescriptionFor(numerator:denominator:) describes some basic division
constructed from the instances of the Double type that are supplied to the function’s two parameters:
numerator and denominator. Note that you did some math within the \() of the string printed to the
console. You should see 9.0 divided by 3.0 is 3.0 logged to the console.

Chapter 12 Functions

126

Parameter names
As you have seen, parameter names are included when you call the function and are available for use
within the body of the function. Sometimes it is useful to have different parameter names for these
two uses: one name for when you call the function, and a different name within the function’s body. A
parameter name used only when the function is called is known as an external parameter.

External parameters can make your functions more readable – provided you choose the names well.
Your goal for all parameter names (as for all your code) should be to make them informative and
readable. At the moment, the visible parameter name when you call printPersonalGreeting(name:)
is informative, but it is not very readable. You should typically aim for your code to read like
something you might say while speaking, but you probably would never say something like “Print
personal greeting name Step.”

Making your code readable and informative will make it easier to follow. For example, if a function is
going to be used in some other file in your application’s code base, and the function’s implementation
is not immediately visible or intuitive, it could be difficult to infer what values to give to the function’s
parameters. This would make the function less useful, so it can be helpful to use more descriptive
external parameter names in your function.

Update printPersonalGreeting(name:) to have an external parameter name that is different from its
internal parameter name to make calling the function more readable.

Listing 12.4 Using explicit parameter names

...
func printPersonalGreeting(name: String) {
func printPersonalGreeting(to name: String) {
 print("Hello, \(name). Welcome to your playground.")
}
printPersonalGreeting(name: "Step")
printPersonalGreeting(to: "Step")

func divisionDescriptionFor(numerator: Double, denominator: Double) {
 print("\(numerator) divided by \(denominator) is \(numerator / denominator)")
}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)

Now printPersonalGreeting(to:) has an external parameter, to, that you use when you call the
function: printPersonalGreeting(to: "Step"). This parameter helps the function read more like
you would speak: “Print personal greeting to Step.”

Note that you still use name within the function’s definition. name has a clearer meaning within the
implementation of the function than to would. It would be a little confusing if your implementation
read print("Hello, \(to). Welcome to your playground.").

You may have noticed that there is a preposition at the end of divisionDescriptionFor and a
preposition inside printPersonalGreeting(to:). This is not accidental: Prepositions often make
function names more readable. The Swift naming guidelines suggest that if a function has multiple
parameters that formulate a single concept, then the preposition should be placed at the end of the
function name.

Default parameter values

127

This is the case with divisionDescriptionFor(numerator:denominator:), because two inputs
are combined in the division operation. On the other hand, printPersonalGreeting(to:) does not
have multiple parameters, so the preposition should be placed within the parentheses as an external
parameter name.

Naming functions and parameters can be tricky, and it is more art than science. As we said, it is
advisable to choose function and parameter names that are readable and informative. You should also
strive to formulate grammatical phrases with your code. Last, you should always consider how easy it
is to type out and call your functions.

Default parameter values
All of a function’s parameters must be provided with a value when the function is called. As the caller,
you provide values by passing in arguments.

Swift’s parameters can also take default values. If a parameter has a default value, you can omit that
argument when calling the function (in which case, as you might expect, the function will use the
parameter’s default value).

Go ahead and add one to your division function. (Note that we have broken the call to print() across
two lines to make it fit on the page. You should enter it on one line.)

Listing 12.5 Adding a default parameter value
...
func divisionDescriptionFor(numerator: Double, denominator: Double) {
 print("\(numerator) divided by \(denominator) is \(numerator / denominator)")
}
func divisionDescriptionFor(numerator: Double,
 denominator: Double,
 withPunctuation punctuation: String = ".") {

 print("\(numerator) divided by \(denominator) is
 \(numerator / denominator)\(punctuation)")
}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)
divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!")

Now the function has three parameters:
divisionDescriptionFor(numerator:denominator:withPunctuation:). Notice the new code,
punctuation: String = ".". You add a new parameter for punctuation, including its expected type,
and also give it a default value via the = "." syntax. This means that the string created by the function
will conclude with a period by default.

Your two function calls illustrate how the default value works. To use the default, as in your first
function call, you can simply omit the final parameter. Or, as in your second function call, you can
substitute a new punctuation mark for the default value by passing in a new argument. The first call
to the divisionDescriptionFor(numerator:denominator:withPunctuation:) function logs the
description with a period, and the second logs the description with an exclamation point (Figure 12.1).

Chapter 12 Functions

128

Figure 12.1 Default and explicit punctuation

In-out parameters

129

In-out parameters
Sometimes there is a reason to have a function modify the value of an argument. In-out parameters
allow a function’s impact on a variable to live beyond the function’s body.

Say you have a function that will take an error message as an argument and will append some
information based on certain conditions. Enter this code in your playground.

Listing 12.6 An in-out parameter
...
var error = "The request failed:"
func appendErrorCode(_ code: Int, toErrorString errorString: inout String) {
 if code == 400 {
 errorString += " bad request."
 }
}
appendErrorCode(400, toErrorString: &error)
print(error)

The function appendErrorCode(_:toErrorString:) has two parameters. The first is the error code
that the function will compare against, which expects an instance of Int. Notice that you gave this
parameter an external name of _, which has a special meaning in Swift. Using _ in front of a parameter
name will suppress the external name when calling the function. Because its name is already at the end
of the function name, there is no reason for the parameter name to be used in the call.

The second is an inout parameter – denoted by the inout keyword – named toErrorString. This
parameter expects an instance of String as its argument. toErrorString is an external parameter
name used when calling the function, while errorString is an internal parameter name used within the
function.

The inout keyword is added prior to String to express that the function expects to modify the original
value. It does this by taking as its argument not a copy of the passed-in value, but a reference to the
original. This way, any changes it makes to the string affect the original string, and those changes will
remain after the function is done executing.

When you call the function, the variable you pass into the inout parameter must be preceded by an
ampersand (&) to acknowledge that you are providing shared access to your variable instead of just a
copy of it and that you understand that the variable’s value may be directly modified by the function.
Here, the function modifies errorString to read The request failed: bad request., which you
should see printed to the console.

Note that in-out parameters cannot have default values. Also, in-out parameters are not the same as
a function returning a value. Lastly, because in-out parameters grant shared access to a variable, you
cannot pass a constant or literal value into an in-out parameter. If you want your function to produce
something, there is a more elegant way to accomplish that goal.

Chapter 12 Functions

130

Returning from a Function
Functions can give you information after they finish executing the code inside their implementation.
This information is called the return of the function. In fact, this is often the purpose of a function: to
do some work and return some data. Make your
divisionDescriptionFor(numerator:denominator:withPunctuation:) function return an instance
of the String type instead of simply printing a string to the console.

Listing 12.7 Returning a string
...
func divisionDescriptionFor(numerator: Double,
 denominator: Double,
 withPunctuation punctuation: String = ".") -> String {

 print("\(numerator) divided by \(denominator) is
 \(numerator / denominator)\(punctuation)")

 return "\(numerator) divided by \(denominator) is
 \(numerator / denominator)\(punctuation)"
}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)
divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!")
...

The behavior of this new function is very similar to your earlier implementation, with an important
twist: This new implementation returns a value to the code that called it. This return value is denoted
by the -> syntax at the end of the function signature, which indicates that the function will return an
instance of the type that follows the arrow.

Your function returns an instance of the String type. The return keyword tells the program “Stop
executing this function and resume the calling code where it left off.” If there is a value to the right of
the return keyword, that value will be handed back to the calling code. The type of this value must be
the same as the declared return type of the function.

When there is no value to return to the caller, a function will implicitly return at the end of its scope
(at the closing curly brace that ends the function body – more on scope in just a moment). This is why
your previous functions have not needed to explicitly return so far. You will learn more about implicit
and explicit returns from functions in Chapter 13.

Because your divisionDescriptionFor(numerator:denominator:withPunctuation:) function no
longer contains a call to print(), your calls to it no longer produce console output. But it returns a
String, and print() accepts String arguments – so you can call your division function nested within
a call to print() to log the string instance to the console.

Listing 12.8 Nesting function calls
...
print(divisionDescriptionFor(numerator: 9.0, denominator: 3.0))
print(divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!"))

Nested Function Definitions and Scope

131

When one function call is nested within another like this, they are executed from the innermost
function to the outermost. In this case,
divisionDescriptionFor(numerator:denominator:withPunctuation:) will be executed by the
program first, and then its String return value will be passed as the argument to print().

Nested Function Definitions and Scope
Swift’s function definitions can also be nested. Nested functions are declared and implemented within
the definition of another function. The nested function is not available outside the enclosing function.
This feature is useful when you need a function to do some work, but only within another function.
Let’s look at an example.

Listing 12.9 Nested functions
...
func areaOfTriangleWith(base: Double, height: Double) -> Double {
 let rectangle = base * height
 func divide() -> Double {
 return rectangle / 2
 }
 return divide()
}
print(areaOfTriangleWith(base: 3.0, height: 5.0))

The function areaOfTriangleWith(base:height:) takes two arguments of type Double: a base and
a height. It also returns a Double. Inside this function’s implementation, you declare and implement
another function called divide(). This function takes no arguments and returns a Double. The
areaOfTriangleWith(base:height:) function calls the divide() function and returns the result.

The divide() function above uses a constant called rectangle that is defined in
areaOfTriangleWith(base:height:). Why does this work?

Anything within a function’s braces ({}) is said to be enclosed by that function’s scope. In
this case, both the rectangle constant and the divide() function are enclosed by the scope of
areaOfTriangleWith(base:height:).

A function’s scope describes the visibility an instance or function will have. It is a sort of horizon.
Anything defined within a function’s scope will be visible to that function; anything that is not is past
that function’s field of vision. rectangle is visible to the divide() function because they share the
same enclosing scope.

On the other hand, because the divide() function is defined within the
areaOfTriangleWith(base:height:) function’s scope, it is not visible outside it. The compiler will
give you an error if you try to call divide() outside the enclosing function. Give it a try to see the
error.

By the way, nearly any pair of braces in Swift defines a scope. For example, switches, loops, and
conditionals define scopes of their own.

divide() is a very simple function. Indeed, areaOfTriangleWith(base:height:) could achieve the
same result without it: return (base * height) / 2. The important point here is how scope works.
You will see a more sophisticated example of nested functions in Chapter 13. Stay tuned!

Chapter 12 Functions

132

Multiple Returns
Functions can only return one value – but they can pretend to return more than one value. To do this, a
function can return an instance of the tuple data type to encapsulate multiple values into one.

Recall that a tuple is an ordered list of related values. To better understand how to use tuples, write a
function that takes an array of integers and sorts it into arrays for even and odd integers.

Listing 12.10 Sorting evens and odds
...
func sortedEvenOddNumbers(_ numbers: [Int]) -> (evens: [Int], odds: [Int]) {
 var evens = [Int]()
 var odds = [Int]()
 for number in numbers {
 if number % 2 == 0 {
 evens.append(number)
 } else {
 odds.append(number)
 }
 }
 return (evens, odds)
}

Here, you first declare a function called sortedEvenOddNumbers(_:). You specify this function to
take an array of integers as its only argument. The function returns a named tuple, so called because
its constituent parts are named: evens will be an array of integers, and odds will also be an array of
integers.

Next, inside the implementation of the function, you initialize the evens and odds arrays to prepare
them to store their respective integers. You then loop through the array of integers provided to the
function’s parameter, numbers. At each iteration through the loop, you use the % operator to see
whether number is even. If the result is even, you append it to the evens array. If the result is not even,
the integer is added to the odds array.

Now that your function is set up, call it and pass it an array of integers. (As usual, do not break the
string passed to print() in your code.)

Listing 12.11 Calling sortedEvenOddNumbers(_:)
...
func sortedEvenOddNumbers(_ numbers: [Int]) -> (evens: [Int], odds: [Int]) {
 var evens = [Int]()
 var odds = [Int]()
 for number in numbers {
 if number % 2 == 0 {
 evens.append(number)
 } else {
 odds.append(number)
 }
 }
 return (evens, odds)
}

let aBunchOfNumbers = [10,1,4,3,57,43,84,27,156,111]
let theSortedNumbers = sortedEvenOddNumbers(aBunchOfNumbers)
print("The even numbers are: \(theSortedNumbers.evens);
 the odd numbers are: \(theSortedNumbers.odds)")

Optional Return Types

133

First, you create an instance of the Array type to house a number of integers. Second, you give that
array to the sortedEvenOddNumbers(_:) function and assign the return value to a constant called
theSortedNumbers. Because the return value was specified as (evens: [Int], odds: [Int]), this is
the type the compiler infers for your newly created constant. Finally, you log the result to the console.

Notice that you use string interpolation in combination with a tuple. You can access a tuple’s members
by name if they are defined. So, theSortedNumbers.evens inserts the contents of the evens array into
the string logged to the console. Your console output should be The even numbers are: [10, 4, 84,
156]; the odd numbers are: [1, 3, 57, 43, 27, 111].

Optional Return Types
Sometimes you want a function to return an optional. When a function might need to return nil but
will have a value to return at other times, Swift allows you to use an optional return.

Imagine, for example, that you need a function that looks at a person’s full name and pulls out and
returns that person’s middle name. For the purposes of this exercise, assume that everyone has a first
name and a last name (though this is not an assumption you would necessarily make in a production
app). But not all people have a middle name, so your function will need a mechanism to return the
person’s middle name if there is one and return nil otherwise. Use an optional to do just that.

Listing 12.12 Using an optional return
...
func grabMiddleName(fromFullName name: (String, String?, String)) -> String? {
 return name.1
}

let middleName = grabMiddleName(fromFullName: ("Alice", nil, "Ward"))
if let theName = middleName {
 print(theName)
}

Here, you create a function called grabMiddleName(fromFullName:). This function looks a little
different than what you have seen before. It takes one argument: a tuple of type (String, String?,
String). The tuple’s three String instances are for the first, middle, and last names, and the instance
for the middle name is declared as an optional type.

The grabMiddleName(fromFullName:) function’s one parameter is called name, which has an external
parameter name called fromFullName. You access this parameter inside the implementation of the
function using the index of the name that you want to return. Because the tuple is zero-indexed, you
use 1 to access the middle name provided to the argument. And because the middle name might be nil,
the return type of the function is optional.

You then call grabMiddleName(fromFullName:) and provide it a first, middle, and last name (feel free
to change the names). Because you declared the middle name component of the tuple to be of type
String?, you can pass nil to that portion of the tuple. You cannot do this for the first or last name
portion of the tuple.

Nothing is logged to the console. Because the middle name provided is nil, the Boolean used in the
optional binding does not evaluate to true and print() is not executed.

Try giving the middle name a valid String instance and note the result.

Chapter 12 Functions

134

Exiting Early from a Function
You learned about Swift’s conditional statements in Chapter 3, but there is one more to introduce:
guard statements. Just like if/else statements, guard statements execute code depending on a
Boolean value resulting from some expression. But guard statements are different from what you have
seen before. A guard statement is used to exit early from a function if some condition is not met. As
their name suggests, you can think of guard statements as a way to protect your code from running
under improper conditions.

Following the example above, consider an example in which you want to write a function that greets
a person by their middle name if they have one. If they do not have a middle name, you will use
something more generic.

Listing 12.13 Early exits with guard statements
...
func greetByMiddleName(fromFullName name: (first: String,
 middle: String?,
 last: String)) {
 guard let middleName = name.middle else {
 print("Hey there!")
 return
 }
 print("Hey, \(middleName)")
}
greetByMiddleName(fromFullName: ("Alice", "Richards", "Ward"))

greetByMiddleName(fromFullName:) is similar to grabMiddleName(fromFullName:) in that it takes
the same argument, but it differs in that it has no return value. Another difference is that the names of
the elements in the tuple name match specific components of a person’s name. As you can see, these
element names are available inside the function.

The code guard let middleName = name.middle binds the value in middle to a constant called
middleName. If there is no value in the optional, then the code in the guard statement’s body is
executed. This would result in a generic greeting being logged to the console that omits the middle
name: Hey there!. After this, you must explicitly return from the function, which represents that the
condition established by the guard statement was not met and the function needs to return early.

You can think of guard as protecting you from embarrassingly addressing somebody as “mumble-
mumble” when you do not know their middle name. But if the tuple did get passed to the function with
a middle name, then its value is bound to middleName and is available after the guard statement. This
means that middleName is visible in the parent scope that encompasses the guard statement.

In your call to greetByMiddleName(fromFullName:), however, you pass in a middle name to the tuple
name. That means Hey, Richards! will be logged to the console. If nil were passed to the middle
name element, then Hey there! would log to the console. (Go ahead and try it.)

Function Types

135

Function Types
Each function has a specific type, just as pieces of data do. Function types are made up of the
function’s parameter and return types. Consider the sortedEvenOddNumbers(_:) function. This
function takes an array of integers as an argument and returns a tuple with two arrays of integers. Thus,
the function type for sortedEvenOddNumbers(_:) is expressed as ([Int]) -> ([Int], [Int]).

The function’s parameters are listed inside the left parentheses, and the return type comes after the ->.
You can read this function type as: “A function with one parameter that takes an array of integers and
returns a tuple with two arrays containing integers.” For comparison, a function with no arguments and
no return has the type () -> ().

Function types are useful because you can assign them to variables. This feature will become
particularly handy in Chapter 13, when you will use functions in the arguments and returns of other
functions. For now, let’s just take a look at how you can assign a function type to a constant:

 let evenOddFunction: ([Int]) -> ([Int], [Int]) = sortedEvenOddNumbers

This code creates a constant of function type named evenOddFunction whose value is the body
of the sortedEvenOddNumbers(_:) function. Pretty cool, right? Now you can pass this constant
around just like any other. You can even use this constant to call the function; for example,
evenOddFunction([1,2,3]) will sort the numbers in the array supplied to the function’s sole argument
into a tuple of two arrays – one each for even and odd integers.

You accomplished a lot in this chapter. There was a lot of material here, and it may make sense to go
through it all a second time. Be sure to type out all the code in this chapter. In fact, try to extend the
examples to different cases. Try to break the examples and then fix them.

If you are still a little fuzzy on functions, do not worry. They are also a major focus in the next chapter,
so you will get lots more practice.

Chapter 12 Functions

136

Bronze Challenge
Like if/else conditions, guard statements support the use of multiple clauses to perform additional
checks. Using additional clauses with a guard statement gives you further control over the statement’s
condition. Refactor the greetByMiddleName(fromFullName:) function to have an additional clause in
its guard statement. This clause should check whether the middle name is longer than 10 characters. If
it is, then greet the person with their first name, their middle initial (the first letter of the middle name
followed by a period), and their last name instead.

For example, if the name is Alois Rumpelstiltskin Chaz, the function should print Hey, Alois R.
Chaz.

Silver Challenge
Write a function called siftBeans(fromGroceryList:) that takes a grocery list (as an array of strings)
and “sifts out” the beans from the other groceries. The function should take one argument that has
a parameter name called list, and it should return a named tuple of the type (beans: [String],
otherGroceries: [String]).

Here is an example of how you should be able to call your function and what the result should be:

 let result = siftBeans(fromGroceryList: ["green beans",
 "milk",
 "black beans",
 "pinto beans",
 "apples"])

 result.beans == ["green beans", "black beans", "pinto beans"] // true
 result.otherGroceries == ["milk", "apples"] // true

Hint: You may need to use a function on the String type called hasSuffix(_:).

For the More Curious: Void

137

For the More Curious: Void
The first function you wrote in this chapter was printGreeting(). It took no arguments and returned
nothing. Or did it?

Actually, functions that do not explicitly return something do have a return. They return something
called Void. This return is inserted into the code for you by the compiler.

So, while you wrote printGreeting() like this:

 func printGreeting() {
 print("Hello, playground.")
 }

The compiler actually added something like this to your code:

 func printGreeting() -> Void {
 print("Hello, playground.")
 }

In other words, it added a return value of Void for you. Just what is Void? Go ahead and make
printGreeting explicitly return Void, as shown above. Option-click the word Void, and Xcode will
show you what it looks like in the standard library.

 typealias Void = ()

Void is a typealias for (). You will read about typealiases in detail in Chapter 20. For now, think of
typealiases as a way to tell the compiler that one thing is shorthand for another. In the excerpt above,
the standard library is establishing that Void is another way of expressing ().

You have already seen the concept at play in Chapter 5. The () refers to what is called an empty tuple.
If a tuple is a list of ordered elements, then an empty tuple is simply a list with nothing in it.

Given what you know now, you can see that these three implementations of printGreeting() are
equivalent.

 func printGreeting() {
 print("Hello, playground.")
 }

 func printGreeting() -> Void {
 print("Hello, playground.")
 }

 func printGreeting() -> () {
 print("Hello, playground.")
 }

The first version above is what you originally wrote. The second is what the compiler inserts for you.
And the third uses the empty parentheses, which is what the standard library maps Void to.

Knowing that Void maps to () should help you understand what is going on in a given function type.
For example, the function type for printGreeting() is () -> Void. This is simply the type for a
function that takes no arguments and returns an empty tuple, which is the implicit return type for all
functions that do not explicitly have a return value.

Chapter 12 Functions

138

For the More Curious: Variadic Parameters
The print() function has an interesting feature: You can pass it as many arguments as you want, in a
comma-delimited list, and it will print all of them. Here are a couple examples:

 print("Hello ", username)
 print(thing1, thing2, thing3)

All the functions you have written so far accept a fixed list of inputs. If the caller passes too many
or too few arguments, the compiler will emit an error. How can print() handle any number of
arguments? By accepting a variadic parameter.

A variadic parameter takes zero or more input values for its argument. Here are the rules: A function
can have only one variadic parameter, it cannot be marked with inout, and it should typically be the
final parameter in the list. The values provided to the argument are made available within the function’s
body as an array.

To make a variadic parameter, use three periods after the parameter’s type, like names: String.... In
this example, names is available within the function’s body and has the type [String].

Consider a version of your printPersonalGreeting(to:) function designed to take multiple names
and greet them all. You could accomplish this with a parameter that expects an array of strings:

 func printPersonalGreetings(to names: [String]) {
 for name in names {
 print("Hello \(name), welcome to the playground.")
 }
 }

 printPersonalGreetings(to: ["Tessa", "Selah", "Aria", "Elijah"])

Or you could use a variadic parameter:

 func printPersonalGreetings(to names: String...) {
 for name in names {
 print("Hello, \(name). Welcome to your playground.")
 }
 }

 printPersonalGreetings(to: "Tessa", "Selah", "Aria", "Elijah")

Even though the declared argument type is String..., the names instance inside the implementation is
still a [String]. Using a variadic parameter changes nothing inside the implementation – only the way
the parameter is declared.

In practice, most Swift developers write functions that accept array parameters rather than variadic
parameters. This is because a caller can manually pack a list of objects into an array for a function
that requires an array. But there is no way to unpack an array into a variadic list for a function with
a variadic parameter. That said, variadic parameters are a convenient and expressive way to define a
function for callers that will have in mind a discrete list of arguments they wish to provide.

139

13
Closures

Closures are discrete bundles of functionality that can be used in your application to accomplish
specific tasks. Functions, which you learned about in the last chapter, are a special case of closures.
You can think of a function as a named closure. Because functions are technically closures, Swift
programmers sometimes use the two words interchangeably, despite the subtle distinction.

In Chapter 12, you worked primarily with global and nested functions. (Global functions are not
defined on any specific type, and for this reason they are also called free functions.)

Closures differ from functions in that they have a more compact and lightweight syntax. They
allow you to write a “function-like” construct without having to give it a name and a full function
declaration. This makes closures easy to pass around in function arguments and returns.

Let’s get started. Create a new macOS playground called Closures.

Closure Syntax
Imagine that you are a community organizer managing a number of organizations. You want to keep
track of how many volunteers there are for each organization and have created an Array for this task.

Listing 13.1 Starting with an array
import Cocoa

var str = "Hello, playground"

let volunteerCounts = [1,3,40,32,2,53,77,13]

You entered the number of volunteers for each organization as they were provided to you. This means
that the array is completely disorganized. It would be better if your array of volunteers were sorted
from lowest to highest number.

Good news: Swift provides a method called sorted(by:) that allows you to sort an instance of Array
based on criteria you specify.

(We have mentioned methods before but never explained the terminology. A function defined on
a type, the way sorted(by:) is defined on Array, is also called a method. More on this topic in
Chapter 15.)

Chapter 13 Closures

140

sorted(by:) takes one argument: a closure that describes how the sorting should be done. The closure
takes two arguments, whose types must match the type of the elements in the array, and returns a Bool.
The two arguments are compared, and the return value indicates whether the first argument should be
sorted before the second argument.

In the closure you pass to sorted(by:), you use < in the comparison if you would like the elements in
the array to be sorted in ascending fashion. Use > in the comparison if you would like the elements to
be sorted in a descending fashion. (Like +, the < and > operators are available for use with many, but
not all, Swift types. You will learn more about these operators and how to make them available to your
custom types as well in Chapter 25.)

Because your array of volunteer counts is filled with integers, the function type for sorted(by:) will
look like ((Int, Int) -> Bool) -> [Int] in your code. As you saw in Chapter 12, function types
begin with the function’s parameters, enclosed in parentheses. In this case, the single parameter is a
closure, represented by its own function type.

So, in other words, sorted(by:) is a method that takes a closure. That closure, in turn, takes two
values to compare and returns a Boolean value specifying whether the first value should come before
the second in a sorted list. sorted(by:) calls the passed-in closure multiple times with different pairs
of arguments from the source array to determine their overall order. sorted(by:) then returns the
sorted array of values.

Add the following code to sort your array.

Listing 13.2 Sorting the array
let volunteerCounts = [1,3,40,32,2,53,77,13]

func isAscending(_ i: Int, _ j: Int) -> Bool {
 return i < j
}
let volunteersSorted = volunteerCounts.sorted(by: isAscending)
print(volunteersSorted)

First, you create a function called isAscending(_:_:) that has the required type to be sorted(by:)’s
argument. It compares two integers and returns a Boolean that indicates whether integer i is less
than integer j. is is a common prefix in the names of functions that return a Boolean, so the name
isAscending implies that the function will be sorting two things. That being the case, you use _ to
suppress the parameter names from being used in the call.

The function will return true if i is less than – and should be placed before – j. As this global function
is a named closure (remember, all functions are closures), you can provide this function as the value of
the argument in sorted(by:).

Next, you call sorted(by:), passing in isAscending(_:_:) for its argument. Because sorted(by:)
returns a new array, you assign that result to a new constant array called volunteersSorted. This
instance will serve as your new record for the organizations’ volunteer counts, correctly sorted.

Look in the playground’s console. You should see that the values in volunteersSorted are sorted from
lowest to highest:

 [1, 2, 3, 13, 32, 40, 53, 77]

Closure Expression Syntax

141

Closure Expression Syntax
This works, but you can clean up your code. There is no need to declare a named function; you can
create a closure to pass to sorted(by:) inline – right in the method call – using closure expression
syntax, like:

 {(parameters) -> return type in
 // Code
 }

You write a closure expression inside braces ({}). The closure’s parameters are listed in parentheses
immediately after the opening brace. Its return type comes after the parameters and uses the regular
syntax. The keyword in is used to separate the closure’s parameters and return type from the
statements in its body.

Refactor your code to use a closure expression, creating the closure inline instead of defining a
separate function outside the sorted(by:) method.

Listing 13.3 Refactoring your sorting code
let volunteerCounts = [1,3,40,32,2,53,77,13]

func isAscending(_ i: Int, _ j: Int) -> Bool {
 return i < j
}
let volunteersSorted = volunteerCounts.sorted(by: isAscending)

let volunteersSorted = volunteerCounts.sorted(by: {
 (i: Int, j: Int) -> Bool in
 return i < j
})

print(volunteersSorted)

This code is a bit cleaner and more elegant than the first version. Instead of providing a function
defined elsewhere in the playground, you define a closure inline in the sorted(by:) method’s
argument. The closure’s parameters and their type are the same as before, as is the return type. In the
closure’s body, you provide the same logical test (is i less than j?) to determine the Boolean return
value.

The result is just as before: The sorted array is assigned to volunteersSorted.

Chapter 13 Closures

142

This refactoring is a step in the right direction, but it is still a little verbose. Closures can take
advantage of Swift’s type inference system, so you can clean up your closure even more by trimming
out the type information.

Listing 13.4 Taking advantage of type inference
let volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sorted(by: {
 (i: Int, j: Int) -> Bool in
 return i < j
})

let volunteersSorted = volunteerCounts.sorted(by: { i, j in i < j })

print(volunteersSorted)

There are three new developments here. First, you remove the type information for both the parameters
and the return. The compiler can infer that the parameters have the same type as the elements in the
input array. As for the return type, the compiler knows that checking i < j will return true or false –
that is, a Bool value.

Second, you move the entire closure expression to be one line. Third, you remove the keyword return.
Any function or closure with only one expression can implicitly return the value of that expression by
omitting the return keyword.

Notice that the result in the console has not changed.

Your closure is getting fairly compact, but it can become even more succinct. Swift provides positional
variable names that you can refer to in inline closure expressions. These shorthand names behave
similarly to the explicitly declared arguments you have been using: They have the same types and
values. The compiler’s type inference capabilities help it know the number and types of arguments
your closure takes, which means it is not necessary to name them.

For example, the compiler knows that sorted(by:) takes a closure, and it knows that the closure takes
two parameters that are of the same type as the items in the array you pass into the method’s argument.
Because the closure has two arguments, whose values are compared to determine their order, you can
refer to the arguments positionally using $0 for the first and $1 for the second.

(Notice that the positional variable names are zero-indexed. Also, for a closure with more than two
arguments, you can use $2, $3, and so on.)

Adjust your code to take advantage of the shorthand syntax.

Listing 13.5 Using shorthand syntax for arguments
let volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sorted(by: { i, j in i < j })

let volunteersSorted = volunteerCounts.sorted(by: { $0 < $1 })

print(volunteersSorted)

Now that your inline closure expression uses the positional argument syntax, you do not need to
explicitly declare the parameters as you did for i and j. The compiler knows that the values in the
closure’s arguments are of the correct type and knows what to infer based on the < operator.

Closure Expression Syntax

143

Before you think this closure could not possibly get any slimmer, just wait – there is more!
Closures that appear at the end of the argument list can be written outside of and after the function’s
parentheses; this is called trailing closure syntax. If doing so would leave an empty pair of parentheses
behind, you may remove them entirely.

Make this change.

Listing 13.6 Inline closure as the function’s final argument
let volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sorted(by: { $0 < $1 })

let volunteersSorted = volunteerCounts.sorted { $0 < $1 }

print(volunteersSorted)

Here, because no parameters remain after moving the closure argument outside the parentheses, the
parentheses are deleted.

Notice that when the closure moves outside the parentheses, its argument label is removed from the
call. If there are multiple trailing closures, this only applies to the first; subsequent trailing closures
retain their argument labels. For example, a function whose signature looks like this:

 func doAwesomeWork(on input: String,
 using transformer: () -> Void,
 then completion: () -> Void)

Would be called using trailing closure syntax like this:

 doAwesomeWork(on: "My Project") {
 print("Doing work on \(input) in `transformer`")
 } then: {
 print("Finishing up in `completion`")
 }

In this example, the using parameter name is omitted, but then is not.

Truly, “Brevity is the soul of wit.” The code in Listing 13.6 works just as well in this terse form as in
the earlier, much more verbose version.

This trailing closure syntax adds complexity to the language, but it feels more stylish to many Swift
developers as it helps remove clutter from the function call site.

Do not feel like you need to use all these code-condensing features to be an effective Swift developer.
They are here for your convenience. The most important thing is to make sure that your code is as
readable and understandable as possible.

Chapter 13 Closures

144

Functions as Arguments
You initially sorted your volunteerCounts array using a named function passed as an argument to
sorted(by:). Although that particular task could be accomplished elegantly without the need for a
named function, there are times when declaring a function and passing it as an argument to another
function is the best solution.

Now you will write your own function that takes a closure to modify a collection. In the playground,
add this incomplete function:

Listing 13.7 Formatting numbers as strings
...
func format(numbers: [Double], using formatter: (Double) -> String) -> [String] {
 var result = [String]()

 return result
}

That is a lot of parentheses! Do not be intimidated. Study the function’s signature from beginning to
end. The format(numbers:using:) function takes two arguments and returns an array of Strings. The
first argument is an array of Doubles. The second is a closure that takes a Double and returns a String.

In other words, format(numbers:using:) takes an array of numbers and a closure that can format
a single number into a string. The specifics of the formatting will be defined by the closure that is
passed in to the second argument: It could take an array of seven-digit numbers and format them as
phone numbers, make sure that each element in an array of dollar values has exactly two digits after the
decimal point, and so on.

The next step is to apply the closure to each number in the array. Flesh out the body of the function to
do exactly that:

Listing 13.8 The real work
...
func format(numbers: [Double], using formatter: (Double) -> String) -> [String] {
 var result = [String]()
 for number in numbers {
 let transformed = formatter(number)
 result.append(transformed)
 }
 return result
}

Now you can declare a closure that a caller of this function might provide for transforming a single
Double into a String.

Recall from the beginning of this chapter that functions are closures with a slightly different syntax.
You call a closure the same way you call a function: by its name, with a parenthetical argument list.
Here, you call the passed-in formatter closure with number as its argument in formatter(number).

Thinking back to the volunteers example, suppose you have been asked to report the average number
of volunteers each organization sent to this year’s major events. It might sound weird to say that an
organization averaged 10.75 volunteers per event, so you want to round the averages to the nearest
integer and drop the decimal point. Create a closure to accomplish this task.

Functions as Arguments

145

Listing 13.9 Rounding and converting doubles
...
func format(numbers: [Double], using formatter: (Double) -> String) -> [String] {
 var result = [String]()
 for number in numbers {
 let transformed = formatter(number)
 result.append(transformed)
 }
 return result
}

let rounder: (Double) -> String = {
 (num: Double) -> String in
 return "\(Int(num.rounded()))"
}

Here, you define a (Double) -> String closure that returns the string interpolation of an integer
rounded from a double. To round a Double to the nearest integral value, you use its rounded() method,
which returns another Double, so 10.6 becomes 11.0. Then you initialize an Int from that value,
which truncates any decimal portion – so, for example, 11.0 becomes 11.

Finally, you interpolate the integer into a string. (Remember, format(numbers:using:)’s formatter
closure must return an array of strings.)

Now prepare your list of average volunteer counts, rounded and converted to strings:

Listing 13.10 Calling your format function
...
let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)

The values listed in the sidebar for roundedAveragesAsStrings should read ["11", "4", "2", "12",
"17"].

What if the caller of your function does not want to have to provide a closure for the using argument?
A reasonable default behavior for your format(numbers:using:) function would be to just convert the
numbers to strings if no custom formatting is desired.

Update the declaration of format(numbers:using:):

Listing 13.11 Default closure argument
...
func format(numbers: [Double],
 using formatter: (Double) -> String = {"\($0)"}) -> [String] {
 var result = [String]()
 for number in numbers {
 let transformed = formatter(number)
 result.append(transformed)
 }
 return result
}
...

Here you use a technique that you learned in Chapter 12 to add a default value for the formatter
argument: a concise closure that merely returns its argument interpolated into a String.

Chapter 13 Closures

146

Now, if the caller does not pass format(numbers:using:) a closure, the function will just use each
number’s description for the strings instead.

Verify that your updated function works by adding a call that omits the using parameter:

Listing 13.12 Using the default value
...
let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)
...

The sidebar should show the value of exactAveragesAsStrings as ["10.75", "4.2", "1.5",
"12.12", "16.815"].

Closures Capture Their Enclosing Scope
Now that you have some experience with closures, it is time to examine an important feature of how
they interact with the code around them.

To set the stage for this examination, you will want to have a few different scopes available. Any scope
will do – conditionals, loops, and functions all define scopes. For this experiment, nest your rounder
closure and its usage in the scope of a new function.

Listing 13.13 A scope in which to play
...
func format(numbers: [Double],
 using formatter: (Double) -> String = {"\($0)"}) -> [String] {
 var result = [String]()
 for number in numbers {
 let transformed = formatter(number)
 result.append(transformed)
 }
 return result
}

func experimentWithScopes() {
 let rounder: (Double) -> String = {
 (num: Double) -> String in
 return "\(Int(num.rounded()))"
 }

 let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
 let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
 let exactAveragesAsStrings = format(numbers: volunteerAverages)
}

experimentWithScopes()

The experimentWithScopes() function provides a nested scope so you can inspect the interactions
between declarations in different scopes. After defining the function, you call it so that your code will
execute when the playground updates.

Closures Capture Their Enclosing Scope

147

Add a variable before your declaration of rounder and modify it within the closure:

Listing 13.14 Capturing enclosing scope
...
func format(numbers: [Double],
 using formatter: (Double) -> String = {"\($0)"}) -> [String] {
 var result = [String]()
 for number in numbers {
 let transformed = formatter(number)
 result.append(transformed)
 }
 return result
}

func experimentWithScopes() {
 var numberOfTransformations = 0

 let rounder: (Double) -> String = {
 (num: Double) -> String in
 numberOfTransformations += 1
 return "\(Int(num.rounded()))"
 }

 let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
 let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
 let exactAveragesAsStrings = format(numbers: volunteerAverages)
}
...

Here you set aside a variable to track the number of transformations you perform, which is equal to the
number of times your closure runs. You increment that value each time rounder executes.

So far, this does not seem far-fetched. Recall from Chapter 12 that a function can use any of the
variables defined in the same scope it is defined in (also called its enclosing scope), so it makes sense
that rounder has access to numberOfTransformations. (Reread the explanation for Listing 12.9 if you
need to review.) For the same reason, experimentWithScopes() could call format(numbers:using:)
if you wanted it to.

However, a function cannot see into another nested scope. So, for example, result, which is declared
in the local scope of format(numbers:using:), is invisible to rounder.

A function or variable that is declared outside any other scope is considered to be in the
global scope, and it is visible to any function or closure in the program. In the example above,
format(numbers:using:) and experimentWithScopes() are declared in the global scope, but
numberOfTransformations and rounder are in the local scope of experimentWithScopes().

Chapter 13 Closures

148

Now, print the value of numberOfTransformations after format(numbers:using:) is called with
rounder as its closure argument:

Listing 13.15 Printing a closure-modified value

...
func experimentWithScopes() {
 var numberOfTransformations = 0

 let rounder: (Double) -> String = {
 (num: Double) -> String in
 numberOfTransformations += 1
 return "\(Int(num.rounded()))"
 }

 let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
 let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
 let exactAveragesAsStrings = format(numbers: volunteerAverages)
 print(numberOfTransformations)
}
...

The value printed to the console should be 5. The format(numbers:using:) function executed the
rounder closure five times (one for each number in volunteerAverages), and each time rounder
incremented the value of numberOfTransformations.

This means that rounder has access to numberOfTransformations even when it is passed to
format(numbers:using:). In fact, we say that a function not only has access to its enclosing scope but
also captures it. When you define a function and then pass that function as an argument, it maintains its
access to the variables that were in its enclosing scope when it was defined.

In this example, when the closure stored in rounder is passed into format(numbers:using:),
where it becomes the local variable named formatter, it is no longer in a scope that can access
numberOfTransformations. The formatter closure can only access numberOfTransformations
because the closure captured its enclosing scope when it was defined in experimentWithScopes().

You will see other ways a closure’s capture of its scope can impact your program when you learn about
memory management in Chapter 24.

Now that you are done with your experiment, you can eliminate the experimentWithScopes()
function scope and unindent its body. (Xcode will indent your code nicely for you. First, select the
code you want to format. Then choose Editor → Structure → Re-Indent or use the keyboard shortcut
Control-I.)

Closures Capture Their Enclosing Scope

149

Listing 13.16 Removing experimentWithScopes()
...
func experimentWithScopes() {
var numberOfTransformations = 0

let rounder: (Double) -> String = {
 (num: Double) -> String in
 numberOfTransformations += 1
 return "\(Int(num.rounded()))"
}

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)
print(numberOfTransformations)
}
experimentWithScopes()

Chapter 13 Closures

150

Functional Programming
Programming languages are sometimes classified by characteristics they share. One such paradigm, or
classification, is functional programming, from which Swift adopts some of its patterns. It is difficult to
provide a concrete definition of functional programming because people use the phrase with different
meanings and intentions, but typically it is understood to include:

• First-class functions – functions can be returned from and passed as arguments to other functions,
can be stored in variables, etc.; they are just like any other type.

• Pure functions – functions have no side effects; functions, given the same input, always return the
same output and do not modify other states elsewhere in the program. Most math functions like
sin, cos, fibonacci, and factorial are pure.

• Immutability – mutability is de-emphasized, because it is more difficult to reason about data
whose values can change.

• Strong typing – a strong type system increases the runtime safety of the code because the
guarantees of the language’s type system are checked at compile time.

Swift supports all these approaches.

Functional programming can make your code more concise and expressive. By emphasizing
immutability and strong compile-time type checking, it can also make your code safer at runtime.
These hallmarks of functional programming can also make code easier to reason about and maintain.

As you have seen, Swift’s let keyword allows you to declare immutable instances in your code. And
its strong type system helps you catch errors at compile time instead of waiting until runtime. Swift
also provides several higher-order functions that are well known to developers fond of functional
programming: map(_:), filter(_:), and reduce(_:_:). These functions emphasize that Swift’s
functions are indeed first-class citizens.

Let’s look at what these functions add to Swift’s toolkit.

Higher-Order Functions
Higher-order functions are functions that can take another function as an argument or can return a
function. You have already worked with higher-order functions in this chapter and even written your
own, like format(numbers:using:).

Let’s take a look at three higher-order functions from the standard library – map(_:), filter(_:), and
reduce(_:_:) – in the context of your imaginary volunteerism reports.

map(_:)

151

map(_:)
The Swift standard library provides an implementation of map(_:) as a method on the Array type. It
is used to transform an array’s contents. You map an array’s contents from one value to another and
put the new values into a new array. Because map(_:) is a higher-order function, you provide it with
another function that tells it how to transform the array’s contents.

Your current usage of format(numbers:using:) uses a closure that rounds the passed-in numbers
before converting them to strings. Now you will do something similar using map(_:), but you will skip
the string-conversion step for simplicity.

At the bottom of your playground, use map(_:) to round the average volunteer counts per organization
to the nearest number of actual humans:

Listing 13.17 Transforming values with map(_:)
...
let roundedAverages = volunteerAverages.map {
 (avg: Double) -> Int in
 return Int(avg.rounded())
}

First, notice that you used trailing-closure syntax to pass the closure argument to map(_:). This is
common in the Swift community.

Your closure will be called by the map(_:) function once for each value in the array, with the value as
the closure’s argument. The closure then transforms the value and returns it. By the time map(_:) is
done, you have a new array with the modified versions of all the original array’s values.

Next, look at the closure’s signature. You are using map(_:) here not just to change a value but also to
return a value of a different type. Since you passed in a closure that takes a Double and returns an Int,
the map(_:) method assumes that it is operating on an Array of Doubles and will return an Array of
Ints. Your closure must take as its only argument a value of whatever the Array’s type is, but it can
return anything.

You should see in the sidebar that roundedAverages equals [11, 4, 2, 12, 17].

Chapter 13 Closures

152

filter(_:)
Now imagine that the mayor wants to throw a party for the organizations that had an average volunteer
participation of 10 or higher, so she has asked you to produce a list of only those volunteer counts.

Where the map(_:) method expects a closure that will transform a value, the filter(_:) method
expects a closure that will decide whether each value should be added to the result array. Your closure
will receive each value, one at a time, and should return true if the value passes your test and false
if it does not. The result array will contain a subset of the original array’s items: only those for which
your closure returns true.

Use the filter(_:) method to create a new array that only includes volunteer counts of 10 or higher:

Listing 13.18 Selecting desirable values with filter(_:)
...
let roundedAverages = volunteerAverages.map {
 (avg: Double) -> Int in
 return Int(avg.rounded())
}

let passingAverages = roundedAverages.filter {
 (avg: Int) -> Bool in
 return avg >= 10
}

As the sidebar shows, the organizations that will be invited to the party are the ones with these average
counts: [11, 12, 17].

reduce(_:_:)

153

reduce(_:_:)
Now that the mayor knows which organizations to invite, she wants an estimate of how many attendees
to expect at the party. She intends to invite five volunteers from her own staff plus each organization’s
average volunteer count.

You use the reduce(_:_:) method to produce a single representative value from an array of values. In
other words, it reduces an array of values to just one value. The single value can be one of the values
in the collection or any meaningful value derived from them, but it must be of the same type as the
elements of the Array.

Use reduce(_:_:) to compute the sum of the volunteer counts, including the five volunteers from the
mayor’s staff:

Listing 13.19 Reducing
...
let roundedAverages = volunteerAverages.map {
 (avg: Double) -> Int in
 return Int(avg.rounded())
}

let passingAverages = roundedAverages.filter {
 (avg: Int) -> Bool in
 return avg >= 10
}

let estimatedParticipation = passingAverages.reduce(5) {
 (estimationSoFar: Int, currentOrgAverage: Int) -> Int in
 return estimationSoFar + currentOrgAverage
}

reduce(_:_:) differs from map(_:) and filter(_:) in an important way. In addition to taking one
of the Array’s values, your closure takes an additional argument: the return value from the previous
execution. In this way, reduce(_:_:) acts like an assembly line where each worker receives a partially
completed product from the previous worker, adds something to it, and passes the result to the next
worker until the line is complete and the final product is ready.

Each time your closure is executed, it receives both the corresponding value from the Array and the
return value from the previous execution. It can then combine or process these values in some way, and
its result is then passed as one of the arguments to the next execution.

The reduce(_:_:) function itself takes two arguments. In addition to your closure, it takes in an initial
value to pass in as the aggregated value for the first execution of your closure.

This was a big chapter with many big ideas. Closures can take awhile to get used to, especially if you
have not used features like them in another programming language before. You will see more examples
of closures and their usefulness in the coming chapters, and you can return here later for review. For
now, try out the challenges below and do not feel like you are behind if you need more time. This is
hard stuff, and you are doing great.

Chapter 13 Closures

154

Bronze Challenge
In this chapter, you sorted a collection by returning a new instance of Array with its integers sorted
from smallest to largest. You can also sort collections in place – meaning modifying the existing
collection, rather than returning a new one. Change the way you sort volunteerCounts to sort the array
in place from smallest to largest.

Silver Challenge
You used sorted(by:) to sort a collection from smallest to largest. But if you just want to sort a
collection in an ascending fashion, there is a simpler method to use. Use the documentation to find this
method. Apply the method to your solution to the bronze challenge.

Gold Challenge
Use what you have learned about closure syntax in this chapter to perform all the calculations on the
volunteerAverages array (the map(_:), filter(_:), and reduce(_:_:) calls) in as little code as
possible. Your entire solution should fit in one (long) line.

Consider the balance of brevity and readability in your solution, and experiment with including and
excluding different compiler-inferrable parts of the closure syntax to find a balance that you feel
comfortable with.

Hint: You can chain method calls using dot syntax, so long as the return value of each method is of a
type that has the next method available on it. For example:

 let sortedRoundedAverages = startingArray.map(…).sorted(by:…)

sorted(by:) must be called on an Array. This works because map(_:) returns an Array, and
sorted(by:) is being called on map(_:)’s return value.

For the More Curious: Functions as Return Types

155

For the More Curious: Functions as Return Types
You have worked with several higher-order functions now, but you have only worked with higher-
order functions that take other functions as arguments. Higher-order functions can also return another
function.

You already know that a function that takes an argument of, say, Character and returns an Int is of
type (Character) -> Int. But what is the type of a function that takes a Character and returns a
(String) -> String closure?

Let’s explore this idea. Suppose you have a String and want to remove all occurrences of a particular
Character from it. Now imagine that you need to do this multiple times, with multiple characters
across multiple strings. Being a stylish developer, you decide to write a function to help out. Go ahead
and enter it in your playground:

Listing 13.20 Functions begetting functions
func makeCharacterRemover(for character: Character) -> (String) -> String {
 func removeFrom(_ input: String) -> String {
 return input.filter { $0 != character }
 }
 return removeFrom
}

This function takes in a Character as its argument and returns a function that will strip all instances of
the character from a passed-in String.

Recall that a String is a collection of Character instances. It has the filter(_:) method, just like
the Array type does. The inner removeFrom(_:) function uses filter(_:) to filter out all instances
of the character provided to the outer function. Notice that – since a function is a closure and captures
its enclosing scope – removeFrom(_:) has access to the local variable character owned by the outer
function.

Now you can use makeCharacterRemover(for:) to generate as many character-specific
removeFrom(_:) functions as you want.

Listing 13.21 Using the returned function
func makeCharacterRemover(for character: Character) -> (String) -> String {
 func removeFrom(_ input: String) -> String {
 return input.filter { $0 != character }
 }
 return removeFrom
}

let removeLowerCaseLs = makeCharacterRemover(for: "l")
let strangeGreeting = removeLowerCaseLs("Hello, World!")

let removeLowerCaseOs = makeCharacterRemover(for: "o")
let strangerGreeting = removeLowerCaseOs(strangeGreeting)

You can see in the playground sidebar that removeLowerCaseLs and removeLowerCaseOs are both
variables of type (String) -> String, and strangeGreeting and strangerGreeting are stripped
strings emitted by them.

Chapter 13 Closures

156

Admittedly, this approach is a little overengineered. A more readable and concise approach might be to
define a single function of type (Character, String) -> String to take in a string and a character to
remove from it, returning the resulting string. Such a function might look like this:

 func remove(_ character: Character, from string: String) -> String {
 return string.filter { $0 != character }
 }

 let britishGreeting = remove("H", from: "Hello, World!")

Since a function that returns another function can often be refactored into something simpler, you
will not see it much in the wild. It is, however, an example of the flexibility and power of functions in
Swift.

Part IV
Enumerations, Structures, and

Classes

You will be defining your own custom types in this part of the book and studying how decisions
you make while writing code impact your project later. You will be adding features to projects and
changing them as the projects progress. This is part of writing code for real projects: Sometimes you
start developing an application with one solution in mind and then have to modify your code when you
learn a better pattern or need to accommodate a new or changed feature.

That does not mean the first code or tools were bad – just that they would be better for other
circumstances. Projects often evolve and develop, and decisions that are ideal at one stage may become
inadequate as requirements change. Learning to be flexible in the face of these changes is part of the
trade.

159

14
Enumerations

Up to this point, you have been using Swift’s built-in types, like integers, strings, arrays, and
dictionaries. The next two chapters will show the capabilities the language provides to create your own
types. The focus of this chapter is enumerations (or enums), which allow you to create instances that
are one of a defined list of cases.

If you have used enumerations in other languages, much of this chapter will be familiar. But Swift’s
enums also have some advanced features that make them unique.

Basic Enumerations
Create a new macOS playground called Enumerations. Define an enumeration of possible text
alignments.

Listing 14.1 Defining an enumeration
import Cocoa

var str = "Hello, playground"

enum TextAlignment {
 case left
 case right
 case center
}

You define an enumeration with the enum keyword followed by the name of the enumeration. The
opening brace ({) opens the body of the enum, and it must contain at least one case statement that
declares the possible values for the enum. Here, you include three.

As an aside, the names of types (including enums) begin with a capital letter by convention. If multiple
words are needed, capitalize the first letter of each word (this is called Pascal case): PascalCasedType.
The names of variables, functions, and enum cases use a similar case structure but with a lowercase
first letter (called camel case): camelCasedVariable.

Chapter 14 Enumerations

160

The name of the enumeration (here, TextAlignment) is now usable as a type, just like Int or String or
the various other types you have used so far. That means that you can now create instances of that type:

Listing 14.2 Creating an instance of TextAlignment
enum TextAlignment {
 case left
 case right
 case center
}

var alignment: TextAlignment = TextAlignment.left

Although TextAlignment is a type that you have defined, the compiler can still infer the type for
alignment. Therefore, you can omit the explicit type of the alignment variable:

Listing 14.3 Taking advantage of type inference
...
var alignment: TextAlignment = TextAlignment.left

The compiler’s ability to infer the type of enumerations is not limited to variable declarations. If you
have a variable known to be of a particular enum type, you can omit the type from the case statement
when assigning a new value to the variable.

Listing 14.4 Inferring the enum type
...
var alignment = TextAlignment.left
alignment = .right

You have to specify the enum’s type and value when initially creating the alignment variable, because
that line gives alignment both its type and its value. In the next line, you can omit the type and simply
reassign alignment to a different value within its type. You can also omit the enum type when passing
its values to functions or comparing them.

Listing 14.5 Type inference when comparing values
...
alignment = .right

if alignment == .right {
 print("We should right-align the text!")
}

Basic Enumerations

161

While enum values can be compared in if statements, switch statements are typically used to handle
enum values. Use switch to print the alignment in a more human-readable way.

Listing 14.6 Switching to switch
...
alignment = .right

if alignment == .right {
 print("We should right-align the text!")
}
switch alignment {
case .left:
 print("left aligned")

case .right:
 print("right aligned")

case .center:
 print("center aligned")
}

Recall from Chapter 5 that all switch statements must be exhaustive. Some of the switch statements
you wrote in that chapter required a default case to meet that requirement. When switching on
enumeration values, the compiler knows all possible values of the enumeration to check. If you include
a case for each one, the switch is exhaustive and no default case is necessary.

You could include a default case when switching on an enum type:

Listing 14.7 Making center the default case
...
switch alignment {
case .left:
 print("left aligned")

case .right:
 print("right aligned")

case .center:
default:
 print("center aligned")
}

This code works, but we recommend avoiding default clauses when switching on enum types,
because using a default is not as “future proof.” Suppose, for example, you add another alignment
option for justified text.

Listing 14.8 Adding a case
enum TextAlignment {
 case left
 case right
 case center
 case justify
}

var alignment = TextAlignment.left justify
alignment = .right
...

Chapter 14 Enumerations

162

Your program still runs, but it now prints the wrong value. The alignment variable is set to .justify,
but the switch statement prints center aligned. This is what we mean when we say that using a
default is not future proof: It adds complication to modifying your code in the future.

Change your switch back to listing each case explicitly.

Listing 14.9 Returning to explicit cases
...
switch alignment {
case .left:
 print("left aligned")

case .right:
 print("right aligned")

default:
case .center:
 print("center aligned")
}

Now, instead of your program running and printing the wrong answer, you have a compile-time error
that your switch statement is not exhaustive. It may seem odd to say that a compiler error is desirable,
but that is exactly the situation here.

If you use a default clause when switching on an enum, your switch statement will always be
exhaustive and satisfy the compiler. If you add a new case to the enum without updating the switch,
the switch statement will use the default case when it encounters the new case. Your code will
compile, but it might not do what you intended.

By listing each enum case in the switch, you ensure that the compiler will help you find all the places
in your code that must be updated if you add cases to your enum. That is what is happening here: The
compiler is telling you that your switch statement does not include all the cases defined in your enum.

Go ahead and fix that.

Listing 14.10 Including all cases
...
switch alignment {
case .left:
 print("left aligned")

case .right:
 print("right aligned")

case .center:
 print("center aligned")

case .justify:
 print("justified")
}

Now the compiler is satisfied and the desired value prints to the console.

Enumerations with Raw Values

163

Enumerations with Raw Values
If you have used enumerations in a language like C or C++, you may be surprised to learn that Swift
enums do not have an underlying integer type. But you can get the same behavior by using what Swift
calls a raw value. To use Int raw values for your text alignment enumeration, change the declaration of
the enum.

Listing 14.11 Using raw values
enum TextAlignment: Int {
 case left
 case right
 case center
 case justify
}
...

Specifying a raw value type for TextAlignment gives a distinct raw value of that type (Int, here) to
each case. The default behavior for integer raw values is that the first case gets raw value 0, the next
case gets raw value 1, and so on. Confirm this by printing some interpolated strings.

Listing 14.12 Confirming the raw values
...
var alignment = TextAlignment.justify

TextAlignment.left.rawValue
TextAlignment.right.rawValue
TextAlignment.center.rawValue
TextAlignment.justify.rawValue
alignment.rawValue
...

You are not limited to the default behavior for raw values. If you prefer, you can specify the raw value
for each case.

Listing 14.13 Specifying raw values
enum TextAlignment: Int {
 case left = 20
 case right = 30
 case center = 40
 case justify = 50
}
...

When are raw values in an enumerations useful? The most common reason for using raw values is to
store or transmit the enum to a system that does not know about your TextAlignment type. Instead
of writing functions to transform a variable holding an enum, you can use rawValue to convert the
variable to its raw value.

Chapter 14 Enumerations

164

This brings up another question: If you have a raw value, how do you convert it back to the enum type?
Every enum type with a raw value can be created with a rawValue argument, which returns an optional
enum.

Listing 14.14 Converting raw values to enum types
...
TextAlignment.justify.rawValue
alignment.rawValue

// Create a raw value
let myRawValue = 20

// Try to convert the raw value into a TextAlignment
if let myAlignment = TextAlignment(rawValue: myRawValue) {
 // Conversion succeeded!
 print("successfully created \(myAlignment) from \(myRawValue)")
} else {
 // Conversion failed
 print("\(myRawValue) has no corresponding TextAlignment case")
}
...

You start with myRawValue, a variable of type Int. Then you try to convert that raw value into a
TextAlignment case using TextAlignment(rawValue:). Because TextAlignment(rawValue:)
has a return type of TextAlignment?, you use optional binding to determine whether you get a
TextAlignment value or nil back.

The raw value you used here corresponds to TextAlignment.left, so the conversion succeeds. Try
changing myRawValue to a raw value that does not exist to see the message that conversion is not
possible.

So far, you have been using Int as the type for your raw values. Swift also allows raw values to be
Strings, Characters, or instances of any numeric type. Create a new enum that uses String as its raw
value type.

Listing 14.15 Creating an enum with strings
...
enum ProgrammingLanguage: String {
 case swift = "swift"
 case objectiveC = "objective-c"
 case c = "c"
 case cpp = "c++"
 case java = "java"
}

let myFavoriteLanguage = ProgrammingLanguage.swift
print("My favorite programming language is \(myFavoriteLanguage.rawValue)")

Here, you specify a corresponding raw String value for each case. However, just as the compiler will
automatically provide integer raw values if you do not set them yourself, it will automatically use the
name of a case as its string raw value. So once you have declared that an enum has string raw values,
you do not need to assign values if they match the case names.

Methods

165

Modify ProgrammingLanguage to take out the unnecessary raw value assignments:

Listing 14.16 Using default string raw values
...
enum ProgrammingLanguage: String {
 case swift = "swift"
 case objectiveC = "objective-c"
 case c = "c"
 case cpp = "c++"
 case java = "java"
}

let myFavoriteLanguage = ProgrammingLanguage.swift
print("My favorite programming language is \(myFavoriteLanguage.rawValue)")

Your declaration of devotion to Swift does not change.

Methods
Recall that a method is a function that is associated with a type. In some languages, methods can
only be associated with classes (which we will discuss in Chapter 15). In Swift, methods can also be
associated with enums. Create a new enum that represents the state of a light bulb.

Listing 14.17 Light bulbs can be on or off
...
enum LightBulb {
 case on
 case off
}

Suppose you want to know the temperature of the light bulb. Add a method for computing the surface
temperature. (For simplicity, this method ignores a lot of physics.)

Listing 14.18 Establishing temperature behaviors
...
enum LightBulb {
 case on
 case off

 func surfaceTemperature(forAmbientTemperature ambient: Double) -> Double {
 switch self {
 case .on:
 return ambient + 150.0

 case .off:
 return ambient
 }
 }
}

Here, you add a function inside the definition of the LightBulb enumeration. Because
surfaceTemperature(forAmbientTemperature:) is defined with the enum, it is now a method
associated with the LightBulb type. We would call it “a method on LightBulb.”

Chapter 14 Enumerations

166

The function appears to take a single argument (ambient) – but, because it is a method, it also takes an
implicit argument named self of type LightBulb. All Swift methods have a self argument, which is
used to access the instance on which the method is called – in this case, the instance of LightBulb.

Create a variable to represent a light bulb and call your new method.

Listing 14.19 Turning on the light
...
enum LightBulb {
 case on
 case off

 func surfaceTemperature(forAmbientTemperature ambient: Double) -> Double {
 switch self {
 case .on:
 return ambient + 150.0

 case .off:
 return ambient
 }
 }
}

var bulb = LightBulb.on
let ambientTemperature = 77.0

var bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature:
 ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

First you create bulb, an instance of the LightBulb type. When you have an instance of the type,
you can call methods on that instance using the syntax instance.methodName(arguments).
You do exactly that here when you call bulb.surfaceTemperature(forAmbientTemperature:
ambientTemperature).

You store the result of the method call, a Double, in the bulbTemperature variable. Finally, you print a
string with the bulb’s temperature to the console.

Methods

167

The Bool type has a toggle() method that flips the variable to the opposite value (true to false and
vice versa). It would be handy for your LightBulb type to have a toggle() method as well. To toggle
the light bulb, you need to modify self to change it from on to off or off to on. Add a toggle()
method that takes no arguments and does not return anything.

Listing 14.20 Trying to toggle
...
enum LightBulb {
 case on
 case off

 func surfaceTemperature(forAmbientTemperature ambient: Double) -> Double {
 switch self {
 case .on:
 return ambient + 150.0

 case .off:
 return ambient
 }
 }

 func toggle() {
 switch self {
 case .on:
 self = .off

 case .off:
 self = .on
 }
 }
}
...

When you enter this, you will get a compiler error that states that you cannot assign to self inside
a method. In Swift, an enumeration is a value type, and, by default, methods on value types are not
allowed to make changes to self.

If you want to allow a method on a value type to change self, you need to mark the method as
mutating, which makes the implicit self argument mutable. You will learn more about value types and
the mutating keyword in Chapter 15. For now, add this to your code:

Listing 14.21 Making toggle() a mutating method
...
mutating func toggle() {
 switch self {
 case .on:
 self = .off

 case .off:
 self = .on
 }
}
...

Chapter 14 Enumerations

168

Now you can toggle your light bulb and see what the temperature is when the bulb is off.

Listing 14.22 Turning off the light
...
var bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature:
 ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

bulb.toggle()
bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature: ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

Associated Values

169

Associated Values
Everything you have done so far with enumerations falls into the same general category of defining
static cases that enumerate possible values or states. Swift also offers a much more powerful flavor of
enumeration: cases with associated values. Associated values allow you to attach data to instances of
an enumeration, and different cases can have different types of associated values.

Create an enumeration to track the dimensions of a couple of basic shapes. Each kind of shape
has different properties. To represent a square, you need a single value (the length of one side). To
represent a rectangle, you need two values: a width and a height.

Listing 14.23 Setting up ShapeDimensions
...
enum ShapeDimensions {
 // square's associated value is the length of one side
 case square(side: Double)

 // rectangle's associated value defines its width and height
 case rectangle(width: Double, height: Double)
}

You define a new enumeration type, ShapeDimensions, with two cases. The square case has an
associated value of type (side: Double). The rectangle case has an associated value of type (width:
Double, height: Double). Both of these are named tuples (first seen in Chapter 12).

To create instances of ShapeDimensions, you must specify both the case and an appropriate associated
value for the case.

Listing 14.24 Creating shapes
...
enum ShapeDimensions {
 // square's associated value is the length of one side
 case square(side: Double)

 // rectangle's associated value defines its width and height
 case rectangle(width: Double, height: Double)
}

var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)

Here, you create a square with sides 10 units long and a rectangle that is 5 units by 10 units.

Chapter 14 Enumerations

170

You can use a switch statement to unpack and use an associated value. Add a method to
ShapeDimensions that computes the area of a shape.

Listing 14.25 Using associated values to compute area
...
enum ShapeDimensions {
 // square's associated value is the length of one side
 case square(side: Double)

 // rectangle's associated value defines its width and height
 case rectangle(width: Double, height: Double)

 func area() -> Double {
 switch self {
 case let .square(side: side):
 return side * side

 case let .rectangle(width: w, height: h):
 return w * h
 }
 }
}
...

In your implementation of area(), you switch on self just as you did earlier in the chapter. Here,
the switch cases use Swift’s pattern matching to bind self’s associated value with a new variable (or
variables).

Call the area() method on the instances you created earlier to see it in action.

Listing 14.26 Computing areas
...
var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")

Associated Values

171

Not all enum cases need to have associated values. For example, you could add a point case.
Geometric points do not have any dimensions. Add a point to your enum with no associated value and
update the area() method to include its area.

Listing 14.27 Setting up a point
...
enum ShapeDimensions {
 // point has no associated value - it is dimensionless
 case point

 // square's associated value is the length of one side
 case square(side: Double)

 // rectangle's associated value defines its width and height
 case rectangle(width: Double, height: Double)

 func area() -> Double {
 switch self {
 case .point:
 return 0

 case let .square(side: side):
 return side * side

 case let .rectangle(width: w, height: h):
 return w * h
 }
 }
}
...

Now, create an instance of a point and confirm that area() works as expected.

Listing 14.28 What is the area of a point?
...
var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)
var pointShape = ShapeDimensions.point

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")
print("point's area = \(pointShape.area())")

In this chapter, you saw how to define custom data structures to represent one of a discrete list of
values, sometimes with associated data. The Swift standard library has a wide range of types available
for modeling different kinds of data, but the ability to directly model custom data using your own type
in this way is extremely powerful.

In the next chapter, you will learn how to define more complex data structures to drive your
applications.

Chapter 14 Enumerations

172

Bronze Challenge
Add a perimeter() method to the ShapeDimensions enum. This method should compute the perimeter
of a shape (the sum of the length of all its edges). Make sure you handle all the cases!

Silver Challenge
Add another case to the ShapeDimensions enum for a right triangle. You can ignore the orientation
of the triangle. Just keep track of the lengths of its three sides. Adding a new case will cause your
playground to give you an error in the area() method. Fix the error.

For the More Curious: Recursive Enumerations
You now know how to attach associated values to enum cases. This brings up a curious question. Can
you attach an associated value of an enum’s own type to one of its cases? (Perhaps this question brings
up another: Why would you want to?)

A data structure that comes up frequently in computer science is a tree. Most hierarchical data can
naturally be represented as a tree. Think of a genealogical family tree: It contains people (the “nodes”
of the tree) and ancestral relationships (the “edges” of the tree). The family tree branching stops when
you reach an ancestor you do not know, as in Figure 14.1.

Figure 14.1 A family tree

For the More Curious: Recursive Enumerations

173

Modeling a family tree can be difficult because for any given person, you may know zero, one, or
both of their biological parents. If you know one or both parents, you would like to keep track of their
ancestors as well. Consider an enum that might let you build up as much of your family tree as you
know.

 enum FamilyTree {
 case noKnownParents
 case oneKnownParent(name: String, ancestors: FamilyTree)
 case twoKnownParents(fatherName: String,
 paternalAncestors: FamilyTree,
 motherName: String,
 maternalAncestors: FamilyTree)
 }

Unfortunately, this is will not compile. FamilyTree is recursive, because its cases have an associated
value that is also of type FamilyTree, and Swift treats recursive enumerations specially.

To understand why, you need to know a little bit about how enumerations work under the hood. The
Swift compiler has to know how much memory every instance of every type in your program will
occupy. You do not (usually) have to worry about this, as the compiler figures it all out for you when it
builds your program.

Enumerations are a little different. The compiler knows that any instance of an enum will only ever
store one case at a time, although it may change cases as your program runs. Therefore, when the
compiler is deciding how much memory an instance of enum requires, it will look at each case and
figure out which case requires the most memory. The instance will require that much memory (plus a
little bit more that the compiler will use to keep track of which case is currently assigned).

Look back at your ShapeDimensions enum. The point case has no associated data, so it requires
no extra memory. The square case has an associated Double, so it requires one Double’s worth of
memory (8 bytes). The rectangle case has two associated Doubles, so it requires 16 bytes of memory.
The actual size of an instance of ShapeDimensions is 17 bytes: enough room to store rectangle, if
necessary, plus 1 byte to keep track of which case the instance actually is.

Now consider the FamilyTree enum. How much memory is required for the oneKnownParent case?
Enough memory for a String plus enough memory for an instance of FamilyTree. See the problem?
The compiler cannot determine how big a FamilyTree is without knowing how big a FamilyTree is.
Looking at it another way, FamilyTree would require an infinite amount of memory!

To solve this issue, Swift can introduce a layer of indirection. Instead of deciding how much memory
oneKnownParent will require (which would lead to infinite recursion), you can use the keyword
indirect to instruct the compiler to instead store the enum’s data behind a pointer. We do not discuss
the details of pointers in this book, because Swift does not make you deal with them.

Here, all you have to do is opt in to making FamilyTree use pointers under the hood. Adding the
indirect keyword allows cases to be recursive:

 indirect enum FamilyTree {
 case noKnownParents
 case oneKnownParent(name: String, ancestors: FamilyTree)
 case twoKnownParents(fatherName: String,
 paternalAncestors: FamilyTree,
 motherName: String,
 maternalAncestors: FamilyTree)
 }

Chapter 14 Enumerations

174

How does using a pointer solve the “infinite memory” problem? The compiler now knows to store
a pointer to the associated data, putting the data somewhere else in memory rather than making the
instance of FamilyTree big enough to hold the data. The size of an instance of FamilyTree is now 8
bytes on a 64-bit architecture – the size of one pointer.

It is worth noting that you do not have to mark the entire enumeration as indirect: You can also mark
individual recursive cases as indirect:

 enum FamilyTree {
 case noKnownParents
 indirect case oneKnownParent(name: String, ancestors: FamilyTree)
 indirect case twoKnownParents(fatherName: String,
 paternalAncestors: FamilyTree,
 motherName: String,
 maternalAncestors: FamilyTree)
 }

Using indirect cases, a family tree can be constructed:

 let fredAncestors = FamilyTree.twoKnownParents(
 fatherName: "Fred Sr.",
 paternalAncestors: .oneKnownParent(name: "Beth",
 ancestors: .noKnownParents),
 motherName: "Marsha",
 maternalAncestors: .noKnownParents)

This code is represented graphically by Figure 14.2.

Figure 14.2 Fred’s family tree

fredAncestors is a recursive enumeration that represents Fred’s known family tree, with each node
in the tree representing an instance of the same enumeration. As you can see, this sort of enumeration
models nested information quite well.

175

15
Structs and Classes

You learned that an enum can be a powerful way to model custom data, such as the state of a light bulb.
Using associated values, you were able to attach some arbitrary data to your enum cases, which made
them even more flexible for data modeling. But while enums are great for representing a singular value
with some associated contextual data, they are not designed for modeling large or complex systems.

For that, you use a structure (commonly just called a struct) or a class. These types are syntactically
similar, which is why we will introduce them together. Over the next several chapters, you will learn
about the important similarities, differences, and uses for these types.

For the next few chapters, you will be working in a command-line tool rather than a playground. Your
command-line tool project will model a town undergoing a serious monster infestation. You will use
both structs and classes to model these entities and will give them properties to store data and functions
so that these entities can do some work.

A New Project
In Xcode, click File → New → Project... (Figure 15.1).

Figure 15.1 Creating a new project instead of a playground

Chapter 15 Structs and Classes

176

Next, you will select a project template (Figure 15.2). A template formats your project with a number
of presets and configurations common to a given style of application. Along the top of the window,
notice that there are several options: Multiplatform, iOS, macOS, watchOS, tvOS, and Other. Select
macOS. Next, in the Application area of the window, choose the Command Line Tool template and click
Next. This template will create a very basic project.

Figure 15.2 Choosing a template

A New Project

177

Now you will choose options for your project, including a name (Figure 15.3). In the Product
Name field, enter MonsterTown. Enter BigNerdRanch (or whatever you would like) for the project’s
Organization Identifier. The Bundle Identifier, used to uniquely identify your app to the OS and to the
App Store, fills in for you. (Do not worry about the Team item or adding an account; that feature is
used for signing and distributing your application.)

Select Swift for the Language option and click Next.

Figure 15.3 Naming your project

Last, Xcode asks you where to save the project. You can ignore the Source Control, Add to, and Group
fields. Select a good location on your Mac to save the project and click Create.

Chapter 15 Structs and Classes

178

Your project opens in Xcode with the project file selected, as shown in Figure 15.4. This file allows
you to manage various settings for your application. For example, you can sign your application for
deployment, link to frameworks to use in your development, and much more.

Figure 15.4 The project file

Let’s take a moment to look at the organization of the Xcode application window (Figure 15.5).

Figure 15.5 Organization of Xcode

A New Project

179

The pane on the far left is the navigator area. It provides several views that encapsulate how your
project is organized. The view that opens by default is the project navigator. In the project navigator,
you see a listing of your files, which at the moment only includes main.swift.

Moving one section to the right, you see the editor area. This is where you will add, view, and edit the
code in a selected file.

On the far right is the inspector area. The inspector area provides several inspectors that allow you to
get more information, such as the file inspector, which gives information about a file’s location, name,
and so on.

At the bottom of the Xcode window is the debug area, which includes the variable view and the
console. You will use this area to debug your code when there are problems. (The debug area may not
open by default; we will explain how to open it later.)

At the top of the window is the toolbar, which has play and stop buttons you will use to run and stop
your programs, among other tools.

In the project navigator on the far left side, click the main.swift file to open it in the editor area
(Figure 15.6).

Figure 15.6 main.swift

In a command-line tool, main.swift represents the entry point of your program. Like a playground,
main.swift executes top to bottom. After the last line of code in this file executes, the program is
complete and exits.

To let main.swift define the procedural story of your program, you define custom types and functions
in other files and then use them in main.swift. For example, you will create a Town.swift file to hold
a definition of a struct called Town. Then you will create an instance of Town in main.swift.

This strategy of defining each new type in its own file helps organize an application's source code,
making it easier to find and debug code in large projects.

Chapter 15 Structs and Classes

180

Notice that the main.swift file already has some code:

 import Foundation

 print("Hello, World!")

import Foundation brings the Foundation framework into the main.swift file. A framework is a
precompiled collection of types and functions you can use in your program. There are frameworks
published by Apple and others to give you the building blocks for programs that do anything from
presenting rich user interfaces to communicating with web servers.

The Foundation framework is provided by Apple and consists of a number of classes primarily
designed to do work in and with Objective-C. In the future, we will ignore this line of code unless you
need it for context in the code listing or for using one of the types it provides.

The print("Hello, World!") code should look familiar. It logs the string Hello, World! to the
console.

Build and run your program. There are several ways to do this:

• In the Xcode menu bar, click Product, then select Run.

• Click the triangular play button in Xcode's upper-left corner.

• Press Command-R.

When you run your program, the debug area opens, if it was not open already. Hello, World! is
logged to the console, along with information from the compiler about how the program ended.

That is great, but you have seen strings logged to the console before. Let’s make your program
more interesting by creating custom structs and classes. Before you move on, delete print("Hello,
World!"); you will not need it.

Listing 15.1 Removing “Hello, World!” (main.swift)
import Foundation

print("Hello, World!")

Structures

181

Structures
A struct is a type that groups a set of related chunks of data together in memory. You use structs when
you would like to group data together under a common type. You are going to create a struct called
Town to model a town with a monster problem, along with its size, population, and region.

In previous chapters, you modeled a town in a playground. Because the example was relatively
small, this was not all that limiting. Playgrounds use a streamlined approach to code management to
facilitate quick prototyping of code, but app development requires a more robust set of tools for code
organization. It is better to encapsulate the definition of the town within its own type, in its own file.

Add a new file to your project using File → New → File.... You can also press Command-N. A window
like the one shown in Figure 15.7 prompts you to select a template for your new file. With macOS
selected at the top, choose Swift File from the Source section and click Next.

Figure 15.7 Adding a Swift file

Chapter 15 Structs and Classes

182

Next you are asked to name the new file and set its location. Call the file Town and make sure the box is
checked to add it to the MonsterTown target (Figure 15.8). Click Create.

Figure 15.8 Town.swift

Your new file opens automatically. (If it does not, select Town.swift in the project navigator.) It is
nearly blank: just the comments at the top and the import Foundation line.

Start declaring your Town struct.

Listing 15.2 Declaring a struct (Town.swift)
import Foundation

struct Town {

}

The keyword struct signals that you are declaring a struct, in this case named Town. You will add
code between the braces ({}) to define the behavior of this struct. For example, you are about to add
variables to your new struct so that it can hold on to some data that will help model the characteristics
of your town.

Technically, these variables are called properties, which is the subject of Chapter 16. Properties can
be variable or constant, using the var and let keywords you have seen before. Add some properties to
your struct.

Listing 15.3 Adding properties (Town.swift)
struct Town {
 var population = 5_422
 var numberOfStoplights = 4
}

Here, you add two properties to Town: population and numberOfStoplights. Both of these properties
are mutable – this makes sense, because a town’s population and number of stoplights are likely to
change over time. These properties also have default values, for the sake of simplicity. When a new
instance of the Town struct is made, it will default to having a population of 5,422 and 4 stoplights.

Structures

183

Switch to your main.swift file and create a new instance of Town to see your struct in action. (As
always, do not break the string in your code.)

Listing 15.4 Creating an instance of Town (main.swift)
var myTown = Town()
print("Population: \(myTown.population);
 number of stoplights: \(myTown.numberOfStoplights)")

You accomplish three things with this code. First, you create an instance of the Town type. You do this
by entering the name of the type (here, Town) followed by empty parentheses (). Including the empty
parentheses calls the default initializer for Town (more on initialization in Chapter 17).

Second, you assign this instance to a variable you call myTown.

Third, you use string interpolation to print the values of the Town struct’s two properties to the console.
Notice that you use dot syntax (like myTown.population) to access the properties’ values.

Run your program. The output reads Population: 5422; number of stoplights: 4.

Chapter 15 Structs and Classes

184

Instance Methods
The print() function is a fine way to print a description of myTown. But a town should know how
to describe itself. Create a function on the Town struct that prints the values of its properties to the
console. Navigate to your Town.swift file and add the following function definition.

Listing 15.5 Letting Town describe itself (Town.swift)
struct Town {
 var population = 5_422
 var numberOfStoplights = 4

 func printDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }
}

Warning! By default, your files can see each other's code. (You will learn about code privacy in
Chapter 23.) If you copied the print() function call above from main.swift, then it will incorrectly
print myTown.population and myTown.numberOfStoplights (properties of the myTown instance
declared in main.swift) instead of the properties declared above. Make sure your code matches the
snippet shown here.

printDescription() is a method, because it is a function that is associated with a particular type. It
takes no arguments and returns nothing. Its purpose is to log a description of a town’s properties to
the console. That makes printDescription() an instance method, because it is called on a specific
instance of Town.

To use your new instance method, you need to call it on an instance of Town. Navigate back to
main.swift and replace the print() function with your new instance method.

Listing 15.6 Calling your new instance method (main.swift)
var myTown = Town()
print("Population: \(myTown.population);
 number of stoplights: \(myTown.numberOfStoplights)")
myTown.printDescription()

You use dot syntax to call a function on an instance, as in myTown.printDescription(). Run your
program. The console output is the same as before.

Mutating methods

185

Mutating methods
Your printDescription() method is great for displaying your town’s current information. But what if
you need a function that changes your town’s information? If an instance method on a struct changes
any of the struct’s properties, it must be marked with the mutating keyword. In Town.swift, add a
mutating method to the Town type to increase a town instance’s population.

Listing 15.7 Adding a mutating method to increase population (Town.swift)
struct Town {
 var population = 5_422
 var numberOfStoplights = 4

 func printDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }

 mutating func changePopulation(by amount: Int) {
 population += amount
 }
}

Note that you mark the instance method changePopulation(by:) with the mutating keyword. As you
saw with enumerations in Chapter 14, this means that the method can change the values in the struct.
Both structures and enumerations require the mutating keyword on methods that change the value of
an instance’s properties.

Recall from Chapter 12 that a value passed in to a function is copied into the function. The function
cannot modify the original variable's value unless the argument is marked inout. You also learned in
Chapter 14 that instance methods take an implicit first argument, self, containing the value that the
method has been called on.

The mutating keyword asks the compiler to make the implicit self argument inout, so that the
instance method can make changes to the original value the method was called on, instead of a copy.
You will learn more about this behavior, and a major exception to it, later on.

Your method has one explicit parameter, amount, which is an Int. You use this parameter to increase
the town’s population in the line population += amount. Switch over to main.swift to exercise this
function:

Listing 15.8 Increasing the population (main.swift)
var myTown = Town()
myTown.changePopulation(by: 500)
myTown.printDescription()

As before, you use dot syntax to call the function on your town. Build and run the program; you will
see that myTown’s population has been increased by 500 and the console reads Population: 5922;
number of stoplights: 4.

Chapter 15 Structs and Classes

186

Classes
Like structs, classes are used to model related data under a common type. You will use classes in
MonsterTown to model various types of monsters that will be terrorizing your town. Classes differ from
structs in a few very important ways, and this section will begin to highlight those differences.

A Monster class
Now that you have a struct representing a town, it is time to make things a little more interesting. Your
town is, unfortunately, infested with monsters. This is not good for property values.

Create a new Swift file called Monster.swift: As before, click File → New → File... or press
Command-N. Select the Swift File template from the Source section under macOS.

This file will contain the definition for a Monster class that will be used to model a monster’s
properties and town-terrorizing activities. Start by creating a new class:

Listing 15.9 Monster setup (Monster.swift)
import Foundation

class Monster {

}

The syntax to define a new class type is nearly identical to the syntax used to define a new struct type.
You begin with the keyword class, followed by the name you are assigning to your new class. And, as
before, the definition of the class takes place between the braces: {}.

For reasons relating to inheritance (discussed in the next section), the class Monster is defined in very
general terms. This means that the Monster class will describe the general behavior of a monster. Later
you will create different kinds of monsters that will have specific behaviors.

Listing 15.10 Defining the Monster class (Monster.swift)
class Monster {
 var town: Town?
 var name = "Monster"

 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

It is well known that monsters do one thing very well: They terrorize towns. The Monster class has a
property for the town that a given monster is terrorizing. Because the monster may or may not have
found a town to terrorize yet, the town property is an optional (Town?), and it starts out nil. You also
create a property for the Monster’s name and give it a generic default value.

Inheritance

187

Next, you define a basic stub for a method called terrorizeTown(). This method will be called on an
instance of Monster to represent the monster terrorizing a town.

Notice that you check whether the instance has a town using if town != nil. If it does, then
terrorizeTown() will log to the console the name of the monster wreaking havoc. If the instance does
not have a town yet, then the method will log that information.

As different sorts of monsters terrorize towns in different ways, subclasses will provide their own
implementation of this function. You will learn about subclasses in the next section.

Switch to main.swift to exercise the Monster class. Add an instance of this type, give it a town, and
call the terrorizeTown() function on it.

Listing 15.11 Setting a generic monster loose (main.swift)
var myTown = Town()
myTown.changePopulation(by: 500)
myTown.printDescription()

let genericMonster = Monster()
genericMonster.town = myTown
genericMonster.terrorizeTown()

First, you create an instance of the Monster class called genericMonster. This instance is declared as
a constant because there is no need for it to be mutable. Next, you assign myTown to genericMonster’s
town property. Finally, you call the terrorizeTown() method on the Monster instance. Run the
program, and Monster is terrorizing a town! logs to the console.

Inheritance
One of the main features of classes that structures and enumerations do not have is inheritance.
Inheritance is a relationship in which one class, a subclass, is defined in terms of another, a superclass.
The subclass inherits the properties and methods of its superclass. In a sense, inheritance defines the
genealogy of class types.

The fact that classes can take advantage of inheritance is the primary reason you made the Monster
type a class. You are going to create a subclass of the Monster class, Zombie, to represent a particular
kind of monster. (In a more complex program, you could create subclasses for werewolves,
chupacabras, and any other kind of monster you can imagine - and, in fact, for this chapter's silver
challenge you will create a Vampire subclass with its own behaviors.)

Chapter 15 Structs and Classes

188

A Zombie subclass
Create a new Swift file called Zombie.swift, following the same steps as you did to create Town.swift
and Monster.swift. Add the following class declaration to see how the Zombie subclass inherits from
the Monster class.

Listing 15.12 Zombie creation (Zombie.swift)
import Foundation

class Zombie: Monster {
 var walksWithLimp = true

 override func terrorizeTown() {
 town?.changePopulation(by: -10)
 super.terrorizeTown()
 }
}

Your new Zombie class inherits from the Monster type, which is indicated by the colon (:) and
superclass name (Monster) after Zombie. Inheriting from Monster means that Zombie has all Monster’s
properties and methods, like the town property and the terrorizeTown() method used here.

Zombie also adds a new property. The property is called walksWithLimp and is of type Bool (inferred
from the property’s default value: true).

Finally, Zombie overrides the terrorizeTown() method. Overriding a method means that a subclass
provides its own definition of a method that is defined on its superclass. Note the use of the override
keyword. Failing to use this keyword when overriding a method will result in a compiler error.

Figure 15.9 shows Zombie’s relationship to Monster.

Figure 15.9 Zombie inheritance

Zombie inherits the properties town and name from the Monster class. It also inherits the
terrorizeTown() method, but it provides an override, which is why it is listed in both areas in the
figure. Last, Zombie adds a property of its own: walksWithLimp.

Inheritance

189

Inheritance hierarchies can be as deep as you want. You could add a ShamblingZombie class that
subclasses Zombie, for example. Perhaps a shambling zombie would have a smaller impact on a town’s
population because it does not move as fast.

Notice the line super.terrorizeTown() in Listing 15.12. super is a prefix used to access a
superclass’s implementation of a method. In this case, you use super to call the Monster class’s
implementation of terrorizeTown().

Because super is a feature of inheritance, it is not available to enums or structs, which do not support
inheritance. It is invoked to borrow or override functionality from a superclass.

Recall that Zombie’s town property, inherited from the Monster class, is an optional of type Town?. You
need to make sure that an instance of Zombie has a town to terrorize before calling any methods on the
town.

One possible solution might have been to use optional binding, like this:

 if let terrorTown = town {
 // Do something to terrorTown
 }

In the code above, if the Zombie instance has a town, then the value in the optional is unwrapped and
put into the constant terrorTown. After that, this value is ready to be terrorized, but with an important
caveat: terrorTown is not the same instance as the town instance. It is a copy, for reasons we will
explain in the section called Looking Ahead: What Is the Real Difference? later in this chapter.

This means that any changes made on terrorTown will not be reflected in the Zombie instance’s town
property. They would be two different (albeit initially identical) instances of the Town type. In addition
to this limitation, this code could also be more concise.

In short, this is not an ideal solution.

The optional chaining you use in Listing 15.12 (town?.changePopulation(by: -10)) allows a
check like this to be done on a single line. It is just as expressive and is also more concise. If the
optional town has a value, then the method changePopulation(by:) is called on that instance, and
the population is decreased by 10 people. Furthermore, the copy problem described above is avoided,
because town is changed directly.

In a moment, you will use optional chaining again to call printDescription() on a zombie’s town.

Chapter 15 Structs and Classes

190

Preventing overriding
Sometimes you want to prevent subclasses from being able to override methods or properties. The need
to do this is rare in practice, but it does come up. In these cases, you use the final keyword to prevent
a method or property from being overridden.

Imagine, for example, that you do not want subclasses of the Monster type to provide their own
implementation of the terrorizeTown() function. In other words, all subclasses of Monster should
terrorize their towns in the exact same way. Add the final keyword to this function’s declaration. In a
moment, you will see that this creates an error.

Listing 15.13 Preventing overriding of terrorizeTown() (Monster.swift)
class Monster {
 var town: Town?
 var name = "Monster"

 final func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

Now, subclasses of the Monster class will not be able to override the terrorizeTown() method.

Try to build your program. You should see the following error on the line where you try to override
the terrorizeTown() method in Zombie.swift: Instance method overrides a ‘final’ instance
method. The error indicates that you cannot override terrorizeTown() because it is marked as final
in the superclass.

The final keyword can also be used on a class declaration, just like a method declaration, if you want
to prevent the class from being subclassed at all.

Undo your change before continuing:

Listing 15.14 Allowing overriding of terrorizeTown() again (Monster.swift)
class Monster {
 ...
 final func terrorizeTown() {
 ...
 }
}

Inheritance

191

The zombie problem
Now is a good time to exercise the Zombie type. Choose the main.swift file from the project navigator.
Create an instance of the Zombie class. While you are there, delete the code that prints the town’s
description as well as the code that created a generic instance of the Monster type, which you no longer
need.

Listing 15.15 Who’s afraid of fredTheZombie? (main.swift)
var myTown = Town()
myTown.changePopulation(by: 500)
myTown.printDescription()

let genericMonster = Monster()
genericMonster.town = myTown
genericMonster.terrorizeTown()

let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

You first create a new instance of the Zombie type named fredTheZombie. Next, you assign your
preexisting instance of the Town type, myTown, to the Zombie type’s property town. At this point,
fredTheZombie is free to terrorize myTown, which it will do with alacrity. (Or, at least, as much alacrity
as a zombie can muster.)

After fredTheZombie has terrorized the townsfolk, you check the results with the
printDescription(). As discussed earlier, because fredTheZombie’s town property is an optional of
type Town?, you have to unwrap it before you can call the printDescription() function on it. You
do this with optional chaining: fredTheZombie.town?.printDescription(). This code ensures that
fredTheZombie has a town before you try to use printDescription().

The console output should read: Population: 5912; number of stoplights: 4.

Chapter 15 Structs and Classes

192

Polymorphism and type casting
You have learned that a subclass has all the properties and methods of its superclass, and maybe more.
You could say that every Zombie is also a Monster. This is an example of polymorphism, a term that
means "having many forms."

You will explore polymorphism later in this book, but the short version for now is this: Because Zombie
inherits from Monster, you can treat an instance of Zombie as though it were a Monster. And, in fact,
vice versa. But only one of these things is safe to do.

Declare your fredTheZombie variable to be of type Monster.

Listing 15.16 Fred is a Monster (main.swift)
...
let fredTheZombie: Monster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

Here you tell the compiler that you want a variable of type Monster, but then you store a value of type
Zombie in it. The compiler uses the declared variable type to decide what you are allowed to do with
the variable later. Because there is nothing you might do to a Monster that you could not also do to a
Zombie, the compiler decides that this is OK - so long as you only want to do Monster-y things to your
variable.

Run your program, and you will see that nothing at all has changed in the output. When the program
runs, it is the type of instance actually stored in the variable, not the declared type of the variable, that
matters. The declared variable type only matters to the compiler, so that it can check to make sure that
you only access properties and methods that actually exist on that type.

So far you are accessing the town property and the terrorizeTown() method, both of which exist on
both types. But what if you try to access a property that only exists on a Zombie? Try it:

Listing 15.17 Not all monsters walk with a limp (main.swift)
...
let fredTheZombie: Monster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()
fredTheZombie.walksWithLimp = true

This creates a compiler error. You know that when the program runs, fredTheZombie will contain an
instance of Zombie, which has a walksWithLimp property. But the compiler complains that you said the
variable might hold any Monster, so it cannot let you do Zombie-specific things to it.

You can instruct the compiler to treat a variable as though it were of a specific, related type. This is
called type casting and is done with the as keyword. Note that type casting does not change the type
of the variable itself - instead, it creates an expression that is of a different type than the variable. Try
fixing the error by casting fredTheZombie back to its real type, Zombie.

Listing 15.18 Not actually fixing the error (main.swift)
...
(fredTheZombie as Zombie).walksWithLimp = true

Inheritance

193

This did not quite fix the error. Casting from a more general type (a superclass) to a more specific type
(a subclass) is called downcasting, and it is unsafe. If the compiler let you cast a variable to a type with
more properties but the instance actually stored in that variable did not have those properties, then the
program would crash when you tried to access them.

You have two choices. You could force the cast to occur with the as! keyword. In that case, if you try
to access a property that the instance does not have, the program will crash at the site of the cast. This
is a bit like force-unwrapping an optional. It is only safe if you can guarantee that it will work.

Alternatively, you can perform a conditional cast with the as? keyword. In that case, if the cast fails at
runtime, the casting expression will return nil. In most cases, this is the safer choice, just as optional
binding is safer than force-unwrapping.

Perform the conditional cast:

Listing 15.19 Fred might be a Zombie after all (main.swift)
...
(fredTheZombie as? Zombie)?.walksWithLimp = true

Here you conditionally cast fredTheZombie back to type Zombie. Because the compiler does not
know whether the cast will succeed at runtime, a conditional cast is an optional expression, so you use
optional chaining to access the walksWithLimp property.

Two final notes about type casting: First, casting from a subclass to its superclass is called upcasting
and is always safe; there is nothing a Monster can do that a Zombie cannot. Because it is safe, when
you upcast, the unadorned as keyword works nicely.

Second, you can ask Swift whether you are correct about an instance's type at runtime with the is
keyword, like this:

 if fredTheZombie is Zombie {
 print("I knew it!")
 }

The is expression will return true for the target type or any of its direct or indirect superclasses.

What you have learned here about type and polymorphism applies to functions as well: A function with
a signature of (Monster) -> Void would be happy to accept an argument of type Zombie, but not the
reverse, without potentially unsafe type casting.

Inheritance is only one form of polymorphism. You will see another in Chapter 19. The utility of type
casting may not seem immediately obvious, but as you begin writing more complex programs for iOS
and macOS, you will encounter scenarios where it will be required in order to use values as they move
around your program in variables of different types.

But MonsterTown is not a complex program, and you do not want to have to cast fredTheZombie every
time you use it. Go ahead and take out the explicit Monster declaration and walksWithLimp usage.

Listing 15.20 Rolling back the casting (main.swift)
...
let fredTheZombie: Monster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()
(fredTheZombie as? Zombie)?.walksWithLimp = true

Chapter 15 Structs and Classes

194

Looking Ahead: What Is the Real Difference?
In this chapter, the biggest difference that you have encountered between classes and structs is that
classes support inheritance and structs do not. That alone is not a compelling reason to have both
structs and classes in the language, especially since the final keyword can be used to prevent a class
from being subclassed where necessary.

The underlying difference between structs and classes is a bit more subtle, but it has crucial
implications for how they are used. Here is a sneak peek at a feature of structs and classes that you will
explore in much greater depth later in this book.

When you have a struct or enum variable, all the memory the instance needs to store its content is
inside that variable. For example, a Town instance contains two Ints. Each Int is 64 bits (8 bytes)
in size, so a variable that contains a Town takes up at least 16 bytes of memory. If you duplicate the
variable, you duplicate the entire instance, copying its memory into the new variable.

Make this change to main.swift:

Listing 15.21 Value semantics (main.swift)
var myTown = Town()
var yourTown = myTown // Now there are two towns!
myTown.changePopulation(by: 500)
print("myTown has \(myTown.population) and yourTown has \(yourTown.population)")

let fredTheZombie = Zombie()
...

Run your program, and you will see that the change to myTown's population does not affect yourTown.
Setting yourTown = myTown made an entire copy of the struct in the myTown variable and stuffed that
copy into the yourTown variable. Because a struct (or enum) variable stores the instance's entire value,
we say that structs and enums are value types and that their instances follow value semantics.

You have also seen this behavior in the Int, Float, Double, Bool, etc. types. That is because they are
also value types. In fact, they are implemented as structs in the Swift standard library.

Classes, on the other hand, only use a variable to store a reference to some other location in memory
where the instance's actual content is stored. That other location is managed by the system. You
manage and pass around copies of your reference, and the system will manage the lifetime of the
memory your variable refers to.

In a modern program, a reference is always 64 bits (8 bytes) of memory, no matter how many bytes are
used by the actual instance it refers to. A variable containing a reference to a class instance with 50 Int
properties would still only be 8 bytes, even though the instance itself would be at least 400 bytes. This
means it is possible for more than one variable to have a reference to a single shared bit of information.

At the bottom of main.swift, make another Monster:

Listing 15.22 Reference semantics (main.swift)
...
var frederickTheZombie = fredTheZombie // Still only one zombie!
frederickTheZombie.name = "Frederick"
print("Fred's name is \(fredTheZombie.name)")

Looking Ahead: What Is the Real Difference?

195

Run now, and you will be told that Fred's name is Frederick.

A class variable does not store all the bytes that make up the instance of the class, like a struct
variable does. Since a class variable only stores a reference to where the real bytes are, setting
frederickTheZombie = fredTheZombie merely means that frederickTheZombie contains a reference
to the same bytes in memory that fredTheZombie does. Both variables refer to the same actual Zombie
in memory, and you can use either reference to access the instance's name.

(If you are familiar with the concept of pointers in other programming languages, this is the same idea
but with a slightly different execution under the hood.)

Because class variables only hold references to bytes that are stored elsewhere, we say that classes are
reference types and that their instances follow reference semantics when we use them. This memory is
managed by a Swift feature that you will learn about in Chapter 24.

Add the following code to your Zombie class:

Listing 15.23 Classes can always mutate (Zombie.swift)
class Zombie: Monster {
 var walksWithLimp = true

 func regenerate() {
 walksWithLimp = false
 }

 override func terrorizeTown() {
 town?.changePopulation(by: -10)
 super.terrorizeTown()
 regenerate()
 }
}

terrorizeTown() now mutates a Zombie's walksWithLimp property. It is not marked mutating, yet
there is no error. Why?

Just as class types contain only a reference to the instance, and not the entire instance itself, the same
is true for function arguments of class types - including the implicit self argument of class instance
methods. Since self is already a reference to the instance, and not a copy of it, the self implicit
argument does not need to be made inout, so the mutating keyword is not used with class instance
methods.

It is OK if you feel a little fuzzy on the distinction between value types and reference types. You will
get plenty of practice and learn much more about the nuance that value and reference types bring to the
Swift language - as well as when to use them - in Chapter 18.

Chapter 15 Structs and Classes

196

Before you move on, delete the code you added to main.swift in this section. It has served its purpose
of illustrating some of the differences between value and reference types, and you will not need it
again.

Listing 15.24 Cleaning up (main.swift)
var myTown = Town()
var yourTown = myTown // Now there are two towns!
myTown.changePopulation(by: 500)
print("myTown has \(myTown.population) and yourTown has \(yourTown.population)")

let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()
var frederickTheZombie = fredTheZombie // Still only one zombie!
frederickTheZombie.name = "Frederick"
print("Fred's name is \(fredTheZombie.name)")

Bronze Challenge

197

Bronze Challenge
Create a copy of your MonsterTown project, as you will continue to work on it in the next chapter and
do not want your challenge solutions to get in the way.

There is currently a bug in the program. If a Zombie terrorizes a Town with a population less than 10,
then the town's population will become negative. This result does not make sense. Fix this bug by
changing the changePopulation(by:) method on Town to never have a negative population. That is,
make sure that a town’s population is set to 0 if the amount to decrement is greater than the current
population.

Silver Challenge
Vampires are monsters that sometimes turn people into other vampires.

Create another subclass of the Monster type. Call this one Vampire. Give it a thralls property to hold
an empty array of other Vampire instances.

In your new class, override the terrorizeTown() method to do everything that the superclass's
implementation does plus capture one of the townspeople and make them into a vampire thrall. Do this
by adding an instance of Vampire to its thralls array and decrementing the town's population by one.

Ensure that a thrall is only made (and the town's population changed) if the terrorized town had at least
one person in it.

Exercise this Vampire type in main.swift by creating one and making it terrorize a town several times.
Each time, print the changes to the vampire's thralls and the town's population to make sure it
works.

For the More Curious: Type Methods
In this chapter, you defined some instance methods that were called on instances of a type. For
example, terrorizeTown() is an instance method that you can call on instances of the Monster type.
You can additionally define methods that are called on the type itself. These are called type methods.
Type methods are useful for working with type-level information.

Imagine a struct named Square:

 struct Square {
 static func numberOfSides() -> Int {
 return 4
 }
 }

For value types, you indicate that you are defining a type method with the static keyword. The
method numberOfSides() simply returns the number of sides a Square can have.

Chapter 15 Structs and Classes

198

Type methods on classes use the class keyword. Here is a type method on the Zombie class that
represents the universal zombie catchphrase.

 class Zombie: Monster {
 class func makeSpookyNoise() -> String {
 return "Brains..."
 }
 ...
 }

To use type methods, you simply call them on the type itself:

 let sides = Square.numberOfSides() // sides is 4
 let spookyNoise = Zombie.makeSpookyNoise() // spookyNoise is "Brains..."

One implication of making makeSpookyNoise() a class method is that subclasses can override that
method to provide their own implementation.

 class GiantZombie: Zombie {
 override class func makeSpookyNoise() -> String {
 return "ROAR!"
 }
 }

Here, the GiantZombie class subclasses Zombie and provides its own implementation of the class
method. But what if you have a class type with a class method that you do not want to be overridden?
Perhaps you feel that all zombies should make the same spooky noise. Let’s revisit the Zombie class.

 class Zombie: Monster {
 static func makeSpookyNoise() -> String {
 return "Brains..."
 }
 ...
 }

The static keyword tells the compiler that you do not want subclasses to provide their own version of
the makeSpookyNoise() method.

You could also use final class in place of the static keyword. They are functionally equivalent.

 class Zombie: Monster {
 final class func makeSpookyNoise() -> String {
 return "Brains..."
 }
 ...
 }

Type methods can work with type-level information. This means that type methods can call other
type methods and can even work with type properties, which we will discuss in Chapter 16. But type
methods cannot call instance methods or work with any instance properties, because an instance is not
available for use at the type level.

199

16
Properties

Chapter 15 introduced properties in a limited way. Its focus was on structures and classes, but you also
gave your types some basic stored properties so that they had data to represent. This chapter discusses
properties in detail and will deepen your understanding of how to use them with your custom types.

Properties model the characteristics of the entity that a type represents. They do this by associating
values with the type. The values properties can take may be constant or variable values. Classes,
structures, and enumerations can all have properties.

Properties have a lot of power and flexibility. Let’s see what they can do.

Chapter 16 Properties

200

Basic Stored Properties
Properties can either be stored or computed. Stored properties allocate memory to hold on to the
property's value between accesses. A person's date of birth, for example, would be represented by
a stored property, because it is a simple fact about a person that needs to be remembered. You can
observe stored properties to execute code when the property's value changes.

Computed properties are like lightweight functions, using other properties, variables, and functions to
calculate a new value each time they are accessed. A person's age would be represented by a computed
property, because it is a value that changes over time and is based on the person's date of birth.

Most properties, including all the properties you have declared so far, are stored. To see how they
work, you will expand the behavior of the types you developed in Chapter 15.

Open Town.swift. Take a look at the declaration of your population property: var population =
5_422. This code signifies three important items:

• var marks this property as variable, which means that it can be mutated.

• population has a default value of 5_422.

• population is a stored property whose value can be read and set.

How can you tell that population is a stored property? Because it holds on to a piece of information –
the town’s population. That is what stored properties do: They store data.

population is a read/write property. You can both read the property’s value and set the property’s
value. You can also make stored properties read-only, so that their values cannot be changed. Read-
only properties are known by their more familiar name: constants.

Use let to create a read-only property storing information about the region that the town you are
modeling is in. After all, towns cannot move, so they are always in the same region.

Listing 16.1 Adding a region constant (Town.swift)
struct Town {
 let region = "Middle"
 var population = 5_422
 var numberOfStoplights = 4

 func printDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }

 mutating func changePopulation(by amount: Int) {
 population += amount
 }
}

This implementation of region is fine for now, but it does mean that all towns must exist in the Middle
of the world. You will address this limitation in the next chapter.

Nested Types

201

Nested Types
Nested types are types that are defined within another enclosing type. They are often used to support
the functionality of a type and are not intended to be used separately from that type. You have seen
nested functions already, which are similar.

Enumerations are frequently nested. In Town.swift, create a new enumeration called Size. You will
be using this enumeration, in coordination with another new property to be added later, to calculate
whether the town can be designated as small, medium, or large. Make sure that you define the enum
within the definition for the Town struct.

Listing 16.2 Setting up the Size enum (Town.swift)
struct Town {
 let region = "Middle"
 var population = 5_422
 var numberOfStoplights = 4

 enum Size {
 case small
 case medium
 case large
 }

 func printDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }
 ...
}

Size will determine the size of the instance of the Town type. The instance of Town will need a value in
its population property before this nested type is used. All the properties you have worked with so far
have calculated the property’s value when the instance was created. The next section introduces a new
sort of property that delays the computation of its value until the necessary information is available.

Lazy Stored Properties
Sometimes a stored property’s value cannot be assigned immediately. The necessary information may
be available, but computing the values of a property immediately would be costly in terms of memory
or time. Or, perhaps a property depends on factors external to the type that will be unknown until after
the instance is created. These circumstances call for lazy loading.

In terms of properties, lazy loading means that the calculation of the property’s value will not occur
until the first time it is needed. This delay defers computation of the property’s value until after the
instance is initialized. This means that lazy properties must be declared with var, because their values
will change.

Create a new lazy property called townSize. Make it of type Size, because its value will be an
instance of the Size enum. Again, make sure to define this new property inside the Town type.

Chapter 16 Properties

202

Listing 16.3 Setting up townSize (Town.swift)
struct Town {
 ...
 enum Size {
 case small
 case medium
 case large
 }

 lazy var townSize: Size = {
 switch population {
 case 0...10_000:
 return Size.small

 case 10_001...100_000:
 return Size.medium

 default:
 return Size.large
 }
 }()

 func printDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }
 ...
}

townSize looks different than the properties that you have written before. You will not be setting the
value of this property directly, as you have done with other properties. Instead, you will take advantage
of the nested enum Size in coordination with a closure to calculate the town’s size given its population.

First, you mark townSize as lazy and declare the type of the property as Size. Next, you set the value
of townSize to the result returned by a closure (notice the opening brace: lazy var townSize: Size
= {). Recall that functions and closures are first-class types and that properties can reference functions
and closures.

A closure works well here because multiple steps must be performed to determine the town’s size, and
a closure can encapsulate that work. The closure switches over the instance’s population to assign the
correct size. The case bodies return an instance of the enum Size that matches the given population.

Notice that the closure for townSize ends with empty parentheses after the final brace: }(). With
these parentheses, Swift will execute the closure and assign the value it returns to townSize. The lazy
keyword ensures that this happens the first time the property is read, and only if a value has not already
been assigned, rather than when the Town instance is created.

If you had omitted the parentheses, you would simply be assigning the closure itself to the townSize
property, rather than storing the result of executing the closure.

Let’s return to the need for townSize to be lazy. The closure implicitly references self to gain access
to the instance’s population property. For the closure to access self safely, the compiler requires that
self (the town) is fully initialized and that all its properties have values (more on this in Chapter 17).
This means that stored properties cannot access each other's values when setting their initial values, as
doing so would unsafely reference self.

Lazy Stored Properties

203

Marking townSize as lazy indicates to the compiler that this property does not need to have a value for
self to be considered fully initialized and that its initial value should instead be assigned (in this case,
by executing the closure) the first time it is read.

Switch to main.swift to exercise this lazy property.

Listing 16.4 Using the lazy townSize property (main.swift)
var myTown = Town()
let myTownSize = myTown.townSize
print(myTownSize)
myTown.changePopulation(by: 500)

let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

Here, you create a constant named myTownSize to hold myTown’s size information. This line accesses
the lazy property townSize and causes its closure to execute. After the closure switches over myTown’s
population, an instance of the Size enum is assigned to myTownSize. Next, you print the value of the
myTownSize constant. As a result, when you run the program, small logs to the console.

It is important to note that properties marked with lazy are calculated only one time. This feature of
lazy means that changing the value of myTown’s population does not cause myTown’s townSize to be
recalculated. To see this, increase myTown’s population by 1,000,000 and then check myTown’s size by
logging it to the console. Include myTown’s population for comparison.

Listing 16.5 Changing myTown’s population does not change townSize
(main.swift)
var myTown = Town()
let myTownSize = myTown.townSize
print(myTownSize)
myTown.changePopulation(by: 500)(by: 1_000_000)
print("Size: \(myTown.townSize); population: \(myTown.population)")

let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

Run the program, and you will see in the console Size: small; population: 1005422. myTown’s
size has not changed, even though its population increased dramatically. This discrepancy is due
to townSize’s lazy nature. The property is only calculated when it is first accessed and is never
recalculated.

This kind of discrepancy between myTown’s population and townSize is undesirable. It seems that
townSize should not be marked lazy, if lazy means that myTown will not be able to recalibrate its
townSize to reflect population changes.

If you only needed to calculate the town's size once, a lazy stored property would be perfect. But since
townSize needs to always reflect the current population, lazy loading is not the right tool for the job.
A computed property is a better option.

Chapter 16 Properties

204

Computed Properties
You can use computed properties with any class, struct, or enum that you define. Computed properties
do not store values like the properties that you have been working with thus far. Instead, a computed
property provides a getter and optional setter to retrieve or set the property’s value. This difference
allows the value of a computed property to change, unlike the value of a lazy stored property.

Replace your definition of the townSize property on the Town type with a computed read-only property.
Unlike stored read-only properties, computed read-only properties are defined using var.

Listing 16.6 Using a computed property (Town.swift)
...
lazy var townSize: Size = {
var townSize: Size {
 switch population {
 case 0...10_000:
 return Size.small

 case 10_001...100_000:
 return Size.medium

 default:
 return Size.large
 }
}()
...

The changes here may look small. You delete the lazy keyword and the assignment operator (=) in
the first line and delete the parentheses in the final line. That is all. But those small changes have a big
impact.

townSize is now defined as a computed property declared, like all computed properties, with the var
keyword. It provides a custom getter that uses the same switch statement that you used before. Notice
that you explicitly declare the type of the computed property to be Size. You must provide computed
properties with an explicit type annotation so that the compiler can verify that the computed value is of
the correct type.

You access this property via dot syntax (myTown.townSize), so the code you already added to
main.swift does not need to be changed. But now, accessing the property executes the getter for
townSize every time, which results in using myTown’s population to calculate the townSize. Run your
program again. You will see Size: large; population: 1005422 logged to the console.

townSize is now a read-only computed property. In other words, townSize cannot be set directly. It can
only retrieve and return a value based on the calculation you defined in the getter. A read-only property
is perfect in this case because you want myTown to calculate its townSize based on the instance’s
population, which may change at runtime.

A getter and a setter

205

A getter and a setter
Computed properties can also be declared with both a getter and a setter. A getter allows you to read
data from a property. A setter allows you to write data to the property. Properties with both a getter
and a setter are called read/write. Open your Monster.swift file and add a computed property to the
declaration for Monster.

Listing 16.7 Creating a computed victimPool property with a getter and a setter
(Monster.swift)
class Monster {
 var town: Town?
 var name = "Monster"
 var victimPool: Int {
 get {
 return town?.population ?? 0
 }
 set(newVictimPool) {
 town?.population = newVictimPool
 }
 }

 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

Imagine that you need each instance of Monster to keep track of its potential pool of victims.
This number will match the population of the town that the monster is terrorizing. Accordingly,
victimPool is a new computed property with both a getter and a setter (collectively called accessors).
As before, you declare the property to be mutable using var and give it explicit type information. In
this case, victimPool is an Int.

Unlike your implementation of townSize, you explicitly annotate the getter with get and the setter
with set so that the compiler knows which is which. This is required for read/write properties. The
getter uses the nil coalescing operator to check whether the Monster instance has a town that it is
currently terrorizing. If it does, then it returns the value of that town’s population. If the instance has
not yet found a town to terrorize, it simply returns 0.

The setter for the computed property is written within the set block. Notice the new syntax:
set(newVictimPool). Specifying newVictimPool within the parentheses lets you choose a name for
the incoming value, just like a function's internal parameter name. If you had not explicitly named
the new value, Swift would have provided a variable for you called newValue to hold on to the same
information. You can refer to this variable within the setter’s implementation. For example, you use
optional chaining to ensure that the Monster instance has found a town, and then set that town’s
population to match newVictimPool.

Chapter 16 Properties

206

Switch back to main.swift to use this new computed property. Add the code below to the bottom of
the file.

Listing 16.8 Using victimPool (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool);
 population: \(fredTheZombie.town?.population)")

The first new line exercises the getter for the computed property. Run the program and Victim pool:
1005412 logs to the console. The next new line (fredTheZombie.victimPool = 500) uses the setter
to change fredTheZombie’s victimPool. Last, you once again log the victimPool to the console
via the property’s getter. In the console, the victimPool should be updated to be 500, and the town’s
population should match this change.

Notice that the output for the town’s population is listed as Optional(500). This looks different from
the output for victimPool, because fredTheZombie’s town property is optional. If you are curious
about what is causing this difference, Chapter 21 discusses how optionals are put together. The warning
in your code is related, and you can ignore it for now.

Property Observers
Swift provides an interesting feature called property observation. Property observers watch for and
respond to changes in a given property. Property observation is available to any stored property that
you define and is also available to any property that you inherit. You cannot use property observers
with computed properties that you define. (But you have full control over the definition of a computed
property’s setter and getter and can respond to changes there.)

Imagine that the citizens of your beleaguered town demand that the mayor do something to protect
them from the monsters terrorizing them. The mayor’s first action is to track the attacks on the
townspeople. Property observers are perfect for this task.

You can observe changes to a property in one of two ways:

• when a property is about to change, via willSet

• when a property did change, via didSet

Property Observers

207

To keep track of monster attacks, the mayor decides to pay close attention to when the population of
the town changes. Use a didSet observer in Town.swift to be notified right after the property receives
a new value.

Listing 16.9 Observing population changes (Town.swift)
struct Town {
...
 var population = 5_422 {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 ...
}

The syntax for property observers looks similar to computed properties’ getters and setters, but
with different keywords. The didSet observer gives you a handle on the property’s old value. In the
example above, you create a custom parameter name for the old population: oldPopulation. If you
had not specified a new name, Swift would have given you the parameter oldValue automatically.

(The willSet observer gives you a handle on the property's new value, and Swift generates a newValue
parameter - which you can rename if you choose.)

The response to the change is defined within the braces. This property observer logs the town’s
population information to the console every time it changes, so you should see a log for the
population change after fredTheZombie terrorizes the town. Run the program and take a look at the
console. It should look like the output shown below, with a log for every time the population changes.

 small
 The population has changed to 1005422 from 5422.
 Size: large; population: 1005422
 The population has changed to 1005412 from 1005422.
 Monster is terrorizing a town!
 Population: 1005412; number of stoplights: 4
 Victim pool: 1005412
 The population has changed to 500 from 1005412.
 Victim pool: 500; population: Optional(500)
 Program ended with exit code: 0

Because you are logging changes to population with a property observer, you no longer need to log
the population change in main.swift after you update the victimPool. Remove that code from the call
to print() at the bottom of main.swift.

Listing 16.10 Removing population from print() (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool);
 population: \(fredTheZombie.town?.population)")

Note that if you define a didSet property observer on a lazy property, the property's initial value
computation will be performed (such as the closure you wrote for townSize in Listing 16.3) to fill in
the didSet observer's oldValue.

Chapter 16 Properties

208

Type Properties
Up to now, you have been working with instance properties. When you create a new instance of a
type, that instance gets its own properties that are distinct from other instances of that type. Instance
properties are useful for storing and computing values on an instance of a type.

However, when you need to store a value that is common to all instances of a type, it is wasteful to
store a copy of that value in memory for every instance. Instead, such properties can exist once, on the
type itself, and are called type properties. For example, all instances of a Square type will have exactly
four sides, so the number of sides for Square might be stored in a type property. If you create 1,000
instances of Square in your program, a type property for a square's number of sides will only exist
once in memory, rather than 1,000 times.

Value types (structures and enumerations) can take both stored and computed type properties. As with
type methods, type properties on value types begin with the static keyword.

For this version of your program, all towns will exist in the same world. Declare a static property on
Town to hold this information.

Listing 16.11 Adding a stored type property (Town.swift)
struct Town {
 static let world = "Earth"
 ...
}

Stored type properties have to be given a default value. This requirement stems from the fact that types
do not have initializers. You will learn about initialization in Chapter 17; for now, types not having
initializers means that the stored type property has to have all the information it needs to vend its value
to any caller. Here, world is given the value Earth.

Classes can also have stored and computed type properties, which use the same static syntax as
structs. Subclasses cannot override a type property from their superclass. If you want a subclass to be
able to provide its own implementation of the property, you use the class keyword instead.

In the section called For the More Curious: Type Methods in Chapter 15, we showed you a type
method on the Zombie type to make a spooky noise:

 class Zombie: Monster {
 class func makeSpookyNoise() -> String {
 return "Brains..."
 }

Notice that makeSpookyNoise() does not take any arguments. This makes it a great candidate for being
a computed type property and not a method. Open Zombie.swift and add a computed type property for
a zombie’s catchphrase.

Listing 16.12 Creating the spookyNoise computed type property
(Zombie.swift)
class Zombie: Monster {
 class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp = true
 ...
}

Type Properties

209

The definition of a type-level computed property is very similar to the definition of a type method.
The main differences are that you use the var keyword, rather than func, and you do not use the
parentheses.

One new aspect of the code above is that you use shorthand getter syntax. If you are not providing a
setter for a computed property, you can omit the get block of the computed property’s definition and
simply return the computed value as needed.

Switch to main.swift. Add a line at the bottom of the file to print the Zombie type’s spookyNoise
property to the console.

Listing 16.13 “Brains…” (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool)")
print(Zombie.spookyNoise)

Run the program. Spooky.

To see that class type properties can be overridden by subclasses, add a spookyNoise computed type
property to Monster.

Listing 16.14 Generic Monster noise (Monster.swift)
class Monster {
 class var spookyNoise: String {
 return "Grrr"
 }
 var town: Town?
 var name = "Monster"
 ...
}

You may notice that the toolbar is indicating that there is a compiler error with a small red octagonal
icon (see Figure 16.1). If you do not see the icon, try running the program.

Figure 16.1 Toolbar error

Switch back to Zombie.swift, and you will see the same error icon on the line that begins the
definition of the spookyNoise class variable. If you click the red exclamation mark on the lefthand side
of the editor area, the error will display (Figure 16.2).

Figure 16.2 Override error

Chapter 16 Properties

210

Zombie is now overriding a computed type property from its superclass. Because you used the class
keyword for this type property, it is perfectly fine for subclasses to provide their own definition of
spookyNoise. You just need to add the keyword override to Zombie’s definition of spookyNoise.

Make this change and the compiler error disappears.

Listing 16.15 Overriding spookyNoise (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp = true
 ...
}

Build and run your program, and everything should work as it did before.

We mentioned that classes can have static properties at the type level. These properties work a bit
differently than class properties on a type.

A defining characteristic of all monsters is that they are terrifying. Add a static property to the Monster
class to represent this fact.

Listing 16.16 All Monsters are terrifying (Monster.swift)
class Monster {
 static let isTerrifying = true
 class var spookyNoise: String {
 return "Grrr"
 }
 ...
}

You add a new static property on Monster to represent the fact that all monsters are terrifying by
definition. Because you added this property to Zombie’s superclass, Monster, it is also available on
Zombie. Add the following to main.swift to see this in action.

Listing 16.17 Running away from Zombie (main.swift)
...
print(Zombie.spookyNoise)
if Zombie.isTerrifying {
 print("Run away!")
}

As you can see, you access the isTerrifying property on the Zombie via dot syntax. If the Zombie is
terrifying, you run away.

Build and run your program. The console warns you to Run away!.

One of the major differences between static and class type properties is that static properties cannot be
overridden by a subclass. Making this type property a static constant is very definitive: Monsters are
terrifying, and subclasses cannot change that.

Access Control

211

Access Control
You do not always want elements of your program’s code to be visible to all other elements. In fact,
you will frequently want to have much more granular control over your code’s access. You can grant
components of your code specific levels of access to other components of your code. This is called
access control.

For example, you might want to hide or expose a method on a class. Suppose you have a property that
is used only within a class’s definition. It could be problematic if another, external type modified that
property by mistake. With access control, you can manage the visibility of that property to hide it from
other parts of the program. Doing so will encapsulate the property’s data and prevent external code
from meddling with it.

Access control is organized around two important and related concepts: modules and source files. In
terms of your project’s files and organization, these are the central building blocks of your application.

A module is code that is distributed as a unit. You probably recall seeing import Cocoa at the top of
your playgrounds and import Foundation in your Swift files. These are frameworks, which bundle
together a number of related types that perform a series of related tasks. For example, Cocoa is a
framework designed to facilitate the development of macOS applications. Modules are brought into
another module using Swift’s import keyword, as suggested by the examples above.

Source files, on the other hand, are more discrete units. They represent a single file and live within
a specific module. It is good practice to define a single type within a source file. This is not a
requirement, but doing so helps keep your project organized.

Swift provides five levels of access (Table 16.1).

Table 16.1 Swift access control

Access level Description Visible to… Subclassable within…

open Entities are visible and subclassable
to all files in the module and those
that import the module.

defining module and
importing modules

defining module and
importing modules

public Entities are visible to all files in the
module and those that import the
module.

defining module and
importing modules

defining module

internal
(the default)

Entities are visible to all files in the
same module.

defining module defining module

fileprivate Entities are visible only within their
defining source file.

defining file defining file

private Entities are visible only within their
defining scope.

scope scope

open access is the least restrictive access level, and private access is the most restrictive access level.
In general, a type’s access level must be consistent with the access levels of its properties and methods.
A property cannot have a less restrictive level of access control than its type. For example, a property
with an access control level of internal cannot be declared on a type with private access.

Chapter 16 Properties

212

Likewise, the access control of a function cannot be less restrictive than the access control listed for its
parameter types. If you violate these requirements, the compiler will issue an error to help you correct
the mistake.

Swift specifies internal as the default level of access control for your app. Having a default level of
access means that you do not need to declare access controls for every type, property, and method in
your code. internal makes sense as a default, because you will typically be using the language to
write Cocoa and iOS applications, both of which typically use a single module for the source code.
Thus, you only need to declare a level of access control when you need to specify access that is more
or less visible than internal.

Let’s see the private level of access in action. Create an isFallingApart Boolean property defined
on the Zombie type. Give it a default value of false. This property will keep track of an instance’s
physical integrity (zombies, after all, sometimes lose bits). This property really does not need to
be exposed to the rest of the program, because it is an implementation detail of the Zombie class.
Therefore, set it to private.

Listing 16.18 Falling apart is a private matter (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp = true
 private var isFallingApart = false

 func regenerate() {
 walksWithLimp = false
 }

 override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(by: -10)
 }
 super.terrorizeTown()
 regenerate()
 }
}

After you create the property, you use it in the terrorizeTown() function: If isFallingApart is
false, then the instance is free to terrorize its town. If the instance is falling apart, then it will not be
able to terrorize its town.

isFallingApart is visible within terrorizeTown() because the property was declared as private.
That means isFallingApart is accessible to any entity defined within the same scope. Because
isFallingApart is a property on Zombie, any property or method defined at this same level will be
able to access this new property. However, isFallingApart is not accessible outside the Zombie class.
This property is a private implementation of the class.

Controlling getter and setter visibility

213

Controlling getter and setter visibility
If a property has both a getter and a setter, you can control the visibility of the two independently. By
default, however, the getter and setter have the same visibility. Here, isFallingApart has a private
getter and a private setter.

However, you probably want other files in your project to be able to tell whether a Zombie is falling
apart. You just do not want them to change its falling-apart-ness. Change the isFallingApart property
to have an internal getter and a private setter.

Listing 16.19 Making the getter internal and the setter private (Zombie.swift)
class Zombie: Monster {
 ...
 private internal private(set) var isFallingApart = false
 ...
}

You use the syntax internal private(set) to specify that the getter should be internal and the setter
should be private. You could use public, internal, or private for either, with one restriction: The setter
cannot be more visible than the getter. That means, for example, that if you make the getter internal,
you cannot use public(set), because public is more visible than internal.

Furthermore, the Zombie class is defaulting to internal, because you do not specify any level of
access yourself. That means marking isFallingApart’s getter or setter with public will prompt the
compiler to remind you with a warning that its defining class has internal visibility.

You can clean this code up a little. If you leave off a modifier for the getter, the access control defaults
to internal, which is what you want here. Refactor Zombie to use the default visibility for the getter
(internal) and private visibility for the setter.

Listing 16.20 Using default getter visibility (Zombie.swift)
class Zombie: Monster {
 ...
 internal private(set) var isFallingApart = false
 ...
}

Using the default does not change anything except the amount of typing you have to do. The getter
for isFallingApart is still visible to the other files in your project, and the setter is still visible only
within the Zombie class.

Chapter 16 Properties

214

This chapter introduced a lot of material. Take some time to let all the ideas sink in. You learned about:

• property syntax

• stored versus computed properties

• read-only and read/write properties

• lazy loading and lazy properties

• property observers

• type properties

• access control

Properties are a central concept in Swift programming. It is a good idea to get comfortable with all
these ideas. The challenges below will help you master the important concepts.

Bronze Challenge

215

Bronze Challenge
Your town’s mayor is busy. Every birth and relocation does not require the mayor’s attention. After all,
the town is in crisis! Only log changes to the town’s population if the new population is less than the
old value.

Silver Challenge
Make a new type called Mayor. It should be a struct. The Town type should have a property called mayor
that holds an instance of the Mayor type.

Have your town inform the mayor every time the property for population changes. If the town’s
population decreases, have the instance of the Mayor log this statement to the console: I'm deeply
saddened to hear about this latest tragedy. I promise that my office is looking into
the nature of this rash of violence. If the population increases, then the mayor should do
nothing.

(Hint: You should define a new instance method on the Mayor type to complete this challenge.)

Gold Challenge
Mayors are people, too. An instance of the Mayor type will naturally get nervous whenever its town
loses some population due to a Zombie attack. Create a stored instance property on the Mayor type
called anxietyLevel. It should be of type Int and should start out with a default value of 0.

Increment the anxietyLevel property every time a Mayor instance is notified of a Zombie attack. Last,
as a mayor will not want to outwardly display anxiety, use access control to protect this property.
Verify that this property is not accessible from main.swift.

Chapter 16 Properties

216

For the More Curious: Key Paths
Imagine you are building an index for a list of names. The first step to figuring out which section each
name belongs to would be extracting the first character of each one:

 let names = ["Almasi", "Haris", "Jun", "Kala"]
 let firstLetters = names.compactMap({ $0.first }) // ["A", "H", "J", "K"]

As an aside, notice the use of compactMap(_:), which is an Array method that behaves like map(_:)
but omits results for which the provided closure returns nil. Since the first property of a String
returns Character?, it is good to ensure that the resultant array does not contain any nil values.

In this example, it would be convenient to say, “Map this array of strings to their respective first
properties without making me write a closure.”

When you need an expression that refers to a specific property of a type, you can use a key-path. The
map(_:) family of functions can take a key-path in place of a transforming closure, in which case the
method will return a collection that has been transformed by extracting the specified property from
each instance in the source collection:

 let firstLetters = names.compactMap(\String.first) // ["A", "H", "J", "K"]

A literal key-path begins with a backslash (\), followed by a type name and a property of that type,
separated by a period (.). When the compiler can infer the type, it can be omitted:

 let firstLetters = names.compactMap(\.first) // ["A", "H", "J", "K"]

This concise syntax for referring to a property name has lots of uses that are outside the scope of this
book, such as the Combine and SwiftUI frameworks that you will eventually encounter in your Swift
journey. For now, it is worth knowing that this syntax offers a type-safe alternative to manually writing
a closure for functions that support the KeyPath type as arguments.

217

17
Initialization

Initialization is the operation of setting up an instance of a type. It entails giving each stored property
an initial value and may involve other preparatory work. After this process, the instance is prepared and
available to use.

The types that you have been creating up to this point have all been created in more or less the same
way: Properties were either given default stored values or their values were computed on demand.
Initialization was not customized, and we did not give it much consideration.

It is very common to want control over how an instance of a type is created. For example, you have
been giving default values to an instance’s stored properties and then changing the properties’ values
after you create the instance. This strategy is inelegant. It would be ideal for the instance to have all the
correct values in its properties immediately. Initializers help you create an instance with the appropriate
values.

Initializer Syntax
Structures and classes are required to have initial values for their stored properties by the time
initialization completes. This requirement explains why you have been giving all your stored properties
default values. If you had not, the compiler would have given you errors saying that the type’s
properties were not ready to use. Defining an initializer on the type is another way to ensure that
properties have values when the instance is created.

The syntax for writing an initializer is a little different from what you have already seen. Initializers are
written with the init keyword. Even though they are methods on a type, initializers are not preceded
with the func keyword. Initializer syntax looks like this:

 struct CustomType {
 init(someValue: SomeType) {
 // Initialization code here...
 }
 }

This general syntax does not differ among structures, enumerations, and classes. In the example above,
the initializer has one parameter called someValue of type SomeType. While initializers typically have
one or more parameters, they can also have zero parameters (in which case there is a set of empty
parentheses after the init keyword).

The initializer’s implementation is defined within the braces, just as you have been doing with regular
functions and methods throughout this book. But unlike other methods, initializers do not return
values. Instead, initializers are tasked with giving values to a type’s stored properties.

Chapter 17 Initialization

218

Struct Initialization
Structures can have both default and custom initializers. When working with structs, you will typically
want to take advantage of the default initializer provided, but there are some circumstances in which
you will want to customize the initialization process.

Default initializers for structs
Remember how you have been getting instances of your Town type? You gave the type’s stored
properties default values. What you did not know is that you were taking advantage of an empty
initializer (an initializer without parameters) provided to you by the Swift compiler automatically. If
you could see its implementation, it would look like this:

 init() {

 }

When you entered code like var myTown = Town(), that syntax called the empty initializer and set the
new instance’s properties to the default values you specified.

Another form of default initializer is the memberwise initializer. A memberwise initializer has a
parameter for each stored property on the instance, and it will use default parameter syntax to provide
any default values you have declared on the type. This allows you to decide which parameters you wish
to provide at the call site. The free memberwise initializer for Town looks like this:

 init(population: Int = 5422, numberOfStoplights: Int = 4) {
 self.population = population
 self.numberOfStoplights = numberOfStoplights
 }

(We call the empty and memberwise initializers “free” because they are synthesized for you by the
Swift compiler – you do not need to define them yourself.)

At first, it seems like the empty initializer might just be a special case of the memberwise initializer,
but the difference will become clearer when you study class initializers later in this chapter.

Remember, one of the principal goals of initialization is to give all the type’s stored properties values
so that the new instance is ready to use. The compiler will enforce the requirement that your new
instance have values in its stored properties. If you do not provide an initializer for your custom struct,
you must provide the necessary values through default values or memberwise initialization.

Make a copy of the MonsterTown project from the last chapter, so you have all the current code. Open
the copy and navigate to main.swift.

In main.swift, change your use of the empty initializer on the Town type to a call to the free
memberwise initializer. Give the town's properties values that are different from the default values
provided in Town's definition.

Listing 17.1 Using a memberwise initializer (main.swift)
var myTown = Town(population: 10_000, numberOfStoplights: 6)
myTown.printDescription()
...

Custom initializers for structs

219

Now run your program. myTown’s description in the console reads Population: 10_000; number of
stoplights: 6. The instance myTown is now created with the free memberwise initializer, and, as the
console shows, the values you gave to the initializer replace the default values.

Notice that Town’s property names are used as external parameter names in the call to this initializer.
Swift provides default external parameter names to every initializer automatically, one for each
parameter given by the initializer. This convention is important because Swift’s initializers all have the
same name: init. Therefore, you cannot use the function name to identify which specific initializer
should be called. The parameter names, and their types, help the compiler differentiate between
initializers and know which initializer to call.

Free default memberwise initializers are a benefit of structs; they are not available on classes.
Nonetheless, it is common that you will want to customize the initialization of your type. That is where
custom initializers come in.

Custom initializers for structs
It is time to write your own initializer for the Town type. Custom initializers are powerful, and with
great power comes great responsibility. When you write your own initializer, Swift will not give you
any free initializers. You are responsible for ensuring that instances’ properties are all given their
appropriate values.

First, you need to do some housecleaning. You are going to remove all the default values you have
given to properties. These were helpful before you knew about initializers, as they ensured that the
properties for instances of your type had values when an instance was created. But now they do not
really add value to the Town struct.

You will also add a new property for the town’s region to the description that is logged by
printDescription. It will be a constant, because towns do not move from region to region - but it will
have no default value, because different town instances will have different regions.

Open the Town.swift file and make these changes. They will introduce errors, which you will fix in
the next step.

Listing 17.2 Cleaning house (Town.swift)
struct Town {
 static let world = "Earth"
 let region = "Middle"
 var population = 5_422 {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 var numberOfStoplights = 4
 ...
 func printDescription() {
 print("Population: \(population); number of stoplights:
 \(numberOfStoplights); region: \(region)")
 }
 ...
}

Chapter 17 Initialization

220

When you delete the properties' default values, the compiler issues an error in three places, all
indicating Type annotation missing in pattern. Previously, you took advantage of type inference
for these properties, which worked well with the default values you gave them. Without the default
values, you need to explicitly declare their types.

Listing 17.3 Declaring types (Town.swift)
struct Town {
 static let world = "Earth"
 let region: String
 var population: Int {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 var numberOfStoplights: Int
 ...
}

Now it is time to create your custom initializer. Later, you will call this initializer from another
initializer defined within this same type. For now, add the following initializer to your Town type.

Listing 17.4 Adding a memberwise initializer (Town.swift)
...
var numberOfStoplights: Int

init(region: String, population: Int, stoplights: Int) {
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
}

enum Size {
 case small
 case medium
 case large
}
...

The init(region:population:stoplights:) initializer takes three arguments, one for each of the
stored properties on the Town type other than world, which has a default value. In the body of the
initializer, you take the values given to the arguments and pass them to the actual properties of the type.

Because the parameter names for region and population are the same as the property names,
you need to explicitly access those properties via self. The numberOfStoplights property does
not have this issue, so you simply set the value of the initializer’s argument for stoplights to the
numberOfStoplights property.

Notice that you set the value for the region property even though it was declared as a constant.
The Swift compiler allows you to set a value for a constant property one time during initialization.
Remember, the goal of initialization is to ensure that a type’s properties have values after initialization
completes.

Custom initializers for structs

221

At this point, you may be noticing that Xcode’s issue navigator has opened on the left, informing you
of errors (Figure 17.1). (If the issue navigator does not open automatically, open it by clicking the
fifth icon from the left above the navigator area (). If no errors appear in the navigator, try to run the
program.) You will see that the issues are located in main.swift and relate to the initializer that the
compiler was giving you by default.

Figure 17.1 Showing errors in the issue navigator

There are two issues, both in main.swift, where you create an instance of Town using the memberwise
initializer:

 var myTown = Town(population: 10_000, numberOfStoplights: 6)

The memberwise initializer you used to create myTown used the property name numberOfStoplights as
its parameter name. In Town’s new initializer, you shortened this parameter name to stoplights, so the
compiler no longer recognizes the numberOfStoplights argument. Also, the new region argument is
missing.

Switch back to main.swift. (To get back to the project navigator, click the leftmost icon above the
navigator area.) Fix the problems by including all the parameters, using the names the compiler is
expecting. (We have put each parameter on its own line to fit this page; you can leave them on one line
or break them as shown.)

Listing 17.5 Making sure the parameters align (main.swift)
var myTown = Town(region: "West",
 population: 10_000,
 numberOfStoplights stoplights: 6)
...

Build and run the program. The errors should disappear, and you should see console log output
beginning with Population: 10000; number of stoplights: 6; region: West.

Chapter 17 Initialization

222

Initializer delegation
You can define initializers to call other initializers on the same type. This procedure is called initializer
delegation. It is typically used to provide multiple paths for creating an instance of a type.

In value types (enumerations and structures), initializer delegation is relatively straightforward.
Because value types do not support inheritance, initializer delegation only involves calling another
initializer defined on the type. It is somewhat more complicated for classes, as you will soon see.

Switch to Town.swift to write a new initializer on this type that uses initializer delegation.

Listing 17.6 Using initializer delegation (Town.swift)
...
init(region: String, population: Int, stoplights: Int) {
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
}

init(population: Int, stoplights: Int) {
 self.init(region: "N/A", population: population, stoplights: stoplights)
}

enum Size {
 case small
 case medium
 case large
}
...

Here, you define a new initializer on the Town type. But this initializer only takes two arguments:
population and stoplights. What about the region property? How is that getting set?

Look at this new initializer’s implementation. You call Town’s other initializer on self in the line
self.init(region: "N/A", population: population, stoplights: stoplights). You pass
in the supplied arguments for population and stoplights. Because you do not have an argument
for region, you supply a value - in this case, the string "N/A" - to signify that there was no region
information given to the initializer.

Initializer delegation helps avoid duplication of code. Instead of retyping the same code to assign the
values passed in to the initializer’s arguments to the type’s properties, you can simply call across to
another initializer on the type.

Avoiding duplication of code does more than save you from typing the same thing twice. It can also
help avoid bugs. When you have the same code in two places, you have to remember to change both
places any time you make a change.

We say that initializer delegation “defines a path” by which a type creates an instance. One initializer
calls across to another on a given type to provide specific pieces that are needed to create an instance.
Eventually, initializer delegation ends up in an initializer that has all it needs to fully prepare an
instance for use.

Class Initialization

223

Because you defined your own memberwise initializer, the compiler will give you no free initializers.
This is not all that limiting; it can even be a benefit. For example, you might want to use this new
initializer if there is no region information available for a given town that you would like to create. In
that case, you would use your handy new initializer with arguments for population and stoplights to
set the corresponding properties while also giving region a value so that initialization can complete.

Try out this new initializer in main.swift.

Listing 17.7 Using the new initializer (main.swift)
var myTown = Town(region: "West", population: 10_000, stoplights: 6)
myTown.printDescription()
...

Build and run your application. You are no longer setting the instance’s region to anything specific, so
you will see N/A logged to the console for region’s value.

Class Initialization
The general syntax for initialization in classes looks very similar to initialization in value types.
However, there are some different rules for classes that must be observed. These additional rules are
mainly due to the fact that classes can inherit from other classes, which adds some complexity to
initialization.

In particular, classes add the concepts of designated and convenience initializers. An initializer on a
class is either one or the other. Designated initializers are responsible for making sure that an instance’s
properties all have values before initialization completes, thus making the instance ready to use.
Convenience initializers supplement designated initializers by calling across a class to its designated
initializer. The role of convenience initializers is typically to create an instance of a class for a very
specific use case.

Default initializers for classes
You have already seen examples of using a class’s default initializer. Classes get a default empty
initializer if you provide default values to all properties and do not write your own initializer. This
explains why you gave your classes default values before: It allowed you to take advantage of the
free empty initializer. Thus, you were able to get an instance of the Zombie class with code like let
fredTheZombie = Zombie(), with the empty parentheses indicating that you were using the default
initializer.

(As we said before, classes do not get a free memberwise initializer like structs.)

Chapter 17 Initialization

224

Initialization and class inheritance
Open Monster.swift and modify the class to give it an initializer. Also, remove the default value of
"Monster" from the name property.

Listing 17.8 Initializing Monster (Monster.swift)
class Monster {
 ...
 var town: Town?
 var name = "Monster"
 var name: String
 var victimPool: Int {
 get {
 return town?.population ?? 0
 }
 set(newVictimPool) {
 town?.population = newVictimPool
 }
 }

 init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
 }

 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

This initializer has two arguments: one for an optional instance of the Town type and another for the
name of the monster. The values for these arguments are assigned to the class’s properties within the
initializer’s implementation. Once again, note that the argument for the town in the initializer matches
the property name on the class, so you have to set the property’s value by accessing it through self.
You do not have to do this for name because the initializer’s parameter has a different name.

Now that you have added this initializer, you may notice that the toolbar is indicating that there is a
compiler error. (As before, if the error does not appear automatically, try to run the program.) Click on
the error icon to jump to the issue navigator, and you will find that it is in main.swift. Switch to this
file to examine the error.

Your previous use of Zombie() to get an instance of this class is no longer satisfying the compiler. The
error states: Missing argument for parameters 'town', 'monsterName' in call, signifying that
the compiler is expecting Zombie’s initializer to include parameters for town and monsterName.

This expectation may seem strange, because you did not provide an initializer to the Zombie class that
required those parameters. In fact, you have provided no initializer to this class whatsoever. Instead,
you have been relying on the empty initializer the compiler gives you for free when your properties
have default values.

That is the source of the error: Zombie no longer gets the free empty initializer that you were using
earlier. Why not? Automatic initializer inheritance.

Initialization and class inheritance

225

Automatic initializer inheritance
Classes do not typically inherit their superclass’s initializers. This feature of Swift is intended to
prevent subclasses from inadvertently providing initializers that do not set values on all the properties
of the subclass type, because subclasses frequently add properties that do not exist in the superclass.
Requiring subclasses to have their own initializers helps prevent types from being partially initialized
with incomplete initializers.

Nonetheless, there are circumstances in which a class does automatically inherit its superclass’s
initializers. If your subclass provides default values for all new properties it adds, then there are two
scenarios in which it will inherit its superclass’s initializers:

• If the subclass does not implement any designated initializers, it will inherit its superclass’s
designated initializers.

• If the subclass provides all its superclass’s designated initializers – either by overriding or by
inheriting them – it will inherit all the superclass’s convenience initializers.

Your Zombie type falls within the first of these two scenarios. It is inheriting the Monster type’s sole
designated initializer because it provides default values for all new properties it adds and does not
define its own designated initializer. And because the Zombie type is inheriting an initializer, the
compiler is no longer providing the free empty initializer you were using before.

The signature for the initializer Zombie inherits is init(town:monsterName:), with parameters
for town and monsterName. Update fredTheZombie’s initialization in main.swift to include these
parameters and remove the error.

Listing 17.9 Updating fredTheZombie’s initialization (main.swift)
...
let fredTheZombie = Zombie(town: myTown, monsterName: "Fred")
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()
...

Now, when you create an instance of the Monster or Zombie type, you give the instance a value for its
town and name properties. Build and run the application. The errors should be gone, and the results are
the same as before.

Designated initializers for classes
Classes use designated initializers as their primary initializers. As part of this role, designated
initializers are responsible for ensuring that the class’s properties are all given values before
initialization is ended. If a class has a superclass, then its designated initializer must also call its
superclass’s designated initializer.

You have already written a designated initializer for the Monster class:

 init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
 }

Chapter 17 Initialization

226

The Monster class’s initializer ensures that all its properties are given values before initialization
completes. Currently, the Zombie type gives default values to all its properties (except the ones
inherited from Monster). So the initializer you defined for Monster works fine for Zombie.

Still, it would be better if Zombie defined its own initializer so that you could customize its
initialization.

In Zombie.swift, start by removing the default values for Zombie’s properties.

Listing 17.10 Removing default values (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp = true
 var walksWithLimp: Bool
 private(set) var isFallingApart = false
 private(set) var isFallingApart: Bool
 ...
}

Removing these default values triggers a compiler error: Class 'Zombie' has no initializers.
With no default values assigned, the Zombie class needs an initializer to give its properties values
before initialization completes.

Add a new initializer to the Zombie class to solve this problem.

Listing 17.11 Adding a zombie initializer (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp: Bool
 private(set) var isFallingApart: Bool

 init(limp: Bool, fallingApart: Bool, town: Town?, monsterName: String) {
 walksWithLimp = limp
 isFallingApart = fallingApart
 super.init(town: town, monsterName: monsterName)
 }

 func regenerate() {
 walksWithLimp = false
 }
 ...
}

Your new initializer takes care of the error, because you are now ensuring that the Zombie’s properties
have values by the end of initialization. There are two parts to what you have added here. First, the
new initializer sets the values of the walksWithLimp and isFallingApart properties via the limp
and fallingApart arguments. These properties are specific to the Zombie class, so the designated
initializer initializes them with appropriate values.

Initialization and class inheritance

227

Second, you call the designated initializer of Zombie’s superclass. As you saw in Chapter 15,
super points to a subclass’s superclass. So the syntax super.init(town: town, monsterName:
monsterName) passes the values of the parameters town and monsterName from the initializer on the
Zombie class to the designated initializer on the Monster class. This, in turn, calls the designated
initializer on Monster, which will ensure that the Zombie’s properties for town and name will be set.

Figure 17.2 shows this relationship graphically.

Figure 17.2 Calling super.init

You might be wondering why you called the superclass’s initializer last. Because Zombie’s initializer
is the designated initializer on the Zombie class, it is responsible for initializing all the properties it
introduced. After these properties have been given values, the designated initializer of a subclass is
responsible for calling its superclass’s initializer so that it can initialize its properties.

There is a new error to fix in main.swift. Switch to this file, and you will see that the compiler is
telling you that the initializer for Zombie is missing an argument. Fix this by updating fredTheZombie’s
initializer to include all the arguments in the initializer you added to Zombie.

Listing 17.12 Does Fred walk with a limp? Is he falling apart? (main.swift)
...
let fredTheZombie = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
...

fredTheZombie is now getting initialized with all the information that it needs to be ready for use.

Chapter 17 Initialization

228

Convenience initializers for classes
Unlike designated initializers, convenience initializers are not responsible for making sure all of a
class’s properties have a value. Instead, they do the work that they are defined to do and then hand off
that information to either another convenience initializer or a designated initializer.

All convenience initializers call across to another initializer on the same class. Eventually, a
convenience initializer must call through to its class’s designated initializer. The relationship between
convenience and designated initializers defines a path by which a class’s stored properties receive
initial values.

Make a convenience initializer on the Zombie type. This initializer will provide arguments for whether
the Zombie instance walks with a limp and whether the instance is falling apart. It will omit parameters
for town and monsterName; callers of this initializer will only be responsible for providing arguments to
this initializer’s parameters.

Listing 17.13 Using a convenience initializer (Zombie.swift)
...
init(limp: Bool, fallingApart: Bool, town: Town?, monsterName: String) {
 walksWithLimp = limp
 isFallingApart = fallingApart
 super.init(town: town, monsterName: monsterName)
}

convenience init(limp: Bool, fallingApart: Bool) {
 self.init(limp: limp, fallingApart: fallingApart, town: nil, monsterName: "Fred")
 if walksWithLimp {
 print("This zombie has a bad knee.")
 }
}
...

You mark an initializer as a convenience initializer with the convenience keyword. This keyword
tells the compiler that the initializer will need to delegate to another initializer on the class, eventually
calling to a designated initializer. After this call, an instance of the class is ready for use.

Here, the convenience initializer calls the designated initializer on the Zombie class. It passes in
the values for the parameters it received: limp and fallingApart. For town and monsterName, the
parameters that the convenience initializer did not receive values for, you pass nil and "Fred" to
Zombie’s designated initializer.

After the convenience initializer calls the designated initializer, the instance is fully prepared for use.
That means you can check the value of the walksWithLimp property on the instance. If you had tried
to do this check before calling across to the Zombie’s designated initializer, the compiler would have
issued an error: Use of 'self' in delegating initializer before self.init is called.
This error tells you that the delegating initializer is trying to use self, which is needed to access the
walksWithLimp property, before it is ready for use.

Initialization and class inheritance

229

Figure 17.3 shows the relationships between the convenience and designated initializers.

Figure 17.3 Initializer delegation

You can now create instances of the Zombie type with this convenience initializer. But remember that
instances of Zombie created with this convenience initializer will have nil for the town property and
"Fred" for the name property. Switch to main.swift and use it to create an instance.

Listing 17.14 Creating a convenient zombie (main.swift)
...
let fredTheZombie = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

var convenientZombie = Zombie(limp: true, fallingApart: false)
...

Build and run your program, and you will see that convenientZombie has a bad knee, but
fredTheZombie does not.

Chapter 17 Initialization

230

Required initializers for classes
You have learned that sometimes an initializer is inherited by a subclass, and sometimes it is not,
depending on which other initializers the subclass may have implemented. But what if you want to be
able to create instances of a class and all its subclasses with the same initializer? You can require that
subclasses provide a specific initializer, if it is not inherited.

For example, suppose you want all subclasses of the Monster class to provide an initializer that takes
values for the monster’s name and the town it is terrorizing (or nil, if the monster has not yet found a
town). To do so, you mark the initializer with the keyword required to indicate that all subclasses of
this type must provide the given initializer, either by overriding or inheriting it.

Switch to Monster.swift to make this change.

Listing 17.15 Making town and monsterName required (Monster.swift)
class Monster {
 ...
 required init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
 }
 ...
}

The sole designated initializer on the Monster class is now required. Subclasses must override or
inherit this initializer.

Build your program to check for errors. This change creates a compiler error, as revealed by Xcode’s
toolbar. Select the red icon to display the issue navigator and see what is wrong. The error reads
'required' initializer 'init(town:monsterName:)' must be provided by subclass of
'Monster'. It is telling you that you are not yet implementing the required initializer on the Zombie
class.

Because Zombie defines its own designated initializer, it does not inherit any of its superclass's
designated initializers, including required ones. You must now override it yourself. Navigate to
Zombie.swift to implement the initializer.

Listing 17.16 Adding the required initializer (Zombie.swift)
...
convenience init(limp: Bool, fallingApart: Bool) {
 self.init(limp: limp, fallingApart: fallingApart, town: nil, monsterName: "Fred")
 if walksWithLimp {
 print("This zombie has a bad knee.")
 }
}

required init(town: Town?, monsterName: String) {
 walksWithLimp = false
 isFallingApart = false
 super.init(town: town, monsterName: monsterName)
}
...

Deinitialization

231

To implement a superclass’s required initializer, you prefix the subclass’s implementation of the
initializer with the required keyword. Unlike other functions that you must override if you inherit
them from your superclass, you do not mark required initializers with the override keyword. It is
implied by marking the initializer with required.

Your implementation of this required initializer makes it a designated initializer for the Zombie class.
Why, you ask? Good question.

Recall that designated initializers are responsible for initializing the type’s properties and for
delegating up to the superclass’s initializer. This implementation does exactly those two things. You
can therefore use this initializer to instantiate the Zombie class.

At this point, you might be wondering, “How many designated initializers does Zombie have?” The
answer is two: init(limp:fallingApart:town:monsterName:) and init(town:monsterName:).
Having more than one designated initializer is completely fine and is not uncommon.

Deinitialization
Deinitialization is part of the process of removing instances of a class from memory when they are no
longer needed. Conceptually, it is the opposite of initialization. Deinitialization is limited to reference
types; it is not available for value types.

In Swift, a deinitializer provides an opportunity to do any final maintenance before the instance is
deallocated. It is called automatically, immediately prior to the removal of an instance from memory. If
the class is a subclass, then the superclass's deinitializer will execute next, and on up the chain, before
the instance's deallocation.

The details of memory management are covered in greater detail in Chapter 24, but it makes sense to
introduce the idea of deinitialization while we are discussing initialization.

A class can only have one deinitializer. Deinitializers are written with deinit; they do not use the func
keyword or an argument list, as they are not like methods - you cannot call them directly. Let’s see a
deinitializer in action in the Zombie class.

Listing 17.17 One less zombie (Zombie.swift)
...
required init(town: Town?, monsterName: String) {
 walksWithLimp = false
 isFallingApart = false
 super.init(town: town, monsterName: monsterName)
}

deinit {
 print("Zombie \(name) is no longer with us.")
}
...

Your new deinitializer simply logs a farewell to the Zombie instance that is about to be deallocated
from memory. Notice that the deinitializer accesses the Zombie’s name. Deinitializers have full access
to an instance’s properties and methods.

Open main.swift. To exercise the Zombie’s deinit method, you are going to set fredTheZombie to be
nil at the end of the file. Doing so will trigger the process of removing this instance from memory.

Chapter 17 Initialization

232

There are some other changes you will need to make before you can wave goodbye to fredTheZombie.
You need to declare fredTheZombie with var instead of let so that the instance can become nil. Also,
because only optional types can be or become nil in Swift, you have to declare fredTheZombie as
an optional – Zombie?. And this change means that you have to use optional chaining to unwrap the
optional’s value.

Listing 17.18 Fred, we hardly knew ye (main.swift)
...
let var fredTheZombie: Zombie? = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
fredTheZombie fredTheZombie?.terrorizeTown()
fredTheZombie fredTheZombie?.town?.printDescription()

var convenientZombie = Zombie(limp: true, fallingApart: false)

print("Victim pool: \(fredTheZombie String(describing: fredTheZombie?.victimPool))")
fredTheZombie fredTheZombie?.victimPool = 500
print("Victim pool: \(fredTheZombie String(describing: fredTheZombie?.victimPool))")
print(Zombie.spookyNoise)
if Zombie.isTerrifying {
 print("Run away!")
}
fredTheZombie = nil

You created new strings using the String(describing:) method when printing here. This is because
the print() function does not like to accept optional input, but optional chaining produces optional
return values. The String(describing:) string initializer safely creates a new string for the print()
function.

Build and run the program now to double-check that your parentheses are balanced correctly after the
last change. You will see that you bid fredTheZombie farewell when the instance is deallocated.

Failable Initializers
Sometimes it is useful to define a type whose initialization can fail at runtime. For example, imagine
defining a struct to model a combination lock, such as what someone might put on their luggage. You
would want to ensure that every new instance was initialized with a four-digit integer combination,
0000 through 9999, as its argument.

Checking that the passed-in combination is valid must happen when the program is running.
What should the initializer do if the combination is invalid? One solution is to return nil from the
initialization process.

In these cases, you need a way to report to the caller that you were not able to initialize the instance.
You use failable initializers to handle these scenarios.

A failable Town initializer

233

A failable Town initializer
Failable initializers return an optional instance of the type. To indicate that an initializer is failable, you
add a question mark to the init keyword: init?.

You can also use an exclamation point after init to create a failable initializer that returns an implicitly
unwrapped optional: init!. Returning an implicitly unwrapped optional allows you to avoid optional
unwrapping syntax - but remember that Swift provides that syntax to make optionals safe to use. So be
cautious about returning implicitly unwrapped optionals.

If an instance of Town is being created with a population of 0, then initialization should fail – you
cannot have a town without a population. Open main.swift and change the initialization of myTown to
have a value of 0 for its population parameter.

Listing 17.19 myTown, population zero (main.swift)
var myTown = Town(population: 10_000 0, stoplights: 6)
myTown.printDescription()
...

This does not cause an error – yet. Switch to Town.swift to give the Town struct a failable initializer.

Town has two initializers. Remember that you delegated from the init(population:stoplights:)
initializer to the init(region:population:stoplights:) initializer in this type. For now, just make
the init(region:population:stoplights:) failable.

Listing 17.20 Using a failable initializer (Town.swift)
struct Town {
...
 init init?(region: String, population: Int, stoplights: Int) {
 guard population > 0 else {
 return nil
 }
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
 }
...
}

You now use the failable initializer syntax in init?(region:population:stoplights:). After this
declaration, you check whether the given value for population is greater than 0. If it is not, then you
return nil and the initializer fails. In the context of failable initializers, “fail” means that the initializer
will create an optional instance of the Town type with a value of nil. This is good. It is preferable to
have an instance set to nil rather than an instance with bad data in its properties.

At this point, you should notice a few errors in your program. (Build your program if you do not. You
can build without running using Product → Build or Command-B.) Take a moment to consider what is
going on before you run the program.

The initializer init(population:stoplights:) currently delegates to a failable initializer.
This suggests that init(population:stoplights:) may get nil back from the designated
initializer. Receiving nil back from the designated initializer would be unexpected, because
init(population:stoplights:) is not failable itself.

Chapter 17 Initialization

234

Fix this problem by also making init(population:stoplights:) a failable initializer.

Listing 17.21 Making both Town initializers failable (Town.swift)
struct Town {
...
 init?(region: String, population: Int, stoplights: Int) {
 guard population > 0 else {
 return nil
 }
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
 }

 init init?(population: Int, stoplights: Int) {
 self.init(region: "N/A", population: population, stoplights: stoplights)
 }
...
}

Now try to run the program, and you will see that there are still a number of errors that you have to fix.
You can find these errors in main.swift.

The line myTown.printDescription() has an error that reads: Value of optional type 'Town?'
must be unwrapped to refer to member 'printDescription' of wrapped base type 'Town'.
Remember that making the initializers on the Town struct failable means that they now return optionals:
Town? instead of Town. That means you have to unwrap the optionals before using them.

Use optional chaining to fix the errors in main.swift. Also, use String(describing:) to print the
information about a town instance.

Listing 17.22 Using optional chaining (main.swift)
var myTown = Town(population: 0, stoplights: 6)
myTown myTown?.printDescription()
let myTownSize = myTown myTown?.townSize
print(String(describing: myTownSize))
myTown myTown?.changePopulation(by: 1_000_000)
print("Size: \(myTown String(describing: myTown?.townSize));
 population: \(myTown String(describing: myTown?.population))")
...

Note that the last print() statement should be all on one line in your code.

As you can see, representing nil in Swift tends to have a fairly extensive impact on your code. These
changes can add complexity and more code to your project. Both increase the chances of making a
troublesome mistake.

We recommend that you minimize your use of optionals to those cases in which you absolutely need
them.

Build and run the program now. You removed the errors, so the project runs fine.

Aside from some of your print statements printing nil now, you are also missing a print statement
in your output. Because myTown is nil, the optionally chained call to printDescription() does not
happen at all.

Initialization Going Forward

235

It is time to say farewell to MonsterTown. For the next several chapters, you will move back to Swift
playgrounds to focus on a some specific language features. If you are itching to work on more projects,
fear not! There are more projects to come.

Initialization Going Forward
“How am I going to remember all this?” We hear you. Initialization in Swift is a very defined process
with a lot of rules - rules that even longtime Swift developers frequently forget. Thankfully, the
compiler will remind you of what you need to do to comply and write a valid initializer.

Rather than memorizing all the rules of initialization, it is useful to think of Swift initialization in terms
of value types and classes.

For value types, such as structs, initialization is principally responsible for ensuring that all the
instance’s stored properties have been initialized and given appropriate values.

That statement is true for classes as well, but class initialization is a bit more complicated due to
classes' inheritance relationships. It can be thought of as unfolding in two sequential phases.

In the first phase, a class’s designated initializer is eventually called (either directly or by delegation
from a convenience initializer). At this point, all the properties declared on the class are initialized with
appropriate values inside the designated initializer’s definition.

Next, a designated initializer delegates up to its superclass’s designated initializer. The designated
initializer on the superclass then ensures that all its own stored properties are initialized with
appropriate values, which is a process that continues until the class at the top of the inheritance chain is
reached. The first phase is now complete.

The second phase begins, providing an opportunity for a class to further customize the values held by
its stored properties. For example, a designated initializer can modify properties on self after it calls
to the superclass’s designated initializer. Designated initializers can also call instance methods on self.
Finally, initialization reenters the convenience initializer, providing it with an opportunity to perform
any customization on the instance.

The instance is fully initialized after these two phases, and all its properties and methods are available
for use.

The goal of this very definite initialization process is to guarantee the successful initialization of a
class. The compiler secures this procedure and will issue errors if you do not adhere to any step in
the process. In the end, it is not important that you remember each step in the process so long as you
follow the compiler’s guidance. Over time, the details of initialization will become more secure in your
mind.

Chapter 17 Initialization

236

Silver Challenge
Currently, the required initializer on the Monster class is implemented as a designated initializer on
the Zombie subclass. Make this initializer a convenience initializer on the Zombie class instead. This
change will involve delegating across the Zombie class to its designated initializer.

Gold Challenge
The Monster class can be initialized with any String instance for the monsterName parameter,
even an empty String. Doing so would lead to an instance of Monster with no name. Even though
Frankenstein’s monster had no name, you want all of yours to be individually identified. Fix this
problem in the Monster class by ensuring that monsterName cannot be empty.

Your solution will involve giving Monster a failable initializer. Note that this change will have an
impact on initialization in the Zombie subclass. Make the necessary adjustments in this class as well.

For the More Curious: Initializer Parameters

237

For the More Curious: Initializer Parameters
External parameter names distinguish between the parameter names available to callers and the local
parameter names used in a function’s implementation. Because initializers follow different naming
conventions than other functions (initializers are always init), the parameters’ names and types
help determine which initializer should be called. So Swift provides external parameter names for all
initializer parameters by default.

You can also provide your own external parameter names as needed. For example, imagine a
WeightRecordInLbs struct that should be able to be initialized with kilograms.

 struct WeightRecordInLbs {
 let weight: Double

 init(kilograms kilos: Double) {
 weight = kilos * 2.20462
 }
 }

This initializer supplies kilograms as an explicit external parameter and gives kilos as a local
parameter. In its implementation, you convert kilos to pounds by multiplying it by the conversion
factor. You would then use this initializer like so: let wr = WeightRecordInLbs(kilograms: 84).

You can also use _ as an explicit external parameter name if you do not want to expose a parameter
name. For example, the WeightRecordInLbs struct obviously defines a weight record in terms of
pounds. So it would make sense for the initializer to default to taking pounds in its argument.

 struct WeightRecordInLBS {
 let weight: Double

 init(_ pounds: Double) {
 weight = pounds
 }

 init(kilograms kilos: Double) {
 weight = kilos * 2.20462
 }
 }

The new initializer can be used like so: let wr = WeightRecordInLbs(185). Because this type
explicitly represents a weight record in pounds, there is no need for a named parameter in the argument
list. Using _ can make your code more concise and is convenient when it is clear what will be passed in
to the argument.

239

18
Value vs Reference Types

This chapter reviews and builds on the lessons you have been learning about value types (structs and
enums) and reference types (classes). You will explore the differences between the two by comparing
their differing behaviors in a variety of scenarios. At the end of this chapter, you should have a good
understanding of when to use a value type or a reference type.

Value Semantics
Create a new macOS playground called ValueVsRefs. Your playground has the usual template code:

 import Cocoa

 var str = "Hello, playground"

You have seen this code many times before: You have a mutable instance of type String set to the
value "Hello, playground". Make a new string by giving the value of str to another instance.

Listing 18.1 Making a new string
import Cocoa

var str = "Hello, playground" "Hello, playground"
var playgroundGreeting = str "Hello, playground"

playgroundGreeting has the same value as str. They both hold the string "Hello, playground",
which you can verify in the results sidebar. But what happens when you change the value of
playgroundGreeting? Will it also change the value of str? Change playgroundGreeting to find out.

Listing 18.2 Updating playgroundGreeting
var str = "Hello, playground" "Hello, playground"
var playgroundGreeting = str "Hello, playground"
playgroundGreeting += "! How are you today?" "Hello, playground! How...
str "Hello, playground"

As you can see, even though playgroundGreeting’s value has been updated, str’s value has not
changed. Why not? The answer has to do with value semantics.

Chapter 18 Value vs Reference Types

240

To better understand value semantics, Option-click on playgroundGreeting. You should see the pop-
up shown in Figure 18.1.

Figure 18.1 playgroundGreeting information

The pop-up shows that playgroundGreeting is of type String – no surprise there. Click on the word
“String” in the pop-up to open the documentation for the String type (Figure 18.2).

Figure 18.2 String documentation

Value Semantics

241

Scroll down to the section called Modifying and Comparing Strings, and you will see that Strings
in Swift always have value semantics. And, as you saw in Chapter 15, types with value semantics are
copied when they are assigned to an instance or passed as an argument to a function.

When you assigned str’s value to be equal to playgroundGreeting’s value, you gave a copy
of str’s value to playgroundGreeting. They are not the same instance. So when you changed
playgroundGreeting’s value, it had no impact on str’s value. Figure 18.3 shows this relationship
graphically.

Figure 18.3 Value semantics and copy behavior

Swift’s basic data types – Array, Dictionary, Int, String, and so on – are all implemented as structs,
so they are all value types. This design choice made at the level of the standard library should indicate
to you how important value types are to Swift. You should first consider modeling your data with a
struct and only use a class if needed.

Let’s look at how reference semantics work to get a better understanding of when it is appropriate to
use them.

Chapter 18 Value vs Reference Types

242

Reference Semantics
Reference semantics work differently than value semantics. With value types, you get a copy of the
instance when you assign it to a new constant or variable. The same is true when you pass an instance
of a value type as the argument to a function. But for an instance of a reference type, these two actions
create an additional reference to the same underlying instance.

To see what this means, you are going to model a company and its employees, who for some reason
have a hard time keeping their employee IDs straight. Add a new class to the playground to model a
company’s employee:

Listing 18.3 Adding an Employee class
...
playgroundGreeting += "! How are you today?" "Hello, playground! How...
str "Hello, playground"

class Employee {
 var id: Int = 0
}

The class Employee is small – it supplies a single stored property to hold on to the employee’s ID
number. Make a new instance of this class.

Listing 18.4 Making an employee
...
class Employee {
 var id: Int = 0
}
let anika = Employee() Employee

You now have a new instance of Employee with the id 0.

Some other employees only know Anika as “the boss.” Make a new constant called theBoss and assign
anika to it.

Listing 18.5 Getting a reference to an employee
...
class Employee {
 var id: Int = 0
}
let anika = Employee() Employee
let theBoss = anika Employee

Uh oh! Anika’s employee ID is 16, not 0. At this point, you have two constants – but they both point to
the same instance of the Employee class. Update anika’s ID to see this.

Listing 18.6 Changing an employee’s ID
...
let anika = Employee() Employee
let theBoss = anika Employee

anika.id = 16 Employee
anika.id 16
theBoss.id 16

Reference Semantics

243

The code in Listing 18.6 changes anika’s ID and leaves theBoss’s ID alone. But the id property for
both of them has changed to 16, as shown in the results sidebar.

The code Employee() created an instance of the Employee class. When you assign an instance of a
class to a constant or variable, as you did with anika, that constant or variable gets a reference to the
instance. And, as you can see, a reference works differently than a copy.

With a reference, the constant or variable refers to an instance of the class in memory. And because
theBoss is set to equal anika, both constants refer to the same instance of the Employee class.
Figure 18.4 shows this relationship.

Figure 18.4 Reference semantics

Because anika and theBoss refer to the same instance of Employee, you can use either reference to
make changes to the shared instance. Using one reference to set the id and the other reference to get
the id will access the same ID of the same Employee.

This does not mean that all references always refer to a single, shared instance; you can make more
instances and references to them using the constructor syntax (Employee()).

In terms of size, on all modern Apple platforms a reference type variable is always 64 bits (8 bytes), no
matter what kind of object it refers to. You might have a reference to a large class instance packed with
500 Int properties adding up to 4 kilobytes of memory, but your reference is still only 8 bytes, and the
actual 4 kilobyte instance is somewhere else, managed by the system.

Contrast that with a struct instance being passed around with 500 integers inside it. Every time that
struct instance is passed, 4 more kilobytes are allocated to hold the new copy of the struct. This might
sound like structs are inefficient. But if you can keep them relatively small, they can be much more
memory- and processor-efficient than classes. (Also, this is a slightly simplified description of value
types’ copying behavior. You can learn more of the details in the For the More Curious section at the
end of this chapter.)

You will learn more about weighing the use of value and reference types toward the end of this chapter,
after you have learned more about their differences.

Chapter 18 Value vs Reference Types

244

Constant Value and Reference Types
Value and reference types behave differently when they are constants. To model a list of employees
who work together, define a new struct called Company.

Listing 18.7 Making the Company
...
anika.id = 16 Employee
anika.id 16
theBoss.id 16

struct Company {
 var boss: Employee
}

Your new Company struct has one stored property to reflect the Employee in charge. Companies change
over time, so you made this property mutable with var.

Create a new instance of Company with anika as its boss.

Listing 18.8 Anika’s Company
...
struct Company {
 var boss: Employee
}
let acme = Company(boss: anika) Company

You now have acme, an instance of Company with anika at its head. Note that this instance is created
with let, so it is a constant. Try to change acme’s boss property.

Listing 18.9 A new boss
...
struct Company {
 var boss: Employee
}
let acme = Company(boss: anika) Company
let mel = Employee() Employee
acme.boss = mel

First, you create a new instance of Employee named mel. Second, you assign that new instance to the
boss property on acme. You should see a compiler error on that line: Cannot assign to property:
'acme' is a 'let' constant.

This error is telling you that acme is an immutable instance, which means you cannot change it. Value
types that are declared as constants cannot have their properties changed, even if those properties are
declared with var in the type’s implementation. Mel’s mutiny has failed.

Constant Value and Reference Types

245

Remove the assignment to the boss property to silence the compiler error. Leave mel alone; you will be
using him in the next example.

Listing 18.10 Demoting Mel
...
struct Company {
 var boss: Employee
}
let acme = Company(boss: anika) Company
let mel = Employee() Employee
acme.boss = mel

Mutability works differently for reference types. Imagine that, due to a human resources mix-up, Mel’s
employee ID must be changed. Try to change the id property on mel.

Listing 18.11 Changing Mel’s ID
...
struct Company {
 var boss: Employee
}
let acme = Company(boss: anika) Company
let mel = Employee() Employee
mel.id = 86 Employee
mel.id 86

Despite mel being declared with let, you will see that the compiler is absolutely fine with this id
change.

Why can’t you change the value of a property on a constant that is an instance of a value type, but you
can change the value of a property on a constant that is an instance of a reference type?

Because mel is an instance of a reference type, it refers to the instance of Employee that was made via
this code: Employee(). When you change the value that the id property stores, you are not actually
changing the mel variable, because it is just a reference to an Employee.

Because you made id a mutable stored property when you defined the Employee class (via its var
declaration), you are free to change id’s value however much you like. No matter how many times you
change mel’s id, mel still refers to the same instance. The thing you cannot do is set the mel variable to
refer to a different instance of Employee, because that would be changing the variable itself, which is
disallowed by your use of let.

Chapter 18 Value vs Reference Types

246

Using Value and Reference Types Together
You may be wondering, “Can I put a value type inside a reference type? Can I put a reference type
inside a value type?” The answer to both of these questions is “Yes,” and you did the latter by adding
a property of type Employee to Company. However, although we led you to do this without warning,
you must be very careful about using a reference type inside a value type. (Using a value type inside a
reference type does not present any particular problems.)

Suppose that Acme Co. is restructured as Widget Co., and, in the process of reviewing employee
records, Anika realizes that she is actually employee number 15, not 16.

Listing 18.12 Fixing Anika’s ID
...
mel.id = 86 Employee
mel.id 86

acme.boss.id 16
let widgetCo = acme Company
anika.id = 15 Employee
widgetCo.boss.id 15

When you log the value of acme.boss.id, the results sidebar bar shows 16. You next assign a copy
of acme to a new constant named widgetCo. Remember that Company is a value type, so you should
expect widgetCo to receive a copy of acme. Then you update anika’s ID to 15. Last, you check the id
of widgetCo’s boss and get a surprise.

The boss’s ID is now 15, reflecting the change made to anika’s ID. How did this happen?

Remember that the boss property is of type Employee. Employee is a class, and is therefore a reference
type. Even though Company is a value type, it can have properties of reference types like Employee, and
they are still only references.

This example demonstrates the complications of placing a reference type within a value type. You
should expect instances of value types to be copied when they are assigned to a new variable or
constant or passed in to a function. But a value type with a reference type in a property will pass a
reference to the same instance to the new variable or constant. Changes made to that instance via the
property of any one of the constants or variables will be reflected in all of them.

To avoid this confusion, you should generally avoid using reference type properties inside value types.
If you find yourself needing a reference type property in your struct, then it is best to use an immutable
instance.

Copying

247

Copying
The concept of making copies has been lurking behind nearly every topic covered in this chapter.
Developers often want to know if copying an instance yields a shallow or a deep copy. Swift does not
provide any language-level support for making a deep copy, which means copies in Swift are shallow.

To get a sense of what these concepts mean, let’s look at an example. Imagine that Widget Co. hires a
new employee. Create a new instance of Employee and put all instances into an array.

Listing 18.13 Adding a new employee
...
let juampa = Employee() Employee

let employees = [anika, mel, juampa] [{id 15}, {id 86}, {id 0}]

You create a new employee named juampa and add that instance, anika, and mel to a new array. The
sidebar shows the array with the three Employees, identified by their ids.

While adding everyone to the invitation list for a company party, Anika discovers that Juampa’s ID
was not entered correctly. Make a copy of the employees array, update juampa’s id, and compare
employees to its copy.

Listing 18.14 Copying employees
...
let juampa = Employee()

let employees = [anika, mel, juampa] [{id 15}, {id 86}, {id 0}]
let partyGoers = employees [{id 15}, {id 86}, {id 0}]
employees.last?.id = 4 ()
employees [{id 15}, {id 86}, {id 4}]
partyGoers [{id 15}, {id 86}, {id 4}]

The last property refers to the last element in an array. It is optional, because the array may be empty,
so you use optional binding to access juampa’s id in employees.last?.id = 4.

Arrays are structs, which means that they are value types. So you might expect that partyGoers is a
distinct copy of employees. But employees and its copy, partyGoers, have the same contents after you
change juampa’s id property. Why did changing the ID of the last employee in the employees array
change the ID of the last employee in partyGoers?

Remember that employees contains instances of Employee (a reference type). So the partyGoers and
employees arrays have references to the same instances of Employee. This is very similar to acme and
widgetCo sharing references to an Employee.

Putting it all together, last will get the last element in the employees array, which is juampa – an
instance of Employee. When you change the ID, you are changing it for the instance of Employee that
juampa refers to. Thus, the change to juampa is reflected in both arrays.

Chapter 18 Value vs Reference Types

248

This form of copying is referred to as shallow copying. Shallow copying does not traverse references:
A shallow copy of a value type copies the value. A shallow copy of a reference type copies the
reference. This is what you have come to expect of the assignment operator in Swift, and Figure 18.5 is
a graphical visualization of it.

Figure 18.5 Shallow copy of an array of employees

A deep copy, on the other hand, would duplicate the instance at the destination of a reference. That
would mean that the indices of the partyGoers array would not reference the same instances of
Employee. Instead, a deep copy of employees would create a new array with references to its own
instances of Employee. That form of copying would look something like Figure 18.6.

Figure 18.6 Deep copy of an array of employees

Swift does not supply any means to perform a deep copy, but these are common terms used by
developers discussing data modeling needs, so we present the ideas to you here. If you would like this
behavior, then you will need to make it yourself.

Equality vs Identity

249

Equality vs Identity
Now that you understand the difference between value and reference types, you are ready to learn
about equality and identity. Equality refers to two instances having the same values for their observable
characteristics, such as two instances of the String type that have the same text. Take a look at this
sample code.

 let x = 1
 let y = 1
 x == y // true

Two constants, x and y, are created. They are both of type Int and hold on to the same value, 1. Not
surprisingly, the equality check, done via ==, evaluates to true. This makes sense because x and y hold
on to exactly the same value.

This is exactly what we want to know from an equality check: Do two instances have the same value?
All Swift’s basic data types (String, Int, Float, Double, Array, Set, and Dictionary) can be checked
for equality.

Identity, on the other hand, refers to whether two references point to the same instance in memory.
You can check two instances of Employee for identity because they are both reference types. In your
playground, check for identity on two new instances using the identity operator (===) to see whether
they point to the same instance.

Listing 18.15 Checking for identity
...
acme.boss === anika true

Here, the identity check succeeds, not because the boss of Acme has the same properties as anika, but
because the boss of Acme is anika. The boss property of the acme Company is a reference to the same
instance that anika is a reference to.

Now try an identity check between new instances of Employee:

Listing 18.16 Another identity check
...
acme.boss === anika true
let joe = Employee() Employee
let sam = Employee() Employee
joe === sam false

This identity check fails because joe and sam are not references to the same instance, even though they
have the same employee ID (0).

Chapter 18 Value vs Reference Types

250

What if you want to check for identity on x and y? You might think you could use the identity operator,
as in x === y. But this code will generate an error from the compiler. Why? The === operator exists to
check the memory address of instances referred to by reference type variables. Value type variables do
not store references, so an identity check would be meaningless.

What if you tried to check for equality on joe and sam, to see if they had the same properties? Try it.

Listing 18.17 Checking for equality on a custom type
let joe = Employee() Employee
let sam = Employee() Employee
joe === sam false
joe == sam

A compiler error tells you that it does not know how to call the == function on the Employee class.
If you want to check for equality on classes that you make, you have to teach your classes how by
implementing the == function. Doing so entails conforming to a protocol called Equatable, which you
will read about in Chapter 25.

You will return to this example in Chapter 25 to do just that. For now, remove the last line.

Listing 18.18 Removing the bad equality check
let joe = Employee() Employee
let sam = Employee() Employee
joe === sam false
joe == sam

It is important to realize that two constants or variables can be equal (i.e., they have the same values)
yet not be identical (i.e., they may point to different instances of a given type). But it does not work the
other way around: If two variables or constants point to the same instance in memory, then they will be
equal as well.

What Should I Use?

251

What Should I Use?
Structures and classes are well suited for defining many custom types. Before Swift, structs were so
distinct from classes in macOS and iOS development that the use-cases for both types were obvious. In
Swift, however, the functionality added to structs makes their behavior more similar to that of classes.
This similarity makes deciding which to use somewhat more complicated.

Still, there are important differences between structs and classes that give some guidance on which to
use when. Strict rules are hard to define, because there are many factors to consider, but here are some
general guidelines.

• If you want a type to be passed by reference, use a class. Doing so will ensure that the type is
referenced rather than copied when assigned or passed in to a function’s argument.

• If the type needs to support inheritance, then use a class. Structs do not support inheritance and
cannot be subclassed.

• Otherwise, you probably want a struct.

Structs are commonly used when modeling shapes (e.g., rectangles have a width and a height),
ranges (e.g., a race has a start and an end), and points in a coordinate system (e.g., a point in a two-
dimensional space has an x and y value). They are also great for defining data structures: The String,
Array, and Dictionary types are all defined as structs in Swift’s standard library.

There are some other cases in which you might want to use a class instead of a struct, but they will be
somewhat less common than the need for reference semantics or inheritance. For example, if you want
to take advantage of passing a reference around but do not want a class to be subclassed, you might ask
yourself whether you should use a struct (to avoid inheritance) or a class (to have reference semantics).
The answer here is to use a final class { ... }. Marking a class as final will prevent the class
from being subclassed and will also offer you the desired reference semantics for instances of the class.

In general, we suggest starting out with a struct unless you absolutely know you need the benefits of
a reference type. Value types are easier to reason about because you do not need to worry about what
happens to an instance when you change values on a copy.

Chapter 18 Value vs Reference Types

252

For the More Curious: Copy on Write
You might be wondering about the performance implications of Swift’s copying behavior. For example,
if you get a new copy of an Array every time you pass it in to a function or assign it to a new constant
or variable, won’t you have a wasteful number of copies floating about? What about very large arrays?

The answers depend on your data and how you are using it.

Swift’s standard library types use a strategy called copy on write to ensure that working with value
types is not wasteful. Copy on write, or COW, refers to the implicit sharing of value types’ underlying
storage. Instances of a value type do not immediately have their own copies of the data. They share
their underlying storage, with each instance maintaining its own reference to the store. If an instance
needs to mutate the storage, or write to it, then the instance gets its own distinct copy.

This allows value types to avoid creating copies of data unnecessarily.

To better understand this idea, you will create a very simple implementation of an array to hold
instances of type Int. This implementation will illustrate the concepts at hand, but it will fall short
of an actual implementation of Swift’s Array type. You will see how to create a more complete
implementation of a custom collection type in Chapter 21.

Figure 18.7 provides a sketch of how your IntArray will be implemented to support COW.

Figure 18.7 Diagram of IntArray

This kind of figure is called a structure diagram, and it uses something called Unified Modeling
Language (UML). UML provides a standardized language to describe and visualize a system in
software engineering. If the diagram is well formed, you should be able to look it and write its
corresponding code. Many of the conventions are intuitive, but there are a few special symbols. For
example, the - preceding buffer and copyIfNeeded() in IntArray’s description means that these
members of the struct are private.

IntArray will be a struct that has one property named buffer that is of type IntArrayBuffer. buffer
will be a private property, because you do not want your underlying storage to be visible externally.
IntArrayBuffer will be a class with one property named storage that is an array of integers. Your
buffer type will be private as well, because it is merely an implementation detail of IntArray, so it
should not be available externally either.

For the More Curious: Copy on Write

253

It may feel strange to use an array of integers as the storage. After all, aren’t you doing all this to
make an array that can store integers? Well, yes, but a more realistic implementation of an array would
use concepts covered later in the book. For now, the main point is that IntArrayBuffer serves as a
reference type modeling IntArray’s underlying storage.

IntArray will provide three public methods central to an array’s behavior: append(_:),
insert(_:at:), and remove(at:). IntArray will also have a describe() method so that you will be
able to observe changes to the underlying storage.

After you set up your initial implementation, you will add the private copyIfNeeded() method to
IntArray. This is where you will implement the COW behavior of your IntArray type.

It is time to implement your array and its underlying buffer. Create a new macOS playground and name
it IntArray. Begin by implementing your buffer class.

Listing 18.19 Implementing IntArrayBuffer
import Cocoa

var str = "Hello, playground"

fileprivate class IntArrayBuffer {
 var storage: [Int]

 init() {
 storage = []
 }

 init(buffer: IntArrayBuffer) {
 storage = buffer.storage
 }
}

IntArrayBuffer is a fileprivate class. This means that the class would need to locate its
implementation within the same file as IntArray. Because you are writing this code in a playground, it
will be visible to your array implementation.

The variable storage has the type [Int] and is initialized to be an empty array in the parameterless
initializer. You also supply an initializer that takes an IntArrayBuffer instance as an argument. This is
only added for convenience, as you will use it inside your IntArray implementation.

Chapter 18 Value vs Reference Types

254

Now it is time to write your IntArray type. Create a struct below your IntArrayBuffer class.

Listing 18.20 Initial implementation of IntArray
fileprivate class IntArrayBuffer {
 var storage: [Int]

 init() {
 storage = []
 }

 init(buffer: IntArrayBuffer) {
 storage = buffer.storage
 }
}

struct IntArray {
 private var buffer: IntArrayBuffer

 init() {
 buffer = IntArrayBuffer()
 }

 func describe() {
 print(buffer.storage)
 }
}

IntArray has a fairly small implementation at this point. It has a private property named buffer that is
of type IntArrayBuffer. This property maintains the backing storage for IntArray. You also include a
small initializer that takes no arguments and uses the empty initializer on IntArrayBuffer to set up the
array’s storage. Last, you provide a simple describe() method to print out the contents of the buffer’s
storage property. This will help you keep track of changes to the array so that you can see how COW
works.

For the More Curious: Copy on Write

255

Your implementation of IntArray is limited at this point. All it does is set up a buffer as its backing
storage. That is important work, but it leaves the array lacking its main features. You need to write
some methods to insert, append, and remove data from the array.

Listing 18.21 Defining IntArray’s API
...
struct IntArray {
 private var buffer: IntArrayBuffer

 init() {
 buffer = IntArrayBuffer()
 }

 func describe() {
 print(buffer.storage)
 }

 func insert(_ value: Int, at index: Int) {
 buffer.storage.insert(value, at: index)
 }

 func append(_ value: Int) {
 buffer.storage.append(value)
 }

 func remove(at index: Int) {
 buffer.storage.remove(at: index)
 }
}

The methods insert(_:at:), append(_:), and remove(at:) all call through to methods defined on
the Array type in the standard library. This is another value of using [Int] as the backing storage of
the buffer: While the buffer’s implementation is not quite realistic, it allows you to keep things simple
and focus on COW’s behavior.

Chapter 18 Value vs Reference Types

256

Exercise your new IntArray by creating an instance and adding some integers to it.

Listing 18.22 Exercising IntArray
...
struct IntArray {
 private var buffer: IntArrayBuffer

 init() {
 buffer = IntArrayBuffer()
 }

 func describe() {
 print(buffer.storage)
 }

 func insert(_ value: Int, at index: Int) {
 buffer.storage.insert(value, at: index)
 }

 func append(_ value: Int) {
 buffer.storage.append(value)
 }

 func remove(at index: Int) {
 buffer.storage.remove(at: index)
 }
}

var integers = IntArray()
integers.append(1)
integers.append(2)
integers.append(4)
integers.describe()

You create an instance of IntArray and use append(_:) to give a few values to the array. The console
prints the result: [1, 2, 4].

For the More Curious: Copy on Write

257

But your implementation of COW is not complete. Make a copy of integers and insert a new value
into the copy to see why.

Listing 18.23 Making a copy of IntArray
...
var integers = IntArray()
integers.append(1)
integers.append(2)
integers.append(4)
integers.describe()
var moreIntegers = integers
moreIntegers.insert(3, at: 2)
integers.describe()
moreIntegers.describe()

You create a new instance of IntArray named moreIntegers and set it to be equal to integers. Next,
you use the insert(_:at:) to insert the value 3 at index 2 to complete the sequence. Last, you call
describe() on both integers and moreIntegers to compare their storage.

Take a look at your console and you will see the problem. The two calls to describe() show that the
storage for both integers and moreIntegers contains the same data. Why did this happen? After all,
you defined IntArray to be a struct. Structs are supposed to be copied, right?

The problem is that IntArray uses a class as its backing storage. As you learned earlier in this chapter,
that means both integers and moreIntegers point to the same reference type holding their data. If
you change one of these arrays, the change is reflected in both, because the change is made to the
storage they share.

Chapter 18 Value vs Reference Types

258

It is fine for copies of integers to point to the same underlying storage as long as none of the copies
changes the shared data. But you need to ensure that the array’s data is copied when it needs to be
mutated. Implement a new method on IntArray called copyIfNeeded() to create a copy when an
instance needs to change.

Listing 18.24 Adding COW to IntArray
...
struct IntArray {
 private var buffer: IntArrayBuffer

 init() {
 buffer = IntArrayBuffer()
 }

 func describe() {
 print(buffer.storage)
 }

 private mutating func copyIfNeeded() {
 if !isKnownUniquelyReferenced(&buffer) {
 print("Making a copy of \(buffer.storage)")
 buffer = IntArrayBuffer(buffer: buffer)
 }
 }

 func insert(_ value: Int, at index: Int) {
 buffer.storage.insert(value, at: index)
 }

 func append(_ value: Int) {
 buffer.storage.append(value)
 }

 func remove(at index: Int) {
 buffer.storage.remove(at: index)
 }
}
...
integers.describe()
print("copying integers to moreIntegers")
var moreIntegers = integers
print("inserting into moreIntegers")
moreIntegers.insert(3, at: 2)
...

Here, you add a new method called copyIfNeeded(). This method is declared as mutating because it
creates a new instance of IntArrayBuffer and assigns it to IntArray’s buffer property. To do so, you
used the init(buffer:) initializer on IntArray that you created above. This initializer creates a new
buffer instance with the same set of values for its storage property as the previous buffer. You also
include a call to print() to log some information about the change to the console.

Note that a new buffer is only created if you need one. The conditional
(if !isKnownUniquelyReferenced(&buffer)) checks whether the buffer has only one reference to it.
(Pay no mind to the requirement that you pass buffer in to the function as an inout parameter. That is
only an implementation detail; the function does not actually modify the argument passed to it.)

For the More Curious: Copy on Write

259

If the buffer is referenced only once, then the function returns true. In that case, you do not want to
create a new instance, because you do not need one; there are no other instances sharing a reference
to the underlying data. On the other hand, if the buffer is not uniquely referenced, then that means
that the buffer’s storage is referenced by more than one instance of IntArray. Thus, changes to the
buffer will be reflected in all instances of this type. You make a new buffer in this case.

You also add some calls to print() so that you can log what is happening to the console. These logs
will help keep track of when the underlying buffer is copied. The buffer should only be copied when
a new value is inserted into moreIntegers with moreIntegers.insert(3, at: 2).

If you look at your console, you will see that no change has occurred. Both integers and
moreIntegers have the same values in their buffers. To see the benefit of copyIfNeeded(), you need
to call it within the mutating methods. This makes sense, because a mutating method changes the
instance it was called on, and you will therefore want to have a unique buffer for this instance.

Listing 18.25 Implementing COW in IntArray
...
struct IntArray {
 private var buffer: IntArrayBuffer

 init() {
 buffer = IntArrayBuffer()
 }

 func describe() {
 print(buffer.storage)
 }

 private mutating func copyIfNeeded() {
 if !isKnownUniquelyReferenced(&buffer) {
 print("Making a copy of \(buffer.storage)")
 buffer = IntArrayBuffer(buffer: buffer)
 }
 }

 mutating func insert(_ value: Int, at index: Int) {
 copyIfNeeded()
 buffer.storage.insert(value, at: index)
 }

 mutating func append(_ value: Int) {
 copyIfNeeded()
 buffer.storage.append(value)
 }

 mutating func remove(at index: Int) {
 copyIfNeeded()
 buffer.storage.remove(at: index)
 }
}
...

You mark the insert(_:at:), append(_:), and remove(at:) methods as mutating. These methods
now mutate the struct. How exactly could that happen?

Chapter 18 Value vs Reference Types

260

You have to use a new buffer when you want to mutate an instance. So every time you make a call to
insert, append, or remove some data from the instance’s storage, you need to create a new instance of
IntArrayBuffer if the existing instance is not uniquely referenced. In that case, copyIfNeeded() will
create a new instance of IntArrayBuffer and assign it to the IntArray’s buffer property. By adding
calls to copyIfNeeded() to these methods, you are telling the compiler that the methods can change a
property on the struct. (Refer back to Chapter 15 for a discussion on mutating.)

If you check the console, you will see that integers and moreIntegers no longer have the same
contents. The beauty of this strategy is that instances will share their underlying storage until they
need to be distinct. Copying an instance of IntArrayBuffer will not entail much overhead on memory
because copies point to the same storage until a change is made and the instances need to refer to their
own data.

You do not typically need to write your own COW types. Swift’s collections already provide COW. A
struct made up of arrays, dictionaries, and strings gets COW behavior for free, because its component
parts already implement it via the standard library. This discussion was meant to give you a sense of
how COW works and to alleviate any concern about memory pressure resulting from the copy behavior
of value types.

Part V
Advanced Swift

Swift provides advanced language features that give developers more sophisticated tools to control
their applications. This part of the book introduces concepts that will be essential to the more
experienced Swift developer. Protocols, extensions, and generics provide mechanisms for developing
idiomatic code that leverages the strengths of Swift.

You will also learn more about customizing your types and about the ways your types interact with one
another and the Swift standard library. To do this, you will leverage language features that enable you
to write more reusable code and handle runtime problems effectively.

263

19
Protocols

Your Swift journey has reached the point where you are ready to work with more abstract ideas about
writing good code. One such abstraction is the idea of encapsulation – separating the implementation
details of a system from the visible features of the system.

Rather than writing your MonsterTown program as a pile of global variables and functions, you
used structs and classes to encapsulate the details of what it means to be a Monster or a Town. You
improved your encapsulation by hiding certain implementation details with access control keywords
like private, cleaning up your types’ interfaces to be as clear and meaningful as possible to developers
writing programs with your types. (A type’s interface is its set of properties and methods of internal
or higher visibility – those that allow other types to interface with it.)

Another form of encapsulation in Swift is the protocol, which is a list of properties and methods – an
interface – that a type must have to fulfill some role. Multiple types can conform to a protocol. As long
as they have the required properties and methods, the protocol does not care what the concrete type is.
Protocols are especially useful when you want to implement a function that only cares about a specific
feature of the types that it will work with.

Imagine renting a car. You might say, “I want one with a radio.” You probably did not imagine a
specific brand or model of radio, but you probably do have in mind some basic requirements that
make a device “a radio.” If it has buttons to play and stop the music, change the channel, and change
the volume, you probably consider it a radio. A Swift developer might say, “It conforms to the Radio
protocol.”

To understand how protocols work, you are going to create a function that formats data into a table.
Initially, your function will only accept a specific type as its argument. Then you will codify the list of
minimum requirements that your function needs into a protocol and make it flexible enough to accept
an argument of any type that conforms to your protocol.

Chapter 19 Protocols

264

Formatting a Table of Data
macOS and iOS apps often put code for presenting data to the user in a different type from code that
stores or manages that data. By separating code into single-purpose types, you can write programs that
are easier to maintain and reason about as you fix bugs in the future. In this chapter, you will define a
single function to present data to the user and a data source type to manage the details of the data to be
presented.

Create a new macOS playground called Protocols.

Begin with a function that takes a nested array – an array of arrays, in other words – of strings and
prints the data in a table format. Each element of the data array represents a single row in the table, so
the total number of rows is data.count. The contents of each column for a single row are the Strings
within each data element.

Listing 19.1 Setting up a table
import Cocoa

var str = "Hello, playground"

func printTable(_ data: [[String]]) {
 for row in data {
 // Start the output string
 var out = "|"

 // Append each item in this row to the string
 for item in row {
 out += " \(item) |"
 }

 // Done - print it!
 print(out)
 }
}

let data = [
 ["Eva", "30", "6"],
 ["Saleh", "40", "18"],
 ["Amit", "50", "20"],
]

printTable(data)

The console shows a simple table displaying the data:

 | Eva | 30 | 6 |
 | Saleh | 40 | 18 |
 | Amit | 50 | 20 |

Formatting a Table of Data

265

Next, you will add the ability to label the columns. The column names will be passed in separately
from the data because they are distinct – you might decide to format the column names differently, for
example.

Listing 19.2 Labeling the columns

func printTable(_ data: [[String]], withColumnLabels columnLabels: [String]) {
 // Create header row containing column headers
 var headerRow = "|"

 for columnLabel in columnLabels {
 let columnHeader = " \(columnLabel) |"
 headerRow += columnHeader
 }
 print(headerRow)

 for row in data {
 // Start the output string
 var out = "|"

 // Append each item in this row to the string
 for item in row {
 out += " \(item) |"
 }

 // Done - print it!
 print(out)
 }
}

let data = [
 ["Eva", "30", "6"],
 ["Saleh", "40", "18"],
 ["Amit", "50", "20"],
]

printTable(data, withColumnLabels: ["Employee Name", "Age", "Years of Experience"])

You should see the column labels as the first row in your debug area.

 | Employee Name | Age | Years of Experience |
 | Eva | 30 | 6 |
 | Saleh | 40 | 18 |
 | Amit | 50 | 20 |

The columns’ widths are all different, so the table is very ugly. You can fix this by keeping track of the
width of each column label, then padding each data element with extra spaces.

Chapter 19 Protocols

266

Listing 19.3 Aligning the columns
func printTable(_ data: [[String]], withColumnLabels columnLabels: [String]) {
 // Create header row containing column headers
 var headerRow = "|"

 // Also keep track of the width of each column
 var columnWidths = [Int]()

 for columnLabel in columnLabels {
 let columnHeader = " \(columnLabel) |"
 headerRow += columnHeader
 columnWidths.append(columnLabel.count)
 }
 print(headerRow)

 for row in data {
 // Start the output string
 var out = "|"

 // Append each item in this row to the string
 for item in row {
 out += " \(item) |"
 for (j, item) in row.enumerated() {
 let paddingNeeded = columnWidths[j] - item.count
 let padding = repeatElement(" ", count:
 paddingNeeded).joined(separator: "")
 out += " \(padding)\(item) |"
 }

 // Done - print it!
 print(out)
 }
}
...

As you are constructing the header row, you also record the width of each column header in the
columnWidths array. Then, when you append each item to the output row, you calculate how much
shorter the item is than the column header and store that in paddingNeeded. You construct a string with
paddingNeeded spaces by using repeatElement(_:count:), which creates a collection of individual
spaces, and use that collection’s joined(separator:) method to join them into a single string.

Check your debug area again. You now have a well-formatted table of data.

 | Employee Name | Age | Years of Experience |
 | Eva | 30 | 6 |
 | Saleh | 40 | 18 |
 | Amit | 50 | 20 |

However, there is at least one major problem with the printTable(_:withColumnLabels:) function:
It is very difficult to use! You have to have separate arrays for the column labels and the data, and you
have to manually make sure that the number of column labels matches the number of elements in the
data array.

Formatting a Table of Data

267

You are much more likely to want to represent information like this using structures and classes.

To begin, replace the part of the code where you call printTable(_:withColumnLabels:) with some
model objects, which are types that represent the data your app works with.

Listing 19.4 Using model objects
...
let data = [
 ["Eva", "30", "6"],
 ["Saleh", "40", "18"],
 ["Amit", "50", "20"],
]

printTable(data, withColumnLabels: ["Employee Name", "Age", "Years of Experience"])
struct Person {
 let name: String
 let age: Int
 let yearsOfExperience: Int
}

struct Department {
 let name: String
 var people = [Person]()

 init(name: String) {
 self.name = name
 }

 mutating func add(_ person: Person) {
 people.append(person)
 }
}

var department = Department(name: "Engineering")
department.add(Person(name: "Eva", age: 30, yearsOfExperience: 6))
department.add(Person(name: "Saleh", age: 40, yearsOfExperience: 18))
department.add(Person(name: "Amit", age: 50, yearsOfExperience: 20))

You now have a Department, and you would like to be able to print out the details of its people
using the printTable(_:withColumnLabels:) function. You could modify the function to take
a Department instead of the two arguments it takes now. However, the current implementation of
printTable(_:withColumnLabels:) could be used to print any kind of tabular data, and it would be
nice to keep that feature. A protocol can help preserve this functionality.

Chapter 19 Protocols

268

Protocols
A protocol allows you to define the interface you want a type to satisfy. A type that satisfies a protocol
is said to “conform to” the protocol. You can think of a protocol like a contract that every conforming
type agrees to. This allows you to code against that contract without concerning yourself with specific
types.

Define a protocol that specifies the interface you need for the printTable(_:withColumnLabels:)
function. The function needs to know how many rows and columns there are, what the label for each
column is, and what data should be displayed in each cell.

It does not matter to the Swift compiler where in your playground file you put this protocol. But it
probably makes the most sense to put it at the top, just before printTable(_:withColumnLabels:),
because you are going to use the protocol in the function.

Listing 19.5 Defining a protocol

import Cocoa

protocol TabularDataSource {
 var numberOfRows: Int { get }
 var numberOfColumns: Int { get }

 func label(forColumn column: Int) -> String

 func itemFor(row: Int, column: Int) -> String
}

func printTable(_ data: [[String]], withColumnLabels columnLabels: [String]) {
 ...
}
...

The syntax for a protocol should look familiar to you. It is very similar to defining a structure or a
class, except that all the computed property and function definitions are omitted.

The TabularDataSource protocol states that any conforming type must have two properties:
numberOfRows and numberOfColumns. The syntax { get } signifies that these properties can be read. If
the property were intended to be read/write, you would use { get set }. Note that marking a protocol
property with { get } does not exclude the possibility that a conforming type might have a property
that is read/write. It only indicates that the protocol requires it to be readable. This is also why the var
keyword is always used rather than let for properties in a protocol definition.

Finally, TabularDataSource specifies that a conforming type must have the two methods listed –
label(forColumn:) and itemFor(row:column:) – with the exact types that are listed.

A protocol defines the minimum set of properties and methods a type must have. The type can have
more than what the protocol lists – extra properties and methods are fine as long as all the requirements
of the protocol are present.

Make Department conform to the TabularDataSource protocol. Begin by declaring that it conforms.

Protocols

269

Listing 19.6 Declaring that Department conforms to TabularDataSource
...
struct Department: TabularDataSource {
 ...
}
...

The syntax for conforming to a protocol is to add : ProtocolName after the name of the type. (This
looks the same as declaring a superclass. We will cover how protocols and superclasses can be used
together later.)

Your playground file now has an error. You have claimed that Department conforms
to TabularDataSource, but Department is missing all the properties and methods that
TabularDataSource requires. Add implementations of them all.

Listing 19.7 Adding required properties and methods
...
struct Department: TabularDataSource {
 let name: String
 var people = [Person]()

 init(name: String) {
 self.name = name
 }

 mutating func add(_ person: Person) {
 people.append(person)
 }

 var numberOfRows: Int {
 return people.count
 }

 var numberOfColumns: Int {
 return 3
 }

 func label(forColumn column: Int) -> String {
 switch column {
 case 0: return "Employee Name"
 case 1: return "Age"
 case 2: return "Years of Experience"
 default: fatalError("Invalid column!")
 }
 }

 func itemFor(row: Int, column: Int) -> String {
 let person = people[row]
 switch column {
 case 0: return person.name
 case 1: return String(person.age)
 case 2: return String(person.yearsOfExperience)
 default: fatalError("Invalid column!")
 }
 }
}
...

Chapter 19 Protocols

270

A Department has a row for each person, so its numberOfRows property returns the number of people
in the department. Each person has three properties that should be displayed, so numberOfColumns
returns 3. label(forColumn:) and itemFor(row:column:) are a little more interesting: You use a
switch statement to return one of the three column headers. (Why is there a default case? Refer back
to Chapter 5 if you are unsure.)

The error in your playground is gone now that Department conforms to TabularDataSource. You still
need to modify printTable(_:withColumnLabels:) to accept and work with a TabularDataSource,
because now you do not have any way of calling this function with your department.

Protocols do not just define the properties and methods a conforming type must supply. They can also
be used as types themselves: You can have variables, function arguments, and return values that have
the type of a protocol.

Change printTable(_:withColumnLabels:) to take a data source of type TabularDataSource, now
that the protocol provides all the same data as the old arguments did (including all the column labels
and the amount of data available).

Listing 19.8 Making printTable(_:) take a TabularDataSource
...
func printTable(_ data: [[String]], withColumnLabels columnLabels: [String]) {
func printTable(_ dataSource: TabularDataSource) {
 // Create header row containing column headers
 var headerRow = "|"

 // Also keep track of the width of each column
 var columnWidths = [Int]()

 for columnLabel in columnLabels {
 for i in 0 ..< dataSource.numberOfColumns {
 let columnLabel = dataSource.label(forColumn: i)
 let columnHeader = " \(columnLabel) |"
 headerRow += columnHeader
 columnWidths.append(columnLabel.count)
 }
 print(headerRow)

 for row in data {
 for i in 0 ..< dataSource.numberOfRows {
 // Start the output string
 var out = "|"

 // Append each item in this row to the string
 for (j, item) in row.enumerated() {
 for j in 0 ..< dataSource.numberOfColumns {
 let item = dataSource.itemFor(row: i, column: j)
 let paddingNeeded = columnWidths[j] - item.count
 let padding = repeatElement(" ", count:
 paddingNeeded).joined(separator: "")
 out += " \(padding)\(item) |"
 }

 // Done - print it!
 print(out)
 }
}
...

Protocol Conformance

271

The Department type now conforms to TabularDataSource, and printTable(_:) has been
modified to accept a TabularDataSource. Therefore, you can print your department. Add a call to
printTable(_:).

Listing 19.9 Printing Department
...
var department = Department(name: "Engineering")
department.add(Person(name: "Eva", age: 30, yearsOfExperience: 6))
department.add(Person(name: "Saleh", age: 40, yearsOfExperience: 18))
department.add(Person(name: "Amit", age: 50, yearsOfExperience: 20))

printTable(department)

Confirm in the debug area that the output once again reflects the department you created:

 | Employee Name | Age | Years of Experience |
 | Eva | 30 | 6 |
 | Saleh | 40 | 18 |
 | Amit | 50 | 20 |

Protocol Conformance
As noted earlier, the syntax for protocol conformance looks exactly the same as the syntax you use to
declare a class’s superclass, as seen in Chapter 15. This brings up a few questions:

1. What types can conform to protocols?

2. Can a type conform to multiple protocols?

3. Can a class have a superclass and still conform to protocols?

All types can conform to protocols. You made a structure (Department) conform to a protocol. Enums
and classes can also conform to protocols. The syntax for declaring that an enum conforms to a
protocol is exactly the same as it is for a struct: the declaration of the type is followed by a colon and
the protocol name. (Classes can be a little more complicated. We will get to them in a moment.)

It is also possible for a type to conform to multiple protocols. One of the protocols defined by Swift is
CustomStringConvertible, which types can implement when they want to control how their instances
are converted into string representations for use in debugging. Other functions, like print(), will
check whether the values being printed conform to CustomStringConvertible when deciding how
to display them. CustomStringConvertible has a single requirement: The type must have a gettable
property named description that returns a String.

Chapter 19 Protocols

272

Modify Department so that it conforms to both TabularDataSource and CustomStringConvertible,
using a comma to separate the protocols.

Listing 19.10 Conforming to CustomStringConvertible
...
struct Department: TabularDataSource, CustomStringConvertible {
 let name: String
 var people = [Person]()

 var description: String {
 return "Department (\(name))"
 }
...
}

Here, you declare Department’s conformance to CustomStringConvertible and implement
description as a read-only, computed property. You can now see the name of your department when
you print it.

Listing 19.11 Printing the department’s name
...
printTable(department)
print(department)

Note that it is not enough to merely implement a description property. You must both declare
conformance to a protocol and implement the required methods and properties to fully conform.

CustomStringConvertible lets the developer of a type describe instances of the type to other
developers who will use those instances in their code. When you pass print() an argument of
a type that is not CustomStringConvertible, the output is generated by the compiler and is
often not very useful. By making your types – especially types that model data – conform to
CustomStringConvertible, you give other developers the important information about that type that
they will need to know when printing its instances.

Finally, classes can also conform to protocols. If the class does not have a superclass, the syntax is the
same as for structs and enums:

 class ClassName: ProtocolOne, ProtocolTwo {
 // ...
 }

If the class does have a superclass, the name of the superclass comes first, followed by the protocol (or
protocols).

 class ClassName: SuperClass, ProtocolOne, ProtocolTwo {
 // ...
 }

Protocol Inheritance

273

Protocol Inheritance
Swift supports protocol inheritance. A protocol that inherits from another protocol requires
conforming types to provide implementations for all the properties and methods required by both
itself and the protocol it inherits from. This is different from class inheritance, which defines a close
relationship between the superclass and subclass. Protocol inheritance merely adds any requirements
from the parent protocol to the child protocol. For example, modify TabularDataSource so that it
inherits from the CustomStringConvertible protocol.

Listing 19.12 Making TabularDataSource inherit from
CustomStringConvertible
protocol TabularDataSource: CustomStringConvertible {
 var numberOfRows: Int { get }
 var numberOfColumns: Int { get }

 func label(forColumn column: Int) -> String

 func itemFor(row: Int, column: Int) -> String
}
...

Now, any type that conforms to TabularDataSource must also conform to CustomStringConvertible,
meaning it has to supply all the properties and methods listed in TabularDataSource as well as the
description property required by CustomStringConvertible. Use this in printTable(_:) to print
a heading on the table. You will no longer need the declared conformance you added in Listing 19.10,
nor the call to print() from Listing 19.11.

Listing 19.13 Printing a table heading
...
func printTable(_ dataSource: TabularDataSource) {
 print("Table: \(dataSource)")
 ...
}
...
struct Department: TabularDataSource, CustomStringConvertible {
 ...
}
...
printTable(department)
print(department)

Now the printout in your debug area includes a description of the table.

 Table: Department (Engineering)
 | Employee Name | Age | Years of Experience |
 | Eva | 30 | 6 |
 | Saleh | 40 | 18 |
 | Amit | 50 | 20 |

Chapter 19 Protocols

274

Protocols are allowed to inherit from multiple other protocols, just as types can conform to multiple
protocols. The syntax for multiple protocol inheritance is what you probably expect – separate
additional parent protocols with commas, like so:

 protocol MyProtocol: MyOtherProtocol, SomeThirdProtocol {
 // Requirements of MyProtocol
 }

Protocols as Types
Your ability to pass an instance of any TabularDataSource-conforming type (like Department) in
to printTable(_:) may look familiar. It is an example of polymorphism similar to the subclass
polymorphism that you learned about in Chapter 15.

As with the subclassing example, you can declare a variable of protocol type:

Listing 19.14 Creating an instance of a protocol type
...
printTable(department)

let operationsDataSource: TabularDataSource = Department(name: "Operations")

Here, you assign an instance of Department into a variable of type TabularDataSource. As you might
expect, the compiler will now insist that you can only access properties and methods required by the
TabularDataSource protocol on operationsDataSource. This is because the compiler knows that
you might replace the Department instance stored in the variable with an instance of another type that
conforms to TabularDataSource at any time, so it would be unsafe to allow you to access Department-
only properties like people.

The as keyword (and its forcible and conditional variants) are also available for casting between
protocol types and the concrete types that conform to them. Declare a new variable of type
TabularDataSource to put a copy of your engineering department into.

Listing 19.15 Casting a concrete type to a protocol type
...
let operationsDataSource: TabularDataSource = Department(name: "Operations")
let engineeringDataSource = department as TabularDataSource

Because the compiler can verify that department’s type, Department, conforms
to TabularDataSource, this is a safe cast, and the compiler will infer the type of
engineeringDataSource to be TabularDataSource. Casting a variable of type TabularDataSource
to be of type Department would be unsafe, since there might be other types that conform to
TabularDataSource, and the compiler would not know which of them is in the variable at any given
time.

Protocols as Types

275

Last, the is keyword can be used to check for protocol conformance:

Listing 19.16 Asking a variable whether its type conforms to a protocol
...
let operationsDataSource: TabularDataSource = Department(name: "Operations")
let engineeringDataSource = department as TabularDataSource

let mikey = Person(name: "Mikey", age: 37, yearsOfExperience: 10)
mikey is TabularDataSource

Here you ask the program, “Hey, is the value stored in this variable of a type that conforms to
TabularDataSource?” The Person type does not, which is reflected in your sidebar: false.

It is important to remember that when you declare a variable or function argument to be of a protocol
type, you are stating to the compiler, “The actual instance inside this variable may be of any type that
conforms to this protocol, and an instance of a different concrete type that conforms to this protocol
might be used instead at any time.” You will learn more about variables and function arguments of
protocol types in Chapter 21.

Chapter 19 Protocols

276

Protocol Composition
Protocol inheritance is a powerful tool that lets you easily create a new protocol to add requirements to
an existing protocol or set of protocols. Nevertheless, using protocol inheritance can potentially lead
you to make poor decisions in creating your types.

In fact, that is exactly what has happened with TabularDataSource when you made it inherit from
CustomStringConvertible because you wanted to be able to print a description of the data source. (In
fairness, you did it because we told you to.)

There is no correlation between the requirements of CustomStringConvertible and
TabularDataSource, making them a poor candidate for inheritance. In a moment you will see how
you can accomplish the same results without conflating the two protocols. First, go back and fix that
misguided attempt to print data sources.

Listing 19.17 TabularDataSource should not be CustomStringConvertible
protocol TabularDataSource: CustomStringConvertible {
 ...
}

Unfortunately, Department, while still printed to the console, is now anything but pretty.

 Table: Department(name: "Engineering", people: [__lldb_expr_3.Person(name: "Eva",
 age: 30, yearsOfExperience: 6), __lldb_expr_3.Person(name: "Saleh",
 age: 40, yearsOfExperience: 18), __lldb_expr_3.Person(name: "Amit",
 age: 50, yearsOfExperience: 20)])
 ...

The print() function will use the description property if the type to be printed conforms to
CustomStringConvertible, but it falls back to a more raw representation if it does not. That raw
representation is what you are seeing in the console.

The output from the printTable(_:) function looks terrible unless the dataSource conforms to the
CustomStringConvertible protocol, so you need a way to make the function’s parameter ensure that
incoming data meets this requirement. Protocol composition to the rescue: This syntax allows you to
state that a type must conform to multiple protocols. Make the following change:

Listing 19.18 Making printTable’s argument conform to
CustomStringConvertible
...
func printTable(_ dataSource: TabularDataSource & CustomStringConvertible) {
 print("Table: \(dataSource)")
 ...
}

The syntax for protocol composition uses the & infix operator to signal to the compiler that you are
combining multiple protocols into a single requirement. Here, you require that dataSource conform to
both TabularDataSource and CustomStringConvertible.

Protocol Composition

277

The compiler rightly gives you an error indicating that Department does not conform to
CustomStringConvertible. Explicitly declare this conformance and run the playground to see that
everything is back to normal.

Listing 19.19 Declaring conformance to CustomStringConvertible
...
struct Department: TabularDataSource, CustomStringConvertible {
 ...
}
...

Consider another possibility. You could create a new protocol that inherits from both
TabularDataSource and CustomStringConvertible, like so:

 protocol PrintableTabularDataSource: TabularDataSource, CustomStringConvertible {
 }

You could then use that protocol as the type of the argument to printTable(_:).

In short, you have a few options for ensuring that a function like printTable(_:) correctly constrains
its arguments:

• Make TabularDataSource inherit from CustomStringConvertible. A solution like this could
be appropriate if the two protocols are naturally related. But in this case, they are pretty different
from one another.

• Define a new protocol like PrintableTabularDataSource that inherits from both
TabularDataSource and CustomStringConvertible. There is nothing wrong with this approach,
but its real utility would be if you had additional requirements to add to the new protocol or
needed many functions to use it as a parameter type. Here, it would be empty and would likely be
the argument type of only one function, so it would not add much meaning to your program.

• Compose the two protocols at the call site, as you have done. This signifies to developers that the
requirement is particular to this function, is unlikely to be used elsewhere, and requires very little
code elsewhere.

As with many questions in programming, there is not always a clear correct choice in this situation,
or any singularly correct choice at all. All three of these approaches would solve the needs of the
printTable(_:) function, and all three could be the best choice for certain situations. In the future, it
will be up to you to decide how to proceed. It is acceptable and even common to choose one solution
and then change your mind later as you learn more about the problem.

Chapter 19 Protocols

278

It is also possible to use composition to combine a protocol with a class. Say your Person type
was a class, instead of a struct, with an Employee subclass. You could use a composition of
CustomStringConvertible and Person to create a function that only accepts subclasses of Person that
are also CustomStringConvertible:

 class Person {
 let name: String
 let age: Int
 let yearsOfExperience: Int
 }

 class Employee: Person, CustomStringConvertible {
 let employeeID: Int

 var description: String {
 return "Name: \(name) ID: \(employeeID)"
 }
 }

 func printResource(_ resource: Person & CustomStringConvertible) {
 print("Resource: \(resource)")
 }

Swift is an expressive language with lots of syntactically legal ways to accomplish most goals,
including using protocols to codify type requirements. As you get more practice, you will start to get a
sense for when certain strategies are more appropriate or more readable than others.

Mutating Methods
Recall from Chapter 14 and Chapter 15 that methods on value types (enums and structs) cannot modify
self unless the method is marked as mutating. For example, in the LightBulb enum from Chapter 14,
the toggle() method was mutating.

 enum LightBulb {
 case on
 case off
 ...
 mutating func toggle() {
 switch self {
 case .on:
 self = .off

 case .off:
 self = .on
 }
 }
 }

Methods in protocols default to nonmutating. Suppose you want to define a protocol to describe an
object that is “toggleable”:

 protocol Toggleable {
 func toggle()
 }

Mutating Methods

279

Declaring that LightBulb conforms to Toggleable would result in a compiler error. The error message
includes a note that explains the problem:

 error: type 'LightBulb' does not conform to protocol 'Toggleable'

 note: candidate is marked 'mutating' but protocol does not allow it
 mutating func toggle() {
 ^

The note points out that in LightBulb, the toggle() method is marked as mutating, but the
Toggleable protocol expects a nonmutating function. You can fix this problem by marking toggle()
as mutating in the protocol definition:

 protocol Toggleable {
 mutating func toggle()
 }

With this change, value types implementing Toggleable would now be required to make their
toggle() methods mutating. But a class that conforms to the Toggleable protocol would not need
to mark its toggle() method as mutating, because methods on reference types are always allowed to
change properties of self.

You have seen several different protocols now, and you may see a naming pattern emerging. Protocol
names tend to follow one of two conventions, set by the Swift standard library:

• The name is a noun, such as TabularDataSource, when the protocol describes the baseline
behavior or meaning of a conforming type.

• The name is an adjective with one of the suffixes “-able,” “-ible,” or “-ing,” such as Equatable
or CustomStringConvertible, when the protocol describes a subset of a conforming type’s
capabilities.

In the coming chapters, you will see and define many more protocols and see the different ways that
they lend flexibility to the types in your programs.

Chapter 19 Protocols

280

Bronze Challenge
The printTable(_:) function has a bug: It crashes if any of the data items are longer than the label
of their column. Try changing Eva’s age to 1,000 to see this happen. Fix the bug. Your solution will
likely result in incorrect table formatting; that is fine for now. You will fix the formatting in the gold
challenge, below.

Silver Challenge
Create a new type, BookCollection, that conforms to TabularDataSource. Calling printTable(_:)
on a book collection should show a table of books with columns for titles, authors, and average reviews
on Amazon. (Unless all the books you use have very short titles and author names, you will need to
have completed the previous challenge!)

Electrum Challenge
This challenge will exercise your understanding of multiple topics that you have studied so far.

Sometimes protocols are used to add behavior to existing types, as you will explore in Chapter 22 on
protocol extensions. One such protocol can be used to let you loop over the cases of any enum that
does not have associated values: CaseIterable.

Open your Enumerations.playground file and declare your ProgrammingLanguage enum to conform
to the CaseIterable protocol. Using a loop, print all the enum’s cases. Your output should look like
this:

 swift
 objective-c
 c
 c++
 java

You will need to explore the CaseIterable protocol reference in the developer documentation.

To turn this into a gold challenge, do not use a loop. Instead, use what you learned about map(_:) in
Chapter 13 to make your output look like this:

 ["swift", "objective-c", "c", "c++", "java"]

Gold Challenge
After you fixed the crashing bug in the bronze challenge above, the table rows and columns were likely
misaligned. Fix your solution to correctly align the table rows and columns. Verify that your solution
does not crash with values longer than their column labels.

281

20
Extensions

Imagine that you are developing an application that uses a particular type in the Swift standard library
– say the Double type – quite frequently. Based on how you are using it in your app, it would make
your development easier if the Double type supported some additional methods.

Unfortunately, you do not have Double’s implementation available, so you cannot add functionality
directly to it yourself. What can you do?

Swift provides a feature called extensions that is designed for just these cases. Extensions allow you to
add functionality to an existing type. You can extend structs, enums, and classes.

You can use extensions on types to add:

• computed properties
• new initializers
• protocol conformance
• new methods
• embedded types

In this chapter, you will use extensions to add functionality to an existing type whose definition and
implementation details are not available to you. You will also use extensions to add functionality to a
custom type of your own creation. In both cases, you will add functionality to the type in a modular
fashion, meaning that you will group similar functionality in a single extension.

Chapter 20 Extensions

282

Extending an Existing Type
Create a new macOS playground named Extensions.

Consider the example above involving Double. Imagine that you might regularly be computing the
square of a number: a number times itself. This is a common thing to do with numbers, but not quite
common enough to be included as its own feature of the Swift standard library. Instead, if you need to
square a number, you currently use the multiplication operator to do it yourself: 25 * 25.

In your playground, create an extension on the Double type:

Listing 20.1 Extending an existing type
import Cocoa

var str = "Hello, playground"

extension Double {
 var squared: Double { return self * self }
}

let sideLength: Double = 12.5
let area = sideLength.squared

The extension keyword signifies that you are extending the Double type. Inside the scope of the
extension, you can create new declarations such as computed properties or methods, and all your
program’s instances of the type now benefit from the additions. In this case, your newly added squared
property shows the result, 156.25, in the results sidebar.

Extending Your Own Type

283

Extending Your Own Type
You can also extend your own types. You might wonder why you would want to do that – if you
created the type, why add an extension to it instead of editing the type itself? You will mostly use
extensions on your own types for code organization. As you will see, extensions provide a convenient
way to group related methods and behaviors, such as those required by a protocol.

You will need to create a new type before you can extend it. Make a new struct to represent a Car type
and create an instance of it.

Listing 20.2 A Car struct
...
struct Car {
 let make: String
 let model: String
 let year: Int
 var fuelLevel: Double {
 willSet {
 precondition(newValue <= 1.0 && newValue >= 0.0,
 "New value must be between 0 and 1.")
 }
 }
}

let firstCar = Car(make: "Benz",
 model: "Patent-Motorwagon",
 year: 1886,
 fuelLevel: 0.5)

Here you define and instantiate a new struct called Car. The Car type defines a number of stored
properties that will be specific to a given instance. All the properties are constants, with one exception:
fuelLevel.

fuelLevel is a mutable stored property with a property observer. The willSet observer will be called
every time you are going to set a new value for fuelLevel. These values indicate how full an instance’s
fuel tank is in terms of percentage.

You use the precondition(_:_:) function to ensure that the newValue being assigned to the
fuelLevel property is between 0 and 1. This function takes a Boolean expression and a string message.
If the Boolean expression resolves to false, then the application will trap and log the provided
message to the console.

To a user, watching an app trap or crash is a bad time, so as a developer you must weigh whether you
can deal elegantly with bad input or if continuing execution would be meaningless. You will learn more
about Swift’s features for dealing with runtime errors in Chapter 23.

Chapter 20 Extensions

284

Using extensions to add protocol conformance
Extensions are great for grouping related chunks of functionality, like conforming to a protocol. Extend
the Car type to conform to CustomStringConvertible.

Listing 20.3 Extending Car to conform to CustomStringConvertible
...
let firstCar = Car(make: "Benz",
 model: "Patent-Motorwagon",
 year: 1886,
 fuelLevel: 0.5)

extension Car: CustomStringConvertible {
 var description: String {
 return "\(year) \(make) \(model), fuel level: \(fuelLevel)"
 }
}

Your new extension declares that Car conforms to CustomStringConvertible and implements
the required property to do so. The syntax for conforming to a protocol is the same as when the
conformance is declared in the definition of the type, and you implement the protocol’s required
property inside the extension’s body.

By declaring the protocol conformance in an extension, you keep the base definition of your type
uncluttered. When another developer – possibly you, later – is learning about your type, the first thing
they want to see is the essential list of properties and methods that show what your type is and what it
can do. They do not care about auxiliary behavior, like whether it is CustomStringConvertible.

By the way, extensions are an important exception to the access control rules you learned in
Chapter 16: An extension can access the private declarations within a type as long as the extension
and type are defined in the same file. So if Car had private properties, you could still use them in your
extension.

Adding an initializer with an extension

285

Adding an initializer with an extension
Recall that structs give you a free memberwise initializer if you do not provide your own. If you
want to write a new initializer for your struct but do not want to lose the free memberwise or empty
initializer, you can add the initializer to your type with an extension.

Add an initializer to Car in a new extension on the type.

Listing 20.4 Extending Car with an initializer
...
extension Car: CustomStringConvertible {
 var description: String {
 return "\(year) \(make) \(model), fuel level: \(fuelLevel)"
 }
}

extension Car {
 init(make: String, model: String, year: Int) {
 self.init(make: make,
 model: model,
 year: year,
 fuelLevel: 1.0)
 }
}

The new extension on the Car type adds an initializer that accepts arguments only for an instance’s
make, model, and year. This new initializer’s arguments are passed in to the free memberwise
initializer on the Car struct, along with a default value for fuelLevel. The combination of these two
initializers ensures that an instance of the Car type will have values for all its properties.

The memberwise initializer is preserved on Car because the new initializer is defined and implemented
on an extension. This pattern can be quite helpful.

To see the initializer defined in the extension work, create an instance of Car.

Listing 20.5 Creating an instance of Car
...
extension Car {
 init(make: String, model: String, year: Int) {
 self.init(make: make,
 model: model,
 year: year,
 fuelLevel: 1.0)
 }
}

var currentCar = Car(make: "Honda", model: "Civic", year: 2008)
firstCar.fuelLevel
currentCar.fuelLevel

You create a new instance, currentCar, with the initializer defined in an extension on Car. Take a look
in the results sidebar. You should see that the fuelLevel of firstCar is 0.5, the value you passed in to
the compiler-synthesized initializer in Listing 20.2. However, the fuelLevel of currentCar is 1.0, the
default value provided by the initializer you implemented in your extension.

Chapter 20 Extensions

286

Nested types and extensions
Swift’s extensions can also add nested types to an existing type. Say, for example, that you want to add
an enumeration to your Car struct to classify the era an instance is from. Create a new extension on the
Car type to add a nested type.

Listing 20.6 Creating an extension with a nested type
...
var currentCar = Car(make: "Honda", model: "Civic", year: 2008)
firstCar.fuelLevel
currentCar.fuelLevel

extension Car {
 enum Era {
 case veteran, brass, vintage, modern
 }
 var era: Era {
 switch year {
 case ...1896:
 return .veteran
 case 1897...1919:
 return .brass
 case 1920...1930:
 return .vintage
 default:
 return .modern
 }
 }
}
...

This new extension on Car adds a nested type called Era. Era is an enumeration that has four cases:
veteran, brass, vintage, and modern. Notice the simplified syntax for declaring the cases of an
enumeration: all on one line, separated by commas. This syntax is especially convenient for simple
enums that do not need raw values or associated values.

The extension also adds a computed property on Car called era, which determines the car’s era based
on its year. Exercise the extension’s nested type by accessing the era property on the instance you
created earlier.

Listing 20.7 Accessing era
...
firstCar.era

You should see veteran logged to the results sidebar.

Extensions with methods

287

Extensions with methods
You can also use an extension to give an existing type a new method. For example, you may have
noticed that Car does not have any functionality to adjust the fuel level. Make an extension to add this
functionality to Car.

Listing 20.8 Using an extension to add methods
...
firstCar.era

extension Car {
 mutating func emptyFuel(by amount: Double) {
 precondition(amount <= 1 && amount > 0,
 "Amount to remove must be between 0 and 1.")
 fuelLevel -= amount
 }

 mutating func fillFuel() {
 fuelLevel = 1.0
 }
}

Your new extension adds two methods to the Car type: emptyFuel(by:) and fillFuel(). Note that
both methods are marked with the mutating keyword. Why? Remember that the Car type is a struct. If
a method wants to change the value of any of the struct’s properties, then it must be declared with the
mutating keyword.

The emptyFuel(by:) method takes one argument: the amount of fuel to remove from the tank. You use
a precondition(_:_:) inside the emptyFuel(by:) method to ensure that the amount removed from
the tank is between 0 and 1. The implementation of the fillFuel() method simply sets the fuelLevel
property on the Car to be full, or 1.0.

Exercise these new methods on your existing type.

Listing 20.9 Lowering and filling the fuel tank
...
extension Car {
 mutating func emptyFuel(by amount: Double) {
 precondition(amount <= 1 && amount > 0,
 "Amount to remove must be between 0 and 1.")
 fuelLevel -= amount
 }

 mutating func fillFuel() {
 fuelLevel = 1.0
 }
}

currentCar.emptyFuel(by: 0.3)
currentCar.fuelLevel
currentCar.fillFuel()
currentCar.fuelLevel

After you use the emptyFuel(by:) function, you should see in the sidebar that the fuel level is 0.7.
After you fill the fuel level, the fuel level is 1.0.

Chapter 20 Extensions

288

Extensions are an incredibly flexible tool for enhancing the organization of your code and adding
useful behavior to existing types. One caveat on something you might see in the wild: While
extensions are primarily used to add new functionality, they can sometimes be used to replace existing
functionality by implementing a method or computed property that already exists on a type. This is
different from overriding a method in a subclass, and it is an advanced topic with limited utility and
inherent risks. It is out of scope for this book.

Bronze Challenge
In Chapter 19, you made the Department type conform to the CustomStringConvertible protocol.
Refactor your playground from that chapter to move CustomStringConvertible conformance into an
extension.

Silver Challenge
Give the Int type a nested enum with cases even and odd. Also give Int a property of that type to
correctly report whether an integer is even or odd.

289

21
Generics

When we introduced optionals and collection types earlier in this book, we briefly showed you the
“long-form” syntax for each type, like:

• Optional<String>
• Array<String>
• Dictionary<String>
• Set<String>

Most of these types have a preferred shorthand syntax, like String? or [String], and we did not really
discuss the angle bracket syntax except to show you that it exists.

We also told you that, for example, Array<String> is not the same type as Array<Int>. And
that is true – but the Swift standard library only defines one Array. So what is the deal with the
Array<String> type and others like it? You are ready to find out.

Optional and the collection types like Array are what we call generic types, because they are designed
to work with any type (with some limitations, as we will discuss). The angle brackets are the generic
syntax, and they (along with the shorthand equivalent some generic types have) allow you to specify
the type that the generic type will work with.

In this chapter, you will investigate how to define your own generic types. You will also learn how to
use generics to write flexible functions and explore how generics are related to protocols.

Chapter 21 Generics

290

Generic Data Structures
You are going to create a generic stack, which is a venerable data structure in computer science. A
stack is a last-in, first-out data structure. It supports two basic operations. You can push an item onto
the stack, which adds the item to the stack, and you can pop to remove the most recently pushed item
off of the stack.

Create a new macOS playground called Generics and make a Stack structure that only stores integers.

Listing 21.1 Setting up a Stack
import Cocoa

var str = "Hello, playground"

struct Stack {
 var items = [Int]()

 mutating func push(_ newItem: Int) {
 items.append(newItem)
 }

 mutating func pop() -> Int? {
 guard !items.isEmpty else { return nil }
 return items.removeLast()
 }
}

This struct has three elements of interest. The items stored property is an array you are using to
hold on to the items currently in a stack. The push(_:) method pushes a new item onto the stack by
appending it to the end of the items array. Finally, the pop() method pops the top item off of the stack
by calling the removeLast() method of an array, which simultaneously removes the last item and
returns it. Note that pop() returns an optional Int, because the stack might be empty (in which case
there is nothing to pop).

Create a Stack instance to see it in action.

Listing 21.2 Creating an instance of Stack
...
var intStack = Stack()
intStack.push(1)
intStack.push(2)

print(String(describing: intStack.pop()))
print(String(describing: intStack.pop()))
print(String(describing: intStack.pop()))

You create a new Stack instance, push two values on, then try to pop three values off. As expected,
the console reports that the pop() calls return the integers you pushed in reverse order, and then pop()
returns nil when the stack no longer has any items:

 Optional(2)
 Optional(1)
 nil

Generic Data Structures

291

Your Stack is useful for storing Ints, but it is currently limited to that type. It would be better if Stack
were more general. Modify Stack to be a generic data structure that can hold any type, not just Int.

Listing 21.3 Making Stack generic
struct Stack<Element> {
 var items = [Int Element]()

 mutating func push(_ newItem: Int Element) {
 items.append(newItem)
 }

 mutating func pop() -> Int? Element? {
 guard !items.isEmpty else { return nil }
 return items.removeLast()
 }
}
...

You define a placeholder type, named Element, in the declaration of Stack. Swift’s syntax for
declaring a generic uses angle brackets (<>) immediately following the name of the type to enclose the
name of the placeholder type: <Element>.

The placeholder type Element can be used inside the Stack structure anywhere a concrete type could
be used. By defining the placeholder type Element and then using it in place of Int, you have made
your Stack generic. Now, you can have a stack of any type at all, not just integers.

There is now a compiler error where you instantiate a Stack, because you have not specified what
concrete type should be substituted for the placeholder type Element. The process of the compiler
substituting a concrete type for a placeholder is called specialization. The full details of specialization
are outside the scope of this book, but the short summary is that it allows the compiler to make your
app faster, because the compiler is able to output code knowing the specific type in use.

Fix the error by specifying that intStack should be an instance of Stack specialized for Int. You will
use the same angle bracket syntax to do this.

Listing 21.4 Specializing intStack
...
var intStack = Stack<Int>()
...

This resolves the compiler error.

You can create a stack of any type. Create a Stack of Strings.

Listing 21.5 Creating a Stack of strings
...
print(String(describing: intStack.pop()))
print(String(describing: intStack.pop()))

var stringStack = Stack<String>()
stringStack.push("this is a string")
stringStack.push("another string")

print(String(describing: stringStack.pop()))

Chapter 21 Generics

292

The console prints Optional("another string").

It is important to note that while intStack and stringStack are both Stack instances, they do not have
the same type. intStack is a Stack<Int>; it would be a compile-time error to pass anything other than
an Int to intStack.push(_:). Likewise, stringStack is a Stack<String>, which is distinct from
Stack<Int>. This is true even though you have defined only one Stack type.

Generic data structures are both common and extremely useful. Classes and enumerations can also be
made generic using the same syntax you used here for structures. In addition, types are not the only
element of Swift that can be generic. Functions and methods can also be generic.

Generic Functions and Methods
Think about the map(_:) method that you learned about in Chapter 13 on closures. map(_:) applies
a closure to each element in an array and returns an array of the results. Given what you just learned
about generics, you can now implement a version of this function yourself.

Add the following code to your playground. Some of it may seem unfamiliar; we will walk through it
after you have entered it.

Listing 21.6 Your own map function
...
func myMap<T,U>(_ items: [T], _ txform: (T) -> (U)) -> [U] {
 var result = [U]()
 for item in items {
 result.append(f(item))
 }
 return result
}

The declaration of myMap(_:_:) may look pretty ugly if you have not been exposed to generics in
other languages. Instead of the concrete types you are familiar with, it just has T and U, and there are
more symbol and punctuation characters than letters! But the only new thing is that it declares two
placeholder types, T and U, instead of just one.

Figure 21.1 shows a breakdown of the function declaration.

Figure 21.1 myMap declaration

Generic Functions and Methods

293

When defining a generic type or function, you should give your placeholder types descriptive,
meaningful names if you can. Array uses Element as its placeholder type name. Optional uses
Wrapped. It is common to use T (short for “Type”), U, and so on if you require brevity or if there are not
more meaningful names to use.

myMap(_:_:) can be used the same way map(_:) is used. Create an array of Strings, then map it to an
array of Ints representing the strings’ lengths.

Listing 21.7 Mapping an array
...
func myMap<T,U>(_ items: [T], _ txform: (T) -> (U)) -> [U] {
 ...
}

let strings = ["one", "two", "three"]
let stringLengths = myMap(strings) { $0.count }
print(stringLengths)

The closure passed to myMap(_:_:) must take a single argument that matches the type contained in the
items array, but the type of its return value can be anything. In this call to myMap(_:_:), T is replaced
by String and U is replaced by Int. The console confirms the result: [3, 3, 5]. (Note that in real
projects there is no need to declare your own mapping function – just use the built-in map(_:).)

Methods can also be generic, even inside types that are already themselves generic. The myMap(_:_:)
function you wrote only works on arrays, but it also seems reasonable to want to map a Stack. Create a
map(_:) method on Stack.

Listing 21.8 Mapping on a Stack
struct Stack<Element> {
 var items = [Element]()

 mutating func push(_ newItem: Element) {
 items.append(newItem)
 }

 mutating func pop() -> Element? {
 guard !items.isEmpty else { return nil }
 return items.removeLast()
 }

 func map<U>(_ txform: (Element) -> U) -> Stack<U> {
 var mappedItems = [U]()
 for item in items {
 mappedItems.append(f(item))
 }
 return Stack<U>(items: mappedItems)
 }
}
...

This map(_:) method only declares one placeholder type, U, but it uses both Element and U. The
Element type is available because map(_:) is inside the Stack structure, which makes the placeholder
type Element available. The body of map(_:) is almost identical to myMap(_:_:), differing only in that
it returns a new Stack instead of an array.

Chapter 21 Generics

294

Try out your new method.

Listing 21.9 Using Stack.map(_:)
...
var intStack = Stack<Int>()
intStack.push(1)
intStack.push(2)
var doubledStack = intStack.map { 2 * $0 }

print(String(describing: intStack.pop()))
print(String(describing: intStack.pop()))
print(String(describing: intStack.pop()))

print(String(describing: doubledStack.pop()))
print(String(describing: doubledStack.pop()))
...

The new print() calls show the doubled values in doubledStack:

 Optional(2)
 Optional(1)
 nil
 Optional(4)
 Optional(2)
 Optional("another string")
 [3, 3, 5]

The output from all these print() calls is not needed in the rest of this chapter, so if you want you can
comment them out to keep things tidy.

Type Constraints

295

Type Constraints
When writing generic functions and data types, by default, you do not know anything about the
concrete type that is going to be used. You created stacks of Int and String, but you can create stacks
of any type. The practical impact of this lack of knowledge is that there is very little you can do with
the value of a placeholder type. For example, you cannot check whether two of them are equal; this
code would not compile:

 func checkIfEqual<T>(_ first: T, _ second: T) -> Bool {
 return first == second
 }

This function could be called with any type, including types for which equality does not make sense,
such as closures. (It is hard to imagine what it would mean for two closures to be “equal.” Swift does
not allow the comparison.)

Generic functions would be relatively uncommon if you were never able to assume anything about
the placeholder types. To solve this problem, Swift allows the use of type constraints, which place
restrictions on the concrete types that can be passed to generic functions. There are two kinds of type
constraints: You can require that a type be a subclass of a given class, or you can require that a type
conform to a given protocol (or protocol composition).

For example, Equatable is a Swift-provided protocol that states that two values can be checked for
equality. (You will read more about Equatable in Chapter 25.) To see how type constraints work, write
a checkIfEqual(_:_:) function including a constraint that T must be Equatable.

Listing 21.10 Using a type constraint to allow checking for equality
...
func checkIfEqual<T: Equatable>(_ first: T, _ second: T) -> Bool {
 return first == second
}

print(checkIfEqual(1, 1))
print(checkIfEqual("a string", "a string"))
print(checkIfEqual("a string", "a different string"))

You use the same : Protocol syntax you saw in Chapter 19 to declare that the placeholder T must
conform to Equatable. This allows you to check the instances passed in to the function for equality. As
the console shows, the first two checks evaluate to true and the third to false.

To prove that the Equatable type constraint works, try it with instances of Stack:

Listing 21.11 Breaking the constraint
...
print(checkIfEqual(1, 1))
print(checkIfEqual("a string", "a string"))
print(checkIfEqual("a string", "a different string"))
print(checkIfEqual(intStack, doubledStack)

Chapter 21 Generics

296

This code emits a new error: global function 'checkIfEqual' requires that 'Stack' conform
to 'Equatable'. Sure enough, the compiler is enforcing the rules that you gave it. Remove the failing
check:

Listing 21.12 Rolling back the failure
...
print(checkIfEqual(1, 1))
print(checkIfEqual("a string", "a string"))
print(checkIfEqual("a string", "a different string"))
print(checkIfEqual(intStack, doubledStack)

Every placeholder type (T, U, etc.) can have its own constraints. For example, write a function that
checks whether two CustomStringConvertible values have the same description.

Listing 21.13 Using a type constraint to check CustomStringConvertible
values
...
func checkIfDescriptionsMatch<T: CustomStringConvertible, U: CustomStringConvertible>(
 _ first: T, _ second: U) -> Bool {
 return first.description == second.description
}

print(checkIfDescriptionsMatch(Int(1), UInt(1)))
print(checkIfDescriptionsMatch(1, 1.0))
print(checkIfDescriptionsMatch(Float(1.0), Double(1.0)))

The constraint that both T and U are CustomStringConvertible guarantees that both first and
second have a property named description that returns a String. (If they do not, the compiler will
issue an error.) Even though the two arguments may have different types, you can still compare their
descriptions. The console shows that the first and last comparisons evaluate to true and the second to
false.

Your playground is getting chatty again; you might want to comment out some of your print() calls to
make future output easier to read. You will not need any of them again.

Associated Types

297

Associated Types
Now that you know that types and functions (including methods) can be made generic, it is natural to
ask whether protocols can be made generic as well. The answer is “no.” However, protocols support a
similar and related feature: associated types.

Let’s explore associated types by examining a couple of protocols defined by the Swift standard
library. The two protocols you will examine are IteratorProtocol and Sequence, which together
allow you to make your own types that can be iterated over in for-in loops.

These protocols already exist in the Swift standard library, so you should not type them in. First, have a
look at the definition of IteratorProtocol:

 protocol IteratorProtocol {
 associatedtype Element
 mutating func next() -> Element?
 }

IteratorProtocol requires a single mutating method, next(), which returns a value of type
Element?. With IteratorProtocol, you can call next() repeatedly and it will produce a new value
each time. If the iterator is no longer able to produce new values, next() returns nil.

Inside a protocol, associatedtype Element states that conforming types must provide a concrete type
that will be used as the Element type. Conforming types specify what Element should be by providing
a typealias for Element inside their definitions. At the top of your playground, create a new struct
called StackIterator that conforms to IteratorProtocol.

Listing 21.14 Creating StackIterator
import Cocoa

struct StackIterator<T>: IteratorProtocol {
 typealias Element = T

 var stack: Stack<T>

 mutating func next() -> Element? {
 return stack.pop()
 }
}

struct Stack<Element> {
 ...
}
...

StackIterator wraps up a Stack and generates values by popping items off of the stack. The type of
the Element that next() returns is T, so you set the typealias appropriately.

Chapter 21 Generics

298

Create a new stack, add some items, and then create an iterator and loop over its values to see
StackIterator in action.

Listing 21.15 Using StackIterator
...
var myStack = Stack<Int>()
myStack.push(10)
myStack.push(20)
myStack.push(30)

var myStackIterator = StackIterator(stack: myStack)
while let value = myStackIterator.next() {
 print("got \(value)")
}

In the console, you will see that the three values pop off in last-in, first-out order.

StackIterator is a little more verbose than it needs to be. Swift can infer the type of a protocol’s
associated types, so you can remove the explicit typealias by indicating that next() returns a T?.

Listing 21.16 Tightening up StackIterator
struct StackIterator<T>: IteratorProtocol {
 typealias Element = T

 var stack: Stack<T>

 mutating func next() -> Element? T? {
 return stack.pop()
 }
}
...

The next associated type protocol you will examine is Sequence. Remember, it already exists in the
Swift standard library, so do not add it to your playground. The definition of Sequence is large, but the
critical part is small:

 protocol Sequence {
 associatedtype Iterator: IteratorProtocol
 associatedtype Element where Element == Iterator.Element
 func makeIterator() -> Iterator
 }

Sequence has two associated types. The first is named Iterator. The : IteratorProtocol syntax is
a type constraint on the associated type. It has the same meaning as type constraints on generics: For a
type to conform to Sequence, it must have an associated type Iterator that conforms to the protocol
IteratorProtocol.

The second associated type, named Element, is the type your iterator returns from the next() function.
This associated type also uses a type constraint to ensure the Element here matches the one supplied in
the IteratorProtocol.

Associated Types

299

Sequence also requires conforming types to implement a single method, makeIterator(), which
returns a value of the associated type IteratorProtocol. Because you already have a suitable iterator
for stacks, modify Stack to conform to Sequence.

Listing 21.17 Making Stack conform to Sequence
...
struct Stack<Element>: Sequence {
 var items = [Element]()
 ...
 func map<U>(_ txform: (Element) -> U) -> Stack<U> {
 var mappedItems = [U]()
 for item in items {
 mappedItems.append(f(item))
 }
 return Stack<U>(items: mappedItems)
 }

 func makeIterator() -> StackIterator<Element> {
 return StackIterator(stack: self)
 }
}
...

You use Swift’s type inference to avoid having to explicitly state typealias Iterator =
StackIterator<Element>, although it would not be an error to do so.

The Sequence protocol is what Swift uses internally for its for-in loops. Now that Stack conforms to
Sequence, you can loop over its contents.

Listing 21.18 Looping through myStack
...
var myStackIterator = StackIterator(stack: myStack)
while let value = myStackIterator.next() {
 print("got \(value)")
}

for value in myStack {
 print("for-in loop: got \(value)")
}

StackIterator pops values off of its stack every time next() is called, which is a fairly destructive
operation. When a StackIterator returns nil from next(), its stack property is empty. However, you
were able to create an iterator from myStack and then use myStack again in a for-in loop. This reuse
is possible because Stack is a value type, which means every time a StackIterator is created, it gets a
copy of the stack, leaving the original untouched.

(Note that the order of items you see from the for-in loop is the same as if you popped items off the
top of the stack – the reverse of the order the items were pushed on.)

Chapter 21 Generics

300

Type Constraints in where Clauses
You have seen the powerful where keyword used to apply constraints to each iteration of a loop or a
case of a switch statement. You can also use a where clause to further constrain generic arguments or
return types in a function declaration.

Write a new method on Stack<Element> that takes every element of an array and pushes it onto a
stack.

Listing 21.19 Pushing items from an array onto a stack
...
struct Stack<Element>: Sequence {
 ...
 mutating func pushAll(_ array: [Element]) {
 for item in array {
 self.push(item)
 }
 }
}
...
for value in myStack {
 print("for-in loop: got \(value)")
}

myStack.pushAll([1, 2, 3])
for value in myStack {
 print("after pushing: got \(value)")
}

Here, your pushAll(_:) method pushes 1, 2, and 3 onto the stack and then prints the contents of the
stack (which also includes three values from Listing 21.15).

pushAll(_:) is useful, but it is not as general as it could be. You now know that any type that
conforms to Sequence can be used in a for-in loop, so why should this method require an array?
It should be able to accept any kind of sequence – even another Stack, now that Stack conforms to
Sequence.

However, a first attempt at this will produce a compile-time type error where you call self.push(_:).

Listing 21.20 Close, but no cigar
...
struct Stack<Element>: Sequence {
 ...
 mutating func pushAll(_ array: [Element]) {
 mutating func pushAll<S: Sequence>(_ sequence: S) {
 for item in array sequence {
 self.push(item)
 }
 }
}
...

You made pushAll(_:) generic with placeholder type S, which is some type that conforms to the
Sequence protocol. The constraint on S guarantees that you can loop over it with the for-in syntax.

Type Constraints in where Clauses

301

However, this is not sufficient. To push the items you get from sequence onto the stack, you need
to guarantee that the type of the items coming from the sequence matches the type of the stack’s
elements.

That is, you need to add a constraint that the elements produced by S are themselves of type Element.

Swift supports constraints of this kind using a where clause.

Listing 21.21 Using a where clause to guarantee type
...
struct Stack<Element>: Sequence {
 ...
 mutating func pushAll<S: Sequence>(_ sequence: S) where S.Element == Element {
 for item in sequence {
 self.push(item)
 }
 }
}
...

Now, the placeholder type S must conform to the Sequence protocol and meet the requirements of the
where clause. S.Element refers to the Element type associated with the sequence S. The constraint
S.Element == Element requires that the concrete type used for the Element associated type must
match the concrete type used for your Stack’s Element placeholder.

(Keep in mind that because it is a method on Stack, which is itself generic with placeholder type
Element, pushAll(_:) also has access to the Element placeholder type.)

The syntax for generic where clauses can be difficult to read at first, but an example should make it
clearer. If your stack is holding Ints, the argument to pushAll(_:) must be a sequence that produces
Ints. Two types you already know that are Int-producing sequences are Stack<Int> and [Int]. Try
them out.

Listing 21.22 Pushing items to the stack
...
var myOtherStack = Stack<Int>()
myOtherStack.pushAll([1, 2, 3])
myStack.pushAll(myOtherStack)
for value in myStack {
 print("after pushing items onto stack, got \(value)")
}

You created a new, empty stack of integers: myOtherStack. Next, you pushed all the integers from an
array onto myOtherStack. Finally, you pushed all the integers from myOtherStack onto myStack. You
were able to use the same generic method in both cases because arrays and stacks both conform to
Sequence.

The elements that were added to myStack are 1, 2, and 3, which might feel counterintuitive. If it does,
think through the sequence of events. You pushed 1, 2, and 3 onto myOtherStack, so 3 ended up on top
of the stack. Then you popped them off of myOtherStack, which grabs the topmost element (3) first,
and pushed them onto myStack. The result is that the top three elements of myStack are 1, 2, and 3, in
that order.

Chapter 21 Generics

302

Side note: If a protocol has an associated type, you currently cannot use that protocol as a type in a
variable or function declaration. For example, since Sequence has an associated type Element, this
would not compile:

 func printElements(from sequence: Sequence) {
 for item in sequence {
 print(item)
 }
 }

However, you may use the protocol as a generic type constraint:

 func printElements<S: Sequence>(from sequence: S) {
 for element in sequence {
 print(element)
 }
 }

Similarly, you cannot declare let mySequence: Sequence.

The reasons for these limitations are not intrinsic to associated types or protocols that declare them;
they are implementation details of the current Swift compiler that are outside the scope of this book.
That said, the generic solution above is effective and, once you get more practice with generics, equally
clear.

Generic Composition and Opaque Types

303

Generic Composition and Opaque Types
Generic data structures can compose with one another using protocols to build systems of types that
elegantly describe more complex ideas. For example, think of an array of dictionaries, which might
have a composed type like Array<Dictionary<String,Int>>. Sometimes, you might want to hide
some of the gritty implementation details of your compositions.

To see what this looks like in practice, you will model a hungry human ordering toast at a restaurant.
Begin with a Food protocol and a food that conforms to it.

Listing 21.23 Defining some food

...
protocol Food {
 var menuListing: String { get }
}

struct Bread: Food {
 var kind = "sourdough"
 var menuListing: String {
 "\(kind) bread"
 }
}

Using a protocol to define the menuListing requirement allows you to write a function to accept any
Food, as you learned about in Chapter 19. Define such a function:

Listing 21.24 Eating some bread

...
func eat<T: Food>(_ food: T) {
 print("I sure love \(food.menuListing).")
}

eat(Bread())

To keep things simple, the eat(_:) function will accept any type that conforms to the Food protocol.

Your console output should show the customer’s reaction:

 I sure love sourdough bread.

With this groundwork laid, things start to get interesting. Define a struct to model a restaurant and
some nested structs to define the preparations of food it might create.

Chapter 21 Generics

304

Listing 21.25 Restaurants are all about sliced, cooked foods
...
eat(Bread())

struct Restaurant {

 struct SlicedFood<Ingredient: Food>: Food {
 var food: Ingredient
 var menuListing: String {
 "a slice of \(food.menuListing)"
 }
 }

 struct CookedFood<Ingredient: Food>: Food {
 var food: Ingredient
 var menuListing: String {
 "\(food.menuListing), cooked to perfection"
 }
 }
}

Nested within Restaurant, you define new structs SlicedFood and CookedFood, data structures that
are generic over an Ingredient that must conform to Food. Nesting these structs within Restaurant in
this example provides a nested scope for access modifiers, which you will apply later, and models the
idea that knowledge of cooking is in the domain of the restaurant staff, rather than the public.

To complete the metaphor and let the restaurant take orders, implement some methods for creating
sliced bread and toast:

Listing 21.26 Restaurants know how to slice and toast bread
...
struct Restaurant {
 ...
 func makeSlicedBread() -> SlicedFood<Bread> {
 return SlicedFood(food: Bread())
 }

 func makeToast() -> CookedFood<SlicedFood<Bread>> {
 let slicedBread = SlicedFood(food: Bread())
 return CookedFood(food: slicedBread)
 }
}

Your makeSlicedBread() function returns a specialization of the SlicedFood generic structure for
which the Ingredient is Bread. Your makeToast() function, in turn, returns a composed type, a
cooked slice of bread.

Now your restaurant-goer can order toast for breakfast:

Listing 21.27 Let them eat toast
...
let restaurant = Restaurant()
let toast = restaurant.makeToast()
eat(toast)

Generic Composition and Opaque Types

305

Your console output should show the customer enjoying toast after the bread they ate previously:

 I sure love a slice of sourdough bread, cooked to perfection.

You have modeled the ability for a customer to eat a slice of Bread, plain or cooked, by way of the
restaurant’s generic CookedFood type.

As programs become more complex, the complexity of generic data structures can increase. The
number of types in this exercise is limited to respect your time (and your typing), but at each step
you should keep in mind the compounding complexity you would face if you needed to model
other foods – such as Butter, Egg, or a composed CombinedFood<Ingredient> – or functions, like
makeFrenchToast().

A makeFrenchToast() function might return an even more deeply composed generic type, such as
CookedFood<CombinedFood<CombinedFood<Bread,Egg>,Butter>>. Such compositions are not far-
fetched.

What would happen if the restaurant changed its toast recipe to cook the bread first and then slice it?
Make this change:

Listing 21.28 Who would make such an abomination?
...
struct Restaurant {
 ...
 func makeToast() -> CookedFood<SlicedFood<Bread>> SlicedFood<CookedFood<Bread>> {
 let slicedBread = SlicedFood(food: Bread())
 return CookedFood(food: slicedBread)
 let cookedBread = CookedFood(food: Bread())
 return SlicedFood(food: cookedBread)
 }
}

The signature of your function has changed, but the meaning of its output has not. Eating the returned
food has the same result:

 I sure love a slice of sourdough bread, cooked to perfection.

Changing the order of the steps in makeToast(), even to one that yields a food with the same
menuListing, has resulted in a different return type for the function. This could cause cascading
changes to other functions unfortunate enough to be relying on the return type of makeToast(), such as
some imaginary makeButteredToast() function.

This brings us to the crux of the problem: The composition of the type of toast is an implementation
detail of Restaurant. Other functions do not, and should not, need to know about the precise
composition of this type. After all, the eat(_:) function is happy with any argument that conforms to
Food.

Chapter 21 Generics

306

The solution is to not expose the type at all. This can be done in two ways. First, you can declare your
functions as returning Food, rather than their precise types. Go ahead and make this change. While you
are at it, restore the implementation of makeToast() so the bread is sliced first:

Listing 21.29 Any food will do
...
struct Restaurant {

 private struct SlicedFood<Ingredient: Food>: Food {
 ...
 }

 private struct CookedFood<Ingredient: Food>: Food {
 ...
 }

 func makeSlicedBread() -> SlicedFood<Bread> Food {
 ...
 }

 func makeToast() -> SlicedFood<CookedFood<Bread>> Food {
 let cookedBread = CookedFood(food: Bread())
 return SlicedFood(food: cookedBread)
 let slicedBread = SlicedFood(food: Bread())
 return CookedFood(food: slicedBread)
 }
}
...

Codifying the idea that SlicedFood and CookedFood are implementation details of the Restaurant
type means marking them private. You allow this by removing them from the signatures of
non-private methods and instead declaring the return types of those methods as Food.

A return type of Food means that makeSlicedBread() and makeToast() could return any kind of Food.
Different calls to the function could return instances of different Food-conforming types. That means
that a hypothetical variant makeToast() function could decide whether to slice the bread twice:

 func makeToast() -> Food {
 var slicedBread = SlicedFood(food: Bread())
 if Bool.random() {
 slicedBread = SlicedFood(food: slicedBread)
 }
 return CookedFood(food: slicedBread)
 }

This sample implementation would either return a SlicedFood<Bread> or a
SlicedFood<SlicedFood<Bread>>, based on a Bool.random(). This is a flexible approach, but it may
or may not be what you want. Right now, a caller of this function must account for the possibility that
makeToast() might return items with different menu listings from one call to the next. Two diners
ordering toast together might be surprised when one of them gets toast made with doubly sliced bread.

Generic Composition and Opaque Types

307

The second way to hide the method’s return type is to return an opaque type, which is denoted by the
some keyword:

Listing 21.30 I sure love some food
...
func makeSlicedBread() -> some Food {
 return SlicedFood(food: Bread())
}

func makeToast() -> some Food {
 let slicedBread = SlicedFood(food: Bread())
 return CookedFood(food: slicedBread)
}
...

By returning the opaque type some Food, you instruct the compiler to figure out what the function’s
return type will be – which requires that your function will always return the same type – and to
hide that type information from humans writing code that calls the function. This way, visitors to the
restaurant can rest assured that makeToast() will always return the exact same kind of toast, without
needing to actually know about its composition.

Opaque types can only be used as the declared return type of a function or computed variable (and not
as a function argument), but in this capacity, they give you the simplicity and privacy of a protocol type
with the specificity of generic programming. They are especially useful for framework developers who
want to use complex type compositions without exposing that complexity to users of the framework.
You will see a concrete example of this strategy in Chapter 28.

Generics are an extremely powerful feature of Swift, and this flexibility comes at a cost of syntactical
complexity. If generics have not sunk in, do not fret – they are an abstract concept, and they take lots
of exposure to truly appreciate. Take your time, go back over the Stack class you wrote in this chapter,
and try your hand at the challenges. It is also perfectly OK to move on and return to this chapter later.

Chapter 21 Generics

308

Bronze Challenge
Add a filter(_:) method to your Stack structure. It should take a single argument, a closure that
takes an Element and returns a Bool, and return a new Stack<Element> that contains any elements for
which the closure returns true.

Silver Challenge
Write a generic function called findAll(_:_:) that takes an array of any type T that conforms to
the Equatable protocol and a single element (also of type T). findAll(_:_:) should return an array
of integers corresponding to every location where the element was found in the array. For example,
findAll([5,3,7,3,9], 3) should return [1,3] because the item 3 exists at indices 1 and 3 in the
array. Try your function with both integers and strings.

Gold Challenge
Modify the findAll(_:_:) function you wrote for the silver challenge to accept a generic Collection
instead of an array. Hint: You will need to change the return type from [Int] to an array of an
associated type of the Collection protocol.

For the More Curious: Understanding Optionals

309

For the More Curious: Understanding Optionals
Optionals are a mainstay of all nontrivial Swift programs, and the language has a lot of features that
make it relatively easy to work with them. Under the hood, however, there is nothing particularly
special about the Optional type. It is a generic enum with two cases:

 enum Optional<Wrapped> {
 case none
 case some(Wrapped)
 }

As you probably expect, the none case corresponds to an optional that is nil. In fact, nil is just
another name for Optional.none. It is a value of type Optional in the same way that true is a value of
type Bool, which is why you cannot assign nil to variables of non-optional type.

The some case corresponds to an optional that has a value of type Wrapped. Because the associated
value of the some case is a generic placeholder, you are able to create instances of Optional to wrap
any type.

Most of your interactions with optionals will use optional binding and optional chaining, but you can
also treat them like any other enumeration. For example, you could switch over the two cases of an
Int?:

 let maybeAnInt: Int? = 10
 switch maybeAnInt {
 case .none:
 print("maybeAnInt is nil")

 case let .some(value):
 print("maybeAnInt has the value \(value)")
 }

This is not usually necessary, but it is nice to know that optionals are not magic. They are built on top
of the same Swift features that are available to you.

311

22
Protocol Extensions

A dominant software programming paradigm of the past few decades has been object-oriented
programming (OOP). OOP is powerful and well known, and developers have an intuition for what
this style means for code. Traditionally, OOP uses classes to model data and methods to modify and
process that data and communicate with instances of other classes. Swift supports OOP, though its
approach to this paradigm is nontraditional given that enums and structs can replace many typical uses
of classes in OOP.

Swift’s value types are powerful and flexible, but they cannot inherit from one another. While you can
create a subclass of a class, there are no such things as “sub-structs” or “sub-enums.” This limits the
ability for value types to substitute for one another and share behavior in the way that a class and its
subclass might.

On the other hand, Swift can add power and flexibility to all types via protocols and protocol
extensions. If you want multiple types – even value types – to have shared behavior, you can make
them conform to a shared protocol; no direct inheritance needed. And, as you will see in this chapter,
you can even provide a default implementation of your desired behavior using a protocol extension.

This chapter will explore using protocol extensions to add new behavior to all types that conform
to a given protocol, to customize the behavior of the Swift standard library, and to add default
implementations of protocol requirements to your types.

Chapter 22 Protocol Extensions

312

Modeling Exercise
Before you can begin exploring protocol extensions, you need a protocol and some conforming types
to experiment with. You are going to write some very basic code that will let you track workout data.

Create a new macOS playground called ProtocolExtensions. Begin with an Exercise protocol.

Listing 22.1 The Exercise protocol
import Cocoa

var str = "Hello, playground"

protocol Exercise {
 var caloriesBurned: Double { get set }
 var minutes: Double { get set }
}

The Exercise protocol has two read/write properties to model the number of calories burned and the
minutes spent performing the exercise.

Create two structs to track workouts: one for using an elliptical trainer and a second for running.

Listing 22.2 EllipticalWorkout and RunningWorkout exercises
protocol Exercise {
 var caloriesBurned: Double { get set }
 var minutes: Double { get set }
}

struct EllipticalWorkout: Exercise {
 var caloriesBurned: Double
 var minutes: Double
}

struct RunningWorkout: Exercise {
 var caloriesBurned: Double
 var minutes: Double
 var meters: Double
}

You define two new structs that both conform to Exercise. Each has caloriesBurned and minutes
properties that will be set when the instance is created. RunningWorkout also has a meters property
to keep track of the distance run. meters is not required by Exercise, but recall from Chapter 19 that
extra properties or methods are perfectly acceptable.

Extending Exercise

313

Create an instance of each of these new types.

Listing 22.3 Instances of EllipticalWorkout and RunningWorkout
...
struct EllipticalWorkout: Exercise {
 var caloriesBurned: Double
 var minutes: Double
}

let ellipticalWorkout = EllipticalWorkout(caloriesBurned: 335, minutes: 30)

struct RunningWorkout: Exercise {
 var caloriesBurned: Double
 var minutes: Double
 var meters: Double
}

let runningWorkout = RunningWorkout(caloriesBurned: 350, minutes: 25, meters: 5000)

Now that you have a protocol and some conforming types, you can start to add more functionality to
these types.

Extending Exercise
A natural question to ask about an instance of Exercise is how many calories were burned per minute
of exercise. You can use your knowledge of generics and type constraints to write a function that will
perform that calculation.

Listing 22.4 Computing calories burned per minute, generically
...
func caloriesBurnedPerMinute<E: Exercise>(for exercise: E) -> Double {
 return exercise.caloriesBurned / exercise.minutes
}

print(caloriesBurnedPerMinute(for: ellipticalWorkout))
print(caloriesBurnedPerMinute(for: runningWorkout))

caloriesBurnedPerMinute(for:) is a generic function whose placeholder type must conform to the
Exercise protocol. You made caloriesBurnedPerMinute(for:) generic so that you can call it with an
instance of any type that conforms to Exercise, including EllipticalWorkout and RunningWorkout.
The body of the function uses two of Exercise’s properties to compute the calories burned per minute.

There is nothing wrong with caloriesBurnedPerMinute(for:). But if you have an instance of
Exercise, you have to remember that the caloriesBurnedPerMinute(for:) function exists. It would
be more natural if every Exercise had a caloriesBurnedPerMinute property – but you do not want to
have to copy and paste the same implementation into both EllipticalWorkout and RunningWorkout
(and any new Exercises you might create).

Chapter 22 Protocol Extensions

314

You cannot add the property definition to the protocol, as protocols themselves do not define the
implementations of properties and methods.

Instead, write an extension on the Exercise protocol to add this new property.

Listing 22.5 Adding caloriesBurnedPerMinute to Exercise
...
func caloriesBurnedPerMinute<E: Exercise>(for exercise: E) -> Double {
 return exercise.caloriesBurned / exercise.minutes
}
extension Exercise {
 var caloriesBurnedPerMinute: Double {
 return caloriesBurned / minutes
 }
}
...

Protocol extensions use the same extension keyword as extensions on other types. Protocol extensions
can add new computed properties and methods that have implementations, but they cannot add new
requirements to the protocol. Protocol extensions also cannot add stored properties, as extensions in
general do not support stored properties.

Properties and methods added in a protocol extension become available on all types that conform to the
protocol.

Much like the restrictions on generic functions, the implementations inside a protocol extension can
only access other properties and methods that are guaranteed to exist, as caloriesBurned and minutes
are in this case.

Now that you have deleted the caloriesBurnedPerMinute(for:) function, your playground is
showing errors where you call the nonexistent function. Delete the function calls and instead access the
new caloriesBurnedPerMinute property on ellipticalWorkout and runningWorkout.

Listing 22.6 Accessing caloriesBurnedPerMinute
...
print(caloriesBurnedPerMinute(for: ellipticalWorkout))
print(caloriesBurnedPerMinute(for: runningWorkout))
print(ellipticalWorkout.caloriesBurnedPerMinute)
print(runningWorkout.caloriesBurnedPerMinute)

The results are the same.

This ability to use a protocol extension to add features to all types conforming to the protocol is
incredibly powerful, and it drives many features of the Swift standard library. You will learn more
about standard library usage of protocol extensions in Chapter 25.

Self Types and Type Values

315

Self Types and Type Values
Methods that have implementations on multiple types sometimes need to know the specific type they
are being called on. There is a special type, Self, that you can use for this purpose. Add and test
another extension to Exercise to create a modified duplicate of whatever exercise it gets called on:

Listing 22.7 Adding a method that returns Self
...
print(ellipticalWorkout.caloriesBurnedPerMinute)
print(runningWorkout.caloriesBurnedPerMinute)

extension Exercise {
 func adding(calories: Double) -> Self {
 var dupe = self
 dupe.caloriesBurned += calories
 return dupe
 }
}

let ellipticalCopy = ellipticalWorkout.adding(calories: 50)
let runningCopy = runningWorkout.adding(calories: 100)

Why not add this function to the existing extension? Using multiple extensions is common.
Organizationally, an extension can help define a logical grouping of behavior, and adding(calories)
is not very closely related to caloriesBurnedPerMinute.

Self (with a capital S) can be used as the return type of a method or computed property when you are
returning an instance of the same type as the one whose code is executing. This could be because your
code returns a new instance (as it does in Listing 22.7) or because it returns the same instance, such as
with return self.

How might you interpolate the Self type into a string, such as to print out the kind of object returned
from adding(calories:)? Every type has a type property that you can use to access the type as a
value. And if you are guessing that the property is called self, then you are right. Print the type of the
duplicated object in your playground:

Listing 22.8 Accessing a type as a value
...
extension Exercise {
 func adding(calories: Double) -> Self {
 var dupe = self
 dupe.caloriesBurned += calories
 print("Creating a new \(Self.self) with \(dupe.caloriesBurned)cal burned.")
 return dupe
 }
}
...

The use of .self on a type is not limited to the Self type. In Chapter 28, you will encounter functions
that you must pass types in to as arguments, such as functions that ask questions like, “The server sent
some data; what type of data is it?” You might want to answer, “It is a string,” and you would do so by
passing String.self as the argument to that function.

Do not worry – this is the last new context in which the word “self” will have special meaning.

Chapter 22 Protocol Extensions

316

Protocol Extension where Clauses
Extensions allow you to add new methods and computed properties to any type, not just types you have
defined. Likewise, protocol extensions allow you to add new methods and computed properties to any
protocol. However, as we said earlier, the properties and methods you add in a protocol extension can
only use other properties and methods that are guaranteed to exist.

Do you remember the IteratorProtocol from Chapter 21? It has an associatedtype named Element
that indicates the type of elements produced by the generator. That generator, and the elements
returned, are used by the Sequence protocol to produce values you can iterate over in a loop.

When writing a protocol extension on Sequence, there are not very many properties and methods that
would be useful. You can use a where clause to restrict the protocol extension to only Sequences whose
Element is a particular type.

Write a protocol extension on Sequence, constraining it to sequences with elements of type Exercise.

Listing 22.9 Extending Sequences containing Exercises
...
extension Sequence where Element == Exercise {
 func totalCaloriesBurned() -> Double {
 var total: Double = 0
 for exercise in self {
 total += exercise.caloriesBurned
 }
 return total
 }
}

The where clause syntax for protocol extensions is the same as the where clause syntax for generics.
You add a totalCaloriesBurned() method to compute the total number of calories burned in all
exercises contained in the sequence. In the implementation, you loop over every exercise in self,
which is allowed because self is some kind of Sequence. You then access the caloriesBurned
property of each element, which is allowed because the where clause restricts this method to sequences
whose elements are Exercise.

Protocol Extension where Clauses

317

To use your extension, create an array of Exercises. Array conforms to Sequence, so you can call your
new totalCaloriesBurned() method.

Listing 22.10 Calling totalCaloriesBurned() on an array of Exercises
...
extension Sequence where Element == Exercise {
 func totalCaloriesBurned() -> Double {
 var total: Double = 0
 for exercise in self {
 total += exercise.caloriesBurned
 }
 return total
 }
}

let mondayWorkout: [Exercise] = [ellipticalWorkout, runningWorkout]
print(mondayWorkout.totalCaloriesBurned())

The totalCaloriesBurned() method is available on this array because it is of type [Exercise],
so you get the result 685.0. If you were to create an array of type [Int], on the other hand,
the totalCaloriesBurned() method would not be available. It would not show up in Xcode’s
autocompletion, and if you were to type it in manually your program would not compile.

Chapter 22 Protocol Extensions

318

Default Implementations with Protocol Extensions
Both of the protocol extensions you have written so far add new properties or methods to protocols.
You can also use protocol extensions to provide default implementations for the protocol’s own
requirements.

Recall from Chapter 19 that the CustomStringConvertible protocol has a single requirement:
a readable String property named description. Change Exercise to inherit from
CustomStringConvertible, meaning it also requires the description property.

Listing 22.11 Making Exercise inherit from CustomStringConvertible
protocol Exercise: CustomStringConvertible {
 var caloriesBurned: Double { get set }
 var minutes: Double { get set }
}
...

Your playground now has two errors because neither EllipticalWorkout nor RunningWorkout has the
required description property.

You could go back and modify both types to add a description, but that seems silly when Exercise
already has enough properties to provide a reasonable String representation. Use a protocol extension
to add a default implementation of description to all types that conform to Exercise.

Listing 22.12 Adding a default implementation of description to Exercise
protocol Exercise: CustomStringConvertible {
 var caloriesBurned: Double { get set }
 var minutes: Double { get set }
}

extension Exercise {
 var description: String {
 return "Exercise(\(Self.self), burned \(caloriesBurned) calories
 in \(minutes) minutes)"
 }
}
...

The playground no longer has any errors. Your extension provides a default implementation of
description, so types that conform to Exercise do not have to provide it themselves.

Default Implementations with Protocol Extensions

319

Print out both of your Exercise instances to see their descriptions.

Listing 22.13 Seeing the default description implementation
...
print(ellipticalWorkout.caloriesBurnedPerMinute)
print(runningWorkout.caloriesBurnedPerMinute)

print(ellipticalWorkout)
print(runningWorkout)
...

In the debug area of your playground, you should see the following output; it is exactly as you would
expect from your implementation of description.

 ...
 Exercise(Elliptical Workout, burned 335.0 calories in 30.0 minutes)
 Exercise(Running Workout, burned 350.0 calories in 25.0 minutes)

When a protocol provides a default implementation for a property or method via a protocol extension,
conforming types are not required to implement that requirement themselves – but they can. If they do,
the compiler will use the conforming type’s implementation instead of the default implementation.

Your RunningWorkout type also knows how many meters were run, but that information is not included
in the description. Implement the description property on RunningWorkout to include distance
information. This implementation will take precedence over the default supplied by your extension on
Exercise.

Listing 22.14 Overriding a protocol’s default implementation
...
struct RunningWorkout: Exercise {
 var caloriesBurned: Double
 var minutes: Double
 var meters: Double

 var description: String {
 return "RunningWorkout(\(caloriesBurned) calories and
 \(meters)m in \(minutes) minutes)"
 }
}
...

Now that RunningWorkout implements description itself, you should see in the output that the default
implementation is only used when printing ellipticalWorkout.

 ...
 Exercise(Elliptical Workout, burned 335.0 calories in 30.0 minutes)
 RunningWorkout(350.0 calories and 5000m in 25.0 minutes)

Chapter 22 Protocol Extensions

320

Implementation Conflicts
As you have seen, the compiler will select a concrete protocol-conforming type’s implementation of
a method or property over any default implementation provided by a protocol extension. But there is
a case where this does not seem to be true, and you should be aware of it to help prevent frustration in
the future.

Let’s look at an example.

Use a protocol extension to implement a title property on Exercise. Create two identical running
workouts and print their titles.

Listing 22.15 Extending Exercise to add a title
...
extension Exercise {
 var title: String {
 return "\(Self.self) - \(minutes) minutes"
 }
}

let tenKRun: RunningWorkout = RunningWorkout(caloriesBurned: 750,
 minutes: 60,
 meters: 10000)
let workout: Exercise = tenKRun

print(tenKRun.title)
print(workout.title)

Note that you declare one of the instances as being of concrete type RunningWorkout and the other as
being of protocol type Exercise. You should see the following output:

 ...
 RunningWorkout - 60.0 minutes
 RunningWorkout - 60.0 minutes

This makes sense. They are equal runs, after all. Now go back and implement a title property on
RunningWorkout.

Listing 22.16 Adding a title to RunningWorkout
...
struct RunningWorkout: Exercise {
 let title = "Gotta go fast!"
 var caloriesBurned: Double
 ...
}
...

Check the output again. Both should change to Gotta go fast!, right?

 ...
 Gotta go fast!
 RunningWorkout - 60.0 minutes

Wait, what? Why are their titles different? They are equal objects and are both instances of
RunningWorkout!

Implementation Conflicts

321

When a protocol declares a requirement and a type conforms to that protocol, the compiler follows a
rigorous series of steps to find the conforming type’s implementation to use at every call site. This is
the case with your description property, which is required by CustomStringConvertible.

Behavior that is added using a protocol extension, and not listed in the protocol’s interface, does not
get this priority treatment. The compiler treats the protocol extension’s implementation as having equal
weight with other implementations provided by the program, rather than as a default implementation to
be overridden by concrete types.

At each call site, as with a generic function, the compiler will select the best implementation it can
with the information available. Specifically, the compiler will rely on the declared type of the variable
or argument being used to access the property or method.

In Listing 22.15, tenKRun is declared as being of type RunningWorkout, so the compiler will select the
struct’s implementation of the title property. Since workout is declared as an Exercise, the compiler
will select the implementation available on the Exercise protocol, which is provided by your protocol
extension.

Find your declaration of the Exercise protocol at the top of your playground and add title as a
protocol requirement:

Listing 22.17 Adding title as a protocol requirement
protocol Exercise: CustomStringConvertible {
 var caloriesBurned: Double { get set }
 var minutes: Double { get set }
 var title: String { get }
}
...

Look at the output once more.

 ...
 Gotta go fast!
 Gotta go fast!

Since title is now listed in the Exercise protocol, the compiler interprets the protocol extension’s
implementation as a default implementation to be overridden by concrete implementations. It will
always search for a concrete implementation and give preference to any that it finds.

This is a strange artifact of protocol extensions, and it is OK if it feels counterintuitive. For now, when
adding behavior to concrete types using a protocol extension, consider also declaring that behavior in
the protocol itself to remove potential confusion over which implementation will be used at the call
site.

Of course, if allowing selection of an implementation based on variable type is your desired behavior,
that is fine. The standard library does this, as you will see in Chapter 23.

You previously learned that the two major differences between value types and reference types are
inheritance and value/reference semantics. Now you know that while inheritance is not available to
value types, many of its benefits are available via protocols and protocol extensions. This means that
value types can fulfill your needs more frequently than you might previously have thought.

Chapter 22 Protocol Extensions

322

Bronze Challenge
Add a method called count(where:) to all collections to count the number of elements that pass a
provided test.

You should be able to call it like this:

 let workouts: [Exercise] = [ellipticalWorkout, runningWorkout, tenKRun]
 let hardWorkoutCount = workouts.count(where: { $0.caloriesBurned >= 500}) // 1

Look at the documentation for the Sequence and Collection protocols. Why is Collection the better
protocol to add this extension to?

Silver Challenge
Sometimes you have a sequence of integers and want to add them up. You can do that by calling
reduce(_:_:), but that is ugly and counterintuitive. (Feel free to take time to review the reduce(_:_:)
method in Chapter 13 on closures.)

To make summing sequences of number more convenient, add a computed property called sum to all
sequences of numbers. You should be able to use it like this:

 [4, 8, 15, 16, 23, 42].sum // 108
 [80.5, 9.6].sum // 90.1

To solve this challenge, you will need to be able to answer a deeper question: What is a number?
Look at the documentation for the Int and Double types. What protocols do they conform to? What
protocols do those protocols inherit from? Do Int and Double have any protocols in common that
would be a good place to add your extension?

Gold Challenge
This challenge is unique in that it does not have a specific problem or solution. Instead, it is an
encouragement to spend some time reading interfaces written by the Swift team at Apple. Remember
that you can Command-click on a type, function, method, or even operator to jump to a view in Xcode
that shows you how the element is declared.

You first encountered the map(_:) method in Chapter 13, where you called it on arrays. map(_:) is
not just a method on arrays, though. It is defined in a protocol extension on all Sequences by the Swift
standard library.

The Swift standard library contains many properties and methods provided by protocol extensions.
And many of them include where clauses that restrict their use based on various criteria.

The Swift standard library can be difficult to read, especially at first – and especially if Swift is your
first exposure to programming or generics. But it is worth investing some time to look at how the
library is organized.

Try Command-clicking on Sequence in your playground and skimming through some of the extensions
defined there. See if you can figure out what some of the where clauses mean. Do some experiments
and explore!

Can anything that you learn there help you refine your solutions to the bronze or silver challenges?

For the More Curious: Polymorphism and Protocol-Oriented Programming

323

For the More Curious: Polymorphism and Protocol-
Oriented Programming
In Chapter 15, you learned about class inheritance and that any function that expects an argument
of some class can also accept arguments that are subclasses of that class. We said that this ability to
accept either a class or any subclass of it is sometimes referred to as polymorphism. Polymorphism,
meaning “having many forms,” allows you to write a single function that can accept different types.

That particular flavor of polymorphism is more precisely known as runtime polymorphism or subclass
polymorphism. Using protocol types as function arguments or return values is another example of
runtime polymorphism.

Runtime polymorphism is a powerful tool, and the frameworks Apple provides for development use
it frequently. Unfortunately, it also has drawbacks. Classes that are related by inheritance are tied
together tightly: It can be difficult to change a superclass without affecting its subclasses. Also, there
is a small but observable performance penalty to runtime polymorphism due to how the compiler must
implement functions that accept class arguments.

Swift’s ability to add constraints to generics allows you to use another form of polymorphism, called
compile-time polymorphism or parametric polymorphism. Generic functions with constraints are still
true to the definition of polymorphism: You can write a single function that accepts different types.

Compile-time polymorphic functions address both of the issues listed above that plague runtime
polymorphism. Many different types can conform to a protocol, allowing them to be used as
constraints in any generic function that requires a type conforming to that protocol – but the types
can be otherwise unrelated, making it easy to change any one of them without affecting the others.
Additionally, compile-time polymorphism generally does not have a performance penalty.

In Chapter 21, you called your generic pushAll(_:) function once with an array and once with a stack.
The compiler actually produced two different versions of pushAll(_:) behind the scenes, one for each
argument type used in the program, so that the function itself does not have to do anything at runtime
to handle the different argument types.

Swift’s emphasis on value types using protocols for shared behavior, rather than reference types
using inheritance for shared behavior, has given popularity to an additional programming paradigm:
protocol-oriented programming. But despite their names, object-oriented programming and protocol-
oriented programming are not mutually exclusive approaches.

At the beginning of this chapter, we said that Swift’s approach to OOP is a little different than most
other languages’, because Swift’s value types are very robust and lend themselves well to modeling
complex data. In traditional OOP applications, developers define shared behavior using classes,
allowing that behavior to be overridden by subclasses that add or augment a type’s behavior. Protocol-
oriented programming borrows this idea, but makes it work with value types by using protocol
hierarchies and protocol extensions to provide behavior to any conforming type.

In a protocol-oriented approach, when you need to define a type to fulfill some role, you start by
defining a protocol whose interface reflects the requirements of the role. Then you can write code that
uses that role without having to write any concrete implementations. And then you can write concrete
types that actually conform to your protocol, when you are ready.

By writing your code like this, interface first, you reduce the risk of a concrete type’s implementation
details cluttering its interface.

Chapter 22 Protocol Extensions

324

As an example, suppose you need to implement an app’s login flow. While you are working on your
LoginSession class, you realize that you need a type to model a logged-in user.

 class LoginSession {
 var lastLogin: Date?
 // Need a var for current user
 // Need a function to log them in
 }

For now, all you care about is that every user instance has a name and an ability to validate its
credentials. Rather than immediately defining a struct or class, you might define a User protocol:

 protocol User {
 var name: String { get }
 func validatePassword(_ pw: String) -> Bool
 }

Now you can finish up your LoginSession class – without caring about any of the implementation
details of whatever type ends up conforming to User.

 class LoginSession {
 var lastLogin: Date?
 var currentUser: User?

 func login(_ user: User, with password: String) {
 if user.validatePassword(password) {
 currentUser = user
 }
 print("\(user.name) logged in!")
 }
 }

Without even having any concrete data types to conform to User, this is already code that would
compile. Then you could get around to implementing a concrete user model:

 struct AppUser: User {
 var name: String
 private var password: String

 func validatePassword(_ pw: String) -> Bool {
 #warning("This whole login flow is really insecure, by the way.")
 return password == pw
 }
 }

Having designed the interface in advance, using a protocol, you now have an idea of what the central
features of this type are – and also which features should probably be marked as private, since their
absence from the protocol implies that the rest of your program does not need to know about them.
This approach often lends itself well to designing types that are responsibly decoupled from one
another, focused, and testable.

325

23
Error Handling

How often has a piece of software you have been using crashed or done something it was not supposed
to do? The majority of the time, these issues are caused by incorrect error handling. Error handling is
one of the unsung heroes of software development: Nobody thinks of it as a priority, and if it is done
correctly nobody notices. But it is absolutely critical – users of your software will certainly notice (and
complain!) if it is done poorly.

In this chapter, you will explore the tools that Swift provides to catch and handle errors.

Classes of Errors
There are two broad categories of errors that can occur: recoverable errors and nonrecoverable errors.

Recoverable errors are typically events you must be ready for and handle. Common examples of
recoverable errors are:

• trying to open a file that does not exist
• trying to communicate with a server that is down
• trying to communicate when a device does not have an internet connection

Swift provides you with a rich set of tools for dealing with recoverable errors. You have become
accustomed to Swift enforcing safety rules at compile time, and handling errors is no different. When
you call a function that might fail with a recoverable error, Swift will require you to acknowledge and
deal with that possibility.

Nonrecoverable errors are just a special kind of bug. You have already encountered one: force-
unwrapping an optional that contains nil. Another example is trying to access an element past the end
of an array. These nonrecoverable errors will cause your program to trap.

A trap is a command to the OS to immediately stop the currently executing program. If you are running
the program from Xcode, it will stop in the debugger and show you where the error occurred. For a
user running your program, a trap looks the same as a crash – the program immediately shuts down.

Why is Swift so heavy handed with this class of error? The name gives a hint: These errors are not
recoverable, meaning there is nothing your program could do to fix the problem.

Think about unwrapping an optional, for example. When you force-unwrap an optional, Swift quietly
checks whether it has a value before trying to access that value. If the optional is nil, Swift will trap.
If it did not, the application might crash anyway – or it might try to continue with invalid or possibly
corrupt data.

Chapter 23 Error Handling

326

In this chapter, you will build a very simple two-phase compiler. In doing so, you will implement a
function that can evaluate basic mathematical expressions. For example, if you provide the input string
"10 + 3 + 5", the function will return the integer 18. Along the way, you will use Swift’s facilities for
dealing with both recoverable and nonrecoverable errors.

Lexing an Input String
The first phase of your expression-evaluating compiler is lexing. In computer science, lexing is the
process of turning some input into a sequence of tokens. A token is something with meaning, like a
number or a plus sign (the two tokens your compiler will recognize). Lexing is sometimes referred to
as “tokenizing” because you are turning some input that is meaningless to the compiler (like a string)
into a sequence of meaningful tokens.

Create a new macOS playground named ErrorHandling. Define an enumeration that has cases for the
two kinds of token.

Listing 23.1 Declaring the Token type
import Cocoa

var str = "Hello, playground"

enum Token {
 case number(Int)
 case plus
}

When building something like a lexer, logging your progress can help with debugging later. You will
start by logging tokens as your lexer encounters them. You can define how the tokens are printed
by adding the CustomStringConvertible protocol to your Token type. Update your Token enum to
conform to it:

Listing 23.2 Adding a debug description
enum Token: CustomStringConvertible {
 case number(Int)
 case plus

 var description: String {
 switch self {
 case .number(let n):
 return "Number: \(n)"
 case .plus:
 return "Symbol: +"
 }
 }
}

Lexing an Input String

327

Next, start building your lexer. To lex an input string, you will need to access the individual characters
in the input string one by one. You will need to keep track of your current position in String as well.
Create the Lexer class and give it two properties to track these pieces of information.

Listing 23.3 Creating Lexer
enum Token: CustomStringConvertible {
 case number(Int)
 case plus

 var description: String {
 switch self {
 case .number(let n):
 return "Number: \(n)"
 case .plus:
 return "Symbol: +"
 }
 }
}

class Lexer {
 let input: String
 var position: String.Index

 init(input: String) {
 self.input = input
 self.position = input.startIndex
 }
}

Recall from Chapter 7 that strings are collections of Characters. Strings have startIndex and
endIndex properties that let you step through the characters. Here, you initialize the input property
with the passed-in String and initialize the position property to the String’s startIndex.

Chapter 23 Error Handling

328

Lexing the input characters is a straightforward process. The steps you will implement are outlined in
Figure 23.1.

Figure 23.1 Lexing algorithm

You begin by creating an empty array to hold Tokens. You then inspect the first character. If it is a digit,
you continue to scan forward through the input string, collecting all the subsequent digits into a single
number, then appending a .number to the token array. If the character is a +, you append a .plus to the
Token array. If the character is a space, you ignore it.

In all three of those cases, you then move on to the next character in the input string, repeating the
same decision-making process. At any point as you are scanning through the input string, encountering
a character that does not fall into one of the three cases above is considered an error: The input is
invalid. When you reach the end of the input string, the lexing phase is finished.

Lexing an Input String

329

To implement this algorithm, Lexer will need two basic operations: a way to peek at the next character
from the input and a way to advance the current position. Peeking at the next character requires a way
to indicate that the lexer has reached the end of its input, so make it return an optional.

Listing 23.4 Implementing peek()
...
class Lexer {
 let input: String
 var position: String.Index

 init(input: String) {
 self.input = input
 self.position = input.startIndex
 }

 func peek() -> Character? {
 guard position < input.endIndex else {
 return nil
 }
 return input[position]
 }
}

You use a guard statement to ensure that you have not reached the end of the input, returning nil if
you have. If there is input remaining, you return the character at the current position.

Now that the lexer can peek at the current character, it also needs a way to advance to the next
character. Advancing is very simple. position is an index from the input collection, and every
collection knows how to compute new indices relative to old ones. Get the index after the current value
of position using input’s index(after:) method and assign that back into position.

Listing 23.5 Implementing advance()
...
class Lexer {
 ...
 func peek() -> Character? {
 guard position < input.endIndex else {
 return nil
 }
 return input[position]
 }

 func advance() {
 position = input.index(after: position)
 }
}

Chapter 23 Error Handling

330

Before moving on, there is an opportunity here to introduce a check for a nonrecoverable error. As you
implement the rest of Lexer, you will be calling peek() and advance(). peek() can be called any time,
but advance() should only be called if you are not already at the end of the input. Add an assertion to
advance() that checks for this condition.

Listing 23.6 Adding an assertion to advance()
...
class Lexer {
 ...
 func advance() {
 assert(position < input.endIndex, "Cannot advance past endIndex!")
 position = input.index(after: position)
 }
}

The assert(_:_:) function’s first argument is a condition to check. If the condition evaluates to true,
nothing happens. But if the condition evaluates to false, your program will trap in the debugger with
the message you provide as the second argument.

Calls to assert(_:_:) will only be evaluated if your program is built in debug mode. Debug mode is
the default when you are working in a playground or running a project in Xcode. Release mode is what
Xcode uses when you build an app for submission to the App Store. Among other things, building in
release mode turns on a number of compiler optimizations and removes all calls to assert(_:_:).

If you want to keep your assertions around even in release mode, you can use precondition(_:_:)
instead. It takes the same arguments and has the same effect as assert(_:_:), but it is not removed
when your app is built for release.

Both assert(_:_:) and precondition(_:_:) are used to trap if a condition is not met. If you need to
unconditionally halt program execution, you can do so with fatalError(_:), which accepts a string
argument that will be printed to the console just before trapping.

Why did you use assert(_:_:) instead of guard or some other error-handling mechanism?
assert(_:_:) and its partner precondition(_:_:) are tools to help you catch nonrecoverable errors.
As you are implementing your lexing algorithm, you are advancing an index from the beginning of the
input to the end. You should never attempt to advance past the input’s endIndex.

Adding this assertion will help you catch any mistake you make that introduces a bug of this kind,
because the assertion will cause the debugger to stop execution at this point, helping you identify the
error. The alternatives to this assertion are to not advance the lexer’s position or send an error back to
the user of your lexer, neither of which makes sense.

Lexing an Input String

331

Now that the Lexer class has the building blocks you need, it is time to start implementing the lexing
algorithm. The output of lexing will be an array of Tokens, but it is also possible for lexing to fail. To
indicate that a function or method might emit an error, add the keyword throws after the parentheses
containing the arguments. (This implementation of lex() is incomplete and will not compile, but you
will finish it shortly.)

Listing 23.7 Declaring the throwing lex() method
...
class Lexer {
 ...
 func advance() {
 assert(position < input.endIndex, "Cannot advance past endIndex!")
 position = input.index(after: position)
 }

 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest
 break // TODO: replace this with real work

 case "+":
 tokens.append(.plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 // Something unexpected - need to send back an error
 break // TODO: replace this with real work
 }
 }

 return tokens
 }
}

You have now implemented most of the lexing algorithm. You start by creating an array, tokens, that
will hold every Token you lex. You use a while let condition to loop until you reach the end of the
input. For each character you look at, you go into one of the four cases. And you have implemented
what to do if the character is a plus (append .plus to tokens and then advance to the next character) or
a space (ignore it and advance to the next character).

There are two cases left to implement. Let’s start with the default case. If this case matches, then a
character you were not expecting is next. That means you need to throw an error. In Swift, you use the
throws keyword to send, or “throw,” an error back to the caller.

What can you throw? You must throw an instance of a type that conforms to the Error protocol. Most
of the time, errors you want to throw will lend themselves to being defined as enumerations, and this is
no exception.

Chapter 23 Error Handling

332

What should you name your Error-conforming enumeration? One option would be to name it
LexerError. LexerError would be acceptable, but it also adds another type just for designating lexing
errors, which is not ideal. A separate type would suggest that LexerError has meaning beyond and
outside Lexer.

Recall from Chapter 16 that you can nest types. You can use a nested Lexer.Error enumeration that
makes it clear that the error cases it provides are directly related to Lexer.

Declare an enumeration nested inside the Lexer class to express lexing errors.

Listing 23.8 Declaring Lexer.Error
...
class Lexer {
 enum Error {
 case invalidCharacter(Character)
 }

 let input: String
 var position: String.Index
 ...
}

Lexer.Error needs to conform to the Error protocol. A direct attempt to add this conformance will
fail, but try it anyway to see the error.

Listing 23.9 Attempting to make Lexer.Error conform to Error
...
class Lexer {
 enum Error: Error {
 case invalidCharacter(Character)
 }

 let input: String
 var position: String.Index
 ...
}

You will get a number of error messages in the console. Find this one:

 error: ErrorHandling.playground:18:10: error: 'Error' has a raw type that depends
 on itself
 enum Error: Error {
 ^

The compiler is confused because it thinks you are trying to declare an Error type using itself. How
can you tell the compiler that you want to use the Error protocol from the Swift standard library?

Swift does not have explicit namespaces, unlike languages such as C++. Instead, all types and
functions are implicitly namespaced to the module they are defined in. You typically do not need to
think about which module you are working in. If you are writing an iOS app, for example, the entire
app lives in one module.

Declaring Lexer.Error is one of the rare cases where being aware of modules is useful. Types and
functions that are part of the Swift standard library live in the Swift module. You can specify that you
want the Swift module’s Error type by its full name: Swift.Error.

Lexing an Input String

333

Add the module name to fix your declaration of Lexer.Error.

Listing 23.10 Making Lexer.Error conform to Error
...
class Lexer {
 enum Error: Swift.Error {
 case invalidCharacter(Character)
 }
 ...
}

Command-click on the Swift.Error protocol and choose Jump to Definition to see its definition from
the Swift standard library. You will find that it is an empty protocol; the behaviors that Swift wants
from Error-conforming types are added via protocol extensions in the standard library.

This means that any type you write can conform to Error just by stating that it does. Enumerations are
by far the most common Errors. When something fails, you usually have a discrete list of reasons for
the failure, which are representable by enum cases.

Click the back arrow in the Xcode toolbar to return to your playground. Now that you have a throwable
type, implement the default case in the lex() method to throw an instance of your new Error enum.

Listing 23.11 Throwing an error
...
class Lexer {
 ...
 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest
 break // TODO: replace this with real work

 case "+":
 tokens.append(.plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 // Something unexpected - need to send back an error
 break // TODO: replace this with real work
 throw Lexer.Error.invalidCharacter(nextCharacter)
 }
 }

 return tokens
 }
}

Like return, throw causes the function to immediately stop executing and go back to its caller.

Chapter 23 Error Handling

334

Finally, the lexer needs to be able to extract integers from the input. Create a getNumber() method
that builds up integers one digit at a time using the same peek() and advance() tools you are using in
lex().

Next, update lex() by adding a call to getNumber() and appending the number to the array of tokens.

Listing 23.12 Implementing Lexer.getNumber()
...
class Lexer {
 ...
 func getNumber() -> Int {
 var value = 0

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Another digit - add it into value
 let digitValue = Int(String(nextCharacter))!
 value = 10*value + digitValue
 advance()

 default:
 // Something unexpected - need to send back an error
 return value
 }
 }

 return value
 }

 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest
 break // TODO: replace this with real work
 let value = getNumber()
 tokens.append(.number(value))

 case "+":
 tokens.append(.plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 // Something unexpected - need to send back an error
 throw Lexer.Error.invalidCharacter(nextCharacter)
 }
 }

 return tokens
 }
}

Lexing an Input String

335

At this point, all your errors should be gone.

getNumber() loops over input characters, accumulating digits into a single integer value.
Note that you do something we have cautioned against – force-unwrapping an optional – in
Int(String(nextCharacter))!. However, it is perfectly safe in this case. Because you know that
nextCharacter contains a single digit, converting it to an Int will always succeed and never return
nil. As soon as getNumber() encounters a character that is not a digit (or the end of the input), it stops
and returns the accumulated value.

Lexer is complete, and it is time to put it to the test. Write a new function at the bottom of your
playground that takes an input string and tries to lex it, then call it with a couple of trial inputs. (This
function will not work quite yet – as you type it in, try to figure out why.)

Listing 23.13 Evaluating the lexer
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = lexer.lex()
 print("Lexer output: \(tokens)")
}

evaluate("10 + 3 + 5")
evaluate("1 + 2 + three")

evaluate(_:) takes an input String, creates a Lexer, and lexes the input into Tokens. But the compiler
does not allow what you have entered. Note the error message on the line where you call lex():

Call can throw, but it is not marked with 'try' and the error is not handled

The compiler is telling you that because the lex() method is marked as throws, calls to lex() must be
prepared to handle an error.

Chapter 23 Error Handling

336

Catching Errors
To handle errors, Swift uses a control construct you have not yet seen: do/catch, with at least one try
statement inside the do. We will explain in a moment. First, modify evaluate(_:) to use this control
flow to handle errors coming from lex().

Listing 23.14 Error handling in evaluate(_:)
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")
 } catch {
 print("An error occurred: \(error)")
 }
}

What do these new keywords mean? do introduces a new scope, much like an if statement. Inside the
do scope, you can write code as normal, like calling print(). In addition, you can call functions or
methods that are marked as throws. Each such call must be indicated with the try keyword.

After the do block, you write a catch block. If any of the try calls inside the do block throw an error,
the catch block will run, with the thrown error value bound to the constant error.

You should now be seeing the output of running evaluate(_:) in the debug area.

 Evaluating: 10 + 3 + 5
 Lexer output: [Number: 10, Symbol: +, Number: 3, Symbol: +, Number: 5]
 Evaluating: 1 + 2 + three
 An error occurred: Lexer.Error.invalidCharacter("t")

The catch block you wrote above did not specify a particular kind of error, so it will catch any thrown
Error. You can add catch blocks to catch specific kinds of errors. In this case, you know that the lexer
could throw a Lexer.Error.invalidCharacter error, so add a catch block for it.

Listing 23.15 Catching an invalidCharacter error
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

Parsing the Token Array

337

You add a catch block that is specifically looking for the Lexer.Error.invalidCharacter error.
catch blocks support pattern matching, just like switch statements, so you can bind the invalid
character to a constant for use within the catch block. You should see a more specific error message
now:

 Evaluating: 10 + 3 + 5
 Lexer output: [Number: 10, Symbol: +, Number: 3, Symbol: +, Number: 5]
 Evaluating: 1 + 2 + three
 Input contained an invalid character: t

Congratulations, the lexing phase of your compiler is complete! Before moving on to parsing, delete
the call to evaluate(_:) that is causing an error.

Listing 23.16 Removing bad input
...
evaluate("10 + 3 + 5")
evaluate("1 + 2 + three")

Parsing the Token Array
Now that your lexer is complete, you can turn an input string into an array of Tokens, each of which
is either a .number or a .plus. The next step is to write a parser whose job is to evaluate a series
of tokens delivered to it from the lexer. For example, feeding [.number(5), .plus, .number(3)]
through your parser should give you the answer 8. The algorithm to parse this sequence of tokens is
more restrictive than the algorithm you used for lexing, because the order the tokens appear in is very
important. The rules are:

• The first token must be a number.

• After parsing a number, either the parser must be at the end of input, or the next token must be
.plus.

• After parsing a .plus, the next token must be a number.

The setup of your parser will be very similar to the lexer, although a bit simpler. The parser does not
need separate peek() and advance() methods. They can be combined into one getNextToken()
method that returns the next Token or nil if all tokens have been consumed.

Chapter 23 Error Handling

338

Create the Parser class with a getNextToken() method.

Listing 23.17 Beginning the implementation of Parser
...
class Lexer {
 ...
}

class Parser {
 let tokens: [Token]
 var position = 0

 init(tokens: [Token]) {
 self.tokens = tokens
 }

 func getNextToken() -> Token? {
 guard position < tokens.count else {
 return nil
 }
 let token = tokens[position]
 position += 1
 return token
 }
}

func evaluate(_ input: String) {
 ...
}
...

A Parser is initialized with an array of tokens and begins with a position of 0. The getNextToken()
method uses guard to check that there are more tokens remaining and, if there are, returns the next one,
advancing position past the token it returns.

Two of the three rules for our parser used the phrase “must be a number.” A good place to start
implementing the parser is with a method to get a number. If the next token must be a number, there
are two error cases that need to be considered. The parser might be at the end of the token array, which
means there is no number left. Or the next token might be a .plus instead of a number. For example,
the input string could be "10 +" or "10 + + 5".

Define an error enumeration conforming to Error for both of these cases.

Listing 23.18 Defining possible Parser errors
...
class Parser {
 enum Error: Swift.Error {
 case unexpectedEndOfInput
 case invalidToken(Token)
 }

 let tokens: [Token]
 var position = 0
 ...
}
...

Parsing the Token Array

339

Now that you can express the possible errors you might encounter when trying to get a number, add a
method that gets the value of the next .number token or throws an error if it cannot.

Listing 23.19 Implementing Parser.getNumber()
...
class Parser {
 ...
 func getNextToken() -> Token? {
 guard position < tokens.count else {
 return nil
 }
 let token = tokens[position]
 position += 1
 return token
 }

 func getNumber() throws -> Int {
 guard let token = getNextToken() else {
 throw Parser.Error.unexpectedEndOfInput
 }

 switch token {
 case .number(let value):
 return value
 case .plus:
 throw Parser.Error.invalidToken(token)
 }
 }
}
...

The getNumber() method has the signature () throws -> Int, so you know it is a function that
normally returns an Int but could throw an error.

You use a guard statement to check that there is at least one more token available. Note that inside the
else block of a guard, you can use throw instead of return. This is because guard just requires that its
else block causes the function to stop executing and return to its caller.

After ensuring that you have a token, you use a switch statement to either extract the number’s value
(if the token is a .number) or throw an invalidToken error (if it is a .plus).

Chapter 23 Error Handling

340

Now that you have getNumber(), implementing the rest of the parsing algorithm is straightforward.
Add a parse() method that does just that.

Listing 23.20 Implementing Parser.parse()
...
class Parser {
 ...
 func parse() throws -> Int {
 // Require a number first
 var value = try getNumber()

 while let token = getNextToken() {
 switch token {

 // Getting a plus after a number is legal
 case .plus:
 // After a plus, we must get another number
 let nextNumber = try getNumber()
 value += nextNumber

 // Getting a number after a number is not legal
 case .number:
 throw Parser.Error.invalidToken(token)
 }
 }

 return value
 }
}
...

Your implementation of parse() matches the algorithm outlined above for parsing. The input must
start with a number (the initialization of value). After parsing a number, you enter a loop over the rest
of the tokens. If the next token is .plus, then you require that the next token is a .number. When you
get to the end of the tokens, the while loop ends and you return value.

There is something new here: You mark the calls to getNumber() with the try keyword, which Swift
requires because getNumber() is a throwing method. However, you do not use a do/catch block. Why
does Swift allow you to use try here without a do block?

Swift requires that any call marked with try “handles the error.” It would be easy to assume that
“handling the error” means catching the error, as in evaluate(_:). But there is another perfectly
reasonable way to handle an error: Throw it again. That is what happens in this case.

Because parse() is itself a throwing method, you are allowed to try calls inside it without using do/
catch. If any of the try calls fail, the error is thrown out of parse().

Parsing the Token Array

341

Your parser is now complete. Update evaluate(_:) to call the parser and to handle the specific errors
that Parser might throw.

Listing 23.21 Updating evaluate(_:) to use Parser
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.unexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.invalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

You should now see your two-phase compiler successfully evaluating the input expression:

 Evaluating: 10 + 3 + 5
 Lexer output: [Number: 10, Symbol: +, Number: 3, Symbol: +, Number: 5]
 Parser output: 18

Try changing the input. Add more or fewer numbers. Try some inputs that will pass your lexer (i.e.,
that only contain legal tokens) but should cause your parser to throw errors. A couple of simple
examples are "10 + 3 5" and "10 +".

Chapter 23 Error Handling

342

Handling Errors by Sticking Your Head in the Sand
You have seen that every call to a function that might throw an error must be marked with try and that
any call with try must either be inside a do/catch block or inside a function that itself is marked with
throws. These rules work together to make sure you are handling any potential errors. Try modifying
your evaluate(_:) function to break one of these rules.

Listing 23.22 Modifying evaluate(_:) illegally
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = try lexer.lex()

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.unexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.invalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

You moved the try lexer.lex() call outside the do block, so now the compiler is giving you an error.
The compiler error says that Errors thrown from here are not handled. It is possible to tell the
Swift compiler that you do not want to handle potential errors. Change try to try!.

Listing 23.23 Using try! in evaluate(_:)
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = try try! lexer.lex()
 ...
}
...

Your code now compiles, but you should be concerned. What is Swift going to do if an error is thrown
by lexer.lex()? The exclamation mark at the end of the try! keyword should be a big hint. Just like
force-unwrapping an optional, using the forceful keyword try! will cause your program to trap if an
error is thrown.

Handling Errors by Sticking Your Head in the Sand

343

Earlier, you had a call to evaluate(_:) that caused the lexer to throw an error. Add that call back in
and see what happens.

Listing 23.24 Lexing bad input with try!

...
evaluate("10 + 3 + 5")
evaluate("1 + 2 + three")

Instead of seeing the invalid token error message, your program now traps on the try! lexer.lex()
line.

We recommended avoiding force-unwrapped and implicitly unwrapped optionals. We even more
strongly recommend avoiding try!. You should only use try! when there is no way for your program
to handle an error and you really do want your program to trap (or crash, if it is running on a user’s
device) if an error occurs.

There is a third variant of try that lets you ignore the error without trapping if an error occurs. You
can call a throwing function with try?, getting a return value that is an optional of whatever type the
function usually returns. This means you need to use something like guard to check that the optional
really contains a value.

Change your trapping try! into a combination of guard and try?.

Listing 23.25 Using try? in evaluate(_:)

...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = try! lexer.lex()
 guard let tokens = try? lexer.lex() else {
 print("Lexing failed, but I don't know why")
 return
 }
 ...
}
...

The real power of do/catch error handling is that a throws function can communicate to its caller the
exact reason for the failure. This allows the caller to decide what to do next, such as present an alert
to the user or try something else. If you do not care why the error occurred, only that it occurred at all,
you can convert a throws function into an optional-returning function by calling it with try?.

evaluate(_:) does care about the error – it prints different messages to the user depending on what
went wrong. So it is not a good candidate for try?, and you should restore the call site to use the
regular try syntax.

Chapter 23 Error Handling

344

Listing 23.26 Restoring evaluate(_:)
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 guard let tokens = try? lexer.lex() else {
 print("Lexing failed, but I don't know why")
 return
 }

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.unexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.invalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

Swift Error-Handling Philosophy
Swift is designed to encourage safe, easy-to-read code, and its error-handling system is no different.
Any function that could fail must be marked with throws. This makes it obvious from the type of a
function whether you need to handle potential errors.

Swift also requires you to mark all calls to functions that might fail with try. This gives a great benefit
to anyone reading Swift code. If a function call is annotated with try, you know it is a potential source
of errors that must be handled. If a function call is not annotated with try, you know it will never emit
errors that you need to handle.

If you have used C++ or Java, it is important to note the differences between Swift error handling and
exception-based error handling. Even though Swift uses some of the same terminology, particularly
try, catch, and throw, Swift does not implement error handling using exceptions. When you mark a
function with throws, that effectively changes its return type from whatever type it normally returns to
“either whatever type it normally returns or an instance of the Error protocol.”

Finally, there is one other important philosophical error-handling decision built into Swift. A function
that throws does not state what kinds of errors it might throw. This has two practical impacts. First,
you are always free to add more potential Errors that a function might throw without changing the
API of the function. Second, when you are handling errors with catch, you must always be prepared to
handle an error of some unknown type.

The compiler enforces this second point. Try modifying evaluate(_:) by removing the final catch
block.

Swift Error-Handling Philosophy

345

Listing 23.27 Avoiding handling unknown ErrorTypes in evaluate(_:)
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.unexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.invalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

The compiler is now giving you errors on both lines in the do block where you made try calls. The
error message reads Errors thrown from here are not handled because the enclosing catch
is not exhaustive. As it does for switch statements, Swift performs exhaustiveness checks on your
do/catch blocks, requiring you to handle any potential Error.

Fix evaluate(_:) by restoring the catch block that will handle any error.

Listing 23.28 Exhaustive error handling in evaluate(_:)
...
func evaluate(_ input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.invalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.unexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.invalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

Chapter 23 Error Handling

346

Bronze Challenge
Your expression evaluator currently only supports addition. That is not very useful! Add support for
subtraction. You should be able to call evaluate("10 + 5 - 3 - 1") and see it output 11.

Silver Challenge
The error messages printed out by evaluate(_:) are useful, but not as useful as they could be. Here
are a couple of erroneous inputs and the error messages they produce:

 evaluate("1 + 3 + 7a + 8")
 > Input contained an invalid character: a

 evaluate("10 + 3 3 + 7")
 > Invalid token during parsing: .number(3)

Make these messages more helpful by including the character position where the error occurred. After
completing this challenge, you should see error messages like this:

 evaluate("1 + 3 + 7a + 8")
 > Input contained an invalid character at index 9: a

 evaluate("10 + 3 3 + 7")
 > Invalid token during parsing at index 7: 3

Hint: You will need to associate error positions with your existing error cases. To convert a
String.Index into an integral position, you can use the distance(from:to:) method on the string.
For example, if input is a String and position is a String.Index, the following will compute how
many characters separate the beginning of the string and position.

 let distanceToPosition = input.distance(from: input.startIndex, to: position)

Gold Challenge
Time to step it up a notch. Add support for multiplication and division to your calculator. If you think
this will be as easy as adding subtraction, think again! Your evaluator should give higher precedence to
multiplication and division than it does to addition and subtraction. Here are some sample inputs and
their expected output.

 evaluate("10 * 3 + 5 * 3") // Should print 45
 evaluate("10 + 3 * 5 + 3") // Should print 28
 evaluate("10 + 3 * 5 * 3") // Should print 55

If you get stuck, try researching “recursive descent parsers.” That is the kind of parser you have been
implementing. Here is a hint to get you started: Instead of parsing a single number and then expecting a
.plus or .minus, try parsing a term computed from numbers and multiplication/division operators, and
then expecting a .plus or .minus.

For the More Curious: Storing Failable Results for Later

347

For the More Curious: Storing Failable Results for
Later
You have spent a great deal of time now writing and thinking about functions that do failable work.
You have studied three ways that a function can let its caller know that it cannot produce its intended
return value:

• Trap with assert(_:_:), precondition(_:_:), or fatalError(_:) if you want to indicate a
nonrecoverable error state.

• Return an Optional, which is nil on failure, when the caller does not need to know why the
failure occurred.

• Throw an Error in case the caller might want to react differently to different reasons for failure.

One downside to error-throwing functions is that they force you to handle the success or failure
immediately, using a catch block. If you are not ready to process the result of the function call, your
only option is to convert the result to an optional with try? (or trap on failures with try!, but that is
an exceptional case). Converting a throwing function’s output to an optional is a convenient way to
capture your desired data on success, but it loses error information on failure.

Swift provides a data type that you can use to store the entire result of a throwing function for future
use, whether the function succeeded and returned a value or failed and threw an error. That type is
Result. Here is what it looks like to use Result to capture a throwing function’s output:

 let lexer = Lexer(input: "1 + 3 + 3 + 7")
 let tokensResult = Result { try lexer.lex() }

The closure is using trailing closure syntax to call Result(catching:), an initializer for Result that
takes a throwing closure, calls it, and then stores the output. How does it store the output, if the output
could be either a [Token] or an Error?

Result looks a lot like Optional. Here is the declaration of Result in the Swift standard library:

 enum Result<Success, Failure> where Failure : Error {
 case .success(Success)
 case .failure(Failure)
 }

Where Optional is a generic enum whose cases represent the presence or absence of a value, Result is
a generic enum whose cases represent the success or failure of some operation. Its success case stores
the ideal return type of the function (such as [Token]), and its failure case stores a thrown error.
Notice that Result has a generic type constraint that whatever type fills in Failure must conform to
Error.

Now the function’s output has been tucked into a single enum that you can pass around in your
program or store as a property of an object. You can also process it later using a switch statement:

 switch tokensResult {
 case let .success(tokens):
 print("Found \(tokens.count) tokens: \(tokens)")
 case let .failure(error):
 print("Couldn't lex '\(lexer.input)': \(error)")
 }

Chapter 23 Error Handling

348

Result has several features for working with its cases. You could use its map(_:) method to transform
the success value if there is one:

 let numbersResult: Result<[Int],Error> = tokensResult.map {
 tokens.compactMap { token in
 switch token {
 case let .number(digit): return digit
 default: return nil
 }
 }
 }

If the result is storing an error, the new result will store the same error. But if the result is storing data,
the new result will store the transformed data. Note that Optional also has an implementation of
map(_:). Try it out!

Last, if you have a Result and you want to either return its data or throw its error, you can use its
throwing get() method:

 func extractNumbers(from result: Result<[Int],Error>) throws -> [Int] {
 return try result.get()
 }

The Result type is a flexible way to store success/failure states that you need to cache or are not ready
to process yet. As you grow as a Swift developer and explore asynchronous programming, you will
encounter many frameworks that use Result for passing around the results of background work. For
now, it is enough that you will recognize it when you see it in the wild.

349

24
Memory Management and ARC

This chapter brings together several topics from earlier in the book, especially Chapter 13 on closures
and Chapter 15 on structs and classes, that all relate to managing the memory used by your programs.

All computer programs use memory, and most use memory dynamically: As a program runs, it
allocates and deallocates memory as needed. An important role of any memory management system
is managing object lifetimes, in particular ensuring that memory is not deallocated too soon or too
late. Programming languages use different tools to manage memory; Java, for example, uses a garbage
collector.

Swift uses reference counting to manage object lifetimes. In this chapter, you will investigate how the
reference counting system works and learn what you can do to avoid memory leaks.

Memory Allocation
The allocation and deallocation of memory for value types – enumerations and structures – is handled
for you. When you create a variable to store an instance of a value type, an appropriate amount of
memory is automatically set aside for your instance, and your variable contains the entire value.
Anything you do to pass the instance around, including passing it to a function and storing it in a
property, creates a copy of the instance.

When a variable containing a value type instance is destroyed, such as when a function that creates one
returns, Swift reclaims the memory that was occupied by the instance. Each copy lives an independent
lifetime and is automatically destroyed when the variable holding it goes away. You do not have to do
anything to manage the memory of value types.

You will need to know a little more about the memory management of reference types – specifically,
class instances. When you create a new class instance, memory is allocated for the instance to use, just
as it is for value types. The difference is in what happens when you pass the class instance around.

As you learned in Chapter 18 on value and reference types, passing a class instance to a function or
storing it in a property creates an additional reference to the same memory, rather than copying the
instance itself. Having multiple references to the same memory means that when any one of them
changes the class instance, that change is apparent through any of its references.

This distinction raises an important question: When should a class instance deallocate? The answer
is: when all the references to it are gone. Every class instance knows its reference count: the number
of existing references to the instance. The instance remains allocated as long as its reference count is
greater than 0. When the last reference to an instance is destroyed and the instance’s reference count
becomes 0, the system deallocates the instance and runs its deinit method.

Chapter 24 Memory Management and ARC

350

The Swift compiler handles incrementing and decrementing instance reference counts so that you do
not have to. This Automatic Reference Counting (ARC) feature helps ensure that class instances are
destroyed at the correct time. However, logic errors in your program can cause objects to not deallocate
when you are done with them. This is called a memory leak, and in this chapter you will learn how
to prevent such errors by instructing the compiler to use variant memory management rules where
appropriate.

To demonstrate these features, you are going to build a small program to model interacting
with a storage vault. Create a new macOS command-line tool (as you did in Chapter 15) named
CyclicalAssets.

Strong Reference Cycles
To start, you will define the types you will be interacting with: Vault and Asset. You will create one
vault and multiple assets to put into the vault, and then you will observe how your code affects their
lifetimes.

You are going to create a new file to model your vault. First, in the project navigator on the left side of
the Xcode screen, click the yellow CyclicalAssets folder. This will ensure that the file appears in the
correct location in your project. Next, create a new Swift file, Vault.swift, and define a Vault class
that conforms to the CustomStringConvertible protocol:

Listing 24.1 Defining the Vault class (Vault.swift)
import Foundation

class Vault {
 let number: Int

 init(number: Int) {
 self.number = number
 }

 deinit {
 print("\(self) is being deallocated")
 }
}

extension Vault: CustomStringConvertible {
 var description: String {
 return "Vault(\(number))"
 }
}

The Vault class has a single property, which you set in its initializer. It conforms to the
CustomStringConvertible protocol by implementing the description computed property in an
extension. You add an implementation of deinit so you can see when a vault is being deallocated –
that is, when its memory is being reclaimed because its reference count has dropped to 0.

In main.swift, define a class whose single method will be where you do the rest of your work, and
create a Vault in it:

Strong Reference Cycles

351

Listing 24.2 Creating the simulation (main.swift)
import Foundation

print("Hello, World!")

class Simulation {
 func run() {
 let vault13 = Vault(number: 13)
 print("Created \(vault13)")
 }
}

let simulation = Simulation()
simulation.run()

The run() method of the Simulation class is where all your experimentation will happen. You might
be wondering why you are using this method, instead of just working at the top level of main.swift,
like you did with MonsterTown.

You did this for two reasons: First, to define a scope, which you first learned about in Chapter 12 on
functions. Scopes, as you might recall, are defined by pairs of braces ({ }). Functions and closures,
conditionals, loops, and do/catch blocks all define scopes where their work is done.

Variables defined inside a scope (such as vault13, defined within run()’s scope) are reclaimed when
that scope ends at the }. If the variable contained a value type instance, the end of the enclosing scope
is where the instance is deallocated. If the variable contained a reference, the end of the enclosing
scope is where the instance’s reference count is decremented, possibly leading to its deallocation.

Instances that deallocate at the end of a program, on the other hand, do not execute their deinitializers.
They do not need to; all the application’s memory is being reclaimed anyway. So an instance method
of a class, like Simulation’s run() method, provides an observable scope where you can model the
memory management issues that can plague more complicated apps.

The second reason is related to tooling. In this chapter, you will use Xcode’s Memory Graph Debugger
to find and fix certain memory-related issues. If all you wanted to do was demonstrate object allocation
and destruction, a do {} scope in main.swift would be plenty. But the Memory Graph Debugger is
adept at finding memory issues in more complex applications built from relationships between types.
So – for the sake of this exercise, to simulate an object graph more in line with the tool’s expectations –
you will run your experiments from within an instance method of a class.

Build and run your program. You should see the following output:

 Created Vault(13)
 Vault(13) is being deallocated
 Program ended with exit code: 0

The vault13 variable contains a class instance – a reference type. By default, all references that you
create are strong references, which means they increment the reference count of the instance they refer
to for the duration of the existence of the reference. Therefore, the Vault instance has a reference count
of 1 after it is created and a reference to it is stored in the vault13 variable.

When run() finishes executing, the vault13 variable falls out of scope and is destroyed, so the
instance’s reference count is decremented. You then see the Vault(13) is being deallocated
message, because its reference count has dropped to 0.

Chapter 24 Memory Management and ARC

352

Next, create a new Swift file called Asset.swift and define an Asset class that also conforms to
CustomStringConvertible.

Listing 24.3 Defining the Asset class (Asset.swift)
import Foundation

class Asset {
 let name: String
 let value: Double
 var container: Vault?

 init(name: String, value: Double) {
 self.name = name
 self.value = value
 }

 deinit {
 print("\(self) is being deallocated")
 }
}

extension Asset: CustomStringConvertible {
 var description: String {
 if let container = container {
 return "Asset(\(name), worth \(value), in \(container))"
 } else {
 return "Asset(\(name), worth \(value), not stored anywhere)"
 }
 }
}

The Asset class is very similar to the Vault class so far. Asset has some useful properties, conforms
to CustomStringConvertible, and prints a message when it is deallocated. It also has a variable stored
property, container, which will refer to the Vault containing the asset. container is optional because
it is reasonable for an asset to exist in the world without being in a vault.

Create a few assets in main.swift:

Listing 24.4 Creating assets (main.swift)
...
func run() {
 let vault13 = Vault(number: 13)
 print("Created \(vault13)")

 let coin: Asset = Asset(name: "Rare Coin", value: 1_000.0)
 let gem: Asset = Asset(name: "Big Diamond", value: 5_000.0)
 let poem: Asset = Asset(name: "Magnum Opus", value: 0.0)

 print("Created some assets: \([coin, gem, poem])")
}
...

Strong Reference Cycles

353

Build and run your program. As with vault13, the three Asset instances deallocate when their only
references are reclaimed at the end of run():

 Created Vault(13)
 Created some assets: [Asset(Rare Coin, worth 1000.0, not stored anywhere),
 Asset(Big Diamond, worth 5000.0, not stored anywhere),
 Asset(Magnum Opus, worth 0.0, not stored anywhere)]
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated
 Asset(Big Diamond, worth 5000.0, not stored anywhere) is being deallocated
 Asset(Rare Coin, worth 1000.0, not stored anywhere) is being deallocated
 Vault(13) is being deallocated
 Program ended with exit code: 0

Now you will make things interesting. It is time to fill the vault with assets and see what happens. Go
back to Vault.swift and add a property and method for storing assets.

Listing 24.5 Letting a Vault store assets (Vault.swift)
class Vault {
 let number: Int

 private(set) var assets = [Asset]()

 init(number: Int) {
 self.number = number
 }

 deinit {
 print("\(self) is being deallocated")
 }

 func store(_ asset: Asset) {
 asset.container = self
 assets.append(asset)
 }
}
...

You add assets, an array of Asset instances that the vault contains, and store(_:), a method to put
an asset in a vault. store(_:) adds the asset passed in to it to the assets array and sets the asset’s
container property to refer back to the vault that the method is called on.

Chapter 24 Memory Management and ARC

354

In main.swift, put a couple of the assets in your vault:

Listing 24.6 Vault 13 is storing assets (main.swift)
...
func run() {
 let vault13 = Vault(number: 13)
 print("Created \(vault13)")

 let coin: Asset = Asset(name: "Rare Coin", value: 1_000.0)
 let gem: Asset = Asset(name: "Big Diamond", value: 5_000.0)
 let poem: Asset = Asset(name: "Magnum Opus", value: 0.0)

 vault13.store(coin)
 vault13.store(gem)

 print("Created some assets: \([coin, gem, poem])")
}
...

Build and run again. The output may be surprising:

 Created Vault(13)
 Created some assets: [Asset(Rare Coin, worth 1000.0, in Vault(13)),
 Asset(Big Diamond, worth 5000.0, in Vault(13)),
 Asset(Magnum Opus, worth 0.0, not stored anywhere)]
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated
 Program ended with exit code: 0

The only instance being deallocated now is poem – its reference count dropped to 0 as expected at
the end of the scope. coin and gem (which are in the vault) and the vault itself are no longer being
deallocated. Why not?

Take a look at Figure 24.1, which shows the reference relationships before any of the variables are
destroyed in run().

Figure 24.1 CyclicalAssets before

Each instance of Vault and Asset is depicted within a rectangle labeled with its current reference
count. Remember, vault13 is not the instance itself, but is instead a reference to an instance of the
Vault class. The reference count in the rectangle is exactly the number of arrows pointing to the
instance – the number of references to the instance.

Strong Reference Cycles

355

As your run() function returns, those references go away, leaving what you see in Figure 24.2.

Figure 24.2 CyclicalAssets after

You have created two strong reference cycles, which is the term for when two instances have strong
references to each other. Vault 13 has a reference to the coin (via its assets property), and the coin has
a reference to Vault 13 (via its container property). Same for Vault 13 and the gem. The memory for
these instances is no longer reachable – all the variables containing references to them are gone – but
the memory will never be reclaimed because each instance still has a reference count greater than 0.

Strong reference cycles are one kind of memory leak. Your application allocated the memory necessary
to store Vault 13 and its two assets, but it did not return that memory to the system, even after your
program no longer needed it.

Without the console, how could you have known about these memory leaks? Xcode can show them to
you directly.

Xcode has several built-in tools that you can use to try to identify leaked objects and the references to
them. You will take a look at one of these tools, the Memory Graph Debugger, in a moment. But first,
to allow it to examine your program, you need your application to keep running when it reaches the
end of main.swift. Add this line to main.swift:

Listing 24.7 Keeping the app running (main.swift)
...
let simulation = Simulation()
simulation.run()
dispatchMain()

The dispatchMain function starts an infinite loop. It is intended to be used by event-driven
applications to check for user input or other events, but it is a handy trick to use here to keep your
program running after your code is done executing.

Build and run your program again and observe the output:

 Created Vault(13)
 Created some assets: [Asset(Rare Coin, worth 1000.0, in Vault(13)),
 Asset(Big Diamond, worth 5000.0, in Vault(13)),
 Asset(Magnum Opus, worth 0.0, not stored anywhere)]
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated

Chapter 24 Memory Management and ARC

356

Notice that the message Program ended with exit code: 0 is missing, because the program is still
running. There is also a message confirming this in the Xcode main toolbar (Figure 24.3):

Figure 24.3 CyclicalAssets is running

In the debug area, just above your output console, find and click the button for the Memory Graph
Debugger (), indicated in Figure 24.4.

Figure 24.4 Using the Memory Graph Debugger

Your source code will disappear and be replaced after a few seconds by a diagram of objects in your
application, which should look something like Figure 24.5. (If the diagram does not load, you may
need to relaunch Xcode. If a graph loads but looks different than the one shown here, hang on – we will
explain in a moment how to view the graphs for different instances.)

Figure 24.5 Memory graph for an Asset

Strong Reference Cycles

357

Look at the debug navigator on the left side of the Xcode window. The Memory Graph Debugger has
listed all the allocations from all the frameworks and modules in your application. You only care about
those from your own code, which are conveniently at the top of the list (Figure 24.6):

Figure 24.6 Allocations in CyclicalAssets

Each item in this list is an instance of the type that it is listed under. If the editor area does not look like
the graph in Figure 24.5, select the first Asset in the list to see the graph.

Notice the purple triangles ()? They are like the symbol Xcode uses to indicate a warning in your
code, but a different color. These symbols indicate instances that have leaked. Sure enough, your
program has leaked two instances of Asset and one of Vault.

In your graph, you should see four allocations: Two called Asset, one called Vault, and one called
something like _ContiguousAr...torage<Asset>. The last one begins with an underscore (_) to let you
know that it is one of Apple’s private types; it represents the assets array.

If you follow the arrows in this diagram, you will see that they represent the same thing as Figure 24.2:
A pair of reference cycles, one between each Asset and the Vault, with the assets array making up
the third node in each cycle.

In short: The vault owns an array, which contains references to the assets, which have references back
to the vault.

Whew! That was a lot to parse. The Xcode Memory Graph Debugger is a great tool to use when you
want to look for memory leaks. It will show you the shape of the leak (the other objects and references
involved), which can help you figure out how to fix them. (You will fix this leak shortly.)

If this tool feels intimidating at first, that is normal. It can sometimes show you useful data quickly –
but if you look at it and do not find the graph helpful, you can always use other strategies, like adding
print() statements to your deinit methods.

Click the Continue button () in the debug toolbar to exit the Memory Graph Debugger and return to
your code.

Chapter 24 Memory Management and ARC

358

Breaking Strong Reference Cycles with weak
The solution to a strong reference cycle is to break the cycle. You could manually break the cycles by
looping over each asset and setting its container to nil while you have access to those variables (before
the function ends), but that would be tedious and error prone.

Instead, Swift provides a keyword to get the same effect automatically. Modify Asset to make the
container property a weak reference instead of a strong reference.

Listing 24.8 Making the container property a weak reference (Asset.swift)
class Asset {
 let name: String
 let value: Double
 weak var container: Vault?
 ...
}

A weak reference is not included in the reference count of the instance it refers to. In this case, making
container a weak reference means that when you assign Vault 13 as the container of the coin and the
gem, Vault 13’s reference count does not increase. The only strong reference to Vault 13 is the vault13
variable in main.swift.

Now, when the vault13 variable is destroyed at the end of run(), the reference count on Vault 13
drops to 0, so it is deallocated. When Vault 13 is deallocated, it no longer holds a strong reference to its
assets, so their reference counts drop to 0 as well.

Run your program again. (Xcode will ask you whether you want to stop CyclicalAssets, because it is
already running. Click Stop to terminate the old instance and launch a new one.) Confirm that all the
objects are deallocated:

 Created Vault(13)
 Created some assets: [Asset(Rare Coin, worth 1000.0, in Vault(13)),
 Asset(Big Diamond, worth 5000.0, in Vault(13)),
 Asset(Magnum Opus, worth 0.0, not stored anywhere)]
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated
 Vault(13) is being deallocated
 Asset(Rare Coin, worth 1000.0, not stored anywhere) is being deallocated
 Asset(Big Diamond, worth 5000.0, not stored anywhere) is being deallocated

You can check the Memory Graph Debugger again to verify that there are no vaults or assets remaining
in memory. Only the Simulation that you defined in main.swift remains.

What happens to a weak reference if the instance it refers to is deallocated? The weak reference is set
to nil as soon as the instance begins to deallocate. You can see this by looking closely at your console
output:

 ...
 Vault(13) is being deallocated
 Asset(Rare Coin, worth 1000.0, not stored anywhere) is being deallocated
 Asset(Big Diamond, worth 5000.0, not stored anywhere) is being deallocated

Your log statements show that the Vault begins deallocating (logging its deinit) first. It then destroys
its properties, including the assets array (which is a value type, so the whole array is destroyed).
When the array deallocates, so do the references it contains, which causes the Asset reference counts
to fall to 0, allowing them to begin deallocating. As each asset begins deallocating, its own deinit
executes, showing that, since the vault has already begun to deallocate, the weak container references
to it have already been set to nil.

Reference Cycles with Closures

359

There are two requirements for weak references:

• Weak references must always be declared as var, not let.

• Weak references must always be declared as optional.

Both of these requirements are the result of weak references being changed to nil if the instance they
refer to is deallocated. The only types that can become nil are optionals, so weak references must be
optional. And instances declared with let cannot change, so weak references must be declared with
var.

In most cases, strong reference cycles like the one you just resolved are easy to avoid. Vault is a
class that stores assets, so it makes sense that it would keep strong references to the assets. Asset is
a class that is contained by a Vault. If it wants a reference to its container, that reference should be
weak. When faced with two types that want references to each other, try to determine which one is the
“parent” object in the relationship. That is the object that should “own” the other object with a strong
reference.

Not all strong reference cycles are caused by objects with explicit properties referring to one another.
Recall from Chapter 13 that closures can capture variables from their surrounding scope. By default,
closures also keep strong references to any class instances that they capture.

Reference Cycles with Closures
Sometimes assets appreciate or depreciate in value. To demonstrate some closure-related memory
management behavior, you will teach Asset instances to react to changes in their value using a
provided closure.

In your Asset type, allow value to be mutable and react to value changes by executing a stored closure
of type (Asset) -> Void.

Listing 24.9 Reacting to changes in asset value (Asset.swift)
class Asset {
 let name: String
 let value: Double
 var value: Double {
 didSet {
 changeHandler(value - oldValue)
 }
 }
 weak var container: Vault?

 typealias ValueChangeHandler = (Double) -> Void
 var changeHandler: ValueChangeHandler = {_ in}

 init(name: String, value: Double) {
 self.name = name
 self.value = value
 }

 deinit {
 print("\(self) is being deallocated")
 }
}
...

Chapter 24 Memory Management and ARC

360

Asset now defines a typealias, ValueChangeHandler, which is a closure that takes a Double (the
amount by which the value has changed) and returns nothing. Asset also has a new property,
changeHandler, which stores a ValueChangeHandler closure. The default value of this property is an
empty closure that discards its argument by using an underscore for the local parameter name.

Any other object, such as a vault that contains an asset, can give the asset a new changeHandler
closure. The asset will execute this closure every time its value changes using a didSet property
observer. This strategy allows other objects to react to changes in an asset’s value by telling the asset
what to do in response to changes in value.

But the strategy must be implemented with care, as you will see.

Update Vault.swift to report its net worth every time an asset’s value changes.

Listing 24.10 Reporting total value when an asset changes (Vault.swift)
class Vault {
 let number: Int

 private(set) var assets = [Asset]()

 var totalValue: Double = 0
 #warning("Implement totalValue as a computed property")
 ...
}

To report your vault’s total value, you need a totalValue property to report. It should be a computed
property, calculated by summing the values of the assets. But that is a distraction; you are busy right
now and focused on changeHandler, so for now you just tell the compiler to warn you about this
unfinished business.

The #warning expression is special. It causes a compiler warning with the specified message. There is
also an #error expression to force a compiler error. These expressions are very handy when you are
deep in code and need to leave yourself a reminder to come back and fix or finish something.

Sometimes, when warnings have popped up during exercises in this book, we have told you to ignore
them for the moment. Our goal was to minimize distraction and move on with the exercise. But when
you are writing production code, you should not leave warnings unaddressed. Even though a program
with warnings will compile to allow you to run and test your code, a warning means that there is
probably a logic error in the program that will have runtime consequences.

Since you, as a conscientious programmer, will never have unintended warnings hanging out in your
code, the #warning expression can be a useful tool to keep track of issues you know you need to fix. In
Chapter 23 you used a // TODO: comment for this purpose. Compiler warnings are a more in-your-face
way to accomplish the same goal. Which you prefer is up to you.

Reference Cycles with Closures

361

Now, update your store(_:) to set a new changeHandler on the new asset. This change will introduce
an error, which you will fix in the next step.

Listing 24.11 Setting the changeHandler on new assets (Vault.swift)
...
func store(_ asset: Asset) {
 asset.container = self
 asset.changeHandler = { (change) in
 print("An asset has changed value by \(change).
 New total value: \(totalValue)")
 }
 assets.append(asset)
}
...

Also update your simulation to account for your coin appreciating in value:

Listing 24.12 Rare coins gaining value (main.swift)
...
func run() {
 let vault13 = Vault(number: 13)
 print("Created \(vault13)")

 let coin: Asset = Asset(name: "Rare Coin", value: 1_000.0)
 let gem: Asset = Asset(name: "Big Diamond", value: 5_000.0)
 let poem: Asset = Asset(name: "Magnum Opus", value: 0.0)

 vault13.store(coin)
 vault13.store(gem)

 print("Created some assets: \([coin, gem, poem])")

 coin.value += 137
}
...

Try to build your program now. You will get an error message reading Reference to property
'totalValue' in closure requires explicit use of 'self' to make capture semantics
explicit.

By default, any variable or constant of reference type is a strong reference. Closure-captured references
are no different, and the strong reference exists as long as the closure does.

Look again at the closure in store(_:). At first glance, it appears that the closure only captures value
types: Both change and totalValue are Doubles. However, since the compiler cannot be sure that the
value of a property like totalValue will not change after the closure is created, the closure instead
captures the object that owns the property, so that it can access the property and read any fresh or
computed value it may have.

Since totalValue is a property on Vault, which is the type of self within the scope of the closure, a
strong reference to the Vault instance itself is captured. Swift wants you to notice this capture, hence
the error. By requiring you to explicitly reference self, Swift makes you consider whether you are
creating a strong reference cycle – and therefore a memory leak.

Chapter 24 Memory Management and ARC

362

Fix the error:

Listing 24.13 Explicitly accessing self in a closure (Vault.swift)
...
func store(_ asset: Asset) {
 asset.container = self
 asset.changeHandler = { (change) in
 print("An asset has changed value by \(change).
 New total value: \(self.totalValue)")
 }
 assets.append(asset)
}
...

Build and run your program. Your output should look like this:

 Created Vault(13)
 Created some assets: [Asset(Rare Coin, worth 1000.0, in Vault(13)),
 Asset(Big Diamond, worth 5000.0, in Vault(13)),
 Asset(Magnum Opus, worth 0.0, not stored anywhere)]
 An asset has changed value by 137.0. New total value: 0.0
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated

The coin’s value is changing, but the coin, gem, and vault are failing to deallocate again.

The fact that the closure strongly captures the vault explains why you are leaking memory: The Asset
actually does have a strong reference back to Vault. The Vault owns an array of Assets, and each
Asset has a changeHandler closure that has captured a strong reference back to the Vault. This cycle
is shown in Figure 24.7.

Figure 24.7 Closure-capture strong reference cycle

Think about the error message you saw: ...requires explicit use of 'self'.... Swift could
allow you to use self implicitly in closures, but doing so would make it very easy to accidentally
create strong reference cycles. Instead, the language usually requires you to be explicit about your use
of self, forcing you to consider whether a reference cycle is a possibility.

In cases where the compiler knows a reference cycle is impossible, such as when self is a value type
(and therefore is copied rather than referenced by the closure), you do not need to be explicit with
self.

Reference Cycles with Closures

363

To change the capture semantics of a closure to capture references weakly, you can use a capture list.
Modify Vault.swift to use a capture list when creating the closure.

Listing 24.14 Using a capture list (Vault.swift)
...
func store(_ asset: Asset) {
 asset.container = self
 asset.changeHandler = { [weak self] (change) in
 print("An asset has changed value by \(change).
 New total value: \(self.totalValue)")
 New total value: \(String(describing: self?.totalValue))")
 }
 assets.append(asset)
}
...

The capture list syntax is a list of variables inside square brackets ([]) immediately before the list of
the closure arguments. The capture list you wrote here tells Swift to capture self weakly instead of
strongly. Now that the Asset’s closure no longer strongly references the Vault, the strong reference
cycle is broken.

Do not miss the new use of self? in the body of the closure. Because self is captured weakly, and all
weak instances must be optional, self inside the closure is optional.

As an aside, you can also use a capture list to acknowledge an intentional strong capture of self,
eliminating the need for explicitly referencing self throughout the closure. Do not change your code,
but here is what it would look like:

 asset.changeHandler = { [self] (change) in
 print("An asset has changed value by \(change).
 New total value: \(totalValue)")
 }

You should only do this if you have code elsewhere in your program that will break the reference cycle
another way, such as making changeHandler optional and setting it to nil later in the program. Your
program does not have any special handling of this closure relationship to make the reference cycle
temporary, so ensuring that self is only captured weakly is the safe move.

Run your program again and confirm that all the instances are being deallocated appropriately:

 ...
 An asset has changed value by 137.0. New total value: Optional(0.0)
 Asset(Magnum Opus, worth 0.0, not stored anywhere) is being deallocated
 Vault(13) is being deallocated
 Asset(Rare Coin, worth 1137.0, not stored anywhere) is being deallocated
 Asset(Big Diamond, worth 5000.0, not stored anywhere) is being deallocated

Once again, the strong reference cycle is broken, and all your objects are deallocating when you expect
them to.

Chapter 24 Memory Management and ARC

364

Escaping and Non-Escaping Closures
Imagine that – rather than using an empty closure as the default value of Asset’s changeHandler
property – you wanted to let its initializer take an initial value. In Asset.swift, remove the default
value from the property and add it as the default value of an initializer argument:

Listing 24.15 Accepting a changeHandler argument (Asset.swift)
...
typealias ValueChangeHandler = (Double) -> Void
var changeHandler: ValueChangeHandler = {_ in}

init(name: String, value: Double, changeHandler: ValueChangeHandler = {_ in}) {
 self.name = name
 self.value = value
 self.changeHandler = changeHandler
}
...

Because the empty closure is the default value for the changeHandler argument of your initializer,
current call sites that are not passing this new argument remain valid.

But you now have a new error: Assigning non-escaping parameter 'changeHandler' to an
@escaping closure. What do @escaping and non-escaping mean?

You have seen that the compiler helps look for possible strong reference cycles. When you assign a
closure to a property of another object, you know that closure might exist for a while, and that objects
that have been strongly captured by the closure cannot deallocate before the closure itself does. Setting
a closure property always means that you must be on the lookout for possible reference cycles.

But passing a closure as a function argument can be less risky. If the function will execute the closure
before the function returns, never passing the closure anywhere else, then there is no possibility of a
strong reference cycle. The closure might still strongly capture its scope, but it does not matter, because
the closure will be destroyed when the function returns – also destroying any strong references it
captured.

A closure argument like this that will not escape the function’s own scope is called non-escaping.
You do not need to worry about closure-captured strong reference cycles with non-escaping closure
arguments.

On the other hand, when a function accepts a closure argument that it might store in a property or pass
to another function, the closure is called escaping. Swift wants developers to be aware of escaping
closure arguments so they know to look out for strong reference cycles and consider using a capture
list to change strong captures into weak ones. Swift enforces this warning by requiring that escaping
closure arguments be marked with the @escaping attribute.

An attribute – a keyword prefixed with @ – gives the compiler extra information about a variable or
function declaration. In this case, @escaping communicates that the closure can escape its scope,
which affects which other warnings and errors you might get related to the closure. You will see more
attributes later in this book.

Escaping and Non-Escaping Closures

365

Now you know how to fix the error:

Listing 24.16 Marking escaping closures with @escaping (Asset.swift)
...
init(name: String, value: Double,
 changeHandler: @escaping ValueChangeHandler = {_ in}) {
 self.name = name
 self.value = value
 self.changeHandler = changeHandler
}
...

ARC is an amazing feature of Swift that protects you from lots of possible memory problems. Still,
you should always be vigilant when working with reference types – and especially with closures – to
ensure that you do not create memory leaks.

Having said that, do not worry about memory leaks causing problems with your computer. When a
program like CyclicalAssets stops running, all memory (including any leaked memory) is reclaimed
by the OS. However, memory leaks are still serious, and even more so in iOS than in macOS. iOS
tracks how much memory each app uses and will terminate apps that use too much. When an app leaks
memory, that memory still counts as part of the app’s total memory usage, even though it is no longer
needed or useful.

Chapter 24 Memory Management and ARC

366

Tin Challenge
It feels like we forgot to get back to something. What could it be?

Hint: Check your warnings. See how useful that was?

Bronze Challenge
The idea of asset containment by a Vault is incomplete. Vault has a way to store an asset, but no way
to remove an asset. Update Vault to allow asset removal and use this feature in run().

Gold Challenge
What if you want to be able to access other properties of the asset that changed? In Vault.swift, print
the details of the changing asset in the new changeHandler:

Listing 24.17 Logging the changed asset (Vault.swift)
...
func store(_ asset: Asset) {
 asset.container = self
 asset.changeHandler = { [weak self] change in
 print("An asset \(asset) has changed value by \(change).
 New total value: \(String(describing: self?.totalValue))")
 }
 assets.append(asset)
}
...

Notice that the asset is now being interpolated into the printed string.

Does this introduce any new strong reference cycles? If so, fix them.

For the More Curious: A Bit of History

367

For the More Curious: A Bit of History
Prior to the introduction of Swift in 2014, macOS and iOS applications were written in Objective-C,
with some C and possibly even C++.

ARC was introduced for Objective-C in 2011. Prior to ARC, developers were responsible for manual
reference counting: manually incrementing and decrementing the reference counts of class instances.
Every class had an instance method to retain the instance (increment its reference count) and a method
to release the instance (decrement its reference count).

The rules for knowing when to retain and release an instance were relatively straightforward in theory,
but easy to mess up in practice. As you can probably imagine, manual reference counting was the
source of many bugs: If you retained an instance too many times, it would never get deallocated
(causing a memory leak), and if you released an instance too many times, a crash would usually result.

Imagine an instance method responsible for updating the value of a private stored property of a class.
Manual reference counting code, if it could be written with Swift, might look something like this:

 class SomeClass {
 private var someObject: SomeOtherClass()

 func setSomeObject(newObject: SomeOtherClass) {
 // Increment ref count of new instance to keep it alive
 newObject.retain()
 // Decrement ref count of old instance; it might deallocate
 someObject.release()
 // Actually assign our property to refer to the new instance
 someObject = newObject
 }
 }

We are happy to say that Swift’s ARC feature not only takes care of this for you automatically but also
does so in an efficient way that increases the performance of your application. It does not just insert
calls to methods like retain() and release() behind the scenes – nothing like these methods actually
exists in Swift. Instead, the compiler does reference counting work much more aggressively and at a
much lower level than your code.

Chapter 24 Memory Management and ARC

368

For the More Curious: Do I Have the Only Reference?
Unfortunately, Swift does not give you access to the actual reference count of any instances. (Although
recall from Chapter 18 that you can ask if a variable is the only reference to an instance via the
isKnownUniquelyReferenced(_:) function.)

Even if you could ask an instance what its reference count was, the answer you got might not be what
you expected. Throughout this chapter, we said things like, “At this point, the reference count is 2.”
That was an innocent lie.

Conceptually, it is perfectly reasonable and even helpful for you to think of reference counts the way
we described. Under the hood, the compiler is free to insert additional changes to the reference count
wherever it decides that your code can be optimized. As long as it does its job correctly, there is no
harm to your program. If you could ask what the actual reference count of an instance is, the answer
would depend on what sort of analysis the compiler had done at that point. Additionally, there are some
classes in Apple’s system libraries that behave in strange ways when it comes to reference counting
(the details of which are beyond the scope of this book).

The important things for you to remember are how to recognize the potential for strong reference
cycles and how to use weak to break them.

369

25
Equatable, Comparable, and

Hashable

You have spent a lot of time now learning to model data. You have explored value types and reference
types and the “free” features that you can sometimes get from them, such as compiler-synthesized
empty initializers.

You have also seen useful behaviors that are enabled for you when you conform to certain protocols
from the Swift standard library. For example, conforming to CustomStringConvertible and
implementing its required description property lets you customize how instances of your types will
print to the console. Conforming to Error allows instances of your types to be thrown as errors from
functions that do failable work.

There are other common behaviors that you can unlock by conforming to standard library protocols. In
this chapter, you will learn about three important protocols and the features that they offer your custom
types.

Equatable
Create a new playground called Comparison to work in. The first feature you will examine is the ability
to compare two instances of a type using the == operator. Begin by creating a new struct and two equal
instances of it.

Listing 25.1 Defining Point
import Cocoa

var str = "Hello, playground"

struct Point {
 let x: Int
 let y: Int
 let label: String? = nil
}

let a = Point(x: 3, y: 4) Point
let b = Point(x: 3, y: 4) Point

The struct above defines a Point type. Point’s x and y properties describe a location on a two-
dimensional plane. Its label is an optional string that might tell a user what the point is used for.

Chapter 25 Equatable, Comparable, and Hashable

370

You know that these two points are equal; you created them with the same x, y, and label values.
However, the Point type does not know how to determine whether one instance is equal to another. Try
asking your program whether they are equal using the == operator.

Listing 25.2 Is a the same as b?
...
let a = Point(x: 3, y: 4) Point
let b = Point(x: 3, y: 4) Point
let abEqual = (a == b)

This check for equality does not work. In fact, it generates an error from the compiler. This error
stems from the fact that you have not yet taught your Point struct how to test for equality between two
instances.

To tell the compiler “I intend to equate two instances of this type,” you start by declaring that your type
wants to conform to the Equatable protocol.

Listing 25.3 Adding a protocol conformance declaration
struct Point: Equatable {
 let x: Int
 let y: Int
 let label: String? = nil
}

let a = Point(x: 3, y: 4) Point
let b = Point(x: 3, y: 4) Point
let abEqual = (a == b) true

The errors are gone, and the results sidebar shows that your test for equality between a and b succeeds.
The two points are equal because their x, y, and label values are the same.

(Try changing just the x values so that they do not match. You should see that the two points are no
longer equal. Make sure to change the values back before proceeding.)

Wait, is that really it?

Mostly, yes. You have already seen behavior that Swift implements on your behalf, such as the free
initializers you learned about in Chapter 17. Swift and its compiler are doing work for you here as
well.

The Equatable protocol has one requirement: an implementation of the == function. You have not
implemented this function for Point – but just as the compiler can synthesize initializers, it can
synthesize some other common function implementations. Among them, the compiler can synthesize
== for an Equatable struct whose properties are all also Equatable. It will do the same for Equatable
enums whose raw values or associated values are Equatable. (It cannot synthesize == for classes.)

The free implementation of ==, which you are taking advantage of for Point, checks the equality of
every property on the two instances and returns true only if all the properties are equal.

Equatable

371

You can also provide your own implementation of ==. Do so now, making sure to add the function
definition inside the Point struct’s definition.

Listing 25.4 Providing an implementation of ==
struct Point: Equatable {
 let x: Int
 let y: Int
 let label: String? = nil

 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y) && (lhs.label == rhs.label)
 }
}
...

Operator implementations can be written either as global functions or as static methods on the types
they operate on. Protocols cannot require global functions, so the Equatable protocol declares its
requirement in the form of a static method. In either case, the operator is the name of the function.

The == function takes two arguments of type Point. Called lhs and rhs, they represent the values that
appear on the lefthand side and righthand side of the operator when it is used. Your implementation
returns true only if the x, y, and label properties of both instances are all equal. This is identical to
the implementation that the compiler previously synthesized for you.

For a type that is not eligible for Equatable synthesis (such as a class or a struct with non-Equatable
properties), you must implement == yourself. And sometimes you just do not want the free
implementation. Suppose you do not care about points’ labels. In that case, two instances of Point
having equal values for x and y would be enough for you to consider them equal and interchangeable.
You would write your own implementation that only tests the values of x and y.

You have seen that organizing your code by implementing protocol conformance in an extension is
common. Move your implementation of == into an extension and update it to disregard the labels:

Listing 25.5 Moving protocol conformance to an extension
struct Point: Equatable {
 let x: Int
 let y: Int
 let label: String? = nil

 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y) && (lhs.label == rhs.label)
 }
}

extension Point: Equatable {
 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
 }
}
...

Your instances are still equal, and Point is now a well-organized Equatable type.

Chapter 25 Equatable, Comparable, and Hashable

372

Infix operators
It may feel strange to declare == as a static method. In Chapter 15, you learned that static methods
are defined on a type. But you do not call this method on the Point type, like Point.==(a, b).

Indeed, operators like == are declared at the global level in Swift. The == operator is declared like this
in the Swift standard library:

 precedencegroup ComparisonPrecedence {
 higherThan: LogicalConjunctionPrecedence
 }

 infix operator == : ComparisonPrecedence

Do not worry about what a precedencegroup is right now; that is discussed in the section called For
the More Curious: Custom Operators at the end of this chapter.

But do note that the == operator is declared as an infix operator. This means that its implementation
is executed by placing the operator between the two instances it will operate on. Hence, you called
Point’s implementation of == via this code in the example above: (a == b).

The Swift compiler knows to check both in the global scope and inside types for implementations of
operators. Placing them inside types as static methods is the more stylish approach.

Buy one method, get another free!
Your Point struct now conforms to Equatable, so you can test Points for equality. And it turns out
that you can check for inequality, too. Try it out:

Listing 25.6 Is a not the same as b?
...
let a = Point(x: 3, y: 4) Point
let b = Point(x: 3, y: 4) Point
let abEqual = (a == b) true
let abNotEqual = (a != b) false

As the results sidebar shows, this test for inequality yields false (because the points are, in fact,
equal).

Swift’s standard library provides a default implementation of the != function via an extension to the
Equatable protocol. This default implementation uses the definition of == and negates the result. So
if your type conforms to Equatable, then it also has a working implementation of the != function –
whether it uses the default implementation of == or its own version.

Comparable

373

Comparable
Now that your Point type conforms to the Equatable protocol, you may be interested in more nuanced
forms of comparison. For example, perhaps you want to know if one point is less than another point.
As with equality, types must define for themselves what it means for one instance to be “less than”
another. You define this functionality by conforming to the Comparable protocol.

Start by reviewing the documentation for Comparable. You have not typed it anywhere yet, so you
cannot Option-click its name. Instead, open Xcode’s Help menu and select Developer Documentation.

Search the documentation for “Comparable” and select the result for the Comparable protocol in the
Swift standard library. Under “Conforming to the Comparable Protocol,” you will find that you need to
implement the < infix operator as well as the == operator. Update the extension on your struct to make
it conform to Comparable:

Listing 25.7 Conforming to Comparable
...
extension Point: Equatable, Comparable {
 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
 }

 static func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
 }
}
...

Your implementation of the < function works similarly to your implementation of the == function. It
checks whether the point passed in on the lefthand side is less than the point passed in on the righthand
side. If the x and y values for the point on the lefthand side are both smaller than the values on the
righthand side, the function will return true. Otherwise, the function will return false, indicating that
the point on the lefthand side is not less than the righthand side.

Create two new points to test this function.

Listing 25.8 Testing the < function
...
let abEqual = (a == b) true
let abNotEqual = (a != b) false

let c = Point(x: 2, y: 6) Point
let d = Point(x: 3, y: 7) Point
let cdEqual = (c == d) false
let cLessThanD = (c < d) true

You create two new points with different values for x and y. You check whether c and d are equal,
which returns false: The two points are not the same. Then, you exercise your < function to determine
whether c is less than d. The comparison evaluates to true; c is less than d because both its x and y
values are smaller than d’s values.

Chapter 25 Equatable, Comparable, and Hashable

374

As with implementing == to conform to Equatable, implementing < to conform to Comparable gives
you bonus functionality. The Swift standard library defines the >, >=, and <= operators in terms of the
< and == operators. This is why Comparable only requires that you overload the < and == operators. If
your type conforms to Comparable, then it will get implementations of the other operators for free.

Note that – unlike for == and Equatable – the compiler cannot synthesize the required < function
for you. You must provide your own implementation, carefully considering what it means for your
program for one instance to be less than another. Should it mean that all properties are less? Or
something else? For example, should it mean that one point is closer to the origin (0,0) than the other?
Your implementation should reflect your decision.

Test your free functionality by adding a series of new comparisons.

Listing 25.9 Exercising comparisons
...
let cdEqual = (c == b) false
let cLessThanD = (c < d) true

let cLessThanEqualD = (c <= d) true
let cGreaterThanD = (c > d) false
let cGreaterThanEqualD = (c >= d) false

These last three comparisons check whether:

• c is less than or equal to d
• c is greater than d
• c is greater than or equal to d

As anticipated, these comparisons evaluate to true, false, and false, respectively.

You can also make a Range of any Comparable type. Add this to your playground:

Listing 25.10 Ranges of comparable types
...
let cLessThanEqualD = (c <= d) true
let cGreaterThanD = (c > d) false
let cGreaterThanEqualD = (c >= d) false

let pointRange = c..<d {{x 2, y 6, nil},...
pointRange.contains(a) true
pointRange.contains(Point(x: -1, y: -1)) false

Here you define a range of points and then check whether two specific points exist within that range.
How does this work?

Swift does not need to compute all possible values that would fall within a range. An instance of Range
only stores the lower bound and the upper bound. When you ask a range if it contains a value, the
range compares the value to its bounds, with the exact comparison depending on its type. A half-open
range like this one returns true if the value is greater than or equal to the lower bound and less than the
upper bound.

Since conforming to Comparable means that you have defined what it means for one Point to be less
than another, this check can be performed.

Protocol inheritance

375

Protocol inheritance
Comparable inherits from Equatable. You may be able to guess the implication of this inheritance.
To conform to the Comparable protocol, you must also conform to the Equatable protocol (including,
as you have seen, by supplying an implementation of the == operator). This relationship also means
that a type does not have to explicitly declare conformance to Equatable if it declares conformance to
Comparable. Remove the explicit declaration of conformance to Equatable from your Point struct.

Listing 25.11 Removing the unnecessary conformance declaration
...
extension Point: Equatable, Comparable {
 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
 }

 static func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
 }
}
...

You should see that the playground works just as it did before.

A note on style: While it is not wrong to explicitly declare conformance to both Equatable and
Comparable, it is unnecessary. If your type conforms to Comparable, then it must conform to
Equatable as well. This point is a detail listed in the documentation, which makes it an expected
consequence of conforming to Comparable. Adding the explicit conformance to Equatable does not
really add any information.

On the other hand, it may make sense to have a type explicitly conform to all protocols involved when
conforming to a custom protocol that inherits from another protocol. Although it is still unnecessary, it
may make your code more readable and easier to maintain, because your custom protocol is not listed
in the official documentation.

Chapter 25 Equatable, Comparable, and Hashable

376

Hashable
When you learned about the Dictionary and Set types in Chapter 10 and Chapter 11, you learned that
in order for a type to be included in a Set or used as the key type in a Dictionary, it must be hashable.
A type is hashable when it conforms to the Hashable protocol. Hashability has a straightforward
purpose: the ability of a type to generate an integer based on its content. But why is that useful? You
will explore hashing in this section.

Put some Point instances to work in a set and a dictionary to see the error that you get:

Listing 25.12 Verifying Hashable conformance
...
let pointRange = c..<d {{x 2, y 6, nil},...
pointRange.contains(a) true
pointRange.contains(Point(x: -1, y: -1)) false

let points: Set = [a, b, c]
points.intersection([b, c, d])

let pointNames: [Point:String] = [
 Point(x: 0, y: 0): "origin",
 a: "a",
]

Here you define a Set of Point instances and call its intersection(_:) method. You also create a
dictionary whose keys are Points and use it to give names to some points. The compiler emits two
errors: Generic struct 'Set' requires that 'Point' conform to 'Hashable' and Type 'Point'
does not conform to protocol 'Hashable'.

That is straightforward enough. You must make Point conform to Hashable for either of these uses of
the type to be legal.

Similar to Equatable, the compiler will happily synthesize implementations of Hashable’s
requirements for structs with all hashable stored properties and enums with no associated values (or all
hashable associated values). Update Point to conform to Hashable:

Listing 25.13 Conforming to Hashable
...
extension Point: Comparable, Hashable {
 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
 }

 static func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
 }
}
...

Because Point is Hashable now, the compiler can understand all these uses of Point.

Custom hashing

377

Custom hashing
Unfortunately, the free implementation that the compiler has synthesized for Point is problematic. To
understand why, you need to learn a little bit about hashes.

In Swift, the hash of an instance is an integer that is generated from the instance’s data. Comparing the
hashes of two instances of a type can be a very fast way to check whether the instances are different –
often much faster than comparing the instances using the == operator.

Consider how long it could take to compare two instances of String for equality: The program must
advance along the complete length of at least one of the strings, comparing the Character at each
index to the Character at the same index of the other string. If the program gets to the very end of the
strings without encountering a difference, the strings are the same. By contrast, comparing two integers
is blazing fast, and modern CPUs are often designed to make it even faster.

If you want to know whether two strings are equal, you can first check their hashes, which takes nearly
no time at all. If their hashes are different, then you know the strings are different.

But, because strings can be larger and more complex than integers, it is possible for two different
strings to have the same hash. So, if two strings’ hashes are the same, you have not learned anything,
and you must proceed with a complete equality check to be sure.

(As an aside: Because an equality check is a necessary backup plan when comparing the hashes of
instances, Hashable inherits from Equatable.)

An ideal hashing algorithm is one that is fast to compute and unlikely to collide with another instance’s
hash – but does not need to guarantee that two hashes will never be the same.

To make lookups and comparisons as fast as possible, dictionaries use hashes as an initial check to
ensure that dictionary keys are unique, and sets use hashes as an initial check to ensure the uniqueness
of their contents. Adding lots of instances with the same hash value would force these types to fall
back on equality checks to ensure uniqueness, which can be much slower.

Fortunately, Swift has a safe, fast hashing algorithm built in. All you have to do is tell Swift which
properties of an instance should participate in the computation of its hash. Swift calls these properties
that contribute to an equality comparison the instance’s essential components.

Your current implementation of the == operator uses only the x and y properties of a Point. However,
the compiler-synthesized hash of a Point uses all the instance’s stored properties. And that is the
source of the problem: If one property is not relevant to an instance’s uniqueness, then it should not be
an essential component for hashing.

To control which properties of an instance will contribute to its hash, you must provide your own
implementation of the Hashable requirement. That requirement is an implementation of a method
called hash(into:). Implement it in your Point extension:

Chapter 25 Equatable, Comparable, and Hashable

378

Listing 25.14 Producing your own hash
extension Point: Comparable, Hashable {
 static func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
 }

 static func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
 }

 func hash(into hasher: inout Hasher) {
 hasher.combine(x)
 hasher.combine(y)
 }
}

When Swift needs to compute your object’s hash, it will call hash(into:) and pass in a reference to an
instance of the Hasher struct as its argument. Hasher implements Swift’s hashing algorithm, and your
job is to tell it which properties to include by passing them to its combine(_:) method.

That is all! Point is now stylishly Hashable.

Bronze Challenge

379

Bronze Challenge
Make it possible to add two points. The addition of two points should return a new Point that adds the
given points’ x values and y values. You will need to provide an implementation of the + operator that
takes two Point instances.

Silver Challenge
In Chapter 21 on generics, you created a Stack type. It would be handy to be able to tell
whether two instances of Stack are equal. Implement Equatable for Stack at the bottom of your
Generics.playground.

The conformance should only apply to stacks of also-equatable types. Add some comparisons to the
bottom of the playground to test your solution:

Listing 25.15 Conditional conformance to Equatable
...
let myTasks = Stack(items: ["Clean up"])
let yourTasks = Stack(items: ["Master Swift"])
myTasks == yourTasks // Result should be false

class Pancake { }
let breakfast = Stack(items: [Pancake(), Pancake()])
let lunch = Stack(items: [Pancake()])
breakfast == lunch // Compiler error: Pancake is not Equatable

Hint: Use an extension to add Equatable conformance, but use a where clause to allow the extension to
apply only to stacks of types that are, themselves, equatable.

Chapter 25 Equatable, Comparable, and Hashable

380

Gold Challenge
Create a new Person class with two properties: name and age. For convenience, create an initializer that
provides arguments for both these properties.

Next, create two new instances of the Person class. Assign those instances to two constants named p1
and p2. Also create an array named people to hold these instances and then put them inside the array.

You will occasionally need to find the index of an instance of a custom type within an array. Call the
firstIndex(of:) method on your array to do so. The argument takes the value of some element in
the collection whose index you would like to find. Use the method to find the index of p1 inside the
people array.

You will get an error. Take some time to understand the error, then resolve it. You should be able to
assign the result of firstIndex(of:) to a constant named p1Index. Its value should be 0.

Platinum Challenge
Point’s current conformance to Comparable yields some confusing results.

 let e = Point(x: 3, y: 4)
 let f = Point(x: 2, y: 5)

 let eGreaterThanF = (e > f) // false
 let eLessThanF = (e < f) // false
 let eEqualToF = (e == f) // false

As the example above demonstrates, the trouble arises in comparing two points when one point’s x
and y properties are not both larger than the other point’s properties. In actuality, it is not reasonable to
compare two points in this manner.

Fix this problem by changing Point’s conformance to Comparable. Calculate each point’s Euclidean
distance from the origin instead of comparing x and y values. This implementation should return true
for a < b when a is closer to the origin than b.

Use the formula shown in Figure 25.1 to calculate a point’s Euclidean distance.

Figure 25.1 Euclidean distance

For the More Curious: Custom Operators

381

For the More Curious: Custom Operators
Swift allows developers to create custom operators. This feature means that you can create your own
operator to signify, for example, that one instance of the Person type has married another instance. Say,
for example, you want to create a +++ function to marry one instance to another.

Create a new Person class, like so:

Listing 25.16 Setting up a Person class

...
class Person {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

The class has two properties: one for a name and another for a spouse. It also has an initializer that will
give values to those properties. Note that the spouse property is an optional, to indicate that a person
may not have a spouse.

Next, create two instances of this class.

Listing 25.17 Creating two instances of Person

...
class Person {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

Now, declare your new infix operator. It has to be declared at global scope. Also, define how the new
operator function will work.

Chapter 25 Equatable, Comparable, and Hashable

382

Listing 25.18 Declaring a custom operator
...
class Person {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

infix operator +++

func +++(lhs: Person, rhs: Person) {
 lhs.spouse = rhs
 rhs.spouse = lhs
}

The new operator +++ will be used to marry two instances of the Person class. As an infix operator,
it will be used between two instances. The implementation of +++ will assign each instance to the
other’s spouse property. +++ does not state a precedencegroup, which means it is assigned to the
DefaultPrecedence group.

 precedencegroup DefaultPrecedence {
 higherThan: TernaryPrecedence
 }

So, what does higherThan refer to in the code above? higherThan defines the priority of the operator’s
relative relationship to another precedencegroup. In this case, DefaultPrecedence has a priority
that is higher than TernaryPrecedence. This is the precedencegroup for the ternary operator (see
Chapter 3 for a discussion of the ternary operator). That means your new operator, +++(lhs:rhs:),
will have higher priority than – and will be executed before – the ternary operator.

Think of how multiplication has higher priority than addition in expressions like 4 + 3 * 3 - 1. Because
multiplication has higher priority, 4 + 3 * 3 - 1 is 12. If addition had higher priority than multiplication,
then the answer would be 20.

precedencegroups offer a number of other options to define the custom operator. In addition to
higherThan, another important option that you will often see is associativity.

associativity defines how operations of the same priority group together. It takes one of two
values, left or right. For example, the operators + and - both use the same precedencegroup
(AdditionPrecedence) and therefore have the same priority. Both are also left associative. The
associativity and precedence for the mathematical operators mean that the order of execution in the
equation above is (4 + (3 * 3)) - 1. That is, 3 * 3 is evaluated first, because it has the highest priority,
and its product associates to the left. That yields (4 + 9) - 1, which is 13 - 1, which is 12.

Because +++ is intended to marry two Person instances together, it does not need to be chained
together with multiple calls. For example, you would not see this code: matt +++ drew +++
someOtherInstance. Thus, you can take advantage of the default values for precedence and
associativity.

For the More Curious: Custom Operators

383

Exercise your new operator.

Listing 25.19 Using the custom operator
...
class Person {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

infix operator +++

func +++(lhs: Person, rhs: Person) {
 lhs.spouse = rhs
 rhs.spouse = lhs
}

matt +++ drew
matt.spouse?.name
drew.spouse?.name

The code matt +++ drew serves to marry the two instances. Check that this process worked by
examining the playground’s results sidebar.

While this operator works, and it is not too difficult to determine what is going on by looking at it,
we generally recommend that you avoid declaring custom operators. It is good practice to only create
custom operators for your own types when the operator will be recognizable to anyone who may
read your code. That typically means restricting your custom operators to the realm of well-known
mathematical operators.

In fact, Swift only allows you to use a well-defined collection of mathematical symbols to create
custom operators. For example, you cannot rename the +++ operator to be the emoji “face throwing a
kiss” (i.e., U+1F61A).

Someone reviewing your code in the future may not know exactly what you meant by +++. (You might
even forget, yourself.) Moreover, it is not as though this custom operator is more elegant or efficient
than a marry(_:) method would be:

 func marry(_ spouse: Person) {
 self.spouse = spouse
 spouse.spouse = self
 }

This code is far more readable, and it is quite clear what the code is doing. These qualities will make it
easier to maintain in the future.

385

26
Property Wrappers

Manipulating data as it is stored into or retrieved from a property is a common task in programming. In
Chapter 20, you saw an implementation of a fuelLevel property; as fuel is added and used up, the fill
percentage of a car’s fuel tank changes – but it must always stay between 0.0 and 1.0.

The fuelLevel property you wrote earlier used precondition() to check a provided value and trap
if the value was outside the allowed range. In Chapter 23, you learned about other ways to handle
runtime errors like invalid inputs.

But what if you want your code to simply replace values less than 0.0 with 0.0 and values greater than
1.0 with 1.0? You could implement a computed property coupled with a private stored property, where
the get and set blocks of the computed property change the stored property’s data. That might look
like this:

 struct Car {
 private var fuelLevelStorage: Double = 1.0
 var fuelLevel: Double {
 set {
 fuelLevelStorage = max(min(newValue, 1), 0)
 }
 get {
 return fuelLevelStorage
 }
 }
 }

Here, the internal fuelLevel computed property allows users of the Car type to set and retrieve a value
that is secretly stored in the fuelLevelStorage private variable. The set block clamps to the range of
0.0 through 1.0 by storing a value of 1.0 when the value is too high or storing a value of 0.0 when the
value is too low.

Unfortunately, this approach clutters the defining type. It also is not reusable. What if you need to store
the percentage completion of a task? What if you need to store the percentage brightness of a light
bulb? Despite the formulaic nature of the code above, you would need to repeat it everywhere you need
to clamp a value between 0.0 and 1.0.

In this chapter, you will learn to use a property wrapper to define a reusable abstraction for
manipulating data coming into and out of your properties. A property wrapper is a specialized enum,
struct, or class that you define to hold and manipulate a wrapped value that uses computed properties
internally. You can wrap a stored property of any other type in an instance of your wrapper type – and
your code becomes much less cluttered and more readable as a result. To understand this process, get
started with an example.

Chapter 26 Property Wrappers

386

Defining a Property Wrapper
Create a new macOS playground named PercentageClamping and define a simple Car struct:

Listing 26.1 Preparing your playground (PercentageClamping)
import Cocoa

var str = "Hello, playground"

struct Car {
 var fuelLevel: Double = 1.0
}

var myCar = Car()
myCar.fuelLevel = 1.1
print("Fuel:", myCar.fuelLevel)

There is nothing special about this type. You define and create an instance of Car and overfill its fuel
tank by trying to put 110% of a tank’s worth of fuel into it.

In real life, the extra would spill out, leaving your tank 100% full. But your playground output reflects
a fuelLevel value of 1.1. This is no good.

Open up the navigator area using the Show Navigator button () near Xcode’s top-left corner. Select
the Sources group, then create a new Swift file, either by right-clicking Sources and choosing New File
or by selecting File → New → File from Xcode’s menu bar. Name your new file Percentage.swift.
The result should look like Figure 26.1.

Figure 26.1 Adding to your playground sources

Defining a Property Wrapper

387

When you are working in a playground and want to separate some of your code into other files like
you do in a project, you can do it by adding those files to the Sources group like this. Note that when
you do this, any declarations in your Sources are compiled into a separate module from your main
playground content, so they must be declared public to be usable by the playground.

Now it is time to define your property wrapper. In Percentage.swift, define a property wrapper struct
to encapsulate logic that uses a computed property to set and retrieve the value of a private variable,
similar to the sample code you saw earlier.

Listing 26.2 Defining a property wrapper (Percentage.swift)
import Foundation

@propertyWrapper public struct Percentage {

 private var storage: Double

 public init(wrappedValue: Double) {
 storage = max(min(wrappedValue, 1), 0)
 }

 public var wrappedValue: Double {
 set {
 storage = max(min(newValue, 1), 0)
 }
 get {
 return storage
 }
 }
}

There is very little new syntax here. You define a Percentage struct with a private variable along with
an initializer and a computed property that both set a value on the private property. The new syntax is
the @propertyWrapper attribute. This attribute marks your type as a property wrapper, which can now
be used as the wrapping type for any other property.

The only requirements for a property wrapper are a variable named wrappedValue and an initializer
whose first argument is called wrappedValue, which must be of the same type as the variable. Since
a property wrapper exists to manipulate data coming into or out of a property, the wrappedValue is
generally a computed property, and the property wrapper will often have a private property to store a
value between accesses.

Switch back to your playground by clicking PercentageClamping at the top of the navigator area. Use
your property wrapper to see the benefit it brings:

Listing 26.3 Using your property wrapper (PercentageClamping)
struct Car {
 @Percentage var fuelLevel: Double = 1.0
}

var myCar = Car()
myCar.fuelLevel = 1.1
print("Fuel:", myCar.fuelLevel)

Look at your playground output: Fuel: 1.0! Your property wrapper is successfully clamping the
fuelLevel to be between 0.0 and 1.0. How?

Chapter 26 Property Wrappers

388

When you declare a data structure as a @propertyWrapper, that type can then be used with the @
symbol as a custom attribute. Then, when you declare a property using a property wrapper attribute
such as @Percentage, the compiler rewrites your property declaration to use an instance of the wrapper
type (Percentage) to handle the storage and transformation of its value.

In this case, the compiler takes your fuelLevel property declaration:

 @Percentage var fuelLevel: Double = 1.0

And rewrites it at compile time to something more like this:

 private var _fuelLevel = Percentage(wrappedValue: 1.0)
 var fuelLevel: Double {
 get { return _fuelLevel.wrappedValue }
 set { _fuelLevel.wrappedValue = newValue }
 }

First, the compiler synthesizes storage for an instance of Percentage, using fuelLevel’s default value
of 1.0 as the argument to the wrapper’s init(wrappedValue:) initializer. Then, the compiler rewrites
the fuelLevel property as a computed variable, whose setter and getter store and retrieve its value
using the wrappedValue property of the Percentage instance.

When you set the fuelLevel property of myCar to 1.1, its synthesized setter assigns 1.1 to the
wrappedValue of the wrapping instance of Percentage, which clamps and stores the value in its own
storage property.

When you read from a Car’s fuelLevel, its getter reads the wrappedValue of the Percentage instance.

The effect is that now, at your usage site, you get a simple-looking fuelLevel property, and the
Percentage machinery behind the scenes handles its storage and value clamping. If you store a value
outside the range of 0.0 to 1.0, the value will be clamped into the range – but, in this file, you do not
have to look at or think about the logic that manages that behavior. The presence of the @Percentage
property wrapper attribute also serves as a visual reminder to you that this property will clamp its value
using an instance of Percentage.

That is a lot of free work! Your data manipulation needs have now been cleanly abstracted into a
property wrapper that you can use to wrap any Double property. Add another wrapped property to your
Car:

Listing 26.4 Wrapping another property (PercentageClamping)
struct Car {
 @Percentage var fuelLevel: Double = 1.0
 @Percentage var wiperFluidLevel: Double = 0.5
}

Now you have two properties, both clamped to values between 0.0 and 1.0, and the compiler handles
the rest. There are two hidden instances of Percentage, one for storing and clamping values assigned
to fuelLevel and one to do the same for wiperFluidLevel.

Additional configuration

389

Additional configuration
Sometimes bosses or coaches ask you to give 110%. Some amplifiers go up to 11. Your property
wrapper should support scenarios where the developer using it wants to allow the upper bound to be a
value greater than 1.0.

Switch back to Percentage.swift and add an upperBound property to Percentage. You will need to
update your initializer and wrappedValue to account for it.

Listing 26.5 Adding customization to Percentage (Percentage.swift)
@propertyWrapper public struct Percentage {

 private var storage: Double
 private var upperBound: Double

 public init(wrappedValue: Double, upperBound: Double = 1) {
 storage = max(min(wrappedValue, 1), 0)
 self.upperBound = upperBound
 }

 public var wrappedValue: Double {
 set {
 storage = max(min(newValue, 1 upperBound), 0)
 }
 get {
 return storage
 }
 }
}

Here, you add a new property, upperBound, that will be used as the highest value that can be stored in
a @Percentage variable. You update the initializer to accept and store a value for the upperBound, with
a default value of 1. Last, you update the wrappedValue setter to compare new values to the provided
upperBound.

Chapter 26 Property Wrappers

390

Return to the main playground content and add a new wrapped property, this time with an upper
bound.

Listing 26.6 Adding another wrapped property (PercentageClamping)
struct Car {
 @Percentage var fuelLevel: Double = 1.0
 @Percentage var wiperFluidLevel: Double = 0.5
 @Percentage(upperBound: 2.0) var stereoVolume: Double = 1.0
}
...

Now you have an upgraded stereo whose volume can be turned up to 200%. More to the point, the
declaration @Percentage(upperBound: 2.0) highlights more of what happens behind the scenes of a
property wrapper.

When Swift creates the wrapping instance of Percentage, the initializer’s first parameter
(wrappedValue) is implicit and takes the property’s default value as its argument. Any other parameters
to the property wrapper’s initializer must be passed explicitly at the site of the property wrapper’s
custom attribute, which is what you do here when passing the value 2.0 as an argument to the
wrapper’s initializer.

Now you can test this wrapped property to see its behavior:

Listing 26.7 Pushing your boundaries (PercentageClamping)
...
var myCar = Car()
myCar.fuelLevel = 1.1
print("Fuel:", myCar.fuelLevel)
myCar.stereoVolume = 2.5
print("Volume:", myCar.stereoVolume)

Your playground output should end with the correct value: Volume: 2.0.

Accessing the Wrapper Itself

391

Accessing the Wrapper Itself
A type with a wrapped property, such as Car and its fuelLevel, can access the wrapper object directly
– rather than its wrappedValue – by prefixing the wrapped property name with an underscore (_).
Demonstrate this feature by making Car conform to CustomStringConvertible and logging the
wrapper from the description property:

Listing 26.8 Printing the wrapper to the console (PercentageClamping)
struct Car {
 @Percentage var fuelLevel: Double = 1.0
 @Percentage var wiperFluidLevel: Double = 0.5
 @Percentage(upperBound: 2.0) var stereoVolume: Double = 1.0
}

extension Car: CustomStringConvertible {
 var description: String {
 return "fuelLevel: \(fuelLevel), wrapped by \(_fuelLevel)"
 }
}

var myCar = Car()
print(myCar)
myCar.fuelLevel = 1.1
print("Fuel:", myCar.fuelLevel)
...

The first line of your output should show the truth of your wrapper:

 fuelLevel: 1.0, wrapped by Percentage(storage: 1.0, upperBound: 1.0)

Inside the implementation of Car – and even in an extension on Car in the same file – you can access
the Percentage instance that is wrapping the fuelLevel property via its underscore-prefixed version,
_fuelLevel. But note that it is private to the Car type. For example, you would not be able to print
myCar._fuelLevel from outside the struct or its extension (try it).

Chapter 26 Property Wrappers

392

Projecting Related Values
While debugging a program that uses your Percentage property wrapper, you might want to find out,
at any given point, what the last assignment to a variable’s value was – before it was clamped into the
allowed range.

Change the behavior of the initializer and wrapped value to store any value and to do its clamping work
when the property is read, instead of written.

Listing 26.9 Clamping when reading instead of writing (Percentage.swift)
@propertyWrapper public struct Percentage {

 private var storage: Double
 private var upperBound: Double

 public init(wrappedValue: Double, upperBound: Double = 1) {
 storage = max(min(wrappedValue, 1), 0)
 storage = wrappedValue
 self.upperBound = upperBound
 }

 public var wrappedValue: Double {
 set {
 storage = max(min(newValue, upperBound), 0)
 storage = newValue
 }
 get {
 return storage
 return max(min(storage, upperBound), 0)
 }
 }
}

Now an instance of Percentage stores the last value assigned to its wrappedValue, regardless of
magnitude. At any given time, the storage contains a value that may or may not be within range, but
reading the wrappedValue will produce the clamped value. To the call site in the main playground
content, nothing has changed. Storing a too-large value and then reading it will still report the clamped
value.

Projecting Related Values

393

Now, to give users of your property wrapper access to the un-clamped value, your property wrapper
can project an additional value related to its wrapped value. You do this by implementing a
projectedValue property:

Listing 26.10 Projecting a value from a wrapper (Percentage.swift)
@propertyWrapper public struct Percentage {
 ...
 public var projectedValue: Double {
 get {
 return storage
 }
 }
}

Here, you project the value of storage without clamping it. That value can be accessed by prefixing
a wrapped variable’s name with $. Test your ability to access this projected value in the main
playground:

Listing 26.11 Accessing the projected value (PercentageClamping)
...
var myCar = Car()
print(myCar)
myCar.fuelLevel = 1.1
print("Fuel:", myCar.fuelLevel)
myCar.stereoVolume = 2.5
print("Volume:", myCar.stereoVolume)
print("Projected volume:", myCar.$stereoVolume)

When you access a wrapped property on an object, prefixing the property name with $ gives you access
to the projectedValue instead of the wrappedValue. Your final playground output should be:

 fuelLevel: 1.0, wrapped by Percentage(storage: 1.0, upperBound: 1.0)
 Fuel: 1.0
 Volume: 2.0
 Projected volume: 2.5

Note that a property wrapper’s projectedValue can have both a getter and a setter and can represent
any value related to the wrappedValue. It does not even have to be the same type. For example, you
could have implemented projectedValue to return a Bool indicating whether the value in storage is
within the allowed range.

It is up to the implementer of a property wrapper to decide whether to project an additional value and
what that value might be, so check the documentation of any property wrapper you adopt in your own
programs to understand whether you will find its projected value useful.

Property wrappers are a flexible way to define custom behaviors that should be executed when a
property is accessed, and they make it easy to define those behaviors in an abstract and reusable way.
You will see some of Apple’s property wrappers from the SwiftUI framework in Chapter 28.

Chapter 26 Property Wrappers

394

Bronze Challenge
Open the completed MonsterTown project that you worked on from Chapter 15 to Chapter 17.

Define a property wrapper type in that project called Logged that logs changes to a wrapped property
and logs when a property’s value gets too low. Its wrappedValue should be an Int. Its initializer should
take and store a second Int argument called warningValue.

Every time a @Logged property’s value changes, a message should print to the console containing the
old value and the new value. If the value drops below the warningValue, an additional message should
be logged indicating that the value is getting too low.

Mark the population property of the Town type as @Logged with a warningValue of 50. Now, every
time a town’s population changes, the change is printed to the console – and if a town’s population
drops below 50, the additional warning message is printed.

This means that you can get rid of the didSet property observer of the population property. (It
also means that any time you want to make any property log its changes, you can make it a @Logged
property.)

Test that your property wrapper works by assigning different values to a town’s population in
main.swift.

Silver Challenge
The syntax max(min(someValue, 1), 0) is not very intuitive. It takes a moment of reading to
understand that this is clamping a value to be between 0 and 1.

In a new file in your PercentageClamping playground’s Sources, define an extension to give
all floating-point numbers a clamped(to:) method. The method should accept an instance of
ClosedRange, so that it can be called like someValue.clamped(to: 0...1).

Update your Percentage struct to use it instead of the current, difficult-to-read formula.

Hint: You may need to refer back to what you learned about Self in Chapter 22 on protocol extensions.

Gold Challenge
The majority of property wrappers are generic. Since the point of defining a property wrapper is to
make a reusable tool, you will usually want to make your property wrappers generic so that they are as
broadly useful as possible.

Right now, the Percentage property wrapper can only accept values of type Double. That is limiting;
what if someone wants to store a Float?

Modify Percentage to allow its wrapped value to be any floating-point number.

Hint: This will require you to define Percentage as a generic data structure, which you learned about
in Chapter 21. Look closely at the documentation for the Float and Double types. Do they have
anything in common that you could use as a constraint on your generic type?

For bonus points, upgrade your solution to the bronze challenge by eliminating the warningValue
feature and instead allowing @Logged to wrap a property of any type that conforms to
CustomStringConvertible.

Part VI
Writing Applications

After learning the syntax, grammar, and features of Swift, you are ready to begin learning how to write
real apps. In this part of the book, you will apply your knowledge of Swift to develop more robust
applications for the macOS command line and for iOS devices, and you will whet your appetite for the
next step in your learning journey.

397

27
Command-Line Utilities

Earlier in this book, you used the macOS command-line tool template to create two projects:
MonsterTown and CyclicalAssets. Those exercises were designed to give you a place to explore the
Swift language; they were not real, useful tools.

As a Swift developer, you now have the ability to create command-line tools that you can use to
automate common tasks, perform calculations, transform data, and more. In this chapter, you will build
a tool that can process command-line options and arguments, interactively accept user input, and be run
outside of Xcode.

Introduction to the Command Line
Command-line tools are so named because users interact with them using a command-line interface
(CLI), often via the Terminal application. (And, by the way, they are often called “tools” and
“applications” interchangeably.) We will begin with some basic information about the command line.
If you are already comfortable with navigating and using the command line on a Mac, feel free to move
on to the next section.

There are lots of CLI commands and tools already available on your Mac, and in your career as a Swift
developer you will end up relying on several. To see some of them in action, open up the Terminal
application in your /Applications/Utilities directory. It should look something like Figure 27.1.

Figure 27.1 Opening a new Terminal window

The portion that reads: bignerd@NerdBookPro ~ % ▒ may look very different for you. The important
parts will be there, but they might be in a different order – and they will certainly be personalized based
on your system.

Chapter 27 Command-Line Utilities

398

Figure 27.2 breaks it down. The most important pieces to identify are the directory (~, here) and the
prompt, which is the last character before the cursor.

Figure 27.2 The command prompt

Here are the constituent parts:

user The username of the computer’s current user.

host The host name of the system. You can set this for your Mac in the Sharing pane of
System Preferences.

directory The current working directory name. The symbol ~ represents the user’s home
directory, such as /Users/username/, which is usually the default directory for a
new Terminal session.

prompt The command prompt. The command that you type appears after this symbol. On
some systems it might be a different symbol, such as $ or >. Throughout this chapter,
we will use the % symbol before text that you should enter at a command prompt.

cursor The current text insertion point. Yours might look different, but it usually appears as
a line or box.

As noted above, by default a new Terminal session opens with the path of your home directory. Use the
cd (“change directory”) command to move to your desktop directory (Listing 27.1). (Unless we specify
otherwise, assume that you should press Return after entering a command.)

Listing 27.1 Changing directory to the desktop (Terminal)
% cd ~/Desktop

The text after the command is its argument, and, like the argument to a function, it tells the command
what object to operate on. Some commands can take multiple arguments. In the case of the cd
command, the expected argument is a path to the directory to change to, such as the Desktop
subdirectory of the user’s home directory.

You should see that the command prompt now lists Desktop as its current directory. Use the ls
(“list”) command to list the files in the current directory. If you get a pop-up requesting permission for
Terminal to access the directory, click OK.

Listing 27.2 Listing a directory’s contents (Terminal)
% ls

Introduction to the Command Line

399

The contents of each user’s desktop will be different, but you should see output something like
Figure 27.3.

Figure 27.3 Desktop directory

Some commands take options, usually represented by letters or words prefixed with a hyphen (-), that
change the way the command will behave. Change back to your home directory, then list the contents
of a different directory by passing its path as an argument to the ls command. This time, use the -l
option to instruct the ls command to list the directory contents in a detailed list format:

Listing 27.3 Commands, options, and arguments, oh my (Terminal)
% cd ..
% ls -l /usr/share/dict/

Here, you change to the .. pseudo-directory. This is not truly a directory at all, but a reference to
the current directory’s parent directory. So, cd .. will move you up one directory in the hierarchy of
directories – in this case, to your home directory.

Then you execute the ls command with an option (-l, to specify a detailed list output format) and an
argument (/usr/share/dict/, to specify the directory whose contents you want to list). The /usr/
share/dict/ directory is a location on every Mac where files with common words are stored. You will
use these files in the exercise later.

Your output should look something like Figure 27.4.

Figure 27.4 Passing an option and an argument to the ls command

Chapter 27 Command-Line Utilities

400

Most command-line tools expect options first and arguments at the end of the command.

Finally, many command-line tools are willing to teach you how to use them with a -h or --help option.
Here is the help available for the xcode-select tool, for example:

 % xcode-select --help

 Usage: xcode-select [options]

 Print or change the path to the active developer directory. This directory
 controls which tools are used for the Xcode command line tools (for example,
 xcodebuild) as well as the BSD development commands (such as cc and make).

 Options:
 -h, --help print this help message and exit
 -p, --print-path print the path of the active developer directory
 -s <path>, --switch <path> set the path for the active developer directory
 --install open a dialog for installation of the command [...]
 -v, --version print the xcode-select version
 -r, --reset reset to the default command line tools path

You can see in the list of options that most have a short form (like -h) and a long form (like --help)
for the same command. This is as a convenience to the user; when running command-line utilities, use
whichever form of the option you like.

This is just an example of command-line tool help output. You will probably not need to use xcode-
select anytime soon; it is useful for developers who need to have multiple installations of some of
Xcode’s tools installed.

You are going to move on now to writing a robust command-line app. If you want to learn more about
using the command line, there are lots of free resources on the internet to learn about using the Mac
Terminal and its default command shell, zsh.

Building the Word Finder
The tool you are about to build, wordlasso, is a word-finding application that could be used to help you
with crossword puzzles and other word-based games. The user will be able to execute it like so:

 % wordlasso -i la..o
 lacto
 Lanao
 Lango
 largo
 lasso
 latro

wordlasso will accept a few different options and will take as its argument a string template with
periods for wildcards. It will produce a list of words that fit the provided template. In the example
above, with the template la..o, the tool outputs a list of all five-letter words that begin with “la” and
end in “o.” Note that in this example the search is not case sensitive – wordlasso will support both
case-sensitive and case-insensitive searches.

Building the Word Finder

401

In Xcode, create a new macOS command-line tool called wordlasso. Notice that the name is all
lowercase; this is typical for command-line tool names.

First, you will need a type able to compare a list of known words against a template string. Add a new
Swift file called WordFinder.swift. In it, define a WordFinder struct with a couple properties:

Listing 27.4 Defining the WordFinder struct (WordFinder.swift)
import Foundation

struct WordFinder {
 static let wildcard: Character = "."
 let wordList: [String]
}

The wildcard gives a name to your wildcard character so that you do not need to repeat the Character
literal throughout the program. Your wordList is where you will store the list of known words to
compare against the provided template string.

Implement a private helper method to determine whether a given word matches a template:

Listing 27.5 Identifying a match (WordFinder.swift)
struct WordFinder {
 static let wildcard: Character = "."
 let wordList: [String]

 private func isMatch(template: String, with word: String) -> Bool {
 guard template.count == word.count else { return false }

 return template.indices.allSatisfy { index in
 template[index] == WordFinder.wildcard || template[index] == word[index]
 }
 }
}

You start by comparing the template’s length to the candidate word’s length; if they are different
lengths, they cannot possibly be a match. Then you use the allSatisfy(_:) higher-order function
to iterate over every index in the template string and figure out whether the character at that index in
the template matches either the wildcard character or the character at the same index in the candidate
word.

Chapter 27 Command-Line Utilities

402

Now you can implement the method that other types will use to interact with this one: a method to
filter the wordList to only words that are matches for the template.

Listing 27.6 Filtering wordList for matches (WordFinder.swift)
struct WordFinder {
 static let wildcard: Character = "."
 let wordList: [String]

 private func isMatch(template: String, with word: String) -> Bool {
 guard template.count == word.count else { return false }

 return template.indices.allSatisfy { index in
 template[index] == WordFinder.wildcard || template[index] == word[index]
 }
 }

 func findMatches(for template: String) -> [String] {
 return wordList.filter { candidate in
 isMatch(template: template,
 with: candidate)
 }
 }
}

Take a moment to be proud of how far you have come. The WordFinder implementation is relatively
complex, but you have studied all of it before: type definitions, property declarations, functions, and
closures.

If any of it feels uncomfortable, that is OK. Take your time and consider reviewing the relevant
chapters. This is not a race. If the code above feels good to you – even better! Either way, you are
making solid headway toward becoming a stylish Swift programmer.

Building the Word Finder

403

As you work on a larger application, it is important to periodically test small pieces of it as you build
them. Double-check that your WordFinder works by defining a word list and a template in main.swift.
For reasons that will become clear later in this chapter, define a struct to encapsulate this behavior.

Listing 27.7 Testing WordFinder (main.swift)
import Foundation

print("Hello, World!")

struct Wordlasso {
 func run() throws {
 let wordList = ["Wolf", "wolf", "word", "works", "woo"]
 let wordFinder = WordFinder(wordList: wordList)

 let template = "wo.."

 let matches = wordFinder.findMatches(for: template)
 print("Found \(matches.count) \(matches.count == 1 ? "match" : "matches"):")
 for match in matches {
 print(match)
 }
 }
}

do {
 try Wordlasso().run()
} catch {
 fatalError("Program exited unexpectedly. \(error)")
}

You create a list of known words and use it to initialize an instance of WordFinder. Then you define a
four-letter word template with two letters and two wildcards, and you plug it in. You implement this
behavior inside the run() method on a new struct, Wordlasso.

Finally, you create a Wordlasso instance and call its run() method to kick off the rest of your code.
You use your do/catch block to trap the app and log any thrown errors. A fatalError(_:) call is not
the usual way to exit a command-line utility. You will replace it with a more robust solution later.

Chapter 27 Command-Line Utilities

404

Build and run your program. Your output in the console (which is also a CLI) should look like this:

 Found 2 matches:
 wolf
 word
 Program ended with exit code: 0

This is correct, but possibly unexpected. All-lowercase "wolf" (the animal) matched. Capitalized
"Wolf" (the proper name) did not. A user of wordlasso might want the option to perform a case-
insensitive search, so that both “Wolf” and “wolf” match. Add a Boolean property to WordFinder to let
it know whether to ignore case. Add a helper method to produce a case-corrected version of a string if
your Boolean is true. Also, update findMatches(for:) to use this helper method.

Listing 27.8 Supporting case-insensitivity (WordFinder.swift)
struct WordFinder {
 static let wildcard: Character = "."
 let wordList: [String]
 let ignoreCase: Bool

 private func caseCorrected(_ value: String) -> String {
 ignoreCase ? value.lowercased() : value
 }
 ...
 func findMatches(for template: String) -> [String] {
 return wordList.filter { candidate in
 isMatch(template: caseCorrected(template),
 with: caseCorrected(candidate))
 }
 }
}

Now, if ignoreCase is true, then findMatches(for:) will use lowercase versions of both the template
and the candidate words, so that their original cases do not prevent a match. Update main.swift to
match your updated WordFinder:

Listing 27.9 Testing case-insensitivity (main.swift)
...
func run() throws {
 let wordList = ["Wolf", "wolf", "word", "works", "woo"]
 let wordFinder = WordFinder(wordList: wordList, ignoreCase: true)
 ...
}
...

Build and run. Now your output should reflect a case-insensitive comparison:

 Found 3 matches:
 Wolf
 wolf
 word
 Program ended with exit code: 0

Loading the words from disk

405

Loading the words from disk
Your WordFinder is almost complete. The last step is to give it a larger pool of known words to use for
comparison. Fortunately, every Mac ships with word lists that you can draw from. One of the files in
the /usr/share/dict/ directory, simply named words, is a file that contains nearly a quarter-million
words, one per line.

Replace the compiler-synthesized initializer in WordFinder with an initializer that accepts the path of a
word list file and loads the words from it.

Listing 27.10 Loading a word list from disk (WordFinder.swift)
struct WordFinder {
 static let wildcard: Character = "."
 let wordList: [String]
 let ignoreCase: Bool

 init(wordListPath: String, ignoreCase: Bool) throws {
 let wordListContent = try String(contentsOfFile: wordListPath)
 wordList = wordListContent.components(separatedBy: .newlines)
 self.ignoreCase = ignoreCase
 }

 ...
}

The String(contentsOfFile:) initializer is a failable initializer that synchronously loads a file from
disk into an instance of String. It will fail if the file does not exist, if the program does not have
permission to access the file, or if the file cannot be successfully decoded into text.

The components(separatedBy:) method explodes a String into a [String] by using its argument –
which can be another string or a CharacterSet – as a delimiter. Here, you specify the character set of
new line characters.

To test your shiny new WordFinder, update main.swift to use your new initializer.

Listing 27.11 Testing the completed WordFinder (main.swift)
...
func run() throws {
 let wordList = ["Wolf", "wolf", "word", "works", "woo"]
 let wordFinder = WordFinder(wordList: wordList, ignoreCase: true)
 let path = "/usr/share/dict/words"
 let wordFinder = try WordFinder(wordListPath: path, ignoreCase: true)

 let template = "wo.."
 ...
}
...

Build and run. Your output should print about 30 matches.

Chapter 27 Command-Line Utilities

406

Retrieving Command-Line Arguments
Up to now, this project has not felt very different from MonsterTown. The application is still dependent
on a hardcoded input template. It can read strings from the disk, but there is nothing for the user to do
yet.

There are two ways to receive user input in a command-line app. The first is what you saw earlier when
you typed commands at the prompt and Terminal performed them. That works well for short, discrete
tools that do their work, produce some output, and are done.

The second way to receive user input is to interact with the user while the program is running, allowing
them to enter text that the app can react to – possibly in a repeating cycle.

You are going to set wordlasso up for both kinds of user interaction. The first step is to accept some
command-line input. In main.swift, print the command-line arguments to your program.

Listing 27.12 Arguments at the command line (main.swift)
...
func run() throws {
 let path = "/usr/share/dict/words"
 let wordFinder = try WordFinder(wordListPath: path, ignoreCase: true)

 let args = CommandLine.arguments
 print("Command-line arguments: \(args)")

 let template = "wo.."
 ...
}
...

The CommandLine enum from the Swift standard library has no cases. It serves as a memorable
namespace for static properties, including arguments, that would otherwise be global variables. If you
need to declare several related global variables, declaring them as static properties of a caseless enum
is a solid strategy for collecting them under an umbrella type with a name that is meaningful to your
program.

Build and run, and you should see something new at the top of your output:

 Command-line arguments:
 ["/Users/bignerd/Library/Developer/Xcode/DerivedData/wordlasso-hgifsfesye
 cfmaeaznyxzbfqdlmq/Build/Products/Debug/wordlasso"]
 Found 30 matches:
 ...

The arguments static property of CommandLine stores an array of strings, each of which is one of the
arguments to your program. The zeroth argument is the full path to your program’s executable (which
can be quite long.) The remaining arguments are ones that were passed in when the program was
executed.

Retrieving Command-Line Arguments

407

Because your program ran with no supplied arguments, only the zeroth argument (the program’s own
path) was printed. How can you supply additional arguments? By configuring how Xcode will run your
program in the scheme editor.

Find the scheme editor control in the Xcode toolbar and click on its lefthand component, pictured in
Figure 27.5. Select Edit Scheme... from the drop-down menu that appears.

Figure 27.5 Opening the scheme editor

In the pop-up, select the Run group in the lefthand sidebar, then switch to its Arguments tab.

Under Arguments Passed On Launch, click the plus button () to add a new argument. Type in the
wo.. template you used earlier and press Return. Figure 27.6 shows the result.

Figure 27.6 Adding command-line arguments via the scheme editor

Click Close. When you build and run your program, Xcode will pass it any arguments in this list, in
order, as though you had done it yourself:

 % wordlasso wo..

Chapter 27 Command-Line Utilities

408

Later, you will see how to export your program so that you can execute it yourself in Terminal. For
now, return to main.swift and extract the provided template, if one exists. If one does not, you will ask
the user for a template interactively – but not yet. You should test what you have first. For now, satisfy
the compiler with an empty string and leave yourself a warning as a reminder to finish implementing
interactive mode.

Listing 27.13 Getting the template from the command line (main.swift)
...
let args = CommandLine.arguments
print("Command-line arguments: \(args)")

let template = "wo.."
let template: String
if args.count > 1 {
 template = args[1]
} else {
 template = ""
 #warning("Ask the user for input interactively")
}

let matches = wordFinder.findMatches(for: template)
...

Recall that args[0] is the path to the program itself. Here, you access args[1] to retrieve the first
passed argument if you know there is one. Otherwise, you provide an error message.

Build and run your program. You should get the same output as before – but now, your program
is accepting the template as a command-line argument rather than a hardcoded value. Your app is
growing up!

Receiving Input Interactively

409

Receiving Input Interactively
Now you will update wordlasso to get its input from the user. To do this, you will change the program
to have two modes, depending on whether the user provides a template argument when they run the
tool:

• If the user passes a template as a command-line argument, wordlasso will find and print matches
for it, then exit.

• If the user does not provide a template as a command-line argument, wordlasso will ask for one.
Then, if the user enters a template, the program will find and print matches for it and ask for
another template. This will continue until the user tells the program to stop.

Start with the second mode: If the user does not provide a template via a command-line argument, ask
them for one.

Listing 27.14 Accepting text input with readLine() (main.swift)
...
let template: String
if args.count > 1 {
 template = args[1]
} else {
 template = ""
 #warning("Ask the user for input interactively")
 print("Enter word template: ", terminator: "")
 template = readLine() ?? ""
}
...

The function commonly known as print() actually has a more elaborate signature:
print(_:separator:terminator:). Its separator and terminator parameters are not often used, but
they can come in handy. Here, you provide an argument to the terminator parameter, which tells the
function what to put at the end of your text. The default value is a new line; by passing an empty string
here, you ensure that no new line will appear after the printed text. You do this so that your Enter word
template: prompt will be on the same line as the user’s input.

The readLine() function pauses a command-line app to wait for the user to type text and press Return.
The return value of readLine() is the entered text, or nil if the user presses Return without typing any
text.

Since your program is now asking the user for a template, it should not receive one as a command-line
argument. Open the scheme editor again and disable the argument by unchecking the box next to it, as
pictured in Figure 27.7.

Figure 27.7 Disabling a command-line argument in the scheme editor

Chapter 27 Command-Line Utilities

410

Close the scheme editor, then build and run your program. The prompt Enter word template: should
appear in the console. Click to place your cursor after the colon, type the template word war., and
press Return. Your console should look like this:

 Command-line arguments:
 ["/Users/bignerd/Library/Developer/Xcode/DerivedData/wordlasso-hgifsfesye
 cfmaeaznyxzbfqdlmq/Build/Products/Debug/wordlasso"]
 Enter word template: war.
 Found 10 matches:
 ward
 ware
 ...
 Program ended with exit code: 0

Now for the next step. wordlasso, remember, should have two process flows: If the user passes a
template as a command-line argument, wordlasso will provide the matches and exit. If the user does
not include a template as an argument, the program should continue asking for templates and returning
results until the user tells it to quit.

To make this work, you should do some minor refactoring so that you can access your match-finding
code from multiple code paths or loops. Move your match-finding code into its own helper method that
you can call from anywhere:

Listing 27.15 Moving match-finding code into a method (main.swift)
struct Wordlasso {
 func run() throws {
 ...
 let matches = wordFinder.findMatches(for: template)
 print("Found \(matches.count) \(matches.count == 1 ? "match" : "matches"):")
 for match in matches {
 print(match)
 }
 }

 private func findAndPrintMatches(for template: String,
 using wordFinder: WordFinder) {
 let matches = wordFinder.findMatches(for: template)
 print("Found \(matches.count) \(matches.count == 1 ? "match" : "matches"):")
 for match in matches {
 print(match)
 }
 }
}
...

Receiving Input Interactively

411

Now you can clean up your conditional argument-parsing code and call
findAndPrintMatches(using:) when appropriate.

Listing 27.16 Cleaning up (main.swift)
...
let template: String
if args.count > 1 {
 let template = args[1]
 findAndPrintMatches(for: template, using: wordFinder)
} else {
 print("Enter word template: ", terminator: "")
 let template = readLine() ?? ""
 findAndPrintMatches(for: template, using: wordFinder)
}
...

It feels good to clean up crufty conditionals. Now you are ready to move on. The last step to
implementing wordlasso’s interactive mode is wrapping your user interaction in an infinite loop, so
wordlasso will keep asking the user for input until they press Return without typing text.

Listing 27.17 Infinitely looping until there is no input (main.swift)
...
if args.count > 1 {
 let template = args[1]
 findAndPrintMatches(for: template, using: wordFinder)
} else {
 while true {
 print("Enter word template: ", terminator: "")
 let template = readLine() ?? ""
 if template.isEmpty { return }
 findAndPrintMatches(for: template, using: wordFinder)
 }
}
...

Build and run your program. Try a few different templates. When you are done, press Return without
typing a template, and your program will exit.

Congratulations! It is time to test your program in Terminal.

Chapter 27 Command-Line Utilities

412

Running Your App from the Command Line
In Xcode’s navigator area, click the disclosure arrow next to the Products group to reveal the compiled
wordlasso application, as shown in Figure 27.8.

Figure 27.8 Revealing wordlasso

Option-drag the wordlasso application from the Products group onto your Mac’s desktop. (Make sure
you Option-drag by holding down the Option key while dragging; this copies the application, rather
than merely making a shortcut to it.)

Launch a new terminal session. Change the directory to your desktop.

 % cd ~/Desktop

Execute wordlasso and give it a template.

 % ./wordlasso awes...
 Command-line arguments: ["./wordlasso", "awes..."]
 Found 1 match:
 awesome

The . at the beginning of a path is a pseudo-directory, like the .. you saw earlier. Where .. means
“parent directory,” . means “this directory.” So ./wordlasso means “execute the wordlasso in this
directory.” Without the ./ prefix, Terminal would look for a wordlasso tool in a small list of mostly
system-owned directories referred to as your $PATH.

Run wordlasso again, but this time with no template. It will ask you for one – and keep asking until
you press Return without typing anything.

Congratulations! You have built and executed a simple CLI app. You could stop here … but do not.
wordlasso can – and will – support more features.

But before you expand on wordlasso’s functionality, give some thought to what it could mean to try
to parse complex command-line input. A command-line app can have many different options, and
the user can generally pass them in any order. Consider the complexity of the conditional and switch
statements you would need to process a command like this:

 % ./wordlasso -c 4 -i --word-list /usr/share/dict/propernames Mik..

Right now, you are accessing the command-line argument by its index, using args[1]. It is time to
bring in a specialized framework to ensure that you can correctly parse all the command-line options
and arguments as your program grows.

Parsing Command-Line Arguments with ArgumentParser

413

Parsing Command-Line Arguments with
ArgumentParser
The idea of importing frameworks is not new to you. You learned a little bit about the Foundation
framework while working on the MonsterTown project in Chapter 15. As you continue your Swift
development career, you will encounter lots of frameworks that can offer your program features for
everything from modeling data to presenting user interfaces.

The next feature that you will add to wordlasso will use the ArgumentParser framework, an open-
source framework developed by Apple. ArgumentParser does not ship as part of Xcode, like
Foundation does, so you will need to download the framework and add it to your project before you
can import it in a file and start using it. You will do this with the Xcode package manager.

Adding ArgumentParser to your project
From Xcode’s File menu, select Swift Packages → Add Package Dependency.... A new window will
appear, shown in Figure 27.9.

Figure 27.9 Choose Package Repository window

“Repository” is a fancy name for a place where the source code of a project lives, especially if it is
under control of a version control system such as git. If you are unfamiliar with git, do not worry. It
is something that you can add to your goals list to research later; you will not need to know about it to
complete this book.

Chapter 27 Command-Line Utilities

414

In the package repository URL bar, enter the address of the Swift Argument Parser repository:
https://github.com/apple/swift-argument-parser.git. Click Next. You will be asked to set or
confirm some package options (Figure 27.10).

Figure 27.10 Choose Package Options window

Whatever version you are offered should be fine for this project. Click Next, and you will be asked to
confirm the package products you want to add to your project (Figure 27.11).

Figure 27.11 Add Package window

https://github.com/apple/swift-argument-parser.git

Adding ArgumentParser to your project

415

Again, the default settings here are what you want. Click Finish, and you will see a progress bar while
Xcode downloads and adds ArgumentParser to your project. When it is done, you will see swift-
argument-parser in the Xcode project navigator, below the rest of your project files (Figure 27.12).

Figure 27.12 swift-argument-parser

Now it is time to put ArgumentParser to work. Return to main.swift and import it.

Listing 27.18 Importing ArgumentParser (main.swift)
import Foundation
import ArgumentParser

struct Wordlasso {
 ...
}
...

Now you will see why you defined Wordlasso as a struct. The ArgumentParser framework defines a
ParsableCommand protocol, which requires a throwing method called run(). The body of your program
is – or is called by – code in this method. ArgumentParser defines a robust suite of types and property
wrappers (which you learned about in Chapter 26) to automatically parse command-line arguments for
you and store them into properties of your ParsableCommand-conforming type.

Declare that Wordlasso conforms to ParsableCommand.

Listing 27.19 Conforming to ParsableCommand (main.swift)
import Foundation
import ArgumentParser

struct Wordlasso: ParsableCommand {
 ...
}
...

Chapter 27 Command-Line Utilities

416

ParsableCommand has a protocol extension that adds a free static main() method to parse your
command-line arguments and call your run() function for you. Replace the manual execution of your
run() function with a call to main() instead.

Listing 27.20 Calling main() instead of run() (main.swift)
...
do {
 try Wordlasso().run()
} catch {
 fatalError("Program exited unexpectedly. \(error)")
}

Wordlasso.main()

Notice that this is now your only line of top-level code in the entire program. Calling main()
on Wordlasso kicks off everything else your program does. Modern iOS and macOS apps have
surprisingly little top-level code.

Build and run your program in Xcode’s console. Everything should work just as it did before adding
ArgumentParser to your project.

Now it is time to put ArgumentParser to work for you by declaring the arguments that you want it to
parse.

Declaring arguments for ArgumentParser to parse

417

Declaring arguments for ArgumentParser to parse
ArgumentParser uses property wrappers to implement its parsing behaviors on your behalf. When
you want to identify an argument or option for ArgumentParser to look for at the command line,
you select and configure the appropriate property wrapper and use it to declare a property of your
ParsableCommand-conforming type.

The first argument that you will parse is template, to let the user provide the template string for you to
match. Add the following property declaration to Wordlasso:

Listing 27.21 Adding a template argument (main.swift)
struct Wordlasso: ParsableCommand {
 @Argument(help: """
 The word template to match, with \(WordFinder.wildcard) as \
 placeholders. Leaving this blank will enter interactive mode.
 """)
 var template: String?

 func run() throws {
 ...
 }
 ...
}
...

The @Argument property wrapper is used to declare a property that will store the primary argument
to the program. In a moment you will use other property wrappers to declare properties that
ArgumentParser will store your program’s options into. All ArgumentParser property wrappers take a
help argument to their initializer that is used to autogenerate your tool’s documentation.

Refer back to Chapter 7 if you need a refresher on using multiline strings. This one uses an escape
sequence that you have not seen before: a backslash followed by only whitespace at the end of a line.
This instructs Swift not to hard-wrap the string at this location, but to pretend that the string is not
broken.

Chapter 27 Command-Line Utilities

418

Update your run() function to use this template property instead of pulling the template out of the
CommandLine enum.

Listing 27.22 Using the parsed template (main.swift)
...
if args.count > 1 {
 let template = args[1]
if let template = template {
 findAndPrintMatches(for: template, using: wordFinder)
} else {
 ...
}
...

Build your program and Option-drag it to your desktop again. Run it from a Terminal session to check
its documentation:

 % ./wordlasso --help

 USAGE: wordlasso [<template>]
 ARGUMENTS:
 <template> The word template to match, with . as placeholders.
 Leaving this blank will enter interactive mode.
 OPTIONS:
 -h, --help Show help information.

 Program ended with exit code: 0

This output was autogenerated for you by ArgumentParser’s inspection of the Wordlasso type and its
properties. Notice that an option to print the tool’s documentation is built in, with both a long form and
a short form, as you saw with the xcode-select utility at the beginning of this chapter.

Now try it with a template:

 % ./wordlasso ranc.

 Command-line arguments: ["./wordlasso", "ranc."]
 Found 2 matches:
 rance
 ranch
 Program ended with exit code: 0

Declaring arguments for ArgumentParser to parse

419

What about options? ArgumentParser has those also. An option that does not need an argument of
its own, like -l for the ls command, is also called a flag. Declare a flag to let the user enable case-
insensitive matching.

Listing 27.23 Adding a flag for ignoreCase (main.swift)
struct Wordlasso: ParsableCommand {
 @Argument(help: """
 The word template to match, with \(WordFinder.wildcard) as \
 placeholders. Leaving this blank will enter interactive mode.
 """)
 var template: String?

 @Flag(name: .shortAndLong, help: "Perform case-insensitive matches.")
 var ignoreCase: Bool = false

 func run() throws {
 ...
 }
 ...
}
...

Here you declare a flag using the @Flag property wrapper, which takes a name argument of type
ArgumentParser.NameSpecification and the help argument to describe its usage to the user.

While the primary argument of your program comes at the end of the command and is unnamed,
options and flags have names. Sometimes the names are short, like -h, and sometimes they are long,
like --help. Passing the value .shortAndLong indicates that you want both and that ArgumentParser
should infer their names from the property name. ArgumentParser’s inferred names default to the first
letter for the short form and a hyphen-separated lowercase spelling for the long form.

The result is that your program now has a new flag, which can be passed as -i or --ignore-case.
When this new flag is included in the options list when wordlasso is executed, ignoreCase will be
true.

Update run() to use your new flag.

Listing 27.24 Honoring the -i flag (main.swift)
...
func run() throws {
 let path = "/usr/share/dict/words"
 let wordFinder = try WordFinder(wordListPath: path, ignoreCase: true ignoreCase)
 ...
}
...

Chapter 27 Command-Line Utilities

420

Now add one more declaration, an option to let the user specify a word list other than the default.

Listing 27.25 Parsing a word list path argument (main.swift)
struct Wordlasso: ParsableCommand {
 @Argument(help: """
 The word template to match, with \(WordFinder.wildcard) as \
 placeholders. Leaving this blank will enter interactive mode.
 """)
 var template: String?

 @Flag(name: .shortAndLong, help: "Perform case-insensitive matches.")
 var ignoreCase: Bool = false

 @Option(name: .customLong("wordfile"),
 help: "Path to a newline-delimited word list.")
 var wordListPath: String = "/usr/share/dict/words"

 func run() throws {
 ...
 }
 ...
}
...

Can you guess the usage of this option?

Unlike a flag, an @Option property is parsed with an accompanying value. For example, your
wordListPath option could be passed as --wordfile /path/to/list. If no word list path is specified,
the value will default to /usr/share/dict/words.

It would be illegal usage of the tool to pass --wordfile without also passing a string after it, in which
case the program would exit and log its usage documentation.

Ensure that run() uses the provided word list if there is one:

Listing 27.26 Opting for a different word list (main.swift)
...
func run() throws {
 let path = "/usr/share/dict/words"
 let wordFinder = try WordFinder(wordListPath: path wordListPath,
 ignoreCase: ignoreCase)
 ...
}
...

Build your program again and export it to your desktop. Play with wordlasso in your Terminal session.
Try different combinations of your flags and options. Try it with a different word list, such as /usr/
share/dict/propernames – or create your own.

As a Swift developer, you are now equipped to write tools that can be used at the command line to
automate tasks on your Mac. You should be proud of this milestone! In the next chapter, you will dip
your toe into the waters of iOS app development.

Silver Challenge

421

Silver Challenge
Sometimes wordlasso returns a lot of matches, but sometimes it returns only a few. Add an option to
wordlasso to let the user specify a maximum number of results.

Its usage should look like this:

 % ./wordlasso -i -c 4 ne..
 Found 31 matches; listing the first 4:
 Neal
 neal
 neap
 neat
 Program ended with exit code: 0

Gold Challenge
In this exercise, you used the ArgumentParser library to parse command-line options and arguments.
And, when you learned about error handling in Chapter 23, you wrote code to lex and parse a string
containing an arithmetic formula.

Now, write a command-line tool called calc based on your Chapter 23 solution to allow the user to
execute basic arithmetic operations in a Terminal session. Copy over as much code as you want from
ErrorHandling.playground.

The user should be able to enter a command like this:

 % ./calc 11+11+7+13

And get the correct numerical output printed to the console.

423

28
iOS and macOS Apps

Swift is a versatile language that is used to develop apps for all Apple devices, from iPhone to Mac. As
you saw in the last chapter, you can use it to write tools for use at the command line. In this chapter,
you will write an app for iOS and macOS using the SwiftUI framework, which comes with Xcode.

SwiftUI includes types used to describe visual elements like buttons, colors, text, and images. It also
provides the machinery for reacting to user input, such as the user typing text or tapping a button.

SwiftUI is a large framework, and iOS and macOS application development are large topics deserving
of their own books. This chapter aims to whet your appetite to continue your learning journey by
showing you how far you have come and what you are ready for.

To keep you on track in your journey, you will build a multiplatform to-do list app called TahDoodle
(Figure 28.1). Running it on macOS requires macOS Big Sur (10.16). However, most of this chapter is
focused on the iOS version, which you can run in the Simulator app that also comes with Xcode.

Figure 28.1 TahDoodle

Chapter 28 iOS and macOS Apps

424

Getting Started with TahDoodle
Begin by creating a new Xcode project. Unlike previous projects, this will use the Multiplatform App
template (Figure 28.2). Name it TahDoodle. Leave the Use Core Data and Include Unit Tests options
unchecked.

Figure 28.2 Creating a multiplatform app

As with the other projects that you have created, you will find that the template populates your
navigator area with some files. In addition to some supporting files for managing app metadata
and supplemental assets such as icons, there are two Swift files, TahDoodleApp.swift and
ContentView.swift.

At the heart of SwiftUI app development is the idea of a view: a visual element. SwiftUI defines many
types of views for displaying text, images, and even groups of other views. You will define some of
your own.

Because views are so central to SwiftUI, Xcode changes its interface when you are editing a view type.
Open ContentView.swift and click on the line of code that contains Text("Hello, world!"). The
graphical representation on the righthand side of the editor should update to reflect the selected object,
as illustrated in Figure 28.3. (If you do not see the graphical representation, click the Resume button,
indicated in the screenshot. If you see an error message reading Cannot preview in this file, make sure
the scheme selector, above the editor, is set to TahDoodle (iOS).)

Getting Started with TahDoodle

425

Figure 28.3 Xcode user interface

You have already encountered many of the important parts of Xcode’s interface, such as the navigator
area, editor, run button, and scheme selector. As you dive into app development with SwiftUI, there are
some additional areas you should know about.

• The canvas provides a live-updating rendering of your views. You can show and hide the canvas
with the Editor Options button () above the editor area (Figure 28.4). Check or uncheck
Canvas in the pop-up menu. The Layout option in the same menu allows you to set whether the
canvas is to the right of the editor or below it.

• When you make large changes to your code, the canvas will pause updates to the preview. When it
does, you can click the Resume button to begin updating the preview again.

• If your preview is uncomfortably small or large, you can resize it with a pinch/zoom gesture on
your track pad or with the zoom control in the bottom-right corner of the canvas.

• The attributes inspector (the right-most tab of the inspector area, with an icon that looks like)
allows you to configure the currently selected view. We encourage you to experiment with the
attributes inspector (and the other inspectors), but most of this chapter will focus on code. You can
hide the inspector area anytime with the button at the top right of the Xcode window.

Chapter 28 iOS and macOS Apps

426

Figure 28.4 Editor options

In the editor’s code area, change the string text from Hello, world! to Hello, SwiftUI! and watch
the canvas update. (You may need to click the Resume button at the top-right corner of the canvas.)

Your app will run in both iOS and macOS environments, but for now, you will test your application in
Simulator, a program that ships with Xcode to simulate the experience of using an iOS (or watchOS,
etc.) device.

From the scheme drop-down menu, move to the TahDoodle (iOS) submenu and select an iPhone to
simulate (Figure 28.5):

Figure 28.5 Selecting an iOS simulator

That is some View

427

Build and run your program, and Xcode will launch the Simulator app. If this is the first time you
have launched Simulator, it may take a while to initialize. Eventually, you should see the app launch
(Figure 28.6).

Figure 28.6 Hello, SwiftUI!

Right now, TahDoodle does not do much. It is time to fix that.

That is some View
To explore the components of a view, you will create your own. You will start with the view
responsible for displaying the title of a task in the task list. Create a new file using File → New →
File... or Command-N. Select the Swift File template, name the file TaskView.swift, and make sure it
will be saved in the Shared group.

The file opens with the familiar import statement import Foundation. You will need to import the
SwiftUI framework so that you can work with the elements it provides.

The SwiftUI framework imports the Foundation framework for its own use, so you do not need to
manually import both. Replace import Foundation with import SwiftUI, then define a struct that
conforms to the View protocol. Ignore the error that arises for now.

Listing 28.1 Importing SwiftUI (TaskView.swift)
import Foundation
import SwiftUI

struct TaskView: View {

}

Chapter 28 iOS and macOS Apps

428

A view is an instance of a value type that conforms to the View protocol, which has only two
requirements:

 public protocol View {
 associatedtype Body : View
 @ViewBuilder var body: Self.Body { get }
 }

When you learned about generics in Chapter 21, you learned that protocols can have associated types
that must be defined by the conforming type. View requires an associated type called Body that also
conforms to View. This associated type is inferred by the compiler based on the type of the protocol’s
other, primary requirement: a property called body.

You can ignore the @ViewBuilder attribute for now; you will learn about it later.

Add a body property to satisfy the protocol requirements.

Listing 28.2 Adding a body (TaskView.swift)
struct TaskView: View {
 var body: some View {
 Text("Take out the trash")
 }
}

The Text type is a View-conforming struct defined in the SwiftUI framework. It displays non-editable
text to the user and supports all the text features that you might expect, such as fonts, weights, and
colors.

Every view has a body that is also a view, and you build a SwiftUI app by composing a view hierarchy
of SwiftUI views, your own views, and the relationships among them.

A hierarchy of views, with each of their bodies returning an instance of a different View-conforming
associated type, can get very deep and complex. To spare you the gritty details of deep view hierarchy
types, the body property is declared as returning the some View opaque type.

Recall from Chapter 21 that an opaque return type allows an API developer to hide implementation
details of the actual return type behind a protocol that it conforms to, while promising that the actual
return type is stable across calls to the function.

To allow the canvas to display a preview of your view type, define a new PreviewProvider-
conforming struct at the bottom of TaskView.swift, outside the TaskView’s definition:

Listing 28.3 Adding a PreviewProvider (TaskView.swift)
...
struct TaskCell_Previews: PreviewProvider {

 static var previews: some View {
 TaskView()
 }
}

PreviewProvider enables a type to be rendered in Xcode’s preview canvas. Xcode will search your file
for a type conforming to PreviewProvider and use it to generate a preview of the view returned by its
static previews property. Here, you return an instance of your TaskView type.

That is some View

429

If the preview has paused, resume it to see the results. (And if it is not visible at all, click the Editor
Options button and check Canvas. If it is already checked, try toggling it off and back on.)

To change how a view appears, you can apply a modifier to it. Add some modifiers to your Text
instance to change its appearance.

Listing 28.4 Adding modifiers to the Text (TaskView.swift)
struct TaskView: View {
 var body: some View {
 Text("Take out the trash")
 .padding(.vertical, 50)
 .background(Color.yellow)
 .font(.title3)
 }
}
...

Modifiers are methods that return a new type of view, creating a nested hierarchy. Here, you apply
the padding(_:_:) modifier to the Text instance, which creates and returns a new view that contains
the Text as its child view, with 50 points of padding above and below the Text. Then, you apply the
background(_:) modifier to the padding view, which paints the entire padding view and its child view
(the Text) with a yellow background.

Last, you apply the font(_:) modifier to the background view, which creates and returns yet another
view, applying the title3 font style to strings in all its children recursively, all the way down to the
Text instance.

Figure 28.7 breaks down what you see in the preview. Note that the righthand edges of the diagram
rectangles have been artificially expanded to make it easier for you to tell them apart.

Figure 28.7 A hierarchy of views

The order of modifiers is important, because it affects the resulting hierarchy. Move the
background(_:) modifier to be applied before the padding(_:_:) modifier.

Listing 28.5 Reordering modifiers (TaskView.swift)
struct TaskView: View {
 var body: some View {
 Text("Take out the trash")
 .background(Color.yellow)
 .padding(.vertical, 50)
 .background(Color.yellow)
 .font(.title3)
 }
}
...

Chapter 28 iOS and macOS Apps

430

Now that the background is applied first, the padding view adds padding around the background view
rather than just around the text, as depicted in Figure 28.8.

Figure 28.8 A reordered hierarchy of views

In both these hierarchies, the outermost view that is being returned by your body is the one returned by
the font(_:) modifier.

You can delete the background modifier and decrease the severity of the vertical padding, as both have
served their illustrative purposes. Also, since TaskView is intended to display the title of any task, not
just taking out the trash, give it a title property to display in the Text.

Listing 28.6 Completing TaskView (TaskView.swift)
struct TaskView: View {

 let title: String

 var body: some View {
 Text("Take out the trash" title)
 .background(Color.yellow)
 .padding(.vertical, 50 4)
 .font(.title3)
 }
}

struct TaskCell_Previews: PreviewProvider {

 static var previews: some View {
 TaskView(title: "Take out the trash")
 }
}

Since TaskView has a new property, its compiler-synthesized initializer has changed to take title as
an argument, so you also update the TaskView initialization in the TaskCell_Previews struct.

Displaying Dynamic Data

431

Displaying Dynamic Data
It is fine to see previews that display hardcoded strings, but eventually TahDoodle should display user-
generated tasks – and not just one task, but a whole list of them. You need to define a type to model a
task and a place to store a collection of them.

Define a Task type in a new Swift file called Task.swift.

Listing 28.7 Defining Task (Task.swift)
import Foundation

struct Task {

 let title: String

}

Your Task type is very bare-bones right now, but it will grow over time as the needs of your program
evolve.

Next, define a type in a new file named TaskStore.swift that will hold and manage a collection of
tasks. Your code will emit an error, which you will fix in a subsequent step.

Listing 28.8 Defining TaskStore (TaskStore.swift)
import Foundation

class TaskStore {

 private(set) var tasks: [Task] = []

 func add(_ task: Task) {
 tasks.append(task)
 }

 func remove(_ task: Task) {
 guard let index = tasks.firstIndex(of: task) else { return }
 tasks.remove(at: index)
 }
}

When building more robust programs, it is common to build an abstraction around the collection of
data that you will manage. One way to do this is with a store type.

There is nothing special about a store. It is just a name used to say, “This is a type that encapsulates
and protects data. The type’s users can only access the data the way I want them to, and they don’t
know where I got the data from.” For example, an even more complex app might abstract a networking
layer and a disk persistence layer behind a store, so that users of the store do not have to think about
the source of the data they are accessing. This strategy, or pattern, is a stylish way to ensure that the
data is never manipulated in unexpected ways.

TaskStore is a simple store type that owns an array of Task instances and makes the setter for that
property private. This ensures that the only way for another type to change the list of tasks is through
the store’s add(_:) and remove(_:) methods.

Chapter 28 iOS and macOS Apps

432

This code produces an error: Referencing instance method 'firstIndex(of:)' on 'Collection'
requires that 'Task' conform to 'Equatable'. The reason is that firstIndex(of:) will perform
an equality check to compare its argument to each instance in the collection, and it will return the index
of the first instance for which the check returns true. Fair enough. Make your Task struct Equatable.

Listing 28.9 Making Task conform to Equatable (Task.swift)
struct Task: Equatable {

 let title: String

}

As you learned in Chapter 25, merely declaring conformance to Equatable is enough if you want the
compiler to implement the required == operator for you.

You have not developed any views to allow a user to enter tasks yet, but it would be nice to see
some sample data in your previews and when you run the app during development. At the bottom of
TaskStore.swift, outside the class’s definition, use an extension to define a static property holding a
sample instance of a TaskStore populated with hardcoded data.

Listing 28.10 Providing sample data (TaskStore.swift)
...
#if DEBUG
extension TaskStore {
 static var sample: TaskStore = {
 let tasks = [
 Task(title: "Add features"),
 Task(title: "Fix bugs"),
 Task(title: "Ship it")
]
 let store = TaskStore()
 store.tasks = tasks
 return store
 }()
}
#endif

Very little of this is new. You have defined extensions. You have worked with static properties. You
have created variables whose initial values are assigned to the result of calling an inline closure. You do
all these things here to create a sample instance of TaskStore that you can use as dummy data during
development.

The new syntax is #if DEBUG and #endif. These compiler control statements allow you to specify
chunks of code that should only be compiled into your program under certain conditions. Notice
that the compiler control statements do not create braced scopes; the conditionally compiled code is
between the lines containing #if and #endif.

In this case, the condition is that you are building for debugging, as opposed to building to release
your app for distribution. Recall from your error handling work in Chapter 23 that the assert(_:_:)
function only checks its condition when debugging. Now you know how.

Displaying Dynamic Data

433

Using these compiler control statements, you can ensure that your sample data does not accidentally
ship if you distribute your app to the App Store. Since SwiftUI canvas previews and Simulator both
execute your code in debug mode, you can use this sample data as much as you want while you are
developing your app. By the way, the #warning and #error expressions that you met in Chapter 24 are
examples of another type of compiler control statement called a compile-time diagnostic.

Later, you will let the user enter their own tasks, but for now, you have a collection of sample tasks to
display in a list.

Now that you have created a SwiftUI view from the ground up and have studied its constituent pieces,
you are ready to use Xcode’s SwiftUI View file template, which you can access from the File → New
→ File... menu item or with Command-N (Figure 28.9). Use it to create a new SwiftUI view in a file
named TaskListView.swift.

Figure 28.9 Creating a new SwiftUI View

The template sets you up with a struct that includes the required body property as well as a second
struct that conforms to PreviewProvider.

Chapter 28 iOS and macOS Apps

434

TaskListView will be responsible for displaying a list of TaskView instances. Fortunately, SwiftUI has
a built-in view type called List that will do nicely. From the body of TaskListView, create a List and
populate it with some TaskView instances.

Listing 28.11 Beginning the task list (TaskListView.swift)
import SwiftUI

struct TaskListView: View {
 var body: some View {
 Text("Hello, World!")
 List {
 TaskView(title: "Take out the trash")
 TaskView(title: "Do the dishes")
 TaskView(title: "Learn Swift")
 }
 }
}
...

That strange List creation syntax is using a view builder. Remember the @ViewBuilder attribute on the
body property in the View protocol requirements list? Computed properties and function parameters of
closure type can be marked with the @ViewBuilder attribute to allow syntax like what you use here: a
newline-delimited (instead of comma-delimited) list of SwiftUI views that are automatically collected
as children of the type the closure is passed to. Here, three TaskViews are collected and made the
children of the List.

The complete signature for the List initializer that you are using here is:

 init(@ViewBuilder content: () -> Content)

Content is the generic placeholder for the type of the list’s content view. You are passing a view
builder closure to the List initializer using trailing closure syntax.

Your preview should look like the kind of simple list you might have seen in other apps (Figure 28.10):

Figure 28.10 A simple list

Displaying Dynamic Data

435

View builder syntax for composing views is very cool, but this data is insufficient. You want to display
the tasks from the TaskStore. Give TaskListView a task store, and give the sample data to the preview
provider.

Listing 28.12 Giving the list a task store (TaskListView.swift)
struct TaskListView: View {

 var taskStore: TaskStore

 var body: some View {
 ...
 }
}

struct TaskListView_Previews: PreviewProvider {
 static var previews: some View {
 TaskListView(taskStore: .sample)
 }
}

Now you are ready to iterate over your array of tasks and create views for them. SwiftUI has a view for
this as well. Use a ForEach instance to unpack your Tasks into TaskListView instances for the List.
This will generate an error, which you will fix shortly.

Listing 28.13 Using ForEach (TaskListView.swift)
struct TaskListView: View {

 var taskStore: TaskStore

 var body: some View {
 List {
 TaskView(title: "Take out the trash")
 TaskView(title: "Do the dishes")
 TaskView(title: "Learn Swift")
 ForEach(taskStore.tasks) { task in
 TaskView(title: task.title)
 }
 }
 }
}
...

While ForEach conforms to View, it is not designed to be used as a view on its own. Instead, think of it
like an object that you use to map an array of data models into views for a view builder. Here, you use
it to map your array of tasks into instances of TaskView for the List view builder.

The ForEach type has an unmet need that the compiler wants you to know about (Figure 28.11):

Figure 28.11 ForEach requires Identifiable data

Chapter 28 iOS and macOS Apps

436

When the ForEach is filling the List’s view builder, it wants a way to uniquely identify each instance
of Task, so it can track them even when their properties change. Swift’s Identifiable protocol exists
to fill this need. Make Task conform to Identifiable:

Listing 28.14 Making Task Identifiable (Task.swift)
struct Task: Equatable, Identifiable {

 let id: UUID
 let title: String

 init(title: String) {
 id = UUID()
 self.title = title
 }

}

You declare conformance to the Identifiable protocol and implement its only requirement: a
property called id of a Hashable type. The id property must be unique for any instance in your
program.

The task’s title would not work for the id, since a user could enter two tasks with the same title. A
random number could work. However, Swift supports a type built for this purpose called UUID, which
stands for universally unique identifier. A UUID is like a long random string, and it is generated such
that its uniqueness is guaranteed.

Why Identifiable and not Hashable, like dictionaries and sets use for testing uniqueness? Internally,
the list will tie a task’s id to a row index for positioning its children. This has two consequences:

• One instance’s id must never collide with another, or the List might accidentally order its
children incorrectly when it updates. Recall from Chapter 25 that hash values are not guaranteed
to be unique. They are only likely to be unique within a sample, to balance the performance of
lookups in sets and dictionaries.

• An instance’s id must be stable; it should not change when the instance’s other properties change.
That way, the list can maintain correct ordering. As you have learned, the implementations of
equality and hashability are generally data dependent and would produce different results before
and after an instance’s essential data changed.

Now that Task conforms to Identifiable, the compiler error is gone. (If it does not disappear on its
own, try building your project with Product → Build or Command-B.)

Displaying Dynamic Data

437

To see the fruits of your labor in Simulator, temporarily adjust TahDoodleApp.swift to create a
TaskListView and feed it the sample task data.

Listing 28.15 Creating a TaskStore (TahDoodleApp.swift)
@main
struct TahDoodleApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 TaskListView(taskStore: .sample)
 }
 }
}

The @main attribute, the Scene and App protocols, and the WindowGroup view type are out of scope
for this chapter – but, as you might imagine, they are collectively responsible for getting your app’s
interface onto the screen when your app launches. Check them out in the developer documentation if
you are curious.

Build and run the app in your selected Simulator to see the sample task list (Figure 28.12).

Figure 28.12 Showing your sample data in Simulator

Chapter 28 iOS and macOS Apps

438

Accepting User Input
It is time to let the user manage their own list of tasks, rather than only looking at yours. To do
this, you will make your view hierarchy even deeper by fleshing out the ContentView to contain a
TaskListView, as well as a place to enter text and a submit button.

You are going to reinstall the ContentView as the root view created by the TahDoodleApp. Start
in ContentView.swift by giving the ContentView a store that it will, in turn, pass along to its
TaskListView. Make sure to update the preview provider to give it your sample data.

Listing 28.16 Giving the ContentView a store (ContentView.swift)
import SwiftUI

struct ContentView: View {

 let taskStore: TaskStore

 var body: some View {
 Text("Hello, world!")
 .padding()
 TaskListView(taskStore: taskStore)
 }

 struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 ContentView(taskStore: .sample)
 }
 }
}

Now the ContentView does nothing more than embed a TaskListView, which you can verify by
checking the canvas preview. Next, put the ContentView back into the hierarchy.

Listing 28.17 Putting the ContentView back in the hierarchy
(TahDoodleApp.swift)
@main
struct TahDoodleApp: App {
 var body: some Scene {
 WindowGroup {
 TaskListView(taskStore: .sample)
 ContentView(taskStore: .sample)
 }
 }
}

The fact that you can swap the TaskListView and ContentView so easily implies – correctly – that
there is nothing special about the ContentView. It is merely a View that comes as a part of the SwiftUI
App template, whose name makes it a good top-level view for your hierarchy.

You are ready to create the views that will allow the user to add new tasks. They will appear above the
list and will join it as children of the content view.

Accepting User Input

439

When you need to compose multiple children of a view (such as a button, a text input field, and a list),
it can be useful to factor a subset of the children into a helper property of the owning view. To see what
this looks like, add a newTaskView property to the ContentView.

Listing 28.18 Adding a helper view property (ContentView.swift)
struct ContentView: View {

 let taskStore: TaskStore

 private var newTaskView: some View {
 Text("Placeholder for new task controls")
 }

 var body: some View {
 newTaskView
 TaskListView(taskStore: taskStore)
 }
}
...

Factoring potentially complex views into helper properties makes your program more readable in the
same way that factoring large methods into groups of smaller ones does. Now you have a single place
to focus on your newTaskView hierarchy without thinking about the rest of the body.

Notice that the canvas preview has split your newTaskView and the TaskListView instance into two
separate previews. (Scroll the preview area down if you do not see them both.) The view builder for
your body property does not know how to arrange its child views. Horizontally? Vertically? Deeply? So
it does not try.

As you saw previously, the List type is designed to arrange any number of child views in a scrolling
list. That is not what you want for the newTaskView and TaskListView, because you do not want the
controls in the newTaskView to ever be offscreen. SwiftUI also offers three stacking types that allow
you to arrange a few views to fill the available space:

HStack Arranges its children in a horizontal row, like framed pictures on a shelf.

VStack Creates a vertical stack similar to a List, but without scrolling.

ZStack Creates a stack of views arranged like cards piled on a table, where those higher in the
stack are in front of (and can cover up) views lower in the stack. A ZStack is most useful
when the views in the stack have different geometries or opacities, to allow those in the
back to show.

These types do not support scrolling (though you can put a scrolling element, like a list, inside one); if
their content is too large for the available space, some of the content will be unreachable off the edge of
the screen. They are useful when you want to arrange views to fit entirely within the visible screen.

Chapter 28 iOS and macOS Apps

440

You want the newTaskView to appear above the list, so a VStack is the most appropriate choice. The
VStack will keep both the newTaskView and the TaskListView onscreen at all times, while the List
in TaskListView will allow the task list to scroll within its space. Nest the contents of the body in a
VStack.

Listing 28.19 Stacking the contents of the body (ContentView.swift)
...
var body: some View {
 VStack {
 newTaskView
 TaskListView(taskStore: taskStore)
 }
}
...

Now the preview can render the stacked views correctly (Figure 28.13):

Figure 28.13 ContentView with views in a VStack

Time to build the newTaskView. Start by adding a button to add new tasks to the taskStore:

Listing 28.20 Adding a button to the newTaskView (ContentView.swift)
...
private var newTaskView: some View {
 Text("Placeholder for new task controls")

 Button("Add Task") {
 #warning("The task title is hardcoded")
 let task = Task(title: "Title")
 taskStore.add(task)
 }
}
...

You create a new instance of SwiftUI’s Button type, using its initializer that takes two arguments.
The first argument is the title the button will display, and the second is an action – a closure to execute
when the button is tapped.

In the closure, you create a new Task and add it to the task store. The whole action is passed to the
Button initializer using trailing closure syntax. The implementation is incomplete, as the task’s title is
not being provided by the user yet, so you leave yourself a reminder in the form of a #warning.

Sharing references to value-type data

441

Sharing references to value-type data
Now you can add a text field for the user to type their new task’s title in. Create a TextField and
embed it, along with the Button, in an HStack:

Listing 28.21 Creating a TextField (ContentView.swift)
...
private var newTaskView: some View {
 HStack {
 TextField("Something to do", text: .constant(""))
 Button("Add Task") {
 #warning("The task title is hardcoded")
 let task = Task(title: "Title")
 taskStore.add(task)
 }
 }.padding()
}
...

Your preview should look like Figure 28.14, with your padded HStack floating above the list.

Figure 28.14 Stacks of stacks of views

Feel free to play with the padding modifier and experiment with its arguments and possible values
to see how they affect the preview. To see what the options are, Command-click padding, select
Jump to Definition, and go spelunking. (You can save this for later, of course; exploring the developer
documentation and interfaces is both highly educational and time-consuming.)

The TextField type represents a single-line text input control. When the user taps it, a keyboard is
presented, allowing them to enter text in the text field. The first argument to this TextField initializer
is the placeholder text, which appears in a faded color to show the user where they can type. Ignore the
.constant("") argument for now; you will come back to it shortly.

As the user types, the text field needs somewhere to put its text where you can access it. Using what
you know now, you might be able to build a system using property observers and closures to allow
you to store a String and let the text field update it for you. But to help you write less code, SwiftUI
introduces some property wrappers (which you learned about in Chapter 26) to allow you to declare
properties of value types with some special behaviors.

Chapter 28 iOS and macOS Apps

442

Give your ContentView a wrapped String property to store text emitted by the TextField.

Listing 28.22 Sharing a value type property with child views
(ContentView.swift)
struct ContentView: View {

 let taskStore: TaskStore
 @State private var newTaskTitle = ""
 ...
}
...

Here you declare a new string property, newTaskTitle, that is owned by the ContentView.

The newTaskTitle uses an instance of the State property wrapper struct to manage its value, as
indicated by the @State property wrapper attribute. The property wrapper will store your string in its
wrappedValue and return it any time you access your newTaskTitle property.

The @State property wrapper lends your SwiftUI code some very important features. Any time a
@State property’s value changes, the owning view will invalidate itself, which tells SwiftUI to re-
create the view and redraw it on the screen. This process re-creates and redraws any of the view’s
children as well.

Both the text field and the button’s action closure will need the newTaskTitle: The text field will
update this string, and when the Add Task button is tapped, its action will use this string as the title
of a new Task instance.

Go ahead and update the button first:

Listing 28.23 Child views are re-created with the latest data
(ContentView.swift)
struct ContentView: View {

 let taskStore: TaskStore
 @State private var newTaskTitle = ""

 private var newTaskView: some View {
 HStack {
 TextField("Something to do", text: .constant(""))
 Button("Add Task") {
 #warning("The task title is hardcoded")
 let task = Task(title: "Title" newTaskTitle)
 taskStore.add(task)
 }
 }.padding()
 }
 ...
}
...

Because newTaskTitle is marked @State, any time its value changes, the ContentView will be
invalidated and re-created. That process will re-create the TextField and Button as well – and as the
Button is re-created, so is its action closure, which captures an up-to-date copy of the newTaskTitle
string to use.

Sharing references to value-type data

443

So how will the newTaskTitle be changed? The TextField will need to update it. It is time to look
into the second argument that you passed to the TextField initializer.

By passing .constant("") in Listing 28.21, you told the text field, “I don’t have a string property for
you to update right now, so just display this constant empty string instead.”

In your ContentView, tell the text field about your newTaskTitle.

Listing 28.24 Sharing a value type property with child views
(ContentView.swift)
struct ContentView: View {

 let taskStore: TaskStore
 @State private var newTaskTitle = ""

 private var newTaskView: some View {
 HStack {
 TextField("Something to do", text: .constant("") $newTaskTitle)
 Button("Add Task") {
 let task = Task(title: newTaskTitle)
 taskStore.add(task)
 }
 }.padding()
 }
 ...
}
...

Since String is a value type, passing a string to the TextField would pass an immutable copy of the
value, preventing the TextField from updating your newTaskTitle as the user types. SwiftUI solves
this problem with a type related to the @State property wrapper called Binding.

Recall from your work with functions in Chapter 12 and structs in Chapter 15 that a function argument
can be declared inout if it wants to accept a reference to a value-type argument, rather than a copy
of the argument. This allows the body of the function to modify the original value owned by the
function’s caller. Binding provides a similar behavior – bidirectional access to a value stored elsewhere
– but for stored properties instead of functions. This way, the object with the binding can reach back to
the value’s owner and modify the original value, rather than a copy of it.

The projected value of a @State property (accessed with $, as you saw in Chapter 26) returns
an instance of Binding holding a reference to the property’s wrapped value. So when you pass
$newTaskTitle to the text argument of the TextField initializer, you are not passing the string itself,
but a binding to it. Any time the text in the text field changes, the text field will use this binding to
update the value of newTaskTitle.

Convenient, right?

What does the text field actually do with the binding you give it? When a view wants a property to
hold a reference to value-type data that it does not own, it can declare its property using the @Binding
property wrapper attribute, as TextField does for its text. For example, the TextField type likely
declares a property like this:

 @Binding private var text: String

Chapter 28 iOS and macOS Apps

444

We say “likely” because SwiftUI is not open-source; we cannot see how TextField is actually
implemented. But this is the code you could write if you wanted a view to have a value-type property
whose storage actually belonged to a view higher in the hierarchy. In this case, the string’s storage is
the newTaskTitle owned by ContentView.

The final result of this syntax is this: When you type into the text field, the field will update its text,
which is bound to the newTaskTitle of the ContentView. The change will update the newTaskTitle of
the content view, causing it to invalidate and redraw, which will re-create the button and text field, as
you learned previously.

All this required relatively little code on your part.

SwiftUI does a great deal of work to ensure that the invalidation and redrawing process is as fast and
lightweight as possible. The @State and @Binding property wrappers give SwiftUI views the best of
two worlds: the shared data access of reference types with the optimizations available to value types.

To see an example of views invalidating and redrawing as your data changes, ensure that the Add Task
button is disabled when there is no text in the text field. This will prevent the user from creating empty
tasks.

Listing 28.25 Disabling the Add Task button when there is no task title
(ContentView.swift)
...
private var newTaskView: some View {
 HStack {
 TextField("Something to do", text: $newTaskTitle)
 Button("Add Task") {
 let task = Task(title: newTaskTitle)
 taskStore.add(task)
 }.disabled(newTaskTitle.isEmpty)
 }.padding()
}
...

The disabled(_:) modifier accepts any Boolean expression. If the expression is true, then the
modified view will be disabled until it is invalidated and redrawn, evaluating the expression anew.

Your preview should show that the Add Task button is disabled (Figure 28.15), since the default value
of newTaskTitle is an empty string.

Figure 28.15 Completed new task view appearance

Sharing references to value-type data

445

Notice that you did not use a binding to newTaskTitle in the button’s action closure in Listing
28.24. The button’s action closure, which instantiates the new Task instance, does not need persistent
bidirectional access to newTaskTitle, like the text field does. When the button is tapped, its
action closure will execute once, creating a new task instance with whatever the current value of
newTaskTitle happens to be.

Build and run your app in Simulator to play with your beautiful user interface (Figure 28.16).

Figure 28.16 Completed iOS user interface

Tap into the text field, noticing that the Add Task button is disabled. Type some text, and the button
is enabled. Because newTaskTitle is marked @State, any changes to its value trigger invalidation of
newTaskView, the view that owns the property. That view redraws, re-creating its text field and button.
This time, since newTaskTitle is not empty, the new button is not disabled.

Next, tap the Add Task button, and … it just sits there. Why isn’t the new task being added to the list?

Chapter 28 iOS and macOS Apps

446

Interlude: Troubleshooting with property observers
Adding a new task silently fails. No error is produced onscreen or in the console. Did the button fail to
add the new task to the task store, or did the list fail to update and show the new task?

To find out, add a property observer to the tasks array in the task store to find out every time it
changes:

Listing 28.26 Troubleshooting the task store (TaskStore.swift)
class TaskStore {

 private(set) var tasks: [Task] = [] {
 didSet {
 #warning("Remove this when I'm done with it")
 print("There are now \(tasks.count): \(tasks)")
 }
 }
 ...
}
...

Build and run again and try adding a task titled “NEW TASK.” Watch your console output:

 There are now 4: [TahDoodle.Task(id: [...], title: "Add features"),
 TahDoodle.Task(id: [...], title: "Fix bugs"),
 TahDoodle.Task(id: [...], title: "Ship it"),
 TahDoodle.Task(id: [...], title: "NEW TASK")]

There is your new task, so you can rule out the button and the task store as the source of the problem.
That means the list is not updating when the task store does. You will fix this shortly by changing the
task store to publish its updates in a way the list can observe, so that the list knows to update as well.

You learned what you came here for, so you can remove the property observer. Adding temporary
property observers to properties or local variables is a great way to discover whether values are
changing when – and how – you expect them to.

Listing 28.27 Cleaning up after yourself (TaskStore.swift)
class TaskStore {

 private(set) var tasks: [Task] = [] {
 didSet {
 #warning("Remove this when I'm done with it")
 print("There are now \(tasks.count): \(tasks)")
 }
 }
 ...
}
...

Observing Changes to the Store

447

Observing Changes to the Store
You need a way to invalidate the List when the task store updates.

But first, think about what it means for the task store to update: The TaskStore type is a relatively
simple model class. It does not know how to notify other objects when its tasks property changes.
Teach it how by marking the tasks property with the @Published property wrapper attribute:

Listing 28.28 Publishing updates to the tasks array (TaskStore.swift)
class TaskStore: ObservableObject {
 @Published private(set) var tasks: [Task] = []
 ...
}
...

Now, any time the tasks property changes (such as by adding or removing a task), the TaskStore
instance can publish knowledge of the change to any observing views. By declaring conformance
to the ObservableObject protocol, TaskStore states its willingness to be observed and its intent to
publish updates of its @Published properties to observers.

Any views observing an instance of an ObservableObject-conforming class will invalidate themselves
when the observed instance’s @Published properties change their values.

But how does a view actually register to observe changes to the TaskStore?

Update the TaskListView to observe its own taskStore property:

Listing 28.29 Observing the task store for updated tasks (TaskListView.swift)
struct TaskListView: View {

 @ObservedObject var taskStore: TaskStore
 ...
}
...

The ObservedObject property wrapper sets up the subscription to the @Published properties of an
ObservableObject-conforming class. When the @Published properties update, the owning view (here,
the TaskListView) will invalidate itself, just as it would with changes to a @State property.

Why the TaskListView and not the ContentView? Either would work. But invalidating the entire
ContentView would be wasteful, as you don’t need the button and text field to also invalidate.
The TaskListView is the closest view to the List itself in the hierarchy that has a reference to the
TaskStore. Invalidating the TaskListView invalidates as little of your hierarchy as possible while still
getting the desired effect: a List refresh.

Build and run, and try adding a task. This time, the task should be added to your list when you tap the
Add Task button.

Chapter 28 iOS and macOS Apps

448

Now you just need to clear the text from the text field when the button is tapped:

Listing 28.30 Clearing the decks (ContentView.swift)
...
private var newTaskView: some View {
 HStack {
 TextField("Something to do", text: $newTaskTitle)
 Button("Add Task") {
 let task = Task(title: newTaskTitle)
 taskStore.add(task)
 newTaskTitle = ""
 }.disabled(newTaskTitle.isEmpty)
 }.padding()
}
...

Note that this assignment to newTaskTitle will, as before, invalidate the content view, causing the
button and text field to be redrawn (empty this time).

The user can add tasks and see them populate in the list, which is great. But what should they do when
a task is complete? TahDoodle should let users delete tasks when they are done.

Lists of user-editable content in iOS can allow the user to swipe across an item from right to left to
reveal a Delete button. Tapping it removes that item from the list. To support this swipe-to-delete
behavior, add an onDelete(_:) modifier to the ForEach that feeds the List:

Listing 28.31 Enabling swipe-to-delete in the list (TaskListView.swift)
...
var body: some View {
 List {
 ForEach(taskStore.tasks) { task in
 TaskView(title: task.title)
 }.onDelete { indexSet in
 indexSet.forEach { index in
 let task = taskStore.tasks[index]
 taskStore.remove(task)
 }
 }
 }
}
...

The onDelete(_:) modifier takes a closure to execute when a view emitted by the ForEach is deleted
using the swipe-to-delete gesture.

Saving and Loading User Data

449

Build and run, and swipe on a row to reveal its Delete button (Figure 28.17).

Figure 28.17 Swiping to delete

Congratulations! TahDoodle is now nearly feature complete for iOS. There is one glaring omission:
When the program quits, all your data is gone. The next time you launch the app, the sample data will
be back.

Saving and Loading User Data
The TaskStore is not currently saving tasks to disk or loading saved tasks on launch. It is time to fix
that so that you can relegate the sample data to the preview providers.

To begin, you will need a FileManager. The FileManager type allows you to work with the contents
of the filesystem, such as generating the local URL of a place where you can save data. The URL type
is basically a specialized string that refers to the location of a resource like a locally stored file or a
document on the internet.

Give the TaskStore handy access to a local URL where it can store your to-do list.

Listing 28.32 Telling the TaskStore where to save (TaskStore.swift)
class TaskStore: ObservableObject {

 private let fileURL: URL = {
 let fileManager = FileManager.default
 let documentDirectories = fileManager.urls(for: .documentDirectory,
 in: .userDomainMask)
 let myDocumentDirectory = documentDirectories.first!
 let tasksFileURL = myDocumentDirectory.appendingPathComponent("tasks.json")
 print("Tasks file is \(tasksFileURL)")
 return tasksFileURL
 }()

 @Published private(set) var tasks: [Task] = []
 ...
}
...

Chapter 28 iOS and macOS Apps

450

You get a reference to the default FileManager from the Foundation framework, which is used for
working with locations and directories in the filesystem in all kinds of apps, including command-line
apps. You can use a FileManager to create, move, delete, and learn about files and directories. You
could create your own instance, but there is generally no need to, since there is a default instance
available.

Next, you call the urls(for:in:) method of the file manager to look up a list of document directories
that you can access. This method is designed to search for different locations, from system-owned
temporary directories to user-owned document directories. The .documentDirectory case of the
FileManager.SearchPathDirectory enum specifies that you want a directory appropriate for storing
documents, as opposed to other types of files such as caches or temporary files. The .userDomainMask
case of the FileManager.SearchDomainMask enum tells the file manager to look within the user’s
home folder.

The return value of urls(for:in:) is an array of URL instances representing the location of local
directories where you can store and retrieve data.

The number of directories returned by urls(for:in:) depends on its arguments. Since you are
searching for the .documentDirectory in the .userDomainMask, there will be exactly one object in
the returned array. Finally, you append the tasks.json path component to the URL so that the final
resulting URL represents the location on disk where you will save and load the tasks.

You are going to store content in the JSON file format, which is a popular text file format for data
storage and transmission. The details of JSON are out of scope for this book, but you can find a great
summary on Wikipedia at wikipedia.org/wiki/JSON.

Now that the task store knows where to store the tasks, you can teach it how to store them. Implement a
saveTasks() method:

Listing 28.33 Saving tasks to disk (TaskStore.swift)
class TaskStore: ObservableObject {
 ...
 func remove(_ task: Task) {
 guard let index = tasks.firstIndex(of: task) else { return }
 tasks.remove(at: index)
 }

 private func saveTasks() {
 do {
 let encoder = JSONEncoder()
 #warning("Finish implementing encoding work.")
 } catch {
 print("Could not save tasks. Reason: \(error)")
 }
 }
}
...

Here, you create an instance of JSONEncoder, a type that can encode instances of various types into
instances of Data using its throwing encode(_:) method. Data is a type that encapsulates arbitrary
chunks of type-agnostic data: just a pile of ones and zeroes.

Saving and Loading User Data

451

When you are transferring data to the disk or across a network, the APIs that handle the transmission
generally do not care how your information is encoded. It is up to the saving and loading code – or
transmitting and receiving code – to agree on how to interpret and translate the contents of an instance
of Data. You are using JSON, but there are other formats available.

What types can JSONEncoder work with? Any type that conforms to Swift’s Encodable protocol.

That means the Task type must be Encodable. You will also want to decode instances of Data back
into an array of tasks; that process will require Task to conform to the Decodable protocol. So to
support both encoding and decoding, Task will need to be both Encodable and Decodable.

To save you some typing, Swift defines a protocol composition (which you learned about in
Chapter 19) of Encodable and Decodable called, simply, Codable. Make Task conform to Codable.

Listing 28.34 Making Task conform to Codable (Task.swift)
struct Task: Equatable, Identifiable, Codable {
 ...
}

As with Equatable and Hashable, the compiler is willing to synthesize the Codable protocol
requirements for most value types, as long as all non-lazy stored properties are also Codable. The
compiler will also synthesize Codable conformance for classes that meet the same requirement. Nearly
all the basic types in the Swift standard library, from Int to URL and Data, conform to Codable. And
collection types like Array are Codable as long as their element types are.

Return to the task store and finish encoding and saving data.

Listing 28.35 Encoding and saving tasks (TaskStore.swift)
...
private func saveTasks() {
 do {
 let encoder = JSONEncoder()
 #warning("Finish implementing encoding work.")
 let data = try encoder.encode(tasks)
 try data.write(to: fileURL)
 print("Saved \(tasks.count) tasks to \(fileURL.path)")
 } catch {
 print("Could not save tasks. Reason: \(error)")
 }
}
...

Here you ask the encoder to encode your array of tasks into an instance of Data. Then, you write the
encoded data to disk at the location specified by your fileURL.

Both encode(_:) and write(to:) can fail for reasons related to disk permissions or corrupt data,
and they will throw errors if they cannot finish their work. A more robust application would visually
notify the app’s user that the save had failed, but for your purposes a message logged to the console is
enough.

Chapter 28 iOS and macOS Apps

452

Now implement a loadTasks() method:

Listing 28.36 Loading and decoding tasks (TaskStore.swift)
class TaskStore: ObservableObject {
 ...
 private func saveTasks() {
 ...
 }

 private func loadTasks() {
 do {
 let data = try Data(contentsOf: fileURL)
 let decoder = JSONDecoder()
 tasks = try decoder.decode([Task].self, from: data)
 print("Loaded \(tasks.count) tasks from \(fileURL.path)")
 } catch {
 print("Did not load any tasks. Reason: \(error)")
 }
 }
}
...

You create a new instance of Data with the contents of the file located at the fileURL. Then you create
a JSONDecoder and use it to decode that data into an array of Task instances, which you store in the
task store’s tasks property.

Since the Data type does not know anything about the kind of data it contains, the decode(_:from:)
method of the JSONDecoder must be told how to interpret the contents of the Data. If the Data
contains the wrong kind of information, such as an array of integers instead of an array of tasks,
decode(_:from:) will throw an error.

The task store is now capable of saving and loading tasks. Update the add(_:) and remove(_:)
methods to save changes when they are made.

Listing 28.37 Saving changes (TaskStore.swift)
...
func add(_ task: Task) {
 tasks.append(task)
 saveTasks()
}

func remove(_ task: Task) {
 guard let index = tasks.firstIndex(of: task) else { return }
 tasks.remove(at: index)
 saveTasks()
}
...

Your task store is almost complete. It can now save and load tasks on behalf of the user.

Saving and Loading User Data

453

When the user launches TahDoodle, you should load their saved tasks instead of the sample data. Start
by loading any tasks that may be stored when an instance of TaskStore is initialized.

Listing 28.38 Adding an initializer that loads stored tasks (TaskStore.swift)
class TaskStore: ObservableObject {
 ...
 @Published private(set) var tasks: [Task] = []

 init() {
 loadTasks()
 }

 func add(_ task: Task) {
 tasks.append(task)
 saveTasks()
 }
 ...
}
...

The last step is to create a new instance of TaskStore rather than using the sample data when the app
launches. Update TahDoodleApp to create a new TaskStore and pass it in to the ContentView in place
of TaskStore.sample.

Listing 28.39 Replacing the sample store (TahDoodleApp.swift)
@main
struct TahDoodleApp: App {
 let taskStore = TaskStore()
 var body: some Scene {
 WindowGroup {
 ContentView(taskStore: .sample taskStore)
 }
 }
}

Whew! Build and run the app. The list will be empty, since you are not using the sample data. Add a
few tasks of your own, then quit Simulator and relaunch your app from Xcode. Your tasks should load
up for you.

Congratulations – you have now built a functioning task list app for iOS!

… but what about macOS?

Chapter 28 iOS and macOS Apps

454

Supporting macOS
The great news is that, as of macOS Big Sur, a single SwiftUI app can be deployed to both iOS and
macOS. From the scheme selector at the top of Xcode’s window, switch to the TahDoodle (macOS)
scheme. Build and run, and TahDoodle will launch on your Mac (Figure 28.18).

Figure 28.18 TahDoodle on macOS

It launches, but it is much wider than necessary.

Unsurprisingly, developing for macOS introduces specific concerns and interaction paradigms that you
should take into account. For example, apps can create windows of different sizes. As with any app
development project, you would want to work with your users and a designer to help identify the ideal
sizes of interface elements.

For now, add some constraints to the window size when the app is running on macOS:

Listing 28.40 Conditionally setting the window’s frame (TahDoodleApp.swift)
...
struct TahDoodleApp: App {
 let taskStore = TaskStore()
 var body: some Scene {
 WindowGroup {
 #if os(macOS)
 ContentView(taskStore: taskStore)
 .frame(minWidth: 200,
 maxWidth: 300,
 minHeight: 200)
 #else
 ContentView(taskStore: taskStore)
 #endif
 }
 }
}

Supporting macOS

455

First, you separate your code into two different versions: one for macOS and one for everything else.
(“Everything else” really just means iOS in this case, since this app is only capable of running on
macOS and iOS.)

You use the #if compiler control statement to ensure that the lines up to the subsequent #else
statement are only compiled when building for macOS. Lines between the #else and the #endif
statements will only be included when you are building for a different OS, which in this case would be
iOS.

In the macOS-only block, you add a frame(…) modifier to specify constraints on the size of the
window. The modifier accepts lots of arguments for size restrictions, but you only need to include the
ones you want to deviate from the default.

Build and run on macOS again; you will see that the window is smaller (Figure 28.19).

Figure 28.19 Framing the window

Another difference between iOS and macOS is that macOS does not natively use swipe-to-delete to
remove rows from lists. Try as you might, you will find that you cannot delete a row from TahDoodle
in macOS.

Add a right-click context menu with a Delete option to each TaskView created for the List.

Listing 28.41 Adding a context menu (TaskListView.swift)
...
ForEach(taskStore.tasks) { task in
 TaskView(title: task.title)
 .contextMenu {
 Button("Delete") {
 taskStore.remove(task)
 }
 }
}.onDelete { indexSet in
...

The contextMenu(_:) modifier accepts a view builder closure containing views that will be used as the
menu options for a right-click (or long-press, on iOS) contextual menu.

Chapter 28 iOS and macOS Apps

456

Build and run, add a task, and then right-click it to show the context menu. Delete the task using the
new Delete button (Figure 28.20).

Figure 28.20 Deleting a row on macOS

And there you have it: your shiny, new SwiftUI task list app that works on both macOS and iOS.

There are lots of other features you could add and glitches you could fix. For example, if you open
multiple windows on macOS, they edit the same task store. But all that can come later.

For now, take a deep breath, be proud of your accomplishments, and add one more task to TahDoodle:

 Keep learning

Bronze Challenge

457

Bronze Challenge
Right now, a task can be deleted on iOS in two ways: by swiping the task to show the Delete button or
by long-pressing the task to present its context menu.

Context menus have a place in iOS apps, but they are not usually used for deletion, as swipe-to-delete
is more idiomatic. Edit your code to restrict the context menu to macOS only.

Silver Challenge
The ContentView file has a lot going on, and it could be refactored to improve the readability of your
code.

Move the newTaskView implementation into the body of its own new SwiftUI View file called
NewTaskView.swift.

What does this mean for the newTaskTitle state variable?

After the refactoring, the body of your ContentView should look like this:

 var body: some View {
 VStack {
 NewTaskView(taskStore: taskStore)
 TaskListView(taskStore: taskStore)
 }.background(Color.white)
 }

Ensure that your refactor was successful by running TahDoodle in Simulator and checking that nothing
has changed visually.

Gold Challenge
It is time to go fishing and learn something on your own.

Right now, when you add a task, it just pops into place at the bottom of the list.

Can this be animated? Search for “SwiftUI” in the developer documentation, and read and browse.
Using Apple’s developer documentation alone, figure out how to add row animation to the List – and
then add it.

459

29
Conclusion

Congratulations! You have finished this introduction to the Swift programming language. Thank you
for sticking with us.

Along the way, you covered quite a bit of material, from the basic features of Swift like let and var
to more advanced features like generics and property wrappers. You also saw how to put these pieces
together to write complete Swift programs, and you applied your understanding of Swift to write some
simple macOS and iOS applications.

You are now a Swift developer. Probably not a very good one – but that is OK, and it will change with
time, practice, and continued learning.

Where to Go from Here?
After all your hard work, what should you do next? The truth is that your journey is just beginning.
Swift is a rich language, and there is ample opportunity to learn more every day. Swift can be used to
develop for any of Apple’s platforms using their respective UI frameworks – or even to develop server-
side applications. Studying these frameworks for your platform of choice should be your next step.

May we make a recommendation?

Shameless Plugs
If you want to develop iOS apps, we have a book that is a natural follow-up to this one: iOS
Programming: The Big Nerd Ranch Guide, which is now in its 7th edition.

If you enjoyed this book and want to learn about Android or web development, please take a look at
our other Big Nerd Ranch titles at www.bignerdranch.com/books.

We also offer in-person training for both open enrollment and corporate environments. Visit
www.bignerdranch.com/training/bootcamps for more details.

https://www.bignerdranch.com/books
https://www.bignerdranch.com/training/bootcamps/

Chapter 29 Conclusion

460

An Invitation to the Community
Your knowledge of Swift will continue to grow with practice. Take the time to begin a project. Make
something new. If you do not have a project in mind, visit developer.apple.com. This website
provides a good overview of the resources available to Mac and iOS developers and also gives some
examples that may inspire your creativity.

Consider finding meetup groups for Mac and iOS development in your area. For example, CocoaHeads
is a loose organization with chapters all over the world that meet to discuss Apple platform
development. You can find your nearest chapter on CocoaHeads.org. There are other groups, too! Most
major cities have such groups, and they host regular talks. Going to these meetings will help you learn,
practice, and get to know your peers.

Also, we would love your feedback! Our Twitter handle is @bignerdranch, and Mikey’s is @wookiee.
You can also find us on Facebook at facebook.com/bignerdranch.

So, come join us. We’re out here making things, and we would love to see what you create.

https://developer.apple.com
https://www.cocoaheads.org
https://www.facebook.com/bignerdranch

461

Index
Symbols
! (for failable initializers), 233
! (for implicitly unwrapped optionals), 99
! (forced unwrap) operator, 96, 101
! (logical NOT) operator, 23
!= (not equal to) operator, 22, 372
!== (nonidentity) operator, 22
""" (for multiline strings), 77
(for raw strings), 66
#error expressions, 360
#if/#endif, 432
#warning expressions, 360
$ (to access a projected value), 393, 443
$0, $1… (positional variable names), 142
% (remainder) operator, 32
%= (remainder assignment) operator, 33
& (for arguments passed to in-out parameters),
129
& (for protocol composition), 276
&& (logical AND) operator, 23
&* (overflow multiplication) operator, 34
&+ (overflow addition) operator, 34
&- (overflow subtraction) operator, 34
*= (multiplication assignment) operator, 33
+ (addition) operator, 8
+= (addition assignment) operator, 8, 33, 87
-= (subtraction assignment) operator, 33
... (closed-range) operator, 38, 44
... (variadic parameter syntax), 138
..< (half-open range) operator, 38
// (code comment), 11
/= (division assignment) operator, 33
0b (for binary literals), 39
0x (for hexadecimal literals), 40
: (for protocol conformance), 269
: (in subclass declarations), 188
< (less than) operator, 22, 373
<= (less than or equal to) operator, 22, 374
<> syntax

for generics, 291
for optionals, 94
in array declarations, 82
in dictionary declarations, 106
in set declarations, 114

= (assignment) operator, 6, 14
== (equal to) operator, 22, 37, 88, 370
=== (identity) operator, 22
> (greater than) operator, 22, 374
>= (greater than or equal to) operator, 22, 374
? (for failable initializers), 233
? (for optionals), 94
?? (nil coalescing) operator, 102
@ (for property wrappers), 388
@escaping keyword, 364
@propertyWrapper attribute, 387
@ViewBuilder, 434
[:] (dictionary literal syntax), 106
[] (array literal syntax), 82
[] (subscript syntax), 72
\() (string interpolation), 17
\u{} (for Unicode scalars), 68
_ (as parameter name), 129, 237
_ (to access a wrapper object), 391
_ (wildcard), 49, 56
{ get set } syntax, 268
{ get } syntax, 268
|| (logical OR) operator, 23

A
a ? b : c statements, 24
access control, 211-214
accessors, 205
addition (+) operator, 8
addition assignment (+=) operator, 8, 33, 87
append(_:) method, 84, 101
Application Programming Interfaces (APIs), 6
ARC (Automatic Reference Counting), 350
ArgumentParser framework

about, 413-420
@Argument keyword, 417
downloading, 413
@Flag keyword, 419
@Option keyword, 420
ParsableCommand protocol, 415

arguments
(see also parameters)
about, 125
functions as, 144-146
parameters vs, 125
positional names for, 142

Array type

Index

462

(see also arrays)
about, 81
append(_:), 84
count property, 84
filter(_:) method, 152
insert(at:), 86
last property, 247
literal syntax ([]), 82
map(_:), 151
reduce(_:_:), 153
remove(at:), 84

arrays
(see also Array type)
about, 81
appending items, 84
checking equality of, 88
combining, 87
converting dictionaries to, 111
copying, 247, 248
counting items, 84
creating from sets, 120
creating sets from, 119
declaring, 82
filtering, 152
immutable, 89
initializing, 82
inserting items, 86
looping over, 87
mapping contents, 151
modifying items, 86
reducing, 153
removing items, 84, 85
replacing items, 86
sets vs, 113
sorting, 140
subscripting, 85, 86

as, as?, as! keywords, 192
assert(_:_:) function, 330
assertions, 330
assignment (=) operator, 6, 14
associated types

about, 297-299
typealias, 297

associativity, 382
attributes, 364
Automatic Reference Counting (ARC), 350

B
binary numbers

about, 27
representing in code, 39

Binding type, 443
Bool (Boolean) type, 23
break statements, 50, 63
Button type, 440

C
catch statements, 336
Character type

about, 67
strings as collections of, 327

“Class...has no initializers” error, 226
class keyword, 186, 198, 208
classes

about, 186
computed properties, 208
convenience initializers, 223, 228, 229
creating, 186, 187
default initializers, 223
designated initializers, 223, 225-227
inheritance (see inheritance)
memory management, 231, 232, 349
required subclass initializers, 230, 231
stored properties, 208
structs vs, 194, 241, 251

closures
about, 139
closure expressions, 141-143
default values, 145
escaping and non-escaping, 364
function types and, 155, 156
inline syntax, 141
with lazy properties, 202
omitting return, 142
positional variable names, 142
reference cycles in, 359-363
self in, 202
trailing syntax, 143
type inference in, 142

Codable protocol, 451
collections

(see also Array type, Dictionary type, Set
type)
about, 81

Index

463

types compared, 113
command-line interfaces (CLIs), 397
command-line tools

about, 175
flags, 419
readLine() function, 409
supplying arguments, 406
user input, 406

comments, 11
Comparable protocol, 373-375
comparison operators, table of, 22
compile-time diagnostics, 433
compiler control statements, 432
conditional statements

#if/#endif, 432
else if, 26
guard, 134, 339
if-case, 50
if/else, 21-23
if/else statements and ternary operator
compared, 24
nested if statements, 25
switch, 41-50
ternary operator, 24
while let, 331

console, 9
constants

about, 15
declaring, 15
reference types, 245
value types, 244
variables vs, 15

constructor syntax, 83
contains(_:) method, 115
ContentView type, 438
continue statements, 61, 62
control transfer statements

break, 50, 63
continue, 61, 62
fallthrough, 43
in loops, 61

convenience keyword, 228
copies, shallow vs deep, 247, 248
count property

on arrays, 84
on dictionaries, 107
on strings, 71

D
Data type, 450
data types (see types)
data, saving, 449-453
debug area, 10, 179
debug mode, 330
Decodable protocol, 451
deinit method, 350
deinitializers, 231, 232, 349
designated initializers

about, 223, 225-227
convenience initializers and, 229
inheritance, 225
multiple, 231

dictionaries
(see also Dictionary type)
about, 105
adding key-value pairs, 109
converting to arrays, 111
counting items, 107
declaring, 106
immutable, 111
key-value pairs, 105
keys, 106
looping over, 110
modifying values, 108
reading from, 107
removing items, 109
sets vs, 113

Dictionary type
(see also dictionaries)
about, 105
count property, 107
hashable keys, 106
key property, 110
literal syntax ([:]), 106
removeValue(_:forKey:), 109
updateValue(_:forKey:), 108
value property, 110

didSet observer, 206, 207
division assignment (/=) operator, 33
do/catch statements

about, 336
exhaustiveness checks, 345

dot syntax, 67
Double type, 36

Index

464

E
e (for scientific notation), 39
editor area, 179
else if statements, 26
encapsulation, 263
Encodable protocol, 451
enum keyword, 159
enumerations

about, 159
associated values, 169-171
caseless, 406
comparing values, 160-162
creating, 159, 160
for Errors, 331
methods on, 165
nested, 201
recursive, 172-174
with raw values, 163-165

equal to (==) operator, 22, 37, 88, 370
equality

defining, 370
identity vs, 249

Equatable protocol, 369-372
#error expressions, 360
error handling

about, 344, 345
assertions, 330
catching errors, 336, 337
ignoring, 342, 343
throwing an error, 331-333, 344
traps, 325

Error protocol, 331
“Errors thrown from here are not handled” error,
342
errors, recoverable vs nonrecoverable, 325
escape sequences

about, 66
backslash (\) in, 66
for string interpolation, 66
for Unicode scalars, 68
to ignore line wrap, 417
to insert backslash, 66
to insert new line, 66
to insert quotation mark, 66

@escaping keyword, 364
“Execution was interrupted” error, 33
extension keyword, 282, 314

extensions
about, 281
for adding initializers, 285
for adding methods, 287
for adding nested types, 286
on existing types, 282
for protocol conformance, 284
on protocols (see protocol extensions)

F
fallthrough statements, 43
fatalError(_:) function, 330
FileManager type, 449
fileprivate keyword, 253
filter(_:) method, 152, 155
final keyword, 190, 198
first-class objects, 150
Float type, 36
floating-point numbers, 36, 37
for keyword, 54
for-in loops, 54-56
forced unwrap (!) operator, 96, 101
ForEach type, 435
frameworks

Cocoa, 211
downloading, 413
Foundation, 180
importing, 180
modules and, 211
SwiftUI (see SwiftUI framework)

func keyword, 124
functional programming, 150
functions

(see also methods)
about, 9, 123
arguments, 125, 144-146

(see also parameters)
assert(_:_:), 330
assigning function types to variables, 135
calling, 124
default values for closure arguments, 145
defining, 124
fatalError(_:), 330
as first-class objects, 150
free, 139
function types, 135
generic, 292-294

Index

465

global, 139
higher-order, 150-153
isKnownUniquelyReferenced(_:), 258
modifying argument values, 129
nesting calls, 130
nesting definitions, 131
overloading, 94
parameters (see parameters)
polymorphism, 323
precondition(_:_:), 330
print(), 9, 409
print(_:separator:terminator:), 409
pure, 150
readLine(), 409
as return values, 155, 156
returning early, 134
returning multiple values, 132, 133
returning optionals, 133
returning values, 130
scope, 131
sleep(), 62
Swift naming guidelines, 126

G
generics

about, 289
associated types, 297-299
composition, 303-307
declaring, 291
functions and methods, 292-294
optionals, 309
specialization, 291
type constraints, 295-302
types of instances, 292

getters
about, 205
access control, 213, 214

global functions, 139
greater than (>) operator, 22, 374
greater than or equal to (>=) operator, 22, 374
guard statements, 134

H
hash(into:) method, 377
Hashable protocol, 376-378
Hasher type, 378
hashing

about, 376
algorithms, 377
essential components, 377
hashability, 106

hexadecimal numbers
about, 39
representing in code, 40

higher-order functions, 150-153
HStack type, 439

I
Identifiable protocol, 436
identity, 249
identity (===) operator, 22
if-case statements

about, 50
if/else statements vs, 51
switch statements vs, 50

if/else statements
about, 21-23, 25
if-case statements vs, 51
switch statements vs, 50, 51

#if/#endif, 432
immutability, 150
import keyword, 211
in keyword, 141
in-out parameters, 129
Index type

about, 72
index(_:offsetBy:), 72

indirect keyword, 173
infinite loops, 63
inheritance

about, 187-189
class initializers and, 224, 225
overriding, 188, 210
preventing overriding, 190
protocol, 273, 274

init keyword, 217
initialization

about, 217
classes vs value types, 235
constructor syntax, 83
with an empty instance, 83
of variables, 16

initializers
adding via an extension, 285

Index

466

automatic inheritance, 225
class inheritance and, 224, 225
convenience, 223, 228, 229
creating, 217
custom, 219-221
default, for classes, 223
default, for structs, 218, 219
deinitialization, 231, 232, 349
delegation, 222, 223, 229
designated (see designated initializers)
empty, 218
failable, 232
free, 218
memberwise, 218, 219, 223
parameters, 237
required, 230, 231
subclasses calling superclass initializers, 227

inout keyword, 129
insert(_:) method, 114
insert(_:at:) method, 86
inspector area, 179
instance methods, 184
instance properties, 208
Int type

(see also integers)
about, 14
converting, 35
declaring, 29, 30
recommendation for, 35
sized, 28

Int8, Int16, Int32, Int64 types, 28
integer overflow error, 30
integers

about, 27
converting types, 35
dividing, 32
maximum and minimum values, 27-29
operations on, 31-34
overflow and underflow, 33, 34
unsigned, 28

internal private(set) syntax, 213
intersection(_:) method, 117
interval matching, 49
is keyword, 193
isDisjoint(with:) method, 118
isKnownUniquelyReferenced(_:) function, 258
issue navigator, 221
IteratorProtocol protocol, 297

iterators, 54, 56

J
JSONEncoder type, 450

K
key-paths, 216

L
last property, 247
lazy keyword, 202
lazy loading, 201
less than (<) operator, 22, 373
less than or equal to (<=) operator, 22, 374
let keyword, 15, 150
List type, 434
logical AND (&&) operator, 23
logical NOT (!) operator, 23
logical OR (||) operator, 23
loops

about, 53
over arrays, 87
control transfer statements in, 61-63
over dictionaries, 110
for-in, 54-56
infinite, 59, 63
repeat-while, 60
over sets, 115
where clauses in, 57, 58
while, 59
while let, 331

M
main.swift, 179, 180
map(_:) method, 151
memory management

about, 349, 350
deinitialization, 231, 232, 349
memory allocation, 349, 350
memory leaks, 350, 355
for reference types, 349
references (see references)
for value types, 349

methods
(see also functions)
about, 139
adding via an extension, 287

Index

467

append(_:), 84, 101
contains(_:), 115
deinit, 350
on enumerations, 165
filter(_:), 152, 155
generic, 292-294
hash(into:), 377
implicit arguments, 165
index(_:offsetBy:), 72
insert(_:), 114
insert(_:at:), 86
instance, 184
intersection(_:), 117
isDisjoint(with:), 118
map(_:), 151
mutating, 167, 185
reduce(_:_:), 153
remove(at:), 84
removeValue(forKey:), 109
sorted(by:), 140
subtracting(_:), 119
type, 197, 198
union(_:), 116
updateValue(_:forKey:), 108
uppercased(), 101

“Missing argument” error, 224
model objects, 267
modules

about, 211
frameworks and, 211
namespaces vs, 332

multiplication assignment (*=) operator, 33
mutating keyword, 167, 185
mutating methods, 167

N
namespaces, 332
naming conventions

capitalization in, 159
command-line tools, 401
functions, 140
functions and parameters, 126
generic placeholder types, 293
protocols, 279, 312
types, 159

navigator area, 179
nested types, 201, 286

nil coalescing (??) operator, 102
nil value, 93-95, 234
nonidentity (!==) operator, 22
not equal to (!=) operator, 22, 372
numbers

binary, about, 27
binary, representing in code, 39
floating-point, 36, 37
hexadecimal, representing in code, 40
integers, 27
scientific notation, representing in code, 39

O
ObservableObject protocol, 447
opaque types, 307
operators

(see also individual operators)
custom, 381
as functions, 371
infix, 372
overloading, 94

Optional type (see optionals)
optionals

about, 93, 309
accessing value of, 96, 101
binding, 96-98
chaining, 100
declaring, 94, 95
forced unwrapping, 96, 101
implicitly unwrapped, 99
long-form and shorthand syntax, 94
modifying in place, 101
nil coalescing operator and, 102
returning, 133
unwrapping multiple, 97

Organization Identifier, 177
overflow addition (&+) operator, 34
overflow multiplication (&*) operator, 34
overflow subtraction (&-) operator, 34
overflowing, 34
override error, 209
override keyword, 188, 210

P
parameters

(see also arguments)
about, 125

Index

468

default closure values, 145
default values, 127
external, 126
in-out, 129
for initializers, 237
names, 126, 127
passing multiple, 125, 126
suppressing external names, 129
variadic, 138

pattern matching
about, 49
interval matching, 49
with tuples, 49

placeholder types, 291, 295
playgrounds

adding files to, 386
code editor, 6
creating, 4
debug area, 10
Quick Look, 85
results sidebar, 6, 55
running code automatically, 7
running code manually, 7
Sources group, 386

polymorphism
about, 323
compile-time, 323
parametric, 323
runtime, 323
subclass, 323

precedencegroups, 382
precondition(_:_:) function, 330
PreviewProvider protocol, 428
print() function, 9
print(_:separator:terminator:) function, 409
Product Name, 177
project navigator, 179, 221
properties

about, 199
accessors, 205
adding to a struct, 182
clamping values, 385
on classes, 208
computed, 200, 204, 209
getters, 205
instance, 208
key-paths, 216
lazy stored, 201-203

observation, 206
(see also property observers)

optional, 186
read-only, 200
read/write, 200
setters, 205
static, 210
stored, 200
stored type, 208
type, 208-210
wrappers (see property wrappers)

property observers, 206, 207, 446
property wrappers

about, 385
accessing, 391
accessing a projected value, 393, 443
@ attributes, 388
projected values, 392
projectedValue, 392, 393
requirements, 387
wrappedValue, 387
_ (to access a wrapper object), 391

@propertyWrapper attribute, 387
protocol extensions

about, 311
creating, 313, 314
for default implementations, 318, 319
implementation conflicts, 320, 321
in Swift standard library, 322
where clauses, 316, 317

protocol-oriented programming, 323, 324
protocols

about, 263, 268
associated types, 297-299
Codable, 451
Comparable, 373-375
composition, 276-278
conformance, 268, 271, 272, 284, 319
conforming to multiple, 271
CustomStringConvertible, 271
Decodable, 451
defining, 268-271
Encodable, 451
Equatable, 369-372
Error, 331
extending (see protocol extensions)
Hashable, 376-378
Identifiable, 436

Index

469

inheritance, 273, 274, 375
IteratorProtocol, 297
mutating methods in, 278, 279
ObservableObject, 447
PreviewProvider, 428
required methods, 268
required properties, 268
Sequence, 298, 316
as types, 270
View, 428

Q
quotation marks

for multiline strings, 77
for strings, 6

R
range matching, 44
ranges

closed, 38
half-open, 38
numeric, 38
one-sided, 73

raw strings, 66
raw values, in enumerations, 163-165
readLine() function, 409
reduce(_:_:) method, 153
refactoring, 25
reference semantics, 194, 242, 243
reference types

about, 194
constants as, 245
deinitialization, 231
inside value types, 246

references
(see also memory management)
about, 243, 351-359
breaking, 358
capture list, 363
count, 349
reference cycles in closures, 359-363
reference semantics, 242
strong, 351
strong reference cycles, 355-363
weak, 358

release mode, 330
remainder (%) operator, 32

remainder assignment (%=) operator, 33
remove(at:) method, 84
removeValue(forKey:) method, 109
repeat-while loops, 60
“'required' initializer” error, 230
required keyword, 230, 231
Result type, 347
return values

about, 130
functions as, 155, 156
multiple, 132, 133
optional, 133

S
saving data, 449-453
scientific notation, representing in code, 39
scope

about, 147
closures capturing, 148
enclosing, 147
of functions, 131
global, 147
local, 147
memory management and, 351

self
in closures, 202
implicit method argument, 165-168
in mutating methods, 185
property on types, 315
value types and, 167

Self type, 315
Sequence protocol, 298, 316
sequences, slices of, 75
set keyword, 205
Set type

(see also sets)
about, 113
contains(_:), 115
insert(_:), 114
intersection(_:), 117
isDisjoint(with:), 118
subtracting(_:), 119
union(_:), 116

sets
about, 113
adding items, 114
arrays vs, 113

Index

470

checking for an item, 115
combining, 116
creating arrays from, 120
creating from arrays, 119
declaring, 114
dictionaries vs, 113
disjoint, 118
intersections, 117
looping over, 115
subtracting, 119

setters
about, 205
access control, 213, 214

Simulator, 426
sleep() function, 62
slices, 75
some keyword, 307
sorted(by:) method, 140
source files, 211
startIndex property, 72
State type, 442
static keyword, 197, 208
stores (for data), 431
string interpolation, 16
String type

(see also strings)
about, 6, 65
append(_:), 101
count property, 71
endIndex property, 327
filter(_:) method, 155
index(_:offsetBy:), 72
startIndex property, 72, 327
string literals, 14
unicodeScalars property, 69
uppercased(), 101

String.Index type
about, 72
index(_:offsetBy:), 72

strings
accessing characters in, 72, 73
canonical equivalence, 70, 71
closed ranges, 73
counting characters, 71
creating, 65-67
filtering, 155
inserting variable value in, 17
interpolation in, 16

multiline, 77, 417
raw, 66
subscripting, 72
substrings, 74
Unicode scalars in, 68, 69

strong references (see references, strong)
strong typing, 150
struct keyword, 182
structs

about, 181
adding properties, 182
changing properties of, 185
classes vs, 194, 241, 251
creating, 182
custom initializers, 219-221
default initializers, 218, 219

structure diagrams, 252
subclasses

about, 187
calling superclass initializers, 227
creating, 188, 189
overriding, 188, 208
preventing overriding, 190
requiring initializers on, 230, 231

subscript syntax ([]), 72
subscripting

arrays, 85, 86
dictionaries, 107
ranges in, 85
strings, 72

SubSequence type, 74
Substring type, 75
subtracting(_:) method, 119
subtraction assignment (-=) operator, 33
super prefix, 189
superclasses, 187
SwiftUI framework

about, 423-449, 454, 455
background(_:) modifier, 429
@Binding attribute, 443
Binding type, 443
Button type, 440
ContentView type, 438
disabled(_:) modifier, 444
font(_:) modifier, 429
ForEach type, 435
Foundation framework and, 427
HStack type, 439

Index

471

List type, 434
ObservableObject protocol, 447
@ObservedObject attribute, 447
onDelete(_:) modifier, 448
padding(_:_:) modifier, 429
PreviewProvider protocol, 428
@Published attribute, 447
stacks, 439
@State attribute, 442
State type, 442
supporting multiple platforms, 454, 455
TextField type, 441
View protocol, 428

(see also views (SwiftUI))
views (see views (SwiftUI))
VStack type, 439
Xcode and, 424
ZStack type, 439

switch cases
about, 42
default, 42
fallthrough statements, 43
multiple values in, 43
pattern matching in, 49
ranges in, 44
where clauses in, 47
wildcards in, 49

switch statements
about, 41-50
associated values and, 170
in enumerations, 161
exhaustiveness checks, 42
if-case statements vs, 50
if/else statements vs, 50, 51

T
testing during development, 403
TextField type, 441
throw keyword, 333
throws keyword, 331-333
trailing closure syntax, 143
traps, 34, 325
try, try?, try! keywords, 336, 340, 342-344
tuples

about, 48, 132, 133
named, 132

“Type annotation missing in pattern” error, 220

“type…does not conform to protocol…” error,
279
typealias, 297
types

(see also individual type names)
about, 8, 13
Array, 81
Binding, 443
Bool (Boolean), 23
Button, 440
Character, 67
constraints, for generics, 295-302
ContentView, 438
Data, 450
Double, 36
encoding and decoding, 450
explicit annotation for variables, 14
extensions (see extensions)
FileManager, 449
Float, 36
ForEach, 435
Hasher, 378
HStack, 439
Index, 72
Int, 14, 28
Int8, 28
Int16, 28
Int32, 28
Int64, 28
interfaces, 263
JSONEncoder, 450
List, 434
methods, 197, 198
nested, 201
opaque, 307
Optional (see optionals)
properties, 208-210
protocol conformance, 263
reference types, 194
Result, 347
Self, 315
self property, 315
Set, 113
State, 442
String, 6, 14, 65
String.Index, 72
SubSequence, 74
Substring, 75

Index

472

in switch statements, 42
TextField, 441
type casting, 192
type checking, 13
type inference, 14, 83, 142, 160, 298, 299
UInt, 28
URL, 449
UUID, 436
value types, 194
VStack, 439
ZStack, 439

U
UInt type, 28, 29
underflowing, 34
Unicode scalars

about, 68, 69
canonical equivalence, 70, 71
combining, 68
extended grapheme clusters, 68
unicodeScalars property, 69

Unicode standard, 68
Unified Modeling Language (UML), 252
uninitialized variables, 16
union(_:) method, 116
universally unique identifiers, 436
updateValue(_:forKey:) method, 108
uppercased() method, 101
URL type, 449
“Use of 'self' in delegating initializer before
self.init is called” error, 228
UUID type, 436

V
“Value of optional type...must be unwrapped”
error, 234
value binding

about, 45-47
where clauses in, 47

value semantics, 194, 239-241
value types

about, 194, 241
constants as, 244
copy on write, 252
memory management, 231, 252
inside reference types, 246
self and, 167

var keyword
about, 6
for computed properties, 204

variables
about, 6
assigning function types to, 135
assigning values, 8
constants vs, 15
declaring, 6, 14
initializing, 16
inserting into a string, 17

variadic parameters, 138
@ViewBuilder, 434
views (SwiftUI)

about, 424
binding, 441-445
body property, 428
buttons, 440
content view, 438
invalidating, 442, 447
iterating over, 435
listing, 434
modifiers, 429, 430
PreviewProvider protocol and, 428
redrawing, 442
stacking, 439
text fields, 441
view builders, 434
view hierarchy, 428
View protocol and, 428
@ViewBuilder attribute, 434

VStack type, 439

W
#warning expressions, 360
where clauses

in loops, 57, 58
in protocol extensions, 316, 317
in switch cases, 47
for type constraints, 300-302

while let loops, 331
while loops, 59
willSet observer, 206, 207

X
Xcode

adding a file, 181

Index

473

application window, 178
attributes inspector, 425
canvas, 425, 428
console, 9
creating a new project, 175
documentation, 89
package manager, 413
playgrounds (see playgrounds)
preview, 425, 428
running a program, 180
scheme editor, 407
Simulator, 426
toolbar, 180

Z
ZStack type, 439

	Cover
	Copyright Page
	Dedication
	Acknowledgments
	Table of Contents
	Introduction
	Learning Swift
	Why Swift?
	What About Objective-C?
	Prerequisites
	How This Book Is Organized
	How to Use This Book
	Challenges and For the More Curious
	Typographical Conventions
	Necessary Hardware and Software
	Before You Begin

	Part I. Getting Started
	Chapter 1 Getting Started
	Getting Started with Xcode
	Playing in a Playground
	Running Your Code
	Troubleshooting Playgrounds
	Varying Variables and Printing to the Console
	Adding Comments
	You Are on Your Way!
	Bronze Challenge

	Chapter 2 Types, Constants, and Variables
	Types
	Constants vs Variables
	String Interpolation
	Bronze Challenge

	Part II. The Basics
	Chapter 3 Conditionals
	if/else
	Ternary Operator
	Nested ifs
	else if
	Bronze Challenge

	Chapter 4 Numbers
	Integers
	Creating Integer Instances
	Operations on Integers
	Integer division
	Operator shorthand
	Overflow operators

	Converting Between Integer Types
	Floating-Point Numbers
	Ranges of Numbers
	Bronze Challenge
	For the More Curious: Numeric Literals

	Chapter 5 Switch
	Switch Syntax
	Ranges
	Value binding
	where clauses

	Tuples and Pattern Matching
	switch vs if/else
	Bronze Challenge
	Silver Challenge

	Chapter 6 Loops
	for-in Loops
	where

	while Loops
	repeat-while Loops
	Control Transfer Statements in Loops
	Silver Challenge

	Chapter 7 Strings
	Working with Strings
	Characters

	Unicode
	Unicode scalars
	Canonical equivalence
	Counting elements
	Indices and ranges

	Bronze Challenge
	Silver Challenge
	For the More Curious: Substrings
	For the More Curious: Multiline Strings

	Part III. Collections and Functions
	Chapter 8 Arrays
	Creating an Array
	Accessing and Modifying Arrays
	Combining Arrays
	Array Equality
	Immutable Arrays
	Documentation
	Bronze Challenge
	Silver Challenge

	Chapter 9 Optionals
	Optional Types
	Optional Binding
	Implicitly Unwrapped Optionals
	Optional Chaining
	Modifying an Optional in Place
	The Nil Coalescing Operator
	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Chapter 10 Dictionaries
	Creating a Dictionary
	Accessing and Modifying Values
	Adding and Removing Values
	Looping over a Dictionary
	Immutable Dictionaries
	Translating a Dictionary to an Array
	Silver Challenge
	Gold Challenge

	Chapter 11 Sets
	What Is a Set?
	Getting a Set
	Working with Sets
	Unions
	Intersections
	Disjoint

	Moving Between Types
	Bronze Challenge
	Silver Challenge

	Chapter 12 Functions
	A Basic Function
	Function Parameters
	Parameter names
	Default parameter values
	In-out parameters

	Returning from a Function
	Nested Function Definitions and Scope
	Multiple Returns
	Optional Return Types
	Exiting Early from a Function
	Function Types
	Bronze Challenge
	Silver Challenge
	For the More Curious: Void
	For the More Curious: Variadic Parameters

	Chapter 13 Closures
	Closure Syntax
	Closure Expression Syntax
	Functions as Arguments
	Closures Capture Their Enclosing Scope
	Functional Programming
	Higher-Order Functions
	map(_:)
	filter(_:)
	reduce(_:_:)

	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Functions as Return Types

	Part IV. Enumerations, Structures, and Classes
	Chapter 14 Enumerations
	Basic Enumerations
	Enumerations with Raw Values
	Methods
	Associated Values
	Bronze Challenge
	Silver Challenge
	For the More Curious: Recursive Enumerations

	Chapter 15 Structs and Classes
	A New Project
	Structures
	Instance Methods
	Mutating methods

	Classes
	A Monster class
	Inheritance
	A Zombie subclass
	Preventing overriding
	The zombie problem
	Polymorphism and type casting

	Looking Ahead: What Is the Real Difference?
	Bronze Challenge
	Silver Challenge
	For the More Curious: Type Methods

	Chapter 16 Properties
	Basic Stored Properties
	Nested Types
	Lazy Stored Properties
	Computed Properties
	A getter and a setter

	Property Observers
	Type Properties
	Access Control
	Controlling getter and setter visibility

	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Key Paths

	Chapter 17 Initialization
	Initializer Syntax
	Struct Initialization
	Default initializers for structs
	Custom initializers for structs
	Initializer delegation

	Class Initialization
	Default initializers for classes
	Initialization and class inheritance
	Automatic initializer inheritance
	Designated initializers for classes
	Convenience initializers for classes

	Required initializers for classes
	Deinitialization

	Failable Initializers
	A failable Town initializer

	Initialization Going Forward
	Silver Challenge
	Gold Challenge
	For the More Curious: Initializer Parameters

	Chapter 18 Value vs Reference Types
	Value Semantics
	Reference Semantics
	Constant Value and Reference Types
	Using Value and Reference Types Together
	Copying
	Equality vs Identity
	What Should I Use?
	For the More Curious: Copy on Write

	Part V. Advanced Swift
	Chapter 19 Protocols
	Formatting a Table of Data
	Protocols
	Protocol Conformance
	Protocol Inheritance
	Protocols as Types
	Protocol Composition
	Mutating Methods
	Bronze Challenge
	Silver Challenge
	Electrum Challenge
	Gold Challenge

	Chapter 20 Extensions
	Extending an Existing Type
	Extending Your Own Type
	Using extensions to add protocol conformance
	Adding an initializer with an extension
	Nested types and extensions
	Extensions with methods

	Bronze Challenge
	Silver Challenge

	Chapter 21 Generics
	Generic Data Structures
	Generic Functions and Methods
	Type Constraints
	Associated Types
	Type Constraints in where Clauses
	Generic Composition and Opaque Types
	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Understanding Optionals

	Chapter 22 Protocol Extensions
	Modeling Exercise
	Extending Exercise
	Self Types and Type Values
	Protocol Extension where Clauses
	Default Implementations with Protocol Extensions
	Implementation Conflicts
	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Polymorphism and Protocol-Oriented Programming

	Chapter 23 Error Handling
	Classes of Errors
	Lexing an Input String
	Catching Errors
	Parsing the Token Array
	Handling Errors by Sticking Your Head in the Sand
	Swift Error-Handling Philosophy
	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Storing Failable Results for Later

	Chapter 24 Memory Management and ARC
	Memory Allocation
	Strong Reference Cycles
	Breaking Strong Reference Cycles with weak
	Reference Cycles with Closures
	Escaping and Non-Escaping Closures
	Tin Challenge
	Bronze Challenge
	Gold Challenge
	For the More Curious: A Bit of History
	For the More Curious: Do I Have the Only Reference?

	Chapter 25 Equatable, Comparable, and Hashable
	Equatable
	Infix operators
	Buy one method, get another free!

	Comparable
	Protocol inheritance

	Hashable
	Custom hashing

	Bronze Challenge
	Silver Challenge
	Gold Challenge
	Platinum Challenge
	For the More Curious: Custom Operators

	Chapter 26 Property Wrappers
	Defining a Property Wrapper
	Additional configuration

	Accessing the Wrapper Itself
	Projecting Related Values
	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Part VI. Writing Applications
	Chapter 27 Command-Line Utilities
	Introduction to the Command Line
	Building the Word Finder
	Loading the words from disk

	Retrieving Command-Line Arguments
	Receiving Input Interactively
	Running Your App from the Command Line
	Parsing Command-Line Arguments with ArgumentParser
	Adding ArgumentParser to your project
	Declaring arguments for ArgumentParser to parse

	Silver Challenge
	Gold Challenge

	Chapter 28 iOS and macOS Apps
	Getting Started with TahDoodle
	That is some View
	Displaying Dynamic Data
	Accepting User Input
	Sharing references to value-type data
	Interlude: Troubleshooting with property observers

	Observing Changes to the Store
	Saving and Loading User Data
	Supporting macOS
	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Chapter 29 Conclusion
	Where to Go from Here?
	Shameless Plugs
	An Invitation to the Community

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

