

Systems Engineering

https://taylorandfrancis.com/

Systems Engineering
Fifty Lessons Learned

Howard Eisner

First edition published 2020
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microflming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@
tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identifcation and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Eisner, Howard, 1935- author.
Title: Systems engineering : ffty lessons learned / Howard Eisner.
Description: First edition. | Boca Raton, FL : CRC Press, 2020. | Includes
bibliographical references and index.
Identifers: LCCN 2020013254 (print) | LCCN 2020013255 (ebook) | ISBN
9780367422424 (hardback) | ISBN 9781003002505 (ebook)
Subjects: LCSH: Systems engineering--Management.
Classifcation: LCC TA168 .E3874 2020 (print) | LCC TA168 (ebook) | DDC
620.0068--dc23
LC record available at https://lccn.loc.gov/2020013254
LC ebook record available at https://lccn.loc.gov/2020013255

ISBN: 978-0-367-42242-4 (hbk)
ISBN: 978-1-003-00250-5 (ebk)

Typeset in Times
by Deanta Global Publishing Services, Chennai, India

https://lccn.loc.gov
https://lccn.loc.gov
www.copyright.com
www.copyright.com

This book is dedicated to my wife, June Linowitz, a professional artist
who is devoted to creating art for the world and the enjoyment of her
friends, colleagues, and family. It is also dedicated to my children and
their spouses, who are Susan Rachel Eisner Lee, Oren David Eisner,
Joseph Lee, and Tara Burke. Further dedications are to Oren’s sons
Zachary and Ben, deceased (Seth) son Jacob, and Susan and Joseph’s
children Gabriel and Lee.

https://taylorandfrancis.com/

Contents

Preface xiii
About the Author xv
Other Books by the Author xvii

1 Technical 1
1. When and Where Possible, Go Back to Fundamentals (*) 1

Case One 1
Case Two 2
Case Three 2

2. Seriously Explore Alternatives, Even If Time Is Short 3
References and Recommended Reading 5

3. Embrace Prototyping as Well as Modeling and
Simulation (M & S) 5

References and Recommended Reading 7
4. Cost-Effectiveness Is Still the Preferred Approach 7

Typical MOEs for Communication Systems 8
Selected MOEs for Transportation Systems 8
Limited MOEs for Air Defense Systems 9
Weighting Factors 9
References and Recommended Reading 9

5. Do Not Attempt to Integrate All Stovepipes 10
Reference and Recommended Reading 11

6. A Bit at a Time or All at Once 12
References and Recommended Reading 13

7. Growth by Acquisition 13
8. The Contract 16
9. Less Paper Please 17

References and Recommended Reading 19

2 Management 21
10. Defnitely Measure, but Do Not Over-Measure 21

Software Measurement 21
Overall Project Measurement 22

vii

viii Contents

Signifcant Parameters 22
COCOMO I and COCOMO II 23
References and Recommended Reading 23

11. Under Promise and Over Deliver 24
Reference and Recommended Reading 25

12. Try to Improve Overall Systems Engineering
Practices 25

References and Recommended Reading 27
13. Negotiate 27

References and Recommended Reading 28
14. Understanding the Enterprise 29

Monthly Measurements 29
The Balanced Scorecard 30
References and Recommended Reading 30

15. The Systems Approach 30
Systems Thinking 31
References and Recommended Reading 32

16. Industry/Government Interaction 33
Universities 33
INCOSE Certifcation 34

17. Tradeoffs 34
Risk 35
Detection and False Alarm Probabilities 35

18. Resilience 37
References and Recommended Reading 38

3 Idea Based 39
19. They Were Right: KISS, Simplify, and Reduce

Complexity 39
References and Recommended Reading 41

20. Seek a Balanced System Solution; Do Not Try to
Optimize or Achieve Perfection (*) 41

Other References to Balance 42
Stakeholders 44
References and Recommended Reading 44

21. Understand the Power, Importance, and Challenge of
Functional Decomposition 45

References and Recommended Reading 47
22. Break the Problem into Pieces Using the Reductionist

Approach Whenever Possible, and Then Apply Lateral
Thinking 47

References and Recommended Reading 49

Contents ix

23. Develop and Try a New Way of Architecting 50
The DoD Procedure for Developing Architecture 50
Products for Views 51
An Alternative Approach 51
References and Recommended Reading 52

24. Plato and Proust 52
Reference and Recommended Reading 54

25. Try to Master New Tools and Use Them as
Needed 54

References and Recommended Reading 56
26. Real EAM 56

References and Recommended Reading 58
27. Ways of Thinking 59

Visualization 59
Lateral Thinking 59
Hybrid Thinking 60
Six Thinking Hats 60
Special Point-of-View Thinking 61
References and Recommended Reading 62

28. New Ideas to Be Explored 63
General Systems Theory 63
Rapid Computer-Aided Systems of Systems 63
New Method of Systems Architecting 64
National Aviation System (NAS) Model 64
Systems Engineering and Software Engineering 64
Emergent Properties of Systems 64

Affordability 64
Design to Cost 64
References and Recommended Reading 65

4 People Oriented 67
29. Building a Highly Productive Systems

Engineering Team 67
The Team Leader 67
Project Management and Leadership 68
References and Recommended Reading 68

30. Listen to Your Elders 69
References and Recommended Reading 71

31. Leadership 71
Practical Visionary 72
Inclusive Communicator 72
Positive Doer 72

x Contents

Renewing Facilitator 72
Principled Integrator 72
Reference and Recommended Reading 73

32. New Boss 73
Reference and Recommended Reading 74

33. Team Busters 74
34. Meetings 76

A Systems Engineering Meeting 78
References and Recommended Reading 78

35. Myers–Briggs 79
Reference and Recommended Reading 80

36. Becoming a Hi-Tech Manager 81
Skills Required 81
Specifc Steps 82
Reference and Recommended Reading 82

37. Dealing with Your Customer 83
Going to Lunch with Your Customer 83
Issuance of a New Task Order 83
Quick Response Capability 84
A Truthful Interchange 84
The Re-Competition 84

38. Integration 85
Reference and Recommended Reading 86

39. Hall, Goode, and Machol 86
A. D. Hall 86
Goode and Machol 87
Machol’ s View 87
References and Recommended Reading 88

40. Man vs. Machine 88

5 Miscellany 91
41. Redundancy is Important and May Be Critical in

Certain Systems 91
Reference and Recommended Reading 93

42. Rechtin’s Heuristics Are Brilliant and Need to
Be Studied and Followed 93

References and Recommended Reading 94
43. Mistakes 95

A Footnote to the IBM – Microsoft Story 96
References and Recommended Reading 96

44. Cost Estimating 97
References and Recommended Reading 98

Contents xi

45. Generalize 98
46. Risk Analysis and Mitigation 99

Take Your Pick of Serial and Parallel Confgurations 100
References and Recommended Reading 101

47. Change, Options Open, and Iteration 101
Rechtin’s Options Open 102
Confguration Control and Management 102
Iteration 103
TBDs 103
References and Recommended Reading 104

48. DOTSS 104
References and Recommended Reading 105

49. Obversity 105
50. Vaillant, Turned into Lessons Considered 106

Grit 107
Intelligence 107
Listening 107
Focus 107
Integrity 107
Community Involvement 108
Problem Solver 108
Respect 108
Curiosity 108
Sense of Humor 108
Resilient 108
Growth-Oriented 109
References and Recommended Reading 109

6 Top Ten Lessons 111
1. Stovepipes 111
2. Modeling and Simulation 111
3. Architecting 112
4. Amid a Wash of Paper … 113
5. Industry Initiatives and Government Support 113
6. The Elders in Systems Engineering 114
7. Functional Decomposition 114
8. Team Building 115
9. Risk Analysis and Mitigation 115
10. The Systems Approach and Systems Thinking 116

References and Recommended Reading 116

Index 117

https://taylorandfrancis.com/

Preface

On page 9 (Table 4.1) of the fourth edition of the Systems Engineering
Handbook (produced by INCOSE), it is noticed that an important date in the
origins of systems engineering (SE) as a discipline was cited as 1937. That was
two years after my birth year, which makes me older than the entire feld of SE.
The handbook also takes note of other signifcant dates such as:

1954 – the RAND Corporation recommending and using the terms
(systems engineering)

1962 – Hall’s classic book on systems engineering
1990 – the formation of NCOSE (National Council on Systems

Engineering)
2008 – ISO, IEC, IEEE, INCOSE, and PSM harmonize SE concepts in

standard 15288:2008

This all prompted me to pause for a moment or two and think about systems
engineering, a feld in which I have worked for some 50 years, starting from the
age of 25–75 (I am now past 80). This involvement intersects with my 30 years
in the industry as a working engineer, manager, executive, and president of two
high-tech companies. It also intersects with my 24 years as a professor at the
George Washington University, where I was a strong advocate for the study
and use of systems engineering. “Time to sum up”, I thought. And that is what
this book is all about. I sat down and decided to document the “50 lessons
learned” over this time period. What were some messages I could leave for the
next couple of generations to contemplate with the feld they chose to work in?

So here they are – 50 of them – in six categories and chapters:

• Technical: Chapter 1
• Management: Chapter 2
• Idea-Based: Chapter 3
• People-Oriented: Chapter 4
• Miscellany: Chapter 5
• Top Ten Lessons: Chapter 6

xiii

xiv Preface

I hope that readers will indeed fnd them interesting and useful in their lives as
systems engineers. Some lessons are more powerful and long lasting than oth-
ers, and these are in my “top ten” list, which is Chapter 6. Readers may wish to
pause to think about this set of ten lessons to see if there is any resonance with
their experiences. In any case, it’s all about thinking and re-thinking, review-
ing and re-evaluating, which is what systems engineers like to do.

This book is a retrospective from a systems engineering perspective. As
such, it looks back at 50 years of working in the feld of systems engineering
and cites some 50 “lessons learned” during this rather long period of time.
These lessons are organized into six categories and chapters, as mentioned
above.

This author, from approximately age 25 to 75, has worked on many prob-
lem areas associated with quite a few clients. These have included investiga-
tions in the domains of:

• Satellites and related ground systems
• Aircraft and aviation
• Air traffc control systems
• Cost-effectiveness evaluations
• Systems architecting
• Information systems
• Torpedoes
• Air defense systems
• Radars and sonars
• Battlefeld communications

A sample of customers includes NASA (National Aeronautics and Space
Administration), the DOT (Department of Transportation), and the DoD
(Department of Defense). The readers will note that these three are substantial
agencies and all are part of the federal government. Despite this potential limi-
tation, it is believed that the lessons learned, in the main, apply to more or less
any customer set. So it is hoped that the readers will consider how to use these
lessons in their work in systems engineering and related felds. To the extent
that this is the case, feedback to the author is welcomed, at heisner@rcn.com.
It is also hoped that some of the readers, when they are inclined to do so, will
document their own sets of lessons learned.

Howard Eisner
Bethesda, Maryland

About the Author

Howard Eisner spent 30 years in industry and 24 years in academia. In the
former, he was a working engineer, manager, executive (at ORI, Inc. and the
Atlantic Research Corporation), and president of two high-tech companies
(Intercon Systems and the Atlantic Research Services Company). In academia,
he was a professor of engineering management and a distinguished research
professor in the Engineering School at the George Washington University
(GWU). At GWU he taught courses in systems engineering, technical enter-
prises, project management, modulation, and noise and information theory.

He has written nine books that relate to engineering, systems, and man-
agement. He has also given lectures, tutorials, and colloquia to professional
societies (such as INCOSE – International Council on Systems Engineering),
government agencies (such as the DoD, NASA, and the DOT), and other
groups (such as the Osher Lifelong Learning Institute (OLLI)).

In 1994, he was given the outstanding achievement award from the GWU
Engineering Alumni.

Dr. Eisner is a Life Fellow of the IEEE (Institute of Electrical and
Electronics Engineers) and a fellow of INCOSE and the New York Academy
of Sciences. He is a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi, Omega
Rho, and various research/honor societies. He received a Bachelor’s degree
(BEE) from the City College of New York (1957), a Master of Science degree
in Electrical Engineering from Columbia University (1958), and a Doctor of
Science degree from the George Washington University (1966).

Since 2013, he has served as professor emeritus of engineering man-
agement and distinguished research professor at the George Washington
University. As such, he has continued to explore advanced topics in engineer-
ing, systems, and management.

xv

https://taylorandfrancis.com/

Other Books by
the Author

Computer-Aided Systems Engineering
Reengineering Yourself and Your Company
Managing Complex Systems – Thinking Outside the Box
Essentials of Project and Systems Engineering Management
Systems Engineering – Building Successful Systems
Topics in Systems
Thinking – A Guide to Systems Engineering Problem-Solving
Systems Architecting – Methods and Examples

xvii

https://taylorandfrancis.com/

 Technical 1
1. WHEN AND WHERE POSSIBLE,
GO BACK TO FUNDAMENTALS (*)

So what, indeed, are the fundamentals? In a nutshell, they’re basic physics and
engineering. I would like to illustrate this with a few stories.

Case One

I was having dinner with my son and his two twin sons, my grandchildren.
We were exploring entrepreneurship, and what it might take to become one.
To make a point, I suggested that there might be a huge market for a device
that un-cooks a steak (or the like) when it is well-done rather than rare, as the
customer requested. After all, with such a device, restaurants could save huge
amounts of money.

“That’s a great idea, grandpa”, they both agreed. “Let’s build such a
device”.

I encouraged this whole adventure, and they went off with a happy assign-
ment – to fgure out how to build a steak un-cooker. Their enthusiasm was
almost boundless. If successful, they would become super entrepreneurs – at
age 20.

A few days later I got a phone call from one of these grandchildren.
“Grandpa, I have bad news”, he said
I replied, “Don’t keep me in suspense. What is it?”
“I’m afraid that we can’t build a steak un-cooker. It violates the Second

Law of Thermodynamics! We discovered that by going back to our High
School physics class notes and our textbook”.

1

2 Systems Engineering

“Terrifc”, I said. “You did what needed to be done. You both went back
to some fundamentals”.

And so the tale ended.

Case Two

Another story goes like this. It was suggested by a friend of mine that I visit
with an ex-Israeli who lived in Queens, New York. So when I was spending
some time with my brother in the Big City, I went with my sister-in-law to see
this ex-Israeli. He showed me an “invention” of his, a prism that took in light
and produced the colors of the spectrum as an output.

“There’s more energy coming out than the energy going in”, he said, spin-
ning the prism around in his hand. “How about we develop this together, and
make a fortune”, he suggested. With that, he thrust a paper in front of me and
urged me to sign it. It was a partnership agreement that, presumably, would get
us up and running.

“More energy out than the input energy”, I thought. “That simply cannot be.
That’s more than 100 percent effciency, and violates a basic Law of Physics”.

My sister-in-law, also an ex-Israeli, spoke to him in Hebrew and then to
me in English.

“This is a scam”, she said, under her breath. “Don’t fall for it. He just
wants an open pipeline to your money”.

I had come to the same conclusion, more-or-less at the same time.
“Sorry”, I said, “but I’m going to have to decline your offer, and we have to

leave now”. And with that, we left his premises and drove back to my brother
and sister-in-law’s apartment.

There are times, I thought, when one just needs to go back to fundamen-
tals, which also might help in avoiding a poorly disguised scam.

Case Three

I was a young engineer in my 20s and was watching and listening to a senior
engineer (actually a physicist) explain his thinking in solving a diffcult prob-
lem. He did so with grace and a complete command of physics. He set forth
a very convincing argument as to how he derived a certain formula and what
the “answer” was very likely to look like. I watched and listened in great awe.

“This is what research is all about”, I thought, considering his “heuristic”
as both correct and masterful.

So there we have it. Three cases that help to illustrate the premise. They’re
all different, but they demonstrate the point. Stay with the fundamentals, and

1 • Technical 3

make sure to be careful as you do so. In particular, listen and don’t sign any
partnership papers.

2. SERIOUSLY EXPLORE ALTERNATIVES,
EVEN IF TIME IS SHORT

This admonition is one of the author’s favorites and receives a fully intentioned
asterisk [1]. A key issue for the system architect is to take the time to defne
and evaluate alternatives. The “analysis of alternatives” (AoA) was suggested
by the Department of Defense (DoD) as an important part of building new
systems. It’s not clear as to when and if the DoD will enforce this suggestion;
it would be surprising if they did not.

The Department of Homeland Security (DHS) has also explored the
notion of analysis of alternatives and has documented their approach [2]. Some
of the features of this approach are delineated below:

• First, the alternatives need to be defned
• Then one identifes operational scenarios and concepts of opera-

tions (CONOPS)
• This is followed by setting forth effectiveness measures for the

alternatives
• Which leads to estimates of cost
• One then plots the values of cost and effectiveness on a graph
• Then this graph is analyzed, in detail

So we see above a basic cost-effectiveness approach. The alternative that is
most cost-effective is usually selected unless there are other over-riding factors
and infuences in play.

Examples of problem areas that are subject to the defnition of alternatives
include:

1. Buying an automobile,
2. Buying a house, and
3. Buying a computer.

But frst we look at a short tale from the world of military communica-
tions. Some years ago, I had the pleasure of working on a system known as
Consolidated Space Operations Center (CSOC) on a sub-contract for the Air
Force. We had won the base contract and moved on to bid on the follow-on

4 Systems Engineering

effort. In our proposal, we were faced with the matter of what our approach
should be – frequency division multiplex (FDM) or time division multiplex
(TDM). During the base year contract, we took the position that FDM was
the preferred approach. This decision carried the day, and we therefore bid an
FDM approach for the second phase contract. As it turned out, a competitive
bid came in, taking a TDM approach. That competitor won the competition.
As best I can remember, going with TDM was in line with a trend toward
digital communications and its inherent compatibility with the computer and
various off-the-shelf hardware and software. So we learned a lesson that day:
in retrospect, it was conjectured that we should have submitted two bids – one
for FDM and the other for TDM. So the wrinkle in the analysis of alternatives
sometimes can be not “either-or”, but “and”. Sometimes it’s possible to bid
more than one alternative, rather than just one.

While we are on the topic of bidding on contracts, we recognize that in
such a scenario where time is usually short, there’s a lot of pressure to come
up with an answer. So participants argue that there’s not enough time to look
at more than one singular alternative. This, of course, is not an AoA case since
there is only one selection. This author believes that this is generally wrong-
headed and that just about all situations call for a legitimate AoA. If one does
not do this, then a price is usually paid down the road.

We turn our attention now to the DoD and what their approach might be
and how they look at the overall issue [3]. The stated objectives of an AoA, as
represented by the Air Force, are:

1. Refne alternatives
2. Refne criteria
3. Refne evaluation factors
4. Work to gain consensus
5. Reduce uncertainty
6. Choose an alternative

We note the following regarding these objectives. First, there is no mention of
cost or effectiveness, explicitly. This, in itself, is a bit surprising. The omission of
a cost analysis is a most serious matter. Second, the consensus item shows inter-
est in and emphasis on the matter of how decisions are formulated and made.
Third, there is the objective of reducing uncertainty. This can be a long and dif-
fcult item, with little guidance as to how to do that. The bottom line appears to
be that the DHS approach and that of the DoD, as defned here by the Air Force,
aren’t quite the same. Indeed, the differences are signifcant. In this comparison,
the Air Force approach would appear to be in need of a second draft.

We end this discussion by simply saying that the AoA is the most impor-
tant notion that should be followed, and refned, for all large-scale systems.
Leaping to an intuitive conclusion with only one alternative may well be a

1 • Technical 5

mode of operation, but it is not recommended. Take the time to broaden your
consideration to at least two alternatives. In the case of architecting systems,
there is good and suffcient reason to extend your consideration to three alter-
natives. See the presentation on systems architecting in this book.

References and Recommended Reading

1. If given an asterisk, it is in the author’s “top ten”.
2. “Analysis of Alternatives (AoA) Methodologies: Considerations for DHS

Acquisition Analysis”, Version 3.0, 22 January 2014.
3. “An AoA Handbook – A Practical Guide to the AoA”, Offce of Aerospace

Studies, Kirtland AFB, NW 87117 – 5522, 6 July 2016.

3. EMBRACE PROTOTYPING AS WELL
AS MODELING AND SIMULATION

(M & S)

Over the years we have seen a stronger move toward prototyping which has
had a signifcant impact on systems engineering. Where this effect started up
is debatable, but we can see thrusts in the business world mainly in the form
of design. Prototypes can have quite positive effects on a project or system
development such as:

a. Reducing the time needed to produce results
b. Costing less, in the long run
c. Moving from “thinking” to “instantiating”
d. Showing the customer(s) something concrete to react to

The latter often leads to customer interjection such as:

“I like it!” or “I don’t like it but can you change to something like …?”

In the area of modeling and simulation (M & S), we see continual investment in
software. And the reason – to fnd out how the system should be architected and
carry out extensive tradeoff studies that exhibit system and subsystem behavior.

Generally speaking, there are two broad types of M & S systems – event-
driven and time sliced. For the latter, we are interested in what is happen-
ing at every time slice and standard computer time slices that are of course

6 Systems Engineering

synchronous help us in this regard. For the event-driven systems, we often wait
for “important events which are out of time-step”. An example is the appear-
ance of a satellite in and out of view of a ground station as it circles the earth.

This author has attempted to encourage the growth of the M & S feld, start-
ing with his book on Computer-Aided Systems Engineering [1], which delin-
eates a substantial list of useful software in several categories, which includes:

• GPSS
• SIMAN
• SIMSCRIPT
• SLAM
• DYNAMO
• GASP
• CSSL

Other categories of M & S-related software that come to mind are:

a. Design tools
b. Alternatives and preference evaluators
c. AI related

A fnal word on the matter of M & S. Some years ago, this country undertook
the challenge of the SDI, or the Strategic Defense Initiative. It was around the
year 1990, and I was charged with the responsibility (in my company) for fnding
out how to participate in this very important program within the Department of
Defense. I looked around within the company to see what had the best chance of
succeeding in this regard. I looked at the technology that we had built for NASA
and concluded that we had something that might apply to the SDI program. This
was a piece of software that calculated orbital mechanics and position location
on the face of the earth. This might apply to locating a missile that was launched
against us from foreign soil (the so-called boost phase of an enemy missile).

I contacted the person in our company who had built this position location
algorithm and asked for a demonstration of that software. He was more than
happy to oblige since he saw a possible new use for his software, which might
indeed be called M & S software, put to a second purpose.

Soon enough we were both driving down the road to Cherry Hill, New
Jersey, to demonstrate the software to a potential customer. The basic idea
was that the software was capable of simulating the SDI scenario such that
we could compute the kill probabilities of enemy missiles during its various
stages of fight. This customer was impressed and recommended a contract to
explore the SDI scenarios in detail. Soon we were under contract, which was
quite a positive experience for both our company as well as that customer. In a
relatively short period of time, we were showing the SDI program offce what

1 • Technical 7

we were able to do to simulate the overall set of SDI scenarios. It was a real
breakthrough for the company as well as the customer.

Another experience of this author, in relation to M & S activities, is worth
noting. This was the Climatic Impact Assessment Program (CIAP), a two-year
study sponsored by the Department of Transportation (DOT). The author’s
company had a contract with the DOT to support the program, the essence of
which was to build a series of models that ft together and that also dealt with
the following pieces:

a. A feet of SST aircraft that emitted various effuents as they few,
b. The chemistry between these effuents and the atmosphere,
c. The consequent changes in the atmosphere, and
d. The possible increase in cancer, from the above.

The above four components were constructed as a serial model, and it took
some two years to do so and then be able to do end-to-end calculations.

Finally, we see several books on M & S systems that will keep any reader
up-to-date on this important subject, such as references [2], [3] and [4].

References and Recommended Reading

1. Eisner, H., “Computer-Aided Systems Engineering”, Prentice-Hall, 1988.
2. Sokoloski, J., “Principles of Modeling and Simulation”, Wiley, 2009.
3. Sokoloski, J., and C. Banks, “Modeling and Simulation Fundamentals”, Wiley,

2010.
4. Zeigler, B., “Theory of Modeling and Simulation”, Elsevier, 2000.

4. COST-EFFECTIVENESS IS STILL
THE PREFERRED APPROACH

The U.S. government, especially the DoD, is looking for:

a. Cost-effective solutions,
b. Cost-effective systems, and
c. Cost-effective architectures.

The intuitive meaning is clear – the more cost-effective, the better. And we can
compare two systems based upon their costs and measures of effectiveness.

8 Systems Engineering

But we need to have solid approaches to measure both costs and effectiveness,
the latter being more complicated.

Let C1 = the cost of system 1, C2 = the cost of system 2, E1 = the effective-
ness of system 1, and E2 = the effectiveness of system 2. If C1<C2 and E1> E2,
we can assert that system 1 is more cost-effective than system 2. Other con-
structions, such as C1> C2 and E1> E2, leave us with some uncertainty. System
1 is more effective than system 2, but costs more. Are we willing to pay the
extra price (cost) in order to achieve higher effectiveness? We have to look at
additional details before we can decide on some answer.

This author supports the basic ideas of cost-effectiveness analysis in order
to choose approaches and systems from one another. As suggested above,
other groups and agencies appear likewise to support this approach. If we have
more than two alternatives, more combinations need to be taken into account,
but the basic ideas remain the same.

The notion of cost estimation, of course, is part and parcel of this cost-
effectiveness approach. As easy as this approach sounds in principle, signif-
cant steps have been taken to support this type of estimation [1, 2]. On the
effectiveness side, we conjure up a series of MOEs to generally establish effec-
tiveness measures. These MOEs, by way of example, can be estimated as fol-
lows for various types of systems.

Typical MOEs for Communication Systems

• Detection probability
• False alarm rate
• Signal-to-noise ratio
• Availability
• Grade of service
• Speed of service
• Bit error rate (BER)

Selected MOEs for Transportation Systems

• Trip time
• Passenger capacity
• Freight capacity
• Speed
• Connectivity
• Capacity to demand ratio

1 • Technical 9

TABLE 4.1 Weighted (Modifed) MOEs Example

MOE MODIFIED
ORIGINAL MOES WEIGHTS (W) RATING (R) MOE (W R)

Trip time
Pax capacity
Freight capacity
Maintainability
Reliability

Limited MOEs for Air Defense Systems

• Probability of target detection
• False alarm probability
• Target kill probability
• Percent of targets detected
• Number of targets in track-while-scan mode

Weighting Factors

If the various MOEs have different levels of importance, we generally weigh
them to obtain modifed MOEs. These modifed values become the new MOEs
for comparative analysis. Such a situation is illustrated in Table 4.1.

There are other ways to approach measuring effectiveness. These are
suggested, for example, in Blanchard and Fabrycky’s classic text [3]. In that
treatise, the authors defne several orders of measure, including performance,
availability, dependability, producability, sustainability, and others. This is
still an open question, but the system analyst, in search of the best design,
needs to look at the overall matter of MOEs in some detail.

References and Recommended Reading

1. “NASA Cost Estimation Handbook”, NASA Cost Analysis Division, NASA
Headquarters, Washington, DC

2. ”Parametric Estimation Handbook”, International Society of Parametric
Analysts, Fourth Edition, April 2008

3. Blanchard, B., and W. Fabrycky, “Systems Engineering and Analysis”, Prentice-
Hall, 2011.

10 Systems Engineering

5. DO NOT ATTEMPT TO
INTEGRATE ALL STOVEPIPES

It is well known that there are many “stovepipes” out there, a stovepipe being a
system with more-or-less a single focus or function. There is also a great temp-
tation, on the part of management, to try to integrate all stovepipes under a
common umbrella system. I have seen more than one directive from an agency
head that basically mandates complete integration of the agency stovepipes. In
addition, I’ve been a frst-hand witness to an attempt to carry out this form of
complete integration.

With respect to the latter situation, I was on an advisory panel for the
Navy, and this particular group was trying to integrate six stovepipes to form
one overarching system. They had a serious budget, but were running out of
time and dollars. Finally, the program to integrate was terminated, and all the
contractors and sub-contractors went home, so to speak. I thought long and
hard about what had happened and realized that the stovepipes were by no
means easily integrated. It was mostly a matter of software, meaning that the
structure and languages for these stovepipes were widely disparate. How do
you integrate software written in six different languages, supported by several
different databases?

Upon further examination, I developed a means by which an “integration
index” could be set forth that would be a measure of how hard it might be to
integrate two or more stovepipes. The idea was to fnd a way to help manage-
ment cope with this not very well understood situation. The essence of that
construction is presented below.

The suggestion here is that we accept the viewpoint and ground rule that says:

• Integrate stovepipes only when it is provably cost-effective to do so.

This means that we simply do not try to integrate when it will cost too much
and/or it will take too much time, or the overall expenditure of resources will
be too high. It also means that we need to brush up on how to do a cost-effec-
tiveness analysis. More about that under another topic in this book.

This matter needs to be studied in detail, for many types of systems, to
be more precise about when and how to deal with the “stovepipe issue”. How
much money and time has been wasted going to the default perspective of issu-
ing a directive that calls for the integration of all stovepipes? My experience
and study say that this is a non-trivial problem that calls out for a systematic
and comprehensive investigation. Management folks in both industry and gov-
ernment certainly deserve such.

1 • Technical 11

So the “integration” issue remains on the table and is one of the more impor-
tant ones for the systems engineering community. Here are some of the factors to
take into consideration when dealing with when and where to integrate stovepipes:

• What is the ultimate compatibility of the software for the stovepipes?
• What role does size play?
• Are the stovepipes completely mature, or is more work to be done

on them?
• What do we actually gain by various integrated (vs. stand-alone)

confgurations?
• What is the appropriate sequencing if we decide to integrate the

stovepipes?
• What are our best estimates of cost for various combinations of

stovepipe integration?
• Is there any natural affnity between stovepipes, including overlap-

ping functions?

Another thought with respect to this overall topic has to do with a priori design.
By this we mean that it may be possible to plan, in advance, for a future inte-
gration activity. If management takes the time, various forms of integration
may be envisioned for the future. This is perhaps more than one can expect,
given the diffculties faced by program and project managers. These diffcul-
ties also have to do with conditions imposed by the procurement regulations.

We complete this discussion by looking briefy at what the INCOSE systems
engineering handbook [1] has to say, especially about the integration process.
This process is defned with the following purpose: “to synthesize a set of system
elements into a realized system … that satisfes system requirements, architec-
ture, and design”. Topics discussed in some detail under this topic include:

• The concept of aggregate
• Integration by level of system
• Integration strategy and approaches

The handbook is silent specifcally on the matter of “stovepipes” and their inte-
gration. This handbook is also brilliantly conceived and written. One might,
however, fnd a few pieces missing, from time to time.

Reference and Recommended Reading

1. D. Walden, G. Roedler, K. Forsberg, R. Douglas Hamelin, and T. Shortell, (eds.),
“Systems Engineering Handbook”, Fourth Edition, INCOSE, John Wiley, 2015.

12 Systems Engineering

6. A BIT AT A TIME OR ALL AT ONCE

There are times when we’re looking at doing things incrementally or all at
once. They seem to be opposites, and there seem to be natural tendencies to go
in one direction or another. Let’s look at some of this issue here. Let’s see if
there’s some kind of lesson to be learned in this domain.

In the world of software development, we appear to favor incremental
development, at least as a descriptor. One step at time, one increment at a time,
distinguished from a “grand design”. This is very close to but apparently not
exactly the same as evolutionary design [1].

Having said that, we certainly can call an evolutionary approach the oppo-
site of a revolutionary approach. And there is at least one distinct arena in
which the latter seems to be preferred. This is in the context of reengineering
the corporation, as per the conception of Hammer and Champy [2]. In their
blockbuster book in 1993, these authors lay out their approach of how to reen-
gineer the corporation. It was a compelling story, at least as refected in the
super-sales of their frst book. And their approach was defnitively “revolution-
ary”. After all, they call their treatise “a manifesto for business revolution”.
Here are some of the aspects of their thinking in this matter [2].

• It’s all about processes; we must reengineer faulty and outdated
processes

• It’s therefore not about people, although people play a key role in
carrying out the reengineering of these processes

• In terms of the people side of the equation, thinking needs to shift
generally from deductive to inductive

• The overall process is called reengineering and is revolutionary, not
evolutionary

So if we’re talking about an overall enterprise, the corporation if you
will, it needs to be fixed by changing (reengineering) the key internal
processes. If we have the right processes, they need to be examined and
changed. One direct example of the latter is in systems engineering. We
generally have the right technical processes (in Mil Std 15288). Systems
architecting, for example, is the right process. However, we’re not doing
it correctly, according to this author. So the “fixing” involves doing it a
bit at a time and on the process of architecting in this example. Throwing
out Mil Std 15288 would constitute a revolutionary approach, which we
appear to not be doing.

1 • Technical 13

So when do we do the “little bit at a time” and when do we do the
“revolutionary” or “all at once”? The answer seems to be – it depends. It
depends upon the nature of the problem and the nature of the processes in
question.

Let’s try to clarify and place in a larger framework the nature of and dif-
ference between inductive and deductive thinking. Here’s what Hammer and
Champy say about the need for more inductive thinking. It’s about frst recog-
nizing a “powerful solution” and then looking for the problems it might solve,
including problems the company doesn’t even know it has.

Finally, is there a lesson learned in this arena? Possibly it has to do with
the central theme of processes in relation to the “one little step at a time” vs.
the revolutionary approach. Perhaps it’s something like:

• Try one small step at a time when you’re convinced you’ve got the
right process

• Try the revolutionary approach when you believe you might have
the wrong process

If we look at the latter suggestion, we seem to think we have the right
process(es) in the systems engineering world (i.e., Mil Std 15288). No need for
a revolution.

This needs to be pondered for a while. Is there a better or different lesson
learned here? What might that be?

References and Recommended Reading

1. Eisner, H., “Essentials of Project and Systems Engineering Management”, John
Wiley, 2008.

2. Hammer, M., and J. Champy, “Reengineering the Corporation”, Harper Business,
1993.

7. GROWTH BY ACQUISITION

During the approximately 50 years in the feld of systems engineering, I expe-
rienced two purchases (we sold the company twice) and acquired two compa-
nies. Here are possible lessons learned from these various events.

14 Systems Engineering

The most signifcant of the above was when we were about an $80 million
company and began to take the matter of growth through acquisition quite
seriously. We prepared some material that described the company and its fea-
tures (e.g., LOBs, revenue, proftability, etc.) and made some special trips to
companies that were good acquisition targets. In parallel with that, we voted
internally on the matter of acquisition as a strategy. The internal vote of our
top four executives was three yeses and one no. It was the CFO who wanted
to run a bit longer without acquisition. Finally, he changed his mind when we
drew up more serious plans, including fnancials.

This overall process continued for about a year and we learned a lot just
by “walking” and “talking”. There were all kinds of companies out there for
acquisition, but relatively few for our serious consideration, as we had set the
bar rather high.

Finally, we ran into two companies that looked good to us. These were
Intercon Systems and Calculon. Not too big, not too small, and workable
from a fnancial point of view, which were key criteria for acquisition.
The other criteria had to do with the lines of business and overall business
sustainability.

Over the years, we had wanted to enter the world of information secu-
rity but without much direct success. That became a more important crite-
rion, and Intercon Systems had several contracts with a security agency. Put
a heavy-duty check next to Intercon. Its headquarters was in Cerritos, CA,
and it had about six small offces around the country. These offces were
in the San Francisco, Santa Clara, Thousand Oaks, Seattle, and Huntsville
areas. Typically they had about a dozen people, just right to serve a special
customer and to use as a base for further growth. All of them had very good
prospects for contract re-competes. Each had a strong frst line manager who
would ft very well into the job without appearing to be a problematic person
if acquired.

While on the subject of people, we took the time to examine each and
every person that we considered important as part of an acquisition. Would
they be an asset or a liability going forward? Did they ft into our company or
were they going to be a problem child? This “once-over” was an important part
of the process, but I don’t recall that any of our negative results serving as a
deal-breaker. But keep in mind that it might have been otherwise as time went
on and new data observed.

The Intercon acquisition turned out to be especially important in terms of
this treatise, since after a short while, I took on the position of president of that
company when the then president confrmed his desire to retire with his new
nest-egg. It was a challenge for me, an East-Coaster who had to make several
lifestyle changes with the new position. Here are some changes that I experi-
enced, considered (not all) in this connection.

1 • Technical 15

a. Change of location
The headquarters of Intercon in Cerritos was a problem for me since
I had been located in Rockville for many years. The problem was
solved initially by my taking a furnished apartment in Seal Beach
which I occupied, more-or-less, every other week. But it did mean
that I was on an airplane to the West Coast bi-weekly. As it turned
out, I ft that into my life with relative ease since I was between
wives at that time.

b. New names and faces
The new company had many new “names and faces” that had to
be learned, and quickly. When on the West Coast, I arrived with a
standing early on Monday morning with key vice presidents. Quick
status review and discussion of ups and downs as well as business
development activities.

c. Each offce key player
Each of the company’s eight offces had a key player and a customer.
Guess what? I needed to visit with each as a frst order of business.
What better to do than to see these people? I can’t think of any.
Can’t beat direct contact and time spent with these people as a “les-
son learned”. Remember, once the acquisition is a done deal, these
offce directors are your people and your responsibility, and they
may be the reason you succeed or fail to do so.

d. Business base and growth for each offce
Finally, I felt that I had to make an initial judgment as to what the
business base represented in terms of short- and long-term growth,
and that’s exactly what I did. That involved both strategy and tac-
tics and reaching some type of mutual understanding with the local
manager and his boss. Lots of different results, but an important
thing to have done.

e. Fit within original acquisition company
Finally, I had to check with my boss, the president of the original
acquirer, which was ORI, Inc. Other members of that company’s
executive committee also had to be kept in the loop. All around
communication was an important ingredient in making the new and
much larger company work effciently and smoothly.

As we go through what one might consider after the acquisition is completed,
I’m reminded of a story that went around the industry regarding the aftermath
of an acquisition. After a year or so of “due diligence”, it was discovered that
the acquired company could not complete a particular contract within sched-
ule and budget. The contract was a fxed price and the customer insisted that
they keep working until all the deliverables were satisfed. This amounted to

16 Systems Engineering

a massive overrun, and a signifcant real loss for the acquirer. This, of course,
is a path to be avoided on the road to growth by acquisition. When reviewing
the feld for possible acquisitions, it’s crucial to do a deep due diligence that
includes what might be called a risk assessment. Keep your best engineers and
lawyers busy, before the acquisition, looking for problem areas. One of these,
of course, is the fxed price contract that’s in trouble. You’re better off fxing
this problem before the acquisition rather than trying to do so after the deed
is done. Lesson learned? One ounce of prevention, in this domain, is worth …

8. THE CONTRACT

As systems engineers, we’ve come a long way on the contract side. When last
I looked, there was considerable participation. And this required a fair amount
of preparation as well as a continuing check:

• Are we doing what the contract requires, as written in black and white?

Many moons ago, when my company was small and I was starting out as a
young project manager (PM), I got a call from our contracts person. He wanted
me to attend a session on the recent contract we won with the Goddard Space
Flight Center. I was the PM for that contract and we needed to negotiate a sign-
ing of that contract.

“What do I need to do”? I asked.
His answer was simple. “Just be at my offce at 1 pm. I’ll drive the two of

us to Goddard”.
That was just fne with me as I discovered the issue was simply to arrive

at a rate (fee) for the contract. I did my best, and we wound up with an 8% rate,
as I remember the meeting.

The issue is much more complicated these days. The technical persons
are more numerous as the contracts have gotten more complicated. And we
see cost plus as well as frm fxed price and Time and Material (T & M) con-
tract types. More complex – more of a role on the technical side of the house,
including vice presidents.

In today’s world, the systems engineer needs to make sure we are indeed
fulflling all of the details of the “deliverables” clause, and on time. It’s often
the case that the lead systems engineer writes that deliverable and knows most
about it. Going beyond mere delivery, there’s the question of “evaluation cri-
teria”. That means, how do we know that a particular deliverable is accept-
able? Sometimes that’s easy, as in, have we actually delivered the deliverable?

1 • Technical 17

Sometimes it goes more deeply, as in, does it satisfy the criteria? We need to
have the technical folks present for that discussion, and often in the presence of
a government representative on the other side of the table (the contract offcer).

Bad things can happen if the “technical” systems engineer fails to do his
or her job. On a contract that I saw that went along with a company acquisition,
due diligence demanded a halt and a deep analysis of that contract. The lead
systems engineer failed to fag the problem (over-spent in cost and schedule),
so an overrun on a fxed price was the consequence. This led to an overrun on
the overall contract of a signifcant amount.

So the lesson learned can be simply put:

• Systems engineers of today better be prepared to participate in the
contract negotiation and also track the clause progress, one at a
time, during the life of the contract.

If you can do the above, you’re much more likely to be successful as systems
engineer and also more likely to eventually be promoted to the next level of
management (if that is what you desire). The contract, if you will, is part of
the “system”, and that is not to be taken for granted or considered to be out
of scope for the systems engineer.

9. LESS PAPER PLEASE

Your list of deliverables on that contract would boggle the mind.
If we take a quick look at the Department of Defense Architecture

Framework (DoDAF) [1] and the various views that need to be documented, we
decide that we’d better start now if we want to fulfll the contract requirements.

E. Rechtin [2] provided us with an applicable heuristic:
“amid a wash of paper, a small number of documents become critical

pivots around which every project’s management revolves”.
Very good advice, and can I fnd an example of possible excessive

paperwork?
I’ve been told this is excessive but none-the-less called for under DoDAF [3]:

AV-1 – Overview and Summary Information
AV-2 – Integrated Dictionary
OV-1 – High-Level Operational Graphic Concept
OV-2 – Operational Node Connectivity Description
OV-3 – Operational Information Exchange Matrix

18 Systems Engineering

SV-1 – System Interface Description
TV-1 – Technical Architecture Profle

Here’s the next layer of required deliverables pertaining to the “systems” view:

SV-2 – Systems Communications Description
SV-3 – Systems Matrix
SV-4 – System Functionality Description
SV-5 – Operational Activity to System Function Traceability Matrix
SV-6 – System Information Exchange Matrix
SV-7 – System Performance Parameters Matrix
SV-8 – System Evolution Description
SV-9 – System Technology Forecast
SV-10a – System Rues Model
SV-10b – Systems State Transition Description
SV-10c – System Event/Trace Description
SV-11 – Physical Data Model

And moving on from there to:

The Metamodel
• Conceptual
• Logical
• PES
• IDEAS Foundation Ontology

Viewpoints and models
• All Viewpoint
• Capability Viewpoint
• Data and Information Viewpoint
• Critical
• Project Viewpoint
• Services Viewpoint
• Standards Viewpoint
• Systems Viewpoint
• Models
• Model Categories
• Levels of Architecture
• Architecture Interrogatives
• Architecture Modeling Primitives
• Mapping

That’s a lot of paperwork, and a lot of person-hours to produce it.

1 • Technical 19

Going beyond this sample of paperwork, we note that the systems engi-
neering standard 15288 has a standard for Technical Reviews and Audits
(IEEE 15288.2). These reviews and audits are listed below and exhibit addi-
tional paperwork that might be associated with the 15288 standard.

• Alternative systems review
• System requirements review
• System functional review
• Preliminary design review
• Critical design review
• Test readiness review
• Functional confguration audit
• System verifcation review
• Production readiness review
• Physical confguration audit
• Software requirements and architecture review
• Software specifcation review
• Integration readiness review
• Flight readiness review

This is a deep and pervasive problem for those that have competed for and won
government contracts. People are assigned to write the deliverables, many of
which have no real connection to what is happening on the contract work itself.
This area is in need of reform but it seems that there is little forward motion in
this regard. But it is also true that spending less, or saving money, is generally
not a favorite cause in the military industrial complex that we have come to
know (and love) so well.

References and Recommended Reading

1. Department of Defense Architectural Framework (DODAF); see DoDcio.
defense.gov.

2. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.
3. Mil Stad ISO/IEC 15288 and 15288.2, Department of Defense.

https://defense.gov

https://taylorandfrancis.com/

Management 2
10. DEFINITELY MEASURE, BUT

DO NOT OVER-MEASURE

I had an occasion, some years ago, to see a senior manager request (of a junior
researcher) a plan for software measurement in a government agency. As I
recall, the researcher came back a few weeks later with an extensive list of
about three dozen items. The overall scenario had to do with ultimately sug-
gesting that this list be the “standard” for all serious software efforts in that
agency.

There are times when one wishes to measure software on a project, but
measuring 36 items or such is just too much. Too much time and energy in that
case are going into measurement, more than the software development itself. If
implemented, it’s very likely to sink the project rather than improve the likeli-
hood of success.

There may well be a domain where one wishes to have a laundry list of
measurements. I would suggest that such be the case with purely scientifc
studies. By that I mean science in distinction to engineering. When you’re
trying to understand the physics of a situation, lots of measurements may be
appropriate.

Software Measurement

To help clarify the point with respect to software, we list here some of the
measurements that one might wish to employ for a project [1].

• Requirements volatility
• Size of software

21

22 Systems Engineering

• Software complexity
• Progress on software builds
• Computer hardware utilization
• Performance of software builds vs. requirements
• Staffng for each software build
• Software reuse, if any

This list covers quite a few software areas in terms of measurement, but by no
means all that one can think of. Possibly that’s all one might need or desire. In
any case, it’s an example of the message of this point.

Overall Project Measurement

The status of all projects in an enterprise needs to be measured at least every
month. In this regard, the project manager needs to get up and present the
project status to his or her boss and possibly to the vice president in that chain
of command. As to what needs to be measured and presented, here’s another
list that might be a good candidate:

1. Timeline for important milestones vs. original plan
2. Deviations from the original plan in a time dimension, with reasons
3. Cost for current activities vs. original plan
4. Deviations from the original plan in costs, with reasons
5. Plan for future weeks and solving any and all problems
6. Result of any meetings with the customer
7. Personnel changes and reasons
8. New/updated estimates of time and cost to complete

Can you think of any others that you would insist upon hearing about if you’re
the “boss”?

Signifcant Parameters

In deciding what to measure, we keep in mind that there’s a notion that will
help. That has to do with key performance parameters (KPPs) and technical
performance parameters (TPPs). We are urged to defne and keep track of
these parameters, both directly related to the performance of the system, as
this is revealed through design and testing. Here are some parameters that have
been used on a variety of projects:

2 • Management 23

• Radar range
• Reliability and availability
• Signal intensity
• Noise levels
• Signal-to-noise ratio
• Probability of detection
• False alarm probability
• Processing power gains and losses

Looking back at this text, we see three instances in which there are eight mea-
surements. Perhaps this is a number to be used, in general, much like Miller’s
seven plus or minus two [2]. To try to limit the amount of measurement, per-
haps the “constraint” needs to be – you’ve got at most eight “measurement
slots” in each functional area. What are they?

COCOMO I and COCOMO II

A second “cousin” to software measurement can be construed to be soft-
ware estimation. That’s a form of measurement, certainly mastered and
provided to all by Barry Boehm [3,4]. The essence of Boehm’s construc-
tion is the relationship person months (PM) (effort) = A(size)B, where A
is defned in terms of effort multipliers and B is related to a set of scale
factors (economies and diseconomies of scale). Size is interpreted in terms
of source instructions or an equivalent. More specifcally, A is computed
using 7 or 17 cost drivers and B depends upon 5 factors. COCOMO is a
powerful set of estimation software that is used extensively in both indus-
try and government.

References and Recommended Reading

1. Eisner, H., “Essentials of Project and Systems Engineering Management”, Third
Edition, John Wiley, 2008.

2. Miller, A. “The Magic Number Seven Plus or Minus Two”, Psychological
Review, 63(2), 1956.

3. Boehm, B., “Software Engineering Economics”, Prentice Hall, 1981.
4. Boehm, B. et al, “Software Cost Estimation with COCOMO II”, Prentice Hall,

2000.

24 Systems Engineering

11. UNDER PROMISE AND OVER DELIVER

Conventional wisdom these days appears to be to under promise and over
deliver. So I’ve been wondering whether or not this is one of my lessons
learned. Here’s my non-conclusive answer, which is mostly a fuzzy conjecture.

But before I launch, I asked my son, when he was in his early 50s and
was an executive in a substantial company, what was (if he could pinpoint the
reason) the basis for his success. He hesitated not a bit and said,

• “I always try to under promise and over deliver”.

I registered that with the ultimate duty of a father, so I could bring it up here
and talk a bit about it.

Of course it makes a lot of sense, most of it intuitive. Control, if you will,
the expectations of your customer, and then you’re free to surprise him or her
with an outstanding performance.

If I look at several of the project management experiences I’ve had, I fnd
that I basically tried to keep the customer happy and satisfed with what I was
delivering. I did just about all that was needed to achieve this result. And I tried
to plan ahead so that the work load was predictable and smooth. Every now
and then I was surprised and ambushed; the plan didn’t work but mostly due to
some new and not very anticipated force.

So did I consistently and deliberately under promise and over deliver? The
answer is “no”. And would I change my approach now? The answer is still a
“no”.

A formal study result in this domain [1] appears to support the notion that
you get no “extra credit” by under promising and over delivering. That may be
counterintuitive, but there it stands. If I look at some of these external experiments
and also my natural inclination over the years, I come to this conclusion:

• No under promising and over delivering.

How’s that for a lesson learned?
So I try to deeply understand what it is that my customer wants, and also

what he or she needs, and go for that end result. I try to fnd useful and respon-
sive pathways that the customer will appreciate. I try to produce answers that
will enhance the long-term relationship between me and my customer.

Over the years, and happily, that’s been good enough.

2 • Management 25

Reference and Recommended Reading

1. Why “Under Promise and Over Deliver” Is Terrible Advice \Inc. Copy.

12. TRY TO IMPROVE OVERALL
SYSTEMS ENGINEERING PRACTICES

Since its inception, INCOSE has sought to improve how systems engineering
is carried out both nationally and internationally. This effort is refected back
to its members, and so I remain an individual with a charter to see what I can
do along these lines. Looking back on these last 50 years, I can see several
areas that can be discussed.

The frst area is that of system architecting. As explored in another sec-
tion of this treatise, signifcant milestones have been achieved by Eberhardt
Rechtin and the DoD. The former set the basis for a deeper understand-
ing of systems architecting and represented a seminal contribution. The
latter informed industries (and other parts of the government) how to do
systems architecting. Further, this author suggested an approach that is dif-
ferent from that of the DoD. Lesson learned? Keep an eye on new develop-
ments anywhere they might appear and bring them into practice as soon as
possible.

In previous sections of this treatise, we refer to some of the defciencies
of the DoDAF approach. Rather than rejecting this entire view, a comple-
mentary approach is suggested, namely, the Eisner’s Architecting Method
(EAM) approach. This is a completely different idea that has its roots in the
cost-effectiveness analysis of alternatives. This is believed to be a signifcant
improvement that can also be treated as an addition to DoDAF. New per-
spectives like this almost always help in leading to improvements somewhere
down the road.

The second area in terms of systems engineering practices is that of
model-based systems engineering (MBSE). This area has gained substan-
tial traction over the years to the point where it is totally accepted by the
systems engineering community. So, if you are a practitioner of systems
engineering, you very likely need to look into MBSE and how to use this
approach.

26 Systems Engineering

A third area of no small signifcance is that of systems engineering itself.
The overall feld has some 30 elements, but the practitioners have taken the
point of view that these elements can be tailored to any and every particu-
lar program, depending upon its stated or inferred needs and requirements.
This has provided signifcant fexibility and made the application process more
effcient.

Along a similar line of thought, work on systems engineering standards
has progressed rather well over the years. A major milestone has been that of
Mil Std 15288 [1]. This standard has the following selected technical processes
and has been important to the feld and its understanding.

a. Mission analysis
b. System requirements defnition
c. Architecture defnition
d. Design defnition
e. System analysis
f. Implementation
g. Integration

Another area in which signifcant lessons have been learned has to do with
defning and certifcations as well as a Masters degree program at various
universities. For the latter, we have seen departments shift from industrial
engineering to systems engineering, and the latter combined with engineering
management curricula. In other words, systems engineering is more than a
legitimate area of study within the overall domain of engineering.

Yet another area that has seen major advancements is that of software
engineering. This is frmly planted as a subset of systems engineering, and at
least two thrusts need to be cited here. One is the entire area of cost estima-
tion, which has been moved forward by Barry Boehm’s COCOMO I [2] and
COCOMO II [3]. Barry is the leader in this arena, and his approach has been
rather spectacular, as has been the research and documentation of the likes of
Harlan and Shaw [4], and others [5].

Another area to be cited here has to do with research areas suggested by
the Systems Engineering Research Center (SERC) [5]. In November 2019 the
following areas were selected from the Research Review:

a. Mission engineering
b. Digital engineering transformation
c. AI and systems engineering
d. System security engineering

2 • Management 27

Each signifcant of the SERC, it is presumed, will suggest research areas that
are worthy of further in-depth analysis.

References and Recommended Reading

1. Boehm, B., “Cost Estimation with COCOMO I,” Prentice-Hall, 1981.
2. Boehm, B. “Software Cost Estimation with COCOMO II”, Prentice-Hall, 2000.
3. R. Taylor, N. Medvidovic and E. Dashofy, “Software Architecture”, John Wiley,

2010.
4. Boehm, B., and Rich Turner, “Balancing Agility and Discipline”, Addison-

Wesley, 2004.
5. Systems Engineering Research Center (SERC), Department of Defense, https://

sercuarc.org/.

13. NEGOTIATE

There’s a simple solution to many problems in the systems engineering world.
Simply put, it’s known as the win–win solution. We need nothing more than
that in most situations. But getting there may be diffcult.

If we go back a few years we run into Cohen’s book on negotiation [1] that
declares it’s a matter of three critical elements:

1. Information,
2. Time, and
3. Power.

These basics are rather fundamental, and by way of example, we are led to
another section of this treatise where we point to a situation that requires some
consideration in the domain of building systems.

Boehm and his team were building a system that had a response time
requirement of one second. The team was not able to meet that require-
ment. So they analyzed the system in great detail and found that they
could indeed meet a requirement of four seconds, but at an increased cost
from 30 million to 100 million. This, of course, was a shocking result,
but no amount of analysis led to a different and more favorable result.
What to do?

https://sercuarc.org
https://sercuarc.org

28 Systems Engineering

After much internal discussion, they decided to try to negotiate an
“answer” at the response time of four seconds. The essence of that dis-
cussion had to do with the need – that the government really did not
“need” a one-second response time, and that four seconds would do just
fine. It made all kinds of sense to go down that road and thereby live with
the original budget of 30 million for the system. This was not a simple
negotiation – but the “story” had to be told in considerable detail. And
that’s what was done.

If we look at the frst sentence above, we see another approach that is
simple and straightforward. Look for a win–win solution. What is it that might
work for both you and your customer? What is it that’s acceptable to both
parties?

Although Cohen’s treatise goes back some 40 years, this author fnds that
his key points are relevant today. A “win–win” solution is well known to many
and brings the parties to a sense of mutual satisfaction. How to get there?
Cohen suggests three steps that will lead to:

a. Building trust,
b. Achieving mutual commitment, and
c. Keeping opposition under control.

Moving ahead from Cohen, we now take a look at what Rob Jolles, a coach
and author, suggests on this subject. Jolles uses basketball coaching scenarios
to illustrate some of his points. Several of these take note of the fact that some
coaches are willing to crash (lose) on the court and pick up a referee “no-no”.
They know that this will “tilt” the table and lead to stress at the end of the
game. So a true win–win consideration has a minimum of ego and a lot of
consideration of “the other guy”. It’s lots of ego suppression here and also lots
of willingness to swallow one’s pride.

Think about it for a while. When Trump negotiated with China, was it
win–win or lose–lose? A non-trivial consideration and distinction. But then
again, his style of negotiation was (and is) super non-conventional (and
obscure), to say the least.

References and Recommended Reading

1. Cohen, “You Can Negotiate Anything”, Bantam Books, 1980.
2. Boehm, B., “Unifying Software Engineering and Systems Engineering”,

Computer Magazine, March 2000.
3. Jolles, R., “The Fairytale called ‘win–win’”, Jolles Associates Inc., 11 March

2019.

 2 • Management 29

14. UNDERSTANDING THE ENTERPRISE

The company or enterprise has basic attributes, activities, and features that
are well worth spending some time thinking about. A lesson learned in this
connection is to try to ft into the enterprise in the best possible way and with
minimal dislocation. It means better a priori understanding of what the enter-
prise is up to and how it does its business. It also means a clearer view of the
mission of the enterprise.

Drucker has emphasized these types of issues over the years [1]. What is
the company up to? What is it trying to do? What is it doing? What should it be
doing? What’s its overall strategy? Good answers to these questions can make
systems engineering a more integral part of the company’s success.

Many students of the enterprise have made the seven S’s a way of better
connecting the employee/manager to the company. These are [2]:

Strategy. What’s the overall success strategy for the company, and how
well does this appear to be working?

Structure. Is the company well organized to implement its strategy
and carry out its various missions?

Skills. Does the company pay attention to assuring that it has the vari-
ous skills needed to implement its strategy and tactics?

Systems. Does the company have well-defned systems that carry out
its business functions?

Style. Does the company have its own identifable style?
Staff. Are there specifc people who implement the organizational ele-

ments and position?
Shared values. Is there a well-documented set of values that can be

recalled and pointed to by all employees, and which they all sub-
scribe to?

Monthly Measurements

We recognize, each month, a set of measurements that help to defne both
what’s important in the enterprise and how we appear to be doing. In these
monthly measurements, vice presidents report to the president and various
middle managers “tell their story” to the vice presidents. We get to see how
the various lines-of-business (LOBs) are doing, and we get to ask questions in
these areas, depending upon who we are. We also typically suggest changes
that we think will make improvements, depending upon who we are.

30 Systems Engineering

The Balanced Scorecard

The balanced scorecard is often part of the above in many enterprises. Areas
covered in exploring “balance” include such items as [2]:

1. Internal business processes
2. Financial measures
3. Customer interactions
4. Learning and growth in various well-defned areas

Finally, we look for a sense of balance that goes beyond purely fnancial
matters.

References and Recommended Reading

1. Drucker, P., “The Wisdom of Peter Drucker from A to Z”, see www.inc.com,
2009.

2. Eisner, H., “Reengineering Yourself and Your Company”, Artech House, 2000.

15. THE SYSTEMS APPROACH

Embedded in 50 years of systems engineering study and practice is the sys-
tems approach; this author has conceived of and documented this approach [1],
which is re-iterated here:

1. Systematic process. At this point in time, systems engineering is
driven by Mil Std 15288. This, in turn, has been defned by pro-
cesses and ways of executing these processes [2].

2. Interoperability. Emphasis is placed upon the interoperability
and compatibility between the subsystems. These subsystems
are explicitly defned so as to implement the required system
functions.

3. Analysis of alternatives. In terms of the systems approach, this
implies that we will be looking at alternative architectures. Also,
the procedure has been brought under the umbrella of the systems
approach although it did not start there.

www.inc.com

2 • Management 31

4. Iteration. We use iteration as a positive way to refne the overall
system design and carry out implementation.

5. Slow-die system. We look for a way to assure that the system will
lose capability slowly rather than quickly. This is sometimes called
a “slow-die” system and is distinctly part of our systems approach
(see also the discussion of resilience as part of item number 35).

6. Agreed-upon requirements. Once the system requirements are
agreed upon, they are inviolate. However, there is room for negoti-
ating and changing requirements during the development process.

7. A cost-effective solution. As part of the systems approach, we
carry out a cost-effectiveness analysis and drive toward achieving a
cost-effective system.

8. Sustainability. Add this to our list of “-ilities” as essential to the
systems approach.

9. Technology and risk. Be prepared to use advanced technologies
in our systems, but with levels of risk that are reasonable and mea-
sured. This implies that a formal risk analysis is likely to be part of
our systems approach.

10. Systems thinking. This is the last element of our well-defned sys-
tems approach. It is also the ffth discipline in Senge’s conception of
the fve disciplines [3].

The above list is the author’s conception of the systems approach and has been
constructed over the years in working on systems as well as systems research
activities. A word or two is called for with respect to the last item, namely
“systems thinking”. According to Senge, this ffth discipline integrates and
brings together the other disciplines (mental models, shared vision, personal
mastery, and team learning), thus creating the learning organization. It’s a
holistic approach that sees beyond the pieces, but also sees and understands the
relationships and interactions between these pieces.

Systems Thinking

There appears to be quite a lot of attention paid to this last item, above and
beyond that of Peter Senge. As noted above, he calls this the “ffth discipline”
and pays a lot of attention to it, but he’s not the only one. Here’s a brief sample
of some others:

J. Gharajedaghi [4]. This author connects his approach to managing
chaos and complexity. He uses holistic thinking and the design of
inquiring systems.

32 Systems Engineering

D. Meadows [5]. Meadows approaches this subject as part of the
Club of Rome group that relied in part upon “systems model-
ing”, which was derived initially as part of the system dynamics
structure.

S. G. Haines [6]. Haines contrasts machine age thinking with systems
thinking, which consists of four basic concepts – levels of living
systems, laws of natural systems, a systems model, and changing
systems that are going through their natural life cycle.

Boardman and Sauser [7]. These authors take a novel and compre-
hensive approach to systems thinking, dominated by togetherness,
engineering dynamics, and complexity.

Michael C. Jackson [8]. Jackson takes his readers through such inter-
esting topics as creative holism, creativity and complexity theory,
strategic assumptions, and soft systems methodology.

Peter Checkland [9]. Checkland zeroes in on soft systems thinking
and methodology, four key steps, and management thinking.

Monat and Gannon [10]. These authors use concepts, principles, and
paradigms to analyze the structural properties of complex systems
and their intra- and inter-relationships.

INCOSE Handbook [11]. The Waters Foundation articulates some of
the essential features of a systems thinker, including the big picture,
increasing understanding, use of successive approximation, and
resisting the temptation to come to a quick conclusion.

References and Recommended Reading

1. Eisner, H., “Topics in Systems”, Mercury Learning and Information, 2013.
2. Walden, D. et al., “Systems Engineering Handbook”, Fourth Edition, INCOSE,

John Wiley, 2015.
3. Senge, P., “The Fifth Discipline,” Doubleday, 1990.
4. Gharajedaghi, J., “Systems Thinking”, Elsevier, 2006.
5. Meadows, D., “Thinking in Systems”, Sustainability Institute, 2008.
6. Haines, S. G., “Systems Thinking and Learning”, HRD Press, 1998.
7. Boardman and Sauser, “Systems Thinking”, CRC Press.
8. Jackson, Michael C., “Systems Thinking – Creative Holism for Managers”, John

Wiley, 2003.
9. Checkland, Peter, “Systems Thinking, Systems Practice”, John Wiley, 1999.

10. Monat, Jamie, and T. Gannon, “Using Systems Thinking to Solve Real World
Problems”, Systems Engineering Program, Worcester Polytechnic Institute,
2017.

11. “Systems Engineering Handbook”, INCOSE, p. 20.

2 • Management 33

16. INDUSTRY/GOVERNMENT
INTERACTION

There are many sources of information that feed into one’s ideas about les-
sons learned – such has been the case with me over the past half century.
Perhaps the most dominant, and useful, has been INCOSE (International
Council on Systems Engineering). This organization has supported journal
articles and conferences at a steady pace for all these years. Interactions
between members have also been benefcial to all, and part of the overall
package.

Government support has also been extremely useful. A key offce for sys-
tems engineering within the DoD (Department of Defense) plays an especially
important role. This offce sponsors the SERC (Systems Engineering Research
Center), which is recognized by all three sectors as a signifcant contributor. A
recent conference emphasized the following research areas:

a. Mission engineering
b. Digital engineering and transformation
c. AI/Autonomy and systems engineering
d. System security engineering
e. Systems engineering
f. Human capital development

Universities

Another recipient of support, in general, has been the universities. This sec-
tor develops systems engineering curricula and research. The latter comes in
several forms including class papers, special assignments, and dissertations.
It appears that systems engineering has been growing within academia, espe-
cially in the Masters program, but not neglecting doctoral studies. Here is a
sample of academic activities in systems engineering which indicates its depth
as well as breadth.

• Drexel Institute offers an MS degree in systems engineering as well
as graduate certifcates in systems design and development, systems
engineering, systems engineering analysis, systems engineering-
integrated logistics, systems reliability engineering, and peace
engineering.

34 Systems Engineering

• Embry Riddle has two tracks for a Masters in Systems Engineering,
namely, a technical track and an engineering management track.

• UMBC’s Masters in systems engineering has a 30-hour non-thesis
program with the following core courses:
• Systems engineering principles
• System architecture and design
• Modeling, simulation, and analysis
• System implementation, integration, and test
• Systems engineering project
• Decision and risk analysis
• Mathematics and MATLAB fundamentals

Selected areas covered by electives in the above program include project
management, cybersecurity, advanced architecture, quality engineering, and
networks.

INCOSE Certifcation

INCOSE has stepped into the academic circle, if you wish, through its certifca-
tion program, with the following sample of ESEP () Exam preparation topics:

• system requirements defnition • lean systems engineering
• architecture defnition • system security engineering
• measurement • prototyping
• model-based systems engineering • systems science and thinking
• resilience engineering • interoperability analysis
• modeling and simulation • specialty engineering

In addition, special benefts accrue when parts of the systems engineering
community collaborate. For example, this occurred when INCOSE and the
SERC developed a Resource Directory for the industrial and systems engi-
neering community. This author sees these forms of cross-fertilization as indi-
cators of the growing strength of the systems engineering world.

17. TRADEOFFS

A key element of systems engineering is that of looking at tradeoffs between
important variables and parameters. A lesson learned, if you will, is that this
activity needs to be carried out early and with determination.

2 • Management 35

Here are two domains that illustrate tradeoffs – there are, of course,
numerous others.

Risk

Three aspects of risk analysis are:

1. Identifcation of high-risk areas in a system
2. Risk measurement
3. Risk mitigation

In the frst of the above, we pay special attention to a single point of failure
areas. By a single point of failure, we mean that the overall system is likely to
fail when this failure occurs. Both the Challenger and the Columbia (NASA
manned space fight) catastrophic mission failures fall in this category.

In the risk measurement arena, we wish to quantify risk, usually in terms
of probability measures. This often involves some type of modeling process
that leads to a ranking of high-risk areas. These become candidates for the
next step with active reductions of risk.

The third category, namely, risk mitigation, requires the design team to
make changes in the real system, going beyond simply talking about change.
This involves actions that change the system, one way or another.

For high-tech systems in today’s IT world, we are tending to pay spe-
cial attention to technology-risk relationships and tradeoffs. That is, as we
include more and more complex technology in our design, we also experi-
ence higher and higher risk. But this is not a theorem of design. It may be
that in certain situations, higher tech leads to less risk. These areas need
to be explored in detail to determine the tradeoffs between technology and
risk.

Detection and False Alarm Probabilities

Another strong tradeoff area is that between electronic signals and both detec-
tion and false alarm probabilities. The tradeoffs are well-known, but need to
be examined in greater detail to determine the “best” set of variables for a
particular design. This would apply, for example, to pulse detection for a radar
system. The variables in question are fve-fold:

1. Pulse height (voltage)
2. Noise

36 Systems Engineering

3. Voltage threshold
4. Detection probability
5. False alarm probability

These are but two examples of tradeoffs in systems. Tradeoff analysis drives
us toward desired parameters and variables that are critical in today’s systems
engineering projects, from large to small systems. It is suggested here that
tradeoff analysis can be a more prominent part of systems engineering. When
engaged for large-scale systems, changes are effected generally in the mea-
sures of effectiveness for these systems. In this connection, we refer back to the
citations of some of these measures, as given below for generic communication
and transportation systems:

Communication systems
• Grade of service
• Speed of service
• Detection probability
• False alarm probability
• Signal strength
• Noise power
• Signal-to-noise ratio
• Range

Transportation systems
• Pax system capacity
• Freight system capacity
• Distance/range
• Required power
• Storage capacity
• Speed/acceleration
• Capacity-to-demand ratio
• Braking distance

So the essence of a tradeoff is: when one variable or MOE is increasing,
the others are decreasing, with other factors being held constant. When
several variables are “in motion” at the same time, we have, of course, a
multi-variate situation. This is what makes the feld of systems analysis
complicated, requiring many iterations and passes with several data sets.
The analyst must therefore approach such problems with a plan and great
patience.

2 • Management 37

18. RESILIENCE

Resilience engineering has come upon the systems engineering scene with a
surprising positive force. It appears in the INCOSE systems engineering hand-
book [1] with the following defnition:

“to prepare and plan for, absorb or mitigate, or recover from, or more suc-
cessfully adapt to actual or potential adverse events”.

If we look at the systems approach elements as part of section 42, we
see one that is a “second cousin” to resilience, namely, “slow die”. One might
see the other as a kind of opposite. For “slow die” we start with a system that
is all up and slowly degrades in performance. For resilience, we start with
a degraded system and consider the ways in which its performance may be
increased. In that sense, they’re both sides of the same or similar coin.

Resilience is considered to be an emergent system property [2]. Such a
system has some features that will anticipate, survive, and recover from just
about any disruption of one sort or another. A variety of attributes may be sup-
ported when moving into a resilient state [2], such as below:

a. Capacity
b. Buffering
c. Flexibility
d. Adaptability
e. Tolerance
f. Cohesion

The INCOSE Handbook [1] further suggests that the following be typical out-
puts for resilience engineering:

a. Preferred system characteristics
b. Response to specifcally related threats
c. Recovery of functions or service
d. Recovery time

Suggested activities (between inputs and outputs) include:

a. Relevant models
b. MOEs

38 Systems Engineering

c. How to mitigate threats
d. Impact analyses for each “solution”

Resilience analysis is likely to become more signifcant as time passes, and
threats of various types potentially increase.

References and Recommended Reading

1. “INCOSE Systems Engineering Handbook”, Fourth Edition, INCOSE, John
Wiley, 2015.

2. Woods, D., E. Holignagel, and N. Leveson, “Resilience Engineering: Concepts
and Precepts”, CRC Press, 2003.

Idea Based 3
19. THEY WERE RIGHT: KISS, SIMPLIFY,

AND REDUCE COMPLEXITY

Many experienced systems engineers have argued that we need to systemati-
cally “Keep It Simple” and reduce the complexity of our systems. One of them
was the master systems engineer, Eberhardt Rechtin [1]. I certainly agree. But
we need to fgure out how to do that. Here are a few suggestions as to what to
consider in tackling this matter:

a. Develop measures of complexity that make sense
b. Use these measures to determine what is too complex, and what is not
c. Do the above as early as possible in the system’s life cycle
d. Actually reduce the complexity of the system(s) under consideration

(implementation)
e. Take note of what it is that increases complexity, i.e., [2]

• Size
• Functionality (how many and type)
• Number of modes of operations
• Duty cycle (static vs. dynamic)
• Real-time operations
• Parallel vs. serial operation
• Very high performance
• Number and type of interfaces
• Degree of integration
• Human-machine interaction
• Non-linear behavior

39

40 Systems Engineering

It would seem that reducing complexity is not a primary concern of the system
designers. Perhaps that is true. But it needs to be much further up on the list of
things to worry about, and actually do something about.

If a reduction in complexity is achieved, then there is a lot more room
for increasing reliability by using redundancy more effectively. Here is a real-
world case that hopefully will illustrate the point.

I was working on a weather satellite known as Nimbus. Goddard Space
Flight Center was the developer and designed a three-axis stabilized system
with solar panels that were rotated so that they faced the sun most of the time.
This, of course, provided a critical function (i.e., power supply) for the overall
system.

As it turned out, the motor drive to carry out this rotation failed, and
soon the overall system failed. This single point of failure mode was not
rare; we had heard about this kind of problem before. It is one that persists
today – for example, with certain manned missions and loss of life. That’s
about as serious as it can be. And in terms of redundancy, it would have been
possible to switch in a parallel (redundant) motor drive when the frst one
failed. Reduced complexity could have meant that we could have increased
redundancy.

I can remember a post-mission failure review in which I explored the
situation on Nimbus with the program manager at Goddard. We both agreed
that this potential problem could have been avoided by using redundancy. But
the point that he made went something like this – “You suggested a different
design for several single-point failure situations. How do I choose, as program
manager, which ones to consider seriously? After all, I’ve got dollar and time
constraints that I need to worry about – every day”.

Of course I acknowledged that point and went back to my desk wondering
how to answer his question. I never did, and the world continued to turn. Now
I bring the point back to life in this treatise. Yes, the question is: We agree to
reduce complexity and make room for redundancy, but how do we do that?

In one respect, it’s rather easy. There are measures of complexity out
there, and we can examine them critically. For example, in the software arena,
there’s the software complexity measure set forth by a leader in this feld [3,4],
Tom McCabe. In this case, cyclomatic complexity (CC) is given by:

CC E N 2= - +

where E is the number of edges of the code and N is the number of nodes in
the code.

More conventional approaches can be found with respect to software at
the McCabe website and also in a variety of books on system reliability, and
parts of books that deal with that subject [4].

3 • Idea Based 41

References and Recommended Reading

1. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.
2. Eisner, H., “ Managing Complex Systems – Thinking Outside the Box”, John

Wiley, 2005.
3. McCabe, T., “A Complexity Measure”, IEEE Transactions on Software

Engineering, 2(4), 308–320, 1976.
4. Eisner, H., “Essentials of Project and Systems Engineering Management”,

Second Edition, John Wiley, 2008.

20. SEEK A BALANCED SYSTEM
SOLUTION; DO NOT TRY TO OPTIMIZE

OR ACHIEVE PERFECTION (*)

One of the (serious) mistakes made by systems engineers is to try to optimize
and achieve perfection. That approach is almost always wrong-headed. It
leads to overruns in time and cost, with no provable optimum performance.
The saying is – perfection is the enemy of the good, and it is correct. In
systems engineering, one is aware of this problem and issue and tries to fnd
another way.

What is that way? It involves reaching consensus on the part of the team
and also some form of agreement from the sponsor and often the system
“stakeholders”. They are part of the “system”, although it might not be obvious
that such is the case.

Where is there room for consideration of “balance”?
Within the process of architecting, as represented in this treatise, is an

analysis or evaluation step after several alternatives have been defned. This
step involves “weighting and rating”, in which the weights represent how to
look at the various evaluations. The same logic can be used to try to achieve
balance in both the “analysis of alternatives” procedure and the “cost-effec-
tiveness” analysis. We defnitely want to use these weights to factor into the
analysis and be a vehicle for achieving balance in our design as in our fnal
system.

Another way to look for balance is by means of the architecting team
as it represents different approaches and solutions. In this scenario, the
skill of the project manager is called upon to hear everyone on the team
and to know what their perspectives are in a variety of design decisions. In
the ideal case, a better, more highly balanced system solution will evolve
and be confrmed.

42 Systems Engineering

On the matter of different views leading to different weights, we present
here a set of data for an aviation project in which this author participated [1].
These data are the weights given to a set of evaluation factors by the commis-
sioners heading up the Aviation Advisory Commission (AAC) some years ago
(see Table 20.1). The various and disparate points of view expressed by the
commissioners were important aspects of their discussions and fnal report.
That was my point of view (not necessarily shared by all the commissioners).
However, this author was pleased to assist in the overall project at that time.
To be more specifc regarding the Commission, the criteria used by the com-
missioners were:

1. Social effects
2. Environmental effects
3. Service quality
4. System capacity
5. Human factors
6. International economic effects
7. Investment costs
8. Operating costs

The weights ranged from 5% to 40%. This kind of example illustrates how
various people can look at the world, even one that they are all familiar with,
and come to different answers and conclusions.

Other References to Balance

This author can readily think of three other references to “balance” that will
be cited here.

The frst is referred to in the context of model-based systems engineering,
as follows [2]:

• “Systems Engineering is a multidisciplinary approach to transform
a set of stakeholder needs into a balanced system solution that meets
those needs”.

In the domain of systems architecting, we see the following statement from
this author [3]:

• “A preferred architecture is a choice among several architectures
that is balanced, cost-effective, and most congruent with the stated
requirements and what the customer is seeking, as tempered by pro-
gram and/or system constraints”.

TA

B
LE

 2
0.

1
W

ei
gh

ts
 v

s.
 E

va
lu

at
io

n
C

rit
er

ia
 f

ro
m

 [1
] E

va
lu

at
or

s
(C

om
m

is
si

on
er

s)
 1

–9

C
RI

TE
RI

A

1
2

3
4

5
6

7
8

9
A

V
ER

A
G

E*

–
–

–
–

–
–

–
–

–
So

ci
al

 e
ff

ec
ts

5

10

15

10

15

5
10

21

8

11
.0

En

vi
ro

nm
en

ta
l e

ff
ec

ts

20

40

10

15

20

5
15

8

12

16
.1

Se

rv
ic

e
qu

al
ity

20

10

10

15

20

15

15

19

18

15

.8

Sy
st

em
 c

ap
ac

ity

10

10

10

15

20

20

15

15

13

14
.2

H

um
an

 f
ac

to
rs

5

10

10

5
5

10

5
1

6
6.

3
In

te
rn

at
io

na
l e

co
no

m
ic

 e
ff

ec
ts

5

10

5
10

5

15

10

10

13

9.
2

In
ve

st
m

en
t

co
st

s
15

5

20

15

5
15

15

12

14

12

.9

O
pe

ra
tin

g
co

st
s

20

5
20

15

10

15

15

14

16

14

.4

*C
ol

um
ns

 d
o

no
t

ad
d

up
 t

o
10

0%
 d

ue
 t

o
ro

un
di

ng
 e

rr
or

s.

3 • Idea Based 43

44 Systems Engineering

The third example comes from the systems engineering and specialty engi-
neering section of the Systems Engineering Research Center [4], with a brief
explanation of specialty engineering:

• “Specialty Engineering disciplines support product, service and
enterprise development by applying crosscutting knowledge to
system design decisions, balancing total system performance and
affordability”.

Stakeholders

And while we are exploring balance, we must also recognize the fact that vari-
ous stakeholders are looking for certain features in our systems. If we can sat-
isfy them, we are then likely to wind up with a balanced system. These people
are individually interested in:

a. Cost
b. Schedule
c. Performance
d. Specialty engineering
e. Sustainability
f. Environmental effects
g. Safety
h. Security
i. And a host of others (some ftting under specialty engineering such

as RMA and ILS)

References and Recommended Reading

1. Eisner, H., “Computer-Aided Systems Engineering”, Prentice Hall, 1988,
p. 352.

2. Friedenthal, S., et al, “Systems Engineering Overview”, Practical Guide to
SysML, 2008.

3. Eisner, H., “Essentials of Project and Systems Engineering Management”, Third
Edition, John Wiley, 2008, p. 286.

4. SERC, SEBoK (Systems Engineering Body of Knowledge), version 1.9.1, 16
October 2018, Stevens Institute of Technology.

3 • Idea Based 45

21. UNDERSTAND THE POWER,
IMPORTANCE, AND CHALLENGE OF

FUNCTIONAL DECOMPOSITION

I had a chance to talk to the head of a serious software company about their
performance on a serious and coveted contract. Apparently, they got into trouble
with their customer who threatened the cancellation of the contract. I asked him:

“If you don’t mind, are you willing to talk about the problem and what
you did to fx it?”

“I don’t mind”, he answered, “after all, it’s all history now. And pos-
sibly this story will be helpful to others”.

“Terrifc”, I said, “and I’ll be very private with names and faces”.
And then he told me “his story”.

The story had everything to do with “functional decomposition”. It was a large
system, and they indeed decomposed the system into functions. But they didn’t
stop there. The functions were decomposed into sub-functions, and these into
sub-sub-functions. They then had many, many of those and set the engineers to
work, analyzing and looking at data fow within and between these elements.
Soon, with much money and time having been spent, they found themselves
behind plan in both dimensions. The customer eventually became aware of the
problem and insisted that the company president take a more active role to fx
the problem. And that’s what happened. The overall approach in “solving” the
problem involved the following key steps:

1. Start over and stop the detailed decomposition of the system
2. Decompose to only three levels
3. The three levels became the system name (level one), the major

functions (level two), and the sub-functions (level three)
4. Trying to assure minimal overlap or interaction between the func-

tions, as described

It turned out that these three levels were enough, and that was all that was
needed to start the process of system architecting.

So we see, in the real world, that simplifcation was indeed what was nec-
essary, and also that functional decomposition played a critical role to start the
design and architecting of the system.

46 Systems Engineering

And also, can you provide the reader with an example of functional
decomposition?

Possibly the most coherent example is a basic “IT” (information) sys-
tem for which a simple decomposition would lead to the following top-level
functions:

1. Input
2. Output
3. Processing
4. Operating system
5. Applications software
6. Security software
7. DBMS (database management system)
8. Storage
9. Networking

10. Power supply

Not exactly rocket science, and it will do as one approaches the next step of
synthesis, or the formulation of alternative architectures. More about that in
later subject areas.

And in software, let’s take a brief look at the comment from one of our
well-known software folks [1]:

The most diffcult design task … is the decomposition of the whole into a
module hierarchy.

Yet another of our software gurus wrote [2]:

from this process (Wirth’s suggestion), one identifes modules of solutions or
of data whose further refnement can proceed independently of other work.

Also, this author documented the following [3] with respect to the decomposi-
tion of an air defense system:

1. Threat assessment
2. Command
3. Control
4. Communication
5. Detection
6. Guidance
7. Identifcation
8. Surveillance

3 • Idea Based 47

9. Tracking
10. Kill assessment

And here we have a comment (a heuristic) from our well-referenced engi-
neer, company president (Aerospace), government executive, and teacher (at
USC) [4]:

“Choosing the appropriate aggregation of functions is critical in the design
of systems”, and “in partitioning, choose the elements so that they are as
independent as possible”.

Decomposition may appear to be simple, but it can be quite complex for some
types of systems, especially when considering software. But it’s essential when
one considers the matter of architecting a system. Something to always keep
in mind.

References and Recommended Reading

1. Wirth, N., “A Plea for Lean Software”, IEEE Computer Magazine, February
1995.

2. Brooks, Jr., F., “The Mythical Man-Month”, Addison Wesley, 1995.
3. Eisner, H., “Essentials of Project and Systems Engineering Management”, Third

Edition, John Wiley, 2008.
4. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.

22. BREAK THE PROBLEM INTO
PIECES USING THE REDUCTIONIST

APPROACH WHENEVER POSSIBLE, AND
THEN APPLY LATERAL THINKING

There seems to be no lack of suggestions as to what approach to take with
respect to large-scale problem-solving. In general, we may consider gen-
eral methods and specifc methods. In terms of the former, I can cite the
following:

• Systems analysis
• Analysis of alternatives (AoA)

48 Systems Engineering

• Modeling
• Simulation
• System dynamics
• Cost-effectiveness evaluation
• Linear and non-linear programming
• Various forms of thinking (inside and outside the box)

and many more.
On the more specifc side of the ledger, we have such approaches as (barely

touching the surface):

• The systems approach
• Calculus
• TRIZ
• Use of stories and fables
• Econometrics
• Synectics
• Fourier and Laplace transformations and analysis
• Reductionism

Many authors, including this one, have enumerated “steps” in the problem-solv-
ing process. For example, several professors from the University of Virginia
have cited these steps [1], which they call “phases of systems analysis”.

1. Determine goals
2. Establish criteria for ranking alternatives
3. Formulate alternative solutions
4. Rank the alternatives
5. Iterate
6. Take action

Russ Ackoff has set forth several approaches that appear to work in this impor-
tant domain [2]:

• The need for managers to be good (if not great) problem-solvers,
using his “5 C” model of (1) concern, (2) competence, (3) communi-
cation, (4) courage, and (5) creativity.

• Using fables, parables, and art.
• The key steps of (1) defning objectives, (2) conceiving of possible

actions, (3) exploring the nature of the environment surrounding the
problem, (4) setting forth the relationship between the above, and
(5) possible constraints.

3 • Idea Based 49

Einstein has revealed his approach, namely, to:

1. Visualize as much as possible
2. Use pictures of various types
3. Use your imagination, rather than a set of facts
4. Do not necessarily trust logical thinking

Newton appears to have favored such notions as:

1. Finding truth in simplicity
2. Making bold guesses

Da Vinci also emphasized simplifcation and relying on experience.
This author, in previous works, has cited approaches and steps, including:

• More than a dozen ways of thinking [3], to include a formal treat-
ment of “thinking outside the box” [4]

• TRIZ [4]
• Reductionism
• The steps of (1) defning the problem with some precision, (2) estab-

lishing the key factors and variables, (3) setting forth possible infer-
ences from (2), (4) creating potential solutions, and (5) selecting the
best solution.

In terms of personal preference, this author would select two approaches as
special. The frst is reductionism [3], and the second is “lateral thinking” [5].
The former relies on one’s ability to break the problem into pieces, solve each
piece, and then put the pieces back together. This often works when the pieces
are formulated as conditional probabilities that can be multiplied to yield an
answer. An example is a program in the Department of Transportation which
was cited previously and is known as the climatic impact assessment program
(CIAP) [3]. With respect to lateral thinking, it was devised and named by
Edward de Bono and used in various systems engineering problem-solving
sessions [5]. So much for a very brief citation of a very complex and well-
researched issue.

References and Recommended Reading

1. Gibson, J., W. Scherer, and W. Gibson, “How To Do Systems Analysis”, John
Wiley, 2007.

2. Ackoff, R., “The Art of Problem Solving”, John Wiley, 1978.

50 Systems Engineering

3. Eisner, H., “Thinking – A Guide to Systems Engineering Problem-Solving“,
CRC Press, 2019.

4. Eisner, H., “Managing Complex Systems – Thinking Outside the Box”, John
Wiley, 2005.

5. de Bono, E., “Lateral Thinking”, Harper & Row, 1970; de Bono, E., “Lateral
Thinking; Step by Step”, Harper Perenniel, February 2015.

23. DEVELOP AND TRY A NEW
WAY OF ARCHITECTING

There are times when it’s necessary to question conventional wisdom. That’s
one of my nine suggestions for “thinking outside the box” [1], and it applies
directly to the matter of architecting a system. I was digging into the matter of
how to execute this critical process (i.e., architecting), and I, of course, ran into
DoDAF, which is the Department of Defense Architectural Framework. This
framework is based upon views, which are cited as follows [2]:

• An operational view
• A systems view
• A technical view

These are views, but where is architecture? Is it the case that the purveyors of
this fawed approach believe that one can, consistently, infer what architecture
is from these views?

My evaluation is that, in general, the answer to that question is “no”. And
so we are left without the confdence that we actually have an architecture in
hand. From questioning this piece of conventional wisdom, for me the issue
was – what’s the next step?

Answer – formulate a reliable method for architecting a system that holds
up to scrutiny and provides a consistent logical framework. That is what this
section ultimately is all about.

The DoD Procedure for Developing Architecture

As part of our journey here in DoDAF-land, let us look further into the recom-
mended procedure, from the DoD, as to how to build an architecture. See the
six steps below [2]:

Step one – articulate the intended use of the architecture
Step two – establish the scope of the architecture

3 • Idea Based 51

Step three – determine the data needed to support the architecture
development

Step four – collect, organize, and store the architectural data
Step fve – conduct analyses in support of the architecture objectives
Step six – document results in accordance with decision-maker needs

These steps make very little sense in relation to what they are advertised to be,
namely, an architecture development process.

Products for Views

Moving down the road with DoDAF, we fnd an essential set of “products for
views”. This is guidance for what constitutes a view, and may be reiterated as:

AV-1 – Overview and Summary Information
AV-2 – Integrated Dictionary
OV-1 – High-Level Operational Graphic Concept
OV-2 – Operational Node Connectivity Description
OV-3 – Operational Information Exchange Matrix
SV-1 – System Interface Description
TV-1 – Technical Architecture Profle

These are the key (essential) products, but where is architecture? Can one infer
architecture from these products? The answer, for me, is “no”. These products
may ultimately be useful, as views of something, but it’s not clear as to what
that something is. This appears to be a classic case of – if you don’t really
know what you’re doing, double and triple down and dig more deeply by pro-
viding more and more detail. Perhaps there is something interesting (and use-
ful) down there.

An Alternative Approach

And so, an alternative approach, set forth by this author, involves the following
steps:

1. Functionally decompose the system
2. Formulate design choices (at least three for each function); this is a

synthesis step
3. Analyze and evaluate the alternative architectures
4. Decide on a preferred architecture, using cost-effectiveness

measures

52 Systems Engineering

With respect to these steps, we take note that:

• Functional decomposition is critical; we need to confrm the func-
tions that the system is to carry out,

• The synthesis step is a description of alternative architectures (!);
supercritical,

• By analyzing alternatives, we are carrying out a recommended DoD
procedure, namely, an analysis of alternatives (AoA), and

• By step four, we return to a tried and true procedure, namely, an
assessment of costs and effectiveness.

I have modestly called this latter approach the EAM (Eisner’s Architecting
Method) and decided to spend a fair amount of time working with it. This
can be considered an alternative to DoDAF or complementary to the same.
Take your pick. There’s much work to be done in this arena, and we cannot
afford to have a method, used and mandated by the DoD and its contrac-
tors, rule the day. This is too vital an issue. And, in this author’s experi-
ence, the DoD is usually not this far off in tackling a diffcult problem and
issue.

References and Recommended Reading

1. Eisner, H., “Managing Complex Systems – Thinking Outside the Box”, John
Wiley, 2005.

2. DoDAF, version 2.02, DoD Deputy Chief Information Offcer, see dodcio.
defense.gov.

24. PLATO AND PROUST

So the article in the August 18 issue of the Washington Post [1] had the title
“Plato and Proust Can’t Save Silicon Valley”. The implication appeared to be
that we’re trying to “fx” Silicon Valley by adding some humanities courses to
various STEM approaches. These types of “fxing courses” have been added
wherever possible, and it’s not doing the job.

What’s the job to be done?
Presumably to have STEM people and other technologists behave with

a stronger sense of morality as well as an appreciation of the humanities and
how they ft into today’s technology-driven company.

https://defense.gov

 3 • Idea Based 53

Does this solution make sense?
The author’s article says it’s not working.
What does all this have to do with lessons learned in systems engineering?

This author tries to bridge the gap by claiming that broadening one’s approach
to systems engineering is itself a lesson learned. And that is indeed the case.
A lesson learned is simply that the systems engineering profession needs to be
broader, more inclusive, and more concerned with social issues.

Keep in mind that it all, in many ways, starts with the theory and purpose
of the enterprise. Keep in mind that a young and very smart technologist is
likely to have this type of conversation with Mark Zuckerberg’s recruiter, on
behalf of his company (MZR):

MZR – So keep in mind that your job is to come to our company and improve
its bottom line in terms of revenues and profts, quarter by quarter.

R (Recruit) – I get that. But what about the company’s social responsibility?
MZR – We have other people working on that issue, including me.
R – OK I’d like to take you on your word on this matter, but I’d still like to see

just a bit of “proof”. Do you have anything?
MZR – You bet. Take a look here at our mission statement. Here it is – “to give

people the power to build community and bring the world closer
together”.

R – That’s a terrifc vision. Very believable.
MZR – Glad you like it. Took a while and a lot of effort to produce it.
R – I’m not surprised.
MZR – That’s usually the case. Repeat it and you’ll fnd even more meaning.
R – I get it, and I’m convinced. … But I’d like to know. Do I have the job?
MZR – You sure do. But keep in mind that you’re the STEM person, or the

STEAM person, or the technologist. You’re not the conscience of
the company. I’ve got that one covered.

R – Thank you for the quick response on that matter.
MZR – You’re welcome. Now, you’re part of the lifeblood of my organization,

Welcome aboard.
R – My pleasure. I’m so happy to join the team.
R – Possibly we can start with the literature pertaining to the balanced score-

card. Do you take that approach, and is it available?
MZR – I’ll check on that with my boss.
R – Then we can look at open source papers that have been written in the past

fve years or so.
MZR – All sounds good. …
MZR – So how do we “fx” the technologists? We show them that the enter-

prise is truly committed to moral behavior as well as a culture that
we can be proud of. And that culture involves constantly iterating

54 Systems Engineering

to solve problems and working together to provide products to
more than 2 billion people. And as you might expect, we’re deep
in various technologies like artifcial intelligence and virtual
reality.

R – I’m interested in both.
MZR – As you suggested in your resume.
R – And I’m impressed with your emphasis on diversity. That opens up the

likelihood that I’ll be meeting and working with all kinds of people.
MZR – That’s what it’s all about.
R – Boy, I better add this to my list of lessons learned as a systems engineer.

It may well help me in my job and also help my company become
more socially conscious.

MZR – That’s good for all. Let’s see how we can all pitch in.

Let’s move on and move out and get you to meet our greeting team. This
will be the experience of a lifetime, working with a company that is a leader in
its feld and breaking new boundaries just about every day.

Reference and Recommended Reading

1. Musgrove, P., “Proust and Plato can’t save Silicon Valley”, Washington Post,
Outlook Section, August 18, 2019.

25. TRY TO MASTER NEW TOOLS
AND USE THEM AS NEEDED

In this wonderful but at times strange world of ours, new commercial soft-
ware appears quite often. As a systems engineer, I try to keep abreast of
these new developments, and from time to time, get into the fray with a
purchase or two.

There appear to be several types of such packages that include at least the
following:

a. Decision support
b. Diagramming
c. Languages
d. Expert systems

3 • Idea Based 55

e. Statistical applications
f. Spreadsheets

Here are one or two examples that are on my list for now and into the future.
Decision support. An example of a decision support system is “Expert

Choice”, which has been available through a professor at GWU since about
1983. He has been a colleague from another department (from mine) and was
very active in building and promoting his excellent software. My work (from
time to time) with that package found it to be very user friendly and based
upon what is known as the Analytical Hierarchical Process (AHP) as studied
and documented by Thomas Saaty [1]. Of course, there are many other pack-
ages that ft under the category of decision support such as Compterra.

Diagramming. I continue to use “Visio” (from Microsoft), which allows
me to use a large number of plain vanilla diagrams and charts which might be
called generic. These are extremely pleasing to the eye and simple to manip-
ulate. Here again, a relatively straightforward search shows that there exist
many diagramming packages with hundreds of features.

Languages. Python is my system of choice at this time in my life, after
having used BASIC and PASCAL during several earlier years. Pascal is cur-
rently in the frst place, but Python has taken the lead for use by a novice such
as this author. Two of my grandsons, as college seniors, use Python.

Idea management. Keep this category in mind and take a hard look at
“Bright Idea” and others.

Expert systems. For such systems, one generally makes a series of mea-
surements, feeds them into a built-in inference engine, and obtains results that
are supposed to emulate the process of an expert. A popular application feld
is that of medicine, especially diagnostics. Don’t expect a lot of use, but do
expect a certain amount of experimentation and fun.

Statistical applications. Looks like “R” is “gaining on the outside” and
well worth looking at. This is a derivative of “S” and apparently showing pop-
ularity among college students. No charge for its use makes it an extremely
desirable choice.

Spreadsheets. My system of choice has been EXCEL over the years, and
remains so. It’s readily accessible (as part of Microsoft Offce) and well docu-
mented. I’ve been able to use EXCEL in a modeling application that involved
COCOMO [2], and it worked beautifully – no hiccups or problems. This pack-
age has more capability than most people seem to recognize and is the frst
place to explore when looking for a simple modeling package. Lots of “hidden”
functionality in EXCEL that come to light if you really dig.

Keeping track of new tools is itself quite challenging. They seem to
be appearing just about every day. And when new ones take root, it’s quite

56 Systems Engineering

satisfying, especially for the systems engineer. After all, we’re a group that
likes to putter with and admire new technology. Lesson learned – stay con-
nected to the very rich set of tools that are available to us as the years go by.

References and Recommended Reading

1. Saaty, T., “Mathematical Models for Decision Support”, Springer, 1988.
2. Boehm, B., “Software Engineering Economics”, Prentice Hall, 1981.

26. REAL EAM

One of the most important lessons has been in the area of systems architecting.
I’ve been able to construct an architecting method, the EAM, and tested it for
more than two decades. This testing has been done primarily with students
over the years, but also in the form of workshops and seminars. This method
has four steps [1]:

1. Functional decomposition
2. Synthesis
3. Analysis
4. Selection of preferred architecture

We note especially the signifcance of the frst step. There must be clarity in
this step, in that, above all, we need to know the functions that the system is
to perform.

Given the functions, the synthesis step looks especially at the ways to
instantiate each and every function (and sub-function). This step is consid-
ered to be the “heart and soul” of architecting. We note that formulating
more than one architecture is an integral part of this step. This is also in
consonance with the overall “analysis of alternatives” procedure suggested
by the DoD [2].

Next, we look at the evaluations of alternative architectures by placing
the alternatives in a cost-effectiveness context. Effectiveness is measured
by a weighting and rating procedure, as illustrated in Table 26.1 for fve
MOEs.

The effectiveness measures for each of the three alternatives are 9.20,
7.08, and 6.18. Independently, the cost estimates for these three alternatives are
$2,000, $3,000, and $12,000. The analysts may now select a preferred system

TA

B
LE

 2
6.

1
A

na
ly

si
s

St
ep

 f
or

 a
 H

yp
ot

he
tic

al
 In

fo
rm

at
io

n
Sy

st
em

A
LT

ER
N

A
TI

V
E

A

A
LT

ER
N

A
TI

V
E

B
A

LT
ER

N
A

TI
V

E
C

M
O

ES

W
EI

G
H

TI
N

G
 (W

)
RA

TI
N

G
 (A

)
W

 ×
 A

RA

TI
N

G
 (B

)
W

 ×
 B

RA

TI
N

G
 (C

)
W

 ×
 C

G
ra

de
 o

f
se

rv
ic

e
.2

.8

1.

6
.8

1.

6
.9

1.

8
Sp

ee
d

of
 s

er
vi

ce

.3

.8

2.
1

.8

2.
4

.8

2.
4

Su
st

ai
na

bi
lit

y
.2

.9

.7

1.

4
1.

6
.9

1.

8
M

ai
nt

ai
na

bi
lit

y
.2

.8

1.

6
.7

1.

4
.8

1.

6
Re

lia
bi

lit
y

.1

.9

1.
8

.8

.0
8

.9

.0
9

6.
18

7.

08

9.
20

3 • Idea Based 57

58 Systems Engineering

alternative (architecture) as B, as the best-value approach. This need not be the
best answer. Think about the various possibilities as we note here the special
features of the EAM approach:

1. The overall process begins with a functional decomposition of the
system. In general, all three alternatives have the same function-
ality but different levels of performance for each. At times, we
may experience function creep as, for example, from C to B to A.
This should be avoided. Unlike the DoDAF [1], the starting place
for architecting is not the three views of the system. This point is
made in some detail in various parts of the author’s book on the
subject [2].

2. The synthesis step (second step) directly represents the various
architectures, by defnition. This shows the value of this step and is
appealing as a means of comparison. It also facilitates checking for
interoperability by scanning from top to bottom. The analyst tends
to appreciate having this amount of comparative information all
on one page. This is in consonance with Rechtin’s KISS approach.
Information regarding sub-functional requirements is available but
not explicit in this synthesis step.

3. The next step provides an explicit analysis of the three alternative
architectures. This process becomes a cost-effectiveness
analysis, well known to the many analytic techniques. We are
looking for low-cost solutions where we can find them. On
the other hand, the knee-of-the-curve region will hopefully
represent a best-value solution. We use the graph as a basis for
analysis, pointing us in the right direction. At the high end of
the cost-effectiveness graph, we see high costs, but also high
effectiveness. There are times when such a system is preferred,
especially when looking at military systems of various types.
This approach to cost-effectiveness analysis of alternative
systems may be said to be congruent with the AoA (analysis
of alternatives) process recommended by the Department of
Defense [2, 3].

References and Recommended Reading

1. DoDAF, Department of Defense, dodciodefense.gov/library.
2. Eisner, H., “Systems Architecting – Methods and Examples”, CRC Press,

2020.

https://dodciodefense.gov

3 • Idea Based 59

27. WAYS OF THINKING

There are many ways of thinking, including fast and slow thinking as intro-
duced by Kahneman in his classic treatise [1]. If we look back at some of our
great thinkers, we see at least fve ways of thinking that seem to stand out, and
that might well be emulated. These appear to be:

a. Visualization
b. Lateral thinking
c. Hybrid thinking
d. Thinking hats
e. Special point-of-view thinking

Each of these is briefy explored below.

Visualization

There appear to be many modes of visualization, all of which have their spe-
cial ways of problem-solving. A very simple example is that of seeing beyond
a math formula into what that formula represents. It’s one thing to write the
formula for an ellipse or a circle; it’s another to actually “see” the ellipse or the
circle. It’s one thing to write down the formulae for Maxwell’s equations; it’s
another to be able to visualize the electric and magnetic felds as they change
with time and space. Similarly, equations can be set forth for gravity and how
it might be represented and visualized, and what that might mean in terms of
gravitational theory and black holes.

Visualization generally means “seeing the picture”. And as it is said, one
picture is worth 1,000 words.

Lateral Thinking

This author has found “lateral thinking” especially useful. When you’re dig-
ging a hole in a particular place and not making much progress (other than
producing lots of earth), it may well lead to some lateral considerations:

• Is my approach sound?
• Am I digging in the right place?

60 Systems Engineering

• What did de Bono [2] say about these types of questions?
• Could this form of “sideways” thinking lead to new business areas

and breakthroughs not previously considered?

Here’s a simple example.
You’re a company that builds small radar systems. As part of your stra-

tegic planning, you think laterally by expanding upon the variables having to
do with radars:

a. Ground vs. airborne vs. shipboard
b. Various frequencies
c. Pulse vs. Doppler vs. chirp

And then you think along another dimension, as per police, army, navy, etc.
Are there new and fruitful areas that you and your team have not yet

explored?
This opens your eyes to business areas not previously considered. Your

strategic plan has expanded and has some new things to explore. This typi-
cally is what happens with lateral thinking. All of a sudden there are some
new possibilities. All of a sudden the world of potential has increased. All of
a sudden you’re taking seriously something you had previously overlooked or
bypassed.

Hybrid Thinking [3]

This mode of thinking involves some amount of lateral thinking with some
degree of “drilling down”. One’s intuition plays a large role here – how much
of each is the right amount? A radar example might be: defne both a harbor
radar and an airport radar and dig down to see if either appears to make sense
as a potentially new business area. Another example might be how to deal with
the complex matter of fnding a cure for cancer. Hybrid thinking might involve
research in two main areas (i.e., radiation, chemo) and then digging down into
both of these areas.

Six Thinking Hats

Yet another way of thinking was set forth by Edward de Bono in his work on
Six Thinking Hats [4]. This approach, according to de Bono, has been used
extensively to constitute productive teams. Members of these teams wear hats

3 • Idea Based 61

that are “modes of behavior” in the group, not descriptions of the people. Here
are the hat colors and the focus of each of them:

The White hat deals only with objective fact.
The Black hat represents caution and seriousness.
The Green hat concerns itself with new ideas and creativity.
The Yellow Hat is sunny and optimistic.
The Red Hat displays anger and emotionality.
The Blue Hat suggests control, including that of infuencing the other

hats. This is a kind of moderator.

These hats constitute ways of thinking in any type of problem-solving session.
One may also think, from a systems engineering perspective, that they can be
associated with functional decomposition. This brings de Bono’s basic ideas
into the world of systems engineering and, by extension, into the world of les-
sons learned in that domain.

Above all, allowing one’s approach to new ways of thinking is likely to
yield substantive results. With time and practice, one improves in terms of both
processes and products. Hopefully, all of this can be productively derived in
the systems engineering world and applied to future problem-solving in that
and other domains.

Special Point-of-View Thinking [3]

Emphasis on one of our great thinkers has been provided by Michael Gelb [5]
in his deeper look at Da Vinci. Here are some of the thoughts set forth by that
author:

a. Embracing paradox, ambiguity, and paradox
b. Quest for learning
c. Refnement of the senses on a continuing basis
d. Learning from experience and mistakes

Many of these should feel familiar to most of us.
Some further special sources of thinking may be cited as [3]

a. Aristotle – be critical and continuously evaluate
b. Newton – the truth is found in simplicity
c. Einstein – imagination and visualization
d. Feynman – prove yourself wrong

62 Systems Engineering

e. Russell – Abandoning one’s own reason leads to no end of trouble
f. Kahneman – we operate under a “fast. Slow” model set of behavior

In the opinion of this author, Peter Drucker has made unique contributions to
our overall way of thinking, even though he is thought of as a “management
or business” consultant [3, p. 51]. One of the most cogent is his emphasis on
systematic innovation through the exploration of opportunities. Some of the
sources of new opportunities, he claims, are:

a. Opportunities are simple and focused (not obscure)
b. Opportunities are for now, not for the future
c. Opportunities are there, despite surrounded, at times, by risk
d. Opportunities tend to start small and grow
e. Opportunities, as innovations, have a positive effect on society

Tom Kelley has also set forth some new ideas and approaches in his company
(IDEO) and book [6]. Kelley has given “names” to contributors in three cat-
egories, namely:

a. Learning personas,
b. Organizing personas, and
c. Building personas.

A special area suggested in particular by Luke Williams [7] is that of “disrup-
tive” thinking. An often-cited example of such is that of the pipes and vents on
the outside of the Pompidou Center in Paris. The idea, of course, is to out-do
your competition with new and novel designs, and one way to think about that
is to enter the “disruptive” domain of thinking.

References and Recommended Reading

1. Kahneman, D., “Thinking, Fast and Slow”, Farrar, Straus and Giroux, 2011.
2. de Bono, E., “Lateral Thinking”, Harper & Row, 1970.
3. Eisner, H., “Thinking – A Guide to Systems Engineering Problem-Solving”,

CRC Press, 2019.
4. de Bono, E., “Six Thinking Hats”, Little, Brown and Company, 1985, p. 198.
5. Gelb, M., “How to Think Like Da Vinci”, Dell Publishing, 1998.
6. Kelley, Tom, “The Ten Faces of Innovation”, Currency Books, 2006.
7. Williams, Luke, “Disrupt”, Pearson Education, 2011.

3 • Idea Based 63

28. NEW IDEAS TO BE EXPLORED

Most of us get continual pleasure from problem-solving and the exploration of
new concepts and ideas. That is, as long as they’re either not off the scale or
trying to convert science fction into science non-fction. So I’ve included here
as a lesson learned some of the challenges I’ve run into or created for myself
in the realm of systems engineering.

General Systems Theory

Every now and then I re-visit Bertalanffy’s book on general systems theory [1]
and try to bring it a step forward, or put forth a “new” idea or two. Then I see
that one or more of my colleagues are a few steps ahead of me and has pub-
lished a paper “Beyond the Edge”. This is all energizing and is part of being a
systems engineer. Here are a few sources that suggest an attempt to formulate
or expand a general systems theory [2,3,4].

Rapid Computer-Aided Systems of Systems

Another example of trying to articulate new ideas and approaches is that of
Rapid Computer-Aided Systems of Systems (RCASSE) [5]. This notion sug-
gested that systems of systems engineering could be enhanced by limiting the
scope and better use of the computer over time. The elements of RCASSE,
according to this idea, are:

1. Mission engineering
2. Baseline architecting
3. Performance assessment
4. Specialty engineering
5. Interface/compatibility evaluation
6. Software issues/sizing
7. Risk defnition/mitigation
8. Scheduling
9. Pre-planned product improvements

10. Life cycle of cost issue assessment

With a list of this sort, we are expressing priorities in systems engineering
that will lead to shorter timelines and more penetrating levels of analysis.

64 Systems Engineering

One might also interpret this step forward as related to “agile” systems
engineering.

New Method of Systems Architecting

Another item on this list is a new method of architecting a system. This item
is more fully addressed under lesson learned number 21. This is also discussed
in some detail in this author’s recent book [6].

National Aviation System (NAS) Model

The above category also includes a contractual effort by this author to build a
National Aviation System (NAS) Model. This was a landmark study and activ-
ity that set the stage for several more detailed models.

Systems Engineering and Software Engineering

Every now and then this author returns to a set of ten areas that the systems
engineer needs to know about software engineering [7]

Emergent Properties of Systems

Affordability

The INCOSE handbook [8] has also highlighted the idea of affordability. It
is a “balance” concept and is in search of a “theory”. Apparently, it has been
addressed by the DoD and is well worth its greater exploration. Possibly there
will evolve from such an effort some type of metric that is related to cost-
effectiveness measures.

Design to Cost

This is a concept, going back to the original standard for systems engineer-
ing, that deals with cost goals for components for the “design, development,
production and support” of systems. This author believes that the notion is
worthy of returning to today’s world of systems and their cost-effectiveness
measurement.

3 • Idea Based 65

References and Recommended Reading

1. Bertalanffy, L. V., “General Systems Theory”, George Braziller, 1968.
2. Skyttner, H. G., “General Systems Theory”, World Scientifc, 2006.
3. Boulding, K., “General Systems Theory – the Skeleton of Science”, Management

Science, 1956.
4. Klir, G., “Facets of Systems Science”, Springer, 2001.
5. Eisner, H., “Managing Complex Systems – Thinking Outside the Box”, John

Wiley, 2005.
6. Eisner, H. “Essentials of Project and Systems Engineering Management”, Third

Edition, John Wiley, 2008.
7. Eisner, H., “Systems Architecting – Methods and Examples”, CRC Press, 2020.
8. Walden, D., G. Roedler, K. Forsberg, R. D. Hamelin, and T. Shortell, “Systems

Engineering Handbook, Resilience”, John Wiley, 2015, p. 229.

https://taylorandfrancis.com/

 People Oriented 4
29. BUILDING A HIGHLY PRODUCTIVE

SYSTEMS ENGINEERING TEAM

One of the most serious aspects of successful systems engineering is that of
implementing (project) a team. Each member of this team needs to be care-
fully chosen and must understand his or her place in the team.

I have been a member of highly functional teams and also in a position
of team oversight on more than one large-scale system development projects.
Here are a few observations and suggestions regarding the building and work-
ings of a systems engineering team.

The Team Leader

An effective team leader is the number one requirement for a highly productive
team. This leader must be technically competent and mature in the domain
of the system that is being built. He or she must also have excellent “people”
skills and be able to pick every member of the team. Serving as a member of
this team should be considered special. Being in the team means that one has
a new boss during the period of the team’s existence. This new boss, the team
leader, has the usual responsibilities of being a boss.

The team leader must also assure that all team members get a chance to
speak their minds on everything regarding the system’s development. That
includes both technical matters and the systems engineering process that is
being followed. No member of the team should be allowed to dominate the
discussion, no matter how insightful the contribution might be. Contrary views
should be encouraged. At the same time, no member of the team should be

67

68 Systems Engineering

allowed to “hide in the weeds”. All team members need to respect each other
and the contributions they are making now as well as potentially into the
future.

Listening is an important ingredient in the team process. The team leader
must be an excellent listener and must also demand that all team members
listen to each other.

From time to time, a team buster shows up as part of the team. The
team buster’s motivation is often not known and not expected. Such a per-
son must not be allowed to degrade the operation of the team. The team
leader needs to try to get the team buster to change behavior. If this effort
turns out to be futile, the team leader must have the power to remove the
team buster from the team. This may be seriously traumatic. But experi-
ence shows that it is necessary. Decisive action is required in dealing with
a team buster.

There is rich literature regarding the building of teams and what it takes
to be able to serve as a team leader. Here are just two references that might
help the reader to understand how to proceed with team leadership and pro-
ductive behavior [1,2]. Some thoughts from an earlier work of this author [2]
are included.

Project Management and Leadership

This author’s perspective regarding project management and leadership starts
with a short list of skills needed to be successful in this domain [1,2]. An
excellent text on project management has been provided by Harold Kerzner
over the years. Possibly the reader has a more interesting treatise on this
subject, although Kerzner’s book is comprehensive. This author’s book on
reengineering has an overview chapter on leadership that provides many per-
spectives on leadership from many leading researchers and observers of the
scene.

References and Recommended Reading

1. Kerzner, H., “Project Management – A Systems Approach to Planning,
Scheduling and Controlling”, Third Edition, Van Nostrand Reinhold, 1989.

2. Eisner, H., “Reengineering Yourself and Your Company”, Artech House,
2000.

4 • People Oriented 69

30. LISTEN TO YOUR ELDERS

Let us start with what some of the elders had to say.

1. A. D. Hall [1]. One of the earliest purveyors of information regard-
ing systems engineering was A. D. Hall [1]. He set forth some of the
frst principles when he was with Bell Labs, so it may be inferred
that these labs were the spawning ground for systems engineering
(SE). Topics of special interest explored by Hall include:
a. A defnition of systems engineering
b. When and how SE is used
c. The fve phases of SE
d. The theory of value represented by SE

2. Simon Ramo [2]. Well known as part of the TRW (Thompson-
Ramo-Wooldridge) company. He was principal player in bringing
systems engineering to the West Coast area and expanding with
time the discipline itself. He was a leader in establishing systems
engineering practices and methods. He served on various panels
and received many awards for his contributions to the feld. He
expanded the utility and areas of application of the feld at large. He
was clearly one of the “larger than life” players that moved the feld
forward, both technically and from a business point of view.

3. Eberhardt Rechtin. We’ve visited this station before, and for a
good reason. A conspicuous elder, Rechtin made seminal contri-
butions to thinking about systems architecting [3] and doing the
same with the organization [4]. He collaborated with M. Maier [5],
expanding the knowledge base in systems architecting. He also
held important positions at the Jet Propulsion Lab, the Aerospace
Corporation (president), the USC, and Defense Advanced Research
Projects Agency (DARPA). One can see from this short list and his
writings that he played important roles in government, industry, and
academia.

4. Andrew Sage. Andy Sage covered the waterfront in both systems
and software engineering [6,7]. He served as dean at George Mason
University, where he supported scholarship through coursework
on systems engineering as well as what systems engineering is all
about. He served as editor in chief of the Systems Engineering jour-
nal, an important springboard for research in the feld. When the

70 Systems Engineering

annals of systems engineering are written, Andy Sage will be at the
top of the list of signifcant contributors and supporters.

5. Barry Boehm. Barry Boehm, a leading software engineer, set the
stage for a deeper understanding of SW economics through his
constructions of Constructive Cost Models COCOMO I [8] and
COCOMO II [9]. His real-world papers also helped deepen our
comprehension of how SW engineering really works. Dr. Boehm
also serves as a key researcher at the Systems Engineering Research
Center (SERC).

6. Yacov Haimes. Dr. Haimes is an expert in risk analysis with major con-
tributions in academia as well as classical risk assessment [10]. His
book on risk modeling and management is a quite signifcant work,
used by many when exploring matters of risk. He was a science fel-
low in the offce of the president at the Software Engineering Institute
at Carnegie Mellon University, and a professor of engineering at the
University of Virginia. He is a fellow of seven technical societies and
is a “national treasure” in the feld of risk analysis and mitigation.

7. Fred Brooks, Jr. Fred Brooks is also a software engineer [11] and
is credited with bringing the IBM 360 series to life. Fred Brooks
is well known for his “mythical man-month” and his assertion that
adding software engineers to a late project is likely to make the
project even later. He followed this book with a second set of soft-
ware engineering essays that provide even more insights into this
feld from a leading practitioner.

8–12. David Walden, Garry Roedler, Kevin Forsberg, R. Douglas
Hamelin, and Thomas Shortell. These fve authors are credited
with having written the INCOSE Handbook, 4th Edition. This
was an important milestone that highlighted the elements of sys-
tems engineering using the framework of Mil Std 15288. The latter
emphasized processes, and it appears that these descriptions will
carry the day for quite some time to come.

13, 14. Blanchard and Fabrycky. Professors Ben Blanchard and Wolter
Fabrycky have represented strong foundations of systems engineer-
ing and analysis at the University of Virginia for many years. Their
book is also a classic covering systems engineering and analysis
as a feld with completeness and clarity. They deal appropriately
with the various forms of system design at its various layers. They
cover economic evaluations at exactly the right level of detail. They
look at design through the various lenses of the “-ilities”, a unique
approach that pays special dividends. This long-term collaboration
of two giants in the feld exemplifes the best in academic teaching.
Both professors are now emeriti at the University of Virginia.

4 • People Oriented 71

15. Sarah Sheard. Dr. Sheard is a leading researcher and consultant in
the feld of complexity. She did seminal work at the Stevens Institute
of Technology and has been a major contributor to the feld at the
Software Engineering Institute at the Carnegie Mellon University.
Sarah is well known for her exploration of principles for mitigating
complexity in aircraft systems.

References and Recommended Reading

1. Hall, A. D., “A Methodology for Systems Engineering”, D. Van Nostrand, 1992.
2. Ramo, S., “The Business of Science”, Hill and Wang, 1988.
3. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.
4. Rechtin, “Systems Architecting of Organizations – Why Eagles Can’t Fly”,

CRC Press, 2000.
5. Rechtin, E., and M. Maier, “The Art of Systems Architecting”, CRC Press,

2009.
6. Sage, A., “Systems Engineering”, John Wiley, 1992.
7. Sage, A., and J. Palmer, “Software Systems Engineering”, John Wiley, 1990.
8. Boehm, B., “Software Engineering Economics”, Prentice-Hall, 1981.
9. Boehm, B. “Software Cost Estimation with COCOMO II”, Prentice-Hall,

2000.
10. Haimes, J., “Risk Modeling, Assessment and Management”, John Wiley, 2009.
11. Brooks, Fred., Jr., “The Mythical Man-Month, Essays on Software

Engineering”, Addison-Wesley, 1975/1995.
12–15. D. Walden, G. Roedler, K. Forsberg, R. D. Hamelin, and T. Shortell, “Systems

Engineering Handbook”, John Wiley, Fourth Edition, 2015.
16–17. B. Blanchard and W. Fabrycky, “Systems Engineering and Analysis”, Fifth

Edition, Prentice-Hall, 2011.

31. LEADERSHIP

My time as a systems engineer was, partly, my time as an executive. This
was a good time to observe my bosses and their leadership qualities. We had
purchased a company by the name of Intercon Systems. I was soon appointed
as president of that enterprise. I said to myself – well, here we are. It’s time to
really lead this company and “implement the theory”.

So I went back to some notes and some writings [1] and tried to get a bet-
ter handle on what it takes to be a leader in today’s high-tech world. Here are
some thoughts along these lines, trying to look straight ahead at what might be
called the attributes or characteristics of today’s leader.

72 Systems Engineering

Practical Visionary

The leader of today’s high-tech company must be able to look ahead and see a
defnitive and very positive scenario for the company, based upon the practical
actions that can and should be taken in the next three to fve years. The vision-
ary part is not a pipe dream. It’s highly visible and within the company’s grasp.
But this is just one aspect of what a leader is all about.

Inclusive Communicator

The messages that are mastered by today’s leader must go directly to the exec-
utive team as well as the rank and fle in the company. There are no intermedi-
aries, although the leader gets a lot of help from the next level of management.
No one is left out of the communications chain. That’s a ground rule that needs
to be meticulously followed. And no backtracking from promises made.

Positive Doer

Many leaders go into a high action mode when they fnd themselves running
a company. I actually slowed down, became more deliberate, and gave more
thought to be positive as I met the people in the company, from secretary to
vice president.

Renewing Facilitator

A big part of the leadership role in a company is to help others get their jobs
done. This also means to help re-defne what their jobs have become, as well as
to breathe new life into the form and function of their daily activities.

Principled Integrator

Above all, the president sets the stage for success in terms of impeccable princi-
ples and modes of behavior. This is followed, just a step behind, by integrating the
parts of the company that need to be in direct communication as well as action.

And to add to the mix, we try to remember what Peter Drucker said about
leaders:

• “Managers do things right, and leaders do the right thing” [1, p. 179].

4 • People Oriented 73

Reference and Recommended Reading

1. Eisner, H., “Reengineering Yourself and Your Company”, Artech House, 2000.

32. NEW BOSS

The systems engineer tends to have a “new boss” each time he or she
starts working on a new system. These relationships usually have a sig-
nificant effect on one’s career. You need to perform well for your new
boss, even though there’s a new set of behavior that one needs to grapple
with.

As you experience new bosses in different project settings, you become
“wiser” and more determined to do a better and better job. This is usually quite
challenging, and you may need to make more and more determined efforts and
adjustments. These adjustments will tend to correlate with who the new bosses
are and their styles of management. Here are a dozen challenges presented to
you by a new boss, and your awareness should be high as you see something
new that requires adjustment on your part.

a. Your new boss – the micromanager
b. Your new boss – the heavy-duty authoritarian
c. Your new boss – the big-time planner
d. Your new boss – deeply organized
e. Your new boss – younger and less experienced than you
f. Your new boss – highly impatient for results
g. Your new boss – preferring action to just talk
h. Your new boss – the student of Myers–Briggs
i. Your new boss – the “close to the chest” person
j. Your new boss – the “all conversation is a progress report” person
k. Your new boss – the perfect controller
l. Your new boss – the consummate salesman

Your micromanager new boss. Stay out of his or her way to minimize them
breathing down your neck

Your authoritarian new boss. Same as above to avoid getting a new
assignment or a change of direction

Your big-time planning new boss. Draw up an early detailed new plan for
your work that fts the overall project plan

74 Systems Engineering

Your highly organized new boss. Outorganize before he or she asks for
your plan

Your young and inexperienced new boss. It’s not about age; it’s about the
right ideas and the right well-considered actions

Your impatient boss. Wants results yesterday, so slow-roll as a counterforce
Your action-oriented new boss. Keep busy all the time, and never be

found with your feet up on your desk, just thinking
Your boss who deeply understands Myers–Briggs. Take the test and dis-

cuss your results in relation to his or her results
Your boss who keeps it all “close to his or her chest”. Ask a lot of non-

intrusive questions
Your boss who listens carefully for progress. Give short progress reports
Your boss who likes to control. Consider giving up some amount of con-

trol to him or her
Your boss who likes to “sell” his position
Notwithstanding your boss’s idiosyncrasies and tendencies, you might

well consider how to interact with your new boss, from this third list:

1. Treat your new boss with respect
2. Listen carefully to what he or she has to say
3. Ask questions that tend to assist in problem-solving
4. Be careful not to threaten your boss’s prerogatives
5. Stay one or two steps ahead in thinking, if possible
6. Learn the ins and outs of corporate interactions
7. Make sure (if possible) to make a friend out of your boss’s boss
8. Do not out-play your boss, especially in a group setting
9. Volunteer to run meetings, but in a quiet, reserved way

10. Understand your boss’s strengths and weaknesses, and act accordingly

Reference and Recommended Reading

1. Myers, I. B., “Gifts Differing”, Consulting Psychologists Press, Inc., 1980.

33. TEAM BUSTERS

As a relatively young project manager I experienced an interaction that con-
founded and puzzled me. One member of my team seemed to attack and

4 • People Oriented 75

challenge me with respect to just about everything I said and did. He was quite
disagreeable, and it looked like he was hell bent on deposing me as the project
leader. After a while, I came to think of him as a team buster, trying to sabo-
tage the team I was trying to build.

Nothing seemed to work as I tried, futilely, to bring him aboard as a pro-
ductive team member. I was failing, and both he and I knew it. Here are some
of the actions I tried, again without success:

a. Listen harder to whatever my team buster said
b. Give my team buster time to express himself
c. Acknowledge the usefulness of his criticism and ideas
d. Tried the opposite, from time to time, of items (a) through (c)

Nothing seemed to work as Mr. Team Buster was sniping at me just about all
the time. After a while, I realized that I had a real “team buster” on my hands,
an important lesson learned. But, what to do about it? I fnally concluded that
I didn’t know how to “solve” this problem. Eventually, and in desperation, I
fnally moved this person off the project team. I basically “fred” the problem
person, and without looking back. I felt right, and my intuition confrmed that
I was on the right track.

So the answer seemed to be – get the team buster off the team. Nothing
short of that seemed to work.

I also came into contact with a true “team buster” in two other situations.
I had signed up for a Scott Peck-based seminar, exploring the ideas and behav-
iors of this well-known author of The Road Less Traveled. Karen was to be the
seminar leader, and we were all supposed to meet at a designated time and space
outside of Baltimore. As it turned out, Karen appeared, but more than a half hour
late. About a dozen of us waited for her, mostly with a self-contained “wonder
where Karen is” attitude. Finally, Karen appeared and apologized profusely for
the very bad traffc tie-ups. The group reacted with approval and happiness that
Karen was indeed in front of us and was ready to go. As we proceeded, however,
one member of the group started sniping at Karen and berating her for being late.

“Can’t understand how you could keep all of us waiting for so long”, he
said.

“We should be a lot further along, except for your lateness”.
“Did you really study with Scott Peck?”
“These are not very interesting exercises”.
Finally, I could not take any more of it. As a senior member of the guests,

I spoke up.

Listen, Tom, I fnd your sniping at Karen completely obnoxious. She told us
why she was late, and the traffc problem was not of her making. And she

 76 Systems Engineering

apologized, showing respect for the group. But your sniping is weird and off
the page. So I ask you to stop doing it, and show respect for both Karen and
the rest of the group.

He replied.

Whoever you are, you’re completely out of line. I have every right to say
what I’m saying, and every right to express my disapproval of Karen and
what she’s doing. I know how to present a seminar and she’s not doing a good
job of it. So please stay out of it, and stop showing disrespect to me and the
other guests.

And then I replied with something like:

Looks like we’re not going to get along during this seminar. For some rea-
son, you don’t want to accept Karen’s lateness or her apology for being late.
You’ve been attacking her for the past half hour, and I’m sure there’s a hidden
reason for the nasty and inappropriate behavior. But I’m going to call you on
it, every time. So get yourself prepared.

“I accept the challenge”, he said, “and look forward to having another enemy
in my life”.

And then, from another guest:
“Go at it”, he said. “But I don’t get any of it. All I want to do are the exer-

cises that Karen sets up”.
And so it went, for the rest of two days.
I suspect that Tom was a team buster who wanted to put Karen down and

take over the group in some way or the other. That’s what team busters do.
So if and when I run into potential team busters, I know the answer as to

the lesson learned, at least for me. Out the door, never to return.

34. MEETINGS

Over the years, like many engineers of various types, I’ve attended hundreds
(possibly several thousand) of meetings. For quite a few of them I’ve been the
“boss”. For others, I’ve been an observer or participant. You know, the usual.

If I’ve simply been a participant, then life would have been a lot easier.
All I’ve had to do is pay attention and be there, at the moment. And when the
time is right, answer a question or two that’s been put to me. Sometimes the
answer is “I don’t know”, or something like, “I’ll try to get that answer to you

4 • People Oriented 77

by tomorrow, COB – close of business”. It’s often the best approach to delay or
put off an answer when you really don’t have one.

When my role at meetings has been the “boss”, I’ve tried to make my
attention span even more intense. Other folks at the meeting want to be lis-
tened to, and even heard. And beyond that, responded to. Preparation as the
boss for a meeting can be extensive, dealing with such areas as:

a. List of agenda items
b. Notes on each agenda item
c. The current or new status of agenda items
d. Special dates and results
e. Roundtable query from all participants

It gets even crazier when there’s some element of negotiation at the meeting,
and you’re the boss.

There are times when I’ve experienced what is called groupthink at a
meeting. This is a particular form of dysfunctionality in which people do not
wish to speak their minds due to the possible concern for what others will
think of them and their answers. A more specifc “defnition” of groupthink
can be taken to be [1]:

• A group process whereby people do not speak up for fear that they
will appear to be out of step with the majority, or just look foolish
for one reason or another.

Many books and articles have been written about meetings and how to deal with
them. My lesson learned in this regard is to prepare well and try not to just “wing
it”. You may not be the smartest person in the room on any given subject, but
with the appropriate level of preparation, you may appear to be extremely well-
informed on the topic at hand. Usually, that’s more than good enough. Going
beyond that, one may try one or two methods that are reported in the literature. A
particular viewpoint on how to improve meetings is provided as “The Interaction
Method” [2]. This method includes four participants in any and all meetings:

1. The “boss” and chair of the meeting who moves activities and prob-
lem-solving activities along,

2. The facilitator, who helps each group member express and clarify
ideas and approaches but does not “take over” the discussion,

3. A recorder, who keeps accurate and unbiased records of what has
transpired, and

4. The individual member of the group/team. It is claimed that increases
in productivity of up to 15% have been achieved using this method.

78 Systems Engineering

This number is large enough to suggest that the method be used
in the systems engineering community, at least on an experimental
basis.

A Systems Engineering Meeting

If the meeting is in the context of a systems engineering project, then take a
look at a systems engineering book that highlights the topic “systems engi-
neering management”. Topics that come to mind in this connection include:

a. Special technical requirements
b. Special contractual requirements
c. System functional decomposition
d. System architecture
e. Integration – problem areas
f. Test results and plans
g. Modeling and simulation results
h. New inputs from customers or special stakeholders
i. Percent completion – cost, schedule, performance

As a fnal reference let us take a quick look at some “meeting” suggestions
from Simon Ramo [3], a super-engineer as well as a super-businessman. He
claims to have attended some 40,000 meetings of various types:

a. Abolish unnecessary meetings.
b. If there is a Machiavelli-type in the group, be careful about what

transpires (Machiavelli has his own agenda).
c. The chair takes the role of the leader, and also as “chameleon”.
d. Be thoughtful and careful about seating arrangements (there is such

a thing as bad seating).
e. Look out for the “Must-Win” debater.
f. Watch for and try to specify attire.
g. The worst personality type that he encountered is the MDRSSA, the

“Multi-Dimensional Really Smart Smart-Ass”.

References and Recommended Reading

1. Sage, A., and W. Rouse, “Handbook of Systems Engineering and Management”,
John Wiley, 1999.

4 • People Oriented 79

2. Doyle, M., and D. Straus, “How to Make Meetings Work”, Jove Books, 1976.
3. Ramo, Simon, “Meetings, Meetings and More Meetings”, Bonus Books, 2005.

35. MYERS–BRIGGS

Looking back some 50 years in the SE world, I found two instances in which
I ran directly into the personality measurement part of the world, sometimes
called psychometrics. Both were similar in that they provided some type of
lessons learned. Both had some food for thought in an unexpected way.

In one case, I was teaching a course in Project Management (PM) as part
of a GWU program. The Myers–Briggs Type Indicator (MBTI) was part of the
curriculum, and so I took the “test” along with some 25 students. I found out
that I was an INTJ, which surprised me a bit. First of all, this profle may be
contrasted with its polarities in that

I (Introvert) is opposite to E (Extrovert),
N (Intuitive) is opposite to S (Sensing),
T (Thinking) is opposite to F (Feeling), and
J (Judging) is opposite to P (Perceiving) [1].

This structure is what is known as the Jung typology.
This INTJ indicator apparently is present in only about 2.1% of the popu-

lation, which is relatively rare (see Table 35.1).
“Strange”, I thought, “but likely to be a real challenge”. And so it has been.

See if you can fnd any “strangeness” relative to your MBTI from the rest of
the types and frequencies, as below:

TYPE PERCENT (%)

ISFJ 13.8
ESFJ 12.3
ISTJ 11.6
ISFP 8.8
ESTJ 8.7
ESFP 8.5
ENFP 8.1
ISTP 5.4
INFP 4.4

So I discovered that “the NTs tend to be logical and ingenious and are most
successful in solving problems in a feld of special interest” [1]. For introverted

80 Systems Engineering

TABLE 35.1 Lowest Seven
MBTI Values (%)

ESTP 4.3
INTP 3.3
ENTP 3.25
ENFJ 2.5
INTJ 2.1
ENTJ 1.8
INFJ 1.5

thinking, the “goal is to formulate questions and create theories” [1]. For INTJ
and INFJ types, some citations include [1,112]

• Finding new pathways
• Being motivated by inspiration
• Looking for deeper meanings
• Extreme discontent with a routine job, and its implications

INTJs are taken to be the most independent of the 16 basic types, and this type
of behavior will show itself when an INTJ is part of a team.

In another adventure with project management, I gave and took a “test”
that yielded the following four values:

Action (*) 13 (my score on a scale of 10-10-10-10)
People 11
Process 6
Idea 10

(*) action is to very much enjoy getting it done; people is to look for positive
interactions with people; process is to hold on to ways for the person and the
team to behave, once established; and idea is to formulate new ways of behav-
ing based upon the new and clever idea.
The part of this that surprised me was my relatively high “action”. I did not
think I was action-oriented but was pleased to fnd out that this might not be
true. Another lesson learned and not forgotten.

Reference and Recommended Reading

1. Myers, I. B., “Gifts Differing”, Consulting Psychologists Press, Inc., 1980.

4 • People Oriented 81

36. BECOMING A HI-TECH MANAGER

For the systems engineering path that so many of us travel, there comes a time
to decide whether or not to become a manager. It’s a diffcult transition for
many. I decided that the answer was “yes”, although the project size was so
small that I barely noticed my new role.

There were two cases I can note. One was as project manager of a pro-
gram for NASA on the Nimbus meteorological satellite. The other was for the
Federal Aviation Administration (FAA) on a radar quality control experiment.
The Nimbus project was about fve people, and the FAA was just me and the
other guy. Starting out small is an exceedingly good idea. You’re nimble, and
there’s not a lot of yelling and screaming.

So what’s the lesson learned in this endeavor. As you might expect – it’s
simply the elements of doing the project manager job. Sounds simple, but has
many dimensions that you might not have anticipated. Examples?

1. Progress reports
2. Briefngs
3. Review of all reports
4. First-line interaction with customer
5. Lead on possibly all technical matters
6. Run all meetings

There are others, I’m sure.
Now that it’s close to 50 years later (with respect to my frst project man-

ager experience), it’s time to look at what’s in the literature on this matter. In
this regard, let me start with what I had put in the literature a few years back.
This singular source [1] looks briefy at the skills required and the specifc
steps that are suggested.

Skills Required

In a short exposition, this author identifed fve essential skills for a high-tech
manager [1]. These are briefy cited and discussed below.

1. Problem solver. Above all, this person needs to be able to address
problems and fnd real, practical solutions. This includes individual
as well as group problem-solving.

2. Contingency planner. This item deals with the fact that this person often
needs plan A, Plan B, and Plan C to be successful over the long haul.

82 Systems Engineering

3. People-oriented communicator. Two ideas are represented here.
The frst is that today’s high-tech management must be comfortable
dealing with people on a continuing basis. The second is that his or
her communication skills must be naturally superior.

4. Team builder. A lesson learned and articulated early in this treatise
has to do with building a strong team. This is more than a random
collection of engineers who show up at systems engineering meet-
ings of one sort or another. This type of team exhibits high-perfor-
mance and high energy, and they work together in an especially
productive manner.

5. Technically competent decision maker. Here again, this implies
two features: technical competence explains itself and decision
maker confrms an ability to clearly resolve both technical and man-
agement problems.

Specifc Steps

Moving from a team member to a high-tech manager requires a series of steps.
These are briefy cited below:

1. Make a conscious decision and commitment. You basically need
to say “hello” to your new job as a manager.

2. Obtain additional training and education. This includes formal
courses leading to bachelor’s and master’s degrees as well as special
certifcate programs.

3. Practice managerial skills. Look for occasions in which you can
engage in specifc problem-solving sessions. Volunteer to run proj-
ect review activities.

4. Study and talk to managers in your company. Target and engage
with specifc people.

5. Seek and accept a manager position. Sometimes it happens qui-
etly and with no effort. Other times it requires a more proactive set
of actions.

Reference and Recommended Reading

1. Eisner, H., “Reengineering Yourself and Your Company”, Artech House, 2000.

 4 • People Oriented 83

37. DEALING WITH YOUR CUSTOMER

First, let’s set up a reasonable scenario.
You’re a middle manager, and a couple of years ago you wrote a spectacu-

lar proposal and won a government contract with your current customer. The
contract is signifcant in size, and you’re the designated project manager both
in name and in deed. The re-compete is due in a couple of years, and it’s up to
you to assure a win in that competition. If you lose that re-compete, you may
be out of a job, but if not that, it’s a couple of rungs down on the ladder from
which you may never recover. So you’re strongly motivated to be successful for
your individual career and your placement within the company.

You maintain day-to-day contact with your customer. He depends on you
to respond successfully to issue task orders on a timely basis. He is able to
send you fxed price orders that do not require you to compete. Some orders,
however, are competitive with other contractors. So, even though you won this
contract, you still need to be able to compete, from time to time, on individual
task orders.

You approach this challenge by trying to create a trusting relationship
with your customer, and always doing A plus work. Building trust takes time,
and you need to demonstrate that you can be trusted with important assign-
ments. You also look for ways to build trust between you and your customer. It
all takes time, the right behavior and a lot of patience.

Going to Lunch with Your Customer

Your customer invites you to lunch for a “working” session to review the status
of various task orders. When you’re fnished, your customer makes clear that
paying for his lunch would be ok, do you do this? The answer is a defnite
“no”, since such action is likely to be illegal under the terms of the contract.
You establish this boundary from the beginning. No free lunch and no free
anything. How to do this? One way is simply to start out with “separate checks
please”. This is not easy to misunderstand.

Issuance of a New Task Order

Your customer asks you (your company) to respond to a new task order.
You decide that this is a good time, since it is non-competitive, to manage

 84 Systems Engineering

expectations. You follow up with a “try to under promise and over deliver”
approach. The customer is clearly very pleased to get the results early and of
high quality. This all helps to build trust and a stronger relationship.

Quick Response Capability

On a Friday at noon, your customer calls with an urgent request. He needs a
“Powerpoint” presentation of an important topic by noon on Monday. Are you
willing and able to respond? It clearly means weekend overtime work for you
and a couple of members of your project team. You decide “yes”, and so you
and your project team are verifying that you are willing and able to do these
possible weekend fre drills. This is a service beyond the call of duty and is
usually much appreciated. You are beating your competitors, hands down.

A Truthful Interchange

During one of your lunches, your customer lays out his approach to a particu-
lar problem he is having. You think that his approach is basically fawed, and
therefore you cannot respond positively. Your customer is looking for support,
but you fnd that you’re unable to take such a position. You think long and hard
about this situation and decide that all you need to do is be honest. You will do
that by suggesting an alternative approach.

“Have you considered …?” you say, and give your customer a chance to
recover and move on with his thinking.

“Thank you for your thoughts on this matter”, he says. And you have
gained some points by an honest response that moved the problem-solving
forward, and with due consideration.

The Re-Competition

You approach your re-compete with confdence, but not over-confdence. You
take nothing for granted as you write a comprehensive well-thought-out pro-
posal. You cover the bases and provide alternatives to allow your customer to
let more than one contract, if desired. You recognize that your customer needs
to play everything by the book which you have facilitated by suggesting alter-
natives. You ultimately win the re-compete, which is a win-win for all parties.
Your boss comes in to congratulate you on a job well done. This contract is
now a “cash cow” for the company, and you’re in charge. You’ve done a great
job by establishing a new LOB (line of business), and you’ve done it the right

4 • People Oriented 85

way. You’ve built a solid professional relationship of trust with your customer.
The relationship is characterized by:

a. Mutual trust,
b. Well-established boundaries,
c. Solid technical expertise,
d. Responsiveness above and beyond,
e. Following the procurement rules, and
f. Mutuality of interest.

38. INTEGRATION

Integration is a procedure by which the systems engineer (or team) brings
together the various parts of the system. We seek a special way to do this that
is effcient and cost-effective. If the subsystems are designed to be readily inte-
grable (is this a word?), then the integration task tends to be facilitated. If they
are not so designed, the integration can be diffcult to impossible. Are there
some ground rules for proceeding with this set of tasks? Let’s put a few of them
on paper and hope that they’ll be helpful. Several items on this list can also be
found in a textbook [1] by the author.

1. Always architect at least two systems from which to choose a pre-
ferred system; the recommended number of alternatives is three

2. Do not conceive of and then integrate all stovepipes; integrate what
it is that is provably cost-effective to do so

3. Assure that all members of the system integration team have spe-
cifc experience with a signifcant systems integration activity

4. Consider technology insertion as a defnitive task pertaining to sys-
tem architecting

5. Accept evolutionary design and “chunking” (of software) as part of
the integration process

6. Use reuse sparingly and as a part of your plan to build compatible
software

7. Confrm that the project budget and timelines are suffcient to exe-
cute the complete integration activity

8. Attempt to reduce complexity in very specifc ways, especially with
respect to software

9. Treat requirements as tentative and in need of formal confrmation
10. Follow all acquisition system ground rules that pertain to this type

of system

86 Systems Engineering

Reference and Recommended Reading

1. Eisner, H., “Essentials of Project and Systems Engineering Management”, Third
Edition, John Wiley, 2008.

39. HALL, GOODE, AND MACHOL

Now let us take a quick look at how systems engineering was described in the
very early days. From that we might gain some insight into why we no longer
use these descriptors and have moved on to better ones in sizing and shaping
the nature of systems engineering.

In particular, our quick look will involve A. D. Hall [1], Goode, and
Machol [2].

A. D. Hall [1]

Hall’s treatise is given the name “a methodology”. It is not a coherent
method, but it is a very interesting set of very relevant topics. It’s a tour de
force, including many subjects not found in today’s systems engineering
books. His top-level structure of systems engineering leans heavily upon
planning, in particular program planning and project planning. The lat-
ter itself is composed of exploratory planning and development planning.
Moving from this abundance of planning, we come to the “action” part of
Hall’s structure, namely, studies during development and current engineer-
ing. Certainly, in this presentation, planning is too extensive, and engineer-
ing too depressive.

However, very interesting chapters emphasize such topics as:

a. Decision making and games
b. Functional design
c. Synthesis
d. The theory of value
e. The role of measurement

In essentially all of Hall’s books, we see little of requirements (but we do see
“needs”), life cycle, and process. Hall had his own vision, and this author com-
mends him for his cogent articulation of that broad and multi-faceted vision.

4 • People Oriented 87

For those of us in the systems engineering community, it would do well to
consider how to include some of that vision in our future renderings of systems
engineering.

Goode and Machol [2]

Goode and Machol’s classic text on systems engineering leaves us much to
think about, even though it is quite different from today’s notions. It starts
with an emphasis on complexity and moves quickly into probability theory
and applications. After a stop with computer concepts, it considers the basics
of game theory, linear programming, group dynamics, and cybernetics. It fn-
ishes with information theory, servomechanism theory, and human engineer-
ing. Not exactly today’s primer with which to gain certifcation in systems
engineering. But not to be entirely neglected by today’s systems engineers.
And still, no exposition of “processes”.

Machol’ s View [3]

Back in 1965 Robert Machol undertook a project to document his concep-
tion, along with others, of the feld of systems engineering. The introductory
chapter is entitled “Methodology of Systems Engineering”, with the following
component parts:

• Defnition
• Anatomy of systems engineering
• Principles of system design
• The systems viewpoint
• Operations research
• The complete systems engineer

We note the emphasis on systems design, overall systems, and operations
research. This perspective, of this author, is entirely appropriate all these many
years later.

Dislocations occur, however, almost immediately, as Machol and his 58
contributors move into such topics as the ocean, land masses, the atmosphere,
and astronomy. Then Dr. Machol brings in some subjects that are often seen
as electrical engineering topics, such as analog circuits, transformational cal-
culus, communications engineering, radar, and satellites. A movement in the
direction of computer science brings computer system design and digital cir-
cuits and logic into play.

88 Systems Engineering

A major topic given the name “system theory” has logical elements such
as information theory and game theory. Simulation is included and carries
forth up to today.

This monumental work from Machol and colleagues makes its own con-
tribution and is both broad and deep in its approach. It is interesting to look at
systems engineering as seen by Machol in the 1960s and what it has evolved
to in the form, for example, of Mil Std 15288. Another point of departure is
the INCOSE Handbook, Version 4. Could you have predicted this evolution, or
even a small part of it? Your thoughts?

References and Recommended Reading

1. Hall, A., “A Methodology for Systems Engineering”, D. Van Nostrand, 1962.
2. Goode, H. and Machol, R., “System Engineering”, McGraw-Hill, 1967.
3. Machol, R., W. Tanner, Jr., and S. Alexander, “Systems Engineering Handbook”,

McGraw Hill, 1965.

40. MAN VS. MACHINE

Some years ago, this author was engaged as a contractor to support the devel-
opment of a three-axis stabilized meteorological satellite system. One morn-
ing, the deputy program manager came to my offce with a concern of his. He
was thinking about the paths of the satellite and the boost vehicle and the pos-
sibility that they might collide after some number of orbits of each. Could this
happen, and are you in a position to analyze this type of situation?

I accepted the challenge and went back to my home base. After a couple of
hours thinking about the problem, along with my book on orbital mechanics, I
decided to call our chief scientist, Dr. K, to see what he thought about the over-
all problem. He invited me to his offce, where I went just about immediately.

“Yes”, he said, “I think I can work this problem, and give you an answer
in a couple of days”.

Dr. K was a man of his word and had never failed me in the past.
The next day I wrote up the easy part of the problem and solution and

awaited word from Dr. K. Sure enough, by noon of the following day, I got his
call and made it up one foor to his offce. He showed me his work, emphasiz-
ing a polar plot of the paths of the satellite and the boost vehicle, as a function
of orbital number. It showed the miss distances explicitly, and one could see no
evidence of a crash between the satellite and the boost vehicle.

 4 • People Oriented 89

I was impressed, one more time, by Dr. K’s analytic skills and how fast he
was able to bring them to bear upon a problem.

I called the deputy program manager with the news, and by the next day I
showed him the results in graphical form, just as Dr. K had constructed them.

“Terrifc work”, he said, and then confessed that he had given the same
problem to one of his other contractors, the one who was the offcial keeper of
the computer-based satellite orbital model.

“I don’t have their answer yet”, he said, “but I was promised an answer in
two weeks”.

I noted the difference – our answer in 2–3 days and the computer-based
model in 14 days or so. There it was, a concrete example, if you will, between
man and machine. And for whatever reason, man was to be the winner.

A couple of weeks later, I received a call from the deputy program
manager.

“Just got the results from our computer-based model, and they confrm
your answer”.

“Glad to hear it”, I said. “A very good answer and resolution”. He must
have heard how happy I was with the entire episode.

Dr. K was worth his weight in gold. Never underestimate the pure power
of the human mind. A lesson learned, for sure.

https://taylorandfrancis.com/

Miscellany 5
41. REDUNDANCY IS IMPORTANT AND
MAY BE CRITICAL IN CERTAIN SYSTEMS

Redundancy is a means by which one increases reliability, usually at the
expense of space and/or weight, or both. I had an experience some years ago
that perhaps will illustrate the point.

I was on a team consulting with a program manager for the Nimbus
meteorological satellite. Our job was to look at the Nimbus design and
carry out what at that time was called a design review and reliability
assessment. I was “responsible” for the power supply and also the overall
team activity. I came to the conclusion that there was a real danger (risk)
associated with the power supply in the form of failure of the drive motor
for the solar panels. This drive motor was a new design and failed in space
after a short time. This failure meant that the solar panels would not be
oriented properly with respect to the sun, and so the spacecraft was soon a
hunk of junk in space.

And this was what was called a “single point” failure.
This “incident” stuck in my mind, and in all future efforts of this nature,

I always looked for the possibility of single point failures and considered how
to fx them.

One way to do so, of course, is through redundancy. That means that two
failures need to occur in order for the overall system to go down. Here’s a quick
look at the relatively simple mathematics of a parallel redundancy confgura-
tion so that we can see what happens, quantitatively.

Let there be two identical units in parallel, and with reliability R. R is the
probability that each unit will not fail (will continue to work properly). Then,
the failure probability for each unit is (1 − R). The reliability of the redundant

91

92 Systems Engineering

confguration is therefore the likelihood that at least one (one or more) will not
fail. That equation can be shown to be:

P = - (-R)(1-R) = reliability of parallel configuration 1 1

This reduces to P=2R−R2

Looking at some numbers, we see below a range of P for different values
of R. The parallel redundancy certainly helps and does so dramatically.

UNIT RELIABILITY (R) PARALLEL REDUNDANT RELIABILITY (P)
0.5 0.75
0.6 0.84
0.75 0.9375
0.95 0.9975
0.98 0.9996

Even if we start with a unit reliability of as high as 0.98, the redundant confgu-
ration increases the overall reliability to 0.9996.

Moving to another case, the reader might recall that NASA also had a
quite serious single point failure on a manned mission known as Challenger.
That was the so-called o-ring problem. Apparently, a critical o-ring froze and
broke, constituting a single point failure that destroyed the mission and killed
everyone aboard – an enormous tragedy. The crew was seven people: fve
NASA astronauts, a payload specialist, and a school teacher from the civilian
world.

The Rogers Commission was established by President Reagan to inves-
tigate this accident. There were many fndings, but the key problem was the
failure of the o-ring. Dr. Richard Feynman, a Nobel laureate physicist, was on
this Commission. He demonstrated the problem, and wrote about it in one of
his books [1]. He showed, in a unique as well as simple construction, how the
o-ring was likely to have failed. This was a powerful and convincing argument,
and one that was needed at the time. The report of the Rogers Commission is
excellent reading, showing how there can be many points of view expressed by
a variety of people trying to reconstruct the truth about an accident. It would
seem to be an open and shut situation, but apparently it was not. This “simple”
world of ours can be quite complicated at times. Perhaps that is why “risk” is
so diffcult to assess. We have a major issue facing us when we might wish to
make some changes late in a program.

This brings me back to the Nimbus drive motor failure and a discussion
I had with the program manager in a mission postmortem. We went over our

5 • Miscellany 93

report, which cited the possibility of a single point failure of the solar panel
drive motor. He acknowledged that we had made an excellent point, but from
his perspective:

a. There were several other “problems” that were identifed, and it was
not clear as to what the priorities for fxing needed to be

b. We were quite late in the program, and a change would have meant
considerable (and unacceptable) time delays

c. His key senior people did not support any changes as they approached
the launch date

Management has to make these kinds of calls, and they live with the conse-
quences. Often, there are regrets. But there is usually quite good justifcation
for action, or lack of it.

Reference and Recommended Reading

1. Feynman, R., “What Do You Care What Other People Think – Further
Adventures of a Curious Character”, W. W. Norton, 1988.

42. RECHTIN’S HEURISTICS ARE
BRILLIANT AND NEED TO BE
STUDIED AND FOLLOWED

We cannot do better, as systems engineers, than to follow the advice of Eberhardt
Rechtin. He was a “master” engineer, with an illustrious career in industry,
government, and academia. He played a major role at the Jet Propulsion Lab,
the USC (as a professor), and also as president of the Aerospace Corporation.
He also held the position of director of DARPA, the Defense Advanced
Research Projects Agency.

Dr. Rechtin wrote a seminal book [1] dealing with the subject of architect-
ing systems. This was the frst in this feld, which amplifed his approach with
a follow-up book with Maier [2].

A distinct feature of the frst book on architecting was his Appendix on
heuristics. This appendix set forth a list of “rules-of-thumb” that Dr. Rechtin

94 Systems Engineering

constructed from his many years of building systems. This author sees this list
as lessons learned that Rechtin is passing on to other systems engineers in the
feld. Here is a list of ten of these heuristics to be read and re-read by our com-
munity of systems engineers.

1. KISS (keep it simple st..id). Dr. Rechtin emphasized simplic-
ity in his designs, believing that this approach would bring
dividends in terms of decreased cost and increased perfor-
mance. How does one do that? Answer – follow Dr. Rechtin’s
suggestions.

2. Keep system requirements under challenge. Keep question-
ing your list of requirements that tend to drive the overall system
design, and modify them when needed.

3. Important software mistakes are made on the frst day. One may
infer from this that we make errors early in our software architec-
ture, and we need to pay attention to this activity.

4. No system can be optimal for all parties. We do our best in many
domains but cannot succeed in all of them simultaneously.

5. For new systems, expect the unexpected. New problems arise in
building large-scale systems, just about all the time.

6. The design team cannot avoid re-design. Look for design weak-
nesses, and take actions to avoid them as early as possible.

7. Maintain options as long as possible. Keep from finalizing
system design so that changes can be made without too much
pain.

8. Try to assure minimum communication between subsystems.
Keep the inter-system message fow down from proliferating.

9. Choose among alternative architectures. This implies that you
have constructed alternatives, which is good engineering practice
(note AoA within the DoD).

10. Recognize Pareto’s law. Keep this 80–20 law in mind and behave
accordingly (if you’ve forgotten the law, it’s that 80% of the sig-
nifcant work in an organization is generally done by 20% of the
people).

References and Recommended Reading

1. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.
2. Rechtin, E., and M. Maier, “The Art of Systems Architecting”, CRC Press,

2009.

5 • Miscellany 95

43. MISTAKES

So there came a time when Xerox was the most successful enterprise in the
country. The copier company was led by Joe Wilson, its president, and Sol
Linowitz, its chairman. Their clever capture of key xerographic patents and strate-
gic alliances with Rank (UK) and Fuji (Japan) put Xerox in a key position in this
country’s technology marketplace. That allowed them to set up Xerox PARC as a
high-technology leading edge company. This enterprise soon took charge of SDS
computer and made several poor decisions in this respect. SDS was an asset that
was squandered, and the story behind that is not easy to fgure out, at least in terms
of corporate activities. This was not the only mistake made by Xerox; we cite here
a failure to understand how it continued to beneft from Xerox PARC and instead
invested in real estate, which turned out to be less than lucrative [1].

When Anne Mulcahy took over the reins of Xerox in 2001, it had a $273
million loss and a stock that had dropped some 92% in less than two years [2].
Stockholder value decreased by 38 billion. Its bonds were rated as “junk” by
Moody’s. One might say that the company was barely breathing. But Mulcahy
forced major cuts in the company’s cost structure and also in the year-by-year
budget. Many of her moves brought the company back from “from the edge”
to live another day.

Another quite serious mistake in the computer business was made by the
ex-MIT engineer-owners of the DEC (digital equipment corporation). They
had a relatively solid line of business with their PDP and VAX series and sold
it to COMPAQ. Sales declined as did the value of DEC stock. Whose mistake
was accounted for here? Not clear – several folks to “blame”.

Wang Labs was highly successful as it essentially captured the word pro-
cessing market, only to give it up to “open” systems word processors (like
WordPerfect, WordStar, and others) and computers. It went bankrupt in
August 1992, cutting some 5,000 jobs and never did recover from its early
days of astonishing success.

Another computer-related story and mistake is connected to Apollo com-
puter, a powerhouse workstation manufacturer that competed strongly for the
preferred government workstation. They lost that competition to a team of
UNISYS and SUN microsystems. Apollo’s president said at the time, from
his perspective, “it’s ours to lose – and they did”. SUN continued onward and
upward – and Apollo more or less disappeared from the scene.

Then we get to IBM and their adventure with the IBM PC. They went to
Microsoft to obtain an operating system for their PC and ultimately made a
sweetheart deal with Microsoft. The software company wound up owning the

96 Systems Engineering

operating system and used it to its advantage for many, many years. How did
that happen? Some say it was due to the fact that IBM did not properly value
software. We presume that by now IBM has fgured it out – and learned “how
to dance”. It took quite a while, but they survived that and other misadventures
and appear to be alive and well today.

A Footnote to the IBM – Microsoft Story

In and around 1979, Microsoft said “no”, declaring that they were not in the
business of constructing operating systems. However, Gates referred IBM to a
friend in another company, a friend defnitely in that business. His name was
Gary Kildall, and the company was Digital Research. So IBM went off to visit
with Kildall, and when they got there, they found that Kildall was off fying
his plane, and he was represented by his wife for the meeting. She said that
Digital Research was indeed in the “operating system” business, as, for exam-
ple, they had built CP/M for PCs. When asked by IBM to move forward with
a non-disclosure agreement, Kildall apparently claimed that she did not have
the authority to execute such an agreement. So IBM simply left and went back
to Microsoft. Having done a favor for a friend, Gates now felt that he could
now say “yes” to a deal offered by IBM. That’s exactly what he did, which led
to Microsoft going off to purchase a system called QDOS for about $50,000
from a company called Seattle Computer Products. That was a starting point
for Microsoft in their new adventure with IBM, and their monopoly-building
with DOS, MSDOS, and Windows. Not bad, eh? A clear turning point for both
IBM and Microsoft in the feld of operating systems. And Microsoft had the
powerhouse known as “big blue” behind them for each and every operating
system they sold.

Mistakes in the software arena as well as segments of the computer world
appear to be plentiful. But fortunes have come and gone, and many are still
“cashing checks”, and also still making mistakes. Are there some lessons to be
learned from all of this? The answer is “yes”, and we can cite one such lesson
that stands out above the others. And that is – when you’ve made your frst
billion, pause for a while and consolidate. It’s time to stop running free, and
count your blessings as you play ball with the government. Even Facebook is
still trying to fgure it out.

References and Recommended Reading

1. Smith, D. and Alexander, R., “Fumbling the Future”, toExcel, 1999.
2. Eisner, H., “Topics in Systems”, Mercury Learning and Information, 2013.

5 • Miscellany 97

44. COST ESTIMATING

An important lesson learned has to do with the often diffcult feld of estima-
tion, particularly software cost estimation. Barry Boehm has given us some
defnitive guidance with COCOMO I [1] and COCOMO II [2], but both require
inputs which, of course, are estimates.

So let us set up a scenario in which lead software engineers are sitting
around a table trying to estimate the cost of a software project. Let us use
COCOMO I to gain some insight into the nature of the problem we are facing.
This team looks at the system specs, and they come up with an initial estimate
of 100,000 delivered source instructions (DSI). With this value, we now pro-
ceed with several COCOMO I calculations as:

1 0. 5 1.05
Person-months (PM) = 2 4. (KDSI) = 2 4. (100)

= 2 4. (125 9.) = 3022 1. person-months

From this estimate, we now compute the development time as

.
TDEV = 2 5. (PM)0 38

= 21 9. months

The productivity and full-time equivalent staff are then:

PROD = PRODUCTIVITY = KDSI/TDEV

= 100/21 9. = 456 KDSI/TDEV

and

FTES = PM/TDEV FULL-TIME EQUIVALENT STAFF=

= . / .302 1 21 9. = 13 8

We note that only one estimate of 100,000 DSI gave us the next four estimates
of PM, TDEV, PROD, and FTES. Now there’s effciency for one.

The software engineering team is asked to stare at these numbers for a
while and be prepared, one by one, to comment. Most of the comments cen-
ter upon the uncertainty in the overall process and the set of “output” esti-
mates. What to do next? The team expresses what it considers to be a common
perspective:

“Let us push for numbers that represent the overall opinion of the team”.

98 Systems Engineering

So each and every person on the team was asked for an estimate.
“So what is your estimate for the number of Delivered Source Instructions?”

And, of course, we get a spread of numbers and know not what to do with them.

• What does the systems engineering team do when a single param-
eter is estimated by more than one person? And how does the team
approach the overall problem of cost estimation? [3]

References and Recommended Reading

1. Boehm, B., “Software Engineering Economics”, Prentice-Hall, 1981.
2. Boehm, B., “Software Cost Estimating with COCOMO II”, Prentice-Hall, 2000.
3. Mislick, G., and D. Nussbaum, “Cost Estimation”, John Wiley, 2015.

45. GENERALIZE

A story out there in the literature involves a strategic planning session of the
American Association of Railroads (AAR), around the turn of the century
(1900). A key question put to the attendees was:

We are the AAR and what business are we in?

The answer was:

We’re in the railroading business, of course.

This answer was roundly accepted as the correct one. But we note that there
was not one contrary view with an answer that said:

We’re in the transportation business, of course.

This difference in the answer as well as perspective, it is told, led to the result
that the Railroaders were not, by and large, leaders in the formulation of the
aviation industry.

This “story” can be used to suggest that a generalization is a powerful
tool in the world of strategic planning and thinking. In that world, generaliza-
tion may lead to new systems, products, and services. It may lead to break-
throughs in terms of lines of business and positioning in the marketplace.

5 • Miscellany 99

All it may take, as suggested, is a voice of generalization at the right time
and in the right place.

I offer another example from my background that ultimately led to rather
positive results. Our company was doing well in the business and high-technol-
ogy areas of NASA’s Goddard Space Flight Center (GSFC). We were certainly
getting our share of contracts when we sat down one year and took strategic
planning a bit more seriously. There it was:

• What business are we in?

One answer (not the only one) was “we’re in the space business”. This answer
ultimately led us to another (and different) customer, namely, the Air Force.
We ultimately won contracts with this important client in quite distinctive
areas. These led to specifc efforts with the Air Forces Consolidated Space
Operations Center program and the Strategic Defense Initiative (SDI) as well
as missile defense programs. Thinking in broader terms eventually paid off.
Generalizing turned out to be a good thing. Problem-solving for one “space”
customer led to contractual work of substance and high quality for another
“space” customer. It was a success story that happened but did not happen
overnight or without considerable effort.

I put this on my list of lessons learned.

46. RISK ANALYSIS AND MITIGATION

For this author, this statement is real and needs to be instantiated in action.
And what is the “it”? Let’s use the name “risk assessment and mitigation”
(RAM). And let’s remember to do the last part with as much focus and energy
as the frst part, namely, mitigation.

RAM can be viewed from several perspectives. A top-level view is to sug-
gest that it can have four elements:

a. Performance risk,
b. Cost risk,
c. Schedule risk, and
d. Societal risk.

These are often quantifed, representing the likelihoods of (1) meeting perfor-
mance requirements, (2) staying within budget, (3) satisfying time milestones,
and (4) having little to no negative effect on society.

100 Systems Engineering

As with many felds, there are many “gurus” in this one. Two of them are:

a. Yacov Haimes [1]
b. James Reason [2]

The latter researcher is credited with having constructed the so-
called Swiss cheese model, which deals with layers of defense that
are set up as the essential part of risk mitigation. These layers can
be thought of as independent ways to block a bad intrusion into
the system in question. The “Swiss cheese” model has many areas
of application, including systems engineering, cyber-protection,
healthcare, and warfare (to name just a few.) By way of illustrating
the latter area, imagine the old days of battlefeld or trench warfare.
The generals established these layers, each one a defense against
enemy penetration. If the penetration gets through the frst layer, it
goes on to the second, and so on. One can readily see that multiple
layers will reduce the risk of ultimate penetration.

Viewed from a probability perspective, let us assume that

P = the probability of layer failure (fails to stop the penetration), and
Q = the probability of layer success (stops the penetration). From this

simple assignment we see that

If the failures to stop the penetration are all the same, namely P, then the prob-
ability of failing at each of N stages is simply

P P P P´ ´ ¼ = ()P
N

If P, for example, is (0.1), then the overall failure to penetrate four successive
layers is (0.1)4 = 0.0001

We can change the “resolution” of this model such that P is 0.01 or any
arbitrary value, but the overall concept remains the same. It all depends upon
how thin you like your Swiss cheese sliced, if you will.

Take Your Pick of Serial and
Parallel Confgurations

Equipment 1 Equipment 2

Reliability 1 = R (1) Reliability 2 = R (2)

5 • Miscellany 101

Serial Reliability:

R O= verall Reliability = R 1 R 2() ()

Parallel Reliability: (simple redundancy)

Diagram:

R (1)

R (2)

Overall Reliability = 1 - not R (1) not R (2)

When reliability is exponential, R = e− u t; where u = failure rate and t = time.

References and Recommended Reading

1. Haimes, Y., “Risk Modeling, Assessment and Management”, John Wiley, 2009.
2. Reason, James, “Human Error Models and Management”, British Medical

Journal, 320(7237), 768–770.

47. CHANGE, OPTIONS
OPEN, AND ITERATION

There are several “change” concepts and contexts in systems engineering.
Each has to be considered and reckoned with in order to do the best possible
job on a real project or program.

One context is connected to the experience I had discussing a confgura-
tion change, after the fact. This is not an unusual context and is played over
many times on a typical project. In this case, we were discussing a failure on
the solar panel drive motor of the Nimbus satellite project. The drive motor
had failed, which soon meant that we lost power due to the poor orientation
of the solar panels. The drive motor had been tested, but possibly not enough.

102 Systems Engineering

The drive motor was not in a redundant confguration. The drive motor was
clearly a single point of failure risk. We were, in principle, trying to eliminate
all single point mission failure situations – big red fag with the solar panel
drive motor.

I can’t recall the details of that discussion, but we very likely did not feel
we were in a position to change the confguration with the solar panel drive
motor and therefore did not do so. In principle, we could have made such a
critical change, but again, we did not do so. So the question arises:

• When do you make a system design change, and when is it out of
bounds to consider a change?

Another much more well-known case is that of the “o-ring” problem. I’m not
in a position to re-hash all the arguments for this complex case, but an a priori
change was on the table and it did not occur. So the question is:

What made change possible, and what, in effect, made change impossible at
that time?

If we generalize a bit we come to the notion of building more redundancy or
design change into a confguration. This increases reliability but comes with a
price, often a severe one, in terms of space and weight. When is it time to con-
sider such a change having to do with various kinds of single points of failure?

Rechtin’s Options Open

Related to this issue is what Rechtin has suggested in his “keeping options
open” heuristic [1]. Here, Rechtin sets forth the following as a good practice
heuristic:

• Build in and maintain options as long as possible in the design and
implementation of complex systems; you will need them.

As usual, Rechtin has good words for the systems engineer.

Confguration Control and Management

Another place to go for an answer to the question posed in this section. The
systems engineer can rely on a formality known as the confguration control

5 • Miscellany 103

board (CCB) for potential changes. After due explanation and consideration,
the CCB will say either yea or nay to your request. Let’s not make it more
complicated than it needs to be, most of the time.

Iteration

Another related concept is that of “iteration” in systems engineering. In
its broadest term, we have a notion of “iteration” in systems engineering
that allows us to iterate until we fnd a satisfactory solution. This may also
apply to very concrete situations, such as specifc linear and non-linear
equations [2].

Yet another context for the notion of iteration was discovered by this
author in regard to a comment made by Mark Zuckerberg, head of Facebook.
He was discussing problem-solving within the company and took note of one
of their approaches. The key word was “iteration”, as I recall. “You just keep
iterating and eventually you wind up with an answer that works”. Back in my
school days, there was a set of words that we would use that meant pretty
much the same. They were “you just kept grinding away”. Apparently, there
are many ways to say pretty much the same or similar things. But “iteration”
still has a special place in the vocabulary of many, especially in the systems
engineering world.

Yet another reference to “iteration” is found in the life cycle process mod-
els in the Systems Engineering Body of Knowledge. This is directly a part of
the process models.

TBDs

Finally, we have the ubiquitous “TBD” (to be determined). This is used a lot
when one reaches a point at which there is no good answer. We therefore put
in a placeholder than temporizes. Let’s wait a while for this answer, which will
eventually reveal itself. Not a bad idea, based upon its history and use.

So the bottom line of the lesson learned in regard to this area goes some-
thing like this:

in systems engineering projects and programs, there seem to be many ways
to consider making constructive changes, to iterate so as to improve, but in
the real world this is diffcult to do once the confguration is well defned and
documented. And don’t forget the “TBDs” and the “iterations” when you’re
on the path, but not there yet.

104 Systems Engineering

References and Recommended Reading

1. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.
2. Kelley, C. T., “Iterative Methods for Linear and Nonlinear Equations”, Society

for Industrial and Applied Mathematics, 1995.

48. DOTSS

Developers, over the years, have created hundreds of systems of various
types, typically sponsored (i.e., paid for) by the federal government. This
is a huge market, and thousands of companies compete in it every year. The
systems that have already been developed and installed are plentiful and of
course are owned by the government. So one idea from this corner was to try
to capture some of these developer-off-the-shelf systems (DOTSS) for mul-
tiple use. The conjecture was, and is, to gain some leverage and dramatically
reduce the time and cost of creating “new” systems. It is the “reuse” of whole
systems, if you will.

The cost and time considerations under DOTSS for a “new” system may
be postulated, as an example, as some $100 million and fve years. This is
a “plain-vanilla” system that is amenable to a DOTSS approach. Using this
approach, we conjecture that we will be able to “reuse” the system at one-
fourth the cost ($40 million) and one-ffth the time (one year instead of fve
years). This results in a reduction to one-twentieth (a percentage of 200). Not
bad for saving some cash and thinking outside the box. Worth an experiment
or two, n’est-ce pas?

Over a period of about 24 months, this author and a representative of a
leading high-tech company held a series of meetings in order to explain the
nature of DOTSS. The fnal suggestion was to develop a study of DOTSS, to
include candidates in DOTSS activities that could be replicated and reused at
a quite low price. Some of the notions of the DOTSS briefng and paper were
presented here [1,2].

The intent here is to proceed with some lessons learned with respect to
the DOTSS notion. One of those lessons is that we may not have the incen-
tive to save money that we think we have. Indeed, this idea was expressed at
the Offce of Management and Budget (OMB) level, where the government
representation suggested that all program and project managers should spend
all the monies that they are allocated. Saving money at that level is not a good
approach for a variety of reasons.

5 • Miscellany 105

Since DOTSS is a case of software reuse, it makes sense to take another
look at the state of the art of this feld. The previous look was some years ago
[3] and needs to be updated.

References and Recommended Reading

1. Eisner, H., “Managing Complex Systems – Thinking Outside the Box”, John
Wiley, 2005.

2. Eisner, H., “The DOTSS Approach”, PICMET Report, July 1997.
3. Gromadzki, R., “Extent and Issues of Software Reuse”, PhD dissertation, The

George Washington University, May 2004.

49. OBVERSITY

Here are 20 approaches to management that carry with them some possible
lessons learned by considering the obverse:

1. Hire the smartest people, and then make sure not to listen to them as
they provide their best analysis and advice for you

2. Meetings take managers away from their real work, so go easy on
this commitment

3. People don’t like bad news, so never report any to your boss
4. Spend lots of money on R & D, but don’t pay any attention to their

results and the implications
5. Never invest in your “cash cows”; you can keep milking them

forever
6. No one in your organization knows as much as those you talk to that

are outside your organization
7. Give your people unreasonable deadlines so as to constantly push

their productivity
8. Control meetings by making sure that your ideas are the only ones

presented and discussed
9. Decline to be a member of your boss’s team since building your own

team is your highest priority
10. Look as if you’re listening to your teammate’s argument but actu-

ally be preparing your next verbal assault

106 Systems Engineering

11. Keep your boss honest by challenging just about everything he or
she says

12. Spend your whole budget on marketing; making the product is easy
13. After laboring over your strategic plan, ignore it for a year
14. Don’t worry about industry trends; your company is the trendsetter
15. Add new-start initiatives every year – the more, the merrier
16. Keep your desktop clear of all but a few papers – a cluttered desk

reveals a cluttered mind
17. Micromanage average or less than average performers to get them to

produce according to company standards
18. Make decisions quickly so as to maintain forward momentum and

respect
19. Never reengineer your business processes in house; farm it all out to

the pros

50. VAILLANT, TURNED INTO
LESSONS CONSIDERED

So as a fnal look at this issue I did an open-ended 50-year lessons learned
query. It turned out that the result was less a matter of my specifc systems
background than it was an experience with a gent by the name of George
Vaillant. Dr. Vaillant is well known for his “Harvard Study” during which he
investigated success factors in a group of Harvard graduates [1]. So I did my
own “Vaillant” study, but trying to glean success factors from a background in
systems engineering. Here are the results, trusting how the mind works in its
more mysterious ways.

So here’s my last page look at this author’s list of success factors (trans-
late to lessons learned and attributes thereof), 100% based upon intuition and
experience:

1. Grit
2. Intelligence
3. Listening
4. Focus
5. Integrity
6. Community involvement
7. Problem solver
8. Respect

5 • Miscellany 107

9. Curiosity
10. Sense of humor
11. Resilient
12. Growth-oriented

Grit

Otherwise known as perseverance and a surprisingly hot topic these days [2].
And if you’ve seen the two movies (John Wayne, Jeff Bridges), you have to
conclude that this attribute must be on your list of success factors. That’s even
if you don’t use an eyepatch.

Intelligence

In this case, let’s broaden the context to both the conventional IQ as well as
emotional intelligence. This term relates to how well individuals deal with
their emotions, including how well they recognize them. Indeed, it has been
claimed that there are multiple intelligences, including linguistic, social, and
inter-personal [3].

Listening

Who can deny that “listening” is a compelling attribute of the systems engi-
neer? There is little that captures the mind and heart than this state of being – an
engineer being truly interested in what a colleague has to say.

Focus

Goleman adds this to his amazing list of attributes that make it easier to
understand how mind and intelligence work together [4]. And, according to
Goleman, focus has three modes – orienting, selective attention, and open
awareness.

Integrity

This is high on all lists – lack of integrity disqualifes!

108 Systems Engineering

Community Involvement

Connecting to one’s community has now become a measure of success, and
correctly so.

Problem Solver

Involvement is not enough. The next tangible step is to actually solve one or
more problems and demonstrate the ability to do so.

Respect

Do you naturally garner the respect of others by your overall way of behaving
and treating others?

Curiosity

Do you impress others by your interest in a wide variety of subjects – what
are the key factors, and how do they work as well as interact? Do you ever
fnd yourself in a library these days, even though Google is right there at your
fngertips?

Sense of Humor

Deceivingly important in terms of positive reactions to those who display such
an attribute. Does not mean crossing the boundary of not taking seriously
enough.

Resilient

This is the ability to bounce back after a difficult negative experience.
One might consider it the “slow-die” attribute in the context of system
behavior.

5 • Miscellany 109

Growth-Oriented

Orientation toward moving forward and in a positive direction.

References and Recommended Reading

1. Vaillant, G., “Triumphs of Experience – The Men of the Harvard Grant Study”,
Harvard University Press, 2012.

2. Duckworth, A., “Grit”, Scribner, 2016.
3. Eisner, H., “‘Thinking’ – A Guide to Systems Engineering Problem Solving”,

CRC Press, 2019.
4. Goleman, D., “Focus – the Hidden Driver of Excellence”, Harper, 2013.

https://taylorandfrancis.com/

 Top Ten
Lessons 6

1. STOVEPIPES

Sitting on top of the author’s top ten list is the stovepipe issue. There appears
to be a strong tendency for systems engineering management to try to inte-
grate all stovepipes and thereby create an integrated system. In principle, we
would like such a system, but we must be very careful in this domain. We need
to recognize that many of the stovepipes have been developed with different
types of software as well as languages. In this important aspect, they may not
be integrable without an enormous effort with regard to both time and cost.

Based on this author’s experience, the lesson learned is to back up a few
steps and consider, in depth, the possible consequences of attempts at inte-
gration. This will require a deep look at the specifc costs and effectiveness
of such an integration activity. To reiterate – many stovepipe systems cannot
easily be integrated due to this structure and software. In many situations, the
cost-effective solution is to sit tight with a non-integrated system. This may be
disappointing to many, but it may be the best approach. It also signals that if
we want to integrate stovepipes, we need to take that into account before these
stovepipes are produced. This early planning approach will likely lead to bet-
ter results due to compatible structures and software. Remember, if a system
is working, it’s not a good idea, most of the time, to try to “fx” it (if it ain’t
broke).

2. MODELING AND SIMULATION

When and if it’s possible to do so, building a model of a system is usually
important and pays handsome dividends. It provides for the ability to “test” the

111

112 Systems Engineering

system performance and to carry out tradeoff studies as a design activity. One
type of “model” is the system prototype, which has come into greater accep-
tance in the last several years [1]. By way of illustration, three other specifc
“models” are briefy cited below.

The Parameter Dependency Diagram (PDD) [2]. This diagram shows
dependencies between the key parameters of a system. It allows for a deeper
understanding of how these parameters inter-relate, and sets the stage for a
more penetrating quantitative analysis that will generally take more time and
cost more.

The SystemiTool Systemigram [3,4]. This diagramming procedure is
amply illustrated by Boardman and Sauser. As a diagram, it too shows rela-
tionships, but between features of systems and subsystems. The “gram” ver-
sion is supported by the “tool” version so that there is ready access to the
digital form of the tool.

Model-Based Systems Engineering (MBSE). Going back to basics, we
have a fundamental approach to systems engineering in MBSE. Its underlying
structure is a model, by defnition. This approach has become widely accepted
ever since its introduction many years ago [5].

3. ARCHITECTING

It’s many years down the road, and we still do not have an agreed-upon pro-
cedure for architecting a system (this author’s opinion). The need for such was
recognized back in the 1990s by the DoD. That led to DoDAF, based initially
upon the three-view concept, as follows:

a. An operational view
b. A systems view
c. A technical view

This author has presented an approach different from the above, which he
called the Eisner Architecting Method (EAM) [6]. For those of a mind to do
so, it can also be considered an Emergency Action Message. This approach
shifts from a “views” notion to a “cost-effectiveness” idea. It also explicitly
calls for a defnition and evaluation of alternatives, leading to a preferred archi-
tecture among the alternatives.

Another aspect of this issue is software architecting. Despite the existence
of several books on the matter [7,8], new work needs to be brought about with
respect to the precise structure of software architecture and the compatibility

6 • Top Ten Lessons 113

between a system and software architecture. There are quite signifcant divi-
dends that are likely to accrue from the correct research in this area.

One of the signifcant lessons learned here is that despite the various
versions of DoDAF, it remains defcient in its basic structure and concept.
Nonetheless we follow DoDAF mainly due to its history and DoD sponsor-
ship. This lesson also has an elemental suggestion that another approach is
called for.

4. AMID A WASH OF PAPER …

Another important lesson is that systems engineering needs to become more
like “a lean, mean fghting machine”. Too much paper is produced that makes
its practice, too often, burdensome and ineffcient. Rechtin [9] points out, in
his heuristics, that:

amid a wash of paper a small number of documents become critical pivots
around which every project’s management revolves.

One can argue that this is at least partially related to these notions:

a. More agile processes
b. More rapid processes

The former is suggested, for example, by Turner and Boehm [10], and the lat-
ter by Eisner, Marciniak, and Pragluski [11]. In particular, the procedure for
the just-named source has the name “RCASSE”, or Rapid Computer-Aided
System of Systems Engineering. Here we also have to point to the imperative:
simplify, simplify, simplify. We are interested in less paper and more rapid
production of the paper that’s produced.

5. INDUSTRY INITIATIVES AND
GOVERNMENT SUPPORT

We continue to learn the lesson that this feld, as with many others, needs to be
supported by research and people interactions. In this respect, one can single
out two areas that refect both, namely, that provided by INCOSE as well as

114 Systems Engineering

the SERC (Systems Engineering Research Center) at the Stevens Institute of
Technology. INCOSE is clearly paying attention to how to improve the over-
all feld and is very successful at bringing together industry, government, and
academia to develop priorities, share data, and solve problems that all appear
to have in common. Large companies (as, for example, Lockheed Martin,
General Dynamics, and Northrop Grumman) have internal programs that are
critical to the feld and also serve to keep the companies competitive in the SE
marketplace. At the same time, the government has chosen to continue to sup-
port the SERC, a very good decision on their part. Conferences and publica-
tions (as per INCOSE’s “Systems Engineering”) are just a couple of concrete
examples of how to support the overall feld on a continuing basis.

6. THE ELDERS IN SYSTEMS ENGINEERING

Much wisdom is contained in the writings of the “elders” in the feld of systems
engineering. As a body of knowledge, we can look to the INCOSE Fellows to
be a place to start. That brings one to the INCOSE website as well as “Google”
searches. A frst-order list of the recommended elders is provided below:

NAME AREAS OF SPECIALIZATION

Eberhardt Rechtin Systems Architecting and Management
Andrew Sage Systems Engineering
Sarah Sheard Complexity Analysis
Barry Boehm Software Engineering and Metrics
Yacov Haimes Risk Analysis and Mitigation

7. FUNCTIONAL DECOMPOSITION

This item fnds its way into the top ten since it is an essential part of the sug-
gested and new systems architecting process. The recommended architecture
procedure [5] is to decompose to the third level:

a. The frst level is the name of the system,
b. The second level constitutes the major system functions (often the

subsystems), and

6 • Top Ten Lessons 115

c. The third level decomposes to the sub-functions (often the
sub-subsystems).

Further decomposition is not necessary, nor is it desirable. It generally leads
to more non-productive activity. An exception is the system of systems. An
example of such is the National Aviation System.

8. TEAM BUILDING

This treatise emphasizes the importance of the systems engineering team in
terms of building a successful system. Some of the features of this approach are:

a. Maintain control over the selection of the team leader
b. Give the selected team leader suffcient responsibility and authority

to get the job done
c. In particular, give the team leader suffcient time and budget to get

the job done
d. Give special training to members of the team to understand how to

execute as a high-performance team

We continue to have many examples of the need for team building as well as
how they have been working over the years. To cite two, we see the Kelly team
at Lockheed Martin and the Kelley team that has been leading-edge innovative
with his company IDEO [12].

9. RISK ANALYSIS AND MITIGATION

We have learned that risk identifcation and mitigation is one of our most
important activities as systems engineers. In this respect, we distinctly go
beyond the analysis part to the mitigation part. Not enough time to make miti-
gation changes is not acceptable. Mitigating real system risk is the order of the
day. This should require the re-design of portions of the system. This, in turn,
is refected in spending more of our budget and expanding our schedule. The
urgency of this item is supported by the two catastrophic failures in Challenger
and Columbia. Those realities force us to be realistic as well as decisive with
our risk mitigation approach.

116 Systems Engineering

10. THE SYSTEMS APPROACH
AND SYSTEMS THINKING

The very essence of systems engineering is to adopt and confrm a “systems”
orientation and approach. We believe that this perspective leads us in the right
direction and ultimately results in better systems of all shapes and sizes.

The origins of systems thinking and the systems approach can be seen
in the work of Peter Senge [13] who called systems thinking the “Fifth
Discipline”. This seminal work has been widely accepted, with spinoffs that
relate specifcally to systems engineering.

References and Recommended Reading

1. Eisner, H., “Thinking – A Guide to Systems Engineering Problem Solving”,
CRC Press, 2019.

2. Eisner, H., “Computer-Aided Systems Engineering”, Prentice-Hall, 1988.
3. “Applying Systems Thinking via Systemigrams TM for Defning the Body

of Knowledge and Curriculum to Advance Systems Engineering (BKCASE)
Project”, Stevens Institute of Technology, Babbio Center, 5th Floor Castle Point
on the Hudson, Hoboken, New Jersey.

4. Boardman, J., and B. Sauser, “Systems Thinking”, CRC Press, 2008.
5. Wymore, A. W., “Model-Based Systems Engineering”, CRC Press, 1993.
6. Eisner, H., “Systems Architecting – Methods and Examples”, CRC Press, 2020.
7. Taylor, R., N. Medvidovic, and E. Dashofy, “Software Architecture”, John Wiley,

2010.
8. Shaw, Mary, and D. Garlan, “Software Architecture – Perspectives on an

Emerging Discipline”, Pearson, 1996.
9. Rechtin, E., “Systems Architecting”, Prentice-Hall, 1991.

10. Boehm, B., and R. Turner, “Balancing Agility and Discipline”, Addison-Wesley,
2004.

11. Eisner, H., “Essentials of Project and Systems Engineering Management”, Third
Edition, John Wiley, p. 392.

12. Kelley, T., “The Ten Faces of Innovation”, Currency Books, 2006.
13. Senge, Peter, “The Fifth Discipline – The Art and Practice of the Learning

Organization”, Doubleday, 1990.

C

Index

A

Acquisition, 13–15
Affordability, 64
Air Defense Systems, 9
All at once, 12
Alternative approach, 51–52
Alternatives, 3–4
Amid a wash of paper, 113
Analysis of alternatives (AoA), 3–5
Architecting, 50, 112–113

B

Balanced scorecard, 30
Balanced system solution, 41
Basic law

of physics, 2
Bit at a time, 12–13
Blanchard, B., 70
Boehm, B., 70
Brooks, Jr., F., 70

Change, 101–102
Climatic Impact Assessment Program

(CIAP), 7
COCOMO, 23, 26
Communication systems, 8, 36
Community involvement, 108
Complexity, 39–40
Confguration control and management,

102–103
Contract, 16–17
Cost-effectiveness, 7–8
Cost estimating, 97–98
Curiosity, 108
Customer, 83–85

D

Design to cost, 64
Detection

and false alarm probabilities,
35–36

Developer-off-the-shelf systems
(DOTSS), 104–105

E

Eisner’s Architecting Method (EAM),
56–58

Emergent properties, 64

F

Fabrycky, W., 70
Focus, 107
Forsberg, K., 70
Functional decomposition, 45,

114–115
Fundamentals, 1–2

G

Generalize, 98–99
General systems theory, 63
Goode, H., 87
Grit, 107
Growth, 13
Growth-oriented, 109

H

Haimes, Y., 70
Hall, A. D., 69, 86–87
Hamelin, R. D., 70
Heuristic, 2, 93–94

117

118 Index

High-tech manager, 81–82
specific steps, 82

Hybrid thinking, 60

I

IBM, 96
Improve, 25
Inclusive communicator, 72
INCOSE, 34
Industry/government interaction, 33
Industry initiatives, 113–114
Integrate, 10
Integration, 11, 85
Integrity, 107
Intelligence, 107
Iteration, 103

K

K.I.S.S. (keep it simple st. . id), 39

L

Lateral thinking, 59–60
Leadership, 68, 71
Listening, 107

M

Machol, R., 87–88
Man vs. machine, 88–89
Mark Zuckerberg, 53–54
Measure, 21
Measures of effectiveness (MOEs),

8–9
Meetings, 76–78
Mistakes, 95–96
Modeling and simulation (M & S), 5–7,

111–112
Monthly measurements, 29–30
Myers–Briggs, 79–80

N

National Aviation System (NAS)
model, 64

Negotiate, 27–28
New boss, 73–74
New ideas, 63

O

Obversity, 105–106

P

Peter Drucker, 62
Plato, 52
Positive doer, 72
Practical visionary, 72
Principled integrator, 72
Problem solver, 108
Products for views, 51
Project management, 68
Promise, 24
Prototyping, 5
Proust, 52

R

Ramo, Simon, 69
Rechtin, E., 69, 93–94
Reductionist, 47–49
Redundancy, 91–92
Reliability, 100–101
Renewing facilitator, 72
Resilience, 37–38
Resilient, 108
Respect, 108
Risk, 35

analysis, 99–101
mitigation, 99–101

Roedler, G., 70

S

Sage, A., 69–70
Second law of thermodynamics, 11
Sense of humor, 108
Sheard, S., 71
Shortell, T., 70
Significant parameters, 22–23
Simplify, 39
Six thinking hats, 60–61
Software measurement, 22
Special point-of-view thinking, 61–62
Stakeholders, 44
Stovepipes, 10–11
Strategic Defense Initiative (SDI), 6–7
System architecting, 64

Index 119

Systems approach, 30–31, 116
Systems engineering

elders, 114
highly productive team, 67
meeting, 78
practices, 25
Research Center (SERC), 26–27
and software engineering, 64

Systems of systems
rapid computer-aided, 63

Systems thinking, 31–32, 116

T

TBDs, 103
Team building, 115
Team busters, 74–76
Team leader, 67–68
Thinking, 59–62

Tools, 54–55
Top ten lessons, 111
Tradeoffs, 34–35
Transportation systems, 8, 36

U

Understanding the enterprise, 29
Universities, 33–34

V

Vaillant, G., 106
Visualization, 59

W

Walden, D., 70
Weighting factors, 9

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	About the Author
	Other Books by the Author
	Chapter 1 Technical
	1. When and Where Possible, Go Back to Fundamentals (*)
	Case One
	Case Two
	Case Three

	2. Seriously Explore Alternatives, Even If Time Is Short
	References and Recommended Reading

	3. Embrace Prototyping as Well as Modeling and Simulation (M & S)
	References and Recommended Reading

	4. Cost-Effectiveness Is Still the Preferred Approach
	Typical MOEs for Communication Systems
	Selected MOEs for Transportation Systems
	Limited MOEs for Air Defense Systems
	Weighting Factors
	References and Recommended Reading

	5. Do Not Attempt to Integrate All Stovepipes
	Reference and Recommended Reading

	6. A Bit at a Time or All at Once
	References and Recommended Reading

	7. Growth by Acquisition
	8. The Contract
	9. Less Paper Please
	References and Recommended Reading

	Chapter 2 Management
	10. Definitely Measure, but Do Not Over-Measure
	Software Measurement
	Overall Project Measurement
	Significant Parameters
	COCOMO I and COCOMO II
	References and Recommended Reading

	11. Under Promise and Over Deliver
	Reference and Recommended Reading

	12. Try to Improve Overall Systems Engineering Practices
	References and Recommended Reading

	13. Negotiate
	References and Recommended Reading

	14. Understanding the Enterprise
	Monthly Measurements
	The Balanced Scorecard
	References and Recommended Reading

	15. The Systems Approach
	Systems Thinking
	References and Recommended Reading

	16. Industry/Government Interaction
	Universities
	INCOSE Certification

	17. Tradeoffs
	Risk
	Detection and False Alarm Probabilities

	18. Resilience
	References and Recommended Reading

	Chapter 3 Idea Based
	19. They Were Right: KISS, Simplify, and Reduce Complexity
	References and Recommended Reading

	20. Seek a Balanced System Solution; Do Not Try to Optimize or Achieve Perfection (*)
	Other References to Balance
	Stakeholders
	References and Recommended Reading

	21. Understand the Power, Importance, and Challenge of Functional Decomposition
	References and Recommended Reading

	22. Break the Problem into Pieces Using the Reductionist Approach Whenever Possible, and Then Apply Lateral Thinking
	References and Recommended Reading

	23. Develop and Try a New Way of Architecting
	The DoD Procedure for Developing Architecture
	Products for Views
	An Alternative Approach
	References and Recommended Reading

	24. Plato and Proust
	Reference and Recommended Reading

	25. Try to Master New Tools and Use Them as Needed
	References and Recommended Reading

	26. Real EAM
	References and Recommended Reading

	27. Ways of Thinking
	Visualization
	Lateral Thinking
	Hybrid Thinking
	Six Thinking Hats
	Special Point-of-View Thinking [3]
	References and Recommended Reading

	28. New Ideas to Be Explored
	General Systems Theory
	Rapid Computer-Aided Systems of Systems
	New Method of Systems Architecting
	National Aviation System (NAS) Model
	Systems Engineering and Software Engineering
	Emergent Properties of Systems
	Affordability

	Design to Cost
	References and Recommended Reading

	Chapter 4 People Oriented
	29. Building a Highly Productive Systems Engineering Team
	The Team Leader
	Project Management and Leadership
	References and Recommended Reading

	30. Listen to Your Elders
	References and Recommended Reading

	31. Leadership
	Practical Visionary
	Inclusive Communicator
	Positive Doer
	Renewing Facilitator
	Principled Integrator
	Reference and Recommended Reading

	32. New Boss
	Reference and Recommended Reading

	33. Team Busters
	34. Meetings
	A Systems Engineering Meeting
	References and Recommended Reading

	35. Myers–Briggs
	Reference and Recommended Reading

	36. Becoming a Hi-Tech Manager
	Skills Required
	Specific Steps
	Reference and Recommended Reading

	37. Dealing with Your Customer
	Going to Lunch with Your Customer
	Issuance of a New Task Order
	Quick Response Capability
	A Truthful Interchange
	The Re-Competition

	38. Integration
	Reference and Recommended Reading

	39. Hall, Goode, and Machol
	A. D. Hall
	Goode and Machol
	Machol’ s View
	References and Recommended Reading

	40. Man vs. Machine

	Chapter 5 Miscellany
	41. Redundancy is Important and May Be Critical in Certain Systems
	Reference and Recommended Reading

	42. Rechtin’s Heuristics Are Brilliant and Need to Be Studied and Followed
	References and Recommended Reading

	43. Mistakes
	A Footnote to the IBM – Microsoft Story
	References and Recommended Reading

	44. Cost Estimating
	References and Recommended Reading

	45. Generalize
	46. Risk Analysis and Mitigation
	Take Your Pick of Serial and Parallel Configurations
	References and Recommended Reading

	47. Change, Options Open, and Iteration
	Rechtin’s Options Open
	Configuration Control and Management
	Iteration
	TBDs
	References and Recommended Reading

	48. DOTSS
	References and Recommended Reading

	49. Obversity
	50. Vaillant, Turned into Lessons Considered
	Grit
	Intelligence
	Listening
	Focus
	Integrity
	Community Involvement
	Problem Solver
	Respect
	Curiosity
	Sense of Humor
	Resilient
	Growth-Oriented
	References and Recommended Reading

	Chapter 6 Top Ten Lessons
	1. Stovepipes
	2. Modeling and Simulation
	3. Architecting
	4. Amid a Wash of Paper …
	5. Industry Initiatives and Government Support
	6. The Elders in Systems Engineering
	7. Functional Decomposition
	8. Team Building
	9. Risk Analysis and Mitigation
	10. The Systems Approach and Systems Thinking
	References and Recommended Reading

	Index

