Swift Programming

Swift Programming: The Big Nerd Ranch Guide

by Mikey Ward
Copyright © 2020 Big Nerd Ranch

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch
200 Arizona Ave NE, Suite 200
Atlanta, GA 30307

(770) 817-6373
https://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat is a trademark of Big Nerd Ranch.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
https://www.informit.com/

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0135266327
ISBN-13 978-0135266328

Third edition, first printing, September 2020
Release D.3.1.1

Dedication

For Matt Mathias and John Gallagher, I stand on their shoulders. For Aaron
Hillegass, who took a chance on hiring me. And for my parents, for their eternal
loving support.

— M.W.

Acknowledgments

Writing a book is a team effort, and thanks are due.

First and foremost, thanks to Matt Mathias and John Gallagher, who wrote the the first two editions of
this book. Their vision and creativity are still evident in its pages. Thank you Matt and John for all of
the heart and soul that you poured into it.

Thank you also to Jacob Bullock, Juan Pablo Claude, Chris Downie, Nicole Hinckley, Chris Morris,
and Zachary Waldowski, who went above and beyond in their contributions to this edition. Their words
and wisdom have markedly improved its quality.

Over time, many colleagues have contributed to the continuous evolution of this book and our Swift
training materials. They have provided a wealth of thoughtful suggestions and feedback. Thank you,
Pouria Almassi, Matt Bezark, Amit Bijlani, Nate Chandler, Step Christopher, Kynerd Coleman,
Matthew Compton, Mark Dalrymple, Joseph Dixon, Robert Edwards, Sean Farrell, Drew Fitzpatrick,
Brian Hardy, Florian Harr, Tom Harrington, Gabe Hoffman, David House, Jeremiah Jessel, Bolot
Kerimbaev, Christian Keur, Jake Kirshner, Drew Kreuzman, JJ Manton, Bill Monk, Chris Morris,
Adam Preble, Kevin Randrup, Scott Ritchie, Jeremy Sherman, Steve Sparks, Rod Strougo, TJ Usiyan,
Thomas Ward, Michael Williams, and Mike Zornek.

Colleagues in operations, marketing, and sales have provided instrumental support. Classes would
literally never be scheduled without their work. Thank you Holly Avila, CJ Best, Nick Gravino,
Mathew Jackson, Shannon Kroll, Anja McKinley, Thomas Moore, Q. Elle Mosley, Rodrigo Velasco,
Don Wedington, Eric Wilson, and Madison Witzler.

And, of course, thank you to the many talented honorary Big Nerds who worked on the book.

Liz Holaday, editor extraordinaire, worked tirelessly to help refine, transform, and crystallize these
ideas into prose. Your voice is integral to the quality of our work.

Anna Bentley jumped in to copyedit, correcting errors and inconsistencies. Thank you for your eagle
eye and for accommodating the schedule crunch as the book raced toward completion.

Ellie Volckhausen designed the the cover; thanks for that rad skateboard!
Chris Loper designed and produced the print book and the EPUB and Kindle versions. Your hard work

in the unglamorous part of production is extremely appreciated.

Finally, from all of us at Big Nerd Ranch, thank you to our students. We learn with you and for you.
Teaching is part of the greatest thing that we do, and it has been a pleasure working with you. We hope
that the quality of this book matches your enthusiasm and determination.

Table of Contents

INErOAUCTION ...etiitii i ettt e ens XV
Learning SWiIft ... XV
WY SWITE? oottt et XV
What ABOUt ODJECHIVE-C? ...eniiiiiiiiit ettt et eaae XVi
PIrEr@qUISIEES .. .ueniniieit ittt ettt ettt ea e Xvi
How This BOOk Is Organizedccuviuiiiiiiiiiiiiiiinee ettt Xvi
How to Use This BOOKc..couiiiiiiiii e Xvii
Challenges and For the More CUTIOUScuuiuniiniiniiiieiii e e e en XVviii
Typographical CONVENTIONSc.euiuiniitiiititie ettt ettt et e e eaes XVviii
Necessary Hardware and SOftWareccooveviniiiiiiiiiiiiiine e XVviii
Before YOU Beinuininiiiiiie e XVviii

L GENG StATLEA ..eneeniinii ettt e ettt et aa e 1
J B 11501 TN 7 1T PP PPN 3

Getting Started With XCOdeoouiiniiiiiiiii 4
Playing in a Play@roundc.ooiiiiiiii e 6
RUnNning YOur COAec.oeniniiniiiiiiit et 7
Troubleshooting Playgroundsocoviiiiiiiniii e 8
Varying Variables and Printing to the Consoleccooviiiiiiiiiiiiiiiiiiieeen 8
AddIng COMIMENESueunieititetei ettt et e et e et et et et et et et et eaeneanes 11
You Are 0n YOUT Way! ..ottt 11
Bronze Challengec.oeuiiniiiiiiiiiii e 12
2. Types, Constants, and Variablescooiiiiiiiiiiiiiiiiiiii e 13
1 01 PPN 13
Constants VS Variablesccoviiiiiiiiiiiiii e 15
String INtErPOLAtIONinin it 16
Bronze Challengec.vouiiniiniiiiiii e 17

IL The BASICS euiuneinniiieie ettt et ettt et et et e e aa e enaes 19

3. CONAIIONALS ...euniiiiiiiit ettt et eaan 21
IE/RISE et 21
TerNAry OPEIALOTeuiniiiinei ettt e et e et et et et e et e e eaneanaes 24
INESEEA 1S e e 25
BISE If e e 26
Bronze Challengec.veuiiiiiiiiiiiiii et 26

4. INUIMDETS ...ttt ittt et ettt et et et et e e e e e e et eaaes 27
IO ZOTS it 27
Creating Integer INStANCESo.uieniiniiiiei e 29
Operations ON INEEZEIScuvuiniiiii e e e 31

INteZEr diVISION ...ueuninitiiiiit e 32
Operator shorthandcooiiiiiiiiiii e 33
OVETTIOW OPETALOTS ..uevnetnieeinti et e e et e e e e e et e et e et e e e eaneans 33
Converting Between Inteer TYPESuvuuieniiniiiiiiiiiee e 35
Floating-Point NUMDETSouuiiiiiii e e 36
Ranges of INUMDETSc..iuniiniiiiii e e e 38
Bronze Challengec.veuiiiiiiiiiiiii e 39
For the More Curious: Numeric Literalsccviuiiiiiiiiniiiiiiiineec e 39

vii

Swift Programming

5 SWILCR Lo et 41
SWILCR SYNEAX oot ettt 42
RaANGES i 44

Value DINAING ..eeneiniiii e 45

WHETE CIAUSES ...oieviiiiiiiii et 47

Tuples and Pattern MatChingcooiiiiiiiiiiiiiii e 48
SWILCH VS T/RISE ..uoviiiiiii it e 50
Bronze CRhallengeoouuiiiniiiiie e 52
SIIVEr CRall@NEE ...ceneeeeiiei e et e e e 52

6. 00D ettt 53
TOI-IN LLOOPS e ittt 54
WHETE oottt e 57

WHILE LLOOPS et 59
repeat-While LOOPS ...c.uiieiiiii e 60
Control Transfer Statements in LOOPSeuuiiiniiiiiiiiii e 61
STIVEr Chall@NEE ...c.neeeeiiei e e ettt e e 64

T SHTIIIES et ettt et e e e eas 65
Working With StrNGSoeeiiiii e 65
CRATACKEIS ...evvuneeiii ettt ettt et ettt e e et e e e eaaa e 67

UNICOAE ittt et ettt et e e e e e 68
UNICOAE SCAIATS ..cevuneiiiiiiiiiiiiit et 68

Canonical eqUIVAIBIICEc..iiuniiiiiieiie e 70

Bronze CRhallengeoouuiiiniiiie e 74
STIVEr Chall@NEE ...c.neeeeiiei e e ettt e e 74

For the More Curious: SUDSIIINGScc.ueiuniitiiiii et 74

For the More Curious: Multiline Stringscoeiuuiiuiiiniiiieiieiieeeee e, 77

III. Collections and FUNCHIONSc.uiiiiuiiiiiiiiiiiii et e e e 79
B ATTAYS - oentniit ittt ettt ettt ettt an e 81
CIEALING AN ATTAY ..eneeneiine ittt ettt et ettt e e e ettt et et e it e et e et e eieeanas 82
Accessing and Modifying AITAYSc..oeuuiiiiiiieiieii e 84
COMDINING ATTAYS +.uetneineit ittt et ettt et e e et e et e et e e e eaeebaeenaes 87
ATTay BEQUALILY . .ooeneiii e 88
IMMUEADIE ATITAYS ..cevnniiiiiiiiiiii e 89
DOCUMENTALION ...eeviiiiineiiii ettt ettt et ettt e et et e e e eeen 89
Bronze Challengec...oiiiiiiiiiiiiiiii e 92
SIVEr Challeneevvuniiiiiiii i ettt 92

9. OPLIONALS «..ueiiieiii ettt ettt et et e e 93
OPLONAL TYPES ovueiiieiiieiii ettt ettt 94
Optional BINdiNgc...viiiiiiiiiiiiii e 96
Implicitly Unwrapped Optionalsccooveiiiiiiiiiiiiiniiiieeieiieciie e 99
Optional CRAININGeeniieiiei e e et e e e e 100
Modifying an Optional in Placec..ccooiiiiiiiiiiiii e 101

The Nil Coalescing OPEIatorceuueiunein ittt et e e e e 102
Bronze Challengeoouuiiiniiiiiie e 103
STIVEr Chall@N@E ...c.ueeneiie it eene 103

GOId ChAIIBNEZE -.vneeneeieeiete e ettt e e e e e 103

1O, DICHONATIES .evueivineiiinetiii ettt et et ettt et ettt e e e et e et et e e e et e eeaaeeeaans 105
Creating @ DICHONATYovuuiinii e ettt e e e e 106

viii

Swift Programming

Accessing and Modifying Valuesccooeeiiiiiiiiiiiiiiiii e 107
Adding and Removing Valuesco.oviiiiiiiiiiiiiiiiiiinii e, 109
Looping over a DICHONATYc.uiuniiieiit ittt 110
Immutable DICHONATIESueunitiiie it e e 111
Translating a Dictionary t0 an AITAYc..ceuuiiueiiiiiiiii e 111
SIIVETr ChalleN@E ...c.ueeeeiiei et et e e 112
GOLd CRALLEIEE ... ceneetneiteii ettt e e e e 112
L1 SES ettt 113
WHRHAt IS @ ST oo 113
GEILING @ S e ittt ettt et et e et e e e e e 114
WOrking With SELSiiniii e 115
L0550 10) 3 T PP 116

B 1o T 1 (o) 1 PP PPN 117
DISJOINE ettt e 118
MoVing BetWeen TYPESoevuuiiiiiiiiiiii et 119
Bronze Challengeoouuiiiniiie e 121
SIIVEr ChalleNEE ...c.ueeeeiiei e e et e e 121
12, FUNCHIONS ..ttt ettt e et et e et e et e et e e et e et e e eenes 123
A Basic FUNCHON ..ottt 124
Function Parametersoouiiueiiiii e 125
Parameter NAMESc..uveiuuiiiiiniiii i 126
Default parameter valuescocoviiiiiiiiiiiiie e 127
IN-0ut PArameterscooiiiiiiiiiiiiii i e 129
Returning from a FUNCHONc.ooouiiiiiiiiiiii e 130
Nested Function Definitions and SCOPEc.uiiuniiiiiiiiiiiiiiiiie e, 131
MUltiple RETUINSceniieiie et e e 132
Optional REtUIN TYPES ...cvuniiniineiie ettt e 133
Exiting Early from a FUnctioncooiiiiiiiiiiiii e 134
FUNCLION TYPES ettt ettt 135
Bronze Challengeoouuiiiniiieie e 136
SIIVEr ChalleNEE ...c.ueeeeiiei e e et e e 136
For the More Curious: VOIdccuviiiiiiiiiniiiiiiiie e 137
For the More Curious: Variadic Parametersccoecoviviiiniiiiieiiiniiiiniiineennn, 138
130 CLOSUIES ..ttt ettt ettt et et ettt e et et e e et et e e e et e et e e eans 139
CIOSUIE SYNEAK +.ueevineiiieiii ettt ettt et ettt et e et e et et e e et e e e e eeaaeeaaeeaaaes 139
Closure EXpression SYNEAXce.eeuiuniuneiieiieit ettt e e e e e e eenees 141
Functions as ATZUMENESc.uiuniiineiieii e et e e eaaaas 144
Closures Capture Their Enclosing SCOPeccuveiuiiiiiiiiiiiiiiiiiiieineeeecee, 146
Functional Programmingco.veeuiiiiiiiiiie e 150
Higher-Order FUNCHONSoouiiiiiiiii e 150
1 E:] o (S PP PR UPTURN 151

110y () T OO OO 152
LEAUCE (L 2] tiniriiie e e e e e e 153
Bronze Challengeoouuiiiniiie e 154
SIIVEr ChalleNEE ...c.neeeeiiei ettt e e 154
GOLd CRALLEIEE ...ceneeeneiteie e e ettt e e e e 154
For the More Curious: Functions as Return Typesccooiiiiiiiiiiiiiiiniineen, 155
IV. Enumerations, Structures, and CLASSESouiniieinie it e eaaas 157

Swift Programming

14, ENUMETALIONS .. e.uitneiteiteii ettt et ettt et et et e et e e et e et e e e et e eaeeenns 159
Basic ENUMETAtiONSceuuiiniiie ittt et et e e e 159
Enumerations with Raw Valuescooiiiiiiiiiii e 163
IMELROMS ..t 165
ASSOCIALEd VALUES ...oovniiiiiiiiiiiiii e 169
Bronze Challengeoouuiiiiiiiiiie e 172
STIVEr CRallN@E ...c.ueeiiie it 172
For the More Curious: Recursive Enumerationsccooeeoviiiiiiiiiniiineiiniineannen. 172

15. Structs and CLASSESc.ueuuiieiieii ettt et et 175
A NEW PIOJECT .oeeeiii ettt 175
SETUCTUTES .. enite ittt ettt ettt ettt et et et et e e e et et ene e eneeaenas 181
Instance MeEthOdScouiiniiiiiie e 184

Mutating MEthOdSceuuiieiiiii e 185
CLASSES ettt ettt et ettt ettt e e 186
A MONSEET CLASS ettt et et 186
INhEIIEANCE ..cvvniiiiiiiii e 187
Looking Ahead: What Is the Real Difference?ccccocoiviiiiiiiiiiiiiiiiininnn. 194
Bronze Challengec...oviiiiiiiiiiiiii e 197
SIVEr Challengecvvuniiiiiiii i 197
For the More Curious: Type Methodscccooviiiiiiiiiiiiiiiiiiiinn e 197

16, PrOPEITIES .ovuneiiieiii ettt ettt ettt e e et et e e e e eens 199
Basic Stored Propertiesc..oeueiueiiiiiei e 200
INESEEA THPES - eneeieii ettt et et e 201
Lazy Stored Propertiescouoiiuiiiiii e 201
Computed Propertiesoeuuiuniii et 204

A getter and @ SEEEETiuniitneit et 205
Property ODSEIVETSuiunii ittt e 206
TYPE PIOPEITIES ...eveiineiee ittt et 208
ACCESS COMIIOL ...iiiitiiiie it e 211

Controlling getter and setter ViSibilityccoceeiiiiiiiiiiiiiiiiiieeea 213
Bronze Challengeoouuiiiiiiiiiie e 215
STIVEr ChallN@E ...ceueeneiie it 215
GOId ChAIIBNEZE -.vneeneeieiie ittt ettt e e e eans 215
For the More Curious: Key Paths ..ot 216

17, INIHANZALIONeiuiniiiiiiii ettt et et e e e 217
INItIALIZET SYIMEAX «.oettiinei e e et e et e e e e e 217
Struct INTHANZAIONceutiitii e 218

Default initializers fOr StIrUCESc.oviuiiiiiiiiiiii e 218
Custom initializZers fOr SIUCEScuuiiuniiiiiiiii et 219
Class INTHAlIZALIONueiuiniiiieiiiieeii ettt e e e e 223
Default initializers fOr Classesc.ceuuviiiiniiiiiiiiiiniiineiii e, 223
Initialization and class INhEritancecoooiiiuiiiiiiiiiiiiiii e 224
Required initializers for Classesoceuiiiiiiiiiiiiiineine e 230
DeinitialiZAtiONcuuiuneiieii e 231
Failable INItAlZErsc..iiuiiiiei e 232
A failable Town InitialiZeroceuiiiiiiiiiiiiiiii e 233
Initialization Going FOrwardc..cooiiiiiiiiiiiiii e 235
STIVEr CRAllN@E ...c.ueeieiie it e 236

Swift Programming

GOLd CRALLEIEE ... ceneetneiteie ettt et e e 236

For the More Curious: Initializer Parameterscoooeoiiiiiiiniiiiiiiiniineeen, 237

18. Value vs Reference TYPESccuuverruriiiiiiiiiiiieeii e 239
Value SEMANTICS ..etniiieit ittt et et e e e e 239
Reference SEmantiCscuuiuuiiiiii e 242
Constant Value and Reference TYPesc.oeeuviiniiiiiiiiiiiiiiie e 244
Using Value and Reference Types Togetherooooviiiiiiiiiiiiiiiicieea 246
(10757 11 T~ PSPPI 247
Equality vs IAentityc...oeiiuniiiiiiiiiiiiii i 249
What Should T USE? .eovuiiiiiiii i e 251

For the More Curious: COpY 0N WIIeiuuiiniiineiieiiieiii e 252

Vo AdVANCEd SWITE ..t e 261
19, PrOtOCOIS ..eiiiieiiieeiit ettt et 263
Formatting a Table of Datac.ooiuiiiiiiiiiii e 264
PrOtOCOIS ..neiiieiiie e e 268
Protocol Conformanceeeeuuiiiiiiiiiiniiii e 271
Protocol INheritanceooieuiiiiiniiiiiiiiii e 273
Protocols aS TYPES ...euieneiieiie et 274
Protocol COMPOSITIONeuniitiii ittt et et e e e e e e 276
Mutating Methodsoouiiiiiii e 278
Bronze Challengeoouuiiiniiiiie e 280
SIIVEr ChalleNEE ...c.ueeeeiiei e e et e e 280
Electrum Challengeccuueiuiiiiii et 280
GOLd CRALLEIEE ...ceneeeneiteie e ettt e e e 280

20. EXEENISIONS ..evvineiiineiiie ettt ettt et et et et et e e ettt e e e e et e ea e eaanes 281
Extending an EXiSting TYPE ...ceuuiiniiniiiiie e 282
Extending Your OWn TYPE ...ccuueiuiiiiiiiiii et 283
Using extensions to add protocol conformancecoeeuveeuneenneinneinnennnen. 284

Adding an initializer with an eXtensionccoeeuiiiiiiiiiniiiiieieenea. 285

Nested types and eXTENSIONSeuueeuneiuneiteit ettt eieeieeteeieeaneeineennaes 286

Extensions with methodsooiiiiiiiiiii 287

Bronze Challengeoouuiiiniiiiii e 288
SIIVEr ChalleNEE ...c.neeeiiei ettt e e 288

21, GINBTICS ettt et ettt et et ettt ettt ettt e e e e e aaaas 289
Generic Data StrUCIUIESiiuniii i e 290
Generic Functions and Methodsoooiiiiiiiiiiiiiii e 292

TYPE CONSIIAINES ..ueevtieiiineiii ettt ettt ettt ettt et e e e e e e eeaaneeen 295
ASSOCIALEA TYPES ..nevvieiiieiiit ettt 297

Type Constraints in Where Clausesc.oeeuiiiiiiiiiiieiie e 300
Generic Composition and Opaque TYPeScc.oveuiiiniiiiiiiiieiee e, 303
Bronze Challengeoouuiiiniiiiiie e 308
SIIVEr ChalleNEE ...c.neeeeiiei ettt e e 308

GOLd CRALLEIEE ...cvueeeneiteie e ettt e e 308

For the More Curious: Understanding Optionalsccceceuiiiiiiiiiiniiiiineiinennnn.. 309

22. Protocol EXIENSIONS ..ceuuiiiniiiiiiiiiiiiiii et ettt e 311
MOdEling EXEICISE ...ceuuieniiieii ittt et et et e e 312
EXtending EXEICISEccuuiiuniiniiiii et 313

Self Types and TYpe Valtesc..couuiiiniiiiiiiiiiii e 315

Xi

Swift Programming

Xii

Protocol Extension Where CIauSescoeuuveiiuiiiiineiiineiiieiiieeiie e eeiieeeieees 316
Default Implementations with Protocol EXtensionscccoeeeviiiiiiiiineiniinneannn. 318
Implementation CONfIICESc.uiiuiiiiiiii e 320
Bronze Challengeoouuiiniiii e 322
STIVEr Chall@N@E ...c.neeieiie e 322
GOId ChAIIBNEZE -.vneeneeteiie ettt et e e e e e 322
For the More Curious: Polymorphism and Protocol-Oriented Programming 323
23, Error HAndIingoouiinii e 325
ClIasSes Of EITOTS ...cuuuiiiiniiiiiiiii i e 325
Lexing an INput StrNGoouiiiiiiii e 326
Catching EITOTScuuiiiiiii e 336
Parsing the TOKen AITAYoouuiiiiiiiii e 337
Handling Errors by Sticking Your Head in the Sandcoooiiiinnn. 342
Swift Error-Handling Philosophycooooiiiiiiiii e, 344
Bronze Challengeoeeuiiiiiiiiie e 346
STIVEr Chall@N@E ...ceueeneiie it e 346
GOId ChAIIBNEZE -.vneeneeieeiete e ettt e e e e e 346
For the More Curious: Storing Failable Results for Laterc...coocoviiiiiniin. 347
24. Memory Management and ARCcooiiiiiiiiiiiiiii e 349
MemoOory AIIOCALIONcc.uueiiiniiiieiiit ettt e e e 349
Strong Reference CYCIESoiuuiiiiiiiiiiei e 350
Breaking Strong Reference Cycles with weakccooeiiiiiiiiiiiiiiiiiiiie 358
Reference Cycles with ClOSUIEScc.viiiiiiiiiiiiiiiiiiinie e, 359
Escaping and Non-Escaping ClOSUIESocuuiiiniiiniiiiiiieiieiieeie e 364
TN ChalIBNEZE ..eneeneeine ittt ettt et e e e e e e 366
Bronze Challengeoouuiiiiiiiiie e 366
GOId ChAIIBNEZE -.eneeneeieitee ettt et e e e e e eans 366
For the More Curious: A Bit of HiStOrycccoiiiiiiiiiiiiiiiiiii e 367
For the More Curious: Do I Have the Only Reference?coocoiiiiiiiiiiniinn. 368
25. Equatable, Comparable, and Hashablecoooiiiiiiiiiii e, 369
EqUAtabIeoooiiiiiiiii e 369
INFIX OPETALOTSevniteiie ettt e e 372

Buy one method, get another free!coooiiiiiiiiiiiiiii 372
COMPATADIEeeniiei e 373
Protocol iNhEritanceccouveiiiiiiiiniiiniiii e 375
Hashableooouiiiii e 376
Custom hashingoooiiiiiii e 377
Bronze Challengec...oviiiiiiiiiiiiiii e 379
SIVEr Challeneuevviniiiiiiii e e 379
GOId ChAIIBNEZE -.vneeneeteiie ettt et e e e eans 380
Platinum Challengecouiiiiiiiiii e 380
For the More Curious: Custom OPEratorSeeuueeuueeuneiuneeneineiineeineeieeneennens 381
26. ProPerty WIAPPELS . ..uueuniin ittt et ettt et et e e e e et e et e e e e e e eeanas 385
Defining a Property WIaPPerouuiuuiiiiiie et 386
Additional configurationc.ceeeuriiiiiiiiiiiiiiiein e 389
Accessing the Wrapper Itselfcooiiiiiiiiiii 391
Projecting Related Valuesoooouiiiiiiiiiiiiiiiiiiiin e 392
Bronze Challengeoviiiiiiiiiiiiii e 394

Swift Programming

SIIVEr Challeneovvvnniiiiiiieii ettt 394

GOld Challen@euevvuneiiiiiiiieei ettt e 394

VI WIiting APPLICALIONS ...cevuniiiiiiiin ittt ettt et et e e et ea e eaans 395
27. Command-Line UtIITIESccuuniiiiniiiiiiiiieiii ettt e 397
Introduction to the Command Linec.cocoiiiiiiiiiiiiiiii e, 397
Building the Word FIndercoiiiiiiiiiiii e 400
Loading the words from diskcoooiiiiiiiiiiiiii e 405

Retrieving Command-Line Argumentscc.veeuriiuiiiniiiiiieiiieiiieieeieeieeieeanas 406
Receiving Input INteractivelyc..oveeuiiiiiiiiiiiiiiiiiiiin e, 409
Running Your App from the Command Linec..ccoeeeiiiiiiiiiiiniiniininien 412
Parsing Command-Line Arguments with ArgumentParserc..ccoeeiiiiiin. 413
Adding ArgumentParser t0 yOUr Projectoceuveeuiiuiiiniiineiieiineiieeiaannens 413

Declaring arguments for ArgumentParser to parseco.ccoveeuvieniinneenneennne. 417

SIIVETr ChallBNEE ...c.neeeeiiei ettt 421

GOLd CRALLEIEE ... ceneetneiteie e ettt e e e e 421

28. 10S and MACOS ADPPS ...euniiniin ettt 423
Getting Started with TahDoodle ..ot 424

That 1S SOME VIBWiiiiniiiiiiiii ittt e 427
Displaying Dynamic Datac.oeouiiiiiiiiiiii e 431
Accepting User INPULc..iiuiiii e 438
Sharing references to value-type datacceeiuniiiiiiiiiiiiiiiiiiieeeeen, 441

Interlude: Troubleshooting with property ObServerscoeeevueerneeineennnnnn. 446

Observing Changes to the STOIEc..couiiiiiiiiiiiiiie e 447
Saving and Loading User Dataccooviiiiiiiiiiiiiiniiiiic e 449
Supporting MACOS ...t 454
Bronze Challengeoouuiiiniiieie e 457
SIIVEr ChalleNEE ...c.ueeeeiiei e e et e e 457

GOLd CRALLEIEE ... ceneetneieeie e ettt e e e 457

29. CONCIUSION ..ueiiineiiii ettt ettt et et et e e et e e e enane 459
Where to GO from HETe?iiiiiiiiiiiii e 459
Shameless PIUZSovuniiiiiii e 459
An Invitation to the COMMUNILYc..iiuiiiiiiiii et e e e 460
INAEX ettt et e e 461

Xiii

Introduction

Learning Swift

Apple introduced the Swift language for the development of iOS and macOS applications in 2014.
It was a dramatic shift from Objective-C, the previous development language for Apple’s platforms.
There is a lot to learn in a relatively new language, and this is especially true for Swift.

Swift continues to evolve even six years after its release. As new features are added, Swift users can
collaboratively determine its best practices. You can be part of this conversation, and your work with
this book will start you on your way to becoming a contributing member of the Swift community.

Why Swift?

You may be wondering why Apple released a new language. After all, developers had been producing
high-quality apps for OS X and iOS for years. Apple had a few things in mind.

First, the syntax of Objective-C dates back to 1984, before the rise in the 1990s of prominent scripting
languages that popularized more streamlined and elegant syntax (like JavaScript, Python, PHP, Ruby,
and others). As a result, Objective-C syntax is not as accessible or familiar to developers as more
modern languages. Also, while the language pioneered many ideas in object-oriented programming
and allowed a lot of flexibility for programs to change their behavior while running, a tradeoff was that
fewer bugs were discoverable during development. Instead, bugs often revealed themselves as crashes
once a program was in the hands of its users.

In addition to adopting more modern patterns and paradigms, Swift is designed to be more safe by
strictly requiring that developers follow certain safety rules that, in Objective-C, are only suggestions.
Objective-C did not aim to be unsafe, of course, but industry best practices have changed quite a bit
since it was released. For example, the Swift compiler aims to minimize undefined behavior and save
the developer time debugging code that failed at runtime.

Another goal of Swift is to be a suitable replacement for the C family of languages (C, C++, and
Objective-C). That means Swift has to be fast. Indeed, Swift’s performance is comparable to these
languages in most cases.

Swift gives you safety and performance, all in a clean, modern syntax. The language is quite
expressive; developers can write code that feels natural. This feature makes Swift a joy to write and
easy to read, which makes it great for collaborating on larger projects.

Last, Apple wants Swift to be a general-purpose programming language. In December 2015, it open-
sourced Swift and its compiler, inviting developer involvement to help the language progress and
making it easier for developers to port the language to systems beyond macOS and iOS. Apple hopes
that developers will use Swift to write apps for a variety of mobile and desktop platforms and to
develop back-end web applications as well.

XV

Introduction

What About Objective-C?

So do you still need to know Objective-C to develop for Apple’s platforms? The answer is “a little.”
Being familiar with it can be helpful for the same reason that knowing some history is helpful: So you
understand why things are the way they are and what decisions went into the modern way of doing
things. But also, many Apple frameworks that you will use are written in Objective-C; even if you
interact with them using Swift, the error messages that they produce will have an Objective-C “accent,”
so debugging will be easier if you understand that language. And Apple has made it easy to mix and
match Objective-C with Swift in the same project, so as you become a more advanced developer for
Apple’s platforms, you might encounter Objective-C.

But do you need to know Objective-C to learn Swift or to write robust, useful apps? Not at all. At the
end of this book, you will write a command-line tool and a task list app for iOS and macOS — entirely
in Swift. Swift coexists and interoperates with Objective-C, but it is its own language. If you do not
know Objective-C, it will not hinder you in learning Swift or starting your development career.

Prerequisites

This book was written for all types of macOS and iOS developers, from platform experts to first-
timers. Having some development experience will be helpful, but it is not necessary to have a good
experience with this book. For readers just starting software development, this book highlights and
implements best practices for Swift and programming in general. Its strategy is to teach you the
fundamentals of programming while learning Swift.

For more experienced developers, this book will serve as a helpful introduction to the language.
Depending on the platform you are coming from, some of the fundamentals of Swift might already be
familiar. The section called How to Use This Book, below, lists some chapters that you might only need
to skim — and some that you should not skim.

How This Book Is Organized

This book is organized in six parts. Each is designed to help you accomplish a specific set of goals.
By the end of the book, you will have built your knowledge of Swift from that of a beginner to a more
advanced developer.

Getting Started This part of the book focuses on the tools that you will need to write Swift code
and introduces Swift’s syntax.

The Basics The Basics introduces the fundamental data types that you will use every day as
a Swift developer. This part of the book also covers Swift’s control flow features
that will help you to control the order your code executes in.

Collections and You will often want to gather related data in your application. Once you do, you
Functions will want to operate on that data. This part of the book covers the collections
and functions Swift offers to help with these tasks.

XVi

How to Use This Book

Enumerations, This part of the book covers how you will model data in your own development.
Structures, and You will examine the differences between Swift’s enumerations, structures, and
Classes classes and see some recommendations on when to use each.

Advanced Swift Swift provides advanced features that enable you to write elegant, readable, and

effective code. This part of the book discusses how to use these features to write
idiomatic code that will set you apart from more casual Swift developers.

Writing This part of the book walks you through writing your first real applications for
Applications iOS and macOS.

How to Use This Book

Programming can be tough, and this book is here to make it easier. It does not focus on abstract
concepts and theory; instead, it favors a practical approach. It uses concrete examples to unpack
the more difficult ideas and also to show you best practices that make code more fun to write, more
readable, and easier to maintain. To get the most out of it, follow these steps:

* Read the book. Really! Do not just browse it nightly before going to bed.

* Type out the examples as you read along. Part of learning is muscle memory. If your fingers know
where to go and what to type without too much thought on your part, then you are on your way to
becoming a more effective developer.

* Make mistakes! In our experience, the best way to learn how things work is to first figure out what
makes them not work. Break our code examples and then make them work again.

» Experiment as your imagination sees fit. Whether that means tinkering with the code you find in
the book or going off in your own direction, the sooner you start solving your own problems with
Swift, the sooner you will become a better developer.

* Do the challenges at the end of each chapter. Again, it is important to begin solving problems with
Swift as soon as possible. Doing so will help you to start thinking like a developer.

Remember that learning new things takes time. Dedicate some time to going through this book when
you are able to avoid distractions. You will get more out of the text if you can give it your undivided
attention.

More experienced developers coming to Swift from another language might not need to go through
some of the earlier parts of the book. The tools and concepts introduced in Getting Started and The
Basics might be very familiar to some developers — but you should still skim them, as Swift’s strong
and strict type system means that certain problems are solved differently than in other languages.

In the Collections and Functions section, do not skip or skim the chapter on optionals. They are at the
heart of Swift, and in many ways they embody what is special about the language.

Other chapters in Collections and Functions and Enumerations, Structures, and Classes might seem
like they will not present anything new to the practiced developer. But Swift’s approach to topics on
topics like arrays, dictionaries, functions, enumerations, structs, and classes is unique enough that
every reader should at least skim these chapters.

XVii

Introduction

Challenges and For the More Curious

Most of the chapters in this book conclude with Challenge sections. These are exercises for you to
work through on your own and provide opportunities for you to challenge yourself. In our experience,
true learning happens when you solve problems in your own way.

There are also For the More Curious sections at the end of many chapters. These sections address
questions that may have occurred to the curious reader while working through the chapter. Sometimes
they discuss how a language feature’s underlying mechanics work or explore a programming concept
not quite related to the heart of the chapter.

Typographical Conventions

You will be writing a lot of code as you work through this book. To make things easier, this book

uses a couple of conventions to identify what code is old, what should be added, and what should be
removed. For example, in the function implementation below, you are deleting print("Hello") and
adding print("Goodbye"). The line reading func talkToMe() { and the final brace } were already in
the code. They are shown to help you locate the changes.

func talkToMe() {

print("Goodbye")

Necessary Hardware and Software

To build and run the applications in this book, you will need a Mac running macOS Catalina (macOS
10.15.6) or newer. Screen captures in the book are taken using macOS Big Sur (macOS 11). You will
also need to install Xcode, Apple’s integrated development environment (IDE), which is available on
the Mac App Store. Xcode includes the Swift compiler as well as other development tools you will use
throughout the book.

Swift is still under rapid development. This book is written for Swift 5.3 and Xcode 12. Many of the
examples will not work as written with older versions of Xcode. If you are using a newer version of
Xcode, there may have been changes in the language that will cause some examples to fail.

If future versions of Xcode do cause problems, take heart — the vast majority of what you learn will
continue to be applicable to future versions of Swift even though there may be changes in syntax or
names. You can check out our book forums at forums.bignerdranch. com for help.

Before You Begin

Swift is an elegant language, and it is fun to make applications for the Apple ecosystem. While
writing code can be extremely frustrating, it can also be gratifying. There is something magical and
exhilarating about solving a problem — not to mention the joy that comes from making an app that
helps people and brings them happiness.

The best way to improve at anything is with practice. If you want to be a developer, then let’s get
started! If you find that you do not think you are very good at it, who cares? Keep at it and you will
surprise yourself. Your next steps lie ahead. Onward!

XViii

https://forums.bignerdranch.com

Part |

Getting Started

This part of the book introduces Xcode, the Swift developer’s primary development tool. You will
begin by exploring Xcode’s playgrounds, which provide a lightweight environment for trying out code.
These initial chapters will also help you become familiar with some of Swift’s most basic concepts,
like constants and variables, to set the stage for the deeper understanding of the language you will build
throughout this book.

Getting Started

In this chapter, you will set up your environment and take a small tour of some of the tools you will use
every day as an i0OS and macOS developer. Additionally, you will get your hands dirty with some code
to help you get better acquainted with Swift and Xcode.

Chapter 1 Getting Started

Getting Started with Xcode

If you have not already done so, download and install the latest version of Xcode available for macOS
on the App Store.

When you have Xcode installed, launch it. The welcome screen appears; close it. It has options that are
not relevant right now.

You are going to create a document called a playground.

Playgrounds provide an interactive environment for rapidly developing and evaluating Swift code and
have become a useful prototyping tool. A playground does not require that you compile and run a
complete project. Instead, playgrounds evaluate your Swift code on the fly, so they are ideal for testing
and experimenting with the Swift language in a lightweight environment.

You will be using playgrounds frequently throughout this book to get quick feedback on your Swift
code. In addition to playgrounds, you will create native command-line tools and even an app for iOS
and macOS in later chapters. Why not just use playgrounds? You would miss out on a lot of Xcode’s
features and would not get as much exposure to the IDE. You will be spending a lot of time in Xcode,
and it is good to get comfortable with it as soon as possible.

From Xcode’s File menu, open the New submenu and select Playground... (Figure 1.1).

Figure 1.1 Creating a new playground

[} XcodemEdit View Find Mavigate Editor Product Debug Source

New >
Window Tab
Open... Window
Open Recent > .
) File...
Open Quickly...

Playground... L8N

Project...
Swift Package...
Workspace...

Getting Started with Xcode

In the configuration window that appears, you have some options to choose from. For the platform
@10S, macOS, or tvOS), select macOS, even if you are an iOS developer (Figure 1.2). The Swift
features you will be exploring are common to both platforms. Select the Blank document template from
this group and click Next.

Figure 1.2 Picking a playground template

. ™y
Choose a template for your new playground:

08 macOS tOS

Playground

3 3 3 3

Game Map Single View

Finally, you are prompted to save your playground. As you work through this book, it is a good idea to
put all your work in one folder. Choose a location that works for you and click Create (Figure 1.3).

Figure 1.3 Saving a playground

-
Save As: |MyPlayground
Tags:
Where: [BMR Swift Projects -
h.

Chapter 1 Getting Started

Playing in a Playground

Figure 1.4 shows a new Swift playground. It opens with three sections. On the left is the navigator
area. In the middle, you have the Swift code editor. And on the right is the results sidebar. The code in
the editor is evaluated and run, if possible, every time the source changes. The results of the code are
displayed in the results sidebar.

Figure 1.4 Your new playground

® e M MyPlayground | Build MyPlayground (Playground) 2: Succeeded | Today at 3:46 PM + (]
mE T a A B MyPlayground.playground
~ B MyPlayground * MyPlayground
v T Sources 1 import Cocoa
> Resources 2
(») var str = "Hello, playground"
+ =) [O]=]

For the most part, you will not be using the navigator area in the playgrounds you create as you work
through this book. You can close it with the EJ button just above it in the window toolbar.

Let’s take a look at the code in your new playground. At the top, the playground imports the
Cocoa framework. This import statement means that your playground has complete access to all
the application programming interfaces (APIs) in the Cocoa framework. (An API is similar to a
prescription — or set of definitions — for how a program can be written.)

Below the import statement is a line that reads var str = "Hello, playground". The equals sign,
which is called the assignment operator, assigns the result of code on its righthand side to a constant
or variable on its lefthand side. In this case, on the lefthand side of the equals sign is the text var str.
Swift’s keyword var is used to declare a variable. This is an important concept that you will see in
greater detail in the next chapter. For now, a variable represents some value that you expect to change
or vary.

On the righthand side of the assignment operator, you have "Hello, playground". In Swift, the
quotation marks indicate a String, an ordered collection of characters. The template named this new
variable str, but variables can be named almost anything. Of course, there are some limitations. Swift
reserves certain words for its own use. What would happen if you changed the name str to be var? Try
it and see; be sure to change the name back to str before moving on.

Running Your Code

Running Your Code

A playground is a place for you to write and experiment with Swift code on your terms. You get to
choose when the code you write will actually be run by Xcode. By default, a new playground will only
execute code when you tell it to.

Notice the small play button (*)) in the lefthand gutter next to your code (Figure 1.4). This symbol
means that the playground is currently paused at this line and has not executed it. If you move your
cursor up and down the gutter (without clicking), the button will follow you. Clicking the play button
next to any line in the playground will execute all the code up to that line.

Click the play button next to the line var str = "Hello, playground" (Figure 1.5). The playground
evaluates the declaration of str, which will make its value appear in the righthand sidebar.

Figure 1.5 Executing instructions

eve M Ready to continue MyPlayground + |
s MyPlayground, playground
s MyPlayground

import Cocoa

var str = "Hello, playground" 'Hello, playground"

Manually executing some or all of your code is a convenient feature of playgrounds when you are
exploring on your own, but it can become cumbersome when working through a book like this one.
Good news: You can tell Xcode to automatically run your playground every time you make changes.

Click and hold the play button in the bottom-left of the playground window (Figure 1.6). (It may be a
square if you just ran your playground.) In the pop-up, select Automatically Run. This will cause Xcode
to reevaluate your whole playground every time you make changes, so that you do not have to do it
yourself.

Figure 1.6 Automatically running your playground

L

+ Automatically Run
Manually Run

Enable Automatically Run on every playground you create for this book.

Chapter 1 Getting Started

Troubleshooting Playgrounds

Xcode is an app like any other. Sometimes it has bugs and other strange behavior. At the time of this
writing, a playground may sometimes “hang” — stop running or updating the sidebar. If this happens to
you, one of these troubleshooting steps might help:

¢ Close and reopen your playground.
* Quit and relaunch Xcode.

» Switch the playground back to Manually Run and use the play button in the gutter to periodically
run your code up to the selected line.

* Copy your code into a new playground.

These steps might also be useful if you encounter a different problem with a playground.

Varying Variables and Printing to the Console

String is a fype, and we say that the str variable is “an instance of the String type.” Types describe
a particular structure for representing data. Swift has many types, which you will meet throughout
this book. Each type has specific abilities (what the type can do with data) and limitations (what it
cannot do with data). For example, the String type is designed to work with an ordered collection of
characters and defines a number of functions to work with that ordered collection of characters.

Recall that str is a variable. That means you can change str’s value. Let’s append an exclamation
point to the end of the string. (Whenever new code is added in this book, it will be shown in bold.
Deletions will be struck through.)

Listing 1.1 Proper punctuation
import Cocoa

var str = "Hello, playground"
str += "!*

To add the exclamation point, you are using the += addition assignment operator. The addition
assignment operator combines the addition (+) and assignment (=) operations in a single operator. You
will learn more about operators in Chapter 3.

Varying Variables and Printing to the Console

You should see a new line in the results sidebar showing str’s new value, complete with an
exclamation point (Figure 1.7).

Figure 1.7 Varying str

@ L] Dj Ready to continue MyPlayground + ED
s MyPlayground.playground No Editor
s MyPlayground
import Cocoa

var str = "Hello, playground" 'Hello, playground"
str += "I 'Hello, playground!"

From now on, we will show the sidebar results on the righthand side of code listings.

Next, add some code to print the value of the variable str to the console. In Xcode, the console
displays text messages that you create and want to log as things occur in your program. Xcode also
uses the console to display warnings and errors as they occur.

To print to the console, you will use the print() function. Functions are groupings of related code that
send instructions to the computer to complete a specific task. print() prints a value to the console
(followed by a line break). Unlike playgrounds, Xcode projects do not have a results sidebar — but the
console is always available. So you will use the print() function frequently when you are writing
fully featured apps.

One thing the console is useful for is checking the current value of a variable. Use print() to check
the value of str:

Listing 1.2 Printing to the console

import Cocoa

var str = "Hello, playground" "Hello, playground"
str += "1I" "Hello, playground!"
print(str) "Hello, playground!\n"

Chapter 1 Getting Started

After you enter this new line and the playground executes the code, the console will open at the bottom
of the Xcode screen. (If it does not, you can open the debug area to see it. Click on View — Debug
Area = Show Debug Area, as shown in Figure 1.8. You can also type Shift-Command-Y, as the menu
shows, to open the debug area.)

Figure 1.8 Showing the debug area

.' Xcode File EdltFind MNavigate Editor Product Debug Source Control

Editor >
Show Code Review

Change Editor Orientation

Navigators >
Debug Area > Activate Console
Inspectors >

) Show Debug Area {+3#Y
Show Library
Hide Toolbar

Show Window Tab Bar

Customize Touch Bar...

Enter Full Screen

Now that you have your debug area open, you should see something like Figure 1.9.

Figure 1.9 Your first Swift code

(] [] il Ready to continue MyPlayground + @
« MyPlayground.playground No Editor
4 MyPlayground

import Cocoa

var str = "Hello, playground" "Hello, playground" [
str 4= "IV "Hello, playground!"” i
5 print(str) "Hello, playground!\n" [

(»

Hello, playground!

10

Adding Comments

Adding Comments

Sometimes you want to include text in your project code that is not part of the program, such as an
explanation of what is happening in nearby code.

Insert a new line above print(str) and add the following explanatory text:

Listing 1.3 Adding invalid text

import Cocoa

var str = "Hello, playground" ""Hello, playground"
str += "1I" "Hello, playground!"
Print the string to the console

print(str)

Xcode will indicate an error in this line, because it does not contain valid Swift code. (The error is also
shown in the console.) Now, add two slashes // to the beginning of the line:

Listing 1.4 Using a comment

import Cocoa

var str = "Hello, playground" ""Hello, playground"
str += "1I" "Hello, playground!"
//Print the string to the console

print(str) "Hello, playground!\n"

The error disappears. The slashes signify to the compiler that the whole line is a comment: text for the
developer’s benefit that should be ignored by the compiler.

Developers use comments to leave notes for themselves (or collaborators) about what is going on in the
surrounding code. You can also turn code into a comment to temporarily remove it from your program
without deleting it completely.

With the cursor still in the line with the comment, press Command-/. The slashes disappear. Use the
same keyboard shortcut to toggle them back. (If you just installed Xcode and Command-/ does not
work, restart your computer and try again.)

You Are on Your Way!

Let’s review what you have accomplished so far. You have:
* installed Xcode
» created and gotten acquainted with a playground
* used a variable and modified it
* learned about the String type
* used a function to print to the console

That is a lot! You will be making your own apps in no time.

11

Chapter 1 Getting Started

Bronze Challenge

Many of the chapters in this book end with one or more challenges. The challenges are for you to work
through on your own to deepen your understanding of Swift and get a little extra experience. Your first
challenge is below.

You learned about the String type and printing to the console using print (). Use your new
playground to create a new instance of the String type. Set the value of this instance to be equal to
your last name. Print its value to the console.

12

Types, Constants, and Variables

This chapter will introduce you to Swift’s basic data types, constants, and variables. These elements are
the fundamental building blocks of any program. You will use constants and variables to store values
and to pass data around in your applications. Types describe the nature of the data held by the constant
or variable. There are important differences between constants and variables, as well as each of the data
types, that shape their uses.

Types

Variables and constants have a data type. The type describes the nature of the data and provides
information to the compiler on how to handle the data. Based on the type of a constant or variable,
the compiler knows how much memory to reserve and will also be able to help with type checking, a
feature of Swift that helps prevent you from assigning the wrong kind of data to a variable.

Let’s see this in action. Create a new macOS playground. From within Xcode, choose File = New —
Playground.... Choose the blank template and name the playground Variables.

Do not forget to set the playground to Automatically Run as you make changes (Figure 2.1).

Figure 2.1 Automatically running your playground

L

+ Automatically Run

Manually Run

Suppose you want to model a small town in your code. You might want a variable for the
number of stoplights. Remove the code that came with the template, create a variable called
number0fStoplights, and give it a value. (Remember that code you are to delete is shown struck
through.)

Listing 2.1 Assigning a string to a variable

import Cocoa

var numberOfStoplights = "Four" "Four"

13

Chapter 2 Types, Constants, and Variables

Swift uses type inference to determine the data type of a variable. In this case, the compiler knows

the variable number0fStoplights is of the String type because the value on the right side of the
assignment operator is an instance of String. How does it know that "Four" is an instance of String?
Because the quotation marks indicate that it is a String literal.

Now add the integer 2 to your variable, using += as you did in the last chapter.

Listing 2.2 Adding "Four" and 2
import Cocoa

var numberOfStoplights = "Four" "Four"
number0fStoplights += 2

The compiler gives you an error telling you that this operation does not make sense. You get this error
because you are trying to add a number to a variable that is an instance of a different type: String.
What would it mean to add the number 2 to a string? Does it put “2” on the end and give you “Four2”?
Hard to say.

If you are thinking that it does not make sense to have number0fStoplights be of type String in the
first place, you are right. Because this variable represents the number of stoplights in your theoretical
town, it makes sense to use a numerical type. Swift provides an Int type to represent whole integers
that is perfect for your variable. Change your code to use Int instead.

Listing 2.3 Using a numerical type

import Cocoa

var—number0fStoplights—=—tFour!
var numberOfStoplights: Int = 4 4
numberQ0fStoplights += 2 6

Before, the compiler relied on type inference to determine the data type of the variable
number0fStoplights. Now, you are explicitly declaring the variable to be of the Int type using Swift’s
type annotation syntax, indicated by the colon followed by the type name.

Note that type annotation does not mean that the compiler is no longer paying attention to what is on
each side of the =. What if the type you specify is incompatible with the value that you assign? Try
changing the explicit type of number0fStoplights from Int to String.

Listing 2.4 Using the wrong type

import Cocoa

var numberOfStoplights: ¥at String = 4 4
number0fStoplights += 2 6

This produces an error: Cannot convert value of type Int to specified type String. Swift is telling you “I
see that 4 is an Int, but you are asking me to store it in a String variable. I cannot do that.”

You can add explicit type annotations when you think they will make your code more readable, but
Swift checks your variable types whether or not it infers them.

Revert the type back to Int to fix the error.

14

Constants vs Variables

Swift has a host of frequently used data types. You will learn more about numeric types in Chapter 4
and strings in Chapter 7. Other commonly used types represent collections of data; you will see those
beginning in Chapter 8.

Now that you have changed number0fStoplights to be an Int with an initial value of 4, the errors
have disappeared. It makes sense to add one integer to another, and in fact it is something you will do
quite often in your code.

Recall from Chapter 1 that you used += to put two strings together. Here you use it to add two integers.
Swift knows how to apply this operator to most of its built-in types.

Constants vs Variables

We said that types describe the nature of the data held by a constant or variable. What, then, are
constants and variables? Up to now, you have only seen variables. Variables’ values can vary: You can
assign them a new value, as you have seen.

Often, however, you will want to create instances with values that do not change. Use constants for
these cases. As the name indicates, the value of a constant cannot be changed.

A good rule of thumb is to use variables for instances that must vary and constants for instances that
will not. For example, if you did not expect the value of number0fStoplights to ever change, it would
be better to make it a constant.

Swift has different syntax for declaring constants and variables. As you have seen, you declare a
variable with the keyword var. You use the let keyword to declare a constant.

Change number0fStoplights to a constant to fix the number of stoplights in your small town.
Listing 2.5 Declaring a constant
import Cocoa

var—number0fSteptights+—Int =4
let numberOfStoplights: Int = 4 4
number0fStoplights += 2

You declare number0fStoplights to be a constant via the let keyword. Unfortunately, this change
causes the compiler to issue an error. You still have code that attempts to change the number of
stoplights: number0fStoplights += 2. Because constants cannot change, the compiler gives you an
error when you try to change it.

Fix the problem by removing the addition and assignment code.

Listing 2.6 Constants do not vary
import Cocoa

let numberOfStoplights: Int = 4 4
number0fStoptights—=2

15

Chapter 2 Types, Constants, and Variables

Now, create an Int to represent the town’s population.

Listing 2.7 Declaring population
import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int

Your town’s population is likely to change over time, so you declare population with the var keyword
to make this instance a variable. You also declare population to be an instance of type Int, because a

town’s population is represented by a number. But you did not initialize population with any value. It
is therefore an uninitialized Int.

Swift will not allow you to use any variable or constant without first assigning it a value. Use the
assignment operator to give population its starting value.

Listing 2.8 Giving population a value

import Cocoa

let numberOfStoplights: Int = 4 4
var population: Int
population = 5422 5422

String Interpolation

Every town needs a name. Your town is fairly stable, so it will not be changing its name any time soon.
Make the town name a constant of type String.

Listing 2.9 Giving the town a name

import Cocoa

let numberOfStoplights: Int = 4 4

var population: Int

population = 5422 5422

let townName: String = "Knowhere" "Knowhere"

It would be nice to have a short description of the town that the Tourism Council could use. The
description is going to be a constant String, but you will be creating it a bit differently than the
constants and variables you have created so far. The description will include all the data you have
entered, and you are going to create it using a Swift feature called string interpolation.

String interpolation lets you combine constant and variable values into a new string. You can then
assign the string to a new variable or constant or just print it to the console. You are going to print the
town description to the console.

(Because of the limitations of the printed page, we have broken the string assigned to
townDescription onto multiple lines. You should enter it on one line.)

16

Bronze Challenge

Listing 2.10 Crafting the town description

import Cocoa

let numberOfStoplights: Int = 4 4

var population: Int

population = 5422 5422

let townName: String = "Knowhere" "Knowhere"

let townDescription = "Knowhere has a populat...

"\ (townName) has a population of \(population)
and \(numberOfStoplights) stoplights."
print(townDescription) "Knowhere has a populat...

‘We have truncated the sidebar results to make them fit. Xcode also truncates sidebar results to fit the
window; you can drag the divider between the editor pane and the sidebar left or right to see more or
less of the results.

The \ () syntax represents a placeholder in the String literal that accesses an instance’s value and
places it (or “interpolates” it) within the new String. For example, \ (townName) accesses the constant
townName’s value and places it within the new String instance.

The result of the new code is shown in Figure 2.2.

Figure 2.2 Knowhere’s short description

ese M Ready to continue Variables + B
Variables.playground
Variables

import Cocoa

var numberOfStoplights: Int = 4 4
var population: Int
population = 5422 5422
let townName: String = "Knowhere" "Knowhere"
let townDescription = "\(townName) has a population of \(population) 'Knowhere has a populatio...
and \(numberOfStoplights) stoplights."
8 print(townDescription|) "Knowhere has a populatio...

Knowhere has a population of 5422 and & stoplights.

Bronze Challenge

Add a new variable to your playground representing Knowhere’s elevation. Which data type should
you use? Give this variable a value and update townDescription to use this new information.

17

Part Ii

The Basics

Programs execute code in a specific order. Writing software means having control over the order that
code executes in. Programming languages provide control flow statements to help developers organize
the execution of their code. This part of the book introduces the concepts of conditionals and loops to
accomplish this task.

The chapters in this part of the book will also show you how Swift represents numbers and text in
code. These types of data are the building blocks of many applications.

Conditionals

In previous chapters, your code led a relatively simple life: You declared some constants and variables
and then assigned them values. But of course, an application really comes to life — and programming
becomes a bit more challenging — when the application makes decisions based on the contents of its
variables. For example, a game may let players leap a tall building if they have eaten a power-up. You
use conditional statements to help applications make decisions like these.

if/else

if/else statements execute code based on a specific logical condition. You have a relatively simple
either/or situation, and depending on the result one branch of code or another (but not both) runs.

Consider Knowhere, your small town from the previous chapter, and imagine that you need to buy
stamps. Either Knowhere has a post office or it does not. If it does, you will buy stamps there. If it does
not, you will need to drive to the next town to buy stamps. Whether there is a post office is your logical
condition. The different behaviors are “get stamps in town” and “get stamps out of town.”

Some situations are more complex than a binary yes/no. You will see a more flexible mechanism called
switch in Chapter 5. But for now, let’s keep it simple.

Create a new blank macOS playground and name it Conditionals. Set it to Automatically Run. Enter the
code below, which shows the basic syntax for an if/else statement:
Listing 3.1 Big or small?

import Cocoa

let population: Int = 5422 5422
let message: String

if population < 10000 {

message = "\(population) is a small town!" '"'5422 is a small town!"
} else {
message = "\(population) is pretty big!"
}
print(message) 5422 is a small town!\n"

You first declare population as an instance of the Int type and assign it a value of 5,422. You also
declare a constant called message that is of the String type. You leave this declaration uninitialized at
first, meaning that you do not assign it a value. Swift requires you to assign it a value before you can
use it, but that assignment can be in a separate step.

21

Chapter 3 Conditionals

Next comes the conditional if/else statement. This is where message is assigned a value based
on whether the “if”” statement evaluates to true. (Notice that you use string interpolation to put the
population into the message string.)

Figure 3.1 shows what your playground should look like.

Figure 3.1 Conditionally describing a town’s population

[] [] Gl Conditionals | Build Conditionals (Playground) 2: Succeeded | Today at 10:38 PM + B

g9 s Conditionals.playground =0 @
3 Conditionals

import Cocoa

let population: Int = 5422 5422 @
let message: String

if population < 10000 {

message = "\(population) is a small town!" "5422 is a small town!"
} else {
message = "\(population) is pretty big!"
}
print(message) "5422 is a small town\n" @

12
g8 »
5422 is a small town!

The condition in the if/else statement tests whether your town’s population is less than 10,000 via the
< comparison operator. If the condition evaluates to true, then the value of message is set to the first
string literal ("X is a small town!"). If the condition evaluates to false — if the population is 10,000
or greater — then the value of message is set to the second string literal ("X is pretty big!"). In this
case, the town’s population is less than 10,000, so message is set to 5422 is a small town!".

Table 3.1 lists Swift’s comparison operators.

Table 3.1 Comparison operators

Operator | Description

< Evaluates whether the value on the left is less than the value on the right.

<= Evaluates whether the value on the left is less than or equal to the value on the right.

> Evaluates whether the value on the left is greater than the value on the right.

>= Evaluates whether the value on the left is greater than or equal to the value on the right.

== Evaluates whether the value on the left is equal to the value on the right.

I= Evaluates whether the value on the left is not equal to the value on the right.

=== Evaluates whether the two references point to the same instance.

== Evaluates whether the two references do not point to the same instance.

You do not need to understand all the operators’ descriptions right now. You will see many of them in
action as you move through this book, and they will become clearer as you use them. Refer back to this
table as a reference if you have questions.

22

if/else

Sometimes you want to execute code if a certain condition is met and do nothing if it is not. Enter the
code below to see an example. (Notice that new code, shown in bold, appears in two places. Also, we
will no longer show the line import Cocoa unless it is needed to help you position new code.)

Listing 3.2 Is there a post office?

let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true

if population < 10000 {

message = "\(population) is a small town!" "5422 is a small town!"
} else {
message = "\(population) is pretty big!"
¥
print(message) "5422 is a small town!\n"

if 'hasPostOffice {
print("Where do we buy stamps?")
}

Here, you add a new variable called hasPost0ffice. This variable has the type Bool, short for
“Boolean.” Boolean types can take one of two values: true or false. In this case, the Boolean
hasPost0ffice variable keeps track of whether the town has a post office. You set it to true, meaning
that it does.

The ! is a logical operator known as logical NOT. It tests whether hasPost0ffice is false. The !
returns the opposite of a Boolean value. So if a Boolean’s value is true, the ! operator returns a value
of false, and vice versa.

So in the code above, after setting the value of hasPost0ffice, you ask whether it is false. If
hasPostOffice is false, you do not know where to buy stamps, so you ask. If hasPostOffice is true,
you know where to buy stamps and do not have to ask, so nothing happens.

Because hasPost0ffice was initialized to true, the condition !hasPostOffice is false. That is, it is
not the case that hasPost0ffice is false. Therefore, the print() function never gets called.

Table 3.2 lists Swift’s logical operators.

Table 3.2 Logical operators

Operator | Description

&& Logical AND: true if and only if both are true (false otherwise).

| Logical OR: true if either is true (false only if both are false).

! Logical NOT: evaluates whether a condition is false (returns true for a false operand and
vice versa).

23

Chapter 3 Conditionals

Ternary Operator

The ternary operator is very similar to an if/else statement, but it has the more concise syntax
a ? b : c.In English, the ternary operator reads something like, “If a is true, then do b. Otherwise, do

o
Rewrite the town population check to use the ternary operator instead.

Listing 3.3 Using the ternary operator

Z;' Tats 10000

Fetse—t . . .
4
message = population < 10000 ? "5422 is a small town!"

"\ (population) is a small town!" :
"\ (population) is pretty big!"

Your result is unchanged: message is still set to "5422 is a small town!"

The ternary operator can be a source of controversy: Some programmers love it; some programmers
loathe it. We come down somewhere in the middle. This particular usage is not very elegant. The
ternary operator is great for concise statements, but if your statement starts wrapping to the next line,
we think you should use if/else instead

Hit Command-Z to undo, removing the ternary operator and restoring your if/else statement.

Listing 3.4 Restoring if/else

if population < 10000 {

message = "\(population) is a small town!" "5422 is a small town!"
} else {

message = "\ (population) is pretty big!"
}

24

Nested ifs

Nested ifs

You can nest if statements for scenarios with more than two possibilities. You do this by writing an
if/else statement inside the curly braces of another if/else statement. To see this, nest an if/else
statement within the else block of your existing if/else statement.

Listing 3.5 Nesting conditionals

let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true

if population < 10000 {

message = "\(population) is a small town!" "5422 is a small town!"
} else {
if population >= 10000 && population < 50000 {
message = "\(population) is a medium town!"
} else {
message = "\(population) is pretty big!"
}
}
print(message) "5422 is a small town!\n"

if !hasPostOffice {
print("Where do we buy stamps?")

Your nested if clause uses the >= comparator (that is, the comparison operator) and the && logical
operator to check whether population is within the range of 10,000 to 50,000. Because your town’s
population does not fall within that range, your message is set to "'5422 is a small town!", as
before.

Try bumping up the population to exercise the other branches.

Nested if/else statements are common in programming. You will find them out in the wild, and you
will be writing them as well. There is no limit to how deeply you can nest these statements. However,
the danger of nesting them too deeply is that it makes the code harder to read. One or two levels are
fine, but beyond that your code becomes less readable and maintainable.

There are ways to avoid nested statements. Next, you are going to refactor the code that you have just
written to make it a little easier to follow. Refactoring means changing code so that it does the same
work but in a different way. It may be more efficient, be easier to understand, or just look prettier.

25

Chapter 3 Conditionals

else if

The else if conditional lets you chain multiple conditional statements together. else if allows you
to check against multiple cases and conditionally executes code depending on which clause evaluates
to true. You can have as many else if clauses as you want. Only one condition will match.

To make your code a little easier to read, extract the nested if/else statement to be a standalone clause
that evaluates whether your town is of medium size.

Listing 3.6 Using else if

let population: Int = 5422 5422
let message: String
let hasPostOffice: Bool = true true
if population < 10000 {

message = "\(population) is a small town!" "5422 is a small town!"
} else if population >= 10000 && population < 50000 {

message = "\(population) is a medium town!"
} else {

P Tati 1068058 Tati 58800

J—etse—f

message = "\(population) is pretty big!"

}

¥
print(message) "5422 is a small town!\n"

if !hasPostOffice {
print("Where do we buy stamps?")
}

You are using one else if clause, but you can chain many more. This block of code is an
improvement over the nested if/else above. As we mentioned, you will see another Swift feature
that allows you to cover multiple conditional possibilities later in this book — switch, described in
Chapter 5.

Bronze Challenge

Add an additional else if statement to the town-sizing code to see if your town’s population is very
large. Choose your own population thresholds. Set the message variable accordingly.

26

Numbers

Numbers are the fundamental language of computers. They are also a staple of software development.
Numbers are used to keep track of temperature, count the letters in a sentence, and track the number of
zombies infesting a town. Numbers come in two basic flavors: integers and floating-point numbers.

Integers

You have worked with integers already, but we have not yet defined them. An integer is a number that
does not have a decimal point or fractional component — a whole number. Integers are frequently used
to represent a count of “things,” such as the number of pages in a book.

A difference between integers used by computers and numbers you use elsewhere is that an integer
type on a computer takes up a fixed amount of memory. Therefore, integers cannot represent all
possible whole numbers — they have a minimum and maximum value.

We could tell you those minimum and maximum values, but we are going to let Swift tell you instead.
Create a new macOS playground, name it Numbers, set it to Automatically Run, and enter the following
code.

Listing 4.1 Maximum and minimum values for Int
import Cocoa
var str = "Hello, playground"

print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")

The sidebar results are too long to show on this page. In the console, you should see the following
output:

The maximum Int value is 9223372036854775807.
The minimum Int value is -9223372036854775808.

Why are those numbers the minimum and maximum Int values? Computers store integers in binary
form with a fixed number of bits. A bit is a single 0 or 1. Each bit position represents a power of 2; to
compute the value of a binary number, add up each of the powers of 2 whose bit is a 1.

27

Chapter 4 Numbers

For example, the binary representations of 38 and -94 using an 8-bit signed integer are shown in
Figure 4.1. (Note that the bit positions are read from right to left. Signed means that the integer can
represent positive and negative values. More about signed integers in a moment.)

Figure 4.1 Binary numbers

Le][e][2][o][e][2][1][e]

27 26 25 % 3 52,1 50

[1][e][2][e][e][o][2][e]

27 26 25 o4 53 2 H1 50

21+22+25=2+4+32=38

21 425 27 22432 - 128 =-94

Modern versions of i0OS and macOS only support 64-bit software, so on these operating systems Int is
a 64-bit integer. That means it has 264 possible values. Imagine Figure 4.1, only 64 bits wide instead of
8. The power of 2 represented by the top (left-most) bit would be 263 -9,223,372,036,854,775,808,
which is the value you see for Int.min in your playground. And, if you were to add up 2021 .., 2%,
you would arrive at 9,223,372,036,854,775,807 — the value you see for Int.max.

If you need to know the exact size of an integer, you can use one of Swift’s explicitly sized integer
types. For example, Int32 is Swift’s 32-bit signed integer type. Use Int32 to see the minimum and
maximum value for a 32-bit integer.

Listing 4.2 Maximum and minimum values for Int32

print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

Also available are Int8, Int16, and Int64, for 8-bit, 16-bit, and 64-bit signed integer types. You use
the sized integer types when you need to know the size of the underlying integer, such as for some
algorithms (common in cryptography) or to exchange integers with another computer (such as sending
data across the internet). You will not use these types much; good Swift style is to use an Int for most
use cases.

All the integer types you have seen so far are signed, which means they can represent both positive
and negative numbers. Swift also has unsigned integer types to represent whole numbers greater than
or equal to 0. Every signed integer type (Int, Intl6, etc.) has a corresponding unsigned integer type
(UInt, UIntl6, etc.). The difference between signed and unsigned integers at the binary level is that the
power of 2 represented by the top-most bit (2 for 8-bit integers) is positive and negative, respectively.
For example, Figure 4.2 shows the same bit pattern (1010 0110) represented as an 8-bit signed integer
and an 8-bit unsigned integer.

28

Creating Integer Instances

Figure 4.2 Signed vs unsigned integers

Int8

[1][e][z][e][e][x][2][e]

27 26 25 4 53 52 51 50

2V 422 425+ 27 22+ 4 432 - 128 = -90

Uint8

[1][e][2][o][e][x][2][e]

27 206 25 24 3 2 1 5,0

21+22+25+27=2+4+32+128=166

Test a couple of unsigned integer types.

Listing 4.3 Maximum and minimum values for unsigned integers

print

("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

print("The maximum UInt value is \(UInt.max).")
print("The minimum UInt value is \(UInt.min).")
print("The maximum value for a 32-bit unsigned integer is \(UInt32.max).")
print("The minimum value for a 32-bit unsigned integer is \(UInt32.min).")

Like Int, UInt is a 64-bit integer on modern iOS and macOS. The minimum value for all unsigned
types is 0. The maximum value for an N-bit unsigned type is 2N _ 1. For example, the maximum value
for a 64-bit unsigned type is 264 _ 1, which equals 18,446,744,073,709,551,615.

Some quantities seem like they would naturally be represented by an unsigned integer. For example,
it does not make sense for the count of a number of objects to ever be negative. However, Swift style
is to prefer Int for all integer uses (including counts) unless an unsigned integer is required by the
algorithm or code you are writing. The explanation for this involves topics we are going to cover later
in this chapter, so we will return to the reasons behind consistently preferring Int soon.

Creating Integer Instances

You created instances of Int in Chapter 2, where you learned that you can declare a type explicitly or
implicitly. Refresh your memory by declaring a couple more Ints in your playground:

Listing 4.4 Declaring Int explicitly and implicitly

10 10

let numberOfPages: Int =
=3 3

let numberOfChapters

The compiler always assumes that implicit declarations with integer values are of type Int, so both
number0fPages and number0fChapters are Ints. However, you can create instances of the other
integer types using explicit type declarations.

29

Chapter 4 Numbers

Listing 4.5 Declaring other integer types explicitly

let numberOfPages: Int = 10 10
let numberOfChapters = 3 3
let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000

What happens if you try to create an instance with an invalid value? What if, for example, you try to
create a UInt with a negative value, or an Int8 with a value greater than 1277 Try it and find out.

Listing 4.6 Declaring integer types with invalid values

let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000
let badValue: UInt = -1

The console output will indicate an error (Figure 4.3).

Figure 4.3 Integer overflow error

® ® [Numbers | Build Numbers (Playground) 2: Succeeded | Today at 11:04 AM [<]
i Numbers.playground

* Mumbers

Paarim U rere Gmerrsn waire rmasma w1 ST

10 print("The maximum value for a 32-bit unsigned integer is \(UInt32.max).
11 print("The minimum value for a 32-bit unsigned integer is \{UInt32.min).'
12

13 let numberOfPages: Int = 10

14 let numberOfChapters = 3

15

16 let numberOfPeople: UInt = 40

17 let volumeAdjustment: Int32 = -1000

18

(») let badvalue: UInt = -1 @ Negative integer '-1' overflows when stored into unsigned type 'Ulnt'

')
')

'UInt'
let badValue: UInt = -1

A

error: Numbers.playground:19:22: error: negative integer '-1' overflows when stored into unsigned type

The compiler reports that the value you have typed in “overflows when stored into” a constant of type
UInt. “Overflows when stored into...” means that when the compiler tried to store your number in the

type you specified, the number did not fit in the type’s allowed range of values.

All numerical types have limits on the numbers that they can store, dictated by their size in bits. An
Int8, for example, can hold values from -128 to 127; 200 is outside that range, so trying to store 200

into an Int8 overflows. The highest signed Int64 is over 9 quintillion, though, so it is unlikely that this

limitation will ever be a problem for you.

Remove the problematic code.

Listing 4.7 No more bad value

30

Operations on Integers

Operations on Integers

Swift allows you to perform basic mathematical operations on integers using the familiar operators +
(add), - (subtract), and * (multiply). You can include these operations in your code; in a playground,
you can also just enter them to see the result. Try it.

Listing 4.8 Performing basic operations

let numberOfPeople: UInt = 40 40
let volumeAdjustment: Int32 = -1000 -1000
10 + 20 30
30 -5 25
5% 6 30

A quick aside: Usually, the whitespace in your code (like the number of spaces you indent or any blank
lines you leave) does not matter. If you prefer more or less indentation or blank lines than this book
shows, that is fine. But occasionally whitespace does matter, and now is one of those times. When

you are using an operator like + or * that takes two operands (also called a binary operator), you can
include space between the operator and its operands or not, but you have to make the same choice on
both sides.

For example, your last print statement could be print(5 * 6) or print(5%6), but not print(5 *6). If
you tried that, the compiler would think you were giving the multiplication operator only one operand
— and, since * requires two, the compiler would give up. It is stylish to put spaces on both sides of a
binary operator, so we will do that in this book.

Back to operations on integers. The compiler respects the mathematical principles of precedence
and associativity, which define the order of operations when there are multiple operators in a single
expression. For example:

Listing 4.9 Order of operations

10 + 20 30

30 -5 25
5% 6 30
10 + 2 * 5 20
30 -5-5 20

Both of these expressions above result in 20. In 10 + 2 * 5,2 * 5 is evaluated first; in

30 - 5 - 5,30 - 5is evaluated first. You could memorize the rules governing precedence and
associativity. However, we recommend taking the easy route and using parentheses to make your
intentions explicit, because parentheses are always evaluated first.

Listing 4.10 Parentheses are your friends

10 + 2 x5 20

30 -5 -5 20
(10 + 2) x5 60
30 - (5 -5) 30

31

Chapter 4 Numbers

Integer division

What is the value of the expression 11 / 3? You might (reasonably) expect 3.66666666667, but try it
out.

Listing 4.11 Integer division can give unexpected results

(10 + 2) * 5 60
30 - (5 - 5) 30
11 / 3 3

The result of any operation between two integers is always another integer of the same type;
3.66666666667 is not a whole number and cannot be represented as an integer. Swift truncates the
fractional part, leaving just 3. If the result is negative, such as -11 / 3, the fractional part is still
truncated, giving a result of -3. Integer division always rounds toward 0.

It is occasionally useful to get the remainder of a division operation. The remainder operator,

%, returns exactly that. (If you are familiar with the modulo operator in math and some other
programming languages, be warned: The remainder operator is not the same, and using it on a negative
integer may not return what you expect.)

Listing 4.12 Remainders

[
~

3
1%3 2
-11 % 3 -2

Of course, Swift also provides a way to work with numbers that include fractional values, which you
will see shortly.

32

Operator shorthand

Operator shorthand

All the operators that you have seen so far return a new value. There are also versions of all these
operators that modify a variable in place. For example, a common operation in programming is to
increase or decrease the value of an integer by another integer. You can use the += operator, which
combines addition and assignment, or the —= operator, which combines subtraction and assignment.
Try them out.

Listing 4.13 Combining addition or subtraction and assignment

11 % 3 2

-11 % 3 -2
var x = 10 10
X += 10 20
X —-=5 15
As the results in the sidebar show, the expression x += 10 is equivalentto x = x + 10, and x -= 5is

equivalenttox = x - 5.

There are also shorthand operation-and-assignment combination operators for the other basic math
operations: *=, /=, and %=, each of which assigns the result of the operation to the value on the lefthand
side of the operator.

Overflow operators

What do you think the value of z will be in the following code? (Think about it for a minute before you
type it in to find out for sure.)

Listing 4.14 Solving for z

let y: Int8 = 120 120
let z =y + 10

If you thought the value of z would be 130, you are not alone. But type it in, and you will find that
instead Xcode is showing you an error. Click on it to see a more detailed message (Figure 4.4).

Figure 4.4 Execution interrupted when adding to an Int8

let y: Int8 = 128
let z =y + 1@ @ error: Execution was interrupted, reason: EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0).

33

Chapter 4 Numbers

What does “Execution was interrupted” mean? Let’s break down what is happening:
1. yis an Int8, so the compiler assumes y + 10 must be an Int8, too.
2. Therefore, the compiler infers the type of z to be Int8.
3. When your playground runs, Swift adds 10 to y, resulting in 130.
4. Before storing the result back into z, Swift checks that 130 is a valid value for an Int8.

But Int8 can only hold values from -128 to 127; 130 is too big! Your playground therefore hits a trap,
which stops the program from running. We will discuss traps in more detail in Chapter 23. For now,
know that a trap results in your program stopping immediately and noisily, which indicates a serious
problem you need to examine.

Swift provides overflow operators that have different behaviors when the value is too big (or too
small). Instead of trapping the program, they “wrap around.” To see what that means, try it now. The
overflow addition operator is &+. Substitute it into your code:

Listing 4.15 Using an overflow operator

let y: Int8 = 120 120
tet—p—u—y——310
let z =y &+ 10 -126

The result of overflow-adding 120 + 10 and storing the result into an Int8 is -126. Was that what you
expected?

Probably not. (And that is OK!) To understand the logic of this result, think about incrementing y one
at a time. Because y is an Int8, once you get to 127 you cannot go any higher. Instead, incrementing
one more time wraps around to -128. So 120 + 8 = -128, 120 + 9 = -127, and 120 + 10 = -126.

There are also overflow versions of the subtraction and multiplication operators: &- and &*. It

should be apparent why there is an overflow version of the multiplication operator, but what about
subtraction? Subtraction clearly cannot overflow, but it can underflow. For example, trying to subtract
10 from an Int8 currently holding -120 would result in a value too negative to be stored in an Int8.
Using & would cause this underflow to wrap back around and give you positive 126.

Integer operations overflowing or underflowing unexpectedly can be a source of serious and hard-to-
find bugs. Swift is designed to prioritize safety and minimize these errors.

Swift’s default behavior of trapping on overflow calculations may come as a surprise to you if you
have programmed in another language. Most other languages default to the wraparound behavior that
Swift’s overflow operators provide.

The philosophy of the Swift language is that it is better to trap (even though this may result in a
program crashing) than potentially have a security hole. There are some use cases for wrapping
arithmetic, so these special operators are available if you need them.

34

Converting Between Integer Types

Converting Between Integer Types

So far, all the operations you have seen have been between two values with exactly the same type.
What happens if you try to operate on numbers with different types? See for yourself:

Listing 4.16 Adding values of different types

let a: Intl6 = 200 200
let b: Int8 = 50 50
letc=a+b

This is a compile-time error. You cannot add a and b, because they are not of the same type. Some
languages will automatically convert types for you to perform operations like this. Swift does not.
Instead, you have to manually convert types to get them to match.

You could either convert a to an Int8 or convert b to an Int16 — but only one of these will succeed.
(Reread the previous section if you are not sure why.)

Listing 4.17 Converting type to allow addition

let a: Intl6 = 200 200

let b: Int8 = 50 50
tet—e—w=—a—+b
let ¢ = a + Intl6(b) 250

Requiring you, the programmer, to decide how to convert variables in order to do math between
different types is another feature that distinguishes Swift from other languages. Again, this requirement
is in favor of safety and correctness.

The C programming language, for example, will convert numbers of different types in order to perform
math between them, but the conversions it performs are sometimes “lossy” — you may lose information
in the conversion. Swift code that requires math between numbers of different types will be more
verbose, but it will be more clear about what conversions are taking place. The increase in verbosity
will make it easier for you to reason about and maintain the code.

We can now return to the recommendation to stick with Int for almost all integer needs in Swift, even
for values that might naturally only make sense as positive values (like a count of “things”). Swift’s
default type inference for literals is Int, and you cannot typically perform operations between different
integer types without converting one of them. Using Int consistently throughout your code will greatly
reduce the need for you to convert types, and it will allow you to use type inference for integers freely.

35

Chapter 4 Numbers

Floating-Point Numbers

To represent a number that has a decimal point, like 3.2, you use a floating-point number.

Bear in mind that floating-point numbers are often imprecise because of how they are stored in
memory. There are many numbers that cannot be stored with perfect accuracy in a floating-point
number. The computer will store a very close approximation to the number you expect. (More on that
in a moment.)

Swift has two basic floating-point number types: Float, which is a 32-bit floating-point number, and
Double, which is a 64-bit floating-point number. The different bit sizes of Float and Double do not
determine a simple minimum and maximum value range as they do for integers. Instead, the bit sizes
determine how much precision the numbers have. Double has more precision than Float, which means
it is able to store more accurate approximations.

The default inferred type for floating-point numbers in Swift is Double. As with different types of
integers, you can also declare Floats and Doubles explicitly:

Listing 4.18 Declaring floating-point number types

let dl = 1.1 1.1

let d2: Double = 1.1 1.1
let fl: Float = 100.3 100.3

All the same numeric operators work on floating-point numbers (except the remainder operator, which
is only used on integers).

Listing 4.19 Operations on floating-point numbers

let d1 = 1.1 1.1

let d2: Double = 1.1 1.1

let fl: Float = 100.3 100.3

10.0 + 11.4 21.4

11.0 / 3.0 3.6666666666666667

36

Floating-Point Numbers

The fact that floating-point numbers are inherently imprecise is an important difference from integer
numbers that you should keep in mind. Let’s see an example. Recall the == operator from Chapter 3,
which determines whether two values are equal to each other. Try it out to compare two floating-point
numbers.

Listing 4.20 Comparing two floating-point numbers

let d1 = 1.1 1.1

let d2: Double = 1.1 1.1
let f1l: Float = 100.3 100.3
10.0 + 11.4 21.4
11.0 / 3.0 3.6666666666666667
if d1 == d2 {
print("dl and d2 are the same!") "dl and d2 are the same!"
}

d1 and d2 were both initialized with a value of 1. 1. So far, so good. Now, let’s add 0.1 to d1. You
would expect that to result in 1.2, so compare the result to that value. The result you get may be
surprising.

Listing 4.21 Unexpected results

if d1 == d2 {

print("dl and d2 are the same!") '"dl and d2 are the same!"
}
print("dl + 0.1 is \(dl + 0.1)") "dl + 0.1 is 1.20...02\n"

if dl + 0.1 == 1.2 {
print("dl + 0.1 is equal to 1.2")
}

The print() inside the if statement does not run. Why not? Isn’t 1.2 equal to 1.2?
Well, sometimes it is, and sometimes it is not.

As we said before, many numbers — including 1.2 — cannot be represented exactly in a floating-point
number. Instead, the computer stores a very close approximation to 1.2. As the sidebar indicates, when
you add 1.1 and 0.1 the result is really something like 1.2000000000000002. The value stored when
you typed the literal 1.2 is really something like 1.1999999999999999. Swift will round both of those
to 1.2 when you print them. But they are not technically equal, so the print() inside the if statement
does not execute.

All the gory details behind floating-point arithmetic are outside the scope of this book. The moral of
this story is just to be aware that there are some potential pitfalls with floating-point numbers. One
consequence is that you should never use floating-point numbers for values that must be exact (such as
calculations dealing with money). There are other tools available for those purposes.

37

Chapter 4 Numbers

Ranges of Numbers

Sometimes you want to represent a range of numbers. Imagine that you are handing out 1,000
numbered raffle tickets, and you want to represent the collection of ticket numbers. The closed-range
operator (. ..) lets you do just that:

Listing 4.22 Defining a range of integers

00 1000

let ticketCount = 1_0
=1 ... ticketCount {lowerBound 1, upperBoun...

let ticketNumbers

The sidebar results represent the value of ticketNumbers as {lowerBound 1, upperBound 1000}. A
closed range includes a lower bound, an upper bound, and everything in between, so ticketNumbers
includes 1, 2, 3, ... 998, 999, and 1,000.

What if you want to create a range that represents the numbers up to — but not including — the upper
bound? You could do that by subtracting 1 from the upper bound:

let ticketNumbers = 1 ... ticketCount - 1

You could. But it would not be stylish. Instead, use the half-open range operator (. .<) to exclude the
upper bound from your range:

Listing 4.23 Make that 999 tickets

let ticketCount = 1_000 1000
let ticketNumbers = 1 ..< ticketCount {lowerBound 1, upperBoun...

The sidebar results show that the ticketNumbers has the same lower and upper bounds ({lowerBound
1, upperBound 1000}). But the upper bound is now excluded from the range, so ticketNumbers
includes 1, 2, 3, ... 997, 998, and 999 — but not 1,000.

You will see how useful ranges can be starting in Chapter 5.

38

Bronze Challenge

Bronze Challenge

Set down your computer and grab a pencil and paper for this challenge. What is the binary
representation of -1 using an 8-bit signed integer?

If you took that same bit pattern and interpreted it as an 8-bit unsigned integer, what would the value
be?

For the More Curious: Numeric Literals

Earlier in the chapter we looked at a few examples of creating both integer and floating-point instances
with a literal value. Each of those examples involved creating numeric instances with base-10 (also
known as decimal) numbers. You will typically create numeric types using the base-10 numeral
system, because it is the numeral system most people are accustomed to using.

Computers actually store information in base-2. But if you try to use a binary number like 10100110 in
your code, Swift will infer it as an Int. However, by prefixing a value with @b, you can create a binary
literal that can then be represented as another numeric type.

Listing 4.24 Binary literals

let binaryFail = 10100110 10100110
let binaryInt = 0b10100110 166

There is also literal syntax in Swift for scientific notation, which begins with the mantissa followed
by the character e and finally the exponent. As with other numeric values, you can let Swift infer the
appropriate type or declare the type explicitly.

Listing 4.25 Scientific notation in numeric literals

let scientificInt = 1.66e5 166000
let fractionalFloat: Float = 1.66e-2 0.0166

Swift has support for one additional literal format that comes in handy. Base-16, or hexadecimal, is
a numeral system that has 16 symbols for each position value. The first 10 symbols are the digits 0
through 9, and the letters a through f are the final six.

Hex, as it is sometimes called, can be thought of as a compromise between humans and computers.
Binary, which computers use to store data, can be overly verbose and cumbersome to read as a human.
But decimal, which we are used to reading, is a poor fit for displaying computers’ bit-based data. Hex
is the best of both: succinct (for humans) and accurate when represented in bits (for computers).

For example, these three numbers represent the same value:

e 255 (decimal)
e 1111 1111 (binary)
¢ FF (hexadecimal)

39

Chapter 4 Numbers

And these three numbers also represent the same value:

e 2,343,432,205 (decimal)
e 1000 1011 1010 1101 1111 0000 0000 1101 (binary)
¢ 8BAD FOOD (hexadecimal)

The syntax for working with hexadecimal values in Swift is similar to the binary literal syntax you just
saw: Hex literals are prefixed with 0x.

Listing 4.26 Hexadecimal literals

let hexLiteral = Oxff 255
let hexSpeak = 0x8BADF00OD 2343432205

Whatever number base you are using, you can separate groups of digits with underscores to make large
numbers more legible in code. The program completely ignores underscores used this way; they are
just for you.

Listing 4.27 Large numbers

let lightSpeed = 299_792_458 // m/s 299792458

40

Switch

In Chapter 3, you saw one sort of conditional statement: if/else. Along the way, we mentioned that
if/else is not great for scenarios that have more than a few conditions. This chapter looks at the
switch statement, which is ideal for handling multiple conditions. As you will see, Swift’s switch
statement is a flexible and powerful feature of the language.

if/else statements execute code based on whether the condition under consideration evaluates to
true. switch statements consider a particular value and attempt to match it against a number of
expressions, called cases. If there is a match, the switch executes the code associated with that case.
In this chapter, you will explore the use of switch statements for evaluating an expression against
multiple possible matching values.

41

Chapter 5 Switch

Switch Syntax

Create a new macOS playground called Switch that is set to Automatically Run and write your first
switch to see how its syntax works. (From this point forward, we will only show sidebar results when
they are helpful and fit on the page.)

Listing 5.1 Your first switch

import Cocoa

[T} 1]
7

var statusCode: Int = 404
var errorString: String

switch statusCode {

case 401:

errorString = "Unauthorized"
case 403:

errorString = "Forbidden"
case 404:

errorString = "Not found"
default:

errorString = "None"
}

Whether or not you have ever worked with HTTP status codes directly, you have undoubtedly
encountered pages that say something like “404 Not Found” while browsing the web. There are
many status codes that web servers send to their clients (such as apps or web browsers) to indicate
the success or failure of a request. Your switch statement compares statusCode, an Int variable
representing an HTTP status code, against four cases to assign a String instance describing the error.
To keep this example from getting too complex, this exercise will focus only on codes that represent
erTors.

The type in each of the cases must match the type being compared against. Here, the Int value

of statusCode is compared to 401, 403, and 404, in that order. If statusCode matches any of the
comparison cases, then the body of that case will be executed. Usually, the switch will then be done,
and no more cases will be checked (though you will see an exception to this later in this chapter).

Because case 404 matches statusCode, errorString is assigned the value "Not found", as you can
see in the sidebar.

Notice the default case, which is executed when the comparison value does not match any of the other
cases. Switch cases must be exhaustive — every possible value of the input type must match at least one
case. So it is sometimes necessary to use a default case to ensure the exhaustiveness of the switch.

Try changing the value of statusCode to see the other results. When you are done, set it back to 404.

Suppose you want to use a switch statement to build up the text description of an error. Update your
code to do that.

42

Switch Syntax

Listing 5.2 switch cases can have multiple values

var statusCode: Int = 404
var errorString: String = "The request failed: "

switch statusCode {
case—401+

€ase—463+

€case—404-+

defauttr

case 401, 403, 404:
errorString += "There was something wrong with the request."
fallthrough

default:
errorString += " Please review the request and try again."

¥

There is now only one case for all the error status codes (which are listed and separated by commas).
If the statusCode matches any of the values in the case, the text "There was something wrong with
the request." is added to the errorString.

You have also added a control transfer statement called fallthrough. Control transfer statements let
you modify the order of execution in a control flow by transferring control from one chunk of code to
another.

fallthrough tells the switch statement to “fall through” the bottom of a case to the next one. If a
matching case has a fallthrough statement at its end, it will execute its code and then transfer control
to the case immediately below. That case will execute its code — whether or not it matches the value
being checked against. If it also has a fallthrough statement at the end, it will hand off control to the
next case, and so on.

In other words, fallthrough statements allow you to enter a case and execute its code without having
to match against it.

Without the fallthrough keyword, the switch statement would have ended execution after the first
match. Because of the fallthrough, the switch statement does not stop, even though the first case
matches. Instead, it proceeds to the default case, which adds a recommendation to the errorString.
The use of fallthrough in this example allows you to build up errorString without having to use
strange logic that would guarantee that the comparison value matched all the cases of interest.

The end result of this switch statement is that errorString is set to "The request failed: There
was something wrong with the request. Please review the request and try again.".If the
status code provided had not matched any of the values in the case, errorString would have been set
to "The request failed: Please review the request and try again.". (Try it and see.)

If you are familiar with other languages like C or Objective-C, you will see that Swift’s switch
statement works differently. switch statements in those languages automatically fall through from one
case to the next. Those languages require a break control transfer statement at the end of the case’s

43

Chapter 5 Switch

code to break out of the switch. Swift’s switch works in the opposite manner. If you match on a case,
the case executes its code and the switch stops running.

Ranges

You have seen a switch statement in which the cases had single values to check against the comparison
value and another with a case that had multiple values. switch statements can also compare to a range
of values using the syntax valueX...valueY. Update your code to see this in action.

Listing 5.3 Cases can match ranges of values

var statusCode: Int = 404
var errorString: String = "The request failed with the error: "

switch statusCode {
€ase—401—403—404+

Fattthrough .
defautsr

case 401:
errorString += "Unauthorized"

case 400...417:
errorString += "Client error, 4xx."

case 500...505:
errorString += "Server error, 5xx."

default:
errorString = "Unknown status. Please review the request and try again."
}
The switch statement above takes advantage of the ... syntax of range matching to create inclusive

ranges for categories of HTTP status codes. 400. ..417 is a range that includes 400, 417, and
everything in between. And 500. ..505 is a range that includes 500, 505, and everything in between.

You also have a case with a single HTTP status code (case 401) and a default case. These are formed
in the same way as the cases you saw before. All the case syntax options can be combined in a switch
statement.

You may have noticed that a status code of 401 would match more than one case: both case 401 and
case 400...417. Since a switch evaluates cases in the order that they are written, the switch will
execute the first case that matches and then exit, unless the matched case has a fallthrough. So, if
the statusCode were 401, then case 401 would be executed and case 400...417 would not — not
because case 401 is more specific, but because case 401 comes first.

The result of this switch statement is that errorString is set to "The request failed with the
error: Client error, 4xx." Again, try changing the value of statusCode to see the other results.
Be sure to set it back to 404 before continuing.

44

Value binding

Value binding

Suppose you want to include the actual numerical status codes in your errorString, whether the status
code is recognized or not. You can build on your previous switch statement to include this information
using string interpolation, which you learned about in Chapter 2, and Swift’s value binding feature.

Value binding allows you to bind the matching value in a case to a local constant or variable. The
constant or variable is available to use only within the matching case’s body. Update your switch to use
value binding:

Listing 5.4 Using value binding

switch statusCode {
case 401:
errorString += "Unauthorized"

case 400...417:

[T} = "
7 g

errorString += "Client error, \(statusCode)."

case 500...505:
errorString += "Server error, \(statusCode)."
defautts

case let code:
errorString = "\(code) is not a known error code."
¥

Here you use string interpolation to pass statusCode into the errorString in each case. Your result
now reads "The request failed with the error: Client error, 404."

Take a closer look at the last case. When the statusCode does not match any of the values provided in
the cases above, you create a temporary constant, called code, and bind it to the value of statusCode.
For example, if statusCode had a value of 444, then your switch would set errorString to "444 is
not a known error code.".

Notice also that a default case is not needed for this switch. Because code’s value was bound from
statusCode, it is guaranteed to match, so the switch cases are exhaustive.

This example shows you the syntax of value binding, but it does not really add much. You will see
where value binding shines shortly. In this case, the standard default case can produce the same result.

45

Chapter 5 Switch

Replace the final case with a default case.

Listing 5.5 Reverting to the default case

switch statusCode {
case 401:
errorString += "Unauthorized."

case 400...417:
errorString += "Client error, \(statusCode)."

case 500...505:
errorString += "Server error, \(statusCode)."

case—tet—coder

default:
errorString = "\(statusCode) is not a known error code."
¥

46

where clauses

where clauses

The code above is fine, but it is not great. Every possible value of Int has to be handled by the switch
statement, but some Int values do not correspond to status codes at all. In fact, status codes only range
from 100 to 599.

Right now, a statusCode value like 13 (which is not a possible error code) produces the same result as
a value like 418 (which is a status code, but not one you want to handle). You might want to treat status
codes that you do not handle differently from status codes that do not exist. For example, if the server
sent a status code of 13, you would know there was a problem with the server.

To fix this, use value binding and a where clause to make sure the value being checked is not out of
bounds. where allows you to check for additional conditions that must be met for the case to match and
the value to be bound. This feature creates a sort of dynamic filter within the switch.

Listing 5.6 Using where to create a filter

var statusCode: Int = 484 13
var errorString: String = "The request failed with the error:

switch statusCode {
case 401:
errorString += "Unauthorized."

case 400...417:
errorString += "Client error, \(statusCode)."

case 500...505:
errorString += "Server error, \(statusCode)."

case let code where code < 100 || code >= 600:
errorString = "\(code) is an illegal status code."
default:
errorString = "Unexpected error encountered."
¥

Recall that | | is the logical OR operator, so your new case sets the value of code to equal the value

of statusCode if the value is less than 100 or greater than 599. You can represent the where clause’s
expression more simply, but this example illustrates that you can use complex Boolean expressions in a
where clause.

Value bindings are especially useful when combined with where clauses to say “I do not have a value
to compare, but as long as this other expression is true, go ahead and match this case.” Unlike the
previous example involving value binding, this case is not exhaustive, since it only matches if the
clause is true. But this is not a problem, because you also have a default case.

When statusCode’s value is 13, errorString is set to "13 is an illegal status code.".

Change statusCode to exercise the other cases and confirm that it works as expected.

47

Chapter 5 Switch

Tuples and Pattern Matching

Now that you have your statusCode and errorString, it would be helpful to pair those two pieces.
Although they are logically related, they are currently stored in independent variables. A tfuple can be
used to group them.

A tuple groups values as a single, compound value. The result is an ordered list of elements. The
elements can be of the same type or of different types.

Create your first Swift tuple that groups statusCode and errorString.

Listing 5.7 Creating a tuple

var statusCode: Int = 33 418
var errorString: String = "The request failed with the error:

switch statusCode {
¥

let error = (statusCode, errorString)

You made a tuple by grouping statusCode and errorString within parentheses and assigned
the result to the constant error. The sidebar shows its value: (.0 418, .1 "Unexpected error
encountered.").

The .0 and .1 in the value of your tuple are the elements’ indices, which you can use to access the
elements:

Listing 5.8 Accessing the elements of a tuple

let error = (statusCode, errorString)
error.0
error.1l

It is not very easy to keep track of what values are represented by error.@ and error.1. You can also
assign names to the elements of a Swift tuple to make your code more readable. Change your tuple to
use more informative element names.

Listing 5.9 Naming the tuple’s elements

tet—errer—=—{statustede—errorString)

erreor-08

eFrrer—1

let error = (code: statusCode, msg: errorString)
error.code

error.msg

Now you can access your tuple’s elements by using their related names: code for statusCode and msg
for errorString.

48

Tuples and Pattern Matching

You have already seen an example of pattern matching when you used ranges in the switch statement’s
cases. That form of pattern matching is called interval matching, because each case attempts to match a
given interval against the comparison value. Tuples are also helpful in matching patterns.

Imagine, for example, that you have an application that is making multiple web requests. You save the
HTTP status code that comes back with the server’s response each time. Later, you would like to see
which requests, if any, failed with the status code 404 (the “requested resource not found” error). Using
a tuple in the switch statement’s cases enables you to match against very specific patterns.

Add the following code to create and switch on a new tuple. (Do not split the strings in the new cases;
enter them each on a single line.)

Listing 5.10 Pattern matching in tuples

let error = (code: statusCode, msg: errorString)
error.code
error.msg

let firstErrorCode = 404
let secondErrorCode = 418
let errorCodes = (firstErrorCode, secondErrorCode)

switch errorCodes {
case (404, 404):

print("Both error codes were 404.")
case (404, _):

print("Only the 1st code is 404, and we don't care about the 2nd code.")
case (_, 404):

print("Only the 2nd code is 404, and we don't care about the 1st code.")
default:

print("Neither code is 404.")
}

You first add a few new constants. firstErrorCode and secondErrorCode represent the HTTP status
codes associated with two web requests. errorCodes is a tuple that groups these codes.

The new switch statement matches against several cases to determine what combination of 404s
the requests might have yielded. The underscore (_) in the second and third cases is a wildcard that
matches anything, which allows these cases to focus on a specific request’s error code.

The first case will match only if both of the requests failed with status code 404. The second case will
match only if the first request failed with status code 404. The third case will match only if the second
request failed with status code 404. Finally, if the switch has not found a match, that means none of the
requests failed with the status code 404.

Because firstErrorCode did have the status code 404, you should see "Only the 1st code is 404,
and we don't care about the 2nd code.".

49

Chapter 5 Switch

switch vs if/else

switch statements are primarily useful for comparing a value against a number of potentially matching
cases. if/else statements, on the other hand, are best for checking against a single condition. switch
also offers a number of powerful features that allow you to match against ranges, bind values to

local constants or variables, and match patterns in tuples — to name just a few features covered in this
chapter.

Sometimes you might be tempted to use a switch statement on a value that could potentially match
against any number of cases, but you really only care about one of them. For example, imagine
checking an age constant when you are looking for a specific demographic: ages 18-35.

Go ahead and write a switch statement with a single case to accomplish this:

Listing 5.11 Single-case switch

let age = 25
switch age {
case 18...35:
print("Cool demographic")
default:
break
}

If age is in the range from 18 to 35, then age is in the desired demographic and some code is executed.
Otherwise, age is not in the target demographic and the default case matches, which simply transfers
the flow of execution outside the switch with the break control transfer statement.

Notice that you had to include a default case, because switch statements have to be exhaustive. You
do not really want to do anything here, but every case must have at least one executable statement, so
you fill the requirement with a break. This works, but it may not feel elegant.

Swift provides a better way. In Chapter 3, you learned about if/else statements. Swift also has an if-
case statement that provides pattern matching similar to what a switch statement offers. Replace your
switch with an if-case statement:

Listing 5.12 if-case

let age = 25
switeh—age—f

defautss
breal
: 2
if case 18...35 = age {

print("Cool demographic")
}

This syntax is much more elegant. It simply checks to see whether age is in the given range. You did
not have to write a default case that you did not care about. Instead, the syntax of the if-case allows
you to focus on the single case of interest: when age is in the target range.

50

switch vs if/else

if-cases can also include more complicated pattern matching, just as with switch statements. Say, for
example, you wanted to know if age was greater than or equal to 25.

Listing 5.13 if-cases with multiple conditions

let age = 25
3

if case 18...35 = age, age >= 25 {
print("In cool demographic and can rent a car")
}

The new code adds something to the if-case statement: After the comma, it also checks to see
whether age is 25 or greater. In the United States, this often means that the person in question can rent
a car.

if-cases provide an elegant shorthand for switch statements with only one case to consider. They also
enjoy all the pattern-matching power that make switch statements so wonderful. The choice between
them is usually a stylistic one. With practice, you will discover which syntax you find most readable
for your different comparison needs.

51

Chapter 5 Switch

Bronze Challenge

Review the switch statement below. What will be logged to the console? After you have decided, enter
the code in a playground to see whether you were right.

let point = (x: 1, y: 4)

switch point {

case let ql where (point.x > @) && (point.y > 0):
print(*"\(ql) is in quadrant 1")

case let g2 where (point.x < @) && point.y > 0:
print(*"\(g2) is in quadrant 2")

case let g3 where (point.x < @) && point.y < 0:
print("\(g3) is in quadrant 3")

case let g4 where (point.x > @) && point.y < 0:
print("\(g4) is in quadrant 4")

case (_, 0):
print("\(point) sits on the x-axis")

case (0, _):
print("\(point) sits on the y-axis")

default:
print("Case not covered.")
}

Silver Challenge

You can add more conditions to the if-case by supplying a comma-separated list. For example, you
could check whether the person is: a) in the cool demographic, b) old enough to rent a car in the United
States, and c) not in their thirties. Add another condition to Listing 5.13 to check whether age meets all
three criteria.

52

Loops

Loops help with repetitive tasks. They execute a set of code repeatedly, either for a given number of
iterations or for as long as a defined condition is met. Loops can save you from writing tedious and
repetitive code, and you will use them a lot in your development.

In this chapter, you will use two sorts of loops:

» for loops
* while loops

for loops are ideal for iterating over the elements of an instance or collection of instances if the
number of iterations to perform is either known or easy to derive. while loops, on the other hand, are
well suited for tasks that execute repeatedly as long as a certain condition is met. Each type of loop has
variations.

Let’s start with a for-in loop, which performs a set of code for each item in a range, sequence, or
collection.

53

Chapter 6 Loops

for-in Loops

Create a new macOS playground called Loops and set it to Automatically Run. Create a loop as shown.
Listing 6.1 A for—in loop

import Cocoa

n "
7

var myFirstInt: Int = 0 0

for i in 1...5 {
myFirstInt += 1 (5 times)
print(myFirstInt) (5 times)

}

Ignore the warning about an unused value for now; you will address it shortly.

First, you declare a variable called myFirstInt that is an instance of Int and is initialized with a value
of 0. Next, you create a for-in loop. Let’s look at the components of the loop.

The for keyword signals that you are writing a loop. You next declare an iterator called i that
represents the current iteration of the loop. The iterator is constant within the body of the loop and only
exists here; it is also managed for you by the compiler.

In the first iteration of the loop, its value is the first value in the range of the loop. Because you used
... to create an inclusive range of 1 through 5, the first value of i is 1. In the second iteration, the
value of i is 2, and so on. You can think of i as being replaced with a new constant set to the next
value in the range at the beginning of each iteration.

Notice that i is not declared to be of the Int type. It could be, as in for i: Int in 1...5, butan
explicit type declaration is not necessary. The type of i is inferred from its context (as is the let). In
this example, i is inferred to be of type Int because the specified range contains integers.

Type inference is handy, and when you type less you make fewer typos. In general, we recommend
that you take advantage of type inference whenever possible, and you will see many examples of it in
this book. However, there are a few cases in which you need to specifically declare the type. We will
highlight those when they come up.

The code inside the braces ({}) is executed at each iteration of the loop. For each iteration, you
increment myFirstInt by 1. After incrementing myFirstInt, you print the variable’s name to log its
value to the console. These two steps — incrementing and logging — continue until i reaches the end of
the range: 5. This loop is represented in Figure 6.1.

54

for-in Loops

Figure 6.1 Looping over a range

Set i to equal 1

Y

Is iin the range
[— »
[ves] of 11057 No|

A

A4

Execute block —>‘ Increment i ’ Exit

To see the results of your loop, find and click the Show Result button (&) on the right edge of the
results sidebar on the line with the code myFirstInt += 1 (Figure 6.2).

Figure 6.2 The Show Result button

eoe [Ready to continue Loops
s Loops.playground =l

s Loops

import Cocoa

var myFirstInt = @ 0
for i in 1...5 { Immutable value 'i' was never used; consider replacing with '_' or rem... /ShOW Result
myFirstInt += 1 (5 times) Of
(5 times)

print(myFirstInt)

AP WNPE

This opens a results view that displays the instance’s value history. You can grow or shrink the graph
window by clicking and dragging its edges.

55

Chapter 6 Loops

Move your mouse pointer into this new window and you will see that you can select individual points
on this plot. For example, if you click the middle point, the playground will tell you that the value of
this point is 3 (Figure 6.3).

Figure 6.3 Selecting a value on the plot

You can access i, the iterator you declared, inside each iteration of the loop. Change your output to
show the value of i at each iteration.

Listing 6.2 Printing the changing value of i to the console
for i in 1...5 {
mylfirstInF +=1 (5 times)

print("myFirstInt = \(myFirstInt) at iteration \(i)") (5 times)
}

If you do not want an explicitly declared iterator, you can ignore it by using _ to silence the warning
you saw before. Replace your named constant with this wildcard and return your print() statement to
its earlier implementation.

Listing 6.3 Replacing i with _

for _ in 1...5 {
myFirstInt += 1 (5 times)
print(myFirstInt) (5 times)
b

This implementation of the for-in loop ensures that a specific operation occurs a set number of times.
But it does not check and report the value of the iterator in each pass of the loop over its range. Use the
explicit iterator i if you want to refer to the iterator within your loop’s code block or the wildcard _ if
you do not.

56

where

where

Swift’s for-in loop supports the use of where clauses similar to the ones you saw in Chapter 5. Using
where allows for finer control over when the loop executes its code. The where clause provides a
logical test that must be met to execute the loop’s code. If the condition established by the where clause
is not met, then the loop’s code is not run.

For example, imagine that you want to write a loop that iterates over a range but only executes its code

when the loop’s iterator is a multiple of 3.

Listing 6.4 A for—in loop with a where clause

for _ in 1...5 {
myFirstInt += 1 (5 times)
print(myFirstInt) (5 times)

for i in 1...100 where i % 3 == 0 {
print(i) (33 times)

As before, you create a local constant i that you can now use in the where clause’s condition. Each
integer in the range of 1 to 100 is bound to i. The where clause then checks to see whether 1 is
divisible by 3. If the remainder is 0, the loop will execute its code. The result is that the loop will print
out every multiple of 3 from 1 to 100.

Figure 6.4 demonstrates the flow of execution for this loop.

Figure 6.4 where clause loop diagram

Set iequal to 1

A4

YES Is i a multiple of 3?2 ———»NO
\4 \A
Printi » Setito next value

A

. Isiin the range of 1

57

Chapter 6 Loops

Imagine how you might accomplish this same result without the help of a where clause.

for i in 1...100 {
if 1 %53 ==10 {
print(i)
}

b

The code above does the same work as the loop with the where clause, but it is less elegant. There are
more lines of code, and there is a nested conditional within the loop. Generally speaking, we prefer
fewer lines of code, so long as the code is not overly complex to read. Swift’s where clauses are very
readable, so we typically choose this more concise solution.

58

while Loops

while Loops

A while loop executes the code inside its body for as long as a specified condition is true. You can
write while loops to do many of the same things you have seen in for loops above. Start with a while
loop that replicates the for loop in Listing 6.1:

Listing 6.5 Awhile loop

var i =1

while i < 6 {
myFirstInt += 1 (5 times)
print(myFirstInt) (5 times)
i+=1 (5 times)
}

Figure 6.5 shows the flow of execution in this code.

Figure 6.5 while loop diagram

Setito equal 1

A4

YES (¢«—— Isilessthan6? ———— {NO

A

A4

Y

Execute block Increment i Exit

This while loop initializes a control variable (var i = 1), evaluates a condition (i < 6), executes code
if the condition is valid (myFirstInt += 1, print(myFirstInt), i += 1), and then returns to the top
of the while loop to determine whether the loop should continue iterating.

i is declared as a variable because the condition you evaluate (1 < 6) must be able to change.
Remember, the while loop will run as long as the condition it checks is true. If the condition never
changes (or is always true), then the while loop will execute forever. Loops that never end are called
infinite loops, and they are usually bugs.

while loops are best for circumstances in which the number of iterations the loop will pass through

is unknown. For example, imagine a space shooter game with a spaceship that continuously fires its
blasters as long as the spaceship has shields. Various external factors may lower or increase the ship’s
shields, so the exact number of iterations cannot be known. But if the shields have a value greater than
0, the blasters will keep shooting. The code snippet below illustrates a simplified implementation of
this idea.

while shields > 0 {

// Fire blasters!
print("Fire blasters!")

59

Chapter 6 Loops

repeat-while Loops

Swift also supports a type of while loop called the repeat-while loop. The repeat-while loop is
called a do-while loop in other languages. The difference between while and repeat-while loops is
when they evaluate their condition.

The while loop evaluates its condition before stepping into the loop. This means that the while loop
may not ever execute, because its condition could be false when it is first evaluated. The repeat-
while loop, on the other hand, executes its loop at least once and then evaluates its condition. The
syntax for the repeat-while loop demonstrates this difference.

repeat {
// Fire blasters!
print("Fire blasters!")
} while shields > 0

In this repeat-while version of the space shooter game, the code block that contains the line
print("Fire blasters!") is executed first. Then the repeat-while loop’s condition is evaluated to
determine whether the loop should continue iterating. Thus, the repeat-while loop ensures that the
spaceship fires its blasters at least one time.

60

Control Transfer Statements in Loops

Control Transfer Statements in Loops

Let’s revisit control transfer statements in the context of loops. Recall from Chapter 5 (where you used
fallthrough and break) that control transfer statements change the typical order of execution. In the
context of a loop, you can control whether execution iterates to the top of the loop or leaves the loop
altogether.

Let’s elaborate on the space shooter game to see how this works. You are going to use the continue
control transfer statement to stop the loop where it is and begin again from the top.

Listing 6.6 Using continue

var shields = 5 5

var blastersOverheating = false false
var blasterFireCount = 0 0

while shields > 0 {

if blastersOverheating {
print("Blasters overheated! Cooldown initiated.™) "Blasters overheated!
sleep(5)
print("Blasters ready to fire")
sleep(1)
blastersOverheating = false
blasterFireCount = 0

}

if blasterFireCount > 100 {
blastersOverheating = true true
continue

}

// Fire blasters!

print("Fire blasters!") 101 times

blasterFireCount += 1 101 times

}

(We are showing the sidebar results as they appear the first time execution pauses. More about that in a
moment.)

You have added a good bit of code, so let’s break it down. First, you added some variables to keep
track of certain information about the spaceship:

* shields is an Int that keeps track of the shield strength; it is initialized with a value of 5.

* blastersOverheating is a Bool that keeps track of whether the blasters need time to cool down;
it is initialized to false.

* blasterFireCount is an Int that keeps track of the number of shots the spaceship has fired; it is
initialized with a value of @.

After creating your variables, you wrote two if statements, both contained in a while loop with a
condition of shields > 0. The first if statement checks whether the blasters are overheating, and the
second checks the fire count (which determines whether the blasters are overheating).

61

Chapter 6 Loops

For the first, if the blasters are overheating, a number of code steps execute. You log information to the
console, and the sleep() function tells the system to wait for 5 seconds, which models the blasters’
cooldown phase. You next log that the blasters are ready to fire again, wait for 1 more second (simply
because it makes it easier to see what logs to the console next), set blastersOverheating to false,
and also reset blasterFireCount to 0.

With shields intact and blasters cooled down, the spaceship is ready to fire away.

The second if statement checks whether blasterFireCount is greater than 100. If this conditional
evaluates to true, you set the Boolean for blastersOverheating to be true. At this point, the blasters
are overheated, so you need a way to jump back up to the top of the loop so that the spaceship does not
fire. You use continue to do this. Because the spaceship’s blasters have overheated, the conditional in
the first if statement will evaluate to true, and the blasters will shut down to cool off.

If the second conditional is evaluated to be false, you log to the console as before. Next, you
increment the blasterFireCount by 1. After you increment this variable, the loop will jump back up
to the top, evaluate the condition, and either iterate again or hand off the flow of execution to the line
immediately after the closing brace of the loop. Figure 6.6 shows this flow of execution.

Figure 6.6 while loop diagram

Are shields > 0?

NO

Are blasters Exit; do not
overheating? execute loop

YES NO

- Enter cooldown phase

- Reset fire count

Is fire count > 100?

YES m

- Fire blasters
- Increment blaster
fire count

Continue |_ Set blasters to
loop overheating

A

62

Control Transfer Statements in Loops

Note that this code will execute indefinitely — it is an infinite loop. There is nothing to change the value
of shields, sowhile shields > 0 is always satisfied. If nothing changes, and your computer has
enough power to run forever, the loop will continue to execute. In the time you have been reading this
explanation, the sidebar results for the code in your loop have likely increased several times.

But all games must come to an end. Let’s say that the game is over when the user has destroyed 500
space demons. To exit the loop, you will use the break control transfer statement.

Listing 6.7 Using break

var shields =5 5

var blastersOverheating = false false
var blasterFireCount = 0@ 0
var spaceDemonsDestroyed = 0 (/]

while shields > 0 {

if spaceDemonsDestroyed == 500 {

print("You beat the game!") "You beat the game!\n"
break

}

if blastersOverheating {
print("Blasters overheated! Cooldown initiated.") (4 times)
sleep(5) (4 times)
print("Blasters ready to fire") (4 times)
sleep(1) (4 times)
blastersOverheating = false (4 times)
blasterFireCount = 0 (4 times)

}

if blasterFireCount > 100 { (4 times)
blastersOverheating = true
continue

}

// Fire blasters!

print("Fire blasters!") (500 times)

blasterFireCount += 1 (500 times)

spaceDemonsDestroyed += 1 (500 times)

b

Here, you add a new variable called spaceDemonsDestroyed, which is incremented each time the
blasters fire. (You are a pretty good shot, apparently.) Next, you add a new if statement that checks
whether the value of spaceDemonsDestroyed is 500. If it is, you log victory to the console.

Note the use of break. The break control transfer statement will exit the while loop, and execution
will pick up on the line immediately after the closing brace of the loop. The user has destroyed 500
space demons, and the game is won: The blasters do not need to fire anymore.

Now, your loop is no longer infinite. The sidebar results in Listing 6.7 show the final results.

63

Chapter 6 Loops

Silver Challenge

Fizz Buzz is a game used to teach division. Create a version of the game that works like this: For every
value in a given range, print out “FIZZ” if the current number is evenly divisible by 3. If the number is
evenly divisible by 5, print out “BUZZ.” If the number is evenly divisible by both 3 and 5, then print
out “FIZZ BUZZ.” If the number is not evenly divisible by 3 or 5, then simply print out the number.

For example, over the range of 1 through 10, playing Fizz Buzz should yield this: “1, 2, FIZZ, 4,
BUZZ,FI1ZZ,7, 8, FIZZ, BUZZ”

Computers love to play Fizz Buzz. The game is perfect for loops and conditionals. Loop over the range
from O through 100 and print “FIZZ,” “BUZZ,” “FIZZ BUZZ,” or the number appropriately for each
number in the range.

For bonus points, solve Fizz Buzz with both an if/else conditional and a switch statement. When
using the switch statement, make sure to match against a tuple in its various cases.

64

Strings

In programming, text content is represented by strings. You have seen and used strings already.
"Hello, playground", for example, is a string that appears at the top of every newly created
playground. In this chapter, you will see more of what strings can do.

Working with Strings

In Swift, you create strings with the String type. Create a new macOS playground called Strings and
add the following new instance of the String type.

Listing 7.1 Hello, playground

import Cocoa

var—str—=—Helto—pltayground-
let playground = "Hello, playground" "Hello, playground"

You have created a String instance named playground using the string literal syntax, which encloses a
sequence of text with quotation marks.

This instance was created with the let keyword, making it a constant. Recall that being a constant
means that the instance cannot be changed. If you try to change it, the compiler will give you an error.

Create a new string, but make this instance mutable.

Listing 7.2 Creating a mutable string

let playground = "Hello, playground" "Hello, playground"
var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...

mutablePlayground is a mutable instance of the String type. In other words, you can change the
contents of this string. Use the addition and assignment operator to add some final punctuation.

Listing 7.3 Adding to a mutable string

let playground = "Hello, playground" "Hello, playground"
var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...
mutablePlayground += "!" "Hello, mutable playgro...

You should see in the results sidebar that the instance has changed to "Hello, mutable playground!"

65

Chapter 7 Strings

You have used the \ () string interpolation syntax in previous chapters. The leading backslash is
called an escape character, and it tells the compiler to treat the parentheses (and their contents)
differently than it otherwise would. Together, the backslash and the specially treated text form an
escape sequence.

There are several escape sequences you can use to insert different types of content into a string. Here
some worth knowing:

¢ \() interpolates an expression into a string.

* \ninserts a new line when printing the string.

* \" inserts a quotation mark in a string (otherwise it would prematurely close the string).
* \\ inserts a backslash in a string (otherwise it would begin an escape sequence).

To see some of them in action, add this code to your playground:

Listing 7.4 Using escape sequences in a string

var mutablePlayground = "Hello, mutable playground" "Hello, mutable playgro...
mutablePlayground += "!" "Hello, mutable playgro...
let quote = "I wanted to \"say\":\n\(playground)" "I wanted to "say":\nHe...
print(quote)

Run your playground and take a moment to examine the effect that each escape sequence has on the
printed result:

I wanted to "say":
Hello, playground

The first two backslashes escape the quotation marks, so that they are taken as part of the string rather
than terminating it. The third escape sequence, \n, creates a line break in the console output. The last
escape sequence interpolates the value of another string instance, as you have used before. Feel free to
experiment with the positioning and usage of these escape sequences.

Sometimes, you do not want the compiler to do anything at all to the contents of a string. No escaping,
no string interpolation. Creating a raw string like this is as easy as wrapping it with hash symbols (#):

Listing 7.5 Creating a raw string

let quote = #"I wanted to \"say\":\n\(playground)"# "I wanted to \\"say\\":...
print(quote) "I wanted to \\"say\\":...

This prints the string as you wrote it, with no processing:
I wanted to \"say\":\n\(playground)

In the sidebar, you can see the hidden truth: The compiler processes the string after all, but only to
escape out your escape sequences, so that they are instead taken as parts of the string literal.

66

Characters

Characters

When talking about text, the term “string” is short for “string of characters,” where a character is a
single symbol or glyph — something that a reader would consider to be the smallest unit of written
language. A, ¢, ., 1, and © are all characters. In Swift, a String is a collection of instances of the
Character type.

Loop through the mutablePlayground string to see its Character instances:

Listing 7.6 mutablePlayground’s Characters

let quote = #"I wanted to \"say\":\n\(playground)"# "I wanted to \\"say\\":...
print(quote) "I wanted to \\"say\\":...
for c: Character in mutablePlayground {

print("'\(c)'") (26 times)
}

This loop iterates through every Character c in mutablePlayground. The explicit type annotation of
Character is unnecessary. Swift’s type inference knows that c is a Character. It knows this because
Swift’s String type conforms to a set of rules, a protocol, called Collection. (You will learn more
about protocols in Chapter 19.) This protocol organizes a sequence’s elements in terms of subscriptable
indices.

The Collection protocol helps the String organize its contents as a collection of characters. This is
how each iteration of the loop can access an individual character to log to the console. Every character
is logged to the console on its own line because print () prints a line break after logging its content.

Your output should look like this:

|H|

67

Chapter 7 Strings

Unicode

Unicode is an international standard that encodes characters so they can be seamlessly processed
and represented regardless of the platform. Unicode represents human language (and other forms
of communication, like emoji) on computers. Every character in the Unicode standard is assigned a
unique number.

Swift’s String and Character types are built on top of Unicode, and they do the majority of the heavy
lifting. Nonetheless, it is good to have an understanding of how these types work with Unicode. Having
this knowledge will likely save you some time and frustration in the future.

Unicode scalars

At their heart, strings in Swift are composed of Unicode scalars. Unicode scalars are 21-bit numbers
that represent a specific character in the Unicode standard. The text U+1F6@E is the standard way of
writing a Unicode character. (The 1F60E portion is a number written in hexadecimal.) For example,
U+0061 represents the Latin small letter a. U+2603 represents a snowman.

Create a constant to see how to use specific Unicode scalars in Swift and the playground.

Listing 7.7 Using a Unicode scalar

for c: Character in mutablePlayground {
print("'\(c)'") (26 times)
¥

let snowman = "\u{2603}" g

This time, you used a new syntax to create a string. The quotation marks are familiar, but what is inside
them is not a string literal, as you have seen before. It does not match the results in the sidebar.

The \u{} syntax is an escape sequence that resolves to the Unicode scalar whose hexadecimal number
appears between the braces. In this case, the value of snowman is the Unicode character of a snowman.

How does this relate to more familiar strings? Swift strings are composed of Unicode scalars. So why
do they look unfamiliar? To explain, we need to discuss a few more concepts.

Every character in Swift is an extended grapheme cluster. Extended grapheme clusters are sequences
of one or more Unicode scalars that combine to produce a single human-readable character. One
Unicode scalar generally maps onto one fundamental character in a given language, but there are also
combining scalars. For example, U+0301 represents the Unicode scalar for the combining acute accent:
“. This scalar is placed on top of — that is, combined with — the character that precedes it.

In your playground, use this scalar with the Latin small letter a to create the character a:

Listing 7.8 Using a combining scalar

let snowman = "\u{2603}" "t
let aAcute = "\u{0061}\u{0301}" "a"

Making characters extended grapheme clusters gives Swift flexibility in dealing with complex script
characters.

68

Unicode scalars

Swift also provides a mechanism to see all the Unicode scalars in a string. For example, you can

see all the Unicode scalars that Swift uses to create the instance of String named playground that
you created earlier using the unicodeScalars property, which holds all the scalars that Swift uses to
make the string. (Properties, which you will learn about in Chapter 16, are constants or variables that
associate values with an instance of a type.)

Add the following code to your playground to see playground’s Unicode scalars.

Listing 7.9 Revealing the Unicode scalars behind a string

let snowman = '"\u{2603}" "yt
let aAcute = "\u{0061\u{@301}" "a"
for scalar in playground.unicodeScalars {
print("\(scalar.value)") (17 times)
}

You should see the following output in the console: 72 101 108 108 111 44 32 112 108 97 121
103 114 111 117 110 100. What do all these numbers mean?

The unicodeScalars property holds on to data representing all the Unicode scalars used to create the
string instance playground. Each number on the console corresponds to a Unicode scalar representing
a single character in the string. But they are not the hexadecimal Unicode numbers. Instead, each is
represented as an unsigned 32-bit integer. For example, the first, 72, corresponds to the Unicode scalar
value of U+0048, or an uppercase H.

69

Chapter 7 Strings

Canonical equivalence

While there is a role for combining scalars, Unicode also provides already combined forms for
some common characters. For example, there is a specific scalar for 4. You do not actually need to
decompose it into its two parts, the letter and the accent. The scalar is U+@@E1. Create a new constant
string that uses this Unicode scalar.

Listing 7.10 Using a precomposed character

let aAcute = "\u{0061}\u{0301}" "a"
for scalar in playground.unicodeScalars {

print("\(scalar.value) ") (17 times)
let aAcutePrecomposed = "\u{0OE1}" "a"

As you can see, aAcutePrecomposed appears to have the same value as aAcute. Indeed, if you check
whether these two characters are the same, you will find that Swift answers “yes.”

Listing 7.11 Checking equivalence

let aAcute = "\u{0061}\u{0301}" "a"
for scalar in playground.unicodeScalars {
print("\(scalar.value) ") (17 times)
let aAcutePrecomposed = "\u{@0E1}" "t
let b = (aAcute == aAcutePrecomposed) true

aAcute was created using two Unicode scalars, and aAcutePrecomposed only used one. Why does
Swift say that they are equivalent? The answer is canonical equivalence.

Canonical equivalence refers to whether two sequences of Unicode scalars are the same linguistically.
Two characters, or two strings, are considered equal if they have the same linguistic meaning

and appearance, regardless of whether they are built from the same Unicode scalars. aAcute and
aAcutePrecomposed are equal strings because both represent the Latin small letter a with an acute
accent. The fact that they were created with different Unicode scalars does not affect this.

70

Canonical equivalence

Counting elements

Canonical equivalence has implications for counting the elements of a string. You might think that
aAcute and aAcutePrecomposed would have different character counts. Write the following code to
check.

Listing 7.12 Counting characters

let aAcutePrecomposed = "\u{@@E1}" "a"
let b = (aAcute == aAcutePrecomposed) true
aAcute.count 1
aAcutePrecomposed. count 1

You use the count property on String to determine the character count of these two strings. count
iterates over a string’s Unicode scalars to determine its length. The results sidebar reveals that the
character counts are the same: Both are one character long.

Canonical equivalence means that whether you use a combining scalar or a precomposed scalar, the
result is treated as the same. aAcute uses two Unicode scalars; aAcutePrecomposed uses one. This
difference does not matter since both result in the same character.

71

Chapter 7 Strings

Indices and ranges

Because strings are ordered collections of characters, if you have worked with collections in other
languages, you might think that you can access a specific character in a string like so:

let playground = "Hello, playground"
let index = playground[3] // '1'?

The code playground[3] uses the subscript syntax. In general, the brackets ([]) after a variable name
indicate that you are using a subscript in Swift. Subscripts allow you to retrieve a specific value within
a collection.

The 3 in this example is an index that is used to find a particular element within a collection. The
code above suggests that you are trying to select the fourth character from the collection of characters
making up the playground string (fourth, not third, because the first index is). And for other Swift
collection types, subscript syntax like this would work. (You will learn more about subscripts below
and will also see them in action in Chapter 8 on arrays and Chapter 10 on dictionaries.)

However, if you tried to use a subscript like this on a String, you would get an error: "' 'subscript'
is unavailable: cannot subscript String with an Int." The Swift compiler will not let you
access a specific character on a string via a subscript index.

This limitation has to do with the way Swift strings and characters are stored. You cannot index a
string with an integer, because Swift does not know which Unicode scalar corresponds to a given index
without stepping through every preceding character. This operation can be expensive. Therefore, Swift
forces you to be more explicit.

Swift uses a type called String. Index to keep track of indices in string instances. (The period in
String.Index just means that Index is a type that is defined on String. You will learn more about
nested types like this in Chapter 16.)

As you have seen in this chapter, an individual character may be made up of multiple Unicode code
points (another term for Unicode scalars). It is the job of the Index to represent these code points as a
single Character instance and to combine these characters into the correct string.

Because Index is defined on String, you can ask the String to hand back indices that are meaningful.
To find the character at a particular index, you begin with the String type’s startIndex property. This
property yields the starting index of a string as a String.Index. You then use this starting point in
conjunction with the index(_:offsetBy:) method to move forward until you arrive at the position of
your choosing. (A method is like a function; you will learn more about them in Chapter 12.)

Say you want to know the fifth character of the playground string that you created earlier.

Listing 7.13 Finding the fifth character

let playground = "Hello, playground" "Hello, playground"
aAcute.count 1
aAcutePrecomposed. count 1

let start = playground.startIndex String.Index

let end = playground.index(start, offsetBy: 4) String.Index

let fifthCharacter = playground[end] "o"

72

Canonical equivalence

You use the startIndex property on the string to get the first index of the string. This property yields
an instance of type String.Index. Next, you use the index(_:offsetBy:) method to advance from the
starting point to your desired position. You tell the method to begin at the first index and then add 4 to
advance to the fifth character.

The result of calling index(_:offsetBy:) is a String.Index that you assign to the constant end.
Finally, you use end to subscript your playground string, which results in the character o being
assigned to fifthCharacter.

Character ranges, like indices, depend upon the String. Index type. Suppose you wanted to grab the
first five characters of playground. You can use the same start and end constants.

Listing 7.14 Pulling out a range

let start = playground.startIndex String.Index

let end = playground.index(start, offsetBy: 4) String.Index

let fifthCharacter = playground[end] "o"

let range = start...end {{_rawBits 1}, {_rawBit...
let firstFive = playground[range] "Hello"

The result of the syntax start...end is a constant named range. It has the type
ClosedRange<String.Index>. A closed range, as you saw in Chapter 4, includes a lower bound, an
upper bound, and everything in between. <String.Index> indicates the type of the elements along
the range — the type that strings use for their indices. (In Chapter 4, the ranges you used were of type
Range<Int> and ClosedRange<Int>.)

Your range’s lower bound is start, which is a String.Index whose value you can think of as being 0.
The upper bound is end, which is also a String.Index whose value you can think of as 4. (The actual
values are more complicated, as the sidebar results hint at, and are outside the scope of this book.)
Thus, range describes a series of indices within playground from its starting index up to and including
the index offset by 4.

You used this new range as a subscript on the playground string. The subscript grabbed the first five
characters from playground, making firstFive a constant equal to "Hello".

In addition to closed ranges and the half-open ranges you also saw in Chapter 4, there is a third type of
range you can use in Swift: the one-sided range. Update your playground to use one:

Listing 7.15 Using a one-sided range

let start = playground.startIndex String.Index

let end = playground.index(start, offsetBy: 4) String.Index

let fifthCharacter = playground[end] "o"

let range = ...end PartialRangeThrough<Str...
let firstFive = playground[rangel "Hello"

By removing the lower bound from your range, you tell the compiler that the range should begin with
the lowest possible value; in this case, the beginning of the string. A one-sided range can be created
with either the lower or upper bound removed and using either range operator (... or ..<).

Because strings are such a central part of communicating with your user, it is no surprise that they have
so many features for examining and working with their contents.

73

Chapter 7 Strings

Bronze Challenge

Create a new String instance called empty and give it an empty string (a string with no characters):
let empty = "". It is useful to be able to tell if a string has any characters in it. For example, you may
be designing a form for data input and want to prevent the user from submitting a blank entry. Use the
startIndex and endIndex properties on empty to determine whether this string is truly empty.

Silver Challenge

Replace the "Hello" string with an instance created out of its corresponding Unicode scalars. You can
find the appropriate codes on the internet.

For the More Curious: Substrings

In this chapter, you created a ClosedRange and used it to subscript the String playground. Doing
so meant that you grabbed the word “Hello” from the String within the playground constant and
assigned it to firstFive.

But here is a question: What is the type of firstFive? You might expect its type to be String, but it
is not. Option-click firstFive. This opens a pop-up where you can see the variable’s full declaration,
including its type (Figure 7.1).

Figure 7.1 Substrings

let firstFive = playground[rangel

Declaration

let firstFive: String.SubSequence

Declared In
Strings.playground

firstFive is a String.SubSequence. What is that? Click SubSequence in the pop-up to open a page
about the type in Apple’s developer documentation (Figure 7.2).

74

For the More Curious: Substrings

Figure 7.2 SubSequence documentation

ese M t
Swift 8 % swift [S| String String.SubSequence
* Featured
App Frameworks Type Alias

> (23 Accessibility

» 3% App Clips -

+ 0 Appit String.SubSequence

»> |25 Bundle Resources

P AT A sequence that represents a contiguous subrange of the Availability

> [21) Swift . -

» 62) SwiftUl collection’s elements. Xcode 9.0

> |23 TVML

> 3] TYMLKit Framework

> (23] TVUIKit Swift Standard Library
> [22) UIKit Declaration

> |23 WatchKit On This Page
.F-\lpp S typealias SubSequence = Substring Declaration &
> (23] Accounts Discussion (&)
>[I AddressBook

> |21 AddressBookUl

&

Nicrniccinn

The documentation says that SubSequence is a typealias for something called Substring. (You can
ignore what a typealias is for now. That will be covered in Chapter 20.) Click on Substring to see the
documentation for this type.

Take some time to read through the documentation. You will find that firstFive is what is called
a “slice” of the original String contained by the playground constant. A slice represents some
subcomponent of the original sequence.

Since firstFive is a slice of playground, it is a substring carved out of the original “Hello,
playground” String. Slicing a substring from an existing String does not create a new instance of
that type. This is efficient, because it means that firstFive does not need its own storage. It shares
its storage with playground. And Substring presents the same API as String, so you do not need to
worry about loss of functionality.

Imagine that you need to subscript the playground String for the word “play.” You would write code
like this:

let startPlay = playground.index(playground.startIndex, offsetBy: 7)
let endPlay = playground.index(startPlay, offsetBy: 3)

let playRange = startPlay...endPlay

let play = playground[playRangel

You offset the start index of playground by 7 to get the index for the letter p. Next, you offset this
index by 3 to get to the letter y. These indices formulate the ClosedRange that allows access to the
word “play” within the source String named playground. With the range in hand, you subscript the
playground to slice the word “play” from the original string.

75

Chapter 7 Strings

Figure 7.3 shows the relationships and types of the five variables.

Figure 7.3 The layout of substrings

let|playground: String|= “Hello, playground”

let|startPlay: String.Index|= playground.index(playground.startindex, offsetBy: 7)

Iet|playRange: ClosedRange<String.Index>|= startPlay...endPlay

let|endPlay: String.Index|= playground.index(startPlay, offsetBy: 3)

76

4

[z][z][=][c][s][=][E][e][=][~][=][=][+][«][~][~][e]

o

o

let

playground[playRange]

For the More Curious: Multiline Strings

For the More Curious: Multiline Strings

You learned in Chapter 4 that sometimes the whitespace in your code (like spaces and line breaks)
matters, such as when putting space on either side of a binary operator. Declaring a string is another
situation where whitespace — in this case, line breaks — matters.

As you learned above, you can use the \n escape sequence to cause a string to insert a new line when
printing to the console. But if you try to split a string across multiple lines in your code, you get a
compiler error. For example, this code yields multiple errors:

let tale = "It was the best of times,
it was the worst of times."
print(tale)

The compiler sees an unterminated string on the first line, generating one error. And it does not realize
that the second line is part of a string, so it tries to compile that line like any other code, generating
more errors.

If you want to split a string across multiple lines in your code, use three quotation marks at the start
and end of the string:

let tale = """
It was the best of times,
it was the worst of times.

print(tale)
There are a couple important rules about multiline strings:
» The opening quotation marks must be followed by a new line and the first line of the string.
* The closing quotation marks must begin a new line.

The indentation level of the closing quotation marks establishes the leading margin of the text. The
string above will be indented when printed to the console, because the text is indented relative to the
closing quotation marks. The string below will not be indented when printed, since the text and closing
quotation marks are aligned:

let tale = """
It was the best of times,
it was the worst of times.

print(tale)

When you have a lot of text that you want to store in a String, using this multiline string syntax can
save you some headaches (and lots of horizontal scrolling).

77

Part Il

Collections and Functions

As a programmer, you will often have a collection of related values that you need to keep together.
This part of the book will introduce you to Swift’s collection types, which help you do this.

This part of the book also introduces the concept of optionals in Swift. Optionals play an important
role in the language and provide a mechanism to represent the concept of nothing in a safe way. As you
will see, how Swift deals with optionals highlights the language’s approach to writing safe and reliable
code.

Finally, these chapters describe how to use the system functions provided by Swift to transform and
understand your data, as well as how to create your own functions to accomplish your goals.

Arrays

An important task in programming is to group together logically related values. For example, imagine
that your application keeps lists of a user’s friends, favorite books, travel locations, and so on. It is
often necessary to be able to keep those values together and pass them around your code. Collections
make these operations convenient.

Swift has a number of collection types. The first we will cover is called Array.

An array is an ordered collection of objects or values. Because it is ordered, each position in an array
is identified by an index. Arrays are typically used when the order of the values is important or useful
to know. The items in a Swift Array can be of any type — objects and values alike. And while all the
elements of an array must be of the same type, they do not need to be unique; a value can appear
multiple times in an array.

To get started, create a new macOS playground called Arrays.

81

Chapter 8 Arrays

Creating an Array

In this chapter, you will create an array that represents your bucket list: the things you would like to do
in the future. Begin by declaring your first array.

Listing 8.1 Creating an array

import Cocoa

n "
7

var bucketList: Array<String>

Here, you create a new variable called bucketList that is of the Array type. As you have seen, the var
keyword means that bucketList is a variable. Arrays declared with var are called mutable — another
way of saying they can be changed. There are also immutable arrays, which we will discuss later in this
chapter.

The <String> part of the declaration tells the bucketList array what sort of instances it can accept.
Arrays can hold instances of any type; bucketList will accept instances of String.

There is a shorthand syntax for declaring an array. Make the following change in your playground:

Listing 8.2 Changing the syntax

var bucketList: [String]

This syntax does the same work, but it is more convenient. Here, the brackets identify bucketList as
an instance of Array, and the String syntax tells bucketList what sort of values it can accept.

Your bucketList is declared, which means you have made a place to put an array — but you have not
yet created the array itself. If you were to try to put an item in your bucketList, you would get an
error saying that you are trying to add something before your bucketList is initialized.

Initialize the array with your first bucket list goal:

Listing 8.3 Initializing the array

var bucketList: [String]
bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]

You use the assignment operator = in conjunction with the Array literal syntax ["Climb Mt.
Everest"]. An Array literal is a shorthand syntax that initializes an array with whatever instances you
include. In this case, you initialize bucketList with an array containing a single item: "Climb Mt.
Everest".

82

Creating an Array

By the way, you are not required to initialize your variable with an array that contains elements. If you
did the bronze challenge in Chapter 7, you saw that you can create an empty string with no characters:
var empty = "". You can also create an empty array using [] to represent a literal array with no
elements. You would then have an initialized array variable, ready for use.

As you have seen previously, you can declare and initialize on the same line. Update your declaration
to also provide a value for your bucketList.

Listing 8.4 Initializing the array alongside its declaration

var bucketList: [String] = ["Climb Mt. Everest"] ["Climb Mt. Everest"]

There is one more way you can simplify your declaration. As with other types, Array instances can be
declared by taking advantage of Swift’s type inference capabilities. Remove the type declaration from
your code to use type inference.

Listing 8.5 Using type inference

var bucketList+—S¥ring} = ["Climb Mt. Everest"] ["Climb Mt. Everest"]

Your bucketList will still only accept instances of the String type, but now it infers the variable’s
type based on the type of the instance used to initialize it. If you were to try to add an integer to this
array, you would see an error telling you that you cannot add an instance of Int to your array, because
it is expecting instances of the String type. In this way, your variable is of a single, compound type: an
array of strings.

Note that if you are initializing an empty array using literal syntax, the compiler cannot infer the type
of instance that the array contains. You need to declare it explicitly, as in var emptyStringArray:
[String]l = []. You can also use Swift’s constructor syntax, if you prefer: var emptyStringArray =
[String] ().

Now that you know how to create and initialize an array, it is time to learn how to access and modify
your array’s elements.

83

Chapter 8 Arrays

Accessing and Modifying Arrays

So, you have a bucket list? Great! Sadly, you do not have many ambitions in it yet. But you are an
interesting person with a zest for life, so let’s add some values to your bucketList. Update your list
with another ambition.

Listing 8.6 Reading the classics

var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append("Read War and Peace") ["Climb Mt. Everest", "...

You are using append(_:) to add a value to bucketList. The append(_:) method takes an argument
of whatever type an array accepts and makes it a new element in the array. Arguments are data given to
a method for it to work with; you will learn more about them in Chapter 12.

The sidebar shows the value of bucketList, which now includes two strings.

Add more future adventures to your bucketList using the append(_:) function.

Listing 8.7 So many ambitions!

var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append('"Read War and Peace") ["Climb Mt. Everest", ".
bucketList.append("Go on an Arctic expedition") ["Climb Mt. Everest", "...
bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "

An Array like bucketList can hold many items — as many as you can dream up. But it is easy to find
out the number of items in an array. Arrays keep track of the number of items in them via the count
property. Use this property to access the number of bucket list items.

Listing 8.8 Counting items in the array

bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "...
bucketList.count 5

What happens when you accomplish one of the items on your list and are ready to take it off? Because
Arrays are ordered, you can access specific items in an Array via their indices.

Suppose you worked your way through War and Peace. Remove that goal from your list with the
function remove(at:), specifying the index position of "Read War and Peace". Arrays are zero-
indexed, so "Climb Mt. Everest" is atindex @ and "Read War and Peace" is at index 1.

Listing 8.9 Removing an item from the array

var bucketList = ["Climb Mt. Everest"] ["Climb Mt. Everest"]
bucketList.append('"Read War and Peace") ["Climb Mt. Everest", ".
bucketList.append("Go on an Arctic expedition") ["Climb Mt. Everest", "...
bucketList.append('"Scuba dive in the Great Blue Hole") ["Climb Mt. Everest", "...
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", ".
bucketList.count 5

bucketList.remove(at: 1) "Read War and Peace"
bucketList ["Climb Mt. Everest", "...

84

Accessing and Modifying Arrays

To confirm that the value in the first index was removed from your bucketList, mouse over the sidebar
next to the final line (bucketList) and click the Quick Look button (©). The Quick Look window
will appear (Figure 8.1).

Figure 8.1 Checking the Quick Look window

@ [] ED Ready to continue Arrays + EB
Arrays.playground
“ Arrays

import Cocoa

var bucketlist = ["Climb Mt. Everest"] ["Climb Mt. Everest"] [
bucketList.append("Read War and Peace") ["Climb Mt. Everest" "Read War and Peace"] [
bucketList.append("Go on an Arctic expedition") ["Climb Mt. Everest”, "Read War and Peace", "Go... [i
bucketList.append("Scuba dive in the Great Blue Hole") ["Climb Mt. Everest"”, "Read War and Peace", "Go... [i
bucketList.append("Find a triple rainbow") ["Climb Mt. Everest", "Read War and Peace". "Go... [
bucketList.count 5 mn i
bucketList.remove(at: 1) "Read War and Peace "Go on - [
bucketlList ["Climb Mt. Everest", " :)@ @

o) "Scuba...

h "Find a

Scroll down in the Quick Look window to see that the count of items in your array is now four. The
item formerly at the first index is gone. "Go on an Arctic expedition" now occupies the first index.

The ordered nature of arrays also means that you can use subscripting to get a handle on the values
they contain. Print the first three items in your bucketList array:

Listing 8.10 Subscripting to find your top three items

bucketList.remove(at: 1) "Read War and Peace"
bucketList ["Climb Mt. Everest", "...
print(bucketList[...2]) ["Climb Mt. Everest", "...

You have seen the subscripting bracket syntax before. Here, you use a half-open range to specify the
first three items in the array, which print to the console. You could also have used a closed range, like
bucketList[0...2], to access the same top three items or the basic subscripting syntax to log a single
item, such as bucketList[2].

85

Chapter 8 Arrays

Subscripting is a powerful feature. You can also use it to change an item at a particular index (or range
of indices). Add some detail to the second item in your bucketList:

Listing 8.11 Subscripting to append new information

bucketList ["Climb Mt. Everest", "...
print(bucketList[...2]) ["Climb Mt. Everest", "...
bucketList[1] += "™ with friends"

bucketList[1] "Go on an Arctic expedi...

You use the addition and assignment operator (+=) to add some text to the item at index 1. This
assignment works because the instance at index 1 is of the same type as the instance you added to it —
"Go on an Arctic expedition" and" with friends" are both Strings. As the sidebar shows, the
value at index 1 is now "Go on an Arctic expedition with friends".

Subscripting also allows you to replace an item in an array. Suppose you decide to climb a different
mountain, instead of Everest. You can replace the string at index O using the assignment operator:

Listing 8.12 Replacing an array item

print(bucketList[...2]) ["Climb Mt. Everest", "...
bucketList[1] += " with friends"

bucketList[1] "Go on an Arctic expedi...
bucketList[0] = "Climb Mt. Kilimanjaro" "Climb Mt. Kilimanjaro"
bucketList ["Climb Mt. Kilimanjaro...

Finally, suppose you decide on a new goal that is more important than going on an Arctic expedition
but less important than climbing Kilimanjaro. You can use the insert(_:at:) function to add a new
element to your array at a specified index.

Listing 8.13 Inserting a new ambition

bucketList[1] "Go on an Arctic expedi...
bucketList[@] = "Climb Mt. Kilimanjaro" "Climb Mt. Kilimanjaro"

bucketList.insert("Toboggan across Alaska", at: 1) ["Climb Mt. Kilimanjaro...
bucketList ["Climb Mt. Kilimanjaro...

The insert(_:at:) function has two arguments. The first argument takes the instance to add to the
array. The second argument takes the index where the new element should be added. Use the Quick
Look window (or the results sidebar) to confirm that your array now has five elements, with "Toboggan
across Alaska" in the second position.

86

Combining Arrays

Combining Arrays

You added items to your array using bucketList.append (and bucketList.insert, when you wanted
to add an element at a specific index). You can also add the contents of one array to another by looping
over the contents and passing them, one by one, to append(_:). Create a new list of adventures to add

to your bucketList:

Listing 8.14 Using a loop to append items from one array to another

bucketList.insert("Toboggan across Alaska", at: 1) ["Climb Mt. Kilimanjaro...
bucketList ["Climb Mt. Kilimanjaro...
var newltems = [["Bike across America",...

"Bike across America",
""Make a perfect souffle",
"Solve Fermat's enigma"

1
for item in newItems {
bucketList.append(item) (3 times)
}
print(bucketList) ["Climb Mt. Kilimanjaro...

You create an array for the bucket list items that you want to add, called newItems. Next, you make a
for-in loop that iterates through each item in the array and appends it to your bucketList. You use
the item variable in the local scope of the loop to append it to your bucketList array.

The console shows your complete array:

["Climb Mt. Kilimanjaro", "Toboggan across Alaska", "Go on an Arctic expedition
with friends", "Scuba dive in the Great Blue Hole", "Find a triple rainbow",
"Bike across America", "Make a perfect souffle", "Solve Fermat\'s enigma"]

This works, as the console shows, but it can be simplified. While there are times when looping over an
array makes sense, in this case you really just want to add one array to another. And just as you can use
+= to add one integer to another, you can use it to add one array to another.

Listing 8.15 Refactoring with the addition and assignment operator

var newItems = [["Bike across America",...
"Bike across America",
"Make a perfect souffle",
"Solve Fermat's enigma"

]

. .
For il Ee'l" 1|||_||e|.iIEen5 IEE' i

}

bucketList += newItems ["Climb Mt. Kilimanjaro...
print(bucketList) ["Climb Mt. Kilimanjaro...

The += operator makes for an easy way to add your array of new items to your existing bucket list.
Your console output should be unchanged.

87

Chapter 8 Arrays

Array Equality

You have seen that the equality operator == can be used to check whether two strings or two numeric
values are equal. It can also be used to check the equality of two arrays. Create a new array and use ==
to compare it to newItems.

Listing 8.16 Checking two arrays for equality

var newItems = [["Bike across America",...
"Bike across America",
""Make a perfect souffle",
"Solve Fermat's enigma"

1

bucketList += newItems ["Climb Mt. Kilimanjaro...
print(bucketList) ["Climb Mt. Kilimanjaro...
var anotherList = [["Bike across America",...

"Bike across America",
"Solve Fermat's enigma",
"Make a perfect souffle"

1

newItems == anotherlList false

Because the contents of the two arrays are the same, you might expect this check to resolve to true.
But the sidebar shows that it is false. Why?

Remember that arrays are ordered. That means two arrays that have the same values are not equal if the
ordering is different, and anotherList reverses the order of the second and third items. Put the items in
the same order to make the two lists equal.

Listing 8.17 Fixing anotherList

var anotherList = [["Bike across America",...
'"Bike across America",

'"Make a perfect souffle",
"Solve Fermat's enigma"

]

newltems == anotherlList true

If you get an error, double-check the commas that separate the elements in your array. It is legal (but
uncommon) to have a trailing comma after the last element, but it is illegal to be missing a comma
between two elements.

88

Immutable Arrays

Immutable Arrays

You have been doing a lot of tinkering with your bucket list array. As we mentioned early in this
chapter, you can also create an array that cannot be changed — an immutable array. Here is how.

Let’s say you are making an application that allows users to keep track of the lunches they eat each
week. Users will log what they ate and generate reports at a later time. You decide to put these meals
in an immutable array to generate the reports. After all, it does not make sense to change last week’s
lunches after they have been eaten.

Create an immutable array and initialize it with a week’s worth of lunches.

Listing 8.18 An immutable array

let lunches = [["Cheeseburger", "Veggi...
"Cheeseburger"”,
"Veggie Pizza",
"Chicken Caesar Salad",
"Black Bean Burrito",
"Falafel Wrap"
1

You use the let keyword to create an immutable array. If you were to try to modify the array in any
way, the compiler would issue an error stating that you cannot mutate an immutable array. If you even
try to reassign a new array to lunches, you would get an error from the compiler telling you that you
cannot reassign an instance to a constant created via the let keyword.

Documentation

The documentation for any programming language is an indispensable resource, and Swift’s is
no exception. Open the documentation that shipped with Xcode by clicking Help — Developer
Documentation at the top (Figure 8.2).

Figure 8.2 Help menu

Developer Documentation %0

Human Interface Guidelines

Xcode Help

What's New in Xcode

Release Notes

Developer Account Help

App Store Connect Help

Swift Programming Language Book
Report an Issue

89

Chapter 8 Arrays

A new documentation window will open. In the search bar at the top, type in “Array” and wait just a
moment. You will see some live search results populate, showing different documentation references

(Figure 8.3).

Figure 8.3 Searching for “Array”

-
eve [

¥ Featured
App Frameworks
Accessibility
App Clips
| AppKit
Bundle Resources
Foundation
Swift
SwiftUl
TVML
> |33 TVMLKit
> 23] TVUIKIt
+| UIKit
> [33) WatchKit
App Services

Accounts
AddressBook
» |23 AddressBookUI
> |23 AdSupport

> 23] ApplicationServices

AutomaticAssessmentConfig...

BackgroundTasks

5 %% Duisinace Mhat

Swift

Q Array| (>]

| Swift Swift Objective-C Other

Suggested

S Array ([(Swift

An ordered, random-access collection.

T

S P array |_Foundation

A representation of the ordered set as an array.

A P array Core ML

The array of feature providers.

cc Collections (Swift)

Store and organize data using arrays, dictionaries, sets, and other data structures.

A Cocoa Bindings (AppKit)
v

Automatically synchronize your data model with your app's interface using Cocoa...

Xe vForce (Accelerate

Perform transcendental and trigonometric functions on vectors of any length.

Classes Bridged to Swift Standard Library Value Types (Foundation_

Use bridged reference types when you need reference semantics or Foundation-s...

| NSArray (Foundation

An object representing a static ordered collection, for use instead of an Array co...

D S ArraySlice (" swift

A slice of an Array, ContiguousA or ArraySlice instance.

NinAiinnine

90

Documentation

Select the suggested item, which comes from the Swift standard library (the set of features, types, and

functions baked into the Swift language itself, as opposed to additional frameworks). This will open

the documentation for Swift’s Array type, as in Figure 8.4.

Figure 8.4 Array documentation

eve M
Swift (2]

Y Featured

App Frameworks
i Accessibility
:s App Clips

i2 AppKit

::/ Bundle Resources
*+ Foundation

=2 Swift

5| Swiftul

o= TVML

25 TVMLKit

> 13 TVUIKit

> |33 UIKit

> [32] WatchKit

VoW v v v v v v

w

App Services
> |33 Accounts
> [33] AddressBook
» |23 AddressBookUI
> |33 AdSupport
> i3] ApplicationServices
> |15 AutomaticAssessmentConfig...
> |23 BackgroundTasks
> [33] Business Chat
> |23 CallKit
> 23] CareKit
> |33 CarPlay
> [3%) ClassKit
> |2%) ClockKit
> |23 CloudKit
<+ Combine
i Contacts
*% ContactsUl
<+ Core Data

Q. Array 1) M

13 Swift) (S| Array

Generic Structure
Array

An ordered, random-access collection.

Availability Framework On This Page

Xcode 6.0.14 Swift Standard Library Declaration)
Overview ()
Topics &)

Relationships &

Declaration

@frozen struct Array<Element>

Overview

Arrays are ane of the most commonly used data types in an app. You
use arrays to organize your app's data. Specifically, you use the Array
type to hold elements of a single type, the array's Element type. An
array can store any kind of elements—from integers to strings to
classes.

Swift makes it easy to create arrays in your code using an array literal:
simply surround a comma-separated list of values with square
brackets. Without any other information, Swift creates an array that

Take some time to explore the documentation for Array. Do not worry if you do not recognize or
understand all the syntax you see here yet. Get to know the organization of the documentation to save
yourself a lot of time in the future. You will be visiting these pages regularly.

91

Chapter 8 Arrays

Bronze Challenge
Look at the array below.
var toDoList = ["Take out the trash", "Pay bills", "Cross off finished items"]

Use the documentation to find a property defined on the Array type that will tell you whether toDoList
contains any elements.

Silver Challenge

Enter the toDoList array from the bronze challenge in your playground. Use a loop to reverse the order
of the elements of this array. Log the results to the console.

Then, examine the Array documentation to see whether there is a more convenient way to do this
operation. (There is.)

Finally, use the Array documentation to find an easy way to rearrange the items in your toDoList into
a random order.

92

Optionals

In Swift, it is illegal to use a variable before you have given it a value. And once a value has been
set, it is impossible to take the value away; you can only assign another value of the same type. But
sometimes you need to represent the absence of a value, or a value that might go away, without
crashing your app.

If you ask someone “How many beans are in this jar?”, you might expect an integer answer (and
declare an Int variable to store it). But if they answer “I don’t know,” what should you put in your
variable? @7 Some other number? If your variable can only store values of type Int, what do you do so
that you can move on with your program and deal with the lack of an answer later?

You need a way to declare a variable that might have an Int or might be empty — or might become
empty later, after a value has been assigned.

Swift has a type called Optional to represent the possible absence of a value. You can think of
Optional as a small container type that can hold either a ready-for-use instance of another type or
nothing at all. If an instance of type Optional has no value associated with it, we say that its value is
nil.

This chapter covers how to declare optionals, how to use optional binding to extract the value from an
optional that is not nil, and how to use optional chaining to query a sequence of optional values.

93

Chapter 9 Optionals

Optional Types

Create a new macOS playground and name it Optionals.

There is both a long-form syntax and a shorter, more convenient syntax for declaring and using an
optional. In practice, developers exclusively use the shorthand syntax. You are going to start with the
long form because it more clearly demonstrates how optionals work, and then you will switch to using
the more convenient syntax for the rest of this book. Declare your first optional instance:

Listing 9.1 Declaring an optional instance

import Cocoa

[T} "
7

var errorCodeString: Optional<String>
errorCodeString = Optional("404") "404"

Optional<String> indicates that your variable is of type Optional, and the angle bracket syntax —
like in the declaration of an Array — indicates that it is designed to hold a value of the String type.
This means your optional will contain either an instance of String or the value nil. The second line,
errorCodeString = Optional('404"), creates an instance of the Optional type and stores the string
"404" in it.

As with Array and other container types, there is a shorthand syntax for Optionals that is more stylish.
Update your playground to use it:

Listing 9.2 Using shorthand optional syntax

var errorCodeString: String? nil
errorCodeString = "404" 404"

This preferred syntax does exactly the same work as before, but it hides some of the details of what
is really happening. The ? in String? tells the compiler that you want an Optional that will hold a
String or nil.

A more surprising change has happened on the second line: The constructor syntax (Optional(...))
has disappeared. Now, the value of errorCodeString (which, remember, is of type Optional) is
assigned to 404" — which is a String.

Normally, assigning a value of one type to a variable of a different type is a type mismatch and causes
a compiler error. But the compiler has no problem with this assignment. Why is this case different?

Optionals are a common feature of Swift code. The creators of Swift knew that creating lots of
optionals manually would be cumbersome for developers, so they overloaded the assignment operator
(=) to allow an optional on the lefthand side and an instance of the optional’s associated type (String,
in this case) on the right. (“Overloading” means creating an additional implementation of an operator
or function.)

The compiler takes care of the rest, creating the Optional instance and putting the assigned String in
it. The result is that you have a much more concise and convenient way to create and use optionals.

94

Optional Types

When you need to store a value that may come and go, you should use Optional. When you see an
optional in code, you know that the value is impermanent — and, as you will see, the compiler will
force you to check for a value before trying to use it. This system of purpose-built types and forced
checks helps make Swift an expressive, safe language.

Now that you have declared an optional and given it a value, log the value of the optional to the
console.

Listing 9.3 Logging the value of the optional to the console

var errorCodeString: String? nil
errorCodeString = "404" "404"
print(errorCodeString) "Optional("404")\n"

(You can ignore the compiler warning that appears; you will see it again later in this book.)

Logging the value of errorCodeString to the console shows Optional("404"). What would
happen if you did not give errorCodeString a value? Try it! Comment out the line assigning a
value to errorCodeString. (Remember that you can use the keyboard shortcut Command-/ to toggle
commenting on and off.)

Listing 9.4 Logging the nil value of the optional to the console

var errorCodeString: String? nil
// errorCodeString = "404"
print(errorCodeString) "nil\n"

Checking the console, you will see that it has logged the value nitl.

As you work through this chapter, you might find it helpful to comment this line out periodically so
that you can see how variables with a nil value behave. Just be sure to uncomment the line before
moving forward.

On its own, logging nil to the console is not very helpful. As a developer, you will often want to know
when your variables are nil so that you can execute code based on whether there is a value. In those
circumstances, you can use a conditional to check whether a variable’s value is nil.

For example, let’s say that if some operation generated an error, you would want to assign that error to
a new variable and log it to the console. Add the following code to your playground.

Listing 9.5 Adding a condition

var errorCodeString: String? nil
++ errorCodeString = "404" 404"
if errorCodeString != nil {
let theError = errorCodeString! 404"
print(theError) "404\n"
}

You can compare an optional value to nil to determine whether it contains a value, and here you set up
a conditional with code that executes if errorCodeString is not nil. (Remember that != means “is not
equal to.”)

95

Chapter 9 Optionals

In the body of the conditional, you create a new constant called theError to hold the value of
errorCodeString. To do this, you append ! to errorCodeString. The exclamation mark here does
what is called forced unwrapping.

Forced unwrapping accesses the value stored inside the Optional, which allows you to grab "404"
and assign it to the constant theError. It is called “forced” unwrapping because it tries to access the
underlying value whether or not there is actually a value there at all. That is, the ! assumes there is a
value; if there is no value, unwrapping the value in this way would lead to a runtime error.

There can be danger in forced unwrapping. If there is no value inside the optional, your program
will trap at runtime. In this case, you check to make sure that errorCodeString is not nil, so force-
unwrapping it is not dangerous. Nonetheless, we suggest that you use forced unwrapping cautiously
and sparingly.

Finally, you log this new constant’s value to the console.

What would have happened if you had not unwrapped errorCodeString’s value but simply assigned
the optional to the theError constant? The value of theError would still have been logged to the
console correctly. So, why unwrap the optional’s value and assign it to a constant? The answer requires
a better understanding of the optional type.

If you had omitted the exclamation mark at the end of errorCodeString, you would have assigned
errorCodeString, an optional String, to the constant theError. Both errorCodeString and
theError would have been of type String?.

Try it yourself: Delete the exclamation mark, then Option-click theError. Observe its inferred type:
String?. Replace the exclamation mark and Option-click theError again. Its inferred type is now just
String.

So by using the exclamation mark to forcibly unwrap the optional, you are assigning the actual String
value held by errorCodeString to theError. In your code, errorCodeString’s type is String?, and
theError’s type is String. These are not the same types — if you have a String variable, you cannot
set it to the value of a String? without unwrapping the optional.

Creating a constant inside the conditional is a little clunky. Fortunately, there is a better way to
conditionally bind an optional’s value to a constant. It is called optional binding.

Optional Binding

Optional binding is a useful pattern to detect whether an optional contains a value. If there is a value,
you assign it to a temporary constant or variable and make it available within a conditional’s first
branch of execution. This can make your code more concise while also retaining its expressive nature.
Here is the basic syntax:

if let temporaryConstant = anOptional {

// Do something with temporaryConstant
} else {

// There was no value in anOptional - anOptional is nil
¥

96

Optional Binding

With this syntax in hand, refactor the example above to use optional binding.

Listing 9.6 Optional binding

var errorCodeString: String? nil
errorCodeString = "404" "404"
P codeStrs s it
if let theError = errorCodeString {

print(theError) "404\n"

As you can see, the syntax for optional binding is more or less the same as the syntax that creates

a constant within a conditional. The constant theError moves from the body of the conditional to
its first line. This makes theError a temporary constant that is available within the first branch of
the conditional. In other words, if there is a value within the optional, a temporary constant is made
available for use in the block of code that is executed if the condition is evaluated as true.

(Note that you could have declared theError with the var keyword if you needed to manipulate the
value inside the first branch of the conditional.)

Also, you no longer forcibly unwrap the optional. If the conversion is successful, then this operation is
done for you, and the optional’s value is made available in the temporary constant you declared.

Suppose you wanted to convert errorCodeString to its corresponding integer representation. You
could accomplish this by nesting if let bindings.

Listing 9.7 Nesting optional binding

var errorCodeString: String? nil
errorCodeString = "404" 404"
if let theError = errorCodeString {

printtEheError)
if let errorCodeInt = Int(theError) {

print("\(theError): \(errorCodeInt)") "404: 404\n"
}

b

Notice that the second if let is within the first, which makes theError available to use in the second
optional binding.

Here, you use Int(theError) to initialize a new Int instance with the value of theError. But
initializing an Int from a String can fail; for example, the string "Hello!" does not naturally translate
to an integer. Therefore, Int(theError) returns an optional, in case the string contains non-numeric
characters.

The result of Int(theError) is unwrapped and assigned to errorCodeInt in the second binding,
which makes the integer value available for use. You can then use both of these new constants in a call
to print() to log them to the console.

Nesting optional binding can be convoluted. While it is not foo bad with just a couple of optionals, you
can imagine how complicated this strategy can get if you have several more optionals that need to be
unwrapped. Programmers call deeply nested syntax the “Pyramid of Doom,” a reference to the many
indentation levels.

97

Chapter 9 Optionals

Thankfully, you can unwrap multiple optionals in a single if let binding. This feature helps you
avoid the need for nesting multiple if let calls. Refactor your playground to unwrap both optionals in
one line. (We have broken them across two lines to fit on the page.)

Listing 9.8 Unwrapping multiple optionals

var errorCodeString: String? nil
errorCodeString = "404" "404"
if let theError = errorCodeString,

let errorCodeInt = Int(theError) {

+Hf—tet—errortodent—m—IntftheErrer)—t
print("\(theError): \(errorCodeInt)") "404: 404\n"
1

¥

You now unwrap two optionals in a single line with if let theError = errorCodeString, let
errorCodeInt = Int(theError). First, errorCodeString is unwrapped, and its value is given to
theError. You use Int(theError) to try to convert theError into an Int. Because this results in an
optional, you next unwrap that optional and bind its value to errorCodeInt.

If either of these bindings returns nil, then the success block of the conditional will not execute. In
this case, errorCodeString does have a value and theError can be successfully unwrapped, because
theError can be converted into an integer.

Optional binding can even perform additional checks that work very similarly to what you have already
seen with standard if statements. Imagine that you only care about an error code if the value is 404.

Listing 9.9 Optional binding and additional checks

var errorCodeString: String? nil
errorCodeString = "404" "404"
if let theError = errorCodeString,
let errorCodeInt = Int(theError),
errorCodeInt == 404 {
print("\(theError): \(errorCodeInt)") "404: 404\n"

(Do not overlook the added comma in this code.)

Now, the conditional evaluates to true only if errorCodeInt is equal to 404. And the final clause
(errorCodeInt == 404) is only executed if both optionals are successfully unwrapped. Because
theError is "404", and that string can be converted to the integer 404, all conditions are met and 404:
404 is logged to the console.

98

Implicitly Unwrapped Optionals

Implicitly Unwrapped Optionals

At this point it is worth mentioning implicitly unwrapped optionals, though you will not use them
much until we discuss classes and class initialization later in this book. Implicitly unwrapped optionals
are like regular optional types, with one important difference: You do not need to unwrap them. How
is that the case? It has to do with how you declare them. Take a look at the code below, which refactors
the example above to work with an implicitly unwrapped optional.

var errorCodeString: String!
errorCodeString = 404"
print(errorCodeString)

Here, the optional is declared with !, which signifies that it is an implicitly unwrapped optional. The
conditional is removed because using an implicitly unwrapped optional signifies a great deal more
confidence than its more humble counterpart. Indeed, much of the power and flexibility associated with
the implicitly unwrapped optional is related to the idea that you do not need to unwrap it to access its
value.

But note that this power and flexibility comes with some danger: Accessing the value of an implicitly
unwrapped optional will result in a runtime error if it does not have a value. For this reason, we suggest
that you do not use an implicitly unwrapped optional if you believe that the instance has any chance of
becoming nil. Indeed, implicitly unwrapped optionals are so unsafe that Swift will attempt to give you
regular optionals if you are not specific about wanting an implicitly unwrapped optional.

Let’s revisit the example above to see this in action. Suppose you set errorCodeString to be nil.
What would happen if you declared a constant named anotherErrorCodeString with type String
and tried to assign to it the contents (or lack thereof) of errorCodeString? If you were to assign
errorCodeString to another instance, what type do you think Swift would infer for that new instance,
if you were not explicit about the type?

var errorCodeString: String! = nil
let anotherErrorCodeString: String = errorCodeString // Will this work?
let yetAnotherErrorCodeString = errorCodeString // Optional? Implicitly unwrapped?

For the first question, you would see a trap. If errorCodeString is nil, assigning that value to
anotherErrorCodeString, which is of type String, results in a runtime error. Why? Because
anotherErrorCodeString cannot be optional, due to its explicitly declared type.

As for the second question, Swift will infer the safest thing possible: a regular optional.
yetAnotherErrorCodeString would be a String? whose value is nil. You would have to unwrap the
optional to access its value. This feature makes type inference safe by default — and therefore increases
the safety of all your code.

If you want yetAnotherErrorCodeString to be an implicitly unwrapped optional, then the compiler
requires you to be explicit. You need to declare that the type of optional that you want is implicitly
unwrapped, as in let yetAnotherErrorCodeString: String! = errorCodeString.

Using implicitly unwrapped optionals is best limited to somewhat special cases. As we indicated, the
primary case concerns class initialization, which we will discuss in detail in Chapter 17. For now, you
know enough of the basics of implicitly unwrapped optionals to understand what is going on if you
find them in the wild.

99

Chapter 9 Optionals

Optional Chaining

Like optional binding, optional chaining provides a mechanism for querying an optional to determine
whether it contains a value. One important difference between the two is that optional chaining allows
the programmer to chain numerous queries into an optional’s value. If each optional in the chain
contains a value, then the call to each succeeds, and the entire query chain will return an optional of the
expected type. If any optional in the query chain is nil, then the entire chain will return nil.

Let’s begin with a concise example. Imagine that your app has a custom error code. If you encounter a
404, you want to use your custom error code instead, as well as an error description you will display to
the user. Add the following to your playground.

Listing 9.10 Optional chaining

var errorCodeString: String? nil
errorCodeString = "404" "404"
var errorDescription: String? nil

if let theError = errorCodeString,
let errorCodeInt = Int(theError),
errorCodelInt == 404 {

errorDescription =
"\ (errorCodeInt + 200): resource not found." "604: resource not found."

}

var upCaseErrorDescription =
errorDescription?.uppercased() "604: RESOURCE NOT FOUND."

You add a new var named errorDescription. Inside the if let success block, you create a new
interpolated string and assign that instance to errorDescription. When you create the interpolated
string, you increase 404 to your custom error code value of 604 using \ (errorCodeInt + 200) (this
is arbitrary and theoretically unique to your app). Last, you add some more informative text about the
error.

Next, you use optional chaining to create a new instance of the error description in all uppercase text,
perhaps to indicate its urgency. This instance is called upCaseErrorDescription.

The question mark appended to the end of errorDescription signals that this line of code initiates the
optional chaining process. If there is no value in errorDescription, then there is no string to make
uppercase. In that case, upCaseErrorDescription would be set to nil. (Remember: Optional chaining
returns an optional.)

Because errorDescription does have a value in it, you made the description uppercase and reassigned
that new value to upCaseErrorDescription. The results sidebar should display the updated value:
'""604: RESOURCE NOT FOUND."

100

Modifying an Optional in Place

Modifying an Optional in Place

You can also modify an optional “in place” so that you do not have to create a new variable or constant.
Add a call to the append(_:) method on upCaseErrorDescription.

Listing 9.11 Modifying in place

var upCaseErrorDescription =

errorDescription?.uppercased() "604: RESOURCE NOT FOUND."
upCaseErrorDescription?.append(" PLEASE TRY AGAIN.") ()
upCaseErrorDescription "604: RESOURCE NOT FOUN...

The sidebar result does not fit on the page, but it reads "604: RESOURCE NOT FOUND. PLEASE TRY
AGAIN."

Modifying an optional in place can be extremely helpful. In this case, all you want to do is update a
string inside an optional. You do not need anything returned. If there is a value inside the optional, then
you want to add some text to the string. If there is no value, then you do not want to do anything.

This is exactly what modifying an optional in place does. The ? at the end of
upCaseErrorDescription works similarly to optional chaining: It exposes the value of the optional
if it exists. If upCaseErrorDescription were nil, then the optional would not have been modified
because no value would exist to update.

It is worth mentioning that you can also use the ! operator in the code above. This operation
would forcibly unwrap the optional — which can be dangerous, as you have learned. If
upCaseErrorDescription were nil, then upCaseErrorDescription!.append(" PLEASE TRY
AGAIN.") would lead to a runtime crash.

As we said earlier, it is best to use ? most of the time. The ! operator should be used only when you
know that the optional will not be nil or that the only reasonable action to take if the optional is nil is to
crash.

To observe how nil propagates through your program, comment out the assignment of
errorCodeString: errorCodeString = "404". Try to understand each change that you see in the
sidebar in the context of what you have learned so far. Which other values became nil, and why?

Uncomment the assignment before continuing.

101

Chapter 9 Optionals

The Nil Coalescing Operator

A common operation when dealing with optionals is to either get the value (if the optional contains

a value) or to use some default value if the optional is nil. For example, when extracting the error
information from errorDescription, you might want to default to "No error." if the string does not
contain an error. You could accomplish this with optional binding.

Listing 9.12 Using optional binding to parse errorDescription

upCaseErrorDescription?.append(" PLEASE TRY AGAIN.") ()

upCaseErrorDescription ""604: RESOURCE NOT FOUN...
let description: String

if let errorDescription = errorDescription {

description = errorDescription "604: resource not found."
} else {

description = "No error."
}
This is another good time to try commenting out errorCodeString = "404" to see the difference nil

makes in the following code. Remember to uncomment the line before continuing.

This technique works, but it has a problem. You had to write a lot of code for what should be a simple
operation: Get the value from the optional or use "No error." if the optional is nil. This can be solved
via the nil coalescing operator: 7?. Let’s see what that looks like.

Listing 9.13 Using the nil coalescing operator

s otion: .
tet-deseription—String s
+ Eit EI[SIEESEIEFEESH! errerbeseription—t
Fetse—
+
let description = errorDescription ?? "No error." "604: resource not found."

The lefthand side of ?? must be an optional — errorDescription, in this case, which is an optional
String. The righthand side must be a value of type the optional holds — "No error.", in this case,
which is a String. If the optional on the lefthand side is nil, ?? returns the value on the righthand side.
If the optional is not nil, ?? returns the value contained in the optional.

Try changing errorDescription so that it does not contain an error and confirm that description gets
the value "No error.".

Listing 9.14 Changing errorDescription

errorDescription = nil
let description = errorDescription ?? "No error"

Even if you are already a programmer, optionals may be an entirely new concept. Be patient with
yourself if they feel strange — you will get lots of practice with them throughout the rest of this book.
This chapter was fairly involved, and you learned a lot of new material.

102

Bronze Challenge

Here is the bottom line: As a developer, you will often need to represent nil in an instance. Optionals
help you keep track of whether instances are nil and provide a mechanism to respond appropriately. If
optionals do not quite feel comfortable yet, do not worry. You will be seeing them quite a bit in future
chapters.

Bronze Challenge

Optionals are best used for things that can literally be nil. That is, they are useful in representing the
complete absence of something.

But nonexistence is not the same as zero. For example, if you are writing code to model a bank account
and the user has no balance in a given account, the value @ is more appropriate than nil. The user does
not lack an account — what they are missing is money! Take a look at the examples below and select
which type would model them best.

* A person’s age: Int or Int?
* A person’s middle name: String or String?

* A person’s kids’ names: [String] or [String]? or [String?]

Silver Challenge

Earlier in the chapter we told you that accessing an optional’s value when it is nil will result in a
runtime error. Make this mistake by force-unwrapping an optional when it is nil. Next, examine the
error and understand what the error is telling you.

Gold Challenge

Open your playground from Chapter 8, Arrays.playground.

Consult the documentation to find a method on Array that will locate the index of "Go on an Arctic

expedition" in your bucketList. This method will return an Index?. Unwrap that value and use it to
compute the index that is two positions later in the array. Last, use this new index to find the String at
that position within your bucketList.

Look at the documentation for the String and Array types. What other properties and methods work
with optionals? Why?

103

10

Dictionaries

Chapter 8 introduced you to Swift’s Array type. The Array type is a useful collection when the order
of the elements in the collection is important.

But order is not always important. Sometimes you simply want to hold on to a set of information in a
container and then retrieve the information as needed. That is what dictionaries are for.

A Dictionary is a collection type that organizes its content by key-value pairs. The keys in a dictionary
map onto values. A key is like the ticket you give to the attendant at a coat check. You hand your

ticket over, and the attendant uses it to find your coat. Similarly, you give a key to an instance of the
Dictionary type, and it returns to you the value associated with that key.

The keys in a Dictionary must be unique. This requirement means that every key will uniquely map
onto its value. To continue the coat check metaphor, a coat check might have several navy blue coats.
So long as each coat has its own ticket, you can be sure that the attendant will be able to find your navy
blue coat when you return with your ticket.

In this chapter, you will see how to:
* create and initialize a dictionary
* loop through dictionaries
* access and modify dictionaries via their keys

You will also learn more about keys and how they work, especially as they pertain to Swift. Last, you
will see how to create arrays out of your dictionary’s keys and values.

105

Chapter 10 Dictionaries

Creating a Dictionary

The general syntax to create a Swift dictionary is var dict: Dictionary<Key, Value>. This code
creates a mutable instance of the Dictionary type called dict. The declarations for what types the
dictionary’s keys and values accept are inside the angle brackets (<>), denoted here by Key and Value.

The values stored in a dictionary can be of any type, just like the values in an array. The only type
requirement for keys in a Swift Dictionary is that the type must be hashable. You will learn more
about hashability in Chapter 25, but the basic concept is that each Key type must provide a mechanism
to guarantee that its instances are unique. Swift’s basic types, such as String, Int, Float, Double, and
Bool, are all hashable.

Before you begin typing code, let’s take a look at the different ways you can explicitly declare an
instance of Dictionary:

var dictl: Dictionary<String, Int>
var dict2: [String:Int]

Both options yield the same result: an uninitialized Dictionary whose keys are String instances and
whose values are of type Int. The second example uses the dictionary literal syntax ([:1).

As with Swift’s other data types, you can also declare and initialize a dictionary in one line. In that
case, you can explicitly declare the types of the keys and values or take advantage of type inference:

var companyZIPCode: [String:Int] = ["Big Nerd Ranch": 30307]
var sameCompanyZIPCode = ["Big Nerd Ranch": 30307]

Again, these two options yield the same result: a dictionary initialized with a single key-value pair
consisting of a String key, "Big Nerd Ranch", and an Int value, 30307.

It is useful to take advantage of Swift’s type-inference capabilities. Type inference creates code that is
more concise but just as expressive. Accordingly, you will stick with type inference in this chapter.

Time to create your own dictionary. Start with a new macOS playground called Dictionary. Declare a
dictionary called movieRatings and use type inference to initialize it with some data.
Listing 10.1 Creating a dictionary

import Cocoa

var movieRatings = ["Tron": 4, "WarGames":...
["Tron": 4, "WarGames": 5, "Sneakers": 4]

(Since dictionaries are not ordered, the sidebar result may show the key-value pairs in a different order
each time your code executes.)

You created a mutable dictionary to hold movie ratings using the Dictionary literal syntax. Its keys are
instances of String and represent individual movies. These keys map onto values that are instances of
Int that represent the ratings of the movies.

As an aside, just as you can create an array literal with no elements using [], you can create a
dictionary with no keys or values using [:]. As with arrays, this syntax omits anything the compiler
could use to infer the key and value types, so that information would have to be declared explicitly.

106

Accessing and Modifying Values

Accessing and Modifying Values

Now that you have a mutable dictionary, how do you work with it? You will want to read from and
modify the dictionary. Begin by using count to get some useful information about your dictionary.

Listing 10.2 Using count

var movieRatings = ["Tron": 4, "WarGames":...
["Tron": 4, "WarGames": 5, "Sneakers": 4]
movieRatings.count 3

Now, read a value from the movieRatings dictionary.

Listing 10.3 Reading a value from the dictionary

var movieRatings = ["Tron": 4, "WarGames":...
["Tron": 4, "WarGames": 5, "Sneakers": 4]

movieRatings.count 3

let tronRating = movieRatings["Tron"] 4

The brackets in movieRatings["Tron"] are the subscripting syntax you have seen before. But because
dictionaries are not ordered, you do not use an index to find a particular value. Instead, you access
values from a dictionary by supplying the key associated with the value you would like to retrieve. In
the example above, you supply the key "Tron", so tronRating is set to 4 — the value associated with
that key.

Option-click the tronRating instance to get more information (Figure 10.1).

Figure 10.1 Option-clicking tronRating

e [Dictionaries | Build Dictionaries (Playground) 2: Succeeded | Today at 1:16 PM + B

Declaration

let tronRating: Int?

Declared In

Dictionaries.playground

"Sneakers": 4] ["Sneakers": 4, "Tron": 4, "WarG...
movVierat. (gsS.count 3
let tronRating = movieRatings["Tron"] 4

6 |

8 »

Xcode tells you that its type is Int?, but movieRatings has type [String: Int]. Why the
discrepancy? When you subscript a Dictionary instance for a given key, the dictionary will return an
optional matching the type of the Dictionary’s values. This is because the Dictionary type needs a
way to tell you that the value you asked for is not present. For example, you have not rated Primer yet,
so let primerRating = movieRatings["Primer"] would result in primerRating having type Int?
and being set to nil.

107

Chapter 10 Dictionaries

A dictionary’s keys are constants: They cannot be mutated. The informal contract a dictionary makes
is something like “Give me a value, and a key to store it by, and I’ll remember both. Come back with
the key later, and I’ll look up its value for you.” If a key were able to mutate, that could break the
dictionary’s ability to find its related value later.

But values can be mutated. Modify a value in your dictionary of movie ratings:

Listing 10.4 Modifying a value

movieRatings.count 3
let tronRating = movieRatings["Tron"] 4
movieRatings["Sneakers"] = 5 5
movieRatings ["Sneakers": 5, "WarGam...

As you can see, the value associated with the key "Sneakers" is now 5.

There is another useful way to update values associated with a dictionary’s keys: the
updateValue(_:forKey:) method. It takes two arguments: The first, value, takes the new value. The
second, forKey, specifies the key whose value you would like to change.

There is one small caveat: updateValue(_: forKey:) returns an optional, because the key may not
exist in the dictionary. But that actually makes this method more useful, because it gives you a handle
on the last value to which the key mapped, using optional binding. Let’s see this in action.

Listing 10.5 Updating a value

movieRatings ["Sneakers"] = 5 5
movieRatings ["Sneakers": 5, "WarGam...
let oldRating: Int? = 4

movieRatings.updateValue(5, forKey: "Tron")
if let lastRating = oldRating, let currentRating =
movieRatings["Tron"] {
print("old rating: \(lastRating)") "old rating: 4\n"
print("current rating: \(currentRating)") "current rating: 5\n"

108

Adding and Removing Values

Adding and Removing Values

Now that you have seen how to update a value, let’s look at how you can add or remove key-value
pairs. Begin by adding a value.

Listing 10.6 Adding a value

if let lastRating = oldRating, let currentRating =
movieRatings["Tron"] {

print("old rating: \(lastRating)") "old rating: 4\n"
print("current rating: \(currentRating)") "current rating: 5\n"
¥
movieRatings["Hackers"] = 5 5

Here, you add a new key-value pair to your dictionary using the syntax movieRatings ["Hackers"] =
5. You use the assignment operator to associate a value (in this case, 5) with the new key ("Hackers").

Next, remove the entry for Sneakers.

Listing 10.7 Removing a value

if let lastRating = oldRating, let currentRating =
movieRatings["Tron"] {

}
movieRatings ["Hackers"] = 5 5
movieRatings.removeValue(forKey: "Sneakers") 5

The method removeValue(forKey:) takes a key as an argument and removes the key-value pair that
matches what you provide. Now, movieRatings has no entry for Sneakers.

Additionally, this method returns the value the key was associated with, if the key is found and
removed successfully. In the example above, you could have typed let removedRating: Int? =
movieRatings.removeValue(forKey: "Sneakers"). Because removeValue(forKey:) returns an
optional of the type that was removed, removedRating would be an optional Int. Placing the old value
in a variable or constant like this can be handy if you need to do something with the old value.

However, you do not have to assign the method’s return value to anything. If the key is found in the
dictionary, then the key-value pair is removed whether or not you assign the old value to a variable.

You can also remove a key-value pair by setting a key’s value to nil.

Listing 10.8 Setting the key’s value to nil

if let lastRating = oldRating, let currentRating =
movieRatings["Tron"] {

¥
movieRatings ["Hackers"] = 5 5
movieRatings["Sneakers"] = nil nil

The result is essentially the same, but this strategy does not return the removed key’s value.

109

Chapter 10 Dictionaries

Looping over a Dictionary

You can use for-in to loop through a dictionary. Swift’s Dictionary type provides a convenient
mechanism to loop through the key-value pairs for each entry. This mechanism breaks each entry
into its constituent parts by providing temporary constants representing the key and the value. These
constants are placed within a tuple that the for-in loop can access inside its body.

Listing 10.9 Looping through your dictionary

movieRatings[''Hackers"] = 5 5
movieRatings ["Sneakers"] = nil nil
for (key, value) in movieRatings {

print("The movie \(key) was rated \(value).") (3 times)
}

Notice how you use string interpolation to combine the values of key and value into a single string.
You should see that each movie and its rating was logged to the console.

You do not have to access both the key and the value of each entry. A Dictionary has properties for its
keys and values that can be accessed separately if you only need the information from one.

Listing 10.10 Accessing just the keys

movieRatings['"Sneakers"] = nil nil
for (key, value) in movieRatings {

print("The movie \(key) was rated \(value).") (3 times)
}
for movie in movieRatings.keys {

print("User has rated \(movie).") (3 times)
}

This new loop iterates through movieRatings’s keys (in an unpredictable order, since dictionaries are
unordered) and logs each movie the user has rated to the console.

110

Immutable Dictionaries

Immutable Dictionaries

Creating an immutable dictionary works much the same as creating an immutable array. You use the
let keyword to tell the Swift compiler that you do not want your instance of Dictionary to change.
Convert movieRatings into an immutable dictionary by changing var to let in its declaration (you
will change it back shortly).

Listing 10.11 Making the dictionary immutable

var let movieRatings = ["Tron": 4, "WarGames":...
["Tron": 4, "WarGames": 5, "Sneakers": 4]

The playground should now show an error on each line where a change has been made to the
dictionary, regardless of the nature of the change. An immutable dictionary cannot be modified in any
way.

Go ahead and change the declaration back to var to make the errors go away.

Listing 10.12 Making the dictionary mutable again

tet var movieRatings = ["Tron": 4, "WarGames":...
["Tron": 4, "WarGames": 5, "Sneakers": 4]

Translating a Dictionary to an Array

Sometimes it is helpful to pull information out of a dictionary and put it into an array. Suppose, for
example, that you want to list all the movies that have been rated (without their ratings).

In this case, it makes sense to create an instance of the Array type with the keys from your dictionary.

Listing 10.13 Sending keys to an array

for movie in movieRatings.keys {
print("User has rated \(movie).") (3 times)
¥

let watchedMovies = Array(movieRatings.keys) ["WarGames", "Tron", "H...

You use the Array() syntax to create a new [String] instance. This is not the first time that you have
initialized a new instance of a type with a value of another type. You will learn how this works under
the hood in Chapter 17, but for now it is enough to recognize that some types can be initialized by
passing arguments into this parenthetical syntax.

In this case, inside the (), you pass the dictionary’s keys. The result is that watchedMovies is a
constant instance of the Array type representing all the movies a user has in the movieRatings
dictionary.

111

Chapter 10 Dictionaries

Silver Challenge

It is not uncommon to place instances of the Array type inside a dictionary. Create a dictionary that
represents a league of sports teams. Each dictionary key will be the name of an individual team (three
teams is enough), and each value will be an array of the names of five players on that team. (You can
make up the team and player names.)

Nesting data structures like this allows you to organize hierarchical data within a single object.

In the console, log only the dictionary’s player names. Your result should look something like the
output below. (We have formatted the array so that the names fit on the page. Your array of names may
appear in a single long line.)

The NWSL has the following players: ["Jane", "Michaela", "Rachel", "Allysha",
"Janine", "Sydney", "Toni", '"Shelina", "Emily", "Chioma", "Kailen",
"McKenzie", "Thaisa", "Shea", "Jen"]

Gold Challenge

Combine your knowledge of dictionaries with some of the previous lessons in this book.

Output the members of each team with formatting that looks like this:

Sky Blue FC members:
Kailen

McKenzie

Thaisa

Shea

Jen

Orlando Pride members:
Sydney

Toni

Shelina

Emily

Chioma

Houston Dash members:
Jane

Michaela

Rachel

Allysha

Janine

Each team’s members should appear one per line, with no other punctuation. There should be an
additional new line between teams. For added difficulty, make your solution work using only one
print() statement (inside a loop is fine). Writing extremely concise code in this way often harms your
ability to read the code later, but it can be fun and satisfying to flex your understanding in a playground
environment like this.

Some hints: Search the documentation for how to represent special characters in String literals.

(For example, how do you add a tab or new line in a string?) Also, look at the documentation for the
print() function. There are different ways you can call the function to control its output. Lastly, look
at the documentation for the Array type. What are the different ways you can make a single string from
an array’s elements?

112

11

Sets

Swift provides a third collection type called Set. Set is not frequently used, but we do not think that
this should be the case. This chapter will introduce Set and show off some of its unique advantages.

What Is a Set?

A Set is an unordered collection of distinct instances. This definition sets it apart from an Array, which
is ordered and can accommodate repeated values.

A Set has some similarities to a Dictionary, but it is also a little different. Like a dictionary, a set’s
values are unordered within the collection. Also, like a dictionary’s keys, the values in a Set must be
unique; a value can only be added to a set once. To ensure that elements are unique, Set requires that
its elements follow the same rule as a dictionary’s keys — being hashable (which you will learn about in
Chapter 25).

However, while dictionary values are accessed via their corresponding key, a set only stores individual
elements, not key-value pairs.

Table 11.1 summarizes Swift’s three collection types.

Table 11.1 Comparing Swift’s collections

Collection Type Ordered? Unique? Stores

Array Yes No Elements
Dictionary No Keys Key-value pairs
Set No Elements Elements

113

Chapter 11 Sets

Getting a Set

Create a new macOS playground called Groceries and create an instance of Set.

Listing 11.1 Creating a set

import Cocoa

n 1]
7

var groceryList = Set<String>(["Apples", "Oranges"]) {"Apples", "Oranges"}

Your sidebar results might show the elements of the set in a different order. That is fine — sets are
unordered, so the order shown is irrelevant.

Here you make an instance of Set and declare that it will hold instances of the String type. It is a
mutable Set called groceryList and has two elements: apples and oranges. You initialized your
set with an array. (As with other types, a set can also be immutable, and you could have declared it
uninitialized. Also, like many other types, you can initialize an empty set for later use.)

Set does not have its own literal syntax like Array and Dictionary. However, recall from learning
about numbers in Chapter 4 that a value like 1.21 could be either a Double or a Float, and the
compiler will infer it to be a Double unless you specify otherwise. Set can borrow array literal syntax
in the same way. Update your playground to use an explicit Set type annotation with array literal
syntax:

Listing 11.2 Creating a set using array literal syntax

var grocerylList: Set = ["Apples"”, "Oranges"] {"0Oranges", "Apples"}

This code explicitly declares groceryList to be a Set, then uses the Array literal syntax to create an
instance of Set. The compiler would otherwise infer that a collection created with [] syntax was an
Array. However, the compiler can still infer the type of instance that the set will contain: in this case,
strings.

In earlier chapters, you relied heavily on type inference for your collection types. Set does not offer
quite as much flexibility to use type inference, but you do have a few choices for how to declare your
instances. Which form you choose to declare your collection type instances does not matter. Choose
a style that you find comfortable and readable. It should be a goal of any developer to write code that
they — and other developers they work with — can easily read and understand.

You can add groceries to your grocerylList using the insert(_:) method.

Listing 11.3 Adding to a set

var grocerylList: Set = ["Apples", "Oranges"] {"Apples", "Oranges"}
groceryList.insert("Kiwi") (inserted true, memberA...
groceryList.insert("Pears") (inserted true, memberA...

The results sidebar shows something like (inserted true, memberAfterInsert "Pears") for each
insertion into your grocerylList. This is because insert(_:) returns a tuple including a Boolean
(indicating whether the instance was successfully inserted into the set) and the instance that was (or
was not) inserted.

114

Working with Sets

Now groceryList has a few items in it. As with arrays and dictionaries, you can loop through a set to
see its contents.

Listing 11.4 Looping through a set

var grocerylList: Set = ["Apples", "Oranges"] {"Apples", "Oranges"}
groceryList.insert("Kiwi") (inserted true, memberA...
groceryList.insert("Pears") (inserted true, memberA...

for food in groceryList {
print(food) (4 times)
}

Each item in your groceryList is logged to the console.

Seeing that console output, you might remember that you already have pears at home. You can remove
them from your set with remove():

Listing 11.5 Removing an element from a set

for food in groceryList {
print(food) (4 times)
}

groceryList.remove("Pears") ""Pears"

Working with Sets

Now that you have an instance of Set, you might be wondering what to do with it. The Set offers
a number of methods that allow you to work on sets alone or in combination with another set — or,
sometimes, a different collection type. Some (but not all) of these operations are also available for
arrays; most are not available for dictionaries. The features of the various types are streamlined for
their most common use cases.

For example, you might want to know if your groceryList contains a particular item. The Set type
provides a method called contains(_:) that looks inside a set instance for a particular item.

Listing 11.6 Has bananas?

for food in groceryList {

print(food) (3 times)
}
groceryList.remove("Pears") "Pears"
let hasBananas = grocerylList.contains("Bananas") false

hasBananas is false; your groceryList set does not have *Bananas" in it.

115

Chapter 11 Sets

Unions

Often, you will want to compare one set to another set or an array. For example, suppose you bump
into a friend while you are shopping. While talking about the things in your lists, you decide to
compare them.

First, you wonder what you would have if you combined your separate grocery lists into a new one,
leaving out the duplicate groceries. You can do that with Set’s union(_:) method:

Listing 11.7 Combining sets

for food in groceryList {

print(food) (3 times)
s
groceryList.remove('"Pears") "Pears"
let hasBananas = groceryList.contains("Bananas") false
let friendsGroceryList = {"Cereal", "Oranges", "...
Set(["Bananas", "Cereal", "Milk", "Oranges"])
let sharedList = groceryList.union(friendsGroceryList) {"Cereal", "Apples", "P...

You add a new constant Set instance representing your friend’s grocery list and use the union(_:)
method to combine the two sets. union(_:) takes a list of values as its argument and compares the
list to its own values. The return value is a Set that includes the elements of both collections, less any
duplicates.

So you can pass arrays and sets to union(_:) and get back a set with every element that appears in
either of the input collections.

Here, sharedList is a Set that contains the unique elements of groceryList and
friendsGroceryList. Figure 11.1 depicts the union of the two sets.

Figure 11.1 Union of two sets

groceryList friendsGroceryList

Oranges
Bananas

Cereal

Oranges

sharedList
(union of items)

Apples

Bananas

Milk

Oranges Cereal

Kiwi

116

Intersections

Intersections

The union(_:) method eliminates duplicates. What if, instead, you want a list of just the duplicates
— the elements that appear in both sets? Compare your grocery list and your friend’s list using the
intersection(_:) method to identify the duplicate items.

Listing 11.8 Intersecting sets

let friendsGrocerylList = {"Cereal", "Oranges", "
Set(["Bananas", "Cereal", "Milk", "Oranges"])

let sharedList = groceryList.union(friendsGrocerylList) {"Cereal", "Apples", "P...

let duplicateltems = {"Oranges"}

groceryList.intersection(friendsGroceryList)

Set’s intersection(_:) method identifies the items that are present in both collections and returns
those duplicated items in a new Set instance. Figure 11.2 shows this relationship. In this case, you and
your friend both have oranges in your grocery lists.

Figure 11.2 Intersecting sets

groceryList friendsGroceryList

Bananas

Oranges

t

ltems one of you should return
(intersecting items)

117

Chapter 11 Sets

Disjoint
You have seen how to combine two sets into a new, all-inclusive set via the union(_:) method. You

also used the intersection(_:) method to find the common elements of two sets and place them into
a new set. What if you just want to know whether two sets contain any common elements?

The isDisjoint(with:) method checks whether two sets exclusively contain different items.

Listing 11.9 Detecting intersections in sets
1et duplicateltems = {"Oranges"}
groceryList.intersection(friendsGroceryList)

let disjoint = false
groceryList.isDisjoint(with: friendsGroceryList)

Set’s isDisjoint(with:) method returns true if no members of the set (here, groceryList) are in the
sequence provided to isDisjoint(with:)’s argument (here, friendsGroceryList) and false if there
are any members in common. In this case, disjoint is false, because both sets include "0ranges".

There are other ways to compare grocery lists and other sets. For example, you could compute the
symmetricDifference(_:), which would tell you about all the items that appear in one and only one
of your lists (Figure 11.3).

Figure 11.3 Two sets’ symmetric difference

groceryList friendsGroceryList

Bananas

Oranges
9 Cereal

N/

ltems that you do not have in common
(symmetric difference)

You make a note to look up the Set documentation for some light bedtime reading later, to find out
what other interesting methods sets can use to compare their contents that arrays and dictionaries
cannot. But for now, it is getting late, so you go home to enjoy your fruit salad.

118

Moving Between Types

Moving Between Types

As you have seen, each collection type has a feature set appropriate to the type’s primary uses: arrays
as ordered lists, dictionaries as key-value pairs, and sets modeling mathematical sets as bags of unique
values. Some of these types can be initialized with data from the others. It will be especially common
for you to want to compare the data from two arrays in a way that only sets support. The good news

is that you can create sets from your arrays — but you must bear in mind the differences between those

types.

For example, imagine playing some games with friends after you arrive home from your grocery trip.
Create an array of players and an array to track who won each game:

Listing 11.10 Playing games

["Anna", "Vijay", "Jenka"] ["Anna", "Vijay", "Jenka"]
["Jenka", "Jenka", "Vijay", "Jenka"] ["Jenka", "Jenka", "Vij...

let players
let winners

Jenka won three games and Vijay has won one. Because values can repeated in arrays, an array is a
suitable type for tracking who won each game.

Suppose you want to know who has not won any games yet. Array does not, on its own, have a good
way to tell you that. But the Set type has a method, subtracting(_:), that will give you a set that
represents what is left when you subtract the values in one set from another set. So you could subtract
the winners from the players to see who has not yet won a game.

But you don’t have sets. You have arrays. No problem! Create two new arrays by initializing them with
your sets:

Listing 11.11 Initializing sets using arrays

let players = ["Anna", "Vijay", "Jenka"] ["Anna", "Vijay", "Jenka"l
let winners = ["Jenka", "Jenka", "Vijay", "Jenka"l ["Jenka", "Jenka", "Vij...
let playerSet = Set(players) {"Jenka", "Vijay", "Anna"}
let winnerSet = Set(winners) {"vijay", "Jenka"}

Here, you create two instances of Set and initialize them with the data from instances of Array.
Because the source arrays were of type Array<String>, the compiler will infer the types of the new
sets to be Set<String>. Notice that winnerSet only contains two values, because values in a set
must be unique. Also, because sets are unordered, the names may appear in a different order in the
playground results than they did in the source arrays.

Since the set is unordered and does not contain duplicates, winnerSet represents the list of players who
have won at least one game, rather than the list of players who won each game.

119

Chapter 11 Sets

Now, to find out who has not won any games yet, you can subtract the winnerSet from the playerSet:

Listing 11.12 Subtracting one set from another

let players = ["Anna", "Vijay", "Jenka"l ["Anna", "Vijay", "Jenka"]
let winners = ["Jenka", "Jenka", "Vijay", "Jenka"l ["Jenka", "Jenka", "Vij...
let playerSet = Set(players) {"Jenka", "Vijay", "Anna"}
let winnerSet = Set(winners) {"vijay", "Jenka"}
playerSet.subtracting(winnerSet) {"Anna"}

Anna, being the only value in the playerSet that is not also in the winnerSet, is the only player who
has not won any games yet. Figure 11.4 illustrates the subtraction:

Figure 11.4 Subtracting sets

playerSet winnerSet

N

Players that have not won
(remainder after subtraction)

You can also go the other way, creating a set from an array using code like let players2 =
Array(playerSet). But note that if you do, the order of the items in the resulting array may be
different every time you run your code, since values from the set will be copied to the array in no

particular order.

You have now met the most commonly used data types in the Swift standard library. In the coming
chapters, you will build your experience working with these types and the methods on them. You will
also implement your own functions and methods — and then begin defining your own custom data

types.

120

Bronze Challenge

Bronze Challenge
Consider the following code that models the cities two people have visited as sets.

let myCities: Set = ["Atlanta", "Chicago", "Jacksonville", "New York", "Denver"]
let yourCities: Set = ["Chicago", "Denver", "Jacksonville"l]

Find a method on Set that returns a Bool indicating whether myCities contains all the cities contained
by yourCities. (Hint: This relationship would make myCities a superset of yourCities.)

Silver Challenge

In this chapter, you used methods like union(_:) and intersection(_:) to create new sets.
Sometimes you may prefer to modify an existing instance instead of creating a new one.

Look through the Set documentation and rework the examples in the chapter for union(_:) and
intersection(_:) using methods that mutate the set directly.

121

12

Functions

A function is a named set of code that is used to accomplish some specific task. The function’s name
describes the task the function performs. You have already used some functions, such as print(),
which is a function provided to you by Swift. Other functions are created in code you write.

Functions execute code. Some functions define arguments that you can use to pass in data to help the
function do its work. Some functions return something after they have completed their work. You
might think of a function as a little machine. You turn it on and it chugs along, doing its work. You can
feed it data and, if it is built to do so, it will return a new chunk of data that results from its work.

Functions are an extremely important part of programming. Indeed, a program is mostly a collection of
related functions that combine to accomplish some purpose. So, there is a lot to cover in this chapter.
Take your time and make sure that you are comfortable with each new concept before moving on.

Let’s start with some examples.

123

Chapter 12 Functions

A Basic Function

Create a new macOS playground called Functions and enter the code below.

Listing 12.1 Defining a function

import Cocoa

n "
7

func printGreeting() {
print("Hello, playground.")

printGreeting()

Here, you define a function with the func keyword followed by the name of the function:
printGreeting(). The parentheses are empty because this function does not take any arguments.
(More on arguments soon.)

The opening brace ({) denotes the beginning of the function’s implementation. This is where you write
the code that describes how the function will perform its work. When the function is called, the code
inside the braces is executed.

The printGreeting() function is fairly simple. You have one line of code that uses print() to log the
string Hello, playground. to the console.

Finally, you call the function to execute the code inside it. To do this, you enter its name,
printGreeting(). Calling the function executes its code, and Hello, playground. is logged to the
console.

Now that you have written and executed a simple function, it is time to move on to more sophisticated
varieties.

124

Function Parameters

Function Parameters

Functions take on more life when they have parameters. A function’s parameters name the inputs
that the function accepts, and the function takes the data passed to its parameters to execute a task or
produce a result.

Create a function that prints a more personal greeting by using a parameter.

Listing 12.2 Using a parameter

func printGreeting() {
print('"Hello, playground.")

printGreeting()

func printPersonalGreeting(name: String) {
print("Hello, \(name). Welcome to your playground.")

printPersonalGreeting(name: "Step")

printPersonalGreeting(name: String) has a single parameter, as indicated in the parentheses
directly after the function name. The parameter is called name, and it is an instance of the String type.
You specify the type after the : that follows the parameter’s name, just as you specify the types of
variables and constants. When it is called, the function will declare its own new constant called name to
store a copy of the value provided by the caller.

When you call a function, you include the parameter name and a value of the correct type, called an
argument. (By the way, although the terms “parameter” and “argument” technically have different
meanings, people often use them interchangeably.) If you tried to pass an argument of some other type,
the compiler would give you an error telling you that the type you passed in was incorrect. This is an
example of type safety — the compiler’s insistence that all uses of a variable agree on its type.

In this case, the argument passed to the parameter name must be an instance of String. That string
value will be interpolated into the string that is logged to the console. Check it out: Your console
should say Hello, Step. Welcome to your playground.

Functions can — and often do — take multiple arguments. Write a new function that does a little math.

Listing 12.3 A function for division
func printPersonalGreeting(name: String) {

print("Hello, \(name). Welcome to your playground.')
printPersonalGreeting(name: "Step'")

func divisionDescriptionFor(numerator: Double, denominator: Double) {
print("\(numerator) divided by \(denominator) is \(numerator / denominator)")
}

divisionDescriptionFor(numerator: 9.0, denominator: 3.0)

The function divisionDescriptionFor(numerator:denominator:) describes some basic division
constructed from the instances of the Double type that are supplied to the function’s two parameters:
numerator and denominator. Note that you did some math within the \ () of the string printed to the
console. You should see 9.0 divided by 3.0 is 3.0 logged to the console.

125

Chapter 12 Functions

Parameter names

As you have seen, parameter names are included when you call the function and are available for use
within the body of the function. Sometimes it is useful to have different parameter names for these
two uses: one name for when you call the function, and a different name within the function’s body. A
parameter name used only when the function is called is known as an external parameter.

External parameters can make your functions more readable — provided you choose the names well.
Your goal for all parameter names (as for all your code) should be to make them informative and
readable. At the moment, the visible parameter name when you call printPersonalGreeting(name:)
is informative, but it is not very readable. You should typically aim for your code to read like
something you might say while speaking, but you probably would never say something like “Print
personal greeting name Step.”

Making your code readable and informative will make it easier to follow. For example, if a function is
going to be used in some other file in your application’s code base, and the function’s implementation
is not immediately visible or intuitive, it could be difficult to infer what values to give to the function’s
parameters. This would make the function less useful, so it can be helpful to use more descriptive
external parameter names in your function.

Update printPersonalGreeting(name:) to have an external parameter name that is different from its
internal parameter name to make calling the function more readable.

Listing 12.4 Using explicit parameter names

; P 6 ned — String)—f

func printPersonalGreeting(to name: String) {
print("Hello, \(name). Welcome to your playground.")

}

printPersonalGreeting(to: "Step")

func divisionDescriptionFor(numerator: Double, denominator: Double) {
print("\(numerator) divided by \(denominator) is \(numerator / denominator)")

divisionDescriptionFor(numerator: 9.0, denominator: 3.0)

Now printPersonalGreeting(to:) has an external parameter, to, that you use when you call the
function: printPersonalGreeting(to: "Step"). This parameter helps the function read more like
you would speak: “Print personal greeting to Step.”

Note that you still use name within the function’s definition. name has a clearer meaning within the
implementation of the function than to would. It would be a little confusing if your implementation
read print(*Hello, \(to). Welcome to your playground.").

You may have noticed that there is a preposition at the end of divisionDescriptionFor and a
preposition inside printPersonalGreeting(to:). This is not accidental: Prepositions often make
function names more readable. The Swift naming guidelines suggest that if a function has multiple
parameters that formulate a single concept, then the preposition should be placed at the end of the
function name.

126

Default parameter values

This is the case with divisionDescriptionFor (numerator:denominator:), because two inputs
are combined in the division operation. On the other hand, printPersonalGreeting(to:) does not
have multiple parameters, so the preposition should be placed within the parentheses as an external
parameter name.

Naming functions and parameters can be tricky, and it is more art than science. As we said, it is
advisable to choose function and parameter names that are readable and informative. You should also
strive to formulate grammatical phrases with your code. Last, you should always consider how easy it
is to type out and call your functions.

Default parameter values

All of a function’s parameters must be provided with a value when the function is called. As the caller,
you provide values by passing in arguments.

Swift’s parameters can also take default values. If a parameter has a default value, you can omit that
argument when calling the function (in which case, as you might expect, the function will use the
parameter’s default value).

Go ahead and add one to your division function. (Note that we have broken the call to print() across
two lines to make it fit on the page. You should enter it on one line.)

Listing 12.5 Adding a default parameter value

func divisionDescriptionFor(numerator: Double,
denominator: Double,
withPunctuation punctuation: String = ".") {

print("\(numerator) divided by \(denominator) is
\(numerator / denominator)\(punctuation)")

}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)
divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!")

Now the function has three parameters:
divisionDescriptionFor(numerator:denominator:withPunctuation:). Notice the new code,
punctuation: String = ".". You add a new parameter for punctuation, including its expected type,
and also give it a default value via the = "." syntax. This means that the string created by the function
will conclude with a period by default.

Your two function calls illustrate how the default value works. To use the default, as in your first
function call, you can simply omit the final parameter. Or, as in your second function call, you can
substitute a new punctuation mark for the default value by passing in a new argument. The first call

to the divisionDescriptionFor(numerator:denominator:withPunctuation:) function logs the
description with a period, and the second logs the description with an exclamation point (Figure 12.1).

127

Chapter 12 Functions

Figure 12.1 Default and explicit punctuation

] e M Funetiens | Build Functions (Playground) 2: Succeeded | Today at 10:35 AM + B

o] % Functions.playground 0 ®
Functions

import Cocoa

func printGreeting() {
print("Hello, playground.") "Hello, playgro... @
¥

printGreeting()

func printPersonalGreeting(to name: String) {
print("Hello, \(name). Welcome to your playground.") "Hello, Step. W... (@)
¥

printPersonalGreeting(to: "Step")

fune divisionDescriptionFor(numerator: Double,
denominator: Double,
withPunctuation punctuation: String = ".") {

print("\(numerator) divided by \(denominator) is \(numerator / (2 times) -
denominator)\(punctuation)")
¥
; divisionDescriptionFor(numerator: 9.8, denominator: 3.8)
19 divisionDescriptionFor(numerator: 9., denominator: 3.6, withPunctuation: "!")

= 2

Hello, playground.

Hello, Step. Welcome to your playground.
9.8 divided by 3.8 is 3.0.

9.8 divided by 3.8 is 3.8!

h.

128

In-out parameters

In-out parameters

Sometimes there is a reason to have a function modify the value of an argument. In-out parameters
allow a function’s impact on a variable to live beyond the function’s body.

Say you have a function that will take an error message as an argument and will append some
information based on certain conditions. Enter this code in your playground.

Listing 12.6 An in-out parameter

var error = "The request failed:"
func appendErrorCode(_ code: Int, toErrorString errorString: inout String) {
if code == 400 {

errorString += " bad request."
}
}
appendErrorCode (400, toErrorString: &error)
print(error)

The function appendErrorCode(_:toErrorString:) has two parameters. The first is the error code
that the function will compare against, which expects an instance of Int. Notice that you gave this
parameter an external name of _, which has a special meaning in Swift. Using _ in front of a parameter
name will suppress the external name when calling the function. Because its name is already at the end
of the function name, there is no reason for the parameter name to be used in the call.

The second is an inout parameter — denoted by the inout keyword — named toErrorString. This
parameter expects an instance of String as its argument. toErrorString is an external parameter
name used when calling the function, while errorString is an internal parameter name used within the
function.

The inout keyword is added prior to String to express that the function expects to modify the original
value. It does this by taking as its argument not a copy of the passed-in value, but a reference to the
original. This way, any changes it makes to the string affect the original string, and those changes will
remain after the function is done executing.

When you call the function, the variable you pass into the inout parameter must be preceded by an
ampersand (&) to acknowledge that you are providing shared access to your variable instead of just a
copy of it and that you understand that the variable’s value may be directly modified by the function.
Here, the function modifies errorString to read The request failed: bad request., which you
should see printed to the console.

Note that in-out parameters cannot have default values. Also, in-out parameters are not the same as
a function returning a value. Lastly, because in-out parameters grant shared access to a variable, you
cannot pass a constant or literal value into an in-out parameter. If you want your function to produce
something, there is a more elegant way to accomplish that goal.

129

Chapter 12 Functions

Returning from a Function

Functions can give you information after they finish executing the code inside their implementation.
This information is called the refurn of the function. In fact, this is often the purpose of a function: to
do some work and return some data. Make your
divisionDescriptionFor(numerator:denominator:withPunctuation:) function return an instance
of the String type instead of simply printing a string to the console.

Listing 12.7 Returning a string

func divisionDescriptionFor(numerator: Double,
denominator: Double,
withPunctuation punctuation: String =

. IE":E : } I. .I I I EI . : i .
I . :): (4 E!‘EH)")

return "\ (numerator) divided by \(denominator) is
\(numerator / denominator)\(punctuation)"”

) => String {

}
divisionDescriptionFor(numerator: 9.0, denominator: 3.0)
divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!")

The behavior of this new function is very similar to your earlier implementation, with an important
twist: This new implementation returns a value to the code that called it. This return value is denoted
by the —> syntax at the end of the function signature, which indicates that the function will return an
instance of the type that follows the arrow.

Your function returns an instance of the String type. The return keyword tells the program “Stop
executing this function and resume the calling code where it left off.” If there is a value to the right of
the return keyword, that value will be handed back to the calling code. The type of this value must be
the same as the declared return type of the function.

When there is no value to return to the caller, a function will implicitly return at the end of its scope
(at the closing curly brace that ends the function body — more on scope in just a moment). This is why
your previous functions have not needed to explicitly return so far. You will learn more about implicit
and explicit returns from functions in Chapter 13.

Because your divisionDescriptionFor(numerator:denominator:withPunctuation:) function no
longer contains a call to print (), your calls to it no longer produce console output. But it returns a
String, and print() accepts String arguments — so you can call your division function nested within
a call to print() to log the string instance to the console.

Listing 12.8 Nesting function calls

print(divisionDescriptionFor(numerator: 9.0, denominator: 3.0))
print(divisionDescriptionFor(numerator: 9.0, denominator: 3.0, withPunctuation: "!"))

130

Nested Function Definitions and Scope

When one function call is nested within another like this, they are executed from the innermost
function to the outermost. In this case,
divisionDescriptionFor(numerator:denominator:withPunctuation:) will be executed by the
program first, and then its String return value will be passed as the argument to print().

Nested Function Definitions and Scope

Swift’s function definitions can also be nested. Nested functions are declared and implemented within
the definition of another function. The nested function is not available outside the enclosing function.
This feature is useful when you need a function to do some work, but only within another function.
Let’s look at an example.

Listing 12.9 Nested functions

func areaOfTriangleWith(base: Double, height: Double) -> Double {
let rectangle = base * height
func divide() -> Double {
return rectangle / 2
}

return divide()

}
print(area0fTriangleWith(base: 3.0, height: 5.0))

The function area0fTriangleWith(base:height:) takes two arguments of type Double: a base and
a height. It also returns a Double. Inside this function’s implementation, you declare and implement
another function called divide(). This function takes no arguments and returns a Double. The
areaOfTriangleWith(base:height:) function calls the divide () function and returns the result.

The divide() function above uses a constant called rectangle that is defined in
areaOfTriangleWith(base:height:). Why does this work?

Anything within a function’s braces ({}) is said to be enclosed by that function’s scope. In
this case, both the rectangle constant and the divide() function are enclosed by the scope of
areaOfTriangleWith(base:height:).

A function’s scope describes the visibility an instance or function will have. It is a sort of horizon.
Anything defined within a function’s scope will be visible to that function; anything that is not is past
that function’s field of vision. rectangle is visible to the divide () function because they share the
same enclosing scope.

On the other hand, because the divide() function is defined within the
areaOfTriangleWith(base:height:) function’s scope, it is not visible outside it. The compiler will
give you an error if you try to call divide() outside the enclosing function. Give it a try to see the
error.

By the way, nearly any pair of braces in Swift defines a scope. For example, switches, loops, and
conditionals define scopes of their own.

divide() is a very simple function. Indeed, area0fTriangleWith (base:height:) could achieve the
same result without it: return (base * height) / 2. The important point here is how scope works.
You will see a more sophisticated example of nested functions in Chapter 13. Stay tuned!

131

Chapter 12 Functions

Multiple Returns

Functions can only return one value — but they can pretend to return more than one value. To do this, a
function can return an instance of the tuple data type to encapsulate multiple values into one.

Recall that a tuple is an ordered list of related values. To better understand how to use tuples, write a
function that takes an array of integers and sorts it into arrays for even and odd integers.

Listing 12.10 Sorting evens and odds

func sortedEvenOddNumbers(_ numbers: [Int]) —> (evens: [Int], odds: [Int]) {
var evens = [Int]()
var odds = [Int]()
for number in numbers {

if number % 2 == 0 {
evens.append (number)
} else {

odds .append (number)
}
}

return (evens, odds)

}

Here, you first declare a function called sortedEven0OddNumbers(_:). You specify this function to
take an array of integers as its only argument. The function returns a named tuple, so called because
its constituent parts are named: evens will be an array of integers, and odds will also be an array of
integers.

Next, inside the implementation of the function, you initialize the evens and odds arrays to prepare
them to store their respective integers. You then loop through the array of integers provided to the
function’s parameter, numbers. At each iteration through the loop, you use the % operator to see
whether number is even. If the result is even, you append it to the evens array. If the result is not even,
the integer is added to the odds array.

Now that your function is set up, call it and pass it an array of integers. (As usual, do not break the
string passed to print() in your code.)

Listing 12.11 Calling sortedEvenOddNumbers(_:)

func sortedEvenOddNumbers(_ numbers: [Int]) —> (evens: [Int], odds: [Int]) {
var evens = [Int]()
var odds = [Int]()
for number in numbers {

if number % 2 == 0 {
evens.append(number)
} else {

odds.append (number)
¥
¥
return (evens, odds)

}

let aBunchOfNumbers = [10,1,4,3,57,43,84,27,156,111]
let theSortedNumbers = sortedEvenOddNumbers(aBunchOfNumbers)
print("The even numbers are: \(theSortedNumbers.evens);

the odd numbers are: \(theSortedNumbers.odds)")

132

Optional Return Types

First, you create an instance of the Array type to house a number of integers. Second, you give that
array to the sortedEven0ddNumbers (_:) function and assign the return value to a constant called
theSortedNumbers. Because the return value was specified as (evens: [Int], odds: [Int]), thisis
the type the compiler infers for your newly created constant. Finally, you log the result to the console.

Notice that you use string interpolation in combination with a tuple. You can access a tuple’s members
by name if they are defined. So, theSortedNumbers.evens inserts the contents of the evens array into

the string logged to the console. Your console output should be The even numbers are: [10, 4, 84,
156]; the odd numbers are: [1, 3, 57, 43, 27, 111].

Optional Return Types

Sometimes you want a function to return an optional. When a function might need to return nil but
will have a value to return at other times, Swift allows you to use an optional return.

Imagine, for example, that you need a function that looks at a person’s full name and pulls out and
returns that person’s middle name. For the purposes of this exercise, assume that everyone has a first
name and a last name (though this is not an assumption you would necessarily make in a production
app). But not all people have a middle name, so your function will need a mechanism to return the
person’s middle name if there is one and return nil otherwise. Use an optional to do just that.

Listing 12.12 Using an optional return

func grabMiddleName(fromFullName name: (String, String?, String)) -> String? {
return name.l
}

let middleName = grabMiddleName(fromFullName: ("Alice", nil, "Ward"))
if let theName = middleName {

print(theName)
}

Here, you create a function called grabMiddleName (fromFullName:). This function looks a little
different than what you have seen before. It takes one argument: a tuple of type (String, String?,
String). The tuple’s three String instances are for the first, middle, and last names, and the instance
for the middle name is declared as an optional type.

The grabMiddleName(fromFullName:) function’s one parameter is called name, which has an external
parameter name called fromFullName. You access this parameter inside the implementation of the
function using the index of the name that you want to return. Because the tuple is zero-indexed, you
use 1 to access the middle name provided to the argument. And because the middle name might be nil,
the return type of the function is optional.

You then call grabMiddleName (fromFullName:) and provide it a first, middle, and last name (feel free
to change the names). Because you declared the middle name component of the tuple to be of type
String?, you can pass nil to that portion of the tuple. You cannot do this for the first or last name
portion of the tuple.

Nothing is logged to the console. Because the middle name provided is nil, the Boolean used in the
optional binding does not evaluate to true and print() is not executed.

Try giving the middle name a valid String instance and note the result.

133

Chapter 12 Functions

Exiting Early from a Function

You learned about Swift’s conditional statements in Chapter 3, but there is one more to introduce:
guard statements. Just like if/else statements, guard statements execute code depending on a
Boolean value resulting from some expression. But guard statements are different from what you have
seen before. A guard statement is used to exit early from a function if some condition is not met. As
their name suggests, you can think of guard statements as a way to protect your code from running
under improper conditions.

Following the example above, consider an example in which you want to write a function that greets
a person by their middle name if they have one. If they do not have a middle name, you will use
something more generic.

Listing 12.13 Early exits with guard statements

func greetByMiddleName (fromFullName name: (first: String,
middle: String?,
last: String)) {
guard let middleName = name.middle else {
print("Hey there!")
return

}
print("Hey, \(middleName)")

}
greetByMiddleName(fromFullName: ("Alice", "Richards", "Ward"))

greetByMiddleName (fromFullName:) is similar to grabMiddleName (fromFullName:) in that it takes
the same argument, but it differs in that it has no return value. Another difference is that the names of
the elements in the tuple name match specific components of a person’s name. As you can see, these
element names are available inside the function.

The code guard let middleName = name.middle binds the value in middle to a constant called
middleName. If there is no value in the optional, then the code in the guard statement’s body is
executed. This would result in a generic greeting being logged to the console that omits the middle
name: Hey there!. After this, you must explicitly return from the function, which represents that the
condition established by the guard statement was not met and the function needs to return early.

You can think of guard as protecting you from embarrassingly addressing somebody as “mumble-
mumble” when you do not know their middle name. But if the tuple did get passed to the function with
a middle name, then its value is bound to middleName and is available after the guard statement. This
means that middleName is visible in the parent scope that encompasses the guard statement.

In your call to greetByMiddleName (fromFullName:), however, you pass in a middle name to the tuple
name. That means Hey, Richards! will be logged to the console. If nil were passed to the middle
name element, then Hey there! would log to the console. (Go ahead and try it.)

134

Function Types

Function Types

Each function has a specific type, just as pieces of data do. Function types are made up of the
function’s parameter and return types. Consider the sortedEvenOddNumbers(_:) function. This
function takes an array of integers as an argument and returns a tuple with two arrays of integers. Thus,
the function type for sortedEvenOddNumbers(_:) is expressed as ([Int]) —> ([Int], [Int]).

The function’s parameters are listed inside the left parentheses, and the return type comes after the —>.
You can read this function type as: “A function with one parameter that takes an array of integers and
returns a tuple with two arrays containing integers.” For comparison, a function with no arguments and
no return has the type () —> ().

Function types are useful because you can assign them to variables. This feature will become
particularly handy in Chapter 13, when you will use functions in the arguments and returns of other
functions. For now, let’s just take a look at how you can assign a function type to a constant:

let evenOddFunction: ([Int]l) -> ([Int], [Int]) = sortedEvenOddNumbers

This code creates a constant of function type named evenOddFunction whose value is the body

of the sortedEvenOddNumbers(_:) function. Pretty cool, right? Now you can pass this constant

around just like any other. You can even use this constant to call the function; for example,
evenOddFunction([1,2,3]) will sort the numbers in the array supplied to the function’s sole argument
into a tuple of two arrays — one each for even and odd integers.

You accomplished a lot in this chapter. There was a lot of material here, and it may make sense to go
through it all a second time. Be sure to type out all the code in this chapter. In fact, try to extend the
examples to different cases. Try to break the examples and then fix them.

If you are still a little fuzzy on functions, do not worry. They are also a major focus in the next chapter,
so you will get lots more practice.

135

Chapter 12 Functions

Bronze Challenge

Like if/else conditions, guard statements support the use of multiple clauses to perform additional
checks. Using additional clauses with a guard statement gives you further control over the statement’s
condition. Refactor the greetByMiddleName (fromFullName:) function to have an additional clause in
its guard statement. This clause should check whether the middle name is longer than 10 characters. If
it is, then greet the person with their first name, their middle initial (the first letter of the middle name
followed by a period), and their last name instead.

For example, if the name is Alois Rumpelstiltskin Chaz, the function should print Hey, Alois R.
Chaz.

Silver Challenge

Write a function called siftBeans(fromGrocerylList:) that takes a grocery list (as an array of strings)
and “sifts out” the beans from the other groceries. The function should take one argument that has

a parameter name called list, and it should return a named tuple of the type (beans: [String],
otherGroceries: [Stringl).

Here is an example of how you should be able to call your function and what the result should be:

let result = siftBeans(fromGroceryList: [''green beans",
"milk",
"black beans",
"pinto beans",

"apples"])
result.beans == ["green beans", "black beans", "pinto beans"] // true
result.otherGroceries == ["milk", "apples"] // true

Hint: You may need to use a function on the String type called hasSuffix(_:).

136

For the More Curious: Void

For the More Curious: Void

The first function you wrote in this chapter was printGreeting(). It took no arguments and returned
nothing. Or did it?

Actually, functions that do not explicitly return something do have a return. They return something
called Void. This return is inserted into the code for you by the compiler.

So, while you wrote printGreeting() like this:

func printGreeting() {
print("Hello, playground.')
}

The compiler actually added something like this to your code:

func printGreeting() —> Void {
print("Hello, playground.')
}

In other words, it added a return value of Void for you. Just what is Void? Go ahead and make
printGreeting explicitly return Void, as shown above. Option-click the word Void, and Xcode will
show you what it looks like in the standard library.

typealias Void = ()

Void is a typealias for (). You will read about typealiases in detail in Chapter 20. For now, think of
typealiases as a way to tell the compiler that one thing is shorthand for another. In the excerpt above,
the standard library is establishing that Void is another way of expressing ().

You have already seen the concept at play in Chapter 5. The () refers to what is called an empty tuple.
If a tuple is a list of ordered elements, then an empty tuple is simply a list with nothing in it.

Given what you know now, you can see that these three implementations of printGreeting() are
equivalent.

func printGreeting() {
print("Hello, playground.')
}

func printGreeting() —> Void {
print("Hello, playground.')
}

func printGreeting() —> () {
print("Hello, playground.')
}

The first version above is what you originally wrote. The second is what the compiler inserts for you.
And the third uses the empty parentheses, which is what the standard library maps Void to.

Knowing that Void maps to () should help you understand what is going on in a given function type.
For example, the function type for printGreeting() is () —> Void. This is simply the type for a
function that takes no arguments and returns an empty tuple, which is the implicit return type for all
functions that do not explicitly have a return value.

137

Chapter 12 Functions

For the More Curious: Variadic Parameters

The print() function has an interesting feature: You can pass it as many arguments as you want, in a
comma-delimited list, and it will print all of them. Here are a couple examples:

print("Hello ", username)
print(thingl, thing2, thing3)

All the functions you have written so far accept a fixed list of inputs. If the caller passes too many
or too few arguments, the compiler will emit an error. How can print() handle any number of
arguments? By accepting a variadic parameter.

A variadic parameter takes zero or more input values for its argument. Here are the rules: A function
can have only one variadic parameter, it cannot be marked with inout, and it should typically be the
final parameter in the list. The values provided to the argument are made available within the function’s
body as an array.

To make a variadic parameter, use three periods after the parameter’s type, like names: String....In
this example, names is available within the function’s body and has the type [String].

Consider a version of your printPersonalGreeting(to:) function designed to take multiple names
and greet them all. You could accomplish this with a parameter that expects an array of strings:

func printPersonalGreetings(to names: [String]) {
for name in names {
print("Hello \(name), welcome to the playground.")

b

printPersonalGreetings(to: ["Tessa", "Selah", "Aria", "Elijah"l)
Or you could use a variadic parameter:

func printPersonalGreetings(to names: String...) {
for name in names {
print("Hello, \(name). Welcome to your playground.")
¥

b

printPersonalGreetings(to: "Tessa", "Selah", "Aria", "Elijah")

Even though the declared argument type is String. . ., the names instance inside the implementation is
still a [String]. Using a variadic parameter changes nothing inside the implementation — only the way
the parameter is declared.

In practice, most Swift developers write functions that accept array parameters rather than variadic
parameters. This is because a caller can manually pack a list of objects into an array for a function
that requires an array. But there is no way to unpack an array into a variadic list for a function with
a variadic parameter. That said, variadic parameters are a convenient and expressive way to define a
function for callers that will have in mind a discrete list of arguments they wish to provide.

138

13

Closures

Closures are discrete bundles of functionality that can be used in your application to accomplish
specific tasks. Functions, which you learned about in the last chapter, are a special case of closures.
You can think of a function as a named closure. Because functions are technically closures, Swift
programmers sometimes use the two words interchangeably, despite the subtle distinction.

In Chapter 12, you worked primarily with global and nested functions. (Global functions are not
defined on any specific type, and for this reason they are also called free functions.)

Closures differ from functions in that they have a more compact and lightweight syntax. They
allow you to write a “function-like” construct without having to give it a name and a full function
declaration. This makes closures easy to pass around in function arguments and returns.

Let’s get started. Create a new macOS playground called Closures.

Closure Syntax

Imagine that you are a community organizer managing a number of organizations. You want to keep
track of how many volunteers there are for each organization and have created an Array for this task.

Listing 13.1 Starting with an array

import Cocoa

1] 1]
7

let volunteerCounts = [1,3,40,32,2,53,77,13]

You entered the number of volunteers for each organization as they were provided to you. This means
that the array is completely disorganized. It would be better if your array of volunteers were sorted
from lowest to highest number.

Good news: Swift provides a method called sorted(by:) that allows you to sort an instance of Array
based on criteria you specify.

(We have mentioned methods before but never explained the terminology. A function defined on
a type, the way sorted(by:) is defined on Array, is also called a method. More on this topic in
Chapter 15.)

139

Chapter 13 Closures

sorted(by:) takes one argument: a closure that describes how the sorting should be done. The closure
takes two arguments, whose types must match the type of the elements in the array, and returns a Bool.
The two arguments are compared, and the return value indicates whether the first argument should be
sorted before the second argument.

In the closure you pass to sorted(by:), you use < in the comparison if you would like the elements in
the array to be sorted in ascending fashion. Use > in the comparison if you would like the elements to
be sorted in a descending fashion. (Like +, the < and > operators are available for use with many, but
not all, Swift types. You will learn more about these operators and how to make them available to your
custom types as well in Chapter 25.)

Because your array of volunteer counts is filled with integers, the function type for sorted(by:) will
look like ((Int, Int) —-> Bool) —-> [Int] in your code. As you saw in Chapter 12, function types
begin with the function’s parameters, enclosed in parentheses. In this case, the single parameter is a
closure, represented by its own function type.

So, in other words, sorted(by:) is a method that takes a closure. That closure, in turn, takes two
values to compare and returns a Boolean value specifying whether the first value should come before
the second in a sorted list. sorted(by:) calls the passed-in closure multiple times with different pairs
of arguments from the source array to determine their overall order. sorted(by:) then returns the
sorted array of values.

Add the following code to sort your array.

Listing 13.2 Sorting the array
let volunteerCounts = [1,3,40,32,2,53,77,13]

func isAscending(_ i: Int, _ j: Int) -> Bool {
return i < j
}

let volunteersSorted = volunteerCounts.sorted(by: isAscending)
print(volunteersSorted)

First, you create a function called isAscending(_:_:) that has the required type to be sorted(by:)’s
argument. It compares two integers and returns a Boolean that indicates whether integer i is less

than integer j. is is a common prefix in the names of functions that return a Boolean, so the name
isAscending implies that the function will be sorting two things. That being the case, you use _ to
suppress the parameter names from being used in the call.

The function will return true if i is less than — and should be placed before — j. As this global function
is a named closure (remember, all functions are closures), you can provide this function as the value of
the argument in sorted(by:).

Next, you call sorted(by:), passing in isAscending(_:_:) for its argument. Because sorted(by:)
returns a new array, you assign that result to a new constant array called volunteersSorted. This
instance will serve as your new record for the organizations’ volunteer counts, correctly sorted.

Look in the playground’s console. You should see that the values in volunteersSorted are sorted from
lowest to highest:

[1, 2, 3, 13, 32, 40, 53, 771

140

Closure Expression Syntax

Closure Expression Syntax

This works, but you can clean up your code. There is no need to declare a named function; you can
create a closure to pass to sorted(by:) inline — right in the method call — using closure expression
syntax, like:

{(parameters) —> return type in
// Code

You write a closure expression inside braces ({}). The closure’s parameters are listed in parentheses
immediately after the opening brace. Its return type comes after the parameters and uses the regular
syntax. The keyword in is used to separate the closure’s parameters and return type from the
statements in its body.

Refactor your code to use a closure expression, creating the closure inline instead of defining a
separate function outside the sorted(by:) method.
Listing 13.3 Refactoring your sorting code
let volunteerCounts = [1,3,40,32,2,53,77,13]
: -

3
let volunteersSorted = volunteerCounts.sorted(by: {

(i: Int, j: Int) -> Bool in

return i < j
1))

print(volunteersSorted)

This code is a bit cleaner and more elegant than the first version. Instead of providing a function
defined elsewhere in the playground, you define a closure inline in the sorted (by:) method’s
argument. The closure’s parameters and their type are the same as before, as is the return type. In the
closure’s body, you provide the same logical test (is i less than j?) to determine the Boolean return
value.

The result is just as before: The sorted array is assigned to volunteersSorted.

141

Chapter 13 Closures

This refactoring is a step in the right direction, but it is still a little verbose. Closures can take
advantage of Swift’s type inference system, so you can clean up your closure even more by trimming
out the type information.

Listing 13.4 Taking advantage of type inference
let volunteerCounts = [1,3,40,32,2,53,77,13]

T
H

let volunteersSorted = volunteerCounts.sorted(by: { i, j in i < j })
print(volunteersSorted)

There are three new developments here. First, you remove the type information for both the parameters
and the return. The compiler can infer that the parameters have the same type as the elements in the
input array. As for the return type, the compiler knows that checking i < j will return true or false —
that is, a Bool value.

Second, you move the entire closure expression to be one line. Third, you remove the keyword return.
Any function or closure with only one expression can implicitly return the value of that expression by
omitting the return keyword.

Notice that the result in the console has not changed.

Your closure is getting fairly compact, but it can become even more succinct. Swift provides positional
variable names that you can refer to in inline closure expressions. These shorthand names behave
similarly to the explicitly declared arguments you have been using: They have the same types and
values. The compiler’s type inference capabilities help it know the number and types of arguments
your closure takes, which means it is not necessary to name them.

For example, the compiler knows that sorted(by:) takes a closure, and it knows that the closure takes
two parameters that are of the same type as the items in the array you pass into the method’s argument.
Because the closure has two arguments, whose values are compared to determine their order, you can
refer to the arguments positionally using $0 for the first and $1 for the second.

(Notice that the positional variable names are zero-indexed. Also, for a closure with more than two
arguments, you can use $2, $3, and so on.)

Adjust your code to take advantage of the shorthand syntax.

Listing 13.5 Using shorthand syntax for arguments

let volunteerCounts = [1,3,40,32,2,53,77,13]

1 1 s I . c . oyt 1
let volunteersSorted = volunteerCounts.sorted(by: { $0 < $1 })
print(volunteersSorted)

Now that your inline closure expression uses the positional argument syntax, you do not need to
explicitly declare the parameters as you did for i and j. The compiler knows that the values in the
closure’s arguments are of the correct type and knows what to infer based on the < operator.

142

Closure Expression Syntax

Before you think this closure could not possibly get any slimmer, just wait — there is more!

Closures that appear at the end of the argument list can be written outside of and after the function’s
parentheses; this is called trailing closure syntax. If doing so would leave an empty pair of parentheses
behind, you may remove them entirely.

Make this change.

Listing 13.6 Inline closure as the function’s final argument

let volunteerCounts = [1,3,40,32,2,53,77,13]

tet—votunteersSerted—e—veotunteerCounts—sertedthy-—$0—<$3+—1
let volunteersSorted = volunteerCounts.sorted { $0 < $1 }

print(volunteersSorted)

Here, because no parameters remain after moving the closure argument outside the parentheses, the
parentheses are deleted.

Notice that when the closure moves outside the parentheses, its argument label is removed from the
call. If there are multiple trailing closures, this only applies to the first; subsequent trailing closures
retain their argument labels. For example, a function whose signature looks like this:

func doAwesomeWork(on input: String,
using transformer: () —-> Void,
then completion: () -> Void)

Would be called using trailing closure syntax like this:

doAwesomeWork(on: "My Project") {

print("Doing work on \(input) in “transformer™")
} then: {

print("Finishing up in ‘completion™")
¥

In this example, the using parameter name is omitted, but then is not.

Truly, “Brevity is the soul of wit.” The code in Listing 13.6 works just as well in this terse form as in
the earlier, much more verbose version.

This trailing closure syntax adds complexity to the language, but it feels more stylish to many Swift
developers as it helps remove clutter from the function call site.

Do not feel like you need to use all these code-condensing features to be an effective Swift developer.
They are here for your convenience. The most important thing is to make sure that your code is as
readable and understandable as possible.

143

Chapter 13 Closures

Functions as Arguments

You initially sorted your volunteerCounts array using a named function passed as an argument to
sorted(by:). Although that particular task could be accomplished elegantly without the need for a
named function, there are times when declaring a function and passing it as an argument to another
function is the best solution.

Now you will write your own function that takes a closure to modify a collection. In the playground,
add this incomplete function:

Listing 13.7 Formatting numbers as strings

func format(numbers: [Double], using formatter: (Double) -> String) -> [String] {
var result = [String]()

return result

}

That is a lot of parentheses! Do not be intimidated. Study the function’s signature from beginning to
end. The format (numbers:using:) function takes two arguments and returns an array of Strings. The
first argument is an array of Doubles. The second is a closure that takes a Double and returns a String.

In other words, format(numbers:using:) takes an array of numbers and a closure that can format

a single number into a string. The specifics of the formatting will be defined by the closure that is
passed in to the second argument: It could take an array of seven-digit numbers and format them as
phone numbers, make sure that each element in an array of dollar values has exactly two digits after the
decimal point, and so on.

The next step is to apply the closure to each number in the array. Flesh out the body of the function to
do exactly that:

Listing 13.8 The real work

func format(numbers: [Doublel, using formatter: (Double) —> String) —> [String] {
var result = [Stringl()
for number in numbers {
let transformed = formatter(number)
result.append(transformed)

}

return result

}

Now you can declare a closure that a caller of this function might provide for transforming a single
Double into a String.

Recall from the beginning of this chapter that functions are closures with a slightly different syntax.
You call a closure the same way you call a function: by its name, with a parenthetical argument list.
Here, you call the passed-in formatter closure with number as its argument in formatter(number).

Thinking back to the volunteers example, suppose you have been asked to report the average number
of volunteers each organization sent to this year’s major events. It might sound weird to say that an
organization averaged 10.75 volunteers per event, so you want to round the averages to the nearest
integer and drop the decimal point. Create a closure to accomplish this task.

144

Functions as Arguments

Listing 13.9 Rounding and converting doubles

func format(numbers: [Doublel, using formatter: (Double) -> String) —-> [String] {
var result = [String]()
for number in numbers {
let transformed = formatter(number)
result.append(transformed)
}
return result

b

let rounder: (Double) -> String = {
(num: Double) -> String in
return "\ (Int(num.rounded()))"

}

Here, you define a (Double) -> String closure that returns the string interpolation of an integer
rounded from a double. To round a Double to the nearest integral value, you use its rounded () method,
which returns another Double, so 10.6 becomes 11.0. Then you initialize an Int from that value,
which truncates any decimal portion — so, for example, 11.0 becomes 11.

Finally, you interpolate the integer into a string. (Remember, format (numbers:using:)’s formatter
closure must return an array of strings.)

Now prepare your list of average volunteer counts, rounded and converted to strings:

Listing 13.10 Calling your format function

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)

The values listed in the sidebar for roundedAveragesAsStrings should read ["11", “4", "2", "12",
II17II] .

What if the caller of your function does not want to have to provide a closure for the using argument?
A reasonable default behavior for your format (numbers:using:) function would be to just convert the
numbers to strings if no custom formatting is desired.

Update the declaration of format (numbers:using:):

Listing 13.11 Default closure argument

func format(numbers: [Doublel,
using formatter: (Double) —> String = {"\($0)"}) —> [String] {
var result = [Stringl()
for number in numbers {
let transformed = formatter(number)
result.append(transformed)
}

return result

Here you use a technique that you learned in Chapter 12 to add a default value for the formatter
argument: a concise closure that merely returns its argument interpolated into a String.

145

Chapter 13 Closures

Now, if the caller does not pass format (numbers:using:) a closure, the function will just use each
number’s description for the strings instead.

Verify that your updated function works by adding a call that omits the using parameter:

Listing 13.12 Using the default value

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)

The sidebar should show the value of exactAveragesAsStrings as ["10.75", "4.2", "1.5",
"12.12", "16.815"].

Closures Capture Their Enclosing Scope

Now that you have some experience with closures, it is time to examine an important feature of how
they interact with the code around them.

To set the stage for this examination, you will want to have a few different scopes available. Any scope
will do — conditionals, loops, and functions all define scopes. For this experiment, nest your rounder
closure and its usage in the scope of a new function.

Listing 13.13 A scope in which to play

func format(numbers: [Double],
using formatter: (Double) —> String = {"\($0)"}) —-> [String] {

var result = [String]()
for number in numbers {

let transformed = formatter(number)

result.append(transformed)
¥
return result

I

func experimentWithScopes() {
let rounder: (Double) -> String = {
(num: Double) —> String in
return "\ (Int(num.rounded()))"

b

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)

}

experimentWithScopes()

The experimentWithScopes () function provides a nested scope so you can inspect the interactions
between declarations in different scopes. After defining the function, you call it so that your code will
execute when the playground updates.

146

Closures Capture Their Enclosing Scope

Add a variable before your declaration of rounder and modify it within the closure:

Listing 13.14 Capturing enclosing scope

func format(numbers: [Doublel,
using formatter: (Double) —> String = {"\($0)"}) —> [String] {
var result = [Stringl()
for number in numbers {
let transformed = formatter(number)
result.append(transformed)
¥

return result

b

func experimentWithScopes() {
var numberOfTransformations = 0

let rounder: (Double) —> String = {
(num: Double) —> String in
numberOfTransformations += 1
return "\ (Int(num.rounded()))"

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)

Here you set aside a variable to track the number of transformations you perform, which is equal to the
number of times your closure runs. You increment that value each time rounder executes.

So far, this does not seem far-fetched. Recall from Chapter 12 that a function can use any of the
variables defined in the same scope it is defined in (also called its enclosing scope), so it makes sense
that rounder has access to number0fTransformations. (Reread the explanation for Listing 12.9 if you
need to review.) For the same reason, experimentWithScopes () could call format(numbers:using:)
if you wanted it to.

However, a function cannot see into another nested scope. So, for example, result, which is declared
in the local scope of format(numbers:using:), is invisible to rounder.

A function or variable that is declared outside any other scope is considered to be in the
global scope, and it is visible to any function or closure in the program. In the example above,
format (numbers:using:) and experimentWithScopes () are declared in the global scope, but
numberOfTransformations and rounder are in the local scope of experimentWithScopes().

147

Chapter 13 Closures

Now, print the value of numberO0fTransformations after format (numbers:using:) is called with
rounder as its closure argument:

Listing 13.15 Printing a closure-modified value

func experimentWithScopes() {
var numberOfTransformations = 0

let rounder: (Double) —> String = {
(num: Double) —> String in
numberOfTransformations += 1
return "\ (Int(num.rounded()))"
¥

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]

let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)
print(numberOfTransformations)

The value printed to the console should be 5. The format (numbers:using:) function executed the
rounder closure five times (one for each number in volunteerAverages), and each time rounder
incremented the value of numberOfTransformations.

This means that rounder has access to numberOfTransformations even when it is passed to

format (numbers:using:). In fact, we say that a function not only has access to its enclosing scope but
also captures it. When you define a function and then pass that function as an argument, it maintains its
access to the variables that were in its enclosing scope when it was defined.

In this example, when the closure stored in rounder is passed into format(numbers:using:),
where it becomes the local variable named formatter, it is no longer in a scope that can access
number0fTransformations. The formatter closure can only access numberOfTransformations
because the closure captured its enclosing scope when it was defined in experimentWithScopes().

You will see other ways a closure’s capture of its scope can impact your program when you learn about
memory management in Chapter 24.

Now that you are done with your experiment, you can eliminate the experimentWithScopes()
function scope and unindent its body. (Xcode will indent your code nicely for you. First, select the
code you want to format. Then choose Editor = Structure = Re-Indent or use the keyboard shortcut
Control-1.)

148

Closures Capture Their Enclosing Scope

Listing 13.16 Removing experimentWithScopes()

var numberOfTransformations = 0

let rounder: (Double) —-> String = {
(num: Double) —> String in
numberOfTransformations += 1
return "\ (Int(num.rounded()))"

b

let volunteerAverages = [10.75, 4.2, 1.5, 12.12, 16.815]
let roundedAveragesAsStrings = format(numbers: volunteerAverages, using: rounder)
let exactAveragesAsStrings = format(numbers: volunteerAverages)
print(numberOfTransformations)
}

. WithS O

149

Chapter 13 Closures

Functional Programming

Programming languages are sometimes classified by characteristics they share. One such paradigm, or
classification, is functional programming, from which Swift adopts some of its patterns. It is difficult to
provide a concrete definition of functional programming because people use the phrase with different
meanings and intentions, but typically it is understood to include:

* First-class functions — functions can be returned from and passed as arguments to other functions,
can be stored in variables, etc.; they are just like any other type.

» Pure functions — functions have no side effects; functions, given the same input, always return the
same output and do not modify other states elsewhere in the program. Most math functions like
sin, cos, fibonacci, and factorial are pure.

* Immutability — mutability is de-emphasized, because it is more difficult to reason about data
whose values can change.

» Strong typing — a strong type system increases the runtime safety of the code because the
guarantees of the language’s type system are checked at compile time.

Swift supports all these approaches.

Functional programming can make your code more concise and expressive. By emphasizing
immutability and strong compile-time type checking, it can also make your code safer at runtime.
These hallmarks of functional programming can also make code easier to reason about and maintain.

As you have seen, Swift’s let keyword allows you to declare immutable instances in your code. And
its strong type system helps you catch errors at compile time instead of waiting until runtime. Swift
also provides several higher-order functions that are well known to developers fond of functional
programming: map(_:), filter(_:), and reduce(_:_:). These functions emphasize that Swift’s
functions are indeed first-class citizens.

Let’s look at what these functions add to Swift’s toolkit.

Higher-Order Functions

Higher-order functions are functions that can take another function as an argument or can return a
function. You have already worked with higher-order functions in this chapter and even written your
own, like format (numbers:using:).

Let’s take a look at three higher-order functions from the standard library —map(_:), filter(_:), and
reduce(_:_:) —in the context of your imaginary volunteerism reports.

150

map(_:)

map(_:)

The Swift standard library provides an implementation of map(_:) as a method on the Array type. It
is used to transform an array’s contents. You map an array’s contents from one value to another and
put the new values into a new array. Because map(_:) is a higher-order function, you provide it with
another function that tells it how to transform the array’s contents.

Your current usage of format(numbers:using:) uses a closure that rounds the passed-in numbers
before converting them to strings. Now you will do something similar using map(_:), but you will skip
the string-conversion step for simplicity.

At the bottom of your playground, use map(_:) to round the average volunteer counts per organization
to the nearest number of actual humans:

Listing 13.17 Transforming values with map(_:)

let roundedAverages = volunteerAverages.map {
(avg: Double) -> Int in
return Int(avg.rounded())

}

First, notice that you used trailing-closure syntax to pass the closure argument to map(_:). This is
common in the Swift community.

Your closure will be called by the map(_:) function once for each value in the array, with the value as
the closure’s argument. The closure then transforms the value and returns it. By the time map(_:) is
done, you have a new array with the modified versions of all the original array’s values.

Next, look at the closure’s signature. You are using map(_:) here not just to change a value but also to
return a value of a different type. Since you passed in a closure that takes a Double and returns an Int,
the map (_:) method assumes that it is operating on an Array of Doubles and will return an Array of
Ints. Your closure must take as its only argument a value of whatever the Array’s type is, but it can
return anything.

You should see in the sidebar that roundedAverages equals [11, 4, 2, 12, 17].

151

Chapter 13 Closures

filter(_:)

Now imagine that the mayor wants to throw a party for the organizations that had an average volunteer
participation of 10 or higher, so she has asked you to produce a list of only those volunteer counts.

Where the map(_:) method expects a closure that will transform a value, the filter(_:) method
expects a closure that will decide whether each value should be added to the result array. Your closure
will receive each value, one at a time, and should return true if the value passes your test and false
if it does not. The result array will contain a subset of the original array’s items: only those for which
your closure returns true.

Use the filter(_:) method to create a new array that only includes volunteer counts of 10 or higher:

Listing 13.18 Selecting desirable values with filter(_:)

let roundedAverages = volunteerAverages.map {
(avg: Double) —> Int in
return Int(avg.rounded())

}

let passingAverages = roundedAverages.filter {
(avg: Int) —> Bool in
return avg >= 10

}

As the sidebar shows, the organizations that will be invited to the party are the ones with these average
counts: [11, 12, 171.

152

reduce(_: :)

reduce(_: :)

Now that the mayor knows which organizations to invite, she wants an estimate of how many attendees
to expect at the party. She intends to invite five volunteers from her own staff plus each organization’s
average volunteer count.

You use the reduce(_:_:) method to produce a single representative value from an array of values. In
other words, it reduces an array of values to just one value. The single value can be one of the values
in the collection or any meaningful value derived from them, but it must be of the same type as the
elements of the Array.

Use reduce(_:_:) to compute the sum of the volunteer counts, including the five volunteers from the
mayor’s staff:

Listing 13.19 Reducing

let roundedAverages = volunteerAverages.map {
(avg: Double) —> Int in
return Int(avg.rounded())

b

let passingAverages = roundedAverages.filter {
(avg: Int) —> Bool in
return avg >= 10

b

let estimatedParticipation = passingAverages.reduce(5) {
(estimationSoFar: Int, currentOrgAverage: Int) -> Int in
return estimationSoFar + currentOrgAverage

}

reduce(_:_:) differs from map(_:) and filter(_:) in an important way. In addition to taking one

of the Array’s values, your closure takes an additional argument: the return value from the previous
execution. In this way, reduce(_:_:) acts like an assembly line where each worker receives a partially

completed product from the previous worker, adds something to it, and passes the result to the next
worker until the line is complete and the final product is ready.

Each time your closure is executed, it receives both the corresponding value from the Array and the
return value from the previous execution. It can then combine or process these values in some way, and
its result is then passed as one of the arguments to the next execution.

The reduce(_:_:) function itself takes two arguments. In addition to your closure, it takes in an initial
value to pass in as the aggregated value for the first execution of your closure.

This was a big chapter with many big ideas. Closures can take awhile to get used to, especially if you
have not used features like them in another programming language before. You will see more examples
of closures and their usefulness in the coming chapters, and you can return here later for review. For
now, try out the challenges below and do not feel like you are behind if you need more time. This is
hard stuff, and you are doing great.

153

Chapter 13 Closures

Bronze Challenge

In this chapter, you sorted a collection by returning a new instance of Array with its integers sorted
from smallest to largest. You can also sort collections in place — meaning modifying the existing
collection, rather than returning a new one. Change the way you sort volunteerCounts to sort the array
in place from smallest to largest.

Silver Challenge

You used sorted(by:) to sort a collection from smallest to largest. But if you just want to sort a
collection in an ascending fashion, there is a simpler method to use. Use the documentation to find this
method. Apply the method to your solution to the bronze challenge.

Gold Challenge

Use what you have learned about closure syntax in this chapter to perform all the calculations on the
volunteerAverages array (the map(_:), filter(_:), and reduce(_:_:) calls) in as little code as
possible. Your entire solution should fit in one (long) line.

Consider the balance of brevity and readability in your solution, and experiment with including and
excluding different compiler-inferrable parts of the closure syntax to find a balance that you feel
comfortable with.

Hint: You can chain method calls using dot syntax, so long as the return value of each method is of a
type that has the next method available on it. For example:

let sortedRoundedAverages = startingArray.map(..).sorted(by:..)

sorted(by:) must be called on an Array. This works because map(_:) returns an Array, and
sorted(by:) is being called on map(_:)’s return value.

154

For the More Curious: Functions as Return Types

For the More Curious: Functions as Return Types

You have worked with several higher-order functions now, but you have only worked with higher-
order functions that take other functions as arguments. Higher-order functions can also return another
function.

You already know that a function that takes an argument of, say, Character and returns an Int is of
type (Character) -> Int. But what is the type of a function that takes a Character and returns a
(String) -> String closure?

Let’s explore this idea. Suppose you have a String and want to remove all occurrences of a particular
Character from it. Now imagine that you need to do this multiple times, with multiple characters
across multiple strings. Being a stylish developer, you decide to write a function to help out. Go ahead
and enter it in your playground:

Listing 13.20 Functions begetting functions

func makeCharacterRemover(for character: Character) -> (String) -> String {
func removeFrom(_ input: String) -> String {
return input.filter { $0 != character }
}

return removeFrom

}

This function takes in a Character as its argument and returns a function that will strip all instances of
the character from a passed-in String.

Recall that a String is a collection of Character instances. It has the filter(_:) method, just like
the Array type does. The inner removeFrom(_:) function uses filter(_:) to filter out all instances
of the character provided to the outer function. Notice that — since a function is a closure and captures
its enclosing scope — removeFrom(_:) has access to the local variable character owned by the outer
function.

Now you can use makeCharacterRemover(for:) to generate as many character-specific

removeFrom(_:) functions as you want.

Listing 13.21 Using the returned function

func makeCharacterRemover(for character: Character) -> (String) —-> String {
func removeFrom(_ input: String) —> String {

return input.filter { $0 !'= character }
}

return removeFrom

b

let removeLowerCasels = makeCharacterRemover(for: "1")
let strangeGreeting = removelLowerCaseLs("Hello, World!")

let removeLowerCaseOs = makeCharacterRemover(for: "o")
let strangerGreeting = removelLowerCaseOs(strangeGreeting)

You can see in the playground sidebar that removeLowerCaselLs and removeLowerCase0s are both

variables of type (String) -> String, and strangeGreeting and strangerGreeting are stripped
strings emitted by them.

155

Chapter 13 Closures

Admittedly, this approach is a little overengineered. A more readable and concise approach might be to
define a single function of type (Character, String) -> String to take in a string and a character to
remove from it, returning the resulting string. Such a function might look like this:

func remove(_ character: Character, from string: String) —> String {
return string.filter { $0 !'= character }
¥

let britishGreeting = remove("H", from: "Hello, World!")

Since a function that returns another function can often be refactored into something simpler, you
will not see it much in the wild. It is, however, an example of the flexibility and power of functions in
Swift.

156

Part IV

Enumerations, Structures, and
Classes

You will be defining your own custom types in this part of the book and studying how decisions

you make while writing code impact your project later. You will be adding features to projects and
changing them as the projects progress. This is part of writing code for real projects: Sometimes you
start developing an application with one solution in mind and then have to modify your code when you
learn a better pattern or need to accommodate a new or changed feature.

That does not mean the first code or tools were bad — just that they would be better for other
circumstances. Projects often evolve and develop, and decisions that are ideal at one stage may become
inadequate as requirements change. Learning to be flexible in the face of these changes is part of the
trade.

14

Enumerations

Up to this point, you have been using Swift’s built-in types, like integers, strings, arrays, and
dictionaries. The next two chapters will show the capabilities the language provides to create your own
types. The focus of this chapter is enumerations (or enums), which allow you to create instances that
are one of a defined list of cases.

If you have used enumerations in other languages, much of this chapter will be familiar. But Swift’s
enums also have some advanced features that make them unique.

Basic Enumerations

Create a new macOS playground called Enumerations. Define an enumeration of possible text
alignments.

Listing 14.1 Defining an enumeration

import Cocoa

1] 1]
7

enum TextAlignment {
case left
case right
case center

}

You define an enumeration with the enum keyword followed by the name of the enumeration. The
opening brace ({) opens the body of the enum, and it must contain at least one case statement that
declares the possible values for the enum. Here, you include three.

As an aside, the names of types (including enums) begin with a capital letter by convention. If multiple
words are needed, capitalize the first letter of each word (this is called Pascal case): PascalCasedType.
The names of variables, functions, and enum cases use a similar case structure but with a lowercase
first letter (called camel case): camelCasedVariable.

159

Chapter 14 Enumerations

The name of the enumeration (here, TextAlignment) is now usable as a type, just like Int or String or
the various other types you have used so far. That means that you can now create instances of that type:

Listing 14.2 Creating an instance of TextAlignment
enum TextAlignment {

case left

case right

case center

I

var alignment: TextAlignment = TextAlignment.left

Although TextAlignment is a type that you have defined, the compiler can still infer the type for
alignment. Therefore, you can omit the explicit type of the alignment variable:

Listing 14.3 Taking advantage of type inference

var alignment+—FextAtigament = TextAlignment.left

The compiler’s ability to infer the type of enumerations is not limited to variable declarations. If you
have a variable known to be of a particular enum type, you can omit the type from the case statement
when assigning a new value to the variable.

Listing 14.4 Inferring the enum type

var alignment = TextAlignment.left
alignment = .right

You have to specify the enum’s type and value when initially creating the alignment variable, because
that line gives alignment both its type and its value. In the next line, you can omit the type and simply
reassign alignment to a different value within its type. You can also omit the enum type when passing
its values to functions or comparing them.

Listing 14.5 Type inference when comparing values
é.l.ignment = .right

if alignment == .right {
print("We should right-align the text!")
}

160

Basic Enumerations

While enum values can be compared in if statements, switch statements are typically used to handle
enum values. Use switch to print the alignment in a more human-readable way.

Listing 14.6 Switching to switch

alignment = .right
Lf ald rightf

' 1
switch alignment {
case .left:

print("left aligned")

case .right:
print("right aligned")

case .center:
print("center aligned")

Recall from Chapter 5 that all switch statements must be exhaustive. Some of the switch statements
you wrote in that chapter required a default case to meet that requirement. When switching on
enumeration values, the compiler knows all possible values of the enumeration to check. If you include
a case for each one, the switch is exhaustive and no default case is necessary.

You could include a default case when switching on an enum type:

Listing 14.7 Making center the default case

switch alignment {
case .left:
print("left aligned")

case .right:
print("right aligned")

case—eenter:
default:

print("center aligned")
¥

This code works, but we recommend avoiding default clauses when switching on enum types,
because using a default is not as “future proof.” Suppose, for example, you add another alignment
option for justified text.

Listing 14.8 Adding a case

enum TextAlignment {
case left
case right
case center
case justify

b

var alignment = TextAlignment.%ef justify
by riat

161

Chapter 14 Enumerations

Your program still runs, but it now prints the wrong value. The alignment variable is set to . justify,
but the switch statement prints center aligned. This is what we mean when we say that using a
default is not future proof: It adds complication to modifying your code in the future.

Change your switch back to listing each case explicitly.
Listing 14.9 Returning to explicit cases

switch alignment {
case .left:
print("left aligned")

case .right:
print("right aligned")

defautt:
case .center:
print("center aligned")

Now, instead of your program running and printing the wrong answer, you have a compile-time error
that your switch statement is not exhaustive. It may seem odd to say that a compiler error is desirable,
but that is exactly the situation here.

If you use a default clause when switching on an enum, your switch statement will always be
exhaustive and satisfy the compiler. If you add a new case to the enum without updating the switch,
the switch statement will use the default case when it encounters the new case. Your code will
compile, but it might not do what you intended.

By listing each enum case in the switch, you ensure that the compiler will help you find all the places
in your code that must be updated if you add cases to your enum. That is what is happening here: The
compiler is telling you that your switch statement does not include all the cases defined in your enum.

Go ahead and fix that.
Listing 14.10 Including all cases

switch alignment {
case .left:
print("left aligned")

case .right:
print("right aligned")

case .center:
print("center aligned")

case .justify:
print("justified")
}

Now the compiler is satisfied and the desired value prints to the console.

162

Enumerations with Raw Values

Enumerations with Raw Values

If you have used enumerations in a language like C or C++, you may be surprised to learn that Swift
enums do not have an underlying integer type. But you can get the same behavior by using what Swift
calls a raw value. To use Int raw values for your text alignment enumeration, change the declaration of
the enum.

Listing 14.11 Using raw values

enum TextAlignment: Int {
case left
case right
case center
case justify

Specifying a raw value type for TextAlignment gives a distinct raw value of that type (Int, here) to
each case. The default behavior for integer raw values is that the first case gets raw value 0, the next
case gets raw value 1, and so on. Confirm this by printing some interpolated strings.

Listing 14.12 Confirming the raw values

var alignment = TextAlignment.justify

TextAlignment.left. rawValue
TextAlignment.right.rawValue
TextAlignment.center.rawValue
TextAlignment. justify.rawValue
alignment.rawValue

You are not limited to the default behavior for raw values. If you prefer, you can specify the raw value
for each case.

Listing 14.13 Specifying raw values

enum TextAlignment: Int {

case left = 20
case right = 30
case center = 40
case justify = 50

When are raw values in an enumerations useful? The most common reason for using raw values is to
store or transmit the enum to a system that does not know about your TextAlignment type. Instead
of writing functions to transform a variable holding an enum, you can use rawValue to convert the
variable to its raw value.

163

Chapter 14 Enumerations

This brings up another question: If you have a raw value, how do you convert it back to the enum type?
Every enum type with a raw value can be created with a rawValue argument, which returns an optional
enum.

Listing 14.14 Converting raw values to enum types

TextAlignment.justify.rawValue
alignment.rawValue

// Create a raw value
let myRawValue = 20

// Try to convert the raw value into a TextAlignment
if let myAlignment = TextAlignment(rawValue: myRawValue) {

// Conversion succeeded!

print("successfully created \(myAlignment) from \(myRawValue)")
} else {

// Conversion failed

print("\(myRawValue) has no corresponding TextAlignment case")

You start with myRawValue, a variable of type Int. Then you try to convert that raw value into a
TextAlignment case using TextAlignment (rawValue:). Because TextAlignment (rawValue:)
has a return type of TextAlignment?, you use optional binding to determine whether you get a
TextAlignment value or nil back.

The raw value you used here corresponds to TextAlignment. left, so the conversion succeeds. Try
changing myRawValue to a raw value that does not exist to see the message that conversion is not
possible.

So far, you have been using Int as the type for your raw values. Swift also allows raw values to be
Strings, Characters, or instances of any numeric type. Create a new enum that uses String as its raw
value type.

Listing 14.15 Creating an enum with strings

enum ProgramminglLanguage: String {

case swift = “"swift"

case objectiveC = "objective-c"
case c = "c"

case cpp = "Cc++"

case java = "java"

}

let myFavoritelLanguage = ProgrammingLanguage.swift
print("My favorite programming language is \(myFavoritelLanguage.rawValue)")

Here, you specify a corresponding raw String value for each case. However, just as the compiler will
automatically provide integer raw values if you do not set them yourself, it will automatically use the

name of a case as its string raw value. So once you have declared that an enum has string raw values,

you do not need to assign values if they match the case names.

164

Methods

Modify ProgrammingLanguage to take out the unnecessary raw value assignments:

Listing 14.16 Using default string raw values

enum ProgramminglLanguage: String {

case swift m—tioiyi et

case objectiveC = "objective-c"
case c -—let

case cpp = "c++"

case java -—liiayatt

s

let myFavoritelanguage = ProgramminglLanguage.swift
print("My favorite programming language is \(myFavoritelLanguage.rawValue)")

Your declaration of devotion to Swift does not change.

Methods

Recall that a method is a function that is associated with a type. In some languages, methods can
only be associated with classes (which we will discuss in Chapter 15). In Swift, methods can also be
associated with enums. Create a new enum that represents the state of a light bulb.

Listing 14.17 Light bulbs can be on or off

enum LightBulb {
case on
case off

}

Suppose you want to know the temperature of the light bulb. Add a method for computing the surface
temperature. (For simplicity, this method ignores a lot of physics.)

Listing 14.18 Establishing temperature behaviors

enum LightBulb {
case on
case off

func surfaceTemperature(forAmbientTemperature ambient: Double) -> Double {
switch self {
case .on:
return ambient + 150.0

case .off:

return ambient
}

b

Here, you add a function inside the definition of the LightBulb enumeration. Because
surfaceTemperature(forAmbientTemperature:) is defined with the enum, it is now a method
associated with the LightBulb type. We would call it “a method on LightBulb.”

165

Chapter 14 Enumerations

The function appears to take a single argument (ambient) — but, because it is a method, it also takes an
implicit argument named self of type LightBulb. All Swift methods have a self argument, which is
used to access the instance on which the method is called — in this case, the instance of LightBulb.

Create a variable to represent a light bulb and call your new method.

Listing 14.19 Turning on the light

enum LightBulb {
case on
case off

func surfaceTemperature(forAmbientTemperature ambient: Double) —> Double {
switch self {
case .on:
return ambient + 150.0

case .off:
return ambient
}

}

var bulb = LightBulb.on
let ambientTemperature = 77.0

var bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature:
ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

First you create bulb, an instance of the LightBulb type. When you have an instance of the type,
you can call methods on that instance using the syntax instance.methodName(arguments).

You do exactly that here when you call bulb. surfaceTemperature(forAmbientTemperature:
ambientTemperature).

You store the result of the method call, a Double, in the bulbTemperature variable. Finally, you print a
string with the bulb’s temperature to the console.

166

Methods

The Bool type has a toggle() method that flips the variable to the opposite value (true to false and
vice versa). It would be handy for your LightBulb type to have a toggle() method as well. To toggle
the light bulb, you need to modify self to change it from on to off or of f to on. Add a toggle()
method that takes no arguments and does not return anything.

Listing 14.20 Trying to toggle

enum LightBulb {
case on
case off

func surfaceTemperature(forAmbientTemperature ambient: Double) —> Double {
switch self {
case .on:
return ambient + 150.0

case .off:
return ambient
}

}

func toggle() {
switch self {

case .on:

self = .off
case .off:

self = .on
}

When you enter this, you will get a compiler error that states that you cannot assign to self inside
a method. In Swift, an enumeration is a value type, and, by default, methods on value types are not
allowed to make changes to self.

If you want to allow a method on a value type to change self, you need to mark the method as
mutating, which makes the implicit self argument mutable. You will learn more about value types and
the mutating keyword in Chapter 15. For now, add this to your code:

Listing 14.21 Making toggle() a mutating method

mutating func toggle() {
switch self {

case .on:
self = .off
case .off:
self = .on
}

167

Chapter 14 Enumerations

Now you can toggle your light bulb and see what the temperature is when the bulb is off.

Listing 14.22 Turning off the light

var bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature:
ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

bulb.toggle()

bulbTemperature = bulb.surfaceTemperature(forAmbientTemperature: ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

168

Associated Values

Associated Values

Everything you have done so far with enumerations falls into the same general category of defining
static cases that enumerate possible values or states. Swift also offers a much more powerful flavor of
enumeration: cases with associated values. Associated values allow you to attach data to instances of
an enumeration, and different cases can have different types of associated values.

Create an enumeration to track the dimensions of a couple of basic shapes. Each kind of shape
has different properties. To represent a square, you need a single value (the length of one side). To
represent a rectangle, you need two values: a width and a height.

Listing 14.23 Setting up ShapeDimensions

enum ShapeDimensions {
// square's associated value is the length of one side
case square(side: Double)

// rectangle's associated value defines its width and height
case rectangle(width: Double, height: Double)
}

You define a new enumeration type, ShapeDimensions, with two cases. The square case has an
associated value of type (side: Double). The rectangle case has an associated value of type (width:
Double, height: Double). Both of these are named tuples (first seen in Chapter 12).

To create instances of ShapeDimensions, you must specify both the case and an appropriate associated
value for the case.

Listing 14.24 Creating shapes

enum ShapeDimensions {
// square's associated value is the length of one side
case square(side: Double)

// rectangle's associated value defines its width and height
case rectangle(width: Double, height: Double)
b

var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)

Here, you create a square with sides 10 units long and a rectangle that is 5 units by 10 units.

169

Chapter 14 Enumerations

You can use a switch statement to unpack and use an associated value. Add a method to
ShapeDimensions that computes the area of a shape

Listing 14.25 Using associated values to compute area

enum ShapeDimensions {
// square's associated value is the length of one side
case square(side: Double)

// rectangle's associated value defines its width and height
case rectangle(width: Double, height: Double)

func area() -> Double {
switch self {
case let .square(side: side):
return side * side

case let .rectangle(width: w, height: h):
return w * h
}

In your implementation of area(), you switch on self just as you did earlier in the chapter. Here,
the switch cases use Swift’s pattern matching to bind self’s associated value with a new variable (or
variables).

Call the area() method on the instances you created earlier to see it in action.

Listing 14.26 Computing areas

var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")

170

Associated Values

Not all enum cases need to have associated values. For example, you could add a point case.
Geometric points do not have any dimensions. Add a point to your enum with no associated value and
update the area() method to include its area.

Listing 14.27 Setting up a point

enum ShapeDimensions {
// point has no associated value - it is dimensionless
case point

// square's associated value is the length of one side
case square(side: Double)

// rectangle's associated value defines its width and height
case rectangle(width: Double, height: Double)

func area() -> Double {
switch self {
case .point:
return 0

case let .square(side: side):
return side * side

case let .rectangle(width: w, height: h):
return w * h
}

Now, create an instance of a point and confirm that area() works as expected.

Listing 14.28 What is the area of a point?

var squareShape = ShapeDimensions.square(side: 10.0)
var rectShape = ShapeDimensions.rectangle(width: 5.0, height: 10.0)
var pointShape = ShapeDimensions.point

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")
print("point's area = \(pointShape.area())")

In this chapter, you saw how to define custom data structures to represent one of a discrete list of
values, sometimes with associated data. The Swift standard library has a wide range of types available
for modeling different kinds of data, but the ability to directly model custom data using your own type
in this way is extremely powerful.

In the next chapter, you will learn how to define more complex data structures to drive your
applications.

171

Chapter 14 Enumerations

Bronze Challenge

Add a perimeter () method to the ShapeDimensions enum. This method should compute the perimeter
of a shape (the sum of the length of all its edges). Make sure you handle all the cases!

Silver Challenge

Add another case to the ShapeDimensions enum for a right triangle. You can ignore the orientation
of the triangle. Just keep track of the lengths of its three sides. Adding a new case will cause your
playground to give you an error in the area() method. Fix the error.

For the More Curious: Recursive Enumerations

You now know how to attach associated values to enum cases. This brings up a curious question. Can
you attach an associated value of an enum’s own type to one of its cases? (Perhaps this question brings
up another: Why would you want to?)

A data structure that comes up frequently in computer science is a tree. Most hierarchical data can
naturally be represented as a tree. Think of a genealogical family tree: It contains people (the “nodes”
of the tree) and ancestral relationships (the “edges” of the tree). The family tree branching stops when
you reach an ancestor you do not know, as in Figure 14.1.

Figure 14.1 A family tree

You
Father Mother
Grandfather Grandmother Grandfather Grandmother
Great- 277 272 222

grandfather

/ \ \ 4

272 279 Great 272 272 Great-
grandfather grandmother
?7? 27?7 27?7 ?7?

172

For the More Curious: Recursive Enumerations

Modeling a family tree can be difficult because for any given person, you may know zero, one, or
both of their biological parents. If you know one or both parents, you would like to keep track of their
ancestors as well. Consider an enum that might let you build up as much of your family tree as you
know.

enum FamilyTree {
case noKnownParents
case oneKnownParent(name: String, ancestors: FamilyTree)
case twoKnownParents(fatherName: String,
paternalAncestors: FamilyTree,
motherName: String,
maternalAncestors: FamilyTree)

}

Unfortunately, this is will not compile. FamilyTree is recursive, because its cases have an associated
value that is also of type FamilyTree, and Swift treats recursive enumerations specially.

To understand why, you need to know a little bit about how enumerations work under the hood. The
Swift compiler has to know how much memory every instance of every type in your program will
occupy. You do not (usually) have to worry about this, as the compiler figures it all out for you when it
builds your program.

Enumerations are a little different. The compiler knows that any instance of an enum will only ever
store one case at a time, although it may change cases as your program runs. Therefore, when the
compiler is deciding how much memory an instance of enum requires, it will look at each case and
figure out which case requires the most memory. The instance will require that much memory (plus a
little bit more that the compiler will use to keep track of which case is currently assigned).

Look back at your ShapeDimensions enum. The point case has no associated data, so it requires

no extra memory. The square case has an associated Double, so it requires one Double’s worth of
memory (8 bytes). The rectangle case has two associated Doubles, so it requires 16 bytes of memory.
The actual size of an instance of ShapeDimensions is 17 bytes: enough room to store rectangle, if
necessary, plus 1 byte to keep track of which case the instance actually is.

Now consider the FamilyTree enum. How much memory is required for the oneKnownParent case?
Enough memory for a String plus enough memory for an instance of FamilyTree. See the problem?
The compiler cannot determine how big a FamilyTree is without knowing how big a FamilyTree is.
Looking at it another way, FamilyTree would require an infinite amount of memory!

To solve this issue, Swift can introduce a layer of indirection. Instead of deciding how much memory
oneKnownParent will require (which would lead to infinite recursion), you can use the keyword
indirect to instruct the compiler to instead store the enum’s data behind a pointer. We do not discuss
the details of pointers in this book, because Swift does not make you deal with them.

Here, all you have to do is opt in to making FamilyTree use pointers under the hood. Adding the
indirect keyword allows cases to be recursive:

indirect enum FamilyTree {
case noKnownParents
case oneKnownParent(name: String, ancestors: FamilyTree)
case twoKnownParents(fatherName: String,
paternalAncestors: FamilyTree,
motherName: String,
maternalAncestors: FamilyTree)

173

Chapter 14 Enumerations

How does using a pointer solve the “infinite memory” problem? The compiler now knows to store

a pointer to the associated data, putting the data somewhere else in memory rather than making the
instance of FamilyTree big enough to hold the data. The size of an instance of FamilyTree is now 8
bytes on a 64-bit architecture — the size of one pointer.

It is worth noting that you do not have to mark the entire enumeration as indirect: You can also mark
individual recursive cases as indirect:

enum FamilyTree {
case noKnownParents
indirect case oneKnownParent(name: String, ancestors: FamilyTree)
indirect case twoKnownParents(fatherName: String,
paternalAncestors: FamilyTree,
motherName: String,
maternalAncestors: FamilyTree)

¥
Using indirect cases, a family tree can be constructed:

let fredAncestors = FamilyTree.twoKnownParents(
fatherName: "Fred Sr.",
paternalAncestors: .oneKnownParent(name: "Beth",
ancestors: .noKnownParents),
motherName: "Marsha",
maternalAncestors: .noKnownParents)

This code is represented graphically by Figure 14.2.

Figure 14.2 Fred'’s family tree

‘ .twoKnownParents ‘
Father Mother
Fred Sr. Marsha
.oneKnownParent .noKnownParents
Parent
Beth
.noKnownParents

fredAncestors is a recursive enumeration that represents Fred’s known family tree, with each node
in the tree representing an instance of the same enumeration. As you can see, this sort of enumeration
models nested information quite well.

174

15

Structs and Classes

You learned that an enum can be a powerful way to model custom data, such as the state of a light bulb.
Using associated values, you were able to attach some arbitrary data to your enum cases, which made
them even more flexible for data modeling. But while enums are great for representing a singular value
with some associated contextual data, they are not designed for modeling large or complex systems.

For that, you use a structure (commonly just called a struct) or a class. These types are syntactically
similar, which is why we will introduce them together. Over the next several chapters, you will learn
about the important similarities, differences, and uses for these types.

For the next few chapters, you will be working in a command-line tool rather than a playground. Your
command-line tool project will model a town undergoing a serious monster infestation. You will use
both structs and classes to model these entities and will give them properties to store data and functions

so that these entities can do some work.

A New Project

In Xcode, click File = New — Project... (Figure 15.1).

Figure 15.1 Creating a new project instead of a playground

.’ Xcodem Edit View Find Navigate Editor Product Debug Source Control

New

Open...
Open Recent
Open Quickly...

Close Tab

Close Window Tab

>

Editor

Editor Below
Window Tab
Window

File...

Target...

Playground...

Project... 0 ¥8N
Swift Package...

Workspace...

Group
Group without Folder
Group from Selection

175

Chapter 15 Structs and Classes

Next, you will select a project template (Figure 15.2). A template formats your project with a number
of presets and configurations common to a given style of application. Along the top of the window,
notice that there are several options: Multiplatform, iOS, macOS, watchOS, tvOS, and Other. Select
macOS. Next, in the Application area of the window, choose the Command Line Tool template and click
Next. This template will create a very basic project.

Figure 15.2 Choosing a template

' ™
Choose a template for your new project:

Multiplatform i05 macOS watchOS twOS Other =
Application
e 5 & -

App Document App Game Command
Line Tool

Framework & Library

r_n r_n e N\ yi?
DriverKit Framework Library Metal Library XPC Service
Framework
Rt
Bundle

176

A New Project

Now you will choose options for your project, including a name (Figure 15.3). In the Product

Name field, enter MonsterTown. Enter BigNerdRanch (or whatever you would like) for the project’s
Organization Identifier. The Bundle Identifier, used to uniquely identify your app to the OS and to the
App Store, fills in for you. (Do not worry about the Team item or adding an account; that feature is
used for signing and distributing your application.)

Select Swift for the Language option and click Next.

Figure 15.3 Naming your project

Choose options for your new project:

Product Name: MonsterTown|

Team: Add account...
Organization Identifier: BigNerdRanch
Bundle Identifier: BigNerdRanch.MonsterTown

Language: = Swift

Cancel Previous

Last, Xcode asks you where to save the project. You can ignore the Source Control, Add to, and Group
fields. Select a good location on your Mac to save the project and click Create.

177

Chapter 15 Structs and Classes

Your project opens in Xcode with the project file selected, as shown in Figure 15.4. This file allows
you to manage various settings for your application. For example, you can sign your application for

deployment, link to frameworks to use in your development, and much more.

Figure 15.4 The project file

eoe {0 » W MonsterTown) B8 My Mac MonsterTown: Ready | Today at 8:50 PM + i (]
B BT a A & F D B B < By MonsterTown.xcodeproj B B OO
MonsterTe Identity and Type
v B MonsterTown B MonsterTown
v 77 MonsterTown in] General ~ Signing & Capabilities Resource Tags Build Settings Build Phases Build Rules Name MonsterTown
s main.swift PROJECT Location
N Identity _
> {7 Products & MonsterTown -
Full Path [Users/bignerd/Documents/
TARGETS
Choose Info.plist File. a:“':zﬁ:;:jw
MonsterT
I MonsterToun MonsterTown.xcodeproj ~ ©
Deployment Info Project Document
Project Format Xcode 9.3-compatible B
Deployment Target a
Organization
Frameworks and Libraries CREE R
Name. Embed Text Settings
Indent Using Spaces a8
ameworks a (. Widths afes 4z
Tab Indent
Wrap lines
Development Assets
dd development assets here
+ & oB - @

Let’s take a moment to look at the organization of the Xcode application window (Figure 15.5).

Figure 15.5 Organization of Xcode

Toggle Navigator Build & Run Toolbar

| \

Show Library

Toggle Inspector

eoe M » [MonsterTown) SR My Mac Finished running MonsterTown : MonsterTown + &
= B2 QA O & DB B = main.swift =] B O 0 =
S RINoneteon B MonsterTown) 77 MonsterTown) = main.swift) No Selection Identity and Type
v 77 MonsterTown import Foundation Name main.swift
= main.swift M Type Default - Swift Source @
> {7 Products print("Hello, World!") Location Relative to Group <]
main.swift -
5 | Full Path [Users/bignerd/Documents/
Big Nerd Ranch/
MonsterTown/MonsterTown/
main.swift
On Demand Resource Tags
Editor Target Membership
@ W MonsterTown
Text Settings
Text Encoding No Explicit Encoding (2]
Line Endings (]
Indent Using Spaces e
» Debug Area widths 4l 4
Hello, World! Tab Indent
Program ended with exit code: @ B Waplices
Navigator Variable View Console Inspector
+ G @OF Auos All Output & OO

178

A New Project

The pane on the far left is the navigator area. It provides several views that encapsulate how your
project is organized. The view that opens by default is the project navigator. In the project navigator,
you see a listing of your files, which at the moment only includes main.swift.

Moving one section to the right, you see the editor area. This is where you will add, view, and edit the
code in a selected file.

On the far right is the inspector area. The inspector area provides several inspectors that allow you to
get more information, such as the file inspector, which gives information about a file’s location, name,
and so on.

At the bottom of the Xcode window is the debug area, which includes the variable view and the
console. You will use this area to debug your code when there are problems. (The debug area may not
open by default; we will explain how to open it later.)

At the top of the window is the toolbar, which has play and stop buttons you will use to run and stop
your programs, among other tools.

In the project navigator on the far left side, click the main.swift file to open it in the editor area
(Figure 15.6).

Figure 15.6 main.swift

eoe M > W WonsterTown } B My Mac ‘own: Ready | Today at 9:53 PM + &7 B
& 0 0 Qs © §F§o B 8B < B main.swift
v [MonsterTown B MonsterTown MonsterTown) [main.swift) No Selection

v 7 MonsterTown import Foundation

B main.swift
> {7 Products print("Hello, World!")
5

+ &2 (O)=)

In a command-line tool, main.swift represents the entry point of your program. Like a playground,
main.swift executes top to bottom. After the last line of code in this file executes, the program is
complete and exits.

To let main.swift define the procedural story of your program, you define custom types and functions
in other files and then use them in main. swift. For example, you will create a Town.swift file to hold
a definition of a struct called Town. Then you will create an instance of Town in main.swift.

This strategy of defining each new type in its own file helps organize an application's source code,
making it easier to find and debug code in large projects.

179

Chapter 15 Structs and Classes

Notice that the main.swift file already has some code:
import Foundation

print("Hello, World!")

import Foundation brings the Foundation framework into the main.swift file. A framework is a
precompiled collection of types and functions you can use in your program. There are frameworks
published by Apple and others to give you the building blocks for programs that do anything from
presenting rich user interfaces to communicating with web servers.

The Foundation framework is provided by Apple and consists of a number of classes primarily
designed to do work in and with Objective-C. In the future, we will ignore this line of code unless you
need it for context in the code listing or for using one of the types it provides.

The print(*Hello, World!") code should look familiar. It logs the string Hello, World! to the
console.

Build and run your program. There are several ways to do this:
¢ In the Xcode menu bar, click Product, then select Run.
* Click the triangular play button in Xcode's upper-left corner.
e Press Command-R.

When you run your program, the debug area opens, if it was not open already. Hello, World! is
logged to the console, along with information from the compiler about how the program ended.

That is great, but you have seen strings logged to the console before. Let’s make your program
more interesting by creating custom structs and classes. Before you move on, delete print("Hello,
World!"); you will not need it.

Listing 15.1 Removing “Hello, World!” (main.swift)

import Foundation

180

Structures

Structures

A struct is a type that groups a set of related chunks of data together in memory. You use structs when
you would like to group data together under a common type. You are going to create a struct called
Town to model a town with a monster problem, along with its size, population, and region.

In previous chapters, you modeled a town in a playground. Because the example was relatively
small, this was not all that limiting. Playgrounds use a streamlined approach to code management to
facilitate quick prototyping of code, but app development requires a more robust set of tools for code
organization. It is better to encapsulate the definition of the town within its own type, in its own file.

Add a new file to your project using File = New — File.... You can also press Command-N. A window
like the one shown in Figure 15.7 prompts you to select a template for your new file. With macOS
selected at the top, choose Swift File from the Source section and click Next.

Figure 15.7 Adding a Swift file

s ™
Choose a template for your new file:

i0S mac0S watchOS tv0S @
Source
]
3 9 <9 m
Swift File Cocoa Class Ul Test Unit Test Objective-C File
Case Class Case Class
h iig C CH+
Header File IIG File C File C++ File Metal File

User Interface

=

SwiftUl View Storyboard Application Window View

Cancl Now

181

Chapter 15 Structs and Classes

Next you are asked to name the new file and set its location. Call the file Town and make sure the box is
checked to add it to the MonsterTown target (Figure 15.8). Click Create.

Figure 15.8 Town.swift

e As: | Towr|

Where: [MonsterTown e -

Group MonsterTown %]

Targets M MonsterTown

Your new file opens automatically. (If it does not, select Town.swift in the project navigator.) It is
nearly blank: just the comments at the top and the import Foundation line.

Start declaring your Town struct.

Listing 15.2 Declaring a struct (Town.swift)
import Foundation
struct Town {

}

The keyword struct signals that you are declaring a struct, in this case named Town. You will add
code between the braces ({}) to define the behavior of this struct. For example, you are about to add
variables to your new struct so that it can hold on to some data that will help model the characteristics
of your town.

Technically, these variables are called properties, which is the subject of Chapter 16. Properties can
be variable or constant, using the var and let keywords you have seen before. Add some properties to
your struct.

Listing 15.3 Adding properties (Town.swift)

struct Town {

var population = 5_422

var numberOfStoplights = 4
}

Here, you add two properties to Town: population and number0fStoplights. Both of these properties
are mutable — this makes sense, because a town’s population and number of stoplights are likely to
change over time. These properties also have default values, for the sake of simplicity. When a new
instance of the Town struct is made, it will default to having a population of 5,422 and 4 stoplights.

182

Structures

Switch to your main.swift file and create a new instance of Town to see your struct in action. (As
always, do not break the string in your code.)

Listing 15.4 Creating an instance of Town (main.swift)
var myTown = Town()

print("Population: \(myTown.population);
number of stoplights: \(myTown.number0fStoplights)")

You accomplish three things with this code. First, you create an instance of the Town type. You do this
by entering the name of the type (here, Town) followed by empty parentheses (). Including the empty
parentheses calls the default initializer for Town (more on initialization in Chapter 17).

Second, you assign this instance to a variable you call myTown.

Third, you use string interpolation to print the values of the Town struct’s two properties to the console.
Notice that you use dot syntax (like myTown.population) to access the properties’ values.

Run your program. The output reads Population: 5422; number of stoplights: 4.

183

Chapter 15 Structs and Classes

Instance Methods

The print() function is a fine way to print a description of myTown. But a town should know how
to describe itself. Create a function on the Town struct that prints the values of its properties to the
console. Navigate to your Town. swift file and add the following function definition.

Listing 15.5 Letting Town describe itself (Town.swift)

struct Town {
var population = 5_422
var numberQOfStoplights = 4

func printDescription() {
print("Population: \(population);
number of stoplights: \(numberOfStoplights)")

}

Warning! By default, your files can see each other's code. (You will learn about code privacy in
Chapter 23.) If you copied the print () function call above from main.swift, then it will incorrectly
print myTown. population and myTown.number0fStoplights (properties of the myTown instance
declared in main.swift) instead of the properties declared above. Make sure your code matches the
snippet shown here.

printDescription() is a method, because it is a function that is associated with a particular type. It
takes no arguments and returns nothing. Its purpose is to log a description of a town’s properties to
the console. That makes printDescription() an instance method, because it is called on a specific
instance of Town.

To use your new instance method, you need to call it on an instance of Town. Navigate back to
main.swift and replace the print() function with your new instance method.

Listing 15.6 Calling your new instance method (main.swift)

var myTown = Town()
print{“Peputation—\{myTewn—peputatien+
pumber—of—stepltightsi—tmyTown—humbergfStoptights))

myTown.printDescription()

You use dot syntax to call a function on an instance, as in myTown.printDescription(). Run your
program. The console output is the same as before.

184

Mutating methods

Mutating methods

Your printDescription() method is great for displaying your town’s current information. But what if
you need a function that changes your town’s information? If an instance method on a struct changes
any of the struct’s properties, it must be marked with the mutating keyword. In Town.swift, add a
mutating method to the Town type to increase a town instance’s population.

Listing 15.7 Adding a mutating method to increase population (Town.swift)

struct Town {
var population = 5_422
var numberQfStoplights = 4

func printDescription() {
print("Population: \(population);
number of stoplights: \(numberOfStoplights)")
}

mutating func changePopulation(by amount: Int) {
population += amount

b

Note that you mark the instance method changePopulation(by:) with the mutating keyword. As you
saw with enumerations in Chapter 14, this means that the method can change the values in the struct.
Both structures and enumerations require the mutating keyword on methods that change the value of
an instance’s properties.

Recall from Chapter 12 that a value passed in to a function is copied into the function. The function
cannot modify the original variable's value unless the argument is marked inout. You also learned in
Chapter 14 that instance methods take an implicit first argument, self, containing the value that the
method has been called on.

The mutating keyword asks the compiler to make the implicit self argument inout, so that the
instance method can make changes to the original value the method was called on, instead of a copy.
You will learn more about this behavior, and a major exception to it, later on.

Your method has one explicit parameter, amount, which is an Int. You use this parameter to increase
the town’s population in the line population += amount. Switch over to main.swift to exercise this
function:

Listing 15.8 Increasing the population (main.swift)

var myTown = Town()
myTown.changePopulation(by: 500)
myTown.printDescription()

As before, you use dot syntax to call the function on your town. Build and run the program; you will
see that myTown’s population has been increased by 500 and the console reads Population: 5922;
number of stoplights: 4.

185

Chapter 15 Structs and Classes

Classes

Like structs, classes are used to model related data under a common type. You will use classes in
MonsterTown to model various types of monsters that will be terrorizing your town. Classes differ from
structs in a few very important ways, and this section will begin to highlight those differences.

A Monster class

Now that you have a struct representing a town, it is time to make things a little more interesting. Your
town is, unfortunately, infested with monsters. This is not good for property values.

Create a new Swift file called Monster.swift: As before, click File = New — File... or press
Command-N. Select the Swift File template from the Source section under macOS.

This file will contain the definition for a Monster class that will be used to model a monster’s
properties and town-terrorizing activities. Start by creating a new class:

Listing 15.9 Monster setup (Monster.swift)

import Foundation

class Monster {

}

The syntax to define a new class type is nearly identical to the syntax used to define a new struct type.
You begin with the keyword class, followed by the name you are assigning to your new class. And, as
before, the definition of the class takes place between the braces: {}.

For reasons relating to inheritance (discussed in the next section), the class Monster is defined in very
general terms. This means that the Monster class will describe the general behavior of a monster. Later
you will create different kinds of monsters that will have specific behaviors.

Listing 15.10 Defining the Monster class (Monster.swift)
class Monster {

var town: Town?

var name = "Monster"

func terrorizeTown() {

if town != nil {
print("\(name) is terrorizing a town!")
} else {
print("\(name) hasn't found a town to terrorize yet...")

It is well known that monsters do one thing very well: They terrorize towns. The Monster class has a
property for the town that a given monster is terrorizing. Because the monster may or may not have
found a town to terrorize yet, the town property is an optional (Town?), and it starts out nil. You also
create a property for the Monster’s name and give it a generic default value.

186

Inheritance

Next, you define a basic stub for a method called terrorizeTown (). This method will be called on an
instance of Monster to represent the monster terrorizing a town.

Notice that you check whether the instance has a town using if town != nil. If it does, then
terrorizeTown () will log to the console the name of the monster wreaking havoc. If the instance does
not have a town yet, then the method will log that information.

As different sorts of monsters terrorize towns in different ways, subclasses will provide their own
implementation of this function. You will learn about subclasses in the next section.

Switch to main.swift to exercise the Monster class. Add an instance of this type, give it a town, and
call the terrorizeTown() function on it.

Listing 15.11 Setting a generic monster loose (main.swift)

var myTown = Town()
myTown.changePopulation(by: 500)
myTown.printDescription()

let genericMonster = Monster()
genericMonster.town = myTown
genericMonster.terrorizeTown()

First, you create an instance of the Monster class called genericMonster. This instance is declared as
a constant because there is no need for it to be mutable. Next, you assign myTown to genericMonster’s
town property. Finally, you call the terrorizeTown() method on the Monster instance. Run the
program, and Monster is terrorizing a town! logs to the console.

Inheritance

One of the main features of classes that structures and enumerations do not have is inheritance.
Inheritance is a relationship in which one class, a subclass, is defined in terms of another, a superclass.
The subclass inherits the properties and methods of its superclass. In a sense, inheritance defines the
genealogy of class types.

The fact that classes can take advantage of inheritance is the primary reason you made the Monster
type a class. You are going to create a subclass of the Monster class, Zombie, to represent a particular
kind of monster. (In a more complex program, you could create subclasses for werewolves,
chupacabras, and any other kind of monster you can imagine - and, in fact, for this chapter's silver
challenge you will create a Vampire subclass with its own behaviors.)

187

Chapter 15 Structs and Classes

A Zombie subclass

Create a new Swift file called Zombie. swift, following the same steps as you did to create Town.swift
and Monster.swift. Add the following class declaration to see how the Zombie subclass inherits from
the Monster class.

Listing 15.12 Zombie creation (Zombie.swift)
import Foundation

class Zombie: Monster {
var walksWithLimp = true

override func terrorizeTown() {
town?.changePopulation(by: -10)
super.terrorizeTown()

Your new Zombie class inherits from the Monster type, which is indicated by the colon (:) and
superclass name (Monster) after Zombie. Inheriting from Monster means that Zombie has all Monster’s
properties and methods, like the town property and the terrorizeTown () method used here.

Zombie also adds a new property. The property is called walksWithLimp and is of type Bool (inferred
from the property’s default value: true).

Finally, Zombie overrides the terrorizeTown () method. Overriding a method means that a subclass
provides its own definition of a method that is defined on its superclass. Note the use of the override
keyword. Failing to use this keyword when overriding a method will result in a compiler error.

Figure 15.9 shows Zombie’s relationship to Monster.

Figure 15.9 Zombie inheritance

Monster

var town: Town?
var name: String

terrorizeTown()

f

inherits from

Zombie

var walksWithLimp: Bool

terrorizeTown()

Zombie inherits the properties town and name from the Monster class. It also inherits the
terrorizeTown () method, but it provides an override, which is why it is listed in both areas in the
figure. Last, Zombie adds a property of its own: walksWithLimp.

188

Inheritance

Inheritance hierarchies can be as deep as you want. You could add a ShamblingZombie class that
subclasses Zombie, for example. Perhaps a shambling zombie would have a smaller impact on a town’s
population because it does not move as fast.

Notice the line super.terrorizeTown() in Listing 15.12. super is a prefix used to access a
superclass’s implementation of a method. In this case, you use super to call the Monster class’s
implementation of terrorizeTown().

Because super is a feature of inheritance, it is not available to enums or structs, which do not support
inheritance. It is invoked to borrow or override functionality from a superclass.

Recall that Zombie’s town property, inherited from the Monster class, is an optional of type Town?. You
need to make sure that an instance of Zombie has a town to terrorize before calling any methods on the
town.

One possible solution might have been to use optional binding, like this:

if let terrorTown = town {
// Do something to terrorTown
¥

In the code above, if the Zombie instance has a town, then the value in the optional is unwrapped and
put into the constant terrorTown. After that, this value is ready to be terrorized, but with an important
caveat: terrorTown is not the same instance as the town instance. It is a copy, for reasons we will
explain in the section called Looking Ahead: What Is the Real Difference? later in this chapter.

This means that any changes made on terrorTown will not be reflected in the Zombie instance’s town
property. They would be two different (albeit initially identical) instances of the Town type. In addition
to this limitation, this code could also be more concise.

In short, this is not an ideal solution.

The optional chaining you use in Listing 15.12 (town?.changePopulation(by: -10)) allows a
check like this to be done on a single line. It is just as expressive and is also more concise. If the
optional town has a value, then the method changePopulation(by:) is called on that instance, and
the population is decreased by 10 people. Furthermore, the copy problem described above is avoided,
because town is changed directly.

In a moment, you will use optional chaining again to call printDescription() on a zombie’s town.

189

Chapter 15 Structs and Classes

Preventing overriding

Sometimes you want to prevent subclasses from being able to override methods or properties. The need
to do this is rare in practice, but it does come up. In these cases, you use the final keyword to prevent
a method or property from being overridden.

Imagine, for example, that you do not want subclasses of the Monster type to provide their own
implementation of the terrorizeTown () function. In other words, all subclasses of Monster should
terrorize their towns in the exact same way. Add the final keyword to this function’s declaration. In a
moment, you will see that this creates an error.

Listing 15.13 Preventing overriding of terrorizeTown() (Monster.swift)
class Monster {

var town: Town?

var name = "Monster"

final func terrorizeTown() {

if town != nil {
print("\(name) is terrorizing a town!")
} else {
print("\(name) hasn't found a town to terrorize yet...")

}

Now, subclasses of the Monster class will not be able to override the terrorizeTown () method.

Try to build your program. You should see the following error on the line where you try to override
the terrorizeTown() method in Zombie.swift: Instance method overrides a ‘final’ instance
method. The error indicates that you cannot override terrorizeTown () because it is marked as final
in the superclass.

The final keyword can also be used on a class declaration, just like a method declaration, if you want
to prevent the class from being subclassed at all.

Undo your change before continuing:

Listing 15.14 Allowing overriding of terrorizeTown() again (Monster.swift)
class Monster {
;;;a¥ func terrorizeTown() {

b

190

Inheritance

The zombie problem

Now is a good time to exercise the Zombie type. Choose the main.swift file from the project navigator.
Create an instance of the Zombie class. While you are there, delete the code that prints the town’s
description as well as the code that created a generic instance of the Monster type, which you no longer
need.

Listing 15.15 Who's afraid of fredTheZombie? (main.swift)

var myTown = Town()
myTown.changePopulation(by: 500)
Town printt ot iend)

tet—genericMenster—=—lenster
genrerielonster—tenwn—a—myFonn
generieMonster—terrerizefown)
let fredTheZombie = Zombie()
fredTheZombie.town = myTown

fredTheZombie.terrorizeTown()
fredTheZombie. town?.printDescription()

You first create a new instance of the Zombie type named fredTheZombie. Next, you assign your
preexisting instance of the Town type, myTown, to the Zombie type’s property town. At this point,
fredTheZombie is free to terrorize myTown, which it will do with alacrity. (Or, at least, as much alacrity
as a zombie can muster.)

After fredTheZombie has terrorized the townsfolk, you check the results with the
printDescription(). As discussed earlier, because fredTheZombie’s town property is an optional of
type Town?, you have to unwrap it before you can call the printDescription() function on it. You
do this with optional chaining: fredTheZombie.town?.printDescription(). This code ensures that
fredTheZombie has a town before you try to use printDescription().

The console output should read: Population: 5912; number of stoplights: 4.

191

Chapter 15 Structs and Classes

Polymorphism and type casting

You have learned that a subclass has all the properties and methods of its superclass, and maybe more.
You could say that every Zombie is also a Monster. This is an example of polymorphism, a term that
means "having many forms."

You will explore polymorphism later in this book, but the short version for now is this: Because Zombie
inherits from Monster, you can treat an instance of Zombie as though it were a Monster. And, in fact,
vice versa. But only one of these things is safe to do.

Declare your fredTheZombie variable to be of type Monster.

Listing 15.16 Fred is a Monster (main.swift)

let fredTheZombie: Monster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

Here you tell the compiler that you want a variable of type Monster, but then you store a value of type
Zombie in it. The compiler uses the declared variable type to decide what you are allowed to do with
the variable later. Because there is nothing you might do to a Monster that you could not also do to a
Zombie, the compiler decides that this is OK - so long as you only want to do Monster-y things to your
variable.

Run your program, and you will see that nothing at all has changed in the output. When the program
runs, it is the type of instance actually stored in the variable, not the declared type of the variable, that
matters. The declared variable type only matters to the compiler, so that it can check to make sure that
you only access properties and methods that actually exist on that type.

So far you are accessing the town property and the terrorizeTown () method, both of which exist on
both types. But what if you try to access a property that only exists on a Zombie? Try it:

Listing 15.17 Not all monsters walk with a limp (main.swift)

let fredTheZombie: Monster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()
fredTheZombie.walksWithLimp = true

This creates a compiler error. You know that when the program runs, fredTheZombie will contain an
instance of Zombie, which has a walksWithLimp property. But the compiler complains that you said the
variable might hold any Monster, so it cannot let you do Zombie-specific things to it.

You can instruct the compiler to treat a variable as though it were of a specific, related type. This is
called type casting and is done with the as keyword. Note that type casting does not change the type
of the variable itself - instead, it creates an expression that is of a different type than the variable. Try
fixing the error by casting fredTheZombie back to its real type, Zombie.

Listing 15.18 Not actually fixing the error (main.swift)

(fredTheZombie as Zombie).walksWithLimp = true

192

Inheritance

This did not quite fix the error. Casting from a more general type (a superclass) to a more specific type
(a subclass) is called downcasting, and it is unsafe. If the compiler let you cast a variable to a type with
more properties but the instance actually stored in that variable did not have those properties, then the
program would crash when you tried to access them.

You have two choices. You could force the cast to occur with the as! keyword. In that case, if you try
to access a property that the instance does not have, the program will crash at the site of the cast. This
is a bit like force-unwrapping an optional. It is only safe if you can guarantee that it will work.

Alternatively, you can perform a conditional cast with the as? keyword. In that case, if the cast fails at
runtime, the casting expression will return nil. In most cases, this is the safer choice, just as optional
binding is safer than force-unwrapping.

Perform the conditional cast:

Listing 15.19 Fred might be a Zombie after all (main.swift)

(fredTheZombie as? Zombie)?.walksWithLimp = true

Here you conditionally cast fredTheZombie back to type Zombie. Because the compiler does not
know whether the cast will succeed at runtime, a conditional cast is an optional expression, so you use
optional chaining to access the walksWithLimp property.

Two final notes about type casting: First, casting from a subclass to its superclass is called upcasting
and is always safe; there is nothing a Monster can do that a Zombie cannot. Because it is safe, when
you upcast, the unadorned as keyword works nicely.

Second, you can ask Swift whether you are correct about an instance's type at runtime with the is
keyword, like this:

if fredTheZombie is Zombie {
print("I knew it!")
}

The is expression will return true for the target type or any of its direct or indirect superclasses.

What you have learned here about type and polymorphism applies to functions as well: A function with
a signature of (Monster) -> Void would be happy to accept an argument of type Zombie, but not the
reverse, without potentially unsafe type casting.

Inheritance is only one form of polymorphism. You will see another in Chapter 19. The utility of type
casting may not seem immediately obvious, but as you begin writing more complex programs for iOS
and macQOS, you will encounter scenarios where it will be required in order to use values as they move
around your program in variables of different types.

But MonsterTown is not a complex program, and you do not want to have to cast fredTheZombie every
time you use it. Go ahead and take out the explicit Monster declaration and walksWithLimp usage.

Listing 15.20 Rolling back the casting (main.swift)

let fredTheZombie+—Menster = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printDescription()

193

Chapter 15 Structs and Classes

Looking Ahead: What Is the Real Difference?

In this chapter, the biggest difference that you have encountered between classes and structs is that
classes support inheritance and structs do not. That alone is not a compelling reason to have both
structs and classes in the language, especially since the final keyword can be used to prevent a class
from being subclassed where necessary.

The underlying difference between structs and classes is a bit more subtle, but it has crucial
implications for how they are used. Here is a sneak peek at a feature of structs and classes that you will
explore in much greater depth later in this book.

When you have a struct or enum variable, all the memory the instance needs to store its content is
inside that variable. For example, a Town instance contains two Ints. Each Int is 64 bits (8 bytes)
in size, so a variable that contains a Town takes up at least 16 bytes of memory. If you duplicate the
variable, you duplicate the entire instance, copying its memory into the new variable.

Make this change to main.swift:

Listing 15.21 Value