

The Art of
Multiprocessor

Programming

The Art of
Multiprocessor

Programming
Second Edition

Maurice Herlihy
Nir Shavit

Victor Luchangco
Michael Spear

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-415950-1

For information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher
Acquisitions Editor: Stephen R. Merken
Editorial Project Manager: Beth LoGiudice
Production Project Manager: Beula Christopher
Designer: Renee Duenow

Typeset by VTeX

For my parents, David and Patricia Herlihy, and for Liuba, David,
and Anna.

– M.H.

For Noun and Aliza, Shafi, Yonadav, and Lior, and for Luisa.
– N.S.

For my family, especially my parents, Guilly and Maloy Luchangco,
and for God, who makes all things possible.

– V.L.

For Emily, Theodore, Bernadette, Adelaide, Teresa, Veronica, Phoebe,
Leo, and Rosemary.

– M.S.

Contents

Preface . xv
Acknowledgments . xix
Suggested ways to teach the art of multiprocessor programming xxi

CHAPTER 1 Introduction . 1
1.1 Shared objects and synchronization . 3
1.2 A fable . 6

1.2.1 Properties of a mutual exclusion protocol 8
1.2.2 The moral . 9

1.3 The producer–consumer problem . 9
1.4 The readers–writers problem . 11
1.5 The harsh realities of parallelization . 12
1.6 Parallel programming . 14
1.7 Chapter notes . 15
1.8 Exercises . 15

PART 1 Principles
CHAPTER 2 Mutual exclusion . 21

2.1 Time and events . 21
2.2 Critical sections . 22
2.3 Two-thread solutions . 25

2.3.1 The LockOne class . 25
2.3.2 The LockTwo class . 26
2.3.3 The Peterson lock . 27

2.4 Notes on deadlock . 29
2.5 The filter lock . 30
2.6 Fairness . 33
2.7 Lamport’s Bakery algorithm . 34
2.8 Bounded timestamps . 35
2.9 Lower bounds on the number of locations 39

2.10 Chapter notes . 41
2.11 Exercises . 42

CHAPTER 3 Concurrent objects . 49
3.1 Concurrency and correctness . 49
3.2 Sequential objects . 52
3.3 Sequential consistency . 53

3.3.1 Sequential consistency versus real-time order 55
3.3.2 Sequential consistency is nonblocking 56

vii

viii Contents

3.3.3 Compositionality . 57
3.4 Linearizability . 58

3.4.1 Linearization points . 58
3.4.2 Linearizability versus sequential consistency 59

3.5 Quiescent consistency . 59
3.5.1 Properties of quiescent consistency 60

3.6 Formal definitions . 60
3.6.1 Histories . 60
3.6.2 Linearizability . 61
3.6.3 Linearizability is compositional 63
3.6.4 Linearizability is nonblocking 63

3.7 Memory consistency models . 64
3.8 Progress conditions . 64

3.8.1 Wait-freedom . 65
3.8.2 Lock-freedom . 65
3.8.3 Obstruction-freedom . 66
3.8.4 Blocking progress conditions 67
3.8.5 Characterizing progress conditions 67

3.9 Remarks . 68
3.10 Chapter notes . 69
3.11 Exercises . 70

CHAPTER 4 Foundations of shared memory 75
4.1 The space of registers . 76
4.2 Register constructions . 81

4.2.1 Safe MRSW registers . 82
4.2.2 A regular Boolean MRSW register 83
4.2.3 A regular M-valued MRSW register 84
4.2.4 An atomic SRSW register . 85
4.2.5 An atomic MRSW register . 87
4.2.6 An atomic MRMW register . 90

4.3 Atomic snapshots . 92
4.3.1 An obstruction-free snapshot . 92
4.3.2 A wait-free snapshot . 93
4.3.3 Correctness arguments . 97

4.4 Chapter notes . 98
4.5 Exercises . 99

CHAPTER 5 The relative power of primitive synchronization
operations . 103

5.1 Consensus numbers . 104
5.1.1 States and valence . 105

5.2 Atomic registers . 106
5.3 Consensus protocols . 109
5.4 FIFO queues . 110

Contents ix

5.5 Multiple assignment objects . 113
5.6 Read–modify–write operations . 116
5.7 Common2 RMW operations . 117
5.8 The compareAndSet operation . 119
5.9 Chapter notes . 120

5.10 Exercises . 121

CHAPTER 6 Universality of consensus . 129
6.1 Introduction . 129
6.2 Universality . 130
6.3 A lock-free universal construction . 130
6.4 A wait-free universal construction . 134
6.5 Chapter notes . 140
6.6 Exercises . 141

PART 2 Practice
CHAPTER 7 Spin locks and contention . 147

7.1 Welcome to the real world . 147
7.2 Volatile fields and atomic objects . 150
7.3 Test-and-set locks . 150
7.4 Exponential back-off . 154
7.5 Queue locks . 156

7.5.1 Array-based locks . 156
7.5.2 The CLH queue lock . 159
7.5.3 The MCS queue lock . 161

7.6 A queue lock with timeouts . 163
7.7 Hierarchical locks . 166

7.7.1 A hierarchical back-off lock . 167
7.7.2 Cohort locks . 167
7.7.3 A cohort lock implementation 170

7.8 A composite lock . 171
7.9 A fast path for threads running alone 178

7.10 One lock to rule them all . 180
7.11 Chapter notes . 180
7.12 Exercises . 181

CHAPTER 8 Monitors and blocking synchronization 183
8.1 Introduction . 183
8.2 Monitor locks and conditions . 183

8.2.1 Conditions . 185
8.2.2 The lost-wakeup problem . 187

8.3 Readers–writers locks . 189
8.3.1 Simple readers–writers lock . 190
8.3.2 Fair readers–writers lock . 192

x Contents

8.4 Our own reentrant lock . 194
8.5 Semaphores . 194
8.6 Chapter notes . 196
8.7 Exercises . 197

CHAPTER 9 Linked lists: The role of locking 201
9.1 Introduction . 201
9.2 List-based sets . 202
9.3 Concurrent reasoning . 204
9.4 Coarse-grained synchronization . 206
9.5 Fine-grained synchronization . 207
9.6 Optimistic synchronization . 211
9.7 Lazy synchronization . 215
9.8 Nonblocking synchronization . 220
9.9 Discussion . 225

9.10 Chapter notes . 226
9.11 Exercises . 226

CHAPTER 10 Queues, memory management, and the ABA
problem . 229

10.1 Introduction . 229
10.2 Queues . 230
10.3 A bounded partial queue . 230
10.4 An unbounded total queue . 235
10.5 A lock-free unbounded queue . 236
10.6 Memory reclamation and the ABA problem 240

10.6.1 A naïve synchronous queue . 244
10.7 Dual data structures . 244
10.8 Chapter notes . 248
10.9 Exercises . 248

CHAPTER 11 Stacks and elimination . 251
11.1 Introduction . 251
11.2 An unbounded lock-free stack . 251
11.3 Elimination . 254
11.4 The elimination back-off stack . 255

11.4.1 A lock-free exchanger . 255
11.4.2 The elimination array . 257

11.5 Chapter notes . 260
11.6 Exercises . 261

CHAPTER 12 Counting, sorting, and distributed coordination . . . 265
12.1 Introduction . 265
12.2 Shared counting . 265
12.3 Software combining . 266

12.3.1 Overview . 267

Contents xi

12.3.2 An extended example . 274
12.3.3 Performance and robustness . 275

12.4 Quiescently consistent pools and counters 276
12.5 Counting networks . 276

12.5.1 Networks that count . 276
12.5.2 The bitonic counting network 279
12.5.3 Performance and pipelining . 287

12.6 Diffracting trees . 288
12.7 Parallel sorting . 292
12.8 Sorting networks . 293

12.8.1 Designing a sorting network . 294
12.9 Sample sorting . 296

12.10 Distributed coordination . 298
12.11 Chapter notes . 299
12.12 Exercises . 300

CHAPTER 13 Concurrent hashing and natural parallelism 305
13.1 Introduction . 305
13.2 Closed-address hash sets . 306

13.2.1 A coarse-grained hash set . 308
13.2.2 A striped hash set . 310
13.2.3 A refinable hash set . 311

13.3 A lock-free hash set . 315
13.3.1 Recursive split-ordering . 315
13.3.2 The BucketList class . 318
13.3.3 The LockFreeHashSet<T> class 319

13.4 An open-address hash set . 323
13.4.1 Cuckoo hashing . 323
13.4.2 Concurrent cuckoo hashing . 324
13.4.3 Striped concurrent cuckoo hashing 329
13.4.4 A refinable concurrent cuckoo hash set 331

13.5 Chapter notes . 332
13.6 Exercises . 334

CHAPTER 14 Skiplists and balanced search 335
14.1 Introduction . 335
14.2 Sequential skiplists . 335
14.3 A lock-based concurrent skiplist . 337

14.3.1 A bird’s-eye view . 337
14.3.2 The algorithm . 339

14.4 A lock-free concurrent skiplist . 345
14.4.1 A bird’s-eye view . 345
14.4.2 The algorithm in detail . 348

14.5 Concurrent skiplists . 355
14.6 Chapter notes . 356

xii Contents

14.7 Exercises . 356

CHAPTER 15 Priority queues . 359
15.1 Introduction . 359

15.1.1 Concurrent priority queues . 359
15.2 An array-based bounded priority queue 360
15.3 A tree-based bounded priority queue 361
15.4 An unbounded heap-based priority queue 363

15.4.1 A sequential heap . 363
15.4.2 A concurrent heap . 365

15.5 A skiplist-based unbounded priority queue 371
15.6 Chapter notes . 374
15.7 Exercises . 375

CHAPTER 16 Scheduling and work distribution 377
16.1 Introduction . 377
16.2 Analyzing parallelism . 384
16.3 Realistic multiprocessor scheduling . 387
16.4 Work distribution . 389

16.4.1 Work stealing . 389
16.4.2 Yielding and multiprogramming 390

16.5 Work-stealing deques . 390
16.5.1 A bounded work-stealing deque 391
16.5.2 An unbounded work-stealing deque 395
16.5.3 Work dealing . 397

16.6 Chapter notes . 400
16.7 Exercises . 401

CHAPTER 17 Data parallelism . 405
17.1 MapReduce . 407

17.1.1 The MapReduce framework . 408
17.1.2 A MapReduce-based WordCount application 410
17.1.3 A MapReduce-based KMeans application 411
17.1.4 The MapReduce implementation 411

17.2 Stream computing . 414
17.2.1 A stream-based WordCount application 416
17.2.2 A stream-based KMeans application 417
17.2.3 Making aggregate operations parallel 419

17.3 Chapter notes . 422
17.4 Exercises . 423

CHAPTER 18 Barriers . 431
18.1 Introduction . 431
18.2 Barrier implementations . 432
18.3 Sense reversing barrier . 433
18.4 Combining tree barrier . 434

Contents xiii

18.5 Static tree barrier . 436
18.6 Termination detection barriers . 438
18.7 Chapter notes . 442
18.8 Exercises . 443

CHAPTER 19 Optimism and manual memory management 451
19.1 Transitioning from Java to C++ . 451
19.2 Optimism and explicit reclamation . 451
19.3 Protecting pending operations . 454
19.4 An object for managing memory . 455
19.5 Traversing a list . 456
19.6 Hazard pointers . 458
19.7 Epoch-based reclamation . 462
19.8 Chapter notes . 465
19.9 Exercises . 466

CHAPTER 20 Transactional programming . 467
20.1 Challenges in concurrent programming 467

20.1.1 Problems with locking . 467
20.1.2 Problems with explicit speculation 468
20.1.3 Problems with nonblocking algorithms 470
20.1.4 Problems with compositionality 471
20.1.5 Summary . 472

20.2 Transactional programming . 472
20.2.1 An example of transactional programming 473

20.3 Hardware support for transactional programming 475
20.3.1 Hardware speculation . 475
20.3.2 Basic cache coherence . 475
20.3.3 Transactional cache coherence 476
20.3.4 Limitations of hardware support 477

20.4 Transactional lock elision . 478
20.4.1 Discussion . 480

20.5 Transactional memory . 481
20.5.1 Run-time scheduling . 482
20.5.2 Explicit self-abort . 483

20.6 Software transactions . 483
20.6.1 Transactions with ownership records 485
20.6.2 Transactions with value-based validation 490

20.7 Combining hardware and software transactions 492
20.8 Transactional data structure design . 493
20.9 Chapter notes . 494

20.10 Exercises . 494

APPENDIX A Software basics . 497
A.1 Introduction . 497
A.2 Java . 497

xiv Contents

A.2.1 Threads . 497
A.2.2 Monitors . 498
A.2.3 Yielding and sleeping . 501
A.2.4 Thread-local objects . 502
A.2.5 Randomization . 503

A.3 The Java memory model . 504
A.3.1 Locks and synchronized blocks 505
A.3.2 Volatile fields . 506
A.3.3 Final fields . 506

A.4 C++ . 508
A.4.1 Threads in C++ . 508
A.4.2 Locks in C++ . 509
A.4.3 Condition variables . 510
A.4.4 Atomic variables . 512
A.4.5 Thread-local storage . 513

A.5 C# . 514
A.5.1 Threads . 514
A.5.2 Monitors . 515
A.5.3 Thread-local objects . 517

A.6 Appendix notes . 518

APPENDIX B Hardware basics . 519
B.1 Introduction (and a puzzle) . 519
B.2 Processors and threads . 522
B.3 Interconnect . 522
B.4 Memory . 523
B.5 Caches . 523

B.5.1 Coherence . 524
B.5.2 Spinning . 526

B.6 Cache-conscious programming, or the puzzle solved 526
B.7 Multicore and multithreaded architectures 527

B.7.1 Relaxed memory consistency 528
B.8 Hardware synchronization instructions 529
B.9 Appendix notes . 530

B.10 Exercises . 531

Bibliography . 533
Index . 541

Preface

In the decade since the first edition, this book has become a staple of undergraduate
and graduate courses at universities around the world. It has also found a home on
the bookshelves of practitioners at companies large and small. The audience for the
book has, in turn, advanced the state of the art in multiprocessor programming. In
this second edition, we aim to continue this “virtuous cycle” by providing new and
updated content. Our goal is the same as with the first edition: to provide a textbook
for a senior-level undergraduate course and a reference for practitioners.

Organization
The first part of this book covers the principles of concurrent programming, show-
ing how to think as a concurrent programmer, developing fundamental skills such
as understanding when operations “happen,” considering all possible interleavings,
and identifying impediments to progress. Like many skills—driving a car, cooking
a meal, or appreciating caviar—thinking concurrently must be cultivated, and it can
be learned with moderate effort. Readers who want to start programming right away
may skip most of this section but should still read Chapters 2 and 3, which cover the
basic ideas necessary to understand the rest of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chapter
is essential for understanding why concurrent programming is a challenge. It covers
basic concepts such as fairness and deadlock. We then ask what it means for a con-
current program to be correct (Chapter 3). We consider several alternative conditions
and the circumstances under which one might want to use each one. We examine
the properties of shared memory essential to concurrent computation (Chapter 4),
and we look at the kinds of synchronization primitives needed to implement highly
concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the art
of multiprocessor programming spend time solving the problems presented in the
first part of this book. Although these problems are idealized, they distill the kind
of thinking necessary to write effective multiprocessor programs. Most importantly,
they distill the style of thinking necessary to avoid the common mistakes committed
by nearly all novice programmers when they first encounter concurrency.

The second part of the book describes the practice of concurrent programming.
For most of this part, we give examples in Java to avoid getting mired in low-level
details. However, we have expanded this edition to include discussion of some low-
level issues that are essential to understanding multiprocessor systems and how to
program them effectively. We use examples in C++ to illustrate these issues.

xv

xvi Preface

Each chapter has a secondary theme, illustrating either a particular programming
pattern or an algorithmic technique. Chapter 7 covers spin locks and contention,
and introduces the importance of the underlying architecture: spin lock performance
cannot be understood without understanding the multiprocessor memory hierarchy.
Chapter 8 covers monitor locks and waiting, a common synchronization idiom.

Several chapters cover concurrent data structures. Linked lists, which illustrate
different kinds of synchronization patterns, from coarse-grained locking to fine-
grained locking to lock-free structures, are covered in Chapter 9. This chapter should
be read before the remaining chapters, which depend on it. First-in-first-out (FIFO)
queues illustrate the “ABA problem” that arises when using atomic synchronization
primitives (Chapter 10); stacks illustrate an important synchronization pattern called
elimination (Chapter 11); hash maps show how an algorithm can exploit natural paral-
lelism (Chapter 13); skip lists illustrate efficient parallel search (Chapter 14); priority
queues illustrate how one can sometimes relax correctness guarantees to enhance
performance (Chapter 15).

We also consider other fundamental problems in concurrent computing. Chap-
ter 12 describes counting and sorting, two classic problems with nuanced concurrent
solutions. Breaking a program into parallelizable tasks and organizing their execu-
tion is an essential skill for concurrent programming, and we consider several ways
to do this, including work stealing and distribution (Chapter 16), data parallelism
(Chapter 17), barriers (Chapter 18), and transactional programming (Chapter 20).
Memory management is another fundamental challenge for concurrent programs, and
we discuss how to manually reclaim memory in Chapter 19. Because Java provides
automatic memory management, we use C++ to illustrate these issues.

Much of these latter chapters are new to this edition: Chapters 17 and 19 are com-
pletely new, and Chapters 16 and 20 have been substantially updated from the first
edition. In particular, Chapter 20 now covers hardware primitives for transactional
programming as well as software strategies, and the examples have been recast in
C++ to allow us to focus on lower-level mechanisms.

In theory, there is no difference between theory and practice. In practice, there is.

Although the origin of this quote is uncertain, it is relevant to the subject of this
book. For the greatest benefit, a reader must supplement learning the conceptual ma-
terial presented in this book with actual experience programming real multiprocessor
systems.

Prerequisites
The prerequisites for the second edition are largely the same as for the first. To un-
derstand the algorithms and their properties, readers will need some knowledge of
discrete mathematics, especially “big-O” notation and what it means for a problem
to be NP-complete, and data structures such as stacks, queues, lists, balanced trees,

Preface xvii

and hash tables. It is also helpful to be familiar with elementary computer architec-
ture and system constructs such as processors, threads, and caches. While a course
on operating systems or computer organization would suffice, neither is necessary;
dozens of universities have used this book successfully without either prerequisite.

A basic understanding of Java or C++ is needed to follow the examples. When we
require advanced language features or advanced understanding of hardware, we pro-
vide an explanation first. More details about programming language constructs and
multiprocessor hardware architectures are covered in Appendix A and Appendix B,
respectively.

Acknowledgments

We would like to thank our colleagues, students, and friends, who provided guid-
ance, comments, and suggestions during the writing of this book: Yehuda Afek,
Shai Ber, Hans Boehm, Martin Buchholz, Vladimir Budovsky, Christian Cachin,
Cliff Click, Yoav Cohen, Tom Cormen, Michael Coulombe, Dave Dice, Alexan-
dra Fedorova, Pascal Felber, Christof Fetzer, Rati Gelasvili, Mohsen Ghaffari, Brian
Goetz, Shafi Goldwasser, Rachid Guerraoui, Tim Harris, Will Hasenplaugh, Steve
Heller, Danny Hendler, Maor Hizkiev, Alex Kogan, Justin Kopinsky, Hank Korth,
Eric Koskinen, Christos Kozyrakis, Edya Ladan, Doug Lea, Oren Lederman, Will
Leiserson, Pierre Leone, Yossi Lev, Wei Lu, Virendra Marathe, Kevin Marth, Alex
Matveev, John Mellor-Crummey, Mark Moir, Adam Morrison, Dan Nussbaum,
Roberto Palmieri, Kiran Pamnany, Ben Pere, Radia Perlman, Torvald Riegel, Ron
Rivest, Vijay Saraswat, Bill Scherer, Warren Schudy, Michael Scott, Ori Shalev, Marc
Shapiro, Michael Sipser, Yotam Soen, Ralf Suckow, Seth Syberg, Joseph Tassarotti,
John Tristan, George Varghese, Alex Weiss, Kelly Zhang, and Zhenyuan Zhao. We
apologize for any names inadvertently omitted.

We also extend our appreciation to the many people who have sent us errata to im-
prove the book, including: Matthew Allen, Rajeev Alur, Karolos Antoniadis, Liran
Barsisa, Cristina Basescu, Igor Berman, Konstantin Boudnik, Bjoern Brandenburg,
Kyle Cackett, Mario Calha, Michael Champigny, Neill Clift, Eran Cohen, Daniel B.
Curtis, Gil Danziger, Venkat Dhinakaran, Wan Fokkink, David Fort, Robert P. God-
dard, Enes Goktas, Bart Golsteijn, K. Gopinath, Jason T. Greene, Dan Grossman, Tim
Halloran, Muhammad Amber Hassaan, Matt Hayes, Francis Hools, Ben Horowitz,
Barak Itkin, Paulo Janotti, Kyungho Jeon, Irena Karlinsky, Ahmed Khademzadeh,
Habib Khan, Omar Khan, Namhyung Kim, Guy Korland, Sergey Kotov, Jonathan
Lawrence, Adam MacBeth, Mike Maloney, Tim McIver, Sergejs Melderis, Bar-
tosz Milewski, Jose Pedro Oliveira, Dale Parson, Jonathan Perry, Amir Pnueli, Pat
Quillen, Sudarshan Raghunathan, Binoy Ravindran, Roei Raviv, Jean-Paul Rigault,
Michael Rueppel, Mohamed M. Saad, Assaf Schuster, Konrad Schwarz, Nathar Shah,
Huang-Ti Shih, Joseph P. Skudlarek, James Stout, Mark Summerfield, Deqing Sun,
Fuad Tabba, Binil Thomas, John A Trono, Menno Vermeulen, Thomas Weibel, Adam
Weinstock, Chong Xing, Jaeheon Yi, and Ruiwen Zuo.

We are also grateful to Beula Christopher, Beth LoGiudice, Steve Merken, and the
staff at Morgan Kaufmann for their patience and assistance throughout the process of
bringing this book to print.

xix

Suggested ways to teach the art of
multiprocessor programming

Here are three alternative tracks for teaching a multiprocessor programming course
using the material in the book.

The first track is a short course for practitioners, focusing on techniques that can
be applied directly to problems at hand.

The second track is a longer course for students who are not Computer Science
majors but who want to learn the basics of multiprocessor programming as well as
techniques likely to be useful in their own areas.

The third track is a semester-long course for Computer Science majors, either
upper-level undergraduates or graduate students.

Practitioner track
Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2, cover
Sections 2.1 to 2.4 and Section 2.7. Mention the implications of the impossibility
proofs in Section 2.9. In Chapter 3, skip Sections 3.5 and 3.6.

Cover Chapter 7, except for Sections 7.7, 7.8, and 7.9. Chapter 8, which deals with
monitors and reentrant locks, may be familiar to some practitioners. Skip Section 8.5
on semaphores.

Cover Chapters 9 and 10, except for Section 10.7, and cover Sections 11.1
and 11.2. Skip the material in Chapter 11 from Section 11.3 and onwards. Skip Chap-
ter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapter 16, except for Sec-
tion 16.5. Chapter 17 is optional. In Chapter 18, teach Sections 18.1 to 18.3. For
practitioners who focus on C++, Chapter 19 is essential and can be covered at any
point after Chapter 9 and Section 10.6. Chapter 20 is optional.

Non-CS Major track
Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2, cover
Sections 2.1 to 2.4, 2.6, and 2.7. Mention the implications of the impossibility proofs
in Section 2.9. In Chapter 3, skip Section 3.6.

Cover the material in Sections 4.1 and 4.2 and Chapter 5. Mention the universality
of consensus, but skip Chapter 6.

Cover Chapter 7, except for Sections 7.7, 7.8, and 7.9. Cover Chapter 8.

xxi

xxii Suggested ways to teach the art of multiprocessor programming

Cover Chapters 9 and 10, except for Section 10.7, and cover Chapter 11. Skip
Chapter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapters 16 and 17. In Chap-
ter 18, teach Sections 18.1 to 18.3. For practitioners who focus on C++, Chapter 19 is
essential and can be covered at any point after Chapter 9 and Section 10.6. Chapter 20
is optional. In Chapter 20, cover up to Section 20.3.

CS Major track
The slides on the companion website were developed for a semester-long course.

Cover Chapters 1 and 2 (Section 2.8 is optional) and Chapter 3 (Section 3.6 is
optional). Cover Chapters 4, 5, and 6. Before starting Chapter 7, it may be useful to
review basic multiprocessor architecture (Appendix B).

Cover Chapter 7 (Sections 7.7, 7.8, and 7.9 are optional). Cover Chapter 8 if your
students are unfamiliar with Java monitors and have not taken a course on operating
systems. Cover Chapters 9 and 10 (Section 10.7 is optional). Cover Chapters 11, 12
(Sections 12.7, 12.8, and 12.9 are optional), 13, and 14.

The remainder of the book should be covered as needed for degree requirements.
For Math or Computer Science majors, Chapter 15 should come next, followed by
Chapters 16 and 17. For Data Science majors, Chapter 15 can be skipped so that more
emphasis can be placed on Chapters 16, 17, and 18. For Computer Engineering ma-
jors, emphasis should be placed on Chapters 18, 19, and 20. In the end, the instructor
should of course take into account students’ interests and backgrounds.

1
CHAPTER

Introduction

At the dawn of the twenty-first century, the computer industry underwent yet an-
other revolution. The major chip manufacturers had increasingly been unable to make
processor chips both smaller and faster. As Moore’s law approached the end of its
50-year reign, manufacturers turned to “multicore” architectures, in which multiple
processors (cores) on a single chip communicate directly through shared hardware
caches. Multicore chips make computing more effective by exploiting parallelism:
harnessing multiple circuits to work on a single task.

The spread of multiprocessor architectures has had a pervasive effect on how we
develop software. During the twentieth century, advances in technology brought reg-
ular increases in clock speed, so software would effectively “speed up” by itself over
time. In this century, however, that “free ride” has come to an end. Today, advances in
technology bring regular increases in parallelism, but only minor increases in clock
speed. Exploiting that parallelism is one of the outstanding challenges of modern
computer science.

This book focuses on how to program multiprocessors that communicate via
a shared memory. Such systems are often called shared-memory multiprocessors
or, more recently, multicores. Programming challenges arise at all scales of multi-
processor systems—at a very small scale, processors within a single chip need to
coordinate access to a shared memory location, and on a large scale, processors in a
supercomputer need to coordinate the routing of data. Multiprocessor programming
is challenging because modern computer systems are inherently asynchronous: ac-
tivities can be halted or delayed without warning by interrupts, preemption, cache
misses, failures, and other events. These delays are inherently unpredictable, and can
vary enormously in scale: a cache miss might delay a processor for fewer than ten
instructions, a page fault for a few million instructions, and operating system pre-
emption for hundreds of millions of instructions.

We approach multiprocessor programming from two complementary directions:
principles and practice. In the principles part of this book, we focus on computability:
figuring out what can be computed in an asynchronous concurrent environment. We
use an idealized model of computation in which multiple concurrent threads manip-
ulate a set of shared objects. The sequence of the thread operations on the objects is
called the concurrent program or concurrent algorithm. This model is essentially the
model presented by threads in Java, C#, and C++.

Surprisingly, there are easy-to-specify shared objects that cannot be implemented
by any concurrent algorithm. It is therefore important to understand what not to try,

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00009-4
Copyright © 2021 Elsevier Inc. All rights reserved.

1

2 CHAPTER 1 Introduction

before proceeding to write multiprocessor programs. Many of the issues that will land
multiprocessor programmers in trouble are consequences of fundamental limitations
of the computational model, so we view the acquisition of a basic understanding of
concurrent shared-memory computability as a necessary step. The chapters dealing
with principles take the reader through a quick tour of asynchronous computabil-
ity, attempting to expose various computability issues, and how they are addressed
through the use of hardware and software mechanisms.

An important step in the understanding of computability is the specification and
verification of what a given program actually does. This is perhaps best described
as program correctness. The correctness of multiprocessor programs, by their very
nature, is more complex than that of their sequential counterparts, and requires a
different set of tools, even for the purpose of “informal reasoning” (which, of course,
is what most programmers actually do).

Sequential correctness is mostly concerned with safety properties. A safety prop-
erty states that some “bad thing” never happens. For example, a traffic light never
displays green in all directions, even if the power fails. Naturally, concurrent correct-
ness is also concerned with safety, but the problem is much, much harder, because
safety must be ensured despite the vast number of ways that the steps of concurrent
threads can be interleaved. Equally important, concurrent correctness encompasses
a variety of liveness properties that have no counterparts in the sequential world. A
liveness property states that a particular good thing will happen. For example, a red
traffic light will eventually turn green.

A final goal of the part of the book dealing with principles is to introduce a variety
of metrics and approaches for reasoning about concurrent programs, which will later
serve us when discussing the correctness of real-world objects and programs.

The second part of the book deals with the practice of multiprocessor program-
ming, and focuses on performance. Analyzing the performance of multiprocessor
algorithms is also different in flavor from analyzing the performance of sequential
programs. Sequential programming is based on a collection of well-established and
well-understood abstractions. When we write a sequential program, we can often ig-
nore that underneath it all, pages are being swapped from disk to memory, and smaller
units of memory are being moved in and out of a hierarchy of processor caches. This
complex memory hierarchy is essentially invisible, hiding behind a simple program-
ming abstraction.

In the multiprocessor context, this abstraction breaks down, at least from a perfor-
mance perspective. To achieve adequate performance, programmers must sometimes
“outwit” the underlying memory system, writing programs that would seem bizarre
to someone unfamiliar with multiprocessor architectures. Someday, perhaps, concur-
rent architectures will provide the same degree of efficient abstraction as sequential
architectures, but in the meantime, programmers should beware.

The practice part of the book presents a progressive collection of shared objects
and programming tools. Every object and tool is interesting in its own right, and we
use each one to expose the reader to higher-level issues: spin locks illustrate con-
tention, linked lists illustrate the role of locking in data structure design, and so on.

1.1 Shared objects and synchronization 3

Each of these issues has important consequences for program performance. We hope
that readers will understand the issue in a way that will later allow them to apply the
lessons learned to specific multiprocessor systems. We culminate with a discussion
of state-of-the-art technologies such as transactional memory.

For most of this book, we present code in the Java programming language, which
provides automatic memory management. However, memory management is an im-
portant aspect of programming, especially concurrent programming. So, in the last
two chapters, we switch to C++. In some cases, the code presented is simplified
by omitting nonessential details. Complete code for all the examples is available
on the book’s companion website at https:/ / textbooks.elsevier.com/web/product_
details.aspx?isbn=978124159501.

There are, of course, other languages which would have worked as well. In the
appendix, we explain how the concepts expressed here in Java or C++ can be ex-
pressed in some other popular languages or libraries. We also provide a primer on
multiprocessor hardware.

Throughout the book, we avoid presenting specific performance numbers for pro-
grams and algorithms, instead focusing on general trends. There is a good reason
why: multiprocessors vary greatly, and what works well on one machine may work
significantly less well on another. We focus on general trends to ensure that observa-
tions are not tied to specific platforms at specific times.

Each chapter has suggestions for further reading, along with exercises suitable for
Sunday morning entertainment.

1.1 Shared objects and synchronization
On the first day of your new job, your boss asks you to find all primes between 1 and
1010 (never mind why) using a parallel machine that supports ten concurrent threads.
This machine is rented by the minute, so the longer your program takes, the more it
costs. You want to make a good impression. What do you do?

As a first attempt, you might consider giving each thread an equal share of the
input domain. Each thread might check 109 numbers, as shown in Fig. 1.1. This

1 void primePrint {
2 int i = ThreadID.get(); // thread IDs are in {0..9}
3 long block = power (10, 9);
4 for (long j = (i * block) + 1; j <= (i + 1) * block; j++) {
5 if (isPrime(j))
6 print(j);
7 }
8 }

FIGURE 1.1

Balancing the work load by dividing up the input domain. Each thread in {0..9} gets an
equal subset of the range.

4 CHAPTER 1 Introduction

1 Counter counter = new Counter (1); // shared by all threads
2 void primePrint {
3 long i = 0;
4 long limit = power (10, 10);
5 while (i < limit) { // loop until all numbers taken
6 i = counter.getAndIncrement (); // take next untaken number
7 if (isPrime(i))
8 print(i);
9 }

10 }

FIGURE 1.2

Balancing the work load using a shared counter. Each thread is given a dynamically
determined number of numbers to test.

1 public class Counter {
2 private long value; // initialized by constructor
3 public Counter(long i) {
4 value = i;
5 }
6 public long getAndIncrement () { // increment , returning prior value
7 return value ++;
8 }
9 }

FIGURE 1.3

An implementation of the shared counter.

approach fails to distribute the work evenly for an elementary but important reason:
Equal ranges of inputs do not produce equal amounts of work. Primes do not occur
uniformly; there are more primes between 1 and 109 than between 9 · 109 and 1010.
To make matters worse, the computation time per prime is not the same in all ranges:
it usually takes longer to test whether a large number is prime than a small number.
In short, there is no reason to believe that the work will be divided equally among the
threads, and it is not clear even which threads will have the most work.

A more promising way to split the work among the threads is to assign each thread
one integer at a time (Fig. 1.2). When a thread is finished testing an integer, it asks
for another. To this end, we introduce a shared counter, an object that encapsulates
an integer value, and that provides a getAndIncrement() method, which increments
the counter’s value and returns the counter’s prior value.

Fig. 1.3 shows a naïve implementation of Counter in Java. This counter implemen-
tation works well when used by a single thread, but it fails when shared by multiple
threads. The problem is that the expression

return value ++;

1.1 Shared objects and synchronization 5

is in effect an abbreviation of the following, more complex code:

long temp = value;
value = temp + 1;
return temp;

In this code fragment, value is a field of the Counter object, and is shared among all
the threads. Each thread, however, has its own copy of temp, which is a local variable
to each thread.

Now imagine that two threads call the counter’s getAndIncrement() method at
about the same time, so that they both read 1 from value. In this case, each thread
would set its local temp variables to 1, set value to 2, and return 1. This behavior is
not what we intended: we expect concurrent calls to the counter’s getAndIncrement()
to return distinct values. It could be worse: after one thread reads 1 from value, but
before it sets value to 2, another thread could go through the increment loop several
times, reading 1 and writing 2, then reading 2 and writing 3. When the first thread fi-
nally completes its operation and sets value to 2, it will actually be setting the counter
back from 3 to 2.

The heart of the problem is that incrementing the counter’s value requires two
distinct operations on the shared variable: reading the value field into a temporary
variable and writing it back to the Counter object.

Something similar happens when you try to pass someone approaching you head-
on in a corridor. You may find yourself veering right and then left several times to
avoid the other person doing exactly the same thing. Sometimes you manage to avoid
bumping into them and sometimes you do not. In fact, as we will see in the later
chapters, such collisions are provably unavoidable.1 On an intuitive level, what is go-
ing on is that each of you is performing two distinct steps: looking at (“reading”) the
other’s current position, and moving (“writing”) to one side or the other. The prob-
lem is, when you read the other’s position, you have no way of knowing whether they
have decided to stay or move. In the same way that you and the annoying stranger
must decide on which side to pass each other, threads accessing a shared Counter
must decide who goes first and who goes second.

As we discuss in Chapter 5, modern multiprocessor hardware provides special
read–modify–write instructions that allow threads to read, modify, and write a value
to memory in one atomic (that is, indivisible) hardware step. For the Counter object,
we can use such hardware to increment the counter atomically.

We can also ensure atomic behavior by guaranteeing in software (using only read
and write instructions) that only one thread executes the read-and-write sequence at a
time. The problem of ensuring that only one thread can execute a particular block of
code at a time, called the mutual exclusion problem, is one of the classic coordination
problems in multiprocessor programming.

1 A preventive approach such as “always sidestep to the right” does not work because the approaching
person may be British.

6 CHAPTER 1 Introduction

As a practical matter, you are unlikely ever to find yourself having to design your
own mutual exclusion algorithm (you would probably call on a library). Nevertheless,
understanding how to implement mutual exclusion from the basics is an essential
condition for understanding concurrent computation in general. There is no more
effective way to learn how to reason about essential and ubiquitous issues such as
mutual exclusion, deadlock, bounded fairness, and blocking versus nonblocking syn-
chronization.

1.2 A fable
Instead of treating coordination problems (such as mutual exclusion) as programming
exercises, we prefer to frame concurrent coordination problems as interpersonal prob-
lems. In the next few sections, we present a sequence of fables, illustrating some of
the basic problems. Like most authors of fables, we retell stories mostly invented by
others (see the chapter notes at the end of this chapter).

Alice and Bob are neighbors, and they share a yard. Alice owns a cat and Bob
owns a dog. Both pets like to run around in the yard, but (naturally) they do not
get along. After some unfortunate experiences, Alice and Bob agree that they should
coordinate to make sure that both pets are never in the yard at the same time. Of
course, they rule out trivial solutions that do not allow either pet into an empty yard,
or that reserve the yard exclusively to one pet or the other.

How should they do it? Alice and Bob need to agree on mutually compatible pro-
cedures for deciding what to do. We call such an agreement a coordination protocol
(or just a protocol, for short).

The yard is large, so Alice cannot simply look out of the window to check whether
Bob’s dog is present. She could perhaps walk over to Bob’s house and knock on the
door, but that takes a long time, and what if it rains? Alice might lean out the window
and shout “Hey Bob! Can I let the cat out?” The problem is that Bob might not hear
her. He could be watching TV, visiting his girlfriend, or out shopping for dog food.
They could try to coordinate by cell phone, but the same difficulties arise if Bob is in
the shower, driving through a tunnel, or recharging his phone’s batteries.

Alice has a clever idea. She sets up one or more empty beer cans on Bob’s win-
dowsill (Fig. 1.4), ties a string around each one, and runs the string back to her house.
Bob does the same. When she wants to send a signal to Bob, she yanks the string to
knock over one of the cans. When Bob notices a can has been knocked over, he resets
the can.

Up-ending beer cans by remote control may seem like a creative idea, but it does
not solve this problem. The problem is that Alice can place only a limited number
of cans on Bob’s windowsill, and sooner or later, she is going to run out of cans to
knock over. Granted, Bob resets a can as soon as he notices it has been knocked over,
but what if he goes to Cancún for spring break? As long as Alice relies on Bob to
reset the beer cans, sooner or later, she might run out.

1.2 A fable 7

FIGURE 1.4

Communicating with cans.

So Alice and Bob try a different approach. Each one sets up a flagpole, easily
visible to the other. When Alice wants to release her cat, she does the following:

1. She raises her flag.
2. When Bob’s flag is lowered, she releases her cat.
3. When her cat comes back, she lowers her flag.

When Bob wants to release his dog, his behavior is a little more complicated:

1. He raises his flag.
2. While Alice’s flag is raised

a. Bob lowers his flag,
b. Bob waits until Alice’s flag is lowered,
c. Bob raises his flag.

3. As soon as his flag is raised and hers is down, he releases his dog.
4. When his dog comes back, he lowers his flag.

This protocol rewards further study as a solution to Alice and Bob’s problem. On
an intuitive level, it works because of the following flag principle: If Alice and Bob
each

1. raises his or her own flag, and then
2. looks at the other’s flag,

then at least one will see the other’s flag raised (clearly, the last one to look will
see the other’s flag raised) and will not let his or her pet enter the yard. However,
this observation does not prove that the pets will never be in the yard together. What
if, for example, Alice lets her cat in and out of the yard several times while Bob is
looking?

To prove that the pets will never be in the yard together, assume by way of contra-
diction that there is a way the pets could end up in the yard together. Consider the last

8 CHAPTER 1 Introduction

time Alice and Bob each raised their flag and looked at the other’s flag before sending
the pet into the yard. When Alice last looked, her flag was already fully raised. She
must have not seen Bob’s flag, or she would not have released the cat, so Bob must
have not completed raising his flag before Alice started looking. It follows that when
Bob looked for the last time, after raising his flag for the last time, it must have been
after Alice started looking, so he must have seen Alice’s flag raised and would not
have released his dog, a contradiction.

This kind of argument by contradiction shows up over and over again, and it is
worth spending some time understanding why this claim is true. It is important to
note that we never assumed that “raising my flag” or “looking at your flag” happens
instantaneously, nor did we make any assumptions about how long such activities
take. All we care about is when these activities start or end.

1.2.1 Properties of a mutual exclusion protocol
To show that the flag protocol is a correct solution to Alice and Bob’s problem, we
must understand what properties a solution requires, and then show that the protocol
meets them.

We already proved that the pets are excluded from being in the yard at the same
time, a property we call mutual exclusion.

Mutual exclusion is only one of several properties of interest. After all, a protocol
in which Alice and Bob never release a pet satisfies the mutual exclusion property,
but it is unlikely to satisfy their pets.

Here is another property of central importance: If only one pet wants to enter
the yard, then it eventually succeeds. In addition, if both pets want to enter the yard,
then eventually at least one of them succeeds. We consider this deadlock-freedom
property to be essential. Note that whereas mutual exclusion is a safety property,
deadlock-freedom is a liveness property.

We claim that Alice and Bob’s protocol is deadlock-free. Suppose both pets want
to use the yard. Alice and Bob both raise their flags. Bob eventually notices that
Alice’s flag is raised, and defers to her by lowering his flag, allowing Alice’s cat into
the yard.

Another property of interest is starvation-freedom (sometimes called lockout-
freedom): If a pet wants to enter the yard, will it eventually succeed? Here, Alice and
Bob’s protocol performs poorly. Whenever Alice and Bob are in conflict, Bob defers
to Alice, so it is possible that Alice’s cat can use the yard over and over again, while
Bob’s dog becomes increasingly uncomfortable. Later on, we consider protocols that
prevent starvation.

The last property of interest concerns waiting. Imagine that Alice raises her flag,
and is then suddenly stricken with appendicitis. She (and the cat) are taken to the
hospital, and after a successful operation, she spends the next week under observation
at the hospital. Although Bob is relieved that Alice is well, his dog cannot use the yard
for an entire week until Alice returns. The problem is that the protocol states that Bob
(and his dog) must wait for Alice to lower her flag. If Alice is delayed (even for a
good reason), then Bob is also delayed (for no apparently good reason).

1.3 The producer–consumer problem 9

The question of waiting is important as an example of fault-tolerance. Normally,
we expect Alice and Bob to respond to each other in a reasonable amount of time,
but what if they do not do so? The mutual exclusion problem, by its very essence,
requires waiting: No mutual exclusion protocol, no matter how clever, can avoid it.
Nevertheless, we will see that many other coordination problems can be solved with-
out waiting, sometimes in unexpected ways.

1.2.2 The moral
Having reviewed the strengths and weaknesses of Alice and Bob’s protocol, we now
turn our attention back to computer science.

First, we examine why shouting across the yard and placing cell phone calls does
not work. Two kinds of communication occur naturally in concurrent systems:

• Transient communication requires both parties to participate at the same time.
Shouting, gestures, or cell phone calls are examples of transient communication.

• Persistent communication allows the sender and receiver to participate at different
times. Posting letters, sending email, or leaving notes under rocks are all examples
of persistent communication.

Mutual exclusion requires persistent communication. The problem with shouting
across the yard or placing cell phone calls is that it may or may not be okay for Bob
to release his dog, but if Alice does not respond to messages, he will never know.

The can-and-string protocol might seem somewhat contrived, but it corresponds
accurately to a common communication protocol in concurrent systems: interrupts.
In modern operating systems, one common way for one thread to get the attention
of another is to send it an interrupt. More precisely, thread A interrupts thread B by
setting a bit at a location periodically checked by B. Sooner or later, B notices the
bit has been set and reacts. After reacting, B typically resets the bit (A cannot reset
the bit). Even though interrupts cannot solve the mutual exclusion problem, they can
still be very useful. For example, interrupt communication is the basis of the Java
language’s wait() and notifyAll() calls.

On a more positive note, the fable shows that mutual exclusion between two
threads can be solved (however imperfectly) using only two one-bit variables, each
of which can be written by one thread and read by the other.

1.3 The producer–consumer problem
Mutual exclusion is not the only problem worth investigating. Eventually, Alice and
Bob fall in love and marry. Eventually, they divorce. (What were they thinking?) The
judge gives Alice custody of the pets, and tells Bob to feed them. The pets now get
along with one another, but they side with Alice, and attack Bob whenever they see
him. As a result, Alice and Bob need to devise a protocol for Bob to deliver food to
the pets without Bob and the pets being in the yard together. Moreover, the protocol

10 CHAPTER 1 Introduction

should not waste anyone’s time: Alice does not want to release her pets into the yard
unless there is food there, and Bob does not want to enter the yard unless the pets have
consumed all the food. This problem is known as the producer–consumer problem.

Surprisingly perhaps, the can-and-string protocol we rejected for mutual exclu-
sion does exactly what we need for the producer–consumer problem. Bob places a
can standing up on Alice’s windowsill, ties one end of his string around the can, and
puts the other end of the string in his living room. He then puts food in the yard and
knocks the can down. When Alice wants to release the pets, she does the following:

1. She waits until the can is down.
2. She releases the pets.
3. When the pets return, Alice checks whether they finished the food. If so, she

resets the can.

Bob does the following:

1. He waits until the can is up.
2. He puts food in the yard.
3. He pulls the string and knocks the can down.

The state of the can thus reflects the state of the yard. If the can is down, it means
there is food and the pets can eat, and if the can is up, it means the food is gone and
Bob can put some more out. We check the following three properties:

• Mutual exclusion: Bob and the pets are never in the yard together.
• Starvation-freedom: If Bob is always willing to feed, and the pets are hungry, then

the pets will eventually eat.
• Producer–consumer: The pets will not enter the yard unless there is food, and Bob

will never provide more food if there is unconsumed food.

Both this producer–consumer protocol and the earlier mutual exclusion protocol
ensure that Alice and Bob are never in the yard at the same time. However, Alice
and Bob cannot use this producer–consumer protocol for mutual exclusion, and it
is important to understand why: The mutual exclusion problem requires deadlock-
freedom: Each person must be able to enter the yard if it is empty (and the other is not
trying to enter). By contrast, the producer–consumer protocol’s starvation-freedom
property assumes continuous cooperation from both parties.

Here is how we reason about this protocol:

• Mutual exclusion: Instead of a proof by contradiction, as we used earlier, we use
an inductive “state machine”-based proof. Think of the stringed can as a machine
that repeatedly transitions between two states, up and down. To show that mutual
exclusion always holds, we must check that it holds initially, and continues to hold
when transitioning from one state to the other.
Initially, the yard is empty, so mutual exclusion holds whether the can is up or
down. Next, we check that mutual exclusion, once established, continues to hold
when the state changes. Suppose the can is down. Bob is not in the yard, and from

1.4 The readers–writers problem 11

the protocol we can see that he does not enter the yard while the can is down,
so only the pets may be present. The can is not raised until the pets have left the
yard, so when the can is raised, the pets are not present. While the can is up, from
the protocol we can see that the pets do not enter the yard, so only Bob may be
present. The can is not knocked down until Bob has left the yard. These are all the
possible transitions, so our protocol satisfies mutual exclusion.

• Starvation-freedom: Suppose the protocol is not starvation-free: it happens that
the pets are hungry, there is no food, and Bob is trying to provide food, but he
does not succeed. If the can is up, then Bob will provide food and knock over the
can, allowing the pets to eat. If the can is down, then since the pets are hungry,
Alice will eventually raise the can, bringing us back to the previous case.

• Producer–consumer: The mutual exclusion property implies that the pets and Bob
will never be in the yard together. Bob will not enter the yard until Alice raises the
can, which she will do only when there is no more food. Similarly, the pets will
not enter the yard until Bob lowers the can, which he will do only after placing
the food.

Like the earlier mutual exclusion protocol, this protocol exhibits waiting: If Bob
deposits food in the yard and then goes on vacation without resetting the can, then
the pets may starve despite the presence of food.

Turning our attention back to computer science, the producer–consumer problem
appears in almost all parallel and distributed systems. It is the way in which threads
place data in communication buffers to be read or transmitted across a network inter-
connect or shared bus.

1.4 The readers–writers problem
Bob and Alice decide they love their pets so much they need to communicate simple
messages about them. Bob puts up a billboard in front of his house. The billboard
holds a sequence of large tiles, each tile holding a single letter. Bob, at his leisure,
posts a message on the bulletin board by lifting one tile at a time. Alice, whose eye-
sight is poor, reads the message at her leisure by looking at the billboard through a
telescope, one tile at a time.

This may sound like a workable system, but it is not. Imagine that Bob posts the
message

sell the cat

Alice, looking through her telescope, transcribes the message

sell the

At this point Bob takes down the tiles and writes out a new message

wash the dog

12 CHAPTER 1 Introduction

Alice, continuing to scan across the billboard, transcribes the message

sell the dog

You can imagine the rest.
This readers–writers problem has some straightforward solutions:

• Alice and Bob can use the mutual exclusion protocol to make sure that Alice reads
only complete sentences. She might still miss a sentence, however.

• They can use the can-and-string protocol, with Bob producing sentences and Alice
consuming them.

If this problem is so easy to solve, then why do we bring it up? Both the mutual
exclusion and producer–consumer protocols require waiting: If one participant is sub-
jected to an unexpected delay, then so is the other. In the context of shared-memory
multiprocessors, a solution to the readers–writers problem is a way of allowing a
thread to capture an instantaneous view of several memory locations. Capturing such
a view without waiting, that is, without preventing other threads from modifying these
locations while they are being read, is a powerful tool that can be used for backups,
debugging, and in many other situations. Surprisingly, the readers–writers problem
does have solutions that do not require waiting. We examine several such solutions
in later chapters.

1.5 The harsh realities of parallelization
Here is why multiprocessor programming is so much fun. In an ideal world, upgrad-
ing from a uniprocessor to an n-way multiprocessor should provide about an n-fold
increase in computational power. In practice, sadly, this (almost) never happens. The
primary reason is that most real-world computational problems cannot be effectively
parallelized without incurring the costs of interprocessor communication and coordi-
nation.

Consider five friends who decide to paint a five-room house. If all the rooms are
the same size, then it makes sense to assign each friend to paint one room. As long
as everyone paints at about the same rate, we would get a five-fold speedup over the
single-painter case. The task becomes more complicated if the rooms are of different
sizes. For example, if one room is twice the size of the others, then the five painters
will not achieve a five-fold speedup because the overall completion time is dominated
by the one room that takes the longest to paint.

This kind of analysis is very important for concurrent computation. The formula
we need is called Amdahl’s law. It captures the notion that the extent to which we can
speed up any complex job (not just painting) is limited by how much of the job must
be executed sequentially.

Define the speedup S of a job to be the ratio between the time it takes one pro-
cessor to complete the job (as measured by a wall clock) versus the time it takes

1.5 The harsh realities of parallelization 13

n concurrent processors to complete the same job. Amdahl’s law characterizes the
maximum speedup S that can be achieved by n processors collaborating on an appli-
cation, where p is the fraction of the job that can be executed in parallel. Assume,
for simplicity, that it takes (normalized) time 1 for a single processor to complete the
job. With n concurrent processors, the parallel part takes time p/n and the sequential
part takes time 1 − p. Overall, the parallelized computation takes time

1 − p + p

n
.

Amdahl’s law says that the maximum speedup, that is, the ratio between the sequen-
tial (single-processor) time and the parallel time, is

S = 1

1 − p + p

n

.

To illustrate the implications of Amdahl’s law, consider our room painting example.
Assume that each small room is one unit, and the single large room is two units.
Assigning one painter (processor) per room means that five of six units can be painted
in parallel, implying that p = 5/6, and 1 − p = 1/6. Amdahl’s law states that the
resulting speedup is

S = 1

1 − p + p

n

= 1

1/6 + 1/6
= 3.

Alarmingly, five painters working on five rooms where one room is twice the size of
the others yields only a three-fold speedup.

It can get worse. Imagine we have 10 rooms and 10 painters, where each painter
is assigned to a room, but one room (out of 10) is twice the size of the others. Here is
the resulting speedup:

S = 1

1/11 + 1/11
= 5.5.

With even a small imbalance, applying ten painters to a job yields only a five-fold
speedup, roughly half of what one might naïvely expect.

The solution, therefore, as with our earlier prime printing problem, seems to be
that as soon as one painter’s work on a room is done, he/she helps others to paint the
remaining room. The issue, of course, is that this shared painting of the room will
require coordination among painters. But can we afford to avoid it?

Here is what Amdahl’s law tells us about the utilization of multiprocessor ma-
chines. Some computational problems are “embarrassingly parallel”: they can easily
be divided into components that can be executed concurrently. Such problems some-
times arise in scientific computing or in graphics, but rarely in systems. In general,
however, for a given problem and a 10-processor machine, Amdahl’s law says that
even if we manage to parallelize 90% of the solution, but not the remaining 10%,

14 CHAPTER 1 Introduction

then we end up with a five-fold speedup, not a 10-fold speedup. In other words, the
remaining 10% that we did not parallelize cut our utilization of the machine in half.
It seems worthwhile to invest effort to derive as much parallelism from the remaining
10% as possible, even if it is difficult. Typically, it is hard because these additional
parallel parts involve substantial communication and coordination. A major focus of
this book is understanding the tools and techniques that allow programmers to effec-
tively program the parts of the code that require coordination and synchronization,
because the gains made on these parts may have a profound impact on performance.

Returning to the prime number printing program of Fig. 1.2, let us revisit the three
main lines of code:

i = counter.getAndIncrement (); // take next untaken number
if (isPrime(i))

print(i);

It would have been simpler to have threads perform these three lines atomically, that
is, in a single mutually exclusive block. Instead, only the call to getAndIncrement() is
atomic. This approach makes sense when we consider the implications of Amdahl’s
law: It is important to minimize the granularity of sequential code, in this case, the
code accessed using mutual exclusion. Moreover, it is important to implement mutual
exclusion in an effective way, since the communication and coordination around the
mutually exclusive shared counter can substantially affect the performance of our
program as a whole.

1.6 Parallel programming
For many of the applications we wish to parallelize, significant parts can easily be
determined as executable in parallel because they do not require any form of coordi-
nation or communication. However, at the time this book is being written, there is no
cookbook recipe for identifying these parts. This is where the application designer
must use his or her accumulated understanding of the algorithm being parallelized.
Luckily, in many cases it is obvious how to identify such parts. The more substantial
problem, the one which this book addresses, is how to deal with the remaining parts
of the program. As noted earlier, these are the parts that cannot be parallelized easily
because the program must access shared data and requires interprocess coordination
and communication in an essential way.

The goal of this text is to expose the reader to core ideas behind modern coordina-
tion paradigms and concurrent data structures. We present the reader with a unified,
comprehensive picture of the elements that are key to effective multiprocessor pro-
gramming, ranging from basic principles to best-practice engineering techniques.

Multiprocessor programming poses many challenges, ranging from grand intel-
lectual issues to subtle engineering tricks. We tackle these challenges using succes-
sive refinement, starting with an idealized model in which mathematical concerns are
paramount, and gradually moving on to more pragmatic models, where we increas-
ingly focus on basic engineering principles.

1.7 Chapter notes 15

For example, the first problem we consider is mutual exclusion, the oldest and still
one of the fundamental problems in the field. We begin with a mathematical perspec-
tive, analyzing the computability and correctness properties of various algorithms on
an idealized architecture. The algorithms themselves, while classical, are not practi-
cal for modern multicore architectures. Nevertheless, learning how to reason about
such idealized algorithms is an important step toward learning how to reason about
more realistic (and more complex) algorithms. It is particularly important to learn
how to reason about subtle liveness issues such as starvation and deadlock.

Once we understand how to reason about such algorithms in general, we turn
our attention to more realistic contexts. We explore a variety of algorithms and data
structures using different multiprocessor architectures with the goal of understanding
which are effective, and why.

1.7 Chapter notes
Most of the parable of Alice and Bob is adapted from Leslie Lamport’s invited lec-
ture at the 1984 ACM Symposium on Principles of Distributed Computing [104].
The readers–writers problem is a classical synchronization problem that has received
attention in numerous papers over the past 20 years. Amdahl’s law is due to Gene
Amdahl, a parallel processing pioneer [9].

1.8 Exercises
Exercise 1.1. The dining philosophers problem was invented by E.W. Dijkstra, a con-
currency pioneer, to clarify the notions of deadlock- and starvation-freedom. Imagine
five philosophers who spend their lives just thinking and feasting on rice. They sit
around a circular table, illustrated in Fig. 1.5. However, there are only five chopsticks

FIGURE 1.5

Traditional dining table arrangement according to Dijkstra.

16 CHAPTER 1 Introduction

(forks, in the original formulation). Each philosopher thinks. When he gets hungry,
he picks up the two chopsticks closest to him. If he can pick up both chopsticks, he
can eat for a while. After a philosopher finishes eating, he puts down the chopsticks
and again starts to think.

1. Write a program to simulate the behavior of the philosophers, where each philoso-
pher is a thread and the chopsticks are shared objects. Note that you must prevent
a situation where two philosophers hold the same chopstick at the same time.

2. Amend your program so that it never reaches a state where philosophers are dead-
locked, that is, it is never the case that every philosopher holds one chopstick and
is stuck waiting for another to get the second chopstick.

3. Amend your program so that no philosopher ever starves.
4. Write a program to provide a starvation-free solution for n philosophers for any

natural number n.

Exercise 1.2. For each of the following, state whether it is a safety or liveness prop-
erty. Identify the bad or good thing of interest.

1. Patrons are served in the order they arrive.
2. Anything that can go wrong, will go wrong.
3. No one wants to die.
4. Two things are certain: death and taxes.
5. As soon as one is born, one starts dying.
6. If an interrupt occurs, then a message is printed within one second.
7. If an interrupt occurs, then a message is printed.
8. I will finish what Darth Vader has started.
9. The cost of living never decreases.

10. You can always tell a Harvard man.

Exercise 1.3. In the producer–consumer fable, we assumed that Bob can see whether
the can on Alice’s windowsill is up or down. Design a producer–consumer protocol
using cans and strings that works even if Bob cannot see the state of Alice’s can (this
is how real-world interrupt bits work).

Exercise 1.4. You are one of P recently arrested prisoners. The warden, a deranged
computer scientist, makes the following announcement:

You may meet together today and plan a strategy, but after today you will be in
isolated cells and have no communication with one another.
I have set up a “switch room” which contains a light switch, which is either on or
off. The switch is not connected to anything.
Every now and then, I will select one prisoner at random to enter the “switch
room.” This prisoner may throw the switch (from on to off, or vice versa), or may
leave the switch unchanged. Nobody else will ever enter this room.
Each prisoner will visit the switch room arbitrarily often. More precisely, for any
N , eventually each of you will visit the switch room at least N times.

1.8 Exercises 17

At any time, any of you may declare: “We have all visited the switch room at least
once.” If the claim is correct, I will set you free. If the claim is incorrect, I will feed
all of you to the crocodiles. Choose wisely!

• Devise a winning strategy when you know that the initial state of the switch is off.
• Devise a winning strategy when you do not know whether the initial state of the

switch is on or off.

Hint: The prisoners need not all do the same thing.

Exercise 1.5. The same warden has a different idea. He orders the prisoners to stand
in line, and places red and blue hats on each of their heads. No prisoner knows the
color of his own hat, or the color of any hat behind him, but he can see the hats of
the prisoners in front. The warden starts at the back of the line and asks each prisoner
to guess the color of his own hat. The prisoner can answer only “red” or “blue.” If
he gives the wrong answer, he is fed to the crocodiles. If he answers correctly, he is
freed. Each prisoner can hear the answer of the prisoners behind him, but cannot tell
whether that prisoner was correct.

The prisoners are allowed to consult and agree on a strategy beforehand (while
the warden listens in) but after being lined up, they cannot communicate any other
way besides their answer of “red” or “blue.”

Devise a strategy that allows at least P − 1 of P prisoners to be freed.

Exercise 1.6. A financial risk management program is sped up by making 85% of
the application concurrent, while 15% remains sequential. However, it turns out that
during a concurrent execution the number of cache misses grows in a way dependent
on N , the number of cores used. The dependency is CacheMiss = N

N+10 . Profiling
the program reveals that 20% of the operations performed are memory accesses for
both the sequential and parallel parts. The cost of other operations, including cache
accesses, is 1 unit, and accessing memory has a cost of 3N + 11 units for the par-
allel part and a cost of 14 for the sequential part. Compute the optimal number of
processors on which the program should run.

Exercise 1.7. You are given a program that includes a method M that executes se-
quentially. Use Amdahl’s law to resolve the following questions.

• Suppose M accounts for 30% of the program’s execution time. What is the limit
for the overall speedup that can be achieved on an n-processor machine?

• Suppose M accounts for 40% of the program’s execution time. You hire a pro-
grammer to replace M with M ′, which has a k-fold speedup over M . What value
of k yields an overall speedup of 2 for the whole program?

• Suppose M ′, the parallel replacement for M , has a four-fold speedup. What frac-
tion of the overall execution time must M account for if replacing it with M ′
doubles the program’s speedup?

You may assume that the program, when executed sequentially, takes unit time.

18 CHAPTER 1 Introduction

Exercise 1.8. Running your application on two processors yields a speedup of S2.
Use Amdahl’s law to derive a formula for Sn, the speedup on n processors, in terms
of n and S2.

Exercise 1.9. You have a choice between buying one uniprocessor that executes five
zillion instructions per second or a 10-processor multiprocessor where each processor
executes one zillion instructions per second. Using Amdahl’s law, explain how you
would decide which to buy for a particular application.

2
CHAPTER

Mutual exclusion

Mutual exclusion is perhaps the most prevalent form of coordination in multipro-
cessor programming. This chapter covers classical mutual exclusion algorithms that
work by reading and writing shared memory. Although these algorithms are not used
in practice, we study them because they provide an ideal introduction to the kinds
of algorithmic and correctness issues that arise in every area of synchronization. The
chapter also provides an impossibility proof. This proof teaches us the limitations
of solutions to mutual exclusion that work by reading and writing shared memory,
which helps to motivate the real-world mutual exclusion algorithms that appear in
later chapters. This chapter is one of the few that contains proofs of algorithms.
Though the reader should feel free to skip these proofs, it is helpful to understand
the kind of reasoning they present, because we can use the same approach to reason
about the practical algorithms considered in later chapters.

2.1 Time and events
Reasoning about concurrent computation is mostly reasoning about time. Sometimes
we want things to happen simultaneously, and sometimes we want them to happen at
different times. To reason about complicated conditions involving how multiple time
intervals can overlap, or how they cannot, we need a simple but unambiguous lan-
guage to talk about events and durations in time. Everyday English is too ambiguous
and imprecise. Instead, we introduce a simple vocabulary and notation to describe
how concurrent threads behave in time.

In 1687, Isaac Newton wrote, “Absolute, True, and Mathematical Time, of itself,
and from its own nature flows equably without relation to any thing external.” We en-
dorse his notion of time, if not his prose style. Threads share a common time (though
not necessarily a common clock). A thread is a state machine, and its state transitions
are called events.

Events are instantaneous: they occur at a single instant of time. It is convenient
to require that events are never simultaneous: Distinct events occur at distinct times.
(As a practical matter, if we are unsure about the order of two events that happen
very close in time, then either order will do.) A thread A produces a sequence of
events a0, a1, Programs typically contain loops, so a single program statement
can produce many events. One event a precedes another event b, written a → b, if a

occurs at an earlier time. The precedence relation → is a total order on events.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00011-2
Copyright © 2021 Elsevier Inc. All rights reserved.

21

22 CHAPTER 2 Mutual exclusion

Let a0 and a1 be events such that a0 → a1. An interval (a0, a1) is the duration
between a0 and a1. Interval IA = (a0, a1) precedes IB = (b0, b1), written IA → IB ,
if a1 → b0 (that is, if the final event of IA precedes the starting event of IB). The →
relation is a partial order on intervals. Intervals that are unrelated by → are said to
be concurrent. We also say that an event a precedes an interval I = (b0, b1), written
a → I , if a → b0, and that I precedes a, written I → a, if b1 → a.

2.2 Critical sections
In Chapter 1, we discussed the Counter class implementation shown in Fig. 2.1. We
observed that this implementation is correct in a single-thread system, but misbehaves
when used by two or more threads. The problem occurs if both threads read the value
field at the line marked “start of danger zone,” and then both update that field at the
line marked “end of danger zone.”

We can avoid this problem by making these two lines into a critical section: a
block of code that can be executed by only one thread at a time. We call this property
mutual exclusion. The standard way to achieve mutual exclusion is through a Lock
object satisfying the interface shown in Fig. 2.2.

1 class Counter {
2 private long value;
3 public Counter(long c) { // constructor
4 value = c;
5 }
6 // increment and return prior value
7 public long getAndIncrement() {
8 long temp = value; // start of danger zone
9 value = temp + 1; // end of danger zone

10 return temp;
11 }
12 }

FIGURE 2.1

The Counter class.

1 public interface Lock {
2 public void lock(); // before entering critical section
3 public void unlock(); // before leaving critical section
4 }

FIGURE 2.2

The Lock interface.

2.2 Critical sections 23

1 public class Counter {
2 private long value;
3 private Lock lock; // to protect critical section
4

5 public long getAndIncrement() {
6 lock.lock(); // enter critical section
7 try {
8 long temp = value; // in critical section
9 value = temp + 1; // in critical section

10 return temp;
11 } finally {
12 lock.unlock(); // leave critical section
13 }
14 }
15 }

FIGURE 2.3

Using a lock object.

Fig. 2.3 shows how to use a Lock object to add mutual exclusion to a shared
counter implementation. Threads using the lock() and unlock() methods must follow
a specific format. A thread is well formed if:

1. each critical section is associated with a Lock object,
2. the thread calls that object’s lock() method when it wants to enter the critical

section, and
3. the thread calls the unlock() method when it leaves the critical section.

PRAGMA 2.2.1

In Java, the lock() and unlock() methods should be used in the following struc-
tured way:

1 mutex.lock();
2 try {
3 ... // body
4 } finally {
5 ... // restore invariant if needed
6 mutex.unlock();
7 }

This idiom ensures that the lock is acquired before entering the try block, and
that the lock is released when control leaves the block. If a statement in the block
throws an unexpected exception, it may be necessary to restore the object to a
consistent state before returning.

24 CHAPTER 2 Mutual exclusion

We say that a thread acquires (alternatively, locks) a lock when it returns from a
lock() method call, and releases (alternatively, unlocks) the lock when it invokes the
unlock() method. If a thread has acquired and not subsequently released a lock, we
say that the thread holds the lock. No thread may acquire the lock while any other
thread holds it, so at most one thread holds the lock at any time. We say the lock is
busy if a thread holds it; otherwise, we say the lock is free.

Multiple critical sections may be associated with the same Lock, in which case
no thread may execute a critical section while any other thread is executing a critical
section associated with the same Lock. From the perspective of a Lock algorithm, a
thread starts a critical section when its call to the lock() method returns, and it ends
the critical section by invoking the unlock() method; that is, a thread executes the
critical section while it holds the lock.

We now state more precisely the properties that a good Lock algorithm should
satisfy, assuming that every thread that acquires the lock eventually releases it.

Mutual exclusion At most one thread holds the lock at any time.
Freedom from deadlock If a thread is attempting to acquire or release the lock

(i.e., it invoked lock() or unlock() and has not returned), then eventually some
thread acquires or releases the lock (i.e., it returns from invoking lock() or
unlock()). If a thread calls lock() and never returns, then other threads must
complete an infinite number of critical sections.

Freedom from starvation Every thread that attempts to acquire or release the lock
eventually succeeds (i.e., every call to lock() or unlock() eventually returns).

Note that starvation-freedom implies deadlock-freedom.
The mutual exclusion property is clearly essential. It guarantees that the critical

section, that is, the code executed between the acquisition and release of the lock, is
executed by at most one thread at a time. In other words, executions of the critical sec-
tion cannot overlap. Without this property, we cannot guarantee that a computation’s
results are correct.

Let CS j
A be the interval during which thread A executes the critical section for

the j th time. Thus, CS j
A = (a0, a1), where a0 is the response event for A’s j th call

to lock() and a1 is the invocation event for A’s j th call to unlock(). For two distinct
threads A and B and integers j and k, either CS j

A → CS k
B or CS k

B → CS j
A .

The deadlock-freedom property is important. It implies that the system never
“freezes.” If some thread calls lock() and never acquires the lock, then either some
other thread acquires and never releases the lock or other threads must be completing
an infinite number of critical sections. Individual threads may be stuck forever (called
starvation), but some thread makes progress.

The starvation-freedom property, while clearly desirable, is the least compelling
of the three. This property is sometimes called lockout-freedom. In later chapters,
we discuss practical mutual exclusion algorithms that are not starvation-free. These
algorithms are typically deployed in circumstances where starvation is a theoretical
possibility, but is unlikely to occur in practice. Nevertheless, the ability to reason
about starvation is essential for understanding whether it is a realistic threat.

2.3 Two-thread solutions 25

The starvation-freedom property is also weak in the sense that there is no guaran-
tee for how long a thread waits before it enters the critical section. In later chapters,
we look at algorithms that place bounds on how long a thread can wait.

In the terminology of Chapter 1, mutual exclusion is a safety property, and
deadlock-freedom and starvation-freedom are liveness properties.

2.3 Two-thread solutions
We now consider algorithms that solve the mutual exclusion problem for two threads.
Our two-thread lock algorithms follow the following conventions: The threads have
IDs 0 and 1, and a thread can acquire its ID by calling ThreadID.get(). We store the
calling thread’s ID in i and the other thread’s ID in j = 1 − i.

We begin with two inadequate but interesting algorithms.

2.3.1 The LockOne class
Fig. 2.4 shows the LockOne algorithm, which maintains a Boolean flag variable for
each thread. To acquire the lock, a thread sets its flag to true and waits until the other
thread’s flag is false. The thread releases the flag by setting its flag back to false.

We use writeA(x = v) to denote the event in which thread A assigns value v to
field x, and readA(x == v) to denote the event in which A reads v from field x. For
example, in Fig. 2.4, the event writeA(flag[i] = true) is caused by line 7 of the lock()
method. We sometimes omit the value when it is unimportant.

Lemma 2.3.1. The LockOne algorithm satisfies mutual exclusion.

1 class LockOne implements Lock {
2 private boolean[] flag = new boolean[2];
3 // thread-local index, 0 or 1
4 public void lock() {
5 int i = ThreadID.get();
6 int j = 1 - i;
7 flag[i] = true;
8 while (flag[j]) {} // wait until flag[j] == false
9 }

10 public void unlock() {
11 int i = ThreadID.get();
12 flag[i] = false;
13 }
14 }

FIGURE 2.4

Pseudocode for the LockOne algorithm.

26 CHAPTER 2 Mutual exclusion

PRAGMA 2.3.1

In practice, the Boolean flag variables in Fig. 2.4, as well as the victim and label
variables in later algorithms, must all be declared volatile to work properly. We
explain the reasons in Chapter 3 and Appendix B. For readability, we omit the
volatile declarations for now. We begin declaring the appropriate variables as
volatile in Chapter 7.

Proof. Suppose not. Then there are overlapping critical sections CSA and CSB of
threads A and B, respectively (A �= B). Consider each thread’s last execution of the
lock() method before entering its critical section. Inspecting the code, we see that

writeA(flag[A] = true) → readA(flag[B] == false) → CSA,

writeB(flag[B] = true) → readB(flag[A] == false) → CSB.

Note that once flag[B] is set to true it remains true until B exits its critical section.
Since the critical sections overlap, A must read flag[B] before B sets it to true.
Similarly, B must read flag[A] before A sets it to true. Combining these, we get

writeA(flag[A] = true) → readA(flag[B] == false)

→ writeB(flag[B] = true) → readB(flag[A] == false)

→ writeA(flag[A] = true).

There is a cycle in →, which is a contradiction, because → is a partial order (an event
cannot precede itself).

The LockOne algorithm is inadequate because it can deadlock if thread executions
are interleaved: If writeA(flag[A] = true) and writeB(flag[B] = true) events occur
before readA(flag[B]) and readB(flag[A]) events, then both threads wait forever.
Nevertheless, LockOne has an interesting property: If one thread runs before the other,
no deadlock occurs, and all is well.

2.3.2 The LockTwo class
Fig. 2.5 shows an alternative lock algorithm, the LockTwo class, which uses a single
victim field that indicates which thread should yield. To acquire the lock, a thread
sets the victim field to its own ID and then waits until the other thread changes it.

Lemma 2.3.2. The LockTwo algorithm satisfies mutual exclusion.

Proof. Suppose not. Then there are overlapping critical sections CSA and CSB of
threads A and B, respectively (A �= B). As before, consider each thread’s last execu-
tion of the lock() method before entering its critical section. Inspecting the code, we
see that

2.3 Two-thread solutions 27

1 class LockTwo implements Lock {
2 private int victim;
3 public void lock() {
4 int i = ThreadID.get();
5 victim = i; // let the other go first
6 while (victim == i) {} // wait
7 }
8 public void unlock() {}
9 }

FIGURE 2.5

Pseudocode for the LockTwo algorithm.

writeA(victim = A) → readA(victim == B) → CSA,

writeB(victim = B) → readB(victim == A) → CSB.

Thread B must assign B to the victim field between events writeA(victim = A) and
readA(victim = B), so in particular, B must write victim after A. However, by the
same reasoning, A must write victim after B, which is a contradiction.

The LockTwo algorithm is inadequate because it gets stuck unless the threads run
concurrently. Nevertheless, LockTwo has an interesting property: If the threads run
concurrently, the lock() method succeeds. The LockOne and LockTwo classes comple-
ment one another: Each succeeds under conditions that cause the other to get stuck.

2.3.3 The Peterson lock
We combine the LockOne and LockTwo algorithms to construct a starvation-free lock
algorithm, shown in Fig. 2.6. This algorithm—known as Peterson’s algorithm, after
its inventor—is arguably the most succinct and elegant two-thread mutual exclusion
algorithm.

Lemma 2.3.3. The Peterson lock algorithm satisfies mutual exclusion.

Proof. Suppose not. As before, consider the last executions of the lock() method by
threads A and B before overlapping critical sections CSA and CSB . Inspecting the
code, we see that

writeA(flag[A] = true) → writeA(victim = A) (2.3.1)

→ readA(flag[B]) → readA(victim) → CSA,

writeB(flag[B] = true) → writeB(victim = B) (2.3.2)

→ readB(flag[A]) → readB(victim) → CSB.

28 CHAPTER 2 Mutual exclusion

1 class Peterson implements Lock {
2 // thread-local index, 0 or 1
3 private boolean[] flag = new boolean[2];
4 private int victim;
5 public void lock() {
6 int i = ThreadID.get();
7 int j = 1 - i;
8 flag[i] = true; // I’m interested
9 victim = i; // you go first

10 while (flag[j] && victim == i) {} // wait
11 }
12 public void unlock() {
13 int i = ThreadID.get();
14 flag[i] = false; // I’m not interested
15 }
16 }

FIGURE 2.6

Pseudocode for the Peterson lock algorithm.

Assume, without loss of generality, that A was the last thread to write to the
victim field, i.e.,

writeB(victim = B) → writeA(victim = A). (2.3.3)

Eq. (2.3.3) implies that A observed victim to be A in Eq. (2.3.1). Since A nevertheless
entered its critical section, it must have observed flag[B] to be false, so we have

writeA(victim = A) → readA(flag[B] == false). (2.3.4)

Putting Eqs. (2.3.2) to (2.3.4) together yields:

writeB(flag[B] = true) → writeB(victim = B) (2.3.5)

→ writeA(victim = A) → readA(flag[B] == false).

By the transitivity of →, writeB(flag[B] = true) → readA(flag[B] == false). This
observation yields a contradiction because no other write to flag[B] was performed
before the critical section executions.

Lemma 2.3.4. The Peterson lock algorithm is starvation-free.

Proof. Suppose not, so some thread runs forever in the lock() method. Suppose
(without loss of generality) that it is A. It must be executing the while statement,
waiting until either flag[B] becomes false or victim is set to B.

What is B doing while A fails to make progress? Perhaps B is repeatedly entering
and leaving its critical section. If so, however, then B sets victim to B before it

2.4 Notes on deadlock 29

reenters the critical section. Once victim is set to B, it does not change, and A must
eventually return from the lock() method, a contradiction.

So it must be that B is also stuck in its lock() method call, waiting until either
flag[A] becomes false or victim is set to A. But victim cannot be both A and B, a
contradiction.

Corollary 2.3.5. The Peterson lock algorithm is deadlock-free.

2.4 Notes on deadlock
Although the Peterson lock algorithm is deadlock-free (and even starvation-free),
another kind of deadlock can arise in programs that use multiple Peterson locks (or
any other lock implementation). For example, suppose that threads A and B share
locks �0 and �1, and that A acquires �0 and B acquires �1. If A then tries to acquire
�1 and B tries to acquire �0, the threads deadlock because each one waits for the other
to release its lock.

In the literature, the term deadlock is sometimes used more narrowly to refer to
the case in which the system enters a state from which there is no way for threads
to make progress. The LockOne and LockTwo algorithms are susceptible to this kind of
deadlock: In both algorithms, both threads can get stuck waiting in their respective
while loops.

This narrower notion of deadlock is distinguished from livelock, in which two
or more threads actively prevent each other from making progress by taking steps
that subvert steps taken by other threads. When the system is livelocked rather than
deadlocked, there is some way to schedule the threads so that the system can make
progress (but also some way to schedule them so that there is no progress). Our
definition of deadlock-freedom proscribes livelock as well as this narrower notion of
deadlock.

Consider, for example, the Livelock algorithm in Fig. 2.7. (This is a variant of the
flag protocol described in Section 1.2 in which both threads follow Bob’s part of the
protocol.) If both threads execute the lock() method, they may indefinitely repeat the
following steps:

• Set their respective flag variables to true.
• See that the other thread’s flag is true.
• Set their respective flag variables to false.
• See that the other thread’s flag is false.

Because of this possible livelock, Livelock is not deadlock-free by our definition.
However, Livelock does not deadlock by the narrower definition because there is

always some way to schedule the threads so that one of them makes progress: If one
thread’s flag is false, then execute the other thread until it exits the loop and returns.
If both threads’ flag variables are true, then execute one thread until it sets its flag
to false, and then execute the other as described above (i.e., until it returns).

30 CHAPTER 2 Mutual exclusion

1 class Livelock implements Lock {
2 // thread-local index, 0 or 1
3 private boolean[] flag = new boolean[2];
4 public void lock() {
5 int i = ThreadID.get();
6 int j = 1 - i;
7 flag[i] = true;
8 while (flag[j]) {
9 flag[i] = false;

10 while (flag[j]) {} // wait
11 flag[i] = true;
12 }
13 }
14 public void unlock() {
15 int i = ThreadID.get();
16 flag[i] = false;
17 }
18 }

FIGURE 2.7

Pseudocode for a lock algorithm that may livelock.

2.5 The filter lock
The Filter lock, shown in Fig. 2.8, generalizes the Peterson lock to work for n > 2
threads. It creates n − 1 “waiting rooms,” called levels, that a thread must traverse
before acquiring the lock. The levels are depicted in Fig. 2.9. Levels satisfy two
important properties:

• At least one thread trying to enter level � succeeds.
• If more than one thread is trying to enter level �, then at least one is blocked (i.e.,

continues to wait without entering that level).

The Peterson lock uses a two-element Boolean flag array to indicate whether a
thread is trying to enter the critical section. The Filter lock generalizes this notion
with an n-element integer level[] array, where the value of level[A] indicates the
highest level that thread A is trying to enter. Each thread must pass through n − 1
levels of “exclusion” to enter its critical section. Each level � has a distinct victim[�]
field used to “filter out” one thread, excluding it from that level unless no thread is at
that level or higher.

Initially, a thread A is at level 0. A enters level � for � > 0 when it completes the
waiting loop on line 17 with level[A] = � (i.e., when it stops waiting at that loop).
A enters its critical section when it enters level n − 1. When A leaves the critical
section, it sets level[A] to 0.

2.5 The filter lock 31

1 class Filter implements Lock {
2 int[] level;
3 int[] victim;
4 public Filter(int n) {
5 level = new int[n];
6 victim = new int[n]; // use 1..n-1
7 for (int i = 0; i < n; i++) {
8 level[i] = 0;
9 }

10 }
11 public void lock() {
12 int me = ThreadID.get();
13 for (int i = 1; i < n; i++) { // attempt to enter level i
14 level[me] = i;
15 victim[i] = me;
16 // spin while conflicts exist
17 while ((∃k != me) (level[k] >= i && victim[i] == me)) {};
18 }
19 }
20 public void unlock() {
21 int me = ThreadID.get();
22 level[me] = 0;
23 }
24 }

FIGURE 2.8

Pseudocode for the Filter lock algorithm.

FIGURE 2.9

Threads pass through n − 1 levels, the last of which is the critical section. Initially, all n
threads are at level 0. At most n − 1 enter level 1, at most n − 2 enter level 2, and so on,
so that only one thread enters the critical section at level n − 1.

32 CHAPTER 2 Mutual exclusion

Lemma 2.5.1. For j between 0 and n− 1, at most n− j threads have entered level j

(and not subsequently exited the critical section).

Proof. We prove this by induction on j . The base case, where j = 0, is trivial. For
the induction step, the induction hypothesis implies that at most n − j + 1 threads
have entered level j − 1. To show that at least one thread does not enter level j , we
argue by contradiction. Assume that n − j + 1 threads have entered level j . Because
j ≤ n − 1, there must be at least two such threads.

Let A be the last thread to write victim[j]. A must have entered level j since
victim[j] is written only by threads that have entered level j − 1, and, by the induc-
tion hypothesis, every thread that has entered level j − 1 has also entered level j . Let
B be any thread other than A that has entered level j . Inspecting the code, we see that
before B enters level j , it first writes j to level[B] and then writes B to victim[j].
Since A is the last to write victim[j], we have

writeB(level[B] = j) → writeB(victim[j]) → writeA(victim[j]).
We also see that A reads level[B] (line 17) after it writes to victim[j], so

writeB(level[B] = j) → writeB(victim[j])
→ writeA(victim[j]) → readA(level[B]).

Because B has entered level j , every time A reads level[B], it observes a value
greater than or equal to j , and since victim[j] = A (because A was the last to write
it), A could not have completed its waiting loop on line 17, a contradiction.

Corollary 2.5.2. The Filter lock algorithm satisfies mutual exclusion.

Proof. Entering the critical section is equivalent to entering level n − 1, so at most
one thread enters the critical section.

Lemma 2.5.3. The Filter lock algorithm is starvation-free.

Proof. We prove by induction on j that every thread that enters level n−j eventually
enters and leaves the critical section (assuming that it keeps taking steps and that
every thread that enters the critical section eventually leaves it). The base case, with
j = 1, is trivial because level n − 1 is the critical section.

For the induction step, we suppose that every thread that enters level n − j or
higher eventually enters and leaves the critical section, and show that every thread
that enters level n − j − 1 does too.

Suppose, for contradiction, that a thread A has entered level n − j − 1 and is
stuck. By the induction hypothesis, it never enters level n − j , so it must be stuck at
line 17 with level[A] = n− j and victim[n − j] = A. After A writes victim[n − j],
no thread enters level n − j − 1 because any thread that did would overwrite
victim[n − j], allowing A to enter level n − j . Furthermore, any other thread B

trying to enter level n − j will eventually succeed because victim[n − j] = A �= B,

2.6 Fairness 33

so eventually no threads other than A are trying to enter level n − j . Moreover, any
thread that enters level n − j will, by the induction hypothesis, enter and leave the
critical section, setting its level to 0. At some point, A is the only thread that has
entered level n− j − 1 and not entered and left the critical section. In particular, after
this point, level[B] < n − j for every thread B other than A, so A can enter level
n − j , a contradiction.

Corollary 2.5.4. The Filter lock algorithm is deadlock-free.

2.6 Fairness
The starvation-freedom property guarantees that every thread that calls lock() even-
tually enters the critical section, but it makes no guarantees about how long this may
take, nor does it guarantee that the lock will be “fair” to the threads attempting to ac-
quire it. For example, although the Filter lock algorithm is starvation-free, a thread
attempting to acquire the lock may be overtaken arbitrarily many times by another
thread.

Ideally (and very informally), if A calls lock() before B, then A should enter
the critical section before B. That is, the lock should be “first-come-first-served.”
However, with the tools we have introduced so far, we cannot determine which thread
called lock() first.

To define fairness, we split the lock() method into a doorway section and a waiting
section, where the doorway section always completes in a bounded number of steps
(the waiting section may take an unbounded number of steps). That is, there is a
fixed limit on the number of steps a thread may take after invoking lock() before it
completes the doorway section.

A section of code that is guaranteed to complete in a bounded number of steps
is said to be bounded wait-free. The bounded wait-free property is a strong progress
requirement. It is satisfied by code that has no loops. In later chapters, we discuss
ways to provide this property in code that has loops. With this definition, we define
the following fairness property.

Definition 2.6.1. A lock is first-come-first-served if its lock() method can be split
into a bounded wait-free doorway section followed by a waiting section so that when-
ever thread A finishes its doorway before thread B starts its doorway, A cannot be
overtaken by B. That is,

if D j
A → D k

B then CS j
A → CS k

B

for any threads A and B and integers j and k, where D j
A and CS j

A are the intervals
during which A executes the doorway section of its j th call to the lock() method and
its j th critical section, respectively.

Note that any algorithm that is both deadlock-free and first-come-first-served is
also starvation-free.

34 CHAPTER 2 Mutual exclusion

1 class Bakery implements Lock {
2 boolean[] flag;
3 Label[] label;
4 public Bakery (int n) {
5 flag = new boolean[n];
6 label = new Label[n];
7 for (int i = 0; i < n; i++) {
8 flag[i] = false; label[i] = 0;
9 }

10 }
11 public void lock() {
12 int i = ThreadID.get();
13 flag[i] = true;
14 label[i] = max(label[0], ...,label[n-1]) + 1;
15 while ((∃k != i)(flag[k] && (label[k],k) << (label[i],i))) {};
16 }
17 public void unlock() {
18 flag[ThreadID.get()] = false;
19 }
20 }

FIGURE 2.10

Pseudocode for the Bakery lock algorithm.

2.7 Lamport’s Bakery algorithm
Perhaps the most elegant solution to the mutual exclusion problem for n threads is the
Bakery lock algorithm, which appears in Fig. 2.10. It guarantees the first-come-first-
served property by using a distributed version of the number-dispensing machines
often found in bakeries: Each thread takes a number in the doorway, and then waits
until no thread with an earlier number is trying to enter the critical section.

In the Bakery lock, flag[A] is a Boolean flag that indicates whether A wants to
enter the critical section, and label[A] is an integer that indicates the thread’s relative
order when entering the bakery, for each thread A. To acquire the lock, a thread first
raises its flag, and then picks a new label by reading the labels of all the threads
(in any order) and generating a label greater than all the labels it read. The code
from the invocation of the lock() method to the writing of the new label (line 14)
is the doorway: it establishes that thread’s order with respect to other threads trying
to acquire the lock. Threads that execute their doorways concurrently may read the
same labels and pick the same new label. To break this symmetry, the algorithm uses
a lexicographical ordering << on pairs of labels and thread IDs:

(label[i], i) << (label[j], j))

if and only if (2.7.1)

label[i] < label[j] or label[i] = label[j] and i < j.

2.8 Bounded timestamps 35

In the waiting section of the Bakery algorithm (line 15), a thread repeatedly reads the
flags and labels of the other threads in any order until it determines that no thread
with a raised flag has a lexicographically smaller label/ID pair.

Since releasing a lock does not reset the label[], it is easy to see that each thread’s
labels are strictly increasing. Interestingly, in both the doorway and waiting sections,
threads read the labels asynchronously and in an arbitrary order. For example, the set
of labels seen prior to picking a new one may have never existed in memory at the
same time. Nevertheless, the algorithm works.

Lemma 2.7.1. The Bakery lock algorithm is deadlock-free.

Proof. Some waiting thread A has the unique least (label[A],A) pair, and that thread
never waits for another thread.

Lemma 2.7.2. The Bakery lock algorithm is first-come-first-served.

Proof. If A’s doorway precedes B’s, then A’s label is smaller since

writeA(label[A]) → readB(label[A]) → writeB(label[B]) → readB(flag[A]),
so B is locked out while flag[A] is true.

Corollary 2.7.3. The Bakery lock algorithm is starvation-free.

Proof. This follows immediately from Lemmas 2.7.1 and 2.7.2 because any deadlock-
free first-come-first-served lock algorithm is also starvation-free.

Lemma 2.7.4. The Bakery lock algorithm satisfies mutual exclusion.

Proof. Suppose not. Let A and B be two threads concurrently in the critical section
with (label[A],A) << (label[B],B). Let labelingA and labelingB be the last respec-
tive sequences of acquiring new labels (line 14) prior to entering the critical section.
To complete its waiting section, B must have read either that flag[A] was false or
that (label[B],B) << (label[A],A). However, for a given thread, its ID is fixed and
its label[] values are strictly increasing, so B must have seen that flag[A] was false.
It follows that

labelingB → readB(flag[A] == false) → writeA(flag[A] = true) → labelingA,

which contradicts the assumption that (label[A],A) << (label[B],B).

2.8 Bounded timestamps
Note that the labels of the Bakery lock grow without bound, so in a long-lived system
we may have to worry about overflow. If a thread’s label field silently rolls over from
a large number to zero, then the first-come-first-served property no longer holds.

36 CHAPTER 2 Mutual exclusion

In later chapters, we discuss constructions in which counters are used to order
threads, or even to produce unique IDs. How important is the overflow problem in
the real world? It is difficult to generalize. Sometimes it matters a great deal. The
celebrated “Y2K” bug that captivated the media in the last years of the 20th century is
an example of a genuine overflow problem, even if the consequences were not as dire
as predicted. On January 19, 2038, the Unix time_t data structure will overflow when
the number of seconds since January 1, 1970 exceeds 231. No one knows whether it
will matter. Sometimes, of course, counter overflow is a nonissue. Most applications
that use, say, a 64-bit counter are unlikely to last long enough for roll-over to occur.
(Let the grandchildren worry!)

In the Bakery lock, labels act as timestamps: They establish an order among the
contending threads. Informally, we need to ensure that if one thread takes a label after
another, then the latter has the larger label. Inspecting the code for the Bakery lock,
we see that a thread needs two abilities:

• to read the other threads’ timestamps (scan), and
• to assign itself a later timestamp (label).

A Java interface to such a timestamping system appears in Fig. 2.11. Since our prin-
cipal application for a bounded timestamping system is to implement the doorway
section of the Lock class, the timestamping system must be wait-free. It is possible to
construct such a wait-free concurrent timestamping system (see the chapter notes),
but the construction is long and technical. Instead, we focus on a simpler problem,
interesting in its own right: constructing a sequential timestamping system, in which
threads perform scan-and-label operations one completely after the other, that is, as
if each were performed using mutual exclusion. In other words, we consider only
executions in which a thread can perform a scan of the other threads’ labels, or a scan
and then an assignment of a new label, where each such sequence is a single atomic
step. Although the details of concurrent and sequential timestamping systems differ
substantially, the principles underlying them are essentially the same.

Think of the range of possible timestamps as nodes of a directed graph (called a
precedence graph). An edge from node a to node b means that a is a later timestamp
than b. The timestamp order is irreflexive: There is no edge from any node a to itself.
The order is also antisymmetric: If there is an edge from a to b, then there is no edge

1 public interface Timestamp {
2 boolean compare(Timestamp);
3 }
4 public interface TimestampSystem {
5 public Timestamp[] scan();
6 public void label(Timestamp timestamp, int i);
7 }

FIGURE 2.11

A timestamping system interface.

2.8 Bounded timestamps 37

FIGURE 2.12

The precedence graph for an unbounded timestamping system. The nodes represent the
set of all natural numbers and the edges represent the total order among them.

from b to a. We do not require that the order be transitive: There can be an edge from
a to b and from b to c, without necessarily implying there is an edge from a to c.

Think of assigning a timestamp to a thread as placing that thread’s token on that
timestamp’s node. A thread performs a scan by locating the other threads’ tokens,
and it assigns itself a new timestamp by moving its own token to a node a such that
there is an edge from a to every other thread’s node.

Pragmatically, we can implement such a system as an array of single-writer multi-
reader fields, with an element for each thread A that indicates the node that A most
recently assigned its token. The scan() method takes a “snapshot” of the array, and
the label() method for thread A updates the array element for A.

Fig. 2.12 illustrates the precedence graph for the unbounded timestamp system
used in the Bakery lock. Not surprisingly, the graph is infinite: There is one node for
each natural number, with a directed edge from node a to node b whenever a > b.

Consider the precedence graph T 2 shown in Fig. 2.13. This graph has three nodes,
labeled 0, 1, and 2, and its edges define an ordering relation on the nodes in which
0 is less than 1, 1 is less than 2, and 2 is less than 0. If there are only two threads,
then we can use this graph to define a bounded (sequential) timestamping system.
The system satisfies the following invariant: The two threads always have tokens on
adjacent nodes, with the direction of the edge indicating their relative order. Suppose
A’s token is on node 0, and B’s token on node 1 (so B has the later timestamp). For B,
the label() method is trivial: It already has the latest timestamp, so it does nothing.
For A, the label() method “leapfrogs” B’s node by jumping from 0 to 2.

Recall that a cycle in a directed graph is a set of nodes n0, n1, . . . , nk such that
there is an edge from n0 to n1, from n1 to n2, and eventually from nk−1 to nk , and
back from nk to n0.

The only cycle in the graph T 2 has length three, and there are only two threads, so
the order among the threads is never ambiguous. To go beyond two threads, we need
additional conceptual tools. Let G be a precedence graph, and A and B subgraphs
of G (possibly single nodes). We say that A dominates B in G if every node of A

has edges directed to every node of B. Let graph multiplication be the following
noncommutative composition operation for graphs (denoted G ◦ H):

Replace every node v of G by a copy of H (denoted Hv), and let Hv dominate Hu

in G ◦ H if v dominates u in G.

38 CHAPTER 2 Mutual exclusion

FIGURE 2.13

The precedence graph for a bounded timestamping system. Consider an initial situation
in which there is a token A on node 12 (node 2 in subgraph 1) and tokens B and C on
nodes 21 and 22 (nodes 1 and 2 in subgraph 2). Token B will move to node 20 to domi-
nate the others. Token C will then move to node 21 to dominate the others, and B and C
can continue to cycle in the T 2 subgraph 2 forever. If A is to move to dominate B and C,
it cannot pick a node in subgraph 2 since it is full (any T k subgraph can accommodate
at most k tokens). Instead, token A moves to node 00. If B now moves, it will choose
node 01, C will choose node 10, and so on.

Define the graph T k inductively as follows:

1. T 1 is a single node.
2. T 2 is the three-node graph defined earlier.
3. For k > 2, T k = T 2 ◦ T k−1.

For example, the graph T 3 is illustrated in Fig. 2.13.
The precedence graph T n is the basis for an n-thread bounded sequential time-

stamping system. We can “address” any node in the T n graph with n−1 digits, using
ternary notation. For example, the nodes in graph T 2 are addressed by 0, 1, and 2.
The nodes in graph T 3 are denoted by 00,01, . . . ,22, where the high-order digit in-
dicates one of the three subgraphs, and the low-order digit indicates one node within
that subgraph.

The key to understanding the n-thread labeling algorithm is that the nodes covered
by tokens can never form a cycle. As mentioned, two threads can never form a cycle
on T 2, because the shortest cycle in T 2 requires three nodes.

How does the label() method work for three threads? When A calls label(), if
both the other threads have tokens on the same T 2 subgraph, then move to a node
on the next highest T 2 subgraph, the one whose nodes dominate that T 2 subgraph.
For example, consider the graph T 3 as illustrated in Fig. 2.13. We assume an initial
acyclic situation in which there is a token A on node 12 (node 2 in subgraph 1) and
tokens B and C on nodes 21 and 22 (nodes 1 and 2 in subgraph 2). Token B will move
to node 20 to dominate all others. Token C will then move to node 21 to dominate
all others, and B and C can continue to cycle in the T 2 subgraph 2 forever. If A is to

2.9 Lower bounds on the number of locations 39

move to dominate B and C, it cannot pick a node in subgraph 2 since it is full (any
T k subgraph can accommodate at most k tokens). Token A thus moves to node 00. If
B now moves, it will choose node 01, C will choose node 10, and so on.

2.9 Lower bounds on the number of locations
The Bakery lock is succinct, elegant, and fair. So why is it not considered practical?
The principal drawback is the need to read and write n distinct locations, where n is
the maximum number of concurrent threads (which may be very large).

Is there a clever Lock algorithm based on reading and writing memory that avoids
this overhead? We now demonstrate that the answer is no. Any deadlock-free mutual
exclusion algorithm requires allocating and then reading or writing at least n distinct
locations in the worst case. This result is crucial: it motivates us to augment our
multiprocessor machines with synchronization operations stronger than reads and
writes, and use them as the basis of our mutual exclusion algorithms. We discuss
practical mutual exclusion algorithms in later chapters.

In this section, we examine why this linear bound is inherent. We observe the fol-
lowing limitation of memory accessed solely by read or write instructions (typically
called loads and stores): Information written by a thread to a given location may be
overwritten (i.e., stored to) without any other thread ever seeing it.

Our proof requires us to argue about the state of all memory used by a given
multithreaded program. An object’s state is just the state of its fields. A thread’s local
state is the state of its program counters and local variables. A global state or system
state is the state of all objects, plus the local states of the threads.

Definition 2.9.1. A Lock object state s is inconsistent in any global state where some
thread is in the critical section, but the lock state is compatible with a global state in
which no thread is in the critical section or is trying to enter the critical section.

Lemma 2.9.2. No deadlock-free Lock algorithm can enter an inconsistent state.

Proof. Suppose the Lock object is in an inconsistent state s, where some thread A is
in the critical section. If thread B tries to enter the critical section, it must eventually
succeed because the algorithm is deadlock-free and B cannot determine that A is in
the critical section, a contradiction.

Any Lock algorithm that solves deadlock-free mutual exclusion must have n dis-
tinct locations. Here, we consider only the three-thread case, showing that a deadlock-
free Lock algorithm accessed by three threads must use three distinct locations.

Definition 2.9.3. A covering state for a Lock object is one in which there is at least
one thread about to write to each shared location, but the Lock object’s locations
“look” like the critical section is empty (i.e., the locations’ states appear as if there is
no thread either in the critical section or trying to enter the critical section).

40 CHAPTER 2 Mutual exclusion

In a covering state, we say that each thread covers the location it is about to write.

Theorem 2.9.4. Any Lock algorithm that, by reading and writing memory, solves
deadlock-free mutual exclusion for three threads must use at least three distinct mem-
ory locations.

Proof. Assume by way of contradiction that we have a deadlock-free Lock algorithm
for three threads with only two locations. Initially, in state s, no thread is in the
critical section or trying to enter. If we run any thread by itself, then it must write
to at least one location before entering the critical section, as otherwise it creates an
inconsistent state. It follows that every thread must write at least one location before
entering. If the shared locations are single-writer locations as in the Bakery lock, then
it is immediate that three distinct locations are needed.

Now consider multiwriter locations such as elements of the victim array in Pe-
terson’s algorithm (Fig. 2.6). Assume that we can bring the system to a covering
Lock state s where A and B cover distinct locations. Consider the following possible
execution starting from state s as depicted in Fig. 2.14:

Let C run alone. Because the Lock algorithm satisfies the deadlock-free property,
C enters the critical section eventually. Then let A and B respectively update their
covered locations, leaving the Lock object in state s ′.

FIGURE 2.14

Contradiction using a covering state for two locations. Initially both locations have the empty
value ⊥.

2.10 Chapter notes 41

The state s′ is inconsistent because no thread can tell whether C is in the critical
section. Thus, a lock with two locations is impossible.

It remains to show how to maneuver threads A and B into a covering state. Con-
sider an execution in which B runs through the critical section three times. Each time
around, it must write to some location, so consider the first location to which it writes
when trying to enter the critical section. Since there are only two locations, B must
“write first” to the same location twice. Call that location LB .

Let B run until it is poised to write to location LB for the first time. If A runs now,
it would enter the critical section, since B has not written anything. A must write to
LA before entering the critical section. Otherwise, if A writes only to LB , then let
A enter the critical section, and let B write to LB (obliterating A’s last write). The
result is an inconsistent state: B cannot tell whether A is in the critical section.

Let A run until it is poised to write to LA. This state might not be a covering state
because A could have written something to LB indicating to thread C that it is trying
to enter the critical section. Let B run, obliterating any value A might have written
to LB , entering and leaving the critical section at most three times, and halting just
before its second write to LB . Note that every time B enters and leaves the critical
section, whatever it wrote to the locations is no longer relevant.

In this state, A is about to write to LA, B is about to write to LB , and the locations
are consistent with no thread trying to enter or in the critical section, as required in a
covering state. Fig. 2.15 illustrates this scenario.

This line of argument can be extended to show that n-thread deadlock-free mu-
tual exclusion requires n distinct locations. The Peterson and Bakery locks are thus
optimal (within a constant factor). However, the need to allocate n locations per Lock
makes them impractical.

This proof shows the inherent limitation of read and write operations: Information
written by a thread may be overwritten without any other thread ever reading it. We
will recall this limitation when we discuss other algorithms.

As discussed in later chapters, modern machine architectures provide specialized
instructions that overcome the “overwriting” limitation of read and write instructions,
allowing n-thread Lock implementations that use only a constant number of memory
locations. However, making effective use of these instructions to solve mutual exclu-
sion is far from trivial.

2.10 Chapter notes
Isaac Newton’s ideas about the flow of time appear in his famous Principia [135].
The “→” formalism is due to Leslie Lamport [101]. The first three algorithms in this
chapter are due to Gary Peterson, who published them in a two-page paper in 1981
[138]. The Bakery lock presented here is a simplification of the original Bakery al-
gorithm due to Leslie Lamport [100]. The sequential timestamp algorithm is due to
Amos Israeli and Ming Li [85], who invented the notion of a bounded timestamp-
ing system. Danny Dolev and Nir Shavit [39] invented the first bounded concurrent

42 CHAPTER 2 Mutual exclusion

FIGURE 2.15

Reaching a covering state. In the initial covering state for LB both locations have the empty
value ⊥.

timestamping system. Other bounded timestamping schemes include ones by Sib-
sankar Haldar and Paul Vitányi [56] and Cynthia Dwork and Orli Waarts [42]. The
lower bound on the number of lock fields is due to Jim Burns and Nancy Lynch
[24]. Their proof technique, called a covering argument, has since been widely used
to prove lower bounds in distributed computing. Readers interested in further read-
ing can find a historical survey of mutual exclusion algorithms in a classic book by
Michel Raynal [147].

2.11 Exercises
Exercise 2.1. A mutual exclusion algorithm provides r-bounded waiting if there is
a way to define a doorway such that if D

j
A → Dk

B , then CS j
A → CSk+r

B . Does the
Peterson algorithm provide r-bounded waiting for some value of r?

Exercise 2.2. Why must we define a doorway section, rather than defining first-
come-first-served in a mutual exclusion algorithm based on the order in which the
first instruction in the lock() method was executed? Argue your answer in a case-by-
case manner based on the nature of the first instruction executed by the lock(): a read
or a write, to separate locations or the same location.

2.11 Exercises 43

1 class Flaky implements Lock {
2 private int turn;
3 private boolean busy = false;
4 public void lock() {
5 int me = ThreadID.get();
6 do {
7 do {
8 turn = me;
9 } while (busy);

10 busy = true;
11 } while (turn != me);
12 }
13 public void unlock() {
14 busy = false;
15 }
16 }

FIGURE 2.16

The Flaky lock used in Exercise 2.3.

1 public void unlock() {
2 int i = ThreadID.get();
3 flag[i] = false;
4 int j = 1 - i;
5 while (flag[j] == true) {}
6 }

FIGURE 2.17

The revised unlock method for Peterson’s algorithm used in Exercise 2.5.

Exercise 2.3. Programmers at the Flaky Computer Corporation designed the protocol
shown in Fig. 2.16 to achieve n-thread mutual exclusion. For each question, either
sketch a proof, or display an execution where it fails.

• Does this protocol satisfy mutual exclusion?
• Is this protocol starvation-free?
• Is this protocol deadlock-free?
• Is this protocol livelock-free?

Exercise 2.4. Show that the Filter lock allows some threads to overtake others an
arbitrary number of times.

Exercise 2.5. Consider a variant of Peterson’s algorithm, where we change the
unlock method to be as shown in Fig. 2.17. Does the modified algorithm satisfy
deadlock-freedom? What about starvation-freedom? Sketch a proof showing why it
satisfies both properties, or display an execution where it fails.

44 CHAPTER 2 Mutual exclusion

Exercise 2.6. Another way to generalize the two-thread Peterson lock is to arrange
a number of two-thread Peterson locks in a binary tree. Suppose n is a power of two.
Each thread is assigned a leaf lock which it shares with one other thread. Each lock
treats one thread as thread 0 and the other as thread 1.

In the tree-lock’s acquire method, the thread acquires every two-thread Peterson
lock from that thread’s leaf to the root. The tree-lock’s release method for the tree-
lock unlocks each of the two-thread Peterson locks that thread has acquired, from the
root back to its leaf. At any time, a thread can be delayed for a finite duration. (In
other words, threads can take naps, or even vacations, but they do not drop dead.)
For each of the following properties, either sketch a proof that it holds, or describe a
(possibly infinite) execution where it is violated:

1. mutual exclusion,
2. freedom from deadlock,
3. freedom from starvation.

Is there an upper bound on the number of times the tree-lock can be acquired
and released between the time a thread starts acquiring the tree-lock and when it
succeeds?

Exercise 2.7. The �-exclusion problem is a variant of the starvation-free mutual ex-
clusion problem with two changes: Up to � threads may be in the critical section at
the same time, and fewer than � threads might fail (by halting) in the critical section.

An implementation must satisfy the following conditions:

�-Exclusion: At any time, at most � threads are in the critical section.
�-Starvation-freedom: As long as fewer than � threads are in the critical section,

some thread that wants to enter the critical section will eventually succeed
(even if some threads in the critical section have halted).

Modify the n-thread Filter mutual exclusion algorithm to solve �-exclusion.

Exercise 2.8. In practice, almost all lock acquisitions are uncontended, so the most
practical measure of a lock’s performance is the number of steps needed for a thread
to acquire a lock when no other thread is concurrently trying to acquire the lock.

Scientists at Cantaloupe-Melon University have devised the following “wrapper”
for an arbitrary lock, shown in Fig. 2.18. They claim that if the base Lock class pro-
vides mutual exclusion and is starvation-free, so does the FastPath lock, but it can
be acquired in a constant number of steps in the absence of contention. Sketch an
argument why they are right, or give a counterexample.

Exercise 2.9. Suppose n threads call the visit() method of the Bouncer class shown
in Fig. 2.19. Prove the following:

• At most one thread gets the value STOP.
• At most n − 1 threads get the value DOWN.
• At most n − 1 threads get the value RIGHT. (This is not symmetric with the proof

for the previous item.)

2.11 Exercises 45

1 class FastPath implements Lock {
2 private Lock lock;
3 private int x, y = -1;
4 public void lock() {
5 int i = ThreadID.get();
6 x = i; // I’m here
7 while (y != -1) {} // is the lock free?
8 y = i; // me again?
9 if (x != i) // Am I still here?

10 lock.lock(); // slow path
11 }
12 public void unlock() {
13 y = -1;
14 lock.unlock();
15 }
16 }

FIGURE 2.18

Fast-path mutual exclusion algorithm used in Exercise 2.8.

1 class Bouncer {
2 public static final int DOWN = 0;
3 public static final int RIGHT = 1;
4 public static final int STOP = 2;
5 private boolean goRight = false;
6 private int last = -1;
7 int visit() {
8 int i = ThreadID.get();
9 last = i;

10 if (goRight)
11 return RIGHT;
12 goRight = true;
13 if (last == i)
14 return STOP;
15 else
16 return DOWN;
17 }
18 }

FIGURE 2.19

The Bouncer class implementation for Exercise 2.9.

Exercise 2.10. So far, we have assumed that all n threads have small unique IDs.
Here is one way to assign small unique IDs to threads. Arrange Bouncer objects in
a triangular matrix, where each Bouncer is given an ID as shown in Fig. 2.20. Each

46 CHAPTER 2 Mutual exclusion

FIGURE 2.20

Array layout for Bouncer objects for Exercise 2.10.

thread starts by visiting Bouncer 0. If it gets STOP, it stops. If it gets RIGHT, it visits 1,
and if it gets DOWN, it visits 2. In general, if a thread gets STOP, it stops. If it gets RIGHT,
it visits the next Bouncer on that row, and if it gets DOWN, it visits the next Bouncer in
that column. Each thread takes the ID of the Bouncer object where it stops.

• Prove that each thread eventually stops at some Bouncer object.
• How many Bouncer objects do you need in the array if you know in advance the

total number n of threads?

Exercise 2.11. Prove, by way of a counterexample, that the sequential timestamp
system T 3, starting in a valid state (with no cycles among the labels), does not work
for three threads in the concurrent case. Note that it is not a problem to have two
identical labels since one can break such ties using thread IDs. The counterexample
should display a state of the execution where three labels are not totally ordered.

Exercise 2.12. The sequential timestamp system T n had a range of O(3n) differ-
ent possible label values. Design a sequential timestamp system that requires only
O(n2n) labels. Note that in a timestamp system, one may look at all the labels to
choose a new label, yet once a label is chosen, it should be comparable to any other
label without knowing what the other labels in the system are. Hint: Think of the
labels in terms of their bit representation.

Exercise 2.13. Give Java code to implement the Timestamp interface of Fig. 2.11
using unbounded labels. Then, show how to replace the pseudocode of the Bakery
lock of Fig. 2.10 using your Timestamp Java code.

Exercise 2.14. We saw earlier the following theorem on the bounds of shared mem-
ory for mutual exclusion: Any deadlock-free mutual exclusion algorithm for n threads
must use at least n shared registers. For this exercise, we examine a new algorithm
that shows that the space lower bound of the above theorem is tight. Specifically, we
will show the following:

Theorem: There is a deadlock-free mutual exclusion algorithm for n threads that
uses exactly n shared bits.

2.11 Exercises 47

1 class OneBit implements Lock {
2 private boolean[] flag;
3 public OneBit (int n) {
4 flag = new boolean[n]; // all initially false
5 }
6 public void lock() {
7 int i = ThreadID.get();
8 do {
9 flag[i] = true;

10 for (int j = 0; j < i; j++) {
11 if (flag[j] == true) {
12 flag[i] = false;
13 while (flag[j] == true) {} // wait until flag[j] == false
14 break;
15 }
16 }
17 } while (flag[i] == false);
18 for (int j = i+1; j < n; j++) {
19 while (flag[j] == true) {} // wait until flag[j] == false
20 }
21 }
22 public void unlock() {
23 flag[ThreadID.get()] = false;
24 }
25 }

FIGURE 2.21

Pseudocode for the OneBit algorithm.

To prove this new theorem, we study the OneBit algorithm shown in Fig. 2.21. This
algorithm, developed independently by J. E. Burns and L. Lamport, uses exactly n

bits to achieve mutual exclusion; that is, it uses the minimum possible shared space.
The OneBit algorithm works as follows: First, a thread indicates that it wants to

acquire the lock by setting its bit to true. Then, it loops and reads the bits of all threads
with smaller IDs than its own. If all of these bits are false (while its own bit is true),
then the thread exits the loop. Otherwise, the thread sets its bit to false, waits until the
bit it found to be true becomes false, and starts all over again. Afterwards, the thread
reads the bits of all threads that have IDs greater than its own, and waits until they
are all false. Once this check passes, the thread can safely enter the critical section.

• Prove that the OneBit algorithm satisfies mutual exclusion.
• Prove that the OneBit algorithm is deadlock-free.

3
CHAPTER

Concurrent objects

The behavior of concurrent objects is best described through their safety and liveness
properties, often called correctness and progress. In this chapter, we examine various
ways of specifying correctness and progress.

All notions of correctness for concurrent objects are based on some notion of
equivalence with sequential behavior, but different notions are appropriate for dif-
ferent systems. We examine three correctness conditions. Sequential consistency is
a strong condition, often useful for describing standalone systems such as hardware
memory interfaces. Linearizability is an even stronger condition that supports com-
position: It is useful for describing systems composed from linearizable components.
Quiescent consistency is appropriate for applications that require high performance
at the cost of placing relatively weak constraints on object behavior.

Along a different dimension, different method implementations provide different
progress guarantees. Some are blocking, where the delay of one thread can prevent
other threads from making progress; some are nonblocking, where the delay of a
thread cannot delay other threads indefinitely.

3.1 Concurrency and correctness
What does it mean for a concurrent object to be correct? Fig. 3.1 shows a simple
lock-based concurrent “first-in-first-out” (FIFO) queue. The enq() and deq() meth-
ods synchronize using a mutual exclusion lock of the kind studied in Chapter 2. We
immediately intuit that this implementation should be correct: Because each method
holds an exclusive lock the entire time it accesses and updates fields, the method calls
take effect sequentially.

This idea is illustrated in Fig. 3.2, which shows an execution in which thread A

enqueues a, B enqueues b, and C dequeues twice, first throwing EmptyException, and
second returning b. Overlapping intervals indicate concurrent method calls. All the
method calls overlap in time. In this figure, as in others, time moves from left to right,
and dark lines indicate intervals. The intervals for a single thread are displayed along
a single horizontal line. When convenient, the thread name appears on the left. A bar
represents an interval with a fixed start and stop time. A bar with dotted lines on the
right represents an interval with a fixed start-time and an unknown stop-time. The
label “q.enq(x)” means that a thread enqueues item x at object q, while “q.deq(x)”
means that the thread dequeues item x from object q.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00012-4
Copyright © 2021 Elsevier Inc. All rights reserved.

49

50 CHAPTER 3 Concurrent objects

1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
4 Lock lock;
5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantLock();
8 items = (T[])new Object[capacity];
9 }

10 public void enq(T x) throws FullException {
11 lock.lock();
12 try {
13 if (tail - head == items.length)
14 throw new FullException();
15 items[tail % items.length] = x;
16 tail++;
17 } finally {
18 lock.unlock();
19 }
20 }
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return x;
29 } finally {
30 lock.unlock();
31 }
32 }
33 }

FIGURE 3.1

A lock-based FIFO queue. The queue’s items are kept in an array items, where head is the
index of the next item (if any) to dequeue, and tail is the index of the first open array slot
(modulo the capacity). The lock field contains a lock that ensures that methods are
mutually exclusive. Initially head and tail are zero, and the queue is empty. If enq() finds
the queue is full (i.e., head and tail differ by the queue capacity), then it throws an
exception. Otherwise, there is room, so enq() stores the item at array entry for tail, and
then increments tail. The deq() method works in a symmetric way.

The timeline shows which thread holds the lock. Here, C acquires the lock, ob-
serves the queue to be empty, releases the lock, and throws an exception. It does not
modify the queue. B acquires the lock, inserts b, and releases the lock. A acquires the
lock, inserts a, and releases the lock. C reacquires the lock, dequeues b, releases the

3.1 Concurrency and correctness 51

FIGURE 3.2

Lock-based queue execution. Here, C acquires the lock, observes the queue to be empty,
releases the lock, and throws an exception. B acquires the lock, inserts b, and releases the
lock. A acquires the lock, inserts a, and releases the lock. C reacquires the lock,
dequeues b, releases the lock, and returns b.

lock, and returns b. Each of these calls takes effect sequentially, and we can easily
verify that dequeuing b before a is consistent with our understanding of sequential
FIFO queue behavior.

Unfortunately, it follows from Amdahl’s law (Chapter 1) that concurrent objects
whose methods hold exclusive locks, and therefore effectively execute one after the
other, are less desirable than ones with finer-grained locking or no locks at all. We
therefore need a way to specify the behavior required of concurrent objects, and to
reason about their implementations, without relying on method-level locking.

Consider the alternative concurrent queue implementation in Fig. 3.3. It has al-
most the same internal representation as the lock-based queue of Fig. 3.1; the only
difference is the absence of a lock. We claim that this implementation is correct pro-
vided there is only a single enqueuer and a single dequeuer. But it is no longer easy
to explain why. If the queue supported concurrent enqueues or concurrent dequeues,
it would not even be clear what it means for a queue to be FIFO.

The lock-based queue example illustrates a useful principle: It is easier to reason
about the behavior of concurrent objects if we can somehow map their concurrent
executions to sequential ones, and otherwise limit our reasoning to these sequential
executions. This principle is the key to the correctness properties introduced in this
chapter. Therefore, we begin by considering specifications of sequential objects.

52 CHAPTER 3 Concurrent objects

1 class WaitFreeQueue<T> {
2 int head = 0, tail = 0;
3 T[] items;
4 public WaitFreeQueue(int capacity) {
5 items = (T[]) new Object[capacity];
6 }
7 public void enq(T x) throws FullException {
8 if (tail - head == items.length)
9 throw new FullException();

10 items[tail % items.length] = x;
11 tail++;
12 }
13 public T deq() throws EmptyException {
14 if (tail - head == 0)
15 throw new EmptyException();
16 T x = items[head % items.length];
17 head++;
18 return x;
19 }
20 }

FIGURE 3.3

A single-enqueuer/single-dequeuer FIFO queue. The structure is identical to that of the
lock-based FIFO queue, except that there is no need for the lock to coordinate access.

3.2 Sequential objects
An object in languages such as Java and C++ is a container for data and a set of meth-
ods, which are the only way to manipulate those data. Each object has a class, which
defines the object’s methods and how they behave. An object has a well-defined state
(for example, the FIFO queue’s current sequence of items). There are many ways to
describe how an object’s methods behave, ranging from formal specifications to plain
English. The application program interface (API) documentation that we use every
day lies somewhere in between.

The API documentation typically says something like the following: If the ob-
ject is in such-and-such a state before you call the method, then the object will be
in some other state when the method returns, and the call will return a particular
value, or throw a particular exception. This kind of description divides naturally into
a precondition, which describes the object’s state before invoking the method, and a
postcondition, which describes the object’s state and return value when the method
returns. A change to an object’s state is sometimes called a side effect.

For example, a FIFO queue might be described as follows: The class provides two
methods, enq() and deq(). The queue state is a sequence of items, possibly empty. If
the queue state is a sequence q (precondition), then a call to enq(z) leaves the queue
in state q · z (postcondition with side effect), where “·” denotes concatenation. If the

3.3 Sequential consistency 53

queue object is nonempty, say, a · q (precondition), then the deq() method removes
the sequence’s first element a, leaving the queue in state q, and returns this element
(postcondition). If, instead, the queue object is empty (precondition), the method
throws EmptyException and leaves the queue state unchanged (postcondition, no side
effect).

This style of documentation, called a sequential specification, is so familiar that
it is easy to overlook how elegant and powerful it is. The length of the object’s docu-
mentation is linear in the number of methods, because each method can be described
in isolation. There are a vast number of potential interactions among methods, and all
such interactions are characterized succinctly by the methods’ side effects on the ob-
ject state. The object’s documentation describes the object state before and after each
call, and we can safely ignore any intermediate states that the object may assume
while the method call is in progress.

Defining objects in terms of preconditions and postconditions makes sense in a
sequential model of computation, where a single thread manipulates a collection of
objects. But this familiar style of documentation fails for objects shared by multiple
threads. If an object’s methods can be invoked concurrently by multiple threads, then
method calls can overlap in time, and it no longer makes sense to talk about their
order. What does it mean, for example, if x and y are enqueued onto a FIFO queue
during overlapping intervals? Which will be dequeued first? Can we continue to de-
scribe methods in isolation, via preconditions and postconditions, or must we provide
explicit descriptions of every possible interaction among every possible collection of
concurrent method calls?

Even the notion of an object’s state becomes confusing. In a single-threaded pro-
gram, an object must assume a meaningful state only between method calls.1 In a
multithreaded program, however, overlapping method calls may be in progress at
every instant, so a concurrent object might never be between method calls. Every
method call must be prepared to encounter an object state that reflects the incomplete
effects of concurrent method calls, a problem that does not arise in single-threaded
programs.

3.3 Sequential consistency
One way to develop an intuition about how concurrent objects should behave is to
review examples of concurrent computations involving simple objects, and decide,
in each case, whether the behavior agrees with our intuition about how the objects
should behave.

Method calls take time. A method call is the interval that starts with an invocation
event and continues until the corresponding response event, if any. Method calls by

1 There is an exception: Care must be taken if one method partially changes an object’s state and then
calls another method of that same object.

54 CHAPTER 3 Concurrent objects

FIGURE 3.4

Why each method call should appear to take effect in one-at-a-time order. Two threads
concurrently write −3 and 7 to a shared register r. Later, one thread reads r and returns the
value −7. We expect to find either 7 or −3 in the register, not a mixture of both.

FIGURE 3.5

Why method calls should appear to take effect in program order. This behavior is not
acceptable because the value the thread read is not the last value it wrote (and no other
thread writes to the register).

concurrent threads may overlap, while method calls by a single thread are always
sequential (nonoverlapping, one-after-the-other). We say a method call is pending if
its invocation event has occurred, but its response event has not.

For historical reasons, the object version of a read–write memory location is
called a register (see Chapter 4). In Fig. 3.4, two threads concurrently write −3 and
7 to a shared register r (as before, “r.read(x)” means that a thread reads value x from
register object r , and similarly for “r.write(x)”). Later, one thread reads r and returns
the value −7. This behavior is surprising. We expect to find either 7 or −3 in the
register, not a mixture of both. This example suggests the following principle:

Principle 3.3.1. Method calls should appear to happen in a one-at-a-time, sequential
order.

By itself, this principle is too weak to be useful. For example, it permits reads to
always return the object’s initial state, even in sequential executions (i.e., executions
in which method calls do not overlap). Or consider the execution in Fig. 3.5, in which
a single thread writes 7 and then −3 to a shared register r . Later, it reads r and returns
7. For some applications, this behavior might not be acceptable because the value the
thread read is not the value it wrote most recently. The order in which a single thread
issues method calls is called its program order. (Method calls by different threads are
unrelated by program order.) In this example, we were surprised that operation calls
did not take effect in program order. This example suggests the following principle:

Principle 3.3.2. Method calls should appear to take effect in program order.

3.3 Sequential consistency 55

FIGURE 3.6

There are two possible sequential orders that can justify this execution. Both orders are
consistent with the method calls’ program order, and either one is enough to show that the
execution is sequentially consistent.

FIGURE 3.7

Sequential consistency versus real-time order. Thread A enqueues x, and later thread B
enqueues y, and finally A dequeues y. This execution may violate our intuitive notion of how
a FIFO queue should behave because the method call enqueuing x finishes before the
method call enqueuing y starts, so y is enqueued after x. But it is dequeued before x.
Nevertheless, this execution is sequentially consistent.

This principle ensures that purely sequential computations behave the way we ex-
pect. Together, Principles 3.3.1 and 3.3.2 define sequential consistency, a correctness
condition that is widely used in the literature on multiprocessor synchronization.

Sequential consistency requires that method calls act as if they occurred in a se-
quential order consistent with program order. That is, there is a way to order all the
method calls in any concurrent execution so that they (1) are consistent with program
order and (2) meet the object’s sequential specification. Multiple sequential orders
may satisfy these conditions. For example, in Fig. 3.6, thread A enqueues x while
thread B enqueues y, and then A dequeues y while B dequeues x. Two sequential
orders explain these results: (1) A enqueues x, B enqueues y, B dequeues x, and then
A dequeues y, or (2) B enqueues y, A enqueues x, A dequeues y, and then B de-
queues x. Both orders are consistent with the program order; either suffices to show
that the execution is sequentially consistent.

3.3.1 Sequential consistency versus real-time order
In Fig. 3.7, thread A enqueues x, and later B enqueues y, and finally A dequeues y.
This execution may violate our intuitive notion of how a FIFO queue should behave:

56 CHAPTER 3 Concurrent objects

The call enqueuing x finishes before the call enqueuing y starts, so y is enqueued
after x. But it is dequeued before x. Nevertheless, this execution is sequentially con-
sistent. Even though the call that enqueues x happens before the call that enqueues y,
these calls are unrelated by program order, so sequential consistency is free to re-
order them. When one operation completes before another begins, we say that the
first operation precedes the second in the real-time order. This example shows that
sequential consistency need not preserve the real-time order.

One could argue whether it is acceptable to reorder method calls whose intervals
do not overlap, even if they occur in different threads. For example, we might be
unhappy if we deposit our paycheck on Monday, but the bank bounces our rent check
the following Friday because it reordered our deposit after your withdrawal.

3.3.2 Sequential consistency is nonblocking
How much does sequential consistency limit concurrency? Specifically, under what
circumstances does sequential consistency require one method call to block wait-
ing for another to complete? Perhaps surprisingly, the answer is (essentially) never.
More precisely, for any pending method call in a sequentially consistent concurrent
execution, there is some sequentially consistent response, that is, a response to the
invocation that could be given immediately without violating sequential consistency.
We say that a correctness condition with this property is nonblocking. Sequential
consistency is a nonblocking correctness condition.

Note that this observation does not mean that it is easy to figure out a sequentially
consistent response for a pending method call, only that the correctness condition
itself does not stand in the way. The observation holds only for total methods, which

REMARK 3.3.1

The term nonblocking is used to denote several different notions. In this context,
referring to correctness conditions, it means that for any pending call of a total
method, there is a response that satisfies the correctness condition. In Section 3.8,
referring to progress conditions, it means that a progress condition guarantees
that the delay of one or more threads cannot prevent other threads from making
progress. When referring to an object implementation, it means that the implemen-
tation meets a nonblocking progress condition. (It may even be used with finer
granularity, referring to an individual method of an object implementation that
cannot be prevented from making progress by the delay of other threads.) In the
systems literature, a nonblocking operation returns immediately without waiting
for the operation to take effect, whereas a blocking operation does not return until
the operation is complete. (Blocking is also used to describe a lock implementation
that suspends a thread that tries to acquire a lock that is held by another thread,
as opposed to spinning implementations, which we discuss in Chapter 7). Unfor-
tunately, these various uses are all too well established to change, but it should be
clear from the context which meaning is intended.

3.3 Sequential consistency 57

are defined for every object state (i.e., for any state on which a total method is in-
voked, there is some response allowed by the sequential specification). There is, of
course, no sequentially consistent response to a method call if there is no response
that satisfies the sequential specification. Our informal description of sequential con-
sistency thus far is not sufficient to capture this and other important details, such as
what it exactly means for an execution with pending method calls to be sequentially
consistent. We make this notion more precise in Section 3.6.

3.3.3 Compositionality
Any sufficiently complex system must be designed and implemented in a modular
fashion. Components are designed, implemented, and proved correct independently.
Each component makes a clear distinction between its implementation, which is
hidden, and its interface, which characterizes the guarantees it makes to the other
components. For example, if a concurrent object’s interface states that it is a sequen-
tially consistent FIFO queue, then users of the queue need not know anything about
how the queue is implemented. The result of composing individually correct compo-
nents that rely only on one another’s interfaces should itself be a correct system.

A correctness property P is compositional if, whenever each object in the system
satisfies P , the system as a whole satisfies P . Compositionality is important because
it enables a system to be assembled easily from independently derived components.
A system based on a noncompositional correctness property cannot rely solely on its
components’ interfaces: Some kind of additional constraints are needed to ensure that
the components are actually compatible.

Is sequential consistency compositional? That is, is the result of composing mul-
tiple sequentially consistent objects itself sequentially consistent? The answer, unfor-
tunately, is no. In Fig. 3.8, two threads, A and B, call enqueue and dequeue methods
for two queue objects, p and q. It is not hard to see that p and q are each sequentially
consistent: The sequence of method calls for p is the same as in the sequentially con-
sistent execution shown in Fig. 3.7, and the behavior of q is symmetric. Nevertheless,
the execution as a whole is not sequentially consistent.

FIGURE 3.8

Sequential consistency is not compositional. Two threads, A and B, call enqueue and
dequeue methods on two queue objects, p and q. It is not hard to see that p and q are
each sequentially consistent, yet the execution as a whole is not sequentially consistent.

58 CHAPTER 3 Concurrent objects

To see that there is no correct sequential execution of these methods calls that is
consistent with their program order, assume, by way of contradiction, that there is
such an execution. We use the following shorthand: 〈p.enq(x) A〉 → 〈p.deq()x B〉
means that any sequential execution must order A’s enqueue of x at p before B’s
dequeue of x at p, and so on. Because p is FIFO and A dequeues y from p, y must
have been enqueued at p before x:

〈p.enq(y) B〉 → 〈p.enq(x) A〉.
Similarly, x must have been enqueued onto q before y:

〈q.enq(x) A〉 → 〈q.enq(y) B〉.
But program order implies that

〈p.enq(x) A〉 → 〈q.enq(x) A〉 and 〈q.enq(y) B〉 → 〈p.enq(y) B〉.
Together, these orderings form a cycle.

3.4 Linearizability
Sequential consistency has a serious drawback: it is not compositional. That is, the
result of composing sequentially consistent components is not itself necessarily se-
quentially consistent. To fix this shortcoming, we replace the requirement that method
calls appear to happen in program order with the following stronger constraint:

Principle 3.4.1. Each method call should appear to take effect instantaneously at
some moment between its invocation and response.

This principle states that the real-time order of method calls must be preserved.
We call this correctness property linearizability. Every linearizable execution is se-
quentially consistent, but not vice versa.

3.4.1 Linearization points
The usual way to show that a concurrent object implementation is linearizable is
to identify for each method a linearization point, an instant when the method takes
effect. We say that a method is linearized at its linearization point. For lock-based
implementations, any point within each method’s critical section can serve as its lin-
earization point. For implementations that do not use locks, the linearization point is
typically a single step where the effects of the method call become visible to other
method calls.

For example, recall the single-enqueuer/single-dequeuer queue of Fig. 3.3. This
implementation has no critical sections, and yet we can identify linearization points
for its methods. For example, if a deq() method returns an item, its linearization point
is when the head field is updated (line 17). If the queue is empty, the deq() method is
linearized when it reads the tail field (line 14). The enq() method is similar.

3.5 Quiescent consistency 59

3.4.2 Linearizability versus sequential consistency
Like sequential consistency, linearizability is nonblocking: There is a linearizable
response to any pending call of a total method. In this way, linearizability does not
limit concurrency.

Threads that communicate only through a single shared object (e.g., the memory
of a shared-memory multiprocessor) cannot distinguish between sequential consis-
tency and linearizability. Only an external observer, who can see that one operation
precedes another in the real-time order, can tell that a sequentially consistent object
is not linearizable. For this reason, the difference between sequential consistency and
linearizability is sometimes called external consistency. Sequential consistency is a
good way to describe standalone systems, where composition is not an issue. How-
ever, if the threads share multiple objects, these objects may be external observers for
each other, as we saw in Fig. 3.8.

Unlike sequential consistency, linearizability is compositional: The result of com-
posing linearizable objects is linearizable. For this reason, linearizability is a good
way to describe components of large systems, where components must be imple-
mented and verified independently. Because we are interested in systems that com-
pose, most (but not all) data structures considered in this book are linearizable.

3.5 Quiescent consistency
For some systems, implementors may be willing to trade consistency for perfor-
mance. That is, we may relax the consistency condition to allow cheaper, faster,
and/or more efficient implementations. One way to relax consistency is to enforce
ordering only when an object is quiescent, that is, when it has no pending method
calls. Instead of Principles 3.3.2 and 3.4.1, we would adopt the following principle:

Principle 3.5.1. Method calls separated by a period of quiescence should appear to
take effect in their real-time order.

For example, suppose A and B concurrently enqueue x and y in a FIFO queue.
The queue becomes quiescent, and then C enqueues z. We are not able to predict the
relative order of x and y in the queue, but we do know they are ahead of z.

Together, Principles 3.3.1 and 3.5.1 define a correctness property called quies-
cent consistency. Informally, it says that any time an object becomes quiescent, the
execution so far is equivalent to some sequential execution of the completed calls.

As an example of quiescent consistency, consider the shared counter from Chap-
ter 1. A quiescently consistent shared counter would return numbers, not necessarily
in the order of the getAndIncrement() requests, but always without duplicating or
omitting a number. The execution of a quiescently consistent object is somewhat like
a game of musical chairs: At any point, the music might stop, that is, the state could
become quiescent. At that point, each pending method call must return an index so
that all the indices together meet the specification of a sequential counter, implying

60 CHAPTER 3 Concurrent objects

no duplicated or omitted numbers. In other words, a quiescently consistent counter is
an index distribution mechanism, useful as a “loop counter” in programs that do not
care about the order in which indices are issued.

3.5.1 Properties of quiescent consistency
Note that sequential consistency and quiescent consistency are incomparable: There
exist sequentially consistent executions that are not quiescently consistent, and vice
versa. Quiescent consistency does not necessarily preserve program order, and se-
quential consistency is unaffected by quiescent periods. On the other hand, lineariz-
ability is stronger than both quiescent consistency and sequential consistency. That
is, a linearizable object is both quiescently consistent and sequentially consistent.

Like sequential consistency and linearizability, quiescent consistency is non-
blocking: Any pending call to a total method in a quiescently consistent execution
can be completed.

Quiescent consistency is compositional: A system composed of quiescently con-
sistent objects is itself quiescently consistent. It follows that quiescently consistent
objects can be composed to construct more complex quiescently consistent objects.
It is interesting to consider whether we could build useful systems using quiescent
consistency rather than linearizability as the fundamental correctness property, and
how the design of such systems would differ from existing system designs.

3.6 Formal definitions
We now consider more precise definitions. We focus on linearizability, since it is the
property most often used in this book. We leave it as an exercise to provide analogous
definitions for quiescent consistency and sequential consistency.

Informally, a concurrent object is linearizable if each method call appears to take
effect instantaneously at some moment between that method’s invocation and return
events. This statement suffices for most informal reasoning, but a more precise for-
mulation is needed to cover some tricky cases (such as method calls that have not
returned), and for more rigorous styles of argument.

3.6.1 Histories
We model the observable behavior of an execution of a concurrent system by a se-
quence of events called a history, where an event is an invocation or response of a
method. We write a method invocation as 〈x.m(a∗) A〉, where x is an object, m is a
method name, a∗ is a sequence of arguments, and A is a thread. We write a method
response as 〈x : t (r∗) A〉, where t is either OK or an exception name, and r∗ is a
sequence of result values.

An invocation and a response match if they name the same object and thread. An
invocation in H is pending if no matching response follows the invocation. A method

3.6 Formal definitions 61

call in a history H is a pair consisting of an invocation and either the next matching
response in H or a special ⊥ value (pronounced “bottom”) if the invocation is pend-
ing (i.e., if there is no subsequent matching response). We say that a method call is
pending if its invocation is pending, and that it is complete otherwise. A history is
complete if all its method calls are complete. For a history H , we denote the subse-
quence of H consisting of all events of complete method calls (i.e., eliding all the
pending invocations of H) by complete(H).

The interval of a method call in a history H is the history’s sequence of events
starting from its invocation and ending with its response, or the suffix of H starting
from its invocation if the method call is pending. Two method calls overlap if their
intervals overlap.

A history is sequential if its first event is an invocation, and each invocation,
except possibly the last, is followed immediately by a matching response, and each
response is immediately preceded by an invocation. No method calls overlap in a
sequential history, and a sequential history has at most one pending invocation.

A subhistory of a history H is a subsequence of H . Sometimes we focus on a
single thread or object: A thread subhistory, H |A (“H at A”), of a history H is the
subsequence of all events in H whose thread names are A. An object subhistory H |x
is similarly defined for an object x. We require each thread to complete each method
call before calling another method: A history H is well formed if each thread sub-
history is sequential. Henceforth, we consider only well-formed histories. Although
thread subhistories of a well-formed history are always sequential, object subhistories
need not be; method calls to the same object may overlap in a well-formed history.
Finally, because what matters in the end is how each thread views the history, we
say that two histories are equivalent if every thread has the same thread subhistory in
both histories; that is, H and H ′ are equivalent if H |A = H ′|A for every thread A.

How can we tell whether a concurrent object is correct? Or, said differently, how
do we define correctness for a concurrent object? The basic idea is to require a concur-
rent execution to be equivalent, in some sense, to some sequential history; the exact
sense of equivalence is different for different correctness properties. We assume that
we can tell whether a sequential object is correct, that is, whether a sequential object
history is a legal history for the object’s class. A sequential specification for an object
is just a set of legal sequential histories for the object. A sequential history H is legal
if each object subhistory is legal for that object.

A method m of an object x is total if for every finite complete history H in the se-
quential specification of x and every invocation 〈x.m(a∗) A〉 of m, there is a response
〈x : t (r∗) A〉 such that H · 〈x.m(a∗) A〉 · 〈x : t (r∗) A〉 is in the sequential specification
of x. A method is partial if it is not total.

3.6.2 Linearizability
A key concept in defining linearizability is the real-time order of a history. Recall
that a (strict) partial order → on a set X is a relation that is irreflexive and transitive.
That is, it is never true that x → x, and whenever x → y and y → z, then x → z.

62 CHAPTER 3 Concurrent objects

Note that there may be distinct x and y such that neither x → y nor y → x. A total
order < on X is a partial order such that for all distinct x and y in X, either x < y or
y < x.

Any partial order can be extended to a total order.

Fact 3.6.1. If → is a partial order on X, then there exists a total order < on X such
that if x → y then x < y.

We say that a method call m0 precedes a method call m1 in history H if m0
finishes before m1 starts, that is, if m0’s response event occurs before m1’s invocation
event in H . This notion is important enough to introduce some shorthand notation:
Given a history H containing method calls m0 and m1, we write m0 →H m1 if m0
precedes m1 in H . We leave it as an exercise to show that →H is a partial order. Note
that if H is sequential, then →H is a total order. Given a history H and an object x

such that H |x contains method calls m0 and m1, when H is clear from the context,
we write m0 →x m1 if m0 precedes m1 in H |x.

For linearizability, the basic rule is that if one method call precedes another, then
the earlier call must take effect before the later call (each call must linearize within
its interval, and the interval of the earlier interval is entirely in front of the interval of
the later call). By contrast, if two method calls overlap, then their order is ambiguous,
and we are free to order them in any convenient way.

Definition 3.6.2. A legal sequential history S is a linearization of a history H if H

can be extended to a history H ′ by appending zero or more responses such that:

L1 complete(H ′) is equivalent to S, and
L2 if method call m0 precedes method call m1 in H , then the same is true in S (i.e.,

m0 →H mq implies m0 →S m1).

H is linearizable if there is a linearization of H .

Informally, extending H to H ′ captures the idea that some pending invocations
may have taken effect, even though their responses have not yet been returned to the
caller. Fig. 3.9 illustrates the notion: We must complete the pending enq(x) method
call to justify the deq() call that returns x. The second condition says that if one
method call precedes another in the original history, then that ordering must be pre-
served in the linearization.

FIGURE 3.9

The pending enq(x) method call must take effect early to justify the deq() call that returns x.

3.6 Formal definitions 63

3.6.3 Linearizability is compositional
Linearizability is compositional.

Theorem 3.6.3. H is linearizable if, and only if, for each object x, H |x is lineariz-
able.

Proof. The “only if” part is left as an exercise.
For each object x, pick a linearization of H |x. Let Rx be the set of responses

appended to H |x to construct that linearization, and let →x be the corresponding lin-
earization order. Let H ′ be the history constructed by appending to H each response
in Rx (the order in which they are appended does not matter).

We argue by induction on the number of method calls in H ′. For the base case, if
H ′ contains no method calls, we are done. Otherwise, assume the claim for every H ′
containing fewer than k ≥ 1 method calls. For each object x, consider the last method
call in H ′|x. One of these calls m must be maximal with respect to →H ; that is,
there is no m′ such that m →H m′. Let G′ be the history defined by removing m from
H ′. Because m is maximal, H ′ is equivalent to G′ · m. By the induction hypothesis,
G′ is linearizable to a sequential history S′, and both H ′ and H are linearizable to
S′ · m.

3.6.4 Linearizability is nonblocking
Linearizability is a nonblocking property: A pending invocation of a total method is
never required to wait for another pending invocation to complete.

Theorem 3.6.4. If m is a total method of an object x and 〈x.m(a∗) P 〉 is a pending
invocation in a linearizable history H , then there exists a response 〈x : t (r∗) P 〉 such
that H · 〈x : t (r∗) P 〉 is linearizable.

Proof. Let S be any linearization of H . If S includes a response 〈x : t (r∗) P 〉 to
〈x.m(a∗) P 〉, we are done, since S is also a linearization of H · 〈x : t (r∗) P 〉. Other-
wise, 〈x.m(a∗) P 〉 does not appear in S either, since a linearization, by definition,
has no pending invocations. Because the method is total, there exists a response
〈x : t (r∗) P 〉 such that

S′ = S · 〈x.m(a∗) P 〉 · 〈x : t (r∗) P 〉
is a legal sequential history. S′ is a linearization of H · 〈x : t (r∗) P 〉, and hence is also
a linearization of H .

This theorem implies that linearizability by itself never forces a thread with a
pending invocation of a total method to block. Of course, blocking (or even deadlock)
may occur as artifacts of particular implementations of linearizability, but it is not
inherent to the correctness property itself. This theorem suggests that linearizability
is an appropriate correctness property for systems where concurrency and real-time
response are important.

64 CHAPTER 3 Concurrent objects

The nonblocking property does not rule out blocking in situations where it is
explicitly intended. For example, it may be sensible for a thread attempting to de-
queue from an empty queue to block, waiting until another thread enqueues an item.
A queue specification would capture this intention by making the deq() method’s
specification partial, leaving its effect undefined when applied to an empty queue.
The most natural concurrent interpretation of a partial sequential specification is sim-
ply to wait until the object reaches a state in which that method call’s response is
defined.

3.7 Memory consistency models
We can consider the memory read and written by a program as a single object—the
composition of many registers—shared by all threads of the program. This shared
memory is often the only means of communication among threads (i.e., the only way
that threads can observe the effects of other threads). Its correctness property is called
the memory consistency model, or memory model for short.

Early concurrent programs assumed sequentially consistent memory. Indeed, the
notion of sequential consistency was introduced to capture the assumptions implicit
in those programs. However, the memory of most modern multiprocessor systems is
not sequentially consistent: Compilers and hardware may reorder memory reads and
writes in complex ways. Most of the time no one can tell, because the vast majority
of reads and writes are not used for synchronization. These systems also provide
synchronization primitives that inhibit reordering.

We follow this approach in the first part of this book, where we focus on the prin-
ciples of multiprocessor programming. For example, the pseudocode for the various
lock algorithms in Chapter 2 assumes that if a thread writes two locations, one after
the other, then the two writes are made visible to other threads in the same order,
so that any thread that sees the later write will also see the earlier write. However,
Java does not guarantee this ordering for ordinary reads and writes. As mentioned
in Pragma 2.3.1, these locations would need to be declared volatile to work in real
systems. We omit these declarations because these algorithms are not practical in
any case, and the declarations would clutter the code and obscure the ideas embod-
ied in those algorithms. In the second part of the book, where we discuss practical
algorithms, we include these declarations. (We describe the Java memory model in
Appendix A.3.)

3.8 Progress conditions
The nonblocking property of linearizability (and sequential consistency and quies-
cent consistency) ensures that any pending invocation has a correct response. But
linearizability does not tell us how to compute such a response, nor even require an
implementation to produce a response at all. Consider, for example, the lock-based

3.8 Progress conditions 65

queue shown in Fig. 3.1. Suppose the queue is initially empty, and thread A halts
halfway through enqueuing x, while holding the lock, and B then invokes deq(). The
nonblocking property guarantees that there is a correct response to B’s call to deq();
indeed, there are two: It could throw an exception or return x. In this implementation,
however, B is unable to acquire the lock, and will be delayed as long as A is delayed.

Such an implementation is called blocking, because delaying one thread can
prevent others from making progress. Unexpected thread delays are common in mul-
tiprocessors. A cache miss might delay a processor for a hundred cycles, a page fault
for a few million cycles, preemption by the operating system for hundreds of millions
of cycles. These delays depend on the specifics of the machine and the operating sys-
tem. The part of the system that determines when threads take steps is called the
scheduler, and the order in which threads take steps is the schedule.

In this section, we consider progress conditions, which require implementations
to produce responses to pending invocations. Ideally, we would like to say simply
that every pending invocation gets a response. Of course, this is not possible if the
threads with pending invocations stop taking steps. So we require progress only for
those threads that keep taking steps.

3.8.1 Wait-freedom
A method of an object implementation is wait-free if every call finishes its execution
in a finite number of steps; that is, if a thread with a pending invocation to a wait-free
method keeps taking steps, it completes in a finite number of steps. We say that an
object implementation is wait-free if all its methods are wait-free, and that a class is
wait-free if every object of that class is wait-free.

The queue shown in Fig. 3.3 is wait-free. For example, if B invokes deq() while
A is halted halfway through enqueuing x, then B will either throw EmptyException
(if A halted before incrementing tail) or it will return x (if A halted afterward). In
contrast, the lock-based queue is not wait-free because B may take an unbounded
number of steps unsuccessfully trying to acquire the lock.

We say that wait-freedom is a nonblocking progress condition2 because a wait-
free implementation cannot be blocking: An arbitrary delay by one thread (say, one
holding a lock) cannot prevent other threads from making progress.

3.8.2 Lock-freedom
Wait-freedom is attractive because it guarantees that every thread that takes steps
makes progress. However, wait-free algorithms can be inefficient, and sometimes we
are willing to settle for a weaker progress guarantee.

One way to relax the progress condition is to guarantee progress only to some
thread, rather than every thread. A method of an object implementation is lock-free if
executing the method guarantees that some method call finishes in a finite number of

2 See Remark 3.3.1 for various ways in which the term nonblocking is used.

66 CHAPTER 3 Concurrent objects

steps; that is, if a thread with a pending invocation to a lock-free method keeps taking
steps, then within a finite number of its steps, some pending call to a method of that
object (not necessarily the lock-free method) completes. An object implementation
is lock-free if all its methods are lock-free. We say that lock-freedom guarantees
minimal progress because executing a lock-free method guarantees that the system
as a whole makes progress, but not that any thread in particular makes progress. In
contrast, wait-freedom guarantees maximal progress: Every thread that keeps taking
steps makes progress.

Clearly, any wait-free method implementation is also lock-free, but not vice versa.
Although lock-freedom is weaker than wait-freedom, if a program executes only a
finite number of method calls, then lock-freedom is equivalent to wait-freedom for
that program.

Lock-free algorithms admit the possibility that some threads could starve. As a
practical matter, there are many situations in which starvation, while possible, is ex-
tremely unlikely, so a fast lock-free algorithm may be preferable to a slower wait-free
algorithm. We consider several lock-free concurrent objects in later chapters.

Lock-freedom is also a nonblocking progress condition: A delayed thread does
not prevent other threads from making progress as long as the system as a whole
keeps taking steps.

3.8.3 Obstruction-freedom
Another way to relax the progress condition is to guarantee progress only under cer-
tain assumptions about how threads are scheduled, that is, about the order in which
threads take steps. For example, an implementation may guarantee progress only if
no other threads actively interfere with it. We say that a thread executes in isolation in
an interval if no other threads take steps in that interval. A method of an object imple-
mentation is obstruction-free if, from any point after which it executes in isolation, it
finishes in a finite number of steps; that is, if a thread with a pending invocation to an
obstruction-free method executes in isolation from any point (not necessarily from its
invocation), it completes in a finite number of steps.

Like other nonblocking progress conditions, obstruction-freedom ensures that a
thread cannot be blocked by the delay of other threads. Obstruction-freedom guar-
antees progress to every thread that executes in isolation, so like wait-freedom, it
guarantees maximal progress.

By guaranteeing progress only when one thread is scheduled to execute in iso-
lation (i.e., preventing other threads from taking steps concurrently), obstruction-
freedom seems to defy most operating system schedulers, which try to ensure a
schedule in which every thread keeps taking steps (such a schedule is called fair).
In practice, however, there is no problem. Ensuring progress for an obstruction-free
method does not require pausing all other threads, only those threads that conflict,
meaning those that are executing method calls on the same object. In later chapters,
we consider a variety of contention management techniques to reduce or eliminate
conflicting concurrent method calls. The simplest such technique is to introduce a

3.8 Progress conditions 67

back-off mechanism: a thread that detects a conflict pauses to give an earlier thread
time to finish. Choosing when to back off, and for how long, is discussed in detail in
Chapter 7.

3.8.4 Blocking progress conditions
In Chapter 2, we defined two progress conditions for lock implementations: deadlock-
freedom and starvation-freedom. Analogous to lock-freedom and wait-freedom,
respectively, deadlock-freedom guarantees that some thread makes progress and
starvation-freedom guarantees that every thread makes progress provided the lock
is not held by some other thread. The caveat that the lock is not held is necessary
because, while one thread holds the lock, no other thread can acquire it without vi-
olating mutual exclusion, the correctness property for locks. To guarantee progress,
we must also assume that a thread holding a lock will eventually release it. This as-
sumption has two parts: (a) Each thread that acquires the lock must release it after a
finite number of steps, and (b) the scheduler must allow a thread holding the lock to
keep taking steps.

We can generalize deadlock-freedom and starvation-freedom to concurrent ob-
jects by making a similar assumption for threads executing method calls. Specifically,
we assume that the scheduler is fair; that is, it allows every thread with a pending
method call to take steps. (The first part of the assumption must be guaranteed by
the concurrent object implementation.) We say that a method of an object imple-
mentation is starvation-free if it completes in a finite number of steps provided that
every thread with a pending method call keeps taking steps. We say that a method
of an object implementation is deadlock-free if, whenever there is a pending call to
that method and every thread with a pending method call keeps taking steps, some
method call completes in a finite number of steps.

Deadlock-freedom and starvation-freedom are useful progress conditions when
the operating system guarantees that every thread keeps taking steps, and particularly
that each thread takes a step in a timely manner. We say these properties are blocking
progress conditions because they admit blocking implementations where the delay of
a single thread can prevent all other threads from making progress.

A class whose methods rely on lock-based synchronization can guarantee, at best,
a blocking progress condition. Does this observation mean that lock-based algorithms
should be avoided? Not necessarily. If preemption in the middle of a critical section
is sufficiently rare, then blocking progress conditions may be effectively indistin-
guishable from their nonblocking counterparts. If preemption is common enough to
cause concern, or if the cost of preemption-based delay is sufficiently high, then it is
sensible to consider nonblocking progress conditions.

3.8.5 Characterizing progress conditions
We now consider the various progress conditions and how they relate to one an-
other. For example, wait-freedom and lock-freedom guarantee progress no matter
how threads are scheduled. We say that they are independent progress conditions.

68 CHAPTER 3 Concurrent objects

FIGURE 3.10

Progress conditions and their properties.

By contrast, obstruction-freedom, starvation-freedom, and deadlock-freedom are all
dependent progress conditions, where progress is guaranteed only if the underlying
operating system satisfies certain properties: fair scheduling for starvation-freedom
and deadlock-freedom, isolated execution for obstruction-freedom. Also, as we al-
ready discussed, wait-freedom, lock-freedom, and obstruction-freedom are all non-
blocking progress conditions, whereas starvation-freedom and deadlock-freedom are
blocking.

We can also characterize these progress conditions by whether they guarantee
maximal or minimal progress under their respective system assumptions: Wait-
freedom, starvation-freedom, and obstruction-freedom guarantee maximal progress,
whereas lock-freedom and deadlock-freedom guarantee only minimal progress.

Fig. 3.10 summarizes this discussion with a table that shows the various progress
conditions and their properties. There is a “hole” in this table because any condition
that guarantees minimal progress to threads that execute in isolation also guarantees
maximal progress to these threads.

Picking a progress condition for a concurrent object implementation depends on
both the needs of the application and the characteristics of the underlying platform.
Wait-freedom and lock-freedom have strong theoretical properties, they work on just
about any platform, and they provide guarantees useful to real-time applications
such as music, electronic games, and other interactive applications. The dependent
obstruction-free, deadlock-free, and starvation-free properties rely on guarantees pro-
vided by the underlying platform. Given those guarantees, however, the dependent
properties often admit simpler and more efficient implementations.

3.9 Remarks
Which correctness condition is right for your application? It depends on your appli-
cation’s needs. A lightly loaded printer server might be satisfied with a quiescently

3.10 Chapter notes 69

consistent queue of jobs, since the order in which documents are printed is of little
importance. A banking server that must execute customer requests in program order
(e.g., transfer $100 from savings to checking, then write a check for $50), might re-
quire a sequentially consistent queue. A stock trading server that is required to be
fair, ensuring that orders from different customers must be executed in the order they
arrive, would require a linearizable queue.

Which progress condition is right for your application? Again, it depends on the
application’s needs. In a way, this is a trick question. Different methods, even ones
for the same object, might have different progress conditions. For example, the ta-
ble lookup method of a firewall program, which checks whether a packet source is
suspect, is called frequently and is time-critical, so we might want it to be wait-free.
By contrast, the method that updates table entries, which is rarely called, might be
implemented using mutual exclusion. As we shall see, it is quite natural to write
applications whose methods differ in their progress guarantees.

So what progress condition is right for a particular operation? Programmers typ-
ically intend any operation they execute to eventually complete. That is, they want
maximal progress. However, ensuring progress requires assumptions about the un-
derlying platform. For example, how does the operating system schedule threads
for execution? The choice of progress condition reflects what the programmer is
willing to assume to guarantee that an operation will complete. For any progress
guarantee, the programmer must assume that the thread executing the operation is
eventually scheduled. For certain critical operations, the programmer may be unwill-
ing to assume more than that, incurring extra overhead to ensure progress. For other
operations, stronger assumptions, such as fairness or a particular priority scheme for
scheduling, may be acceptable, enabling less expensive solutions.

The following joke circulated in Italy in the 1920s: According to Mussolini, the
ideal citizen is intelligent, honest, and fascist. Unfortunately, no one is perfect, which
explains why everyone you meet is either intelligent and fascist but not honest, honest
and fascist but not intelligent, or honest and intelligent but not fascist.

As programmers, it would be ideal to have linearizable hardware, linearizable data
structures, and good performance. Unfortunately, technology is imperfect, and for the
time being, hardware that performs well is usually not even sequentially consistent.
As the joke goes, that leaves open the possibility that data structures might still be
linearizable while performing well. Nevertheless, there are many challenges to make
this vision work, and the remainder of this book presents a road map toward attaining
this goal.

3.10 Chapter notes
Leslie Lamport [102] introduced the notion of sequential consistency, while Christos
Papadimitriou [137] formulated the canonical formal characterization of serializabil-
ity. William Weihl [166] was the first to point out the importance of compositionality
(which he called locality). Maurice Herlihy and Jeannette Wing [75] introduced the

70 CHAPTER 3 Concurrent objects

notion of linearizability. Quiescent consistency was introduced implicitly by James
Aspnes, Maurice Herlihy, and Nir Shavit [14], and more explicitly by Nir Shavit and
Asaph Zemach [158]. Leslie Lamport [99,105] introduced the notion of an atomic
register.

The two-thread queue is considered folklore; as far as we are aware, it first ap-
peared in print in a paper by Leslie Lamport [103].

To the best of our knowledge, the notion of wait-freedom first appeared implicitly
in Leslie Lamport’s Bakery algorithm [100]. Lock-freedom has had several histori-
cal meanings and only in recent years has it converged to its current definition. The
notions of dependent progress and of minimal and maximal progress and the table
of progress conditions were introduced by Maurice Herlihy and Nir Shavit [72].
Obstruction-freedom was introduced by Maurice Herlihy, Victor Luchangco, and
Mark Moir [68].

3.11 Exercises
Exercise 3.1. Explain why quiescent consistency is compositional.

Exercise 3.2. Consider a memory object that encompasses two register components.
We know that if both registers are quiescently consistent, then so is the memory. Does
the converse hold? That is, if the memory is quiescently consistent, are the individual
registers quiescently consistent? Outline a proof, or give a counterexample.

Exercise 3.3. Give an example of an execution that is quiescently consistent but not
sequentially consistent, and another that is sequentially consistent but not quiescently
consistent.

Exercise 3.4. For each of the histories shown in Figs. 3.11 and 3.12, are they quies-
cently consistent? Sequentially consistent? Linearizable? Justify your answer.

Exercise 3.5. If we drop condition L2 from the linearizability definition, is the re-
sulting property the same as sequential consistency? Explain.

FIGURE 3.11

First history for Exercise 3.4.

3.11 Exercises 71

FIGURE 3.12

Second history for Exercise 3.4.

Exercise 3.6. Prove the “only if” part of Theorem 3.6.3.

Exercise 3.7. The AtomicInteger class (in the java.util.concurrent.atomic pack-
age) is a container for an integer value. One of its methods is

boolean compareAndSet(int expect, int update).

This method compares the object’s current value with expect. If the values are
equal, then it atomically replaces the object’s value with update and returns true.
Otherwise, it leaves the object’s value unchanged, and returns false. This class also
provides

int get()

which returns the object’s value.
Consider the FIFO queue implementation shown in Fig. 3.13. It stores its items

in an array items, which, for simplicity, we assume has unbounded size. It has two
AtomicInteger fields: head is the index of the next slot from which to remove an item,
and tail is the index of the next slot in which to place an item. Give an example
showing that this implementation is not linearizable.

Exercise 3.8. Consider the following rather unusual implementation of a method m:
In every history, the i-th time a thread calls m, the call returns after 2i steps. Is this
method wait-free?

Exercise 3.9. Consider a system with an object x and n threads. Determine if each of
the following properties are equivalent to saying x is deadlock-free, starvation-free,
obstruction-free, lock-free, wait-free, or none of these. Briefly justify your answers.

1. For every infinite history H of x, an infinite number of method calls complete.
2. For every finite history H of x, there is an infinite history H ′ = H · G.
3. For every infinite history H of x, every thread takes an infinite number of steps.
4. For every infinite history H of x, every thread that takes an infinite number of

steps in H completes an infinite number of method calls.

72 CHAPTER 3 Concurrent objects

1 class IQueue<T> {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicInteger tail = new AtomicInteger(0);
4 T[] items = (T[]) new Object[Integer.MAX_VALUE];
5 public void enq(T x) {
6 int slot;
7 do {
8 slot = tail.get();
9 } while (!tail.compareAndSet(slot, slot+1));

10 items[slot] = x;
11 }
12 public T deq() throws EmptyException {
13 T value;
14 int slot;
15 do {
16 slot = head.get();
17 value = items[slot];
18 if (value == null)
19 throw new EmptyException();
20 } while (!head.compareAndSet(slot, slot+1));
21 return value;
22 }
23 }

FIGURE 3.13

IQueue implementation for Exercise 3.7.

5. For every finite history H of x, there are n infinite histories H ′
i = H · Gi where

only thread i takes steps in Gi , where it completes an infinite number of method
calls.

6. For every finite history H of x, there is an infinite history H ′ = H ·G where every
thread completes an infinite number of method calls in G.

Exercise 3.10. This exercise examines the queue implementation in Fig. 3.14, whose
enq() method does not have a single fixed linearization point in the code.

The queue stores its items in an items array, which, for simplicity, we assume is
unbounded. The tail field is an AtomicInteger, initially zero.

The enq() method reserves a slot by incrementing tail, and then stores the item
at that location. Note that these two steps are not atomic: There is an interval after
tail has been incremented but before the item has been stored in the array.

The deq() method reads the value of tail, and then traverses the array in as-
cending order from slot zero to the tail. For each slot, it swaps null with the current
contents, returning the first non-null item it finds. If all slots are null, the procedure
is restarted.

3.11 Exercises 73

1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 static final int CAPACITY = Integer.MAX_VALUE;
5

6 public HWQueue() {
7 items =(AtomicReference<T>[])Array.newInstance(AtomicReference.class,
8 CAPACITY);
9 for (int i = 0; i < items.length; i++) {

10 items[i] = new AtomicReference<T>(null);
11 }
12 tail = new AtomicInteger(0);
13 }
14 public void enq(T x) {
15 int i = tail.getAndIncrement();
16 items[i].set(x);
17 }
18 public T deq() {
19 while (true) {
20 int range = tail.get();
21 for (int i = 0; i < range; i++) {
22 T value = items[i].getAndSet(null);
23 if (value != null) {
24 return value;
25 }
26 }
27 }
28 }
29 }

FIGURE 3.14

Herlihy–Wing queue for Exercise 3.10.

• Give an execution showing that the linearization point for enq() cannot occur at
line 15. (Hint: Give an execution in which two enq() calls are not linearized in the
order they execute line 15.)

• Give another execution showing that the linearization point for enq() cannot occur
at line 16.

• Since these are the only two memory accesses in enq(), we must conclude that
enq() has no single linearization point. Does this mean enq() is not linearizable?

Exercise 3.11. This exercise examines a stack implementation (Fig. 3.15) whose
push() method does not have a single fixed linearization point in the code.

The stack stores its items in an items array, which, for simplicity, we assume is
unbounded. The top field is an AtomicInteger, initially zero.

74 CHAPTER 3 Concurrent objects

1 public class AGMStack<T> {
2 AtomicReferenceArray<T> items;
3 AtomicInteger top;
4 static final int CAPACITY = Integer.MAX_VALUE;
5

6 public AGMStack() {
7 items = new AtomicReferenceArray<T>(CAPACITY);
8 top = new AtomicInteger(0);
9 }

10 public void push(T x) {
11 int i = top.getAndIncrement();
12 items.set(i,x);
13 }
14 public T pop() {
15 int range = top.get();
16 for (int i = range - 1; i > -1; i--) {
17 T value = items.getAndSet(i, null);
18 if (value != null) {
19 return value;
20 }
21 }
22 // Return Empty.
23 return null;
24 }
25 }

FIGURE 3.15

Afek–Gafni–Morrison stack for Exercise 3.11.

The push() method reserves a slot by incrementing top, and then stores the item
at that location. Note that these two steps are not atomic: There is an interval after
top has been incremented but before the item has been stored in the array.

The pop() method reads the value of top and then traverses the array in descending
order from the top to slot zero. For each slot, it swaps null with the current contents,
returning the first nonnull item it finds. If all slots are null, the method returns null,
indicating an empty stack.

• Give an execution showing that the linearization point for push() cannot occur at
line 11. (Hint: Give an execution in which two push() calls are not linearized in
the order they execute line 11.)

• Give another execution showing that the linearization point for push() cannot oc-
cur at line 12.

• Since these are the only two memory accesses in push(), we conclude that push()
has no single fixed linearization point. Does this mean push() is not linearizable?

Exercise 3.12. Prove that sequential consistency is nonblocking.

4
CHAPTER

Foundations of shared
memory

For millennia, chicken farmers around the world were forced to wait 5 to 6 weeks
before they could tell male and female chickens apart. This delay meant weeks of
wasted time and money, because unlike females, which grow to maturity, lay eggs,
and can ultimately be fried Kentucky style, the young males have no value, and are
discarded. Then, in the 1920s, Japanese scientists discovered an invaluable trick:
Male chicks have a small bump in their vent (anus) that females lack. If you press
on a chick’s behind and examine it, you can tell immediately which chicks should be
discarded (no need to wait 5 weeks). The trouble was that a sizable fraction of males
and females had bumps that were not clearcut, and could be either male or female.
Thus began the profession of “chicken sexing.” Japan opened schools for training
specialists who could sex on the order of 1000 chicks an hour with almost perfect
accuracy. After proper training, expert chicken sexers could reliably determine the
sex of day-old chicks at a glance using a collection of subtle perceptual cues. This
profession continues to this day. In interviews, chicken sexers claim that in many
cases they have no idea how they make their decisions. There is a technical name for
this ability: intuition. Our unsettling example suggests that training and practice can
enhance your intuition.

In this chapter, we begin our study of the foundations of concurrent shared-
memory computation. As you read through the algorithms, you might question their
“real-world value.” If you do, remember that their value is in training you, the reader,
to tell which types of algorithmic approaches work in a concurrent shared-memory
setting, and which do not, even when it is hard to tell. This will help you discard bad
ideas earlier, saving time and money.

The foundations of sequential computing were established in the 1930s by Alan
Turing and Alonzo Church, who independently formulated what has come to be
known as the Church–Turing thesis: Anything that can be computed, can be com-
puted by a Turing machine (or, equivalently, by Church’s lambda calculus). Any
problem that cannot be solved by a Turing machine (such as deciding whether a
program halts on any input) is universally considered to be unsolvable by any kind of
practical computing device. The Church–Turing thesis is a thesis, not a theorem, be-
cause the notion of “what is computable” is not defined in a precise, mathematically
rigorous way. Nevertheless, just about everyone believes this thesis.

To study concurrent shared-memory computation, we begin with a computational
model. A shared-memory computation consists of multiple threads, each of which is
a sequential program in its own right. These threads communicate by calling methods

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00013-6
Copyright © 2021 Elsevier Inc. All rights reserved.

75

76 CHAPTER 4 Foundations of shared memory

of objects that reside in a shared memory. Threads are asynchronous, meaning that
they may run at different speeds, and any thread can halt for an unpredictable duration
at any time. This notion of asynchrony reflects the realities of modern multiproces-
sor architectures, where thread delays are unpredictable, ranging from microseconds
(cache misses) to milliseconds (page faults) to seconds (scheduling interruptions).

The classical theory of sequential computability proceeds in stages. It starts with
finite-state automata, moves on to push-down automata, and culminates in Turing
machines. We, too, consider a progression of models for concurrent computing. We
start with the simplest form of shared-memory computation: Concurrent threads read
and write shared memory locations, which are called registers for historical reasons.
We start with very simple registers, and we show how to use them to construct a series
of more complex registers.

The classical theory of sequential computability is, for the most part, not con-
cerned with efficiency: To show that a problem is computable, it is enough to show
that it can be solved by a Turing machine. There is little incentive to make such a
Turing machine efficient, because a Turing machine is not a practical model of com-
putation. In the same way, we make little attempt to make our register constructions
efficient. We are interested in understanding whether such constructions exist and
how they work. They are not intended to be practical. We prefer inefficient but easy-
to-understand constructions over efficient but complicated ones.

In particular, some of our constructions use timestamps (i.e., counter values) to
distinguish older values from newer values. The problem with timestamps is that
they grow without bound, and eventually overflow any fixed-size variable. Bounded
solutions (such as the one in Section 2.8) are (arguably) more intellectually satisfying,
and we encourage readers to investigate them further through the references provided
in the chapter notes. Here, however, we focus on simpler, unbounded constructions,
because they illustrate the fundamental principles of concurrent programming with
less danger of becoming distracted by technicalities.

4.1 The space of registers
At the hardware level, threads communicate by reading and writing shared mem-
ory. A good way to understand interthread communication is to abstract away from
hardware primitives, and to think about communication as happening through shared
concurrent objects. Chapter 3 provides a detailed description of shared objects. For
now, it suffices to recall the two key properties of their design: safety, defined by
consistency conditions, and liveness, defined by progress conditions.

A read–write register (or just a register) is an object that encapsulates a value
that can be observed by a read() method and modified by a write() method (these
methods are often called load and store). Fig. 4.1 shows the Register<T> interface
implemented by all registers. The type T of the value is typically Boolean, Integer, or
a reference to an object. A register that implements the Register<Boolean> interface
is called a Boolean register (sometimes 1 and 0 are used as synonyms for true and

4.1 The space of registers 77

1 public interface Register<T> {
2 T read();
3 void write(T v);
4 }

FIGURE 4.1

The Register<T> interface.

1 public class SequentialRegister<T> implements Register<T> {
2 private T value;
3 public T read() {
4 return value;
5 }
6 public void write(T v) {
7 value = v;
8 }
9 }

FIGURE 4.2

The SequentialRegister class.

false). A register that implements the Register<Integer> for a range of M integer
values is called an M-valued register. We do not explicitly discuss any other kind of
register, except to note that any algorithm that implements integer registers can be
adapted to implement registers that hold references to other objects by representing
the references as integers.

If method calls do not overlap, a register implementation should behave as shown
in Fig. 4.2. On a multiprocessor, however, we expect method calls to overlap all the
time, so we need to specify what the concurrent method calls mean.

An atomic register is a linearizable implementation of the sequential register class
shown in Fig. 4.2. Informally, an atomic register behaves exactly as we would expect:
Each read returns the “last” value written. A model in which threads communicate
by reading and writing to atomic registers is intuitively appealing, and for a long time
was the standard model of concurrent computation.

One approach to implementing atomic registers is to rely on mutual exclusion:
protect each register with a mutual exclusion lock acquired by each call to read() or
write(). Unfortunately, we cannot use the lock algorithms of Chapter 2 here; those
algorithms accomplish mutual exclusion using registers, so it makes little sense to
implement registers using mutual exclusion. Moreover, as we saw in Chapter 3, us-
ing mutual exclusion, even if it is deadlock- or starvation-free, would mean that the
computation’s progress would depend on the operating system scheduler to guarantee
that threads never get stuck in critical sections. Since we wish to examine the basic
building blocks of concurrent computation using shared objects, it makes little sense
to assume the existence of a separate entity to provide the key progress property.

78 CHAPTER 4 Foundations of shared memory

Here is a different approach: Recall that an object implementation is wait-free
if each method call finishes in a finite number of steps, independently of how its
execution is interleaved with steps of other concurrent method calls. The wait-free
condition may seem simple and natural, but it has far-reaching consequences. In
particular, it rules out any kind of mutual exclusion, and guarantees independent
progress, that is, without making assumptions about the operating system scheduler.
We therefore require our register implementations to be wait-free.

It is also important to specify how many readers and writers are expected. Not
surprisingly, it is easier to implement a register that supports only a single reader
and a single writer than one that supports multiple readers and writers. For brevity,
we use SRSW for “single-reader, single-writer,” MRSW for “multi-reader, single-
writer,” and MRMW for “multi-reader, multi-writer.”

In this chapter, we address the following fundamental question:

Can any data structure implemented using the most powerful registers also be
implemented using the weakest?

Recall from Chapter 1 that any useful form of interthread communication must be
persistent: The message sent must outlive the active participation of the sender. The
weakest form of persistent synchronization is (arguably) the ability to set a single
persistent bit in shared memory, and the weakest form of synchronization is (unar-
guably) none at all: If the act of setting a bit does not overlap the act of reading that
bit, then the value read is the same as the value written. Otherwise, a read overlapping
a write could return any value.

Different kinds of registers come with different guarantees that make them more
or less powerful. For example, we have seen that registers may differ in the range of
values they may encapsulate (e.g., Boolean versus M-valued), and in the number of
readers and writers they support. They may also differ in the degree of consistency
they provide.

An SRSW or MRSW register implementation is safe if:

• A read() call that does not overlap a write() call returns the value written by the
most recent write() call. (The “most recent write() call” is well defined because
there is a single writer.)

• A read() call that overlaps a write() call may return any value within the register’s
allowed range of values (e.g., 0 to M − 1 for an M-valued register).

Be aware that the term “safe” is a historical accident. Because they provide such weak
guarantees, “safe” registers are actually quite unsafe.

Consider the history shown in Fig. 4.3. If the register is safe, then the three read
calls might behave as follows:

• R1 returns 0, the most recently written value.
• R2 and R3 are concurrent with W(1), so they may return any value in the range

of the register.

4.1 The space of registers 79

FIGURE 4.3

An SRSW register execution: Ri is the i-th read and W(v) is a write of value v. Time flows
from left to right. No matter whether the register is safe, regular, or atomic, R1 must return
0, the most recently written value. If the register is safe, then because R2 and R3 are
concurrent with W(1), they may return any value in the range of the register. If the register
is regular, R2 and R3 may each return either 0 or 1. If the register is atomic, then if R2

returns 1, then R3 must also return 1, and if R2 returns 0, then R3 may return 0 or 1.

It is convenient to define an intermediate level of consistency between safe and
atomic. A regular register is an SRSW or MRSW register where writes do not happen
atomically. Instead, while the write() call is in progress, the value being read may
“flicker” between the old and new value before finally replacing the older value.
More precisely:

• A regular register is safe, so any read() call that does not overlap a write() call
returns the most recently written value.

• Suppose a read() call overlaps one or more write() calls. Let v0 be the value
written by the latest preceding write() call, and let v1, . . . , vk be the sequence of
values written by write() calls that overlap the read() call. The read() call may
return vi for any i in the range 0 . . . k.

For the execution in Fig. 4.3, a regular register might behave as follows:

• R1 returns the old value, 0.
• R2 and R3 each return either the old value 0 or the new value 1.

Regular registers are quiescently consistent (Chapter 3), but not vice versa. Both safe
and regular registers permit only a single writer. Note that a regular register is actually
a quiescently consistent single-writer sequential register.

For an atomic register, the execution in Fig. 4.3 might produce the following re-
sults:

• R1 returns the old value, 0.
• If R2 returns 1, then R3 also returns 1.
• If R2 returns 0, then R3 returns either 0 or 1.

Fig. 4.4 shows a schematic view of the range of possible registers as a three-
dimensional space: The register size defines one dimension, the numbers of readers
and writers define another, and the register’s consistency property defines the third.

80 CHAPTER 4 Foundations of shared memory

FIGURE 4.4

The three-dimensional space of possible read–write register-based implementations.

This view should not be taken literally: There are several combinations, such as multi-
writer safe registers, that are not well defined.

To reason about algorithms for implementing regular and atomic registers, it is
convenient to rephrase our definitions directly in terms of object histories. From now
on, we consider only histories in which each read() call returns a value written by
some write() call (regular and atomic registers do not allow reads to make up return
values). For simplicity, we assume values read or written are unique.1

Recall that an object history is a sequence of invocation and response events,
where an invocation event occurs when a thread calls a method, and a matching re-
sponse event occurs when that call returns. A method call (or just a call) is the interval
between matching invocation and response events (including the invocation and re-
sponse events). Any history induces a partial order → on method calls, defined as
follows: If m0 and m1 are method calls, m0 → m1 if m0’s response event precedes
m1’s call event. (See Chapter 3 for complete definitions.)

Any register implementation (whether safe, regular, or atomic) defines a total or-
der on the write() calls called the write order, the order in which writes “take effect”
in the register. For safe and regular registers, the write order is trivial because they
allow only one writer at a time. For atomic registers, method calls have a linearization
order. We use this order to index the write calls: Write call W 0 is ordered first, W 1

second, and so on. We use vi to denote the unique value written by Wi . Note that for
SRSW or MRSW safe or regular registers, the write order is exactly the same as the
precedence order on writes.

1 If values are not inherently unique, we can use the standard technique of appending to them auxiliary
values invisible to the algorithm itself, used only in our reasoning to distinguish one value from another.

4.2 Register constructions 81

We use Ri to denote any read call that returns vi . Note that although a history
contains at most one Wi call, it might contain multiple Ri calls.

One can show that the following conditions provide a precise statement of what it
means for a register to be regular. First, no read call returns a value from the future:

It is never the case that Ri → Wi. (4.1.1)

Second, no read call returns a value from the distant past, that is, one that precedes
the most recently written nonoverlapping value:

It is never the case that for some j , Wi → Wj → Ri. (4.1.2)

To prove that a register implementation is regular, we must show that its histories
satisfy Conditions (4.1.1) and (4.1.2).

An atomic register satisfies one additional condition:

if Ri → Rj , then i ≤ j. (4.1.3)

This condition states that an earlier read cannot return a value later than that returned
by a later read. Regular registers are not required to satisfy Condition (4.1.3). To
show that a register implementation is atomic, we need first to define a write order,
and then to show that its histories satisfy Conditions (4.1.1)–(4.1.3).

4.2 Register constructions
We now show how to implement a range of surprisingly powerful registers from
simple safe Boolean SRSW registers. We consider a series of constructions, shown
in Fig. 4.5, that implement stronger from weaker registers. These constructions imply
that all read–write register types are equivalent, at least in terms of computability.

Base class Implemented class Section
safe SRSW safe MRSW 4.2.1
safe Boolean MRSW regular Boolean MRSW 4.2.2
regular Boolean MRSW regular MRSW 4.2.3
regular SRSW atomic SRSW 4.2.4
atomic SRSW atomic MRSW 4.2.5
atomic MRSW atomic MRMW 4.2.6
atomic MRSW

atomic snapshot
4.3

FIGURE 4.5

The sequence of register constructions.

In the last step, we show how atomic registers (and therefore safe registers) can
implement an atomic snapshot: an array of MRSW registers written by different
threads that can be read atomically by any thread.

82 CHAPTER 4 Foundations of shared memory

Some of these constructions are more powerful than necessary to complete the
sequence of derivations (for example, we do not need to provide the multi-reader
property for regular and safe registers to complete the derivation of an atomic SRSW
register). We present them anyway because they provide valuable insights.

Our code samples follow these conventions. When we display an algorithm to im-
plement a particular kind of register, say, a safe Boolean MRSW register, we present
the algorithm using a form somewhat like this:

class SafeBooleanMRSWRegister implements Register<Boolean>
{
...
}

While this notation makes clear the properties of the Register<> class being im-
plemented, it becomes cumbersome when we want to use this class to implement
other classes. Instead, when describing a class implementation, we use the following
conventions to indicate whether a particular field is safe, regular, or atomic: A field
otherwise named mumble is called s_mumble if it is safe, r_mumble if it is regular, and
a_mumble if it is atomic. Other important aspects of the field, such as its type and
whether it supports multiple readers or writers, are noted as comments within the
code, and should also be clear from the context.

4.2.1 Safe MRSW registers
Fig. 4.6 shows how to construct a safe MRSW register from safe SRSW registers.

Lemma 4.2.1. The construction in Fig. 4.6 is a safe MRSW register.

Proof. If A’s read() call does not overlap any write() call, then it does not overlap
any write() call of the component register s_table[A], so the read() call returns

1 public class SafeBooleanMRSWRegister implements Register<Boolean> {
2 boolean[] s_table; // array of safe SRSW registers
3 public SafeBooleanMRSWRegister(int capacity) {
4 s_table = new boolean[capacity];
5 }
6 public Boolean read() {
7 return s_table[ThreadID.get()];
8 }
9 public void write(Boolean x) {

10 for (int i = 0; i < s_table.length; i++)
11 s_table[i] = x;
12 }
13 }

FIGURE 4.6

The SafeBooleanMRSWRegister class: a safe Boolean MRSW register.

4.2 Register constructions 83

the value of s_table[A], which is the most recently written value. If A’s read() call
overlaps a write() call, it is allowed to return any value.

4.2.2 A regular Boolean MRSW register
The next construction, shown in Fig. 4.7, builds a regular Boolean MRSW register
from a safe Boolean MRSW register. For Boolean registers, the only difference be-
tween safe and regular registers arises when the newly written value x is the same as
the old. A regular register can only return x, while a safe register may return either
Boolean value. We circumvent this problem simply by ensuring that a value is written
only if it is distinct from the previously written value.

Lemma 4.2.2. The construction in Fig. 4.7 is a regular Boolean MRSW register.

Proof. A read() call that does not overlap any write() call returns the most recently
written value. If the calls do overlap, there are two cases to consider:

• If the value being written is the same as the last value written, then the writer
avoids writing to the safe register, ensuring that the reader reads the correct value.

• If the value written now is distinct from the last value written, then those values
must be true and false because the register is Boolean. A concurrent read returns
some value in the range of the register, namely, either true or false, either of which
is correct.

1 public class RegularBooleanMRSWRegister implements Register<Boolean> {
2 ThreadLocal<Boolean> last;
3 boolean s_value; // safe MRSW register
4 RegularBooleanMRSWRegister(int capacity) {
5 last = new ThreadLocal<Boolean>() {
6 protected Boolean initialValue() { return false; };
7 };
8 }
9 public void write(Boolean x) {

10 if (x != last.get()) {
11 last.set(x);
12 s_value = x;
13 }
14 }
15 public Boolean read() {
16 return s_value;
17 }
18 }

FIGURE 4.7

The RegularBooleanMRSWRegister class: a regular Boolean MRSW register constructed from
a safe Boolean MRSW register.

84 CHAPTER 4 Foundations of shared memory

1 public class RegularMRSWRegister implements Register<Byte> {
2 private static int RANGE = Byte.MAX_VALUE - Byte.MIN_VALUE + 1;
3 boolean[] r_bit = new boolean[RANGE]; // regular Boolean MRSW
4 public RegularMRSWRegister(int capacity) {
5 for (int i = 1; i < r_bit.length; i++)
6 r_bit[i] = false;
7 r_bit[0] = true;
8 }
9 public void write(Byte x) {

10 r_bit[x] = true;
11 for (int i = x - 1; i >= 0; i--)
12 r_bit[i] = false;
13 }
14 public Byte read() {
15 for (int i = 0; i < RANGE; i++)
16 if (r_bit[i]) {
17 return i;
18 }
19 return -1; // impossible
20 }
21 }

FIGURE 4.8

The RegularMRSWRegister class: a regular M-valued MRSW register.

4.2.3 A regular M-valued MRSW register
The jump from Boolean to M-valued registers is simple, if astonishingly inefficient:
We represent the value in unary notation. In Fig. 4.8, we implement an M-valued
register as an array of M Boolean registers. Initially the register is set to value zero,
indicated by the 0th bit being set to true. A write method of value x writes true in
location x and then in descending array-index order sets all lower locations to false.
A reading method reads the locations in ascending index order until the first time
it reads the value true in some index i. It then returns i. The example in Fig. 4.9
illustrates an 8-valued register.

Lemma 4.2.3. The read() call in the construction in Fig. 4.8 always returns a value
corresponding to a bit in 0..M − 1 set by some write() call.

Proof. The following property is invariant: If a reading thread is reading r_bit[j],
then some bit at index j or higher, written by a write() call, is set to true.

When the register is initialized, there are no readers; the constructor sets r_bit[0]
to true. Assume a reader is reading r_bit[j], and that r_bit[k] is true for k ≥ j .

• If the reader advances from j to j + 1, then r_bit[j] is false, so k > j (i.e., a bit
greater than or equal to j + 1 is true).

• The writer clears r_bit[k] only if it has set a higher r_bit[�] to true for � > k.

4.2 Register constructions 85

FIGURE 4.9

The RegularMRSWRegister class: an execution of a regular 8-valued MRSW register. The
values false and true are represented by 0 and 1 respectively. In part (a), the value prior to
the write was 4, and thread W ’s write of 7 is not read by thread R because R reaches array
entry 4 before W overwrites false at that location. In part (b), entry 4 is overwritten by W
before it is read, so the read returns 7. In part (c), W starts to write 5. Since it wrote array
entry 5 before it was read, the reader returns 5 even though entry 7 is also set to true.

Lemma 4.2.4. The construction in Fig. 4.8 is a regular M-valued MRSW register.

Proof. For any read, let x be the value written by the most recent nonoverlapping
write(). At the time the write() completed, a_bit[x] was set to true, and a_bit[i]
is false for i < x. By Lemma 4.2.3, if the reader returns a value that is not x, then
it observed some a_bit[j], j �= x, to be true, and that bit must have been set by a
concurrent write, proving Conditions (4.1.1) and (4.1.2).

4.2.4 An atomic SRSW register
We show how to construct an atomic SRSW register from a regular SRSW register.
(Note that our construction uses unbounded timestamps.)

A regular register satisfies Conditions (4.1.1) and (4.1.2), while an atomic register
must also satisfy Condition (4.1.3). Since a regular SRSW register has no concurrent
reads, the only way Condition (4.1.3) can be violated is if two reads that overlap the
same write read values out-of-order, the first returning vi and the latter returning vj ,
where j < i.

Fig. 4.10 describes a class of values that each have an added tag that contains a
timestamp. Our implementation of an AtomicSRSWRegister, shown in Fig. 4.11, uses

86 CHAPTER 4 Foundations of shared memory

1 public class StampedValue<T> {
2 public long stamp;
3 public T value;
4 // initial value with zero timestamp
5 public StampedValue(T init) {
6 stamp = 0;
7 value = init;
8 }
9 // later values with timestamp provided

10 public StampedValue(long ts, T v) {
11 stamp = ts;
12 value = v;
13 }
14 public static StampedValue max(StampedValue x, StampedValue y) {
15 if (x.stamp > y.stamp) {
16 return x;
17 } else {
18 return y;
19 }
20 }
21 public static StampedValue MIN_VALUE = new StampedValue(null);
22 }

FIGURE 4.10

The StampedValue<T> class: allows a timestamp and a value to be read or written together.

these tags to order write calls so that they can be ordered properly by concurrent read
calls. Each read remembers the latest (highest timestamp) timestamp/value pair ever
read, so that it is available to future reads. If a later read then reads an earlier value
(one having a lower timestamp), it ignores that value and simply uses the remembered
latest value. Similarly, the writer remembers the latest timestamp it wrote, and tags
each newly written value with a later timestamp (i.e., a timestamp greater by 1).

This algorithm requires the ability to read or write a value and a timestamp as a
single unit. In a language such as C, we would treat both the value and the timestamp
as uninterpreted bits (“raw seething bits”), and use bit shifting and logical masking
to pack and unpack both values in and out of one or more words. In Java, it is easier
to create a StampedValue<T> structure that holds a timestamp/value pair, and to store
a reference to that structure in the register.

Lemma 4.2.5. The construction in Fig. 4.11 is an atomic SRSW register.

Proof. The register is regular, so Conditions (4.1.1) and (4.1.2) are met. The algo-
rithm satisfies Condition (4.1.3) because writes are totally ordered by their times-
tamps, and if a read returns a given value, a later read cannot read an earlier written
value, since it would have a lower timestamp.

4.2 Register constructions 87

1 public class AtomicSRSWRegister<T> implements Register<T> {
2 ThreadLocal<Long> lastStamp;
3 ThreadLocal<StampedValue<T>> lastRead;
4 StampedValue<T> r_value; // regular SRSW timestamp-value pair
5 public AtomicSRSWRegister(T init) {
6 r_value = new StampedValue<T>(init);
7 lastStamp = new ThreadLocal<Long>() {
8 protected Long initialValue() { return 0; };
9 };

10 lastRead = new ThreadLocal<StampedValue<T>>() {
11 protected StampedValue<T> initialValue() { return r_value; };
12 };
13 }
14 public T read() {
15 StampedValue<T> value = r_value;
16 StampedValue<T> last = lastRead.get();
17 StampedValue<T> result = StampedValue.max(value, last);
18 lastRead.set(result);
19 return result.value;
20 }
21 public void write(T v) {
22 long stamp = lastStamp.get() + 1;
23 r_value = new StampedValue(stamp, v);
24 lastStamp.set(stamp);
25 }
26 }

FIGURE 4.11

The AtomicSRSWRegister class: an atomic SRSW register constructed from a regular SRSW
register.

4.2.5 An atomic MRSW register
To understand how to construct an atomic MRSW register from atomic SRSW reg-
isters, we first consider a simple algorithm based on direct use of the construction
in Section 4.2.1, which took us from safe SRSW to safe MRSW registers. Let the
SRSW registers composing the table array a_table[0..n − 1] be atomic instead of
safe, with all other calls remaining the same: The writer writes the array locations
in increasing index order and then each reader reads and returns its associated ar-
ray entry. The result is not an atomic multi-reader register. Condition (4.1.3) holds
for any single reader because each reader reads from an atomic register, yet it does
not hold for distinct readers. Consider, for example, a write that starts by setting the
first SRSW register a_table[0], and is delayed before writing the remaining locations
a_table[1..n − 1]. A subsequent read by thread 0 returns the correct new value, but
a subsequent read by thread 1 that completely follows the read by thread 0 reads and
returns the earlier value because the writer has yet to update a_table[1..n − 1]. We

88 CHAPTER 4 Foundations of shared memory

1 public class AtomicMRSWRegister<T> implements Register<T> {
2 ThreadLocal<Long> lastStamp;
3 private StampedValue<T>[][] a_table; // each entry is an atomic SRSW register
4 public AtomicMRSWRegister(T init, int readers) {
5 lastStamp = new ThreadLocal<Long>() {
6 protected Long initialValue() { return 0; };
7 };
8 a_table = (StampedValue<T>[][]) new StampedValue[readers][readers];
9 StampedValue<T> value = new StampedValue<T>(init);

10 for (int i = 0; i < readers; i++) {
11 for (int j = 0; j < readers; j++) {
12 a_table[i][j] = value;
13 }
14 }
15 }
16 public T read() {
17 int me = ThreadID.get();
18 StampedValue<T> value = a_table[me][me];
19 for (int i = 0; i < a_table.length; i++) {
20 value = StampedValue.max(value, a_table[i][me]);
21 }
22 for (int i = 0; i < a_table.length; i++) {
23 if (i == me) continue;
24 a_table[me][i] = value;
25 }
26 return value;
27 }
28 public void write(T v) {
29 long stamp = lastStamp.get() + 1;
30 lastStamp.set(stamp);
31 StampedValue<T> value = new StampedValue<T>(stamp, v);
32 for (int i = 0; i < a_table.length; i++) {
33 a_table[i][i] = value;
34 }
35 }
36 }

FIGURE 4.12

The AtomicMRSWRegister class: an atomic MRSW register constructed from atomic SRSW
registers.

address this problem by having earlier reader threads help out later threads by telling
them which value they read.

This implementation appears in Fig. 4.12. The n threads share an n-by-n array
a_table[0..n − 1][0..n − 1] of stamped values. As in Section 4.2.4, we use time-
stamped values to allow early reads to tell later reads which of the values read is

4.2 Register constructions 89

FIGURE 4.13

An execution of the atomic MRSW register. Each reader thread has an index between 0 and
3, and we refer to each thread by its index. Here, the writer writes a new value with
timestamp t + 1 to locations a_table[0][0] and a_table[1][1] and then halts. Then, thread 1
reads its corresponding column a_table[i][1] for all i, and writes its corresponding row
a_table[1][i] for all i, returning the new value with timestamp t + 1. Threads 0 and 3 both
read completely after thread 1’s read. Thread 0 reads a_table[0][0] with value t + 1. Thread
3 cannot read the new value with timestamp t + 1 because the writer has yet to write
a_table[3][3]. Nevertheless, it reads a_table[1][3] and returns the correct value with
timestamp t + 1 that was read by the earlier thread 1.

the latest. The locations along the diagonal, a_table[i][i] for all i, correspond to the
registers in the failed simple construction mentioned earlier. The writer simply writes
the diagonal locations one after the other with a new value and a timestamp that in-
creases from one write() call to the next. Each reader A first reads a_table[A][A] as
in the earlier algorithm. It then uses the remaining SRSW locations a_table[A][B],
A �= B, for communication between readers A and B. Each reader A, after reading
a_table[A][A], checks to see if some other reader has read a later value by traversing
its corresponding column (a_table[B][A] for all B), and checking if it contains a
later value (one with a higher timestamp). The reader then lets all later readers know
the latest value it read by writing this value to all locations in its corresponding row
(a_table[A][B] for all B). It thus follows that after a read by A is completed, every
later read by B sees the last value A read (since it reads a_table[A][B]). Fig. 4.13
shows an example execution of the algorithm.

Lemma 4.2.6. The construction in Fig. 4.12 is an atomic MRSW register.

Proof. First, no reader returns a value from the future, so Condition (4.1.1) is clearly
satisfied. By construction, write() calls write strictly increasing timestamps. The
key to understanding this algorithm is the simple observation that the maximum
timestamp along any row or column is also strictly increasing. If A writes v with
timestamp t , then any subsequent read() call by B (where A’s call completely pre-
cedes B’s) reads (from the diagonal of a_table) a maximum timestamp greater than

90 CHAPTER 4 Foundations of shared memory

or equal to t , satisfying Condition (4.1.2). Finally, as noted earlier, if a read call by
A completely precedes a read call by B, then A writes a stamped value with times-
tamp t to B’s row, so B chooses a value with a timestamp greater than or equal to t ,
satisfying Condition (4.1.3).

On an intuitive, “chicken sexing” level, note that our counterexample that violates
atomicity is caused by two read events that do not overlap, the earlier read reading an
older value than the latter read. If the reads overlapped, we could have reordered their
linearization points however we wanted. However, because the two reads do not over-
lap, the order of their linearization points is fixed, so we cannot satisfy the atomicity
requirement. This is the type of counterexample we should look for when design-
ing algorithms. (We used this same counterexample, by the way, in the single-reader
atomic register construction.)

Our solution used two algorithmic tools: timestamping, which appears later in
many practical algorithms, and indirect helping, where one thread tells the others
what it read. In this way, if a writer pauses after communicating information to only
a subset of readers, then those readers collaborate by passing on that information.

4.2.6 An atomic MRMW register
Here is how to construct an atomic MRMW register from an array of atomic MRSW
registers, one per thread.

To write to the register, A reads all the array elements, chooses a timestamp higher
than any it has observed, and writes a stamped value to array element A. To read the
register, a thread reads all the array elements, and returns the one with the highest
timestamp. This is exactly the timestamp algorithm used by the Bakery algorithm of
Section 2.7. As in the Bakery algorithm, we resolve ties in favor of the thread with
the lesser index, in other words, using a lexicographic order on pairs of timestamp
and thread IDs.

Lemma 4.2.7. The construction in Fig. 4.14 is an atomic MRMW register.

Proof. Define the write order among write() calls based on the lexicographic order
of their timestamps and thread IDs so that the write() call by A with timestamp
tA precedes the write() call by B with timestamp tB if tA < tB or if tA = tB and
A < B. We leave as an exercise to the reader to show that this lexicographic order is
consistent with →. As usual, index write() calls in write order: W 0,W 1,

Clearly a read() call cannot read a value written in a_table[] after it is completed,
and any write() call completely preceded by the read has a timestamp higher than all
those written before the read is completed, implying Condition (4.1.1).

Consider Condition (4.1.2), which prohibits skipping over the most recent pre-
ceding write(). Suppose a write() call by A preceded a write call by B, which in
turn preceded a read() by C. If A = B, then the later write overwrites a_table[A]
and the read() does not return the value of the earlier write. If A �= B, then since A’s
timestamp is smaller than B’s timestamp, any C that sees both returns B’s value (or
one with higher timestamp), meeting Condition (4.1.2).

4.2 Register constructions 91

1 public class AtomicMRMWRegister<T> implements Register<T>{
2 private StampedValue<T>[] a_table; // array of atomic MRSW registers
3 public AtomicMRMWRegister(int capacity, T init) {
4 a_table = (StampedValue<T>[]) new StampedValue[capacity];
5 StampedValue<T> value = new StampedValue<T>(init);
6 for (int j = 0; j < a_table.length; j++) {
7 a_table[j] = value;
8 }
9 }

10 public void write(T value) {
11 int me = ThreadID.get();
12 StampedValue<T> max = StampedValue.MIN_VALUE;
13 for (int i = 0; i < a_table.length; i++) {
14 max = StampedValue.max(max, a_table[i]);
15 }
16 a_table[me] = new StampedValue(max.stamp + 1, value);
17 }
18 public T read() {
19 StampedValue<T> max = StampedValue.MIN_VALUE;
20 for (int i = 0; i < a_table.length; i++) {
21 max = StampedValue.max(max, a_table[i]);
22 }
23 return max.value;
24 }
25 }

FIGURE 4.14

Atomic MRMW register.

Finally, we consider Condition (4.1.3), which prohibits values from being read
out of write order. Consider any read() call by A completely preceding a read() call
by B, and any write() call by C which is ordered before the write() by D in the
write order. We must show that if A returns D’s value, then B does not return C’s
value. If tC < tD , then if A reads timestamp tD from a_table[D], B reads tD or a
higher timestamp from a_table[D], and does not return the value associated with tC .
If tC = tD , that is, the writes were concurrent, then from the write order, C < D, so
if A reads timestamp tD from a_table[D], B also reads tD from a_table[D], and
returns the value associated with tD (or higher), even if it reads tC in a_table[C].

Our series of constructions shows that one can construct a wait-free atomic multi-
valued MRMW register from safe Boolean SRSW registers. Naturally, no one wants
to write a concurrent algorithm using safe registers, but these constructions show that
any algorithm using atomic registers can be implemented on an architecture that sup-
ports only safe registers. Later on, when we consider more realistic architectures, we
return to the theme of implementing algorithms that assume strong synchronization
properties on architectures that directly provide only weaker properties.

92 CHAPTER 4 Foundations of shared memory

1 public interface Snapshot<T> {
2 public void update(T v);
3 public T[] scan();
4 }

FIGURE 4.15

The Snapshot interface.

4.3 Atomic snapshots
We have seen how a register value can be read and written atomically. What if we
want to read multiple register values atomically? We call such an operation an atomic
snapshot.

An atomic snapshot constructs an instantaneous view of an array of MRSW reg-
isters. We construct a wait-free snapshot, meaning that a thread can take a snapshot
of the array without delaying any other thread. Atomic snapshots can be useful for
backups or checkpoints.

The Snapshot interface (Fig. 4.15) is just an array of atomic MRSW registers, one
for each thread. The update() method writes a value v to the calling thread’s register
in that array; the scan() method returns an atomic snapshot of that array.

Our goal is to construct a wait-free implementation that is equivalent (that is, lin-
earizable) to the sequential specification shown in Fig. 4.16. The key property of this
sequential implementation is that scan() returns a collection of values, each corre-
sponding to the latest preceding update(); that is, it returns a collection of register
values that existed together in the same instant.

4.3.1 An obstruction-free snapshot
We begin with a SimpleSnapshot class for which update() is wait-free but scan() is
obstruction-free. We then extend this algorithm to make scan() wait-free.

As in the atomic MRSW register construction, each value is a StampedValue<T>
object with stamp and value fields. Each update() call increments the timestamp.

A collect is the nonatomic act of copying the register values one-by-one into an
array. If we perform two collects one after the other, and both collects read the same
set of timestamps, then we know that there was an interval during which no thread
updated its register, so the result of the collect is a snapshot of the array immediately
after the end of the first collect. We call such a pair of collects a clean double collect.

In the construction shown in the SimpleSnapshot<T> class (Fig. 4.17), each
thread repeatedly calls collect() (line 25), and returns as soon as it detects a clean
double collect (one in which both sets of timestamps were identical).

This construction always returns correct values. The update() calls are wait-free,
but scan() is not because any call can be repeatedly interrupted by update(), and may
run forever without completing. It is, however, obstruction-free: a scan() completes
if it runs by itself for long enough.

4.3 Atomic snapshots 93

1 public class SeqSnapshot<T> implements Snapshot<T> {
2 T[] a_value;
3 public SeqSnapshot(int capacity, T init) {
4 a_value = (T[]) new Object[capacity];
5 for (int i = 0; i < a_value.length; i++) {
6 a_value[i] = init;
7 }
8 }
9 public synchronized void update(T v) {

10 a_value[ThreadID.get()] = v;
11 }
12 public synchronized T[] scan() {
13 T[] result = (T[]) new Object[a_value.length];
14 for (int i = 0; i < a_value.length; i++)
15 result[i] = a_value[i];
16 return result;
17 }
18 }

FIGURE 4.16

A sequential snapshot.

Note that we use timestamps to verify the double collect, and not the values in
the registers. Why? We encourage the reader to come up with a counterexample in
which the repeated appearance of the same value is interleaved with others so that
reading the same value creates the illusion that “nothing has changed.” This is a
common mistake that concurrent programmers make, trying to save the space needed
for timestamps by using the values being written as indicators of a property. We
advise against it: More often than not, this will lead to a bug, as in the case of the
clean double collect: It must be detected by checking timestamps, not the equality of
the sets of values collected.

4.3.2 A wait-free snapshot
To make the scan() method wait-free, each update() call helps a potentially interfer-
ing scan() by taking a snapshot before writing to its register. A scan() that repeatedly
fails to take a clean double collect can use the snapshot from one of the interfering
update() calls as its own. The tricky part is that we must make sure that the snapshot
taken from the helping update is one that can be linearized within the scan() call’s
execution interval.

We say that a thread moves if it completes an update(). If thread A fails to make
a clean collect because thread B moved, then can A simply take B’s most recent
snapshot as its own? Unfortunately, no. As illustrated in Fig. 4.18, it is possible for
A to see B move when B’s snapshot was taken before A started its scan() call, so the
snapshot did not occur within the interval of A’s scan.

94 CHAPTER 4 Foundations of shared memory

1 public class SimpleSnapshot<T> implements Snapshot<T> {
2 private StampedValue<T>[] a_table; // array of atomic MRSW registers
3 public SimpleSnapshot(int capacity, T init) {
4 a_table = (StampedValue<T>[]) new StampedValue[capacity];
5 for (int i = 0; i < capacity; i++) {
6 a_table[i] = new StampedValue<T>(init);
7 }
8 }
9 public void update(T value) {

10 int me = ThreadID.get();
11 StampedValue<T> oldValue = a_table[me];
12 StampedValue<T> newValue = new StampedValue<T>((oldValue.stamp)+1, value);
13 a_table[me] = newValue;
14 }
15 private StampedValue<T>[] collect() {
16 StampedValue<T>[] copy = (StampedValue<T>[]) new StampedValue[a_table.length];
17 for (int j = 0; j < a_table.length; j++)
18 copy[j] = a_table[j];
19 return copy;
20 }
21 public T[] scan() {
22 StampedValue<T>[] oldCopy, newCopy;
23 oldCopy = collect();
24 collect: while (true) {
25 newCopy = collect();
26 if (! Arrays.equals(oldCopy, newCopy)) {
27 oldCopy = newCopy;
28 continue collect;
29 }
30 T[] result = (T[]) new Object[a_table.length];
31 for (int j = 0; j < a_table.length; j++)
32 result[j] = newCopy[j].value;
33 return result;
34 }
35 }
36 }

FIGURE 4.17

Simple snapshot object.

The wait-free construction is based on the following observation: If a scanning
thread A sees a thread B move twice while it is performing repeated collects, then B

executed a complete update() call within the interval of A’s scan(), so it is correct for
A to use B’s snapshot.

Figs. 4.19 and 4.20 show the wait-free snapshot algorithm. Each update() calls
scan(), and appends the result of the scan to the value (in addition to the timestamp).

4.3 Atomic snapshots 95

FIGURE 4.18

Here is why a thread A that fails to complete a clean double collect cannot simply take the
latest snapshot of a thread B that performed an update() during A’s second collect. B’s
snapshot was taken before A started its scan(), i.e., B’s snapshot did not overlap A’s scan.
The danger, illustrated here, is that a thread C could have called update() after B’s scan()
and before A’s scan(), making it incorrect for A to use the results of B’s scan().

1 public class StampedSnap<T> {
2 public long stamp;
3 public T value;
4 public T[] snap;
5 public StampedSnap(T value) {
6 stamp = 0;
7 value = value;
8 snap = null;
9 }

10 public StampedSnap(long ts, T v, T[] s) {
11 stamp = ts;
12 value = v;
13 snap = s;
14 }
15 }

FIGURE 4.19

The stamped snapshot class.

More precisely, each value written to a register has the structure shown in Fig. 4.19: a
stamp field incremented each time the thread updates its value, a value field contain-
ing the register’s actual value, and a snap field containing that thread’s most recent
scan. The snapshot algorithm is described in Fig. 4.20. A scanning thread creates a
Boolean array called moved[] (line 24), which records which threads have been ob-
served to move in the course of the scan. As before, each thread performs two collects
(lines 25 and 27) and tests whether any thread’s timestamp has changed. If no thread’s
timestamp has changed, then the collect is clean, and the scan returns the result of the
collect. If any thread’s timestamp has changed (line 29), the scanning thread tests the

96 CHAPTER 4 Foundations of shared memory

1 public class WFSnapshot<T> implements Snapshot<T> {
2 private StampedSnap<T>[] a_table; // array of atomic MRSW registers
3 public WFSnapshot(int capacity, T init) {
4 a_table = (StampedSnap<T>[]) new StampedSnap[capacity];
5 for (int i = 0; i < a_table.length; i++) {
6 a_table[i] = new StampedSnap<T>(init);
7 }
8 }
9 private StampedSnap<T>[] collect() {

10 StampedSnap<T>[] copy = (StampedSnap<T>[]) new StampedSnap[a_table.length];
11 for (int j = 0; j < a_table.length; j++)
12 copy[j] = a_table[j];
13 return copy;
14 }
15 public void update(T value) {
16 int me = ThreadID.get();
17 T[] snap = scan();
18 StampedSnap<T> oldValue = a_table[me];
19 StampedSnap<T> newValue = new StampedSnap<T>(oldValue.stamp+1, value, snap);
20 a_table[me] = newValue;
21 }
22 public T[] scan() {
23 StampedSnap<T>[] oldCopy, newCopy;
24 boolean[] moved = new boolean[a_table.length]; // initially all false
25 oldCopy = collect();
26 collect: while (true) {
27 newCopy = collect();
28 for (int j = 0; j < a_table.length; j++) {
29 if (oldCopy[j].stamp != newCopy[j].stamp) {
30 if (moved[j]) {
31 return newCopy[j].snap;
32 } else {
33 moved[j] = true;
34 oldCopy = newCopy;
35 continue collect;
36 }
37 }
38 }
39 T[] result = (T[]) new Object[a_table.length];
40 for (int j = 0; j < a_table.length; j++)
41 result[j] = newCopy[j].value;
42 return result;
43 }
44 }
45 }

FIGURE 4.20

Single-writer atomic snapshot class.

4.3 Atomic snapshots 97

moved[] array to detect whether this is the second time this thread has moved (line 30).
If so, it returns that thread’s scan (line 31); otherwise, it updates moved[] and resumes
the outer loop (line 32).

4.3.3 Correctness arguments
In this section, we review the correctness arguments for the wait-free snapshot algo-
rithm a little more carefully.

Lemma 4.3.1. If a scanning thread makes a clean double collect, then the values it
returns were the values that existed in the registers in some state of the execution.

Proof. Consider the interval between the last read of the first collect and the first read
of the second collect. If any register were updated in that interval, the timestamps
would not match, and the double collect would not be clean.

Lemma 4.3.2. If a scanning thread A observes changes in another thread B’s time-
stamp during two different double collects, then the value of B’s register read during
the last collect was written by an update() call that began after the first collect started.

Proof. If during a scan(), two successive reads by A of B’s register return different
timestamps, then at least one write by B occurs between this pair of reads. Thread B

writes to its register as the final step of an update() call, so some update() call by B

ended sometime after the first read by A, and the write step of another update() call
occurs between the last pair of reads by A. The claim follows because only B writes
to its register.

Lemma 4.3.3. The values returned by a scan() were in the registers at some state
between the call’s invocation and response.

Proof. If the scan() call made a clean double collect, then the claim follows from
Lemma 4.3.1. If the call took the scan value from another thread B’s register, then by
Lemma 4.3.2, the scan value found in B’s register was obtained by a scan() call by B

whose interval lies between A’s first and last reads of B’s register. Either B’s scan()
call had a clean double collect, in which case the result follows from Lemma 4.3.1,
or there is an embedded scan() call by a thread C occurring within the interval of B’s
scan() call. This argument can be applied inductively, noting that there can be at most
n − 1 nested calls before we run out of threads, where n is the maximum number of
threads (see Fig. 4.21). Eventually, some nested scan() call must have had a clean
double collect.

Lemma 4.3.4. Every scan() or update() returns after at most O(n2) reads or writes.

Proof. Consider a particular scan(). There are only n − 1 other threads, so after n

double collects, either one double collect is clean, or some thread is observed to
move twice. The claim follows because each double collect does O(n) reads.

98 CHAPTER 4 Foundations of shared memory

FIGURE 4.21

There can be at most n − 1 nested calls of scan() before we run out of threads, where n is
the maximum number of threads. The scan() by thread n − 1, contained in the intervals of
all other scan() calls, must have a clean double collect.

By Lemma 4.3.3, the values returned by a scan() form a snapshot as they are all
in the registers in some state during the call: linearize the call at that point. Similarly,
linearize update() calls at the point the register is written.

Theorem 4.3.5. The code in Fig. 4.20 is a wait-free snapshot implementation.

Our wait-free atomic snapshot construction is another, somewhat different exam-
ple of the dissemination approach we discussed in our atomic register constructions.
In this example, threads tell other threads about their snapshots, and those snap-
shots are reused. Another useful trick is that even if one thread interrupts another
and prevents it from completing, we can still guarantee wait-freedom if the inter-
rupting thread completes the interrupted thread’s operation. This helping paradigm is
extremely useful in designing multiprocessor algorithms.

4.4 Chapter notes
Alonzo Church introduced lambda calculus around 1935 [30]. Alan Turing defined
the Turing machine in a classic paper in 1937 [163]. Leslie Lamport defined the
notions of safe, regular, and atomic registers and the register hierarchy, and was the
first to show that one could implement nontrivial shared memory from safe bits [99,
105]. Gary Peterson suggested the problem of constructing atomic registers [139].
Jaydev Misra gave an axiomatic treatment of atomic registers [128]. The notion of
linearizability, which generalizes Lamport’s and Misra’s notions of atomic registers,
is due to Herlihy and Wing [75]. Susmita Haldar and Krishnamurthy Vidyasankar
gave a bounded atomic MRSW register construction from regular registers [55]. The
problem of constructing an atomic multi-reader register from atomic single-reader
registers was mentioned as an open problem by Leslie Lamport [99,105] and by Paul
Vitányi and Baruch Awerbuch [165], who were the first to propose an approach for
atomic MRMW register design. The first solution is due to Jim Anderson, Mohamed

4.5 Exercises 99

Gouda, and Ambuj Singh [87,160]. Other atomic register constructions, to name only
a few, were proposed by Jim Burns and Gary Peterson [25], Richard Newman-Wolfe
[134], Lefteris Kirousis, Paul Spirakis, and Philippas Tsigas [92], Amos Israeli and
Amnon Shaham [86], and Ming Li, John Tromp and Paul Vitányi [113]. The simple
timestamp-based atomic MRMW construction we present here is due to Danny Dolev
and Nir Shavit [39].

Collect operations were first formalized by Mike Saks, Nir Shavit, and Heather
Woll [152]. The first atomic snapshot constructions were discovered concurrently
and independently by Jim Anderson [10] and Yehuda Afek, Hagit Attiya, Danny
Dolev, Eli Gafni, Michael Merritt, and Nir Shavit [2]. The latter algorithm is the one
presented here. Later snapshot algorithms are due to Elizabeth Borowsky and Eli
Gafni [21] and Yehuda Afek, Gideon Stupp, and Dan Touitou [4].

The timestamps in all the algorithms mentioned in this chapter can be bounded so
that the constructions themselves use registers of bounded size. Bounded timestamp
systems were introduced by Amos Israeli and Ming Li [85], and bounded concurrent
timestamp systems by Danny Dolev and Nir Shavit [39].

Horsey [78] has a beautiful article on chicken sexing and its relation to intuition.

4.5 Exercises
Exercise 4.1. Consider the safe Boolean MRSW construction shown in Fig. 4.6.
True or false: If we replace the safe Boolean SRSW register array with an array of
safe M-valued SRSW registers, then the construction yields a safe M-valued MRSW
register. Justify your answer.

Exercise 4.2. Consider the safe Boolean MRSW construction shown in Fig. 4.6.
True or false: If we replace the safe Boolean SRSW register array with an array
of regular Boolean SRSW registers, then the construction yields a regular Boolean
MRSW register. Justify your answer.

Exercise 4.3. Consider the safe Boolean MRSW construction shown in Fig. 4.6. True
or false: If we replace the safe Boolean SRSW register array with an array of regular
M-valued SRSW registers, then the construction yields a regular M-valued MRSW
register. Justify your answer.

Exercise 4.4. Consider the regular Boolean MRSW construction shown in Fig. 4.7.
True or false: If we replace the safe Boolean MRSW register with a safe M-valued
MRSW register, then the construction yields a regular M-valued MRSW register.
Justify your answer.

Exercise 4.5. Consider the atomic MRSW construction shown in Fig. 4.12. True or
false: If we replace the atomic SRSW registers with regular SRSW registers, then the
construction still yields an atomic MRSW register. Justify your answer.

Exercise 4.6. Give an example of a quiescently consistent register execution that is
not regular.

100 CHAPTER 4 Foundations of shared memory

1 public class AtomicSRSWRegister implements Register<int> {
2 private static int RANGE = M;
3 boolean[] r_bit = new boolean[RANGE]; // atomic boolean SRSW
4 public AtomicSRSWRegister(int capacity) {
5 for (int i = 1; i <= RANGE; i++)
6 r_bit[i] = false;
7 r_bit[0] = true;
8 }
9 public void write(int x) {

10 r_bit[x] = true;
11 for (int i = x - 1; i >= 0; i--)
12 r_bit[i] = false;
13 }
14 public int read() {
15 for (int i = 0; i <= RANGE; i++)
16 if (r_bit[i]) {
17 return i;
18 }
19 return -1; // impossible
20 }
21 }

FIGURE 4.22

Boolean to M-valued atomic SRSW register algorithm.

Exercise 4.7. You are given the algorithm in Fig. 4.22 for constructing an atomic
M-valued SRSW register using atomic Boolean SRSW registers. Does this proposal
work? Either prove the correctness or present a counterexample.

Exercise 4.8. Imagine running a 64-bit system on a 32-bit system, where each 64-bit
memory location (register) is implemented using two atomic 32-bit memory locations
(registers). A write operation is implemented by simply writing the first 32 bits in the
first register and then the second 32 bits in the second register. A read, similarly,
reads the first half from the first register, then reads the second half from the second
register, and returns the concatenation. What is the strongest property that this 64-bit
register satisfies?

• safe register,
• regular register,
• atomic register,
• it does not satisfy any of these properties.

Exercise 4.9. Does Peterson’s two-thread mutual exclusion algorithm work if the
shared atomic flag registers are replaced by regular registers?

Exercise 4.10. Consider the following implementation of a register in a distributed,
message passing system. There are n processors P0, . . . ,Pn−1 arranged in a ring,

4.5 Exercises 101

where Pi can send messages only to Pi+1 mod n. Messages are delivered in FIFO
order along each link. Each processor keeps a copy of the shared register.

• To read the register, the processor reads the copy in its local memory.
• A processor Pi starts a write() call of value v to register x, by sending the message

“Pi : write v to x” to Pi+1 mod n.
• If Pi receives a message “Pj : write v to x,” for i �= j , then it writes v to its local

copy of x, and forwards the message to Pi+1 mod n.
• If Pi receives a message “Pi : write v to x,” then it writes v to its local copy of x,

and discards the message. The write() call is now complete.

Give a short justification or counterexample.
If write() calls never overlap,

• is this register implementation regular?
• is it atomic?

If multiple processors call write(),

• is this register implementation safe?

Exercise 4.11. Fig. 4.23 shows an implementation of a multivalued write-once,
MRSW register from an array of multivalued safe, MRSW registers. Remember,
there is one writer, who can overwrite the register’s initial value with a new value,
but it can only write once. You do not know the register’s initial value.

Is this implementation regular? Atomic?

1 class WriteOnceRegister implements Register{
2 private SafeMRSWRegister[] s = new SafeMRSWRegister[3];
3

4 public void write(int x) {
5 s[0].write(x);
6 s[1].write(x);
7 s[2].write(x);
8 }
9 public int read() {

10 v2 = s[2].read()
11 v1 = s[1].read()
12 v0 = s[0].read()
13 if (v0 == v1) return v0;
14 else if (v1 == v2) return v1;
15 else return v0;
16 }
17 }

FIGURE 4.23

Write-once register.

102 CHAPTER 4 Foundations of shared memory

Exercise 4.12. A (single-writer) register is 1-regular if the following conditions hold:

• If a read() operation does not overlap with any write() operations, then it returns
the value written by the last write() operation.

• If a read() operation overlaps with exactly one write() operation, then it returns a
value written either by the last write() operation or the concurrent write() opera-
tion.

• Otherwise, a read() operation may return an arbitrary value.

Construct an SRSW M-valued 1-regular register using O(logM) SRSW Boolean
regular registers. Explain why your construction works.

Exercise 4.13. Prove that the safe Boolean MRSW register construction from safe
Boolean SRSW registers illustrated in Fig. 4.6 is a correct implementation of a regular
MRSW register if the component registers are regular SRSW registers.

Exercise 4.14. Define a wraparound register that has the property that there is a
value k such that writing the value v sets the value of the register to v mod k.

If we replace the Bakery algorithm’s shared variables with either (a) regular,
(b) safe, or (c) atomic wraparound registers, then does it still satisfy (1) mutual ex-
clusion and (2) FIFO ordering?

You should provide six answers (some may imply others). Justify each claim.

5
CHAPTER

The relative power of
primitive synchronization
operations

Imagine you are in charge of designing a new multiprocessor. What kinds of atomic
instructions should you include? The literature includes a bewildering array of dif-
ferent choices: read() and write(), getAndIncrement(), getAndComplement(), swap(),
compareAndSet(), and many, many others. Supporting them all would be complicated
and inefficient, but supporting the wrong ones could make it difficult or even impos-
sible to solve important synchronization problems.

Our goal is to identify a set of primitive synchronization operations powerful
enough to solve synchronization problems likely to arise in practice. (We might also
support other, nonessential synchronization operations, for convenience.) To this end,
we need some way to evaluate the power of various synchronization primitives: what
synchronization problems they can solve, and how efficiently they can solve them.

A concurrent object implementation is wait-free if each method call finishes in
a finite number of steps. A method is lock-free if it guarantees that infinitely often,
some method call finishes in a finite number of steps. We have already seen wait-free
(and therefore also lock-free) register implementations in Chapter 4. One way to
evaluate the power of synchronization instructions is to see how well they support
implementations of shared objects such as queues, stacks, trees, and so on. As we
explain in Section 4.1, we evaluate solutions that are wait-free or lock-free, that is,
that guarantee progress without relying on the underlying platform.1

Not all synchronization instructions are created equal. If one thinks of primitive
synchronization instructions as objects whose exported methods are the instructions
themselves (these objects are often called synchronization primitives), one can show
that there is an infinite hierarchy of synchronization primitives, such that no primitive
at one level can be used for a wait-free or lock-free implementation of any primitives
at higher levels. The basic idea is simple: Each class in the hierarchy has an associated
consensus number, which is the maximum number of threads for which objects of the
class can solve an elementary synchronization problem called consensus. In a system
of n or more concurrent threads, it is impossible to implement a wait-free or lock-free
object with consensus number n from objects with a lower consensus number.

1 It makes no sense to evaluate solutions that only meet dependent progress conditions such as obstruction-
freedom or deadlock-freedom because the real power of such solutions is masked by the contribution of
the operating system they depend on.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00014-8
Copyright © 2021 Elsevier Inc. All rights reserved.

103

104 CHAPTER 5 The relative power of primitive synchronization operations

1 public interface Consensus<T> {
2 T decide(T value);
3 }

FIGURE 5.1

Consensus object interface.

5.1 Consensus numbers
Consensus is an innocuous-looking, somewhat abstract problem that has enormous
consequences for everything from algorithm design to hardware architecture. A con-
sensus object provides a single method decide(), as shown in Fig. 5.1. Each thread
calls the decide() method with its input v at most once. The object’s decide() method
returns a value meeting the following conditions:

• consistent: all threads decide the same value,
• valid: the common decision value is some thread’s input.

In other words, a concurrent consensus object is linearizable to a sequential consensus
object in which the thread whose value was chosen completes its decide() first. To
simplify the presentation, we focus on binary consensus, in which all inputs are either
0 or 1 but our claims apply to consensus in general.

We are interested in wait-free solutions to the consensus problem, that is, wait-free
concurrent implementations of consensus objects. The reader will notice that since
the decide() method of a given consensus object is executed only once by each thread,
and there are a finite number of threads, a lock-free implementation would also be
wait-free and vice versa. Henceforth, we mention only wait-free implementations,
and for historical reasons, call any class that implements consensus in a wait-free
manner a consensus protocol.

We want to understand whether a particular class of objects is powerful enough
to solve the consensus problem.2 How can we make this notion more precise? If
we think of such objects as supported by a lower level of the system, perhaps the
operating system or even the hardware, then we care about the properties of the class,
not about the number of objects. (If the system can provide one object of this class,
it can probably provide more.) Second, it is reasonable to suppose that any modern
system can provide a generous amount of read–write memory for bookkeeping. These
two observations suggest the following definitions.

Definition 5.1.1. A class C solves n-thread consensus if there exists a consensus
protocol for n threads using any number of objects of class C and any number of
atomic registers.

2 We restrict ourselves to object classes with deterministic sequential specifications (i.e., ones in which
each sequential method call has a single outcome). We avoid nondeterministic objects since their structure
is significantly more complex. See the discussion in the notes at the end of this chapter.

5.1 Consensus numbers 105

Definition 5.1.2. The consensus number of a class C is the largest n for which that
class solves n-thread consensus. If no largest n exists, we say the consensus number
of the class is infinite.

Corollary 5.1.3. Suppose one can implement an object of class C from one or more
objects of class D, together with some number of atomic registers. If class C solves
n-consensus, then so does class D.

5.1.1 States and valence
A good place to start is to think about the simplest interesting case: binary consensus
(i.e., inputs 0 or 1) for two threads (call them A and B). Each thread makes moves
until it decides on a value. Here, a move is a method call to a shared object. A protocol
state consists of the states of the threads and the shared objects. An initial state is a
protocol state before any thread has moved, and a final state is a protocol state after
all threads have finished. The decision value of any final state is the value decided by
all threads in that state.

A wait-free protocol’s set of possible states forms a tree, where each node rep-
resents a possible protocol state and each edge represents a possible move by some
thread. Fig. 5.2 shows the tree for a two-thread protocol in which each thread moves
twice. An edge for A from node s to node s′ means that if A moves in protocol state
s, then the new protocol state is s′. We refer to s′ as a successor state to s. Because
the protocol is wait-free, every (simple) path starting from the root is finite (i.e., even-
tually ends at a leaf node). Leaf nodes represent final protocol states, and are labeled
with their decision values, either 0 or 1.

A protocol state is bivalent if the decision value is not yet fixed: There is some
execution starting from that state in which the threads decide 0, and one in which
they decide 1. By contrast, a protocol state is univalent if the outcome is fixed: Every
execution starting from that state decides the same value. A protocol state is 1-valent
if it is univalent, and the decision value will be 1, and similarly for 0-valent. As
illustrated in Fig. 5.2, a bivalent state is a node whose descendants in the tree include
both leaves labeled with 0 and leaves labeled with 1, while a univalent state is a node
whose descendants include only leaves labeled with a single decision value.

Our next lemma says that an initial bivalent state exists. This observation means
that the outcome of the protocol cannot be fixed in advance, but must depend on how
reads and writes are interleaved.

Lemma 5.1.4. Every two-thread consensus protocol has a bivalent initial state.

Proof. Consider the initial state where A has input 0 and B has input 1. If A finishes
the protocol before B takes a step, then A must decide 0, because it must decide some
thread’s input, and 0 is the only input it has seen (it cannot decide 1 because it has no
way of distinguishing this state from the one in which B has input 0). Symmetrically,
if B finishes the protocol before A takes a step, then B must decide 1. It follows that
the initial state where A has input 0 and B has input 1 is bivalent.

106 CHAPTER 5 The relative power of primitive synchronization operations

FIGURE 5.2

An execution tree for two threads A and B. The dark shaded nodes denote bivalent states,
and the lighter ones denote univalent states.

Lemma 5.1.5. Every n-thread consensus protocol has a bivalent initial state.

Proof. Left as an exercise.

A protocol state is critical if:

• it is bivalent, and
• if any thread moves, the protocol state becomes univalent.

Lemma 5.1.6. Every wait-free consensus protocol has a critical state.

Proof. By Lemma 5.1.5, the protocol has a bivalent initial state. Start the protocol in
this state. As long as some thread can move without making the protocol state uni-
valent, let that thread move. The protocol cannot run forever because it is wait-free.
Therefore, the protocol eventually enters a state where no such move is possible,
which is, by definition, a critical state.

Everything we have proved so far applies to any consensus protocol, no matter
what class(es) of shared objects it uses. Now we consider specific classes of objects.

5.2 Atomic registers
The obvious place to begin is to ask whether we can solve consensus using atomic
registers. Surprisingly, perhaps, the answer is no. We show that there is no binary

5.2 Atomic registers 107

consensus protocol for two threads. We leave it as an exercise to show that if two
threads cannot reach consensus on two values, then n threads cannot reach consensus
on k values, for n ≥ 2 and k ≥ 2.

Often, when we argue about whether or not there exists a protocol that solves a
particular problem, we construct a scenario of the form: “If we had such a protocol, it
would behave like this under these circumstances.” One particularly useful scenario
is to have one thread, say, A, run completely by itself until it finishes the protocol.
This particular scenario is common enough that we give it its own name: A runs solo.

Theorem 5.2.1. Atomic registers have consensus number 1.

Proof. Suppose there exists a binary consensus protocol for two threads A and B.
We reason about the properties of such a protocol and derive a contradiction.

By Lemma 5.1.6, we can run the protocol until it reaches a critical state s. Suppose
A’s next move carries the protocol to a 0-valent state, and B’s next move carries the
protocol to a 1-valent state. (If not, then swap thread names.) What methods could A

and B be about to call? We now consider an exhaustive list of the possibilities: one
of them reads from a register, they both write to separate registers, or they both write
to the same register.

Suppose A is about to read a given register (B may be about to either read or
write the same register or a different register), as depicted in Fig. 5.3. Consider two
possible execution scenarios. In the first scenario, B moves first, driving the protocol
to a 1-valent state s′, and then B runs solo and eventually decides 1. In the second
execution scenario, A moves first, driving the protocol to a 0-valent state, and then

FIGURE 5.3

Case: A reads first. In the first execution scenario, B moves first, driving the protocol to a
1-valent state s′, and then B runs solo and eventually decides 1. In the second execution
scenario, A moves first, driving the protocol to a 0-valent state, and then B takes a step to
reach state s′′. B then runs solo starting in s′′ and eventually decides 0.

108 CHAPTER 5 The relative power of primitive synchronization operations

FIGURE 5.4

Case: A and B write to different registers.

B takes a step to reach state s′′. B then runs solo starting in s′′ and eventually de-
cides 0. The problem is that the states s′ and s′′ are indistinguishable to B (the read A

performed could only change its thread-local state, which is not visible to B), which
means that B must decide the same value in both scenarios, a contradiction.

Suppose, instead of this scenario, both threads are about to write to different reg-
isters, as depicted in Fig. 5.4. A is about to write to r0 and B to r1. Consider two
possible execution scenarios. In the first, A writes to r0 and then B writes to r1; the
resulting protocol state is 0-valent because A went first. In the second, B writes to r1
and then A writes to r0; the resulting protocol state is 1-valent because B went first.

The problem is that both scenarios lead to the same protocol state. Neither A nor
B can tell which move was first. The resulting state is therefore both 0-valent and
1-valent, a contradiction.

Finally, suppose both threads write to the same register r , as depicted in Fig. 5.5.
Again, consider two possible execution scenarios. In one scenario A writes first, and
then B writes; the resulting protocol state s′ is 0-valent, and B then runs solo and de-
cides 0. In the other scenario, B writes first, the resulting protocol state s′′ is 1-valent,
and B then runs solo and decides 1. The problem is that B cannot tell the difference
between s′ and s′′ (because in both s′ and s′′, B overwrote the register r and oblit-
erated any trace of A’s write) so B must decide the same value starting from either
state, a contradiction.

Corollary 5.2.2. It is impossible to construct a wait-free implementation of any ob-
ject with consensus number greater than 1 using atomic registers.

This corollary is one of the most striking impossibility results in computer sci-
ence. It explains why, if we want to implement lock-free concurrent data structures

5.3 Consensus protocols 109

FIGURE 5.5

Case: A and B write to the same register.

on modern multiprocessors, our hardware must provide primitive synchronization
operations other than loads and stores (i.e., reads and writes).

5.3 Consensus protocols
We now consider a variety of interesting object classes, asking how well each can
solve the consensus problem. These protocols have a generic form, shown in Fig. 5.6.
The object has an array of atomic registers in which each decide() method proposes
its input value and then goes on to execute a sequence of steps in order to decide
on one of the proposed values. We devise different implementations of the decide()
method using various synchronization objects.

1 public abstract class ConsensusProtocol<T> implements Consensus<T> {
2 protected T[] proposed = (T[]) new Object[N]; // N is the number of threads
3 // announce my input value to the other threads
4 void propose(T value) {
5 proposed[ThreadID.get()] = value;
6 }
7 // figure out which thread was first
8 abstract public T decide(T value);
9 }

FIGURE 5.6

The generic consensus protocol.

110 CHAPTER 5 The relative power of primitive synchronization operations

1 public class QueueConsensus<T> extends ConsensusProtocol<T> {
2 private static final int WIN = 0; // first thread
3 private static final int LOSE = 1; // second thread
4 Queue queue;
5 // initialize queue with two items
6 public QueueConsensus() {
7 queue = new Queue();
8 queue.enq(WIN);
9 queue.enq(LOSE);

10 }
11 // figure out which thread was first
12 public T decide(T value) {
13 propose(value);
14 int status = queue.deq();
15 int i = ThreadID.get();
16 if (status == WIN)
17 return proposed[i];
18 else
19 return proposed[1-i];
20 }
21 }

FIGURE 5.7

Two-thread consensus using a FIFO queue.

5.4 FIFO queues
In Chapter 3, we saw a wait-free FIFO queue implementation using only atomic reg-
isters, subject to the limitation that only one thread could enqueue to the queue, and
only one thread could dequeue from the queue. It is natural to ask whether one can
provide a wait-free implementation of a FIFO queue that supports multiple enqueuers
and dequeuers. For now, let us focus on a more specific problem: Can we provide a
wait-free implementation of a two-dequeuer FIFO queue using atomic registers?

Lemma 5.4.1. The two-dequeuer FIFO queue class has consensus number at least 2.

Proof. Fig. 5.7 shows a two-thread consensus protocol using a single FIFO queue.
Here, the queue stores integers. The queue is initialized by enqueuing the value
WIN followed by the value LOSE. As in all the consensus protocols considered here,
decide() first calls propose(v), which stores v in proposed[], a shared array of pro-
posed input values. It then proceeds to dequeue the next item from the queue. If that
item is the value WIN, then the calling thread was first, and it decides on its own value.
If that item is the value LOSE, then the other thread was first, so the calling thread
returns the other thread’s input, as declared in the proposed[] array.

The protocol is wait-free, since it contains no loops. If each thread returns its own
input, then they must both have dequeued WIN, violating the FIFO queue specifica-

5.4 FIFO queues 111

tion. If each returns the other’s input, then they must both have dequeued LOSE, also
violating the queue specification.

The validity condition follows from the observation that the thread that dequeued
WIN stored its input in the proposed[] array before any value was dequeued.

Trivial variations of this program yield protocols for stacks, priority queues, lists,
sets, or any object with methods that return different results if applied in different
orders.

Corollary 5.4.2. It is impossible to construct a wait-free implementation of a queue,
stack, priority queue, list, or set from a set of atomic registers.

Although FIFO queues solve two-thread consensus, they do not solve three-thread
consensus.

Theorem 5.4.3. FIFO queues have consensus number 2.

Proof. By contradiction, assume we have a consensus protocol for a thread A, B,
and C. By Lemma 5.1.6, the protocol has a critical state s. Without loss of generality,
we can assume that A’s next move takes the protocol to a 0-valent state, and B’s next
move takes the protocol to a 1-valent state. The rest, as before, is a case analysis.

We know that A and B’s pending moves cannot commute. Thus, they are both
about to call methods of the same object. We also know that A and B cannot be about
to read or write shared registers by the proof of Theorem 5.2.1. It follows that they
are about to call methods of a single queue object.

First, suppose A and B both call deq(), as depicted in Fig. 5.8. Let s′ be the pro-
tocol state if A dequeues and then B dequeues, and let s′′ be the state if the dequeues

FIGURE 5.8

Case: A and B both call deq().

112 CHAPTER 5 The relative power of primitive synchronization operations

occur in the opposite order. Since s′ is 0-valent, if C runs uninterrupted from s′, then
it decides 0. Since s′′ is 1-valent, if C runs uninterrupted from s′′, then it decides 1.
But s′ and s′′ are indistinguishable to C (the same two items were removed from the
queue), so C must decide the same value in both states, a contradiction.

Second, suppose A calls enq(a) and B calls deq(). If the queue is nonempty, the
contradiction is immediate because the two methods commute (each operates on a
different end of the queue): C cannot observe the order in which they occurred. If the
queue is empty, then the 1-valent state reached if B executes a dequeue on the empty
queue and then A enqueues is indistinguishable to C from the 0-valent state reached
if A alone enqueues. Note that it does not matter what a deq() on an empty queue
does, that is, aborts or waits, since this does not affect the state visible to C.

Finally, suppose A calls enq(a) and B calls enq(b), as depicted in Fig. 5.9. Let s′
be the state at the end of the following execution:

1. Let A and B enqueue items a and b in that order.

FIGURE 5.9

Case: A calls enq(a) and B calls enq(b). Note that a new item is enqueued by A after A and
B enqueued their respective items and before it dequeued (and B could have also
enqueued items before dequeuing), but that this item is the same in both of the execution
scenarios.

5.5 Multiple assignment objects 113

2. Run A until it dequeues a. (Since the only way to observe the queue’s state is via
the deq() method, A cannot decide before it observes one of a or b.)

3. Before A takes any further steps, run B until it dequeues b.

Let s′′ be the state after the following alternative execution:

1. Let B and A enqueue items b and a in that order.
2. Run A until it dequeues b.
3. Before A takes any further steps, run B until it dequeues a.

Clearly, s′ is 0-valent and s′′ is 1-valent. Both of A’s executions are identical until
A dequeues a or b. Since A is halted before it can modify any other objects, B’s
executions are also identical until it dequeues a or b. By a now familiar argument, a
contradiction arises because s′ and s′′ are indistinguishable to C.

Variations of this argument can be applied to show that many similar data types,
such as sets, stacks, double-ended queues, and priority queues, all have consensus
number exactly 2.

5.5 Multiple assignment objects
In the (m,n)-assignment problem for n ≥ m > 1 (sometimes called multiple assign-
ment), we are given an object with n fields (sometimes an n-element array). The
assign() method takes as arguments m values vj and m indices ij ∈ 0, . . . , n − 1 for
j ∈ 0, . . . ,m − 1. It atomically assigns vj to array element ij . The read() method
takes an index argument i, and returns the ith array element.

Fig. 5.10 shows a lock-based implementation of a (2,3)-assignment object. Here,
threads can assign atomically to any two out of three array entries.

Multiple assignment is the dual of the atomic snapshot (Section 4.3), where we
assign to one field and read multiple fields atomically. Because snapshots can be
implemented from read–write registers, Theorem 5.2.1 implies snapshot objects have
consensus number 1. However, the same is not true for multiple assignment objects.

Theorem 5.5.1. There is no wait-free implementation of an (m,n)-assignment object
by atomic registers for any n > m > 1.

Proof. It is enough to show that we can solve 2-consensus given two threads and
a (2,3)-assignment object. (Exercise 5.26 asks you to justify this claim.) As usual,
the decide() method must figure out which thread went first. All array entries are
initialized with null values. Fig. 5.11 shows the protocol. Thread A, with ID 0, writes
(atomically) to fields 0 and 1, while thread B, with ID 1, writes (atomically) to fields
1 and 2. Then they try to determine who went first. From A’s point of view, there are
three cases, as shown in Fig. 5.12:

• If A’s assignment was ordered first, and B’s assignment has not (yet) happened,
then fields 0 and 1 have A’s value, and field 2 is null. A decides its own input.

114 CHAPTER 5 The relative power of primitive synchronization operations

1 public class Assign23 {
2 int[] r = new int[3];
3 public Assign23(int init) {
4 for (int i = 0; i < r.length; i++)
5 r[i] = init;
6 }
7 public synchronized void assign(int v0, int v1, int i0, int i1) {
8 r[i0] = v0;
9 r[i1] = v1;

10 }
11 public synchronized int read(int i) {
12 return r[i];
13 }
14 }

FIGURE 5.10

A lock-based implementation of a (2,3)-assignment object.

1 public class MultiConsensus<T> extends ConsensusProtocol<T> {
2 private final int NULL = -1;
3 Assign23 assign23 = new Assign23(NULL);
4 public T decide(T value) {
5 propose(value);
6 int i = ThreadID.get();
7 int j = 1-i;
8 // double assignment
9 assign23.assign(i, i, i, i+1);

10 int other = assign23.read((i+2) % 3);
11 if (other == NULL || other == assign23.read(1))
12 return proposed[i]; // I win
13 else
14 return proposed[j]; // I lose
15 }
16 }

FIGURE 5.11

Two-thread consensus using (2,3)-multiple assignment.

FIGURE 5.12

Consensus using multiple assignment: possible views.

5.5 Multiple assignment objects 115

• If A’s assignment was ordered first, and B’s second, then field 0 has A’s value,
and fields 1 and 2 have B’s. A decides its own input.

• If B’s assignment was ordered first, and A’s second, then fields 0 and 1 have A’s
value, and 2 has B’s. A decides B’s input.

A similar analysis holds for B.

Theorem 5.5.2. (n,
n(n+1)

2)-assignment for n > 1 has consensus number at least n.

Proof. We design a consensus protocol for n threads with IDs 0, . . . , n − 1 that
uses an (n,

n(n+1)
2)-assignment object. For convenience, we name the object fields

as follows. There are n fields r0, . . . , rn−1 where thread i writes to register ri , and
n(n− 1)/2 fields rij , for i > j , where threads i and j both write to field rij . All fields
are initialized to null. Each thread i atomically assigns its input value to n fields: its
single-writer field ri and its n−1 multi-writer fields rij and rji . The protocol decides
the first value to be assigned.

After assigning to its fields, a thread determines the relative ordering of the as-
signments for every two threads i and j as follows:

• Read rij or rji . If the value is null, then neither assignment has occurred.
• Otherwise, read ri and rj . If ri’s value is null, then j precedes i, and similarly

for rj .
• If neither ri nor rj is null, reread rij . If its value is equal to the value read from ri ,

then j precedes i, else vice versa.

Repeating this procedure, a thread can determine which value was written by the
earliest assignment. Two example orderings appear in Fig. 5.13.

FIGURE 5.13

Two possible cases of (4,10)-assignment solving consensus for four threads. In Case 1, only
threads B and D show up. B is the first to assign and wins the consensus. In Case 2, there
are three threads, A, B, and D, and as before, B wins by assigning first and D assigns last.
The order among the threads can be determined by looking at the pairwise order among
any two. Because the assignments are atomic, these individual orders are always consistent
and define the total order among the calls.

116 CHAPTER 5 The relative power of primitive synchronization operations

Note that (n,
n(n+1)

2)-assignment solves consensus for n > 1 threads, while its
dual structures, atomic snapshots, have consensus number 1. Although these two
problems may appear similar, we have just shown that writing atomically to multiple
memory locations requires more computational power than reading atomically.

5.6 Read–modify–write operations
Many, if not all, synchronization operations commonly provided by multiprocessors
in hardware can be expressed as read–modify–write (RMW) operations, or, as they
are called in their object form, read–modify–write registers. Consider an RMW reg-
ister that encapsulates integer values, and let F be a set of functions from integers to
integers.3 (Sometimes F is a singleton set.)

A method is an RMW for the function set F if it atomically replaces the current
register value v with f (v), for some f ∈ F , and returns the original value v. We
(mostly) follow the Java convention that an RMW method that applies the function
mumble is called getAndMumble().

For example, the java.util.concurrent.atomic package provides AtomicInteger,
a class with a rich set of RMW methods.

• The getAndSet(v) method atomically replaces the register’s current value with v

and returns the prior value. This method (also called swap()) is an RMW method
for the set of constant functions of the type fv(x) = v.

• The getAndIncrement() method atomically adds 1 to the register’s current value
and returns the prior value. This method (also called fetch-and-increment) is an
RMW method for the function f (x) = x + 1.

• The getAndAdd(k) method atomically adds k to the register’s current value and re-
turns the prior value. This method (also called fetch-and-add) is an RMW method
for the set of functions fk(x) = x + k.

• The compareAndSet() method takes two values, an expected value e and an update
value u. If the register value is equal to e, it is atomically replaced with u; other-
wise it is unchanged. Either way, the method returns a Boolean value indicating
whether the value was changed. Informally, fe,u(x) = x if x �= e and u otherwise.
(Strictly speaking, compareAndSet() is not an RMW method for fe,u, because an
RMW method would return the register’s prior value instead of a Boolean value,
but this distinction is a technicality.)

• The get() method returns the register’s value. This method is an RMW method
for the identity function f (v) = v.

The RMW methods are interesting precisely because they are potential hardware
primitives, engraved not in stone, but in silicon. Here, we define RMW registers

3 For simplicity, we consider only registers that hold integer values, but they could equally well hold other
values (e.g., references to other objects).

5.7 Common2 RMW operations 117

1 class RMWConsensus extends ConsensusProtocol {
2 // initialize to v such that f(v) != v
3 private RMWRegister r = new RMWRegister(v);
4 public Object decide(Object value) {
5 propose(value);
6 int i = ThreadID.get(); // my index
7 int j = 1-i; // other’s index
8 if (r.rmw() == v) // I’m first, I win
9 return proposed[i];

10 else // I’m second, I lose
11 return proposed[j];
12 }
13 }

FIGURE 5.14

Two-thread consensus using RMW.

and their methods in terms of synchronized Java methods, but, pragmatically, they
correspond (exactly or nearly) to many real or proposed hardware synchronization
primitives.

A set of functions is nontrivial if it includes at least one function that is not the
identity function. An RMW method is nontrivial if its set of functions is nontrivial,
and a RMW register is nontrivial if it has a nontrivial RMW method.

Theorem 5.6.1. Any nontrivial RMW register has consensus number at least 2.

Proof. Fig. 5.14 shows a two-thread consensus protocol. Since there exists f in F
that is not the identity, there exists a value v such that f (v) �= v. In the decide()
method, as usual, the propose(v) method writes the thread’s input v to the proposed[]
array. Then each thread applies the RMW method to a shared register. If a thread’s call
returns v, it is linearized first, and it decides its own value. Otherwise, it is linearized
second, and it decides the other thread’s proposed value.

Corollary 5.6.2. It is impossible to construct a wait-free implementation of any non-
trivial RMW method from atomic registers for two or more threads.

5.7 Common2 RMW operations
We now identify a class of RMW registers, called Common2, that correspond to many
of the common synchronization primitives provided by processors in the late 20th
century. Although Common2 registers, like all nontrivial RMW registers, are more
powerful than atomic registers, we show that they have consensus number exactly 2,
implying that they have limited synchronization power. Fortunately, these synchro-
nization primitives have by-and-large fallen from favor in contemporary processor
architectures.

118 CHAPTER 5 The relative power of primitive synchronization operations

Definition 5.7.1. A nontrivial set of functions F belongs to Common2 if for all values
v and all fi and fj in F , either:

• fi and fj commute: fi(fj (v)) = fj (fi(v)), or
• one function overwrites the other: fi(fj (v)) = fi(v) or fj (fi(v)) = fj (v).

Definition 5.7.2. An RMW register belongs to Common2 if its set of functions F
belongs to Common2.

Many RMW registers in the literature belong to Common2. For example, the
getAndSet() method uses a constant function, which overwrites any prior value. The
getAndIncrement() and getAndAdd() methods use functions that commute with one
another.

Very informally, here is why RMW registers in Common2 cannot solve three-
thread consensus: The first thread (the winner) can always tell it was first, and each
of the second and third threads (the losers) can tell that it was not. However, be-
cause the functions defining the state following operations in Common2 commute or
overwrite, a loser cannot tell which of the others was the winner (i.e., went first), and
because the protocol is wait-free, it cannot wait to find out. Let us make this argument
more precise.

Theorem 5.7.3. Any RMW register in Common2 has consensus number (exactly) 2.

Proof. Theorem 5.6.1 states that any such register has consensus number at least 2.
We show that no Common2 register solves consensus for three threads.

Assume by contradiction that a three-thread protocol exists using only Common2
registers and read–write registers. Suppose threads A, B, and C reach consensus
through Common2 registers. By Lemma 5.1.6, any such protocol has a critical state
s in which the protocol is bivalent, but any method call by any thread will cause the
protocol to enter a univalent state.

We now do a case analysis, examining each possible method call. The kind of
reasoning used in the proof of Theorem 5.2.1 shows that the pending methods cannot
be reads or writes, nor can the threads be about to call methods of different objects.
It follows that the threads are about to call RMW methods of a single register r .

Suppose A is about to call a method for function fA, sending the protocol to
a 0-valent state, and B is about to call a method for fB , sending the protocol to a
1-valent state. There are two possible cases:

1. As depicted in Fig. 5.15, one function overwrites the other: fB(fA(v)) = fB(v).
Let s′ be the state that results if A applies fA and then B applies fB . Because s′
is 0-valent, C will decide 0 if it runs alone from s′ until it finishes the protocol.
Let s′′ be the state that results if B alone calls fB . Because s′′ is 1-valent, C will
decide 1 if it runs alone from s′′ until it finishes the protocol. The problem is that
the two possible register states fB(fA(v)) and fB(v) are the same, so s′ and s′′
differ only in the internal states of A and B. If we now let thread C execute, since
C completes the protocol without communicating with A or B, these two states
look identical to C, so it cannot decide different values from the two states.

5.8 The compareAndSet operation 119

FIGURE 5.15

Case: two functions that overwrite.

2. The functions commute: fA(fB(v)) = fB(fA(v)). Let s′ be the state that results
if A applies fA and then B applies fB . Because s′ is 0-valent, C will decide 0 if
it runs alone from s′ until it finishes the protocol. Let s′′ be the state that results
if A and B perform their calls in reverse order. Because s′′ is 1-valent, C will
decide 1 if it runs alone from s′′ until it finishes the protocol. The problem is that
the two possible register states fA(fB(v)) and fB(fA(v)) are the same, so s′ and
s′′ differ only in the internal states of A and B. Now let thread C execute. Since
C completes the protocol without communicating with A or B, these two states
look identical to C, so it cannot decide different values from the two states.

5.8 The compareAndSet operation
We now consider the compareAndSet() operation (also called compare-and-swap),
a synchronization operation supported by several contemporary architectures (e.g.,
CMPXCHG on the Intel Pentium). It takes two arguments: an expected value and an
update value. If the current register value is equal to the expected value, then it is
replaced by the update value; otherwise the value is left unchanged. The method call
returns a Boolean indicating whether the value changed.

Theorem 5.8.1. A register providing compareAndSet() and get() methods has an
infinite consensus number.

Proof. Fig. 5.16 shows a consensus protocol for n threads using the AtomicInteger
class’s compareAndSet() method. The threads share an AtomicInteger object, ini-
tialized to a constant FIRST, distinct from any thread index. Each thread calls

120 CHAPTER 5 The relative power of primitive synchronization operations

1 class CASConsensus extends ConsensusProtocol {
2 private final int FIRST = -1;
3 private AtomicInteger r = new AtomicInteger(FIRST);
4 public Object decide(Object value) {
5 propose(value);
6 int i = ThreadID.get();
7 if (r.compareAndSet(FIRST, i)) // I won
8 return proposed[i];
9 else // I lost

10 return proposed[r.get()];
11 }
12 }

FIGURE 5.16

Consensus using compareAndSet().

compareAndSet() with FIRST as the expected value, and its own index as the new
value. If thread A’s call returns true, then that method call was first in the lineariza-
tion order, so A decides its own value. Otherwise, A reads the current AtomicInteger
value, and takes that thread’s input from the proposed[] array.

We remark that the get() method provided by compareAndSet() register in
Fig. 5.16 is only a convenience, and not necessary for the protocol.

Corollary 5.8.2. A register providing only compareAndSet() has an infinite consen-
sus number.

As we will see in Chapter 6, machines that provide primitive operations like
compareAndSet()4 are asynchronous computation’s equivalents of the Turing ma-
chines of sequential computation: Any concurrent object that can be implemented
in a wait-free manner on such machines. Thus, in the words of Maurice Sendak,
compareAndSet() is the “king of all wild things.”

5.9 Chapter notes
Michael Fischer, Nancy Lynch, and Michael Paterson [46] were the first to prove
that consensus is impossible in a message-passing system where a single thread can
halt. Their seminal paper introduced the “bivalence” style of impossibility argument
now widely used in distributed computing. M. Loui and H. Abu-Amara [116] and
Herlihy [69] were the first to extend this result to shared memory.

4 Some architectures provide a pair of operations similar to get()/compareAndSet() called load-
linked/store-conditional. In general, the load-linked method marks a location as loaded, and the store-
conditional method fails if another thread modified that location since it was loaded. See Appendix B.

5.10 Exercises 121

Clyde Kruskal, Larry Rudolph, and Marc Snir [96] coined the term read–modify–
write operation as part of the NYU Ultracomputer project.

Maurice Herlihy [69] introduced the notion of a consensus number as a measure
of computational power, and was the first to prove most of the impossibility and
universality results presented in this and the next chapter.

The class Common2, which includes several common primitive synchronization
operations, was defined by Yehuda Afek, Eytan Weisberger, and Hanan Weisman [5].
The “sticky-bit” object used in the exercises is due to Serge Plotkin [140].

The n-bounded compareAndSet() object with arbitrary consensus number n in Ex-
ercise 5.24 is based on a construction by Prasad Jayanti and Sam Toueg [90]. In the
hierarchy used here, we say that X solves consensus if one can construct a wait-free
consensus protocol from any number of instances of X and any amount of read–write
memory. Prasad Jayanti [88] observed that one could also define resource-bounded
hierarchies where one is restricted to using only a fixed number of instances of X, or
a fixed amount of memory. The unbounded hierarchy used here seems to be the most
natural one, since any other hierarchy is a coarsening of the unbounded one.

Jayanti also raised the question whether the hierarchy is robust, that is, whether
an object X at level m can be “boosted” to a higher consensus level by combining it
with another object Y at the same or a lower level. Wai-Kau Lo and Vassos Hadzila-
cos [114] and Eric Schenk [159] showed that the consensus hierarchy is not robust:
Certain objects can be boosted. Informally, their constructions went like this: Let X

be an object with the following curious properties. X solves n-thread consensus but
“refuses” to reveal the results unless the caller can prove he or she can solve an in-
termediate task weaker than n-thread consensus, but stronger than any task solvable
by atomic read–write registers. If Y is an object that can be used to solve the inter-
mediate task, Y can boost X by convincing X to reveal the outcome of an n-thread
consensus. The objects used in these proofs are nondeterministic.

The Maurice Sendak quote is from Where the Wild Things Are [155].

5.10 Exercises
Exercise 5.1. Prove Lemma 5.1.5, that is, that every n-thread consensus protocol has
a bivalent initial state.

Exercise 5.2. Prove that in a critical state, one successor state must be 0-valent, and
the other 1-valent.

Exercise 5.3. Show that if binary consensus using atomic registers is impossible for
two threads, then it is also impossible for n threads, where n > 2. (Hint: Argue by
reduction: If we have a protocol to solve binary consensus for n threads, then we can
transform it into a two-thread protocol.)

Exercise 5.4. Show that if binary consensus using atomic registers is impossible for
n threads, then so is consensus over k values, where k > 2.

122 CHAPTER 5 The relative power of primitive synchronization operations

1 public class ConsensusProposal {
2 boolean proposed = new boolean[2];
3 int speed = new Integer[2];
4 int position = new Integer[2];
5 public ConsensusProposal(){
6 position[0] = 0;
7 position[1] = 0;
8 speed[0] = 3;
9 speed[1] = 1;

10 }
11 public decide(Boolean value) {
12 int i = myIndex.get();
13 int j = 1 - i;
14 proposed[i] = value;
15 while (true) {
16 position[i] = position[i] + speed[i];
17 if (position[i] > position[j] + speed[j]) // I am far ahead of you
18 return proposed[i];
19 else if (position[i] < position[j]) // I am behind you
20 return proposed[j];
21 }
22 }
23 }

FIGURE 5.17

Proposed consensus code for thread i ∈ {0,1}.

Exercise 5.5. Show that with sufficiently many n-thread binary consensus objects
and atomic registers, one can implement n-thread consensus over n values.

Exercise 5.6. Consider the algorithm in Fig. 5.17 for two-thread binary consensus.

• Show that the algorithm is consistent and valid (that is, an output value must be
an input of one of the threads, and the output values cannot differ).

• Since the algorithm is consistent and valid and only uses read–write registers, it
cannot be wait-free. Give an execution history that is a counterexample to wait-
freedom.

Exercise 5.7. The Stack class provides two methods: push(x) pushes a value onto
the top of the stack, and pop() removes and returns the most recently pushed value.
Prove that the Stack class has consensus number exactly 2.

Exercise 5.8. Suppose we augment the FIFO Queue class with a peek() method that
returns but does not remove the first element in the queue. Show that the augmented
queue has infinite consensus number.

Exercise 5.9. Consider three threads, A, B, and C, each of which has an MRSW
register, XA, XB , and XC , that it alone can write and the others can read. Each pair
also shares a RMWRegister register that provides a compareAndSet() method: A and B

5.10 Exercises 123

share RAB , B and C share RBC , and A and C share RAC . Only the threads that share
a register can call that register’s compareAndSet() method or read its value.

Either give a three-thread consensus protocol and explain why it works, or sketch
an impossibility proof.

Exercise 5.10. Consider the situation described in Exercise 5.9 except that A, B, and
C can apply a double compareAndSet() to both registers at once.

Exercise 5.11. In the consensus protocol shown in Fig. 5.7, what would happen if
we announced the thread’s value after dequeuing from the queue?

Exercise 5.12. Objects of the StickyBit class have three possible states, ⊥,0,1,
initially ⊥. A call to write(v), where v is 0 or 1, has the following effects:

• If the object’s state is ⊥, then it becomes v.
• If the object’s state is 0 or 1, then it is unchanged.

A call to read() returns the object’s current state.

1. Show that such an object can solve wait-free binary consensus (that is, all inputs
are 0 or 1) for any number of threads.

2. Show that an array of log2 m StickyBit objects with atomic registers can solve
wait-free consensus for any number of threads when there are m possible inputs.
(Hint: Give each thread one atomic multi-reader single-writer register.)

Exercise 5.13. The SetAgree class, like the Consensus class, provides a decide()
method whose call returns a value that was the input of some thread’s decide() call.
However, unlike the Consensus class, the values returned by decide() calls are not
required to agree. Instead, these calls may return no more than k distinct values.
(When k is 1, SetAgree is the same as consensus.)

What is the consensus number of the SetAgree class when k > 1?

Exercise 5.14. The two-thread approximate agreement class for a given ε > 0 is
defined as follows: Threads A and B each call decide(xa) and decide(xb) methods,
where xa and xb are real numbers. These method calls respectively return values ya

and yb such that ya and yb both lie in the closed interval [min(xa, xb),max(xa, xb)],
and |ya − yb| ≤ ε. Note that this object is nondeterministic.

What is the consensus number of the approximate agreement object?

Exercise 5.15. An A2Cas object represents two locations for values that can be read
individually and be modified by a2cas(). If both locations have the corresponding
expected values e0 and e1, then a call to a2cas(e0, e1, v) will write v to exactly one
of the two locations, chosen nondeterministically.

What is the consensus number of the a2cas() object? Prove your claim.

Exercise 5.16. Consider a distributed system where threads communicate by mes-
sage passing. A type A broadcast guarantees:

1. every nonfaulty thread eventually gets each message,

124 CHAPTER 5 The relative power of primitive synchronization operations

2. if P broadcasts M1 and then M2, then every thread receives M1 before M2, but
3. messages broadcast by different threads may be received in different orders at

different threads.

A type B broadcast guarantees:

1. every nonfaulty thread eventually gets each message,
2. if P broadcasts M1 and Q broadcasts M2, then every thread receives M1 and M2

in the same order.

For each kind of broadcast,

• give a consensus protocol if possible;
• otherwise, sketch an impossibility proof.

Exercise 5.17. Consider the following two-thread QuasiConsensus problem.
Two threads, A and B, are each given a binary input. If both have input v, then

both must decide v. If they have mixed inputs, then either they must agree, or B may
decide 0 and A may decide 1 (but not vice versa).

Here are three possible exercises (only one of which works):

1. Give a two-thread consensus protocol using QuasiConsensus showing it has con-
sensus number (at least) 2.

2. Give a critical-state proof that this object’s consensus number is 1.
3. Give a read–write implementation of QuasiConsensus, thereby showing it has con-

sensus number 1.

Exercise 5.18. Explain why the critical-state proof of the impossibility of consensus
fails if the shared object is, in fact, a Consensus object.

Exercise 5.19. A team consensus object provides the same decide() method as con-
sensus. A team consensus object solves consensus as long as at most two distinct
values are ever proposed. (If more than two are proposed, any result is allowed.)

Show how to solve n-thread consensus, with up to n distinct input values, from a
supply of team consensus objects.

Exercise 5.20. A trinary register holds values ⊥,0,1, and provides compareAndSet()
and get() methods with the usual meaning. Each such register is initially ⊥. Give a
protocol that uses one such register to solve n-thread consensus if the inputs of the
threads are binary, that is, either 0 or 1.

Can you use multiple such registers (perhaps with atomic read–write registers) to
solve n-thread consensus even if the threads’ inputs are in the range 0 . . .2K − 1 for
K > 1? (You may assume an input fits in an atomic register.) Important: Remember
that a consensus protocol must be wait-free.

• Devise a solution that uses at most O(n) trinary registers.
• Devise a solution that uses O(K) trinary registers.

Feel free to use all the atomic registers you want (they are cheap).

5.10 Exercises 125

1 class Queue {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicReference items[] = new AtomicReference[Integer.MAX_VALUE];
4 void enq(Object x){
5 int slot = head.getAndIncrement();
6 items[slot] = x;
7 }
8 Object deq() {
9 while (true) {

10 int limit = head.get();
11 for (int i = 0; i < limit; i++) {
12 Object y = items[i].getAndSet(); // swap
13 if (y != null)
14 return y;
15 }
16 }
17 }
18 }

FIGURE 5.18

Queue implementation.

Exercise 5.21. Earlier we defined lock-freedom. Prove that there is no lock-free im-
plementation of consensus using read–write registers for two or more threads.

Exercise 5.22. Fig. 5.18 shows a FIFO queue implemented with read(), write(),
getAndSet() (that is, swap), and getAndIncrement() methods. You may assume this
queue is linearizable, and wait-free as long as deq() is never applied to an empty
queue. Consider the following sequence of statements:

• Both getAndSet() and getAndIncrement() methods have consensus number 2.
• We can add a peek() simply by taking a snapshot of the queue (using the methods

studied earlier) and returning the item at the head of the queue.
• Using the protocol devised for Exercise 5.8, we can use the resulting queue to

solve n-consensus for any n.

We have just constructed an n-thread consensus protocol using only objects with
consensus number 2.

Identify the faulty step in this chain of reasoning, and explain what went wrong.

Exercise 5.23. Recall that in our definition of compareAndSet(), we noted that strictly
speaking, compareAndSet() is not an RMW method for fe,u, because an RMW
method would return the register’s prior value instead of a Boolean value. Use an
object that supports compareAndSet() and get() to provide a new object with a lin-
earizable NewCompareAndSet() method that returns the register’s current value
instead of a Boolean.

126 CHAPTER 5 The relative power of primitive synchronization operations

Exercise 5.24. Define an n-bounded compareAndSet() object as follows: It provides
a compareAndSet() method that takes two values, an expected value e and an update
value u. For the first n times compareAndSet() is called, it behaves like a conventional
compareAndSet() register: If the object value is equal to e, it is atomically replaced
with u, and the method call returns true. If the object value v is not equal to e, then
it is left unchanged, and the method call returns false, along with the value v. After
compareAndSet() has been called n times, however, the object enters a faulty state,
and all subsequent method calls return ⊥.

Show that an n-bounded compareAndSet() object for n ≥ 2 has consensus number
exactly n.

Exercise 5.25. Provide a wait-free implementation of a two-thread (2,3)-assignment
object from three compareAndSet() objects (that is, objects supporting the operations
compareAndSet() and get()).

Exercise 5.26. In the proof of Theorem 5.5.1, we claimed that it is enough to show
that we can solve 2-consensus given two threads and a (2,3)-assignment object. Jus-
tify this claim.

Exercise 5.27. We can treat the scheduler as an adversary who uses the knowledge
of our protocols and input values to frustrate our attempts at reaching consensus.
One way to outwit an adversary is through randomization. Assume that there are two
threads that want to reach consensus, each of which can flip an unbiased coin, and that
the adversary cannot control future coin flips but can observe the result of each coin
flip and each value read or written. The adversary scheduler can stop a thread before
or after a coin flip or a read or write to a shared register. A randomized consensus
protocol terminates with probability arbitrarily close to 1 (given sufficiently long
time) against an adversary scheduler.

Fig. 5.19 shows a plausible-looking randomized binary consensus protocol. Give
an example showing that this protocol is incorrect.

• Does the algorithm satisfy the safety properties of consensus (i.e., validity and
consistency)? That is, is it true that each thread can only output a value that is the
input of one of the two threads, and also that the outputs cannot be different?

• Does it terminate with a probability arbitrarily close to 1?

Exercise 5.28. One can implement a consensus object using read–write registers by
implementing a deadlock- or starvation-free mutual exclusion lock. However, this
implementation provides only dependent progress, and the operating system must
make sure that threads do not get stuck in the critical section so that the computation
as a whole progresses.

• Is the same true for obstruction-freedom, the nonblocking dependent progress
condition? Show an obstruction-free implementation of a consensus object using
only atomic registers.

• What is the role of the operating system in the obstruction-free solution to consen-
sus? Explain where the critical state-based proof of the impossibility of consensus

5.10 Exercises 127

1 Object prefer[2] = {null, null};
2

3 Object decide(Object input) {
4 int i = Thread.getID();
5 int j = 1-i;
6 prefer[i] = input;
7 while (true) {
8 if (prefer[j] == null) {
9 return prefer[i];

10 } else if (prefer[i] == prefer[j]) {
11 return prefer[i];
12 } else {
13 if (flip()) {
14 prefer[i] = prefer[j];
15 }
16 }
17 }
18 }

FIGURE 5.19

Is this a randomized consensus protocol?

breaks down if we repeatedly allow an oracle to halt threads so as to allow others
to make progress.

(Hint: Think of how you could restrict the set of allowed executions.)

6
CHAPTER

Universality of consensus

6.1 Introduction
In Chapter 5, we considered a simple technique for proving statements of the form
“there is no wait-free implementation of X by Y .” We considered object classes with
deterministic sequential specifications.1 We derived a hierarchy in which no object
from one level can implement an object at a higher level (see Fig. 6.1). Recall that
each object has an associated consensus number, which is the maximum number of
threads for which the object can solve the consensus problem. In a system of n or
more concurrent threads, it is impossible to construct a wait-free implementation of
an object with consensus number n from objects with lower consensus numbers. The
same result holds for lock-free implementations, and henceforth unless we explicitly
state otherwise, it is implied that a result that holds for wait-free implementations
holds for lock-free ones as well.

The impossibility results of Chapter 5 do not by any means imply that wait-free
synchronization is impossible or infeasible. In this chapter, we show that there are
classes of objects that are universal: Given sufficiently many of them, one can con-
struct a wait-free linearizable implementation of any concurrent object.

A class is universal in a system of n threads if and only if it has a consensus
number greater than or equal to n. In Fig. 6.1, each class at level n is universal for
a system of n threads. A machine architecture or programming language is compu-
tationally powerful enough to support arbitrary wait-free synchronization if and only
if it provides objects of a universal class as primitives. For example, modern multi-
processor machines that provide a compareAndSet() operation are universal for any
number of threads: They can implement any concurrent object in a wait-free manner.

This chapter describes a universal construction that implements any concurrent
object from consensus objects. The chapter does not describe practical techniques for
implementing wait-free objects. Like classical computability theory, understanding
the universal construction and its implications allows us to avoid the naïve mistake of
trying to solve unsolvable problems. Once we understand why consensus is powerful
enough to implement any kind of object, we will be better prepared to undertake the
engineering effort needed to make such constructions efficient.

1 The situation with nondeterministic objects is significantly more complicated.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00015-X
Copyright © 2021 Elsevier Inc. All rights reserved.

129

130 CHAPTER 6 Universality of consensus

Consensus
Number Object
1 atomic registers
2 getAndSet(), getAndAdd(), Queue, Stack
.
.
.

.

.

.

m (m,m(m + 1)/2)-assignment
.
.
.

.

.

.

∞ memory-to-memory move, compareAndSet(), load-linked/store-conditionala

a See Appendix B for details.

FIGURE 6.1

Concurrent computability and the universality hierarchy of synchronization operations.

6.2 Universality
A class C is universal if one can construct a wait-free implementation of any object
from some number of objects of C and some number of read–write registers. Our
construction uses multiple objects of class C because we are ultimately interested
in understanding the synchronization power of machine instructions, and most ma-
chines allow their instructions to be applied to multiple memory locations. We allow
an implementation to use multiple read–write registers because it is convenient for
bookkeeping, and memory is usually in plentiful supply on modern architectures. To
avoid distraction, we use an unlimited number of read–write registers and consen-
sus objects, leaving the question of recycling memory as an exercise. We begin by
presenting a lock-free implementation, later extending it to a slightly more complex
wait-free one.

6.3 A lock-free universal construction
Fig. 6.2 shows a generic definition for a sequential object, based on the invocation–
response formulation of Chapter 3. Each object is created in a fixed initial state. The
apply() method takes as argument an invocation which describes the method being
called and its arguments, and returns a response containing the call’s termination

1 public interface SeqObject {
2 public abstract Response apply(Invoc invoc);
3 }

FIGURE 6.2

A generic sequential object: The apply() method applies the invocation and returns a
response.

6.3 A lock-free universal construction 131

1 public class Node {
2 public Invoc invoc; // method name and args
3 public Consensus<Node> decideNext; // decide next Node in list
4 public Node next; // the next node
5 public int seq; // sequence number
6 public Node(Invoc invoc) {
7 invoc = invoc;
8 decideNext = new Consensus<Node>()
9 seq = 0;

10 }
11 public static Node max(Node[] array) {
12 Node max = array[0];
13 for (int i = 1; i < array.length; i++)
14 if (max.seq < array[i].seq)
15 max = array[i];
16 return max;
17 }
18 }

FIGURE 6.3

The Node class.

condition (normal or exceptional) and the return value, if any. For example, a stack
invocation might be push() with an argument, and the corresponding response would
be normal and void.

Figs. 6.3 and 6.4 show a universal construction that transforms any sequential
object into a lock-free linearizable concurrent object. This construction assumes that
sequential objects are deterministic: If we apply a method to an object in a particular
state, then there is only one possible response and one possible new object state. We
can represent any object as a combination of a sequential object in its initial state
and a log: a linked list of nodes representing the sequence of method calls applied to
the object (and hence the object’s sequence of state transitions). A thread executes a
method call by adding the new call to the head of the list. It then traverses the list,
from tail to head, applying the method calls to a private copy of the object. The thread
finally returns the result of applying its own operation. It is important to understand
that only the head of the log is mutable: The initial state and nodes preceding the
head never change.

How do we make this log-based construction concurrent, that is, allow threads to
make concurrent calls to apply()? A thread attempting to call apply() creates a node
to hold its invocation. The threads then compete to append their respective nodes to
the head of the log by running an n-thread consensus protocol to agree which node
was appended to the log. The inputs to this consensus are references to the threads’
nodes, and the result is the unique winning node.

The winner can then proceed to compute its response. It does so by creating a
local copy of the sequential object and traversing the log, following next references

132 CHAPTER 6 Universality of consensus

1 public class LFUniversal {
2 private Node[] head;
3 private Node tail;
4 public LFUniversal() {
5 tail = new Node();
6 tail.seq = 1;
7 for (int i = 0; i < n; i++)
8 head[i] = tail
9 }

10 public Response apply(Invoc invoc) {
11 int i = ThreadID.get();
12 Node prefer = new Node(invoc);
13 while (prefer.seq == 0) {
14 Node before = Node.max(head);
15 Node after = before.decideNext.decide(prefer);
16 before.next = after;
17 after.seq = before.seq + 1;
18 head[i] = after;
19 }
20 SeqObject myObject = new SeqObject();
21 Node current = tail.next;
22 while (current != prefer){
23 myObject.apply(current.invoc);
24 current = current.next;
25 }
26 return myObject.apply(current.invoc);
27 }
28 }

FIGURE 6.4

The lock-free universal construction.

from tail to head, applying the operations in the log to its copy, finally returning the
response associated with its own invocation. This algorithm works even when apply()
calls are concurrent because the prefix of the log up to the thread’s own node never
changes. The losing threads, which were not chosen by the consensus object, must
try again to set the node currently at the head of the log (which changes between
attempts) to point to them.

We now consider this construction in detail. The code for the lock-free universal
construction appears in Fig. 6.4. A sample execution appears in Fig. 6.5. The object
state is defined by a linked list of nodes, each one containing an invocation. The code
for a node appears in Fig. 6.3. The node’s decideNext field is a consensus object
used to decide which node is appended next in the list, and next is the field in which
the outcome of that consensus, the reference to the next node, is recorded. The seq
field is the node’s sequence number in the list. This field is 0 while the node is not

6.3 A lock-free universal construction 133

FIGURE 6.5

Execution of the lock-free universal construction. Thread 2 appends the second node in the
log winning consensus on decideNext in the sentinel node. It then sets the node’s sequence
number from 0 to 2, and refers to it from its entry in the head[] array. Thread 7 loses the
decideNext consensus at the sentinel node, sets the next reference and sequence number
of the decided successor node to 2 (they were already set to the same values by thread 2),
and refers to the node from its entry in the head[] array. Thread 5 appends the third node,
updates its sequence number to 3, and updates its entry in the head[] array to this node.
Finally, thread 2 appends the fourth node, sets its sequence number to 4, and refers to it
from its entry in the head[] array. The maximal value in the head array keeps track of the
head of the log.

yet threaded onto the list, and positive otherwise. Sequence numbers for successive
nodes in the list increase by 1. Initially, the log consists of a unique sentinel node
with sequence number 1.

The hard part about designing the concurrent lock-free universal construction is
that consensus objects can be used only once.2

In our lock-free algorithm in Fig. 6.4, each thread allocates a node holding its
invocation, and repeatedly tries to append that node to the head of the log. Each
node has a decideNext field, which is a consensus object. A thread tries to append its
node by proposing it as input to a consensus protocol on the head’s decideNext field.
Because threads that do not participate in this consensus may need to traverse the list,
the result of this consensus is stored in the node’s next field. Multiple threads may
update this field simultaneously, but they all write the same value. When a thread
appends a node, it sets the node’s sequence number.

Once a thread’s node is part of the log, the thread computes the response to its
invocation by traversing the log from the tail to the newly added node. It applies each
of the invocations to a private copy of the object, and returns the response from its

2 Creating a reusable consensus object, or even one whose decision is readable, is not a simple task. It is
essentially the same problem as the universal construction we are about to design. For example, consider
the queue-based consensus protocol in Section 5.4. It is not obvious how to use a Queue to allow repeated
reading of the consensus object state after it is decided.

134 CHAPTER 6 Universality of consensus

own invocation. Note that when a thread computes its response, all its predecessors’
next references must already be set, because these nodes have already been added
to the head of the list. Any thread that added a node to the list has updated the next
reference of its predecessor with the result of the decideNext consensus.

How do we locate the head of the log? We cannot track the head with a consensus
object because the head must be updated repeatedly, and consensus objects can only
be accessed once by each thread. Instead, we create a per-thread structure of the kind
used in the bakery algorithm (Section 2.7). We use an n-entry array head[], where
head[i] is the last node in the list that thread i has observed. Initially all entries refer
to the tail sentinel node. The head is the node with the maximum sequence number
among the nodes referenced in the head[] array. The max() method in Fig. 6.3 performs
a collect, reading head[] and returning the node with the highest sequence number.

The construction is a linearizable implementation of the sequential object. Each
apply() call can be linearized to the decide() call adding the node to the log.

Why is this construction lock-free? The head of the log, the latest node appended,
is added to the head[] array within a finite number of steps. The node’s predecessor
must appear in the head array, so any node repeatedly attempting to add a new node
will repeatedly run the max() function on the head array. It detects this predecessor,
applies consensus on its decideNext field, and then updates the winning node’s fields,
including its sequence number. Finally, it stores the decided node in that thread’s head
array entry. The new head node always eventually appears in head[]. It follows that
the only way a thread can repeatedly fail to add its own node to the log is if other
threads repeatedly succeed in appending their own nodes to the log. Thus, a node can
starve only if other nodes are continually completing their invocations, implying that
the construction is lock-free.

6.4 A wait-free universal construction
How do we make a lock-free algorithm wait-free? The full wait-free algorithm ap-
pears in Fig. 6.6. We must guarantee that every thread completes an apply() call
within a finite number of steps; that is, no thread starves. To guarantee this property,
threads making progress help less fortunate threads complete their calls. This helping
pattern shows up later in a specialized form in other wait-free algorithms.

To enable helping, each thread shares with other threads the apply() call that it is
trying to complete. We add an n-element announce[] array, where announce[i] is the
node that thread i is currently trying to append to the list. Initially, all entries refer to
the sentinel node, which has a sequence number 1. Thread i announces a node when
it stores the node in announce[i].

To execute apply(), a thread first announces its new node. This step ensures that
if the thread itself does not succeed in appending its node onto the list, some other
thread can append that node on its behalf. It then proceeds as before, attempting to
append the node into the log. To do so, it reads the head[] array only once (line 15),
and then enters the main loop of the algorithm, which it executes until its own node

6.4 A wait-free universal construction 135

1 public class Universal {
2 private Node[] announce; // array added to coordinate helping
3 private Node[] head;
4 private Node tail = new Node();
5 public Universal() {
6 tail.seq = 1;
7 for (int j = 0; j < n; j++) {
8 head[j] = tail;
9 announce[j] = tail;

10 }
11 }
12 public Response apply(Invoc invoc) {
13 int i = ThreadID.get();
14 announce[i] = new Node(invoc);
15 head[i] = Node.max(head);
16 while (announce[i].seq == 0) {
17 Node before = head[i];
18 Node help = announce[(before.seq + 1) % n];
19 if (help.seq == 0)
20 prefer = help;
21 else
22 prefer = announce[i];
23 Node after = before.decideNext.decide(prefer);
24 before.next = after;
25 after.seq = before.seq + 1;
26 head[i] = after;
27 }
28 head[i] = announce[i];
29 SeqObject myObject = new SeqObject();
30 Node current = tail.next;
31 while (current != announce[i]){
32 myObject.apply(current.invoc);
33 current = current.next;
34 }
35 return myObject.apply(current.invoc);
36 }
37 }

FIGURE 6.6

The wait-free universal construction.

has been appended to the list (detected on line 16 after its sequence number becomes
nonzero). Here is a change from the lock-free algorithm. A thread first checks to see
if there is a node that needs help ahead of it in the announce[] array (line 18). The node
to be helped must be determined dynamically because nodes are continually added to
the log. A thread attempts to help nodes in the announce[] array in increasing order,

136 CHAPTER 6 Universality of consensus

determined by the sequence number modulo the width n of the announce[] array. We
prove that this approach guarantees that any node that does not make progress on its
own will eventually be helped by others once its owner thread’s index matches the
maximal sequence number modulo n. If this helping step were omitted, then an indi-
vidual thread could be overtaken an arbitrary number of times. If the node selected for
help does not require help (i.e., its sequence number is nonzero in line 19), then each
thread attempts to append its own node (line 22). (All announce[] array entries are
initialized to the sentinel node, with sequence number 1.) The rest of the algorithm is
almost the same as in the lock-free algorithm. A node is appended when its sequence
number becomes nonzero. In this case, the thread proceeds as before to compute its
result based on the immutable segment of the log from the tail to its own node.

Fig. 6.7 shows an execution of the wait-free universal construction in which,
starting from the initial state, thread 5 announces its new node and appends it to the

FIGURE 6.7

Execution of the wait-free universal construction. Thread 5 announces its new node and
appends it to the log, but halts before adding it to the head[] array. Thread 7 does not see
thread 5’s node in the head[] array. Since thread 2 (whose ID is (before.seq + 1) mod n) is
not trying to add a node, thread 7 tries to add its own node. However, it loses the consensus
on the sentinel node’s decideNext object since thread 5 already won. Thread 7 therefore
completes updating the fields of thread 5’s node, setting the node’s sequence number to 2,
and adding the node to the head[] array. Note that thread 5’s own entry in the head[] array is
not yet set to its announced node. Next, thread 3 announces its node and then pauses
before entering the main loop. Thread 7 now successfully helps thread 3, appending its
node and setting its sequence number to 3. Now thread 3 wakes up. It does not enter the
main loop because its node’s sequence number is nonzero, but will update the head[] array
and compute its output value using a copy of the sequential object.

6.4 A wait-free universal construction 137

log, and pauses before adding the node to head[]. Thread 7 then takes steps. The value
of (before.seq + 1) mod n is 2, but thread 2 is not trying to add a node, so thread 7
tries to add its own node. It loses the consensus on the sentinel node’s decideNext
object since thread 5 already won, and thus completes the operation of thread 5, set-
ting the node’s sequence number to 2 and adding the node to the head[] array. Next,
thread 3 announces its node and pauses before entering the main loop. Then thread 7
helps thread 3: it appends thread 3’s node, but pauses after setting its sequence num-
ber to 3 but before adding the node to head[]. Now thread 3 wakes up. It does not enter
the main loop because its node’s sequence number is nonzero, but updates head[] on
line 28 and computes its output value using a copy of the sequential object.

There is a delicate point to understand about these modifications to the lock-free
algorithm. Since more than one thread can attempt to append a particular node to the
log, we must make sure that no node is appended twice. One thread might append
the node and set the node’s sequence number at the same time that another thread
appends the same node and sets its sequence number. The algorithm avoids this error
because of the order in which threads read the maximum head[] array value and the
sequence number of a node in the announce[] array. Let a be a node created by thread
A and appended by threads A and B. It must be added at least once to head[] before
the second append. Note, however, that the before node read from head[A] by B

(line 17) must be a itself, or a successor of a in the log. Moreover, before any node is
added to head[] (either on line 26 or on line 28), its sequence number is made nonzero
(line 25). The order of operations ensures that B sets its head[B] entry (the entry
based on which B’s before variable will be set, resulting in an erroneous append) in
line 15 or line 26, and only then validates that the sequence number of a is nonzero in
line 16 or line 19 (depending on whether A or another thread performs the operation).
It follows that the validation of the erroneous second append will fail because the
sequence number of node a will already be nonzero, and it will not be added to the
log a second time.

Linearizability follows because no node is ever added twice, and the order in
which nodes are appended to the log is clearly compatible with the natural partial
order of the corresponding method calls.

To prove that the algorithm is wait-free, we must show that the helping mechanism
guarantees that any node that is announced is eventually added to the head[] array
(implying that it is in the log) and the announcing thread can complete computation
of its outcome. To assist in the proof, it is convenient to define some notation. Let
max(head[]) be the node with the largest sequence number in the head[] array, and let
“c ∈head[]” denote the assertion that head[i] is set to node c, for some i.

An auxiliary variable (sometimes called a ghost variable) is one that does not
appear explicitly in the code, does not alter the program’s behavior in any way, and yet
helps us reason about the behavior of the algorithm. We use the following auxiliary
variables:

• concur(A) is the set of nodes that have been stored in the head[] array since thread
A’s last announcement.

• start(A) is the sequence number of max(head[]) when thread A last announced.

138 CHAPTER 6 Universality of consensus

12 public Response apply(Invoc invoc) {
13 int i = ThreadID.get();
14 < announce[i] = new Node(invoc); start(i) = max(head); concur(i) = {}; >
15 head[i] = Node.max(head);
16 while (announce[i].seq == 0) {
17 Node before = head[i];
18 Node help = announce[(before.seq + 1) % n];
19 if (help.seq == 0)
20 prefer = help;
21 else
22 prefer = announce[i];
23 Node after = before.decideNext.decide(prefer);
24 before.next = after;
25 after.seq = before.seq + 1;
26 < head[i] = after; (∀j) (concur(j) = concur(j) ∪ {after}); >
27 }
28 < head[i] = announce[i]; (∀j) (concur(j) = concur(j) ∪ {after}); >
29 SeqObject MyObject = new SeqObject();
30 Node current = tail.next;
31 while (current != announce[i]){
32 MyObject.apply(current.invoc);
33 current = current.next;
34 }
35 return MyObject.apply(current.invoc);
36 }

FIGURE 6.8

The apply() method of the wait-free universal construction with auxiliary variables.
Operations in angled brackets are assumed to happen atomically.

The code reflecting the auxiliary variables and how they are updated appears in
Fig. 6.8. For example, the statement

(∀j) (concur(j) = concur(j) ∪ {after});

means that the node after is added to concur(j) for all threads j . The code statements
within the angled brackets are considered to be executed atomically. This atomicity
can be assumed because auxiliary variables do not affect the computation in any way.
For brevity, we slightly abuse the notation by letting the function max() applied to a
node or array of nodes return the maximal among their sequence numbers.

Note the following property is invariant throughout the execution of the universal
construction:

|concur(A)| + start(A) = max(head[]). (6.4.1)

Lemma 6.4.1. For all threads A, the following claim is always true:

|concur(A)| > n ⇒ announce[A] ∈ head[].

6.4 A wait-free universal construction 139

Proof. Let a = announce[A]. If |concur(A)| > n, then concur(A) includes successive
nodes b and c (appended to the log by threads B and C) whose respective sequence
numbers plus 1 are equal to A − 1 and A modulo n (note that B and C are the
threads that add b and c to the log, not necessarily the ones that announced them).
Thread C appends to the log the node located in announce[A] at the time it executes
lines 18–22, unless it had already been added to the log. We need to show that when
C reads announce[A], A has already announced a, so c adds a to the log, or a was
already added. Later, when c is added to head[] and |concur(A)| > n, a will be in
head[] as the lemma requires.

To see why a must have already been announced when C reached lines 18–22,
note that (1) because C appended its node c to b, it must have read b as the before
node on line 17, implying that B added b to the log before it was read from head[]
by C on line 17, and (2) because b is in concur(A), A announced a before b was
added to head[]. From (1) and (2), it follows that A announced before C executed
lines 18–22, and the claim follows.

Lemma 6.4.1 places a bound on the number of nodes that can be appended while
a method call is in progress. We now give a sequence of lemmas showing that when
A finishes scanning the head[] array, either announce[A] is appended or head[A] lies
within n + 1 nodes of the end of the list.

Lemma 6.4.2. The following property always holds:

max(head[]) ≥ start(A).

Proof. The sequence number for each head[i] is nondecreasing.

Lemma 6.4.3. The following is a loop invariant for line 13 of Fig. 6.3 (i.e., it holds
during each iteration of the loop):

max(max, head[i], . . . , head[n − 1]) ≥ start(A),

where i is the loop index, max is the node with the maximum sequence number found
so far, and A is the thread executing the loop.

In other words, the maximum sequence number of max and all head[] entries from
the current value of i to the end of the loop never become smaller than the maximum
value in the array when A announced.

Proof. When i is 1, the assertion is implied by Lemma 6.4.2 (since max = head[0]).
The truth of the assertion is preserved at each iteration, when max is replaced by the
node with the sequence number max(max, head[i]).
Lemma 6.4.4. The following assertion holds just before line 16 (of Fig. 6.8):

head[A].seq ≥ start(A).

140 CHAPTER 6 Universality of consensus

Proof. After the call to Node.max() at line 15, the result follows from Lemma 6.4.3.
Otherwise, head[A] is set to point to A’s last appended node on line 26, which in-
creases head[A].seq by 1.

Lemma 6.4.5. The following property always holds:

|concur(A)| ≥ head[A].seq − start(A) ≥ 0.

Proof. The lower bound follows from Lemma 6.4.4, and the upper bound follows
from Eq. (6.4.1).

Theorem 6.4.6. The algorithm in Fig. 6.6 is correct and wait-free.

Proof. To see that the algorithm is wait-free, note that A can execute the main loop
no more than n + 1 times. At each successful iteration, head[A].seq increases by 1.
After n + 1 iterations, Lemma 6.4.5 implies that

|concur(A)| ≥ head[A].seq− start(A) ≥ n.

Lemma 6.4.1 implies that announce[A] must have been added to head[].

6.5 Chapter notes
The universal construction described here is adapted from Maurice Herlihy’s 1991
paper [69]. An alternative lock-free universal construction using load-linked/store-
conditional appears in [65]. The complexity of this construction can be improved in
several ways. Yehuda Afek, Dalia Dauber, and Dan Touitou [3] showed how to im-
prove the time complexity to depend on the number of concurrent threads, not the
maximum possible number of threads. Mark Moir [130] showed how to design lock-
free and wait-free constructions that do not require copying the entire object. James
Anderson and Mark Moir [11] extended the construction to allow multiple objects
to be updated. Prasad Jayanti [89] showed that any universal construction has worst-
case �(n) complexity, where n is the maximal number of threads. Tushar Chandra,
Prasad Jayanti, and King Tan [27] identified a large class of objects for which a more
efficient universal construction exists.

Our classification of dependent progress conditions has implications for the foun-
dations of shared-memory computability. Lamport’s register-based approach to read–
write memory computability [99,105] is based on wait-free implementations of one
register type from another. Similarly, Herlihy’s consensus hierarchy [69] applies to
wait-free or lock-free object implementations. Combined, these structures form the
basis of a theory of concurrent shared-memory computability that explains what ob-
jects can be used to implement other objects in an asynchronous shared-memory
multiprocessor environment. One might ask why such a theory should rest on non-
blocking progress conditions (that is, wait-free or lock-free) and not on locks. After

6.6 Exercises 141

all, locking implementations are common in practice. Moreover, the obstruction-free
condition is a nonblocking progress condition where read–write registers are uni-
versal [68], effectively leveling the consensus hierarchy. We are now in a position
to address this question. Perhaps surprisingly, Fig. 3.10 suggests that the lock-free
and wait-free conditions provide a sound basis for a concurrent computability theory
because they are independent progress conditions (i.e., they do not rely on the good
behavior of the operating system scheduler). A theory based on a dependent condition
would require strong, perhaps arbitrary assumptions about the environment in which
programs are executed. When studying the computational power of synchronization
primitives, it is unsatisfactory to rely on the operating system to ensure progress, both
because it obscures the inherent synchronization power of the primitives, and because
we might want to use such primitives in the construction of the operating system it-
self. For these reasons, a satisfactory theory of shared-memory computability should
rely on independent progress conditions such as wait-freedom or lock-freedom, not
on dependent properties.

6.6 Exercises
Exercise 6.1. Consider a concurrent atomic PeekableStack(k) object: an atomic
Stack with an added look operation. It allows each of n threads to execute push()
and pop() operations atomically with the usual LIFO semantics. In addition, it offers
a look operation, the first k calls of which return the value at the bottom of the stack
(the least recently pushed value that is currently in the stack) without popping it. All
subsequent calls to look after the first k return null. Also, look returns null when the
Stack is empty.

• Is it possible to construct a wait-free Queue (accessed by at most two threads) from
an arbitrary number of PeekableStack(1) (i.e., with k = 1) objects and atomic
read–write registers? Prove your claim.

• Is it possible to construct a wait-free n-thread PeekableStack(2) object from an
arbitrary number of atomic Stack objects and atomic read–write registers? Prove
your claim.

Exercise 6.2. Give an example showing how the universal construction can fail for
objects with nondeterministic sequential specifications.

Exercise 6.3. Propose a way to fix the universal construction of Fig. 6.8 to work for
objects with nondeterministic sequential specifications.

Exercise 6.4. In both the lock-free and wait-free universal constructions, the se-
quence number of the sentinel node at the tail of the list is initially set to 1. Which of
these algorithms, if any, would cease to work correctly if the sentinel node’s sequence
number were initially set to 0?

142 CHAPTER 6 Universality of consensus

Exercise 6.5. In the lock-free universal construction, every thread has its own view
of the head pointer. To append a new method invocation, at line 14 of Fig. 6.4, a
thread selects the furthest among these head pointers:

Node before = Node.max(head);

Consider changing this line to:

Node before = head[i];

Does the construction still work?

Exercise 6.6. Suppose, instead of a universal construction, you simply want
to use consensus to implement a wait-free linearizable register with read() and
compareAndSet() methods. Show how you would adapt this algorithm to do so.

Exercise 6.7. In the wait-free universal construction shown in Section 6.4, each
thread first looks for another thread to help, and then tries to append its own node.

Suppose that instead, each thread first tries to append its own node, and then tries
to help the other thread. Explain whether this alternative approach works. Justify your
answer.

Exercise 6.8. In the construction in Fig. 6.4, we use a “distributed” implementation
of a “head” reference (to the node whose decideNext field it will try to modify) to
avoid having to create an object that allows repeated consensus. Replace this imple-
mentation with one that has no head reference at all, and finds the next “head” by
traversing down the log from the start until it reaches a node with a sequence number
of 0 or with the highest nonzero sequence number.

Exercise 6.9. In the wait-free protocol, a thread adds its newly appended node to the
head[] array on line 28 even though it may have already added it on line 26. This is
done because, unlike in the lock-free protocol, it could be that the thread’s node was
added by another thread on line 26, and that “helping” thread stopped at line 26 right
after updating the node’s sequence number but before updating the head[] array.

1. Explain how removing line 28 would violate Lemma 6.4.4.
2. Would the algorithm still work correctly?

Exercise 6.10. Propose a way to fix the universal construction to work with a
bounded amount of memory, that is, a bounded number of consensus objects and
a bounded number of read–write registers.
Hint: Add a before field to the nodes and build a memory recycling scheme into the
code.

Exercise 6.11. Implement a consensus object that is accessed more than once by
each thread using read() and compareAndSet() methods, creating a “multiple access”
consensus object. Do not use the universal construction.

6.6 Exercises 143

Exercise 6.12. Your mission is to transform a sequential stack implementation into
a wait-free, linearizable stack implementation, without regard for questions of effi-
ciency or memory use.

You are given a “black-box” Sequence type with the following methods: You can
atomically append an item to the end of the sequence. For example, if the sequence
is 〈1,2,3〉, and you append 4, the sequence becomes 〈1,2,3,4〉. This operation is
wait-free and linearizable: if a concurrent thread tries to append 5, the sequence be-
comes either 〈1,2,3,4,5〉. or 〈1,2,3,5,4〉. Note that Sequence items do not have to
be integers: they can be any kind of object you like.

You can also iterate through the elements of a sequence. Here, we iterate through
a sequence printing each value until we see the string "stop".

1 foreach x in s {
2 if (x == "stop") break;
3 System.out.println(x)
4 }

(Note that if another thread is appending new values while you are iterating through
a sequence, you might keep going forever.)

Implement a wait-free linearizable stack using an atomic sequence object, and as
much atomic read–write memory and sequential stack objects as you like. Your stack
should support both push() and pop() operations with the usual meanings. Again, do
not worry about efficiency or memory use.

Explain briefly why your construction is wait-free and linearizable (in particular,
identify the linearization points).

7
CHAPTER

Spin locks and contention

When writing programs for uniprocessors, it is usually safe to ignore the underlying
system’s architectural details. Unfortunately, multiprocessor programming has yet to
reach that state; for now, it is crucial to understand the underlying machine archi-
tecture. The goal of this chapter is to explain how architecture affects performance,
and how to exploit this knowledge to write efficient concurrent programs. We revisit
the familiar mutual exclusion problem, this time with the aim of devising mutual
exclusion protocols that work well with today’s multiprocessors.

Any mutual exclusion protocol poses the question: “What do you do if you cannot
acquire the lock?” There are two alternatives. If you keep trying, the lock is called
a spin lock, and repeatedly testing the lock is called spinning, or busy-waiting. The
Filter and Bakery algorithms are spin locks. Spinning makes sense when you expect
the lock delay to be short (and only on multiprocessors, of course). The alternative is
to suspend yourself and ask the operating system to schedule another thread on your
processor, which is sometimes called blocking. Because switching from one thread
to another is expensive, blocking makes sense only if you expect the lock delay to be
long. Many operating systems mix both strategies, spinning for a short time and then
blocking. Both spinning and blocking are important techniques. In this chapter, we
turn our attention to locks that use spinning.

7.1 Welcome to the real world
We approach real-world mutual exclusion via the Lock interface from the java.util.
concurrent.locks package. For now, we consider only the two principal methods,
lock() and unlock(). As mentioned in Pragma 2.2.1, these methods are often used in
the following structured way:

1 Lock mutex = new LockImpl(...); // lock implementation
2 ...
3 mutex.lock();
4 try {
5 ... // body
6 } finally {
7 ... // restore object invariant if needed
8 mutex.unlock();
9 }

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00017-3
Copyright © 2021 Elsevier Inc. All rights reserved.

147

148 CHAPTER 7 Spin locks and contention

We create a new Lock object called mutex (line 1). Because Lock is an interface and not
a class, we cannot create Lock objects directly. Instead, we create an object that imple-
ments the Lock interface. (The java.util.concurrent.locks package includes several
classes that implement Lock, and we provide others in this chapter.) Next, we acquire
the lock (line 3), and enter the critical section in a try block (line 4). The finally
block (line 6) ensures that no matter what, the lock is released when control leaves
the critical section. We do not put the lock() call inside the try block, because the
lock() call might throw an exception before acquiring the lock, causing the finally
block to call unlock() when the lock has not actually been acquired. (Java does not
permit instructions to be executed between program lines, so once line 3 is completed
and the lock is taken, the thread is in the try block.)

Why not use one of the Lock algorithms studied in Chapter 2, such as Filter or
Bakery? One reason is the space lower bound proved in Chapter 2: No matter what
we do, mutual exclusion using reads and writes requires space linear in n, the number
of threads that potentially access the location. It gets worse.

Consider, for example, the two-thread Peterson lock algorithm of Chapter 2, pre-
sented again in Fig. 7.1. There are two threads, with IDs 0 and 1. When thread A

wants to acquire the lock, it sets flag[A] to true, sets victim to A, and tests victim
and flag[1 − A]. As long as victim is A and flag[1 − A] is true, the thread spins, re-
peating the test. Once either victim is not A or flag[1 − A] is false, the thread enters
the critical section, setting flag[A] to false as it leaves. We know from Chapter 2 that
the Peterson lock provides starvation-free mutual exclusion.

Suppose we write a simple concurrent program in which each of the threads re-
peatedly acquires the Peterson lock, increments a shared counter, and then releases
the lock. We run it on a multiprocessor, where each thread executes this acquire–
increment–release cycle, say, half a million times. On most modern architectures, the
threads finish quickly. Alarmingly, however, we may discover that the counter’s final
value may be slightly off from the expected million mark. Proportionally, the error

1 class Peterson implements Lock {
2 private boolean[] flag = new boolean[2];
3 private int victim;
4 public void lock() {
5 int i = ThreadID.get(); // either 0 or 1
6 int j = 1-i;
7 flag[i] = true;
8 victim = i;
9 while (flag[j] && victim == i) {}; // spin

10 }
11 }

FIGURE 7.1

The Peterson class (Chapter 2): the order of reads and writes in lines 7–9 is crucial to
providing mutual exclusion.

7.1 Welcome to the real world 149

may be tiny, but why is there any error at all? Somehow, it must be that both threads
are occasionally in the critical section at the same time, even though we have proved
that this cannot happen. To quote Sherlock Holmes:

How often have I said to you that when you have eliminated the impossible, what-
ever remains, however improbable, must be the truth?

Our proof fails, not because there is anything wrong with our logic, but because our
assumptions about the real world are mistaken.

When programming our multiprocessor, we implicitly assumed that read–write
operations are atomic, that is, they are linearizable to some sequential execution, or
at the very least, that they are sequentially consistent. (Recall that linearizability im-
plies sequential consistency.) As we saw in Chapter 3, sequential consistency implies
that there is some global order on all operations in which each thread’s operations
take effect as ordered by its program. When we proved the Peterson lock correct,
we relied, without calling attention to it, on the assumption that memory is sequen-
tially consistent. In particular, mutual exclusion depends on the order of the steps
in lines 7–9 of Fig. 7.1. Our proof that the Peterson lock provides mutual exclu-
sion implicitly relied on the assumption that any two memory accesses by the same
thread, even to separate variables, take effect in program order. Specifically, B’s write
to flag[B] must take effect before its write to victim (Eq. (2.3.2)) and A’s write to
victim must take effect before its read of flag[B] (Eq. (2.3.4)).

Unfortunately, modern multiprocessors, and programming languages for modern
multiprocessors, typically do not provide sequentially consistent memory, nor do they
necessarily guarantee program order among reads and writes by a given thread.

Why not? The first culprits are compilers that reorder instructions to enhance
performance. It is possible that the order of writes by thread B of flag[B] and victim
will be reversed by the compiler, invalidating Eq. (2.3.2). In addition, if a thread reads
a variable repeatedly without writing it, a compiler may eliminate all but the first
read of the variable, using the value read the first time for all subsequent reads. For
example, the loop on line 9 of Fig. 7.1 may be replaced with a conditional statement
that spins forever if the thread may not immediately enter the critical section.

A second culprit is the multiprocessor hardware itself. (Appendix B has a more
extensive discussion of the multiprocessor architecture issues raised in this chapter.)
Hardware vendors make no secret of the fact that writes to multiprocessor memory do
not necessarily take effect when they are issued, because in most programs the vast
majority of writes do not need to take effect in shared memory right away. On many
multiprocessor architectures, writes to shared memory are buffered in a special write
buffer (sometimes called a store buffer), to be written to memory only when needed.
If thread A’s write to victim is delayed in a write buffer, it may arrive in memory
only after A reads flag[B], invalidating Eq. (2.3.4).

How then does one program multiprocessors, given such weak memory consis-
tency guarantees? To prevent the reordering of operations resulting from write buffer-
ing, modern architectures provide a special memory barrier instruction (sometimes
called a memory fence) that forces outstanding operations to take effect. Synchroniza-

150 CHAPTER 7 Spin locks and contention

tion methods such as getAndSet() and compareAndSet() of AtomicInteger, include a
memory barrier on many architectures, as do reads and writes to volatile fields. It
is the programmer’s responsibility to know where memory barriers are needed (e.g.,
the Peterson lock can be fixed by placing a barrier immediately before each read, and
how to insert them. We discuss how to do this for Java in the next section.

Not surprisingly, memory barriers are expensive, so we want to minimize their
use. Because operations such as getAndSet() and compareAndSet() have higher con-
sensus numbers than reads and writes, and can be used in a straightforward way to
reach a kind of consensus on who can and cannot enter the critical section, it may be
sensible to design mutual exclusion algorithms that use these operations directly.

7.2 Volatile fields and atomic objects
As a rule of thumb, any object field, accessed by concurrent threads, that is not pro-
tected by a critical section should be declared volatile. Without such a declaration,
that field will not act like an atomic register: Reads may return stale values, and writes
may be delayed.

A volatile declaration does not make compound operations atomic: If x is a
volatile variable, then the expression x++ will not necessarily increment x if concur-
rent threads can modify x. For tasks such as these, the java.util.concurrent.atomic
package provides classes such as AtomicReference<T> or AtomicInteger that provide
many useful atomic operations.

In earlier chapters, we did not put volatile declarations in our pseudocode be-
cause we assumed memory was linearizable. From now on, however, we assume the
Java memory model, and so we put volatile declarations where they are needed. The
Java memory model is described in more detail in Appendix A.3.

7.3 Test-and-set locks
The principal synchronization instruction on many early multiprocessor architectures
was the test-and-set instruction. It operates on a single memory word (or byte) that
may be either true or false. The test-and-set instruction, which has consensus number
two, atomically stores true in the word and returns that word’s previous value; that
is, it swaps the value true for the word’s current value. At first glance, test-and-set
seems ideal for implementing a spin lock: The lock is free when the word’s value is
false, and busy when it is true. The lock() method repeatedly applies test-and-set to
the word until it returns false (i.e., until the lock is free). The unlock() method simply
writes the value false to it.

The TASLock class in Fig. 7.2 implements this lock in Java using the
AtomicBoolean class in the java.util.concurrent package. This class stores a Boolean
value, and it provides a set(b) method to replace the stored value with value b, and a

7.3 Test-and-set locks 151

1 public class TASLock implements Lock {
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 while (state.getAndSet(true)) {}
5 }
6 public void unlock() {
7 state.set(false);
8 }
9 }

FIGURE 7.2

The TASLock class.

1 public class TTASLock implements Lock {
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 while (true) {
5 while (state.get()) {};
6 if (!state.getAndSet(true))
7 return;
8 }
9 }

10 public void unlock() {
11 state.set(false);
12 }
13 }

FIGURE 7.3

The TTASLock class.

getAndSet(b) that atomically replaces the current value with b and returns the previ-
ous value. The test-and-set instruction is equivalent to getAndSet(true). (We follow
common practice by using test-and-set in prose, but we use getAndSet(true) in our
code examples to be compatible with Java.)

Now consider TTASLock (Fig. 7.3), a variant of the TASLock algorithm called a
test-and-test-and-set lock. In this algorithm, a thread reads the lock to check that it
is free before performing the test-and-set. If the lock is not free, the thread repeat-
edly reads the lock until it is (i.e., until get() returns false), and only after that does
the thread apply test-and-set. From the point of view of correctness, TASLock and
TTASLock are equivalent: Each guarantees deadlock-free mutual exclusion. Under the
simple model we have been using so far, there should be no difference between these
two algorithms.

How do they compare on a real multiprocessor? Experiments that measure the
elapsed time for n threads to execute a short critical section a fixed total number of
times invariably yield results that look like Fig. 7.4. Each data point represents the

152 CHAPTER 7 Spin locks and contention

FIGURE 7.4

Schematic performance of a TASLock, a TTASLock, and an ideal lock with no overhead.

same amount of work, so in the absence of contention effects, all curves would be
flat. The top curve is the TASLock, the middle curve is the TTASLock, and the bottom
curve shows the time that would be needed if the threads did not interfere at all. The
difference is dramatic: The TASLock performs very poorly; the TTASLock performance,
while substantially better, still falls far short of the ideal.

To understand these results, we must study the architecture of modern multipro-
cessors. First, a word of caution: Modern multiprocessors have a variety of archi-
tectures, so we must be careful about overgeneralizing. Nevertheless, (almost) all
modern architectures have similar issues concerning caching and locality. The details
differ, but the principles remain the same.

For simplicity, we consider a typical multiprocessor architecture in which proces-
sors communicate by a shared broadcast medium called a bus. The memory typically
also resides in nodes connected to the bus, each with its own memory controller. The
processors and memory controllers can broadcast on the bus, but only one at a time.
All processors and memory controllers can listen at the same time. Bus-based archi-
tectures are common today because they are easy to build, but they do not scale well
to many processors; the bus becomes a point of contention.

Each processor has a cache, a small high-speed memory in which it keeps data
likely to be of interest. Memory access typically takes orders of magnitude longer
than access to the cache. Technology trends are not helping: Memory access time is
unlikely to catch up with processor cycle time in the near future, so cache perfor-
mance is critical to the overall performance of a multiprocessor.

A processor’s cache contains copies of memory locations, along with their ad-
dresses. These copies are maintained by a cache coherence protocol, and may be
shared or exclusive. As the name suggests, if any processor has an exclusive copy

7.3 Test-and-set locks 153

of a memory location, then no other processor has a copy of that location, shared or
exclusive.

When accessing a memory location, a processor first checks whether its cache
has a copy of that location. If it is writing the location, the copy must be exclusive.
If the cache has the location’s current data, then we say that the processor hits in its
cache. In this case, the processor may read or write the copy in its cache immediately.
Otherwise, the processor has a cache miss, and it requests a copy by broadcasting the
address of the location on the bus. The other processors (and the memory controllers)
snoop on the bus. If some processor has an exclusive copy of the location in its cache,
it responds by broadcasting the address and value (making its copy shared). Other-
wise, the memory controller responsible for that location responds. If the request was
to write the location, then all previous copies are invalidated, so that the requester
has an exclusive copy of that location.

We now consider how the simple TASLock algorithm performs on this architecture:
Because getAndSet() may write the location, a thread must request an exclusive copy
of the lock whenever it calls getAndSet(), unless its processor’s cache already has
such a copy. This request forces other processors to invalidate their cached copies of
the lock. If multiple threads are spinning on the lock, almost every call to getAndSet()
will result in a cache miss and a request on the bus to fetch the (unchanged) value.
Compounding the injury, when the thread holding the lock tries to release it, it may be
delayed because the bus is monopolized by the spinners. Indeed, because all threads
use the bus to communicate with memory, even threads not waiting for the lock may
be delayed. We now understand why the TASLock performs so poorly.

Now consider the behavior of the TTASLock algorithm while the lock is held by
a thread A. The first time thread B reads the lock, it has a cache miss, forcing B to
block while the value is loaded into B’s cache. However, because B is only reading
the lock, it only requests a shared copy, which is stored in its processor’s cache. As
long as A holds the lock, B repeatedly rereads the value, but hits in its cache every
time. B produces no bus traffic after its first request, and does not slow down other
threads’ memory accesses.

The situation deteriorates, however, when the lock holder A releases the lock by
writing false to the lock’s state variable. Because the lock is now shared with all the
threads spinning on it, this write causes a cache miss, resulting in a request on the
bus for an exclusive copy of the lock. This request invalidates the cached copies of
the spinning threads. Each one has a cache miss and rereads the new value, and they
all (more or less simultaneously) call getAndSet() to acquire the lock. The first to
succeed invalidates the others, which must then reread the value, causing a storm of
bus traffic. Eventually, the threads settle down once again to local spinning.

This notion of local spinning, where threads repeatedly reread cached values in-
stead of repeatedly using the bus, is an important principle critical to the design of
efficient spin locks.

154 CHAPTER 7 Spin locks and contention

7.4 Exponential back-off
We now consider how to improve the TTASLock algorithm by reducing the bus traf-
fic induced when a thread releases the lock and many threads are waiting to acquire
it. First, some terminology: Contention on a lock occurs when multiple threads try
to acquire the lock at the same time. High contention means there are many such
threads; low contention means there are few. As discussed above, attempting to ac-
quire a highly contended lock is a bad idea: Such an attempt contributes to bus traffic
(making the traffic jam worse) at a time when the thread’s chances of acquiring the
lock are slim. Instead, it is more effective for the thread to back off for some duration,
giving the competing threads a chance to finish.

Recall that in the TTASLock class, the lock() method takes two steps: It repeatedly
reads the lock until the lock is free, and then it attempts to acquire the lock by calling
getAndSet(true). Here is a key observation: If a thread fails to acquire the lock in the
second step, then some other thread must have acquired the lock between the first
and second step, so most likely there is high contention for that lock. Here is a simple
approach: Whenever a thread sees the lock has become free but fails to acquire it, it
backs off before retrying. To ensure that competing threads do not fall into lockstep,
each backing off and then trying again to acquire the lock at the same time, the thread
backs off for a random duration.

For how long should the thread back off before retrying? A good rule of thumb
is that the larger the number of unsuccessful tries, the higher the likely contention,
so the longer the thread should back off. To incorporate this rule, each time a thread
tries and fails to get the lock, it doubles the expected back-off time, up to a fixed
maximum.

Because backing off is common to several locking algorithms, we encapsulate
this logic in a simple Backoff class, shown in Fig. 7.5. The constructor takes two
arguments: minDelay is the initial minimum delay (it makes no sense for the thread to
back off for too short a duration), and maxDelay is the final maximum delay (a final
limit is necessary to prevent unlucky threads from backing off for much too long).
The limit field controls the current delay limit. The backoff() method computes
a random delay between zero and the current limit, and blocks the thread for that
duration before returning. It doubles the limit for the next back-off, up to maxDelay.

Fig. 7.6 shows the BackoffLock class. It uses a Backoff object whose minimum
and maximum back-off durations are governed by the constants chosen for MIN_DELAY
and MAX_DELAY. Note that the thread backs off only when it fails to acquire a lock that
it had immediately before observed to be free. Observing that the lock is held by
another thread says nothing about the level of contention.

The BackoffLock is easy to implement, and typically performs significantly better
than TASLock and TTASLock on many architectures. Unfortunately, its performance
is sensitive to the choice of MIN_DELAY and MAX_DELAY values. To deploy this lock
on a particular architecture, it is easy to experiment with different values, and to
choose the ones that work best. Experience shows, however, that these optimal values
are sensitive to the number of processors and their speed, so it is not easy to tune
BackoffLock to be portable across a range of different machines.

7.4 Exponential back-off 155

1 public class Backoff {
2 final int minDelay, maxDelay;
3 int limit;
4 public Backoff(int min, int max) {
5 minDelay = min;
6 maxDelay = max;
7 limit = minDelay;
8 }
9 public void backoff() throws InterruptedException {

10 int delay = ThreadLocalRandom.current().nextInt(limit);
11 limit = Math.min(maxDelay, 2 * limit);
12 Thread.sleep(delay);
13 }
14 }

FIGURE 7.5

The Backoff class: adaptive back-off logic. To ensure that concurrently contending threads
do not repeatedly try to acquire the lock at the same time, threads back off for a random
duration. Each time the thread tries and fails to get the lock, it doubles the expected time to
back off, up to a fixed maximum.

1 public class BackoffLock implements Lock {
2 private AtomicBoolean state = new AtomicBoolean(false);
3 private static final int MIN_DELAY = ...;
4 private static final int MAX_DELAY = ...;
5 public void lock() {
6 Backoff backoff = new Backoff(MIN_DELAY, MAX_DELAY);
7 while (true) {
8 while (state.get()) {};
9 if (!state.getAndSet(true)) {

10 return;
11 } else {
12 backoff.backoff();
13 }
14 }
15 }
16 public void unlock() {
17 state.set(false);
18 }
19 ...
20 }

FIGURE 7.6

The exponential back-off lock. Whenever the thread fails to acquire a lock that became
free, it backs off before retrying.

156 CHAPTER 7 Spin locks and contention

One drawback of BackoffLock is that it underutilizes the critical section when the
lock is contended: Because threads back off when they notice contention, when a
thread releases the lock, there may be some delay before another thread attempts to
acquire it, even though many threads are waiting to acquire the lock. Indeed, because
threads back off for longer at higher contention, this effect is more pronounced at
higher levels of contention.

Finally, the BackoffLock can be unfair, allowing one thread to acquire the lock
many times while other threads are waiting. TASLock and TTASLock may also be unfair,
but BackoffLock exacerbates this problem because the thread that just released the
lock might never notice that the lock is contended, and so not back off at all.

Although this unfairness has obvious negative consequences, including the pos-
sibility of starving other threads, it also has some positive consequences: Because
a lock often protects accesses to some shared data structure, which is also cached,
granting repeated access to the same thread without intervening accesses by threads
at different processors reduces cache misses due to accesses to this data structure,
and so reduces bus traffic and avoids the latency of communication. For longer criti-
cal sections, this effect can be more significant than the effect of reduced contention
on the lock itself. So there is a tension between fairness and performance.

7.5 Queue locks
We now explore a different approach to implementing scalable spin locks, one that
is slightly more complicated than back-off locks, but inherently more portable, and
avoids or ameliorates many of the problems of back-off locks. The idea is to have
threads waiting to acquire the lock form a queue. In a queue, each thread can dis-
cover when its turn has arrived by checking whether its predecessor has finished.
Cache-coherence traffic is reduced by having each thread spin on a different location.
A queue also allows better utilization of the critical section, since there is no need to
guess when to attempt to access it: Each thread is notified directly by its predecessor
in the queue. Finally, a queue provides first-come-first-served fairness, the same high
degree of fairness achieved by the Bakery algorithm. We now explore different ways
to implement queue locks, a family of locking algorithms that exploit these insights.

7.5.1 Array-based locks
Fig. 7.7 shows the ALock,1 a simple array-based queue lock. The threads share an
AtomicInteger tail field, initially zero. To acquire the lock, each thread atomically
increments tail (line 17). Call the resulting value the thread’s slot. The slot is used
as an index into a Boolean flag array.

If flag[j] is true, then the thread with slot j has permission to acquire the lock.
Initially, flag[0] is true. To acquire the lock, a thread spins until the flag at its slot

1 Most of our lock classes use the initials of their inventors, as explained in Section 7.11.

7.5 Queue locks 157

1 public class ALock implements Lock {
2 ThreadLocal<Integer> mySlotIndex = new ThreadLocal<Integer> (){
3 protected Integer initialValue() {
4 return 0;
5 }
6 };
7 AtomicInteger tail;
8 volatile boolean[] flag;
9 int size;

10 public ALock(int capacity) {
11 size = capacity;
12 tail = new AtomicInteger(0);
13 flag = new boolean[capacity];
14 flag[0] = true;
15 }
16 public void lock() {
17 int slot = tail.getAndIncrement() % size;
18 mySlotIndex.set(slot);
19 while (!flag[slot]) {};
20 }
21 public void unlock() {
22 int slot = mySlotIndex.get();
23 flag[slot] = false;
24 flag[(slot + 1) % size] = true;
25 }
26 }

FIGURE 7.7

Array-based queue lock.

becomes true (line 19). To release the lock, the thread sets the flag at its slot to false
(line 23), and sets the flag at the next slot to true (line 24). All arithmetic is modulo
n, where n is at least as large as the maximum number of concurrent threads.

In the ALock algorithm, mySlotIndex is a thread-local variable (see Appendix A).
Thread-local variables differ from their regular counterparts in that each thread has
its own, independently initialized copy of each variable. Thread-local variables need
not be stored in shared memory, do not require synchronization, and do not generate
any coherence traffic since they are accessed by only one thread. The value of a
thread-local variable is accessed by get() and set() methods.

The flag[] array, on the other hand, is shared.2 However, contention on the array
locations is minimized since each thread, at any given time, spins on its locally cached
copy of a single array location, greatly reducing invalidation traffic.

2 The role of the volatile declaration here is not to introduce a memory barrier but rather to prevent the
compiler from applying any optimizations to the loop in line 19.

158 CHAPTER 7 Spin locks and contention

FIGURE 7.8

The ALock with padding to avoid false sharing. In part (a), the ALock has eight slots which
are accessed via a modulo 8 counter. Array entries are typically mapped into cache lines
consecutively. As illustrated, when thread A changes the status of its entry, thread B, whose
entry is mapped to the same cache line k, incurs a false invalidation. In part (b), each
location is padded so it is 4 apart from the others with a modulo 32 counter. Even if array
entries are mapped consecutively, the entry for B is mapped to a different cache line from
that of A, so B’s entry is not invalidated when A invalidates its entry.

7.5 Queue locks 159

Contention may still occur because of a phenomenon called false sharing, which
occurs when adjacent data items (such as array elements) share a single cache line.
A write to one item invalidates that item’s cache line, which causes invalidation traffic
to processors that are spinning on nearby unchanged items that happen to fall in the
same cache line. In the example in part (a) of Fig. 7.8, threads accessing the eight
ALock locations may suffer unnecessary invalidations because the locations were all
cached in the same two four-word lines.

One way to avoid false sharing is to pad array elements so that distinct elements
are mapped to distinct cache lines. Padding is easier in low-level languages like C or
C++, where the programmer has direct control over the layout of objects in memory.
In the example in part (b) of Fig. 7.8, we pad the eight original ALock locations by
increasing the lock array size four-fold, and placing the locations four words apart so
that no two locations can fall in the same cache line. (We increment from one location
i to the next by computing 4(i + 1) mod 32 instead of i + 1 mod 8.)

The ALock improves on BackoffLock: it reduces invalidations to a minimum and
minimizes the interval between when a lock is freed by one thread and when it is
acquired by another. Unlike the TASLock and BackoffLock, this algorithm guarantees
that no starvation occurs, and provides first-come-first-served fairness.

Unfortunately, the ALock lock is not space-efficient. It requires a known bound n

on the maximum number of concurrent threads, and it allocates an array of that size
per lock. Synchronizing L distinct objects requires O(Ln) space, even if a thread
accesses only one lock at a time.

7.5.2 The CLH queue lock
We now turn our attention to a different style of queue lock, the CLHLock (Fig. 7.9).
This class records each thread’s status in a QNode object, which has a Boolean locked
field. If that field is true, then the corresponding thread has either acquired the lock
or is waiting for the lock. If that field is false, then the thread has released the lock.
The lock itself is represented as a virtual linked list of QNode objects. We use the term
“virtual” because the list is implicit: Each thread refers to its predecessor through a
thread-local pred variable. The public tail field is an AtomicReference<QNode> to the
node most recently added to the queue.

To acquire the lock, a thread sets the locked field of its QNode to true, indicating
that the thread is not ready to release the lock. The thread applies getAndSet() to
the tail field to make its own node the tail of the queue, simultaneously acquiring
a reference to its predecessor’s QNode. The thread then spins on the predecessor’s
locked field until the predecessor releases the lock. To release the lock, the thread sets
its node’s locked field to false. It then reuses its predecessor’s QNode as its new node
for future lock accesses. It can do so because at this point the thread’s predecessor’s
QNode is no longer used by the predecessor. It cannot use its old QNode because that
node could be referenced both by the thread’s successor and by the tail. Although
we do not do so in our implementation, it is possible to recycle nodes so that if there
are L locks and each thread accesses at most one lock at a time, then the CLHLock class

160 CHAPTER 7 Spin locks and contention

1 public class CLHLock implements Lock {
2 AtomicReference<QNode> tail;
3 ThreadLocal<QNode> myPred;
4 ThreadLocal<QNode> myNode;
5 public CLHLock() {
6 tail = new AtomicReference<QNode>(new QNode());
7 myNode = new ThreadLocal<QNode>() {
8 protected QNode initialValue() {
9 return new QNode();

10 }
11 };
12 myPred = new ThreadLocal<QNode>() {
13 protected QNode initialValue() {
14 return null;
15 }
16 };
17 }
18 public void lock() {
19 QNode qnode = myNode.get();
20 qnode.locked = true;
21 QNode pred = tail.getAndSet(qnode);
22 myPred.set(pred);
23 while (pred.locked) {}
24 }
25 public void unlock() {
26 QNode qnode = myNode.get();
27 qnode.locked = false;
28 myNode.set(myPred.get());
29 }
30 class QNode {
31 volatile boolean locked = false;
32 }
33 }

FIGURE 7.9

The CLHLock class.

needs only O(L + n) space, as compared with O(Ln) for the ALock class.3 Fig. 7.10
shows a typical CLHLock execution.

Like the ALock, this algorithm has each thread spin on a distinct location, so when
one thread releases its lock, it invalidates only its successor’s cache. This algorithm
requires much less space than the ALock class, and does not require knowledge of

3 There is no need to reuse nodes in garbage-collected languages such as Java or C#, but reuse would be
needed in languages such as C++ or C.

7.5 Queue locks 161

FIGURE 7.10

CLHLock class: lock acquisition and release. Initially the tail field refers to a QNode whose
locked field is false. Thread A then applies getAndSet() to the tail field to insert its QNode at
the tail of the queue, simultaneously acquiring a reference to its predecessor’s QNode. Next,
B does the same to insert its QNode at the tail of the queue. A then releases the lock by
setting its node’s locked field to false. It then recycles the QNode referenced by pred for
future lock accesses.

the number of threads that might access the lock. Like the ALock class, it provides
first-come-first-served fairness.

Perhaps the only disadvantage of this lock algorithm is that it performs poorly on
cacheless NUMA architectures. Each thread spins waiting for its predecessor’s node’s
locked field to become false. If this memory location is remote, then performance
suffers. On cache-coherent architectures, however, this approach should work well.

7.5.3 The MCS queue lock
The MCSLock (Fig. 7.11) is another lock represented as a linked list of QNode objects,
where each QNode represents either a lock holder or a thread waiting to acquire the
lock. Unlike the CLHLock class, the list is explicit, not virtual: Instead of embodying
the list in thread-local variables, it is embodied in the (globally accessible) QNode
objects, via their next fields.

To acquire the lock, a thread appends its own QNode at the tail of the list (line 14).
If the queue was not previously empty, it sets the predecessor’s QNode’s next field to
refer to its own QNode. The thread then spins on a (local) locked field in its own QNode
waiting until its predecessor sets this field to false (lines 15–20).

162 CHAPTER 7 Spin locks and contention

1 public class MCSLock implements Lock {
2 AtomicReference<QNode> tail;
3 ThreadLocal<QNode> myNode;
4 public MCSLock() {
5 tail = new AtomicReference<QNode>(null);
6 myNode = new ThreadLocal<QNode>() {
7 protected QNode initialValue() {
8 return new QNode();
9 }

10 };
11 }
12 public void lock() {
13 QNode qnode = myNode.get();
14 QNode pred = tail.getAndSet(qnode);
15 if (pred != null) {
16 qnode.locked = true;
17 pred.next = qnode;
18 // wait until predecessor gives up the lock
19 while (qnode.locked) {}
20 }
21 }
22 public void unlock() {
23 QNode qnode = myNode.get();
24 if (qnode.next == null) {
25 if (tail.compareAndSet(qnode, null))
26 return;
27 // wait until successor fills in its next field
28 while (qnode.next == null) {}
29 }
30 qnode.next.locked = false;
31 qnode.next = null;
32 }
33 class QNode {
34 volatile boolean locked = false;
35 volatile QNode next = null;
36 }
37 }

FIGURE 7.11

The MCSLock class.

To release the lock, a thread checks whether its node’s next field is null (line 24).
If so, then either no other thread is contending for the lock, or there is another thread,
but it is slow. To distinguish these cases, it applies compareAndSet(q,null) to the tail
field, where q is the thread’s node. If the call succeeds, then no other thread is trying
to acquire the lock, so the thread just returns. Otherwise, another (slow) thread is

7.6 A queue lock with timeouts 163

FIGURE 7.12

A lock acquisition and release in an MCSLock. (a) Initially the tail is null. (b) To acquire the
lock, thread A places its own QNode at the tail of the list and since it has no predecessor, it
enters the critical section. (c) Thread B enqueues its own QNode at the tail of the list and
modifies its predecessor’s QNode to refer back to its own. Thread B then spins on its locked
field waiting until A, its predecessor, sets this field from true to false. Thread C repeats this
sequence. (d) To release the lock, A follows its next field to its successor B and sets B’s
locked field to false. It can now reuse its QNode.

trying to acquire the lock, so the thread spins waiting for the other thread to finish
adding its node to the queue (line 28). Once the successor appears (or if it was there
at the beginning), the thread sets its successor’s locked field to false, indicating that
the lock is now free. At this point, no other thread can access this QNode, and so it can
be reused. Fig. 7.12 shows an example execution of the MCSLock.

This lock shares the advantages of the CLHLock, in particular, the property that
each lock release invalidates only the successor’s cache entry. It is better suited to
cacheless NUMA architectures because each thread controls the location on which it
spins. Like the CLHLock, nodes can be recycled so that this lock has space complexity
O(L + n). One drawback of the MCSLock algorithm is that releasing a lock requires
spinning. Another is that it requires more reads, writes, and compareAndSet() calls
than the CLHLock algorithm.

7.6 A queue lock with timeouts
The Java Lock interface includes a tryLock() method that allows the caller to specify
a timeout, that is, a maximum duration the caller is willing to wait to acquire the
lock. If the timeout expires before the caller acquires the lock, the attempt is aban-

164 CHAPTER 7 Spin locks and contention

1 public class TOLock implements Lock{
2 static QNode AVAILABLE = new QNode();
3 AtomicReference<QNode> tail;
4 ThreadLocal<QNode> myNode;
5 public TOLock() {
6 tail = new AtomicReference<QNode>(null);
7 myNode = new ThreadLocal<QNode>() {
8 protected QNode initialValue() {
9 return new QNode();

10 }
11 };
12 }
13 ...
14 static class QNode {
15 public volatile QNode pred = null;
16 }
17 }

FIGURE 7.13

TOLock class: fields, constructor, and QNode class.

doned. A Boolean return value indicates whether the lock attempt succeeded. (For an
explanation why these methods throw InterruptedException, see Pragma 8.2.1.)

Abandoning a BackoffLock request is trivial: a thread can simply return from the
tryLock() call. Responding to a timeout is wait-free, requiring only a constant number
of steps. By contrast, timing out any of the queue lock algorithms is far from trivial:
if a thread simply returns, the threads queued up behind it will starve.

Here is a bird’s-eye view of a queue lock with timeouts. As in the CLHLock, the lock
is a virtual queue of nodes, and each thread spins on its predecessor’s node waiting for
the lock to be released. As noted, when a thread times out, it cannot simply abandon
its queue node, because its successor will never notice when the lock is released. On
the other hand, it seems extremely difficult to unlink a queue node without disrupting
concurrent lock releases. Instead, we take a lazy approach: When a thread times out,
it marks its node as abandoned. Its successor in the queue, if there is one, notices
that the node on which it is spinning has been abandoned, and starts spinning on
the abandoned node’s predecessor. This approach has the added advantage that the
successor can recycle the abandoned node.

Fig. 7.13 shows the fields, constructor, and QNode class for the TOLock (timeout
lock) class, a queue lock based on the CLHLock class that supports wait-free timeout
even for threads in the middle of the list of nodes waiting for the lock.

When a QNode’s pred field is null, the associated thread has either not acquired
the lock or has released it. When a QNode’s pred field refers to the distinguished static
QNode AVAILABLE, the associated thread has released the lock. Finally, if the pred field
refers to some other QNode, the associated thread has abandoned the lock request, so

7.6 A queue lock with timeouts 165

18 public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
19 long startTime = System.currentTimeMillis();
20 long patience = TimeUnit.MILLISECONDS.convert(time, unit);
21 QNode qnode = new QNode();
22 myNode.set(qnode);
23 qnode.pred = null;
24 QNode myPred = tail.getAndSet(qnode);
25 if (myPred == null || myPred.pred == AVAILABLE) {
26 return true;
27 }
28 while (System.currentTimeMillis() - startTime < patience) {
29 QNode predPred = myPred.pred;
30 if (predPred == AVAILABLE) {
31 return true;
32 } else if (predPred != null) {
33 myPred = predPred;
34 }
35 }
36 if (!tail.compareAndSet(qnode, myPred))
37 qnode.pred = myPred;
38 return false;
39 }
40 public void unlock() {
41 QNode qnode = myNode.get();
42 if (!tail.compareAndSet(qnode, null))
43 qnode.pred = AVAILABLE;
44 }

FIGURE 7.14

TOLock class: tryLock() and unlock() methods.

the thread owning the successor node should wait on the abandoned node’s predeces-
sor.

Fig. 7.14 shows the TOLock class’s tryLock() and unlock() methods. The tryLock()
method creates a new QNode with a null pred field and appends it to the list as in the
CLHLock class (lines 21–24). If the lock was free (line 25), the thread enters the critical
section. Otherwise, it spins waiting for its predecessor’s QNode’s pred field to change
(lines 28–35). If the predecessor thread times out, it sets the pred field to its own
predecessor, and the thread spins instead on the new predecessor. An example of
such a sequence appears in Fig. 7.15. Finally, if the thread itself times out (line 36),
it attempts to remove its QNode from the list by applying compareAndSet() to the tail
field. If the compareAndSet() call fails, indicating that the thread has a successor, the
thread sets its QNode’s pred field, previously null, to its predecessor’s QNode, indicating
that it has abandoned the queue.

In the unlock() method, a thread uses compareAndSet() to check whether it has a
successor (line 42), and if so, sets its pred field to AVAILABLE. Note that it is not safe

166 CHAPTER 7 Spin locks and contention

FIGURE 7.15

Timed-out nodes that must be skipped to acquire the TOLock. Threads B and D have timed
out, redirecting their pred fields to their predecessors in the list. Thread C notices that B’s
field is directed at A and so it starts spinning on A. Similarly, thread E spins waiting for C.
When A completes and sets its pred to AVAILABLE, C will access the critical section and upon
leaving it will set its pred to AVAILABLE, releasing E.

to recycle a thread’s old node at this point, since the node may be referenced by its
immediate successor, or by a chain of such references. The nodes in such a chain can
be recycled as soon as a thread skips over the timed-out nodes and enters the critical
section.

The TOLock has many of the advantages of the original CLHLock: local spinning on
a cached location and quick detection that the lock is free. It also has the wait-free
timeout property of the BackoffLock. However, it has some drawbacks, among them
the need to allocate a new node per lock access and the fact that a thread spinning
on the lock may have to traverse a chain of timed-out nodes before it can access the
critical section.

7.7 Hierarchical locks
Many of today’s cache-coherent architectures organize processors into clusters,
where communication within a cluster is significantly faster than communication be-
tween clusters. For example, a cluster might correspond to a group of processors
that share memory through a fast interconnect, or to the threads running on a single
core in a multicore architecture. Such systems are called nonuniform memory access
(NUMA) systems. On a NUMA system, passing a lock between threads in different
clusters (i.e., remote threads) incurs significantly more overhead than passing it be-
tween threads in the same cluster (i.e., local threads). This increased overhead is due
not only to the increased cost of synchronization on the lock, but also to the cost of
transferring the data protected by the lock. We can reduce this overhead by prefer-
entially passing the lock to a local thread rather than a remote one (i.e., to a thread
in the same cluster as the thread releasing the lock, rather than to one in a different
cluster). Such a lock is called a hierarchical lock.

7.7 Hierarchical locks 167

1 public class ClusterLocal<T> {
2 protected T initialValue();
3 T get();
4 void set(T value);
5 }

FIGURE 7.16

The ClusterLocal class.

We consider an architecture with a two-level memory hierarchy, consisting of
clusters of processors, where processors in the same cluster communicate efficiently
through a shared cache, and intercluster communication is much more expensive than
intracluster communication. For architectures whose memory hierarchy has more
than two levels, we can apply the techniques in this section at each boundary be-
tween levels in the hierarchy.

We assume that each cluster has a unique cluster ID known to each thread in the
cluster, available via ThreadID.getCluster(), and that threads do not migrate between
clusters. We also assume there is a class ClusterLocal<T> (Fig. 7.16), analogous to
ThreadLocal<T>, which manages one variable for each cluster, and provides get(),
set(), and initialValue() for reading, writing, and initializing these variables.

7.7.1 A hierarchical back-off lock
Simple back-off locks, such as test-and-set and test-and-test-and-set locks, can easily
be adapted to exploit clustering: By increasing the back-off times of threads in differ-
ent clusters from the thread holding the lock (relative to those of threads in the same
cluster), local threads are more likely to acquire the lock than remote threads. To do
this, we must record the cluster of the thread that holds the lock. Fig. 7.17 shows the
HBOLock class, a hierarchical back-off lock based on this principle.

HBOLock suffers from some of the same problems as BackoffLock, as described in
Section 7.4. These problems may be even worse on NUMA systems because of the
greater disparity in communication costs and the longer back-off times for remote
threads. For example, longer back-off times increase delays between the release of a
lock and its subsequent acquisition, resulting in greater underutilization of the critical
section. As before, choosing back-off durations can be difficult, and acquiring or
releasing the lock can generate a “storm” of cache-coherence traffic. And as with
BackoffLock, the HBOLock may be too successful at passing the lock among threads
in a single cluster, starving remote threads attempting to acquire the lock. In short,
the problems with back-off locks that led us to explore queue locks still exist and are
more severe on NUMA systems.

7.7.2 Cohort locks
We can address these problems by lock cohorting, a simple but effective technique
that enables threads in a cluster to pass the lock among themselves without inter-

168 CHAPTER 7 Spin locks and contention

1 public class HBOLock implements Lock {
2 private static final int LOCAL_MIN_DELAY = ...;
3 private static final int LOCAL_MAX_DELAY = ...;
4 private static final int REMOTE_MIN_DELAY = ...;
5 private static final int REMOTE_MAX_DELAY = ...;
6 private static final int FREE = -1;
7 AtomicInteger state;
8 public HBOLock() {
9 state = new AtomicInteger(FREE);

10 }
11 public void lock() {
12 int myCluster = ThreadID.getCluster();
13 Backoff localBackoff =
14 new Backoff(LOCAL_MIN_DELAY, LOCAL_MAX_DELAY);
15 Backoff remoteBackoff =
16 new Backoff(REMOTE_MIN_DELAY, REMOTE_MAX_DELAY);
17 while (true) {
18 if (state.compareAndSet(FREE, myCluster)) {
19 return;
20 }
21 int lockState = state.get();
22 if (lockState == myCluster) {
23 localBackoff.backoff();
24 } else {
25 remoteBackoff.backoff();
26 }
27 }
28 }
29 public void unlock() {
30 state.set(FREE);
31 }
32 }

FIGURE 7.17

The HBOLock class: a hierarchical back-off lock.

cluster communication. The set of threads in a single cluster waiting to acquire the
lock is called a cohort, and a lock based on this technique is called a cohort lock.

The key idea of lock cohorting is to use multiple locks to provide exclusion at
different levels of the memory hierarchy. In a cohort lock, each cluster has a cluster
lock, held by a thread, and the clusters share a global lock, held by a cluster. A thread
holds the cohort lock if it holds its cluster lock and its cluster holds the global lock.
To acquire the cohort lock, a thread first acquires the lock of its cluster, and then
ensures that its cluster holds the global lock. When releasing the cohort lock, the
thread checks whether there is any thread in its cohort (i.e., a thread in its cluster is
waiting to acquire the lock). If so, the thread releases its cluster lock without releasing

7.7 Hierarchical locks 169

1 public interface CohortDetectionLock extends Lock {
2 public boolean alone();
3 }

FIGURE 7.18

Interface for locks that support cohort detection.

the global lock. In this way, the thread in its cluster that next acquires the cluster lock
also acquires the cohort lock (since its cluster already holds the global lock) without
intercluster communication. If the cohort is empty when a thread releases the lock,
it releases both the cluster lock and the global lock. To prevent remote threads from
starving, a cohort lock must also have some policy that restricts local threads from
passing the lock among themselves indefinitely without releasing the global lock.

A cohort lock algorithm requires certain properties of its component locks.
A thread releasing the lock must be able to detect whether another thread is attempt-
ing to acquire its cluster lock, and it must be able to pass ownership of the global lock
directly to another thread without releasing it.

A lock supports cohort detection if it provides a predicate method alone() with
the following meaning: If alone() returns false when called by the thread holding a
lock, then another thread is attempting to acquire that lock. The converse need not
hold: If alone() returns true, there may be another thread attempting to acquire the
lock, but such false positives should be rare. Fig. 7.18 shows an interface for a lock
that supports cohort detection.

A lock is thread-oblivious if the thread releasing a thread-oblivious lock need not
be the thread that most recently acquired it. The pattern of lock accesses must still be
well formed (for example, unlock() may not be invoked when the lock is free).

Fig. 7.19 shows code for the CohortLock class, which must be instantiated with a
thread-oblivious global lock and a lock that supports cohort detection for each clus-
ter. The global lock must be thread-oblivious because its ownership may be passed
implicitly among threads in a cluster, and eventually released by a different thread
than the one that acquired the lock.

The lock() function acquires the thread’s cluster lock, and then checks whether
the lock was passed locally, meaning that its cluster already owns the global lock. If
so, it returns immediately. Otherwise, it acquires the global lock before returning.

The unlock() function first determines whether a local thread is trying to acquire
the lock, and if so, whether it should pass the lock locally. The latter decision is
made by a “turn arbiter.” We adopt a simple policy of bounding the number of times
a thread may be passed locally without releasing the global lock. To emphasize that
other policies are possible, we encapsulate the policy in a TurnArbiter class, shown in
Fig. 7.20. The passedLocally field and the arbiter are updated to reflect the decision of
whether to pass the lock locally. If the lock is not to be passed locally, both the global
lock and the cluster lock are released. Otherwise, only the cluster lock is released.

170 CHAPTER 7 Spin locks and contention

1 public class CohortLock implements Lock {
2 final Lock globalLock;
3 final ClusterLocal<CohortDetectionLock> clusterLock;
4 final TurnArbiter localPassArbiter;
5 ClusterLocal<Boolean> passedLocally;
6 public CohortLock(Lock gl, ClusterLocal<CohortDetectonLock> cl, int passLimit) {
7 globalLock = gl;
8 clusterLock = cl;
9 localPassArbiter = new TurnArbiter(passLimit);

10 }
11 public void lock() {
12 clusterLock.get().lock();
13 if (passedLocally.get()) return;
14 globalLock.lock();
15 }
16 public void unlock() {
17 CohortDetectionLock cl = clusterLock.get();
18 if (cl.alone() || !localPassArbiter.goAgain()) {
19 localPassArbiter.passed();
20 passedLocally.set(false);
21 globalLock.unlock();
22 } else {
23 localPassArbiter.wentAgain();
24 passedLocally.set(true);
25 }
26 cl.unlock();
27 }
28 }

FIGURE 7.19

The CohortLock class.

7.7.3 A cohort lock implementation
We now describe a cohort lock implementation that uses BackoffLock, which is
thread-oblivious, for the global lock, and a version of MCSLock modified to provide an
alone() method for the cluster locks. The modified MCSLock is shown in Fig. 7.21. The
alone() method simply checks whether the next field of the invoking thread’s QNode is
null. This test provides cohort detection, because whenever the next field of a QNode is
not null, it points to the QNode of a thread waiting to acquire the lock. Fig. 7.22 shows
how to extend CohortLock to use BackoffLock and the modified MCSLock. Fig. 7.23
illustrates an execution of this cohort lock.

CohortBackoffMCSLock can be improved slightly by recording in the QNode whether
the lock has been passed locally. Instead of a locked field, the QNode maintains a field
that indicates whether its thread must wait, or whether it has acquired the lock, and
if so, whether the lock was passed locally or globally. There is no need for a separate
cluster-local field to record whether the lock was passed locally, and the cache miss
that would be incurred by accessing that field after the lock is acquired. We leave the
details as an exercise.

7.8 A composite lock 171

1 public class TurnArbiter {
2 private final int TURN_LIMIT;
3 private int turns = 0;
4 public LocalPassingArbiter(int limit) {
5 TURN_LIMIT = limit;
6 }
7 public boolean goAgain() {
8 return (turns < TURN_LIMIT);
9 }

10 public void wentAgain() {
11 turns++;
12 }
13 public void passed() {
14 turns = 0;
15 }
16 }

FIGURE 7.20

TurnArbiter class.

1 public class CohortDetectionMCSLock extends MCSLock
2 implements CohortDetectionLock {
3 public boolean alone() {
4 return (myNode.get().next == null);
5 }
6 }

FIGURE 7.21

Adding support for cohort detection to MCSLock.

1 public class CohortBackoffMCSLock extends CohortLock {
2 public CohortBackoffMCSLock(int passLimit) {
3 ClusterLocal<CohortDetectionMCSLock> cl = new ClusterLocal<CohortDetectionMCSLock> {
4 protected CohortDetectionMCSLock initialValue() {
5 return new CohortDetectionMCSLock();
6 }
7 }
8 super(new BackoffLock(), cl, passLimit);
9 }

10 }

FIGURE 7.22

CohortBackoffMCSLock class.

7.8 A composite lock
Spin lock algorithms impose trade-offs. Queue locks provide first-come-first-served
fairness, fast lock release, and low contention, but require nontrivial protocols for

172 CHAPTER 7 Spin locks and contention

FIGURE 7.23

An example execution of CohortBackoffMCSLock.

recycling abandoned nodes. By contrast, back-off locks support trivial timeout pro-
tocols, but are inherently not scalable, and may have slow lock release if timeout
parameters are not well tuned. In this section, we consider an advanced lock algo-
rithm that combines the best of both approaches.

Consider the following simple observation: In a queue lock, only the threads at
the front of the queue need to perform lock hand-offs. One way to balance the merits
of queue locks versus back-off locks is to keep a small number of waiting threads in
a queue on the way to the critical section, and have the rest use exponential back-
off while attempting to enter this short queue. It is trivial for the threads employing
back-off to quit.

7.8 A composite lock 173

1 public class CompositeLock implements Lock{
2 private static final int SIZE = ...;
3 private static final int MIN_BACKOFF = ...;
4 private static final int MAX_BACKOFF = ...;
5 AtomicStampedReference<QNode> tail;
6 QNode[] waiting;
7 ThreadLocal<QNode> myNode = new ThreadLocal<QNode>() {
8 protected QNode initialValue() { return null; };
9 };

10 public CompositeLock() {
11 tail = new AtomicStampedReference<QNode>(null,0);
12 waiting = new QNode[SIZE];
13 for (int i = 0; i < waiting.length; i++) {
14 waiting[i] = new QNode();
15 }
16 }
17 public void unlock() {
18 QNode acqNode = myNode.get();
19 acqNode.state.set(State.RELEASED);
20 myNode.set(null);
21 }
22 ...
23 }

FIGURE 7.24

The CompositeLock class: fields, constructor, and unlock() method.

The CompositeLock class keeps a short, fixed-size array of lock nodes. Each thread
that tries to acquire the lock selects a node in the array at random. If that node is in
use, the thread backs off (adaptively) and tries again. Once the thread acquires a node,
it enqueues that node in a TOLock-style queue. The thread spins on the preceding node;
when that node’s owner signals it is done, the thread enters the critical section. When
the thread leaves (after it completes or times out), it releases its node, and another
thread may acquire it. The tricky part is recycling the freed nodes of the array while
multiple threads attempt to acquire control over them.

The CompositeLock’s fields, constructor, and unlock() method appears in Fig. 7.24.
The tail field is an AtomicStampedReference<QNode> that combines a reference to a
node with a version number (see Pragma 10.6.1 for a more detailed explanation of the
AtomicStampedReference<T> class); the version number is needed to avoid the ABA
problem.4 The tail field either is null or refers to the last node inserted in the queue.

4 The ABA problem typically arises when using dynamically allocated memory in non-garbage-collected
languages. See Section 10.6 for a more complete discussion of this problem in that context. We encounter
it here because we are manually managing memory by using an array to implement a dynamic linked list.

174 CHAPTER 7 Spin locks and contention

24 enum State {FREE, WAITING, RELEASED, ABORTED};
25 class QNode {
26 AtomicReference<State> state;
27 QNode pred;
28 public QNode() {
29 state = new AtomicReference<State>(State.FREE);
30 }
31 }

FIGURE 7.25

The CompositeLock class: the QNode class.

32 public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
33 long patience = TimeUnit.MILLISECONDS.convert(time, unit);
34 long startTime = System.currentTimeMillis();
35 Backoff backoff = new Backoff(MIN_BACKOFF, MAX_BACKOFF);
36 try {
37 QNode node = acquireQNode(backoff, startTime, patience);
38 QNode pred = spliceQNode(node, startTime, patience);
39 waitForPredecessor(pred, node, startTime, patience);
40 return true;
41 } catch (TimeoutException e) {
42 return false;
43 }
44 }

FIGURE 7.26

The CompositeLock class: the tryLock() method.

Fig. 7.25 shows the QNode class. Each QNode includes a State field and a reference to
the predecessor node in the queue. The waiting field is a constant-size QNode array.

A QNode has four possible states: WAITING, RELEASED, ABORTED, and FREE. A WAITING
node is linked into the queue, and the owning thread is either in the critical section or
waiting to enter. A node becomes RELEASED when its owner leaves the critical section
and releases the lock. The other two states occur when a thread abandons its attempt
to acquire the lock. If the quitting thread has acquired a node but not enqueued it, then
it marks the thread as FREE. If the node is enqueued, then it is marked as ABORTED.

Fig. 7.26 shows the tryLock() method. A thread acquires the lock in three steps.
It first acquires a node in the waiting array (line 37), then enqueues that node in the
queue (line 38), and finally waits until that node is at the head of the queue (line 39).

The algorithm for acquiring a node in the waiting array appears in Fig. 7.27. The
thread selects a node at random and tries to acquire the node by changing that node’s
state from FREE to WAITING (line 51). If it fails, it examines the node’s status. If the
node is ABORTED or RELEASED (line 56), the thread may “clean up” the node. To avoid
synchronization conflicts with other threads, a node can be cleaned up only if it is

7.8 A composite lock 175

45 private QNode acquireQNode(Backoff backoff, long startTime, long patience)
46 throws TimeoutException, InterruptedException {
47 QNode node = waiting[ThreadLocalRandom.current().nextInt(SIZE)];
48 QNode currTail;
49 int[] currStamp = {0};
50 while (true) {
51 if (node.state.compareAndSet(State.FREE, State.WAITING)) {
52 return node;
53 }
54 currTail = tail.get(currStamp);
55 State state = node.state.get();
56 if (state == State.ABORTED || state == State.RELEASED) {
57 if (node == currTail) {
58 QNode myPred = null;
59 if (state == State.ABORTED) {
60 myPred = node.pred;
61 }
62 if (tail.compareAndSet(currTail, myPred, currStamp[0], currStamp[0]+1)) {
63 node.state.set(State.WAITING);
64 return node;
65 }
66 }
67 }
68 backoff.backoff();
69 if (timeout(patience, startTime)) {
70 throw new TimeoutException();
71 }
72 }
73 }

FIGURE 7.27

The CompositeLock class: the acquireQNode() method.

the last queue node (that is, the value of tail). If the tail node is ABORTED, tail is
redirected to that node’s predecessor; otherwise tail is set to null. If, instead, the
allocated node is WAITING, then the thread backs off and retries. If the thread times
out before acquiring its node, it throws TimeoutException (line 70).

Once the thread acquires a node, the spliceQNode() method (Fig. 7.28) splices that
node into the queue by repeatedly trying to set tail to the allocated node. If it times
out, it marks the allocated node as FREE and throws TimeoutException. If it succeeds,
it returns the prior value of tail, acquired by the node’s predecessor in the queue.

Finally, once the node has been enqueued, the thread must wait its turn by calling
waitForPredecessor() (Fig. 7.29). If the predecessor is null, then the thread’s node
is first in the queue, so the thread saves the node in the thread-local myNode field (for
later use by unlock()), and enters the critical section. If the predecessor node is not

176 CHAPTER 7 Spin locks and contention

74 private QNode spliceQNode(QNode node, long startTime, long patience)
75 throws TimeoutException {
76 QNode currTail;
77 int[] currStamp = {0};
78 do {
79 currTail = tail.get(currStamp);
80 if (timeout(startTime, patience)) {
81 node.state.set(State.FREE);
82 throw new TimeoutException();
83 }
84 } while (!tail.compareAndSet(currTail, node, currStamp[0], currStamp[0]+1));
85 return currTail;
86 }

FIGURE 7.28

The CompositeLock class: the spliceQNode() method.

87 private void waitForPredecessor(QNode pred, QNode node,
88 long startTime, long patience)
89 throws TimeoutException {
90 int[] stamp = {0};
91 if (pred == null) {
92 myNode.set(node);
93 return;
94 }
95 State predState = pred.state.get();
96 while (predState != State.RELEASED) {
97 if (predState == State.ABORTED) {
98 QNode temp = pred;
99 pred = pred.pred;

100 temp.state.set(State.FREE);
101 }
102 if (timeout(patience, startTime)) {
103 node.pred = pred;
104 node.state.set(State.ABORTED);
105 throw new TimeoutException();
106 }
107 predState = pred.state.get();
108 }
109 pred.state.set(State.FREE);
110 myNode.set(node);
111 return;
112 }

FIGURE 7.29

The CompositeLock class: the waitForPredecessor() method.

7.8 A composite lock 177

FIGURE 7.30

The CompositeLock class: an execution. In part (a), thread A (which acquired Node 3) is in
the critical section. Thread B (Node 4) is waiting for A to release the critical section, and
thread C (Node 1) is in turn waiting for B. Threads D and E are backing off, waiting to
acquire a node. Node 2 is free. The tail field refers to Node 1, the last node to be inserted
into the queue. At this point, B times out, inserting an explicit reference to its predecessor,
and changing Node 4’s state from WAITING (denoted by W) to ABORTED (denoted by A). In
part (b), thread C cleans up the ABORTED Node 4, setting its state to FREE and following the
explicit reference from 4 to 3 (by redirecting its local myPred field). It then starts waiting for
A (Node 3) to leave the critical section. In part (c), E acquires the FREE Node 4, using
compareAndSet() to set its state to WAITING. Thread E then inserts Node 4 into the queue,
using compareAndSet() to swap Node 4 into the tail, then waiting on Node 1, which was
previously referred to by tail.

178 CHAPTER 7 Spin locks and contention

RELEASED, the thread checks whether it is ABORTED (line 97). If so, the thread marks the
node FREE and waits on the aborted node’s predecessor. If the thread times out, then
it marks its own node as ABORTED and throws TimeoutException. Otherwise, when the
predecessor node becomes RELEASED the thread marks it FREE, records its own node in
the thread-local myPred field, and enters the critical section.

The unlock() method (Fig. 7.24) simply retrieves its node from myNode and marks
it RELEASED.

Fig. 7.30 illustrates an example execution of CompositeLock.
CompositeLock has a number of attractive properties. Lock hand-off is fast, just as

in the CLHLock and TOLock algorithms. When threads back off, they access different
locations, reducing contention. Abandoning a lock request is trivial for threads in the
back-off stage, and relatively straightforward for threads that have acquired queue
nodes. For L locks and n threads, the CompositeLock class requires only O(L) space
in the worst case, as compared to the TOLock class’s O(L · n).

There are some drawbacks: CompositeLock does not guarantee first-come-first-
served access. Also, a thread running alone must redirect the tail field away from a
released node, claim the node, and then splice it into the queue.

7.9 A fast path for threads running alone
Although performance under contention is important, so is performance in the ab-
sence of concurrency. Ideally, for a thread running alone, acquiring a lock should be
as simple as acquiring an uncontended TASLock. Unfortunately, as mentioned above,
this is not true for the CompositeLock. We can address this shortcoming by adding a
“fast path” to CompositeLock.

A fast path for a complex, expensive algorithm is a simpler, cheaper alternative
that works (or is efficient) only under certain (typically, common) conditions. In this
case, we want a fast path for CompositeLock for a thread that is running alone. We can
accomplish this by extending the CompositeLock algorithm so that a solitary thread
acquires an idle lock without acquiring a node and splicing it into the queue.

Here is a bird’s-eye view. We add an extra state, distinguishing between a lock
held by an ordinary thread and a lock held by a fast-path thread. If a thread discovers
the lock is free, it tries a fast-path acquire. If it succeeds, then it has acquired the lock
in a single atomic step. If it fails, then it enqueues itself just as before.

We now examine the algorithm in detail. To reduce code duplication, we define
the CompositeFastPathLock class to be a subclass of CompositeLock. The code appears
in Figs. 7.31 and 7.32.

We use a fast-path flag to indicate that a thread has acquired the lock through the
fast path. Because we need to manipulate this flag together with the tail field’s refer-
ence, we “steal” a high-order bit from the tail field’s integer stamp using a FASTPATH
bitmask (line 2). The private fastPathLock() method checks whether the tail field’s
stamp has a clear fast-path flag and a null reference. If so, it tries to acquire the lock
simply by applying compareAndSet() to set the fast-path flag to true, ensuring that

7.9 A fast path for threads running alone 179

1 public class CompositeFastPathLock extends CompositeLock {
2 private static final int FASTPATH = 1 << 30;
3 private boolean fastPathLock() {
4 int oldStamp, newStamp;
5 int stamp[] = {0};
6 QNode qnode;
7 qnode = tail.get(stamp);
8 oldStamp = stamp[0];
9 if (qnode != null) {

10 return false;
11 }
12 if ((oldStamp & FASTPATH) != 0) {
13 return false;
14 }
15 newStamp = (oldStamp + 1) | FASTPATH;
16 return tail.compareAndSet(qnode, null, oldStamp, newStamp);
17 }
18 public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
19 if (fastPathLock()) {
20 return true;
21 }
22 if (super.tryLock(time, unit)) {
23 while ((tail.getStamp() & FASTPATH) != 0){};
24 return true;
25 }
26 return false;
27 }

FIGURE 7.31

CompositeFastPathLock class: The private fastPathLock() method returns true if it succeeds
in acquiring the lock through the fast path.

the reference remains null. An uncontended lock acquisition thus requires a single
atomic operation. The fastPathLock() method returns true if it succeeds, and false
otherwise.

The tryLock() method (lines 18–27) first tries the fast path by calling
fastPathLock(). If it fails, then it pursues the slow path by calling the CompositeLock
class’s tryLock() method. Before it can return from the slow path, however, it must
ensure that no other thread holds the fast-path lock by waiting until the fast-path flag
is clear (line 23).

The unlock() method first calls fastPathUnlock() (line 44). If that call fails to
release the lock, it then calls the CompositeLock’s unlock() method (line 45). The
fastPathUnlock() method returns false if the fast-path flag is not set (line 31). Other-
wise, it repeatedly tries to clear the flag, leaving the reference component unchanged
(lines 36–40), returning true when it succeeds.

180 CHAPTER 7 Spin locks and contention

28 private boolean fastPathUnlock() {
29 int oldStamp, newStamp;
30 oldStamp = tail.getStamp();
31 if ((oldStamp & FASTPATH) == 0) {
32 return false;
33 }
34 int[] stamp = {0};
35 QNode qnode;
36 do {
37 qnode = tail.get(stamp);
38 oldStamp = stamp[0];
39 newStamp = oldStamp & (~FASTPATH);
40 } while (!tail.compareAndSet(qnode, qnode, oldStamp, newStamp));
41 return true;
42 }
43 public void unlock() {
44 if (!fastPathUnlock()) {
45 super.unlock();
46 };
47 }

FIGURE 7.32

CompositeFastPathLock class: fastPathUnlock() and unlock() methods.

7.10 One lock to rule them all
In this chapter, we have seen a variety of spin locks that vary in characteristics and
performance. Such a variety is useful, because no single algorithm is ideal for all
applications. For some applications, complex algorithms work best; for others, simple
algorithms are preferable. The best choice usually depends on specific aspects of the
application and the target architecture.

7.11 Chapter notes
The TTASLock is due to Larry Rudolph and Zary Segall [150]. Exponential back-off
is a well-known technique used in ethernet routing, presented in the context of mul-
tiprocessor mutual exclusion by Anant Agarwal and Mathews Cherian [6]. Tom An-
derson [12] invented the ALock algorithm and was one of the first to empirically study
the performance of spin locks in shared-memory multiprocessors. The MCSLock, due
to John Mellor-Crummey and Michael Scott [124], is perhaps the best-known queue
lock algorithm. Today’s Java virtual machines use object synchronization based on
simplified monitor algorithms such as the Thinlock of David Bacon, Ravi Konuru,
Chet Murthy, and Mauricio Serrano [15], the Metalock of Ole Agesen, Dave Detlefs,

7.12 Exercises 181

Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and Derek White [7], or the Re-
laxedLock of Dave Dice [36]. All these algorithms are variations of the MCSLock lock.

The CLHLock lock is due to Travis Craig, Erik Hagersten, and Anders Landin [32,
118]. The TOLock with nonblocking timeout is due to Bill Scherer and Michael Scott
[153,154]. The CompositeLock and its variations are due to Virendra Marathe, Mark
Moir, and Nir Shavit [121]. The notion of using a fast path in a mutual exclu-
sion algorithm is due to Leslie Lamport [106]. Hierarchical locks were invented
by Zoran Radović and Erik Hagersten. The HBOLock is a variant of their original
algorithm [144]. Cohort locks are due to Dave Dice, Virendra Marathe, and Nir
Shavit [37].

Faith Fich, Danny Hendler, and Nir Shavit [45] have extended the work of
Jim Burns and Nancy Lynch to show that any starvation-free mutual exclusion
algorithm requires �(n) space, even if strong operations such as getAndSet() or
compareAndSet() are used, implying that the queue-lock algorithms considered here
are space-optimal.

The schematic performance graph in this chapter is loosely based on empirical
studies by Tom Anderson [12], as well as on data collected by the authors on various
modern machines. We present schematic rather than actual data because of the great
variation in machine architectures and their significant effect on lock performance.

Programming languages such as C or C++ were not defined with concurrency in
mind, so they did not define a memory model. The actual behavior of a concurrent C
or C++ program is the result of a complex combination of the underlying hardware,
the compiler, and the concurrency library. See Hans Boehm [19] for a more detailed
discussion of these issues. The Java memory model proposed here is the second mem-
ory model proposed for Java. Jeremy Manson, Bill Pugh, and Sarita Adve [119] give
a more complete description of this model.

The Sherlock Holmes quote is from The Sign of Four [41].

7.12 Exercises
Exercise 7.1. Fig. 7.33 shows an alternative implementation of CLHLock in which a
thread reuses its own node instead of its predecessor node. Explain how this imple-
mentation can go wrong, and how the MCS lock avoids the problem even though it
reuses thread-local nodes.

Exercise 7.2. Imagine n threads, each of which executes method foo() followed
by method bar(). Suppose we want to make sure that no thread starts bar() until
all threads have finished foo(). For this kind of synchronization, we place a barrier
between foo() and bar().

First barrier implementation: We have a counter protected by a test-and-test-and-
set lock. Each thread locks the counter, increments it, releases the lock, and spins,
rereading the counter until it reaches n.

Second barrier implementation: We have an n-element Boolean array b[0..n− 1],
all initially false. Thread 0 sets b[0] to true. Every thread i, for 0 < i < n, spins until

182 CHAPTER 7 Spin locks and contention

1 public class BadCLHLock implements Lock {
2 AtomicReference<Qnode> tail = new AtomicReference<QNode>(new QNode());
3 ThreadLocal<Qnode> myNode = new ThreadLocal<QNode> {
4 protected QNode initialValue() {
5 return new QNode();
6 }
7 };
8 public void lock() {
9 Qnode qnode = myNode.get();

10 qnode.locked = true; // I’m not done
11 // Make me the new tail, and find my predecessor
12 Qnode pred = tail.getAndSet(qnode);
13 while (pred.locked) {}
14 }
15 public void unlock() {
16 // reuse my node next time
17 myNode.get().locked = false;
18 }
19 static class Qnode { // Queue node inner class
20 volatile boolean locked = false;
21 }
22 }

FIGURE 7.33

An incorrect attempt to implement a CLHLock.

b[i − 1] is true, sets b[i] to true, and then waits until b[n − 1] is true, after which it
proceeds to leave the barrier.

Compare (in 10 lines) the behavior of these two implementations on a bus-based
cache-coherent architecture. Explain which approach you expect will perform better
under low load and high load.
Exercise 7.3. Show how to eliminate the separate cluster-local field that records
whether the lock is passed locally by recording this information directly in each
QNode, as described in Section 7.7.3.
Exercise 7.4. Prove that the CompositeFastPathLock implementation guarantees mu-
tual exclusion, but is not starvation-free.

Exercise 7.5. Design an isLocked() method that tests whether any thread is holding
a lock (but does not acquire the lock). Give implementations for

• a test-and-set spin lock,
• the CLH queue lock, and
• the MCS queue lock.

Exercise 7.6. (Hard) Where does the �(n) space complexity lower bound proof for
deadlock-free mutual exclusion of Chapter 2 break when locks are allowed to use
read–modify–write operations?

8
CHAPTER

Monitors and blocking
synchronization

8.1 Introduction
A monitor is a structured way of combining synchronization and data, encapsulating
data, methods, and synchronization in a single modular package in the same way that
a class encapsulates data and methods.

Here is why modular synchronization is important: Imagine an application with
two threads, a producer and a consumer, that communicate through a shared FIFO
queue. The threads might share two objects: an unsynchronized queue and a lock to
protect the queue. The producer might look something like this:

mutex.lock();
try {
queue.enq(x)

} finally {
mutex.unlock();

}

This is no way to run a railroad! Suppose the queue is bounded, meaning that an
attempt to add an item to a full queue cannot proceed until the queue has room. Here,
the decision whether to block the call or to let it proceed depends on the queue’s
internal state, which is (and should be) inaccessible to the caller. Moreover, suppose
the application grows to have multiple producers, consumers, or both. Each such
thread must keep track of both the lock and the queue objects, and the application
will be correct only if every thread follows the same locking conventions.

A more sensible approach is to allow each queue to manage its own synchroniza-
tion. The queue itself has its own internal lock, acquired by each method when it is
called and released when it returns. There is no need to ensure that every thread that
uses the queue follows a cumbersome synchronization protocol. If a thread tries to
enqueue an item to a queue that is already full, then the enq() method itself can detect
the problem, suspend the caller, and resume the caller when the queue has room.

8.2 Monitor locks and conditions
As in Chapters 2 and 7, a lock is the basic mechanism for ensuring mutual exclusion.
Only one thread at a time can hold a lock. A thread acquires a lock when it first starts

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00018-5
Copyright © 2021 Elsevier Inc. All rights reserved.

183

184 CHAPTER 8 Monitors and blocking synchronization

to hold the lock. A thread releases a lock when it stops holding the lock. A monitor
exports a collection of methods, each of which acquires the lock when it is called,
and releases it when it returns.

If a thread must wait for some condition to hold, it can either spin, repeatedly
testing for the desired condition, or block, giving up the processor for a while to
allow another thread to run.1 Spinning makes sense on a multiprocessor if we expect
to wait for a short time, because blocking a thread requires an expensive call to the
operating system. On the other hand, blocking makes sense if we expect to wait for a
long time, because a spinning thread keeps a processor busy without doing any work.

For example, a thread waiting for another thread to release a lock should spin if
that particular lock is held briefly, while a consumer thread waiting to dequeue an
item from an empty buffer should block, since there is usually no way to predict how
long it may have to wait. Often, it makes sense to combine spinning and blocking:
A thread waiting to dequeue an item might spin for a brief duration, and then switch
to blocking if the delay appears to be long. Blocking works on both multiprocessors
and uniprocessors, while spinning works only on multiprocessors.

Most of the locks in this book follow the interface shown in Fig. 8.1. Here is a
description of the Lock interface’s methods:

• The lock() method blocks the caller until it acquires the lock.
• The lockInterruptibly() method acts like lock(), but throws an exception if the

thread is interrupted while it is waiting (see Pragma 8.2.1).
• The unlock() method releases the lock.
• The newCondition() method is a factory that creates and returns a Condition object

associated with the lock (explained in Section 8.2.1).
• The tryLock() method acquires the lock if it is free, and immediately returns a

Boolean indicating whether it acquired the lock. This method can also be called
with a timeout.

1 public interface Lock {
2 void lock();
3 void lockInterruptibly() throws InterruptedException;
4 boolean tryLock();
5 boolean tryLock(long time, TimeUnit unit);
6 Condition newCondition();
7 void unlock();
8 }

FIGURE 8.1

The Lock interface.

1 In Chapter 3, we make a distinction between blocking and nonblocking synchronization algorithms.
There, we mean something entirely different: A blocking algorithm is one where a delay by one thread can
cause a delay in another. Remark 3.3.1 discusses various ways in which the term blocking is used.

8.2 Monitor locks and conditions 185

8.2.1 Conditions
While a thread is waiting for something to happen, say, for another thread to place an
item in a queue, it must release the lock on the queue; otherwise, the other thread will
never be able to enqueue the anticipated item. After the waiting thread has released
the lock, we need a way to be notify it when to reacquire the lock and try again.

In the java.util.concurrent package (and in similar packages such as Pthreads),
the ability to release a lock temporarily is provided by a Condition object associated
with a lock. (Conditions are often called condition variables in the literature.) Fig. 8.2
shows how to use the Condition interface provided in the java.util.concurrent.locks
library. A condition is associated with a lock, and is created by calling that lock’s
newCondition() method. If the thread holding that lock calls the associated condition’s
await() method, it releases that lock and suspends itself, giving another thread the
opportunity to acquire the lock. When the calling thread awakens, it reacquires the
lock, perhaps competing with other threads.

Like locks, Condition objects must be used in a stylized way. Suppose a thread
wants to wait until a certain property holds. The thread tests the property while hold-
ing the lock. If the property does not hold, then the thread calls await() to release the
lock and sleep until it is awakened by another thread. Here is the key point: There
is no guarantee that the property will hold when the thread awakens. The await()
method can return spuriously (i.e., for no reason), or the thread that signaled the
condition may have awakened too many sleeping threads. Whatever the reason, the
thread must retest the property, and if it finds the property does not hold at that time,
it must call await() again.

The Condition interface in Fig. 8.3 provides several variations of this call, some
of which provide the ability to specify a maximum time the caller can be suspended,
or whether the thread can be interrupted while it is waiting. When the queue changes,
the thread that made the change can notify other threads waiting on a condition.
Calling signal() wakes up one thread waiting on a condition (if there is one), while
calling signalAll() wakes up all waiting threads.

1 Condition condition = mutex.newCondition();
2 ...
3 mutex.lock()
4 try {
5 while (!property) { // not happy
6 condition.await(); // wait for property
7 } catch (InterruptedException e) {
8 ... // application-dependent response
9 }

10 ... // happy: property must hold
11 }

FIGURE 8.2

How to use Condition objects.

186 CHAPTER 8 Monitors and blocking synchronization

1 public interface Condition {
2 void await() throws InterruptedException;
3 boolean await(long time, TimeUnit unit) throws InterruptedException;
4 boolean awaitUntil(Date deadline) throws InterruptedException;
5 long awaitNanos(long nanosTimeout) throws InterruptedException;
6 void awaitUninterruptibly();
7 void signal(); // wake up one waiting thread
8 void signalAll(); // wake up all waiting threads
9 }

FIGURE 8.3

The Condition interface: await() and its variants release the lock, and give up the processor,
and then later awaken and reacquire the lock. The signal() and signalAll() methods
awaken one or more waiting threads.

FIGURE 8.4

A schematic representation of a monitor execution. In part (a), thread A has acquired the
monitor lock, called await() on a condition, released the lock, and is now in the waiting
room. Thread B then goes through the same sequence of steps, entering the critical
section, calling await() on the condition, relinquishing the lock, and entering the waiting
room. In part (b), both A and B leave the waiting room after thread C exits the critical
section and calls signalAll(). A and B then attempt to reacquire the monitor lock. However,
thread D manages to acquire the critical section lock first, and so both A and B spin until D
leaves the critical section. Note that if C had issued a signal() instead of a signalAll(), only
A or B would have left the waiting room, and the other would have continued to wait.

PRAGMA 8.2.1

Threads in Java can be interrupted by other threads. If a thread is interrupted dur-
ing a call to a Condition’s await() method, the call throws InterruptedException.
The proper response to an interrupt is application-dependent. Fig. 8.2 shows a
schematic example.

To avoid clutter, we usually omit InterruptedException handlers from exam-
ple code, even though they would be required in actual code. (It is bad program-
ming practice to ignore interrupts.)

8.2 Monitor locks and conditions 187

This combination of methods, mutual exclusion locks, and condition objects is
called a monitor. It is common to talk of threads that have called await() (and have
not yet returned) as being in a “waiting room”. We use this imagery to illustrate an
execution of a monitor in Fig. 8.4.

Fig. 8.5 shows how to implement a bounded FIFO queue using explicit locks and
conditions. The lock field is a lock that must be acquired by all methods. We must
initialize it to hold an instance of a class that implements the Lock interface. Here, we
choose ReentrantLock, a useful lock type provided by the java.util.concurrent.locks
package. This lock is reentrant: A thread that is holding the lock can acquire it again
without blocking. (See Section 8.4 for more discussion on reentrant locks.)

There are two condition objects: notEmpty notifies waiting dequeuers when the
queue goes from being empty to nonempty, and notFull for the opposite direction.
Although using two conditions instead of one is more complex, it is more efficient,
since fewer threads are woken up unnecessarily.

8.2.2 The lost-wakeup problem
Just as locks are inherently vulnerable to deadlock, Condition objects are inherently
vulnerable to lost wakeups, in which one or more threads wait forever without realiz-
ing that the condition for which they are waiting has become true.

Lost wakeups can occur in subtle ways. Fig. 8.6 shows an ill-considered optimiza-
tion of the Queue<T> class. Instead of signaling the notEmpty condition each time enq()
enqueues an item, would it not be more efficient to signal the condition only when
the queue actually transitions from empty to nonempty? This optimization works as
intended if there is only one producer and one consumer, but it is incorrect if there
are multiple producers or consumers. Consider the following scenario: Consumers A

and B both try to dequeue an item from an empty queue, both detect the queue is
empty, and both block on the notEmpty condition. Producer C enqueues an item in
the buffer, and signals notEmpty, waking A. Before A can acquire the lock, however,
another producer D puts a second item in the queue, and because the queue is not
empty, it does not signal notEmpty. Then A acquires the lock and removes the first
item, but B, victim of a lost wakeup, waits forever, even though there is an item in
the queue to be consumed.

Although there is no substitute for reasoning carefully about our program, there
are simple programming practices that minimize vulnerability to lost wakeups.

• Always signal all processes waiting on a condition, not just one.
• Specify a timeout when waiting.

Either of these two practices would fix the bounded queue error we just described.
Each has a small performance penalty, but negligible compared to the cost of a lost
wakeup.

Java provides support for monitors in the form of synchronized blocks and meth-
ods, and built-in wait(), notify(), and notifyAll() methods (see Appendix A).

188 CHAPTER 8 Monitors and blocking synchronization

1 class LockedQueue<T> {
2 final Lock lock = new ReentrantLock();
3 final Condition notFull = lock.newCondition();
4 final Condition notEmpty = lock.newCondition();
5 final T[] items;
6 int tail, head, count;
7 public LockedQueue(int capacity) {
8 items = (T[])new Object[capacity];
9 }

10 public void enq(T x) {
11 lock.lock();
12 try {
13 while (count == items.length)
14 notFull.await();
15 items[tail] = x;
16 if (++tail == items.length)
17 tail = 0;
18 ++count;
19 notEmpty.signal();
20 } finally {
21 lock.unlock();
22 }
23 }
24 public T deq() {
25 lock.lock();
26 try {
27 while (count == 0)
28 notEmpty.await();
29 T x = items[head];
30 if (++head == items.length)
31 head = 0;
32 --count;
33 notFull.signal();
34 return x;
35 } finally {
36 lock.unlock();
37 }
38 }
39 }

FIGURE 8.5

The LockedQueue class: a FIFO queue using locks and conditions. There are two condition
fields, one to detect when the queue becomes nonempty, and one to detect when it
becomes nonfull.

8.3 Readers–writers locks 189

1 public void enq(T x) {
2 lock.lock();
3 try {
4 while (count == items.length)
5 notFull.await();
6 items[tail] = x;
7 if (++tail == items.length)
8 tail = 0;
9 ++count;

10 if (count == 1) { // Wrong!
11 notEmpty.signal();
12 }
13 } finally {
14 lock.unlock();
15 }
16 }

FIGURE 8.6

This example is incorrect. It suffers from lost wakeups. The enq() method signals notEmpty
only if it is the first to place an item in an empty buffer. A lost wakeup occurs if multiple
consumers are waiting, but only the first is awakened to consume an item.

8.3 Readers–writers locks
Many shared objects have the property that most method calls return information
about the object’s state without modifying the object, and relatively few calls actually
modify the object. We call method calls of the first kind readers, and method calls of
the latter kind writers.

Readers need not synchronize with one another; it is perfectly safe for them to
access the object concurrently. Writers, on the other hand, must lock out readers as
well as other writers. A readers–writers lock allows multiple readers or a single writer
to enter the critical section concurrently. We use the following interface:

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

This interface exports two lock objects: the read lock and the write lock. They
satisfy the following safety properties:

• No thread can acquire the write lock while any thread holds either the write lock
or the read lock.

• No thread can acquire the read lock while any thread holds the write lock.

Naturally, multiple threads may hold the read lock at the same time.
We now consider two readers–writers lock implementations.

190 CHAPTER 8 Monitors and blocking synchronization

1 public class SimpleReadWriteLock implements ReadWriteLock {
2 int readers;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public SimpleReadWriteLock() {
8 writer = false;
9 readers = 0;

10 lock = new ReentrantLock();
11 readLock = new ReadLock();
12 writeLock = new WriteLock();
13 condition = lock.newCondition();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }
21 ...
22 }

FIGURE 8.7

The SimpleReadWriteLock class: fields and public methods.

8.3.1 Simple readers–writers lock
The SimpleReadWriteLock class appears in Figs. 8.7 and 8.8. To define the associ-
ated read and write locks, this code uses inner classes, a Java feature that allows
an object to create other objects that can access the first object’s private fields. The
SimpleReadWriteLock object has fields that keep track of the number of readers that
hold the lock and whether a writer holds the lock; the read lock and write lock use
these fields to guarantee the readers–writers lock properties. To allow the methods of
the read lock and the write lock to synchronize access to these fields, the class also
maintains a private lock and a condition associated with that lock.

How are waiting writers notified when the last reader releases its lock? When a
writer tries to acquire the write lock, it acquires lock (i.e., the SimpleReadWriteLock
object’s private lock), and if any readers (or another writer) hold the lock, it waits on
condition. A reader releasing the read lock also acquires lock, and signals condition
if all readers have released their locks. Similarly, readers that try to acquire the
lock while a writer holds it wait on condition, and writers releasing the lock sig-
nal condition to notify waiting readers and writers.

Although the SimpleReadWriteLock algorithm is correct, it is not quite satisfactory.
If readers are much more frequent than writers, as is usually the case, then writers
could be locked out indefinitely by a continual stream of readers.

8.3 Readers–writers locks 191

23 class ReadLock implements Lock {
24 public void lock() {
25 lock.lock();
26 try {
27 while (writer)
28 condition.await();
29 readers++;
30 } finally {
31 lock.unlock();
32 }
33 }
34 public void unlock() {
35 lock.lock();
36 try {
37 readers--;
38 if (readers == 0)
39 condition.signalAll();
40 } finally {
41 lock.unlock();
42 }
43 }
44 }
45 protected class WriteLock implements Lock {
46 public void lock() {
47 lock.lock();
48 try {
49 while (readers > 0 || writer)
50 condition.await();
51 writer = true;
52 } finally {
53 lock.unlock();
54 }
55 }
56 public void unlock() {
57 lock.lock();
58 try {
59 writer = false;
60 condition.signalAll();
61 } finally {
62 lock.unlock();
63 }
64 }
65 }

FIGURE 8.8

The SimpleReadWriteLock class: the inner read and write locks classes.

192 CHAPTER 8 Monitors and blocking synchronization

1 public class FifoReadWriteLock implements ReadWriteLock {
2 int readAcquires, readReleases;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public FifoReadWriteLock() {
8 readAcquires = readReleases = 0;
9 writer = false;

10 lock = new ReentrantLock();
11 condition = lock.newCondition();
12 readLock = new ReadLock();
13 writeLock = new WriteLock();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }
21 ...
22 }

FIGURE 8.9

The FifoReadWriteLock class: fields and public methods.

8.3.2 Fair readers–writers lock
The FifoReadWriteLock class (Figs. 8.9 and 8.10) shows one way to prevent writers
from being starved by a continual stream of readers. This class ensures that once a
writer calls the write lock’s lock() method, no more readers will acquire the read
lock until the writer has acquired and released the write lock. Eventually, the readers
holding the read lock will drain out without letting any more readers in, and the writer
can acquire the write lock.

The readAcquires field counts the total number of read-lock acquisitions, and
the readReleases field counts the total number of read-lock releases. When these
quantities match, no thread is holding the read lock. (For simplicity, we are ignoring
potential integer overflow and wraparound problems.) As in the SimpleReadWriteLock
class, the FifoReadWriteLock class has private lock and condition fields that the
methods of the read lock and write lock use to synchronize accesses to the other
fields of FifoReadWriteLock. The difference is that in FifoReadWriteLock, a thread at-
tempting to acquire the writer lock sets the writer flag even if readers hold the lock.
If a writer holds the lock, however, it waits for the writer to release the lock, and unset
the writer flag, before proceeding. That is, the thread first waits until no writer holds
the lock, then sets writer, and then waits until no reader holds the lock (lines 49–53).

8.3 Readers–writers locks 193

23 private class ReadLock implements Lock {
24 public void lock() {
25 lock.lock();
26 try {
27 while (writer)
28 condition.await();
29 readAcquires++;
30 } finally {
31 lock.unlock();
32 }
33 }
34 public void unlock() {
35 lock.lock();
36 try {
37 readReleases++;
38 if (readAcquires == readReleases)
39 condition.signalAll();
40 } finally {
41 lock.unlock();
42 }
43 }
44 }
45 private class WriteLock implements Lock {
46 public void lock() {
47 lock.lock();
48 try {
49 while (writer)
50 condition.await();
51 writer = true;
52 while (readAcquires != readReleases)
53 condition.await();
54 } finally {
55 lock.unlock();
56 }
57 }
58 public void unlock() {
59 lock.lock();
60 try {
61 writer = false;
62 condition.signalAll();
63 } finally {
64 lock.unlock();
65 }
66 }
67 }

FIGURE 8.10

The FifoReadWriteLock class: inner read and write lock classes.

194 CHAPTER 8 Monitors and blocking synchronization

8.4 Our own reentrant lock
Using the locks described in Chapters 2 and 7, a thread that attempts to reacquire a
lock it already holds will deadlock with itself. This situation can arise if a method that
acquires a lock makes a nested call to another method that acquires the same lock.

A lock is reentrant if it can be acquired multiple times by the same thread. We now
examine how to create a reentrant lock from a nonreentrant lock. This exercise is in-
tended to illustrate how to use locks and conditions. The java.util.concurrent.locks
package provides reentrant lock classes, so in practice there is no need to write our
own.

Fig. 8.11 shows the SimpleReentrantLock class. The owner field holds the ID of
the last thread to acquire the lock, and the holdCount field is incremented each time
the lock is acquired, and decremented each time it is released. The lock is free when
the holdCount value is zero. Because these two fields are manipulated atomically,
we need an internal, short-term lock. The lock field is a lock used by lock() and
unlock() to manipulate the fields, and the condition field is used by threads waiting
for the lock to become free. We initialize the internal lock field to an object of a
(fictitious) SimpleLock class, which is presumably not reentrant (line 6).

The lock() method acquires the internal lock (line 13). If the current thread is
already the owner, it increments the hold count and returns (line 15). Otherwise, if
the hold count is not zero, the lock is held by another thread, and the caller releases
the internal lock and waits until the condition is signaled (line 20). When the caller
awakens, it must still check whether the hold count is zero. If it is, the calling thread
makes itself the owner and sets the hold count to 1.

The unlock() method acquires the internal lock (line 29). It throws an exception if
either the lock is free, or the caller is not the owner (line 31). Otherwise, it decrements
the hold count. If the hold count is zero, then the lock is free, so the caller signals the
condition to wake up a waiting thread (line 35).

8.5 Semaphores
As we have seen, a mutual exclusion lock guarantees that only one thread at a time
can enter a critical section. If another thread wants to enter the critical section while
it is occupied, then it blocks, suspending itself until another thread notifies it to try
again. One of the earliest forms of synchronization, a semaphore is a generalization of
the mutual exclusion lock. Each semaphore has a capacity that is determined when
the semaphore is initialized. Instead of allowing only one thread at a time into the
critical section, a semaphore allows at most c threads, where c is its capacity.

The Semaphore class of Fig. 8.12 provides two methods: A thread calls acquire()
to request permission to enter the critical section, and release() to announce that it is
leaving the critical section. The Semaphore itself is just a counter: It keeps track of the
number of threads that have been granted permission to enter. If a new acquire() call
is about to exceed the capacity, the calling thread is suspended until there is room.

8.5 Semaphores 195

1 public class SimpleReentrantLock implements Lock{
2 Lock lock;
3 Condition condition;
4 int owner, holdCount;
5 public SimpleReentrantLock() {
6 lock = new SimpleLock();
7 condition = lock.newCondition();
8 owner = 0;
9 holdCount = 0;

10 }
11 public void lock() {
12 int me = ThreadID.get();
13 lock.lock();
14 try {
15 if (owner == me) {
16 holdCount++;
17 return;
18 }
19 while (holdCount != 0) {
20 condition.await();
21 }
22 owner = me;
23 holdCount = 1;
24 } finally {
25 lock.unlock();
26 }
27 }
28 public void unlock() {
29 lock.lock();
30 try {
31 if (holdCount == 0 || owner != ThreadID.get())
32 throw new IllegalMonitorStateException();
33 holdCount--;
34 if (holdCount == 0) {
35 condition.signal();
36 }
37 } finally {
38 lock.unlock();
39 }
40 }
41 ...
42 }

FIGURE 8.11

The SimpleReentrantLock class: lock() and unlock() methods.

196 CHAPTER 8 Monitors and blocking synchronization

1 public class Semaphore {
2 final int capacity;
3 int state;
4 Lock lock;
5 Condition condition;
6 public Semaphore(int c) {
7 capacity = c;
8 state = 0;
9 lock = new ReentrantLock();

10 condition = lock.newCondition();
11 }
12 public void acquire() {
13 lock.lock();
14 try {
15 while (state == capacity) {
16 condition.await();
17 }
18 state++;
19 } finally {
20 lock.unlock();
21 }
22 }
23 public void release() {
24 lock.lock();
25 try {
26 state--;
27 condition.signalAll();
28 } finally {
29 lock.unlock();
30 }
31 }
32 }

FIGURE 8.12

Semaphore implementation.

When a thread calls release() after leaving the critical section, it signals to notify
any waiting thread that there is now room.

8.6 Chapter notes
Monitors were invented by Per Brinch-Hansen [57] and Tony Hoare [77]. Semaphores
were invented by Edsger Dijkstra [38]. McKenney [122] surveys different kinds of
locking protocols.

8.7 Exercises 197

8.7 Exercises
Exercise 8.1. Reimplement the SimpleReadWriteLock class using Java synchronized,
wait(), notify(), and notifyAll() constructs in place of explicit locks and conditions.

Hint: You must figure out how methods of the inner read and write lock classes
can lock the outer SimpleReadWriteLock object.

Exercise 8.2. Design a “nested” readers–writers lock in which a thread must first
grab the read lock in order to grab the write lock, and releasing the write lock does
not release the read lock. In order for a reader to become a writer with exclusive write
access, every other reader must either unlock the read lock or also attempt to lock the
write lock. Show that your implementation is correct and has a reasonable fairness
guarantee between readers and writers.

Exercise 8.3. Read–write locks are fundamentally asymmetric in that many readers
can enter at once but only one writer can enter. Design a symmetric locking protocol
for two types of threads: RED and BLUE. For correctness, never allow a RED and
BLUE thread to enter simultaneously. For progress, allow for multiple RED threads
or multiple BLUE threads to enter at once, and have a symmetric fairness mechanism
for draining RED threads to allow waiting BLUE threads to enter, and vice versa.
Show that your implementation is correct, and describe the exact fairness property it
guarantees and why you chose to use it.

Exercise 8.4. The ReentrantReadWriteLock class provided by the java.util.concur-
rent.locks package does not allow a thread holding the lock in read mode to then
access that lock in write mode (the thread will block). Justify this design decision by
sketching what it would take to permit such lock upgrades.

Exercise 8.5. A savings account object holds a nonnegative balance, and provides
deposit(k) and withdraw(k) methods, where deposit(k) adds k to the balance, and
withdraw(k) subtracts k, if the balance is at least k, and otherwise blocks until the
balance becomes k or greater.

1. Implement this savings account using locks and conditions.
2. Now suppose there are two kinds of withdrawals: ordinary and preferred. Devise

an implementation that ensures that no ordinary withdrawal occurs if there is a
preferred withdrawal waiting to occur.

3. Now add a transfer() method that transfers a sum from one account to another:

void transfer(int k, Account reserve) {
lock.lock();
try {
reserve.withdraw(k);
deposit(k);

} finally {
lock.unlock();

}
}

198 CHAPTER 8 Monitors and blocking synchronization

We are given a set of 10 accounts, whose balances are unknown. At 1:00pm, each
of n threads tries to transfer $100 from another account into its own account. At
2:00pm, a boss thread deposits $1000 to each account. Is every transfer method
called at 1:00pm certain to return?

Exercise 8.6. In the shared-bathroom problem, there are two classes of threads,
called MALE and FEMALE. There is a single Bathroom resource that must be used in
the following way:

1. Mutual exclusion: persons of opposite sex may not occupy the bathroom simulta-
neously.

2. Weak starvation-freedom: Assuming that eventually there will be both a male and
a female who want to use the bathroom, then everyone who needs to use the
bathroom eventually enters.

The protocol specifies the following four procedures: enterMale() delays the
caller until a male can enter the bathroom, and leaveMale() is called when a male
leaves the bathroom, while enterFemale() and leaveFemale() do the same for females.
For example,

enterMale();
teeth.brush(toothpaste);
leaveMale();

Implement this class using locks and condition variables. Explain why your imple-
mentation satisfies mutual exclusion and weak starvation-freedom.

Exercise 8.7. The Rooms class manages a collection of rooms, indexed from 0 to
m − 1 (m is an argument to the constructor). Threads can enter or exit any room
in that range. Each room can hold an arbitrary number of threads simultaneously,
but only one room can be occupied at a time. For example, if there are two rooms,
indexed 0 and 1, then any number of threads might enter room 0, but no thread can
enter room 1 while room 0 is occupied. Fig. 8.13 shows an outline of the Rooms class.

Each room can be assigned an exit handler: Calling setExitHandler(i, h) sets the
exit handler for room i to handler h. The exit handler is called by the last thread to

1 public class Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 public Rooms(int m) { ... };
6 public void enter(int i) { ... };
7 public boolean exit() { ... };
8 public void setExitHandler(int i, Rooms.Handler h) { ... };
9 }

FIGURE 8.13

The Rooms class.

8.7 Exercises 199

leave a room, but before any threads subsequently enter any room. This method is
called once per room and while it is running, no threads are in any rooms.

Implement the Rooms class. Make sure that:

• If some thread is in room i, then no thread is in room j �= i.
• The last thread to leave a room calls the room’s exit handler, and no threads are in

any room while that handler is running.
• Your implementation is fair: Any thread that tries to enter a room eventually suc-

ceeds. (You may assume that every thread that enters a room eventually leaves.)

Exercise 8.8. Consider an application with distinct sets of active and passive threads,
where we want to block the passive threads until every active thread has given per-
mission for the passive threads to proceed.

A CountDownLatch encapsulates a counter, initialized to the number n of active
threads. An active thread gives permission for the passive threads to run by calling
countDown(), which decrements the counter. Each passive thread calls await(), which
blocks the thread until the counter reaches zero (Fig. 8.14).

Provide a CountDownLatch implementation. Do not worry about reusing the
CountDownLatch object.

1 class Driver {
2 void main() {
3 CountDownLatch startSignal = new CountDownLatch(1);
4 CountDownLatch doneSignal = new CountDownLatch(n);
5 for (int i = 0; i < n; ++i) // start threads
6 new Thread(new Worker(startSignal, doneSignal)).start();
7 doSomethingElse(); // get ready for threads
8 startSignal.countDown(); // unleash threads
9 doSomethingElse(); // biding my time ...

10 doneSignal.await(); // wait for threads to finish
11 }
12 class Worker implements Runnable {
13 private final CountDownLatch startSignal, doneSignal;
14 Worker(CountDownLatch myStartSignal, CountDownLatch myDoneSignal) {
15 startSignal = myStartSignal;
16 doneSignal = myDoneSignal;
17 }
18 public void run() {
19 startSignal.await(); // wait for driver’s OK to start
20 doWork();
21 doneSignal.countDown(); // notify driver we’re done
22 }
23 ...
24 }
25 }

FIGURE 8.14

The CountDownLatch class: an example usage.

200 CHAPTER 8 Monitors and blocking synchronization

Exercise 8.9. This exercise is a followup to Exercise 8.8. Provide a CountDownLatch
implementation where the CountDownLatch object can be reused.

Exercise 8.10. Fig. 8.15 shows a proposed implementation of a RateLimiter class,
which runs jobs but limits the “weight” of the jobs started per minute using a quota,
which is increased to LIMIT every minute by a separate thread. We want to guarantee
that jobs will run promptly if there is enough quota. You may assume a fast processor
and fair scheduler, so that the RateLimiter reaches a quiescent state (all jobs are
sleeping in await() or running), if possible, before each call to increaseQuota().

a. Describe the distributions of weight values (0 ≤ weight ≤ LIMIT) under which this
implementation works or fails and explain why.

b. Fix this implementation so it allows jobs to have any weight value from 0 to LIMIT,
and describe how it may impact performance.

1 public class RateLimiter {
2 static final int LIMIT = 100; // example value
3 public int quota = LIMIT;
4 private Lock lock = new ReentrantLock();
5 private Condition needQuota = lock.newCondition();
6 public void increaseQuota() { // called once per minute
7 synchronized(lock) { // grab the lock
8 if (quota < LIMIT) { // if some of the quote has been used up:
9 quota = LIMIT; // increase quota to LIMIT

10 needQuota.signal(); // wake up a sleeper
11 }
12 } // unlock
13 }
14 private void throttle(int weight) {
15 synchronized(lock) { // grab the lock
16 while (quota < weight) { // while not enough quota:
17 needQuota.await(); // sleep until increased
18 }
19 quota -= weight; // claim my job’s part of the quota
20 if (quota > 0) { // if still quota left over:
21 needQuota.signal(); // wake up another sleeper
22 }
23 } // unlock
24 }
25 public void run(Runnable job, int weight) {
26 throttle(weight); // sleep if under quota
27 job.run(); // run my job
28 }
29 }

FIGURE 8.15

A proposed RateLimiter class implementation.

9
CHAPTER

Linked lists: The role of
locking

9.1 Introduction
In Chapter 7, we saw how to build scalable spin locks that provide mutual exclusion
efficiently, even when they are heavily used. We might think that it is now a simple
matter to construct scalable concurrent data structures: Take a sequential implemen-
tation of the class, add a scalable lock field, and ensure that each method call acquires
and releases that lock. We call this approach coarse-grained synchronization.

Coarse-grained synchronization often works well, but there are important cases
where it does not. The problem is that a class that uses a single lock to mediate all its
method calls is not always scalable, even if the lock itself is scalable. Coarse-grained
synchronization works well when levels of concurrency are low, but if too many
threads try to access the object at the same time, then the object becomes a sequential
bottleneck, forcing threads to wait in line for access.

This chapter introduces several useful techniques that go beyond coarse-grained
locking to allow multiple threads to access a single object at the same time.

• Fine-grained synchronization: Instead of using a single lock to synchronize ev-
ery access to an object, we partition the object into independently synchronized
components, allowing method calls that access disjoint components to execute
concurrently.

• Optimistic synchronization: Many objects, such as trees or lists, consist of multiple
components linked together by references. Some methods search for a particular
component (e.g., a list or tree node containing a particular key). One way to reduce
the cost of fine-grained locking is to search without acquiring any locks at all. If
the method finds the sought-after component, it locks that component, and then
checks that the component has not changed in the interval between when it was
inspected and when it was locked. This technique is worthwhile only if it succeeds
more often than not, which is why we call it optimistic.

• Lazy synchronization: Sometimes it makes sense to postpone hard work. For ex-
ample, the task of removing a component from a data structure can be split into
two phases: The component is logically removed simply by setting a tag bit, and
later, the component can be physically removed by unlinking it from the rest of
the data structure.

• Nonblocking synchronization: Sometimes we can eliminate locks entirely, relying
on built-in atomic operations such as compareAndSet() for synchronization.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00019-7
Copyright © 2021 Elsevier Inc. All rights reserved.

201

202 CHAPTER 9 Linked lists: The role of locking

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

FIGURE 9.1

The Set<T> interface: add() adds an item to the set (no effect if that item is already present),
remove() removes it (if present), and contains() returns a Boolean indicating whether the
item is present.

Each of these techniques can be applied (with appropriate customization) to a variety
of common data structures. In this chapter, we consider how to use linked lists to
implement a set, a collection of items that contains no duplicate elements.

For our purposes, as shown in Fig. 9.1, a set provides the following three methods:

• The add(x) method adds x to the set, returning true if and only if x was not already
in the est.

• The remove(x) method removes x from the set, returning true if and only if x was
in the set.

• The contains(x) returns true if and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuccessful
otherwise. In typical applications using sets, there are significantly more contains()
calls than add() or remove() calls.

9.2 List-based sets
This chapter presents a range of concurrent set algorithms, all based on the same
basic idea. A set is implemented as a linked list of nodes. The Node<T> class, shown
in Fig. 9.2, has three fields. The item field is the actual item of interest. The key field
is the item’s hash code. Nodes are sorted in key order, providing an efficient way to
detect when an item is absent. The next field is a reference to the next node in the

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

FIGURE 9.2

The Node<T> class: This internal class keeps track of the item, the item’s key, and the next
node in the list. Some algorithms require changes to this class.

9.2 List-based sets 203

FIGURE 9.3

A sequential Set<> implementation: adding and removing nodes. In part (a), a thread
adding a node b uses two variables: curr is the current node, and pred is its predecessor.
The thread moves down the list comparing the keys for curr and b. If a match is found, the
item is already present, so it returns false. If curr reaches a node with a higher key, the item
is not in the set, so it sets b’s next field to curr, and pred’s next field to b. In part (b), to
delete curr, the thread sets pred’s next field to curr’s next field.

list. (Some of the algorithms we consider require changes to this class, such as adding
new fields, changing the types of existing fields, or making some fields volatile.) For
simplicity, we assume that each item’s hash code is unique. (Relaxing this assumption
is left as an exercise.) We associate an item with the same node and key throughout
any given example, which allows us to abuse notation and use the same symbol to
refer to a node, its key, and its item. That is, node a may have key a and item a, and
so on.

In addition to nodes that hold items in the set, the list contains two sentinel nodes,
head and tail, as the first and last nodes in the list. Sentinel nodes are never added,
removed, or searched for, and their keys are the minimum and maximum integer val-
ues.1 Ignoring synchronization for the moment, the top part of Fig. 9.3 schematically
describes how an item is added to the set. A thread uses two local variables to tra-
verse the list: curr is the current node and pred is its predecessor. To add an item to

1 The algorithms presented here work for any ordered set of keys that has maximum and minimum values
and is well founded, that is, there are only finitely many keys smaller than any given key. For simplicity,
we assume here that keys are integers, and that no item’s key is the maximum or minimum integer value.

204 CHAPTER 9 Linked lists: The role of locking

the set, a thread sets pred to head and curr to its successor, and moves down the list,
comparing curr’s key to the key of the item being added until it finds a node whose
key is greater than or equal to the new item’s key. If the keys match, the item is al-
ready present in the set, so the call returns false. Otherwise, pred’s key is less than
that of the new item, and curr’s key is greater, so the item is not present in the list.
The method creates a new node b to hold the item, sets b’s next field to curr, and
then sets pred’s to b. Removing an item from the set works in a similar way.

9.3 Concurrent reasoning
Reasoning about concurrent data structures may seem impossibly difficult, but it is a
skill that can be learned. Often, the key to understanding a concurrent data structure is
to understand its invariants: properties that always hold. We can show that a property
is invariant by showing that:

1. the property holds when the object is created, and
2. once the property holds, no thread can take a step that makes it false.

Most interesting invariants hold trivially when the list is created, so it makes sense to
focus on how invariants, once established, are preserved.

Specifically, we can check that each invariant is preserved by each invocation of
insert(), remove(), and contains() methods. This approach works only if we can as-
sume that these methods are the only ones that modify nodes, a property sometimes
called freedom from interference. In the list algorithms considered here, nodes are in-
ternal to the list implementation, so freedom from interference is guaranteed because
users of the list have no opportunity to modify its internal nodes.

We require freedom from interference even for nodes that have been removed
from the list, since some of our algorithms permit a thread to unlink a node while it
is being traversed by others. Fortunately, we do not attempt to reuse list nodes that
have been removed from the list, relying instead on a garbage collector to recycle that
memory. The algorithms described here work in languages without garbage collec-
tion, but sometimes require nontrivial modifications that are beyond the scope of this
chapter. We discuss issues that arise in the absence of garbage collection and how to
deal with them in Chapter 19.

When reasoning about concurrent object implementations, it is important to un-
derstand the distinction between an object’s abstract value (here, a set of items) and
its concrete representation (here, a list of nodes).

Not every list of nodes is a meaningful representation for a set. An algorithm’s
representation invariant characterizes which representations make sense as abstract
values. If a and b are nodes, we say that a points to b if a’s next field is a reference
to b. We say that b is reachable if there is a sequence of nodes starting at head and
ending at b, where each node in the sequence points to its successor.

The set algorithms in this chapter require the following invariants (some require
more, as explained later):

9.3 Concurrent reasoning 205

1. The key of any node in the list is less than the key of its successor (if it has one).
This implies that nodes in the list are sorted by key, and that keys are unique.

2. The key of any item added, removed, or searched for is greater than the key of
head and less than the key of tail. (Hence, the sentinel nodes are neither added
nor removed.)

Think of the representation invariant as a contract among the object’s methods.
Each method call preserves the invariant, and relies on the other methods to preserve
the invariant. In this way, we can reason about each method in isolation, without
having to consider all the possible ways they might interact.

Given a list satisfying the representation invariant, which set does it represent?
The meaning of such a list is given by an abstraction map carrying lists that satisfy
the representation invariant to sets. Here, the abstraction map is simple: An item is in
the set if and only if it is (in a node) reachable from head.

What safety and liveness properties do we need? For safety, we want linearizabil-
ity. As we saw in Chapter 3, to show that a concurrent data structure is a linearizable
implementation of a sequential object, it suffices to identify a linearization point, an
atomic step where the method call “takes effect”; we say it is linearized at this point.
This step can be a read, a write, or a more complex atomic operation. Looking at any
execution history of a list-based set, it must be the case that if the abstraction map
is applied to the representation at the linearization points, the resulting sequence of
states and method calls defines a valid sequential set execution. Here, add(a) adds a

to the abstract set, remove(a) removes a from the abstract set, and contains(a) returns
true or false, depending on whether a was already in the set.

Different list algorithms make different progress guarantees. Some use locks, and
care is required to ensure they are deadlock- and starvation-free. Some nonblocking
list algorithms do not use locks at all, while others restrict locking to certain methods.
Here is a brief summary, from Chapter 3, of the nonblocking properties we use:2

• A method is wait-free if every call finishes in a finite number of steps.
• A method is lock-free if some call always finishes in a finite number of steps.

We are now ready to consider a variety of list-based set algorithms. We start with
algorithms that use coarse-grained synchronization, and successively refine them to
reduce the granularity of locking, culminating in a nonblocking algorithm. Formal
proofs of correctness lie beyond the scope of this book. Instead, we focus on informal
reasoning useful in everyday problem solving.

As mentioned, in each of these algorithms, methods traverse the list using two
local variables: curr is the current node and pred is its predecessor. Because these
variables are local, each thread has its own instances of them; we use predA and
currA to denote the instances used by thread A.

2 Chapter 3 introduces an even weaker nonblocking property called obstruction-freedom.

206 CHAPTER 9 Linked lists: The role of locking

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList() {
5 head = new Node(Integer.MIN_VALUE);
6 head.next = new Node(Integer.MAX_VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr;

10 int key = item.hashCode();
11 lock.lock();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr.key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock.unlock();
29 }
30 }

FIGURE 9.4

The CoarseList class: the add() method.

9.4 Coarse-grained synchronization
We start with a simple algorithm using coarse-grained synchronization. Figs. 9.4
and 9.5 show the add() and remove() methods for this coarse-grained algorithm. (The
contains() method works in much the same way, and is left as an exercise.) The list
itself has a single lock which every method call must acquire. The principal advan-
tage of this algorithm, which should not be discounted, is that it is obviously correct.
All methods act on the list only while holding the lock, so the execution is essentially
sequential.

The linearization point for an add(a) or remove(a) call depends on whether the
call was successful (i.e., whether a was already present). A successful add(a) call
(a absent) is linearized at the point that it updates the next field of the predecessor of

9.5 Fine-grained synchronization 207

31 public boolean remove(T item) {
32 Node pred, curr;
33 int key = item.hashCode();
34 lock.lock();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr.key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false;
47 }
48 } finally {
49 lock.unlock();
50 }
51 }

FIGURE 9.5

The CoarseList class: the remove() method. All methods acquire a single lock, which is
released on exit by the finally block.

the node added (line 24). Similarly, a successful remove(a) call (i.e., if a is present
before the call) is linearized when it updates the next field of the predecessor of the
node removed (line 43). An unsuccessful add(a) or remove(a) method call, or any
contains(a) call, can be linearized when the lock is acquired (or any time while the
lock is held).3

The CoarseList class satisfies the same progress condition as its lock: If the Lock
is starvation-free, so is our implementation. If contention is very low, this algorithm
is an excellent way to implement a list. If, however, there is contention, then even if
the lock itself performs well, threads will still be delayed waiting for one another.

9.5 Fine-grained synchronization
We can improve concurrency by locking individual nodes, rather than locking the list
as a whole. Instead of placing a lock on the entire list, we add a Lock to each node,

3 We can linearize every method call at the instant it acquires the lock, but doing so requires a different
abstraction map than the one described in Section 9.3.

208 CHAPTER 9 Linked lists: The role of locking

along with lock() and unlock() methods. As a thread traverses the list, it locks each
node when it first visits, and sometime later releases it. Such fine-grained locking
permits concurrent threads to traverse the list together in a pipelined fashion.

Consider two nodes a and b, where a points to b. It is not safe to unlock a before
locking b because another thread could remove b from the list in the interval between
unlocking a and locking b. Instead, a thread acquires locks using a “hand-over-hand”
protocol: it acquires the lock for a node (except the head node) while holding (i.e.,
before releasing) the lock for its predecessor. This locking protocol is sometimes
called lock coupling. (Note that there is no obvious way to implement lock coupling
using Java’s synchronized methods.)

Figs. 9.6 and 9.7 show the FineList algorithm’s add() and remove() methods. As
in the coarse-grained list, remove() makes currA unreachable by setting predA’s next

1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15 if (curr.key == key) {
16 return false;
17 }
18 Node node = new Node(item);
19 node.next = curr;
20 pred.next = node;
21 return true;
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

FIGURE 9.6

The FineList class: The add() method uses hand-over-hand locking to traverse the list. The
finally blocks release locks before returning.

9.5 Fine-grained synchronization 209

29 public boolean remove(T item) {
30 int key = item.hashCode();
31 head.lock();
32 Node pred = head;
33 try {
34 Node curr = pred.next;
35 curr.lock();
36 try {
37 while (curr.key < key) {
38 pred.unlock();
39 pred = curr;
40 curr = curr.next;
41 curr.lock();
42 }
43 if (curr.key == key) {
44 pred.next = curr.next;
45 return true;
46 }
47 return false;
48 } finally {
49 curr.unlock();
50 }
51 } finally {
52 pred.unlock();
53 }
54 }

FIGURE 9.7

The FineList class: The remove() method locks both the node to be removed and its
predecessor before removing that node.

field to currA’s successor. To be safe, remove() must lock both predA and currA. To
see why, consider the scenario illustrated in Fig. 9.8. Thread A is about to remove
node a, the first node in the list, while thread B is about to remove node b, where
a points to b. Suppose A locks head, and B locks a. A then sets head.next to b,
while B sets a.next to c. The net effect is the removal of a, but not b. The problem
is that there is no overlap between the locks held by the two remove() calls. Fig. 9.9
illustrates how hand-over-hand locking avoids this problem.

To guarantee progress, it is important that all methods acquire locks in the same
order, starting at head and following next references toward tail. As Fig. 9.10 shows,
a deadlock could occur if different method calls were to acquire locks in different
orders. In this example, thread A, trying to add a, has locked b and is attempting
to lock head, while B, trying to remove b, has locked head and is trying to lock
b. Clearly, these method calls will never finish. Avoiding deadlocks is one of the
principal challenges of programming with locks.

210 CHAPTER 9 Linked lists: The role of locking

FIGURE 9.8

The FineList class: why remove() must acquire two locks. Thread A is about to remove a,
the first node in the list, while thread B is about to remove b, where a points to b. Suppose
A locks head, and B locks a. Thread A then sets head.next to b, while B sets a’s next field to
c. The net effect is to remove a, but not b.

FIGURE 9.9

The FineList class: Hand-over-hand locking ensures that if concurrent remove() calls try to
remove adjacent nodes, then they acquire conflicting locks. Thread A is about to remove
node a, the first node in the list, while thread B is about to remove node b, where a points
to b. Because A must lock both head and a and B must lock both a and b, they are
guaranteed to conflict on a, forcing one call to wait for the other.

FIGURE 9.10

The FineList class: A deadlock could occur if, for example, remove() and add() calls
acquired locks in opposite order. Then we could have the scenario depicted, in which
thread A is about to insert a by locking first b and then head, and thread B is about to
remove node b by locking first head and then b. Each thread holds the lock the other is
waiting to acquire, so neither makes progress.

9.6 Optimistic synchronization 211

The representation invariant and abstraction map for FineList are the same as
for CoarseList: Sentinels are never added or removed, nodes are sorted by key value
without duplicates, and an item is in the set if and only if its node is reachable.

As in CoarseList, a successful add(a) or remove(a) call of FineList is linearized
when it updates the next field of the predecessor of the node added or removed
(line 20 or 44). An unsuccessful add(a) or remove(a) call, or any contains(a) call,
can be linearized when it acquires the lock to a node whose key is greater than or
equal to a (line 7 or 13 for add(a); line 35 or 41 for remove(a)).

The FineList algorithm is starvation-free if all the node locks are starvation-free,
but arguing this property is harder than in the coarse-grained case: Because all meth-
ods acquire locks in the same down-the-list order, deadlock is impossible. If thread A

attempts to lock head, it eventually succeeds. From that point on, because there are no
deadlocks, eventually all locks held by threads ahead of A in the list will be released,
and A will succeed in locking predA and currA.

Although fine-grained locking reduces contention compared to coarse-grained
locking, it imposes a potentially long sequence of lock acquisitions and releases.
Moreover, threads accessing disjoint parts of the list may still block one another. For
example, a thread removing the second item in the list blocks all concurrent threads
searching for later nodes.

9.6 Optimistic synchronization
One way to reduce synchronization costs is to take a chance: Search without acquiring
locks, lock the nodes found, and then confirm that the locked nodes are correct. If a
synchronization conflict causes the wrong nodes to be locked, then release the locks
and start over. When this kind of conflict is rare, this technique works well, which is
why we call it optimistic synchronization.

Code for the optimistic add(a) method appears in Fig. 9.11. When thread A calls
this method, it traverses the list without acquiring any locks (lines 6–8). In fact, it
ignores the locks completely. It stops the traversal when currA’s key is greater than
or equal to a. It then locks predA and currA, and calls validate() to check that predA

is reachable and its next field still refers to currA. If validation succeeds, then thread
A proceeds as before: If currA’s key is greater than a, thread A adds a new node with
item a between predA and currA, and returns true. Otherwise it returns false. The
remove() and contains() methods (Figs. 9.12 and 9.13) operate similarly, traversing
the list without locking, and then locking the target nodes and validating they are still
in the list. To be consistent with the Java memory model, the next fields in the nodes
must be declared volatile.

The code of validate() appears in Fig. 9.14. We are reminded of a story:

A tourist takes a taxi in a foreign town. The taxi driver speeds through a red light.
The tourist, frightened, asks,“What are you are doing?” The driver answers,“Do
not worry, I am an expert.” He speeds through more red lights, and the tourist, on

212 CHAPTER 9 Linked lists: The role of locking

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();

10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key == key) {
15 return false;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr.unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

FIGURE 9.11

The OptimisticList class: the add() method traverses the list ignoring locks, acquires locks,
and validates before adding the new node.

the verge of hysteria, complains again, more urgently. The driver replies,“Relax,
relax, you are in the hands of an expert.” Suddenly, the light turns green, the driver
slams on the brakes, and the taxi skids to a halt. The tourist picks himself off the
floor of the taxi and asks,“For crying out loud, why stop now that the light is finally
green?” The driver answers,“Too dangerous, another expert could be crossing.”

Ignoring locks while traversing a dynamically changing lock-based data structure
requires careful thought (there are other expert threads out there). We must be sure to
use some form of validation and guarantee freedom from interference.

Validation is necessary because the trail of references leading to predA, or the
reference from predA to currA, could have changed between when they were last

9.6 Optimistic synchronization 213

31 public boolean remove(T item) {
32 int key = item.hashCode();
33 while (true) {
34 Node pred = head;
35 Node curr = pred.next;
36 while (curr.key < key) {
37 pred = curr; curr = curr.next;
38 }
39 pred.lock();
40 try {
41 curr.lock();
42 try {
43 if (validate(pred, curr)) {
44 if (curr.key == key) {
45 pred.next = curr.next;
46 return true;
47 } else {
48 return false;
49 }
50 }
51 } finally {
52 curr.unlock();
53 }
54 } finally {
55 pred.unlock();
56 }
57 }
58 }

FIGURE 9.12

The OptimisticList class: The remove() method traverses ignoring locks, acquires locks,
and validates before removing the node.

read by A and when A acquired the locks. In particular, A could be traversing parts of
the list that have already been removed. For example, as shown in Fig. 9.15, the node
currA and all nodes between currA and a (including a) may be removed while A is
still traversing currA. Thread A discovers that currA points to a; without validation,
it would “successfully” remove a, even though a is no longer in the list. A validate()
call detects that a is no longer in the list, and the caller restarts the method.

Because we ignore the locks that protect concurrent modifications while travers-
ing the list, a method call may traverse nodes that have been removed from the list.
Nevertheless, freedom from interference implies that once a node has been unlinked
from the list, the value of its next field does not change, so following a sequence of
such links eventually leads back to the list. Freedom from interference, in turn, relies
on garbage collection to ensure that no node is recycled while it is being traversed.

214 CHAPTER 9 Linked lists: The role of locking

59 public boolean contains(T item) {
60 int key = item.hashCode();
61 while (true) {
62 Node pred = head;
63 Node curr = pred.next;
64 while (curr.key < key) {
65 pred = curr; curr = curr.next;
66 }
67 pred.lock();
68 try {
69 curr.lock();
70 try {
71 if (validate(pred, curr)) {
72 return (curr.key == key);
73 }
74 } finally {
75 curr.unlock();
76 }
77 } finally {
78 pred.unlock();
79 }
80 }
81 }

FIGURE 9.13

The OptimisticList class: The contains() method searches, ignoring locks, then acquires
locks, and validates to determine if the node is in the list.

82 private boolean validate(Node pred, Node curr) {
83 Node node = head;
84 while (node.key <= pred.key) {
85 if (node == pred)
86 return pred.next == curr;
87 node = node.next;
88 }
89 return false;
90 }

FIGURE 9.14

The OptimisticList: Validation checks that pred points to curr and is reachable from head.

The linearization points of the optimistic algorithm are the same as those of the
fine-grained algorithm, except that we must take into account the possibility of failed
validation. In particular, we only linearize a method call when it acquires a lock if the
subsequent validation succeeds.

9.7 Lazy synchronization 215

FIGURE 9.15

The OptimisticList class: why validation is needed. Thread A is attempting to remove a
node a. While traversing the list, currA and all nodes between currA and a (including a)
might be removed (denoted by a lighter node color). In such a case, thread A would
proceed to the point where currA points to a, and, without validation, would successfully
remove a, even though it is no longer in the list. Validation is required to determine that a is
no longer reachable from head.

The OptimisticList algorithm is not starvation-free, even if all node locks are
individually starvation-free. A thread might be delayed indefinitely if new nodes are
repeatedly added and removed (see Exercise 9.6). Nevertheless, we expect this al-
gorithm to do well in practice, since starvation is rare. It works best if the cost of
traversing the list twice without locking is significantly less than the cost of travers-
ing the list once with locking.

Although optimistic synchronization can be applied to coarse-grained locking,
it does not improve that algorithm because validation requires retraversing the list
while holding the lock. However, we can eliminate the need to traverse the list during
validation by maintaining a version number that is incremented whenever the list is
modified. We explore such an approach in the exercises.

9.7 Lazy synchronization
One drawback of the OptimisticList algorithm (and the CoarseList and FineList
algorithms) is that contains() acquires locks, which is unattractive since contains()
calls are typically much more common than calls to other methods. We show how to
refine this algorithm so that contains() is wait-free, and add() and remove() methods,
while still blocking, traverse the list only once (in the absence of contention).

We add to each node a Boolean marked field indicating whether that node is in the
set. Now, traversals do not need to lock the target node, and there is no need to val-
idate that the node is reachable by retraversing the whole list. Instead, the algorithm
maintains the invariant that every unmarked node is reachable. If a traversing thread
does not find a node, or finds it marked, then that item is not in the set. As a result,

216 CHAPTER 9 Linked lists: The role of locking

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

FIGURE 9.16

The LazyList class: Validation checks that neither the pred nor the curr node has been
logically deleted, and that pred points to curr.

contains() needs only one wait-free traversal. To add an element to the list, add()
traverses the list, locks the target’s predecessor, and inserts the node. The remove()
method is lazy, taking two steps: It first marks the target node, logically removing it,
and then redirects the next field of its predecessor, physically removing it.

In more detail, as in the OptimisticList algorithm, all methods traverse the list
(possibly traversing logically and physically removed nodes) ignoring the locks. The
add() and remove() methods lock the predA and currA nodes, and validates them, as
before, except that the validate() method (Fig. 9.16) does not retraverse the list to
determine that the nodes are still in the list. Instead, because of the new invariant, it
suffices to check that they are not marked. We must check that both predA and currA

are not marked because predA is the node that is being modified. (See Fig. 9.19 for
an illustration of why validation is necessary.)

Except for calling a different validate() method, the add() method of LazyList
is exactly the same as that of OptimisticList. The remove() method (Fig. 9.17) has a
small difference: it marks the node (line 18) before (physically) removing it from the
list, maintaining the invariant that every unmarked node is reachable.

Logical removals require a small change to the abstraction map: An item is in
the set if and only if it is referred to by an unmarked reachable node. Note that the
path along which the node is reachable may contain marked nodes. (The diligent
reader should check that any unmarked reachable node remains reachable, even if its
predecessor is logically or physically deleted.) As in the OptimisticList algorithm,
add() and remove() are not starvation-free, because list traversals may be arbitrarily
delayed by ongoing modifications.

The contains() method (Fig. 9.18) traverses the list once ignoring locks and
returns true if the node it was searching for is present and unmarked, and false other-
wise. It is thus wait-free.4 A marked node’s value is ignored. Each time the traversal
moves to a new node, the new node has a larger key than the previous one, even if the
node is logically deleted.

The linearization points for LazyList add() and unsuccessful remove() calls are
the same as for the OptimisticList. A successful remove() call is linearized when
the node is marked (i.e., when the marked bit is set on line 18), and a successful
contains() call is linearized when an unmarked matching node is found.

4 The number of nodes a thread must traverse cannot increase without bound due to newly inserted nodes
because the set of keys is well founded.

9.7 Lazy synchronization 217

4 public boolean remove(T item) {
5 int key = item.hashCode();
6 while (true) {
7 Node pred = head;
8 Node curr = head.next;
9 while (curr.key < key) {

10 pred = curr; curr = curr.next;
11 }
12 pred.lock();
13 try {
14 curr.lock();
15 try {
16 if (validate(pred, curr)) {
17 if (curr.key == key) {
18 curr.marked = true;
19 pred.next = curr.next;
20 return true;
21 } else {
22 return false;
23 }
24 }
25 } finally {
26 curr.unlock();
27 }
28 } finally {
29 pred.unlock();
30 }
31 }
32 }

FIGURE 9.17

The LazyList class: The remove() method removes nodes in two steps, logical and physical.

33 public boolean contains(T item) {
34 int key = item.hashCode();
35 Node curr = head;
36 while (curr.key < key)
37 curr = curr.next;
38 return curr.key == key && !curr.marked;
39 }

FIGURE 9.18

The LazyList class: the contains() method.

218 CHAPTER 9 Linked lists: The role of locking

FIGURE 9.19

The LazyList class: why validation is needed. In part (a), thread A is attempting to remove
node a. After it reaches the point where predA refers to currA, and before it acquires locks
on these nodes, the node predA is logically and physically removed. After A acquires the
locks, validation will detect the problem. In part (b), A is attempting to remove node a. After
it reaches the point where predA refers to currA, and before it acquires locks on these
nodes, a new node is added between predA and currA. After A acquires the locks, even
though neither predA nor currA is marked, validation detects that predA is not the same as
currA, and A’s call to remove() will be restarted.

It is trickier to see how to linearize an unsuccessful contains() method call. Con-
sider the scenario depicted in Fig. 9.20, in which thread A is executing contains(a).
In part (a), while A is traversing the list, another thread removes, both logically and
physically, currA and all subsequent nodes up to and including a. Thread A will
still follow the links until currA points to a, and detect that a is marked, and hence
no longer in the abstract set. We might be tempted to linearize it at that point (i.e.,
when A executes line 38). However, as depicted in part (b), this is not always a valid
linearization point: while A is traversing the removed section of the list, and before
it reaches the removed node a, another thread may call add(a), adding a new node
with key a to the reachable part of the list. In this case, A’s unsuccessful contains(a)

method call cannot be linearized at the point it finds the marked node a, because this
point occurs after the new node with key a has been inserted in the list. The unsuc-
cessful method call must be linearized to a point before the new node is inserted.

We therefore linearize an unsuccessful contains(a) method call within its execu-
tion interval at the earlier of the following points: (1) the point where a marked node
with key a, or a node with a key greater than a, is found, or (2) the point immediately
before a new node with key a is added to the list. The second point is guaranteed to
be within the execution interval because the insertion of the new node with the same

9.7 Lazy synchronization 219

FIGURE 9.20

The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are physically in
the list and white nodes are physically removed. In part (a), while thread A is traversing the
list, another thread disconnects the sublist referred to by currA. We can linearize A’s call at
the point it sees that a is marked and is no longer in the abstract set. However, in part (b),
while A is traversing the removed part of the list leading to the marked node a, another
thread adds a new node with key a. It would be wrong to linearize A’s unsuccessful
contains(a) call to when it found the marked node a, since this point occurs after the
insertion of the new node with key a to the list.

key must have happened after the start of the contains() method, or the contains()
method would have found that item. As can be seen, the linearization point of the
unsuccessful contains() is determined by the ordering of events in the execution, and
is not a predetermined point in the method’s code, and indeed, may not even be at
a point where the thread takes a step (e.g., it may be linearized when another thread
takes a step).

One benefit of lazy synchronization is that we can separate unobtrusive logical
steps, such as setting a flag, from disruptive physical changes to the structure, such
as disconnecting a node. The example presented here is simple because we discon-
nect one node at a time. In general, however, delayed operations can be batched and
performed lazily at a convenient time, reducing the overall disruptiveness of physical
modifications to the structure.

220 CHAPTER 9 Linked lists: The role of locking

A principal disadvantage of the LazyList algorithm is that add() and remove() calls
are blocking: If one thread is delayed, then others may also be delayed.

9.8 Nonblocking synchronization
We have seen that we can avoid locking in contains() by marking nodes as logically
removed before physically removing them from the list. We now show how to extend
this idea to eliminate locks altogether, allowing all three methods, add(), remove(),
and contains(), to be nonblocking. (The first two methods are lock-free and the last
wait-free.)

A naïve approach would be to use compareAndSet() to change the next fields.
For example, if thread A wants to remove currA from the list, it might call
compareAndSet() to set predA’s next field to currA’s successor. Unfortunately, this
idea does not work, as shown in Fig. 9.21. Part (a) shows a thread A attempting to re-
move a node a while thread B is adding a node b. Suppose A applies compareAndSet()
to head.next, while B applies compareAndSet() to a.next. The net effect is that a is
correctly deleted but b is not added to the list. In part (b), A attempts to remove a,
the first node in the list, while B is about to remove b, where a points to b. Suppose

FIGURE 9.21

The LockFreeList class: why mark and reference fields must be modified atomically. In
part (a), thread A is about to remove a, the first node in the list, while B is about to add b.
Suppose A applies compareAndSet() to head.next, while B applies compareAndSet() to a.next.
The net effect is that a is correctly deleted but b is not added to the list. In part (b), thread A
is about to remove a, the first node in the list, while B is about to remove b, where a points
to b. Suppose A applies compareAndSet() to head.next, while B applies compareAndSet() to
a.next. The net effect is to remove a, but not b.

9.8 Nonblocking synchronization 221

A applies compareAndSet() to head.next, while B applies compareAndSet() to a.next.
The net effect is the removal of a, but not b.

We need a way to ensure that a node’s fields cannot be updated after that node
has been logically or physically removed from the list. Our approach is to treat the
node’s next and marked fields as a single atomic unit: any attempt to update the next
field when the marked field is true will fail.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<T> object
encapsulates both a reference to an object of type T and a Boolean mark. These fields
can be atomically updated, either together or individually.

We make each node’s next field an AtomicMarkableReference<Node>. Thread A

logically removes currA by setting the mark bit in the node’s next field, and shares
the physical removal with other threads performing add() or remove(): As each thread
traverses the list, it cleans up the list by physically removing any marked nodes it
encounters. In other words, threads performing add() and remove() do not traverse

PRAGMA 9.8.1

An AtomicMarkableReference<T> object (defined by the java.util.concurrent.
atomic package) encapsulates both a reference to an object of type T and a Boolean
mark, also called a mark bit. These fields can be updated atomically, either to-
gether or individually. The compareAndSet() method tests the expected reference
and mark values, and if both tests succeed, replaces them with updated reference
and mark values. The get() method has an unusual interface: It returns the ob-
ject’s reference value and stores the mark value in a Boolean array argument. The
getReference() and isMarked() methods return the reference and mark values, re-
spectively. The interfaces of these methods are shown in Fig. 9.22.
In C or C++, one could provide this functionality efficiently by “stealing” a bit
from a pointer, using bit-wise operators to extract the mark and the pointer from a
single word. In Java, one cannot manipulate pointers directly, so this functionality
must be provided by a library.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public T get(boolean[] marked);
6 public T getReference();
7 public boolean isMarked();

FIGURE 9.22

Some AtomicMarkableReference<T> methods: compareAndSet() tests and updates both the
mark and reference fields; get() returns the encapsulated reference and stores the mark at
position 0 in the argument array; getReference() and isMarked() return the reference and
mark, respectively.

222 CHAPTER 9 Linked lists: The role of locking

marked nodes; they remove them before continuing. The contains() method remains
the same as in the LazyList algorithm, traversing all nodes whether they are marked
or not, and testing if an item is in the list based on its key and mark.

It is worth pondering a design decision that differentiates the LockFreeList al-
gorithm from the LazyList algorithm. Why do threads that add or remove nodes
never traverse marked nodes, and instead physically remove all marked nodes they
encounter? Suppose that thread A were to traverse marked nodes without physically
removing them, and after logically removing currA, were to attempt to physically
remove it as well. It could do so by calling compareAndSet() to try to redirect predA’s
next field, simultaneously verifying that predA is not marked and that it refers to
currA. The difficulty is that, because A is not holding locks on predA and currA,
other threads could insert new nodes or remove predA before the compareAndSet()
call.

Consider a scenario in which another thread marks predA. As illustrated in
Fig. 9.21, we cannot safely redirect the next field of a marked node, so A would
have to restart the physical removal by retraversing the list. This time, however, A

would have to physically remove predA before it could remove currA. Even worse,
if there is a sequence of logically removed nodes leading to predA, A must remove
them all, one after the other, before it can remove currA itself.

This example illustrates why add() and remove() calls do not traverse marked
nodes: When they arrive at the node to be modified, they may be forced to retraverse
the list to remove previous marked nodes. Instead, we choose to have both add() and
remove() physically remove any marked nodes on the path to their target node. The
contains() method, by contrast, performs no modification, and therefore need not
participate in the cleanup of logically removed nodes, allowing it, as in the LazyList,
to traverse both marked and unmarked nodes.

In presenting the LockFreeList algorithm, we factor out functionality common
to the add() and remove() methods by creating a nested Window class to help with
traversal. As shown in Fig. 9.23, a Window object is a structure with pred and curr
fields. The find() method takes a head node and a key a, and traverses the list, seeking
to set pred to the node with the largest key less than a, and curr to the node with
the least key greater than or equal to a. As thread A traverses the list, each time
it advances currA, it checks whether that node is marked (line 16). If so, it calls
compareAndSet() to attempt to physically remove the node by setting predA’s next
field to currA’s next field. This call tests both the field’s reference and Boolean mark
values, and fails if either value has changed. A concurrent thread could change the
mark value by logically removing predA, or it could change the reference value by
physically removing currA. If the call fails, A restarts the traversal from the head of
the list; otherwise the traversal continues.

The LockFreeList class uses the same abstraction map as the LazyList class: An
item is in the set if and only if it is referred to by an unmarked reachable node. The
compareAndSet() call at line 17 of the find() method is an example of a benevolent
side effect: It changes the concrete list without changing the abstract set, because
removing a marked node does not change the value of the abstraction map.

9.8 Nonblocking synchronization 223

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};

10 boolean snip;
11 retry: while (true) {
12 pred = head;
13 curr = pred.next.getReference();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false, false);
18 if (!snip) continue retry;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr.key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

FIGURE 9.23

The LockFreeList class: nested Window class and find() method: find() returns a Window
object with nodes on either side of the key; it removes marked nodes that it encounters.

Fig. 9.24 shows the LockFreeList class’s add() method. Suppose thread A calls
add(a). A uses find() to locate predA and currA. If currA’s key is equal to a’s, the
call returns false. Otherwise, add() initializes a new node a to hold a, and makes
a point to currA. It then calls compareAndSet() (line 39) to make predA point to a.
Because the compareAndSet() tests both the mark and the reference, it succeeds only
if predA is unmarked and points to currA. If the compareAndSet() is successful, the
method returns true; otherwise it starts over from head.

Fig. 9.25 shows the LockFreeList algorithm’s remove() method. When A calls
remove() to remove item a, it uses find() to locate predA and currA. If currA’s key
fails to match a’s, the call returns false. Otherwise, remove() uses a compareAndSet()
to attempt to mark currA as logically removed (line 55). This call succeeds only if
no other thread has set the mark first. If it succeeds, the call returns true. A single
attempt is made to physically remove the node, but there is no need to try again

224 CHAPTER 9 Linked lists: The role of locking

29 public boolean add(T item) {
30 int key = item.hashCode();
31 while (true) {
32 Window window = find(head, key);
33 Node pred = window.pred, curr = window.curr;
34 if (curr.key == key) {
35 return false;
36 } else {
37 Node node = new Node(item);
38 node.next = new AtomicMarkableReference(curr, false);
39 if (pred.next.compareAndSet(curr, node, false, false)) {
40 return true;
41 }
42 }
43 }
44 }

FIGURE 9.24

The LockFreeList class: The add() method calls find() to locate pred and curr. It adds a
new node only if pred is unmarked and refers to curr.

45 public boolean remove(T item) {
46 int key = item.hashCode();
47 boolean snip;
48 while (true) {
49 Window window = find(head, key);
50 Node pred = window.pred, curr = window.curr;
51 if (curr.key != key) {
52 return false;
53 } else {
54 Node succ = curr.next.getReference();
55 snip = curr.next.compareAndSet(succ, succ, false, true);
56 if (!snip)
57 continue;
58 pred.next.compareAndSet(curr, succ, false, false);
59 return true;
60 }
61 }
62 }

FIGURE 9.25

The LockFreeList class: The remove() method calls find() to locate pred and curr, and
atomically marks the node for removal.

9.9 Discussion 225

63 public boolean contains(T item) {
64 int key = item.hashCode();
65 Node curr = head;
66 while (curr.key < key) {
67 curr = curr.next.getReference();
68 }
69 return (curr.key == key && !curr.next.isMarked())
70 }

FIGURE 9.26

The LockFreeList class: The wait-free contains() method is the same as in the LazyList
class, except that it calls curr.next.getReference() to get the successor of curr and
curr.next.isMarked() to test whether curr is marked.

because the node will be removed by the next thread to traverse that region of the list.
If the compareAndSet() call fails, remove() starts over.

The contains() method of the LockFreeList algorithm, shown in Fig. 9.26, is the
same as that of the LazyList algorithm, except that it uses curr.next.getReference()
and curr.next.isMarked() to get the successor and mark bit of curr.

9.9 Discussion
We have seen a progression of list-based lock implementations in which the granu-
larity and frequency of locking was gradually reduced, eventually reaching a fully
nonblocking list. The final transition from the LazyList to the LockFreeList exposes
some of the design decisions that concurrent programmers face. As we will see, ap-
proaches such as optimistic and lazy synchronization will appear time and again when
designing more complex data structures.

On the one hand, the LockFreeList algorithm guarantees progress in the face of
arbitrary delays. However, there is a price for this strong progress guarantee:

• The need to support atomic modification of a reference and a Boolean mark has
an added performance cost.5

• As add() and remove() traverse the list, they engage in concurrent cleanup of re-
moved nodes, introducing the possibility of contention among threads, sometimes
forcing threads to restart traversals, even if there was no change near the node each
was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress in the face
of arbitrary delays: Its add() and remove() methods are blocking. However, unlike the

5 In the java.util.concurrent package, this cost is somewhat reduced by using a reference to an interme-
diate dummy node to signify that the marked bit is set.

226 CHAPTER 9 Linked lists: The role of locking

lock-free algorithm, it does not require each node to include an atomically markable
reference. It also does not require traversals to clean up logically removed nodes; they
progress down the list, ignoring marked nodes.

Which approach is preferable depends on the application. In the end, the balance
of factors such as the potential for arbitrary thread delays, the relative frequency of
calls to the add() and remove() methods, the overhead of implementing an atomically
markable reference, and so on, determines the choice of whether to lock, and if so, at
what granularity.

9.10 Chapter notes
Lock coupling was invented by Rudolf Bayer and Mario Schkolnick [17]. The
first designs of lock-free linked list algorithms are credited to John Valois [164].
The lock-free list implementation shown here is a variation on the lists of Maged
Michael [126], who based his work on earlier linked list algorithms by Tim Har-
ris [58]. This algorithm, referred to by many as the Harris–Michael algorithm, is the
one used in the java.util.concurrent package. The OptimisticList algorithm was
invented for this chapter, and the lazy algorithm is credited to Steve Heller, Maurice
Herlihy, Victor Luchangco, Mark Moir, Bill Scherer, and Nir Shavit [60].

9.11 Exercises
Exercise 9.1. Describe how to modify each of the linked list algorithms if object
hash codes are not guaranteed to be unique.

Exercise 9.2. Suppose every method call of CoarseList is linearized at the instant
the lock is acquired. Explain why we cannot use the abstraction map described in
Section 9.3. Give an alternative abstraction map that works for these linearization
points.

Exercise 9.3. Explain why the fine-grained locking algorithm is does not deadlock.

Exercise 9.4. Explain why the fine-grained list’s add() method is linearizable.

Exercise 9.5. Explain why the optimistic and lazy locking algorithms are not subject
to deadlock.

Exercise 9.6. Show an execution of the optimistic algorithm in which a thread is
forever attempting to delete a node.

Hint: Since we assume that all the individual node locks are starvation-free, the live-
lock is not on any individual lock, and a bad execution must repeatedly add and
remove nodes from the list.

Exercise 9.7. Provide the code for the contains() method missing from the fine-
grained algorithm. Explain why your implementation is correct.

9.11 Exercises 227

Exercise 9.8. Is the optimistic list implementation still correct if we switch the order
in which add() locks the pred and curr nodes?

Exercise 9.9. Show that in the optimistic list algorithm, if predA is not null, then
tail is reachable from predA, even if predA itself is not reachable.

Exercise 9.10. Show that in the optimistic algorithm, the add() method needs to lock
only pred.

Exercise 9.11. Design a coarse-grained optimistic locking linked list-based set al-
gorithm that does not traverse the list while holding the lock by augmenting the list
with a version number.

Exercise 9.12. Design a fine-grained optimistic locking algorithm that uses a version
number to avoid traversing the list while holding any lock if the list does not change
during the first traversal of the list. What are the advantages and disadvantages of this
list compared with the coarse-grained list from the previous exercise?

Exercise 9.13. For each of the following modifications of the sorted linked list
algorithms, explain why the respective algorithm is still linearizable, or give a coun-
terexample showing it is not.

a. In the optimistic algorithm, the contains() method locks two nodes before decid-
ing whether a key is present. Suppose, instead, it locks no nodes, returning true if
it observes the value, and false otherwise.

b. In the lazy algorithm, the contains() method executes without inspecting the
locks, but it inspects the mark bit; it returns false if a node is marked for removal.
Suppose, instead, the contains() does not inspect the mark bit of the nodes, and
returns true even for nodes that may be marked.

Exercise 9.14. Would the lazy algorithm still work if we marked a node as removed
simply by setting its next field to null? Why or why not? What about the lock-free
algorithm?

Exercise 9.15. In the lazy algorithm, can predA ever be unreachable? Justify your
answer.

Exercise 9.16. Your new employee claims that the lazy list’s validation method
(Fig. 9.16) can be simplified by dropping the check that pred.next is equal to curr.

After all, the code always sets pred to the old value of curr, and before pred.next
can be changed, the new value of curr must be marked, causing the validation to fail.
Explain the error in this reasoning.

Exercise 9.17. Can you modify the lazy algorithm’s remove() so it locks only one
node?

Exercise 9.18. In the lock-free algorithm, argue the benefits and drawbacks of having
the contains() method help in the cleanup of logically removed nodes.

228 CHAPTER 9 Linked lists: The role of locking

Exercise 9.19. In the lock-free algorithm, if an add() method call fails because pred
does not point to curr, but pred is not marked, do we need to traverse the list again
from head in order to attempt to complete the call?

Exercise 9.20. Would the contains() method of the lazy and lock-free algorithms
still be correct if logically removed entries were not guaranteed to be sorted?

Exercise 9.21. The add() method of the lock-free algorithm never finds a marked
node with the same key. Can one modify the algorithm so that it will simply insert
its new added object into the existing marked node with the same key if such a node
exists in the list, thus saving the need to insert a new node?

Exercise 9.22. Explain why the following cannot happen in the LockFreeList algo-
rithm: A node with item x is logically but not yet physically removed by some thread,
then the same item x is added into the list by another thread, and finally a contains()
call by a third thread traverses the list, finding the logically removed node, and re-
turning false, even though the linearization order of the remove() and add() implies
that x is in the set.

Exercise 9.23. Consider the following two modifications for the sorted linked list
algorithms:

a. In the optimistic algorithm, the contains() method locks two nodes before decid-
ing whether a key is present. Suppose, instead, it locks no nodes, returning true if
it observes the value, and false otherwise.

b. In the lazy algorithm, the contains() method executes without inspecting the
locks, but it inspects the mark bit; it returns false if a node is marked for removal.
Suppose, instead, the contains() does not inspect the mark bit of the nodes, and
returns true even for nodes that may be marked.

For both of the modifications, explain why the respective algorithm is still lineariz-
able, or give a counterexample showing it is not.

Exercise 9.24. In the lock-free algorithm, we attempt to logically remove the
node curr by calling curr.next.compareAndSet(succ,succ,false,true) (line 55 of
Fig. 9.25). For each of the following implementations in which this call is replaced
with a different method call, either explain why it is correct or describe an execution
in which it fails.

a. We instead call curr.next.compareAndSetMark(false,true), where
compareAndSetMark() is a fictional method that atomically performs a normal
compare-and-swap operation on just the mark bit.

b. We instead call curr.next.attemptMark(succ,true), where attemptMark() is a
real method of the AtomicMarkableReference<T> class that atomically changes
the mark bit to the specified value if the reference has the expected value, but is
allowed to spuriously fail (if there are concurrent modifications).

10
CHAPTER

Queues, memory
management, and the
ABA problem

10.1 Introduction
In the next few chapters, we look at a broad class of objects known as pools. A pool
is similar to the Set<> class studied in Chapter 9, with two main differences: A pool
does not necessarily provide a contains() method to test membership, and it allows
the same item to appear more than once. The Pool<> has put() and get() methods,
as shown in Fig. 10.1. Pools show up in many places in concurrent systems. For
example, in many applications, one or more producer threads produce items to be
consumed by one or more consumer threads. These items may be jobs to perform,
keystrokes to interpret, purchase orders to execute, or packets to decode. Sometimes
producers are bursty, suddenly and briefly producing items faster than consumers
can consume them. To allow consumers to keep up, we can place a buffer between
the producers and the consumers. Items produced faster than they can be consumed
accumulate in the buffer, from which they are consumed as quickly as possible. Often,
pools act as producer–consumer buffers.

Pools come in several varieties.

• A pool may be bounded or unbounded. A bounded pool holds a limited number of
items. This limit is called its capacity. By contrast, an unbounded pool can hold
any number of items. Bounded pools are useful when we want to keep producer
and consumer threads loosely synchronized, ensuring that producers do not get
too far ahead of consumers. Bounded pools may also be simpler to implement
than unbounded pools. On the other hand, unbounded pools are useful when it is
not easy to fix a limit on how far producers can outstrip consumers.

• Pool methods may be total or partial. Some partial methods are synchronous.

1 public interface Pool<T> {
2 void put(T item);
3 T get();
4 }

FIGURE 10.1

The Pool<T> interface.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00020-3
Copyright © 2021 Elsevier Inc. All rights reserved.

229

230 CHAPTER 10 Queues, memory management, and the ABA problem

• A method is partial if calls may wait for certain conditions to hold. For exam-
ple, a partial get() call that tries to remove an item from an empty pool blocks
until an item is available to return. If the pool is bounded, a partial put() call
that tries to add an item to a full pool blocks until an empty slot is available
to fill. A partial interface makes sense when the producer (or consumer) has
nothing better to do than to wait for the pool to become nonfull (or nonempty).

• A method is total if calls never need to wait for conditions to become true. For
example, a get() call that tries to remove an item from an empty pool, or a put()
call that tries to add an item to a full pool, may immediately return a failure
code or throw an exception. A total interface makes sense when the producer
(or consumer) thread has something better to do than wait for the method call
to take effect.

• A partial method is synchronous if it waits for another method to overlap its
call interval. For example, in a synchronous pool, a method call that adds an
item to the pool is blocked until that item is removed by another method call.
Symmetrically, a method call that removes an item from the pool is blocked
until another method call makes an item available to be removed. Synchronous
pools are used for communication in programming languages such as CSP and
Ada, in which threads rendezvous to exchange information.

• Pools provide different fairness guarantees. They may be FIFO (i.e., a queue) or
last-in-first-out (LIFO) (i.e., a stack), or have other, typically weaker, properties.
The importance of fairness when buffering using a pool is clear to anyone who has
ever called a bank or a technical support line, only to be placed in a pool of wait-
ing calls. The longer you wait, the more consolation you draw from the recorded
message asserting that calls are answered in the order they arrive. Perhaps.

10.2 Queues
In this chapter, we consider a kind of pool that provides first-in-first-out (FIFO) fair-
ness. A sequential Queue<T> is an ordered sequence of items (of type T). It provides
an enq(x) method that puts item x at one end of the queue, called the tail, and a
deq() method that removes and returns the item at the other end of the queue, called
the head. A concurrent queue is linearizable to a sequential queue. Queues are pools
where enq() implements put() and deq() implements get(). We use queue implemen-
tations to illustrate a number of important principles. In later chapters we consider
pools that provide other fairness guarantees.

10.3 A bounded partial queue
For simplicity, we assume it is illegal to add a null value to a queue. Of course, there
may be circumstances where it makes sense to add and remove null values; we leave
it as an exercise to adapt our algorithms to accommodate null values.

10.3 A bounded partial queue 231

1 public class BoundedQueue<T> {
2 ReentrantLock enqLock, deqLock;
3 Condition notEmptyCondition, notFullCondition;
4 AtomicInteger size;
5 volatile Node head, tail;
6 final int capacity;
7 public BoundedQueue(int _capacity) {
8 capacity = _capacity;
9 head = new Node(null);

10 tail = head;
11 size = new AtomicInteger(0);
12 enqLock = new ReentrantLock();
13 notFullCondition = enqLock.newCondition();
14 deqLock = new ReentrantLock();
15 notEmptyCondition = deqLock.newCondition();
16 }
17 ...
18 }

FIGURE 10.2

The BoundedQueue class: fields and constructor.

19 protected class Node {
20 public T value;
21 public volatile Node next;
22 public Node(T x) {
23 value = x;
24 next = null;
25 }
26 }

FIGURE 10.3

The BoundedQueue class: list node.

How much concurrency can we expect a bounded queue implementation with
multiple concurrent enqueuers and dequeuers to provide? Informally, the enq() and
deq() methods operate on opposite ends of the queue; as long as the queue is neither
full nor empty, an enq() call and a deq() call should be able to proceed without inter-
ference. For the same reason, concurrent enq() calls probably will interfere, and the
same holds for deq() calls. This informal reasoning may sound convincing, and it is
mostly correct, but realizing this level of concurrency is nontrivial.

Here, we implement a bounded queue as a linked list. (We could also have used
an array.) Fig. 10.2 shows the queue’s fields and constructor, and Fig. 10.3 shows
a queue node. Figs. 10.4 and 10.5 show the enq() and deq() methods. Like the lists
studied in Chapter 9, a queue node has value and next fields.

232 CHAPTER 10 Queues, memory management, and the ABA problem

27 public void enq(T x) {
28 boolean mustWakeDequeuers = false;
29 Node e = new Node(x);
30 enqLock.lock();
31 try {
32 while (size.get() == capacity)
33 notFullCondition.await();
34 tail.next = e;
35 tail = e;
36 if (size.getAndIncrement() == 0)
37 mustWakeDequeuers = true;
38 } finally {
39 enqLock.unlock();
40 }
41 if (mustWakeDequeuers) {
42 deqLock.lock();
43 try {
44 notEmptyCondition.signalAll();
45 } finally {
46 deqLock.unlock();
47 }
48 }
49 }

FIGURE 10.4

The BoundedQueue class: the enq() method.

As shown in Fig. 10.6, the queue has head and tail fields that respectively refer
to the first and last nodes in the list. The queue always contains at least one node, and
the first node is a sentinel. Like the sentinel nodes in Chapter 9, it marks a position
in the queue (in this case, the head of the queue), but its value is meaningless. Unlike
the list algorithms in Chapter 9, in which the same nodes always act as sentinels, the
queue repeatedly replaces the sentinel node. The abstraction map for this algorithm
carries a list of nodes to a queue with the items referred to by the nonsentinel nodes
in the list in the same order as they appear in the list. The item referred to by the first
node is not in the abstract queue. The abstract queue is empty if there is only one
node in the list (i.e., if head.next == null).

We use two locks, enqLock and deqLock, to ensure that at any time, at most one en-
queuer and at most one dequeuer can manipulate the queue object’s fields. Using two
locks instead of one allows an enqueuer to not lock out a dequeuer unnecessarily, and
vice versa. Each lock has an associated condition: notFullCondition for enqLock is
used to notify waiting enqueuers when the queue is no longer full; notEmptyCondition
for deqLock is used to notify waiting dequeuers when the queue is no longer empty.

To keep the queue bounded, we must prevent items from being enqueued when
the queue is at capacity. The size field is an AtomicInteger that tracks the number

10.3 A bounded partial queue 233

50 public T deq() {
51 T result;
52 boolean mustWakeEnqueuers = false;
53 deqLock.lock();
54 try {
55 while (head.next == null)
56 notEmptyCondition.await();
57 result = head.next.value;
58 head = head.next;
59 if (size.getAndDecrement() == capacity) {
60 mustWakeEnqueuers = true;
61 }
62 } finally {
63 deqLock.unlock();
64 }
65 if (mustWakeEnqueuers) {
66 enqLock.lock();
67 try {
68 notFullCondition.signalAll();
69 } finally {
70 enqLock.unlock();
71 }
72 }
73 return result;
74 }

FIGURE 10.5

The BoundedQueue class: the deq() method.

of objects currently in the queue. This field is decremented by deq() calls and incre-
mented by enq() calls. We use an AtomicInteger because this field is not protected by
either lock: An enqueuer and a dequeuer may access it concurrently.

To enqueue an item, a thread acquires the enqLock (line 30), and reads the size
field (line 32). If that field is equal to the capacity, the queue is full, and the enqueuer
must wait until a dequeuer makes room. The enqueuer waits on notFullCondition
(line 33), releasing the enqLock temporarily, and blocking until that condition is sig-
naled. Each time the thread awakens, it checks whether there is room; if not, it goes
back to sleep.

Once the enqueuer determines there is room, it can proceed to completion. No
other thread can fill the queue while the enqueue is in progress: All other enqueuers
are locked out, and concurrent dequeuers only increase the space available.

We must carefully check that this implementation does not suffer from the kind
of “lost-wakeup” bug described in Chapter 8. Care is needed because an enqueuer
encounters a full queue in two steps: First, it sees that size is the queue capacity,
and second, it waits on notFullCondition until there is room in the queue. When

234 CHAPTER 10 Queues, memory management, and the ABA problem

FIGURE 10.6

The enq() and deq() methods of the BoundedQueue with four slots. First a node is enqueued
into the queue by acquiring the enqLock. The enq() checks that the size is 3, which is less
than the bound. It then redirects the next field of the node referenced by the tail field (step
1), redirects tail to the new node (step 2), increments the size to 4, and releases the lock.
Since size is now 4, any further calls to enq() will cause the threads to block until the
notFullCondition is signaled by some deq(). Next, a node is dequeued from the queue by
some thread. The deq() acquires the deqLock, reads the new value b from the successor of
the node referenced by head (this node is the current sentinel), redirects head to this
successor node (step 3), decrements the size to 3, and releases the lock. Before
completing the deq(), because the size was 4 when it started, the thread acquires the
enqLock and signals any enqueuers waiting on notFullCondition that they can proceed.

a dequeuer changes the queue from full to nonfull, it acquires enqLock and signals
notFullCondition. Even though the size field is not protected by the enqLock, the
dequeuer acquires the enqLock before it signals the condition, so the dequeuer cannot
signal between the enqueuer’s two steps.

To dequeue an item, a thread acquires the deqLock and checks whether the queue
is empty. However, unlike in the enq() method, a dequeuer does not read the size
field. Instead, it checks whether head.next == null (line 55); if so, the abstract
queue is empty and the thread must wait until an item is enqueued. Like in the
enq() method, the dequeuer waits on notEmptyCondition, which temporarily releases
deqLock, and blocks until the condition is signaled. Each time the thread awakens, it
checks whether the queue is empty, and if so, goes back to sleep.

Once a dequeuer establishes that the queue is nonempty, the queue will remain
nonempty for the duration of the deq() call, because all other dequeuers have been
locked out. Because the queue is nonempty, it has a nonsentinel node; the dequeuer
accesses the first such node (i.e., the node referenced by the sentinel node’s next
field). It reads this node’s value field, and makes the node the new sentinel node by
setting the queue’s head to refer to it. The dequeuer then decrements size and releases
the deqLock. If the dequeuer found the former size was the queue capacity, then there
may be enqueuers waiting on notEmptyCondition, so the dequeuer acquires enqLock,
and signals all such threads to wake up.

10.4 An unbounded total queue 235

Note that the abstract queue’s last item is not always the one in the node refer-
enced by tail. An item is logically added to the queue as soon as the last node’s next
field is redirected to the new node, even if the enqueuer has not yet updated tail (i.e.,
an enq() call linearizes to line 34). For example, suppose a thread is in the process of
inserting a new node: It has acquired the enqLock and redirected the last node to point
to the new node, but has not yet redirected the tail field. A concurrent dequeuing
thread could acquire the deqLock, read and return the new node’s value, redirect the
head to the new node, and decrement size, all before the enqueuer redirects tail to
the newly inserted node. In this example, size would be negative temporarily because
the dequeuer decrements it before the enqueuer increments it. The enqueuer need not
wake any waiting dequeuers in this case, because the item it enqueued has already
been dequeued.

One drawback of this implementation is that concurrent enq() and deq() calls in-
terfere with each other, but not through locks. All method calls apply getAndIncrement()

or getAndDecrement() calls to the size field. These methods are more expensive than
ordinary reads and writes, and they could cause a sequential bottleneck.

We can reduce such interactions by splitting this field into two: enqSideSize is an
integer field incremented by enq(), and deqSideSize is an integer field decremented
by deq(); the actual size of the queue is the sum of these two counters (deqSideSize
is always 0 or negative). A thread calling enq() tests enqSideSize, and as long as it is
less than the capacity, it proceeds. When the field reaches capacity, the thread locks
deqLock, adds deqSideSize to enqSideSize, and resets deqSideSize to 0. Instead of
synchronizing on every method call, this technique synchronizes sporadically when
the enqueuer’s size estimate becomes too large.

10.4 An unbounded total queue
We now describe an implementation of an unbounded queue. The enq() method
always enqueues its item, and deq() throws EmptyException if there is no item to
dequeue. The representation is the same as the bounded queue, except there is no
need to count the number of items in the queue, or to provide conditions on which
to wait. As shown in Figs. 10.7 and 10.8, this algorithm is simpler than the bounded
algorithm.

This queue cannot deadlock, because each method acquires only one lock, either
enqLock or deqLock. A sentinel node alone in the queue will never be deleted, so each
enq() call will succeed as soon as it acquires the lock. Of course, a deq() method
may fail if the queue is empty (i.e., if head.next is null). As in the bounded queue
implementation, an item is actually enqueued when the enq() call sets the last node’s
next field to the new node, even before enq() resets tail to refer to the new node.
After that instant, the new item is reachable along a chain of the next references. As
usual, the queue’s actual head and tail are not necessarily the items referenced by
head and tail. Instead, the actual head is the item reference by the successor of head,

236 CHAPTER 10 Queues, memory management, and the ABA problem

1 public void enq(T x) {
2 Node e = new Node(x);
3 enqLock.lock();
4 try {
5 tail.next = e;
6 tail = e;
7 } finally {
8 enqLock.unlock();
9 }

10 }

FIGURE 10.7

The UnboundedQueue<T> class: the enq() method.

11 public T deq() throws EmptyException {
12 T result;
13 deqLock.lock();
14 try {
15 if (head.next == null) {
16 throw new EmptyException();
17 }
18 result = head.next.value;
19 head = head.next;
20 } finally {
21 deqLock.unlock();
22 }
23 return result;
24 }

FIGURE 10.8

The UnboundedQueue<T> class: the deq() method.

and the actual tail is the last item reachable from the head. Both the enq() and deq()
methods are total as they do not wait for the queue to become empty or full.

10.5 A lock-free unbounded queue
We now describe a lock-free unbounded queue implementation. Figs. 10.9–10.12
show the LockFreeQueue<T> class, a natural extension of the unbounded total queue
of Section 10.4. It prevents method calls from starving by having the quicker threads
help the slower threads.

As before, we represent the queue as a list of nodes, in which the first node is a
sentinel whose value is meaningless. However, as shown in Figs. 10.9 and 10.10,

10.5 A lock-free unbounded queue 237

1 public class LockFreeQueue<T> {
2 AtomicReference<Node> head, tail;
3 public LockFreeQueue() {
4 Node node = new Node(null);
5 head = new AtomicReference(node);
6 tail = new AtomicReference(node);
7 }
8 ...
9 }

FIGURE 10.9

The LockFreeQueue<> class: fields and constructor.

10 public class Node {
11 public T value;
12 public AtomicReference<Node> next;
13 public Node(T value) {
14 this.value = value;
15 next = new AtomicReference<Node>(null);
16 }
17 }

FIGURE 10.10

The LockFreeQueue<T> class: list node.

18 public void enq(T value) {
19 Node node = new Node(value);
20 while (true) {
21 Node last = tail.get();
22 Node next = last.next.get();
23 if (last == tail.get()) {
24 if (next == null) {
25 if (last.next.compareAndSet(next, node)) {
26 tail.compareAndSet(last, node);
27 return;
28 }
29 } else {
30 tail.compareAndSet(last, next);
31 }
32 }
33 }
34 }

FIGURE 10.11

The LockFreeQueue<T> class: the enq() method.

238 CHAPTER 10 Queues, memory management, and the ABA problem

35 public T deq() throws EmptyException {
36 while (true) {
37 Node first = head.get();
38 Node last = tail.get();
39 Node next = first.next.get();
40 if (first == head.get()) {
41 if (first == last) {
42 if (next == null) {
43 throw new EmptyException();
44 }
45 tail.compareAndSet(last, next);
46 } else {
47 T value = next.value;
48 if (head.compareAndSet(first, next))
49 return value;
50 }
51 }
52 }
53 }

FIGURE 10.12

The LockFreeQueue<T> class: the deq() method.

head and tail fields are AtomicReference<Node> fields that refer to the first node
and the last node in the queue, respectively, and each node’s next field is an
AtomicReference<Node> that refers to the next node in the list. The queue constructor
creates a new sentinel node and sets both head and tail to refer to it.

The enq() method (Fig. 10.11) creates a new node (line 19), locates the last node
in the queue (lines 21–22), and then updates the list to append the new node. This
method is lazy: It does the update in two distinct steps, illustrated in Fig. 10.13:

1. it calls compareAndSet() to append the new node (line 25), and then
2. it calls compareAndSet() to change the queue’s tail field from the prior last node

to the new last node (line 26).

Because these two steps are not executed atomically, every other method call must be
prepared to encounter a half-finished enq() call, and to finish the job. This is a real-
world example of the “helping” technique we first saw in the universal construction
of Chapter 6.

We now review all the steps in detail. An enqueuer thread A creates a new node
with the new value to be enqueued (line 19), and finds the node that appears to be
last by reading tail (line 21–23). To verify that the node found is indeed last, A

checks that it has no successor (line 24). If so, A attempts to append the new node
by calling compareAndSet() (line 25). (A compareAndSet() is required because other
threads may be trying the same thing.) If the compareAndSet() succeeds, A uses a sec-

10.5 A lock-free unbounded queue 239

FIGURE 10.13

The enq() and deq() methods of the LockFreeQueue. The enq() method is lazy: a node is
inserted into the queue in two steps. First, a compareAndSet() call changes the next field of
the node referenced by the queue’s tail from null to the new node. Then a
compareAndSet() call advances tail itself to refer to the new node. An item is removed from
the queue by checking that the sentinel has a successor, and then calling compareAndSet()
to redirect head from the current sentinel to its successor, making the latter the new
sentinel. The item removed is the one referred to by the new sentinel. Both enq() and deq()
methods help complete unfinished tail updates.

ond compareAndSet() to advance tail to the new node (line 26). Even if this second
compareAndSet() call fails, A can still return successfully because, as we will see, this
compareAndSet() fails only if some other thread “helped” A by advancing tail.

If the tail node has a successor (line 29), then some other enqueuer must have
appended its node but not updated tail before A read it. In this case, A tries to
“help” that other thread by advancing tail to refer directly to the successor (line 30)
before trying again to insert its own node.

This enq() is total, meaning that it never waits for a dequeuer. A successful
enq() is linearized at the instant where the executing thread (or a concurrent help-
ing thread) successfully calls compareAndSet() to redirect the tail field to the new
node at line 30.

The deq() method is similar to its counterpart from the UnboundedQueue. If the
queue is nonempty, the dequeuer calls compareAndSet() to change head from the sen-
tinel node to its successor, making the successor the new sentinel node. The deq()
method makes sure that the queue is not empty in the same way as before: by check-
ing that the next field of the head node is not null.

There is, however, a subtle issue in the lock-free case, depicted in Fig. 10.14:
Before advancing head, a dequeuer must make sure that tail is not left referring to
the sentinel node that is about to be removed from the queue. To avoid this problem
we add a test: If head equals tail (line 41) and the (sentinel) node they refer to has
a nonnull next field (line 42), then the tail is deemed to be lagging behind. In this
case, as in the enq() method, the dequeuer attempts to help make tail consistent by
swinging it to the sentinel node’s successor (line 45), and only then updates head
to remove the sentinel (line 48). As in the partial queue, the value is read from the
successor of the sentinel node (line 47). If this method returns a value, then its lin-

240 CHAPTER 10 Queues, memory management, and the ABA problem

FIGURE 10.14

Why dequeuers must help advance tail in line 45 of Fig. 10.12. Consider the scenario in
which a thread enqueuing node b has redirected a’s next field to b, but has yet to redirect
tail from a to b. If another thread starts dequeuing, it will read b’s value and redirect head
from a to b, effectively removing node a while tail still refers to it. To avoid this problem,
the dequeuing thread must help advance tail from a to b before redirecting head.

earization point occurs when it successfully appends a node to the list (i.e., when the
compareAndSet() at line 48 succeeds); otherwise it is linearized when it saw that the
sentinel node has no successor (i.e., when it got a null value at line 39).

It is easy to check that the resulting queue is lock-free. Every method call first
checks for an incomplete enq() call, and tries to complete it. In the worst case, all
threads are trying to advance the queue’s tail field, and one of them must succeed.
A thread fails to enqueue or dequeue a node only if another thread’s method call suc-
ceeds in changing the reference, so some method call always completes. As it turns
out, being lock-free substantially enhances the performance of queue implementa-
tions, and lock-free algorithms often outperform the most efficient blocking ones.

10.6 Memory reclamation and the ABA problem
Our queue implementations so far rely on the Java garbage collector to recycle nodes
after they have been dequeued. What happens if we choose to do our own memory
management? There are several reasons why we might want to do this. Languages
such as C or C++ do not provide garbage collection. Even if garbage collection is
available, it is often more efficient for a class to do its own memory management,
particularly if it creates and releases many small objects. Finally, if the garbage col-
lection process is not lock-free, we might want to supply our own lock-free memory
reclamation.

A natural way to recycle nodes in a lock-free manner is to have each thread main-
tain its own private (i.e., thread-local) free list of unused queue entries.

ThreadLocal<Node> freeList = new ThreadLocal<Node>() {
protected Node initialValue() { return null; };

};

10.6 Memory reclamation and the ABA problem 241

FIGURE 10.15

An ABA scenario: Assume that we use local pools of recycled nodes in our lock-free queue
algorithm. In part (a), the dequeuer thread A observes that the sentinel node is a, and next
node is b. (Step 1) It then prepares to update head by applying a compareAndSet() with old
value a and new value b. (Step 2) Suppose, however, that before it takes another step, other
threads dequeue b, then its successor, placing both a and b in the free pool. In part (b),
(Step 3) node a is reused, and eventually reappears as the sentinel node in the queue.
(Step 4) Thread A now wakes up, calls compareAndSet(), and succeeds in setting head to b,
since the old value of head is indeed a. Now, head is incorrectly set to a recycled node.

When an enqueuing thread needs a new node, it tries to remove one from its thread-
local free list. If the free list is empty, it simply allocates a node using the new operator.
When a dequeuing thread is ready to retire a node, it links it back onto the thread-local
list. Because the list is thread-local, there is no need for expensive synchronization.
This design works well as long as each thread performs roughly the same number of
enqueues and dequeues. If there is an imbalance, then there may be a need for more
complex techniques, such as periodically stealing nodes from other threads.

Surprisingly, perhaps, the lock-free queue will not work if nodes are recycled
in the most straightforward way. Consider the scenario depicted in Fig. 10.15. In

242 CHAPTER 10 Queues, memory management, and the ABA problem

part (a), the dequeuing thread A observes the sentinel node is a, and the next node is
b. It then prepares to update head by calling compareAndSet() with old value a and
new value b. Before it takes another step, other threads dequeue b and its successor,
placing both a and b in the free pool. Node a is recycled, and eventually reappears
as the sentinel node in the queue, as depicted in part (b). The thread now wakes up,
calls compareAndSet(), and succeeds, since the old value of the head is indeed a.
Unfortunately, it has redirected head to a recycled node!

This phenomenon is called the ABA problem. It shows up often, especially in dy-
namic memory algorithms that use conditional synchronization operations such as
compareAndSet(). Typically, a reference about to be modified by a compareAndSet()
changes from a to b and back to a again. As a result, the compareAndSet() call suc-
ceeds even though its effect on the data structure has changed, and no longer has the
desired effect.

One straightforward way to fix this problem is to tag each atomic reference
with a unique stamp. An AtomicStampedReference<T> object, described in detail in
Pragma 10.6.1, encapsulates both a reference to an object of Type T and an integer
stamp. These fields can be atomically updated either together or individually.

PRAGMA 10.6.1

The AtomicStampedReference<T> class encapsulates both a reference to an object
of Type T and an integer stamp. It generalizes the AtomicMarkableReference<T>
class (Pragma 9.8.1), replacing the Boolean mark with an integer stamp.

We most commonly use this stamp as a version number to avoid the ABA
problem, incrementing the value of the stamp each time we modify the object.
Sometimes, as in the LockFreeExchanger<> class of Chapter 11, we use the stamp
to hold one of a finite set of states.

The stamp and reference fields can be updated atomically, either together or
individually. For example, the compareAndSet() method tests expected reference
and stamp values, and if both tests succeed, replaces them with updated reference
and stamp values. The get() method has an unusual interface: It returns the object’s
reference value and stores the stamp value in an integer array argument. Fig. 10.16
illustrates the signatures for these methods.

In a language like C or C++, one could provide this functionality efficiently in
a 64-bit architecture by “stealing” bits from pointers. A 32-bit architecture would
probably require a level of indirection.

Fig. 10.17 shows the deq() method using the AtomicStampedReference<Node> to
avoid the ABA problem. Each time through the loop, it reads both the reference and
stamp values for the first, next, and last nodes (lines 6–8). It uses compareAndSet()
to compare both the reference and the stamp (line 18). It increments the stamp each
time it uses compareAndSet() to update a reference (lines 15 and 18).1

1 For simplicity, we ignore the (remote) possibility that the stamp could wrap around and cause an error.

10.6 Memory reclamation and the ABA problem 243

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 int expectedStamp,
4 int newStamp);
5 public T get(int[] stampHolder);
6 public T getReference();
7 public int getStamp();
8 public void set(T newReference, int newStamp);

FIGURE 10.16

The AtomicStampedReference<T> class: the compareAndSet() and get() methods. The
compareAndSet() method tests and updates both the stamp and reference fields; the get()
method returns the encapsulated reference and stores the stamp at position 0 in the
argument array; the getReference() and getStamp() methods return the reference and
stamp, respectively; and the put() method updates the encapsulated reference and the
stamp.

1 public T deq() throws EmptyException {
2 int[] lastStamp = new int[1];
3 int[] firstStamp = new int[1];
4 int[] nextStamp = new int[1];
5 while (true) {
6 Node first = head.get(firstStamp);
7 Node last = tail.get(lastStamp);
8 Node next = first.next.get(nextStamp);
9 if (head.getStamp() == firstStamp[0]) {

10 if (first == last) {
11 if (next == null) {
12 throw new EmptyException();
13 }
14 tail.compareAndSet(last, next,
15 lastStamp[0], lastStamp[0]+1);
16 } else {
17 T value = next.value;
18 if (head.compareAndSet(first, next, firstStamp[0],

firstStamp[0]+1)) {
19 free(first);
20 return value;
21 }
22 }
23 }
24 }
25 }

FIGURE 10.17

The LockFreeQueueRecycle<T> class: The deq() method uses stamps to avoid ABA.

244 CHAPTER 10 Queues, memory management, and the ABA problem

The ABA problem can occur in many synchronization scenarios, not just those
involving conditional synchronization. For example, it can occur when using only
loads and stores. Conditional synchronization operations such as load-linked/store-
conditional, available on some architectures (see Appendix B), avoid the ABA prob-
lem by testing not whether a value is the same at two points in time, but whether the
value has ever changed between those points.

10.6.1 A naïve synchronous queue
We now turn our attention to an even tighter kind of synchronization. One or more
producer threads produce items to be removed, in FIFO order, by one or more
consumer threads. Here, however, producers and consumers rendezvous with one an-
other: A producer that puts an item in the queue blocks until that item is removed by
a consumer, and vice versa. Such rendezvous synchronization is built into languages
such as CSP and Ada.

Fig. 10.18 shows he SynchronousQueue<T> class, a straightforward monitor-based
synchronous queue implementation. It has the following fields: item is the first item
waiting to be dequeued, enqueuing is a Boolean value used by enqueuers to synchro-
nize among themselves, lock is the lock used for mutual exclusion, and condition is
used to block partial methods. If the enq() method finds enqueuing to be true (line 10),
then another enqueuer has supplied an item and is waiting to rendezvous with a de-
queuer, so the enqueuer repeatedly releases the lock, sleeps, and, when it awakens,
checks whether enqueuing has become false (line 11). When this condition is satis-
fied, the enqueuer sets enqueuing to true, which locks out other enqueuers until the
current rendezvous is complete, and sets item to refer to the new item (lines 12–13).
It then notifies any waiting threads (line 14), and waits until item becomes null
(lines 15–16). When the wait is over, the rendezvous has occurred, so the enqueuer
sets enqueuing to false, notifies any waiting threads, and returns (lines 17 and 19).

The deq() method simply waits until item is not null (lines 26–27), records the
item, sets the item field to null, and notifies any waiting threads before returning the
item (lines 28–31).

Although the design of the queue is relatively simple, it incurs a high synchroniza-
tion cost. Whenever one thread might wake up another, both enqueuers and dequeuers
wake up all waiting threads, leading to a number of wakeups quadratic in the number
of waiting threads. Although it is possible to use multiple condition objects to reduce
the number of wakeups, it is still necessary to block on every call, which is expensive.

10.7 Dual data structures
To reduce the synchronization overheads of the synchronous queue, we consider an
alternative synchronous queue implementation that treats enq() and deq() methods
symmetrically, splitting a deq() method call that finds the queue empty into two steps.
In the first step, the dequeuer puts a reservation object in the queue, indicating that

10.7 Dual data structures 245

1 public class SynchronousQueue<T> {
2 T item = null;
3 boolean enqueuing;
4 Lock lock;
5 Condition condition;
6 ...
7 public void enq(T value) {
8 lock.lock();
9 try {

10 while (enqueuing)
11 condition.await();
12 enqueuing = true;
13 item = value;
14 condition.signalAll();
15 while (item != null)
16 condition.await();
17 enqueuing = false;
18 condition.signalAll();
19 } finally {
20 lock.unlock();
21 }
22 }
23 public T deq() {
24 lock.lock();
25 try {
26 while (item == null)
27 condition.await();
28 T t = item;
29 item = null;
30 condition.signalAll();
31 return t;
32 } finally {
33 lock.unlock();
34 }
35 }
36 }

FIGURE 10.18

The SynchronousQueue<T> class.

the dequeuer is waiting for an enqueuer with which to rendezvous. The reservation
object contains an empty slot, on which the dequeuer spins until the slot is occupied;
an enqueuer fulfills the reservation by depositing an item into that slot. Similarly,
when an enqueuer adds an item to the queue, if there is no reservation to fulfill, it
spins on the item until it is removed by a dequeuer. The queue contains either only

246 CHAPTER 10 Queues, memory management, and the ABA problem

1 private enum NodeType {ITEM, RESERVATION};
2 private class Node {
3 volatile NodeType type;
4 volatile AtomicReference<T> item;
5 volatile AtomicReference<Node> next;
6 Node(T myItem, NodeType myType) {
7 item = new AtomicReference<T>(myItem);
8 next = new AtomicReference<Node>(null);
9 type = myType;

10 }
11 }

FIGURE 10.19

The SynchronousDualQueue<T> class: queue node.

items waiting to be dequeued or only reservations waiting to be fulfilled, or it is
empty; it never contains items and reservations at the same time.

This structure is called a dual data structure, because it can contain both items
and reservations. It has a number of nice properties. First, waiting threads can spin
on a locally cached flag, which we have seen is essential for scalability. Second, it
ensures fairness in a natural way. Reservations are queued in the order they arrive,
ensuring that requests are fulfilled in the same order. Note that this data structure is
linearizable, since each partial method call can be ordered when it is fulfilled.

The queue is implemented as a list of nodes, where a node represents either an
item waiting to be dequeued, or a reservation waiting to be fulfilled (Fig. 10.19).
A node’s type field indicates which. At any time, all nodes in the queue have the
same type: Either the queue consists entirely of items waiting to be dequeued, or
entirely of reservations waiting to be fulfilled.

When an item is enqueued, the node’s item field holds the item, which is reset
to null when that item is dequeued. When a reservation is enqueued, the node’s item
field is null, and is reset to an item when fulfilled by an enqueuer.

Fig. 10.20 shows the SynchronousDualQueue’s constructor and enq() method. (The
deq() method is symmetric.) As in earlier queues we have considered, the head field
always refers to a sentinel node that serves as a placeholder, and whose actual value
(and type) is unimportant. The queue is empty when head and tail refer to the same
node (i.e., the sentinel node). The constructor creates a sentinel node with an arbitrary
value, referred to by both head and tail.

The enq() method first checks whether the queue is empty or contains enqueued
items waiting to be dequeued (line 21). If so, then just as in the lock-free queue, it
reads the queue’s tail field (line 22), and checks that the values read are consistent
(line 23). If the tail field does not refer to the last node in the queue, then the method
advances the tail field and starts over (lines 24–25). Otherwise, the enq() method
tries to append the new node to the end of the queue by resetting the tail node’s next
field to refer to the new node (line 26). If it succeeds, it tries to advance the tail to the

10.7 Dual data structures 247

12 public SynchronousDualQueue() {
13 Node sentinel = new Node(null, NodeType.ITEM);
14 head = new AtomicReference<Node>(sentinel);
15 tail = new AtomicReference<Node>(sentinel);
16 }
17 public void enq(T e) {
18 Node offer = new Node(e, NodeType.ITEM);
19 while (true) {
20 Node t = tail.get(), h = head.get();
21 if (h == t || t.type == NodeType.ITEM) {
22 Node n = t.next.get();
23 if (t == tail.get()) {
24 if (n != null) {
25 tail.compareAndSet(t, n);
26 } else if (t.next.compareAndSet(n, offer)) {
27 tail.compareAndSet(t, offer);
28 while (offer.item.get() == e);
29 h = head.get();
30 if (offer == h.next.get())
31 head.compareAndSet(h, offer);
32 return;
33 }
34 }
35 } else {
36 Node n = h.next.get();
37 if (t != tail.get() || h != head.get() || n == null) {
38 continue;
39 }
40 boolean success = n.item.compareAndSet(null, e);
41 head.compareAndSet(h, n);
42 if (success)
43 return;
44 }
45 }
46 }

FIGURE 10.20

The SynchronousDualQueue<T> class: enq() method and constructor.

newly appended node (line 27), and then spins, waiting for a dequeuer to announce
that it has dequeued the item by setting the node’s item field to null. Once the item
is dequeued, the method tries to clean up by making its node the new sentinel. This
last step serves only to enhance performance, because the implementation remains
correct, whether or not the method advances the head reference.

If, however, the enq() method discovers that the queue contains dequeuers’ reser-
vations waiting to be fulfilled, then it tries to find a reservation to fulfill. Since the

248 CHAPTER 10 Queues, memory management, and the ABA problem

queue’s head node is a sentinel with no meaningful value, enq() reads the head’s
successor (line 36), checks that the values it has read are consistent (lines 37–39),
and tries to switch that node’s item field from null to the item being enqueued.
Whether or not this step succeeds, the method tries to advance head (line 41). If
the compareAndSet() call succeeds (line 40), the method returns; otherwise it retries.

10.8 Chapter notes
The partial queue employs a mixture of techniques adapted from Doug Lea [110] and
from an algorithm by Maged Michael and Michael Scott [125]. The lock-free queue
is a slightly simplified version of a queue algorithm by Maged Michael and Michael
Scott [125]. The synchronous queue implementations are adapted from algorithms
by Bill Scherer, Doug Lea, and Michael Scott [167].

10.9 Exercises
Exercise 10.1. Change the SynchronousDualQueue<T> class to work correctly with
null items.

Exercise 10.2. Consider the queue presented in Fig. 10.21, a variant of the simple
lock-free queue for a single enqueuer and a single dequeuer described in Chapter 3.
This queue is blocking; that is, removing an item from an empty queue, or adding
an item to a full one, causes the threads to spin. Surprisingly, this queue requires
only loads and stores and not a more powerful read–modify–write synchronization
operation.

Does the queue implementation, however, require the use of a memory barrier? If so,
where in the code is such a barrier needed and why? If not, explain why not.

Exercise 10.3. Design a bounded lock-based queue implementation using an array
instead of a linked list.

1. Allow parallelism by using two separate locks for head and tail.
2. Try to transform your algorithm to be lock-free. Where do you run into difficulty?

Exercise 10.4. In the deq() method of the unbounded lock-based queue (Fig. 10.8),
is it necessary to hold the lock when checking that the queue is not empty? Explain.

Exercise 10.5. In Dante’s Inferno, he describes a visit to Hell. In a recently discov-
ered chapter, he encounters five people sitting at a table with a pot of stew in the
middle. Although each one holds a spoon that reaches the pot, each spoon’s handle
is much longer than each person’s arm, so no one can feed him- or herself. They are
famished and desperate.

Dante then suggests: “Why do you not feed one another?”
The rest of the chapter is lost.

10.9 Exercises 249

1 class TwoThreadLockFreeQueue<T> {
2 int head = 0, tail = 0;
3 T[] items;
4 public TwoThreadLockFreeQueue(int capacity) {
5 head = 0; tail = 0;
6 items = (T[]) new Object[capacity];
7 }
8 public void enq(T x) {
9 while (tail - head == items.length) {};

10 items[tail % items.length] = x;
11 tail++;
12 }
13 public Object deq() {
14 while (tail - head == 0) {};
15 Object x = items[head % items.length];
16 head++;
17 return x;
18 }
19 }

FIGURE 10.21

A lock-free FIFO queue with blocking semantics for a single enqueuer and single dequeuer.
The queue is implemented in an array. Initially the head and tail fields are equal and the
queue is empty. If the head and tail differ by capacity, then the queue is full. The enq()
method reads the head field, and if the queue is full, it repeatedly checks the head until the
queue is no longer full. It then stores the object in the array, and increments the tail field.
The deq() method works in a symmetric way.

1. Write an algorithm to allow these unfortunates to feed one another. Two or more
people may not feed the same person at the same time. Your algorithm must be,
well, starvation-free.

2. Discuss the advantages and disadvantages of your algorithm. Is it centralized or
decentralized, high or low in contention, and deterministic or randomized?

Exercise 10.6. Consider the linearization points of the enq() and deq() methods of
the lock-free queue (Figs.10.11 and 10.12).

1. Can we choose the point at which the returned value is read from a node as the
linearization point of a successful deq()? Explain.

2. Can we choose the linearization point of the enq() method to be the point at which
the tail field is updated, possibly by other threads? Explain.

Exercise 10.7. Consider the unbounded queue implementation shown in Fig. 10.22.
This queue is blocking, meaning that the deq() method does not return until it has
found an item to dequeue.

The queue has two fields: items is a very large array, and tail is the index of the
next unused element in the array.

250 CHAPTER 10 Queues, memory management, and the ABA problem

1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 ...
5 public void enq(T x) {
6 int i = tail.getAndIncrement();
7 items[i].set(x);
8 }
9 public T deq() {

10 while (true) {
11 int range = tail.get();
12 for (int i = 0; i < range; i++) {
13 T value = items[i].getAndSet(null);
14 if (value != null) {
15 return value;
16 }
17 }
18 }
19 }
20 }

FIGURE 10.22

Queue used in Exercise 10.7.

1. Are the enq() and deq() methods wait-free? If not, are they lock-free? Explain.
2. Identify linearization points for the enq() and deq() methods. (Careful! They may

be execution-dependent.)

11
CHAPTER

Stacks and elimination

11.1 Introduction
The Stack<T> class is a collection of items (of type T) that provides push() and pop()
methods satisfying the last-in-first-out (LIFO) property: The last item pushed is the
first popped. This chapter considers how to implement concurrent stacks. At first
glance, stacks seem to provide little opportunity for concurrency, because push() and
pop() calls seem to need to synchronize at the top of the stack.

Surprisingly, perhaps, stacks are not inherently sequential. In this chapter, we
show how to implement concurrent stacks that can achieve a high degree of paral-
lelism. As a first step, we consider how to build a lock-free stack in which pushes and
pops synchronize at a single location.

11.2 An unbounded lock-free stack
Fig. 11.1 shows a concurrent LockFreeStack class. The lock-free stack is a linked
list, where the top field points to the first node (or null if the stack is empty.) For

FIGURE 11.1

A lock-free stack. In part (a), a thread pushes value a onto the stack by applying a
compareAndSet() to the top field. In part (b), a thread pops value a from the stack by
applying a compareAndSet() to the top field.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00021-5
Copyright © 2021 Elsevier Inc. All rights reserved.

251

252 CHAPTER 11 Stacks and elimination

1 public class LockFreeStack<T> {
2 AtomicReference<Node> top = new AtomicReference<Node>(null);
3 static final int MIN_DELAY = ...;
4 static final int MAX_DELAY = ...;
5 Backoff backoff = new Backoff(MIN_DELAY, MAX_DELAY);
6

7 protected boolean tryPush(Node node){
8 Node oldTop = top.get();
9 node.next = oldTop;

10 return(top.compareAndSet(oldTop, node));
11 }
12 public void push(T value) {
13 Node node = new Node(value);
14 while (true) {
15 if (tryPush(node)) {
16 return;
17 } else {
18 backoff.backoff();
19 }
20 }
21 }
22 ...
23 }

FIGURE 11.2

The LockFreeStack<T> class: In the push() method, threads alternate between trying to alter
the top reference by calling tryPush(), and backing off using the Backoff class from Fig. 7.5.

24 public class Node {
25 public T value;
26 public Node next;
27 public Node(T value) {
28 value = value;
29 next = null;
30 }
31 }

FIGURE 11.3

Lock-free stack list node.

simplicity, we usually assume it is illegal to add a null value to a stack. Code for this
class appears in Figs. 11.2–11.4.

The push() method creates a new node (line 13), and then calls tryPush() to make
the new node’s next field point to the current top-of-stack and then tries to swing the
top reference from the current top-of-stack to the new node. If tryPush() succeeds,

11.2 An unbounded lock-free stack 253

32 protected Node tryPop() throws EmptyException {
33 Node oldTop = top.get();
34 if (oldTop == null) {
35 throw new EmptyException();
36 }
37 Node newTop = oldTop.next;
38 if (top.compareAndSet(oldTop, newTop)) {
39 return oldTop;
40 } else {
41 return null;
42 }
43 }
44 public T pop() throws EmptyException {
45 while (true) {
46 Node returnNode = tryPop();
47 if (returnNode != null) {
48 return returnNode.value;
49 } else {
50 backoff.backoff();
51 }
52 }
53 }

FIGURE 11.4

The LockFreeStack<T> class: The pop() method alternates between trying to change the top
field and backing off.

push() returns; if not, the tryPush() attempt is repeated after backing off. The pop()
method calls tryPop(), which uses compareAndSet() to try to remove the first node
from the stack. If it succeeds, it returns the node; otherwise it returns null. (It throws
an exception if the stack is empty.) The tryPop() method is called until it succeeds (or
throws an exception), at which point pop() returns the value from the removed node.

As we have seen in Chapter 7, one can significantly reduce contention at the top
field using exponential back-off (see Fig. 7.5). Accordingly, both the push() and pop()
methods back off after an unsuccessful call to tryPush() or tryPop().

This implementation is lock-free because a thread fails to complete a push() or
pop() method call only if there were infinitely many successful calls that modified the
top of the stack. The linearization point of both the push() and the pop() methods is
the successful compareAndSet(), or the seeing top equal to null (lines 33 and 34), in
the case of a pop() on an empty stack. Note that the compareAndSet() call by pop()
does not have an ABA problem (see Chapter 10) because the Java garbage collector
ensures that a node cannot be reused by any thread, as long as that node is accessible
to another thread. Designing a lock-free stack that avoids the ABA problem without
a garbage collector is left as an exercise.

254 CHAPTER 11 Stacks and elimination

FIGURE 11.5

The EliminationBackoffStack<T> class. Each thread selects a random location in the array.
If thread A’s pop() and B’s push() calls arrive at the same location at about the same time,
then they exchange values without accessing the shared LockFreeStack. Thread C that does
not meet another thread eventually pops the shared LockFreeStack.

11.3 Elimination
The LockFreeStack implementation scales poorly, not so much because the stack’s
top field is a source of contention, but primarily because it is a sequential bottle-
neck: Method calls can proceed only one after the other, ordered by compareAndSet()
calls successfully applied to the stack’s top field. Although exponential back-off can
reduce contention, it does nothing to alleviate the sequential bottleneck.

To make the stack parallel, we exploit this simple observation: A push() immedi-
ately followed by a pop() cancel each other out, and the stack’s state does not change.
It is as if both operations never happened. If one could somehow cause concurrent
pairs of pushes and pops to cancel, then threads calling push() could exchange values
with threads calling pop(), without ever modifying the stack itself. These two calls
would eliminate one another.

Fig. 11.5 depicts threads eliminating one another through an EliminationArray,
in which threads pick random array entries to try to meet complementary calls. Pairs
of complementary push() and pop() calls exchange values and return. A thread whose
call cannot be eliminated, either because it has failed to find a partner, or found a part-
ner with the wrong kind of method call (such as a push() meeting a push()), can either
try again to find a partner at a new location, or access the shared LockFreeStack. The
combined data structure, array and shared stack, is linearizable because the shared
stack is linearizable, and the eliminated calls can be ordered as if they happened at
the point at which they exchanged values.

We can use the EliminationArray as a back-off scheme on a shared LockFreeStack.
Each thread first accesses the LockFreeStack, and if it fails to complete its call (that
is, the compareAndSet() attempt fails), it attempts to eliminate its call using the array
instead of simply backing off. If it fails to eliminate itself, it calls the LockFreeStack
again, and so on. We call this structure an EliminationBackoffStack.

11.4 The elimination back-off stack 255

11.4 The elimination back-off stack
We now show how to construct an EliminationBackoffStack, a lock-free linearizable
stack implementation.

We are reminded of a story about two friends discussing politics on election day,
each trying, to no avail, to convince the other to switch sides. Finally, one says to the
other: “Look, it’s clear that we are unalterably opposed on every political issue. Our
votes will surely cancel out. Why not save ourselves some time and both agree to not
vote today?”

The other agrees enthusiastically and they part.
Shortly after that, a friend of the first, who had heard the conversation, says, “That

was a sporting offer you made.”
“Not really,” came the reply. “This is the third time I’ve done this today.”
The principle behind our construction is the same. We wish to allow threads with

pushes and pops to coordinate and cancel out, but must avoid a situation in which a
thread can make a sporting offer to more than one other thread. To do so, we imple-
ment the EliminationArray using coordination structures called exchangers, objects
that allow exactly two threads (and no more) to rendezvous and exchange values.

We already saw how to exchange values using locks in the synchronous queue
of Chapter 10. Here, we need a lock-free exchange, one in which threads spin rather
than block, as we expect them to wait only for very short durations.

11.4.1 A lock-free exchanger
A LockFreeExchanger<T> object permits two threads to exchange values of type T. If
thread A calls the object’s exchange() method with argument a and B calls the same
object’s exchange() method with argument b, then A’s call will return value b and
vice versa. On a high level, the exchanger works by having the first thread arrive to
write its value, and spin until a second arrives. The second then detects that the first
is waiting, reads its value, and signals the exchange. They each have now read the
other’s value, and can return. The first thread’s call may time out if the second does
not show up, allowing it to leave the exchanger if it is unable to exchange a value
within a reasonable duration.

The LockFreeExchanger<T> class, shown in Fig. 11.6, has a single field slot of
type AtomicStampedReference<T> (see Pragma 10.6.1). The exchanger has three pos-
sible states: EMPTY, BUSY, or WAITING. The reference’s stamp records the exchanger’s
state (line 14). The exchanger’s main loop continues until the timeout limit passes,
when it throws an exception (line 10). In the meantime, a thread reads the state of the
slot (line 12) and proceeds as follows:

• If the state is EMPTY, then the thread tries to place its item in the slot and set the
state to WAITING using compareAndSet() (line 16). If it fails, then some other thread
has succeeded, so it retries. If it was successful (line 17), then its item is in the slot
and the state is WAITING, so it spins, waiting for another thread to complete the ex-
change. If another thread shows up, it will take the item in the slot, replace it with

256 CHAPTER 11 Stacks and elimination

1 public class LockFreeExchanger<T> {
2 static final int EMPTY = ..., WAITING = ..., BUSY = ...;
3 AtomicStampedReference<T> slot = new AtomicStampedReference<T>(null, 0);
4 public T exchange(T myItem, long timeout, TimeUnit unit)
5 throws TimeoutException {
6 long nanos = unit.toNanos(timeout);
7 long timeBound = System.nanoTime() + nanos;
8 int[] stampHolder = {EMPTY};
9 while (true) {

10 if (System.nanoTime() > timeBound)
11 throw new TimeoutException();
12 T yrItem = slot.get(stampHolder);
13 int stamp = stampHolder[0];
14 switch(stamp) {
15 case EMPTY:
16 if (slot.compareAndSet(yrItem, myItem, EMPTY, WAITING)) {
17 while (System.nanoTime() < timeBound) {
18 yrItem = slot.get(stampHolder);
19 if (stampHolder[0] == BUSY) {
20 slot.set(null, EMPTY);
21 return yrItem;
22 }
23 }
24 if (slot.compareAndSet(myItem, null, WAITING, EMPTY)) {
25 throw new TimeoutException();
26 } else {
27 yrItem = slot.get(stampHolder);
28 slot.set(null, EMPTY);
29 return yrItem;
30 }
31 }
32 break;
33 case WAITING:
34 if (slot.compareAndSet(yrItem, myItem, WAITING, BUSY))
35 return yrItem;
36 break;
37 case BUSY:
38 break;
39 default: // impossible
40 ...
41 }
42 }
43 }
44 }

FIGURE 11.6

The LockFreeExchanger<T> class.

11.4 The elimination back-off stack 257

its own, and set the state to BUSY (line 19), indicating to the waiting thread that the
exchange is complete. The waiting thread will consume the item and reset the state
to EMPTY. Resetting to EMPTY can be done using a simple write because the waiting
thread is the only one that can change the state from BUSY to EMPTY (line 20). If
no other thread shows up, the waiting thread needs to reset the state of the slot
to EMPTY. This change requires a compareAndSet() because other threads might be
attempting to exchange by setting the state from WAITING to BUSY (line 24). If the
call is successful, it raises a timeout exception. If, however, the call fails, some
exchanging thread must have shown up, so the waiting thread completes the ex-
change (line 26).

• If the state is WAITING, then some thread is waiting and the slot contains its item.
The thread uses compareAndSet() to try to exchange the item with its own and
change the state from WAITING to BUSY (line 34). If it fails, because another thread
succeeds or the waiting thread resets the state to EMPTY following a timeout, the
thread must retry. If it succeeds in exchanging items, it can return the item.

• If the state is BUSY then two other threads are currently using the slot for an ex-
change and the thread must retry (line 37).

Note that the algorithm allows the inserted item to be null, something used
later in the elimination array construction. There is no ABA problem because the
compareAndSet() call that changes the state never inspects the item. The linearization
point of a successful exchange occurs when the second thread to arrive changes the
state from WAITING to BUSY (line 34). At this point both exchange() calls overlap, and
the exchange is committed to being successful. The linearization point of an unsuc-
cessful exchange occurs when the timeout exception is thrown.

The algorithm is lock-free because overlapping exchange() calls with sufficient
time to exchange will fail only if other exchanges are repeatedly succeeding. Clearly,
too short an exchange time can cause a thread never to succeed, so care must be taken
when choosing timeout durations.

11.4.2 The elimination array
An EliminationArray is implemented as an array of Exchanger objects. A thread
attempting to perform an exchange picks an array entry at random, and calls that
entry’s exchange() method, providing its own input as a value for exchange with an-
other thread. Code for the EliminationArray appears in Fig. 11.7. The constructor
takes as an argument the capacity of the array (the number of distinct exchangers).
The EliminationArray class provides a single method, visit(), which takes timeout
arguments. (Following the conventions used in the java.util.concurrent package, a
timeout is expressed as a number and a time unit.) The visit() call takes a value of
type T and either returns the value input by its exchange partner, or throws an excep-
tion if the timeout expires without exchanging a value with another thread. At any
point in time, each thread will select a random location in a subrange of the array
(line 11). This subrange will be determined dynamically based on the load on the
data structure, and will be passed as a parameter to the visit() method.

258 CHAPTER 11 Stacks and elimination

1 public class EliminationArray<T> {
2 private static final int duration = ...;
3 LockFreeExchanger<T>[] exchanger;
4 public EliminationArray(int capacity) {
5 exchanger = (LockFreeExchanger<T>[]) new LockFreeExchanger[capacity];
6 for (int i = 0; i < capacity; i++) {
7 exchanger[i] = new LockFreeExchanger<T>();
8 }
9 }

10 public T visit(T value, int range) throws TimeoutException {
11 int slot = ThreadLocalRandom.current().nextInt(range);
12 return (exchanger[slot].exchange(value, duration,
13 TimeUnit.MILLISECONDS));
14 }
15 }

FIGURE 11.7

The EliminationArray<T> class: In each visit, a thread can choose dynamically the subrange
of the array from which it will randomly select a slot.

It is critical that each thread uses its own random number generator to select its lo-
cation. As discussed in Appendix A.2.5, if threads share a random number generator,
they would introduce the contention that the elimination array is designed to avoid.

The EliminationBackoffStack is a subclass of LockFreeStack that overrides the
push() and pop() methods, and adds an EliminationArray field. The new push() and
pop() methods appear in Figs. 11.8 and 11.9. If tryPush() or tryPop() fails, instead of
simply backing off, these methods try to use the EliminationArray to exchange values
(lines 15 and 33). A push() call calls visit() with its input value as argument, a pop()
call with null as argument. Both push() and pop() have a thread-local RangePolicy
object that determines the EliminationArray subrange to be used.

When push() calls visit(), it selects a random array entry within its range and
attempts to exchange a value with another thread. If the exchange is successful, the
pushing thread checks whether the value was exchanged with a pop() method (line 17)
by testing if the value exchanged was null. (Recall that pop() always offers null to the
exchanger while push() always offers a nonnull value.) Symmetrically, when pop()
calls visit(), it attempts an exchange, and if the exchange is successful, it checks
(line 35) whether the value was exchanged with a push() call by checking whether it
is not null.

The exchange may be unsuccessful, either because no exchange took place (the
call to visit() timed out) or because the exchange was with the same type of oper-
ation (e.g., a pop() with a pop()). For brevity, we choose a simple approach to deal
with such cases: we retry the tryPush() or tryPop() calls (lines 13 and 30).

One important parameter is the range of the EliminationArray from which a
thread selects an Exchanger location. A smaller range increases the chance of a suc-
cessful exchange when there are few threads, while a larger range lowers the chance

11.4 The elimination back-off stack 259

1 public class EliminationBackoffStack<T> extends LockFreeStack<T> {
2 static final int capacity = ...;
3 EliminationArray<T> eliminationArray = new EliminationArray<T>(capacity);
4 static ThreadLocal<RangePolicy> policy = new ThreadLocal<RangePolicy>() {
5 protected synchronized RangePolicy initialValue() {
6 return new RangePolicy();
7 }
8

9 public void push(T value) {
10 RangePolicy rangePolicy = policy.get();
11 Node node = new Node(value);
12 while (true) {
13 if (tryPush(node)) {
14 return;
15 } else try {
16 T otherValue = eliminationArray.visit(value, rangePolicy.getRange());
17 if (otherValue == null) {
18 rangePolicy.recordEliminationSuccess();
19 return; // exchanged with pop
20 }
21 } catch (TimeoutException ex) {
22 rangePolicy.recordEliminationTimeout();
23 }
24 }
25 }
26 }

FIGURE 11.8

The EliminationBackoffStack<T> class: This push() method overrides the LockFreeStack
push() method. Instead of using a simple Backoff class, it uses an EliminationArray and a
dynamic RangePolicy to select the subrange of the array within which to eliminate.

of threads waiting on a busy Exchanger (recall that an Exchanger can only handle one
exchange at a time). Thus, if few threads access the array, they should choose a small
range; as the number of threads increases, so should the range. One can control the
range dynamically using a RangePolicy object that records both successful exchanges
(as in line 36) and timeout failures (line 39). We ignore exchanges that fail because
the operations do not match (such as push() with push()), because they account for
a fixed fraction of the exchanges for any given distribution of push() and pop() calls.
One simple policy is to shrink the range as the number of failures increases and vice
versa.

There are many other possible policies. For example, one can devise a more elab-
orate range selection policy, vary the delays on the exchangers dynamically, add
additional back-off delays before accessing the shared stack, and control whether
to access the shared stack or the array dynamically. We leave these as exercises.

260 CHAPTER 11 Stacks and elimination

27 public T pop() throws EmptyException {
28 RangePolicy rangePolicy = policy.get();
29 while (true) {
30 Node returnNode = tryPop();
31 if (returnNode != null) {
32 return returnNode.value;
33 } else try {
34 T otherValue = eliminationArray.visit(null, rangePolicy.getRange());
35 if (otherValue != null) {
36 rangePolicy.recordEliminationSuccess();
37 return otherValue;
38 }
39 } catch (TimeoutException ex) {
40 rangePolicy.recordEliminationTimeout();
41 }
42 }
43 }

FIGURE 11.9

The EliminationBackoffStack<T> class: This pop() method overrides the LockFreeStack pop()
method.

The EliminationBackoffStack is a linearizable stack: Any successful push() or
pop() call that completes by accessing the LockFreeStack can be linearized at the
point of its LockFreeStack access. Any pair of eliminated push() and pop() calls can
be linearized when they collide. As noted earlier, the method calls completed through
elimination do not affect the linearizability of those completed in the LockFreeStack,
because they could have taken effect in any state of the LockFreeStack, and having
taken effect, the state of the LockFreeStack would not have changed.

Because the EliminationArray is effectively used as a back-off scheme, we expect
it to deliver performance comparable to the LockFreeStack at low loads. Unlike the
LockFreeStack, it has the potential to scale. As the load increases, the number of
successful eliminations will grow, allowing many operations to complete in parallel.
Moreover, contention at the LockFreeStack is reduced because eliminated operations
never access the stack.

11.5 Chapter notes
The LockFreeStack is credited to Treiber [162]. Actually, it predates Treiber’s re-
port in 1986. It was probably invented in the early 1970s to motivate the CAS
operation on the IBM 370. The EliminationBackoffStack is due to Danny Hendler,
Nir Shavit, and Lena Yerushalmi [62]. An efficient exchanger, which quite interest-
ingly uses an elimination array, was introduced by Doug Lea, Michael Scott, and
Bill Scherer [167]. A variant of this exchanger appears in the java.util.concurrent

11.6 Exercises 261

package. The EliminationBackoffStack we present here is modular, making use of
exchangers, but somewhat inefficient. Mark Moir, Daniel Nussbaum, Ori Shalev, and
Nir Shavit presented a highly effective implementation of an EliminationArray [131].

11.6 Exercises
Exercise 11.1. Design an unbounded lock-based Stack<T> implementation based on
a linked list.

Exercise 11.2. Design a bounded lock-based Stack<T> using an array.

1. Use a single lock and a bounded array.
2. Try to make your algorithm lock-free. Where do you run into difficulty?

Exercise 11.3. Modify the unbounded lock-free stack of Section 11.2 to work
in the absence of a garbage collector. Create a thread-local pool of preallo-
cated nodes and recycle them. To avoid the ABA problem, consider using the
AtomicStampedReference<T> class from java.util.concurrent.atomic (see Pragma
10.6.1), which encapsulates both a reference and an integer stamp.

Exercise 11.4. Discuss the back-off policies used in our implementation. Does it
make sense to use the same shared Backoff object for both pushes and pops in our
LockFreeStack<T> object? How else could we structure the back-off in space and time
in the EliminationBackoffStack<T>?

Exercise 11.5. Implement a stack algorithm assuming there is a known bound on the
difference between the total number of successful pushes and pops to the stack in any
state of the execution.

Exercise 11.6. Consider the problem of implementing a bounded stack using an array
indexed by a top counter, initially zero. In the absence of concurrency, these methods
are almost trivial. To push an item, increment top to reserve an array entry, and then
store the item at that index. To pop an item, decrement top, and return the item at the
previous top index.

Clearly, this strategy does not work for concurrent implementations, because one
cannot make atomic changes to multiple memory locations. A single synchronization
operation can either increment or decrement the top counter, but not both, and there
is no way atomically to increment the counter and store a value.

Nevertheless, Bob D. Hacker decides to solve this problem. He decides to adapt
the dual data structure approach of Chapter 10 to implement a dual stack. His
DualStack<T> class splits push() and pop() methods into reservation and fulfillment
steps. Bob’s implementation appears in Fig. 11.10.

The stack’s top is indexed by the top field, an AtomicInteger manipulated only by
getAndIncrement() and getAndDecrement() calls. Bob’s push() method’s reservation
step reserves a slot by applying getAndIncrement() to top. Suppose the call returns

262 CHAPTER 11 Stacks and elimination

1 public class DualStack<T> {
2 private class Slot {
3 boolean full = false;
4 volatile T value = null;
5 }
6 Slot[] stack;
7 int capacity;
8 private AtomicInteger top = new AtomicInteger(0); // array index
9 public DualStack(int myCapacity) {

10 capacity = myCapacity;
11 stack = (Slot[]) new Object[capacity];
12 for (int i = 0; i < capacity; i++) {
13 stack[i] = new Slot();
14 }
15 }
16 public void push(T value) throws FullException {
17 while (true) {
18 int i = top.getAndIncrement();
19 if (i > capacity - 1) { // is stack full?
20 top.getAndDecrement(); // restore index
21 throw new FullException();
22 } else if (i >= 0) { // i in range, slot reserved
23 stack[i].value = value;
24 stack[i].full = true; // push fulfilled
25 return;
26 }
27 }
28 }
29 public T pop() throws EmptyException {
30 while (true) {
31 int i = top.getAndDecrement();
32 if (i < 0) { // is stack empty?
33 top.getAndDecrement() // restore index
34 throw new EmptyException();
35 } else if (i <= capacity - 1) {
36 while (!stack[i].full){};
37 T value = stack[i].value;
38 stack[i].full = false;
39 return value; // pop fulfilled
40 }
41 }
42 }
43 }

FIGURE 11.10

Bob’s problematic dual stack.

11.6 Exercises 263

index i. If i is in the range 0 . . . capacity − 1, the reservation is complete. In the
fulfillment phase, push(x) stores x at index i in the array, and raises the full flag
to indicate that the value is ready to be read. The value field must be volatile to
guarantee that once flag is raised, the value has already been written to index i of the
array.

If the index returned from push()’s getAndIncrement() is less than 0, the push()
method repeatedly retries getAndIncrement() until it returns an index greater than or
equal to 0. The index could be less than 0 due to getAndDecrement() calls of failed
pop() calls to an empty stack. Each such failed getAndDecrement() decrements the top
by one more past the 0 array bound. If the index returned is greater than capacity−1,
push() throws an exception because the stack is full.

The situation is symmetric for pop(). It checks that the index is within the bounds
and removes an item by applying getAndDecrement() to top, returning index i. If i

is in the range 0 . . . capacity − 1, the reservation is complete. For the fulfillment
phase, pop() spins on the full flag of array slot i, until it detects that the flag is true,
indicating that the push() call is successful.

What is wrong with Bob’s algorithm? Is this problem inherent or can you think
of a way to fix it?

Exercise 11.7. Exercise 8.7 asks you to implement the Rooms interface, reproduced
in Fig. 11.11. The Rooms class manages a collection of rooms, indexed from 0 to m

(where m is a known constant). Threads can enter or exit any room in that range. Each
room can hold an arbitrary number of threads simultaneously, but only one room can
be occupied at a time. The last thread to leave a room triggers an onEmpty() handler,
which runs while all rooms are empty.

Fig. 11.12 shows an incorrect concurrent stack implementation.

1. Explain why this stack implementation does not work.
2. Fix it by adding calls to a two-room Rooms class: one room for pushing and one

for popping.

Exercise 11.8. This exercise is a follow-on to Exercise 11.7. Instead of having the
push() method throw FullException, exploit the push room’s exit handler to resize the

1 public interface Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 void enter(int i);
6 boolean exit();
7 public void setExitHandler(int i, Rooms.Handler h) ;
8 }

FIGURE 11.11

The Rooms interface.

264 CHAPTER 11 Stacks and elimination

1 public class Stack<T> {
2 private AtomicInteger top;
3 private T[] items;
4 public Stack(int capacity) {
5 top = new AtomicInteger();
6 items = (T[]) new Object[capacity];
7 }
8 public void push(T x) throws FullException {
9 int i = top.getAndIncrement();

10 if (i >= items.length) { // stack is full
11 top.getAndDecrement(); // restore state
12 throw new FullException();
13 }
14 items[i] = x;
15 }
16 public T pop() throws EmptyException {
17 int i = top.getAndDecrement() - 1;
18 if (i < 0) { // stack is empty
19 top.getAndIncrement(); // restore state
20 throw new EmptyException();
21 }
22 return items[i];
23 }
24 }

FIGURE 11.12

Unsynchronized concurrent stack.

array. Remember that no thread can be in any room when an exit handler is running,
so (of course) only one exit handler can run at a time.

12
CHAPTER

Counting, sorting, and
distributed coordination

12.1 Introduction
This chapter shows how some important problems that seem inherently sequential
can be made highly parallel by “spreading out” coordination tasks among multiple
parties. What does this spreading out buy us?

To answer this question, we need to understand how to measure the performance
of a concurrent data structure. There are two measures that come to mind: latency,
the time it takes an individual method call to complete, and throughput, the overall
rate at which method calls complete. For example, real-time applications might care
more about latency, and databases might care more about throughput.

In Chapter 11, we saw how to apply distributed coordination to the
EliminationBackoffStack class. Here, we cover several useful patterns for distributed
coordination: combining, counting, diffraction, and sampling. Some are determinis-
tic, while others use randomization. We also cover two basic structures underlying
these patterns: trees and combinatorial networks. Interestingly, for some data struc-
tures based on distributed coordination, high throughput does not necessarily mean
low latency.

12.2 Shared counting
We recall from Chapter 10 that a pool is a collection of items that provides put() and
get() methods to insert and remove items (Fig. 10.1). Familiar classes such as stacks
and queues can be viewed as pools that provide additional fairness guarantees.

One way to implement a pool is to use coarse-grained locking, perhaps mak-
ing both put() and get() synchronized methods. The problem, of course, is that
coarse-grained locking is heavy-handed: The lock creates both a sequential bottle-
neck, forcing all method calls to synchronize, and a hotspot, a source of memory
contention. We would prefer to have Pool method calls work in parallel, with less
synchronization and lower contention.

Let us consider the following alternative: The pool’s items reside in a cyclic array,
where each array entry contains either an item or null. We route threads through two
counters. Threads calling put() increment one counter to choose an array index into
which the new item should be placed. (If that entry is full, the thread waits until it
becomes empty.) Similarly, threads calling get() increment another counter to choose

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00022-7
Copyright © 2021 Elsevier Inc. All rights reserved.

265

266 CHAPTER 12 Counting, sorting, and distributed coordination

an array index from which the new item should be removed. (If that entry is empty,
the thread waits until it becomes full.)

This approach replaces one bottleneck, the lock, with two, the counters. Naturally,
two bottlenecks are better than one (think about that claim for a second). We now
explore the idea that shared counters need not be bottlenecks, and can be effectively
parallelized. We face two challenges:

1. We must avoid memory contention, where too many threads try to access the same
memory location, stressing the underlying communication network and cache-
coherence protocols.

2. We must achieve real parallelism. Is incrementing a counter an inherently sequen-
tial operation, or is it possible for n threads to increment a counter faster than it
takes one thread to increment a counter n times?

We now look at several ways to build highly parallel counters through data structures
that coordinate the distribution of counter indices.

12.3 Software combining
Here is a linearizable shared-counter class using a pattern called software combining.
A CombiningTree is a binary tree of nodes, where each node contains bookkeeping
information. The counter’s value is stored at the root. Each thread is assigned a leaf,
and at most two threads share a leaf, so if there are p physical processors, then there
are �p/2� leaves; the number of leaves in a combining tree is its width. To increment
the counter, a thread starts at its leaf, and works its way up the tree to the root. If
two threads reach a node at approximately the same time, then they combine their
increments by adding them together. One thread, the active thread, propagates their
combined increments up the tree, while the other, the passive thread, waits for the
active thread to complete their combined work. A thread may be active at one level
and become passive at a higher level.

For example, suppose threads A and B share a leaf node. They start at the same
time, and their increments are combined at their shared leaf. The first one, say, B,
actively continues up to the next level, with the mission of adding 2 to the counter
value, while the second, A, passively waits for B to return from the root with an
acknowledgment that A’s increment has occurred. At the next level in the tree, B may
combine with another thread C, and advance with the renewed intention of adding 3
to the counter value.

When a thread reaches the root, it adds the sum of its combined increments to the
counter’s current value. The thread then moves back down the tree, notifying each
waiting thread that the increments are now complete.

Combining trees have an inherent disadvantage with respect to locks: Each in-
crement has a higher latency, that is, the time it takes an individual method call
to complete. With a lock, a getAndIncrement() call takes O(1) time, while with a
CombiningTree, it takes O(logp) time. Nevertheless, a CombiningTree is attractive

12.3 Software combining 267

because it promises far better throughput, that is, the overall rate at which method
calls complete. For example, using a queue lock, p getAndIncrement() calls complete
in O(p) time, at best, while using a CombiningTree, under ideal conditions where all
threads move up the tree together, p getAndIncrement() calls complete in O(logp)

time, an exponential improvement. Of course, the actual performance is often less
than ideal, a subject examined in detail later on. Still, the CombiningTree class, like
other techniques we consider later, is intended to benefit throughput, not latency.

Combining trees can be adapted to apply any associative and commutative func-
tion, not just increment, to the value maintained by the tree.

12.3.1 Overview
Although the idea behind a CombiningTree is simple, the implementation is not. To
keep the overall (simple) structure from being submerged in (not-so-simple) detail,
we split the data structure into two classes: the CombiningTree class manages navi-
gation within the tree, moving up and down the tree as needed, while the Node class
manages each visit to a node. As you go through the algorithm’s description, it may
be helpful to consult Fig. 12.3, which shows an example CombiningTree execution.

This algorithm uses two kinds of synchronization. Short-term synchronization is
provided by synchronized methods of the Node class. Each method locks the node
for the duration of the call to ensure that it can read and write node fields without
interference from other threads. The algorithm also requires excluding threads from a
node for durations longer than a single method call. Such long-term synchronization
is provided by a Boolean locked field. When this field is true, no other thread is
allowed to access the node.

The fields of the Node class are shown in Fig. 12.1. Every node has a combining
status (field CStatus), which defines what stage of combining concurrent requests a
node is in. The possible values for the combining status, and their associated mean-
ings, are:

• IDLE: This node is not in use.
• FIRST: One active thread has visited this node, and will return to check whether

another passive thread has left a value with which to combine.
• SECOND: A second thread has visited this node and stored a value in the node’s

value field to be combined with the active thread’s value, but the combined oper-
ation is not yet complete.

• RESULT: Both threads’ operations have been combined and completed, and the
second thread’s result has been stored in the node’s result field.

• ROOT: This value is a special case to indicate that the node is the root, and must be
treated specially.

The CombiningTree class has a field leaf, which is an array of w leaves, where w

is the width of the combining tree. Thread i is assigned to leaf[i/2], so a combining
tree for p threads has width w = �p/2�.

268 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class Node {
2 enum CStatus{IDLE, FIRST, SECOND, RESULT, ROOT};
3 boolean locked;
4 CStatus cStatus;
5 int firstValue, secondValue;
6 int result;
7 Node parent;
8 public Node() {
9 cStatus = CStatus.ROOT;

10 locked = false;
11 }
12 public Node(Node myParent) {
13 parent = myParent;
14 cStatus = CStatus.IDLE;
15 locked = false;
16 }
17 ...
18 }

FIGURE 12.1

The Node class: the constructors and fields.

1 public CombiningTree(int width) {
2 Node[] nodes = new Node[2 * width - 1];
3 nodes[0] = new Node();
4 for (int i = 1; i < nodes.length; i++) {
5 nodes[i] = new Node(nodes[(i-1)/2]);
6 }
7 leaf = new Node[width];
8 for (int i = 0; i < leaf.length; i++) {
9 leaf[i] = nodes[nodes.length - i - 1];

10 }
11 }

FIGURE 12.2

The CombiningTree class: constructor.

Fig. 12.2 shows the CombiningTree class constructor. To construct a CombiningTree
of width w, we create an array of Node objects of length 2w − 1. The root is node[0],
and for 0 < i < 2w − 1, the parent of node[i] is node[(i − 1)/2]. The leaf nodes are
the last w nodes in the array. The initial combining state is ROOT for the root, and IDLE
for every other node.

The CombiningTree’s getAndIncrement() method, shown in Fig. 12.4, has four
phases. In the precombining phase (lines 16–20), it moves up the tree, applying
precombine() to each node. The precombine() method returns a Boolean indicating

12.3 Software combining 269

FIGURE 12.3

The concurrent traversal of a width 8 combining tree by five threads. The structure is
initialized with all nodes unlocked, the root node having the CStatus ROOT and all other
nodes having the CStatus IDLE.

whether the thread was the first to arrive at the node. If so, the getAndIncrement()
method continues moving up the tree. The stop variable is set to the last node visited,
which is either the first node at which the thread arrived second, or the root. Parts (a)
and (b) of Fig. 12.3 show a precombining phase example. Thread A, which is fastest,

270 CHAPTER 12 Counting, sorting, and distributed coordination

12 public int getAndIncrement() {
13 Stack<Node> stack = new Stack<Node>();
14 Node myLeaf = leaf[ThreadID.get()/2];
15 Node node = myLeaf;
16 // precombining phase
17 while (node.precombine()) {
18 node = node.parent;
19 }
20 Node stop = node;
21 // combining phase
22 int combined = 1;
23 for (node = myLeaf; node != stop; node = node.parent) {
24 combined = node.combine(combined);
25 stack.push(node);
26 }
27 // operation phase
28 int prior = stop.op(combined);
29 // distribution phase
30 while (!stack.empty()) {
31 node = stack.pop();
32 node.distribute(prior);
33 }
34 return prior;
35 }

FIGURE 12.4

The CombiningTree class: the getAndIncrement() method.

stops at the root, while B stops in the middle-level node where it arrived after A, and
C stops at the leaf where it arrived after B.

Fig. 12.5 shows Node’s precombine() method. The thread waits until the locked
field is false (line 20), and then proceeds based on the node’s combining status
(line 21):

• IDLE: The thread sets the node’s status to FIRST to indicate that it will return to
look for a value for combining. If it finds such a value, it proceeds as the active
thread, and the thread that provided that value is passive. The call then returns
true, instructing the thread to move up the tree.

• FIRST: An earlier thread has recently visited this node, and will return to look
for a value to combine. The thread stops moving up the tree (by returning false),
and starts the next phase, computing the value to combine. Before precombine()
returns, the thread places a long-term lock on the node (by setting locked to true)
to prevent the earlier visiting thread from proceeding without combining with the
thread’s value.

12.3 Software combining 271

19 synchronized boolean precombine() {
20 while (locked) wait();
21 switch (cStatus) {
22 case IDLE:
23 cStatus = CStatus.FIRST;
24 return true;
25 case FIRST:
26 locked = true;
27 cStatus = CStatus.SECOND;
28 return false;
29 case ROOT:
30 return false;
31 default:
32 throw new PanicException("unexpected Node state" + cStatus);
33 }
34 }

FIGURE 12.5

The Node class: the precombining phase.

• ROOT: If the thread has reached the root node, it instructs the thread to start the next
phase.

(Line 31 is a default case that is executed if an unexpected status is encountered.)

PRAGMA 12.3.1

It is good programming practice always to provide an arm for every possible enu-
meration value, even if we know it cannot happen. If we are wrong, the program
is easier to debug, and if we are right, the program may later be changed even by
someone who does not know as much as we do. Always program defensively.

In the combining phase (Fig. 12.4, lines 21–26), the thread revisits the nodes
it visited in the precombining phase, combining its value with values left by other
threads. It stops when it arrives at the node stop, where the precombining phase
ended. We push the nodes we visit onto a stack so that we can traverse them later in
reverse order.

The Node class’s combine() method, shown in Fig. 12.6, adds any values left by a
recently arrived passive process to the values combined so far. As before, the thread
first waits until the locked field is false. It then sets the long-term lock on the node,
to ensure that late-arriving threads do not attempt to combine with it. If the status is
SECOND, it adds the other thread’s value to the accumulated value; otherwise it returns
the value unchanged. In part (c) of Fig. 12.3, thread A starts ascending the tree in
the combining phase. It reaches the second-level node locked by thread B and waits.

272 CHAPTER 12 Counting, sorting, and distributed coordination

35 synchronized int combine(int combined) {
36 while (locked) wait();
37 locked = true;
38 firstValue = combined;
39 switch (cStatus) {
40 case FIRST:
41 return firstValue;
42 case SECOND:
43 return firstValue + secondValue;
44 default:
45 throw new PanicException("unexpected Node state " + cStatus);
46 }
47 }

FIGURE 12.6

The Node class: the combining phase. This method applies addition to firstValue and
secondValue, but any other commutative operation would work just as well.

In part (d), B releases the lock on the second-level node, and A locks the node and,
seeing that the node’s combining state is SECOND, moves to the root with the com-
bined value 3, the sum of the firstValue and secondValue fields written by A and B,
respectively.

At the start of the operation phase (line 28), the thread has combined all method
calls from lower-level nodes; it now examines the node where it stopped at the end of
the precombining phase (Fig. 12.7). If the node is the root, as in part (d) of Fig. 12.3,
then the thread, in this case A, carries out the combined getAndIncrement() oper-
ations: It adds its accumulated value (3 in the example) to the result and returns
the prior value. Otherwise, the thread had set the long-term lock on this node at
the end of its precombining phase (Fig. 12.5, line 26), so it deposits its value as the
secondValue, unlocks the node, notifies any blocked thread, and waits for the other
thread to return a result after propagating the combined operations toward the root.
For example, this is the sequence of actions taken by thread B in parts (c) and (d) of
Fig. 12.3. In this case, the other thread will have set the long-term lock, and left it set
so that a thread arriving later will wait until the thread has retrieved the result. Thus,
the thread must release the long-term lock and notify any blocked thread.

When the result arrives, A enters the distribution phase, propagating the result
down the tree. In this phase (lines 29–34), the thread moves down the tree, releasing
locks and informing passive partners of the values they should report to their own
passive partners or to the caller (at the lowest level). The distribute method is shown
in Fig. 12.8. If the state of the node is FIRST, no thread combines with the distributing
thread, and it can reset the node to its initial state by releasing the lock and setting the
state to IDLE. If, on the other hand, the state is SECOND, the distributing thread updates
the result to be the sum of the prior value brought from higher up the tree, and the
FIRST value. This reflects a situation in which the active thread at the node managed

12.3 Software combining 273

48 synchronized int op(int combined) {
49 switch (cStatus) {
50 case ROOT:
51 int prior = result;
52 result += combined;
53 return prior;
54 case SECOND:
55 secondValue = combined;
56 locked = false;
57 notifyAll(); // wake up waiting threads
58 while (cStatus != CStatus.RESULT) wait();
59 locked = false;
60 notifyAll();
61 cStatus = CStatus.IDLE;
62 return result;
63 default:
64 throw new PanicException("unexpected Node state");
65 }
66 }

FIGURE 12.7

The Node class: applying the operation.

67 synchronized void distribute(int prior) {
68 switch (cStatus) {
69 case FIRST:
70 cStatus = CStatus.IDLE;
71 locked = false;
72 break;
73 case SECOND:
74 result = prior + firstValue;
75 cStatus = CStatus.RESULT;
76 break;
77 default:
78 throw new PanicException("unexpected Node state");
79 }
80 notifyAll();
81 }

FIGURE 12.8

The Node class: the distribution phase.

to perform its increment before the passive one. The passive thread waiting to get
a value reads the result once the distributing thread sets the status to RESULT. For
example, in part (e) of Fig. 12.3, the active thread A executes its distribution phase

274 CHAPTER 12 Counting, sorting, and distributed coordination

in the middle-level node, setting the result to 5, changing the state to RESULT, and
descending down to the leaf, returning the value 4 as its output. The passive thread B

awakes and sees that the middle-level node’s state has changed, and reads result 5.

12.3.2 An extended example
Fig. 12.3 describes the various phases of a CombiningTree execution. There are five
threads, labeled A through E. Each node has six fields, as shown in Fig. 12.1. Initially,
all nodes are unlocked and all but the root are in an IDLE combining state. The counter
value in the initial state in part (a) is 3, the result of an earlier computation.

In part (a), to perform a getAndIncrement(), threads A and B start the precom-
bining phase. A ascends the tree, changing the nodes it visits from IDLE to FIRST,
indicating that it will be the active thread in combining the values up the tree. Thread
B is the active thread at its leaf node, but has not yet arrived at the second-level node
shared with A.

In part (b), B arrives at the second-level node and stops, changing it from FIRST
to SECOND, indicating that it will collect its combined values and wait here for A to
proceed with them to the root. B locks the node (changing the locked field from
false to true), preventing A from proceeding with the combining phase without B’s
combined value. But B has not combined the values. Before it does so, C starts
precombining, arrives at the leaf node, stops, and changes its state to SECOND. It also
locks the node to prevent B from ascending without its input to the combining phase.
Similarly, D starts precombining and successfully reaches the root node. Neither A

nor D changes the root node state, and in fact it never changes. They simply mark it
as the node where they stopped precombining.

In part (c), A starts up the tree in the combining phase. It locks the leaf so that any
later thread will not be able to proceed in its precombining phase, and will wait until
A completes its combining and distribution phases. It reaches the second-level node,
locked by B, and waits. In the meantime, C starts combining, but since it stopped at
the leaf node, it executes the op() method on this node, setting secondValue to 1 and
then releasing the lock. When B starts its combining phase, the leaf node is unlocked
and marked SECOND, so B writes 1 to firstValue and ascends to the second-level node
with a combined value of 2, the result of adding the firstValue and secondValue
fields.

When it reaches the second-level node, the one at which it stopped in the pre-
combining phase, it calls the op() method on this node, setting secondValue to 2. A

must wait until it releases the lock. Meanwhile, in the right-hand side of the tree, D

executes its combining phase, locking nodes as it ascends. Because it meets no other
threads with which to combine, it reads 3 in the result field in the root and updates it
to 4. Thread E then starts precombining, but is late in meeting D. It cannot continue
precombining as long as D locks the second-level node.

In part (d), B releases the lock on the second-level node, and A, seeing that the
node is in state SECOND, locks the node and moves to the root with the combined value
3, the sum of the firstValue and secondValue fields written, respectively, by A and

12.3 Software combining 275

B. A is delayed while D completes updating the root. Once D is done, A reads 4 in
the root’s result field and updates it to 7. D descends the tree (by popping its local
Stack), releasing the locks, and returning the value 3 that it originally read in the
root’s result field. E now continues its ascent in the precombining phase.

Finally, in part (e), A executes its distribution phase. It returns to the second-level
node, setting result to 5, changing the state to RESULT, and descending to the leaf,
returning the value 4 as its output. B awakens and sees the state of the middle-level
node has changed, reads 5 as the result, and descends to its leaf where it sets the
result field to 6 and the state to RESULT. B then returns 5 as its output. Finally, C

awakens and observes that the leaf node state has changed, reads 6 as the result,
which it returns as its output value. Threads A through D return values 3 to 6, which
fit the root’s result field value of 7. The linearization order of the getAndIncrement()
method calls by the different threads is determined by their order in the tree during
the precombining phase.

12.3.3 Performance and robustness
Like all the algorithms described in this chapter, CombiningTree’s throughput depends
in complex ways on the characteristics of both the application and the underlying
architecture. Nevertheless, it is worthwhile to review, in qualitative terms, some ex-
perimental results from the literature. Readers interested in detailed experimental
results (mostly for obsolete architectures) may consult the chapter notes.

As a thought experiment, a CombiningTree should provide high throughput under
ideal circumstances when each thread can combine its increment with another’s. But
it may provide poor throughput under worst-case circumstances, where many threads
arrive late at a locked node, missing the chance to combine, and are forced to wait
for the earlier request to ascend and descend the tree.

In practice, experimental evidence supports this informal analysis. The higher the
contention, the greater the observed rate of combining, and the greater the observed
speedup. Worse is better. Combining trees are less attractive when concurrency is
low. The combining rate decreases rapidly as the arrival rate of increment requests is
reduced. Throughput is sensitive to the arrival rate of requests.

Because combining increases throughput and failure to combine does not, it
makes sense for a request arriving at a node to wait for a reasonable duration for
another thread to arrive with an increment with which to combine. Not surprisingly,
it makes sense to wait for a short time when the contention is low, and longer when
contention is high. When contention is sufficiently high, unbounded waiting works
very well.

An algorithm is robust if it performs well in the presence of large fluctuations in
request arrival times. The literature suggests that the CombiningTree algorithm with a
fixed waiting time is not robust, because high variance in request arrival rates seems
to reduce the combining rate.

276 CHAPTER 12 Counting, sorting, and distributed coordination

12.4 Quiescently consistent pools and counters
First shalt thou take out the Holy Pin. Then shalt thou count to three, no more, no
less. Three shall be the number thou shalt count, and the number of the counting
shall be three. . . . Once the number three, being the third number, be reached,
then lobbest thou thy Holy Hand Grenade of Antioch towards thy foe, who, being
naughty in my sight, shall snuff it.

From Monty Python and the Holy Grail.

Not all applications require linearizable counting. Indeed, counter-based Pool im-
plementations require only quiescently consistent1 counting: All that matters is that
the counters produce no duplicates and no omissions. It is enough that for every item
placed by a put() in an array entry, another thread eventually executes a get() that
accesses that entry, eventually matching put() and get() calls. (Wraparound may still
cause multiple put() calls or get() calls to compete for the same array entry.)

12.5 Counting networks
Students of tango know that the partners must be tightly coordinated: If they do not
move together, the dance does not work, no matter how skilled the dancers may be as
individuals. In the same way, combining trees must be tightly coordinated: If requests
do not arrive together, the algorithm does not work efficiently, no matter how fast the
individual processes.

We now consider counting networks, which look less like tango and more like a
rave: each participant moves at its own pace, but collectively the counter delivers a
quiescently consistent set of indices with high throughput.

Let us imagine that we replace the combining tree’s single counter with multiple
counters, each of which distributes a subset of indices (see Fig. 12.9). We allocate w

counters (in the figure, w = 4), each of which distributes a set of unique indices mod-
ulo w (in the figure, for example, the second counter distributes 2,6,10, . . . i · w + 2
for increasing i). The challenge is how to distribute the threads among the counters
so that there are no duplications or omissions, and how to do so in a distributed and
loosely coordinated way.

12.5.1 Networks that count
A balancer is a simple switch with two input wires and two output wires, called the
top and bottom wires (or sometimes the north and south wires). Tokens arrive on the
balancer’s input wires at arbitrary times, and emerge on their output wires, at some
later time. A balancer can be viewed as a toggle: given a stream of input tokens,
it sends one token to the top output wire, and the next to the bottom, and so on,

1 See Chapter 3 for a detailed definition of quiescent consistency.

12.5 Counting networks 277

FIGURE 12.9

A quiescently consistent shared counter based on w = 4 counters preceded by a counting
network. Threads traverse the counting network to choose which counters to access.

FIGURE 12.10

A balancer. Tokens arrive at arbitrary times on arbitrary input lines and are redirected to
ensure that when all tokens have exited the balancer, there is at most one more token on
the top wire than on the bottom one.

effectively balancing the number of tokens between the two wires (see Fig. 12.10).
More precisely, a balancer has two states: up and down. If the state is up, the next
token exits on the top wire; otherwise it exits on the bottom wire.

We use x0 and x1 to denote the number of tokens that respectively arrive on a
balancer’s top and bottom input wires, and y0 and y1 to denote the number that exit
on the top and bottom output wires. For brevity, we also use xi and yi to denote the
wires themselves. A balancer never creates tokens; at all times,

x0 + x1 ≥ y0 + y1.

A balancer is said to be quiescent if every token that arrived on an input wire has
emerged on an output wire:

x0 + x1 = y0 + y1.

A balancing network is constructed by connecting some balancers’ output wires
to other balancers’ input wires. A balancing network of width w has input wires
x0, x1, . . . , xw−1 (not connected to output wires of balancers), and w output wires
y0, y1, . . . , yw−1 (similarly unconnected). The balancing network’s depth is the max-
imum number of balancers one can traverse starting from any input wire. We consider
only balancing networks of finite depth (meaning the wires do not form a loop). Like
balancers, balancing networks do not create tokens:

∑
xi ≥

∑
yi.

278 CHAPTER 12 Counting, sorting, and distributed coordination

FIGURE 12.11

A sequential execution of a BITONIC [4] counting network. Each vertical line represents a
balancer, and each balancer’s two input and output wires are the horizontal lines it
connects to at the dots. In this sequential execution, tokens pass through the network, one
completely after the other in the order specified by the numbers on the tokens. We track
every token as it passes through the balancers on the way to an output wire. For example,
token number 3 enters on wire 2, goes down to wire 3, and ends up on wire 2. Note how
the step property is maintained in every balancer, and also in the network as a whole.

(We often drop indices from summations when we sum over every element in a se-
quence.) A balancing network is quiescent if every token that arrived on an input wire
has emerged on an output wire: ∑

xi =
∑

yi.

So far, we have described balancing networks as if they were switches in a net-
work. On a shared-memory multiprocessor, however, a balancing network can be
implemented as an object in memory. Each balancer is an object, whose wires are
references from one balancer to another. Each thread repeatedly traverses the object,
starting on some input wire, and emerging at some output wire, effectively shepherd-
ing a token through the network.

Some balancing networks have interesting properties. The network shown in
Fig. 12.11 has four input wires and four output wires. Initially, all balancers are up.
We can check for ourselves that if any number of tokens enter the network, in any
order, on any set of input wires, then they emerge in a regular pattern on the output
wires. Informally, no matter how token arrivals are distributed among the input wires,
the output distribution is balanced across the output wires, where the top output wires
are filled first. If the number of tokens n is a multiple of four (the network width),
then the same number of tokens emerges from each wire. If there is one excess token,
it emerges on output wire 0; if there are two, they emerge on output wires 0 and 1,
and so on. In general, if

n =
∑

xi,

then, when the network is quiescent,

yi = �(n − i)/w� .

12.5 Counting networks 279

We call this property the step property.
A balancing network that satisfies the step property is called a counting network

because it can easily be adapted to count the number of tokens that have traversed
the network. Counting is done, as we described earlier in Fig. 12.9, by adding a local
counter to each output wire i, so that tokens emerging on that wire are assigned
consecutive numbers i + 1, i + w + 1, . . . , i + (yi − 1)w + 1.

The step property can be defined in a number of equivalent ways.

Lemma 12.5.1. If y0, . . . , yw−1 is a sequence of nonnegative integers, the following
statements are all equivalent:

1. For any i < j , 0 ≤ yi − yj ≤ 1.
2. Either yi = yj for all i, j , or there exists some c such that for any i < c and j ≥ c,

yi − yj = 1.
3. If m = ∑

yi , then yi = ⌈
m−i
w

⌉
.

12.5.2 The bitonic counting network
In this section, we describe the bitonic counting network, which generalizes the
counting network of Fig. 12.11 to a counting network whose width is any power
of 2. We give an inductive construction.

When describing counting networks, we do not care about when tokens arrive, we
care only that, when the network is quiescent, the numbers of tokens exiting on the
output wires satisfy the step property. Define a width-w sequence of inputs or outputs
x = x0, . . . , xw−1 to be a collection of tokens, partitioned into w subsets xi . The xi

are the input tokens that arrive or leave on wire i. As before, we also use xi to denote
the size of the set xi .

We first define the MERGER [2k] network, which has two input sequences, x and
x′, of width k, and a single output sequence y of width 2k. It guarantees that in
any quiescent state, if x and x′ both satisfy the step property, then so does y. The
MERGER [2k] network is defined inductively, as illustrated in Fig. 12.12 for k = 4.
For k = 1, the MERGER [2k] network is a single balancer. For k > 1, we construct
the MERGER [2k] network with input sequences x and x′ from two MERGER [k]
networks and k balancers as follows: Using a MERGER [k] network, we merge the
even subsequence x0, x2, . . . , xk−2 of x with the odd subsequence x′

1, x
′
3, . . . , x

′
k−1 of

x′ (that is, the sequence x0, . . . , xk−2, x
′
1, . . . , x

′
k−1 is the input to the MERGER [k]

network), while with a second MERGER [k] network, we merge the odd subsequence
of x with the even subsequence of x ′. We call the outputs of these two MERGER [k]
networks z and z′. The final stage of the network combines z and z′ by sending each
pair of wires zi and z′

i into a balancer whose outputs yield y2i and y2i+1.
The MERGER [2k] network consists of log 2k layers of k balancers each. It pro-

vides the step property for its outputs only when its two input sequences also have
the step property, which we ensure by filtering the inputs through smaller balancing
networks.

280 CHAPTER 12 Counting, sorting, and distributed coordination

FIGURE 12.12

On the left-hand side, we see the logical structure of a MERGER [8] network, into which feed
two BITONIC [4] networks, as depicted in Fig. 12.11. The gray MERGER [4] network has as
inputs the even wires coming out of the top BITONIC [4] network and the odd ones from the
lower BITONIC [4] network. In the lower MERGER [4] the situation is reversed. Once the wires
exit the two MERGER [4] networks, each pair of identically numbered wires is combined by a
balancer. On the right-hand side, we see the physical layout of a MERGER [8] network. The
different balancers are color-coded to match the logical structure in the left-hand figure.

FIGURE 12.13

The recursive structure of a BITONIC [2k] counting network. Two BITONIC [k] counting
networks feed into a MERGER [2k] balancing network.

The BITONIC [2k] network is constructed by passing the outputs from two
BITONIC [k] networks into a MERGER [2k] network, where the induction is grounded
in the BITONIC [2] network consisting of a single balancer, as depicted in Fig. 12.13.

This construction gives us a network consisting of
(

log 2k+1
2

)
layers, each consisting

of k balancers.

12.5.2.1 A software bitonic counting network
So far, we have described counting networks as if they were switches in a network.
On a shared-memory multiprocessor, however, a balancing network can be imple-
mented as an object in memory. Each balancer is an object whose wires are references
from one balancer to another. Each thread repeatedly traverses the object, starting on
some input wire and emerging at some output wire, effectively shepherding a token
through the network. Here, we show how to implement a BITONIC [2k] network as a
shared-memory data structure.

12.5 Counting networks 281

1 public class Balancer {
2 boolean toggle = true;
3 public synchronized int traverse() {
4 try {
5 if (toggle) {
6 return 0;
7 } else {
8 return 1;
9 }

10 } finally {
11 toggle = !toggle;
12 }
13 }
14 }

FIGURE 12.14

The Balancer class: a synchronized implementation.

The Balancer class (Fig. 12.14) has a single Boolean field: toggle. The synchro-
nized traverse() method complements the toggle field and returns an output wire,
either 0 or 1. The Balancer class’s traverse() method does not need an argument
because the wire on which a token exits a balancer does not depend on the wire on
which it enters.

The Merger class (Fig. 12.15) has three fields: The width field must be a power of
2, half[] is a two-element array of half-width Merger objects (empty if the network
has width 2), and layer[] is an array of width/2 balancers implementing the final
network layer. The class provides a traverse(i) method, where i is the wire on which
the token enters. (For merger networks, unlike balancers, a token’s path depends on
its input wire.) If the input wire is one of the first width/2, then the token is sent to
half[0] if i is even and to half[1] if i is odd. Otherwise, it is sent to half[0] if i is odd
and to half[1] if i is even. No matter which half-width merger network it traverses, a
token that emerges on wire i is fed to the balancer at layer[i].

The Bitonic class (Fig. 12.16) also has three fields: width must be a power of
2, half[] is a two-element array of half-width Bitonic objects (uninitialized if the
network has width 2), and merger is a full-width Merger object. The class provides a
traverse(i) method, where i is the token’s input wire. If the input wire is one of the
first width/2, then it is sent through half[0], otherwise through half[1]. A token that
emerges from the half-merger subnetwork on wire i then traverses the final merger
network from input wire i if it passed through half[0], or from input wire i+width/2
if it passed through half[1].

Note that the Bitonic class uses a simple synchronized Balancer implementation,
but if the Balancer implementation were lock-free (or wait-free), the network imple-
mentation as a whole would be lock-free (or wait-free).

282 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class Merger {
2 Merger[] half; // two half-width merger networks
3 Balancer[] layer; // final layer
4 final int width;
5 public Merger(int myWidth) {
6 width = myWidth;
7 layer = new Balancer[width / 2];
8 for (int i = 0; i < width / 2; i++) {
9 layer[i] = new Balancer();

10 }
11 if (width > 2) {
12 half = new Merger[]{new Merger(width/2), new Merger(width/2)};
13 }
14 }
15 public int traverse(int input) {
16 int output = 0;
17 if (input < width / 2) {
18 output = half[input % 2].traverse(input / 2);
19 } else {
20 output = half[1 - (input % 2)].traverse(input / 2);
21 return (2 * output) + layer[output].traverse();
22 }
23 }

FIGURE 12.15

The Merger class.

12.5.2.2 Proof of correctness
We now show that BITONIC [w] is a counting network. The proof proceeds as a
progression of arguments about the token sequences passing through the network.
Before examining the network itself, here are some simple lemmas about sequences
with the step property.

Lemma 12.5.2. If a sequence has the step property, then so do all its subsequences.

Lemma 12.5.3. For even k, if x0, . . . , xk−1 has the step property, then its even and
odd subsequences satisfy

k
2 −1∑
i=0

x2i =
⌈

k−1∑
i=0

xi

2

⌉
and

k
2 −1∑
i=0

x2i+1 =
⌊

k−1∑
i=0

xi

2

⌋
.

Proof. Either x2i = x2i+1 for 0 ≤ i < k/2, or by Lemma 12.5.1, there exists a unique
j such that x2j = x2j+1 + 1 and x2i = x2i+1 for all i �= j , 0 ≤ i < k/2. In the first
case,

∑
x2i = ∑

x2i+1 = ∑
xi/2, and in the second case,

∑
x2i = ⌈∑

xi/2
⌉

and∑
x2i+1 = ⌊∑

xi/2
⌋

.

12.5 Counting networks 283

1 public class Bitonic {
2 Bitonic[] half; // two half-width bitonic networks
3 Merger merger; // final merger layer
4 final int width; // network width
5 public Bitonic(int myWidth) {
6 width = myWidth;
7 merger = new Merger(width);
8 if (width > 2) {
9 half = new Bitonic[]{new Bitonic(width/2), new Bitonic(width/2)};

10 }
11 }
12 public int traverse(int input) {
13 int output = 0;
14 int subnet = input / (width / 2);
15 if (width > 2) {
16 output = half[subnet].traverse(input - subnet * (width / 2));
17 }
18 return merger.traverse(output + subnet * (width / 2));
19 }
20 }

FIGURE 12.16

The Bitonic class.

Lemma 12.5.4. Let x0, . . . , xk−1 and y0, . . . , yk−1 be arbitrary sequences having the
step property. If

∑
xi = ∑

yi , then xi = yi for all 0 ≤ i < k.

Proof. Let m = ∑
xi = ∑

yi . By Lemma 12.5.1, xi = yi = ⌈
m−i

k

⌉
.

Lemma 12.5.5. Let x0, . . . , xk−1 and y0, . . . , yk−1 be arbitrary sequences having the
step property. If

∑
xi = ∑

yi + 1, then there exists a unique j , 0 ≤ j < k, such that
xj = yj + 1 and xi = yi for i �= j , 0 ≤ i < k.

Proof. Let m = ∑
xi = ∑

yi +1. By Lemma 12.5.1, xi = ⌈
m−i

k

⌉
and yi =

⌈
m−1−i

k

⌉
.

These two terms agree for all i, 0 ≤ i < k, except for the unique i such that i =
m − 1 (mod k).

We now show that the MERGER [w] network preserves the step property.

Lemma 12.5.6. If MERGER [2k] is quiescent (where k is a power of 2) and its
inputs x0, . . . , xk−1 and x′

0, . . . , x
′
k−1 both have the step property, then its output

y0, . . . , y2k−1 also has the step property.

Proof. We argue by induction on logk. It may be worthwhile to consult Fig. 12.17,
which shows an example of the proof structure for a MERGER [8] network.

If 2k = 2, MERGER [2k] is just a balancer, and its outputs are guaranteed to have
the step property by the definition of a balancer.

284 CHAPTER 12 Counting, sorting, and distributed coordination

FIGURE 12.17

The inductive proof that a MERGER [8] network correctly merges two width-4 sequences x
and x’ that have the step property into a single width-8 sequence y that has the step
property. The odd and even width-2 subsequences of x and x’ all have the step property.
Moreover, the difference in the number of tokens between the even sequence from one and
the odd sequence from the other is at most 1 (in this example, 11 and 12 tokens,
respectively). It follows from the induction hypothesis that the outputs z and z’ of the two
MERGER [4] networks have the step property, with at most 1 extra token in one of them.
This extra token must fall on a specific numbered wire (wire 3 in this case) leading into the
same balancer. In this figure, these tokens are darkened. They are passed to the
southern-most balancer, and the extra token is pushed north, ensuring the final output has
the step property.

If 2k > 2, let z0, . . . , zk−1 be the outputs of the first MERGER [k] subnetwork,
which merges the even subsequence of x with the odd subsequence of x′, and let
z′

0, . . . , z
′
k−1 be the outputs of the second MERGER [k] subnetwork. Since x and

x′ have the step property by assumption, so do their even and odd subsequences
(Lemma 12.5.2), and hence so do z and z′ (induction hypothesis). Furthermore,∑

zi = ⌈∑
xi/2

⌉ + ⌊∑
x′
i/2

⌋
and

∑
z′
i = ⌊∑

xi/2
⌋ + ⌈∑

x′
i/2

⌉
(Lemma 12.5.3).

A straightforward case analysis shows that
∑

zi and
∑

z′
i can differ by at most 1.

We claim that 0 ≤ yi − yj ≤ 1 for any i < j . If
∑

zi = ∑
z′
i , then Lemma 12.5.4

implies that zi = z′
i for 0 ≤ i < k/2. After the final layer of balancers,

yi − yj = z�i/2	 − z�j/2	,

and the result follows because z has the step property.
Similarly, if

∑
zi and

∑
z′
i differ by one, Lemma 12.5.5 implies that zi = z′

i

for 0 ≤ i < k/2, except for a unique � such that z� and z′
� differ by one. Let x =

min(z�, z
′
�), and thus, max(z�, z

′
�) = x + 1. From the step property for z and z′, we

have zi = z′
i = x + 1 for all i < �, and zi = z′

i = x for all i > �. Since z� and z′
�

are joined by a balancer with outputs y2� and y2�+1, it follows that y2� = x + 1 and
y2�+1 = x. Similarly, zi and z′

i for i �= � are joined by the same balancer. Thus, for
any i < �, y2i = y2i+1 = x + 1 and for any i > �, y2i = y2i+1 = x. The step property
follows by choosing c = 2� + 1 and applying Lemma 12.5.1.

12.5 Counting networks 285

The proof of the following theorem is now immediate.

Theorem 12.5.7. In any quiescent state, the outputs of BITONIC [w] have the step
property.

12.5.2.3 A periodic counting network
In this section, we show that the Bitonic network is not the only counting network
with depth O(log2w). We introduce a new counting network with the remarkable
property that it is periodic, consisting of a sequence of identical subnetworks, as
depicted in Fig. 12.18. We define the network BLOCK [k] as follows: When k is equal
to 2, the BLOCK [k] network consists of a single balancer. The BLOCK [2k] network
for larger k is constructed recursively. We start with two BLOCK [k] networks A and
B. Given an input sequence x, the input to A is xA, and the input to B is xB . Let y be
the output sequence for the two subnetworks, where yA is the output sequence for A

and yB the output sequence for B. The final stage of the network combines each yA
i

and yB
i in a single balancer, yielding final outputs z2i and z2i+1.

Fig. 12.19 describes the recursive construction of a BLOCK [8] network. The PE-
RIODIC [2k] network consists of log 2k BLOCK [2k] networks joined so that the ith

FIGURE 12.18

A PERIODIC [8] counting network constructed from three identical BLOCK [8] networks.

FIGURE 12.19

The left-hand side illustrates a BLOCK [8] network, into which feed two PERIODIC [4]
networks. The right-hand illustrates the physical layout of a MERGER [8] network. The
balancers are color-coded to match the logical structure in the left-hand figure.

286 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class Layer {
2 int width;
3 Balancer[] layer;
4 public Layer(int width) {
5 this.width = width;
6 layer = new Balancer[width];
7 for (int i = 0; i < width / 2; i++) {
8 layer[i] = layer[width-i-1] = new Balancer();
9 }

10 }
11 public int traverse(int input) {
12 int toggle = layer[input].traverse();
13 int hi, lo;
14 if (input < width / 2) {
15 lo = input;
16 hi = width - input - 1;
17 } else {
18 lo = width - input - 1;
19 hi = input;
20 }
21 if (toggle == 0) {
22 return lo;
23 } else {
24 return hi;
25 }
26 }
27 }

FIGURE 12.20

The Layer network.

output wire of one is the ith wire of the next. Fig. 12.18 is a PERIODIC [8] counting
network.2

12.5.2.4 A software periodic counting network
Here is how to implement the periodic network in software. We reuse the Balancer
class in Fig. 12.14. A single layer of a BLOCK [w] network is implemented by the
LAYER [w] network (Fig. 12.20). A LAYER [w] network joins input wires i and w −
i − 1 to the same balancer.

In the BLOCK [w] class (Fig. 12.21), after the token emerges from the initial
LAYER [w] network, it passes through one of two half-width BLOCK [w/2] networks
(called north and south).

2 While the BLOCK [2k] and MERGER [2k] networks may look the same, they are not: There is no per-
mutation of wires that yields one from the other.

12.5 Counting networks 287

1 public class Block {
2 Block north;
3 Block south;
4 Layer layer;
5 int width;
6 public Block(int width) {
7 this.width = width;
8 if (width > 2) {
9 north = new Block(width / 2);

10 south = new Block(width / 2);
11 }
12 layer = new Layer(width);
13 }
14 public int traverse(int input) {
15 int wire = layer.traverse(input);
16 if (width > 2) {
17 if (wire < width / 2) {
18 return north.traverse(wire);
19 } else {
20 return (width / 2) + south.traverse(wire - (width / 2));
21 }
22 } else {
23 return wire;
24 }
25 }
26 }

FIGURE 12.21

The Block network.

The PERIODIC [w] network (Fig. 12.22) is implemented as an array of logw

BLOCK [w] networks. Each token traverses each block in sequence, where the output
wire taken on each block is the input wire for its successor. (The chapter notes cite
the proof that the PERIODIC [w] is a counting network.)

12.5.3 Performance and pipelining
How does counting network throughput vary as a function of the number of threads
and the network width? For a fixed network width, throughput rises with the number
of threads up to a point, and then the network saturates, and throughput remains
constant or declines. To understand these results, let us think of a counting network
as a pipeline.

• If the number of tokens concurrently traversing the network is less than the number
of balancers, then the pipeline is partly empty, and throughput suffers.

288 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class Periodic {
2 Block[] block;
3 public Periodic(int width) {
4 int logSize = 0;
5 int myWidth = width;
6 while (myWidth > 1) {
7 logSize++;
8 myWidth = myWidth / 2;
9 }

10 block = new Block[logSize];
11 for (int i = 0; i < logSize; i++) {
12 block[i] = new Block(width);
13 }
14 }
15 public int traverse(int input) {
16 int wire = input;
17 for (Block b : block) {
18 wire = b.traverse(wire);
19 }
20 return wire;
21 }
22 }

FIGURE 12.22

The Periodic network.

• If the number of concurrent tokens is greater than the number of balancers, then
the pipeline becomes clogged because too many tokens arrive at each balancer at
the same time, resulting in per-balancer contention.

• Throughput is maximized when the number of tokens is roughly equal to the num-
ber of balancers.

If an application needs a counting network, then the best network size to choose is one
that ensures that the number of tokens traversing the balancer at any time is roughly
equal to the number of balancers.

12.6 Diffracting trees
Counting networks provide a high degree of pipelining, so throughput is largely in-
dependent of network depth. Latency, however, does depend on network depth. Of
the counting networks we have seen, the most shallow has depth �(log2 w). Can
we design a logarithmic-depth counting network? The good news is yes, such net-
works exist, but the bad news is that for all known constructions, the constant factors
involved render these constructions impractical.

12.6 Diffracting trees 289

FIGURE 12.23

The TREE [8] class: a tree that counts. Note how the network maintains the step property.

Here is an alternative approach: Consider a set of balancers with a single input
wire and two output wires, with the top and bottom labeled 0 and 1, respectively.
The TREE [w] network (depicted in Fig. 12.23) is a binary tree structured as fol-
lows: Let w be a power of two, and define TREE [2k] inductively. When k is equal
to 1, TREE [2k] consists of a single balancer with output wires y0 and y1. For k > 1,
construct TREE [2k] from two TREE [k] trees and one additional balancer. Make the
input wire x of the single balancer the root of the tree and connect each of its output
wires to the input wire of a tree of width k. Redesignate output wires y0, y1, . . . , yk−1
of the TREE [k] subtree extending from the “0” output wire as the even output wires
y0, y2, . . . , y2k−2 of the final TREE [2k] network and the wires y0, y1, . . . , yk−1 of
the TREE [k] subtree extending from the balancer’s “1” output wire as the odd output
wires y1, y3, . . . , y2k−1 of the final TREE [2k] network.

To understand why the TREE [2k] network has the step property in a quiescent
state, let us assume inductively that a quiescent TREE [k] has the step property. The
root balancer passes at most one token more to the TREE [k] subtree on its “0” (top)
wire than on its“1” (bottom) wire. The tokens exiting the top TREE [k] subtree have
a step property differing from that of the bottom subtree at most one wire j among
their k output wires. The TREE [2k] outputs are a perfect shuffle of the wires leaving
the two subtrees, and it follows that the two step-shaped token sequences of width k

form a new step of width 2k, where the possible single excess token appears at the
higher of the two wires j , that is, the one from the top TREE [k] tree.

The TREE [w] network may be a counting network, but is it a good counting net-
work? The good news is that it has shallow depth: While a BITONIC [w] network has
depth log2 w, the TREE [w] network depth is just logw. The bad news is contention:
Every token that enters the network passes through the same root balancer, causing
that balancer to become a bottleneck. In general, the higher the balancer in the tree,
the higher the contention.

We can reduce contention by exploiting a simple observation similar to one we
made about the EliminationBackoffStack of Chapter 11:

290 CHAPTER 12 Counting, sorting, and distributed coordination

If an even number of tokens pass through a balancer, the outputs are evenly bal-
anced on the top and bottom wires, but the balancer’s state remains unchanged.

The basic idea behind diffracting trees is to place a "prism" at each balancer,
an out-of-band mechanism similar to the EliminationArray, which enables tokens
(threads) accessing a stack to exchange items. The prism allows tokens to pair off at
random array locations and agree to diffract in different directions, that is, to exit on
different wires without traversing the balancer’s toggle bit or changing its state. A
token traverses the balancer’s toggle bit only if it is unable to pair off with another
token within a reasonable period of time. If it did not manage to diffract, the token
toggles the bit to determine which way to go. It follows that we can avoid excessive
contention at balancers if the prism can pair off enough tokens without introducing
too much contention.

A Prism is an array of Exchanger<Integer> objects, like the EliminationArray. An
Exchanger<T> object permits two threads to exchange T values. If thread A calls the
object’s exchange() method with argument a, and B calls it with argument b, then
A’s call returns b and B’s call returns a. The first thread to arrive is blocked until the
second arrives. The call includes a timeout argument allowing a thread to proceed if
it is unable to exchange a value within a reasonable duration.

Before thread A visits the balancer’s toggle bit, it visits the associated Prism. In
the Prism, it picks an array entry at random, and calls that slot’s exchange() method,
providing its own thread ID as an exchange value. If it succeeds in exchanging IDs
with another thread, then the thread with the lower ID exits on wire 0, and the one
with the higher ID on wire 1.

Fig. 12.24 shows a Prism implementation. The constructor takes as an argument
the capacity of the prism (the maximal number of distinct exchangers). The Prism

1 public class Prism {
2 private static final int duration = 100;
3 Exchanger<Integer>[] exchanger;
4 public Prism(int capacity) {
5 exchanger = (Exchanger<Integer>[]) new Exchanger[capacity];
6 for (int i = 0; i < capacity; i++) {
7 exchanger[i] = new Exchanger<Integer>();
8 }
9 }

10 public boolean visit() throws TimeoutException,InterruptedException {
11 int me = ThreadID.get();
12 int slot = ThreadLocalRandom.current().nextInt(exchanger.length);
13 int other = exchanger[slot].exchange(me,duration,TimeUnit.MILLISECONDS);
14 return (me < other);
15 }
16 }

FIGURE 12.24

The Prism class.

12.6 Diffracting trees 291

1 public class DiffractingBalancer {
2 Prism prism;
3 Balancer toggle;
4 public DiffractingBalancer(int capacity) {
5 prism = new Prism(capacity);
6 toggle = new Balancer();
7 }
8 public int traverse() {
9 boolean direction = false;

10 try{
11 if (prism.visit())
12 return 0;
13 else
14 return 1;
15 } catch(TimeoutException ex) {
16 return toggle.traverse();
17 }
18 }
19 }

FIGURE 12.25

The DiffractingBalancer class: If the caller pairs up with a concurrent caller through the
prism, it does not need to traverse the balancer.

class provides a single method, visit(), that chooses the random exchanger entry.
The visit() call returns true if the caller should exit on the top wire, false if the bot-
tom wire, and it throws a TimeoutException if the timeout expires without exchanging
a value. The caller acquires its thread ID (line 11), chooses a random entry in the array
(line 12), and tries to exchange its own ID with its partner’s (line 13). If it succeeds,
it returns a Boolean value, and if it times out, it rethrows TimeoutException.

A DiffractingBalancer (Fig. 12.25), like a regular Balancer, provides a traverse()
method whose return value alternates between 0 and 1. This class has two fields:
prism is a Prism, and toggle is a Balancer. When a thread calls traverse(), it tries to
find a partner through the prism. If it succeeds, then the partners return with distinct
values, without creating contention at the toggle (line 11). Otherwise, if the thread is
unable to find a partner, it traverses (line 16) the toggle (implemented as a balancer).

The DiffractingTree class (Fig. 12.26) has two fields. The child array is a two-
element array of child trees. The root field is a DiffractingBalancer that alternates
between forwarding calls to the left or right subtree. Each DiffractingBalancer has
a capacity, which is actually the capacity of its internal prism. Initially this capacity
is the size of the tree, and the capacity shrinks by half at each level.

As with the EliminationBackoffStack, DiffractingTree performance depends on
two parameters: prism capacities and timeouts. If the prisms are too big, threads miss
one another, causing excessive contention at the balancer. If the prisms are too small,
then too many threads concurrently access each exchanger in a prism, resulting in

292 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class DiffractingTree {
2 DiffractingBalancer root;
3 DiffractingTree[] child;
4 int size;
5 public DiffractingTree(int mySize) {
6 size = mySize;
7 root = new DiffractingBalancer(size);
8 if (size > 2) {
9 child = new DiffractingTree[]{

10 new DiffractingTree(size/2),
11 new DiffractingTree(size/2)};
12 }
13 }
14 public int traverse() {
15 int half = root.traverse();
16 if (size > 2) {
17 return (2 * (child[half].traverse()) + half);
18 } else {
19 return half;
20 }
21 }
22 }

FIGURE 12.26

The DiffractingTree class: fields, constructor, and traverse() method.

excessive contention at the exchangers. If prism timeouts are too short, threads miss
one another, and if they are too long, threads may be delayed unnecessarily. There
are no hard-and-fast rules for choosing these values, since the optimal values depend
on the load and the characteristics of the underlying multiprocessor architecture.

Nevertheless, experimental evidence suggests that it is sometimes possible to
choose these values to outperform both the CombiningTree and CountingNetwork
classes. Here are some heuristics that work well in practice: Because balancers higher
in the tree have more contention, we use larger prisms near the top of the tree, and
add the ability to dynamically shrink and grow the random range chosen. The best
timeout interval choice depends on the load: If only a few threads are accessing the
tree, then time spent waiting is mostly wasted, while if there are many threads, then
time spent waiting pays off. Adaptive schemes are promising: lengthen the timeout
while threads succeed in pairing off, and shorten it otherwise.

12.7 Parallel sorting
Sorting is one of the most important computational tasks, dating back to Hollerith’s
tabulating machine in the 19th century, through the first electronic computer systems

12.8 Sorting networks 293

in the 1940s, and culminating today, when a high fraction of programs use sorting in
some form or another. As most computer science undergraduates learn early on, the
choice of sorting algorithm depends crucially on the number of items being sorted,
the numerical properties of their keys, and whether the items reside in memory or in
an external storage device. Parallel sorting algorithms can be classified in the same
way.

We present two classes of sorting algorithms: sorting networks, which typically
work well for small in-memory data sets, and sample sorting algorithms, which work
well for large data sets in external memory. In our presentation, we sacrifice perfor-
mance for simplicity. More complex techniques are cited in the chapter notes.

12.8 Sorting networks
In much the same way that a counting network is a network of balancers, a sorting
network is a network of comparators.3 A comparator is a computing element with
two input wires and two output wires, called the top and bottom wires. It receives two
numbers on its input wires, and forwards the larger to its top wire and the smaller to
its bottom wire. A comparator, unlike a balancer, is synchronous: It outputs values
only when both inputs have arrived (see Fig. 12.27).

A comparison network, like a balancing network, is an acyclic network of com-
parators. An input value is placed on each of its w input lines. These values pass
through each layer of comparators synchronously, finally leaving together on the net-
work output wires.

A comparison network with input values xi and output values yi , i ∈ {0 . . .w−1},
each on wire i, is a valid sorting network if its output values are the input values sorted
in descending order, that is, yi−1 ≥ yi .

The following classic theorem simplifies the process of proving that a given net-
work sorts.

Theorem 12.8.1 (0-1 Principle). If a sorting network sorts every input sequence of
0 s and 1 s, then it sorts any sequence of input values.

FIGURE 12.27

A comparator.

3 Historically sorting networks predate counting networks by several decades.

294 CHAPTER 12 Counting, sorting, and distributed coordination

12.8.1 Designing a sorting network
There is no need to design sorting networks, because we can recycle counting net-
work layouts. A balancing network and a comparison network are isomorphic if one
can be constructed from the other by replacing balancers with comparators, or vice
versa.

Theorem 12.8.2. If a balancing network counts, then its isomorphic comparison
network sorts.

Proof. We construct a mapping from steps in the comparison network to steps in the
isomorphic balancing network transitions. By Theorem 12.8.1, a comparison network
which sorts all sequences of 0 s and 1 s is a sorting network. Take any arbitrary
sequence of 0 s and 1 s as inputs to the comparison network, and for the balancing
network, place a token on each 1 input wire and no token on each 0 input wire. If
we run both networks in lockstep, the balancing network simulates the comparison
network.

The proof is by induction on the depth of the network. For level 0 the claim holds
by construction. Assuming it holds for wires of a given level k, let us prove it holds for
level k + 1. On every comparator where two 1 s meet in the comparison network, two
tokens meet in the balancing network, so one 1 leaves on each wire in the comparison
network on level k + 1, and one token leaves on each wire in the balancing network
on level k + 1. On every comparator where two 0 s meet in the comparison network,
no tokens meet in the balancing network, so a 0 leaves on each level k + 1 wire in
the comparison network, and no tokens leave in the balancing network. On every
comparator where a 0 and 1 meet in the comparison network, the 1 leaves on the
north (upper) wire and the 1 on the south (lower) wire on level k + 1, while in the
balancing network the token leaves on the north wire, and no token leaves on the
south wire.

If the balancing network is a counting network, that is, it has the step property
on its output level wires, then the comparison network must have sorted the input
sequence of 0 s and 1 s.

The converse is false: not all sorting networks are counting networks. We leave it
as an exercise to verify that the ODDEVEN network in Fig. 12.28 is a sorting network
but not a counting network.

Corollary 12.8.3. Comparison networks isomorphic to BITONIC [] and PERIODIC []
networks are sorting networks.

Sorting a set of size w by comparisons requires �(w logw) comparisons. A sort-
ing network with w input wires has at most O(w) comparators in each level, so its
depth can be no smaller than �(logw).

Corollary 12.8.4. The depth of any counting network is at least �(logw).

12.8 Sorting networks 295

FIGURE 12.28

The ODDEVEN sorting network.

12.8.1.1 A bitonic sorting algorithm
We can represent any width-w sorting network, such as BITONIC [w], as a collection
of d layers of up to w/2 balancers each. We can represent a sorting network layout
as a table, where each entry is a pair that describes which two wires meet at that
balancer at that layer. (For example, in the BITONIC [4] network of Fig. 12.11, wires
0 and 1 meet at the first balancer in the first layer, and wires 0 and 3 meet at the
first balancer of the second layer.) Let us assume, for simplicity, that we are given an
unbounded table bitonicTable[i][d][j], where each array entry contains the index of
the associated north (j = 0) or south (j = 1) input wire to balancer i at depth d .

An in-place array-based sorting algorithm takes as input an array of items to be
sorted (here we assume these items have unique integer keys) and returns the same ar-
ray with the items sorted by key. Here is how we implement BitonicSort, an in-place
array-based sorting algorithm based on a bitonic sorting network. Let us assume that
we wish to sort an array of 2 · p · s elements, where p is the number of threads (and
typically also the maximal number of available processors on which the threads run)
and p · s is a power of 2. The network has p · s comparators at every layer.

Each of the p threads emulates the work of s comparators. Unlike counting net-
works, which act like uncoordinated raves, sorting networks are synchronous: All
inputs to a comparator must arrive before it can compute the outputs. The algorithm
proceeds in rounds. In each round, a thread performs s comparisons in a layer of the
network, switching the array entries of items if necessary, so that they are properly or-
dered. In each network layer, the comparators join different wires, so no two threads
attempt to exchange the items of the same entry, avoiding the need to synchronize
operations at any given layer.

To ensure that the comparisons of a given round (layer) are complete before pro-
ceeding to the next one, we use a synchronization construct called a Barrier (studied
in more detail in Chapter 18). A barrier for p threads provides an await() method,

296 CHAPTER 12 Counting, sorting, and distributed coordination

1 public class BitonicSort {
2 static final int[][][] bitonicTable = ...;
3 static final int width = ...; // counting network width
4 static final int depth = ...; // counting network depth
5 static final int p = ...; // number of threads
6 static final int s = ...; // a power of 2
7 Barrier barrier;
8 ...
9 public <T> void sort(Item<T>[] items) {

10 int i = ThreadID.get();
11 for (int d = 0; d < depth; d++) {
12 barrier.await();
13 for (int j = 0; j < s; j++) {
14 int north = bitonicTable[(i*s)+j][d][0];
15 int south = bitonicTable[(i*s)+j][d][1];
16 if (items[north].key < items[south].key) {
17 Item<T> temp = items[north];
18 items[north] = items[south];
19 items[south] = temp;
20 }
21 }
22 }
23 }

FIGURE 12.29

The BitonicSort class.

whose call does not return until all p threads have called await(). The BitonicSort
implementation appears in Fig. 12.29. Each thread proceeds through the layers of
the network round by round. In each round, it awaits the arrival of the other threads
(line 12), ensuring that the items array contains the prior round’s results. It then em-
ulates the behavior of s balancers at that layer by comparing the items at the array
positions corresponding to the comparator’s wires, and exchanging them if their keys
are out of order (lines 14–19).

The BitonicSort takes O(s log2 p) time for p threads running on p processors,
which, if s is constant, is O(log2 p) time.

12.9 Sample sorting
The BitonicSort is appropriate for small data sets that reside in memory. For larger
data sets (where n, the number of items, is much larger than p, the number of threads),
especially ones that reside on out-of-memory storage devices, we need a different
approach. Because accessing a data item is expensive, we must maintain as much
locality of reference as possible, so having a single thread sort items sequentially is

12.9 Sample sorting 297

cost-effective. A parallel sort like BitonicSort, where an item is accessed by multiple
threads, is simply too expensive.

We attempt to minimize the number of threads that access a given item through
randomization. This use of randomness differs from that in the DiffractingTree,
where it was used to distribute memory accesses. Here we use randomness to guess
the distribution of items in the data set to be sorted.

Since the data set to be sorted is large, we split it into buckets, throwing into each
bucket the items that have keys within a given range. Each thread then sorts the items
in one of the buckets using a sequential sorting algorithm, and the result is a sorted
set (when viewed in the appropriate bucket order). This algorithm is a generalization
of the well-known quicksort algorithm, but instead of having a single splitter key to
divide the items into two subsets, we have p − 1 splitter keys that split the input set
into p subsets.

The algorithm for n items and p threads involves three phases:

1. Threads choose p − 1 splitter keys to partition the data set into p buckets. The
splitters are published so all threads can read them.

2. Each thread sequentially processes n/p items, moving each item to its bucket,
where the appropriate bucket is determined by performing a binary search with
the item’s key among the splitter keys.

3. Each thread sequentially sorts the items in its bucket.

Barriers between the phases ensure that all threads have completed one phase before
the next starts.

Before we consider the first phase, we look at the second and third phases.
The second phase’s time complexity is (n/p) logp, consisting of reading each

item from memory, disk, or tape, followed by a binary search among p splitters
cached locally, and finally adding the item into the appropriate bucket. The buck-
ets into which the items are moved could be in memory, on disk, or on tape, so the
dominating cost is that of the n/p accesses to the stored data items.

Let b be the number of items in a bucket. The time complexity of the third phase
for a given thread is O(b logb), to sort the items using a sequential version of, say,
quicksort.4 This part has the highest cost because it consists of read and write phases
that access relatively slow memory, such as disk or tape.

The time complexity of the algorithm is dominated by the thread with the most
items in its bucket in the third phase. It is therefore important to choose the splitters
to be as evenly distributed as possible, so each bucket receives approximately n/p

items in the second phase.
The key to choosing good splitters is to have each thread pick a set of sample

splitters that represent its own n/p size data set, and choose the final p − 1 splitters
from among all the sample splitter sets of all threads. Each thread selects uniformly
at random s keys from its data set of size n/p. (In practice, it suffices to choose s to

4 If the item’s key size is known and fixed, one could use algorithms like Radixsort.

298 CHAPTER 12 Counting, sorting, and distributed coordination

be 32 or 64 keys.) Each thread then participates in running the parallel BitonicSort
(Fig. 12.29) on the s · p sample keys selected by the p threads. Finally, each thread
reads the p − 1 splitter keys in positions s,2s, . . . , (p − 1)s in the sorted set of split-
ters, and uses these as the splitters in the second phase. This choice of s samples, and
the later choice of the final splitters from the sorted set of all samples, reduces the
effects of an uneven key distribution among the n/p size data sets accessed by the
threads.

For example, a sample sort algorithm could choose to have each thread pick
p − 1 splitters for its second phase from within its own n/p size data set, without
ever communicating with other threads. The problem with this approach is that if the
distribution of the data is uneven, the size of the buckets may differ greatly, and per-
formance would suffer. For example, if the number of items in the largest bucket is
doubled, so is the worst-case time complexity of the sorting algorithm.

The first phase’s complexity is s (a constant) to perform the random sampling,
and O(log2 p) for the parallel Bitonic sort. The overall time complexity of sample
sort with a good splitter set (where every bucket gets O(n/p) of the items) is

O(log2 p) + O((n/p) logp) + O((n/p) log(n/p)),

which overall is O((n/p) log(n/p)).

12.10 Distributed coordination
This chapter covered several distributed coordination patterns. Some, such as com-
bining trees, sorting networks, and sample sorting, have high parallelism and low
overhead. All these algorithms contain synchronization bottlenecks, that is, points
in the computation where threads must wait to rendezvous with others. In combin-
ing trees, threads must synchronize to combine; when sorting, threads synchronize at
barriers.

In other schemes, such as counting networks and diffracting trees, threads never
wait for one another. (Although we implement balancers using synchronized meth-
ods, they could be implemented in a lock-free manner using compareAndSet().) Here,
the distributed structures pass information from one thread to another, and while a
rendezvous could prove advantageous (as in the Prism array), it is not necessary.

Randomization, which is useful in many places, helps to distribute work evenly.
For diffracting trees, randomization distributes work over multiple memory locations,
reducing the chance that too many threads simultaneously access the same location.
For sample sort, randomization helps distribute work evenly among buckets, which
threads later sort in parallel.

Finally, we saw that pipelining can ensure that some data structures can have high
throughput, even though they have high latency.

Although we focus on shared-memory multiprocessors, it is worth mentioning
that the distributed algorithms and structures considered in this chapter also work in

12.11 Chapter notes 299

message passing architectures. The message passing model might be implemented
directly in hardware, as in a network of processors, or it could be provided on top of
a shared-memory architecture through a software layer such as MPI.

In shared-memory architectures, switches (such as combining tree nodes or bal-
ancers) are naturally implemented as shared-memory counters. In message passing
architectures, switches are naturally implemented as processor-local data structures,
where wires that link one processor to another also link one switch to another. When
a processor receives a message, it atomically updates its local data structure and for-
wards messages to the processors managing other switches.

12.11 Chapter notes
The idea behind combining trees is due to Allan Gottlieb, Ralph Grishman, Clyde
Kruskal, Kevin McAuliffe, Larry Rudolph, and Marc Snir [53]. The software
CombiningTree presented here is adapted from an algorithm by PenChung Yew, Nian-
Feng Tzeng, and Duncan Lawrie [168] with modifications by Maurice Herlihy, Beng-
Hong Lim, and Nir Shavit [71], all based on an original proposal by James Goodman,
Mary Vernon, and Philip Woest [51].

Counting networks were invented by Jim Aspnes, Maurice Herlihy, and Nir Shavit
[14]. Counting networks are related to sorting networks, including the groundbreak-
ing Bitonic network of Kenneth Batcher [16], and the periodic network of Martin
Dowd, Yehoshua Perl, Larry Rudolph, and Mike Saks [40]. Miklós Ajtai, János Kom-
lós, and Endre Szemerédi discovered the AKS sorting network, an O(logw) depth
sorting network [8]. (This asymptotic expression hides large constants that make net-
works based on AKS impractical.)

Mike Klugerman and Greg Plaxton [93,94] were the first to provide an AKS-based
counting network construction with O(logw) depth. The 0-1 principle for sorting
networks is by Donald Knuth [95]. A similar set of rules for balancing networks
is provided by Costas Busch and Marios Mavronicolas [26]. Diffracting trees were
invented by Nir Shavit and Asaph Zemach [158].

Sample sorting was suggested by John Reif and Leslie Valiant [148] and by
Huang and Chow [80]. The sequential Quicksort algorithm to which all sample
sorting algorithms relate is due to Tony Hoare [76]. There are numerous parallel
radix sort algorithms in the literature such as the one by Daniel Jiménez-González,
Joseph Larriba-Pey, and Juan Navarro [91] or the one by Shin-Jae Lee, Minsoo Jeon,
Dongseung Kim, and Andrew Sohn [111].

Monty Python and the Holy Grail was written by Graham Chapman, John Cleese,
Terry Gilliam, Eric Idle, Terry Jones, and Michael Palin and codirected by Terry
Gilliam and Terry Jones [28].

300 CHAPTER 12 Counting, sorting, and distributed coordination

12.12 Exercises
Exercise 12.1. Prove Lemma 12.5.1.

Exercise 12.2. Implement a trinary CombiningTree, that is, one that allows up to three
threads coming from three subtrees to combine at a given node. Can you estimate the
advantages and disadvantages of such a tree when compared with a binary combining
tree?

Exercise 12.3. Implement a CombiningTree using Exchanger objects to perform the
coordination among threads ascending and descending the tree. What are the possi-
ble disadvantages of your construction when compared to the CombiningTree class
presented in Section 12.3?

Exercise 12.4. Implement the cyclic array-based shared pool described in Sec-
tion 12.2 using two simple counters and a ReentrantLock per array entry.

Exercise 12.5. Provide an efficient lock-free implementation of a Balancer.

Exercise 12.6. (Hard) Provide an efficient wait-free implementation of a Balancer
(i.e., not by using the universal construction).

Exercise 12.7. Prove that the TREE [2k] balancing network constructed in Sec-
tion 12.6 is a counting network, that is, that in any quiescent state, the sequences
of tokens on its output wires have the step property.

Exercise 12.8. Let B be a width-w balancing network of depth d in a quiescent state
s. Let n = 2d . Prove that if n tokens enter the network on the same wire, pass through
the network, and exit, then B will have the same state after the tokens exit as it did
before they entered.

Exercise 12.9. Let X and Y be k-smooth sequences of length w. A matching layer
of balancers for X and Y is one where each element of X is joined by a balancer to
an element of Y in a one-to-one correspondence.

Prove that if X and Y are each k-smooth and Z is the result of matching X and Y ,
then Z is (k + 1)-smooth.

Exercise 12.10. Consider a BLOCK [k] network in which each balancer has been
initialized to an arbitrary state (either up or down). Show that no matter what the
input distribution is, the output distribution is (logk)-smooth.

Hint: You may use the claim in Exercise 12.9.

Exercise 12.11. A smoothing network is a balancing network that ensures that in any
quiescent state, the output sequence is 1-smooth.

Counting networks are smoothing networks, but not vice versa.
A Boolean sorting network is one in which all inputs are guaranteed to be

Boolean. Define a pseudosorting balancing network to be a balancing network with
a layout isomorphic to a Boolean sorting network.

12.12 Exercises 301

Let N be the balancing network constructed by taking a smoothing network S of
width w, taking a pseudosorting balancing network P also of width w, and joining
the ith output wire of S to the ith input wire of P .

Show that N is a counting network.

Exercise 12.12. A 3-balancer is a balancer with three input lines and three output
lines. Like its 2-line relative, its output sequences have the step property in any quies-
cent state. Construct a depth-3 counting network with six input and output lines from
2-balancers and 3-balancers. Explain why it works.

Exercise 12.13. Suggest ways to modify the BitonicSort class so that it will sort an
input array of width w, where w is not a power of 2.

Exercise 12.14. Consider the following w-thread counting algorithm. Each thread
first uses a bitonic counting network of width w to take a counter value v. It then goes
through a waiting filter, in which each thread waits for threads with lower values to
catch up.

The waiting filter is an array filter[] of w Boolean values. Define the phase
function

φ(v) = �(v/w)	 mod 2.

A thread that exits with value v spins on filter[(v − 1) mod n] until that value is
set to φ(v − 1). The thread responds by setting filter[v mod w] to φ(v), and then
returns v.

1. Explain why this counter implementation is linearizable.
2. An exercise here shows that any linearizable counting network has depth at least

w. Explain why the filter[] construction does not contradict this claim.
3. On a bus-based multiprocessor, would this filter[] construction have better

throughput than a single variable protected by a spin lock? Explain.

Exercise 12.15. If a sequence X = x0, . . . xw−1 is k-smooth, then the result of pass-
ing X through a balancing network is k-smooth.

Exercise 12.16. Prove that the BITONIC [w] network has depth (logw)(1+ logw)/2
and uses (w logw)(1 + logw)/4 balancers.

Exercise 12.17. Show that the OddEven network in Fig. 12.28 is a sorting network
but not a counting network.

Exercise 12.18. Can counting networks do anything besides increments? Consider
a new kind of token, called an antitoken, which we use for decrements. Recall that
when a token visits a balancer, it executes getAndComplement(): It atomically reads
the toggle value and complements it, and then departs on the output wire indicated
by the old toggle value. Instead, an antitoken complements the toggle value, and then
departs on the output wire indicated by the new toggle value. Informally, an antitoken
“cancels” the effect of the most recent token on the balancer’s toggle state, and vice
versa.

302 CHAPTER 12 Counting, sorting, and distributed coordination

1 public synchronized int antiTraverse() {
2 try {
3 if (toggle) {
4 return 1;
5 } else {
6 return 0;
7 }
8 } finally {
9 toggle = !toggle;

10 }
11 }

FIGURE 12.30

The antiTraverse() method.

Instead of simply balancing the number of tokens that emerge on each wire, we
assign a weight of +1 to each token and −1 to each antitoken. We generalize the
step property to require that the sums of the weights of the tokens and antitokens that
emerge on each wire have the step property. We call this property the weighted step
property.

Fig. 12.30 shows an antiTraverse() method that moves an antitoken though a
balancer. (Other networks would need different antiTraverse() methods.)

Let B be a width-w balancing network of depth d in a quiescent state s. Let
n = 2d . Show that if n tokens enter the network on the same wire, pass through the
network, and exit, then B will have the same state after the tokens exit as it did before
they entered.

Exercise 12.19. Let B be a balancing network in a quiescent state s, and suppose a
token enters on wire i and passes through the network, leaving the network in state
s′. Show that if an antitoken now enters on wire i and passes through the network,
then the network goes back to state s.

Exercise 12.20. Show that if balancing network B is a counting network for tokens
alone, then it is also a balancing network for tokens and antitokens.

Exercise 12.21. A switching network is a directed graph, where edges are called
wires and nodes are called switches. Each thread shepherds a token through the net-
work. Switches and tokens are allowed to have internal states. A token arrives at a
switch via an input wire. In one atomic step, the switch absorbs the token, changes its
state and possibly the token’s state, and emits the token on an output wire. Here, for
simplicity, switches have two input and output wires. Note that switching networks
are more powerful than balancing networks, since switches can have arbitrary state
(instead of a single bit) and tokens also have state.

An adding network is a switching network that allows threads to add (or subtract)
arbitrary values.

12.12 Exercises 303

We say that a token is in front of a switch if it is on one of the switch’s input
wires. Start with the network in a quiescent state q0, where the next token to run will
take value 0. Imagine we have one token t of weight a and n–1 tokens t1, . . . , tn−1
all of weight b, where b > a, each on a distinct input wire. Denote by S the set of
switches that t traverses if it traverses the network by starting in q0.

Prove that if we run the t1, . . . , tn−1 one at a time though the network, we can halt
each ti in front of a switch of S .

At the end of this construction, n − 1 tokens are in front of switches of S . Since
switches have two input wires, it follows that t’s path through the network encom-
passes at least n − 1 switches, so any adding network must have depth at least n − 1,
where n is the maximum number of concurrent tokens. This bound is discouraging
because it implies that the size of the network depends on the number of threads
(also true for CombiningTrees, but not counting networks), and that the network has
inherently high latency.

Exercise 12.22. Extend the proof of Exercise 12.21 to show that a linearizable count-
ing network has depth at least n.

13
CHAPTER

Concurrent hashing and
natural parallelism

13.1 Introduction
In earlier chapters, we studied how to extract parallelism from data structures like
queues, stacks, and counters, which seemed to provide few opportunities for paral-
lelism. In this chapter we take the opposite approach. We study concurrent hashing,
a problem that seems to be “naturally parallelizable” or, using a more technical term,
disjoint-access-parallel, meaning that concurrent method calls are likely to access
disjoint locations, implying that there is little need for synchronization.

We study hashing in the context of Set implementations. Recall that the Set inter-
face provides the following methods:

• add(x) adds x to the set, and returns true if x was absent, and false otherwise;
• remove(x) removes x from the set, and returns true if x was present, and false

otherwise; and
• contains(x) returns true if x is present, and false otherwise.

In sequential programming, hashing is often used to implement these methods with
constant average time complexity. In this chapter, we aim to do the same for concur-
rent Set implementations. (By contrast, the Set implementations of Chapter 9 require
time linear in the size of the set.) Although hashing seems naturally parallelizable,
devising an effective concurrent hash-based Set implementations is far from trivial.

When designing Set implementations, we should keep the following principle
in mind: We can buy more memory, but we cannot buy more time. Between a fast
algorithm that consumes more memory and a slower algorithm that consumes less
memory, we tend to prefer the faster algorithm (within reason).

A hash set (sometimes called a hash table) is an efficient way to implement a
set. A hash set is typically implemented as an array, called the table. Each table
entry is a reference to zero or more items. A hash function maps items to integers
so that distinct items usually map to distinct values. (Java provides each object with
a hashCode() method that serves this purpose.) To add, remove, or test an item for
membership, apply the hash function to the item (modulo the table size) to identify
the table entry associated with that item. (We call this step hashing the item.)

Any hash set algorithm must deal with collisions: what to do when distinct items
hash to the same table entry. Closed addressing simply stores a set of items, tradi-
tionally called a bucket, at each entry. Open addressing attempts to find an alternative
table entry for the item, for example by applying alternative hash functions.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00023-9
Copyright © 2021 Elsevier Inc. All rights reserved.

305

306 CHAPTER 13 Concurrent hashing and natural parallelism

It is sometimes necessary to resize the table. In closed-address hash sets, buckets
may become too large to search efficiently. In open-address hash sets, the table may
become too full to find alternative table entries.

Anecdotal evidence suggests that in most applications, sets are subject to the fol-
lowing distribution of method calls: 90% contains(), 9% add(), and 1% remove()
calls. As a practical matter, sets are more likely to grow than to shrink, so we fo-
cus here on extensible hashing, in which hash sets only grow (shrinking them is a
problem for the exercises).

13.2 Closed-address hash sets
We start by defining a base hash set implementation common to all the concurrent
closed-address hash sets we consider here. Later, we extend the base hash set with
different synchronization mechanisms.

The BaseHashSet<T> class is an abstract class, that is, it does not implement all
its methods. Fig. 13.1 shows its fields, constructor, and abstract methods. The table[]
field is an array of buckets, each of which is a set implemented as a list. For conve-
nience, we use ArrayList<T>, which supports the standard sequential add(), remove(),
and contains() methods. We sometimes refer to the length of the table[] array, that
is, the number of buckets in it, as its capacity. The setSize field stores the number of
items in the set. The constructor takes the initial capacity of the table as an argument.

PRAGMA 13.2.1

Here and elsewhere, we use the standard Java List<T> interface (from package
java.util). A List<T> is an ordered collection of T objects, where T is a type. It
specifies many methods, of which we use the following: add(x), which appends
x to the end of the list; get(i), which returns (but does not remove) the item at
position i; and contains(x), which returns true if the list contains x.

The List interface is implemented by many classes. Here, we use the ArrayList
class for convenience.

The abstract methods of BaseHashSet<T> class, which it does not implement, are:
acquire(x), which acquires the locks necessary to manipulate item x; release(x),
which releases them; resize(), which doubles the capacity of the table[] array; and
policy(), which decides whether to resize. The acquire(x) method must be reentrant,
meaning that if a thread that has already called acquire(x) makes the same call, then
it will proceed without deadlocking with itself.

Fig. 13.2 shows the contains(x) and add(x) methods of the BaseHashSet<T> class.
Each method first calls acquire(x) to perform the necessary synchronization and then
enters a try block whose finally block calls release(x). The contains(x) method
simply tests whether x is present in the associated bucket (line 21), while add(x) adds
x to the list if it is not already present (line 30).

13.2 Closed-address hash sets 307

1 public abstract class BaseHashSet<T> {
2 protected volatile List<T>[] table;
3 protected AtomicInteger setSize;
4 public BaseHashSet(int capacity) {
5 setSize = new AtomicInteger(0);
6 table = (List<T>[]) new List[capacity];
7 for (int i = 0; i < capacity; i++) {
8 table[i] = new ArrayList<T>();
9 }

10 }
11 ...
12 public abstract void acquire(T x);
13 public abstract void release(T x);
14 public abstract void resize();
15 public abstract boolean policy();
16 }

FIGURE 13.1

BaseHashSet<T> class: fields, constructor, and abstract methods.

How big should the bucket array be to ensure that method calls take constant
expected time? Consider an add(x) call. The first step, hashing x to determine the
bucket, takes constant time. The second step, checking whether x is in the bucket,
requires traversing the list. This traversal takes constant expected time only if the
lists have constant expected length, so the table capacity should be proportional to
the number of items in the set, that is, the size of the set. Because the set may vary
in size over time, to ensure that method call times remain (more or less) constant,
we must occasionally resize the table to ensure that list lengths remain (more or less)
constant.

We still need to decide when to resize the table, and how resize() synchronizes
with other methods. There are many reasonable alternatives. For closed-addressing
algorithms, one simple strategy is to resize the table when the average bucket size
exceeds a fixed threshold. An alternative policy employs two fixed quantities, the
bucket threshold and the global threshold; we resize the table

• if more than, say, a quarter of the buckets exceed the bucket threshold, or
• if any single bucket exceeds the global threshold.

Either of these strategies work can well in practice. For simplicity, we adopt the first
policy in this chapter.1

1 This choice introduces a scalability bottleneck, threads adding or removing items all contend on the
counter that tracks the size of the set. We use an AtomicInteger, which limits scalability. It can be replaced
by other, more scalable, counter implementations, if necessary.

308 CHAPTER 13 Concurrent hashing and natural parallelism

17 public boolean contains(T x) {
18 acquire(x);
19 try {
20 int myBucket = x.hashCode() % table.length;
21 return table[myBucket].contains(x);
22 } finally {
23 release(x);
24 }
25 }
26 public boolean add(T x) {
27 boolean result = false;
28 acquire(x);
29 try {
30 int myBucket = x.hashCode() % table.length;
31 if (! table[myBucket].contains(x)) {
32 table[myBucket].add(x);
33 result = true;
34 setSize.getAndIncrement();
35 }
36 } finally {
37 release(x);
38 }
39 if (policy())
40 resize();
41 return result;
42 }

FIGURE 13.2

BaseHashSet<T> class: the contains() and add() methods hash the item to choose a bucket.

13.2.1 A coarse-grained hash set
Fig. 13.3 shows the CoarseHashSet<T> class’s fields, constructor, and acquire(x) and
release(x) methods. The constructor first initializes its superclass (line 4). Synchro-
nization is provided by a single reentrant lock (line 2), acquired by acquire(x) (line 8)
and released by release(x) (line 11).

Fig. 13.4 shows the CoarseHashSet<T> class’s policy() and resize() methods. We
use a simple policy: We resize when the average bucket length exceeds 4 (line 16).
The resize() method locks the set (line 19), and checks that no other thread has
resized the table in the meantime (line 22). It then allocates and initializes a new
table with double the capacity (lines 24–28) and transfers items from the old to the
new buckets (lines 29–33). Finally, it unlocks the set (line 35).

Like the coarse-grained list studied in Chapter 9, the coarse-grained hash set is
easy to understand and easy to implement. Unfortunately, it is also a sequential bot-
tleneck. Method calls take effect in a one-at-a-time order, even when they access
separate buckets (and do not resize).

13.2 Closed-address hash sets 309

1 public class CoarseHashSet<T> extends BaseHashSet<T>{
2 final Lock lock;
3 CoarseHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock();
6 }
7 public final void acquire(T x) {
8 lock.lock();
9 }

10 public void release(T x) {
11 lock.unlock();
12 }
13 ...
14 }

FIGURE 13.3

CoarseHashSet<T> class: fields, constructor, and acquire() and release() methods.

15 public boolean policy() {
16 return setSize.get() / table.length > 4;
17 }
18 public void resize() {
19 lock.lock();
20 try {
21 if (!policy()) {
22 return; // someone beat us to it
23 }
24 int newCapacity = 2 * table.length;
25 List<T>[] oldTable = table;
26 table = (List<T>[]) new List[newCapacity];
27 for (int i = 0; i < newCapacity; i++)
28 table[i] = new ArrayList<T>();
29 for (List<T> bucket : oldTable) {
30 for (T x : bucket) {
31 table[x.hashCode() % table.length].add(x);
32 }
33 }
34 } finally {
35 lock.unlock();
36 }
37 }

FIGURE 13.4

CoarseHashSet<T> class: the policy() and resize() methods.

310 CHAPTER 13 Concurrent hashing and natural parallelism

1 public class StripedHashSet<T> extends BaseHashSet<T>{
2 final ReentrantLock[] locks;
3 public StripedHashSet(int capacity) {
4 super(capacity);
5 locks = new Lock[capacity];
6 for (int j = 0; j < locks.length; j++) {
7 locks[j] = new ReentrantLock();
8 }
9 }

10 public final void acquire(T x) {
11 locks[x.hashCode() % locks.length].lock();
12 }
13 public void release(T x) {
14 locks[x.hashCode() % locks.length].unlock();
15 }
16 ...
17 }

FIGURE 13.5

StripedHashSet<T> class: fields, constructor, and acquire() and release() methods.

13.2.2 A striped hash set
We now present a closed-address hash table with greater parallelism and less lock
contention. Instead of using a single lock to synchronize the entire set, we split the
set into independently synchronized pieces. We introduce a technique called lock
striping, which will be useful for other data structures as well. Fig. 13.5 shows the
fields and constructor for the StripedHashSet<T> class. The set is initialized with an
array locks[] of L locks, and an array table[] of N = L buckets, where each bucket
is an unsynchronized List<T>. Although these arrays are initially of the same length,
table[] will grow when the hash table is resized, but lock[] will not. When the hash
table is resized, we double the table capacity N without changing the lock array size
L; lock i protects each table entry j , where j = i (mod L). The acquire(x) and
release(x) methods use x’s hash code to pick which lock to acquire or release. An
example illustrating how a StripedHashSet<T> is resized appears in Fig. 13.6.

There are two reasons not to grow the lock array when we grow the table:

• Associating a lock with every table entry could consume too much space, espe-
cially when tables are large and contention is low.

• While resizing the table is straightforward, resizing the lock array (while in use)
is more complex, as discussed in Section 13.2.3.

Resizing a StripedHashSet (Fig. 13.7) is almost identical to resizing a
CoarseHashSet<>. One difference is that in StripedHashSet, the resize() method ac-
quires all the locks in lock[] in ascending order (lines 19–21). It cannot deadlock
with a contains(), add(), or remove() call because these methods acquire only a sin-
gle lock. A resize() call cannot deadlock with another resize() call because both

13.2 Closed-address hash sets 311

FIGURE 13.6

Resizing a StripedHashSet lock-based hash table. As the table grows, the striping is
adjusted to ensure that each lock covers 2N/L entries. In the figure above, N=16 and L =8.
When N is doubled from 8 to 16, the memory is striped so that lock i=5, for example,
covers both locations that are equal to 5 modulo L.

calls start without holding any locks, and acquire the locks in the same order. What
if two or more threads try to resize at the same time? As in CoarseHashSet<T>, after
a thread has acquired all the locks, if it discovers that some other thread has changed
the table capacity (line 24), then it releases the locks and gives up. (It could just dou-
ble the table size anyway, since it already holds all the locks.) Otherwise, it creates a
new table[] array with twice the capacity (line 26), and transfers items from the old
table to the new (line 31). Finally, it releases the locks (line 37).

To summarize, striped locking permits more concurrency than a single coarse-
grained lock because method calls whose items hash to different locks can proceed
in parallel. The add(), contains(), and remove() methods take constant expected time,
but resize() takes linear time and is a “stop-the-world” operation: It halts all concur-
rent method calls while it increases the table’s capacity.

13.2.3 A refinable hash set
What if we want to refine the granularity of locking as the table size grows, so that
the number of locations in a stripe does not continuously grow? Clearly, if we want
to resize the lock array, then we need to rely on another form of synchronization.
Resizing is rare, so our principal goal is to devise a way to permit the lock array to
be resized without substantially increasing the cost of normal method calls.

312 CHAPTER 13 Concurrent hashing and natural parallelism

18 public void resize() {
19 for (Lock lock : locks) {
20 lock.lock();
21 }
22 try {
23 if (!policy()) {
24 return; // someone beat us to it
25 }
26 int newCapacity = 2 * table.length;
27 List<T>[] oldTable = table;
28 table = (List<T>[]) new List[newCapacity];
29 for (int i = 0; i < newCapacity; i++)
30 table[i] = new ArrayList<T>();
31 for (List<T> bucket : oldTable) {
32 for (T x : bucket) {
33 table[x.hashCode() % table.length].add(x);
34 }
35 }
36 } finally {
37 for (Lock lock : locks) {
38 lock.unlock();
39 }
40 }
41 }

FIGURE 13.7

StripedHashSet<T> class: To resize the set, lock each lock in order, and then check that no
other thread has resized the table in the meantime.

Fig. 13.8 shows the fields and constructor for the RefinableHashSet<T> class. To
add a higher level of synchronization, we introduce a global owner field that combines
a Boolean value with a reference to a thread in an AtomicMarkableReference<Thread>
so they can be modified atomically (see Pragma 9.8.1). We use owner as a mutual
exclusion flag between the resize() method and any of the add() methods, so that
while resizing, there will be no successful updates, and while updating, there will be
no successful resizes. Normally, the Boolean value is false, meaning that the set is not
in the middle of resizing. While a resizing is in progress, however, the Boolean value
is true, and the associated reference indicates the thread that is in charge of resizing.
Every add() call must read the owner field. Because resizing is rare, the value of owner
should usually be cached.

Each method locks the bucket for x by calling acquire(x), shown in Fig. 13.9. It
spins until no other thread is resizing the set (lines 19–21), and then reads the lock
array (line 22). It then acquires the item’s lock (line 24), and checks again, this time
while holding a lock (line 26), to make sure no other thread is resizing, and that no
resizing took place between lines 21 and 26.

If it passes this test, the thread can proceed. Otherwise, the lock it has acquired
could be out-of-date because of an ongoing update, so it releases it and starts over.

13.2 Closed-address hash sets 313

1 public class RefinableHashSet<T> extends BaseHashSet<T>{
2 AtomicMarkableReference<Thread> owner;
3 volatile ReentrantLock[] locks;
4 public RefinableHashSet(int capacity) {
5 super(capacity);
6 locks = new ReentrantLock[capacity];
7 for (int i = 0; i < capacity; i++) {
8 locks[i] = new ReentrantLock();
9 }

10 owner = new AtomicMarkableReference<Thread>(null, false);
11 }
12 ...
13 }

FIGURE 13.8

RefinableHashSet<T> class: fields and constructor.

14 public void acquire(T x) {
15 boolean[] mark = {true};
16 Thread me = Thread.currentThread();
17 Thread who;
18 while (true) {
19 do {
20 who = owner.get(mark);
21 } while (mark[0] && who != me);
22 ReentrantLock[] oldLocks = locks;
23 ReentrantLock oldLock = oldLocks[x.hashCode() % oldLocks.length];
24 oldLock.lock();
25 who = owner.get(mark);
26 if ((!mark[0] || who == me) && locks == oldLocks) {
27 return;
28 } else {
29 oldLock.unlock();
30 }
31 }
32 }
33 public void release(T x) {
34 locks[x.hashCode() % locks.length].unlock();
35 }

FIGURE 13.9

RefinableHashSet<T> class: acquire() and release() methods.

When starting over, it will first spin until the current resize completes (lines 19–21)
before attempting to acquire the locks again. The release(x) method releases the
lock acquired by acquire(x).

The resize() method (Fig. 13.10) is similar to the resize() method for the
StripedHashSet class. However, instead of acquiring all the locks in lock[], the

314 CHAPTER 13 Concurrent hashing and natural parallelism

36 public void resize() {
37 boolean[] mark = {false};
38 Thread me = Thread.currentThread();
39 if (owner.compareAndSet(null, me, false, true)) {
40 try {
41 if (!policy()) { // someone else resized first
42 return;
43 }
44 quiesce();
45 int newCapacity = 2 * table.length;
46 List<T>[] oldTable = table;
47 table = (List<T>[]) new List[newCapacity];
48 for (int i = 0; i < newCapacity; i++)
49 table[i] = new ArrayList<T>();
50 locks = new ReentrantLock[newCapacity];
51 for (int j = 0; j < locks.length; j++) {
52 locks[j] = new ReentrantLock();
53 }
54 initializeFrom(oldTable);
55 } finally {
56 owner.set(null, false);
57 }
58 }
59 }

FIGURE 13.10

RefinableHashSet<T> class: resize() method.

60 protected void quiesce() {
61 for (ReentrantLock lock : locks) {
62 while (lock.isLocked()) {}
63 }
64 }

FIGURE 13.11

RefinableHashSet<T> class: quiesce() method.

method attempts to set itself as the owner (line 39) and then calls quiesce() (line 44)
to ensure that no other thread is in the middle of an add(), remove(), or contains() call.
The quiesce() method (Fig. 13.11) visits each lock and waits until it is unlocked.

The acquire() and the resize() methods guarantee mutually exclusive access via
the flag principle using the mark field of the owner flag and the table’s locks array:
acquire() first acquires its locks and then reads the mark field, while resize() first
sets mark and then reads the locks during the quiesce() call. This ordering ensures
that any thread that acquires a lock after quiesce() has completed will see that the
set is in the process of being resized, and will back off until the resizing is complete.

13.3 A lock-free hash set 315

Similarly, resize() will first set the mark field and then read the locks, and will not
proceed while any add(), remove(), or contains() call holds its lock.

To summarize, we have designed a hash table in which both the number of buckets
and the number of locks can be continually resized. One limitation of this algorithm
is that threads cannot access the items in the table during a resize.

13.3 A lock-free hash set
The next step is to make the hash set implementation lock-free, and to make resiz-
ing incremental, meaning that each add() method call performs a small fraction of
the work associated with resizing. This way, we do not need to “stop the world” to
resize the table. Each of the contains(), add(), and remove() methods takes constant
expected time.

To make resizable hashing lock-free, it is not enough to make the individual buck-
ets lock-free: Resizing the table requires atomically moving entries from old buckets
to new buckets. If the table doubles in capacity, then we must split the items in the old
bucket between two new buckets. If this move is not done atomically, entries might
be temporarily lost or duplicated. Without locks, we must synchronize using atomic
methods such as compareAndSet(). Unfortunately, these methods operate only on a
single memory location, which makes it difficult to move a node atomically from one
linked list to another.

13.3.1 Recursive split-ordering
We now describe a hash set implementation that works by flipping the conventional
hashing structure on its head:

Instead of moving the items among the buckets, move the buckets among the items.

More specifically, keep all items in a single lock-free linked list, similar to the
LockFreeList class studied in Chapter 9. A bucket is just a reference into the list.
As the list grows, we introduce additional bucket references so that no object is ever
too far from the start of a bucket. This algorithm ensures that once an item is placed
in the list, it is never moved, but it does require that items be inserted according to a
recursive split-order algorithm that we describe shortly.

Fig. 13.12 illustrates a lock-free hash set implementation. It shows two compo-
nents: a lock-free linked list and an expanding array of references into the list. These
references are logical buckets. Any item in the hash set can be reached by traversing
the list from its head, while the bucket references provide shortcuts into the list to
minimize the number of list nodes traversed when searching. The principal challenge
is ensuring that the bucket references into the list remain well distributed as the num-
ber of items in the set grows. Bucket references should be spaced evenly enough to
allow constant-time access to any node. It follows that new buckets must be created
and assigned to sparsely covered regions in the list.

316 CHAPTER 13 Concurrent hashing and natural parallelism

FIGURE 13.12

This figure explains the recursive nature of the split ordering. Part (a) shows a split-ordered
list consisting of two buckets. The array of buckets refer into a single linked list. The
split-ordered keys (above each node) are the reverse of the bit-wise representation of the
items’ keys. The active bucket array entries 0 and 1 have special sentinel nodes within the
list (square nodes), while other (ordinary) nodes are round. Items 4 (whose reverse bit
order is “001”) and 6 (whose reverse bit order is “011”) are in bucket 0, since the least
significant bit (LSB) of the original key is “0.” Items 5 and 7 (whose reverse bit orders are
“101” and “111,” respectively) are in bucket 1, since the LSB of their original key is 1. Part
(b) shows how each of the two buckets is split in half once the table capacity grows from
two buckets to four. The reverse-bit values of the two added buckets 2 and 3 happen to
perfectly split buckets 0 and 1.

As before, the capacity N of the hash set is always a power of two. The bucket
array initially has capacity 2 and all bucket references are null, except for the bucket
at index 0, which refers to an empty list. We use the variable bucketSize to denote this
changing capacity of the bucket structure. Each entry in the bucket array is initialized
when first accessed, and subsequently refers to a node in the list.

When an item with hash code k is inserted, removed, or searched for, the hash set
uses bucket index k (mod N). As with earlier hash set implementations, we decide
when to double the table capacity by consulting a policy() method. Here, however,
the table is resized incrementally by the methods that modify it, so there is no explicit
resize() method. If the table capacity is 2i , then the bucket index is the integer rep-
resented by the key’s i LSBs; in other words, each bucket b contains items each of
whose hash code k satisfies k = b (mod 2i).

Because the hash function depends on the table capacity, we must be careful when
the table capacity changes. An item inserted before the table was resized must be
accessible afterwards from both its previous and current buckets. When the capacity
grows to 2i+1, the items in bucket b are split between two buckets: Those for which
k = b (mod 2i+1) remain in bucket b, while those for which k = b + 2i (mod 2i+1)

migrate to bucket b + 2i . Here is the key idea behind the algorithm: We ensure that
these two groups of items are positioned one after the other in the list, so that splitting
bucket b is achieved by simply setting bucket b + 2i after the first group of items and
before the second. This organization keeps each item in the second group accessible
from bucket b.

As depicted in Fig. 13.12, items in the two groups are distinguished by their ith
binary digits (counting backwards, from least significant to most significant). Those
with digit 0 belong to the first group, and those with 1 to the second. The next hash

13.3 A lock-free hash set 317

table doubling will cause each group to split again into two groups differentiated by
the (i + 1)st bit, and so on. For example, the items 4 (“100” binary) and 6 (“110”)
share the same LSB. When the table capacity is 21, they are in the same bucket, but
when it grows to 22, they will be in distinct buckets because their second bits differ.

This process induces a total order on items, which we call recursive split-ordering,
as can be seen in Fig. 13.12. Given a key’s hash code, its order is defined by its
bit-reversed value.

To recapitulate: a split-ordered hash set is an array of buckets, where each bucket
is a reference into a lock-free list where nodes are sorted by their bit-reversed hash
codes. The number of buckets grows dynamically, and each new bucket is initialized
when accessed for the first time.

To avoid an awkward “corner case” that arises when deleting a node referenced by
a bucket reference, we add a sentinel node, which is never deleted, to the start of each
bucket. Specifically, suppose the table capacity is 2i+1. The first time that bucket b +
2i is accessed, a sentinel node is created with key b + 2i . This node is inserted in the
list via bucket b, the parent bucket of b+2i . Under split-ordering, b+2i precedes all
items of bucket b + 2i , since those items must end with (i + 1) bits forming the value
b + 2i . This value also comes after all the items of bucket b that do not belong to b +
2i : They have identical LSBs, but their ith bit is 0. Therefore, the new sentinel node is
positioned in the exact list location that separates the items of the new bucket from the
remaining items of bucket b. To distinguish sentinel items from ordinary items, we
set the most significant bit (MSB) of ordinary items to 1, and leave the sentinel items
with 0 at the MSB. Fig. 13.17 illustrates two methods: makeOrdinaryKey(), which
generates a split-ordered key for an object, and makeSentinelKey(), which generates
a split-ordered key for a bucket index.

Fig. 13.13 illustrates how inserting a new key into the set can cause a bucket to be
initialized. The split-order key values are written above the nodes using 8-bit words.
For instance, the split-order value of 3 is the bit-reverse of its binary representation,
which is 11000000. The square nodes are the sentinel nodes corresponding to buck-
ets with original keys that are 0, 1, and 3 modulo 4 with their MSB being 0. The
split-order keys of ordinary (round) nodes are exactly the bit-reversed images of the
original keys after turning on their MSB. For example, items 9 and 13 are in the
“1 (mod 4)” bucket, which can be recursively split in two by inserting a new node
between them. The sequence of figures describes an object with hash code 10 being
added when the table capacity is 4 and buckets 0, 1, and 3 are already initialized.

The table is grown incrementally; there is no explicit resize operation. Recall that
each bucket is a linked list, with nodes ordered based on the split-ordered hash values.
As mentioned earlier, the table resizing mechanism is independent of the policy used
to decide when to resize. To keep the example concrete, we implement the following
policy: We use a shared counter to allow add() calls to track the average bucket load.
When the average load crosses a threshold, we double the table capacity.

To avoid technical distractions, we keep the array of buckets in a large, fixed-size
array. We start out using only the first array entry, and use progressively more of
the array as the capacity grows. When the add() method accesses an uninitialized

318 CHAPTER 13 Concurrent hashing and natural parallelism

FIGURE 13.13

How the add() method places key 10 to the lock-free table. As in earlier figures, the
split-order key values, expressed as 8-bit binary words, appear above the nodes. For
example, the split-order value of 1 is the bit-wise reversal of its binary representation. In
step (a), buckets 0, 1, and 3 are initialized, but bucket 2 is uninitialized. In step (b), an item
with hash value 10 is inserted, causing bucket 2 to be initialized. A new sentinel is inserted
with split-order key 2. In step (c), bucket 2 is assigned a new sentinel. Finally, in step (d),
the split-order ordinary key 10 is added to bucket 2.

bucket that should have been initialized given the current table capacity, it initializes
it. While conceptually simple, this design is far from ideal, since the fixed array size
limits the ultimate number of buckets. In practice, it would be better to represent the
buckets as a multilevel tree structure, which would cover the machine’s full memory
size, a task we leave as an exercise.

13.3.2 The BucketList class
Fig. 13.14 shows the fields, the constructor, and some utility methods of the
BucketList class that implements the lock-free list used by the split-ordered hash set.
Although this class is essentially the same as the LockFreeList class from Chapter 9,
there are two important differences. The first is that items are sorted in recursive-
split order, not simply by hash code. The makeOrdinaryKey() and makeSentinelKey()
methods (lines 10 and 14) show how we compute these split-ordered keys. (To ensure
that reversed keys are positive, we use only the lower three bytes of the hash code.)
Fig. 13.15 shows how the contains() method is modified to use the split-ordered key.
(As in the LockFreeList class, the find(x) method returns a record containing x’s
node, if it exists, along with the immediately preceding and subsequent nodes.)

The second difference is that while the LockFreeList class uses only two sentinels,
one at each end of the list, the BucketList<T> class places a sentinel at the start of each

13.3 A lock-free hash set 319

1 public class BucketList<T> implements Set<T> {
2 static final int HI_MASK = 0x80000000;
3 static final int MASK = 0x00FFFFFF;
4 Node head;
5 public BucketList() {
6 head = new Node(0);
7 head.next =
8 new AtomicMarkableReference<Node>(new Node(Integer.MAX_VALUE), false);
9 }

10 public int makeOrdinaryKey(T x) {
11 int code = x.hashCode() & MASK; // take 3 lowest bytes
12 return reverse(code | HI_MASK);
13 }
14 private static int makeSentinelKey(int key) {
15 return reverse(key & MASK);
16 }
17 ...
18 }

FIGURE 13.14

BucketList<T> class: fields, constructor, and utilities.

19 public boolean contains(T x) {
20 int key = makeOrdinaryKey(x);
21 Window window = find(head, key);
22 Node curr = window.curr;
23 return (curr.key == key);
24 }

FIGURE 13.15

BucketList<T> class: the contains() method.

new bucket whenever the table is resized. It requires the ability to insert sentinels
at intermediate positions within the list, and to traverse the list starting from such
sentinels. The BucketList<T> class provides a getSentinel(x) method (Fig. 13.16)
that takes a bucket index, finds the associated sentinel (inserting it if absent), and
returns the tail of the BucketList<T> starting from that sentinel.

13.3.3 The LockFreeHashSet<T> class
Fig. 13.17 shows the fields and constructor for the LockFreeHashSet<T> class. The
set has the following mutable fields: bucket is an array of BucketList<T> references
into the list of items, bucketSize is an atomic integer that tracks how much of the
bucket array is currently in use, and setSize is an atomic integer that tracks how
many objects are in the set. These fields are used to decide when to resize.

320 CHAPTER 13 Concurrent hashing and natural parallelism

25 public BucketList<T> getSentinel(int index) {
26 int key = makeSentinelKey(index);
27 boolean splice;
28 while (true) {
29 Window window = find(head, key);
30 Node pred = window.pred;
31 Node curr = window.curr;
32 if (curr.key == key) {
33 return new BucketList<T>(curr);
34 } else {
35 Node node = new Node(key);
36 node.next.set(pred.next.getReference(), false);
37 splice = pred.next.compareAndSet(curr, node, false, false);
38 if (splice)
39 return new BucketList<T>(node);
40 else
41 continue;
42 }
43 }
44 }

FIGURE 13.16

BucketList<T> class: getSentinel() method.

1 public class LockFreeHashSet<T> {
2 protected BucketList<T>[] bucket;
3 protected AtomicInteger bucketSize;
4 protected AtomicInteger setSize;
5 public LockFreeHashSet(int capacity) {
6 bucket = (BucketList<T>[]) new BucketList[capacity];
7 bucket[0] = new BucketList<T>();
8 bucketSize = new AtomicInteger(2);
9 setSize = new AtomicInteger(0);

10 }
11 ...
12 }

FIGURE 13.17

LockFreeHashSet<T> class: fields and constructor.

Fig. 13.18 shows the LockFreeHashSet<T> class’s add() method. If x has hash code
k, add(x) retrieves bucket k (mod N), where N is the current table size, initializing
it if necessary (line 15). It then calls the BucketList<T>’s add(x) method. If x was
not already present (line 18), it increments setSize and checks whether to increase
bucketSize, the number of active buckets. The contains(x) and remove(x) methods
work in much the same way.

13.3 A lock-free hash set 321

13 public boolean add(T x) {
14 int myBucket = BucketList.hashCode(x) % bucketSize.get();
15 BucketList<T> b = getBucketList(myBucket);
16 if (!b.add(x))
17 return false;
18 int setSizeNow = setSize.getAndIncrement();
19 int bucketSizeNow = bucketSize.get();
20 if (setSizeNow / bucketSizeNow > THRESHOLD)
21 bucketSize.compareAndSet(bucketSizeNow, 2 * bucketSizeNow);
22 return true;
23 }

FIGURE 13.18

LockFreeHashSet<T> class: add() method.

24 private BucketList<T> getBucketList(int myBucket) {
25 if (bucket[myBucket] == null)
26 initializeBucket(myBucket);
27 return bucket[myBucket];
28 }
29 private void initializeBucket(int myBucket) {
30 int parent = getParent(myBucket);
31 if (bucket[parent] == null)
32 initializeBucket(parent);
33 BucketList<T> b = bucket[parent].getSentinel(myBucket);
34 if (b != null)
35 bucket[myBucket] = b;
36 }
37 private int getParent(int myBucket){
38 int parent = bucketSize.get();
39 do {
40 parent = parent >> 1;
41 } while (parent > myBucket);
42 parent = myBucket - parent;
43 return parent;
44 }

FIGURE 13.19

LockFreeHashSet<T> class: If a bucket is uninitialized, initialize it by adding a new sentinel.
Initializing a bucket may require initializing its parent.

Fig. 13.19 shows the initialBucket() method, whose role is to initialize the
bucket array entry at a particular index, setting that entry to refer to a new sentinel
node. The sentinel node is first created and added to an existing parent bucket, and
then the array entry is assigned a reference to the sentinel. If the parent bucket is not

322 CHAPTER 13 Concurrent hashing and natural parallelism

FIGURE 13.20

Recursive initialization of lock-free hash table buckets. (a) The table has four buckets; only
bucket 0 is initialized. (b) We wish to insert the item with key 7. Bucket 3 now requires
initialization, which in turn requires recursive initialization of bucket 1. (c) Bucket 1 is
initialized by first adding the 1 sentinel to the list, then setting the bucket to this sentinel. (d)
Then bucket 3 is initialized in a similar fashion, and finally 7 is added to the list. In the worst
case, insertion of an item may require recursively initializing a number of buckets
logarithmic in the table size, but it can be shown that the expected length of such a
recursive sequence is constant.

initialized (line 31), initialBucket() is applied recursively to the parent. To control
the recursion, we maintain the invariant that the parent index is less than the new
bucket index. It is also prudent to choose the parent index as close as possible to
the new bucket index, but still preceding it. We compute this index by unsetting the
bucket index’s most significant nonzero bit (line 39).

The add(), remove(), and contains() methods require a constant expected number
of steps to find a key (or determine that the key is absent). To initialize a bucket in
a table of bucketSize N , the initialBucket() method may need to recursively ini-
tialize (i.e., split) as many as O(logN) of its parent buckets to allow the insertion of
a new bucket. An example of this recursive initialization is shown in Fig. 13.20. In
part (a), the table has four buckets; only bucket 0 is initialized. In part (b), the item
with key 7 is inserted. Bucket 3 now requires initialization, further requiring recur-
sive initialization of bucket 1. In part (c), bucket 1 is initialized. Finally, in part (d),
bucket 3 is initialized. Although the worst-case complexity in such a case is loga-
rithmic, not constant, it can be shown that the expected length of any such recursive
sequence of splits is constant, making the overall expected complexity of all the hash
set operations constant.

13.4 An open-address hash set 323

13.4 An open-address hash set
We now turn our attention to a concurrent open-address hashing algorithm. Open-
address hashing, in which each table entry holds a single item rather than a set, seems
harder to make concurrent than closed-address hashing. We base our concurrent al-
gorithm on a sequential algorithm known as cuckoo hashing.

13.4.1 Cuckoo hashing
Cuckoo hashing is a (sequential) hashing algorithm in which a newly added item
displaces any earlier item occupying the same slot.2 For brevity, a table is a k-entry
array of items. For a hash set of size N = 2k, we use a two-entry array table[] of
tables,3 and two independent hash functions,

h0, h1 : KeyRange → 0, . . . , k − 1

(denoted as hash0() and hash1() in the code), mapping the set of possible keys to
entries in the array. To test whether a value x is in the set, contains(x) tests whether
either table[0][h0(x)] or table[1][h1(x)] is equal to x. Similarly, remove(x) checks
whether x is in either table[0][h0(x)] or table[1][h1(x)], and removes it if found.

The add(x) method (Fig. 13.21) is the most interesting. It successively “kicks out”
conflicting items until every key has a slot. To add x, the method swaps x with y, the
current occupant of table[0][h0(x)] (line 6). If the prior value y was null, it is done
(line 7). Otherwise, it swaps the newly nestless value y for the current occupant of
table[1][h1(y)] in the same way (line 8). As before, if the prior value was null, it
is done. Otherwise, the method continues swapping entries (alternating tables) until
it finds an empty slot. An example of such a sequence of displacements appears in
Fig. 13.22.

We might not find an empty slot, either because the table is full, or because the
sequence of displacements forms a cycle. We therefore need an upper limit on the
number of successive displacements we are willing to undertake (line 5). When this
limit is exceeded, we resize the hash table, choose new hash functions (line 12), and
start over (line 13).

Sequential cuckoo hashing is attractive for its simplicity. It provides constant-time
contains() and remove() methods, and it can be shown that over time, the average
number of displacements caused by each add() call will be constant. Experimental
evidence shows that sequential cuckoo hashing works well in practice.

2 Cuckoos are a family of birds (not clocks) found in North America and Europe. Most species are nest
parasites: they lay their eggs in other birds’ nests. Cuckoo chicks hatch early, and quickly push the other
eggs out of the nest.
3 This division of the table into two arrays helps in presenting the concurrent algorithm. There are se-
quential cuckoo hashing algorithms that use, for the same number of hashed items, only a single array of
size 2k.

324 CHAPTER 13 Concurrent hashing and natural parallelism

1 public boolean add(T x) {
2 if (contains(x)) {
3 return false;
4 }
5 for (int i = 0; i < LIMIT; i++) {
6 if ((x = swap(0, hash0(x), x)) == null) {
7 return true;
8 } else if ((x = swap(1, hash1(x), x)) == null) {
9 return true;

10 }
11 }
12 resize();
13 add(x);
14 }

FIGURE 13.21

Sequential cuckoo hashing: the add() method.

FIGURE 13.22

A sequence of displacements starts when an item with key 14 finds both locations
Table[0][h0(14)] and Table[1][h1(14)] taken by the values 3 and 23, and ends when the
item with key 39 is successfully placed in Table[1][h1(39)].

13.4.2 Concurrent cuckoo hashing
The principal obstacle to making the sequential cuckoo hashing algorithm con-
current is the add() method’s need to perform a long sequence of swaps. To ad-
dress this problem, we now define an alternative cuckoo hashing algorithm, the
PhasedCuckooHashSet<T> class. We break up each method call into a sequence of
phases, where each phase adds, removes, or displaces a single item x.

Rather than organizing the set as a two-dimensional table of items, we use a two-
dimensional table of probe sets, where a probe set is a constant-sized set of items with
the same hash code. Each probe set holds at most PROBE_SIZE items, but the algorithm
tries to ensure that when the set is quiescent (i.e., no method calls are in progress),
each probe set holds no more than THRESHOLD < PROBE_SIZE items. An example of

13.4 An open-address hash set 325

FIGURE 13.23

The PhasedCuckooHashSet<T> class: add() and relocate() methods. The figure shows the
array segments consisting of eight probe sets of size 4 each, with a threshold of 2. Shown
are probe sets 4 and 5 of Table[0][] and 1 and 2 of Table[1][]. In part (a), an item with key
13 finds Table[0][4] above threshold and Table[1][2] below threshold, so it adds the item to
the probe set Table[1][2]. The item with key 14, on the other hand, finds that both of its
probe sets are above threshold, so it adds its item to Table[0][5] and signals that the item
should be relocated. In part (b), the method tries to relocate the item with key 23, the oldest
item in Table[0][5]. Since Table[1][1] is below threshold, the item is successfully relocated.
If Table[1][1] were above threshold, the algorithm would attempt to relocate item 12 from
Table[1][1], and if Table[1][1] were at the probe set’s size limit of four items, it would
attempt to relocate the item with key 5, the next oldest item, from Table[0][5].

1 public abstract class PhasedCuckooHashSet<T> {
2 volatile int capacity;
3 volatile List<T>[][] table;
4 public PhasedCuckooHashSet(int size) {
5 capacity = size;
6 table = (List<T>[][]) new java.util.ArrayList[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 table[i][j] = new ArrayList<T>(PROBE_SIZE);

10 }
11 }
12 }
13 ...
14 }

FIGURE 13.24

PhasedCuckooHashSet<T> class: fields and constructor.

the PhasedCuckooHashSet structure appears in Fig. 13.23, where the PROBE_SIZE is 4
and the THRESHOLD is 2. While method calls are in-flight, a probe set may temporarily
hold more than THRESHOLD but never more than PROBE_SIZE items. (In our examples, it
is convenient to implement each probe set as a fixed-size List<T>.) Fig. 13.24 shows
the PhasedCuckooHashSet<T>’s fields and constructor.

326 CHAPTER 13 Concurrent hashing and natural parallelism

15 public boolean remove(T x) {
16 acquire(x);
17 try {
18 List<T> set0 = table[0][hash0(x) % capacity];
19 if (set0.contains(x)) {
20 set0.remove(x);
21 return true;
22 } else {
23 List<T> set1 = table[1][hash1(x) % capacity];
24 if (set1.contains(x)) {
25 set1.remove(x);
26 return true;
27 }
28 }
29 return false;
30 } finally {
31 release(x);
32 }
33 }

FIGURE 13.25

PhasedCuckooHashSet<T> class: the remove() method.

To postpone our discussion of synchronization, the PhasedCuckooHashSet<T> class
is defined to be abstract: it does not implement all its methods. It has the same ab-
stract methods as the BaseHashSet<T> class: The acquire(x) method acquires all the
locks necessary to manipulate item x, release(x) releases them, and resize() resizes
the set. (As before, we require acquire(x) to be reentrant.)

From a bird’s-eye view, the PhasedCuckooHashSet<T> works as follows: It adds and
removes items by first locking the associated probe sets in both tables. To remove an
item, it proceeds as in the sequential algorithm, checking if it is in one of the probe
sets and, if so, removing it. To add an item, it attempts to add it to one of the probe
sets. An item’s probe sets serve as temporary overflow buffers for long sequences of
consecutive displacements that might occur when adding an item to the table. The
THRESHOLD value is essentially the size of the probe sets in a sequential algorithm.
If a probe set already has this many items, the item is added anyway to one of the
PROBE_SIZE–THRESHOLD overflow slots. The algorithm then tries to relocate another
item from the probe set. There are various policies one can use to choose which item
to relocate. Here, we move the oldest items out first, until the probe set is below
threshold. As in the sequential cuckoo hashing algorithm, one relocation may trigger
another, and so on.

Fig. 13.25 shows the PhasedCuckooHashSet<T> class’s remove(x) method. It calls
the abstract acquire(x) method to acquire the necessary locks and then enters a try
block whose finally block calls release(x). In the try block, the method simply
checks whether x is present in Table[0][h0(x)] or Table[1][h1(x)]. If so, it removes x

and returns true; otherwise, it returns false. The contains(x) method works similarly.

13.4 An open-address hash set 327

34 public boolean add(T x) {
35 T y = null;
36 acquire(x);
37 int h0 = hash0(x) % capacity, h1 = hash1(x) % capacity;
38 int i = -1, h = -1;
39 boolean mustResize = false;
40 try {
41 if (present(x)) return false;
42 List<T> set0 = table[0][h0];
43 List<T> set1 = table[1][h1];
44 if (set0.size() < THRESHOLD) {
45 set0.add(x); return true;
46 } else if (set1.size() < THRESHOLD) {
47 set1.add(x); return true;
48 } else if (set0.size() < PROBE_SIZE) {
49 set0.add(x); i = 0; h = h0;
50 } else if (set1.size() < PROBE_SIZE) {
51 set1.add(x); i = 1; h = h1;
52 } else {
53 mustResize = true;
54 }
55 } finally {
56 release(x);
57 }
58 if (mustResize) {
59 resize(); add(x);
60 } else if (!relocate(i, h)) {
61 resize();
62 }
63 return true; // x must have been present
64 }

FIGURE 13.26

PhasedCuckooHashSet<T> class: the add() method.

Fig. 13.26 illustrates the add(x) method. Like remove(), it calls acquire(x) to
acquire the necessary locks and then enters a try block whose finally block calls
release(x). It returns false if the item is already present (line 41). If either of the
item’s probe sets is below threshold (lines 44 and 46), it adds the item and returns.
Otherwise, if either of the item’s probe sets is above threshold but not full (lines 48
and 50), it adds the item and makes a note to rebalance the probe set later. Finally, if
both sets are full, it makes a note to resize the entire set (line 53). It then releases the
lock on x (line 56).

If the method was unable to add x because both its probe sets were full, it resizes
the hash set and tries again (line 58). If the probe set at row r and column c was
above threshold, it calls relocate(r, c) (described later) to rebalance probe set sizes.

328 CHAPTER 13 Concurrent hashing and natural parallelism

65 protected boolean relocate(int i, int hi) {
66 int hj = 0;
67 int j = 1 - i;
68 for (int round = 0; round < LIMIT; round++) {
69 List<T> iSet = table[i][hi];
70 T y = iSet.get(0);
71 switch (i) {
72 case 0: hj = hash1(y) % capacity; break;
73 case 1: hj = hash0(y) % capacity; break;
74 }
75 acquire(y);
76 List<T> jSet = table[j][hj];
77 try {
78 if (iSet.remove(y)) {
79 if (jSet.size() < THRESHOLD) {
80 jSet.add(y);
81 return true;
82 } else if (jSet.size() < PROBE_SIZE) {
83 jSet.add(y);
84 i = 1 - i;
85 hi = hj;
86 j = 1 - j;
87 } else {
88 iSet.add(y);
89 return false;
90 }
91 } else if (iSet.size() >= THRESHOLD) {
92 continue;
93 } else {
94 return true;
95 }
96 } finally {
97 release(y);
98 }
99 }

100 return false;
101 }

FIGURE 13.27

PhasedCuckooHashSet<T> class: the relocate() method.

If the call returns false, indicating that it failed to rebalance the probe sets, then add()
resizes the table.

The relocate() method appears in Fig. 13.27. It takes the row and column coordi-
nates of a probe set observed to have more than THRESHOLD items, and tries to reduce
its size below threshold by moving items from this probe set to alternative probe sets.

13.4 An open-address hash set 329

This method makes a fixed number (LIMIT) of attempts before giving up. Each
time around the loop, the following invariants hold: iSet is the probe set we are try-
ing to shrink, y is the oldest item in iSet, and jSet is the other probe set where y

could be. The loop identifies y (line 70), locks both probe sets to which y could
belong (line 75), and tries to remove y from the probe set (line 78). If it succeeds
(another thread could have removed y between lines 70 and 78), then it prepares to
add y to jSet. If jSet is below threshold (line 79), then the method adds y to jSet
and returns true (no need to resize). If jSet is above threshold but not full (line 82),
then it tries to shrink jSet by swapping iSet and jSet (lines 82–86) and resum-
ing the loop. If jSet is full (line 87), the method puts y back in iSet and returns
false (triggering a resize). Otherwise it tries to shrink jSet by swapping iSet and
jSet (lines 82–86). If the method does not succeed in removing y at line 78, then it
rechecks the size of iSet. If it is still above threshold (line 91), then the method re-
sumes the loop and tries again to remove an item. Otherwise, iSet is below threshold,
and the method returns true (no resize needed). Fig. 13.23 shows an example execu-
tion of the PhasedCuckooHashSet<T>, where the item with key 14 causes a relocation
of the oldest item 23 from the probe set table[0][5].

13.4.3 Striped concurrent cuckoo hashing
We first consider a concurrent cuckoo hash set implementation using lock strip-
ing (Section 13.2.2). The StripedCuckooHashSet class extends PhasedCuckooHashSet,
providing a fixed 2-by-L array of reentrant locks. As usual, lock[i][j] protects
table[i][k], where k (mod L) = j . Fig. 13.28 shows the StripedCuckooHashSet class’s
fields and constructor. The constructor calls the PhasedCuckooHashSet<T> constructor
(line 4) and then initializes the lock array.

The StripedCuckooHashSet class’s acquire(x) and release(x) methods (Fig. 13.29)
lock and unlock lock[0][h0(x)] and lock[1][h1(x)] (in that order, to avoid deadlock).

1 public class StripedCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 final ReentrantLock[][] lock;
3 public StripedCuckooHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock[2][capacity];
6 for (int i = 0; i < 2; i++) {
7 for (int j = 0; j < capacity; j++) {
8 lock[i][j] = new ReentrantLock();
9 }

10 }
11 }
12 ...
13 }

FIGURE 13.28

StripedCuckooHashSet class: fields and constructor.

330 CHAPTER 13 Concurrent hashing and natural parallelism

14 public final void acquire(T x) {
15 lock[0][hash0(x) % lock[0].length].lock();
16 lock[1][hash1(x) % lock[1].length].lock();
17 }
18 public final void release(T x) {
19 lock[0][hash0(x) % lock[0].length].unlock();
20 lock[1][hash1(x) % lock[1].length].unlock();
21 }

FIGURE 13.29

StripedCuckooHashSet class: acquire() and release().

22 public void resize() {
23 int oldCapacity = capacity;
24 for (Lock aLock : lock[0]) {
25 aLock.lock();
26 }
27 try {
28 if (capacity != oldCapacity) {
29 return;
30 }
31 List<T>[][] oldTable = table;
32 capacity = 2 * capacity;
33 table = (List<T>[][]) new List[2][capacity];
34 for (List<T>[] row : table) {
35 for (int i = 0; i < row.length; i++) {
36 row[i] = new ArrayList<T>(PROBE_SIZE);
37 }
38 }
39 for (List<T>[] row : oldTable) {
40 for (List<T> set : row) {
41 for (T z : set) {
42 add(z);
43 }
44 }
45 }
46 } finally {
47 for (Lock aLock : lock[0]) {
48 aLock.unlock();
49 }
50 }
51 }

FIGURE 13.30

StripedCuckooHashSet class: the resize() method.

13.4 An open-address hash set 331

The only difference between the resize() methods of StripedCuckooHashSet
(Fig. 13.30) and StripedHashSet is that the latter acquires the locks in lock[0] in
ascending order (line 24). Acquiring these locks in this order ensures that no other
thread is in the middle of an add(), remove(), or contains() call, and avoids deadlocks
with other concurrent resize() calls.

13.4.4 A refinable concurrent cuckoo hash set
This section introduces the RefinableCuckooHashSet class (Fig. 13.31), using the
methods of Section 13.2.3 to resize the lock arrays. Just as for the RefinableHashSet
class, we introduce an owner field of type AtomicMarkableReference<Thread> that
combines a Boolean value with a reference to a thread. If the Boolean value is true,
the set is resizing, and the reference indicates which thread is in charge of resizing.

Each phase locks the buckets for x by calling acquire(x), shown in Fig. 13.32.
It reads the lock array (line 24), and then spins until no other thread is resizing the
set (lines 21–23). It then acquires the item’s two locks (lines 27 and 28), and checks
if the lock array is unchanged (line 30). If the lock array has not changed between
lines 24 and 30, then the thread has acquired the locks it needs to proceed. Other-
wise, the locks it has acquired are out of date, so it releases them and starts over.
The release(x) method, also shown in Fig. 13.32, releases the locks acquired by
acquire(x).

The resize() method (Fig. 13.33) is almost identical to the resize() method for
StripedCuckooHashSet. One difference is that the locks[] array has two dimensions.

The quiesce() method (Fig. 13.34), like its counterpart in the RefinableHashSet
class, visits each lock and waits until it is unlocked. The only difference is that it
visits only the locks in locks[0].

1 public class RefinableCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 AtomicMarkableReference<Thread> owner;
3 volatile ReentrantLock[][] locks;
4 public RefinableCuckooHashSet(int capacity) {
5 super(capacity);
6 locks = new ReentrantLock[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 locks[i][j] = new ReentrantLock();

10 }
11 }
12 owner = new AtomicMarkableReference<Thread>(null, false);
13 }
14 ...
15 }

FIGURE 13.31

RefinableCuckooHashSet<T>: fields and constructor.

332 CHAPTER 13 Concurrent hashing and natural parallelism

16 public void acquire(T x) {
17 boolean[] mark = {true};
18 Thread me = Thread.currentThread();
19 Thread who;
20 while (true) {
21 do { // wait until not resizing
22 who = owner.get(mark);
23 } while (mark[0] && who != me);
24 ReentrantLock[][] oldLocks = locks;
25 ReentrantLock oldLock0 = oldLocks[0][hash0(x) % oldLocks[0].length];
26 ReentrantLock oldLock1 = oldLocks[1][hash1(x) % oldLocks[1].length];
27 oldLock0.lock();
28 oldLock1.lock();
29 who = owner.get(mark);
30 if ((!mark[0] || who == me) && locks == oldLocks) {
31 return;
32 } else {
33 oldLock0.unlock();
34 oldLock1.unlock();
35 }
36 }
37 }
38 public void release(T x) {
39 locks[0][hash0(x)].unlock();
40 locks[1][hash1(x)].unlock();
41 }

FIGURE 13.32

RefinableCuckooHashSet<T>: acquire() and release() methods.

13.5 Chapter notes
The term disjoint-access-parallelism was coined by Amos Israeli and Lihu Rap-
poport [84]. Maged Michael [126] has shown that simple algorithms using a reader–
writer lock [124] per bucket have reasonable performance without resizing. The
lock-free hash set based on split-ordering described in Section 13.3.1 is by Ori Shalev
and Nir Shavit [156]. The optimistic and fine-grained hash sets are adapted from a
hash set implementation by Doug Lea [108], used in java.util.concurrent.

Other concurrent closed-addressing schemes include ones by Meichun Hsu and
Wei-Pang Yang [79], Vijay Kumar [97], Carla Schlatter Ellis [43], and Michael
Greenwald [54]. Hui Gao, Jan Friso Groote, and Wim Hesselink [50] proposed an al-
most wait-free extensible open-addressing hashing algorithm, and Chris Purcell and
Tim Harris [143] proposed a concurrent nonblocking hash table with open address-
ing. Cuckoo hashing is credited to Rasmus Pagh and Flemming Rodler [136], and the
concurrent version is by Maurice Herlihy, Nir Shavit, and Moran Tzafrir [73].

13.5 Chapter notes 333

42 public void resize() {
43 int oldCapacity = capacity;
44 Thread me = Thread.currentThread();
45 if (owner.compareAndSet(null, me, false, true)) {
46 try {
47 if (capacity != oldCapacity) { // someone else resized first
48 return;
49 }
50 quiesce();
51 capacity = 2 * capacity;
52 List<T>[][] oldTable = table;
53 table = (List<T>[][]) new List[2][capacity];
54 locks = new ReentrantLock[2][capacity];
55 for (int i = 0; i < 2; i++) {
56 for (int j = 0; j < capacity; j++) {
57 locks[i][j] = new ReentrantLock();
58 }
59 }
60 for (List<T>[] row : table) {
61 for (int i = 0; i < row.length; i++) {
62 row[i] = new ArrayList<T>(PROBE_SIZE);
63 }
64 }
65 for (List<T>[] row : oldTable) {
66 for (List<T> set : row) {
67 for (T z : set) {
68 add(z);
69 }
70 }
71 }
72 } finally {
73 owner.set(null, false);
74 }
75 }
76 }

FIGURE 13.33

RefinableCuckooHashSet<T>: the resize() method.

77 protected void quiesce() {
78 for (ReentrantLock lock : locks[0]) {
79 while (lock.isLocked()) {}
80 }
81 }

FIGURE 13.34

RefinableCuckooHashSet<T>: the quiesce() method.

334 CHAPTER 13 Concurrent hashing and natural parallelism

1 public class UnboundedResizeLockFreeHashSet<T> {
2 public UnboundedResizeLockFreeHashSet(int initialMinimumNumBuckets) { ... }
3 private BucketList<T> getBucketList(int hashCode) { ... }
4 private void resize() { ... }
5 public boolean add(T x) { ... }
6 public boolean remove(T x) { ... }
7 public boolean contains(T x) { ... }
8 }

FIGURE 13.35

The UnboundedResizeLockFreeHashSet class.

13.6 Exercises
Exercise 13.1. Modify the StripedHashSet to allow resizing of the range lock array
using read–write locks.

Exercise 13.2. For the LockFreeHashSet, show an example of the problem that arises
when deleting an entry pointed to by a bucket reference, if we do not add a sentinel
entry, which is never deleted, to the start of each bucket.

Exercise 13.3. For the LockFreeHashSet, when an uninitialized bucket is accessed in
a table of size N , it might be necessary to recursively initialize (i.e., split) as many
as O(logN) of its parent buckets to allow the insertion of a new bucket. Show an
example of such a scenario. Explain why the expected length of any such recursive
sequence of splits is constant.

Exercise 13.4. For the LockFreeHashSet, design a lock-free data structure to replace
the fixed-size bucket array. Your data structure should allow an arbitrary number of
buckets.

Exercise 13.5. For the LockFreeHashSet, design a lock-free data structure to re-
place the fixed-size bucket array. Your data structure should allow for unbounded
doubling of the number of buckets in order to keep the average bucket length be-
low THRESHOLD. Describe how you would implement the methods in Fig. 13.35
and how your implementation preserves lock-freedom, correctness, and expected or
amortized O(1) work.

Exercise 13.6. Outline correctness arguments for LockFreeHashSet’s add(), remove(),
and contains() methods.

Hint: You may assume the LockFreeList algorithm’s methods are correct.

14
CHAPTER

Skiplists and balanced
search

14.1 Introduction
We have seen several concurrent implementations of sets based on linked lists and on
hash tables. We now turn our attention to concurrent search structures with logarith-
mic depth. There are many concurrent logarithmic search structures in the literature.
Here, we are interested in search structures intended for in-memory data, as opposed
to data residing on outside storage such as disks.

Many popular sequential search structures, such as red-black trees or AVL trees,
require periodic rebalancing to maintain the structure’s logarithmic depth. Rebal-
ancing works well for sequential tree-based search structures, but for concurrent
structures, rebalancing may cause bottlenecks and contention. Instead, we focus here
on concurrent implementations of a proved data structure that provides expected
logarithmic-time search without the need to rebalance: the SkipList. In the follow-
ing sections, we present two SkipList implementations. The LazySkipList class is
a lock-based implementation, while the LockFreeSkipList class is not. In both algo-
rithms, the typically most frequent method, contains(), which searches for an item,
is wait-free. These constructions follow the design patterns outlined earlier in Chap-
ter 9.

14.2 Sequential skiplists
For simplicity, we treat the list as a set, meaning that keys are unique. A SkipList is
a collection of sorted linked lists, which mimics, in a subtle way, a balanced search
tree. Nodes in a SkipList are ordered by key. Each node is linked into a subset of
the lists. Each list has a level, ranging from 0 to a maximum. The bottom-level list
contains all the nodes, and each higher-level list is a sublist of the lower-level lists.
Fig. 14.1 shows a SkipList with integer keys. The higher-level lists are shortcuts
into the lower-level lists, because, roughly speaking, each link at level i skips over
about 2i nodes in the lowest-level list, (e.g., in the SkipList shown in Fig. 14.1, each
reference at level 3 skips over 23 nodes). Between any two nodes at a given level, the
number of nodes in the level immediately below it is effectively constant, so the total
height of the SkipList is roughly logarithmic in the number of nodes. One can find
a node with a given key by searching first through the lists in higher levels, skipping

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00024-0
Copyright © 2021 Elsevier Inc. All rights reserved.

335

336 CHAPTER 14 Skiplists and balanced search

FIGURE 14.1

The SkipList class: This example has four levels of lists. Each node has a key, and the head
and tail sentinels have ±∞ keys. The list at level i is a shortcut where each reference
skips over 2i nodes of the next lower level list. For example, at level 3, references skip 23

nodes; at level 2, 22 nodes, and so on.

over large numbers of lower nodes, and progressively descending until a node with
the target key is found (or not) at the bottom level.

The SkipList is a probabilistic data structure. (No one knows how to provide this
kind of performance without randomization.) Each node is created with a random
top level (topLevel) and belongs to all lists up to that level. Top levels are chosen
so that the expected number of nodes in each level’s list decreases exponentially. Let
0 < p < 1 be the conditional probability that a node at level i also appears at level
i + 1. All nodes appear at level 0. The probability that a node at level 0 also appears
at level i > 0 is pi . For example, with p = 1/2, 1/2 of the nodes are expected to
appear at level 1, 1/4 at level 2, and so on, providing a balancing property like the
classical sequential tree-based search structures, but without the need for complex
global restructuring.

We put head and tail sentinel nodes at the beginning and end of the lists with
the maximum allowed height. Initially, when the SkipList is empty, the head (left
sentinel) is the predecessor of the tail (right sentinel) at every level. The head’s key
is less than any key that may be added to the set, and the tail’s key is greater.

Each SkipList node’s next field is an array of references, one for each list to
which it belongs, and so finding a node means finding its predecessors and succes-
sors. Searching the SkipList always begins at the head. The find() method proceeds
down the levels one after the other, and traverses each level as in the LazyList using
references to a predecessor node pred and a current node curr. Whenever it finds a
node with a greater or matching key, it records the pred and curr as the predecessor
and successor of a node in arrays called preds[] and succs[], and continues to the next
lower level. The traversal ends at the bottom level. Fig. 14.2(a) shows a sequential
find() call.

To add a node to a skiplist, a find() call fills in the preds[] and succs[] arrays. The
new node is created and linked between its predecessors and successors. Fig. 14.2(b)
shows an add(12) call.

To remove a victim node from the skiplist, the find() method initializes the vic-
tim’s preds[] and succs[] arrays. The victim is then removed from the list at all levels
by redirecting each predecessor’s next reference to the victim’s successor.

14.3 A lock-based concurrent skiplist 337

FIGURE 14.2

The SkipList class: add() and find() methods. In part (a), find() traverses at each level,
starting at the highest level, for as long as curr is less than or equal to the target key 12.
Otherwise, it stores pred and curr in the preds[] and succs[] arrays at each level and
descends to the next level. For example, the node with key 9 is preds[2] and preds[1], while
tail is succs[2] and the node with key 18 is succs[1]. Here, find() returns false since the
node with key 12 was not found in the lowest-level list, and so an add(12) call in part (b)
can proceed. In part (b), a new node is created with a random topLevel= 2. The new
node’s next references are redirected to the corresponding succs[] nodes, and each
predecessor node’s next reference is redirected to the new node.

14.3 A lock-based concurrent skiplist
We now describe the first concurrent skiplist design, the LazySkipList class. This
class builds on the LazyList algorithm of Chapter 9: Each level of the SkipList struc-
ture is a LazyList, and as in the LazyList algorithm, the add() and remove() methods
use optimistic fine-grained locking, while the contains() method is wait-free.

14.3.1 A bird’s-eye view
Here is a bird’s-eye view of the LazySkipList class. Start with Fig. 14.3. As in the
LazyList class, each node has its own lock and a marked field indicating whether it is
in the abstract set, or has been logically removed. All along, the algorithm maintains
the skiplist property: Higher-level lists are always contained in lower-level lists.

The skiplist property is maintained using locks to prevent structural changes in
the vicinity of a node while it is being added or removed, and by delaying any access
to a node until it has been inserted into all levels of the list.

To add a node, it must be linked into the list at several levels. Every add() call
calls find(), which traverses the skiplist and returns the node’s predecessors and suc-
cessors at all levels. To prevent changes to the node’s predecessors while the node is
being added, add() locks the predecessors, validates that the locked predecessors still
refer to their successors, and then adds the node in a manner similar to the sequential
add() shown in Fig. 14.2. To maintain the skiplist property, a node is not considered
to be logically in the set until all references to it at all levels have been properly set.
Each node has an additional flag, fullyLinked, set to true once it has been linked in

338 CHAPTER 14 Skiplists and balanced search

FIGURE 14.3

The LazySkipList class: failed and successful add() and remove() calls. In part (a), the
add(18) call finds the node with key 18 unmarked but not yet fullyLinked. It spins waiting
for the node to become fullyLinked in part (b), at which point it returns false. In part (a),
the remove(8) call finds the node with key 8 unmarked and fully linked, which means that it
can acquire the node’s lock in part (b). It then sets the mark bit, and proceeds to lock the
node’s predecessors, in this case, the node with key 5. Once the predecessor is locked, it
physically removes the node from the list by redirecting the bottom-level reference of the
node with key 5, completing the successful remove(). In part (a), a remove(18) fails, because
it found the node not fully linked. The same remove(18) call succeeds in part (b) because it
found that the node is fully linked.

all its levels. We do not allow access to a node until it is fully linked, so for exam-
ple, the add() method, when trying to determine whether the node it wishes to add is
already in the list, must spin waiting for it to become fully linked. Fig. 14.3 shows a
call to add(18) that spins waiting until the node with key 18 becomes fully linked.

To remove a node from the list, remove() uses find() to check whether a victim
node with the target key is already in the list. If so, it checks whether the victim is
ready to be deleted, that is, is fully linked and unmarked. In part (a) of Fig. 14.3,
remove(8) finds the node with key 8 unmarked and fully linked, which means that it
can remove it. The remove(18) call fails, because it found that the victim is not fully
linked. The same remove(18) call succeeds in part (b) because it found that the victim
is fully linked.

If the victim can be removed, remove() logically removes it by setting its mark
bit. It completes the physical deletion of the victim by locking its predecessors at all
levels and then the victim node itself, validating that the predecessors are unmarked
and still refer to the victim, and then splicing out the victim node one level at a time.
To maintain the skiplist property, the victim is spliced out from top to bottom.

For example, in part (b) of Fig. 14.3, remove(8) locks the predecessor node with
key 5. Once this predecessor is locked, remove() physically removes the node from
the list by redirecting the bottom-level reference of the node with key 5 to refer to the
node with key 9.

14.3 A lock-based concurrent skiplist 339

In both the add() and remove() methods, if validation fails, find() is called again
to find the newly changed set of predecessors, and the attempt to complete the method
resumes.

The wait-free contains() method calls find() to locate the node containing the
target key. If it finds a node, it determines whether the node is in the set by check-
ing whether it is unmarked and fully linked. This method, like the LazyList class’s
contains(), is wait-free because it ignores any locks or concurrent changes in the
SkipList structure.

To summarize, the LazySkipList class uses a technique familiar from earlier algo-
rithms: It holds locks on all locations to be modified, validates that nothing important
has changed, completes the modifications, and releases the locks (in this context, the
fullyLinked flag acts like a lock).

14.3.2 The algorithm
Fig. 14.4 shows the LazySkipList’s Node class. A key is in the set if and only if the list
contains an unmarked, fully linked node with that key. Key 8 in part (a) of Fig. 14.3
is an example of such a key.

Fig. 14.5 shows the skiplist find() method. (The same method works in both the
sequential and concurrent algorithms.) The find() method returns −1 if the item is
not found. It traverses the SkipList using pred and curr references starting at the head
and at the highest level.1 This highest level can be maintained dynamically to reflect
the highest level actually in the SkipList, but for brevity, we do not do so here. The
find() method goes down the levels one after the other. At each level, it sets curr to
be the pred node’s successor. If it finds a node with a matching key, it records the
level (line 48). If it does not find a node with a matching key, then find() records the
pred and curr as the predecessor and successor at that level in the preds[] and succs[]
arrays (lines 51–52), continuing to the next lower level starting from the current pred
node. Part (a) of Fig. 14.2 shows how find() traverses a SkipList. Part (b) shows how
find() results would be used to add() a new item to a SkipList.

Because we start with pred at the head sentinel node and always advance the
window only if curr is less than the target key, pred is always a predecessor of the
target key, and never refers to the node with the key itself. The find() method returns
the preds[] and succs[] arrays as well as the level at which the node with a matching
key was found.

The add(k) method, shown in Fig. 14.6, uses find() (Fig. 14.5) to determine
whether a node with the target key k is already in the list (line 43). If an unmarked
node with the key is found (lines 62–67), then add(k) returns false, indicating that
the key k is already in the set. However, if that node is not yet fully linked (indicated
by the fullyLinked field), then the thread waits until it is linked (because the key k

is not in the abstract set until the node is fully linked). If the node found is marked,

1 In Fig. 14.5, we make the curr field volatile to prevent compiler optimizations of the loop on line 44.
Recall that making the node array volatile does not make the array entries volatile.

340 CHAPTER 14 Skiplists and balanced search

1 public final class LazySkipList<T> {
2 static final int MAX_LEVEL = ...;
3 final Node<T> head = new Node<T>(Integer.MIN_VALUE);
4 final Node<T> tail = new Node<T>(Integer.MAX_VALUE);
5 public LazySkipList() {
6 for (int i = 0; i < head.next.length; i++) {
7 head.next[i] = tail;
8 }
9 }

10 ...
11 private static final class Node<T> {
12 final Lock lock = new ReentrantLock();
13 final T item;
14 final int key;
15 final Node<T>[] next;
16 volatile boolean marked = false;
17 volatile boolean fullyLinked = false;
18 private int topLevel;
19 public Node(int key) { // sentinel node constructor
20 this.item = null;
21 this.key = key;
22 next = new Node[MAX_LEVEL + 1];
23 topLevel = MAX_LEVEL;
24 }
25 public Node(T x, int height) {
26 item = x;
27 key = x.hashCode();
28 next = new Node[height + 1];
29 topLevel = height;
30 }
31 public void lock() {
32 lock.lock();
33 }
34 public void unlock() {
35 lock.unlock();
36 }
37 }
38 }

FIGURE 14.4

The LazySkipList class: constructor, fields, and Node class.

then some other thread is in the process of deleting it, so the add() call simply retries.
Otherwise, it checks whether the node is unmarked and fully linked, indicating that
the add() call should return false. It is safe to check if the node is unmarked before
the node is fully linked, because remove() methods do not mark nodes unless they

14.3 A lock-based concurrent skiplist 341

39 int find(T x, Node<T>[] preds, Node<T>[] succs) {
40 int key = x.hashCode();
41 int lFound = -1;
42 Node<T> pred = head;
43 for (int level = MAX_LEVEL; level >= 0; level--) {
44 volatile Node<T> curr = pred.next[level];
45 while (key > curr.key) {
46 pred = curr; curr = pred.next[level];
47 }
48 if (lFound == -1 && key == curr.key) {
49 lFound = level;
50 }
51 preds[level] = pred;
52 succs[level] = curr;
53 }
54 return lFound;
55 }

FIGURE 14.5

The LazySkipList class: the wait-free find() method. This algorithm is the same as in the
sequential SkipList implementation. The preds[] and succs[] arrays are filled from the
maximum level to level 0 with the predecessor and successor references for the given key.

are fully linked. If a node is unmarked and not yet fully linked, it must become un-
marked and fully linked before it can become marked (see Fig. 14.7). This step is the
linearization point (line 66) of an unsuccessful add() method call.

The add() method calls find() to initialize the preds[] and succs[] arrays to hold the
ostensible predecessor and successor nodes of the node to be added. These references
are unreliable, because they may no longer be accurate by the time the nodes are
accessed. If no unmarked fully linked node was found with key k, then the thread
proceeds to lock and validate each of the predecessors returned by find() from level 0
up to the topLevel of the new node (lines 74–80). To avoid deadlocks, both add() and
remove() acquire locks in ascending order. The topLevel value is determined at the
very beginning of the add() method using the randomLevel() method.2 The validation
(line 79) at each level checks that the predecessor is still adjacent to the successor
and that neither is marked. If validation fails, the thread must have encountered the
effects of a conflicting method, so it releases (in the finally block on line 87) the
locks it acquired and retries.

If the thread successfully locks and validates the results of find() up to the
topLevel of the new node, then the add() call will succeed because the thread holds

2 The randomLevel() method is designed based on empirical measurements to maintain the skiplist prop-
erty. For example, in the java.util.concurrent package, for a maximal SkipList level of 31, randomLevel()
returns 0 with probability 3

4 , i with probability 2−(i+2) for i ∈ [1,30], and 31 with probability 2−32.

342 CHAPTER 14 Skiplists and balanced search

56 boolean add(T x) {
57 int topLevel = randomLevel();
58 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
59 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
60 while (true) {
61 int lFound = find(x, preds, succs);
62 if (lFound != -1) {
63 Node<T> nodeFound = succs[lFound];
64 if (!nodeFound.marked) {
65 while (!nodeFound.fullyLinked) {}
66 return false;
67 }
68 continue;
69 }
70 int highestLocked = -1;
71 try {
72 Node<T> pred, succ;
73 boolean valid = true;
74 for (int level = 0; valid && (level <= topLevel); level++) {
75 pred = preds[level];
76 succ = succs[level];
77 pred.lock.lock();
78 highestLocked = level;
79 valid = !pred.marked && !succ.marked && pred.next[level]==succ;
80 }
81 if (!valid) continue;
82 Node<T> newNode = new Node(x, topLevel);
83 for (int level = 0; level <= topLevel; level++)
84 newNode.next[level] = succs[level];
85 for (int level = 0; level <= topLevel; level++)
86 preds[level].next[level] = newNode;
87 newNode.fullyLinked = true; // successful add linearization point
88 return true;
89 } finally {
90 for (int level = 0; level <= highestLocked; level++)
91 preds[level].unlock();
92 }
93 }
94 }

FIGURE 14.6

The LazySkipList class: the add() method.

all the locks it needs. The thread then allocates a new node with the appropriate key
and randomly chosen topLevel, links it in, and sets the new node’s fullyLinked flag.
Setting this flag is the linearization point of a successful add() method (line 87). It

14.3 A lock-based concurrent skiplist 343

then releases all its locks and returns true (line 89). The only time a thread modifies
an unlocked node’s next field is when it initializes the new node’s next references
(line 83). This initialization is safe because it occurs before the new node is accessi-
ble.

The remove() method appears in Fig. 14.7. It calls find() to determine whether
a node with the appropriate key is in the list. If so, the thread checks whether the
node is ready to be deleted (line 104), meaning it is fully linked, unmarked, and at
its top level. A node found below its top level was either not yet fully linked (see the
node with key 18 in part (a) of Fig. 14.3) or marked and already partially unlinked
by a concurrent remove() method call (the remove() method could continue, but the
subsequent validation would fail).

If the node is ready to be deleted, the thread locks the node (line 109) and verifies
that it is still not marked. If it is still not marked, the thread marks the node, logi-
cally deleting that item. This step (line 114) is the linearization point of a successful
remove() call. If the node was marked, then the thread returns false since the node
was already deleted. This step is one linearization point of an unsuccessful remove().
Another occurs when find() does not find a node with a matching key, or when the
node with the matching key was marked, or not fully linked, or not found at its top
level (line 104).

The rest of the method completes the physical deletion of the victim node. To
remove the victim from the list, the remove() method first locks (in ascending order,
to avoid deadlock) the victim’s predecessors at all levels up to the victim’s topLevel
(lines 120–124). After locking each predecessor, it validates that the predecessor is
still unmarked and still refers to the victim. It then splices out the victim one level at
a time (line 128). To maintain the skiplist property, that any node reachable at a given
level is reachable at lower levels, the victim is spliced out from top to bottom. If the
validation fails at any level, then the thread releases the locks for the predecessors
(but not the victim) and calls find() to acquire the new set of predecessors. Because
it has already set the victim’s isMarked field, it does not try to mark the node again.
After successfully removing the victim node from the list, the thread releases all its
locks and returns true.

Finally, we recall that if no node was found, or the node found was marked, or
not fully linked, or not found at its top level, then the method simply returns false. It
is easy to see that it is correct to return false if the node is not marked, because for
any key, there can at any time be at most one node with this key in the SkipList (i.e.,
reachable from the head). Moreover, once a node is entered into the list (which must
have occurred before it is found by find()), it cannot be removed until it is marked. It
follows that if the node is not marked, and not all its links are in place, it must be in
the process of being added into the SkipList, but the adding method has not reached
the linearization point (see the node with key 18 in part (a) of Fig. 14.3).

If the node is marked at the time it is found, it might not be in the list, and some
unmarked node with the same key may be in the list. However, in that case, just
like for the LazyList remove() method, there must have been some point during the
remove() call when the key was not in the abstract set.

344 CHAPTER 14 Skiplists and balanced search

95 boolean remove(T x) {
96 Node<T> victim = null; boolean isMarked = false; int topLevel = -1;
97 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
98 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
99 while (true) {

100 int lFound = find(x, preds, succs);
101 if (lFound != -1) victim = succs[lFound];
102 if (isMarked ||
103 (lFound != -1 &&
104 (victim.fullyLinked
105 && victim.topLevel == lFound
106 && !victim.marked))) {
107 if (!isMarked) {
108 topLevel = victim.topLevel;
109 victim.lock.lock();
110 if (victim.marked) {
111 victim.lock.unlock();
112 return false;
113 }
114 victim.marked = true;
115 isMarked = true;
116 }
117 int highestLocked = -1;
118 try {
119 Node<T> pred, succ; boolean valid = true;
120 for (int level = 0; valid && (level <= topLevel); level++) {
121 pred = preds[level];
122 pred.lock.lock();
123 highestLocked = level;
124 valid = !pred.marked && pred.next[level]==victim;
125 }
126 if (!valid) continue;
127 for (int level = topLevel; level >= 0; level--) {
128 preds[level].next[level] = victim.next[level];
129 }
130 victim.lock.unlock();
131 return true;
132 } finally {
133 for (int i = 0; i <= highestLocked; i++) {
134 preds[i].unlock();
135 }
136 }
137 } else return false;
138 }
139 }

FIGURE 14.7

The LazySkipList class: the remove() method.

14.4 A lock-free concurrent skiplist 345

140 boolean contains(T x) {
141 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
142 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
143 int lFound = find(x, preds, succs);
144 return (lFound != -1
145 && succs[lFound].fullyLinked
146 && !succs[lFound].marked);
147 }

FIGURE 14.8

The LazySkipList class: the wait-free contains() method.

The wait-free contains() method (Fig. 14.8) calls find() to locate the node con-
taining the target key. If it finds a node it checks whether it is unmarked and fully
linked. This method, like that of the LazyList class of Chapter 9, is wait-free, ig-
noring any locks or concurrent changes in the SkipList list structure. A successful
contains() call’s linearization point occurs when the predecessor’s next reference
is traversed, having been observed to be unmarked and fully linked. An unsuccess-
ful contains() call, like the remove() call, occurs if the method finds a node that is
marked. Care is needed, because at the time the node is found, it might not be in the
list, while an unmarked node with the same key may be in the list. As with remove(),
however, there must have been some point during the contains() call when the key
was not in the abstract set.

14.4 A lock-free concurrent skiplist
The basis of our LockFreeSkipList implementation is the LockFreeList algorithm of
Chapter 9: Each level of the SkipList structure is a LockFreeList, each next reference
in a node is an AtomicMarkableReference<Node>, and list manipulations are performed
using compareAndSet().

14.4.1 A bird’s-eye view
Here is a bird’s-eye view of the of the LockFreeSkipList class.

Because we cannot use locks to manipulate references at all levels at the same
time, the LockFreeSkipList cannot maintain the skiplist property that each list is a
sublist of the list at levels below it.

Since we cannot maintain the skiplist property, we take the approach that the
abstract set is defined by the bottom-level list: A key is in the set if there is a node
with that key whose next reference is unmarked in the bottom-level list. Nodes in
higher-level lists in the skiplist serve only as shortcuts to the bottom level. There is
no need for a fullyLinked flag as in the LazySkipList.

346 CHAPTER 14 Skiplists and balanced search

FIGURE 14.9

The LockFreeSkipList class: an add() call. Each node consists of links that are unmarked (a
0) or marked (a 1). In part (a), add(12) calls find(12) while there are three ongoing remove()
calls. The find() method “cleans” the marked links (denoted by 1s) as it traverses the
skiplist. The traversal is not the same as a sequential find(12), because marked nodes are
unlinked whenever they are encountered. The path in the figure shows the nodes traversed
by the pred reference, which always refers to unmarked nodes with keys less than the target
key. Part (b) shows the result of redirecting the dashed links. We denote bypassing a node
by placing the link in front of it. Node 15, whose bottom-level next reference was marked, is
removed from the skiplist. Part (c) shows the subsequent addition of the new node with key
12. Part (d) shows an alternate addition scenario that would occur if the node with key 11
were removed before the addition of the node with key 12. The bottom-level next reference
of the node with key 9 is not yet marked, and so the bottom-level predecessor node, whose
next reference is marked, is redirected by the add() method to the new node. Once thread
C completes marking this reference, the node with key 9 is removed and the node with key
5 becomes the immediate predecessor of the newly added node.

How do we add or remove a node? We treat each level of the list as a
LockFreeList. We use compareAndSet() to insert a node at a given level, and we
mark the next references of a node to remove it.

As in the LockFreeList, the find() method cleans up marked nodes. The method
traverses the skiplist, proceeding down each list at each level. As in the LockFreeList
class’s find() method, it repeatedly snips out marked nodes as they are encountered,
so that it never looks at a marked node’s key. Unfortunately, this means that a node
may be physically removed while it is in the process of being linked at the higher
levels. A find() call that passes through a node’s middle-level references may remove
these references, so, as noted earlier, the skiplist property is not maintained.

14.4 A lock-free concurrent skiplist 347

The add() method calls find() to determine whether a node is already in the list
and to find its set of predecessors and successors. A new node is prepared with a
randomly chosen topLevel, and its next references are directed to the potential suc-
cessors returned by the find() call. The next step is to try to logically add the new
node to the abstract set by linking it into the bottom-level list, using the same ap-
proach as in the LockFreeList. If the addition succeeds, the item is logically in the
set. The add() call then links the node in at higher levels (up to its top level).

Fig. 14.9 shows the LockFreeSkipList class. In part (a), add(12) calls find(12)

while there are three ongoing remove() calls. Part (b) shows the results of redirecting
the dashed links. Part (c) shows the subsequent addition of the new node with key 12.
Part (d) shows an alternate addition scenario that would occur if the node with key
11 were removed before the addition of the node with key 12.

The remove() method calls find() to determine whether an unmarked node with
the target key is in the bottom-level list. If an unmarked node is found, it is marked
starting from the topLevel. All next references up to but not including the bottom-
level reference are logically removed from their appropriate level list by marking
them. Once all levels but the bottom one have been marked, the method marks the
bottom-level’s next reference. This marking, if successful, removes the item from
the abstract set. The physical removal of the node is the result of its physical removal
from the lists at all levels by the remove() method itself and the find() methods of
other threads that access it while traversing the skiplist. In both add() and remove(),
if at any point a compareAndSet() fails, the set of predecessors and successors might
have changed, and so find() must be called again.

The key to the interaction between the add(), remove(), and find() methods is the
order in which list manipulations take place. The add() method sets its next references
to the successors before it links the node into the bottom-level list, meaning that
a node is ready to be removed from the moment it is logically added to the list.
Similarly, the remove() method marks the next references top-down, so that once a
node is logically removed, it is not traversed by a find() method call.

As noted, in most applications, calls to contains() usually outnumber calls to
other methods. As a result contains() should not call find(). While it may be effective
to have individual find() calls physically remove logically deleted nodes, contention
results if too many concurrent find() calls try to clean up the same nodes at the same
time. This kind of contention is much more likely with frequent contains() calls than
with calls to the other methods.

However, contains() cannot use the approach taken by the LockFreeList’s wait-
free contains(): Look at the keys of all reachable nodes independently of whether
they are marked or not. The problem is that add() and remove() may violate the skiplist
property. It is possible for a marked node to be reachable in a higher-level list after
being physically deleted from the lowest-level list. Ignoring the mark could lead to
skipping over nodes reachable in the lowest level.

Note, however, that the find() method of the LockFreeSkipList is not subject to
this problem because it never looks at keys of marked nodes, removing them instead.
We will have the contains() method mimic this behavior, but without cleaning up

348 CHAPTER 14 Skiplists and balanced search

marked nodes. Instead, contains() traverses the skiplist, ignoring the keys of marked
nodes, and skipping over them instead of physically removing them. Avoiding the
physical removal allows the method to be wait-free.

14.4.2 The algorithm in detail
As we present the algorithmic details, the reader should keep in mind that the abstract
set is defined only by the bottom-level list. Nodes in the higher-level lists are used
only as shortcuts into the bottom-level list. Fig. 14.10 shows the structure of the list’s
nodes.

The add() method, shown in Fig. 14.11, uses find(), shown in Fig. 14.13, to deter-
mine whether a node with key k is already in the list (line 61). As in the LazySkipList,
add() calls find() to initialize the preds[] and succs[] arrays to hold the new node’s
ostensible predecessors and successors.

If an unmarked node with the target key is found in the bottom-level list, find()
returns true and the add() method returns false, indicating that the key is already
in the set. The unsuccessful add()’s linearization point is the same as the successful
find()’s (line 43). If no node is found, then the next step is to try to add a new node
with the key into the structure.

A new node is created with a randomly chosen topLevel. The node’s next ref-
erences are unmarked and set to the successors returned by the find() method
(lines 47–50).

The next step is to try to add the new node by linking it into the bottom-
level list between the preds[0] and succs[0] nodes returned by find(). As in the
LockFreeList, we use compareAndSet() to set the reference while validating that these
nodes still refer one to the other and have not been removed from the list (line 55).
If the compareAndSet() fails, something has changed and the call restarts. If the
compareAndSet() succeeds, the item is added, and line 55 is the call’s linearization
point.

The add() then links the node in at higher levels (line 58). For each level, it
attempts to splice the node in by setting the predecessor, if it refers to the valid suc-
cessor, to the new node (line 62). If successful, it breaks and moves on to the next
level. If unsuccessful, the node referenced by the predecessor must have changed,
and find() is called again to find a new valid set of predecessors and successors. We
discard the result of calling find() (line 64) because we care only about recomputing
the ostensible predecessors and successors on the remaining unlinked levels. Once
all levels are linked, the method returns true (line 67).

The remove() method, shown in Fig. 14.12, calls find() to determine whether an
unmarked node with a matching key is in the bottom-level list. If no node is found
in the bottom-level list, or the node with a matching key is marked, the method re-
turns false. The linearization point of the unsuccessful remove() is that of the find()
method called on line 77. If an unmarked node is found, then the method logically re-
moves the associated key from the abstract set, and prepares it for physical removal.
This step uses the set of ostensible predecessors (stored by find() in preds[]) and

14.4 A lock-free concurrent skiplist 349

1 public final class LockFreeSkipList<T> {
2 static final int MAX_LEVEL = ...;
3 final Node<T> head = new Node<T>(Integer.MIN_VALUE);
4 final Node<T> tail = new Node<T>(Integer.MAX_VALUE);
5 public LockFreeSkipList() {
6 for (int i = 0; i < head.next.length; i++) {
7 head.next[i]
8 = new AtomicMarkableReference<LockFreeSkipList.Node<T>>(tail, false);
9 }

10 }
11 public static final class Node<T> {
12 final T value; final int key;
13 final AtomicMarkableReference<Node<T>>[] next;
14 private int topLevel;
15 // constructor for sentinel nodes
16 public Node(int key) {
17 value = null; key = key;
18 next = (AtomicMarkableReference<Node<T>>[])
19 new AtomicMarkableReference[MAX_LEVEL + 1];
20 for (int i = 0; i < next.length; i++) {
21 next[i] = new AtomicMarkableReference<Node<T>>(null,false);
22 }
23 topLevel = MAX_LEVEL;
24 }
25 // constructor for ordinary nodes
26 public Node(T x, int height) {
27 value = x;
28 key = x.hashCode();
29 next = (AtomicMarkableReference<Node<T>>[])
30 new AtomicMarkableReference[height + 1];
31 for (int i = 0; i < next.length; i++) {
32 next[i] = new AtomicMarkableReference<Node<T>>(null,false);
33 }
34 topLevel = height;
35 }
36 }

FIGURE 14.10

The LockFreeSkipList class: fields and constructor.

the nodeToRemove (returned from find() in succs[]). First, starting from the topLevel,
all links up to and not including the bottom-level link are marked (lines 83–89) by
repeatedly reading next and its mark and applying a compareAndSet(). If the link is
found to be marked (either because it was already marked or because the attempt suc-
ceeded), the method moves on to the next-level link. Otherwise, the current level’s
link is reread since it must have been changed by another concurrent thread, so the
marking attempt must be repeated. Once all levels but the bottom one have been
marked, the method marks the bottom-level’s next reference. This marking (line 96),
if successful, is the linearization point of a successful remove(). The remove() method

350 CHAPTER 14 Skiplists and balanced search

37 boolean add(T x) {
38 int topLevel = randomLevel();
39 int bottomLevel = 0;
40 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
41 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
42 while (true) {
43 boolean found = find(x, preds, succs);
44 if (found) {
45 return false;
46 } else {
47 Node<T> newNode = new Node(x, topLevel);
48 for (int level = bottomLevel; level <= topLevel; level++) {
49 Node<T> succ = succs[level];
50 newNode.next[level].set(succ, false);
51 }
52 Node<T> pred = preds[bottomLevel];
53 Node<T> succ = succs[bottomLevel];
54 if (!pred.next[bottomLevel].compareAndSet(succ, newNode,
55 false, false)) {
56 continue;
57 }
58 for (int level = bottomLevel+1; level <= topLevel; level++) {
59 while (true) {
60 pred = preds[level];
61 succ = succs[level];
62 if (pred.next[level].compareAndSet(succ, newNode, false, false))
63 break;
64 find(x, preds, succs);
65 }
66 }
67 return true;
68 }
69 }
70 }

FIGURE 14.11

The LockFreeSkipList class: the add() method.

tries to mark the next field using compareAndSet(). If successful, it can determine that
it was the thread that changed the mark from false to true. Before returning true, the
find() method is called again. This call is an optimization: As a side effect, find()
physically removes all links to the node it is searching for if that node is already
logically removed.

On the other hand, if the compareAndSet() call failed, but the next reference is
marked, then another thread must have concurrently removed it, so remove() returns
false. The linearization point of this unsuccessful remove() is the linearization point

14.4 A lock-free concurrent skiplist 351

71 boolean remove(T x) {
72 int bottomLevel = 0;
73 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
74 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
75 Node<T> succ;
76 while (true) {
77 boolean found = find(x, preds, succs);
78 if (!found) {
79 return false;
80 } else {
81 Node<T> nodeToRemove = succs[bottomLevel];
82 for (int level = nodeToRemove.topLevel;
83 level >= bottomLevel+1; level--) {
84 boolean[] marked = {false};
85 succ = nodeToRemove.next[level].get(marked);
86 while (!marked[0]) {
87 nodeToRemove.next[level].compareAndSet(succ, succ, false, true);
88 succ = nodeToRemove.next[level].get(marked);
89 }
90 }
91 boolean[] marked = {false};
92 succ = nodeToRemove.next[bottomLevel].get(marked);
93 while (true) {
94 boolean iMarkedIt =
95 nodeToRemove.next[bottomLevel].compareAndSet(succ, succ,
96 false, true);
97 succ = succs[bottomLevel].next[bottomLevel].get(marked);
98 if (iMarkedIt) {
99 find(x, preds, succs);

100 return true;
101 }
102 else if (marked[0]) return false;
103 }
104 }
105 }
106 }

FIGURE 14.12

The LockFreeSkipList class: the remove() method.

of the remove() method by the thread that successfully marked the next field. Note
that this linearization point must occur during the remove() call because the find()
call found the node unmarked before it found it marked.

Finally, if the compareAndSet() fails and the node is unmarked, then the next node
must have changed concurrently. Since the nodeToRemove is known, there is no need
to call find() again, and remove() simply uses the new value read from next to retry
the marking.

352 CHAPTER 14 Skiplists and balanced search

107 boolean find(T x, Node<T>[] preds, Node<T>[] succs) {
108 int bottomLevel = 0;
109 int key = x.hashCode();
110 boolean[] marked = {false};
111 boolean snip;
112 Node<T> pred = null, curr = null, succ = null;
113 retry:
114 while (true) {
115 pred = head;
116 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
117 curr = pred.next[level].getReference();
118 while (true) {
119 succ = curr.next[level].get(marked);
120 while (marked[0]) {
121 snip = pred.next[level].compareAndSet(curr, succ,
122 false, false);
123 if (!snip) continue retry;
124 curr = pred.next[level].getReference();
125 succ = curr.next[level].get(marked);
126 }
127 if (curr.key < key){
128 pred = curr; curr = succ;
129 } else {
130 break;
131 }
132 }
133 preds[level] = pred;
134 succs[level] = curr;
135 }
136 return (curr.key == key);
137 }
138 }

FIGURE 14.13

The LockFreeSkipList class: a more complex find() than in LazySkipList.

As noted, both the add() and remove() methods rely on find(). This method
searches the LockFreeSkipList, returning true if and only if a node with the target
key is in the set. It fills in the preds[] and succs[] arrays with the target node’s os-
tensible predecessors and successors at each level. It maintains the following two
properties:

• It never traverses a marked link. Instead, it removes the node referred to by a
marked link from the list at that level.

• Every preds[] reference is to a node with a key strictly less than the target.

The find() method in Fig. 14.13 proceeds as follows: It starts traversing the
SkipList from the topLevel of the head sentinel, which has the maximal allowed node

14.4 A lock-free concurrent skiplist 353

139 boolean contains(T x) {
140 int bottomLevel = 0;
141 int v = x.hashCode();
142 boolean[] marked = {false};
143 Node<T> pred = head, curr = null, succ = null;
144 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
145 curr = curr.next[level].getReference();
146 while (true) {
147 succ = curr.next[level].get(marked);
148 while (marked[0]) {
149 curr = pred.next[level].getReference();
150 succ = curr.next[level].get(marked);
151 }
152 if (curr.key < v){
153 pred = curr;
154 curr = succ;
155 } else {
156 break;
157 }
158 }
159 }
160 return (curr.key == v);
161 }

FIGURE 14.14

The LockFreeSkipList class: the wait-free contains() method.

level. It then proceeds in each level down the list, filling in preds and succs nodes
that are repeatedly advanced until pred refers to a node with the largest value on that
level that is strictly less than the target key (lines 118–132). As in the LockFreeList,
it repeatedly snips out marked nodes from the given level as they are encountered
(lines 120–126) using a compareAndSet(). Note that the compareAndSet() validates
that the next field of the predecessor references the current node. Once an unmarked
curr is found (line 127), it is tested to see if its key is less than the target key. If so,
pred is advanced to curr. Otherwise, curr’s key is greater than or equal to the target’s,
so the current value of pred is the target node’s immediate predecessor. The find()
method breaks out of the current level search loop, saving the current values of pred
and curr (line 133).

The find() method proceeds this way until it reaches the bottom level. Here is an
important point: The traversal at each level maintains the two properties described
earlier. In particular, if a node with the target key is in the list, it will be found at the
bottom level even if traversed nodes are removed at higher levels. When the traversal
stops, pred refers to a predecessor of the target node. The method descends to each
next lower level without skipping over the target node. If the node is in the list, it will
be found at the bottom level. Moreover, if the node is found, it cannot be marked be-

354 CHAPTER 14 Skiplists and balanced search

FIGURE 14.15

Thread A calls contains(18), which traverses the list starting from the top level of the head
node. The dotted line marks the traversal by the pred field, and the sparse dotted line
marks the path of the curr field. The curr field is advanced to tail on level 3. Since its key
is greater than 18, pred descends to level 2. The curr field advances past the marked
reference in the node with key 9, again reaching tail, which is greater than 18, so pred
descends to level 1. Here pred is advanced to the unmarked node with key 5, and curr
advances past the marked node with key 9 to reach the unmarked node with key 18, at
which point curr is no longer advanced. Though 18 is the target key, the method continues
to descend with pred to the bottom level, advancing pred to the node with key 8. From this
point, curr traverses past marked Nodes 9 and 15 and Node 11 whose key is smaller than
18. Eventually curr reaches the unmarked node with key 18, returning true.

cause if it were marked, it would have been snipped out on lines 120–126. Therefore,
the test on line 136 need only check if the key of curr is equal to the target key to
determine if the target is in the set.

The linearization points of both successful and unsuccessful calls to the find()
methods occur when the curr reference at the bottom-level list is set, at either line 117
or 124, for the last time before the find() call’s success or failure is determined on
line 136. Fig. 14.9 shows how a node is successfully added to the LockFreeSkipList.

The wait-free contains() method appears in Fig. 14.14. It traverses the SkipList
in the same way as the find() method, descending level-by-level from the head. Like
find(), contains() ignores keys of marked nodes. Unlike find(), it does not try to
remove marked nodes. Instead, it simply jumps over them (lines 148–151). For an
example execution, see Fig. 14.15.

The method is correct because contains() preserves the same properties as find(),
among them, that pred, in any level, never refers to an unmarked node whose key is
greater than or equal to the target key. The pred variable arrives at the bottom-level
list at a node before, and never after, the target node. If the node is added before the
contains() method call starts, then it will be found. Moreover, recall that add() calls
find(), which unlinks marked nodes from the bottom-level list before adding the new
node. It follows that if contains() does not find the desired node, or finds the desired
node at the bottom level but marked, then any concurrently added node that was not

14.5 Concurrent skiplists 355

FIGURE 14.16

The LockFreeSkipList class: a contains() call. In part (a), contains(18) traverses the list
starting from the top level of the head node. The dotted line marks the traversal by the pred
field. The pred field eventually reaches Node 8 at the bottom level and we show the path of
curr from that point on using a sparser dotted line. The curr traverses past Node 9 and
reaches the marked Node 15. In part (b), a new node with key 18 is added to the list by a
thread E. Thread E, as part of its find(18) call, physically removes the old nodes with keys
9, 15, and 18. Now thread A continues its traversal with the curr field from the removed
node with key 15 (the nodes with keys 15 and 18 are not recycled since they are reachable
by thread A). Thread A reaches the node with key 25, which is greater than 18, returning
false. Even though at this point there is an unmarked node with key 18 in the
LockFreeSkipList, this node was inserted by E concurrently with A’s traversal and is
linearized after A’s add(18).

found must have been added to the bottom level after the start of the contains() call,
so it is correct to return false on line 160.

Fig. 14.16 shows an execution of the contains() method. In part (a), a contains(18)

call traverses the list starting from the top level of the head node. In part (b), the
contains(18) call traverses the list after the node with key 18 has been logically
removed.

14.5 Concurrent skiplists
We have seen two highly concurrent SkipList implementations, each providing log-
arithmic search without the need to rebalance. In the LazySkipList class, the add()
and remove() methods use optimistic fine-grained locking, meaning that the method
searches for its target node without locking, and acquires locks and validates only
when it discovers the target. The contains() method, usually the most common, is
wait-free. In the LockFreeSkipList class, the add() and remove() methods are lock-
free, building on the LockFreeList class of Chapter 9. In this class too, the contains()
method is wait-free.

In Chapter 15, we see how one can build highly concurrent priority queues based
on the concurrent SkipList we presented here.

356 CHAPTER 14 Skiplists and balanced search

14.6 Chapter notes
Bill Pugh invented skiplists, both sequential [142] and concurrent [141]. The
LazySkipList is by Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit
[66]. The LockFreeSkipList presented here is credited to Maurice Herlihy, Yossi
Lev, and Nir Shavit [70]. It is partly based on an earlier lock-free skiplist algo-
rithm developed by to Kier Fraser [48], a variant of which was incorporated into the
java.util.concurrent package by Doug Lea [109].

14.7 Exercises
Exercise 14.1. Recall that a skiplist is a probabilistic data structure. Although the
expected performance of a contains() call is O(logn), where n is the number of
items in the list, the worst-case performance could be O(n). Draw a picture of an
eight-element skiplist with worst-case performance, and explain how it got that way.

Exercise 14.2. You are given a skiplist with probability p and MAX_LEVEL M . If the
list contains N nodes, what is the expected number of nodes at each level from 0 to
M − 1?

Exercise 14.3. Modify the LazySkipList class so find() starts at the level of the high-
est node currently in the structure, instead of the highest level possible (MAX_LEVEL).

Exercise 14.4. Modify the LazySkipList to support multiple items with the same
key.

Exercise 14.5. Suppose we modify the LockFreeSkipList class so that on line 102 of
Fig. 14.12, remove() restarts the main loop instead of returning false.

Is the algorithm still correct? Address both safety and liveness issues. That is,
what is an unsuccessful remove() call’s new linearization point, and is the class still
lock-free?

Exercise 14.6. Explain how in the LockFreeSkipList class a node might end up in
the list at levels 0 and 2, but not at level 1. Draw pictures.

Exercise 14.7. Modify the LockFreeSkipList so that the find() method snips out a
sequence of marked nodes with a single compareAndSet(). Explain why your imple-
mentation cannot remove a concurrently inserted unmarked node.

Exercise 14.8. Will the add() method of the LockFreeSkipList work even if the bot-
tom level is linked and then all other levels are linked in some arbitrary order? Is the
same true for the marking of the next references in the remove() method; the bottom
level next reference is marked last, but references at all other levels are marked in an
arbitrary order?

Exercise 14.9. (Hard) Modify the LazySkipList so that the list at each level is bidi-
rectional, and allows threads to add and remove items in parallel by traversing from
either the head or the tail.

14.7 Exercises 357

1 boolean contains(T x) {
2 int bottomLevel = 0;
3 int key = x.hashCode();
4 Node<T> pred = head;
5 Node<T> curr = null;
6 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
7 curr = pred.next[level].getReference();
8 while (curr.key < key) {
9 pred = curr;

10 curr = pred.next[level].getReference();
11 }
12 }
13 return curr.key == key;
14 }

FIGURE 14.17

The LockFreeSkipList class: an incorrect contains().

Exercise 14.10. Fig. 14.17 shows a buggy contains() method for the
LockFreeSkipList class. Give a scenario where this method returns a wrong answer.
Hint: The reason this method is wrong is that it takes into account keys of nodes that
have been removed.

15
CHAPTER

Priority queues

15.1 Introduction
A priority queue is a multiset of items, where each item has an associated priority, a
score that indicates its importance (by convention, smaller scores are more important,
indicating a higher priority). A priority queue typically provides an add() method to
add an item to the set, and a removeMin() method to remove and return the item of
minimal score (highest priority). Priority queues appear everywhere, from high-level
applications to low-level operating system kernels.

A bounded-range priority queue is one where each item’s score is taken from a
discrete set of items, while an unbounded-range priority queue is one where scores
are taken from a very large set, say, 32-bit integers, or floating-point values. Not
surprisingly, bounded-range priority queues are generally more efficient, but many
applications require unbounded ranges. Fig. 15.1 shows the priority queue interface.

15.1.1 Concurrent priority queues
In a concurrent setting, where add() and removeMin() method calls can overlap, what
does it mean for an item to be in the set?

We consider two alternative consistency conditions, both introduced in Chapter 3.
First, linearizability, requires that each method call appear to take effect at some
instant between its invocation and its response. Second, quiescent consistency, is a
weaker condition that requires that in any execution, at any point, if no additional
method calls are introduced, then when all pending method calls complete, the values
they return are consistent with some valid sequential execution of the object. If an
application does not require its priority queues to be linearizable, then it is usually
more efficient to require them to be quiescently consistent. Careful thought is usually
required to decide which approach is correct for a particular application.

public interface PQueue<T> {
void add(T item, int score);
T removeMin();

}

FIGURE 15.1

Priority queue interface.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00025-2
Copyright © 2021 Elsevier Inc. All rights reserved.

359

360 CHAPTER 15 Priority queues

15.2 An array-based bounded priority queue
A bounded-range priority queue has range m if its priorities are taken from the range
0, . . . ,m − 1. For now, we consider bounded priority queue algorithms that use two
component data structures: Counter and Bin. A Counter (see Chapter 12) holds an
integer value, and supports getAndIncrement() and getAndDecrement() methods that
atomically increment and decrement the counter value and return the counter’s prior
value. These methods may optionally be bounded, meaning they do not advance the
counter value beyond some specified bound.

A Bin is a pool that holds arbitrary items, and supports a put(x) method for in-
serting an item x and a get() method for removing and returning an arbitrary item,
returning null if the bin is empty. Bins can be implemented using locks or in a lock-
free manner using the stack algorithms of Chapter 11.

Fig. 15.2 shows the SimpleLinear class, which maintains an array of bins. To add
an item with score i, a thread simply places the item in the ith bin. The removeMin()
method scans the bins in decreasing priority and returns the first item it successfully
removes. If no item is found it returns null. If the bins are quiescently consistent, so
is SimpleLinear. The add() and removeMin() methods are lock-free if the Bin methods
are lock-free.

1 public class SimpleLinear<T> implements PQueue<T> {
2 int range;
3 Bin<T>[] pqueue;
4 public SimpleLinear(int myRange) {
5 range = myRange;
6 pqueue = (Bin<T>[])new Bin[range];
7 for (int i = 0; i < pqueue.length; i++){
8 pqueue[i] = new Bin();
9 }

10 }
11 public void add(T item, int key) {
12 pqueue[key].put(item);
13 }
14 public T removeMin() {
15 for (int i = 0; i < range; i++) {
16 T item = pqueue[i].get();
17 if (item != null) {
18 return item;
19 }
20 }
21 return null;
22 }
23 }

FIGURE 15.2

The SimpleLinear class: add() and removeMin() methods.

15.3 A tree-based bounded priority queue 361

15.3 A tree-based bounded priority queue
The SimpleTree (Fig. 15.3) is a lock-free quiescently consistent bounded-range prior-
ity queue. It is a binary tree of TreeNode objects (Fig. 15.4). As depicted in Fig. 15.5,
the tree has m leaves where the ith leaf node has a bin holding items of score i.
There are m − 1 shared bounded counters in the tree’s internal nodes that keep track
of the number of items in the leaves of the subtree rooted in each node’s left (lower
score/higher priority) child.

An add(x, k) call adds x to the bin at the kth leaf, and increments node counters
in leaf-to-root order. The removeMin() method traverses the tree in root-to-leaf order.

1 public class SimpleTree<T> implements PQueue<T> {
2 int range;
3 List<TreeNode> leaves;
4 TreeNode root;
5 public SimpleTree(int logRange) {
6 range = (1 << logRange);
7 leaves = new ArrayList<TreeNode>(range);
8 root = buildTree(logRange, 0);
9 }

10 public void add(T item, int score) {
11 TreeNode node = leaves.get(score);
12 node.bin.put(item);
13 while(node != root) {
14 TreeNode parent = node.parent;
15 if (node == parent.left) {
16 parent.counter.getAndIncrement();
17 }
18 node = parent;
19 }
20 }
21 public T removeMin() {
22 TreeNode node = root;
23 while(!node.isLeaf()) {
24 if (node.counter.boundedGetAndDecrement() > 0) {
25 node = node.left;
26 } else {
27 node = node.right;
28 }
29 }
30 return node.bin.get();
31 }
32 }

FIGURE 15.3

The SimpleTree bounded-range priority queue.

362 CHAPTER 15 Priority queues

33 public class TreeNode {
34 Counter counter;
35 TreeNode parent, right, left;
36 Bin<T> bin;
37 public boolean isLeaf() {
38 return right == null;
39 }
40 }

FIGURE 15.4

The SimpleTree class: the inner TreeNode class.

FIGURE 15.5

The SimpleTree priority queue is a tree of bounded counters. Items reside in bins at the
leaves. Internal nodes hold the number of items in the subtree rooted at the node’s left
child. In part (a), threads A and D add items by traversing up the tree, incrementing the
counters in the nodes when they ascend from the left. Thread B follows the counters down
the tree, descending left if the counter had a nonzero value (we do not show the effect of
B’s decrements). Parts (b)–(d) show a sequence in which concurrent threads A and B meet
at the node marked by a star. In part (b), thread D adds d, and then A adds a and ascends
to the starred node, incrementing a counter along the way. In part (c), B traverses down the
tree, decrementing counters to zero and popping a. In part (d), A continues its ascent,
incrementing the counter at the root even though B already removed any trace of a from the
starred node down. Nevertheless, all is well, because the nonzero root counter correctly
leads C to item d, the item with the highest priority.

15.4 An unbounded heap-based priority queue 363

Starting from the root, it finds the leaf with highest priority whose bin is nonempty.
It examines each node’s counter, going right if the counter is zero and decrementing
it and going left otherwise (line 24).

An add() traversal by a thread A moving up may meet a removeMin() traversal by a
thread B moving down. As in the story of Hansel and Gretel, the descending thread B

follows the trail of nonzero counters left by the ascending add() to locate and remove
A’s item from its bin. Part (a) of Fig. 15.5 shows an execution of the SimpleTree.

One may be concerned about the following “Grimm” scenario, shown in Fig. 15.5.
Thread A, moving up, meets thread B, moving down, at a tree node marked by a star.
Thread B moves down from the starred node to collect A’s item at the leaf, while A

continues up the tree, incrementing counters until it reaches the root. What if another
thread, C, starts to follow A’s path of nonzero counters from the root down to the
starred node where B encountered A? When C reaches the starred node, it may be
stranded there in the middle of the tree, and seeing no marks it would follow the right
child branches to an empty Bin, even though there might be other items in the queue.

Fortunately, this scenario cannot happen. As depicted in parts (b)–(d) of Fig. 15.5,
the only way the descending thread B could meet the ascending thread A at the starred
node is if another add() call by an earlier thread D incremented the same set of coun-
ters from the starred node to the root, allowing the descending thread B to reach the
starred node in the first place. The ascending thread A, when incrementing counters
from the starred node to the root, is simply completing the increment sequence lead-
ing to the item inserted by some other thread D. To summarize, if the item returned
by some thread on line 24 is null, then the priority queue is indeed empty.

The SimpleTree algorithm is not linearizable, since threads may overtake each
other, but it is quiescently consistent. The add() and removeMin() methods are lock-
free if the bins and counters are lock-free (the number of steps needed by add() is
bounded by the tree depth and removeMin() can fail to complete only if items are con-
tinually being added and removed from the tree). A typical insertion or deletion takes
a number of steps logarithmic in the lowest priority (maximal score) in the range.

15.4 An unbounded heap-based priority queue
This section presents a linearizable priority queue that supports priorities from an
unbounded range. It uses fine-grained locking for synchronization.

A heap is a tree where each tree node contains an item and a score. If b is a child
node of a, then b’s priority is no greater than a’s priority (i.e., items higher in the tree
have lower scores and are more important). The removeMin() method removes and
returns the root of the tree, and then rebalances the root’s subtrees. Here, we consider
binary trees, where there are only two subtrees to rebalance.

15.4.1 A sequential heap
Figs. 15.6 and 15.7 show a sequential heap implementation. An efficient way to rep-
resent a binary heap is as an array of nodes, where the tree’s root is array entry 1, and

364 CHAPTER 15 Priority queues

1 public class SequentialHeap<T> implements PQueue<T> {
2 private static final int ROOT = 1;
3 int next;
4 HeapNode<T>[] heap;
5 public SequentialHeap(int capacity) {
6 next = ROOT;
7 heap = (HeapNode<T>[]) new HeapNode[capacity + 1];
8 for (int i = 0; i < capacity + 1; i++) {
9 heap[i] = new HeapNode<T>();

10 }
11 }
12 public void add(T item, int score) {
13 int child = next++;
14 heap[child].init(item, score);
15 while (child > ROOT) {
16 int parent = child / 2;
17 int oldChild = child;
18 if (heap[child].score < heap[parent].score) {
19 swap(child, parent);
20 child = parent;
21 } else {
22 return;
23 }
24 }
25 }
26 ...
27 }

FIGURE 15.6

The SequentialHeap class: inner node class and add() method.

the right and left children of array entry i are entries 2 · i and (2 · i) + 1, respectively.
The next field is the index of the first unused node.

Each node has an item and a score field. To add an item, the add() method sets
child to the index of the first empty array slot (line 13). (For brevity, we omit code
to resize a full array.) The method then initializes that node to hold the new item
and score (line 14). At this point, the heap property may be violated, because the
new node, which is a leaf of the tree, may have higher priority (lower score) than
an ancestor. To restore the heap property, the new node “percolates up” the tree. We
repeatedly compare the new node’s priority with its parent’s, swapping them if the
parent’s priority is lower (it has a higher score). When we encounter a parent with
a higher priority, or we reach the root, the new node is correctly positioned, and the
method returns.

To remove and return the highest-priority item, the removeMin() method records
the root’s item, which is the highest-priority item in the tree. (For brevity, we omit
the code to deal with an empty heap.) It then moves a leaf entry up to replace the root

15.4 An unbounded heap-based priority queue 365

28 public T removeMin() {
29 int bottom = --next;
30 T item = heap[ROOT].item;
31 heap[ROOT] = heap[bottom];
32 if (bottom == ROOT) {
33 return item;
34 }
35 int child = 0;
36 int parent = ROOT;
37 while (parent < heap.length / 2) {
38 int left = parent * 2; int right = (parent * 2) + 1;
39 if (left >= next) {
40 return item;
41 } else if (right >= next || heap[left].score < heap[right].score) {
42 child = left;
43 } else {
44 child = right;
45 }
46 if (heap[child].score < heap[parent].score) {
47 swap(parent, child);
48 parent = child;
49 } else {
50 return item;
51 }
52 }
53 return item;
54 }

FIGURE 15.7

The SequentialHeap class: the removeMin() method.

(lines 29–31). If the tree is empty, the method returns the recorded item (line 32). Oth-
erwise, the heap property may be violated, because the leaf node recently promoted
to the root may have lower priority than some of its descendants. To restore the heap
property, the new root “percolates down” the tree. If both children are empty, we are
done (line 39). If the right child is empty, or if the right child has lower priority than
the left, then we examine the left child (line 41). Otherwise, we examine the right
child (line 43). If the child has higher priority than the parent, then we swap the child
and parent, and continue moving down the tree (line 46). When both children have
lower priorities, or we reach a leaf, the displaced node is correctly positioned, and the
method returns.

15.4.2 A concurrent heap
The FineGrainedHeap class is mostly just a concurrent version of the SequentialHeap
class. As in the sequential heap, add() creates a new leaf node, and percolates it

366 CHAPTER 15 Priority queues

1 public class FineGrainedHeap<T> implements PQueue<T> {
2 private static int ROOT = 1;
3 private static int NO_ONE = -1;
4 private Lock heapLock;
5 int next;
6 HeapNode<T>[] heap;
7 public FineGrainedHeap(int capacity) {
8 heapLock = new ReentrantLock();
9 next = ROOT;

10 heap = (HeapNode<T>[]) new HeapNode[capacity + 1];
11 for (int i = 0; i < capacity + 1; i++) {
12 heap[i] = new HeapNode<T>();
13 }
14 }
15 ...
16 }

FIGURE 15.8

The FineGrainedHeap class: fields.

up the tree until the heap property is restored. To allow concurrent calls to proceed
in parallel, the FineGrainedHeap class percolates items up the tree as a sequence of
discrete atomic steps that can be interleaved with other such steps. In the same way,
removeMin() deletes the root node, moves a leaf node to the root, and percolates that
node down the tree until the heap property is restored. The FineGrainedHeap class
percolates items down the tree as a sequence of discrete atomic steps that can be
interleaved with other such steps.

Warning: The code presented here does not deal with heap overflow (adding an
item when the heap is full) or underflow (removing an item when the heap is empty).
Dealing with these cases makes the code longer, without adding much of interest.

The class uses a heapLock field to make short, atomic modifications to two or more
fields (Fig. 15.8).

The HeapNode class (Fig. 15.9) provides the following fields: The lock field is a
lock (line 23) held for short-lived modifications, and also while the node is being
percolated down the tree. For brevity, the class exports lock() and unlock() methods
to lock and unlock the node directly. The tag field has one of the following states:
EMPTY means the node is not in use, AVAILABLE means the node holds an item and a
score, and BUSY means that the node is being percolated up the tree, and is not yet
in its proper position. While the node is BUSY, the owner field holds the ID of the
thread responsible for moving it. For brevity, the class provides an amOwner method
that returns true if and only if the node’s tag is BUSY and the owner is the current
thread.

The asymmetry in synchronization between the removeMin() method, which per-
colates down the tree holding the lock, and the add() method, which percolates up the
tree with the tag field set to BUSY, ensures that a removeMin() call is not delayed if it
encounters a node that is in the middle of being shepherded up the tree by an add()

15.4 An unbounded heap-based priority queue 367

17 private static enum Status {EMPTY, AVAILABLE, BUSY};
18 private static class HeapNode<S> {
19 Status tag;
20 int score;
21 S item;
22 int owner;
23 Lock lock;
24 public void init(S myItem, int myScore) {
25 item = myItem;
26 score = myScore;
27 tag = Status.BUSY;
28 owner = ThreadID.get();
29 }
30 public HeapNode() {
31 tag = Status.EMPTY;
32 lock = new ReentrantLock();
33 }
34 public void lock() {lock.lock();}
35 ... // other methods omitted
36 }

FIGURE 15.9

The FineGrainedHeap class: inner HeapNode class.

call. As a result, an add() call must be prepared to have its node swapped out from
underneath it. If the node vanishes, the add() call simply moves up the tree. It is sure
to encounter that node somewhere between its present position and the root.

The removeMin() method (Fig. 15.10) acquires the global heapLock, decrements
the next field, returning the index of a leaf node, locks the first unused slot in the
array, and releases heapLock (lines 38–42). It then stores the root’s item in a local
variable to be returned later as the result of the call (line 43). It marks the node as
EMPTY and unowned, swaps it with the leaf node, and unlocks the (now empty) leaf
(lines 44–46).

At this point, the method has recorded its eventual result in a local variable, moved
the leaf to the root, and marked the leaf’s former position as EMPTY. It retains the lock
on the root. If the heap had only one item, then the leaf and the root are the same, so
the method checks whether the root has just been marked as EMPTY. If so, it unlocks
the root and returns the item (lines 47–51).

The new root node is now percolated down the tree until it reaches its proper
position, following much the same logic as the sequential implementation. The node
being percolated down is locked until it reaches its proper position. When we swap
two nodes, we lock them both and swap their fields. At each step, the method locks
the node’s right and left children (line 58). If the left child is empty, we unlock both
children and return (line 60). If the right child is empty or the left child has higher
priority, then we unlock the right child and examine the left (line 64). Otherwise, we
unlock the left child and examine the right (line 67).

368 CHAPTER 15 Priority queues

37 public T removeMin() {
38 heapLock.lock();
39 int bottom = --next;
40 heap[ROOT].lock();
41 heap[bottom].lock();
42 heapLock.unlock();
43 T item = heap[ROOT].item;
44 heap[ROOT].tag = Status.EMPTY;
45 heap[ROOT].owner = NO_ONE;
46 swap(bottom, ROOT);
47 heap[bottom].unlock();
48 if (heap[ROOT].tag == Status.EMPTY) {
49 heap[ROOT].unlock();
50 return item;
51 }
52 heap[ROOT].tag = Status.AVAILABLE;
53 int child = 0;
54 int parent = ROOT;
55 while (parent < heap.length / 2) {
56 int left = parent * 2;
57 int right = (parent * 2) + 1;
58 heap[left].lock();
59 heap[right].lock();
60 if (heap[left].tag == Status.EMPTY) {
61 heap[right].unlock();
62 heap[left].unlock();
63 break;
64 } else if (heap[right].tag == Status.EMPTY || heap[left].score < heap[right].score) {
65 heap[right].unlock();
66 child = left;
67 } else {
68 heap[left].unlock();
69 child = right;
70 }
71 if (heap[child].score < heap[parent].score && heap[child].tag != Status.EMPTY) {
72 swap(parent, child);
73 heap[parent].unlock();
74 parent = child;
75 } else {
76 heap[child].unlock();
77 break;
78 }
79 }
80 heap[parent].unlock();
81 return item;
82 }

FIGURE 15.10

The FineGrainedHeap class: the removeMin() method.

15.4 An unbounded heap-based priority queue 369

83 public void add(T item, int score) {
84 heapLock.lock();
85 int child = next++;
86 heap[child].lock();
87 heap[child].init(item, score);
88 heapLock.unlock();
89 heap[child].unlock();
90

91 while (child > ROOT) {
92 int parent = child / 2;
93 heap[parent].lock();
94 heap[child].lock();
95 int oldChild = child;
96 try {
97 if (heap[parent].tag == Status.AVAILABLE && heap[child].amOwner()) {
98 if (heap[child].score < heap[parent].score) {
99 swap(child, parent);

100 child = parent;
101 } else {
102 heap[child].tag = Status.AVAILABLE;
103 heap[child].owner = NO_ONE;
104 return;
105 }
106 } else if (!heap[child].amOwner()) {
107 child = parent;
108 }
109 } finally {
110 heap[oldChild].unlock();
111 heap[parent].unlock();
112 }
113 }
114 if (child == ROOT) {
115 heap[ROOT].lock();
116 if (heap[ROOT].amOwner()) {
117 heap[ROOT].tag = Status.AVAILABLE;
118 heap[child].owner = NO_ONE;
119 }
120 heap[ROOT].unlock();
121 }
122 }

FIGURE 15.11

The FineGrainedHeap class: the add() method.

If the child has higher priority than the parent, then we swap the parent and child,
and unlock the (former) parent (line 71). Otherwise, we unlock the child and the
parent and return.

370 CHAPTER 15 Priority queues

FIGURE 15.12

The FineGrainedHeap class: a heap-based priority queue.

The concurrent add() method (Fig. 15.11) acquires the heapLock, allocates, locks,
initializes, and unlocks an empty leaf node (lines 84–89). This leaf node has tag BUSY,
and the owner is the calling thread. It then unlocks the leaf node, proceeds to percolate
that node up the tree, using the child variable to keep track of the node. It locks the
parent and then the child (all locks are acquired in ascending order). If the parent

15.5 A skiplist-based unbounded priority queue 371

is AVAILABLE and the child is owned by the caller, then it compares their priorities.
If the child has higher priority, then the method swaps their fields, and moves up
(line 98). Otherwise the node is where it belongs, and it is marked AVAILABLE and
unowned (line 101). If the child is not owned by the caller, then the node must have
been moved up by a concurrent removeMin() call so the method simply moves up the
tree to search for its node (line 106).

Fig. 15.12 shows an execution of the FineGrainedHeap class. In part (a), the heap
tree structure is depicted, with the priorities written in the nodes and the respective ar-
ray entries above the nodes. The next field is set to 10, the next array entry into which
a new item can be added. As can be seen, thread A starts a removeMin() method call,
collecting the value 1 from the root as the one to be returned, moving the leaf node
with score 10 to the root, and setting next back to 9. The removeMin() method checks
whether 10 needs to be percolated down the heap. In part (b), thread A percolates
10 down the heap, while thread B adds a new item with score 2 to the heap in the
recently emptied array entry 9. The owner of the new node is B, and B starts to per-
colate 2 up the heap, swapping it with its parent node of score 7. After this swap,
it releases the locks on the nodes. At the same time, A swaps the node with scores
10 and 3. In part (c), A, ignoring the busy state of 2, swaps 10 and 2, and then 10
and 7, using hand-over-hand locking. It has thus swapped 2, which was not locked,
from under thread B. In part (d), when B moves to the parent node in array entry 4, it
finds that the busy node with score 2 it was percolating up has disappeared. However,
it continues up the heap and locates the node with 2 as it ascends, moving it to its
correct position in the heap.

15.5 A skiplist-based unbounded priority queue
One drawback of the FineGrainedHeap priority queue algorithm is that the underlying
heap structure requires complex, coordinated rebalancing. In this section, we examine
an alternative that requires no rebalancing.

Recall from Chapter 14 that a skiplist is a collection of ordered lists. Each list is a
sequence of nodes, and each node contains an item. Each node belongs to a subset of
the lists, and nodes in each list are sorted by their hash values. Each list has a level,
ranging from 0 to a maximum. The bottom-level list contains all the nodes, and each
higher-level list is a sublist of the lower-level lists. Each list contains about half the
nodes of the next lower-level list. As a result, inserting or removing a node from a
skiplist containing k items takes expected time O(logk).

In Chapter 14, we used skiplists to implement sets of items. Here, we adapt
skiplists to implement a priority queue of items tagged with priorities. We describe
a PrioritySkipList class that provides the basic functionality needed to implement
an efficient priority queue. We base the PrioritySkipList class (Fig. 15.13) on the
LockFreeSkipList class of Chapter 14, though we could just as easily have based it
on the LazySkipList class. Later, we describe a SkipQueue wrapper (Fig. 15.14) to
cover some of the PrioritySkipList<T> class’s rough edges.

372 CHAPTER 15 Priority queues

1 public final class PrioritySkipList<T> {
2 public static final class Node<T> {
3 final T item;
4 final int score;
5 AtomicBoolean marked;
6 final AtomicMarkableReference<Node<T>>[] next;
7 // sentinel node constructor
8 public Node(int myPriority) { ... }
9 // ordinary node constructor

10 public Node(T x, int myPriority) { ... }
11 }
12 boolean add(Node node) { ... }
13 boolean remove(Node<T> node) { ... }
14 public Node<T> findAndMarkMin() {
15 Node<T> curr = null;
16 curr = head.next[0].getReference();
17 while (curr != tail) {
18 if (!curr.marked.get()) {
19 if (curr.marked.compareAndSet(false, true))
20 return curr;
21 } else {
22 curr = curr.next[0].getReference();
23 }
24 }
25 }
26 return null; // no unmarked nodes
27 }
28 ...
29 }

FIGURE 15.13

The PrioritySkipList<T> class: inner Node<T> class.

Here is a bird’s-eye view of the algorithm. The PrioritySkipList class sorts
items by priority instead of by hash value, ensuring that high-priority items (the ones
we want to remove first) appear at the front of the list. Fig. 15.15 shows such a
PrioritySkipList structure. Removing the item with highest priority is done lazily
(see Chapter 9). A node is logically removed by marking it as removed, and is later
physically removed by unlinking it from the list. The removeMin() method works in
two steps: First, it scans through the bottom-level list for the first unmarked node.
When it finds one, it tries to mark it. If it fails, it continues scanning down the list, but
if it succeeds, then removeMin() calls the PrioritySkipList class’s logarithmic-time
remove() method to physically remove the marked node.

We now turn our attention to the algorithm details. Fig. 15.13 shows an outline
of the PrioritySkipList class, a modified version of the LockFreeSkipList class of

15.5 A skiplist-based unbounded priority queue 373

1 public class SkipQueue<T> {
2 PrioritySkipList<T> skiplist;
3 public SkipQueue() {
4 skiplist = new PrioritySkipList<T>();
5 }
6 public boolean add(T item, int score) {
7 Node<T> node = (Node<T>)new Node(item, score);
8 return skiplist.add(node);
9 }

10 public T removeMin() {
11 Node<T> node = skiplist.findAndMarkMin();
12 if (node != null) {
13 skiplist.remove(node);
14 return node.item;
15 } else{
16 return null;
17 }
18 }
19 }

FIGURE 15.14

The SkipQueue<T> class.

FIGURE 15.15

The SkipQueue priority queue: an execution that is quiescently consistent but not
linearizable. In part (a), thread A starts a removeMin() method call. It traverses the
lowest-level list in the PrioritySkipList to find and logically remove the first unmarked
node. It traverses over all marked nodes, even ones like the node with score 5, which is in
the process of being physically removed from the SkipList. In part (b), while A is visiting the
node with score 9, thread B adds a node with score 3, and then adds a node with score 18.
Thread A marks and returns the node with score 18. A linearizable execution could not
return an item with score 18 before the item with score 3 is returned.

Chapter 14. It is convenient to have the add() and remove() calls take skiplist nodes
instead of items as arguments and results. These methods are straightforward adapta-
tions of the corresponding LockFreeSkipList methods, and are left as exercises. This
class’s nodes differ from LockFreeSkipList nodes in two fields: An integer score field
(line 4) and an AtomicBoolean marked field used for logical deletion from the priority

374 CHAPTER 15 Priority queues

queue (not from the skiplist) (line 5). The findAndMarkMin() method scans the lowest-
level list until it finds a node whose marked field is false, and then atomically tries to
set that field to true (line 19). If it fails, it tries again. When it succeeds, it returns the
newly marked node to the caller (line 20).

Fig. 15.14 shows the SkipQueue<T> class. This class is just a wrapper for a
PrioritySkipList<T>. The add(x,p) method adds item x with score p by creat-
ing a node to hold both values, and passing that node to the PrioritySkipList
class’s add() method. The removeMin() method calls the PrioritySkipList class’s
findAndMarkMin() method to mark a node as logically deleted, and then calls remove()
to physically remove that node.

The SkipQueue class is quiescently consistent: If an item x was present before the
start of a removeMin() call, then the item returned will have a score less than or equal
to that of x. This class is not linearizable: A thread might add a higher-priority (lower
score) item and then a lower-priority item, and the traversing thread might find and
return the later inserted lower-priority item, violating linearizability. This behavior is
quiescently consistent, however, because one can reorder add() calls concurrent with
any removeMin() to be consistent with a sequential priority queue.

The SkipQueue class is lock-free. A thread traversing the lowest level of the
SkipList might always be beaten to the next logically undeleted node by another
call, but it can fail repeatedly only if other threads repeatedly succeed.

In general, the quiescently consistent SkipQueue tends to outperform the lineariz-
able heap-based queue. If there are n threads, then the first logically undeleted node
is always among the first n nodes in the bottom-level list. Once a node has been log-
ically deleted, then it will be physically deleted in the worst case in O(logk) steps,
where k is the size of the list. In practice, a node will probably be deleted much more
quickly, since that node is likely to be close to the start of the list.

There are, however, several sources of contention in the algorithm that affect its
performance and require the use of back-off and tuning. Contention could occur if
several threads concurrently try to mark a node, where the losers proceed together
to try to mark the next node, and so on. Contention can also arise when physically
removing an item from the skiplist. All nodes to be removed are likely to be neighbors
at the start of the skiplist, so chances are high that they share predecessors, which
could cause repeated compareAndSet() failures when attempting to snip out references
to the nodes.

15.6 Chapter notes
The FineGrainedHeap priority queue is by Galen Hunt, Maged Michael, Srinivasan
Parthasarathy, and Michael Scott [82]. The SimpleLinear and SimpleTree priority
queues are credited to Nir Shavit and Asaph Zemach [158]. The SkipQueue is by Itai
Lotan and Nir Shavit [115], who also present a linearizable version of the algorithm.

15.7 Exercises 375

15.7 Exercises
Exercise 15.1. Give an example of a quiescently consistent priority queue execution
that is not linearizable.

Exercise 15.2. Implement a quiescently consistent Counter with a lock-free imple-
mentation of the boundedGetAndIncrement() and boundedGetAndDecrement() methods
using a counting network or diffracting tree.

Exercise 15.3. In the SimpleTree algorithm, what would happen if we replace the
boundedGetAndDecrement() method with a regular getAndDecrement()?

Exercise 15.4. Use boundedGetAndIncrement() methods in treeNode counters to de-
vise a SimpleTree algorithm with bounded capacity.

Exercise 15.5. In the SimpleTree class, what would happen if add(), after placing an
item in the appropriate Bin, incremented counters in the same top-down manner as in
the removeMin() method? Give a detailed example.

Exercise 15.6. Prove that the SimpleTree is a quiescently consistent priority queue
implementation.

Exercise 15.7. Modify FineGrainedHeap to allocate new heap nodes dynamically.
What are the performance limitations of this approach?

Exercise 15.8. Fig. 15.16 shows a bit-reversed counter. We could use the bit-reversed
counter to manage the next field of the FineGrainedHeap class. Prove the follow-
ing: For any two consecutive insertions, the two paths from the leaves to the root
have no common nodes other than the root. Why is this a useful property for the
FineGrainedHeap?

Exercise 15.9. Provide code for PrioritySkipList’s add() and remove() methods.

Exercise 15.10. The PrioritySkipList class used in this chapter is based on the
LockFreeSkipList class. Write a PrioritySkipList class based on the LazySkipList
class.

Exercise 15.11. Describe a scenario in the SkipQueue implementation in which con-
tention would arise from multiple concurrent removeMin() method calls.

Exercise 15.12. The SkipQueue class is quiescently consistent but not linearizable.
Here is one way to make this class linearizable by adding a simple timestamping
mechanism. After a node is completely inserted into the SkipQueue, it acquires a
timestamp. A thread performing a removeMin() notes the time at which it starts its
traversal of the lower level of the SkipQueue, and only considers nodes whose time-
stamp is earlier than the time at which it started its traversal, effectively ignoring
nodes inserted during its traversal. Implement this class and justify why it works.

376 CHAPTER 15 Priority queues

1 public class BitReversedCounter {
2 int counter, reverse, highBit;
3 BitReversedCounter(int initialValue) {
4 counter = initialValue;
5 reverse = 0;
6 highBit = -1;
7 }
8 public int reverseIncrement() {
9 if (counter++ == 0) {

10 reverse = highBit = 1;
11 return reverse;
12 }
13 int bit = highBit >> 1;
14 while (bit != 0) {
15 reverse ^= bit;
16 if ((reverse & bit) != 0) break;
17 bit >>= 1;
18 }
19 if (bit == 0)
20 reverse = highBit <<= 1;
21 return reverse;
22 }
23 public int reverseDecrement() {
24 counter--;
25 int bit = highBit >> 1;
26 while (bit != 0) {
27 reverse ^= bit;
28 if ((reverse & bit) == 0) {
29 break;
30 }
31 bit >>= 1;
32 }
33 if (bit == 0) {
34 reverse = counter;
35 highBit >>= 1;
36 }
37 return reverse;
38 }
39 }

FIGURE 15.16

A bit-reversed counter.

16
CHAPTER

Scheduling and work
distribution

16.1 Introduction
In this chapter, we show how to decompose certain kinds of tasks into subtasks that
can be executed in parallel. Some applications break down naturally into parallel
tasks. For example, when a request arrives at a web server, the server can just create
a thread (or assign an existing thread) to handle the request. Applications that can be
structured as producers and consumers also tend to be easily parallelizable. In this
chapter, however, we look at applications that have inherent parallelism, but where it
may not be obvious how to take advantage of it.

Let us start by thinking about how to multiply two matrices in parallel. Recall
that if aij is the value at position (i, j) of matrix A, then the product C of two n × n

matrices A and B is given by

cij =
n−1∑
k=0

aik · bkj .

As a first step, we could put one thread in charge of computing each cij . Fig. 16.1
shows a matrix multiplication program that creates an n × n array of Worker threads
(line 14), where the worker thread in position (i, j) computes cij . The program starts
each task (line 19) and then waits for each one to finish (line 25).1 Each worker
computes one entry in the product matrix (Fig. 16.2).

At first glance, this design seems ideal: The program is highly parallel, and
the threads do not even have to synchronize. In practice, this design would per-
form poorly for all but very small matrices. Here is why: Threads require memory
for stacks and other bookkeeping information. Creating, scheduling, and destroying
threads takes a substantial amount of computation. Creating lots of short-lived threads
is an inefficient way to organize a multithreaded computation, like manufacturing a
new car whenever you need to run an errand, and scrapping it when you are done.

A more effective way to organize such a program is to create a pool of long-lived
threads. Each thread in the pool repeatedly waits until it is assigned a task, a short-
lived unit of computation. The thread executes its assigned task, and when the task is
complete, the thread rejoins the pool to await its next assignment. Thread pools can

1 Real code should check that all the dimensions agree. Here we omit most safety checks for brevity.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00026-4
Copyright © 2021 Elsevier Inc. All rights reserved.

377

378 CHAPTER 16 Scheduling and work distribution

1 class MMThread {
2 double[][] lhs, rhs, prod;
3 int n;
4 public MMThread(double[][] lhs, double[][] rhs) {
5 n = lhs.length;
6 this.lhs = lhs;
7 this.rhs = rhs;
8 this.prod = new double[n][n];
9 }

10 void multiply() {
11 Worker[][] worker = new Worker[n][n];
12 for (int row = 0; row < n; row++) {
13 for (int col = 0; col < n; col++) {
14 worker[row][col] = new Worker(row,col);
15 }
16 }
17 for (int row = 0; row < n; row++) {
18 for (int col = 0; col < n; col++) {
19 worker[row][col].start();
20 }
21 }
22 for (int row = 0; row < n; row++) {
23 for (int col = 0; col < n; col++) {
24 try {
25 worker[row][col].join();
26 } catch (InterruptedException ex) {
27 }
28 }
29 }
30 }

FIGURE 16.1

The MMThread task: matrix multiplication using threads.

be platform-dependent: For example, large-scale multiprocessors may provide large
pools, and small multiprocessors may provide small pools. Thread pools avoid the
cost of creating and destroying threads in response to short-term fluctuations in de-
mand. Using a thread pool is like calling a taxi or ride sharing service whenever you
need to run an errand.

In addition to performance benefits, thread pools have a less obvious but equally
important advantage: they insulate application programmers from platform-specific
details such as the number of concurrent threads that can be scheduled efficiently.
Thread pools make it possible to write a single program that runs equally well on
a uniprocessor, a small-scale multiprocessor, and a large-scale multiprocessor. They
provide a simple interface that hides complex, platform-dependent engineering trade-
offs.

16.1 Introduction 379

31 class Worker extends Thread {
32 int row, col;
33 Worker(int row, int col) {
34 this.row = row; this.col = col;
35 }
36 @Override
37 public void run() {
38 double dotProduct = 0.0;
39 for (int i = 0; i < n; i++) {
40 dotProduct += lhs[row][i] * rhs[i][col];
41 }
42 prod[row][col] = dotProduct;
43 }
44 }

FIGURE 16.2

The MMThread task: inner Worker thread class.

In Java, thread pools are given a uniform structure through the executor service
interface (java.util.ExecutorService). This interface provides methods to submit
a task, to wait for a set of submitted tasks to complete, and to cancel uncompleted
tasks. There are many different kinds of thread pools, adapted to many different kinds
of tasks and scheduling strategies. Here, we restrict our attention to one particular
executor service, called ForkJoinPool, intended for tasks that can split their work
into smaller parallel tasks.

Fork-join tasks that return a value of type T inherit from RecursiveTask<T>, while
those that produce only side effects inherit from RecursiveAction. A task’s fork()
method allocates a thread from the pool to execute that task, and the task’s join()
method allows the caller to wait for that task to complete. A task’s work is done by
its compute() method. Fork-join tasks work best when tasks do not acquire locks, and
all tasks are of roughly equal size.

Here is the simplest way to create a fork-join pool:

ForkJoinPool forkJoinPool = new ForkJoinPool();

This call creates a pool where the number of threads is determined by the available
resources. It is also possible to request a specific number of threads, and to set a
number of other, more advanced parameters.

It is important to understand that assigning a task to a thread (“forking” that task)
does not guarantee that any computation actually happens in parallel. Instead, forking
a task is advisory: It tells the underlying thread pool that it may execute that task in
parallel, if it has the resources to do so.

We now consider how to implement parallel matrix operations using fork-join
tasks. Fig. 16.3 shows a Matrix class that provides get() and set() methods to access
matrix elements (lines 16–21), along with a constant-time split() method that splits

380 CHAPTER 16 Scheduling and work distribution

1 class Matrix {
2 int dim;
3 double[][] data;
4 int rowDisplace, colDisplace;
5 Matrix(int d) {
6 dim = d;
7 rowDisplace = colDisplace = 0;
8 data = new double[d][d];
9 }

10 Matrix(double[][] matrix, int x, int y, int d) {
11 data = matrix;
12 rowDisplace = x;
13 colDisplace = y;
14 dim = d;
15 }
16 double get(int row, int col) {
17 return data[row + rowDisplace][col + colDisplace];
18 }
19 void set(int row, int col, double value) {
20 data[row + rowDisplace][col + colDisplace] = value;
21 }
22 int getDim() {
23 return dim;
24 }
25 Matrix split(int i, int j) {
26 int newDim = dim / 2;
27 return new Matrix(data,
28 rowDisplace + (i * newDim),
29 colDisplace + (j * newDim),
30 newDim);
31 }
32 ...
33 }

FIGURE 16.3

The Matrix class.

an n-by-n matrix into four (n/2)-by-(n/2) submatrices (lines 25–31). These subma-
trices are backed by the original matrix, meaning that changes to the submatrices are
reflected in the original, and vice versa. This class also provides methods (not shown)
to add and multiply matrices in the usual sequential way.

For simplicity, we consider only matrices whose dimension n is a power of 2. Any
such matrix can be decomposed into four submatrices:

A =
(

A00 A01

A10 A11

)
.

16.1 Introduction 381

Matrix addition C = A + B can be decomposed as follows:(
C00 C01

C10 C11

)
=

(
A00 A01

A10 A11

)
+

(
B00 B01

B10 B11

)

=
(

A00 + B00 A01 + B01

A10 + B10 A11 + B11

)
.

These four sums can be done in parallel.
Fig. 16.4 shows the MatrixAddTask class, a parallel matrix addition class based

on the fork-join framework. Because the MatrixAddTask does not return a result, it
extends RecursiveAction. It has three fields (lines 5–8), initialized by the constructor:
lhs (“left-hand side”) and rhs (“right-hand side”) are the matrices to be summed, and
sum is the result, which is updated in place. Each task does the following: If the
matrix size falls below a certain platform-dependent threshold, the sum is computed
sequentially (lines 12–13). Otherwise, it creates new recursive tasks for each of its
arguments’ four submatrices and places them in a list (lines 16–25). It then forks
each of those tasks (lines 27–28), and then joins them2 (lines 30–31). Note that the
order of the forks and joins is important: to maximize the opportunity for parallelism,
we must complete all fork() calls before making any join() calls.

Fig. 16.5 shows how to set up a simple matrix addition using a fork-join pool. The
top-level code initializes the three matrices (lines 1–3) and creates a top-level task
(line 4) and a fork-join pool (line 5). The pool’s invoke() method (line 6) schedules
the top-level task, which splits itself into smaller parallel tasks, and returns when the
entire computation is complete.

Matrix multiplication C = A · B can be decomposed as follows:(
C00 C01

C10 C11

)
=

(
A00 A01

A10 A11

)
·
(

B00 B01

B10 B11

)

=
(

A00 · B00 + A01 · B10 A00 · B01 + A01 · B11

A10 · B00 + A11 · B10 A10 · B01 + A11 · B11

)

=
(

A00 · B00 A00 · B01

A10 · B00 A10 · B01

)
+

(
A01 · B10 A01 · B11

A11 · B10 A11 · B11

)
.

The eight product terms can be computed in parallel, and when those computa-
tions are done, the sum can be computed. (We have seen that the matrix summation
program itself has internal parallelism.)

Fig. 16.6 shows the parallel matrix multiplication task. Matrix multiplication is
structured in a similar way to addition. Because the MatrixMulTask does not return
a result, it extends RecursiveAction. It has three fields (lines 4–7) initialized by the
constructor: lhs and rhs are the matrices to be multiplied, and product is the result,
updated in place. Each task does the following: If the matrix size falls below a certain

2 This code uses the functional notation introduced in Chapter 17.

382 CHAPTER 16 Scheduling and work distribution

1 public class MatrixAddTask extends RecursiveAction {
2 static final int N = ...;
3 static final int THRESHOLD = ...;
4 Matrix lhs, rhs, sum;
5 public MatrixAddTask(Matrix lhs, Matrix rhs, Matrix sum) {
6 this.lhs = lhs;
7 this.rhs = rhs;
8 this.sum = sum;
9 }

10 public void compute() {
11 int n = lhs.getDim();
12 if (n <= THRESHOLD) {
13 Matrix.add(lhs, rhs, sum);
14 } else {
15 List<MatrixAddTask> tasks = new ArrayList<>(4);
16 for (int i = 0; i < 2; i++) {
17 for (int j = 0; j < 2; j++) {
18 tasks.add(
19 new MatrixAddTask(
20 lhs.split(i, j),
21 rhs.split(i, j),
22 sum.split(i, j)
23)
24);
25 }
26 }
27 tasks.stream().forEach((task) -> {
28 task.fork();
29 });
30 tasks.stream().forEach((task) -> {
31 task.join();
32 });
33 }
34 }

FIGURE 16.4

The MatrixAddTask class: fork-join parallel matrix addition.

1 Matrix lhs = ...; // initialize matrix
2 Matrix rhs = ...; // initialize matrix
3 Matrix sum = new Matrix(N);
4 MatrixAddTask matrixAddTask = new MatrixAddTask(lhs, rhs, sum);
5 ForkJoinPool forkJoinPool = new ForkJoinPool();
6 forkJoinPool.invoke(matrixAddTask);

FIGURE 16.5

Top-level code for matrix addition.

16.1 Introduction 383

1 public class MatrixMulTask extends RecursiveAction {
2 static final int THRESHOLD = ...;
3 Matrix lhs, rhs, product;
4 public MatrixMulTask(Matrix lhs, Matrix rhs, Matrix product) {
5 this.lhs = lhs;
6 this.rhs = rhs;
7 this.product = product;
8 }
9 public void compute() {

10 int n = lhs.getDim();
11 if (n <= THRESHOLD) {
12 Matrix.multiply(lhs, rhs, product);
13 } else {
14 List<MatrixMulTask> tasks = new ArrayList<>(8);
15 Matrix[] term = new Matrix[]{new Matrix(n), new Matrix(n)};
16 for (int i = 0; i < 2; i++) {
17 for (int j = 0; j < 2; j++) {
18 for (int k = 0; k < 2; k++) {
19 tasks.add(
20 new MatrixMulTask(
21 lhs.split(j, i),
22 rhs.split(i, k),
23 term[i].split(j, k)
24)
25);
26 }
27 }
28 }
29 tasks.stream().forEach((task) -> {
30 task.fork();
31 });
32 tasks.stream().forEach((task) -> {
33 task.join();
34 });
35 (new MatrixAddTask(term[0], term[1], product)).compute();
36 }
37 }
38 }

FIGURE 16.6

The MatrixMulTask class: fork-join parallel matrix addition.

platform-dependent threshold, the product is computed sequentially (lines 11–12).
Otherwise, it allocates two temporary matrices to hold intermediate terms (line 15).
It then creates new, recursive tasks for each of the eight submatrix products, and
places them in a list (lines 16–28). It then forks each of those tasks (lines 29–30),

384 CHAPTER 16 Scheduling and work distribution

1 class FibTask extends RecursiveTask<Integer> {
2 int arg;
3 public FibTask(int n) {
4 arg = n;
5 }
6 protected Integer compute() {
7 if (arg > 1) {
8 FibTask rightTask = new FibTask(arg - 1);
9 rightTask.fork();

10 FibTask leftTask = new FibTask(arg - 2);
11 return rightTask.join() + leftTask.compute();
12 } else {
13 return arg;
14 }
15 }
16 }

FIGURE 16.7

The FibTask class: Fibonacci using fork-join tasks.

and then joins them (lines 32–33). Finally, it creates a new MatrixAddTask to sum the
temporary matrices, and calls its compute() method directly (line 35).

The matrix examples use fork-join tasks only for their side effects. Fork-join tasks
can also be used to pass values from completed tasks. For example, here is how to
decompose the well-known Fibonacci function into a multithreaded program. Recall
that the Fibonacci sequence is defined as follows:

F(n) =
⎧⎨
⎩

0 if n = 0,
1 if n = 1,
F(n − 1) + F(n − 2) if n > 1.

Fig. 16.7 shows one way to use fork-join tasks to compute Fibonacci numbers. (This
particular implementation is very inefficient, but we use it here to illustrate multi-
threaded dependencies.) The compute() method creates and forks a right subtask to
compute F(n − 1). It then creates a left subtask to compute F(n − 2), and calls that
task’s compute() method directly. It then joins the right task, and sums the subtasks’
results. (Think about why this structure is more efficient than forking both subtasks.)

16.2 Analyzing parallelism
Think of a multithreaded computation as a directed acyclic graph, or dag for short,
where each node represents a task, and each directed edge links a predecessor task
to a successor task, where the successor depends on the predecessor’s result. For
example, a conventional thread is just a chain of nodes where each node depends on

16.2 Analyzing parallelism 385

FIGURE 16.8

The dag created by a multithreaded Fibonacci execution. The caller creates a FibTask(4)
task, which in turn creates FibTask(3) and FibTask(2) tasks. The round nodes represent
computation steps and the arrows between the nodes represent dependencies. For
example, there are arrows pointing from the first two nodes in FibTask(4) to the first nodes
in FibTask(3) and FibTask(2), respectively, representing fork() calls, and arrows from the
last nodes in FibTask(3) and FibTask(2) to the last node in FibTask(4), representing join()
calls. The computation’s span has length 8 and is marked by numbered nodes.

its predecessor. By contrast, a node that forks a task has two successors: One node
is its successor in the same thread, and the other is the first node in the forked task’s
computation. There is also an edge in the other direction, from child to parent, that
occurs when a thread that has forked a task calls that task’s join() method, waiting
for the child computation to complete. Fig. 16.8 shows the dag corresponding to a
short Fibonacci execution.

Some computations are inherently more parallel than others. Let us make this
notion precise. Assume that all individual computation steps take the same amount
of time, which constitutes our basic measuring unit. Let TP be the minimum time
(measured in computation steps) needed to execute a multithreaded program on a
system of P dedicated processors. TP is thus the program’s latency, the time it would
take it to run from start to finish, as measured by an outside observer. We emphasize
that TP is an idealized measure: It may not always be possible for every processor to
find steps to execute, and actual computation time may be limited by other concerns,
such as memory usage. Nevertheless, TP is clearly a lower bound on how much
parallelism one can extract from a multithreaded computation.

Some instances of TP are important enough to have special names. T1, the number
of steps needed to execute the program on a single processor, is called the computa-
tion’s work. Work is also the total number of steps in the entire computation. In one
time step (of the outside observer), P processors can execute at most P computation

386 CHAPTER 16 Scheduling and work distribution

steps, yielding the following work law:

TP ≥ T1/P. (16.2.1)

The other extreme is also of special importance: T∞, the number of steps to execute
the program on an unlimited number of processors, is called the span.3 Because finite
resources cannot do better than infinite resources, we have the following span law:

TP ≥ T∞. (16.2.2)

The speedup on P processors is the ratio

T1/TP .

We say a computation has linear speedup if T1/TP = �(P). Finally, a computation’s
parallelism is the maximum possible speedup: T1/T∞. A computation’s parallelism
is also the average amount of work available at each step along its longest path,
and so provides a good estimate of the number of processors one should devote to a
computation. In particular, it makes little sense to use substantially more processors
than dictated by the problem’s parallelism.

To illustrate these concepts, we now revisit the concurrent matrix add and multiply
implementations introduced in Section 16.1.

Let AP (n) be the number of steps needed to add two n × n matrices on P pro-
cessors. The matrix addition requires four half-size matrix additions, plus a constant
amount of work to split the matrices. The work A1(n) is given by the recurrence

A1(n) = 4A1(n/2) + �(1)

= �(n2).

This work is the same as the conventional doubly nested loop implementation.
Because the half-size additions can be done in parallel, the span is

A∞(n) = A∞(n/2) + �(1)

= �(logn).

Let MP (n) be the number of steps needed to multiply two n × n matrices on P

processors. The matrix multiplication requires eight half-size matrix multiplications
and one full-size matrix addition. The work M1(n) is given by the recurrence

M1(n) = 8M1(n/2) + A1(n)

= 8M1(n/2) + �(n2)

= �(n3).

3 Span is sometimes called the critical path length.

16.3 Realistic multiprocessor scheduling 387

This work is also the same as the conventional triply nested loop implementation. The
half-size multiplications can be done in parallel, but the addition cannot start until the
multiplications are complete, so the span is

M∞(n) = M∞(n/2) + A∞(n)

= M∞(n/2) + �(logn)

= �(log2n).

The parallelism for matrix multiplication is given by

M1(n)/M∞(n) = �(n3/ log2 n),

which is pretty high. For example, suppose we want to multiply two 1000-by-1000
matrices. Here, n3 = 109, and logn = log 1000 ≈ 10 (logs are base 2), so the par-
allelism is approximately 109/102 = 107. Roughly speaking, this instance of matrix
multiplication could, in principle, keep roughly ten million processors busy, a number
well beyond the powers of any multiprocessor we are likely to see in the near future.

You should understand that a computation’s parallelism is a highly idealized up-
per bound on the performance of any multithreaded matrix multiplication program.
For example, when there are idle threads, it may not be easy to assign those threads
to idle processors. Moreover, a program that displays less parallelism but consumes
less memory may perform better because it encounters fewer page faults. The actual
performance of a multithreaded computation remains a complex engineering prob-
lem, but the kind of analysis presented in this chapter is an indispensable first step in
understanding the degree to which a problem can be solved in parallel.

16.3 Realistic multiprocessor scheduling
Our analysis so far has been based on the assumption that each multithreaded pro-
gram has P dedicated processors. This assumption, unfortunately, is not realistic.
Multiprocessors typically run a mix of jobs, where jobs come and go dynamically.
One might start, say, a matrix multiplication application on P processors. At some
point, the operating system may decide to download a new software upgrade, pre-
empting one processor, and the application then runs on P − 1 processors. The
upgrade program pauses waiting for a disk read or write to complete, and in the
interim the matrix application has P processors again.

Modern operating systems provide user-level threads that encompass a program
counter and a stack. (A thread that includes its own address space is often called a
process.) The operating system kernel includes a scheduler that runs threads on phys-
ical processors. The application, however, typically has no control over the mapping
between threads and processors, and so cannot control when threads are scheduled.

As we have seen, one way to bridge the gap between user-level threads and oper-
ating system-level processors is to provide the software developer with a three-level

388 CHAPTER 16 Scheduling and work distribution

model. At the top level, multithreaded programs (such as matrix multiplication) de-
compose an application into a dynamically varying number of short-lived tasks. At
the middle level, a user-level scheduler maps these tasks to a fixed number of threads.
At the bottom level, the kernel maps these threads onto hardware processors, whose
availability may vary dynamically. This last level of mapping is not under the appli-
cation’s control: Applications cannot tell the kernel how to schedule threads (indeed,
commercially available operating systems kernels are hidden from users).

Assume for simplicity that the kernel works in discrete steps: At step i, the kernel
chooses an arbitrary subset of user-level threads to run for one step. A node is ready
at a step if its associated computational step in the program dag is ready to execute.
A schedule is greedy if it executes as many of the ready nodes as possible.

Theorem 16.3.1. For a multithreaded program with work T1, span T∞, and P user-
level threads, any greedy execution has length T , which is at most

T ≤ T1

P
+ T∞.

Proof. Let P be the number of available processors. A complete step is one where
at least P nodes are ready, so a greedy schedule runs some choice of P nodes. By
contrast, an incomplete step is one where fewer than P nodes are ready, so a greedy
schedule runs them all. Every step in the execution is either complete or incomplete.
The number of complete steps cannot exceed T1/P , because each such step executes
P nodes. The number of incomplete steps cannot exceed T∞, because each incom-
plete step shortens the span of the unexecuted dag by 1.

It turns out that this bound is within a factor of 2 of optimal. Achieving an opti-
mal schedule is NP-complete, so greedy schedules are a simple and practical way to
achieve performance that is reasonably close to optimal.

Theorem 16.3.2. Any greedy scheduler is within a factor of 2 of optimal.

Proof. Recall that TP is a program’s optimal execution time on a platform with P

processors. Let T ∗
P be its execution time under a greedy schedule. From the work law

(Eq. (16.2.1)) and the span law (Eq. (16.2.2)),

TP ≥ max(
T1

P
,T∞).

From Theorem 16.3.1,

T ∗
P ≤ T1

P
+ T∞

≤ 2 max(
T1

P
,T∞).

It follows that

T ∗
P ≤ 2TP .

16.4 Work distribution 389

Theorem 16.3.3. Any greedy scheduler achieves near-perfect linear speedup when-
ever T1/T∞ � P .

Proof. From

T ∗
P ≤ T1/P + T∞

≈ T1/P,

implying the speedup T1/TP ≈ P .

16.4 Work distribution
We now understand that the key to achieving a good speedup is to keep user-level
threads supplied with tasks, so that the resulting schedule is as greedy as possible.
Multithreaded computations, however, create and destroy tasks dynamically, some-
times in unpredictable ways. A work distribution algorithm is needed to assign ready
tasks to idle threads as efficiently as possible.

One simple approach to work distribution is work dealing: an overloaded task
tries to offload tasks to other, less heavily loaded threads. This approach may seem
sensible, but it has a basic flaw: If most threads are overloaded, then they waste effort
in a futile attempt to exchange tasks. Instead, we first consider work stealing, in which
a thread that runs out of work tries to “steal” work from others. An advantage of work
stealing is that if all threads are already busy, then they do not waste time trying to
offload work on one another.

16.4.1 Work stealing
Each thread keeps a pool of tasks waiting to be executed in the form of a double-
ended queue, or deque (DEQue), providing pushBottom(), popBottom(), and popTop()
methods (a pushTop() method is not needed). When a thread creates a new task, it
calls pushBottom() to push that task onto its deque. When a thread needs a task to
work on, it calls popBottom() to remove a task from its own deque. If the thread dis-
covers its deque is empty, then it becomes a thief : it chooses a victim thread, and calls
the popTop() method of that thread’s deque to “steal” a task for itself.

In Section 16.5, we present an efficient linearizable implementation of a deque.
Fig. 16.9 shows one possible way to implement a thread used by a work-stealing
thread pool. The threads share an array of deques (line 2), one for each thread. Each
thread repeatedly removes a task from its own deque and executes it (lines 10–13). If
it runs out, then it repeatedly chooses a victim thread at random and tries to steal a
task from the top of the victim’s deque (lines 14–20). To avoid code clutter, we ignore
the possibility that stealing may trigger an exception.

This simple thread pool may keep trying to steal forever, long after all work in all
queues has been completed. To prevent threads from endlessly searching for nonex-
istent work, we can use a termination detecting barrier as described in Section 18.6.

390 CHAPTER 16 Scheduling and work distribution

1 public class WorkStealingThread {
2 DEQue[] queue;
3 public WorkStealingThread(DEQue[] queue) {
4 this.queue = queue;
5 }
6 public void run() {
7 int me = ThreadID.get();
8 RecursiveAction task = queue[me].popBottom();
9 while (true) {

10 while (task != null) {
11 task.compute();
12 task = queue[me].popBottom();
13 }
14 while (task == null) {
15 Thread.yield();
16 int victim = ThreadLocalRandom.current().nextInt(queue.length);
17 if (!queue[victim].isEmpty()) {
18 task = queue[victim].popTop();
19 }
20 }
21 }
22 }
23 }

FIGURE 16.9

The WorkStealingThread class: a simplified work-stealing thread pool.

16.4.2 Yielding and multiprogramming
As noted earlier, multiprocessors provide a three-level model of computation: Short-
lived tasks are executed by system-level threads, which are scheduled by the oper-
ating system on a fixed number of processors. A multiprogrammed environment is
one in which there are more threads than processors, implying that not all threads
can run at the same time, and that any thread can be preemptively suspended at any
time. To guarantee progress, we must ensure that threads that have work to do are
not unreasonably delayed by (thief) threads that are idle except for task stealing. To
prevent this situation, we have each thief call Thread.yield() immediately before
trying to steal a task (line 15 in Fig. 16.9). This call yields the thief’s processor to an-
other thread, allowing descheduled threads to regain a processor and make progress.
(Calling yield() has no effect if there are no descheduled threads capable of running.)

16.5 Work-stealing deques
Here is how to implement a work-stealing deque: Ideally, a work-stealing algorithm
should provide a linearizable implementation whose pop methods always return a task

16.5 Work-stealing deques 391

if one is available. In practice, however, we can settle for something weaker, allowing
a popTop() call to return null if it conflicts with a concurrent popTop() call. Though
we could have the unsuccessful thief simply try again, it makes more sense in this
context to have a thread retry the popTop() operation on a different, randomly chosen
deque each time. To support such a retry, a popTop() call may return null if it conflicts
with a concurrent popTop() call.

We now describe two implementations of the work-stealing deque. The first is
simpler, because it has bounded capacity. The second is somewhat more complex,
but virtually unbounded in its capacity; that is, it does not suffer from the possibility
of overflow.

16.5.1 A bounded work-stealing deque
For the thread pool deque, the common case is for a thread to push and pop a task
from its own queue, calling pushBottom() and popBottom(). The uncommon case is to
steal a task from another thread’s deque by calling popTop(). Naturally, it makes sense
to optimize the common case. The key idea behind the BoundedDEQue in Figs. 16.10
and 16.11 is to allow the pushBottom() and popBottom() methods to use only reads
and writes in the common case. The BoundedDEQue consists of an array of tasks in-
dexed by bottom and top fields that reference the top and bottom of the deque, as
depicted in Fig. 16.12. The pushBottom() and popBottom() methods use reads and
writes to manipulate the bottom reference. However, once the top and bottom fields
are close (there might be only a single item in the array), popBottom() switches to
compareAndSet() calls to coordinate with potential popTop() calls.

Let us describe the algorithm in more detail. The BoundedDEQue algorithm is clever
in the way it avoids the use of costly compareAndSet() calls. This elegance comes at a
cost: It is delicate and the order among instructions is crucial. We suggest the reader
take time to understand how interactions among methods are determined by the order
in which reads, writes, and compareAndSet() calls occur.

The BoundedDEQue class has three fields: tasks, bottom, and top (Fig. 16.10,
lines 2–4). The tasks field is an array that holds the RecursiveAction tasks in
the queue, bottom is the index of the first empty slot in tasks, and top is an
AtomicStampedReference<Integer> (see Pragma 10.6.1). The top field encompasses
two logical fields; the reference is the index of the first task in the queue, and
the stamp is a counter incremented each time the reference is reset to 0. The
stamp is needed to avoid an “ABA problem” of the type that often arises when
using compareAndSet(). Suppose thread A calls popTop() to steal a task using only
compareAndSet() on the task (without the stamp). A records the task whose in-
dex is given by top, but then is delayed before it can steal the task by calling
compareAndSet() to increment top. While A is suspended, the owner thread B re-
moves all tasks from the deque and replaces them with new tasks, eventually restoring
top to its prior value. When A resumes, its compareAndSet() call will succeed, but A

will have stolen the wrong task. The stamp, incremented each time the deque be-
comes empty, ensures that A’s compareAndSet() call will fail because the stamps no
longer match.

392 CHAPTER 16 Scheduling and work distribution

1 public class BoundedDEQue {
2 RecursiveAction[] tasks;
3 volatile int bottom;
4 AtomicStampedReference<Integer> top;
5 public BoundedDEQue(int capacity) {
6 tasks = new RecursiveAction[capacity];
7 top = new AtomicStampedReference<Integer>(0, 0);
8 bottom = 0;
9 }

10 public void pushBottom(RecursiveAction r){
11 tasks[bottom] = r;
12 bottom++;
13 }
14 // called by thieves to determine whether to try to steal
15 boolean isEmpty() {
16 return (top.getReference() < bottom);
17 }
18 }
19 }

FIGURE 16.10

The BoundedDEQue class: fields, constructor, pushBottom(), and isEmpty() methods.

The popTop() method (Fig. 16.11) checks whether the BoundedDEQue is empty, and
if not, tries to steal the top element by calling compareAndSet() to increment top. If the
compareAndSet() succeeds, the theft is successful, and otherwise the method simply
returns null. This method is nondeterministic: Returning null does not necessarily
mean that the queue is empty.

As we noted earlier, we optimize for the common case, where each thread pushes
and pops from its own local BoundedDEQue. Most of the time, a thread can push and
pop tasks on and off its own BoundedDEQue by simply loading and storing the bottom
index. If there is only one task in the queue, then the caller might encounter inter-
ference from a thief trying to steal that task. So if bottom is close to top, the calling
thread switches to using compareAndSet() to pop tasks.

The pushBottom() method (Fig. 16.10, line 10) simply stores the new task at the
bottom queue location and increments bottom.

The popBottom() method (Fig. 16.11) is more complex. If bottom is 0, then the
queue is empty, and the method returns immediately (line 15). Otherwise, it decre-
ments bottom, claiming a task (line 17). Here is a subtle but important point. If the
claimed task was the last in the queue, then it is important that thieves notice that
the BoundedDEQue is empty (line 6). But, because popBottom()’s decrement is nei-
ther atomic nor synchronized, the Java memory model does not guarantee that the
decrement will be observed right away by concurrent thieves. To ensure that thieves

16.5 Work-stealing deques 393

1 public RecursiveAction popTop() {
2 int[] stamp = new int[1];
3 int oldTop = top.get(stamp);
4 int newTop = oldTop + 1;
5 int oldStamp = stamp[0];
6 if (bottom <= oldTop)
7 return null;
8 RecursiveAction r = tasks[oldTop];
9 if (top.compareAndSet(oldTop, newTop, oldStamp, oldStamp))

10 return r;
11 else
12 return null;
13 }
14 public RecursiveAction popBottom() {
15 if (bottom == 0)
16 return null;
17 int newBottom = --bottom;
18 RecursiveAction r = tasks[newBottom];
19 int[] stamp = new int[1];
20 int oldTop = top.get(stamp);
21 int newTop = 0;
22 int oldStamp = stamp[0];
23 int newStamp = oldStamp + 1;
24 if (newBottom > oldTop)
25 return r;
26 if (newBottom == oldTop) {
27 bottom = 0;
28 if (top.compareAndSet(oldTop, newTop, oldStamp, newStamp))
29 return r;
30 }
31 top.set(newTop, newStamp);
32 return null;
33 }

FIGURE 16.11

The BoundedDEQue class: popTop() and popBottom() methods.

can recognize an empty BoundedDEQue, the bottom field must be declared volatile.4

Repeatedly rereading volatile variables can be expensive, so the code uses a local
copy (newBottom) of bottom, which is safe because that field is not written by any
other thread.

After the decrement, the caller reads the task at the new bottom index (line 18),
and tests whether the current top field refers to a smaller index. If so, the caller can-

4 In a C or C++ implementation, you would need to introduce a write barrier, as described in Appendix B.

394 CHAPTER 16 Scheduling and work distribution

FIGURE 16.12

The BoundedDEQue implementation. In part (a), popTop() and popBottom() are called
concurrently while there is more than one task in the BoundedDEQue. The popTop() method
reads the element in entry 2 and calls compareAndSet() to redirect the top reference to entry
3. The popBottom() method redirects the bottom reference from 5 to 4 using a simple store
and then, after checking that bottom is greater than top, it removes the task in entry 4. In
part (b), there is only a single task. When popBottom() detects that, after redirecting from 4
to 3, top and bottom are equal, it attempts to redirect top with a compareAndSet(). Before
doing so, it redirects bottom to 0 because this last task will be removed by one of the two
popping methods. If popTop() detects that top and bottom are equal, it gives up; otherwise, it
tries to advance top using compareAndSet(). If both methods apply compareAndSet() to the
top, one wins and removes the task. In any case, win or lose, popBottom() resets top to 0
since the BoundedDEQue is now empty.

not conflict with a thief, and the method returns (line 24). Otherwise, if the top and
bottom fields are equal, then there is only one task left in the BoundedDEQue, and there
is a danger that the caller conflicts with a thief. The caller resets bottom to 0 (line 27).
(Either the caller will succeed in claiming the task, or a thief will steal it.) The caller
resolves the potential conflict by calling compareAndSet() to reset top to 0 (incre-
menting the stamp as it does so), matching bottom (line 26). If this compareAndSet()
succeeds, the top has been reset to 0, and the task has been claimed, so the method re-
turns. Otherwise, the queue must be empty because a thief succeeded, but this means
that top points to some entry greater than bottom, which was set to 0 earlier. So before
the caller returns null, it resets top to 0 (line 31).

As noted, an attractive aspect of this design is that an expensive compareAndSet()
call is needed rarely, only when the BoundedDEQue is almost empty.

We linearize each unsuccessful popTop() call at the point where it detects that the
BoundedDEQue is empty, or at a failed compareAndSet(). Successful popTop() calls are
linearized at the point when a successful compareAndSet() took place. We linearize
pushBottom() calls when bottom is incremented, and popBottom() calls when bottom
is decremented or set to 0, though the outcome of popBottom() in the latter case is
determined by the success or failure of the compareAndSet() that follows.

The isEmpty() method of UnboundedDEQue (Fig. 16.14) first reads top and then
bottom, checking whether bottom is less than or equal to top (line 33). The order is

16.5 Work-stealing deques 395

important for linearizability because top never decreases unless bottom is first reset
to 0, so if a thread reads bottom after top and sees it is not greater, the queue is indeed
empty because a concurrent modification of top could only have increased top. On
the other hand, if top is greater than bottom, then even if top is increased after it was
read and before bottom is read (and the queue becomes empty), it is still true that the
BoundedDEQue must not have been empty when top was read. The only alternative is
that bottom is reset to 0 and then top is reset to 0, so reading top and then bottom will
correctly return empty. It follows that the isEmpty() method is linearizable.

For simplicity, the bounded deque algorithm assumes the deque never becomes
full.

16.5.2 An unbounded work-stealing deque
A limitation of the BoundedDEQue class is that the queue has a fixed size. For some
applications, it may be difficult to predict this size, especially if some threads create
significantly more tasks than others. Assigning each thread its own BoundedDEQue of
maximal capacity wastes space.

To address these limitations, we now consider the UnboundedDEQue class, an un-
bounded double-ended queue that dynamically resizes itself as needed.

We implement the UnboundedDEQue as a cyclic array, with top and bottom fields
as in the BoundedDEQue (except indexed modulo the array’s capacity). As before, if
bottom is less than or equal to top, the UnboundedDEQue is empty. Using a cyclic
array eliminates the need to reset bottom and top to 0. Moreover, it permits top
to be incremented but never decremented, eliminating the need for top to be an
AtomicStampedReference. Moreover, in the UnboundedDEQue, if pushBottom() discov-
ers that the current circular array is full, it can resize (enlarge) it, copying the tasks
into a bigger array, and pushing the new task into the new (larger) array. Because
the array is indexed modulo its capacity, there is no need to update the top or bottom
fields when moving the elements into a bigger array (although the actual array indices
where the elements are stored might change).

The CircularArray class is depicted in Fig. 16.13. It provides get() and put()
methods that add and remove tasks and a resize() method that allocates a new circu-
lar array and copies the old array’s contents into the new array. The use of modular
arithmetic ensures that even though the array has changed size and the tasks may
have shifted positions, thieves can still use the top field to find the next task to steal.

The UnboundedDEQue class has three fields: tasks, bottom, and top (Fig. 16.14,
lines 3–5). The popBottom() and popTop() methods (Fig. 16.15) are almost the same
as those of the BoundedDEQue, with one key difference: The use of modular arithmetic
to compute indices means the top index need never be decremented. As noted, there
is no need for a stamp to prevent ABA problems. Both methods, when competing
for the last task, steal it by incrementing top. To reset the UnboundedDEQue to empty,
simply increment the bottom field to equal top. In the code, popBottom(), immediately
after the compareAndSet() on line 55, sets bottom to equal top +1 whether or not the
compareAndSet() succeeds: If it failed, a concurrent thief must have stolen the last

396 CHAPTER 16 Scheduling and work distribution

1 class CircularArray {
2 private int logCapacity;
3 private RecursiveAction[] currentTasks;
4 CircularArray(int logCapacity) {
5 this.logCapacity = logCapacity;
6 currentTasks = new RecursiveAction[1 << logCapacity];
7 }
8 int capacity() {
9 return 1 << logCapacity;

10 }
11 RecursiveAction get(int i) {
12 return currentTasks[i % capacity()];
13 }
14 void put(int i, RecursiveAction task) {
15 currentTasks[i % capacity()] = task;
16 }
17 CircularArray resize(int bottom, int top) {
18 CircularArray newTasks =
19 new CircularArray(logCapacity+1);
20 for (int i = top; i < bottom; i++) {
21 newTasks.put(i, get(i));
22 }
23 return newTasks;
24 }
25 }

FIGURE 16.13

The UnboundedDEQue class: the circular task array.

task and incremented top. Storing top +1 into bottom makes top and bottom equal,
resetting the UnboundedDEQue object to an empty state.

The isEmpty() method (Fig. 16.14) first reads top and then bottom, checking
whether bottom is less than or equal to top (line 33). The order is important be-
cause top never decreases, and so if a thread reads bottom after top and sees it is no
greater, the queue is indeed empty because a concurrent modification of top could
only have increased the top value. The same principle applies in the popTop() method
call. Fig. 16.16 shows an example execution.

The pushBottom() method (Fig. 16.14) is almost the same as that of the
BoundedDEQue. One difference is that the method must enlarge the circular array if
the current push is about to cause it to exceed its capacity. Another is that top does
not need to be a AtomicStampedReference<>. The ability to resize carries a price: Ev-
ery call to pushBottom() must read top (line 21) to determine if a resize is necessary,
possibly causing more cache misses because top is modified by all threads. We can
reduce this overhead by having the owner thread save a local value of top, which
can be used to compute an upper bound on the UnboundedDEQue size, since the other

16.5 Work-stealing deques 397

1 public class UnboundedDEQue {
2 private final static int LOG_CAPACITY = 4;
3 private volatile CircularArray tasks;
4 volatile int bottom;
5 AtomicReference<Integer> top;
6 public UnboundedDEQue(int logCapacity) {
7 tasks = new CircularArray(logCapacity);
8 top = new AtomicReference<Integer>(0);
9 bottom = 0;

10 }
11 boolean isEmpty() {
12 int localTop = top.get();
13 int localBottom = bottom;
14 return (localBottom <= localTop);
15 }
16

17 public void pushBottom(RecursiveAction r) {
18 int oldBottom = bottom;
19 int oldTop = top.get();
20 CircularArray currentTasks = tasks;
21 int size = oldBottom - oldTop;
22 if (size >= currentTasks.capacity()-1) {
23 currentTasks = currentTasks.resize(oldBottom, oldTop);
24 tasks = currentTasks;
25 }
26 currentTasks.put(oldBottom, r);
27 bottom = oldBottom + 1;
28 }

FIGURE 16.14

The UnboundedDEQue class: fields, constructor, pushBottom(), and isEmpty() methods.

methods can only make the UnboundedDEQue smaller. The owner thread rereads top
only when this bound on size approaches the threshold where a resize() may be
necessary.

In summary, we have seen two ways to design a nonblocking linearizable DEQue
class. We can get away with using only loads and stores in the most common ma-
nipulations of the deque, but at the price of having more complex algorithms. Such
algorithms are justifiable for an application such as a thread pool whose performance
may be critical to a concurrent multithreaded system.

16.5.3 Work dealing
We have seen that in work-stealing algorithms, idle threads steal tasks from others.
An alternative approach is to have each thread periodically balance its workloads

398 CHAPTER 16 Scheduling and work distribution

30 public RecursiveAction popTop() {
31 int oldTop = top.get();
32 int newTop = oldTop + 1;
33 int oldBottom = bottom;
34 CircularArray currentTasks = tasks;
35 int size = oldBottom - oldTop;
36 if (size <= 0) return null;
37 RecursiveAction r = tasks.get(oldTop);
38 if (top.compareAndSet(oldTop, newTop))
39 return r;
40 return null;
41 }
42

43 public RecursiveAction popBottom() {
44 int newBottom = --bottom;
45 int oldTop = top.get();
46 int newTop = oldTop + 1;
47 int size = newBottom - oldTop;
48 if (size < 0) {
49 bottom = oldTop;
50 return null;
51 }
52 RecursiveAction r = tasks.get(newBottom);
53 if (size > 0)
54 return r;
55 if (!top.compareAndSet(oldTop, newTop))
56 r = null;
57 bottom = newTop;
58 return r;
59 }

FIGURE 16.15

The UnboundedDEQue class: popTop() and popBottom() methods.

with a randomly chosen partner. To ensure that heavily loaded threads do not waste
effort trying to rebalance, we make lightly loaded threads more likely to initiate rebal-
ancing. More precisely, each thread periodically flips a biased coin to decide whether
to balance with another. The thread’s probability of balancing is inversely propor-
tional to the number of tasks in the thread’s queue. In other words, threads with
few tasks are likely to rebalance, and threads with nothing to do are certain to re-
balance. A thread rebalances by selecting a victim uniformly at random, and, if the
difference between its workload and the victim’s exceeds a predefined threshold, they
transfer tasks until their queues contain the same number of tasks. It can be shown
that this algorithm provides strong fairness guarantees: The expected length of each
thread’s task queue is pretty close to the average. One advantage of this approach is

16.5 Work-stealing deques 399

FIGURE 16.16

The UnboundedDEQue class implementation. In part (a), popTop() and popBottom() are
executed concurrently while there is more than one task in the UnboundedDEQue object. In
part (b), there is only a single task, and initially bottom refers to entry 3 and top to 2. The
popBottom() method first decrements bottom from 3 to 2 (we denote this change by a
dashed line pointing to entry 2 since it will change again soon). Then, when popBottom()
detects that the gap between the newly set bottom and top is 0, it attempts to increment top
by 1 (rather than reset it to 0 as in the BoundedDEQue). The popTop() method attempts to do
the same. The top field is incremented by one of them, and the winner takes the last task.
Finally, the popBottom() method sets bottom back to entry 3, which is equal to top.

that the balancing operation moves multiple tasks at each exchange. A second ad-
vantage occurs if one thread has much more work than the others, especially if tasks
require approximately equal computation. In the work-stealing algorithm presented
here, contention could occur if many threads try to steal individual tasks from the
overloaded thread. In such a case, in the work-stealing thread pool, if some thread
has a lot of work, chances are that other threads will have to repeatedly compete on
the same local task queue in an attempt to steal at most a single task each time. On
the other hand, in the work-sharing thread pool, balancing multiple tasks at a time
means that work will quickly be spread out among tasks, and there will not be a
synchronization overhead per individual task.

Fig. 16.17 illustrates a work-sharing thread pool. Each thread has its own queue
of tasks, kept in an array shared by all threads (line 2). Each thread repeatedly deques
the next task from its queue (line 10). If the queue was empty, the deq() call returns
null; otherwise, the thread executes the task (line 11). At this point, the thread decides
whether to rebalance. If the thread’s task queue has size s, then the thread decides to
rebalance with probability 1/(s + 1) (line 13). To rebalance, the thread chooses a vic-
tim thread uniformly at random. The thread locks both queues (lines 15–18), in thread
ID order (to avoid deadlock). If the difference in queue size exceeds a threshold, it
evens out the queue sizes (Fig. 16.17, lines 25–33).

400 CHAPTER 16 Scheduling and work distribution

1 public class WorkSharingThread {
2 Queue[] queue;
3 private static final int THRESHOLD = ...;
4 public WorkSharingThread(Queue[] queue) {
5 this.queue = queue;
6 }
7 public void run() {
8 int me = ThreadID.get();
9 while (true) {

10 RecursiveAction task = queue[me].deq();
11 if (task != null) task.compute();
12 int size = queue[me].size();
13 if (ThreadLocalRandom.current().nextInt(size+1) == size) {
14 int victim = ThreadLocalRandom.current().nextInt(queue.length);
15 int min = (victim <= me) ? victim : me;
16 int max = (victim <= me) ? me : victim;
17 synchronized (queue[min]) {
18 synchronized (queue[max]) {
19 balance(queue[min], queue[max]);
20 }
21 }
22 }
23 }
24 }
25 private void balance(Queue q0, Queue q1) {
26 Queue qMin = (q0.size() < q1.size()) ? q0 : q1;
27 Queue qMax = (q0.size() < q1.size()) ? q1 : q0;
28 int diff = qMax.size() - qMin.size();
29 if (diff > THRESHOLD)
30 while (qMax.size() > qMin.size())
31 qMin.enq(qMax.deq());
32 }
33 }

FIGURE 16.17

The WorkSharingThread class: a simplified work-sharing thread pool.

16.6 Chapter notes
The dag-based model for analysis of multithreaded computation was introduced by
Robert Blumofe and Charles Leiserson [18]. They also gave the first deque-based
implementation of work stealing. Some of the examples in this chapter were adapted
from a tutorial by Charles Leiserson and Harald Prokop [112]. The bounded lock-free
deque algorithm is credited to Anish Arora, Robert Blumofe, and Greg Plaxton [13].
The unbounded timestamps used in this algorithm can be made bounded using a
technique due to Mark Moir [129]. The unbounded deque algorithm is credited to

16.7 Exercises 401

David Chase and Yossi Lev [29]. The original proof of Theorem 16.3.1 is due to
Anish Arora, Robert Blumofe, and Greg Plaxton [13]. The work-sharing algorithm is
by Larry Rudolph, Tali Slivkin-Allaluf, and Eli Upfal [151]. The algorithm of Anish
Arora, Robert Blumofe, and Greg Plaxton [13] was later improved by Danny Hendler
and Nir Shavit [61] to include the ability to steal half of the items in a deque.

Some illustrations were adapted from class notes prepared by Charles Leiserson.

16.7 Exercises
Exercise 16.1. Rewrite MatrixAddTask and MatrixMulTask to use an executor service.

Exercise 16.2. Consider the following code for an in-place merge-sort:

void mergeSort(int[] A, int lo, int hi) {
if (hi > lo) {
int mid = (hi - lo)/2;
executor.submit(new mergeSort(A, lo, mid));
executor.submit(new mergeSort(A, mid+1, hi));
awaitTermination();
merge(A, lo, mid, hi);

}

(Here, submit() starts the task and immediately returns, and awaitTermination()
waits until all submitted tasks have finished.)

Assuming that the merge method has no internal parallelism, give the work, span,
and parallelism of this algorithm. Give your answers both as recurrences and as
�(f (n)), for some function f .

Exercise 16.3. Assume that the actual running time of a parallel program on a dedi-
cated P -processor machine is

TP = T1/P + T∞.

Your research group has produced two chess programs, a simple one and an optimized
one. The simple one has T1 = 2048 seconds and T∞ = 1 second. When you run it on
your 32-processor machine, sure enough, the running time is 65 steps. Your students
then produce an “optimized” version with T ′

1 = 1024 seconds and T∞ = 8 seconds.
When you run it on your 32-processor machine, the running time is 40 steps, as
predicted by our formula.

Which program will scale better to a 512-processor machine?

Exercise 16.4. Write an ArraySum class that provides a method

static public int sum(int[] a)

that uses divide-and-conquer to sum the elements of the array argument in parallel.

402 CHAPTER 16 Scheduling and work distribution

Exercise 16.5. Professor Jones takes some measurements of his (deterministic) mul-
tithreaded program, which is scheduled using a greedy scheduler, and finds that
T4 = 80 seconds and T64 = 10 seconds. What is the fastest that the professor’s com-
putation could possibly run on 10 processors? Use the following inequalities and the
bounds implied by them to derive your answer (P is the number of processors):

TP ≥ T1

P
, (16.7.1)

TP ≥ T∞, (16.7.2)

TP ≤ (T1 − T∞)

P
+ T∞, (16.7.3)

where the last inequality holds on a greedy scheduler.

Exercise 16.6. Give an implementation of the Matrix class used in this chapter. Make
sure your split() method takes constant time.

Exercise 16.7. Let P(x) = ∑d
i=0 pix

i and Q(x) = ∑d
i=0 qix

i be polynomials of
degree d , where d is a power of 2. We can write

P(x) = P0(x) + (P1(x) · xd/2),

Q(x) = Q0(x) + (Q1(x) · xd/2),

where P0(x),P1(x),Q0(x), and Q1(x) are polynomials of degree d/2.
The Polynomial class shown in Fig. 16.18 provides put() and get() methods to ac-

cess coefficients and it provides a constant-time split() method that splits a d-degree
polynomial P(x) into the two (d/2)-degree polynomials P0(x) and P1(x) defined
above, where changes to the split polynomials are reflected in the original, and vice
versa. Your task is to devise parallel addition and multiplication algorithms for this
Polynomial class.

• The sum of P(x) and Q(x) can be decomposed as follows:

P(x) + Q(x) = (P0(x) + Q0(x)) + (P1(x) + Q1(x)) · xd/2.

• Use this decomposition to construct a task-based concurrent polynomial addi-
tion algorithm in the manner of Fig. 16.14.

• Compute the work and span of this algorithm.
• The product of P(x) and Q(x) can be decomposed as follows:

P(x) · Q(x) = (P0(x) · Q0(x)) + (P0(x) · Q1(x) + P1(x) · Q0(x)) · xd/2

+ (P1(x) · Q1(x)xd)

• Use this decomposition to construct a task-based concurrent polynomial mul-
tiplication algorithm in the manner of Fig. 16.4.

• Compute the work and span of this algorithm.

16.7 Exercises 403

1 public class Polynomial {
2 int[] coefficients; // possibly shared by several polynomials
3 int first; // index of my constant coefficient
4 int degree; // number of coefficients that are mine
5 public Polynomial(int d) {
6 coefficients = new int[d];
7 degree = d;
8 first = 0;
9 }

10 private Polynomial(int[] myCoefficients, int myFirst, int myDegree) {
11 coefficients = myCoefficients;
12 first = myFirst;
13 degree = myDegree;
14 }
15 public int get(int index) {
16 return coefficients[first + index];
17 }
18 public void set(int index, int value) {
19 coefficients[first + index] = value;
20 }
21 public int getDegree() {
22 return degree;
23 }
24 public Polynomial[] split() {
25 Polynomial[] result = new Polynomial[2];
26 int newDegree = degree / 2;
27 result[0] = new Polynomial(coefficients, first, newDegree);
28 result[1] = new Polynomial(coefficients, first + newDegree, newDegree);
29 return result;
30 }
31 }

FIGURE 16.18

The Polynomial class.

Exercise 16.8. Give an efficient and highly parallel multithreaded algorithm for mul-
tiplying an n × n matrix by a length-n vector that achieves �(n2) work and �(logn)

span. Analyze the work and span of your implementation, and give the parallelism.

Exercise 16.9. Consider the bounded deque implementation in Figs. 16.10 and 16.11.

• The bottom field is volatile to ensure that in popBottom(), the decrement on line 17
is immediately visible. Describe a scenario that explains what could go wrong if
bottom were not declared as volatile.

• Why should we attempt to reset the bottom field to 0 as early as possible in the
popBottom() method? Which line is the earliest in which this reset can be done
safely? Can our BoundedDEQue overflow anyway? Describe how.

404 CHAPTER 16 Scheduling and work distribution

1 Queue qMin = (q0.size() < q1.size()) ? q0 : q1;
2 Queue qMax = (q0.size() < q1.size()) ? q1 : q0;
3 synchronized (qMin) {
4 synchronized (qMax) {
5 int diff = qMax.size() - qMin.size();
6 if (diff > THRESHOLD) {
7 while (qMax.size() > qMin.size())
8 qMin.enq(qMax.deq());
9 }

10 }
11 }

FIGURE 16.19

Alternate rebalancing code.

Exercise 16.10. Modify the popTop() method of the linearizable BoundedDEQue im-
plementation so it will return null only if there are no tasks in the queue. Note that
you may need to make its implementation blocking.

Exercise 16.11. Do you expect that the isEmpty() method call of a BoundedDEQue in
the executor pool code will actually improve its performance?

Exercise 16.12. Consider the popTop() method of UnboundedDEQue (Fig. 16.15).

• If the compareAndSet() on line 38 succeeds, it returns the element it read right
before the successful compareAndSet() operation. Why is it important to read the
element from the array before we do the compareAndSet()?

• Can we use isEmpty() on line 36?

Exercise 16.13. What are the linearization points of the UnboundedDEQue methods?
Justify your answers.

Exercise 16.14. Fig. 16.19 shows an alternate way of rebalancing two work queues:
first, lock the larger queue, then lock the smaller queue, and rebalance if their differ-
ence exceeds a threshold. What is wrong with this code?

17
CHAPTER

Data parallelism

Today, in casual conversation, people often refer to multiprocessors as “multicores,”
although technically, not every multiprocessor is a multicore. When did this usage
become common? Fig. 17.1 shows the frequency with which the word “multicore”
appears in books since 1900, as reported by Google Ngram, a service that keeps track
of words found in scanned books. We can see that this word has been in use since
the start of the 20th century, but its frequency has almost tripled since the year 2000.
(Earlier uses of “multicore” mostly seem to refer to multicore cable or multicore fiber.
But we digress.)

To produce this graph, it was necessary to count the number of times each word
appears in a set of documents. How would you write a parallel WordCount program
for a multiprocessor? One natural approach is to divide the document into fragments,
assign each fragment to a task, and have a set of worker threads execute those tasks
(as described in Chapter 16). Working in parallel, each worker thread executes a
series of tasks, each counting the words in its own fragment, and reporting the results
to a master thread, which merges their results. This kind of algorithm is said to be
data-parallel, because the key element of the design is distributing data items across
multiple worker threads.

The WordCount program is simple, much simpler than programs you are likely to
encounter in practice. Nevertheless, it provides an example for understanding how to
structure parallel programs that operate on large data sets.

FIGURE 17.1

“Multicore” usage from Google NGram.

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00027-6
Copyright © 2021 Elsevier Inc. All rights reserved.

405

406 CHAPTER 17 Data parallelism

Let us build on WordCount to do some simple literary detective work. Suppose we
are given a collection of documents. Although the documents are all attributed to a
single author, we suspect they were actually written by k distinct authors.1 How can
we tell which of these documents were (most likely) written by the same author?

We can adapt WordCount to partition the documents into k clusters of similar writ-
ings, where (we hope) each cluster consists of the documents written by a distinct
author.

Assume we are given a set of N characteristic words whose use frequencies are
likely to vary from author to author. We can modify WordCount to construct, for each
document, an N -element vector whose ith entry is the number of occurrences of the
ith characteristic word, normalized so the sum of the entries is 1. Each document’s
vector is thus a point in an (N − 1)-dimensional Euclidean space. The distance be-
tween two documents is just the distance between their vectors as points in space,
defined in the usual way. Our goal is to partition these points into k clusters, where
the points in each cluster are closer to one another than to points in the other clusters.

Perfect clustering is computationally difficult, but there are widely used data-
parallel algorithms that provide good approximations. One of the most popular is
the KMeans clustering algorithm. As in WordCount, the points are distributed across a
set of worker threads. Unlike WordCount, KMeans is iterative. A master thread chooses
k candidate cluster centers at random, and divides the points among a set of worker
threads. Working in parallel, the worker threads assign each of their points p to the
cluster whose center is closest to p, and report that assignment back to the master
thread. The master thread merges these assignments and computes new cluster cen-
ters. If the old and new centers are too far apart, then the clustering is considered to
be of poor quality, and the master thread does another iteration, this time using the
newly computed cluster centers in place of the old. The program halts when the clus-
ters become stable, meaning that the old and new centers have become sufficiently
close. Fig. 17.2 shows how KMeans clusters converge across iterations.

In this chapter, we examine two approaches to shared-memory data-parallel pro-
gramming. The first approach is based on the MapReduce programming pattern, in
which mapper threads operate in parallel on the data, and the results from these map-
per threads are merged by reducer threads. This structure has been very successful in
distributed systems, where processing nodes communicate over a network, but it can
also be effective on shared-memory multiprocessors, albeit at a smaller scale.

The second approach is based on stream programming, a programming pattern
supported by a number of languages (see the chapter notes). We use the interface
provided by Java 8. A stream2 is just a logical sequence of data items. (We say “logi-
cal” because these items may not all exist at the same time.) Programmers can create
new streams by applying operations to elements of an existing stream, sequentially

1 Modern scholarship asks these questions of many documents, including the Federalist Papers (http://
en.wikipedia.org/wiki/Federalist_papers), the Nancy Drew Mystery fiction series (http://en.wikipedia.org/
wiki/Nancy_Drew), and various sacred texts (readers are invited to provide their own examples).
2 These streams should not be confused with the streams Java uses for I/O.

17.1 MapReduce 407

FIGURE 17.2

The k-means task: initial, intermediate, and final clusters.

or in parallel. For example, we can filter a stream to select only those elements that
satisfy a predicate, map a function onto a stream to transforms stream elements from
one type to another, or reduce a stream to a scalar value, for example, by summing
the elements of a stream or taking their average.

Stream programs operate at a higher level than MapReduce programs. Whether the
simplicity of stream programming outweighs the fine-grained control of MapReduce
programming depends entirely on the application.

17.1 MapReduce
First, we give a high-level description of how to structure a MapReduce application.
Once we have understood the requirements of such algorithms, we describe a general
(but simplified) MapReduce framework. Finally, we explain how to apply that frame-
work to specific problems such as WordCount and KMeans.

A MapReduce program first divides the data into fragments that can be analyzed
independently, and assigns each fragment to one of n mapper tasks. In its sim-
plest form, a mapper task scans its fragment, and produces a list of key–value pairs
(k0, v0), . . . , (km, vm), where the key and value types depend on the application.

The framework collects these key–value pairs, and for each key k, it merges the
values paired with k into a list. Each such key–list pair is assigned to a reducer task,
which produces an application-specific output value for that key. The output of the
MapReduce program is a map matching each key to its output value.

408 CHAPTER 17 Data parallelism

There are many possible variations of this structure. Sometimes the inputs to map-
per tasks are given as key–value pairs, sometimes the reducers produce key–value
pairs, or multiple key–output pairs, and sometimes there are distinct input, interme-
diate, and final key types. For simplicity, we choose not to use any of these variations,
but it would be straightforward to incorporate them in our examples.

17.1.1 The MapReduce framework
The MapReduce framework is in charge of creating and scheduling worker threads,
calling the user-provided mapper and reducer tasks, and communicating and man-
aging their arguments and results. We describe a simple MapReduce framework pa-
rameterized by an input type IN, a key type K, a value type V, and an output type OUT.
In practice, MapReduce frameworks are more complicated, with configuration settings
and optimizations omitted here for simplicity.

A Mapper task (Fig. 17.3) extends the RecursiveTask<> class from Java’s fork-join
framework, described in Chapter 16. Its setInput() method provides the task with an
input of type IN, which it stores in the object’s input field. The compute() method,
inherited from RecursiveTask<>, pairs keys of type K with values of type V, accumu-
lating them in a Map<K,V> result.

A Reducer task (Fig. 17.4) also extends RecursiveTask<>. Its setInput() method
provides the task with a key and a list of values, and its compute() method produces
a single result of type OUT.

1 public abstract class Mapper<IN, K, V> extends RecursiveTask<Map<K, V>> {
2 protected IN input;
3 public void setInput(IN anInput) {
4 input = anInput;
5 }
6 }

FIGURE 17.3

The Mapper class.

1 public abstract class Reducer<K, V, OUT> extends RecursiveTask<OUT> {
2 protected K key;
3 protected List<V> valueList;
4 public void setInput(K aKey, List<V> aList) {
5 key = aKey;
6 valueList = aList;
7 }
8 }

FIGURE 17.4

The Reducer class.

17.1 MapReduce 409

1 class MapReduce<IN, K, V, OUT> implements Callable<Map<K, OUT>> {
2 MapReduce()
3 Map<K,OUT> call()
4 void setMapperSupplier(Supplier<Mapper<IN,K,V>> aMapperSupplier)
5 void setReducerSupplier(Supplier<Reducer<K,V,OUT>> aReducerSupplier)
6 void setInput(List<IN> anInput)
7 }

FIGURE 17.5

The MapReduce framework: methods.

Fig. 17.5 shows the methods of the MapReduce framework. (We discuss its im-
plementation in Section 17.1.4.) Even in the simplified form described here, the
MapReduce framework has several kinds of settings, too many to provide gracefully
as arguments to the constructor. Instead, it provides individual methods to control
each setting. The setMapperSupplier() and setReducerSupplier() methods are used
to tell the MapReduce framework how to create new mapper and reducer tasks. The
setInput() method takes a list of IN objects, and one mapper task is created for each
such input. Finally, the call() method does the work: It returns a Map<K,OUT> pairing
each key with an output value.

PRAGMA 17.1.1

The parameter type Supplier<> of the setMapperSupplier() and
setReducerSupplier() methods is a Java functional interface, implemented
by an object with a single get() method. To tell the MapReduce framework how to
create mapper and reducer tasks, we use Java’s lambda construct for anonymous
method definition. For example, here is how to tell the MapReduce framework to
use the WordCount class’s implementation of mappers:

mapReduce.setMapperSupplier(() -> new WordCount.Mapper());

The argument to setMapperSupplier() is a lambda: a parameter list and an expres-
sion separated by an arrow. The empty parentheses on the left indicate that the
method takes no arguments, and the expression on the right states that the method
creates and returns a new WordCount.Mapper object. This pattern, where a lambda
takes no arguments and simply calls another method or operator, is so common it
has a shorthand syntax:

mapReduce.setMapperSupplier(WordCount.Mapper::new);

Lambdas in Java have many other features, and the reader is encouraged to consult
Java documentation for a more complete picture. As discussed in the chapter notes,
other languages such as C#, C++, Scala, and Clojure support similar constructs.

410 CHAPTER 17 Data parallelism

1 public class WordCount {
2 static List<String> text;
3 static int numThreads = ...;
4 ...
5 public static void main(String[] args) {
6 text = readFile("document.tex");
7 List<List<String>> inputs = splitInputs(text, numThreads);
8 MapReduce<List<String>, String, Long, Long> mapReduce = new MapReduce<>();
9 mapReduce.setMapperSupplier(WordCount.Mapper::new);

10 mapReduce.setReducerSupplier(WordCount.Reducer::new);
11 mapReduce.setInput(inputs);
12 Map<String, Long> map = mapReduce.call();
13 displayOutput(map);
14 }
15 ...
16 static class Mapper extends Mapper<List<String>, String, Long> {
17 public Map<String, Long> compute() {
18 Map<String, Long> map = new HashMap<>();
19 for (String word : input) {
20 map.merge(word, 1L, (x, y) -> x + y);
21 }
22 return map;
23 }
24 }
25 static class Reducer extends Reducer<String, Long, Long> {
26 public Long compute() {
27 long count = 0;
28 for (long c : valueList) {
29 count += c;
30 }
31 return count;
32 }
33 }
34 }

FIGURE 17.6

A MapReduce-based WordCount application.

17.1.2 A MapReduce-based WordCount application
Fig. 17.6 shows one way to implement the WordCount application using the MapReduce
framework. This application is structured as a class with static fields, methods, and
inner classes. The application’s main() method (lines 5–14) first reads the document,
storing in its static text field a reference to a list of lower-case strings stripped of
punctuation and numerals (line 6). It partitions that list into approximately equal sub-
lists, one for each mapper (line 7). It creates a MapReduce instance using List<String>

17.1 MapReduce 411

and the input type, String as the key type, and Long as the value and output types.
In lines 9–11 the main() method initializes the framework, using lambdas to specify
how to create mapper and reducer tasks, and provides the framework with a list con-
taining each mapper’s input. The computation is triggered by calling MapReduce.call,
which returns a Map<String,Long>, pairing each string found in the document with the
number of times it occurs (line 12).

The mapper and reducer tasks for this application are defined by static nested
classes (lines 16–25). The WordCount.Mapper task (line 16) does most of the work. As
noted, its input is the List<String> it scans. Its key type is String, and its value type
is Integer. It creates a HashMap<String,Integer> to hold its results (line 18). For each
word in its sublist, the map’s merge() method binds that word to 1 if the word is not
already in the map, and otherwise increments the value bound to that word (line 20).
It then returns the map.

When all the mapper tasks have completed, the MapReduce framework merges each
word’s counts into a list, and passes each key–list pair to a WordCount.Reducer task.
It takes as input a word and its list of counts, and simply sums and returns them
(line 28).

17.1.3 A MapReduce-based KMeans application
Fig. 17.7 shows a KMeans application using the MapReduce framework. Like WordCount,
this application is structured as a class with static fields, methods, and inner classes.
The application’s main() method reads the data points from a file as a List<Point>
(line 8). It chooses distinct random points as starting cluster centers (line 9). It cre-
ates a MapReduce instance (line 11), using List<Point> as the input type IN, Integer
as the key type K, List<Point> as the value type V, and Point as the output type OUT.
In lines 12–14 the main() method uses lambdas to specify how to create mapper
and reducer tasks, and provides the framework with a list of input lists of approx-
imately equal size, one for each mapper. The computation is triggered by calling
MapReduce.call, which returns a Map<Integer,Point> pairing each of k cluster IDs to
the central point of each cluster. (It would be easy to have mappers also return the
clusters themselves, but we omit this step for brevity.)

The EPSILON constant determines when the process is deemed to have converged
(line 3), and the convergence variable keeps track of the distance between successive
rounds’ centers (line 15). The application repeatedly iterates calls to the MapReduce
framework (line 16), starting with randomly chosen cluster centers, and using the
cluster centers generated by each iteration as the cluster centers for the next (line 19).
The iteration halts when the distance between successive centers converges to less
than EPSILON. (Of course, in a real implementation, it would be prudent to stop if the
process does not appear to be converging.)

17.1.4 The MapReduce implementation
We now describe the implementation of the simple MapReduce framework that ap-
pears in Fig. 17.8. As noted earlier, a production-quality MapReduce framework

412 CHAPTER 17 Data parallelism

1 public class KMeans {
2 static final int numClusters = ...;
3 static final double EPSILON = 0.01;
4 static List<Point> points;
5 static Map<Integer, Point> centers;
6

7 public static void main(String[] args) {
8 points = readFile("cluster.dat");
9 centers = Point.randomDistinctCenters(points);

10 MapReduce<List<Point>, Integer, List<Point>, Point> mapReduce
11 = new MapReduce<>();
12 mapReduce.setMapperSupplier(KMeans.Mapper::new);
13 mapReduce.setReducerSupplier(KMeans.Reducer::new);
14 mapReduce.setInput(splitInput(points, numWorkerThreads));
15 double convergence = 1.0;
16 while (convergence > EPSILON) {
17 Map<Integer, Point> newCenters = mapReduce.call();
18 convergence = distance(centers, newCenters);
19 centers = newCenters;
20 }
21 displayOutput(centers);
22 }
23 static class Mapper extends Mapper<List<Point>, Integer, List<Point>> {
24 public Map<Integer, List<Point>> compute() {
25 Map<Integer, List<Point>> map = new HashMap<>();
26 for (Point point : input) {
27 int myCenter = closestCenter(centers, point);
28 map.putIfAbsent(myCenter, new LinkedList<>());
29 map.get(myCenter).add(point);
30 }
31 return map;
32 }
33 }
34 static class Reducer extends Reducer<Integer, List<Point>, Point> {
35 public Point compute() {
36 List<Point> cluster = new LinkedList<>();
37 for (List<Point> list : valueList) {
38 cluster.addAll(list);
39 }
40 return Point.barycenter(cluster);
41 }
42 }
43 }

FIGURE 17.7

A MapReduce-based KMeans application.

17.1 MapReduce 413

1 public class MapReduce<IN, K, V, OUT> implements Callable<Map<K, OUT>> {
2 private List<IN> inputList;
3 private Supplier<Mapper<IN, K, V>> mapperSupplier;
4 private Supplier<Reducer<K, V, OUT>> reducerSupplier;
5 private static ForkJoinPool pool;
6 public MapReduce() {
7 pool = new ForkJoinPool();
8 mapperSupplier = () -> {throw new UnsupportedOperationException("No mapper supplier");}
9 reducerSupplier = () -> {throw new UnsupportedOperationException("No reducer supplier");}

10 }
11 public Map<K, OUT> call() {
12 Set<Mapper<IN, K, V>> mappers = new HashSet<>();
13 for (IN input : inputList) {
14 Mapper<IN, K, V> mapper = mapperSupplier.get();
15 mapper.setInput(input);
16 pool.execute(mapper);
17 mappers.add(mapper);
18 }
19 Map<K, List<V>> mapResults = new HashMap<>();
20 for (Mapper<IN, K, V> mapper : mappers) {
21 Map<K, V> map = mapper.join();
22 for (K key : map.keySet()) {
23 mapResults.putIfAbsent(key, new LinkedList<>());
24 mapResults.get(key).add(map.get(key));
25 }
26 }
27 Map<K, Reducer<K, V, OUT>> reducers = new HashMap<>();
28 mapResults.forEach(
29 (k, v) -> {
30 Reducer< K, V, OUT> reducer = reducerSupplier.get();
31 reducer.setInput(k, v);
32 pool.execute(reducer);
33 reducers.put(k, reducer);
34 }
35);
36 Map<K, OUT> result = new HashMap<>();;
37 reducers.forEach(
38 (key, reducer) -> {
39 result.put(key, reducer.join());
40 }
41);
42 return result;
43 }
44 ...
45 }

FIGURE 17.8

The MapReduce implementation.

414 CHAPTER 17 Data parallelism

would have many more configuration settings and options. Note also that MapRe-
duce frameworks designed for distributed systems are likely to look quite different,
because communication is more expensive, and fault tolerance is a concern.

The framework’s constructor initializes the object’s fields. The framework uses a
work-stealing ForkJoinPool to execute mapper and reducer tasks (line 7). The con-
structor sets the default mapper and reducer creation methods (lines 8 and 9) to throw
exceptions if the user forgets to initialize them. The class is designed for reuse.

The call() method does all the work in four phases. In the first phase, for each
input in its list of inputs (line 13), it creates a mapper task using the user-provided
supplier (line 14), initializes that task’s input (line 15), starts the asynchronous task
(line 16), and stores the task in a Set<Mapper> (line 17).

In the second phase, the call() method creates a Map<K,List<V>> to hold the re-
sults of the mapper tasks (line 19). It then revisits each mapper task (line 20), joins it
(line 21) to get its result, and adds that result to that key’s list to merge the accumu-
lators associated with each key (lines 22–24).

The third phase is similar to the first, except that reducer tasks are created
(line 30), one per output key, initialized (line 31), and started (line 32).

In the final phase, the results of the reducer tasks are collected and returned
(lines 36–42).

17.2 Stream computing
Java (starting from Java 8) provides explicit support for data-parallel computation
through the Stream<> class3 (java.util.Stream) . Streams are not data structures:
Instead, they should be thought of as pipelines that carry values from a source (often
a container such as a List<>), through a series of transformations (perhaps applied in
parallel), to a destination (also often a container).

Java streams are an example of functional programming, a discipline in which
programs are treated like mathematical functions, producing new values and data
structures, but never modifying existing ones. Functional programming has a long
history, but it is only relatively recently that it has entered the repertoire of techniques
that every serious programmer should understand.

Functional programming is attractive because it avoids many of the complex side
effects and interactions that form the focus of most of this book. For a long time,
however, functional programming was widely viewed as an unnatural programming
style that produced elegant but inefficient programs. Nevertheless, Jim Morris once
remarked:

Functional languages are unnatural to use; but so are knives and forks, diplomatic
protocols, double-entry bookkeeping, and a host of other things modern civiliza-
tion has found useful.

3 These streams should not be confused with I/O streams, which are unrelated.

17.2 Stream computing 415

As for efficiency, Morris goes on to compare functional programming to two Japanese
arts: Haiku, a form of poetry, and Karate, a form of martial arts. Your mastery of
Haiku will be appreciated only by those who already appreciate Haiku, but in a bar
fight, your mastery of Karate will be appreciated even by those who do not know
Karate.

Is functional programming more like Haiku or more like Karate? For a long time,
most computer scientists dismissed functional programming as Haiku. Today, how-
ever, improvements in hardware, compiler, and run-time technology have rendered
such sweeping dismissals obsolete. Nevertheless, even today, the functional program-
ming style should not be applied without careful thought. Here, we focus on the use
of a functional programming style, in which aggregate operations are applied to the
values in Java streams.

A stream’s transformations and reductions are applied lazily: No computation
occurs until it becomes absolutely necessary. Instead, intermediate operations set
the stage for the desired transformations without performing them. Laziness en-
sures that by the time the work must be done, the compiler and run-time systems
have accumulated as much information as possible about the programmer’s intended
transformations, enabling optimizations that would not be possible if operations were
applied in an eager, one-at-a-time manner. For example, multiple intermediate opera-
tions can be accumulated lazily and then fused into a single traversal when the results
are needed. Laziness also allows streams to be unbounded: One can construct, for ex-
ample, an unbounded stream of prime numbers, or an unbounded stream of random
points.

Once the desired (lazy) transformations have been set in place, a terminal oper-
ation applies those transformations and returns the result in the form of a container
object, such as a List<> or Set<>, or perhaps as a scalar, such as a Long or Double.
Once a terminal operation has been applied to a stream, that stream is deemed to be
consumed, and cannot be reused.

One of the most common terminal operations is collect(), which folds the stream
elements into a cumulative result called a Collection. Such transformations can be
done either sequentially or in parallel. The java.util.Collectors class provides a
useful set of predefined Collection instances.

In the next sections, we will use the WordCount and KMeans applications to intro-
duce many of the basic concepts associated with aggregate data. Before discussing
how to design and implement parallel stream-based versions of these applications,
we look at sequential stream-based versions, to help readers become accustomed to
this style of programming. A word of warning: This book is not a language reference
manual. There are some restrictions and corner cases to consider when using streams,
either in Java or in other languages that provide similar functionality (see the chapter
notes). Before you use these constructs in a real application, consult the language
documentation.

416 CHAPTER 17 Data parallelism

1 static List<String> readFile(String fileName) {
2 try {
3 Pattern pattern = Pattern.compile("\\W|\\d|_");
4 BufferedReader reader = new BufferedReader(new FileReader("document.tex"));
5 return reader
6 .lines()
7 .map(String::toLowerCase)
8 .flatMap(s -> pattern.splitAsStream(s))
9 .collect(Collectors.toList());

10 } catch (FileNotFoundException ex) {
11 ...
12 }
13 }

FIGURE 17.9

Stream-based WordCount application: the readFile() method.

17.2.1 A stream-based WordCount application
The WordCount application’s first step is to read the target file, line-by-line, splitting
each line into individual words, and converting each word to lower case. Fig. 17.9
shows one way to solve this task using aggregate operations. (Most applications that
use streams are written in this kind of “chained” style.) The method first prepares
a regular expression to be used to split lines into words (line 3). It then creates a
BufferedReader to read from the document file (line 4). The lines() method returns
a Stream<String> whose elements are lines read from the BufferedReader. Here are
the next steps:

Line 7 The map() method takes as argument a lambda expression and creates a new
stream by applying that lambda to each stream element, replacing each ele-
ment with another. Here, we transform each line to lower case.

Line 8 The flatMap() method takes as an argument a lambda expression and creates
a new stream by applying that lambda to each stream element, replacing
each element with a stream of other elements, and then "flattening" these
streams into a single stream. Here, we transform each line to a stream of
individual words: by calling the Pattern class’s splitAsStream() method to
replace each line with a stream of individual words.

Line 9 At last, it is time to produce a result. As noted earlier, the collect() method
is a common way of storing the stream elements in a kind of “accumulator”
object, in this case a List<String>.

The readLines() method shown here is sequential.
Using aggregate operations (Fig. 17.10), WordCount is quite succinct. It calls

readFile(), which returns a list of lower-case strings (line 16). It turns the list into
a stream (line 18) and then collects the stream contents into a Map<String,Long>
(line 19). Here, the groupingBy() collector takes two arguments (line 20). The first ar-
gument is a lambda that states how to compute each stream element’s key. The call to

17.2 Stream computing 417

14 public class WordCount {
15 public static void main(String[] args) {
16 List<String> text = readFile("document.tex");
17 Map<String,Long> map = text
18 .stream()
19 .collect(
20 Collectors.groupingBy(
21 Function.identity(),
22 Collectors.counting())
23);
24 displayOutput(map);
25 }
26 }

FIGURE 17.10

Stream-based WordCount application: aggregate data.

Function.identity() returns the identity function, which returns its own input, mean-
ing that each string is its own key (line 21). The second argument is a downstream
reducer that operates on the stream of strings that map to the same key (line 22). Of
course, the stream of strings that map to x is a stream of k copies of x, where k is
the number of times that string appears in the document. The Collectors.counting()
container simply counts the number of elements in the stream.

17.2.2 A stream-based KMeans application
Recall that each iteration of KMeans algorithm has k tentative central points around
which it clusters points. Once the clusters are complete, if the new centers are too
far from the old centers, it computes a new tentative center for each cluster. The
barycenter of a set of points p0, . . . , pn−1 is given by

b = 1

n

n−1∑
i=0

pi.

Fig. 17.11 shows a stream-based barycenter() function. It first turns the List<Point>
into a stream (line 4) and then applies reduce() to the stream to produce a single
value. The argument to reduce() is a lambda defining a binary operator that combines
two points into a third. Reduction repeatedly applies this operator to the stream ele-
ments until there is only one Point left. In this case, the binary operation is the Point
class’s plus() method, and reduce() simply sums the points in the stream (line 5).
The result of this summation is not, however, a Point. Because reduction must be de-
fined even for empty streams, the result is an object of type Optional<Point>, which
may contain a Point or be empty. The method calls the result’s get() operation to
extract the Point, and multiplies the point by 1

n
, where n is the number of points in

the cluster (line 6).

418 CHAPTER 17 Data parallelism

1 static public Point barycenter(List<Point> cluster) {
2 double numPoints = (double) cluster.size();
3 Optional<Point> sum = cluster
4 .stream()
5 .reduce(Point::plus);
6 return sum.get().scale(1 / numPoints);
7 }

FIGURE 17.11

The barycenter() method.

1 static public Stream<Point> randomPointStream() {
2 return Stream.generate(
3 () -> new Point(ThreadLocalRandom.current().nextDouble(),
4 ThreadLocalRandom.current().nextDouble())
5);
6 }

FIGURE 17.12

A stream of randomly generated points.

Suppose we have two methods that compute barycenters, one sequential and one
parallel, and suppose we want to design an experiment to compare how they per-
form. Because the effectiveness of parallelism often depends on scale, a natural way
to compare these methods is to generate a sequence of increasingly large sets of ran-
dom points, take the barycenter of each set using both methods, and compare their
performance as a function of the set size. This application illustrates a powerful aspect
of streams: the ability to define unbounded streams that lazily produce an arbitrary
number of values. Fig. 17.12 shows how to define a stream that produces an arbitrary
number of randomly generated points. The call

Stream<Point> limited = unbounded.limit(k);

constructs a new stream of length k from an unbounded stream.
The stream-based KMeans application starts out like its MapReduce-based counter-

part: It reads the data points from a file as a List<Point> (line 12), chooses distinct
random points as starting cluster centers (line 13), and iterates the algorithm until it
converges (line 15) (Fig. 17.13).

In the first step, the application clusters the data points around the centers by
creating a Map<Integer,List<Point>> that maps each center point’s index to the set
of points closest to that center (line 16).

In the second step, it constructs a stream from the first step’s map, and turns it
back into a map, except replacing each cluster with its barycenter (line 21). The first
argument to op() is a lambda expression that maps the stream element to a key, and
the second maps the stream element to a value. Here, the key is the center index, and
the value is the cluster’s barycenter.

17.2 Stream computing 419

7 public class KMeans {
8 static final double EPSILON = 0.01;
9 static List<Point> points;

10 static Map<Integer, Point> centers;
11 public static void main(String[] args) {
12 points = KMeans.readFile("cluster.dat");
13 centers = randomDistinctCenters(points);
14 double convergence = 1.0;
15 while (convergence > EPSILON) {
16 Map<Integer, List<Point>> clusters = points
17 .stream()
18 .collect(
19 Collectors.groupingBy(p -> KMeans.closestCenter(centers, p))
20);
21 Map<Integer, Point> newCenters = clusters
22 .entrySet()
23 .stream()
24 .collect(
25 Collectors.toMap(
26 e -> e.getKey(),
27 e -> Point.barycenter(e.getValue())
28)
29);
30 convergence = distance(centers, newCenters);
31 centers = newCenters;
32 }
33 displayResults(clusters, centers);
34 }

FIGURE 17.13

Stream-based KMeans application: aggregate data.

17.2.3 Making aggregate operations parallel
We have seen that the contents of a container such as a List<T> or Map<K,V> can be
fed into a Stream<>, and its contents can be manipulated by aggregate operations such
as map(), filter(), reduce(), or collect(). These aggregate operations are carried out
sequentially, operating in a one-at-a-time order on the values in the stream.

Instead of constructing a sequential Stream<> from a container, one can construct
a ParallelStream<>. The Java runtime partitions a parallel stream into multiple sub-
streams, applies aggregate operations to the substreams in parallel, and then combines
the results. For example, this code will print this list of Boston street names in alpha-
betical order:

Arrays.asList("Arlington", "Berkeley", "Clarendon", "Dartmouth", "Exeter")
.stream()
.forEach(s -> System.out.printf("%s\n", s));

420 CHAPTER 17 Data parallelism

while this code will print the list of streets in a nondeterministic order:

Arrays.asList("Arlington", "Berkeley", "Clarendon", "Dartmouth", "Exeter")
.parallelStream()
.forEach(s -> System.out.printf("%s\n", s));

One can also transform a sequential stream into a parallel stream by calling the
parallel() method:

Stream<T> seqStream = ...; // sequential stream
Stream<T> parStream = seqStream.parallel(); // parallel stream

Recall that reduction operations transform a stream into a container or a scalar
value. Here, for convenient reference, is the key reduction in the stream-based
WordCount application of Fig. 17.10:

Map<String,Long> map = text
.stream()
.collect(

Collectors.groupingBy(
Function.identity(),
Collectors.counting())

);

Here is a parallel version:

ConcurrentMap<String,Long> map = text
.parallelStream()
.collect(

Collectors.groupingByConcurrent(
Function.identity(),
Collectors.counting())

);

We made three changes: we replaced the call to stream() with a call to
parallelStream(), and the call to groupingBy() with a call to groupingByConcurrent(),
which returns a ConcurrentMap<String,Long>.

There are some pitfalls to avoid when combining lambda expressions with concur-
rent streams. First, a lambda expression operating on a stream, sequential or parallel,
is said to be interfering if it alters the stream’s source. Interfering lambda expressions
will usually cause run-time exceptions. For example, if list is a List<Integer>, the
following code will throw ConcurrentModificationException because the list is be-
ing modified at the same time the stream is navigating through each of its values.

list.stream().forEach(s -> list.add(0));

A lambda expression is stateful if its effect depends on aspects of its environment
that could change from one call to another. Stateful lambda expressions, while not il-
legal, should be used with care. The following two lines of code use the same stateful
lambda expression. The first line simply copies values, in order, from a source list to
a target list. In the second line, however, the target list’s add() method may be called

17.2 Stream computing 421

1 public static void main(String[] args) {
2 List<String> text = readFile("document.tex");
3 Spliterator<String> spliterator = text
4 .stream()
5 .spliterator();
6 Map<String, Long> result = (new RecursiveWordCountTask(spliterator)).compute();
7 displayOutput(result);
8 }

FIGURE 17.14

The RecursiveWordCount application: main() method.

concurrently, possibly resulting in an exception if the target list is not thread-safe.
Even if the target is properly synchronized, the order in which elements are copied
may be different each time the code is run.

source.stream().forEach(s -> target.add(s));
source.parallelStream().forEach(s -> target.add(s));

For many applications, parallelStream() is likely to be an effective way of exe-
cuting aggregate operations in parallel. But what about applications that want more
explicit control over how aggregate operations are parallelized?

A Spliterator<T> provides the ability to split a stream into parts, providing the
opportunity to operate on the parts in parallel. In a typical spliterator use, the stream is
recursively split until it falls below a threshold size, at which point it can be processed
sequentially. Fig. 17.14 shows the main method of RecursiveWordCount. It turns the
document into a Stream<String> and then into a spliterator. The actual work is done
by the RecursiveWordCountTask class shown in Fig. 17.15.

This class inherits from RecursiveTask<Map<String, Long>>, so its compute()
method does all the work. The task constructor takes a single argument, a
Spliterator<String>. The compute() method first initializes a Map<String,Long> to
hold the result (line 17). If the spliterator is larger than the THRESHOLD value (line 19),
and if the spliterator is successfully split (line 19), then the method creates two sub-
tasks: left and right (lines 21–22). (As its name suggests, the trySplit() method
might not split the stream, returning null for any reason.)

The task then calls its children recursively. It forks the left child, allowing it to
run in parallel with its caller (line 23), and it executes the right child directly, without
forking (line 24). It merges the map returned by the right child with the result map
(line 25), then it joins the left child, and does the same (line 28).

Otherwise, if the stream is below threshold, or it cannot be split, then the task uses
the forEachRemaining() operator to add the words in the stream directly to its result
map.

422 CHAPTER 17 Data parallelism

9 static class RecursiveWordCountTask extends RecursiveTask<Map<String, Long>> {
10 final int THRESHOLD = ...;
11 Spliterator<String> rightSplit;
12

13 RecursiveWordCountTask(Spliterator<String> aSpliterator) {
14 rightSplit = aSpliterator;
15 }
16 protected Map<String, Long> compute() {
17 Map<String, Long> result = new HashMap<>();
18 Spliterator<String> leftSplit;
19 if (rightSplit.estimateSize() > THRESHOLD
20 && (leftSplit = rightSplit.trySplit()) != null) {
21 RecursiveWordCountTask left = new RecursiveWordCountTask(leftSplit);
22 RecursiveWordCountTask right = new RecursiveWordCountTask(rightSplit);
23 left.fork();
24 right.compute().forEach(
25 (k, v) -> result.merge(k, v, (x, y) -> x + y)
26);
27 left.join().forEach(
28 (k, v) -> result.merge(k, v, (x, y) -> x + y)
29);
30 } else {
31 rightSplit.forEachRemaining(
32 word -> result.merge(word, 1L, (x, y) -> x + y)
33);
34 }
35 return result;
36 }
37 }

FIGURE 17.15

The RecursiveWordCountTask class.

17.3 Chapter notes
The notion of MapReduce as a programming pattern for distributed systems is due to
Dean and Ghemawat [34]. MapReduce frameworks for shared-memory multiproces-
sors include the Phoenix++ framework [161] and Metis [120].

Microsoft’s C# and Visual Basic support Language-Integrated query (LINQ),
which provides functionality comparable to that of Java streams, although expressed
in the syntax of a query language.

The Jim Morris quotes are taken from a Xerox PARC technical report [132].

17.4 Exercises 423

17.4 Exercises
Exercise 17.1. Java’s LongStream<> class is a specialized kind of stream whose ele-
ments are long values. (For computations involving lots of arithmetic, a LongStream<>
may be more efficient than a Stream<Long>.) This class provides a static range(i,j)
method that returns a stream containing long values i . . . j−1 and a static
rangeClosed(i,j) method that returns a stream containing i . . . j.

Using only the LongStream<> class (no loops), define a class Primes with the fol-
lowing methods:

private static boolean isPrime(long n)

tests whether a number is prime, and

private static long countPrimes(int max)

counts the number of primes less than a maximum.

Exercise 17.2. A comparator is a lambda expression that takes two arguments. It
returns a negative integer if its first argument is “less” than its second, a positive
integer if it is “greater,” and 0 if the arguments are equivalent. Fill in the missing
comparators in the following program.

public static void main(String[] args) {
String[] strings = {"alfa", "bravo", "charlie", "delta", "echo"};

// sort strings by length, shortest first
Arrays.sort(strings, ...);
System.out.println(Arrays.asList(strings));

// sort strings by their second letter
Arrays.sort(strings, ...);
System.out.println(Arrays.asList(strings));

// order strings that start with ’c’ first, then sort normally
Arrays.sort(strings, ...);
System.out.println(Arrays.asList(strings));

}

Your output should look like:

[alfa, echo, bravo, delta, charlie]
[echo, delta, charlie, alfa, bravo]
[charlie, alfa, bravo, delta, echo]

Exercise 17.3. Fig. 17.16 shows part of a MatrixVector class that uses MapReduce
to multiply an N × N matrix by an N -element vector. For simplicity, it creates one
mapper task for each matrix entry (in practice, it would be more efficient to have each
mapper correspond to a larger submatrix).

The input matrix and vector are stored in static vector and matrix fields of the
MatrixVector class (lines 3–4). Because Java does not permit arrays to be stored

424 CHAPTER 17 Data parallelism

1 public class MatrixVector {
2 static final int N = ...;
3 static double[] vector;
4 static double[][] matrix;
5 static class RowColumn {
6 int row;
7 int col;
8 RowColumn(int aRow, int aCol) {
9 row = aRow;

10 col = aCol;
11 }
12 public boolean equals(Object anObject) {
13 RowColumn other = (RowColumn) anObject;
14 return (this.row == other.row && this.col == other.col);
15 }
16 }
17 public static void main(String[] args) {
18 vector = readVector("vector.dat");
19 matrix = readMatrix("matrix.dat");
20 MapReduce<RowColumn, Integer, Double, Double> mapReduce = new MapReduce<>();
21 List<RowColumn> inputList = new ArrayList<>(N * N);
22 for (int r = 0; r < N; r++) {
23 for (int c = 0; c < N; c++) {
24 inputList.add(new RowColumn(r, c));
25 }
26 }
27 mapReduce.setInput(inputList);
28 mapReduce.setMapperSupplier(MatrixVector.Mapper::new);
29 mapReduce.setReducerSupplier(MatrixVector.Reducer::new);
30 Map<Integer, Double> output = mapReduce.call();
31 displayOutput(output);
32 }
33 // Exercise: missing mapper and reducer classes?
34 ...
35 }

FIGURE 17.16

The MatrixVector class used in Exercise 17.3.

directly in maps or lists, the Mapper and Reducer classes, as static inner classes of
MatrixVector, access the vector and matrix fields directly. A matrix position is iden-
tified by a RowColumn object that holds a row and column number (line 5). (As a
technical aside, RowColumn objects can be used as keys in maps because they pro-
vide an equals() operation that compares row and column numbers.) Each mapper
is initialized with its own RowColumn object, identifying its position in the matrix
(lines 21–26).

Your task is to fill in the missing Mapper and Reducer classes. They should be static
inner classes that access the static matrix and vector fields.

17.4 Exercises 425

1 public class MatrixMultiply {
2 static final int N = ...;
3 static double[][] matrixA;
4 static double[][] matrixB;
5 static class RowColumn {
6 int row;
7 int col;
8 RowColumn(int aRow, int aCol) {
9 row = aRow;

10 col = aCol;
11 }
12 public boolean equals(Object anObject) {
13 RowColumn other = (RowColumn) anObject;
14 return (this.row == other.row && this.col == other.col);
15 }
16 }
17 public static void main(String[] args) {
18 vector = readMatrix("matrixA.dat");
19 matrix = readMatrix("matrixB.dat");
20 MapReduce<RowColumn, RowColumn, Double, Double> mapReduce = new MapReduce<>();
21 List<RowColumn> inputList = new ArrayList<>(N * N);
22 for (int i = 0; i < N; i++) {
23 for (int j = 0; j < N; j++) {
24 inputList.add(new RowColumn(i, j));
25 }
26 }
27 mapReduce.setInput(inputList);
28 mapReduce.setMapperSupplier(MatrixMultiply.Mapper::new);
29 mapReduce.setReducerSupplier(MatrixMultiply.Reducer::new);
30 Map<RowColumn, Double> output = mapReduce.call();
31 displayOutput(output);
32 }
33 // Exercise: missing mapper and reducer classes?
34 ...
35 }

FIGURE 17.17

The MatrixMultiply class used in Exercise 17.4.

Exercise 17.4. Fig. 17.17 shows part of the code for a MatrixMultiply class that
multiplies one N ×N matrix (matrixA) by another (matrixB). For simplicity, it creates
one mapper task for each entry of matrixA.

The two matrices are stored in static matrixA and matrixB fields of the
MatrixMultiply class (lines 3–4). Because Java does not permit arrays to be stored
directly in maps or lists, the Mapper and Reducer classes, as static inner classes of
MatrixVector, access the matrixA and matrixB fields directly. A matrix position is
identified by a RowColumn object that holds a row and column number (line 5). (As
a technical aside, RowColumn objects can be used as keys in maps because they pro-
vide an equals() operation that compares row and column numbers.) Each mapper

426 CHAPTER 17 Data parallelism

is initialized with its own RowColumn object, identifying its position in the matrix
(lines 21–26).

Your task is to fill in the missing Mapper and Reducer classes. They should be static
inner classes that access the static matrixA and matrixB fields.

Exercise 17.5. In the single-source shortest-path (SSSP) problem, we are given a
directed graph G and a source node s in G, and we must compute, for each node n in
G, the length of the shortest directed path from s to n in G. For simplicity, we assume
in this example that each edge has length 1.0, but it should be easy to assign different
edge weights.

Fig. 17.18 shows part of an iterated MapReduce SSSP implementation. Here, each
node is represented as an Integer, and each distance as a Double. The graph is a
Map<Integer,List<Integer>> carrying each node to a list of its neighbors (line 2).
Node 0 is the source. The best-known distances from the source are tracked in a

1 public class SSSP {
2 static Map<Integer, List<Integer>> graph;
3 static Map<Integer, Double> distances;
4 static final Integer N = ...;
5 static final Double EPSILON = ...;
6 public static void main(String[] args) {
7 graph = makeGraph(N);
8 distances = new TreeMap();
9 Map<Integer, Double> newDistances = new TreeMap<>();

10 newDistances.put(0, 0.0);
11 for (int i = 1; i < N; i++) {
12 newDistances.put(i, Double.MAX_VALUE);
13 }
14 MapReduce<Integer, Integer, Double, Double> mapReduce
15 = new MapReduce<>();
16 mapReduce.setMapperSupplier(SSSP.Mapper::new);
17 mapReduce.setReducerSupplier(SSSP.Reducer::new);
18 boolean done = false;
19 while (!done) {
20 distances.putAll(newDistances);
21 mapReduce.setInput(
22 listOfFiniteDistanceNodes(distances)
23);
24 newDistances.putAll(mapReduce.call());
25 done = withinEpsilon(distances, newDistances);
26 }
27 displayOutput(distances);
28 }
29 }

FIGURE 17.18

The SSSP class used in Exercise 17.5.

17.4 Exercises 427

Map<Integer,Double> (line 8), initially 0.0 for node 0, and essentially infinite for the
rest (line 10).

Like KMeans, SSSP is iterative. Unlike KMeans, the number of mappers varies at
each iteration. We do a breadth-first traversal of the graph: Initially the source has
distance 0, and in the first iteration, we assign its neighbors distance 1.0, in the next
iteration we assign their neighbors the minimum of their current distance and 2.0, and
so on. The method call at line 20 returns the list of nodes that have been discovered to
be reachable from the source, and we feed these nodes to the next iteration’s mapper
tasks. The algorithm terminates when there is an iteration where no node’s distance
improves by more than a predefined EPSILON (line 25).

Your job is to fill in the missing Mapper and Reducer classes. They should be static
inner classes that access the static graph and distances fields.

Exercise 17.6. In Fig. 17.18, Exercise 17.5, the listOfFiniteDistanceNodes()
method takes a Map<Integer,Double> and returns a list of the Integer keys bound
to values less than Double.MAX_VALUE. Implement this method using stream operators.

Exercise 17.7. In Fig. 17.18, Exercise 17.5, the withinEpsilon() method takes two
Map<Integer,Double> arguments, which are assumed to have the same set of keys. It
returns true if and only if the values bound to each key differ by less than a predefined
constant EPSILON. Implement this method using stream operators.

Exercise 17.8. Let m0 and m1 be two Map<<,I>nteger, Double> objects. Using data-
parallel streams, write a single-statement distance() method that returns the sum of
the absolute values of the differences between each key’s bindings, for keys that ap-
pear in both maps. Your method should be equivalent to this:

double distance(Map<Integer, Double> m0, Map<Integer, Double> m1) {
Double sum = 0.0;
for (int key : m0.keySet()) {
if (m1.containsKey(key)) {
sum += Math.abs(m0.get(key) - m1.get(key));

}
}
return sum;

}

Exercise 17.9. Start with a list of strings, similar to this:

List<String> strings = Arrays.asList("alfa", "bravo", "charlie",
"delta", "echo");

Using stream operations,

1. Print each string on a separate line.
2. Print each string on a separate line, followed by three exclamation points!!!
3. Discard each string of four characters or less, then discard the strings that do not

contain the letter “l,” and print each remaining string on a separate line.

428 CHAPTER 17 Data parallelism

Exercise 17.10. The following code fragment creates a small database mapping cities
to their zip codes.

Map<String, String> map = new HashMap<>();
map.put("Cambridge", "03219");
map.put("Providence", "02912");
map.put("Palo Alto", "94305");
map.put("Pittsburgh", "15213");

Use a stream and stream operators to invert this map, constructing a new map that
carries zip codes to cities.

Exercise 17.11. Write a FibStream class that provides a single get() method that
returns an unbounded Stream<Long> of the Fibonacci numbers.

Exercise 17.12. Suppose you are given a Stream<Point> containing a sequence of
points of unknown, but nonzero size. Write a method

Point streamBary(Stream<Point> stream)

that computes their barycenter.
Hint: The counting() method that counts the number of stream elements is ter-

minal, so you cannot continue to use the stream if you count its elements directly.
Instead, you must find out how to use a single reduction to sum the points and count
them simultaneously.

1 public static void main(String[] args) {
2 points = readFile("cluster.dat");
3 centers = randomDistinctCenters(points);
4 pool = new ForkJoinPool();
5 double convergence = 1.0;
6 while (convergence > EPSILON) {
7 Spliterator<Point> pointSplit = points
8 .stream()
9 .spliterator();

10 RecursiveClusterTask clusterTask = new RecursiveClusterTask(pointSplit);
11 Map<Integer, Set<Point>> clusters = pool.invoke(clusterTask);
12 Spliterator<Map.Entry<Integer, Set<Point>>> centerSplit = clusters
13 .entrySet()
14 .stream()
15 .spliterator();
16 RecursiveCenterTask centerTask = new RecursiveCenterTask(centerSplit);
17 Map<Integer, Point> newCenters = pool.invoke(centerTask);
18 convergence = distance(centers, newCenters);
19 centers = newCenters;
20 }
21 displayOutput(centers);
22 }

FIGURE 17.19

Code for Exercise 17.13.

17.4 Exercises 429

Exercise 17.13. Fig. 17.19 shows the main() method for a recursive spliterator
of the KMeans application. The RecursiveClusterTask class is a recursive fork-join
task that computes the clusters, and the RecursiveCenterTask class is a recursive
fork-join task that computes the centers from the clusters. Write the code for the
RecursiveClusterTask and RecursiveClusterTask classes in the style of Fig. 17.15.

18
CHAPTER

Barriers

18.1 Introduction
Imagine you are writing the graphical display for a computer game. Your program
prepares a sequence of frames to be displayed by a graphics package (perhaps a
hardware coprocessor). This kind of program is sometimes called a soft real-time
application: real-time because it must display at least 35 frames per second to be
effective, and soft because occasional failure is not catastrophic. On a single-thread
machine, you might write a loop like this:

while (true) {
frame.prepare();
frame.display();

}

If, instead, you have n parallel threads available, then it makes sense to split the frame
into n disjoint parts, and have each thread prepare its part in parallel with the others.

int me = ThreadID.get();
while (true) {
frame[me].prepare();
frame[me].display();

}

The problem with this approach is that different threads require different amounts
of time to prepare and display their portions of the frame. Some threads might start
displaying the ith frame before others have finished the (i − 1)st.

To avoid such synchronization problems, we can organize computations such as
this as a sequence of phases, where no thread should start the ith phase until the others
have finished the (i − 1)st. We have seen this phased computation pattern before: In
Chapter 12, the sorting network algorithms required each comparison phase to be
separate from the others. Similarly, in the sample sorting algorithm, each phase had
to make sure that prior phases had completed before proceeding.

The mechanism for enforcing this kind of synchronization is called a barrier; its
interface is shown in Fig. 18.1. A barrier is a way of forcing asynchronous threads
to act almost as if they were synchronous. When a thread finishing phase i calls the
barrier’s await() method, it is blocked until all n threads have also finished that phase.
Fig. 18.2 shows how one could use a barrier to make the parallel rendering program
work correctly. After preparing frame i, all threads synchronize at a barrier before

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00028-8
Copyright © 2021 Elsevier Inc. All rights reserved.

431

432 CHAPTER 18 Barriers

1 public interface Barrier {
2 public void await();
3 }

FIGURE 18.1

The Barrier interface.

1 private Barrier b;
2 ...
3 while (true) {
4 frame[my].prepare();
5 b.await();
6 frame[my].display();
7 }

FIGURE 18.2

Using a barrier to synchronize concurrent displays.

starting to display that frame. This structure ensures that all threads concurrently
displaying a frame display the same frame.

Barrier implementations raise many of the same performance issues as spin locks
in Chapter 7, as well as some new issues. Clearly, barriers should be fast, in the sense
that we want to minimize the duration between when the last thread reaches the bar-
rier and when the last thread leaves the barrier. It is also important that threads leave
the barrier at roughly the same time. A thread’s notification time is the interval be-
tween when some thread has detected that all threads have reached the barrier, and
when that specific thread leaves the barrier. Having uniform notification times is im-
portant for many soft real-time applications. For example, picture quality is enhanced
if all portions of the frame are updated at more-or-less the same time.

18.2 Barrier implementations
Fig. 18.3 shows the SimpleBarrier class, which creates an AtomicInteger counter
initialized to n, the barrier size. Each thread applies getAndDecrement() to lower the
counter. If the call returns 1 (line 10), then that thread is the last to reach the barrier,
so it resets the counter for the next use (line 11). Otherwise, the thread spins on the
counter, waiting for the value to fall to zero (line 13). This barrier class may look like
it works, but it does not.

Unfortunately, the attempt to make the barrier reusable breaks it. Suppose there
are only two threads. Thread A applies getAndDecrement() to the counter, discovers
it is not the last thread to reach the barrier, and spins waiting for the counter value
to reach 0. When B arrives, it discovers it is the last thread to arrive, so it resets the
counter to n, in this case 2. It finishes the next phase and calls await(). Meanwhile, A

18.3 Sense reversing barrier 433

1 public class SimpleBarrier implements Barrier { // incorrect
2 AtomicInteger count;
3 int size;
4 public SimpleBarrier(int n){
5 count = new AtomicInteger(n);
6 size = n;
7 }
8 public void await() {
9 int position = count.getAndDecrement();

10 if (position == 1) {
11 count.set(size);
12 } else {
13 while (count.get() != 0){};
14 }
15 }
16 }

FIGURE 18.3

An incorrect implementation of the SimpleBarrier class.

continues to spin; it never saw the counter reach 0. Eventually, A is waiting for phase
0 to finish, while B is waiting for phase 1 to finish, and the two threads starve.

Perhaps the simplest way to fix this problem is to alternate between two barriers,
using one for even-numbered phases and another for odd-numbered ones. However,
such an approach wastes space, and requires too much bookkeeping from applica-
tions.

18.3 Sense reversing barrier
A sense reversing barrier is an elegant and practical solution to the problem of reusing
barriers. As shown in Fig. 18.4, a phase’s sense is a Boolean value: true for even-
numbered phases and false otherwise. Each SenseBarrier object has a Boolean sense
field indicating the sense of the currently executing phase. Each thread keeps its cur-
rent sense as a thread-local object (Pragma 18.3.1). Initially the barrier’s sense is
the complement of the local sense of all the threads. When a thread calls await(),
it checks whether it is the last thread to decrement the counter. If so, it reverses the
barrier’s sense and continues. Otherwise, it spins waiting for the barrier’s sense field
to change to match its own local sense.

Decrementing the shared counter may cause memory contention, since all the
threads are trying to access the counter at about the same time. Once the counter has
been decremented, each thread spins on the sense field. This implementation is well
suited for cache-coherent architectures, since threads spin on locally cached copies
of the field, and the field is modified only when threads are ready to leave the barrier.

434 CHAPTER 18 Barriers

1 public SenseBarrier(int n) {
2 count = new AtomicInteger(n);
3 size = n;
4 sense = false;
5 threadSense = new ThreadLocal<Boolean>() {
6 protected Boolean initialValue() { return !sense; };
7 };
8 }
9 public void await() {

10 boolean mySense = threadSense.get();
11 int position = count.getAndDecrement();
12 if (position == 1) {
13 count.set(size);
14 sense = mySense;
15 } else {
16 while (sense != mySense) {}
17 }
18 threadSense.set(!mySense);
19 }

FIGURE 18.4

The SenseBarrier class: a sense reversing barrier.

The sense field is an excellent way of maintaining a uniform notification time on
symmetric cache-coherent multiprocessors.

PRAGMA 18.3.1

The constructor code for the sense reversing barrier, shown in Fig. 18.4, is mostly
straightforward. The one exception occurs on lines 5 and 6, where we initialize
the thread-local threadSense field. This somewhat complicated syntax defines a
thread-local Boolean value whose initial value is the complement of the sense
field’s initial value. See Appendix A.2.4 for a more complete explanation of
thread-local objects in Java.

18.4 Combining tree barrier
One way to reduce memory contention (at the cost of increased latency) is to use the
combining paradigm of Chapter 12. Split a large barrier into a tree of smaller barriers,
and have threads combine requests going up the tree and distribute notifications going
down the tree. A tree barrier (Fig. 18.5) is characterized by a size n, the total number
of threads, and a radix r , the number of children of each node For convenience, we
assume there are exactly n = rd+1 threads, where d is the depth of the tree.

18.4 Combining tree barrier 435

1 public class TreeBarrier implements Barrier {
2 int radix;
3 Node[] leaf;
4 ThreadLocal<Boolean> threadSense;
5 ...
6 public void await() {
7 int me = ThreadID.get();
8 Node myLeaf = leaf[me / radix];
9 myLeaf.await();

10 }
11 ...
12 }

FIGURE 18.5

The TreeBarrier class: Each thread indexes into an array of leaf nodes and calls that leaf’s
await() method.

Specifically, the combining tree barrier is a tree of nodes, where each node has a
counter and a sense, just as in the sense reversing barrier. A node’s implementation is
shown in Fig. 18.6. Thread i starts at leaf node �i/r�. The node’s await() method is
similar to the sense reversing barrier’s await(), the principal difference being that the
last thread to arrive, the one that completes the barrier, visits the parent barrier before
waking up the other threads. When r threads have arrived at the root, the barrier is
complete, and the sense is reversed. As before, thread-local Boolean sense values
allow the barrier to be reused without reinitialization.

The tree-structured barrier reduces memory contention by spreading memory ac-
cesses across multiple barriers. It may or may not reduce latency, depending on
whether it is faster to decrement a single location or to visit a logarithmic number
of barriers.

The root node, once its barrier is complete, lets notifications percolate down the
tree. This approach may be good for a NUMA architecture, but it may cause nonuni-
form notification times. Because threads visit an unpredictable sequence of locations
as they move up the tree, this approach may not work well on cacheless NUMA
architectures.

PRAGMA 18.4.1

Tree nodes are declared as an inner class of the tree barrier class, so nodes are
not accessible outside the class. As shown in Fig. 18.7, the tree is initialized by a
recursive build() method. The method takes a parent node and a depth. If the depth
is nonzero, it creates radix children, and recursively creates the children’s children.
If the depth is 0, it places each node in a leaf[] array. When a thread enters the
barrier, it uses this array to choose a leaf to start from. See Appendix A.2.1 for a
more complete discussion of inner classes in Java.

436 CHAPTER 18 Barriers

13 private class Node {
14 AtomicInteger count;
15 Node parent;
16 volatile boolean sense;
17

18 public Node() {
19 sense = false;
20 parent = null;
21 count = new AtomicInteger(radix);
22 }
23 public Node(Node myParent) {
24 this();
25 parent = myParent;
26 }
27 public void await() {
28 boolean mySense = threadSense.get();
29 int position = count.getAndDecrement();
30 if (position == 1) { // I’m last
31 if (parent != null) { // Am I root?
32 parent.await();
33 }
34 count.set(radix);
35 sense = mySense;
36 } else {
37 while (sense != mySense) {};
38 }
39 threadSense.set(!mySense);
40 }
41 }
42 }

FIGURE 18.6

The TreeBarrier class: internal tree node.

18.5 Static tree barrier
The barriers seen so far either suffer from contention (the simple and sense reversing
barriers) or have excessive communication (the combining tree barrier). In the latter
barrier, which threads traverse up the tree is varying and unpredictable, which makes
it difficult to lay out the barriers on cacheless NUMA architectures. Surprisingly,
there is a simple barrier that allows a static layout and yet has low contention.

The static tree barrier of Fig. 18.8 works as follows: Each thread is assigned to a
node in a tree (Fig. 18.9). The thread at a node waits until all nodes below it in the tree
have finished, and then informs its parent. It then spins waiting for the global sense bit
to change. Once the root learns that its children are done, it toggles the global sense
bit to notify the waiting threads that all threads are done. On a cache-coherent mul-

18.5 Static tree barrier 437

43 public class TreeBarrier implements Barrier {
44 int radix;
45 Node[] leaf;
46 int leaves;
47 ThreadLocal<Boolean> threadSense;
48

49 public TreeBarrier(int n, int r) {
50 radix = r;
51 leaves = 0;
52 leaf = new Node[n / r];
53 int depth = 0;
54 threadSense = new ThreadLocal<Boolean>() {
55 protected Boolean initialValue() { return true; };
56 };
57 // compute tree depth
58 while (n > 1) {
59 depth++;
60 n = n / r;
61 }
62 Node root = new Node();
63 build(root, depth - 1);
64 }
65 // recursive tree constructor
66 void build(Node parent, int depth) {
67 if (depth == 0) {
68 leaf[leaves++] = parent;
69 } else {
70 for (int i = 0; i < radix; i++) {
71 Node child = new Node(parent);
72 build(child, depth - 1);
73 }
74 }
75 }
76 ...
77 }

FIGURE 18.7

The TreeBarrier class: initializing a combining tree barrier. The build() method creates r
children for each node, and then recursively creates the children’s children. At the bottom,
it places leaves in an array.

tiprocessor, completing the barrier requires log(n) steps moving up the tree, while
notification simply requires changing the global sense, which is propagated by the
cache-coherence mechanism. On machines without coherent caches, threads propa-
gate notification down the tree as in the combining barrier we saw earlier.

438 CHAPTER 18 Barriers

1 public class StaticTreeBarrier implements Barrier {
2 int radix;
3 boolean sense;
4 Node[] node;
5 ThreadLocal<Boolean> threadSense;
6 int nodes;
7

8 public StaticTreeBarrier(int size, int myRadix) {
9 radix = myRadix;

10 nodes = 0;
11 node = new Node[size];
12 int depth = 0;
13 while (size > 1) {
14 depth++;
15 size = size / radix;
16 }
17 build(null, depth);
18 sense = false;
19 threadSense = new ThreadLocal<Boolean>() {
20 protected Boolean initialValue() { return !sense; };
21 };
22 }
23 // recursive tree constructor
24 void build(Node parent, int depth) {
25 if (depth == 0) {
26 node[nodes++] = new Node(parent, 0);
27 } else {
28 Node myNode = new Node(parent, radix);
29 node[nodes++] = myNode;
30 for (int i = 0; i < radix; i++) {
31 build(myNode, depth - 1);
32 }
33 }
34 }
35 public void await() {
36 node[ThreadID.get()].await();
37 }
38 }

FIGURE 18.8

The StaticTreeBarrier class: Each thread indexes into a statically assigned tree node and
calls that node’s await() method.

18.6 Termination detection barriers
All the barriers considered so far were directed at computations organized in phases,
where each thread finishes the work for a phase, reaches the barrier, and then starts a
new phase.

18.6 Termination detection barriers 439

39 public Node(Node myParent, int count) {
40 children = count;
41 childCount = new AtomicInteger(count);
42 parent = myParent;
43 }
44 public void await() {
45 boolean mySense = threadSense.get();
46 while (childCount.get() > 0) {};
47 childCount.set(children);
48 if (parent != null) {
49 parent.childDone();
50 while (sense != mySense) {};
51 } else {
52 sense = !sense;
53 }
54 threadSense.set(!mySense);
55 }
56 public void childDone() {
57 childCount.getAndDecrement();
58 }

FIGURE 18.9

The StaticTreeBarrier class: internal Node class.

There is another interesting class of programs, in which each thread finishes its
own part of the computation, only to be put to work again when another thread gener-
ates new work. An example of such a program is the simplified work stealing executor
pool from Chapter 16 (Fig. 18.10). Once a thread exhausts the tasks in its local queue,
it tries to steal work from other threads’ queues. The execute() method itself may
push new tasks onto the calling thread’s local queue. Once all threads have exhausted
all tasks in their queues, the threads will run forever while repeatedly attempting to
steal items. Instead, we would like to devise a termination detection barrier so that
these threads can all terminate once they have finished all their tasks.

Each thread is either active (it has a task to execute) or inactive (it has none).
Note that any inactive thread may become active as long as some other thread is
active, since an inactive thread may steal a task from an active one. Once all threads
have become inactive, then no thread will ever become active again. Detecting that
the computation as a whole has terminated is the problem of determining that at some
instant in time, there are no longer any active threads.

None of the barrier algorithms studied so far can solve this problem. Termination
cannot be detected by having each thread announce that it has become inactive, and
simply count how many have done so, because threads may repeatedly change from
inactive to active and back. For example, we have suppose work stealing threads A,
B, and C. We would like the threads to be able to exit from the loop on line 9. An
incorrect strategy would assign each thread a Boolean value indicating whether it

440 CHAPTER 18 Barriers

1 public class WorkStealingThread {
2 DEQue[] queue;
3 public WorkStealingThread(DEQue[] queue) {
4 this.queue = queue;
5 }
6 public void run() {
7 int me = ThreadID.get();
8 RecursiveAction task = queue[me].popBottom();
9 while (true) {

10 while (task != null) {
11 task.compute();
12 task = queue[me].popBottom();
13 }
14 while (task == null) {
15 int victim = ThreadLocalRandom.current().nextInt(queue.length);
16 if (!queue[victim].isEmpty()) {
17 task = queue[victim].popTop();
18 }
19 }
20 }
21 }
22 }

FIGURE 18.10

Work stealing executor pool revisited.

1 public interface TDBarrier {
2 void setActive(boolean state);
3 boolean isTerminated();
4 }

FIGURE 18.11

Termination detection barrier interface.

is active or inactive. When A becomes inactive, it may then observe that B is also
inactive, and then observe that C is inactive. Nevertheless, A cannot conclude that
the overall computation has completed, as B might have stolen work from C after A

checked B, but before it checked C.
A termination detection barrier (Fig. 18.11) provides methods setActive(v) and

isTerminated(). Each thread calls setActive(true) to notify the barrier when it be-
comes active, and setActive(false) to notify the barrier when it becomes inactive.
The isTerminated() method returns true if and only if all threads had become inactive
at some earlier instant. Fig. 18.12 shows a simple implementation of a termination
detection barrier.

18.6 Termination detection barriers 441

1 public class SimpleTDBarrier implements TDBarrier {
2 AtomicInteger count;
3 public SimpleTDBarrier(int n){
4 count = new AtomicInteger(n);
5 }
6 public void setActive(boolean active) {
7 if (active) {
8 count.getAndIncrement();
9 } else {

10 count.getAndDecrement();
11 }
12 }
13 public boolean isTerminated() {
14 return count.get() == 0;
15 }
16 }

FIGURE 18.12

A simple termination detection barrier.

The barrier encompasses an AtomicInteger initialized to 0. Each thread that be-
comes active increments the counter (line 8) and each thread that becomes inactive
decrements it (line 10). The computation is deemed to have terminated when the
counter reaches 0 (line 14).

The termination detection barrier works only if used correctly. Fig. 18.13 shows
how to modify the work stealing thread’s run() method to return when the computa-
tion has terminated. Initially, every thread registers as active (line 3). Once a thread
has exhausted its local queue, it registers as inactive (line 10). Before it tries to steal
a new task, however, it must register as active (line 14). If the theft fails, it registers
as inactive again (line 17).

Note that a thread sets its state to active before stealing a task. Otherwise, if a
thread were to steal a task while inactive, then the thread whose task was stolen
might also declare itself inactive, resulting in a computation where all threads declare
themselves inactive while the computation continues.

Here is a subtle point: A thread tests whether the queue is empty (line 13) before it
attempts to steal a task. This way, it avoids declaring itself active if there is no chance
the theft will succeed. Without this precaution, it is possible that the threads will not
detect termination because each one repeatedly switches to an active state before a
steal attempt that is doomed to fail.

Correct use of the termination detection barrier must satisfy both a safety and a
liveness property. The safety property is that if isTerminated() returns true, then the
computation really has terminated. Safety requires that no active thread ever declare
itself inactive, because it could trigger an incorrect termination detection. For exam-
ple, the work stealing thread of Fig. 18.13 would be incorrect if the thread declared
itself to be active only after successfully stealing a task. By contrast, it is safe for an

442 CHAPTER 18 Barriers

1 public void run() {
2 int me = ThreadID.get();
3 tdBarrier.setActive(true);
4 RecursiveAction task = queue[me].popBottom();
5 while (true) {
6 while (task != null) {
7 task.compute();
8 task = queue[me].popBottom();
9 }

10 tdBarrier.setActive(false);
11 while (task == null) {
12 int victim = ThreadLocalRandom.current().nextInt(queue.length);
13 if (!queue[victim].isEmpty()) {
14 tdBarrier.setActive(true);
15 task = queue[victim].popTop();
16 if (task == null) {
17 tdBarrier.setActive(false);
18 }
19 }
20 if (tdBarrier.isTerminated()) {
21 return;
22 }
23 }
24 }
25 }
26 }

FIGURE 18.13

Work stealing executor pool: the run() method with termination.

inactive thread to declare itself active, which may occur if the thread is unsuccessful
in stealing work at line 15.

The liveness property is that if the computation terminates, then isTerminated()
eventually returns true. (It is not necessary that termination be detected instantly.)
While safety is not jeopardized if an inactive thread declares itself active, liveness
will be violated if a thread that does not succeed in stealing work fails to declare itself
inactive again (line 15), because termination will not be detected when it occurs.

18.7 Chapter notes
John Mellor-Crummey and Michael Scott [124] provide a survey of several barrier
algorithms, though the performance numbers they provide should be viewed from
a historical perspective. The combining tree barrier is based on code due to John
Mellor-Crummey and Michael Scott [124], which is in turn based on the combin-
ing tree algorithm of Pen-Chung Yew, Nian-Feng Tzeng, and Duncan Lawrie [168].

18.8 Exercises 443

The dissemination barrier is credited to Debra Hensgen, Raphael Finkel, and Udi
Manber [64]. The tournament tree barrier used in the exercises is credited to John
Mellor-Crummey and Michael Scott [124]. The simple barriers and the static tree
barrier are most likely folklore. We learned of the static tree barrier from Beng-Hong
Lim. The termination detection barrier and its application to an executor pool are
based on a variation suggested by Peter Kessler to an algorithm by Dave Detlefs,
Christine Flood, Nir Shavit, and Xiolan Zhang [47].

18.8 Exercises
Exercise 18.1. Fig. 18.14 shows how to use barriers to make a parallel prefix com-
putation work on an asynchronous architecture.

A parallel prefix computation, given a sequence a0, . . . , am−1, of numbers,
computes in parallel the partial sums:

bi =
i∑

j=0

aj .

In a synchronous system, where all threads take steps at the same time, there are
simple, well-known algorithms for m threads to compute the partial sums in logm

steps. The computation proceeds in a sequence of rounds, starting at round zero. In
round r , if i ≥ 2r , thread i reads the value at a[i − 2r] into a local variable. Next, it

1 class Prefix extends java.lang.Thread {
2 private int[] a;
3 private int i;
4 public Prefix(int[] myA, int myI) {
5 a = myA;
6 i = myI;
7 }
8 public void run() {
9 int d = 1, sum = 0;

10 while (d < m) {
11 if (i >= d)
12 sum = a[i-d];
13 if (i >= d)
14 a[i] += sum;
15 d = d * 2;
16 }
17 }
18 }

FIGURE 18.14

Parallel prefix computation.

444 CHAPTER 18 Barriers

adds that value to a[i]. Rounds continue until 2r ≥ m. It is not hard to see that after
log2(m) rounds, the array a contains the partial sums.

1. What could go wrong if we executed the parallel prefix on n > m threads?
2. Add one or more barriers to this program to make it work properly in a concurrent

setting with n threads. What is the minimum number of barriers that are needed?

Exercise 18.2. Change the sense reversing barrier implementation so that waiting
threads call wait() instead of spinning.

• Give an example of a situation where suspending threads is better than spinning.
• Give an example of a situation where the other choice is better.

1 private class Node {
2 volatile boolean flag; // signal when done
3 boolean active; // active or passive?
4 Node parent; // parent node
5 Node partner; // partner node
6 // create passive node
7 Node() {
8 flag = false;
9 active = false;

10 partner = null;
11 parent = null;
12 }
13 // create active node
14 Node(Node myParent) {
15 this();
16 parent = myParent;
17 active = true;
18 }
19 void await(boolean sense) {
20 if (active) { // I’m active
21 if (parent != null) {
22 while (flag != sense) {}; // wait for partner
23 parent.await(sense); // wait for parent
24 partner.flag = sense; // tell partner
25 }
26 } else { // I’m passive
27 partner.flag = sense; // tell partner
28 while (flag != sense) {}; // wait for partner
29 }
30 }
31 }

FIGURE 18.15

The TourBarrier class.

18.8 Exercises 445

Exercise 18.3. Change the tree barrier implementation so that it takes a Runnable
object whose run() method is called once after the last thread arrives at the barrier,
but before any thread leaves the barrier.

Exercise 18.4. Modify the combining tree barrier so that nodes can use any barrier
implementation, not just the sense reversing barrier.

Exercise 18.5. A tournament tree barrier (class TourBarrier in Fig. 18.15) is an
alternative tree-structured barrier. Assume there are n threads, where n is a power
of 2. The tree is a binary tree consisting of 2n − 1 nodes. Each leaf is owned by a
single, statically determined, thread. Each node’s two children are linked as partners.
One partner is statically designated as active, and the other as passive. Fig. 18.16
illustrates the tree structure.

Each thread keeps track of the current sense in a thread-local variable. When a
thread arrives at a passive node, it sets its active partner’s sense field to the current
sense, and spins on its own sense field until its partner changes that field’s value to the
current sense. When a thread arrives at an active node, it spins on its sense field until
its passive partner sets it to the current sense. When the field changes, that particular
barrier is complete, and the active thread follows the parent reference to its parent
node. Note that an active thread at one level may become passive at the next level.
When the root node barrier is complete, notifications percolate down the tree. Each
thread moves back down the tree setting its partner’s sense field to the current sense.

• Explain how this barrier slightly improves the combining tree barrier of Fig. 18.5.
• The tournament barrier code uses parent and partner references to navigate the

tree. We could save space by eliminating these fields and keeping all the nodes in
a single array with the root at index 0, the root’s children at indices 1 and 2, the

FIGURE 18.16

The TourBarrier class: information flow. Nodes are paired statically in active/passive pairs.
Threads start at the leaves. Each thread in an active node waits for its passive partner to
show up, then it proceeds up the tree. Each passive thread waits for its active partner for
notification of completion. Once an active thread reaches the root, all threads have arrived,
and notifications flow down the tree in the reverse order.

446 CHAPTER 18 Barriers

grandchildren at indices 3–6, and so on. Reimplement the tournament barrier to
use indexing arithmetic instead of references to navigate the tree.

Exercise 18.6. The combining tree barrier uses a single thread-local sense field for
the entire barrier. Suppose instead we were to associate a thread-local sense with each
node as in Fig. 18.17. Either explain why this implementation is equivalent to the
other one, except that it consumes more memory, or give a counterexample showing
that it is incorrect.

1 private class Node {
2 AtomicInteger count;
3 Node parent;
4 volatile boolean sense;
5 int d;
6 // construct root node
7 public Node() {
8 sense = false;
9 parent = null;

10 count = new AtomicInteger(radix);
11 ThreadLocal<Boolean> threadSense;
12 threadSense = new ThreadLocal<Boolean>() {
13 protected Boolean initialValue() { return true; };
14 };
15 }
16 public Node(Node myParent) {
17 this();
18 parent = myParent;
19 }
20 public void await() {
21 boolean mySense = threadSense.get();
22 int position = count.getAndDecrement();
23 if (position == 1) { // I’m last
24 if (parent != null) { // root?
25 parent.await();
26 }
27 count.set(radix); // reset counter
28 sense = mySense;
29 } else {
30 while (sense != mySense) {};
31 }
32 threadSense.set(!mySense);
33 }
34 }

FIGURE 18.17

Thread-local tree barrier.

18.8 Exercises 447

Exercise 18.7. The tree barrier works “bottom-up,” in the sense that barrier com-
pletion moves from the leaves up to the root, while wakeup information moves from
the root back down to the leaves. Figs. 18.18 and 18.19 show an alternative design,
called a reverse tree barrier, which works just like a tree barrier except for the fact
that barrier completion starts at the root and moves down to the leaves. Either sketch
an argument why this is correct, perhaps by reduction to the standard tree barrier, or
give a counterexample showing why it is incorrect.

1 public class RevBarrier implements Barrier {
2 int radix;
3 ThreadLocal<Boolean> threadSense;
4 int leaves;
5 Node[] leaf;
6 public RevBarrier(int mySize, int myRadix) {
7 radix = myRadix;
8 leaves = 0;
9 leaf = new Node[mySize / myRadix];

10 int depth = 0;
11 threadSense = new ThreadLocal<Boolean>() {
12 protected Boolean initialValue() { return true; };
13 };
14 // compute tree depth
15 while (mySize > 1) {
16 depth++;
17 mySize = mySize / myRadix;
18 }
19 Node root = new Node();
20 root.d = depth;
21 build(root, depth - 1);
22 }
23 // recursive tree constructor
24 void build(Node parent, int depth) {
25 // are we at a leaf node?
26 if (depth == 0) {
27 leaf[leaves++] = parent;
28 } else {
29 for (int i = 0; i < radix; i++) {
30 Node child = new Node(parent);
31 child.d = depth;
32 build(child, depth - 1);
33 }
34 }
35 }

FIGURE 18.18

Reverse tree barrier part 1.

448 CHAPTER 18 Barriers

36 public void await() {
37 int me = ThreadInfo.getIndex();
38 Node myLeaf = leaf[me / radix];
39 myLeaf.await(me);
40 }
41 private class Node {
42 AtomicInteger count;
43 Node parent;
44 volatile boolean sense;
45 int d;
46 // construct root node
47 public Node() {
48 sense = false;
49 parent = null;
50 count = new AtomicInteger(radix);
51 }
52 public Node(Node myParent) {
53 this();
54 parent = myParent;
55 }
56 public void await(int me) {
57 boolean mySense = threadSense.get();
58 // visit parent first
59 if ((me % radix) == 0) {
60 if (parent != null) { // root?
61 parent.await(me / radix);
62 }
63 }
64 int position = count.getAndDecrement();
65 if (position == 1) { // I’m last
66 count.set(radix); // reset counter
67 sense = mySense;
68 } else {
69 while (sense != mySense) {};
70 }
71 threadSense.set(!mySense);
72 }
73 }
74 }

FIGURE 18.19

Reverse tree barrier part 2: correct or not?.

Exercise 18.8. Implement an n-thread reusable barrier from an n-wire counting net-
work and a single Boolean variable. Sketch a proof that the barrier works.

18.8 Exercises 449

FIGURE 18.20

Communication in the dissemination barrier. In each round r a thread i communicates with
thread i + 2r (mod n).

Exercise 18.9. A dissemination barrier is a symmetric barrier implementation in
which threads spin on statically assigned locally cached locations using only loads
and stores. As illustrated in Fig. 18.20, the algorithm runs in a series of rounds. At
round r , thread i notifies thread i + 2r (mod n) (where n is the number of threads)
and waits for notification from thread i − 2r (mod n).

For how many rounds must this protocol run to implement a barrier? What if n is
not a power of 2? Justify your answers.

Exercise 18.10. Give a reusable implementation of a dissemination barrier in Java.
Hint: Consider keeping track of both the parity and the sense of the current phase.

Exercise 18.11. Create a table that summarizes the total number of operations in the
static tree, combining tree, and dissemination barriers.

Exercise 18.12. Can you devise a “distributed” termination detection algorithm for
the executor pool in which threads do not repeatedly update or test a central location
for termination, but rather use only local uncontended variables? Variables may be
unbounded, but state changes should take constant time (so you cannot parallelize
the shared counter).

Hint: Adapt the atomic snapshot algorithm from Chapter 4.

Exercise 18.13. In the termination detection barrier, the state is set to active be-
fore stealing the task; otherwise the stealing thread could be declared inactive; then
it would steal a task, and before setting its state back to active, the thread it stole
from could become inactive. This would lead to an undesirable situation in which all
threads are declared inactive yet the computation continues. Can you devise a termi-
nating executor pool in which the state is set to active only after successfully stealing
a task?

19
CHAPTER

Optimism and manual
memory management

For the remaining chapters of this book, we focus on challenges and opportunities
that arise when creating concurrent software using the C++ programming language.
C++ has rich support for concurrency, with language-level threads, locks, a memory
consistency model, and the atomic<> template, but it lacks the automatic memory
management (i.e., garbage collection) of Java, and its consequent memory safety
guarantees. In this chapter, we focus on the challenges that arise for optimistic syn-
chronization when the programmer is responsible for explicitly managing memory.

19.1 Transitioning from Java to C++
C++ and Java have (not coincidentally) very similar syntax. Both allocate memory
with the new keyword, both use the class keyword to declare types, and many of the
primitive types (e.g., int, float, double) are the same.

One notable difference is with regard to volatile fields. The features provided
by the Java volatile keyword and the java.util.concurrent.atomic package are pro-
vided in C++ through the std::atomic<> template (defined in the <atomic> header).
The std::atomic<T> template defines atomic objects of type T, so we can easily define
objects equivalent to AtomicInteger and AtomicReference, for example. It is also easy
to define an array of atomic registers. Because C++ programmers can cast between
pointers and integers, we can also use std::atomic<> to achieve the behaviors of an
AtomicMarkableReference. Pragma 19.1.1 gives several examples.

The load() and store() methods of atomic objects take an optional parameter,
which can be used to relax the memory ordering guarantees when the object is ac-
cessed. In this chapter, we never provide such a parameter, and so always get the
default, which provides the strongest guarantees (i.e., linearizability).

19.2 Optimism and explicit reclamation
The optimistic techniques we describe in much of this book make the following as-
sumption: If the linearization of an operation Ol causes some other pending operation
Op to restart, no harm will come if it takes some time for Op to realize that it has
become invalid and must retry from the beginning. In languages like Java and C#,

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00029-X
Copyright © 2021 Elsevier Inc. All rights reserved.

451

452 CHAPTER 19 Optimism and manual memory management

PRAGMA 19.1.1

In C++, atomic variables should be declared using the std::atomic<> template.

1 #include <cstdint> // for the uintptr_t type
2 #include <atomic> // for std::atomic
3

4 // an atomic pointer to an Object
5 std::atomic<Object *> ptr;
6

7 // an array of atomic pointers to Objects
8 std::atomic<Object *> *arr;
9

10 // an atomic pointer to an array of atomic pointers to Objects
11 std::atomic<std::atomic<Object *> *> arr_ptr;
12

13 // read an atomic variable
14 Object *ref = ptr.load();
15

16 // store to an atomic variable
17 ptr.store(ref);
18

19 // mark the low bit of ptr
20 ptr.store((Object *)(1 | (uintptr_t)ptr.load()));
21

22 // unmark the low bit of ptr
23 ptr.store((Object *)((~1) & (uintptr_t)ptr.load()));
24

25 // check the low bit of ptr
26 bool marked = (1 & (uintptr_t)ptr.load());
27

28 // safely dereference ptr when its low bit might be marked
29 *(Object *)((~1) & (uintptr_t)ptr.load());

The uintptr_t type is an unsigned integer that is guaranteed to be the same number
of bits as a pointer: It is helpful when casting between pointers and integers from
code that can be run in 32-bit and 64-bit environments. Casting between pointers
and integers is, in general, unsafe; we use it only when an algorithm needs a mark
bit that is modified atomically with a pointer.

which have automatic memory reclamation (garbage collection), this assumption is
reasonable. However, in C++, doomed-to-retry operations might not be harmless.

The essence of the problem is that in C++, merely holding a pointer to an object
does not ensure that the use of that object will be safe: If another thread reclaims
the memory corresponding to that object (using delete or free), then all bets are
off. Consider the interleaving in Fig. 19.1, where thread T1 reads the next pointer of

19.2 Optimism and explicit reclamation 453

FIGURE 19.1

Concurrent access to a lazy list by two threads.

the node holding the value 7. T2 deletes the node holding the value 8, and then at
some point in the future T1 attempts to dereference the pointer. The memory of the
deleted object could be used by the program in some way that T1 does not expect, or
the memory of the deleted object could be returned to the operating system. Many
hard-to-trace bugs could result. A few of the most common are listed below.

First, thread T2 might call new to create a different object of the same type, and
the call to new may have returned the same memory region that formerly stored 8. T2

might still be initializing (constructing) the object, in which case accesses to the node
by T1 will produce undefined behavior.

Second, suppose that thread T2 calls new to constructs a new node with the value
25, and inserts it into the list. If T1 was searching for 9, it might conclude that the
node holding 7 points to the node holding 25, and thus that 9 is not in the list.

Third, some other thread T3 might call new to create a completely different type
of object. If new returns the region that formerly stored 8, then accesses to that object
by T3 will race with invalid attempts to use that same memory as a list node by T1.
These races violate type safety and are completely dependent on low-level decisions
by the allocator about when to give the deleted memory to a different thread.

Fourth, the allocator may decide to return the memory region to the operating
system. In this case, any subsequent access by T1 will cause a segmentation fault.

Note that in all cases, T1 may exhibit incorrect or dangerous behaviors. Using
optimistic algorithms in programming languages with manual memory reclamation,
like C++, requires us to pay close attention to the pending operations in a program’s
history, and establish sufficient conditions for avoiding the bad behaviors described
above. In this chapter, we derive a sufficient condition for using optimistic algorithms
in C and C++, and then we explore two implementations.

454 CHAPTER 19 Optimism and manual memory management

19.3 Protecting pending operations
When a region of memory is reclaimed, the programmer cannot know how that region
of memory will be reused, or even whether it is reused. The first step in developing
a general solution to prevent the sorts of races described in the previous section is to
recognize that such races first become possible when the region is reclaimed (via free
or delete). We define the act of reclaiming a region of memory as racing with any
concurrent access to the region. We can prevent these races by delaying reclamation.
If we think in terms of pending operations on a concurrent data structure, a sufficient
condition is that memory is only reclaimed when it is impossible for any pending
operation to access it in the future.

In a language with automatic memory management, this property can be ensured
by a garbage collector, which tracks every reference to every object allocated in the
program. These references could be on the heap, in a thread’s stack, or in a thread’s
registers. An object can be reclaimed when no references to it remain, since it can
never be accessed again.

The property is also achieved by reference counting. In a reference-counted im-
plementation of the list, a counter of type atomic<int> is associated with each node.
Whenever a reference to node N is created (either in a local variable or by pointing
some other node’s next pointer to N), the count must first be incremented. Whenever
a reference to N is destroyed (for example, by overwriting a local variable), the count
is subsequently decremented. When the count reaches zero, there are no outstanding
references to the node, and it can be reclaimed.

C++ supports reference counting via the std::atomic_shared_ptr<> template. To
use it, threads never create local variables of type Node *; instead, they use local
variables of type std::atomic_shared_ptr<Node *>. Similarly, the type of the Node’s
next pointer must be std::atomic_shared_ptr<Node *>.

Under the hood, std::atomic_shared_ptr<Node *>> introduces two overheads.
First, the reference count associated with a std::atomic_shared_ptr<Node *> must be
stored on the heap. With one std::atomic_shared_ptr<Node *> per list node, refer-
ence counting effectively doubles the number of memory locations accessed during a
list traversal. Fortunately, this overhead affects only latency, not scalability. However,
the second overhead affects scalability. Every reader of a node must first increment
the node’s reference count; later, it must decrement the reference count, once the node
is not needed anymore. In a linked list, every traversal references the same prefix of
list nodes. For each node, each thread will write to the counter twice, and as we know,
concurrent writes to the same location cause cache contention.

Before constructing more scalable approaches, it is useful to ask why reference
counting works. By incrementing a counter associated with a node before accessing
the node, an operation can ensure that other threads know of its intention to use the
node. In response, those other threads promise not to reclaim the node if the count is
nonzero. And in exchange for this guarantee of protection, the operation inherits the
responsibility to reclaim a node if it discovers (upon decrementing the counter) that
it had inhibited reclamation by some other thread.

19.4 An object for managing memory 455

Thus we can say that reference counting serves two roles: It allows operations to
protect a node from concurrent deletion, and it allows threads to delegate the recla-
mation of a node. While delegation means that a node is not reclaimed immediately,
from the perspective of the deleting thread, it is reclaimed as soon as possible without
violating safety.

It would be correct to allow operations to protect a node from concurrent deletion,
but require the deleting thread to defer reclamation, without delegating to another
thread. That is, if a region of memory has outstanding references, the deleting oper-
ation will not reclaim it immediately. Instead, it will put it into some set, and then
periodically query the set for entries that have no remaining references. When such
an entry is found, it can be reclaimed immediately and removed from the set.

One can think of this strategy as a sort of fine-granularity garbage collection,
where the programmer controls which regions of memory are reclaimed immediately,
and which are deferred.

We can vary how we implement the set (for example, by using per-thread sets),
the frequency with which threads search for reclaimable memory, and the mecha-
nisms by which operations protect nodes. In doing so, we can trade tight bounds on
the amount of unreclaimed memory for low run-time overhead and minimal commu-
nication between threads.

19.4 An object for managing memory
Fig. 19.2 presents a generic interface for protecting memory during an optimistic
operation. There are many different ways to implement the object; we discuss two in
this chapter. What matters for now is to understand the specification of the object.

1 class MemManager {
2 void register_thread(int num); // called once, before any call to op_begin()
3 // num indicates the maximum number of
4 // locations the caller can reserve
5 void unregister_thread(); // called once, after the last call to op_end()
6

7 void op_begin(); // indicate the beginning of a concurrent operation
8 void op_end(); // indicate the end of a concurrent operation
9

10 bool try_reserve(void* ptr); // try to protect a pointer from reclamation
11 void unreserve(void* ptr); // stop protecting a pointer
12 void sched_for_reclaim(void* ptr); // try to reclaim a pointer
13 }

FIGURE 19.2

An interface for protecting memory during an optimistic operation.

456 CHAPTER 19 Optimism and manual memory management

To have a single interface that is suitable for a variety of memory reclamation al-
gorithms, our object has seven methods. The most important part of the interface are
the last three functions. They let a thread try to protect some memory from reclama-
tion, stop requesting protection for memory, and schedule memory for reclamation
as soon as it has no outstanding protection requests from concurrent threads.

19.5 Traversing a list
Suppose that we wanted to use the MemManager object to protect an optimistic traversal
of a nonblocking list-based integer set (Section 9.8). First, of course, we must trans-
late the code to C++. To do this, we make use of std::atomic<> variables instead of
the volatile keyword in Java. Then we can redesign the find() method of the Window
class from Fig. 9.23, so that it protects memory during optimistic accesses.

Fig. 19.3 presents the data type for nodes in our C++ nonblocking list, as well as
some helper functions for setting and unsetting the low bit of pointers. Setting and
unsetting the low bit of pointers is the C++ equivalent of the AtomicMarkableReference<>

class in Java. Note that in C++, we can set the low bit of a pointer directly, but we
cannot use a pointer whose low bit is 1: we must copy the pointer and explicitly unset
the low bit of the copy before using it.

1 class Node<T>{
2 T item;
3 int key;
4 std::atomic<Node<T>*> next;
5 public:
6 Node() : item(), next(nullptr) { }
7 Node(T _item, int _key, Node* n) : item(_item), key(_key), next(n) { }
8 };
9 // return whether the low bit of the pointer is marked or not

10 bool is_marked(Node* ptr) {
11 return ((uintptr_t)ptr)&1;
12 }
13 // clear the mark bit of a pointer
14 Node* unmark(Node* ptr) {
15 return (Node*)(((uintptr_t)ptr) & ~(uintptr_t)1);
16 }
17 // set the mark bit of a pointer
18 Node* mark(Node* ptr) {
19 return (Node*)(((uintptr_t)ptr) | 1);
20 }

FIGURE 19.3

C++ nonblocking linked list: node data type and helper functions.

19.5 Traversing a list 457

21 bool find(int key, Node<T>*&prev, Node<T>*&curr, Node<T>*&next, MemManager* mm) {
22 prev = list;
23 mm->try_reserve(prev);
24 curr = prev->next.load();
25 while (curr != nullptr) {
26 if (mm->try_reserve(curr)) {
27 if (prev->next.load() != curr) {
28 mm->unreserve(prev); mm->unreserve(curr);
29 return find(key, prev, curr, next);
30 }
31 }
32 next = curr->next.load();
33 if (is_marked(next)) { // curr is logically deleted
34 Node<T> *tmp = unmark(next);
35 if (!prev->next.compare_exchange_strong(curr, tmp)) {
36 mm->unreserve(prev); mm->unreserve(curr);
37 return find(key, prev, curr, next);
38 }
39 mm->unreserve(curr);
40 mm->sched_for_reclaim(curr);
41 curr = tmp;
42 }
43 else {
44 int ckey = curr->key;
45 if (prev->next.load() != curr) {
46 mm->unreserve(prev); mm->unreserve(curr);
47 return find(key, prev, curr, next);
48 }
49 if (ckey >= key) {
50 return ckey == key;
51 }
52 mm->unreserve(prev);
53 prev = curr;
54 curr = next;
55 }
56 }
57 return false;
58 }

FIGURE 19.4

Traversing a nonblocking linked list with safe reclamation.

With these definitions, a list is defined as a pointer to the head node. We refer to
this pointer as list. As in other high-performance optimistic lists, we avoid a corner
case by making the first node in the list a “sentinel” node, whose value is never read.
In that way, list is never null.

Fig. 19.4 reintroduces the find() function from the nonblocking list-based set
from Section 9.8, rewritten in C++. The main difference in our C++ version is that it
must explicitly manage memory. We use an explicit MemManager object for this purpose.

458 CHAPTER 19 Optimism and manual memory management

Note that find() is an internal function. A public function that calls find() must do so
between calls to MemManager’s op_begin() and op_end() methods. Also, find() protects
up to two locations at a time, so it must be preceded by a call to register_thread(i),
with the value of i no less than 2.

Starting with the sentinel node, our traversal follows the same pattern as the non-
blocking Java list: We keep track of a window of three consecutive nodes, prev, curr,
and next. At all points, the memory representing prev is safe to access, because it
has already been reserved (or it is the sentinel). Also, prev always references a node
whose key is less than the search key. Note, too, that prev and curr are guaranteed to
be unmarked.

Before using the successor of prev, we must protect it via a call to try_reserve()
(line 26). If this returns true, then MemManager cannot guarantee that curr was not
reclaimed between the time when it was read (line 24 or line 32) and the time when
try_reserve() was called. In this case, the code double-checks that after the call to
try_reserve(), curr still succeeds prev. If not, the find() operation retries.

Line 32 finds the successor of the current node, as next. If the pointer to next
is not marked, then at line 45, we ensure that prev remains linked to curr. If so,
we check the key stored at curr, and use its value to determine whether to continue
traversing or to return. If the find() operation should continue, it will no longer use
the prev pointer, so it unreserves it.

If find() discovers a marked node at curr, it uses compare_exchange_strong() to
unlink curr, and then hands curr to MemManager for reclamation. When find() returns
true, prev and curr are reserved and protected from reclamation.

With the find() function, the public operations on our nonblocking C++ linked
list are straightforward. They appear in Fig. 19.5.

19.6 Hazard pointers
Our first solution for protecting the in-use nodes of the nonblocking list uses a variant
of a technique known as hazard pointers. The approach has two main components.
The first is a mechanism through which threads can share the locations they have
reserved, so that other threads may see those reservations any time they attempt to
reclaim memory. The second is a per-thread mechanism for deferring the reclamation
of memory.

Fig. 19.6 presents the two main data types of this implementation. Every thread
has its own ThreadContext object, which it can access directly via MemManager::self.
The entire set of these objects is organized as a linked list, represented by
MemManager::head. Within a thread’s context, there is a private set of locations that the
thread has scheduled for reclamation, and a shared array of locations that the thread
does not want other threads to reclaim. For convenience, our code does not allow
threads to remove their contexts from the shared set. That is, unregister_thread()
does not remove a thread’s context from the set rooted at MemManager::head.

19.6 Hazard pointers 459

59 bool add(int key) {
60 mm->op_begin();
61 Node<T> *prev, *curr, *next;
62 while (true) {
63 if (find(key, prev, curr, next, mm)) {
64 mm->op_end();
65 return false;
66 }
67 Node *new_node = new Node(key, curr);
68 if (prev->next.compare_exchange_strong(curr, new_node)) {
69 mm->op_end();
70 return true;
71 }
72 mm->unreserve(prev); mm->unreserve(curr);
73 }
74 }
75 bool contains(int key, MemManager* mm) {
76 mm->op_begin();
77 Node<T> *prev, *curr, *next;
78 bool ans = find(key, prev, curr, next, mm);
79 mm->op_end();
80 return ans;
81 }
82 bool remove(int key, MemManager* mm) {
83 mm->op_begin();
84 Node<T> *prev, *curr, *next;
85 while (true) {
86 if (!find(key, prev, curr, next, mm)) {
87 mm->op_end();
88 return false;
89 }
90 if (!curr->next.compare_exchange_strong(next, mark(next))) {
91 mm->unreserve(prev); mm->unreserve(curr);
92 continue;
93 }
94 if (prev->next.compare_exchange_strong(curr, next)) {
95 mm->sched_for_reclaim(curr);
96 } else {
97 mm->unreserve(prev); mm->unreserve(curr);
98 find(key, prev, curr, next, mm);
99 }

100 mm->op_end();
101 return true;
102 }
103 }

FIGURE 19.5

Public methods of the C++ nonblocking list-based set.

460 CHAPTER 19 Optimism and manual memory management

1 class ThreadContext {
2 public:
3 std::vector<void*> pending_reclaims;
4 std::atomic<void*> *reservations;
5 ThreadContext *next;
6 const int num;
7

8 ThreadContext(int _num, MemManager m): num(_num) {
9 reservations = new std::atomic<void*>[_num];

10 for (int i = 0; i < num; ++i)
11 reservations[i] = nullptr;
12 while (true) {
13 next = m.head;
14 if (m.head.compare_exchange_strong(next, this))
15 break;
16 }
17 }
18 }
19 class MemManager {
20 public:
21 static thread_local ThreadContext *self = nullptr;
22 std::atomic<ThreadContext*> head;
23 ...
24 }

FIGURE 19.6

Data types to support hazard pointers with blocking reclamation.

Fig. 19.7 presents the rest of our implementation of hazard pointers. Since
our implementation is blocking, and since we never unlink thread contexts, both
register_thread() and unregister_thread() are trivial: The former creates a thread
context and inserts it at the head of MemManager’s list; the latter is a no-op. Similarly,
op_begin() is a no-op: Its postcondition is that the calling thread has no reservations
and no pending reclamations. Both of these properties are provided by op_end().

During execution, a thread reserves a pointer ptr by finding an empty slot in its
reservations array and writing ptr into it. The array positions are all std::atomic<>,
so that we can be sure that any such write will be strongly ordered: all previously
issued reads and writes will complete before it, and all subsequent reads and writes
will not happen until after it.

Note that in our hazard pointer implementation, try_reserve() always returns
true. This is necessary to prevent races. Consider the moment when thread Tr exe-
cutes line 24 of the find() method. When the line completes, prev points to curr, but
Tr has not yet reserved curr. At that point, another thread Td could mark and unlink
curr. If Td scanned Tr ’s reservations array, it would not find curr, and thus it could
reclaim curr immediately. A subsequent access to curr by Tr would cause a race. By

19.6 Hazard pointers 461

25 MemManager::register_thread(int num) { self = new ThreadContext(num, this); }
26 MemManager::unregister_thread() { /* no-op */ }
27 MemManager::op_begin() { /* no-op */ }
28 void MemManager::sched_for_reclaim(void* ptr) { self->pending_reclaims.push_back(ptr); }
29 bool MemManager::try_reserve(void* ptr) {
30 for (int i = 0; i < num; ++i) {
31 if (self->reservations[i] == nullptr) {
32 self->reservations[i].store(ptr);
33 return true;
34 }
35 }
36 throw error;
37 }
38 void MemManager::unreserve(void* ptr) {
39 for (int i = 0; i < num; ++i) {
40 if (self->reservations[i] == ptr) {
41 self->reservations[i].store(nullptr);
42 return;
43 }
44 }
45 }
46 void MemManager::op_end() {
47 for (int i = 0; i < self->num; ++i)
48 self->reservations[i].store(nullptr);
49 for (auto i : pending_reclaims) {
50 wait_until_unreserved(p);
51 free(p);
52 }
53 pending_reclaims.clear();
54 }
55 MemManager::wait_until_unreserved(void* ptr) {
56 ThreadContext* curr = head;
57 while (curr) {
58 for (int i = 0; i < curr->num; ++i) {
59 while (curr->reservations[i] == ptr)
60 wait();
61 }
62 curr = curr->next;
63 }
64 }

FIGURE 19.7

MemManager methods to support hazard pointers with blocking reclamation.

returning true, try_reserve() notifies the find() function that accesses to curr are
not yet guaranteed to be safe; find() must double-check that prev still points to curr.
Note that try_reserve() stored curr in an atomic<> field, which guarantees that the
double-check follows the write of curr to reservations.

In our nonblocking list implementation, as in many other algorithms, a location
is not reclaimed by the thread that marks a node, but the thread that unlinks it. This

462 CHAPTER 19 Optimism and manual memory management

is one of many situations in which more than one thread may have a reservation
for a memory region that is logically deleted from the data structure. In general,
the number of reservations for an unlinked node should rapidly drop to zero, but is
most likely to be nonzero immediately after being unlinked. Thus it would be un-
wise for the unlinking thread to attempt to reclaim memory immediately. Instead,
sched_for_reclaim(ptr) places ptr into a thread-private vector, and delays reclama-
tion until op_end().

The postconditions of our implementation of op_end() are the same as the pre-
conditions of op_begin(): The thread has no reservations and no outstanding recla-
mations. Achieving the former is simple, and is achieved by the loop on line 47.
To ensure that there are no outstanding reclamations, the caller of op_end() iterates
through the elements in its pending_reclaims set. For each entry, the caller iterates
through the MemManager’s set of thread contexts, and for each context, the caller checks
if the context includes a reservation for the entry. If it does, the caller spin-waits until
the reservation changes. Since the entry has already been unlinked, it would seem
that the caller of op_begin() can be sure that no subsequent reservation will appear,
and hence the location is safe to reclaim. However, there is one troublesome order-
ing. Suppose that some thread Ti is about to reserve location l, and some thread Tr

has called op_end() and has seen that Ti does not have l in reservations. We can-
not allow Ti to subsequently write l into reservations and use l. Again, this is why
try_reserve() must return true: to ensure that Ti will double-check, see that l has
been unlinked, and restart.

It is possible to make a hazard pointer implementation lock-free if we are will-
ing to allow a bounded amount of memory to remain unclaimed for an unbounded
amount of time. Suppose that every time a thread reached line 60, it instead skipped
reclamation for the current entry in pending_reclaims, and moved on to the next.
With T threads and num maximum reserved addresses per thread, up to T × num
locations could be unreclaimable at any time. For higher performance, this bound is
typically multiplied by an order of magnitude.

19.7 Epoch-based reclamation
Our hazard pointer implementation is precise, ensuring that reclamation can hap-
pen as soon as possible, so that there is no unnecessary backlog of to-be-reclaimed
memory. However, that precision comes at a great cost: During the course of every
operation, there will be a linear number of calls to try_reserve(), each of which
performs an expensive strongly ordered write to shared memory. While writes are
more expensive than reads, the fact of O(n) writes should not have too significant
of an impact on modern CPUs, because they are to a small, fixed number of loca-
tions (the thread’s reservations array). However, since each of these writes is to a
std::atomic<> variable, each entails a memory fence, and every memory fence in-
creases latency significantly.

19.7 Epoch-based reclamation 463

When the percentage of remove() operations is small, the cost of these fences is
hard to justify: They protect find() from unlikely interleavings with the infrequently
called remove() operation. If we relax guarantees on the number of unreclaimed loca-
tions, we can eliminate many of these fences. To do so, we introduce the concept of
epochs.

Suppose that every thread had its own shared counter, initialized to zero. When-
ever the thread called op_begin(), it would increment that counter. Whenever it called
op_end(), it would increment that counter again. If we looked at a thread’s counter and
found an even number, we could immediately conclude that the thread was not be-
tween op_begin() and op_end(). That, in turn, must mean that the thread could not
have any references to the nodes of our linked list.

Unfortunately, if one thread is repeatedly executing operations on the list, another
thread may never see an even number. Instead, it may see a different odd number
each time it looks. However, this information is equally useful: It means that the
thread has completed one operation and started another. Any memory that was un-
linked concurrently with the former operation cannot be accessed during the current
operation attempt, and thus as soon as the counter changed from one odd number to
another odd number, the unlinked memory would be unreachable, and safe to reclaim.

Putting these ideas together, we can create a remarkably simple MemManager object.
This new version will not be able to put any bounds on the number of unreclaimed
objects, because a single thread stalling in the middle of its find() operation will
make it impossible for any other thread to reclaim anything. When remove() calls
are exceptionally rare, or when a program (such as an operating system itself) can
guarantee that a call to find() cannot stall indefinitely, the cost of unbounded garbage
is more than offset by the performance improvement that comes from the elimination
of O(n) memory fences.

In Fig. 19.8, we implement a MemManager based on epochs. As with our implemen-
tation of hazard pointers, we have chosen to make the implementation blocking, by
having each thread immediately reclaim all the memory it unlinked when it reaches
op_end().

As with the hazard pointer implementation, we have a global shared list of thread
contexts, and each thread keeps a private vector of the locations it has scheduled for
reclamation. However, we no longer need to track the individual pointers accessed
by the operation: instead, a thread maintains a std::atomic<> counter, which it in-
crements to odd in op_begin(). The increment has strong memory ordering, which
means that before an operation touches any of the shared memory that comprises the
nodes of the list, that thread has notified all other threads that they may not reclaim
anything.

In op_end(), a thread increments its counter to even, indicating that it will no
longer access any of the shared memory of the list. As with the increment in
op_begin(), this increment is strongly ordered, so that it is guaranteed to happen af-
ter all of the parent operation’s loads and stores to shared memory. If a thread has
deferred reclamation of any locations, then it must wait until the execution of every
concurrent thread has, at least momentarily, been outside of a data structure oper-

464 CHAPTER 19 Optimism and manual memory management

1 struct ThreadContext {
2 std::vector<void*> pending_reclaims;
3 std::atomic<uint64_t> counter;
4 ThreadContext *next;
5

6 ThreadContext(MemManager m) {
7 while (true) {
8 next = m.head;
9 if (m.head.compare_exchange_strong(next, this))

10 break;
11 }
12 }
13 }
14 struct MemManager {
15 static thread_local ThreadContext *self = nullptr;
16 std::atomic<ThreadContext*> head;
17 ...
18 }
19 MemManager::register_thread(int num) { self = new ThreadContext(this); }
20 MemManager::unregister_thread() { /* no-op */ }
21 MemManager::op_begin() { self->counter++; }
22 void MemManager::sched_for_reclaim(void* ptr) { self->pending_reclaims.push_back(ptr); }
23 bool MemManager::try_reserve(void* ptr) { return false; }
24 void MemManager::unreserve(void* ptr) { }
25

26 void MemManager::op_end() {
27 self->counter++;
28 if (pending_reclaims.count() == 0)
29 return;
30 wait_until_unreserved()
31 for (auto p : pending_reclaims)
32 free(p);
33 }
34 void MemManager::wait_until_unreserved() {
35 ThreadContext* curr = head;
36 while (curr) {
37 uint64_t val = curr->counter;
38 if (odd(val))
39 do {
40 wait();
41 } while (curr->counter.read() == val)
42 curr = curr->next;
43 }
44 }

FIGURE 19.8

Epoch-based reclamation.

ation. It does this by checking each thread’s counter: If the counter is even or if it
changes from one odd number to a larger odd number, then that thread can no longer

19.8 Chapter notes 465

find a pointer to the locations awaiting reclamation. Once all threads’ progress has
been verified, the deferred reclamations can be performed.

Given these implementations of op_begin() and op_end(), try_reserve() can be
a single statement: return false. To understand why this is correct, consider an in-
terleaving between a call to find() and a call to remove() that marks location l for
deletion. If find() discovered a node whose next pointer was l, then it must have
done so after it made its counter odd. At the time when it read l, the node at l had
not yet been unlinked, and therefore the corresponding remove() operation could not
have reached its op_end(). If, at this point, the find() thread were to delay, and the
remove() thread were to reach op_begin(), l would not be reclaimed: The remove()
thread is guaranteed to see the find() thread’s odd counter value, and wait. There-
fore, there is no benefit in double-checking the reachability of l: Its fields can be
accessed without any additional checks to ensure that it has not been reclaimed.

19.8 Chapter notes
Variants of the hazard pointer technique were discovered by Michael [127] and by
Herlihy, Luchangoo, & Moir [67]. Subsequently, Petrank et al. proposed improve-
ments to reduce the fence overhead [22,31]. Michael also showed how to eliminate
the fence overhead, when reclamation is extremely rare, by leveraging interprocess
interrupts [44].

Epoch-based techniques were used by Fraser [48] in the context of nonblocking
data structures, and subsequently adapted for use in software transactional memory
by Hudson et al. [81]. They were also proposed by McKenney in the context of op-
erating systems [123], where they protected kernel data structures. In that context,
movement from user mode to kernel mode would make a processor’s counter odd,
and returning to user mode would make it even again.

Research into both of these techniques has given much attention to attempting to
provide nonblocking progress without an unbounded worst-case space overhead. To
achieve nonblocking guarantees, op_end() pushes the contents of pending_reclaims
into a per-thread buffer. When the buffer becomes large, hazard pointer implementa-
tions use a variant of wait_until_unreserved that skips nodes with outstanding reser-
vations. The number of skipped nodes can be bounded. Nonblocking epoch-based
techniques bundle several operations’ worth of contents from pending_reclaims into
a new buffer, to which is added a snapshot of all threads’ counters. Each time one
of these bundles is collected, the corresponding counter snapshot is compared with
past ones. Bundles whose snapshots have been superseded by the new snapshot can
be reclaimed. In the worst case, this technique can lead to out-of-memory errors if a
single operation delays arbitrarily during an operation. However, Brown showed that
interprocess interrupts can be used to prevent this pathological scenario [23].

466 CHAPTER 19 Optimism and manual memory management

19.9 Exercises
Exercise 19.1. If the LockFreeStack (Section 11.2) used hazard pointers to protect
memory, would it still be vulnerable to the ABA problem? Why or why not?

Exercise 19.2. Describe how to use hazard pointers to protect the memory in the
lock-free unbounded queue from Section 10.5.

Exercise 19.3. The presentation of hazard pointers in Section 19.6 was blocking.
The easiest way to make it nonblocking is defer reclamation of reserved objects.
Under this strategy, what is the worst-case number of unreclaimed objects for any one
thread’s pending_reclaims vector? What is the worst-case number of unreclaimed
objects in a system with T threads?

Exercise 19.4. If a hazard pointer implementation is willing to let some objects go
unreclaimed for a longer duration, then its op_end method could begin by copying
all of the threads’ reservations to a private list. It could then intersect that list with
its pending_reclaims to identify the objects that were ready to reclaim. Under what
circumstances would this be advantageous? Under what circumstances would it harm
performance?

Exercise 19.5. For each of the following data structures, discuss the number of haz-
ard pointers that would be required in the worst case when implementing the data
structure with optimistic concurrency control:

1. lock-free queue,
2. lock-free stack,
3. lazy list,
4. skip list.

Exercise 19.6. The std::atomic<> types in C++ support relaxed memory ordering.
What orderings can be relaxed in the hazard pointer implementation from Sec-
tion 19.6?

Exercise 19.7. Similar to Exercise 19.3, we could make the epoch-based reclamation
in Section 19.7 nonblocking. Rewrite the code in Fig. 19.8 so that threads do not wait
at commit time.

Exercise 19.8. In our implementation of epoch-based memory reclamation, we did
not require threads to attain an atomic snapshot of all other threads’ counters when
deciding whether it was safe to reclaim an object. Why was this correct?

20
CHAPTER

Transactional
programming

Although C++ affords the programmer more control than Java and other high-level
languages, the need to explicitly manage memory creates significant challenges, par-
ticularly with speculative execution. To ensure that speculative operations do not
access reclaimed memory, reclamation is often delayed, which can lead to large
amounts of unused memory being allocated for long periods of time.

In addition, some seemingly correct programs are classified as racy according to
the C++ memory model, so their behavior is undefined. Eliminating these races while
maintaining good performance is nontrivial, and can lead to code that is difficult to
extend and maintain. More generally, the complexity of a program’s synchronization
mechanisms increases greatly with the complexity of the program, requiring more
sophisticated, and difficult, techniques to achieve good performance. A data structure
with a large set of operations (especially range queries and other multi-item opera-
tions) requires more careful concurrency than one with few operations; a program
that uses many threads is likely to need a finer granularity for its locks than one with
few threads.

Transactional programming addresses this complexity by raising the level of
abstraction: a programmer focuses on identifying which regions require atomicity,
rather than how to make code regions appear to be atomic. Determining how to ensure
atomicity without sacrificing performance is left to run-time systems and specialized
hardware.

20.1 Challenges in concurrent programming
We begin with a review of techniques discussed in this book and challenges in apply-
ing them, especially in the context of unmanaged languages such as C++.

20.1.1 Problems with locking
Locking, as a synchronization discipline, has many pitfalls for the inexperienced pro-
grammer. Priority inversion occurs when a lower-priority thread is preempted while
holding a lock needed by higher-priority threads. Convoying is a form of congestion
that is easiest to understand in the context of the hand-over-hand locking pattern: If
threads acquire and release locks in a fixed order, then the order in which threads
acquire the first lock in the sequence dictates the order in which threads progress

The Art of Multiprocessor Programming. https://doi.org/10.1016/B978-0-12-415950-1.00030-6
Copyright © 2021 Elsevier Inc. All rights reserved.

467

468 CHAPTER 20 Transactional programming

through the data structure; if one thread delays, other threads cannot bypass it. Dead-
lock can occur if threads attempt to lock the same set of objects in different orders.
Deadlock avoidance can be awkward if threads must lock many objects, particularly
if the set of objects is not known in advance. Furthermore, if the operating system
suspends a thread while it holds a lock, then the entire program can grind to a halt.

A major obstacle to writing good lock-based code is that the association between
locks and data is established mostly by convention. It exists in the mind of the pro-
grammer, and may be documented only in comments. Consider the following typical
comment from a Linux header file1 describing the conventions governing the use of
a particular kind of buffer:

/*
* When a locked buffer is visible to the I/O layer BH_Launder

* is set. This means before unlocking we must clear BH_Launder,

* mb() on alpha and then clear BH_Lock, so no reader can see

* BH_Launder set on an unlocked buffer and then risk to deadlock.

*/

Over time, interpreting and observing many such conventions spelled out in this way
complicates code maintenance.

Another challenge with locking is determining the appropriate lock granularity.
Consider a nonresizable hash table implemented as a fixed-size array of linked lists.
Should one lock protect the entire table? Or should there be one lock per array entry,
or even one for each node in the linked lists? If there are few threads, and each rarely
accesses the hash table, then a single lock protecting the entire table should suffice.
If many threads frequently access the hash table, then fine-grained locking may be
required to prevent the hash table from becoming a scalability bottleneck. Although it
improves scalability, finer granularity increases complexity and overhead. If the table
is frequently read but rarely written, we might consider readers–writer locks.

A hash table implementation is likely to be written as a generic data structure
with a specific contention scenario in mind. If that scenario never manifests during
program execution, then the hard-coded strategy may perform poorly. If the number
of threads and the way they use the table change over time, then different strategies
could be optimal at different points in the program execution. Furthermore, each
option could be pessimal in some cases.

20.1.2 Problems with explicit speculation
We have seen that the problems with locking can sometimes be mitigated by op-
timistic synchronization (see, for example, Section 9.6). For example, executing
read-only critical sections speculatively can greatly reduce the impact of the prob-
lems described above for data structures that are read often and written infrequently.
A useful tool for implementing such data structures is the sequence lock.

1 Kernel v2.4.19 /fs/buffer.c.

20.1 Challenges in concurrent programming 469

1 std::atomic<int> seqlock;
2 int protected_data;
3

4 int reader() {
5 while (true) {
6 int s1 = seqlock;
7 int ret = protected_data; // ERROR
8 int s2 = seqlock;
9 if (s1 == s2 && is_even(s1))

10 return ret;
11 }
12 }
13 void writer(int newval) {
14 while (true) {
15 unsigned s = seqlock;
16 if (is_even(s) && seqlock.compare_exchange_strong(s, s+1) {
17 protected_data = newval;
18 seqlock = s + 2;
19 return;
20 }
21 }
22 }

FIGURE 20.1

Incorrect use of a sequence lock: The lock release is not guaranteed to be ordered after the
data access.

The core idea behind sequence locks is to use a std::atomic<int> in place of a
mutual exclusion lock or spin-lock. The integer starts with value 0, and is incremented
whenever the lock is acquired or released. Thus, the lock is free whenever its value
is even and held by some thread whenever its value is odd. The value of a sequence
lock serves as a kind of version number for the data structure it protects, and while it
is even, the data structure does not change.

This observation might lead us to think we can execute a read-only critical section
speculatively, without writes or atomic operations, as shown in Fig. 20.1. A reading
thread reads the lock, reads the protected data, and then rereads the lock. If the lock
value is even, and the same before and after reading the protected data, then no other
thread wrote the data in that interval, so the reads of the protected data are valid.

However, this code is incorrect because the program has a data race: A reading
thread can execute line 7 at the same time as a writing thread executes line 17. It does
not matter that the reader will not use the value that it read: The read is still a race,
and programs with races have undefined behavior in C++.

There are many ways to fix this code. The simplest is to change the type of
protected_data to std::atomic<int>. However, this change would impose signifi-
cant overhead because every access to the data would be a synchronization operation.

470 CHAPTER 20 Transactional programming

Furthermore, the default strong ordering on these operations would impose more
ordering than necessary among accesses to different variables within a critical sec-
tion. To avoid this excessive ordering, programmers would need to exploit advanced
features of std::atomic<>, especially std::memory_order_relaxed. Lastly, making a
variable atomic appears to prevent code reuse. This third challenge can be overcome
by using std::atomic_ref<>, a new feature in C++20 that allows a variable to be
treated as atomic temporarily.

20.1.3 Problems with nonblocking algorithms
One way to avoid the problems of locking is to devise nonblocking algorithms
using atomic primitives such as compare-and-swap (available in C++ as the
compare_exchange_strong() method of std::atomic<>). Such nonblocking methods
are subtle, and may have high single-thread latency. The principal difficulty is that
nearly all synchronization primitives, whether reading, writing, or applying an atomic
compare-and-swap, operate only on a single word. This restriction often forces a
complex and unnatural structure on algorithms.

Let us review the lock-free queue of Section 10.5 (translated to C++ in Fig. 20.2)
with an eye toward the underlying synchronization primitives. On lines 13–14, the

1 template <class T>
2 class LockFreeQueue<T> {
3 std::atomic<Node*> head;
4 std::atomic<Node*> tail;
5 ...
6 void enq(T item) {
7 Node* node = new Node(item);
8 while (true) {
9 Node* last = tail;

10 Node* next = last->next;
11 if (last == tail) {
12 if (next == null) {
13 if (last->next.compare_exchange_strong(next, node)) {
14 tail.compare_exchange_strong(last, node);
15 return;
16 }
17 } else {
18 tail.compare_exchange_strong(last, next);
19 }
20 }
21 }
22 }
23 }

FIGURE 20.2

The LockFreeQueue class: the enq() method.

20.1 Challenges in concurrent programming 471

1 template <class T>
2 bool multiCompareAndSet(std::atomic<T*> *target,
3 T *expect,
4 T *update,
5 int count) {
6 atomic {
7 for (int i = 0; i < count; i++) {
8 if (*target[i] != expected[i])
9 return false;

10 }
11 for (int i = 0; i < count; i++)
12 *target[i] = update[i];
13 return true;
14 }
15 }

FIGURE 20.3

Pseudocode for multiCompareAndSet(). This code should execute atomically.

enq() method calls compare_exchange_strong() twice to change both the tail node’s
next field and the tail field itself to point to the new node. Because these updates
occur one-at-a-time, enq() and deq() methods must be prepared to encounter a half-
finished enq() (line 13). These methods could be much simpler if we could update
both fields together.

For example, suppose we had the multiCompareAndSet() primitive shown in
Fig. 20.3, which takes an array of std::atomic<T*> objects, an array of expected
T values, and an array of T-values used for updates, and updates all the array ele-
ments if they all have the expected values. (No element is updated if any element
does not have the expected value.) Unfortunately, there is no easy way to implement
multiCompareAndSet() on conventional architectures. If there were, we could replace
the complex logic of lines 12–18 in Fig. 20.2 with a single multiCompareAndSet() call
(see Fig. 20.4).

20.1.4 Problems with compositionality
One drawback common to all the synchronization mechanisms we have discussed so
far is that they cannot easily be composed. For example, suppose we want to dequeue
an item x from a queue q0 and enqueue it on another queue q1. The transfer must be
atomic: Concurrent threads must not observe that x has vanished, nor that it is present
in both queues. In Queue implementations based on monitors, each method acquires
the lock internally, so we cannot combine two method calls in this way.

There are, of course, ad hoc solutions: We could introduce a lock to be acquired
by any thread attempting an atomic modification to both q0 and q1 (in addition to
the individual locks for q0 and q1). Such a lock requires knowing in advance the
identities of the two queues, and it could be a bottleneck (no concurrent transfers).

472 CHAPTER 20 Transactional programming

1 void enq(T item) {
2 Node* node = new Node(item);
3 while (true) {
4 Node* last = tail;
5 Node* next = last->next;
6 if (last == tail) {
7 std::atomic<Node*> target[2] = {&last->next, &tail};
8 Node* expect[2] = {next, last};
9 Node* update[2] = {node, node};

10 if (multiCompareAndSet(target, expect, update)) return;
11 }
12 }
13 }

FIGURE 20.4

The LockFreeQueue class: simplified enq() method with multiCompareAndSet().

Alternatively, the queues could export their synchronization state (say, via lock()
and unlock() methods), and rely on the caller to manage multiobject synchroniza-
tion. Exposing synchronization state in this way would have a devastating effect on
modularity, complicating interfaces and relying on callers to follow complicated con-
ventions. Also, this approach does not work for nonblocking implementations.

20.1.5 Summary
It seems we have a rather dire state of affairs:

• Locks are hard to manage effectively, especially in large systems.
• Atomic primitives, such as compare-and-swap, operate on only one word at a time,

resulting in complex algorithms.
• The possibility of races necessitates costly synchronization at all times, even when

races are extremely rare.
• It is difficult to compose multiple calls to multiple objects into atomic units.

In the face of these challenges, transactional programming offers an appealing
alternative.

20.2 Transactional programming
In transactional programming, a programmer identifies which regions of code cannot
interleave with each other, and marks them as transactions. Then, a run-time system,
ideally with the assistance of specialized hardware, takes responsibility for finding
a way to execute as many transactions concurrently as possible, while ensuring that
transactions still appear to execute atomically.

20.2 Transactional programming 473

Transactional programming requires programmers to give up some control: the
programmer no longer crafts the low-level synchronization protocol, and has limited
means to influence how transactions are scheduled and managed. In return, multiple
small transactions are automatically composed into larger transactions; transactions
appear to atomically modify multiple locations at once; the run-time system can pro-
vide optimizations for read-only transactions, where pessimistic locking would incur
high costs; and transactions eliminate the need to think about locks, std::atomic<>
variables, or other low-level synchronization mechanisms.

A transactional run-time system must ensure that intermediate effects of a trans-
action are not visible to other transactions: any values a transaction writes must be
hidden from other transactions, becoming visible only when the transaction commits.
The system must also ensure that a transaction’s behavior is consistent with a serial
execution, that is, one in which no transactions run concurrently. As an example, sup-
pose that in some program, variables x and y must always be equal. If transaction T1

reads variable x, and then transaction T2 increments both x and y and commits, then
if T1 attempts to read y, it should not be allowed to continue executing: It would see
a value that does not equal x, which could lead to erroneous behaviors.

Transactional run-time systems often employ speculative execution and fine-
grained access tracking. In our example, tracking the individual accesses of T1 and
T2 makes it possible to detect that T1 read x before T2 wrote x, but that T1 attempted
to read y after T2 wrote it. Speculative execution requires that the run-time system
somehow transform the execution of T1, so that upon detecting a conflict on y, it can
roll back T1 and let it try again.

20.2.1 An example of transactional programming
To see the benefits of transactional programming, consider the code in Fig. 20.5.
When a thread calls this function, it iterates through the indices in which and, for
each index, checks whether the corresponding position in counters is positive. If so,

1 std::mutex counter_lock;
2 int *counters = ...;
3

4 void increment_pos_counters(size_t num, size_t *which) {
5 std::lock_guard<std::mutex> guard(counter_lock);
6 for (size_t i = 0; i < num; ++i) {
7 if (counters[which[i]] > 0)
8 ++counters[which[i]];
9 }

10 }

FIGURE 20.5

A lock-based algorithm for conditionally incrementing counters.

474 CHAPTER 20 Transactional programming

it increments that counter. To avoid races, the thread locks the entire array of counters
for the duration of the operation.

Suppose two threads call this function simultaneously, with the first thread’s which
array consisting only of the value 0, the second thread’s which array consisting only
of the value 1023, and all positions in the counters array set to 1. In that case, acquir-
ing the lock would not be necessary because the threads would not access the same
location in the counters array. Consequently, the program missed the opportunity for
greater parallelism. On the other hand, if the second thread’s which array also held
the value 0, then acquiring the lock would be necessary, or the two threads’ accesses
to counter[0] would race.

We could enable greater parallelism by replacing counter_lock with an array of
locks. Threads could then use a two-phase locking strategy, in which they acquire
each location’s lock before accessing the corresponding position in counters, and
release all of the locks at the end of the function. To know which locks to release,
and also because an index may appear more than once in which, the thread must
track the locks it has acquired. To avoid deadlock, all threads must also acquire the
locks in the same predetermined order. (They can do this by sorting which first.)
Although this fine-grained strategy is more scalable, it may actually be slower than
the coarse-grained strategy because it must acquire more locks.

With transactional programming, we can dispense with thinking about locks at
all. We simply execute the entire operation as a single transaction, and rely on the
transactional run-time system to avoid races while exploiting parallelism as much as
possible. The code might resemble that in Fig. 20.6. The transactional system would
watch what other threads were doing. If a thread’s speculative execution would race
with another thread, the system would stop the thread before the race manifested,
undo its operations, and try again.

1 int *counters = ...;
2

3 void increment_pos_counters(size_t num, size_t *which) {
4 transaction {
5 for (size_t i = 0; i < num; ++i) {
6 if (counters[which[i]] > 0)
7 ++counters[which[i]];
8 }
9 }

10 }

FIGURE 20.6

A transactional version of Fig. 20.5.

20.3 Hardware support for transactional programming 475

20.3 Hardware support for transactional programming
Speculation and access tracking have the lowest overhead when implemented in hard-
ware. We now give an overview of how to provide hardware support for transactional
programming. Some modern microprocessors already include such support.

20.3.1 Hardware speculation
Modern microprocessors execute hundreds of instructions simultaneously, even
within a single core. Three features make this level of parallelism possible. First,
many microprocessors can fetch multiple instructions in a single cycle, and sched-
ule them on parallel arithmetic/logic units. Second, modern microprocessors are
pipelined: different instructions can be in different stages of their execution (using
different circuits) at the same time. Finally, to keep their pipelines and execution
units busy, a modern microprocessor does not stall when it encounters a branch. In-
stead, it predicts which direction the branch will take, and executes the corresponding
instruction stream speculatively. If the microprocessor subsequently determines that
an instruction should not have been executed, it undoes the instruction’s effect and
the effects of instructions that depended on it. If the instructions would overwrite
memory, the processor buffers the writes until it is known that the instruction was
supposed to execute (e.g., all branches were predicted correctly); the buffered writes
are discarded if the prediction was wrong.

Since processors can already speculate, and undo the effects of any speculative
instructions that fail, to support transactions, we only need to allow the programmer
to specify a granularity for speculation that extends beyond the pipeline: In addition to
aborting any yet-to-complete instructions from a transaction that aborts, the effects of
completed instructions by that transaction also need to be undone. To support undoing
changes to registers, the instruction that starts a transaction stores their original state,
so that the registers can be reset if the transaction aborts. To support undoing changes
to memory, the processor must be able to roll back values in the cache that correspond
to the writes that the failed transaction made. Invalidation is the simplest mechanism
for rolling back a transaction’s writes.

20.3.2 Basic cache coherence
Hardware-supported transactional programming relies on the cache coherence proto-
col for fine-grained access tracking and for detecting conflicting memory accesses by
concurrent transactions. Before discussing the details, we briefly review cache coher-
ence. Readers unfamiliar with cache coherence protocols may consult Appendix B
for more background.

In modern multiprocessors each processor has an attached cache, a small high-
speed memory used to avoid communicating with large and slow main memory. Each
cache entry holds a group of neighboring words called a line, and has some way of
mapping addresses to lines. Consider a simple architecture in which processors and
memory communicate over a shared broadcast medium called a bus. Each cache line

476 CHAPTER 20 Transactional programming

has a tag, which encodes state information. In the standard MESI protocol, each cache
line is in one of the following states:

• Modified: The line in the cache has been modified, and must eventually be written
back to memory. No other processor has this line cached.

• Exclusive: The line has not been modified, but no other processor has this line
cached. (A line is typically loaded in exclusive mode before being modified.)

• Shared: The line has not been modified, and other processors may have this line
cached.

• Invalid: The line does not contain meaningful data.

The cache coherence protocol detects synchronization conflicts among individual
loads and stores, and ensures that different processors agree on the state of the shared
memory. When a processor loads or stores a memory address a, it broadcasts the
request on the bus, and the other processors and memory listen in (sometimes called
snooping).

A full description of a cache coherence protocol can be complex, but here are the
principal transitions of interest to us.

• When a processor requests to load a line in modified mode, the other processors
invalidate any copies of that line. A processor with a modified copy of that line
must write the line back to memory before the load can be fulfilled.

• When a processor requests to load a line into its cache in shared mode, any proces-
sor with an exclusive or modified copy must change its state to shared. A processor
with a modified copy must also write that line back to memory before the load can
be fulfilled.

• If the cache becomes full, it may be necessary to evict a line. If the line is shared
or exclusive, it can simply be discarded, but if it is modified, it must be written
back to memory.

Note that modern cache coherence protocols detect and resolve synchronization
conflicts between writers and between readers and writers, and they already allow
changes to memory to stay in the cache for a while, instead of immediately and
directly updating memory.

20.3.3 Transactional cache coherence
Many of the state transitions in the MESI protocol are asynchronous: They occur in
one processor on account of a memory operation performed by another processor.
While we customarily think of a data race as something that manifests at a much
higher level of abstraction, there is a close relationship between the programming
language concept of a race and the state transitions in the MESI protocol.

Consider the case of two threads attempting to increment a counter at the same
time. The statement counter++ translates to three assembly instructions: one to fetch
the value of counter to a register, one to increment the value in that register, and one to
update the value of counter by writing the register’s value to memory. A race occurs

20.3 Hardware support for transactional programming 477

if there is any interleaving between the three instructions issued by one thread, and
the three instructions issued by the other. If we examined every possible interleaving,
and looked at the MESI state transitions that occur, we would find that whenever
there is a data race, then at some time while the three instructions are being executed,
either some line is invalidated or some line in the Modified state is downgraded to
Shared or Exclusive. This observation holds for any section of code that accesses
shared memory: If a race occurs with any of its accesses to shared memory, then the
line containing the accessed data is either invalidated or downgraded from Modified
during the execution of that section of code.

We can use this observation to execute a transaction speculatively, and abort the
transaction if a problematic transitions occurs in the cache while the transaction is
executing. (If no such transition occurs, then there were no data races with the trans-
action, so the speculation succeeds.) Assume that each processor has a private L1
cache and executes only one thread at a time. To detect problematic cache line tran-
sitions, we add TX_Begin and TX_End instructions that delimit a transaction, a flag that
indicates whether a transaction is active, and a bit to each line of the cache that in-
dicates whether the line has been accessed by an active transaction. The TX_Begin
instruction saves a private copy of the current values of the processor’s registers (a
checkpoint), raises the flag, and returns true, indicating that the transaction is exe-
cuting speculatively. While the flag is raised, any access to the cache will set the
corresponding bit. The TX_End instruction lowers the flag, clears any bits that may
have been set, and discards the checkpoint. Thus, if TX_End is executed, the transac-
tion does not abort, and the result is the same as if the code were executed without
the transaction (i.e., the speculation succeeded).

With the above mechanics in place, it is straightforward to detect problematic
transitions: If a line whose bit is set is about to be evicted or downgraded from Mod-
ified, the cache first notifies the processor to abort the speculation.

When a transaction aborts, any cache lines that it modified are invalidated; their
values are not written back or provided to any other processor. In addition, the flag
is lowered, all bits indicating transactional access are cleared, and the checkpoint
is used to reset the thread to its state at the beginning of the transaction. Then the
TX_Begin instruction returns false, indicating that the speculation has failed. Thus,
the thread can determine whether it is executing on account of a successful TX_Begin,
or in response to an abort.

20.3.4 Limitations of hardware support
Because data in a cache line that has been accessed by a hardware transaction can-
not leave the cache without aborting the transaction, the cache size and associativity
impose strict limits on the amount of data that a transaction can access. For example,
some L1 caches are direct-mapped, which means that each address is mapped to a
specific line in the cache; its contents must be cached at that line, and must therefore
evict any data that were there before. With such a cache, if a transaction accesses two
addresses that map to the same cache line, it can never successfully commit.

478 CHAPTER 20 Transactional programming

In addition, on many microprocessors, various events may cause significant delays
while a transaction is executing, during which time a cache line accessed by the
transaction could be evicted. These events may be induced by the transaction (e.g.,
by making a system call), or they may be unrelated (e.g., the thread executing the
transaction gets swapped out).

Because it is often difficult or impossible to predict when a transaction might
not be able to commit, programmers are advised to think of hardware transactional
support as being best effort, rather than something that can be relied on. Therefore,
when using hardware transactions, they should also provide a fallback mechanism, in
case the transaction cannot be committed.

Requiring programmers to provide a fallback mechanism reduces the burden on
computer architects: Transactions are not required to succeed for correctness, only
for quality of implementation, so architects are free to exert their best effort.

20.4 Transactional lock elision
The most straightforward way to employ transactional programming in existing lock-
based software is through a technique known as transactional lock elision (TLE). The
core idea in TLE is to modify the critical sections of a program so that they attempt
to run as a transactional speculation. If a speculation fails too many times (e.g., due
to conflicts with other threads), the execution falls back to the original lock.

With hardware support, TLE can be implemented as a special lock, whose acquire
and release methods attempt to use the TX_Begin and TX_End instructions, respec-
tively. This makes TLE exceptionally easy to use. However, TLE can only try to
extract more concurrency out of an existing lock-based program, it cannot guarantee
anything about progress or freedom from pathologies. In particular, the problems we
enumerated earlier (e.g., convoying, priority inversion, and deadlock) remain possi-
ble: If a speculation fails and falls back to locking, the transactional mechanism is
not used, and its benefits on progress and throughput cannot be achieved.

Since it is always correct for a TLE execution to fall back to using the original
locks in the program, TLE can be used to accelerate existing critical sections. Typi-
cally, critical sections are small: They touch few memory locations, and they do not
last for many cycles. If a transaction executing a small critical section fails, it is of-
ten worthwhile to retry it a few times before falling back to locking. We could even
augment the return value of TX_Begin to provide more detail about why a speculation
failed, which the code can use to decide whether to retry the critical section specu-
latively, or to fall back to locking. Fig. 20.7 presents a complete implementation of
TLE that uses a spin-lock as the fallback path.

Fig. 20.7 adds a fair bit of complexity around the calls to TX_Begin (line 5) and
TX_End (line 24). Of particular importance, we must remember that line 8 indicates
that the critical section will run speculatively, with TLE. If the speculation fails, then
control flow will return to line 5. That is, it may appear that TX_Begin executes mul-
tiple times, with different return values.

20.4 Transactional lock elision 479

1 void acquire(spinlock *lock) {
2 int attempts = 0;
3 while (true) {
4 ++attempts;
5 TLE_STATUS status = TX_Begin;
6 if (status == STARTED) {
7 if (!lock.held()) {
8 return;
9 }

10 else {
11 TX_End;
12 attempts--;
13 while (lock.held()) { }
14 }
15 }
16 else if (status != TX_Conflict || attempts >= 4) {
17 lock.acquire();
18 return;
19 }
20 }
21 }
22 void release(spinlock *lock) {
23 if (!lock.held()) {
24 TX_End;
25 }
26 else {
27 lock.release();
28 }
29 }

FIGURE 20.7

A complete implementation of TLE, using a spin-lock as the fallback path.

Recall that all modifications to memory that are performed between lines 5 and 24
are undone if the speculation fails. Thus, if we wish to prevent livelock and starvation,
it is necessary for us to count the number of attempts outside of the transaction. This
is accomplished by the attempts variable, which is incremented on each iteration
of the loop. Each time the speculation fails, control jumps from line 5 to line 16,
where attempts is checked. If the value becomes too large, then the thread stops
using TLE, acquires the lock, and then returns. When the thread reaches the end of
the critical section, it can observe that the lock is held, conclude that it must be the
lock holder, and release the lock to complete the critical section. In a similar fashion,
when a speculation fails, and conflict with another thread is not the cause, then line 16
reports a value in status that indicates the critical section must be run while holding
the lock.

480 CHAPTER 20 Transactional programming

Note that line 7 follows every successful call to TX_Begin. This code serves two
purposes. The first is to identify situations in which one thread attempts to run a
critical section via TLE while another thread is actively running a critical section
using the lock. By checking the lock after calling TX_Begin, the thread can discover
cases where the lock is held. When the lock is held, the thread quietly completes its
TLE region without doing any meaningful work. Starting on line 11, the thread makes
it look like it never even tried to execute speculatively, by decreasing its attempts and
then waiting for the lock to be released.

The second purpose of this call is more subtle. Suppose that a thread reaches
line 8, and has begun to execute its critical section. Let another thread subsequently
reach line 17. At this point, the second thread is unaware of the first thread, as the first
thread is executing speculatively. Since the second thread is not using TLE, its writes
are immediately visible in memory. If the first and second threads access the same
memory locations, but in different orders, there is a danger that the speculative thread
might see inconsistent state. Suppose there is a program invariant that variables x and
y are equal, and initially x == y == 0. Let the first thread read x == 0, and let then
the second thread execute the first line of the sequence y++; x++. Since the second
thread is not using TLE, its write to y immediately is visible in memory. Since the
first thread did not access y yet, it has no reason to abort. However, if the second
thread were to delay and the first thread were to read y, it would see y == 1, and thus
y != x.

The presence of line 7 makes the above situation impossible. Note that the first
thread read the lock while it was using TLE. Thus the lock must be in the thread’s
cache, with the transactional bit set. Consequently, any subsequent change to the
lock by another thread, be it nonspeculative or speculative, will cause the cache line
holding the lock to move to that thread’s cache, in the Modified state. Coherence
ensures that the line must first be evicted from the first thread’s cache. This will
cause the first thread to abort.

20.4.1 Discussion
TLE is a powerful tool for increasing the concurrency of programs whose critical sec-
tions rarely conflict. However, we must be careful about critical sections that try to
perform I/O. Note that TLE can be employed in user programs, as well as the operat-
ing system kernel. What should happen if a TLE critical section in the kernel attempts
to interact with a hardware device? If the critical section subsequently aborted, could
the device behave erroneously? For that matter, does it make sense for a TLE critical
section in a user program to make system calls?

Additionally, the TLE mechanism we described thus far has no way to guarantee
progress. Livelock and starvation are both possible. Even in our simple example with
a single shared counter, it is possible that one thread is always executing the first line
of code between the times when the other thread is executing the third line and when
it calls TX_End.

Given these constraints, TLE is best thought of as an optimization, not as a funda-
mentally new programming model. When critical sections rarely conflict, but threads

20.5 Transactional memory 481

still find themselves spending time waiting for locks, then using TLE to run the corre-
sponding critical sections is likely to improve performance. Note that TLE does affect
how a programmer constructs synchronization code: In programs where TLE is ef-
fective, it is often the case that the programmer can get by with a few coarse-grained
instead of many fine-grained locks.

20.5 Transactional memory
We have already seen how TLE can optimize the performance of existing lock-based
programs. Can transactional programming also simplify the creation of new con-
current programs? If so, how might de novo programs be designed differently, if
transactions were part of the concurrency toolbox from the get-go?

Transactional memory (TM) refers, broadly, to the programming model that arises
when programmers think in terms of transactions instead of locks. The differences
between TM and TLE are subtle, but significant:

• Programmers do not think about how to implement concurrency. Instead, they
mark the regions of code that need to run in isolation from each other, and they
leave it up to a run-time system to find an optimal concurrency mechanism.

• Since programmers think in terms of regions requiring isolation, nesting of trans-
actions is natural, if not encouraged.

• Since there is no guarantee of a lock-based fallback, the programming language
may need to ensure that transactions do not attempt operations that cannot be
undone (e.g., I/O).

• Since everything inside of a transaction can be undone, it is natural, if not bene-
ficial, to expose speculation to the programmer, in the form of explicit self-abort
instructions.

• Since there are no locks in the programming model, traditional problems with
locking (deadlock, convoying, priority inversion) are not possible.

To illustrate the difference between TLE and TM, consider the code in Fig. 20.8.
We expect both functions to be able to complete using transactional speculation, since
they each update only two locations. However, the TLE code is significantly more
complex. The convention in the TLE program is that every access to either integer
passed to the function must be performed while the corresponding lock is held. Thus
the program must acquire both locks. In the common case, the acquisitions will use
TLE, and will be elided. However, the worst case requires the programmer to pro-
duce a consistent lock order to avoid deadlock (in this case, we order based on the
addresses of the integers). In addition, the programmer must check that the two in-
tegers are not protected by the same lock. In contrast, the designer of the TM code
knows that every access to either integer, in any other place in the program, will also
use TM. Consequently, it suffices to begin a TM region, increment the counters, and
then end the region. If the region conflicts with other threads’ accesses, the run-time
system will determine an order in which the threads will execute.

482 CHAPTER 20 Transactional programming

1 void tle_increment_two(int *i1, std::mutex *m1, int *i2, std::mutex *m2) {
2 int* ptrs[] = ((uintptr_t)i1) > ((uintptr_t)i2) ? {i2, i1} : {i1, i2};
3 std::mutex* locks[] = ((uintptr_t)i1) > ((uintptr_t)i2) ? {m2, m1} : {m1, m2};
4

5 tle_acquire(locks[0]);
6 if (locks[0] != locks[1])
7 tle_acquire(locks[1]);
8 *ptrs[0]++;
9 *ptrs[1]++;

10 tle_release(locks[0]);
11 if (locks[0] != locks[1])
12 tle_release(locks[1]);
13 }
14 void tm_increment_two(int *i1, int *i2) {
15 tm {
16 *i1++;
17 *i2++;
18 }
19 }

FIGURE 20.8

Code to atomically increment two counters with TLE (top) and TM (bottom).

20.5.1 Run-time scheduling
Since TM does not have a lock-based fallback, it requires some other mechanism to
ensure progress. Historically, this mechanism has been called “contention manage-
ment,” though it may be more appropriately thought of as a scheduler. In the common
case, the contention manager does nothing: Threads begin and end transactions, and
the transactions should usually succeed. When a thread finds itself repeatedly fail-
ing to commit, due to conflicts with other threads, then it may choose to (1) delay
itself before trying again, in the hope that the concurrent transactions with which it
is conflicting will commit, or (2) employ some mechanism to reduce the number of
transactions that run concurrently with it, to decrease the likelihood of a concurrent
transaction causing a conflict.

In the first case, a simple and effective strategy, which we saw in Section 7.4, is to
use randomized exponential back-off. That is, after n consecutive aborts, the thread
will choose a random number between 2n−1 and 2n − 1 and wait for that many CPU
cycles before retrying. Usually randomized exponential back-off will place a hard
limit on n, so that in high-conflict situations, threads will not wait for minutes.

In the second case, decreasing the number of running transactions is a heuristic,
not a hard-and-fast rule. A simple solution is to use a global Boolean flag. When
a thread tries to start a transaction, it first checks the flag. If the flag is true, the
thread waits. Once the flag is false, the thread may continue. If a transaction aborts
repeatedly, it tries to change the flag from false to true, via a compare-and-swap. If
it succeeds, it attempts its transaction until the transaction commits. Otherwise, it
waits. When the distressed transaction commits, it clears the flag. In Exercise 20.8,

20.6 Software transactions 483

we explore the performance impact of this approach versus falling back to acquiring
the lock in TLE.

20.5.2 Explicit self-abort
Since TM regions always run speculatively, the run-time system is allowed to abort
a transaction at any time, and for any reason. Of course, every time a transaction
aborts, that transaction’s previous work is wasted, so the run-time system should
avoid causing unnecessary aborts. But since the potential is there, it is worthwhile to
consider letting the programmer request self-abort.

Indeed, self-abort appears to be the cornerstone of creating truly compositional
programs based on transactions. Consider a program in which a thread receives a list
of tuples, where each tuple consists of a source account, a destination account, and a
transfer amount. Since a single account can appear multiple times as a source and as
a destination, and since the account balances cannot be read without using some kind
of synchronization, it is not trivial to determine if the list of operations is valid. The
challenge is especially great if each account is protected by a lock that is private to the
account object. However, with TM and explicit self-abort, we can encapsulate each
account’s synchronization entirely within its implementation, and still write correct
code. Inspired by the conventions in the C++ TM Technical Specification, we say that
if an integer exception escapes a transaction, it causes the transaction to abort, but the
exception is retained. With such a definition, Fig. 20.9 shows how TM and self-abort
together elegantly implement a solution.

20.6 Software transactions
Thus far, we have assumed hardware support for transactional programming. While
there exist microprocessors with such support, it is also possible to implement trans-
actions entirely in software. In addition to offering a pathway to transactional pro-
gramming on legacy hardware, software transactions also provide a scalable fallback
path when hardware transactions fail. In this section, we describe two software im-
plementations that support transactional programming.

To implement transactions in software, we provide a library satisfying the inter-
face in Fig. 20.10, which provides functions to call when beginning, committing, or
aborting a transaction, and when reading and writing memory within a transaction.

It would be tedious and error-prone if programmers had to call these functions
directly, so we assume programmers can write structured transactional code, and
that a compiler inserts the appropriate library calls: Calls to beginTx and commitTx
would be inserted at the beginning and end, respectively, of every transactional
region, and every load and store within a transaction would be replaced by the ap-
propriate function call. (The abortTx function is used for explicit self-abort.) For
example, int x = *y would become int x = read(y), and global_i = 7 would be-
come write(&global_i, 7).

484 CHAPTER 20 Transactional programming

1 class account {
2 double balance;
3 public:
4 static const int ERR_INSUF_FUNDS = 1;
5 void withdraw(double amount) {
6 tm {
7 if (balance < amount)
8 throw ERR_INSUF_FUNDS;
9 balance -= amount;

10 }
11 }
12 void deposit(double amount) { tm { balance += amount; } }
13 };
14 bool transfer_many(vector<account*> from,
15 vector<account*> to,
16 vector<double> amounts) {
17 try {
18 tm {
19 for (int i = 0; i < from.size(); ++i) {
20 from[i].withdraw(amounts[i]);
21 to[i].deposit(amounts[i]);
22 }
23 }
24 return true;
25 } catch (int e) {
26 if (e == account::ERR_INSUF_FUNDS) {
27 return false;
28 }
29 }
30 }

FIGURE 20.9

Code to atomically perform multiple transfers between accounts, using exception-based
self-abort.

1 void beginTx(jmp_buf *b);
2 void write(uintptr_t *addr, uintptr_t val);
3 int read(uintptr_t *addr);
4 void commitTx();
5 void abortTx();

FIGURE 20.10

Interface for software transactions.

20.6 Software transactions 485

As a transaction performs reads, it must track every location it has read, so it
can later determine if that location was changed by a concurrent transaction. When
it performs writes, it must do so in a manner that can be undone if the transaction
ultimately aborts. Thus, a software transaction library would also define a transaction
descriptor, a per-thread object to keep track of the state of an in-progress transaction,
and some global synchronization data through which the threads can coordinate their
accesses to shared memory. We must also be able to checkpoint a thread’s state when
it begins a transaction, so we can reset the thread if its transaction aborts. In C++, the
setjmp and longjmp instructions suffice for this purpose. For the sake of simplicity,
we omit checkpointing in the following discussion.

20.6.1 Transactions with ownership records
One of the key challenges for software transactions is to detect conflicts between con-
current transactions. The ownership record, or orec, is a data structure designed for
this purpose. An orec superimposes a lock, a version number, and a thread’s unique
identifier into a single memory word. In its simplest implementation, the lowest bit
of an orec serves two roles: It is a lock bit, and it also indicates the meaning of the
remaining bits of the orec.

In more detail, we say that when the orec’s low bit is zero, it is unlocked, and the
remaining bits can be interpreted as a monotonically increasing integer (the version
number). When the low bit is one, the orec is locked, and the remaining bits can be
interpreted as the unique ID of the thread that holds the lock. In a sense, orecs enhance
sequence locks (Section 20.1.2) by adding information about the lock owner.

If we built our software transactions using a single orec, it would not afford much
concurrency. Instead, we will use an array of orecs. Fig. 20.11, line 3 declares the
table of orecs as an array of NUM_LOCKS atomic integers. Line 6 implements a many-
to-one mapping of memory regions to entries in the table. If we assume that every
memory word (uintptr_t) is aligned on an 8-byte boundary, then as long as GRAIN is
no less than 3, every memory word will map to exactly one entry in lock_table.

Our implementation will be able to detect conflicts on location L by any pair of
transactions by watching how those transactions interact with the entry in lock_table
that corresponds to L. False conflicts are possible, since there are many more memory
locations than table entries. However, if the table size is large enough, false conflicts
should be unlikely.

Before discussing the rest of the implementation, let us consider a strawman
implementation of transactions that uses orecs in a manner more reminiscent of tradi-
tional locks. Given our lock_table, we could run a transaction as follows: Any time
the transaction tries to read a location, we could check the corresponding orec. If the
orec is locked by the current transaction, then we could read the location directly; if
the orec is unlocked, we could lock the orec and then read the location; and if the orec
is locked by another transaction, we could abort the transaction, invoke the run-time
transaction scheduler (to help avoid livelock), and then try again. Writes would run
almost identically, except that they could not simply update a location; if they sub-
sequently aborted, we would need some mechanism to undo that write. The easiest

486 CHAPTER 20 Transactional programming

1 atomic<uint64_t> id_gen(1)
2 atomic<uint64_t> clock(0);
3 atomic<uint64_t> lock_table[NUM_LOCKS];
4

5 atomic<uint64_t> *get_lock(void *addr) {
6 return &lock_table[(((uintptr_t)addr)>>GRAIN) % NUM_LOCKS];
7 }
8 struct Descriptor {
9 jmp_buf *checkpoint;

10 uint64_t my_lock;
11 uint64_t start_time;
12 unordered_map<uintptr_t*, uintptr_t> writes;
13 vector<atomic<uint64_t>*> reads;
14 vector<pair<atomic<uint64_t>*, uint64_t>> locks;
15

16 Descriptor() : my_lock(((id_gen++)<<1)|1) { }
17 };
18 void beginTx(jmp_buf *b) {
19 checkpoint = b;
20 start_time = clock;
21 }
22 void write(uintptr_t *addr, uintptr_t val) {
23 writes.insert_or_assign(addr, val);
24 }
25 int read(uintptr_t *addr) {
26 auto it = writes.find(addr);
27 if (it != writes.end())
28 return *it;
29

30 atomic<uint64_t>* l = get_lock(addr);
31 uint64_t pre = *l;
32 uintptr_t val = std::atomic_ref<uintptr_t>(*addr).load(std::memory_order_acquire);
33 uint64_t post = *l;
34 if ((pre&1) || (pre != post) || (pre > start_time))
35 abortTx();
36 reads.push_back(l);
37 return val;
38 }

FIGURE 20.11

Software transactions with ownership records (1/2).

approach would be to maintain an undo log, into which the old value could be saved
before the location was updated. If the transaction aborted, it would need to use the
log to restore the original values in memory. At commit time, a thread would release
its locks and discard its undo log.

The above strategy would allow nonconflicting transactions to run concurrently,
without the programmer needing to think about fine-grained locks. Since memory
would only be accessed when the thread held the appropriate lock, there would be no

20.6 Software transactions 487

races. However, execution would be pessimistic: Any time any transaction accessed
any location, that location would be inaccessible to all concurrent transactions. Espe-
cially when reads abound, this approach would sacrifice concurrency.

While we could try to craft a solution based on readers–writer locks, so that multi-
ple threads could have read permission on a location simultaneously, doing so would
incur overhead, since nonconflicting threads would conflict when acquiring an orec in
read mode. Instead, we will use optimistic reads. That is, when a transaction wishes
to read a location L, it will first read the value of the orec that corresponds to L. If
the orec is locked, then the code continues or aborts according to the same rules as in
the strawman algorithm. However, if the orec is unlocked, we will not lock it. Instead
we will record the version number stored in the orec. If that version number never
changes before the transaction commits, or if it changes only on account of the same
transaction subsequently acquiring the orec as a writer, then the transaction knows
that its read remained valid.

The second change we will make to the strawman algorithm is to employ commit-
time locking. With commit-time locking, a transaction writing to L does not acquire
the orec for L until it is ready to commit. Consequently, it must log its writes in a
private redo log instead of updating L directly.

The above two changes introduce a subtle but significant question: If a transac-
tion reads L, how frequently must it check the orec that corresponds to L? As we
will see in the chapter exercises, the transaction could have an incorrect execution if
it subsequently read some other location L′ and did not then check L’s orec. Unfor-
tunately, if a transaction performs n reads, it would incur O(n2) overhead to validate
the consistency of all of its reads.

To reduce the validation overhead in the common case, we introduce a monoton-
ically increasing counter, which we call the global clock. This clock will increment
every time a writing transaction attempts to commit, and its value will be used to
establish the start and end times of transactions. When a transaction commits, it in-
crements clock, and then uses the new value of the clock as the version of every orec
that it releases.

While the clock becomes a potential bottleneck for writing transactions, its impact
on read validation is dramatic. Suppose that a transaction sees the value Ts in the
clock when it begins. If, before reading a location L, the transaction sees that L’s
orec has a value To ≤ Ts , and after reading L, the transaction sees that the orec’s
value is still To, then the transaction knows that L could not have been modified after
it started. If the same property holds for every orec encountered by the transaction,
then it never needs to validate during its execution: It only reads locations that have
not been modified since it started, and it conservatively aborts if it attempts to read
any location whose orec was modified after it started.

Our implementation in Figs. 20.11 and 20.12 illustrates the algorithm in full, for
software transactions that operate on word-sized memory locations. Our implemen-
tation uses the C setjmp and longjmp instructions to capture the state of the registers
immediately before the transaction attempts, and to jump back to that point any time
the transaction aborts. It also addresses the requirements of the C++ memory model

488 CHAPTER 20 Transactional programming

41 void commitTx() {
42 if (writes.empty()) {
43 reads.clear();
44 return;
45 }
46 for (auto &l : writes) {
47 atomic<uint64_t>* l = get_lock(l.first);
48 uint64_t prev = *l;
49 if ((prev&1 == 0) && (prev <= start_time)) {
50 if (!l->compare_exchange_strong(prev, my_lock))
51 abortTx();
52 locks.push_back(l, prev);
53 }
54 else if (prev != my_lock) {
55 abortTx();
56 }
57 }
58 uint64_t end_time = ++clock;
59 if (end_time != start_time + 1) {
60 for (auto l : reads) {
61 uint64_t v = *i;
62 if (((v&1) && (v != my_lock)) || ((v&1==0) && (v>start_time)))
63 abortTx();
64 }
65 }
66 for (auto w : writes)
67 std::atomic_ref<uintptr_t>(*w.first).store(w.second, std::memory_order_release);
68 for (auto l : locks)
69 *l.first = end_time;
70 writes.clear();
71 locks.clear();
72 readset.clear();
73 }
74 void abortTx() {
75 for (auto l : locks)
76 *l.first = l.second;
77 reads.clear();
78 writes.clear();
79 locks.clear();
80 }

FIGURE 20.12

Software transactions with ownership records (2/2).

by using std::atomic_ref<>, a feature of C++20, so that accesses to program mem-
ory by transactions will not form a race. This is a preferable alternative to casting
pointers to std::atomic<>.

Every transaction uses a Descriptor object to store its state during execution
(line 8). The Descriptor tracks three sets: one with the addresses of the orecs it has
read, one with the addresses of the orecs it has locked, and one with pairs representing

20.6 Software transactions 489

the locations it intends to update, and the values it intends to write to those locations.
It also stores its start time and its setjmp buffer. When a thread creates its Descriptor,
it increments the global id_gen counter to get a unique integer, and it uses that to craft
a value it can store in the orecs it acquires.

When a transaction begins, it reads the clock (line 20) in order to determine its
starting time. To write value V to location L, the transaction stores the pair 〈V,L〉
into its write set (line 23). To read a location L, the transaction starts by checking if
L is in its write set, in which case it must return the value it intends to write (line 26).
If L is not found, the transaction computes the address of the orec for L. It then
reads the value of the orec (line 31), reads the value at L (line 32), and then rereads
the value of the orec (line 33). This pattern is necessary: A concurrent transaction
that is committing might be concurrently updating the location, and that transaction
may have incremented clock and begun its commit sequence before this transaction
begins. For the algorithm we present, checking the orec before and after reading L

is necessary. Since we expect conflicts to be rare, we optimize read to be as short as
possible. If line 34 detects any discrepancy in the two reads of the orec, the transaction
aborts and tries again.

The most complex part of our algorithm is when a transaction tries to commit. If
the transaction is read-only, then we know that it has not performed any writes, and
as of its last read, it would have determined that all of its reads returned values that
were written before the transaction started. Thus a read-only transaction can commit
without any more effort (line 42). Otherwise, the transaction must acquire the orecs
that protect the locations in its write set. This process extends from line 46 to line 57.
For each address in the write set, the algorithm reads the current value of the orec. If
the orec is already owned by the transaction, no work is needed. If the orec is locked
by another transaction, then this transaction must abort. There is one more consider-
ation: If the orec is unlocked, but its value is greater than the transaction’s start time,
then the transaction aborts. This is a conservative step. Suppose that the transaction
has also read a location protected by this orec: Once the transaction acquires the lock,
it will be unable to see the old value of the orec, to recognize that its read was in-
validated by another transaction’s commit. To simplify the subsequent checks, our
transactions abort in this case.

Once the locks are acquired, the transaction gets its commit time by incrementing
the clock (line 58). If the clock had not changed since the transaction started, then the
transaction knows that all of its reads must be valid, and thus it need not check them
individually. Otherwise, it must check each entry in its read set (line 59), to make
sure the orec has not changed in such a way as to suggest that the corresponding read
became invalid.

Once the transaction has validated its reads, it can replay its writes (line 66) and
release its locks (line 68). Then it can clear its lists.

Lastly, if a transaction aborts, then it must clear its lists. Since the transaction
may abort during the commit operation, it is possible that it has acquired some locks.
If it has, it must release them during the abort operation (line 75). Note that in this
case, the lock versions can be reset to the values they had before they were acquired:

490 CHAPTER 20 Transactional programming

A concurrent read that “misses” the locking of the orec will not read invalid values,
because the values are only updated after aborting becomes impossible.

Our implementation of transactions with orecs has a number of desirable proper-
ties. Even though it uses locks internally, its locks are not visible to the programmer,
and deadlock is not possible: The necessary condition of “hold and wait” is broken,
since a transaction that cannot acquire a lock releases all of its locks and tries again.
Furthermore, the use of commit-time locking decreases the likelihood of livelock:
Symmetric conflicts among transactions can only manifest if those transactions reach
their commit points simultaneously.

20.6.2 Transactions with value-based validation
The orec approach to transactions is not without its drawbacks. Chief among them is
the granularity of the mapping of locations to orecs: A simplistic hash function, like
the one in Fig. 20.11, can lead to deterministic collisions (for example, with 4096
orecs, the first element of every array of 216 elements will be protected by the same
orec); using a complex hash function introduces too much latency. One alternative
is to validate by directly using the values returned from calls to the read function.
Figs. 20.13 and 20.14 present such an algorithm.

1 atomic<uint64_t> lock(0);
2

3 struct Descriptor {
4 jmp_buf *checkpoint;
5 uint64_t start_time;
6 unordered_map<uintptr_t*, uintptr_t> writes;
7 vector<pair<uintptr_t*, uintptr_t>> reads;
8 };
9 void beginTx(jmp_buf *b) {

10 checkpoint = b;
11 start_time = lock;
12 if (start_time & 1)
13 start_time--;
14 }
15 void abortTx() {
16 writes.clear();
17 reads.clear();
18 longjmp(*checkpoint, 1);
19 }
20 int void write(uintptr_t *ptr, uintptr_t val) {
21 writes.insert_or_assign(addr, val);
22 }

FIGURE 20.13

Software transactions with value-based validation (1/2).

20.6 Software transactions 491

1 uintprt_t read(uintptr_t *ptr) {
2 auto it = writes.find(addr);
3 if (it != writes.end())
4 return *it;
5 uintptr_t val = std::atomic_ref<uintptr_t>(*ptr).load(std::memory_order_acquire);
6 while (start_time != globals.lock.val) {
7 start_time = validate();
8 val = std::atomic_ref<uintptr_t>(*ptr).load(std::memory_order_acquire);
9 }

10 reads.push_back({addr, val});
11 return val;
12 }
13 void commitTx() {
14 if (writes.empty()) {
15 reads.clear();
16 return;
17 }
18 uint64_t from = start_time;
19 while (!lock.compare_exchange_strong(from, from + 1))
20 from = validate();
21 start_time = from;
22 for (auto w : writes)
23 std::atomic_ref<uintptr_t>(*w.first).store(w.second, std::memory_order_release);
24 lock = 2 + start_time;
25 writes.clear();
26 reads.clear();
27 }
28 uint64_t validate() {
29 while (true) {
30 uint64_t time = lock;
31 if (time & 1)
32 continue;
33 for (auto it = reads.begin(), e = reads.end(); it != e; ++it) {
34 if (std::atomic_ref<uintptr_t>(*it.first).load(std::memory_order_acquire) !=
35 it.second)
36 abortTx();
37 }
38 if (time == lock)
39 return time;
40 }
41 }

FIGURE 20.14

Software transactions with value-based validation (2/2).

492 CHAPTER 20 Transactional programming

This algorithm resembles our orec algorithm in that it delays transactional writes
until commit time (redo logging). The main differences are that it uses a single se-
quence lock to coordinate when transactions commit, and it does not use the sequence
lock to decide when transactions abort. Instead, changes to the sequence lock cause
transactions to validate.

The intuition behind this algorithm is that transactions can log the addresses they
read, and the values they observed when they performed those reads. When a transac-
tion commits, it increments the sequence lock to an odd value, writes back its entire
write set, and then increments the sequence lock to a new even value. A transaction
can trivially determine that it is valid if it sees that the sequence lock has the same
even value as the last time at which the transaction was valid.

If the sequence lock has changed since the last check, the transaction must wait
until the sequence lock is even (unheld). Then it can reread every location in its read
set, to ensure that the value is the same as it was when the transaction read it. The only
catch is that the transaction must check its entire read set, without any intervening
writer transaction commits. This manifests in the while loop of the validate function.
Note that after a successful validation, a transaction is equivalent to one that started
at the time of the validation, and hence can update its start time.

One question that arises is whether a transaction can start while the lock is held.
Rather than introduce waiting in the beginTx() function, we subtract one from the
start time if it would otherwise be odd. This means that a transaction might validate
on its first load, instead of waiting to start.

Like the orec algorithm, this approach to transactions is deadlock-free: It only
has one lock, and thus there is no potential for deadlock! In addition, note that
a transaction’s progress is only impeded when it must validate, and every valida-
tion corresponds to the completion of a writer transaction. Hence, the algorithm is
livelock-free. Unfortunately, starvation is possible, especially for long-running trans-
actions concurrent with a stream of small writers: The long-running transaction might
need to validate once per writer.

20.7 Combining hardware and software transactions
Part of the appeal of value-based validation is that it enables hybrid transactional
systems, which use hardware transactional execution when possible, and fall back to
software execution when a transaction cannot complete in hardware (e.g., because
it is too big). One of the simplest approaches is to introduce a mechanism for dy-
namically switching between two phases: one in which all transactions use hardware
support, and one in which none do.

The phase change from hardware mode to software mode is relatively simple to
achieve, using a mechanism similar to the fallback in hardware lock elision: The
transaction system includes a global flag to indicate if the current mode is “hard-
ware” or “software.” Every hardware-mode transaction begins by checking the flag.
If the flag changes during the transaction’s execution, it will abort, at which point it

20.8 Transactional data structure design 493

can switch to software mode. If a hardware transaction cannot complete because of
capacity, then after it aborts, it atomically changes the flag value and then starts in
software mode.

The return from software to hardware is potentially more challenging. However,
value-based validation provides a clean return: When the transaction that precipitated
the switch to software mode is about to complete, its final step before validating is
to use a transactional write to set the flag false (this write is performed by an aug-
mented commitTx() function). So long as every software-mode transaction begins by
reading the flag (i.e., via a call to read() from within beginTx()), then when the dis-
tressed transaction commits and resets the mode, its commit will cause all concurrent
transactions to validate, abort, and then resume in hardware mode.

This is but one of many mechanisms for combining hardware and software trans-
actional execution. Other approaches use a global lock or epochs (Section 19.7) to
manage the transition between modes. Truly hybrid systems allow hardware and soft-
ware transactions to run and commit concurrently.

20.8 Transactional data structure design
One of the most promising roles for TM is in the creation of high-performance con-
current data structures. As an example, consider the difficulty involved in creating a
concurrent red/black tree: a lock-based implementation would have difficulty craft-
ing a cycle-free lock acquisition order, because an operation does not know how
much rebalancing is necessary until after it reaches its target node; a nonblocking
implementation might need to atomically modify many memory locations in order to
rebalance during an insert or removal. With transactions, these complex data struc-
ture maintenance operations can be done atomically with the modification operation,
without requiring the programmer to craft a complex synchronization protocol.

Another benefit of transactions is that they allow data structures to export rich
interfaces. Consider a concurrent hashmap: a programmer may desire more meth-
ods than the traditional insert/remove/contains. With transactions, a generic mod-
ifyKey(k, λ) method becomes possible, wherein a programmer can atomically
(1) find the entry with matching key, (2) apply the λ function to the value associated
with that key, and (3) update the value with the computed result. TM is a pathway to
composable, modular, generic concurrent data structures.

While TM can transform an arbitrary sequential operation into a concurrent op-
eration, it does not promise scalability. Programmers must make sure that their data
structures do not have obvious scalability bottlenecks. For example, if every insertion
and removal in a hashmap must update a count of the total number of items, then
transactions cannot prevent concurrent counter updates from conflicting. Further-
more, TM is no different than locking in its requirement that all concurrent accesses to
a datum agree on the synchronization mechanism being used. Just as it is not correct
to allow one thread to perform an unsynchronized access to an item that is simulta-
neously locked by another thread, it is not correct to allow nontransactional accesses

494 CHAPTER 20 Transactional programming

to an item that is simultaneously being accessed transactionally. Lastly, when using
software TM, programs must take great care when transitioning memory from a state
in which it is accessed transactionally to a state in which it is not. The most dangerous
example is memory reclamation: If a transaction unlinks a node from a data structure,
commits, and then tries to free that node, it must be sure that no concurrent (doomed
to abort) transaction is still accessing that node. We explore this “privatization” prob-
lem in an exercise.

20.9 Chapter notes
The transition from Linux Kernel 2.4 to Linux Kernel 2.6 involved a significant ef-
fort to improve performance on multiprocessors. Sequence locks were one of the
techniques that became widespread as a result [98]. The challenges faced when us-
ing sequence locks in C++ are discussed in detail by Hans Boehm [20]. We thank
Hans for explaining the subtleties of sequence locks, and suggesting a solution using
C++20’s std::atomic_ref<>.

TLE in modern microprocessors is based on a more general mechanism called
hardware transactional memory, first proposed by Maurice Herlihy and Eliot Moss
[74] as a general-purpose programming model for multiprocessors. Nir Shavit and
Dan Touitou [157] proposed the first TM that did not require specialized hardware,
instead using software instrumentation on every load and store.

The “orec” algorithm presented in this chapter is a variant of the TL2 algorithm
of Dave Dice, Ori Shalev, and Nir Shavit [35]. The value-based approach is due to
Luke Dalessandro, Michael Spear, and Michael Scott [33].

The use of transactional hardware for lock elision was developed by Ravi Rajwar
and James Goodman [146,145]. Like TM, there are software-only approaches to lock
elision [149].

A comparison of commercially available hardware systems that support TM can
be found in [133]. Harris, Larus, and Rajwar [59] provide the authoritative survey of
both hardware and software TM.

20.10 Exercises
Exercise 20.1. Let G be a global variable, and let H be a variable allocated on the
heap. Both G and H are structs with many fields, and a programmer wishes to protect
each with a sequence lock. Why is it necessary to use a safe memory reclamation
strategy for H, but not for G?

Exercise 20.2. Consider Exercise 20.1. If the structs were protected by readers–
writer locks, and a thread was going to read H, would it need a safe memory reclama-
tion strategy? Why or why not?

20.10 Exercises 495

Exercise 20.3. In our implementation of TM with orecs, we used a simple vector to
store transaction read sets. Suppose there were 216 orecs, with a strong hash function
for mapping addresses to orecs. How many randomly chosen accesses would a single
transaction need to make before it would read the same orec twice?

Exercise 20.4. In Section 20.6.2, we argued that false conflicts on orecs can limit
throughput. As in Exercise 20.3, consider a system with 216 orecs. If every thread
issued W writes, then with two threads, at what value of W would the probability of
false conflicts exceed 50%?

Exercise 20.5. Continuing the example from Exercise 20.4, if there were eight
threads, at what value of W would the probability of false conflicts exceed 50%?

Exercise 20.6. Repeat Exercise 20.5, but with 220 orecs.

Exercise 20.7. Instead of buffering writes in a redo log, an STM implementation
could update locations while it was executing, and maintain an undo log for restoring
values if the transaction aborted. A subtle complication arises: When the transaction
aborts, it cannot restore the old value of orecs when it releases them. Why not? Con-
sider the case where transaction T1 performs a write to location X and then aborts
while reading location Y , and transaction T2 performs a read to location X that is
concurrent with both of T1’s operations.

Exercise 20.8. Let TA be a transaction that has aborted several times in a row, with
Ti total transactions in the system. Suppose that the contention manager gives TA two
options:

• Block new transactions from starting, wait for all current transactions to commit,
and then begin.

• Block new transactions from starting, and begin immediately.

Which option would you favor? Why? It might help to consider specific workload
characteristics in justifying your answer.

Exercise 20.9. Would the choice of software TM or hardware TM influence your
answer to Exercise 20.8?

Exercise 20.10. We claimed that it is necessary for a transaction to ensure the valid-
ity of its read set every time it reads a new location. If it does not, a destined-to-abort
transaction may produce a visible fault. Create an interleaving between two transac-
tions that could produce a divide-by-zero fault if a transaction does not validate after
every read.

Exercise 20.11. A common idiom in lock-based programming is to lock a data struc-
ture, unlink part of it, and then unlock the data structure. Doing so makes the unlinked
part “private” to the thread who did the unlinking, because that part is no longer
reachable to other threads.

496 CHAPTER 20 Transactional programming

A challenge that transactional programming introduces is that speculative threads
may not know that they are destined to abort, and their transactional accesses to
the unlinked part could conflict with the nontransactional accesses by the unlinking
thread.

Create a workload where one thread’s transaction privatizes a linked list by split-
ting it at some point, and another thread’s transaction is traversing the list. Describe
a fault that could occur in the transactional thread.

Exercise 20.12. Consider your solution to Exercise 20.11. Would the algorithm in
Section 20.6.1 be vulnerable to that error? Why or why not?

Exercise 20.13. Consider your solution to Exercise 20.11. Would the algorithm in
Section 20.6.2 be vulnerable to that error? Why or why not?

A
APPENDIX

Software basics

A.1 Introduction
This appendix describes the basic programming language constructs needed to un-
derstand our examples and to write your own concurrent programs. Mostly, we use
Java, but the same ideas could be equally well expressed in other high-level languages
and libraries. Here, we review the basic software concepts needed to understand this
text in Java, C++, and C#. Our discussion here is necessarily incomplete. If in doubt,
consult the current documentation for the language or library of interest.

A.2 Java
The Java programming language uses a concurrency model in which threads ma-
nipulate objects1 by calling the objects’ methods. The possibly concurrent calls are
coordinated using various language and library constructs. We begin by explaining
the basic Java constructs used in this text.

A.2.1 Threads
A thread executes a single, sequential program. In Java, a thread is an instance of
(a subclass of) java.lang.Thread, which provides methods for creating threads, start-
ing them, suspending them, and waiting for them to finish.

First, create a class that implements the Runnable interface. The class’s run()
method does all the work. For example, here is a simple thread that prints a string:

public class HelloWorld implements Runnable {
String message;
public HelloWorld(String m) {
message = m;

}
public void run() {
System.out.println(message);

}
}

1 Technically, threads are objects.

497

498 APPENDIX A Software basics

A Runnable object can be turned into a thread by calling the Thread class constructor,
which takes a Runnable object as its argument, like this:

final String m = "Hello world from thread " + i;
Thread thread = new Thread(new HelloWorld(m));

Java provides a syntactic shortcut, called an anonymous inner class, that allows you
to avoid defining an explicit HelloWorld class:

final String message = "Hello world from thread " + i;
thread = new Thread(new Runnable() {

public void run() {
System.out.println(message);

}
});

This snippet creates an anonymous class implementing the Runnable interface, whose
run() method behaves as shown.

After a thread has been created, it must be started:

thread.start();

This method causes thread to run (i.e., to execute the run() method). The thread that
calls start() returns immediately. If the caller wants to wait for thread to finish, it
must join the thread:

thread.join();

The caller is blocked until the joined thread’s run() method returns.
Fig. A.1 shows a method that initializes multiple threads, starts them, waits for

them to finish, and then prints out a message. The method creates an array of threads,
and initializes them in lines 2–10, using the anonymous inner class syntax. At the end
of this loop, it has created an array of dormant threads. In lines 11–13, it starts the
threads, and each thread executes its run() method, displaying its message. Finally,
in lines 14–16, it waits for each thread to finish.

A.2.2 Monitors
Java provides a number of ways to synchronize access to shared data, both built-in
and through packages. Here we describe the built-in model, called the monitor model,
a simple and commonly used approach. We discuss monitors in Chapter 8.

Imagine you are in charge of software for a call center. During peak hours, calls
arrive faster than they can be answered. When a call arrives, your switchboard soft-
ware places that call in a queue; it plays a recorded announcement assuring the caller
that you consider this call to be very important, and that calls will be answered in the
order received. An operator—an employee in charge of answering calls—dispatches
an operator thread to dequeue and answer the next call. When an operator finishes
with one call, he or she dequeues the next call from the queue and answers it.

APPENDIX A Software basics 499

1 public static void main(String[] args) {
2 Thread[] thread = new Thread[8];
3 for (int i = 0; i < thread.length; i++) {
4 final String message = "Hello world from thread " + i;
5 thread[i] = new Thread(new Runnable() {
6 public void run() {
7 System.out.println(message);
8 }
9 });

10 }
11 for (int i = 0; i < thread.length; i++) {
12 thread[i].start();
13 }
14 for (int i = 0; i < thread.length; i++) {
15 thread[i].join();
16 }
17 }

FIGURE A.1

This method initializes a number of Java threads, starts them, and then waits for them to
finish.

1 class CallQueue { // this code is incorrect
2 final static int QSIZE = 100; // arbitrary size
3 int head = 0; // next item to dequeue
4 int tail = 0; // next empty slot
5 Call[] calls = new Call[QSIZE];
6 public enq(Call x) { // called by switchboard
7 calls[(tail++) % QSIZE] = x;
8 }
9 public Call deq() { // called by operators

10 return calls[(head++) % QSIZE]
11 }
12 }

FIGURE A.2

An incorrect queue class.

Fig. A.2 shows a simple but incorrect queue class. The calls are kept in an array
calls, where head is the index of the next call to remove and tail is the index of the
next free slot in the array.

This class does not work correctly if two operators try to dequeue a call at the
same time. The expression

return calls[(head++) % QSIZE]

500 APPENDIX A Software basics

does not happen as an atomic (i.e., indivisible) step. Instead, the compiler produces
code that looks something like this:

int temp0 = head;
head = temp0 + 1;
int temp1 = (temp0 % QSIZE);
return calls[temp1];

Two operators might execute these statements together: They execute the first line
at the same time, then the second, and so on. In the end, both operators dequeue and
answer the same call, possibly annoying the customer.

To make this queue work correctly, we must ensure that only one operator at a
time can dequeue the next call, a property called mutual exclusion. Java provides a
useful built-in mechanism to support mutual exclusion. Each object has an (implicit)
lock. If a thread A acquires the object’s lock (or, equivalently, locks that object),
then no other thread can acquire that lock until A releases the lock (or, equivalently,
unlocks the object). If a class declares a method to be synchronized, then that method
implicitly acquires the lock when it is called, and releases it when it returns.

Here is one way to ensure mutual exclusion for the enq() and deq() methods:

public synchronized T deq() {
return call[(head++) % QSIZE]

}
public synchronized enq(T x) {
call[(tail++) % QSIZE] = x;

}

Once a call to a synchronized method has acquired the object’s lock, any other call
to a synchronized method of that object is blocked until the lock is released. (Calls
to other objects, subject to other locks, are not blocked.) The body of a synchronized
method is often called a critical section.

There is more to synchronization than mutual exclusion. What should an operator
do if he or she tries to dequeue a call, but there are no calls waiting in the queue?
The call might throw an exception or return null, but what could the operator do then,
other than try again? Instead, it makes sense for the operator to wait for a call to
appear. Here is a first attempt at a solution:

public synchronized T deq() { // this is incorrect
while (head == tail) {}; // spin while empty
call[(head++) % QSIZE];

}

This attempt is not just wrong, it is disastrously wrong. The dequeuing thread waits
inside a synchronized method, locking out every other thread, including the switch-
board thread that could be trying to enqueue a call. This is a deadlock: The dequeuing
thread holds the lock waiting for an enqueuing thread, while the enqueuing thread
waits for the dequeuing thread to release the lock. Nothing will ever happen.

From this we learn that if a thread executing a synchronized method needs to wait
for something to happen, then it must unlock the object while it waits. The waiting

APPENDIX A Software basics 501

thread should periodically reacquire the lock to test whether it can proceed. If so, it
proceeds; if not, it releases the lock and goes back to waiting.

In Java, each object provides a wait() method, which unlocks the object and sus-
pends the caller. While that thread is waiting, another thread can lock and change the
object. Later, when the suspended thread resumes, it locks the object again before it
returns from the wait() call. Here is a revised, but still incorrect, dequeue method:2

public synchronized T deq() { // this is still incorrect
while (head == tail) { wait(); }
return call[(head++) % QSIZE];

}

Each operator thread, seeking a call to answer, repeatedly tests whether the queue
is empty. If so, it releases the lock and waits; if not, it removes and returns the item.
In a similar way, an enqueuing thread checks whether the buffer is full.

When does a waiting thread wake up? The program must notify waiting threads
when something significant happens. The notify() method eventually wakes up one
waiting thread, chosen arbitrarily from the set of waiting threads. When that thread
awakens, it competes for the lock like any other thread. When that thread reacquires
the lock, it returns from its wait() call. You cannot control which waiting thread is
chosen. By contrast, the notifyAll() method wakes up all waiting threads, eventually.
Each time the object is unlocked, one of these newly awakened threads will reacquire
the lock and return from its wait() call. You cannot control the order in which the
threads reacquire the lock.

In the call center example, there are multiple operators and one switchboard. Sup-
pose the switchboard software decides to optimize its use of notify() as follows. If
it adds a call to an empty queue, then it should notify only one blocked dequeuer,
since there is only one call to consume. This optimization, while it may seem reason-
able, is flawed. Suppose the operator threads A and B discover the queue is empty,
and block waiting for calls to answer. The switchboard thread S puts a call in the
queue, and calls notify() to wake up one operator thread. Because the notification
is asynchronous, however, there is a delay. S then returns and places another call in
the queue, and because the queue already had a waiting call, it does not notify other
threads. The switchboard’s notify() finally takes effect, waking up A, but not B, even
though there is a call for B to answer. This pitfall is called the lost-wakeup problem:
One or more waiting threads fail to be notified that the condition for which they are
waiting has become true. See Section 8.2.2 for a more detailed discussion.

A.2.3 Yielding and sleeping
In addition to the wait() method, which allows a thread holding a lock to release the
lock and pause, Java provides other ways for a thread that does not hold a lock to

2 This program will not compile because the wait() call can throw InterruptedException, which must be
caught or rethrown. As discussed in Pragma 8.2.1, real code must handle such exceptions, but we often
elide such handlers to make the examples easier to read.

502 APPENDIX A Software basics

pause. A yield() call pauses the thread, asking the scheduler to run something else.
The scheduler decides whether to pause the thread, and when to restart it. If there
are no other threads to run, the scheduler may ignore the yield() call. Section 16.4.2
describes how yielding can be an effective way to prevent livelock. A call to sleep(t),
where t is a time value, instructs the scheduler not to run that thread for that duration.
The scheduler is free to restart the thread at any later time.

A.2.4 Thread-local objects
Often it is useful for each thread to have its own private instance of a variable. Java
supports such thread-local objects through the ThreadLocal<T> class, which manages
a collection of objects of type T, one for each thread. Because thread-local variables
were not built into Java, they have a somewhat complicated and awkward interface.
Nevertheless, they are extremely useful, and we use them often, so we review how to
use them here.

The ThreadLocal<T> class provides get() and set() methods that read and update
the thread’s local value, and an initialValue() method that is called the first time
a thread tries to get the value of a thread-local object. To initialize each thread’s
local value appropriately, we define a subclass of ThreadLocal<T> that overrides the
parent’s initialValue() method.

This mechanism is best illustrated by an example. In many of our algorithms, we
assume that each of n concurrent threads has a unique thread-local identifier between
0 and n − 1. To provide such an identifier, we show how to define a ThreadID class
with a single static method: get() returns the calling thread’s identifier. When a thread
calls get() for the first time, it is assigned the next unused identifier. Each subsequent
call by that thread returns that thread’s identifier.

Fig. A.3 shows the simplest way to use a thread-local object to implement this
useful class. Line 2 declares an integer nextID field that holds the next identifier to be
issued. Lines 3–7 define an inner class accessible only within the body of the enclos-
ing ThreadID class. This inner class manages the thread’s identifier. It is a subclass of
ThreadLocal<Integer> that overrides the initialValue() method to assign the next
unused identifier to the current thread.

Here is an example how the ThreadID class might be used:

thread = new Thread(new Runnable() {
public void run() {
System.out.println("Hello world from thread " + ThreadID.get());

}
});

Because the inner ThreadLocalID class is used exactly once, it makes little sense
to give it a name (for the same reason that it makes little sense to name your Thanks-
giving turkey). Instead, it is more common to use an anonymous class as described
earlier.

APPENDIX A Software basics 503

1 public class ThreadID {
2 private static volatile int nextID = 0;
3 private static class ThreadLocalID extends ThreadLocal<Integer> {
4 protected synchronized Integer initialValue() {
5 return nextID++;
6 }
7 }
8 private static ThreadLocalID threadID = new ThreadLocalID();
9 public static int get() {

10 return threadID.get();
11 }
12 public static void set(int index) {
13 threadID.set(index);
14 }
15 }

FIGURE A.3

The ThreadID class: Give each thread a unique identifier.

PRAGMA A.2.1

In the type expression ThreadLocal<Integer>, we use Integer instead of int be-
cause int is a primitive type, and only reference types, such as Integer, are
allowed in angle brackets. Since Java 1.5, a feature called autoboxing allows you
to use int and Integer values more-or-less interchangeably, for example:

Integer x = 5;
int y = 6;
Integer z = x + y;

Consult your Java reference manual for complete details.

A.2.5 Randomization
Randomization is an important tool for algorithm design; several algorithms in this
book use randomization to reduce contention, for example. When using randomiza-
tion, it is important to understand the properties of the random number generator
used. For example, the Math.random method uses a single global instance of the
java.util.Random class to generate random numbers. Although Random is thread-safe,
concurrent calls to the same instance by multiple threads can introduce contention
and synchronization.

To avoid this contention, we use the ThreadLocalRandom class from the java.util.
concurrent package, which, as its name suggests, maintains a separate random num-

504 APPENDIX A Software basics

ber generator3 for each thread. The static method current() returns the random
number generator associated with the caller; it is recommended to always call this
method when using ThreadLocalRandom. For example, to generate a random int from
0 to k − 1, we call

ThreadLocalRandom.current().getInt(k)

The random numbers generated by ThreadLocalRandom are not cryptographically
secure. If such security is required, consider using java.security.SecureRandom in-
stead. However, if you do, then be careful not to introduce contention by having
multiple threads concurrently access the same random number generator.

A.3 The Java memory model
The Java programming language does not guarantee linearizability, or even sequential
consistency, when reading or writing fields of shared objects. Why not? The princi-
pal reason is that strict adherence to sequential consistency would outlaw widely used
compiler optimizations, such as register allocation, common subexpression elimina-
tion, and redundant read elimination, all of which involve reordering memory reads
and writes. In a single-thread computation, such reorderings are invisible to the op-
timized program, but in a multithreaded computation, one thread can spy on another
and observe out-of-order executions.

The Java memory model satisfies the fundamental property of relaxed memory
models: If a program’s sequentially consistent executions follow certain rules, then
every execution of that program in the relaxed model will still be sequentially con-
sistent. In this section, we describe rules that guarantee that the Java programs are
sequentially consistent. We do not try to cover the complete set of rules, which is
rather large and complex. Instead, we focus on a set of straightforward rules that
suffices for most purposes.

Fig. A.4 shows double-checked locking, a once-common programming idiom that
falls victim to Java’s lack of sequential consistency. Here, the Singleton class man-
ages a single instance of a Singleton object, accessible through the getInstance()
method. This method creates the instance the first time it is called. This method must
be synchronized to ensure that only one instance is created, even if several threads
observe instance to be null. Once the instance has been created, however, no further
synchronization should be necessary. As an optimization, the code in Fig. A.4 enters
the synchronized block only when it observes an instance to be null. Once it has
entered, it double-checks that instance is still null before creating the instance.

This pattern is incorrect: At line 5, the constructor call appears to take place before
the instance field is assigned, but the Java memory model allows these steps to occur

3 Technically, this is a pseudorandom number generator.

APPENDIX A Software basics 505

1 public static Singleton getInstance() {
2 if (instance == null) {
3 synchronized(Singleton.class) {
4 if (instance == null)
5 instance = new Singleton();
6 }
7 }
8 return instance;
9 }

FIGURE A.4

Double-checked locking.

out of order, effectively making a partially initialized Singleton object visible to other
threads.

In the Java memory model, objects reside in a shared memory and each thread has
a private working memory that contains cached copies of fields it has read or written.
In the absence of explicit synchronization (explained later), a thread that writes to a
field might not propagate that update to the shared memory right away, and a thread
that reads a field might not update its working memory if the field’s copy in the shared
memory changes value. Naturally, a Java virtual machine is free to keep such cached
copies consistent, and in practice they often do, but they are not required to do so. At
this point, we can guarantee only that a thread’s own reads and writes appear to that
thread to happen in order, and that any field value read by a thread was written to that
field (i.e., values do not appear out of thin air).

Certain statements are synchronization events. The term “synchronization” usu-
ally implies some form of atomicity or mutual exclusion. In Java, however, it also
implies reconciling a thread’s working memory with the shared memory. Some syn-
chronization events cause a thread to write cached changes back to shared memory,
making those changes visible to other threads. Other synchronization events cause the
thread to invalidate its cached values, forcing it to reread field values from memory,
making other threads’ changes visible. Synchronization events are linearizable: They
are totally ordered, and all threads agree on that ordering. We now look at different
kinds of synchronization events.

A.3.1 Locks and synchronized blocks
A thread can achieve mutual exclusion either by entering a synchronized block or
method, which acquires an implicit lock, or by acquiring an explicit lock (such as
the ReentrantLock from the java.util.concurrent.locks package). These approaches
have the same implications for memory behavior.

If all accesses to a particular field are protected by the same lock, then reads
and writes to that field are linearizable. Specifically, when a thread releases a lock,
modified fields in working memory are written back to shared memory, performing

506 APPENDIX A Software basics

modifications while holding the lock accessible to other threads. When a thread ac-
quires the lock, it invalidates its working memory to ensure fields are reread from
shared memory. Together, these conditions ensure that reads and writes to the fields
of any object protected by a single lock are linearizable.

A.3.2 Volatile fields
Volatile fields are linearizable. Reading a volatile field is like acquiring a lock: The
working memory is invalidated and the volatile field’s current value is reread from
memory. Writing a volatile field is like releasing a lock: The volatile field is immedi-
ately written back to memory.

Although reading and writing a volatile field has the same effect on memory con-
sistency as acquiring and releasing a lock, multiple reads and writes are not atomic.
For example, if x is a volatile variable, the expression x++ will not necessarily incre-
ment x if concurrent threads can modify x. Some form of mutual exclusion is needed
as well. One common usage pattern for volatile variables occurs when a field is read
by multiple threads but written by only one.

Also, the compiler does not remove accesses to volatile fields, nor the shared-
memory accesses of synchronization methods.

PRAGMA A.3.1

Arrays require special attention: If a field or variable containing an array is de-
clared volatile, only accesses to the field or variable must be synchronized;
accesses to the elements of the array need not be synchronized. Therefore, when
access to the elements of an array must be synchronized, we must use a special
array type that provides such synchronized access.

The java.util.concurrent.atomic package includes classes that provide lineariz-
able memory such as AtomicReference<T> or AtomicInteger. The compareAndSet()
and set() methods act like volatile writes, and get() acts like a volatile read.

A.3.3 Final fields
Recall that a field declared to be final cannot be modified once it has been initialized.
An object’s final fields are initialized in its constructor. If the constructor follows
certain simple rules, described in the following paragraphs, then the correct value of
any final fields will be visible to other threads without synchronization. For example,
in the code shown in Fig. A.5, a thread that calls reader() is guaranteed to see x equal
to 3, because x is a final field. There is no guarantee that y will be equal to 4, because
y is not final.

APPENDIX A Software basics 507

1 class FinalFieldExample {
2 final int x; int y;
3 static FinalFieldExample f;
4 public FinalFieldExample() {
5 x = 3;
6 y = 4;
7 }
8 static void writer() {
9 f = new FinalFieldExample();

10 }
11 static void reader() {
12 if (f != null) {
13 int i = f.x; int j = f.y;
14 }
15 }
16 }

FIGURE A.5

Constructor with final field.

1 public class EventListener { // this is incorrect
2 final int x;
3 public EventListener(EventSource eventSource) {
4 eventSource.registerListener(this); // register with event source ...
5 }
6 public onEvent(Event e) {
7 ... // handle the event
8 }
9 }

FIGURE A.6

Incorrect EventListener class.

If a constructor is synchronized incorrectly, however, final fields may be observed
to change value. The rule is simple: The this reference must not be released from the
constructor before the constructor returns.

Fig. A.6 shows an example of an incorrect constructor in an event-driven system.
Here, an EventListener class registers itself with an EventSource class, making a
reference to the listener object accessible to other threads. This code may appear
safe, since registration is the last step in the constructor, but it is incorrect because
if another thread calls the event listener’s onEvent() method before the constructor
finishes, then the onEvent() method is not guaranteed to see a correct value for x.

In summary, reads and writes to fields are linearizable if the field is either volatile
or protected by a unique lock that is acquired by all readers and writers.

508 APPENDIX A Software basics

A.4 C++
Prior to the 2011 C++ standard (C++11), C++ did not have native support for threads.
Instead, like C, it relied on operating system-specific mechanisms for threading. This
reliance came at a steep cost: Code was not portable across operating systems, and
programmers could not reason formally about the correctness of their code.

Since 2011, C++ has used a concurrency model that includes threads, locks, con-
dition variables, and std::atomic<> variables. To use these features, a programmer
must include the appropriate header files:

#include <thread> // thread objects; since C++11
#include <mutex> // mutual exclusion locks; since C++11
#include <atomic> // atomic variables; Since C++11
#include <shared_mutex> // readers/writer locks; since C++14
#include <condition_variable> // condition variables; Since C++14

It may also be necessary to provide a flag at compile time to enable these features
(e.g., -std=c++11 or -std=c++14). The C++ standard is updated every 3 years, and
each update since C++11 has added additional features for concurrency.

A.4.1 Threads in C++
The std::thread object represents a thread. The constructor to this object can take
either a function or a lambda expression. Arguments to that function or lambda can
also be provided, as shown in the example in Fig. A.7. (On certain operating systems,
such as some flavors of Linux, the linker may need to be given pthread-related flags
(e.g., -lpthread) in order to compile the program.)

On lines 10 and 12, the threads are created by providing the name of the function
that the thread should run. In the former case, the function takes no parameters. In the
latter, it takes two integer arguments, which are also passed to the thread constructor.

In addition, a thread can be created by providing it with a lambda to execute. The
examples on lines 17–32 illustrate some of the ways that a thread can be given a
lambda expression to run.

In C++, unlike Java, a single call creates the thread and also starts executing it.
A program must call join on all of its threads before terminating.4 A common idiom
is to store created threads in a std::vector, so that they are easily found and joined.
An example appears below:

std::vector<std::thread> threads;
for (int i = 0; i < 16; ++i)
threads.push_back(std::thread(f, i));

for (int i = 0; i < 16; ++i)
threads[i].join();

4 This requirement can be avoided by using a thread’s detach() method.

APPENDIX A Software basics 509

1 #include <iostream>
2 #include <thread>
3

4 void f1() { std::cout << "Hello from f1" << std::endl; }
5 void f2(int a, int b) {
6 std::cout << "f2 invoked with " << a << ", " << b << std::endl;
7 }
8

9 int main() {
10 std::thread t1(f1);
11 t1.join();
12 std::thread t2(f2, 1, 2);
13 t2.join();
14 std::thread t3(f2, 5, 7);
15 t3.join();
16 int i = 7;
17 std::thread t4([&]() {
18 std::cout << "lambda invoked with captured i == " << i << std::endl;
19 });
20 t4.join();
21 std::thread t5(
22 [&](int a) {
23 std::cout << "lambda invoked with captured i == " << i
24 << " and a == " << a << std::endl;
25 },
26 1024);
27 t5.join();
28 auto f = [&](int k) {
29 f1();
30 f2(i, i * k);
31 };
32 std::thread t6(f, 99);
33 t6.join();
34 }

FIGURE A.7

Examples of creating and joining threads in C++.

A.4.2 Locks in C++
The most commonly used locks in C++ are std::mutex, std::recursive_mutex, and
std::shared_mutex. Programmers acquire and release a std::mutex by using its
lock() and unlock() methods. There is also a try_lock() method, which prevents
a thread from blocking when it attempts to acquire a lock that is held by another
thread:

std::mutex m;

510 APPENDIX A Software basics

...
m.lock();
f();
m.unlock();
...
if (m.try_lock()) {
f();
m.unlock();

} else {
std::cout << "couldn’t acquire lock" << std::endl;

}

A std::recursive_mutex maintains an internal counter and ID field, so that a
thread that attempts to lock() a mutex that it already holds does not block but instead
increments the counter. A thread must unlock() a recursive_mutex as many times
as it has locked it. The std::shared_mutex supports all the operations of std::mu-
tex, and also has methods lock_shared(), unlock_shared(), and try_lock_shared(),
which allow threads to use it as a readers–writers lock.

Although C++ does not have finally blocks, the resource-acquisition-is–
initialization (RAII) idiom can be used to achieve the same effect: If an object is
constructed on the stack, its destructor runs when the object goes out of scope. The
std::lock_guard wrapper object manages lock acquisition and release:

std::mutex m;
...
{
std::lock_guard<std::mutex> g(m);
// mutex m is locked
if (i == 9)
return; // releases m because g destructs

f();
// releases m because g destructs

}

A.4.3 Condition variables
C++14 added condition variables as a language feature. Condition variables can be
used to create objects that behave like Java monitors. However, programmers must
explicitly manage the association between mutexes and condition variables.

One complication that arises is that std::lock_guard does not allow a program-
mer to unlock and relock the mutex: for as long as the lock_guard is in scope, the
mutex must be acquired. When a condition variable is used to make a thread wait, the
critical section must break atomicity. To do so, it must release the lock. It would be
unfortunate if programmers had to give up the convenience of lock_guard when using
condition variables. Fortunately, the std::unique_lock wrapper is like lock_guard,
but also allows threads to unlock and relock the underlying mutex. See Fig. A.8 for
an example.

APPENDIX A Software basics 511

1 #include <condition_variable>
2 #include <iostream>
3 #include <mutex>
4 #include <string>
5 #include <thread>
6

7 std::mutex m;
8 std::condition_variable cv_full, cv_empty;
9 int data;

10 bool data_ready;
11

12 void consumer_thread(int items) {
13 for (int i = 0; i < items; ++i) {
14 std::unique_lock<std::mutex> g(m);
15 cv_full.wait(g, []() { return data_ready; });
16 std::cout << "consumed " << data << std::endl;
17 data_ready = false;
18 cv_empty.notify_one();
19 }
20 }
21 void producer_thread(int count, int *items) {
22 for (int i = 0; i < count; ++i) {
23 std::unique_lock<std::mutex> g(m);
24 cv_empty.wait(g, []() { return !data_ready; });
25 data = items[i];
26 std::cout << "produced " << data << std::endl;
27 data_ready = true;
28 cv_full.notify_one();
29 }
30 }
31 int main() {
32 int items[] = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55};
33 std::thread producer(producer_thread, 10, items);
34 std::thread consumer(consumer_thread, 10);
35 producer.join();
36 consumer.join();
37 }

FIGURE A.8

Example of using condition variables in C++.

The std::condition_variable object requires that its associated mutex is ac-
cessed through a unique_lock. The std::condition_variable object provides two
different wait() methods. We use the more advanced version, which takes a predi-
cate as a second parameter and uses it to decide when to stop waiting. Consider the
call to wait() on line 24. It could be written as:

512 APPENDIX A Software basics

while (data_ready)
cv_empty.wait(g);

While this code is equivalent, most programmers prefer to use a predicate, which
avoids having to remember that condition variables, like Java monitors, are subject to
spurious wakeups.

Condition variables also have methods that let the programmer control how a
thread waits (e.g., by incorporating timeouts). There is also a notify_all() to wake
all threads that are waiting on a condition variable. C++ allows the programmer to
call notify_one or notify_all while holding the lock, and also while not holding the
lock. Although notifying without the lock may be faster in some cases, it is easier to
assert the correctness of code when it holds the lock while calling a notify function.

A.4.4 Atomic variables
The C++ memory model allows programmers to reason about the correctness of pro-
grams. It defines a happens-before order between thread lifecycle events (e.g., via
thread constructors and calls to join()), and ensures that programmers can reason
about the orders that are created among threads that use a common mutex. For fine-
grained ordering, C++ defines the std::atomic<> type, which is similar to volatile
in Java: By default, these variables are never cached in registers by the compiler, and
their use implies fences and ordering (both during compilation and during execution)
with respect to both regular data accesses and other std::atomic<> accesses.

Similar to volatile in Java, std::atomic<> can represent atomic scalar values,
atomic floating-point values, and atomic pointers. It is also possible to have pointers
to std::atomic<>, an improvement over volatile in Java. Through operator over-
loading, std::atomic<> integers support fetch-and-modify operations for arithmetic
and logic. For example, in the following code, increments of x will be achieved via a
hardware read–modify–write operation, and will not be vulnerable to races:

std::atomic<int> counter;
...
{
counter++;
--counter;
counter *= 16;
counter ^= 0xFACE;

}

The std::atomic<> type also provides compare_exchange_strong() for performing
compare-and-set operations.

When accessing a std::atomic<> variable, a programmer can treat it as if it were
of a nonatomic type. For example, the following are valid:

std::atomic<int> my_int;
my_int = 7;
int local = my_int;

APPENDIX A Software basics 513

When a program uses this syntax, the compiler will enforce the strictest ordering
that it can. That is, an atomic load will prevent subsequent accesses from happening
before it, a store will prevent preceding accesses from happening after it, and any
read–modify–write operation will prevent any reorderings across it. A programmer
can relax these orderings by using explicit load and store methods:

std::atomic<int> my_int;
my_int.store(7);
int local = my_int.load();

By default, the load and store methods ensure strict ordering, but the guarantees can
be relaxed by specifying an additional parameter (e.g., std::memory_order_relaxed). In
some programs, such relaxation can significantly improve performance. This idea is
explored, briefly, in Chapter 20.

A.4.5 Thread-local storage
In C++, variable may have the thread_local storage class specifier, which indicates
that each thread reads and writes a different logical instance of the variable. For ex-
ample, in the code in Fig. A.9, many threads increment a shared counter, and also
thread-local counters.

thread_local int local_counter = 0;
std::atomic<int> global_counter(0);
std::mutex m;

void increment(int howmany) {
for (int i = 0; i < howmany; ++i) {
local_counter++;
global_counter++;

}
std::lock_guard<std::mutex> g(m);
std::cout << "Thread exiting with local = " << local_counter

<< " and global = " << global_counter << std::endl;
}
int run_threads(int thread_count, int increments_per_thread) {
std::vector<std::thread> threads;
for (int i = 0; i < thread_count; ++i)
threads.push_back(std::thread(increment, increments_per_thread));

for (int i = 0; i < thread_count; ++i)
threads[i].join();

}

FIGURE A.9

A C++ program that uses thread-local variables.

514 APPENDIX A Software basics

If we call run_threads with multiple threads (e.g., run_threads(4, 1048576);), the
final value of the global counter will be equal to the sum of the increments_per_thread
values passed to each of the threads. The threads increment the counter concurrently.
As they do so, they also increment local_counter. However, each thread’s increments
are to a per-thread copy. Thus there are no races on local_counter, and its value does
not equal global_counter when the program completes.

A.5 C#
C# is a Java-like language that runs on Microsoft’s .Net platform.

A.5.1 Threads
C# provides a threading model similar to Java’s. C# threads are implemented by the
System.Threading.Thread class. When you create a thread, you tell it what to do by
passing it a ThreadStart delegate, a kind of pointer to the method you want to call.
For example, here is a method that prints a simple message:

void HelloWorld()
{

Console.WriteLine("Hello World");
}

We then turn this method into a ThreadStart delegate, and pass that delegate to the
thread constructor:

ThreadStart hello = new ThreadStart(HelloWorld);
Thread thread = new Thread(hello);

C# provides a syntactic shortcut, called an anonymous method, that allows you to
define a delegate directly, for example, by combining the previous steps into a single
expression:

Thread thread = new Thread(delegate()
{

Console.WriteLine("Hello World");
});

As in Java, after a thread has been created, it must be started:

thread.Start();

This call causes the thread to run, while the caller returns immediately. If the caller
wants to wait for the thread to finish, it must join the thread:

thread.Join();

The caller is blocked until the thread’s method returns.
Fig. A.10 shows a method that initializes a number of threads, starts them, waits

for them to finish, and then prints out a message. The method creates an array of

APPENDIX A Software basics 515

1 static void Main(string[] args)
2 {
3 Thread[] thread = new Thread[8];
4 // create threads
5 for (int i = 0; i < thread.Length; i++)
6 {
7 String message = "Hello world from thread" + i;
8 ThreadStart hello = delegate()
9 {

10 Console.WriteLine(message);
11 };
12 thread[i] = new Thread(hello);
13 }
14 // start threads
15 for (int i = 0; i < thread.Length; i++)
16 {
17 thread[i].Start();
18 }
19 // wait for them to finish
20 for (int i = 0; i < thread.Length; i++)
21 {
22 thread[i].Join();
23 }
24 Console.WriteLine("done!");
25 }

FIGURE A.10

This method initializes a number of C# threads, starts them, waits for them to finish, and
then prints out a message.

threads, initializing each thread with its own ThreadStart delegate. We then start the
threads, and each thread executes its delegate, displaying its message. Finally, we
wait for each thread to finish, and display a message when they are all done. Except
for minor syntactic differences, this code is similar to what you would write in Java.

A.5.2 Monitors
For simple mutual exclusion, C# provides the ability to lock an object much like the
synchronized modifier in Java:

int GetAndIncrement()
{

lock (this)
{

return value++;
}

}

516 APPENDIX A Software basics

1 class Queue<T>
2 {
3 int head, tail;
4 T[] call;
5 public Queue(int capacity)
6 {
7 call = new T[capacity];
8 head = tail = 0;
9 }

10 public void Enq(T x)
11 {
12 Monitor.Enter(this);
13 try
14 {
15 while (tail - head == call.Length)
16 {
17 Monitor.Wait(this); // queue is full
18 }
19 calls[(tail++) % call.Length] = x;
20 Monitor.Pulse(this); // notify waiting dequeuers
21 }
22 finally
23 {
24 Monitor.Exit(this);
25 }
26 }
27 public T Deq()
28 {
29 Monitor.Enter(this);
30 try
31 {
32 while (tail == head)
33 {
34 Monitor.Wait(this); // queue is empty
35 }
36 T y = calls[(head++) % call.Length];
37 Monitor.Pulse(this); // notify waiting enqueuers
38 return y;
39 }
40 finally
41 {
42 Monitor.Exit(this);
43 }
44 }
45 }

FIGURE A.11

A bounded Queue class.

APPENDIX A Software basics 517

Unlike Java, C# does not allow you to use a lock statement to modify a method
directly. Instead, the lock statement is used to enclose the method body.

Concurrent data structures require more than mutual exclusion: They also re-
quire the ability to wait and signal conditions. Unlike in Java, where every object
is an implicit monitor, in C# you must explicitly create the monitor associated with
an object. To acquire a monitor lock, call Monitor.Enter(this), and to release the
lock, call Monitor.Exit(this). Each monitor has a single implicit condition, which
is waited upon by Monitor.Wait(this), and signaled by Monitor.Pulse(this) or
Monitor.PulseAll(this), which respectively wake up one or all sleeping threads.
Fig. A.11 shows how to implement a bounded queue using C# monitors.

A.5.3 Thread-local objects
C# provides a very simple way to make a static field thread-local: Simply prefix the
field declaration with the attribute [ThreadStatic]:

[ThreadStatic]
static int value;

Do not provide an initial value for a [ThreadStatic] field, because the initialization
happens once, not once per thread. Instead, each thread will find the field initially has
that type’s default value: zero for integers, null for references, and so on.

Fig. A.12 shows how to implement the ThreadID class (Java version in Fig. A.3).
There is one point about this program that may require a comment. The first time a
thread inspects its [ThreadStatic] identifier, that field will be zero, the default value
for integers. To distinguish between an uninitialized zero and a thread ID zero, this
field holds the thread ID displaced by one: Thread 0 has field value 1, and so on.

1 class ThreadID
2 {
3 [ThreadStatic] static int myID;
4 static int counter;
5 public static int get()
6 {
7 if (myID == 0)
8 {
9 myID = Interlocked.Increment(ref counter);

10 }
11 return myID - 1;
12 }
13 }

FIGURE A.12

The ThreadID class provides each thread a unique identifier implemented using
[ThreadStatic].

518 APPENDIX A Software basics

A.6 Appendix notes
The Java programming language was created by James Gosling [52]. Dennis Ritchie
is credited with creating C. The basic monitor model is credited to Tony Hoare [77]
and Per Brinch Hansen [57], although they used different mechanisms for waiting
and notification. The mechanisms used by Java (and later by C#) were originally
proposed by Butler Lampson and David Redell [107].

B
APPENDIX

Hardware basics

A novice was trying to fix a broken Lisp machine by turning the power off and
on. Knight, seeing what the student was doing spoke sternly: “You cannot fix a
machine just by power-cycling it with no understanding of what is going wrong.”
Knight turned the machine off and on. The machine worked.

(From “AI Koans,” a collection of jokes popular at MIT in the 1980s.)

B.1 Introduction (and a puzzle)
You can do a pretty good job of programming a uniprocessor without understanding
much about computer architecture, but the same is not true of multiprocessors. You
cannot program a multiprocessor effectively unless you know what a multiprocessor
is. We illustrate this point by a puzzle. We consider two programs that are logically
equivalent, but one is much less efficient than the other. Ominously, the simpler pro-
gram is the inefficient one. This discrepancy cannot be explained, nor the danger
avoided, without a basic understanding of modern multiprocessor architectures.

Here is the background to the puzzle. Suppose two threads share a resource that
can be used by only one thread at a time. To prevent concurrent use, each thread must
lock the resource before using it, and unlock it afterward. We study many ways to im-
plement locks in Chapter 7. For the puzzle, we consider two simple implementations
in which the lock is a single Boolean field. If the field is false, the lock is free, and
otherwise it is in use. We manipulate the lock with the getAndSet(v) method, which
atomically swaps its argument v with the field value. To acquire the lock, a thread
calls getAndSet(true). If the call returns false, then the lock was free, and the caller
succeeded in locking the object. Otherwise, the object was already locked, and the
thread must try again later. A thread releases a lock simply by storing false into the
Boolean field.

In Fig. B.1, the test-and-set (TASLock) lock repeatedly calls getAndSet(true)
(line 4) until it returns false. By contrast, in Fig. B.2, the test-and-test-and-set lock
(TTASLock) repeatedly reads the lock field (by calling state.get() at line 5) until it
returns false, and only then calls getAndSet() (line 6). It is important to understand
that reading the lock value is atomic, and applying getAndSet() to the lock value is
atomic, but the combination is not atomic: Between the time a thread reads the lock
value and the time it calls getAndSet(), the lock value may have changed.

519

520 APPENDIX B Hardware basics

1 public class TASLock implements Lock {
2 ...
3 public void lock() {
4 while (state.getAndSet(true)) {} // spin
5 }
6 ...
7 }

FIGURE B.1

The TASLock class.

1 public class TTASLock implements Lock {
2 ...
3 public void lock() {
4 while (true) {
5 while (state.get()) {}; // spin
6 if (!state.getAndSet(true))
7 return;
8 }
9 }

10 ...
11 }

FIGURE B.2

The TTASLock class.

Before you proceed, you should convince yourself that the TASLock and TTASLock
algorithms are logically the same. The reason is simple: In the TTASLock algorithm,
reading that the lock is free does not guarantee that the next call to getAndSet() will
succeed, because some other thread may have acquired the lock in the interval be-
tween reading the lock and trying to acquire it. So why bother reading the lock before
trying to acquire it?

Here is the puzzle: While the two lock implementations may be logically equiva-
lent, they perform very differently. In a classic 1989 experiment, Anderson measured
the time needed to execute a simple test program on several contemporary multipro-
cessors. He measured the elapsed time for n threads to execute a short critical section
one million times. Fig. B.3 shows how long each lock takes, plotted as a function
of the number of threads. In a perfect world, both the TASLock and TTASLock curves
would be as flat as the ideal curve on the bottom, since each run does the same number
of increments. Instead, we see that both curves slope up, indicating that lock-induced
delay increases with the number of threads. Curiously, however, the TASLock is much
slower than the TTASLock lock, especially as the number of threads increases. Why?

This appendix covers much of what you need to know about multiprocessor ar-
chitecture to write efficient concurrent algorithms and data structures. Along the way,
we will explain the divergent curves in Fig. B.3.

APPENDIX B Hardware basics 521

FIGURE B.3

Schematic performance of a TASLock, a TTASLock, and an ideal lock.

We are concerned with the following components:

• The processors are hardware devices that execute software threads. There are typ-
ically more threads than processors, and each processor runs a thread for a while,
sets it aside, and turns its attention to another thread.

• The interconnect is a communication medium that links processors to processors
and processors to memory.

• The memory is actually a hierarchy of components that store data, ranging from
one or more levels of small, fast caches to a large and relatively slow main mem-
ory. Understanding how these levels interact is essential to understanding the
actual performance of many concurrent algorithms.

From our point of view, one architectural principle drives everything else: Pro-
cessors and main memory are far apart. It takes a long time for a processor to read a
value from memory. It also takes a long time for a processor to write a value to mem-
ory, and longer still for the processor to be sure that value has actually been installed
in memory. Accessing memory is more like mailing a letter than making a phone call.
Almost everything we examine in this appendix is the result of trying to alleviate the
long time it takes (“high latency”) to access memory.

Processor and memory speed change over time, but their relative performance
changes slowly. Consider the following analogy. Imagine that it is 1980, and you
are in charge of a messenger service in mid-town Manhattan. While cars outperform
bicycles on the open road, bicycles outperform cars in heavy traffic, so you choose to
use bicycles. Even though the technology behind both bicycles and cars has advanced,
the architectural comparison remains the same. Then, as now, if you are designing
an urban messenger service, you should use bicycles, not cars.

522 APPENDIX B Hardware basics

B.2 Processors and threads
A multiprocessor consists of multiple hardware processors, each of which executes a
sequential program. When discussing multiprocessor architectures, the basic unit of
time is the cycle: the time it takes a processor to fetch and execute a single instruc-
tion. In absolute terms, cycle times change as technology advances (from about 10
million cycles per second in 1980 to about 3000 million in 2005), and they vary from
one platform to another (processors that control toasters have longer cycles than pro-
cessors that control web servers). Nevertheless, the relative cost of instructions such
as memory access changes slowly when expressed in terms of cycles.

A thread is a sequential program. While a processor is a hardware device, a thread
is a software construct. A processor can run a thread for a while and then set it aside
and run another thread, an event known as a context switch. A processor may set aside
a thread, or deschedule it, for a variety of reasons. Perhaps the thread has issued a
memory request that will take some time to satisfy, or perhaps that thread has simply
run long enough, and it is time for another thread to make progress. When a thread is
descheduled, it may resume execution on another processor.

B.3 Interconnect
The interconnect is the medium by which processors communicate with the memory
and with other processors. There are essentially two kinds of interconnect archi-
tectures in use: symmetric multiprocessing (SMP) and nonuniform memory access
(NUMA). See Fig. B.4.

In an SMP architecture, processors and memory are linked by a bus intercon-
nect, a broadcast medium that acts like a tiny ethernet. Both processors and the main
memory have bus controller units in charge of sending and listening for messages
broadcast on the bus. (Listening is sometimes called snooping.) SMP architectures
are easier to build, but they are not scalable to large numbers of processors because
eventually the bus becomes overloaded.

FIGURE B.4

An SMP architecture with caches on the right and a cacheless NUMA architecture on the
left.

APPENDIX B Hardware basics 523

In a NUMA architecture, a collection of nodes are linked by a point-to-point net-
work, like a tiny local area network. Each node contains one or more processors
and a local memory. One node’s local memory is accessible to the other nodes, and
together, the nodes’ memories form a global memory shared by all processors. The
NUMA name reflects the fact that a processor can access memory residing on its own
node faster than it can access memory residing on other nodes. Networks are more
complex than buses, and require more elaborate protocols, but they scale better than
buses to large numbers of processors.

The division between SMP and NUMA architectures is a simplification: For ex-
ample, some systems have hybrid architectures, where processors within a cluster
communicate over a bus, but processors in different clusters communicate over a
network.

From the programmer’s point of view, it may not seem important whether the
underlying platform is based on a bus, a network, or a hybrid interconnect. It is im-
portant, however, to realize that the interconnect is a finite resource shared among the
processors. If one processor uses too much of the interconnect’s bandwidth, then the
others may be delayed.

B.4 Memory
Processors share a main memory, which is a large array of words, indexed by address.
The size of a word or an address is platform-dependent, but typically it is either 32 or
64 bits. Simplifying somewhat, a processor reads a value from memory by sending a
message containing the desired address to memory. The response message contains
the associated data, that is, the contents of memory at that address. A processor writes
a value by sending the address and the new data to memory, and the memory sends
back an acknowledgment when the new data have been installed.

B.5 Caches
On modern architectures, a main memory access may take hundreds of cycles, so
there is a real danger that a processor may spend much of its time just waiting for the
memory to respond to requests. Modern systems alleviate this problem by introducing
one or more caches: small memories that are situated closer to the processors and
are therefore much faster than main memory. These caches are logically situated
“between” the processor and the memory: When a processor attempts to read a value
from a given memory address, it first looks to see if the value is already in the cache,
and if so, it does not need to perform the slower access to memory. If the desired
address’s value was found, we say the processor hits in the cache, and otherwise it
misses. In a similar way, if a processor attempts to write an address that is in the
cache, it does not need to perform the slower access to memory. The proportion of
requests satisfied in the cache is called the cache hit ratio (or hit rate).

524 APPENDIX B Hardware basics

Caches are effective because most programs display a high degree of locality: If a
processor reads or writes a memory address (also called a memory location), then it
is likely to read or write the same location again soon. Moreover, if a processor reads
or writes a memory location, then it is also likely to read or write nearby locations
soon. To exploit this second observation, caches typically operate at a granularity
larger than a single word: A cache holds a group of neighboring words called cache
lines (sometimes called cache blocks).

In practice, most processors have two or three levels of caches, called L1, L2, and
L3 caches. All but the last (and largest) cache typically reside on the same chip as the
processor. An L1 cache typically takes one or two cycles to access. An on-chip L2
may take about 10 cycles to access. The last level cache, whether L2 or L3, typically
takes tens of cycles to access. These caches are significantly faster than the hundreds
of cycles required to access the memory. Of course, these times vary from platform
to platform, and many multiprocessors have even more elaborate cache structures.

The original proposals for NUMA architectures did not include caches because it
was felt that local memory was enough. Later, however, commercial NUMA archi-
tectures did include caches. Sometimes the term cache-coherent NUMA (cc-NUMA)
is used to mean NUMA architectures with caches. Here, to avoid ambiguity, we use
NUMA to include cache-coherence unless we explicitly state otherwise.

Caches are expensive to build and therefore significantly smaller than the mem-
ory: Only a fraction of the memory locations will fit in a cache at the same time. We
would therefore like the cache to maintain values of the most highly used locations.
This implies that when a location needs to be cached and the cache is full, it is nec-
essary to evict a line, discarding it if it has not been modified, and writing it back to
main memory if it has. A replacement policy determines which cache line to replace
to make room for a given new location. If the replacement policy is free to replace
any line, then we say the cache is fully associative. If, on the other hand, there is only
one line that can be replaced, then we say the cache is direct-mapped. If we split the
difference, allowing any line from a set of size k to be replaced to make room for a
given line, then we say the cache is k-way set associative.

B.5.1 Coherence
Sharing (or, less politely, memory contention) occurs when one processor reads or
writes a memory address that is cached by another. If both processors are reading the
data without modifying it, then the data can be cached at both processors. If, however,
one processor tries to update the shared cache line, then the other’s copy must be
invalidated to ensure that it does not read an out-of-date value. In its most general
form, this problem is called cache-coherence. The literature contains a variety of
very complex and clever cache coherence protocols. Here we review one of the most
commonly used, called the MESI protocol (pronounced “messy”) after the names of
possible cache line states. (Modern processors tend to use more complex protocols
with additional states.) Here are the cache line states:

APPENDIX B Hardware basics 525

FIGURE B.5

Example of the MESI cache-coherence protocol’s state transitions. (a) Processor A reads
data from address a, and stores the data in its cache in the exclusive state. (b) When
processor B attempts to read from the same address, A detects the address conflict, and
responds with the associated data. Now a is cached at both A and B in the shared state.
(c) If B writes to the shared address a, it changes its state to modified, and broadcasts a
message warning A (and any other processor that might have those data cached) to set its
cache line state to invalid. (d) If A then reads from a, it broadcasts a request, and B
responds by sending the modified data both to A and to the main memory, leaving both
copies in the shared state.

• Modified: The line has been modified in the cache, and it must eventually be writ-
ten back to main memory. No other processor has this line cached.

• Exclusive: The line has not been modified, and no other processor has this line
cached.

• Shared: The line has not been modified, and other processors may have this line
cached.

• Invalid: The line does not contain meaningful data.

We illustrate this protocol by a short example depicted in Fig. B.5. For simplicity, we
assume processors and memory are linked by a bus.

Processor A reads data from address a, and stores the data in its cache in the
exclusive state. When processor B attempts to read from the same address, A detects
the address conflict, and responds with the associated data. Now a is cached at both
A and B in the shared state. If B writes to the shared address a, it changes its state to
modified, and broadcasts a message warning A (and any other processor that might
have those data cached) to set its cache line state to invalid. If A then reads from a, it
broadcasts a request, and B responds by sending the modified data both to A and to
the main memory, leaving both copies in the shared state.

526 APPENDIX B Hardware basics

False sharing occurs when processors that are accessing logically distinct data
nevertheless conflict because the locations they are accessing lie on the same cache
line. This observation illustrates a difficult trade-off: Large cache lines are good for
locality, but they increase the likelihood of false sharing. The likelihood of false shar-
ing can be reduced by ensuring that data objects that might be accessed concurrently
by independent threads lie far enough apart in memory. For example, having multi-
ple threads share a byte array invites false sharing, but having them share an array of
double-precision integers is less dangerous.

B.5.2 Spinning
A processor is spinning if it is repeatedly testing some word in memory, waiting for
another processor to change it. Depending on the architecture, spinning can have a
dramatic effect on overall system performance.

On an SMP architecture without caches, spinning is a very bad idea. Each time
the processor reads the memory, it consumes bus bandwidth without accomplishing
any useful work. Because the bus is a broadcast medium, these requests directed to
memory may prevent other processors from making progress.

On a NUMA architecture without caches, spinning may be acceptable if the
address in question resides in the processor’s local memory. Even though multipro-
cessor architectures without caches are rare, we will still ask, when we consider a
synchronization protocol that involves spinning, whether it permits each processor to
spin on its own local memory.

On an SMP or NUMA architecture with caches, spinning consumes significantly
fewer resources. The first time the processor reads the address, it takes a cache miss,
and loads the contents of that address into a cache line. Thereafter, as long as those
data remain unchanged, the processor simply rereads from its own cache, consuming
no interconnect bandwidth, a process known as local spinning. When the cache state
changes, the processor takes a single cache miss, observes that the data have changed,
and stops spinning.

B.6 Cache-conscious programming, or the puzzle solved
We now know enough to explain why the TTASLock examined in Appendix B.1 out-
performs the TASLock. Each time the TASLock applies getAndSet(true) to the lock, it
sends a message on the interconnect causing a substantial amount of traffic. In an
SMP architecture, the resulting traffic may be enough to saturate the interconnect,
delaying all threads, including a thread trying to release the lock, or even threads
not contending for the lock. By contrast, while the lock is busy, the TTASLock spins,
reading a locally cached copy of the lock, and producing no interconnect traffic, ex-
plaining its improved performance.

APPENDIX B Hardware basics 527

The TTASLock is still far from ideal. When the lock is released, all its cached copies
are invalidated, and all waiting threads call getAndSet(true), resulting in a burst of
traffic, smaller than that of the TASLock, but nevertheless significant.

We further discuss the interactions of caches with locking in Chapter 7. Here we
consider some simple ways to structure data to avoid false sharing.

• Objects or fields that are accessed independently should be aligned and padded so
that they end up on different cache lines.

• Keep read-only data separate from data that are modified frequently. For example,
consider a list whose structure is constant, but whose elements’ value fields change
frequently. To ensure that modifications do not slow down list traversals, one could
align and pad the value fields so that each one fills up a cache line.

• When possible, split an object into thread-local pieces. For example, a counter
used for statistics could be split into an array of counters, one per thread, each
one residing on a different cache line. Splitting the counter allows each thread to
update its own replica, avoiding the invalidation traffic that would be incurred by
having a single shared counter.

• If a lock protects data that is frequently modified, then keep the lock and the data
on distinct cache lines, so that threads trying to acquire the lock do not interfere
with the lock-holder’s access to the data.

• If a lock protects data that are frequently uncontended, then try to keep the lock
and the data on the same cache lines, so that acquiring the lock will also load some
of the data into the cache.

B.7 Multicore and multithreaded architectures
In a multicore architecture, as in Fig. B.6, multiple processors are placed on the same
chip. Each processor on that chip typically has its own L1 cache, but they share a

FIGURE B.6

A multicore SMP architecture. The L2 cache is on chip and shared by all processors while
the memory is off-chip.

528 APPENDIX B Hardware basics

common L2 cache. Processors can communicate efficiently through the shared L2
cache, avoiding the need to go through memory, and to invoke the cumbersome
cache-coherence protocol.

In a multithreaded architecture, a single processor may execute two or more
threads at once. Many modern processors have substantial internal parallelism. They
can execute instructions out of order, or in parallel (e.g., keeping both fixed and
floating-point units busy), or even execute instructions speculatively before branches
or data have been computed. To keep hardware units busy, multithreaded processors
can mix instructions from multiple streams.

Modern processor architectures combine multicore with multithreading, where
multiple individually multithreaded cores may reside on the same chip. The context
switches on some multicore chips are inexpensive and are performed at a very fine
granularity, essentially context switching on every instruction. Thus, multithreading
serves to hide the high latency of accessing memory: Whenever a thread accesses
memory, the processor allows another thread to execute.

B.7.1 Relaxed memory consistency
When a processor writes a value to memory, that value is kept in the cache and marked
as dirty, meaning that it must eventually be written back to main memory. On most
modern processors, write requests are not applied to memory when they are issued.
Rather, they are collected in a hardware queue called a write buffer (or store buffer),
and applied to memory together at a later time. A write buffer provides two benefits.
First, it is often more efficient to issue several requests together, a phenomenon called
batching. Second, if a thread writes to an address more than once, earlier requests can
be discarded, saving a trip to memory, a phenomenon called write absorption.

The use of write buffers has a very important consequence: The order in which
reads and writes are issued to memory is not necessarily the order in which they
occur in the program. For example, recall the flag principle of Chapter 1, which was
crucial to the correctness of mutual exclusion: If two processors each first write their
own flag and then read the other’s flag location, then one of them will see the other’s
newly written flag value. With write buffers, this is no longer true: both threads may
write, each in its respective write buffer, but these writes might not be applied to the
shared memory until after each processor reads the other’s flag location in memory.
Thus, neither reads the other’s flag.

Compilers make matters even worse. They are good at optimizing performance on
single-processor architectures. Often, this optimization involves reordering a thread’s
reads and writes to memory. Such reordering is invisible for single-threaded pro-
grams, but it can have unexpected consequences for multithreaded programs in which
threads may observe the order in which writes occur. For example, if one thread fills
a buffer with data and then sets an indicator to mark the buffer as full, then concur-
rent threads may see the indicator set before they see the new data, causing them
to read stale values. The erroneous double-checked locking pattern described in Ap-
pendix A.3 is an example of a pitfall produced by unintuitive aspects of the Java
memory model.

APPENDIX B Hardware basics 529

Different architectures provide different guarantees about the extent to which
memory reads and writes can be reordered. As a rule, it is better not to rely on such
guarantees, and instead to use more expensive techniques, described in the following
paragraph, to prevent such reordering.

Every architecture provides a memory barrier instruction (sometimes called a
fence), which forces writes to take place in the order they are issued, but at a price. A
memory barrier flushes the write buffer, ensuring that all writes issued before the bar-
rier become visible to the processor that issued the barrier. Memory barriers are often
inserted automatically by atomic read–modify–write operations such as getAndSet(),
or by standard concurrency libraries. Thus, explicit use of memory barriers is needed
only when processors perform read–write instructions on shared variables outside of
critical sections.

On one hand, memory barriers are expensive (hundreds of cycles, maybe more),
and should be used only when necessary. On the other hand, synchronization bugs
can be very difficult to track down, so memory barriers should be used liberally,
rather than relying on complex platform-specific guarantees about limits to memory
instruction reordering.

The Java language itself allows reads and writes to object fields to be reordered
if they occur outside synchronized methods or blocks. Java provides a volatile key-
word that ensures that reads and writes to a volatile object field that occur outside
synchronized blocks or methods are not reordered. (The atomic template provides
similar guarantees for C++.) Using this keyword can be expensive, so it should be
used only when necessary. We note that in principle, one could use volatile fields
to make double-checked locking work correctly, but there would not be much point,
since accessing volatile variables requires synchronization anyway.

Here ends our primer on multiprocessor hardware. We now continue to discuss
these architectural concepts in the context of specific data structures and algorithms.
A pattern will emerge: The performance of multiprocessor programs is highly depen-
dent on synergy with the underlying hardware.

B.8 Hardware synchronization instructions
As discussed in Chapter 5, any modern multiprocessor architecture must support
powerful synchronization primitives to be universal, that is, to provide concurrent
computation’s equivalent of a universal Turing machine. It is therefore not surprising
that implementations of Java and C++ rely on such specialized hardware instructions
(also called hardware primitives) in implementing synchronization, from spin locks
and monitors to the most complex lock-free data structures.

Modern architectures typically provide one of two kinds of universal synchro-
nization primitives. The compare-and-swap (CAS) instruction is supported in archi-
tectures by AMD, Intel, and Oracle. It takes three arguments: an address a in memory,
an expected value e, and an update value v, and returns a Boolean. It atomically ex-
ecutes the following: If the memory at address a contains the expected value e, write

530 APPENDIX B Hardware basics

the update value v to that address and return true, otherwise leave the memory un-
changed and return false.

On Intel and AMD architectures, CAS is called CMPXCHG; on Oracle SPARC sys-
tems, it is called CAS.1 Java’s java.util.concurrent.atomic library provides atomic
Boolean, integer, and reference classes that implement CAS by a compareAndSet()
method. (Because most of our examples are in Java, we often refer to compareAndSet()
instead of CAS.) The atomic template of C++ provides the same functionality.

The CAS instruction has one pitfall. Perhaps the most common use of CAS is the
following. An application reads value a from a given memory address, and computes
a new value c for that location. It intends to store c, but only if the value a at the
address has not changed since it was read. One might think that applying a CAS with
expected value a and update value c would accomplish this goal. There is a problem:
A thread could have overwritten the value a with another value b, and later written a

again to the address. The CAS will replace a with c, but the application may not have
done what it was intended to do (for example, if the address stores a pointer, the new
value a may be the address of a recycled object). This problem is known as the ABA
problem, and discussed in detail in Chapter 10.

The other hardware synchronization primitive is a pair of instructions: load-linked
and store-conditional (LL/SC). The LL instruction reads from an address a, and a
later SC instruction attempts to store a new value at that address. The SC instruction
succeeds if the contents of a have not changed since that thread issued the earlier LL
instruction. It fails if the contents of a have changed in the interval.

LL/SC instructions are supported by a number of architectures: Alpha AXP
(ldl_l/stl_c), IBM PowerPC (lwarx/stwcx) MIPS ll/sc, and ARM (ldrex/strex).
LL/SC does not suffer from the ABA problem, but in practice there are often severe
restrictions on what a thread can do between an LL and the matching SC. A context
switch, another LL, or another load or store instruction may cause the SC to fail.

It is a good idea to use atomic fields and their associated methods sparingly be-
cause they are often based on CAS or LL/SC. A CAS or LL/SC instruction takes
significantly more cycles to complete than a load or store: It includes a memory
barrier and prevents out-of-order execution and various compiler optimizations. The
precise cost depends on many factors, and varies not only from one architecture to the
next, but also from one application of the instruction to the next within the same ar-
chitecture. It suffices to say that CAS or LL/SC can be an order of magnitude slower
than a simple load or store.

B.9 Appendix notes
Tom Anderson [12] did the classic experiments on spin locks. John Hennessy and
David Patterson [63] give a comprehensive treatment of computer architecture. The

1 Instead of a Boolean, CAS on SPARC returns the location’s prior value, which can be used to retry an
unsuccessful CAS. CMPXCHG on Intel’s Pentium effectively returns both a Boolean and the prior value.

APPENDIX B Hardware basics 531

MESI protocol is used by Intel’s Pentium processor [83]. The tips on cache-conscious
programming are adapted from Benjamin Gamsa, Orran Krieger, Eric Parsons, and
Michael Stumm [49]. Sarita Adve and Karosh Gharachorloo [1] give an excellent
survey of memory consistency models.

B.10 Exercises
Exercise B.1. Thread A must wait for a thread on another processor to change a flag
bit in memory. The scheduler can either allow A to spin, repeatedly retesting the flag,
or it can deschedule A, allowing some other thread to run. Suppose it takes a total
of 10 milliseconds for the operating system to switch a processor from one thread to
another. If the operating system deschedules thread A and immediately reschedules
it, then it wastes 20 milliseconds. If, instead, A starts spinning at time t0, and the
flag changes at t1, then the operating system will have wasted t1 − t0 time doing
unproductive work.

A prescient scheduler is one that can predict the future. If it foresees that the flag
will change in less than 20 milliseconds, it makes sense to have A spin, wasting less
than 20 milliseconds, because descheduling and rescheduling A wastes 20 millisec-
onds. If, on the other hand, it takes more than 20 milliseconds for the flag to change, it
makes sense to replace A with another thread, wasting no more than 20 milliseconds.

Your assignment is to implement a scheduler that never wastes more than twice
the time a prescient scheduler would have wasted under the same circumstances.

Exercise B.2. Imagine you are a lawyer, paid to make the best case you can for
a particular point of view. How would you argue the following claim: “If context
switches took negligible time, then processors would not need caches, at least for
applications that encompass large numbers of threads”?

Extra credit: Critique your argument.

Exercise B.3. Consider a direct-mapped cache with 16 cache lines, indexed 0 to 15,
where each cache line encompasses 32 words.

• Explain how to map an address a to a cache line in terms of bit shifting and
masking operations. Assume for this question that addresses refer to words, not
bytes: address 7 refers to the eighth word in memory.

• Compute the best and worst possible hit ratios for a program that loops four times
through an array of 64 words.

• Compute the best and worst possible hit ratios for a program that loops four times
through an array of 512 words.

Exercise B.4. Consider a direct-mapped cache with 16 cache lines, indexed 0 to 15,
where each cache line encompasses 32 words.

Consider a two-dimensional 32 × 32 array a of words. This array is laid out in
memory so that a[0,0] is next to a[0,1], and so on. Assume the cache is initially
empty, but that a[0,0] maps to the first word of cache line 0.

532 APPENDIX B Hardware basics

Consider the following column-first traversal:

int sum = 0;
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum += a[i,j]; // 2nd dim changes fastest

}
}

and the following row-first traversal:

int sum = 0;
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum += a[j,i]; // 1st dim changes fastest

}
}

Compare the number of cache misses produced by the two traversals, assuming the
oldest cache line is evicted first.

Exercise B.5. In the MESI cache-coherence protocol, what is the advantage of dis-
tinguishing between exclusive and modified modes?

What is the advantage of distinguishing between exclusive and shared modes?

Exercise B.6. Implement the test-and-set and test-and-test-and-set locks shown in
Figs. B.1 and B.2, test their relative performance on a multiprocessor, and analyze
the results.

Bibliography

[1] Sarita Adve, Kourosh Gharachorloo, Shared memory consistency models: a tutorial, Computer
29 (12) (1996) 66–76.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, Nir Shavit, Atomic snapshots
of shared memory, Journal of the ACM 40 (4) (1993) 873–890.

[3] Yehuda Afek, Dalia Dauber, Dan Touitou, Wait-free made fast, in: STOC ’95: Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, ACM Press, New York, NY,
USA, 1995, pp. 538–547.

[4] Yehuda Afek, Gideon Stupp, Dan Touitou, Long-lived and adaptive atomic snapshot and imme-
diate snapshot (extended abstract), in: Symposium on Principles of Distributed Computing, 2000,
pp. 71–80.

[5] Yehuda Afek, Eytan Weisberger, Hanan Weisman, A completeness theorem for a class of synchro-
nization objects, in: PODC ’93: Proceedings of the Twelfth Annual ACM Symposium on Principles
of Distributed Computing, ACM Press, New York, NY, USA, 1993, pp. 159–170.

[6] A. Agarwal, M. Cherian, Adaptive backoff synchronization techniques, in: Proceedings of the 16th
International Symposium on Computer Architecture, May 1989, pp. 396–406.

[7] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y.S. Ramakrishna, Derek White, An
efficient meta-lock for implementing ubiquitous synchronization, ACM SIGPLAN Notices 34 (10)
(1999) 207–222.

[8] M. Ajtai, J. Komlós, E. Szemerédi, An O(n logn) sorting network, in: Proc. of the 15th Annual
ACM Symposium on Theory of Computing, 1983, pp. 1–9.

[9] G.M. Amdahl, Validity of the single-processor approach to achieving large scale computing capabil-
ities, in: AFIPS Conference Proceedings, Atlantic City, NJ, AFIPS Press, Reston, VA, April 1967,
pp. 483–485.

[10] James H. Anderson, Composite registers, Distributed Computing 6 (3) (1993) 141–154.
[11] James H. Anderson, Mark Moir, Universal constructions for multi-object operations, in: PODC ’95:

Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
ACM Press, New York, NY, USA, 1995, pp. 184–193.

[12] Thomas E. Anderson, The performance of spin lock alternatives for shared-memory multiproces-
sors, IEEE Transactions on Parallel and Distributed Systems 1 (1) (1990) 6–16.

[13] Nimar S. Arora, Robert D. Blumofe, C. Greg Plaxton, Thread scheduling for multiprogrammed
multiprocessors, in: Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM Press, 1998, pp. 119–129.

[14] James Aspnes, Maurice Herlihy, Nir Shavit, Counting networks, Journal of the ACM 41 (5) (1994)
1020–1048.

[15] David F. Bacon, Ravi B. Konuru, Chet Murthy, Mauricio J. Serrano, Thin locks: featherweight
synchronization for Java, in: SIGPLAN Conference on Programming Language Design and Imple-
mentation, 1998, pp. 258–268.

[16] K. Batcher, Sorting networks and their applications, in: Proceedings of AFIPS Joint Computer Con-
ference, 1968, pp. 307–314.

[17] R. Bayer, M. Schkolnick, Concurrency of operations on B-trees, Acta Informatica 9 (1977) 1–21.
[18] Robert D. Blumofe, Charles E. Leiserson, Scheduling multithreaded computations by work stealing,

Journal of the ACM 46 (5) (1999) 720–748.
[19] Hans-J. Boehm, Threads cannot be implemented as a library, in: Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’05, ACM,
New York, NY, USA, 2005, pp. 261–268.

[20] Hans-J. Boehm, Can seqlocks get along with programming language memory models?, in: Proceed-
ings of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance and Correctness,
Beijing, China, June 2012, pp. 12–20.

533

534 Bibliography

[21] Elizabeth Borowsky, Eli Gafni, Immediate atomic snapshots and fast renaming, in: PODC ’93: Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York, NY, USA, 1993, pp. 41–51.

[22] Anastasia Braginsky, Alex Kogan, Erez Petrank, Drop the anchor: lightweight memory management
for non-blocking data structures, in: Proceedings of the 25th ACM Symposium on Parallelism in
Algorithms and Architectures, Montreal, Quebec, Canada, July 2013.

[23] Trevor Brown, Reclaiming memory for lock-free data structures: there has to be a better way, in:
Proceedings of the 34th ACM Symposium on Principles of Distributed Computing, Portland, OR,
June 2015.

[24] James E. Burns, Nancy A. Lynch, Bounds on shared memory for mutual exclusion, Information and
Computation 107 (2) (December 1993) 171–184.

[25] James E. Burns, Gary L. Peterson, Constructing multi-reader atomic values from non-atomic values,
in: PODC ’87: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, ACM Press, New York, NY, USA, 1987, pp. 222–231.

[26] Costas Busch, Marios Mavronicolas, A combinatorial treatment of balancing networks, Journal of
the ACM 43 (5) (1996) 794–839.

[27] Tushar Deepak Chandra, Prasad Jayanti, King Tan, A polylog time wait-free construction for closed
objects, in: PODC ’98: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, ACM Press, New York, NY, USA, 1998, pp. 287–296.

[28] Graham Chapman, John Cleese, Terry Gilliam, Eric Idle, Terry Jones, Michael Palin, Monty Phyton
and the Holy Grail, 1975.

[29] David Chase, Yossi Lev, Dynamic circular work-stealing deque, in: SPAA ’05: Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, ACM Press,
New York, NY, USA, 2005, pp. 21–28.

[30] Alonzo Church, A note on the entscheidungsproblem, The Journal of Symbolic Logic (1936).
[31] Nachshon Cohen, Erez Petrank, Efficient memory management for lock-free data structures with

optimistic access, in: Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, Portland, OR, June 2015.

[32] T. Craig, Building FIFO and priority-queueing spin locks from atomic swap, Technical Report TR
93-02-02, University of Washington, Department of Computer Science, February 1993.

[33] Luke Dalessandro, Michael Spear, Michael L. Scott, NOrec: streamlining STM by abolishing own-
ership records, in: Proceedings of the 15th ACM Symposium on Principles and Practice of Parallel
Programming, Bangalore, India, January 2010.

[34] Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data processing on large clusters, in: Pro-
ceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation -
Volume 6, OSDI’04, USENIX Association, Berkeley, CA, USA, 2004, p. 10.

[35] Dave Dice, Ori Shalev, Nir Shavit, Transactional locking II, in: Proceedings of the 20th International
Symposium on Distributed Computing, Stockholm, Sweden, September 2006.

[36] David Dice, Implementing fast Java monitors with relaxed-locks, in: Java Virtual Machine Research
and Technology Symposium, 2001, pp. 79–90.

[37] David Dice, Virendra J. Marathe, Nir Shavit, Lock cohorting: a general technique for designing
NUMA locks, ACM Transactions on Parallel Computing 1 (2) (2015) 13.

[38] E.W. Dijkstra, The structure of the THE multiprogramming system, Communications of the ACM
11 (5) (1968) 341–346.

[39] Danny Dolev, Nir Shavit, Bounded concurrent time-stamping, SIAM Journal on Computing 26 (2)
(1997) 418–455.

[40] Martin Dowd, Yehoshua Perl, Larry Rudolph, Michael Saks, The periodic balanced sorting network,
Journal of the ACM 36 (4) (1989) 738–757.

[41] Arthur Conan Doyle, A Study in Scarlet and the Sign of Four, Berkley Publishing Group,
ISBN 0425102408, 1994.

[42] Cynthia Dwork, Orli Waarts, Simple and efficient bounded concurrent timestamping and the trace-
able use abstraction, Journal of the ACM 46 (5) (1999) 633–666.

Bibliography 535

[43] C. Ellis, Concurrency in linear hashing, ACM Transactions on Database Systems 12 (2) (1987)
195–217.

[44] Facebook, Folly: Facebook Open-source Library, https://github.com/facebook/folly/, 2017.
[45] F.E. Fich, D. Hendler, N. Shavit, Linear lower bounds on real-world implementations of concurrent

objects, in: Proc. of the 46th Annual Symposium on Foundations of Computer Science, FOCS 2005,
2005, pp. 165–173.

[46] Michael J. Fischer, Nancy A. Lynch, Michael S. Paterson, Impossibility of distributed consensus
with one faulty process, Journal of the ACM 32 (2) (1985) 374–382.

[47] C. Flood, D. Detlefs, N. Shavit, C. Zhang, Parallel garbage collection for shared memory multipro-
cessors, in: Proc. of the Java TM Virtual Machine Research and Technology Symposium, 2001.

[48] K. Fraser, Practical Lock-Freedom, Ph.D. dissertation, Kings College, University of Cambridge,
Cambridge, England, September 2003.

[49] B. Gamsa, O. Kreiger, E.W. Parsons, M. Stumm, Performance issues for multiprocessor operating
systems, Technical report, Computer Systems Research Institute, University of Toronto, 1995.

[50] H. Gao, J.F. Groote, W.H. Hesselink, Lock-free dynamic hash tables with open addressing, Dis-
tributed Computing 18 (1) (2005) 21–42.

[51] James R. Goodman, Mary K. Vernon, Philip J. Woest, Efficient synchronization primitives for
large-scale cache-coherent multiprocessors, in: Proceedings of the Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ACM Press, 1989,
pp. 64–75.

[52] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java Language Specification, third edition,
Prentice Hall PTR, ISBN 0321246780, 2005.

[53] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, M. Snir, The NYU ultracom-
puter - designing an MIMD parallel computer, IEEE Transactions on Computers C-32 (2) (February
1984) 175–189.

[54] M. Greenwald, Two-handed emulation: how to build non-blocking implementations of complex data
structures using DCAS, in: Proceedings of the 21st Annual Symposium on Principles of Distributed
Computing, ACM Press, 2002, pp. 260–269.

[55] S. Haldar, K. Vidyasankar, Constructing 1-writer multireader multivalued atomic variables from
regular variables, Journal of the ACM 42 (1) (1995) 186–203.

[56] Sibsankar Haldar, Paul Vitányi, Bounded concurrent timestamp systems using vector clocks, Journal
of the ACM 49 (1) (2002) 101–126.

[57] Per Brinch Hansen, Structured multi-programming, Communications of the ACM 15 (7) (1972)
574–578.

[58] Tim Harris, A pragmatic implementation of non-blocking linked-lists, in: Proceedings of 15th In-
ternational Symposium on Distributed Computing, DISC 2001, Lisbon, Portugal, in: Lecture Notes
in Computer Science, vol. 2180, Springer Verlag, October 2001, pp. 300–314.

[59] Tim Harris, James R. Larus, Ravi Rajwar, Transactional Memory, 2nd edition, Synthesis Lectures
on Computer Architecture, Morgan and Claypool, 2010.

[60] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W.N. Scherer III, N. Shavit, A lazy concurrent list-
based set algorithm, in: Proc. of the Ninth International Conference on Principles of Distributed
Systems, OPODIS 2005, 2005, pp. 3–16.

[61] Danny Hendler, Nir Shavit, Non-blocking steal-half work queues, in: Proceedings of the Twenty-
First Annual Symposium on Principles of Distributed Computing, ACM Press, 2002, pp. 280–289.

[62] Danny Hendler, Nir Shavit, Lena Yerushalmi, A scalable lock-free stack algorithm, in: SPAA ’04:
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, ACM Press, New York, NY, USA, 2004, pp. 206–215.

[63] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kauf-
mann Publishers, 1995.

[64] D. Hensgen, R. Finkel, U. Manber, Two algorithms for barrier synchronization, International Journal
of Parallel Programming (ISSN 0885-7458) 17 (1) (1988) 1–17.

[65] M. Herlihy, A methodology for implementing highly concurrent data objects, ACM Transactions on
Programming Languages and Systems 15 (5) (November 1993) 745–770.

536 Bibliography

[66] M. Herlihy, Y. Lev, V. Luchangco, N. Shavit, A provably correct scalable skiplist (brief announce-
ment), in: Proc. of the 10th International Conference on Principles of Distributed Systems, OPODIS
2006, 2006.

[67] M. Herlihy, V. Luchangco, M. Moir, The repeat offender problem: a mechanism for supporting
lock-free dynamic-sized data structures, in: Proceedings of the 16th International Symposium on
DIStributed Computing, vol. 2508, Springer-Verlag Heidelberg, January 2002, pp. 339–353.

[68] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free synchronization: double-ended queues as an
example, in: Proceedings of the 23rd International Conference on Distributed Computing Systems,
IEEE, 2003, pp. 522–529.

[69] Maurice Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages and
Systems 13 (1) (1991) 124–149.

[70] Maurice Herlihy, Yossi Lev, Nir Shavit, A lock-free concurrent skiplist with wait-free search, 2007.
[71] Maurice Herlihy, Beng-Hong Lim, Nir Shavit, Scalable concurrent counting, ACM Transactions on

Computer Systems 13 (4) (1995) 343–364.
[72] Maurice Herlihy, Nir Shavit, On the nature of progress, in: Proceedings of the 15th International

Conference on Principles of Distributed Systems, OPODIS’11, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 313–328.

[73] Maurice Herlihy, Nir Shavit, Moran Tzafrir, Concurrent cuckoo hashing, Technical report, Brown
University, 2007.

[74] Maurice P. Herlihy, J. Eliot B. Moss, Transactional memory: architectural support for lock-free data
structures, in: Proceedings of the 20th International Symposium on Computer Architecture, San
Diego, CA, May 1993.

[75] Maurice P. Herlihy, Jeannette M. Wing, Linearizability: a correctness condition for concurrent ob-
jects, ACM Transactions on Programming Languages and Systems 12 (3) (1990) 463–492.

[76] C.A.R. Hoare, “Algorithm 63: partition,” “Algorithm 64: quicksort,” and “Algorithm 65: find”, Com-
munications of the ACM 4 (7) (1961) 321–322.

[77] C.A.R. Hoare, Monitors: an operating system structuring concept, Communications of the ACM
17 (10) (1974) 549–557.

[78] Richard Horsey, The Art of Chicken Sexing, Cogprints, 2002.
[79] M. Hsu, W.P. Yang, Concurrent operations in extendible hashing, in: Symposium on Very Large

Data Bases, 1986, pp. 241–247.
[80] J.S. Huang, Y.C. Chow, Parallel sorting and data partitioning by sampling, in: Proceedings of the

IEEE Computer Society’s Seventh International Computer Software and Applications Conference,
1983, pp. 627–631.

[81] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, Benjamin Hertzberg, A scalable transac-
tional memory allocator, in: Proceedings of the International Symposium on Memory Management,
Ottawa, ON, Canada, June 2006.

[82] Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, Michael L. Scott, An efficient algo-
rithm for concurrent priority queue heaps, Information Processing Letters 60 (3) (1996) 151–157.

[83] Intel Corporation, Pentium Processor User’s Manual, Intel Books, 1993.
[84] A. Israeli, L. Rappaport, Disjoint-access-parallel implementations of strong shared memory primi-

tives, in: Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
Los Angeles, CA, August 14–17, 1994, pp. 151–160.

[85] Amos Israeli, Ming Li, Bounded time stamps, Distributed Computing 6 (5) (1993) 205–209.
[86] Amos Israeli, Amnon Shaham, Optimal multi-writer multi-reader atomic register, in: Symposium

on Principles of Distributed Computing, 1992, pp. 71–82.
[87] Mohammed Gouda, James Anderson, Ambuj Singh, The elusive atomic register, Technical Report

TR 86.29, University of Texas at Austin, 1986.
[88] Prasad Jayanti, Robust wait-free hierarchies, Journal of the ACM 44 (4) (1997) 592–614.
[89] Prasad Jayanti, A lower bound on the local time complexity of universal constructions, in: PODC

’98: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Com-
puting, ACM Press, New York, NY, USA, 1998, pp. 183–192.

Bibliography 537

[90] Prasad Jayanti, Sam Toueg, Some results on the impossibility, universality, and decidability of con-
sensus, in: WDAG ’92: Proceedings of the 6th International Workshop on Distributed Algorithms,
Springer-Verlag, London, UK, 1992, pp. 69–84.

[91] D. Jimenez-Gonzalez, J.J. Navarro, J.-L. Lirriba-Pey, Cc-radix: a cache conscious sorting based on
radix sort, in: Proc. of the 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2003, pp. 101–108.

[92] Lefteris M. Kirousis, Evangelos Kranakis, Paul M.B. Vitányi, Atomic multireader register, in: Pro-
ceedings of the 2nd International Workshop on Distributed Algorithms, Springer-Verlag, London,
UK, 1988, pp. 278–296.

[93] M.R. Klugerman, Small-depth counting networks and related topics, Technical Report
MIT/LCS/TR-643, MIT Laboratory for Computer Science, 1994.

[94] Michael Klugerman, C. Greg Plaxton, Small-depth counting networks, in: STOC ’92: Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, ACM Press, New York,
NY, USA, 1992, pp. 417–428.

[95] D. Knuth, The Art of Computer Programming: Fundamental Algorithms, vol. 3, Addison-Wesley,
1973.

[96] Clyde P. Kruskal, Larry Rudolph, Marc Snir, Efficient synchronization of multiprocessors with
shared memory, ACM Transactions on Programming Languages and Systems 10 (4) (1988)
579–601.

[97] V. Kumar, Concurrent operations on extendible hashing and its performance, Communications of
the ACM 33 (6) (1990) 681–694.

[98] Christoph Lameter, Effective synchronization on Linux/NUMA systems, in: Proceedings of the May
2005 Gelato Federation Meeting, San Jose, CA, May 2005.

[99] L. Lamport, On interprocess communication, Distributed Computing 1 (1986) 77–101.
[100] Leslie Lamport, A new solution of Dijkstra’s concurrent programming problem, Communications

of the ACM 17 (5) (1974) 543–545.
[101] Leslie Lamport, Time, clocks, and the ordering of events, Communications of the ACM 21 (7) (July

1978) 558–565.
[102] Leslie Lamport, How to make a multiprocessor computer that correctly executes multiprocess pro-

grams, IEEE Transactions on Computers C-28 (9) (September 1979) 690.
[103] Leslie Lamport, Specifying concurrent program modules, ACM Transactions on Programming Lan-

guages and Systems 5 (2) (1983) 190–222.
[104] Leslie Lamport, Invited address: solved problems, unsolved problems and non-problems in concur-

rency, in: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Comput-
ing, 1984, pp. 1–11.

[105] Leslie Lamport, On interprocess communication (part II), Distributed Computing 1 (1) (January
1986) 203–213.

[106] Leslie Lamport, A fast mutual exclusion algorithm, ACM Transactions on Computer Systems 5 (1)
(January 1987) 1–11.

[107] B. Lampson, D. Redell, Experience with processes and monitors in Mesa, Communications of the
ACM 2 (23) (1980) 105–117.

[108] Doug Lea, http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentHashMap.html,
2007.

[109] Doug Lea, http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.
html, 2007.

[110] Doug Lea, Java community process, JSR 166, concurrency utilities, http://www.jcp.org/en/jsr/
detail?id=166, 2003.

[111] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, Andrew Sohn, Partitioned parallel radix sort, Journal
of Parallel and Distributed Computing 62 (4) (2002) 656–668.

[112] C. Leiserson, H. Prokop, A minicourse on multithreaded programming, http://supertech.csail.mit.
edu/papers/minicourse.pdf, 1998.

[113] Li Ming, John Tromp, Paul M.B. Vitányi, How to share concurrent wait-free variables, Journal of
the ACM 43 (4) (1996) 723–746.

538 Bibliography

[114] Wai-Kau Lo, Vassos Hadzilacos, All of us are smarter than any of us: wait-free hierarchies are not
robust, in: STOC ’97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, ACM Press, New York, NY, USA, 1997, pp. 579–588.

[115] I. Lotan, N. Shavit, Skiplist-based concurrent priority queues, in: Proc. of the 14th International
Parallel and Distributed Processing Symposium, IPDPS, 2000, pp. 263–268.

[116] M. Loui, H. Abu-Amara, Memory requirements for agreement among unreliable asynchronous pro-
cesses, in: F.P. Preparata (Ed.), Advances in Computing Research, vol. 4, JAI Press, Greenwich, CT,
1987, pp. 163–183.

[117] Victor Luchangco, Daniel Nussbaum, Nir Shavit, A hierarchical CLH queue lock, in: Euro-Par,
2006, pp. 801–810.

[118] P. Magnussen, A. Landin, E. Hagersten, Queue locks on cache coherent multiprocessors, in: Pro-
ceedings of the 8th International Symposium on Parallel Processing, IPPS, IEEE Computer Society,
April 1994, pp. 165–171.

[119] Jeremy Manson, William Pugh, Sarita V. Adve, The Java memory model, in: Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’05,
ACM, New York, NY, USA, 2005, pp. 378–391.

[120] Yandong Mao, Robert Morris, Frans Kaashoek, Optimizing MapReduce for multicore architectures,
Technical Report MIT-CSAIL-TR-2010-020, MIT-CSAIL, 2010.

[121] Virendra J. Marathe, Mark Moir, Nir Shavit, Composite abortable locks, in: Proceedings of the
20th International Conference on Parallel and Distributed Processing, IPDPS’06, IEEE Computer
Society, Washington, DC, USA, 2006, p. 132.

[122] Paul E. McKenney, Selecting locking primitives for parallel programming, Communications of the
ACM 39 (10) (1996) 75–82.

[123] Paul E. McKenney, Exploiting Deferred Destruction: an Analysis of Read-Copy-Update Techniques
in Operating System Kernels, PhD thesis, OGI School of Science and Engineering at Oregon Health
and Sciences University, 2004.

[124] John Mellor-Crummey, Michael Scott, Algorithms for scalable synchronization on shared-memory
multiprocessors, ACM Transactions on Computer Systems 9 (1) (1991) 21–65.

[125] M.M. Michael, M.L. Scott, Simple, fast and practical non-blocking and blocking concurrent queue
algorithms, in: Proc. of the Fifteenth Annual ACM Symposium on Principles of Distributed Com-
puting, ACM Press, 1996, pp. 267–275.

[126] Maged M. Michael, High performance dynamic lock-free hash tables and list-based sets, in: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
ACM Press, 2002, pp. 73–82.

[127] Maged M. Michael, Hazard pointers: safe memory reclamation for lock-free objects, IEEE Trans-
actions on Parallel and Distributed Systems 15 (6) (June 2004) 491–504.

[128] Jaydev Misra, Axioms for memory access in asynchronous hardware systems, ACM Transactions
on Programming Languages and Systems 8 (1) (1986) 142–153.

[129] Mark Moir, Practical implementations of non-blocking synchronization primitives, in: PODC ’97:
Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
ACM Press, New York, NY, USA, 1997, pp. 219–228.

[130] Mark Moir, Laziness pays! Using lazy synchronization mechanisms to improve non-blocking con-
structions, in: PODC ’00: Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, ACM Press, New York, NY, USA, 2000, pp. 61–70.

[131] Mark Moir, Daniel Nussbaum, Ori Shalev, Nir Shavit, Using elimination to implement scalable and
lock-free fifo queues, in: SPAA ’05: Proceedings of the Seventeenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, ACM Press, New York, NY, USA, 2005, pp. 253–262.

[132] James H. Morris, Real programming in functional languages, Technical Report 81-11, Xerox Palo
Alto Research Center, 1981.

[133] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, Hisanobu Tomari, Quantitative
comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12, Intel Core, and
POWER8, in: Proceedings of the 42nd Annual International Symposium on Computer Architecture,
Portland, OR, June 2015.

Bibliography 539

[134] Richard Newman-Wolfe, A protocol for wait-free, atomic, multi-reader shared variables, in: PODC
’87: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,
ACM Press, New York, NY, USA, 1987, pp. 232–248.

[135] Isaac Newton, I. Bernard Cohen (Translator), Anne Whitman (Translator), The Principia: Mathe-
matical Principles of Natural Philosophy, University of California Press, 1999.

[136] R. Pagh, F.F. Rodler, Cuckoo hashing, Journal of Algorithms 51 (2) (2004) 122–144.
[137] Christos H. Papadimitriou, The serializability of concurrent database updates, Journal of the ACM

26 (4) (1979) 631–653.
[138] Gary Peterson, Myths about the mutual exclusion problem, Information Processing Letters 12 (3)

(June 1981) 115–116.
[139] Gary L. Peterson, Concurrent reading while writing, ACM Transactions on Programming Languages

and Systems 5 (1) (1983) 46–55.
[140] S.A. Plotkin, Sticky bits and universality of consensus, in: PODC ’89: Proceedings of the Eighth

Annual ACM Symposium on Principles of Distributed Computing, ACM Press, New York, NY,
USA, 1989, pp. 159–175.

[141] W. Pugh, Concurrent maintenance of skip lists, Technical Report CS-TR-2222.1, Institute for Ad-
vanced Computer Studies, Department of Computer Science, University of Maryland, 1989.

[142] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, ACM Transactions on Database
Systems 33 (6) (1990) 668–676.

[143] C. Purcell, T. Harris, Non-blocking hashtables with open addressing, in: Proceedings of International
Symposium on Distributed Computing, 2005, pp. 108–121.

[144] Zoran Radović, Erik Hagersten, Hierarchical backoff locks for nonuniform communication architec-
tures, in: Ninth International Symposium on High Performance Computer Architecture, Anaheim,
California, USA, February 2003, pp. 241–252.

[145] Ravi Rajwar, James R. Goodman, Speculative lock elision: enabling highly concurrent multi-
threaded execution, in: Proceedings of the 34th IEEE/ACM International Symposium on Microar-
chitecture, Austin, TX, December 2001.

[146] Ravi Rajwar, James R. Goodman, Transactional lock-free execution of lock-based programs, in:
Proceedings of the 10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS-X, ACM Press, 2002, pp. 5–17.

[147] M. Raynal, Algorithms for Mutual Exclusion, The MIT Press, Cambridge, MA, 1986.
[148] John H. Reif, Leslie G. Valiant, A logarithmic time sort for linear size networks, Journal of the ACM

34 (1) (1987) 60–76.
[149] Amitabha Roy, Steven Hand, Tim Harris, A runtime system for software lock elision, in: Proceed-

ings of the EuroSys2009 Conference, Nuremberg, Germany, March 2009.
[150] L. Rudolph, Z. Segall, Dynamic decentralized cache schemes for MIMD parallel processors, in:

Proceedings of the 11th Annual International Symposium on Computer Architecture, ACM Press,
1984, pp. 340–347.

[151] L. Rudolph, M. Slivkin-Allalouf, E. Upfal, A simple load balancing scheme for task allocation in
parallel machines, in: Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM Press, July 1991, pp. 237–245.

[152] Michael Saks, Nir Shavit, Heather Woll, Optimal time randomized consensus — making resilient
algorithms fast in practice, in: SODA ’91: Proceedings of the Second Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1991, pp. 351–362.

[153] Michael L. Scott, Non-blocking timeout in scalable queue-based spin locks, in: PODC ’02: Proceed-
ings of the Twenty-First Annual Symposium on Principles of Distributed Computing, ACM Press,
New York, NY, USA, 2002, pp. 31–40.

[154] Michael L. Scott, William N. Scherer, Scalable queue-based spin locks with timeout, ACM SIG-
PLAN Notices 36 (7) (2001) 44–52.

[155] Maurice Sendak, Where the Wild Things Are, HarperCollins, ISBN 0060254920, 1988.
[156] O. Shalev, N. Shavit, Split-ordered lists: lock-free extensible hash tables, Journal of the ACM 53 (3)

(2006) 379–405.

540 Bibliography

[157] N. Shavit, D. Touitou, Software transactional memory, Distributed Computing 10 (2) (February
1997) 99–116.

[158] Nir Shavit, Asaph Zemach, Diffracting trees, ACM Transactions on Computer Systems 14 (4) (1996)
385–428.

[159] Eric Shenk, The consensus hierarchy is not robust, in: PODC ’97: Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, ACM Press, New York, NY,
USA, 1997, p. 279.

[160] Ambuj K. Singh, James H. Anderson, Mohamed G. Gouda, The elusive atomic register, Journal of
the ACM 41 (2) (1994) 311–339.

[161] Justin Talbot, Richard M. Yoo, Christos Kozyrakis, Phoenix++: modular MapReduce for shared-
memory systems, in: Proceedings of the Second International Workshop on MapReduce and Its
Applications, MapReduce ’11, ACM, New York, NY, USA, 2011, pp. 9–16.

[162] R.K. Treiber, Systems programming: coping with parallelism, Technical Report RJ 5118, IBM Al-
maden Research Center, April 1986.

[163] Alan Turing, On computable numbers, with an application to the entscheidungsproblem, Proceed-
ings of the London Mathematical Society (1937).

[164] John D. Valois, Lock-free linked lists using compare-and-swap, in: Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing, ACM Press, 1995, pp. 214–222.

[165] Paul Vitányi, Baruch Awerbuch, Atomic shared register access by asynchronous hardware, in: 27th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los An-
geles, Ca., USA, October 1986, pp. 233–243.

[166] W.E. Weihl, Local atomicity properties: modular concurrency control for abstract data types, ACM
Transactions on Programming Languages and Systems 11 (2) (1989) 249–282.

[167] William N. Scherer III, Doug Lea, Michael L. Scott, Scalable synchronous queues, in: PPoPP ’06:
Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ACM Press, New York, NY, USA, 2006, pp. 147–156.

[168] P. Yew, N. Tzeng, D. Lawrie, Distributing hot-spot addressing in large-scale multiprocessors, IEEE
Transactions on Computers C-36 (4) (April 1987) 388–395.

Index

0-9
0-valent, 105
0-1 principle, 293
1-regular register, see Register
1-valent, 105
3-balancer, 301

A
ABA problem, 173, 240, 242, 391, 530
Absorption, write, 528
Abstract value, 204
Abstraction map, 205
Acquire (a lock), see Lock
Acquire (a semaphore), 196
Adding network, 302
Address, memory, 523
Adversary, 126
Aggregate operation, see Stream

parallelizing, 419
AGMStack, 74
ALock, 156, 157
Amdahl’s law, 12, 13
Announce array, 134
Application program interface (API), 52
Approximate agreement, 123
ArrayList, 306
Assign23, 114
Asynchronous, 1, 76
Atomic MRMW register, see Register
Atomic MRSW register, see Register
Atomic object, 150

C++, 451, 452
Atomic operation, 5, 150
Atomic register, see Register
Atomic snapshot, see Snapshot
Atomic SRSW register, see Register
AtomicInteger, 116, 150, 506
AtomicMarkableReference, 221
AtomicMRMWRegister, 91
AtomicMRSWRegister, 88
AtomicReference, 150, 506
AtomicSRSWRegister, 87, 100
AtomicStampedReference, 242, 243
Auxiliary variable, 137, 138

B
Back-off, 67, 154, 482
Back-off lock, 155, 170, 172

hierarchical, 167
timeout, 163

Backoff, 154, 155
BackoffLock, 154, 156, 164, 166, 167, 170
Bakery, 34
Bakery algorithm, 34, 41
Balanced tree, rebalancing, 335
Balancer, 281
Balancer, 276

quiescent, 277
Balancing network, 277, 279

antitoken, 301
counting network, see Counting network
depth, 277
pseudosorting, 299
quiescent, 278
smoothing network, 299
step property, 279
weighted step property, 302

Balancing property, see Skiplist
Balancing, workload, 398
Barrier, 432
Barrier

combining tree, 434, 437
dissemination, 449
memory, see Memory barrier
reverse tree, 447
sense reversing, 433
static tree, 436
termination detection, 438, 439
tournament tree, 445
tree, 434

Barrier synchronization, 431
Barycenter, 417
BaseHashSet, 306, 307
Batching, 528
Bin, 360
Binary consensus, 104
Bit-reversed counter, 375, 376
Bitonic, 281, 283, 285
Bitonic counting network, see Counting network
BITONIC network, 280–283, 285
Bitonic sorting network, see Sorting network
BitonicSort, 295, 296
BitReversedCounter, 376
Bivalent, 105
Block, 287
BLOCK network, 285, 287
Blocking implementation, 65

541

542 Index

Blocking lock implementation, 56, 147, 184
Blocking operation, 56

dequeue, 64
Blocking progress condition, see Progress condition
Blocking synchronization, 184
Boolean register, see Register
Bottleneck

sequential, 254, 265
synchronization, 298

Bouncer, 44, 45
Bounded pool, see Pool
Bounded queue, see Queue
Bounded timestamp, see Timestamp
Bounded wait-free property, see Wait-freedom
Bounded work stealing deque, see Work stealing

deque
Bounded-range priority queue, see Priority queue
BoundedDEQue, 391–394
BoundedQueue, 231–234
Bucket (of hash table), see Hash set
BucketList, 318, 319
Buffer, 229

write, see Write buffer
Bus, 152, 475, 522

controller, 522
snooping, 153, 476, 522

Busy (for lock), see Lock
Busy-waiting, see Spinning

C
C++

notify_all(), 512
notify_one(), 512
std::atomic, see std::atomic
std::condition_variable, 511
std::lock_guard, 510
std::mutex, 509
std::recursive_mutex, 509
std::shared_mutex, 509
std::unique_lock_wrapper, 510
thread, 508
vs. Java, 451
wait(), 511

C++ memory model, 512
Cache, 152, 475, 521, 523

direct-mapped, 477, 524
dirty, 528
eviction, 476
fully associative, 524
hit ratio, 523
replacement policy, 524
set associative, 524

Cache coherence, transactional, 476
Cache coherence protocol, 152, 475, 476, 524

MESI, 476, 524, 525

Cache granularity, 524
Cache hit, 153, 523
Cache line, 475, 524
Cache miss, 153, 523
Cache state

exclusive, 152, 476, 525
invalid, 153, 476, 525
modified, 476, 525
shared, 152, 476, 525

Cache-coherent NUMA (cc-NUMA) system, 524
Call, method, see Method call
Capacity (of hash table), see Hash set
CAS, 530
Checkpoint, 477
Chicken sexing, 75
CircularArray, 395–398
Class, 52

universal, 129
Clean double collect, 92
Closed addressing, see Hashing
Cluster ID, 167
Cluster (in NUMA system), 166
Cluster lock, 168
Clustering algorithm, 406
ClusterLocal, 167
CMPXCHG instruction, 119, 530
Coarse-grained synchronization, 201, 206, 308
CoarseHashSet, 308, 309
CoarseList, 206, 207
Coherence protocol, see Cache coherence protocol
Cohort, 168
Cohort detection, lock supports, 169
Cohort lock, 168
CohortDetectionLock, 169
Collect operation, 92
Collisions, see Hashing
Combining, software, see Software combining
Combining status, 267
Combining tree barrier, see Barrier
CombiningTree, 266–268, 275
Common2 register, see Register
Communication, transient vs. persistent, 9
Comparator, 293

lambda expression, see Lambda expression
synchronous, 293

Compare-and-swap (CAS), 116, 119, 529
CompareAndSet(), 116, 119, 120, 506
Comparison network, 293

isomorphic to balancing network, 294
synchronous, 293

complete(H), 61
Complete method call, see Method call
Compositionality, 57, 63

problems, 471
Computability, 1

Index 543

Computation as a dag, 384
Computational model, 75
Concrete representation, 204
Concurrent algorithm, 1
Concurrent program, 1
Condition, 185, 186
Condition, 185, 190, 232
Condition variable, see Condition

C++, 510
Conflict, thread, 66
Consensus, 104
Consensus, 103, 104

binary, 104
solves n-thread, 104
wait-free, 104

Consensus number, 103, 105, 129
Common2 register, 118
compareAndSet, 119, 120, 129
multiple assignment, 113, 115
queue, 110, 111
register, 107, 108
RMW register, 117

Consensus object, 104
Consensus protocol, 104, 107, 109, 110, 115, 119

randomized, 126
ConsensusProtocol, 109, 122
Consistency

external, see External consistency
quiescent, see Quiescent consistency
sequential, see Sequential consistency

Construction
register, see Register constructions
universal, see Universal construction

Consumer, 229, 230, 244
Contention, 154, 265, 524
Contention management, 66, 482
Context switch, 522
Convoying, 467
Coordination protocol, 6
Correctness, 49
Correctness condition

linearizability, see Linearizability
nonblocking, 56
quiescent consistency, see Quiescent

consistency
sequential consistency, see Sequential

consistency
Counter, 5, 22, 360
Counter, 23
Counter, bounded method, 360
Counting network, 276, 279, 298

bitonic, 279, 280
contention, 289
diffracting tree, 288
logarithmic depth, 288

performance, 287
periodic, 285, 286
pipelining, 287
saturate, 287
software, 280, 286

Covering state, 39
Covers, thread, 40
Critical section, 22, 500
Critical state, 106
Cuckoo hashing

concurrent, 324
sequential, 323
striped concurrent, 329

D
Dag, see Directed acyclic graph
Data parallelism, 405
Data race, 469
Data structure, dual, see Dual data structure
Data-parallel algorithm, 405
Deadlock, 24, 29, 468, 500

vs. livelock, 29
Deadlock-free method, 67
Deadlock-free mutual exclusion, see Mutual

exclusion
Deadlock-freedom, 8, 24, 25, 67, 68
Decision value, 105
Dependent progress condition, see Progress

condition
Deque, 389

work stealing, see Work stealing deque
Deschedule (a thread), 522
Descriptor, 486, 488
Deterministic object, 131
Diffracting tree, 288
DiffractingBalancer, 291, 292
DiffractingTree, 291, 292
Dining philosophers problem, 15
Direct-mapped cache, see Cache
Directed acyclic graph (dag), 384
Disjoint-access-parallel, 305
Dissemination barrier, see Barrier
Distributed coordination patterns, 265, 298
Distributed structure, 298
Dominates, in precedence graph, 37
Doorway section, 33, 35, 42
Double-checked locking, 504, 528
Double-ended queue, see Deque
Driver, 199
Dual data structure, 244, 246
DualStack, incorrect, 262

E
Elimination, 254, 288

544 Index

EliminationArray, 254, 255, 257–260
EliminationBackoffStack, 254, 255, 258–260
Embarrassingly parallel, 13
EmptyException, 50
Epoch-based memory management, see Memory

management
Equivalent histories, see History
Event, 21, 60

invocation, see Invocation
precedence relation, 21
response, see Response

Eviction, see Cache
Exchanger, 255, 290
Exclusion

�-exclusion, see �-exclusion problem
mutual, see Mutual exclusion

Exclusive cache state, see Cache state
Execute in isolation, 66
Executor service, 379
Explicit speculation, problems, 468
Exponential back-off, see Back-off
Extensible hashing, see Hashing
External consistency, 59

F
Failed method call, see Method call
Fair schedule, see Schedule
Fairness, 33, 192, 230
False sharing, 158, 159, 526, 527
Fast path, 178
FastPath, 44
Fault-tolerance, 9
Fence, see Memory barrier
Fetch-and-add, 116
Fetch-and-increment, 116
FibTask, 384
FifoReadWriteLock, 192, 193
Filter, 30, 31, 43
Filter (a stream), see Stream
Filter lock, 30
final field, Java, 506
Final state, 105
finally clause (of try block), 23
Fine-grained synchronization, 201, 207, 310, 355
FineGrainedHeap, 365–371
FineList, 208–211
First-come-first-served property, 33
First-in-first-out (FIFO), 230
Flag, 7, 8
Flag principle, 7
Flag protocol, 7
Flaky, 43
Fork-join pool, 379
Fork-join task, 379
Forking (a task), 379

ForkJoinPool, 379
Free list, 240, 241
Free (a lock), see Lock
Freedom from interference, 204, 212, 213
Fulfill (a reservation), see Reservation
FullException, 50
Functional interface, Java, 409
Functional programming, 414

G
Garbage collection, 240, 454, 455

reliance on, 204, 452
GetAndAdd, 116
GetAndIncrement, 116
GetAndSet, 116, 151
Ghost variable, see Auxiliary variable
Global lock, 168
Global state, 39
Greedy schedule, see Schedule

H
Hand-over-hand locking, 208–210
Hardware transactional memory, see Transactional

memory
Hash code (of object), 202, 305
Hash function, 305
Hash set, 305

bucket, 305
bucket threshold, 307
capacity, 306
coarse-grained, 308
fine-grained, 310
global threshold, 307
incremental resizing, 315
lock-free, 315, 322
refinable, 311
resizing, 306, 307, 311, 315, 329, 331
split-ordered, 317
striped, 310
table, 305

Hash table, see Hash set
Hashing, 305–334

closed addressing, 305
collisions, 305
cuckoo, see Cuckoo hashing
extensible, 306
open addressing, 305, 323, 331
probe set, 324

Hazard pointer, 458, 460, 461
Head (of queue), 230
Heap, 363

concurrent, 365
sequential, 363

HeapNode, FineGrainedHeap, 366, 367
Helping, 90, 93, 134, 238, 239

Index 545

Hierarchical lock, 166–170
High contention, see Contention
History, 60

equivalent, 61
legal, 61
linearizable, 62
sequential, 61
well-formed, 61

Hit, cache, see Cache hit
Hit ratio, see Cache
Hold (a lock), see Lock
Hotspot, 265
HWQueue, 73, 250
Hybrid transactional memory, see Transactional

memory

I
Implementation

blocking, see Blocking implementation
vs. interface, 57

Implementing atomic register, cannot use mutual
exclusion, 77

In-place sorting, see Sorting
Inconsistent state, lock, see Lock
Increment requires two distinct operations, 5
Incremental resizing, see Hash set
Independent progress condition, see Progress

condition
Index distribution mechanism, quiescently

consistent counter as, 60
Inherent parallelism, 377
Initial state, 105
Inner class, 190, 502

anonymous, 498
Interconnect, 521, 522
Interface, vs. implementation, 57
Interference, freedom from, see Freedom from

interference
Interrupt, 9, 186
InterruptedException, 186
Interval, 22

precedence relation, 22
method call, 61

Invalid cache state, see Cache state
Invariant, 204
Invocation, 53, 60, 80, 130

matching response, 60
IQueue, 72
Isolation, execute in, 66

J
Java

final field, 506
functional interface, see Functional interface

lambda expression, see Lambda expression
notify(), 501
notifyAll, 501
sleep(), 502
synchronization event, 505
synchronized, 500
thread, 497
ThreadLocalRandom, 503
volatile, see volatile
vs. C++, 451
wait(), 500, 501
yield(), 502

Java memory model, 150, 504
fundamental property, 504

Joining (a task), 384

K
Kernel, 388
KMeans, 406

MapReduce-based, 411
stream-based, 417–419

L
�-exclusion problem, 44
Lambda expression

Java, 409
comparator, 423
interfering, 420
stateful, 420

Last-in-first-out (LIFO), 230, 251
Latency, 265, 385

vs. throughput, 267
Layer, 286
LAYER network, 286
Lazy computation, see Stream
Lazy method, 238, 239
Lazy synchronization, 164, 201, 215, 225, 337
LazyList, 216–220, 337
LazySkipList, 337–342, 344, 345, 355
Legal history, 61
Legal object history, 61
LFUniversal, 132
Linear speedup, 386
Linearizability, 61, 205, 359

compositionality of, 63
nonblocking, 59, 63
not guaranteed on real systems, 149
vs. quiescent consistency, 60
vs. sequential consistency, 59

Linearizability, 58, 59
Linearizable history, see History
Linearization (of a history), 62
Linearization point, 58, 205, 341, 343, 348
Linearized (at a point), method call, 58, 205

546 Index

Linked list, 202, 231
List, 306
List-based set implementation, 202
Livelock, 29
Livelock, 29
Liveness, 2
Load balancing, see Balancing, workload
Load operation, 39, 76
Load-linked and store-conditional (LL/SC), 530
Local spinning, 153, 526
Local state, 39
Local thread, 166
Lock, 23, 184
Lock

acquire, 24, 183, 500
back-off, see Back-off lock
busy, 24
cluster, see Cluster lock
cohort, see Cohort lock
doorway section, 33, 34
first-come-first-served, 33–35
free, 24
global, see Global lock
hierarchical, see Hierarchical lock
hold, 24, 183
idiom for use, 23
inconsistent state, 39
queue, see Queue lock
readers–writers, see Readers–writers lock
reentrant, see Reentrant lock
release, 24, 184, 500
sequence, see Sequence lock
spin, see Spin lock
starvation-free, 27, 28, 32, 35
supports cohort detection, 169
test-and-set, see Test-and-set lock
test-and-test-and-set, see Test-and-test-and-set

lock
thread-oblivious, see Thread-oblivious lock
timeout, 164, 172

Lock cohorting, 167
Lock coupling, 208
Lock elision, transactional, 478
Lock implementation

BackoffLock, 155
Bakery, 34
blocking, see Blocking lock implementation
CLHLock, 159, 160
CohortBackoffMCSLock, 170, 171
CohortDetectionMCSLock, 171
CohortLock, 170
CompositeFastPathLock, 179, 180, 182
CompositeLock, 173–176, 179
HBOLock, 168
MCSLock, 162, 170, 171

SimpleReentrantLock, 194, 195
spinning, see Spinning lock implementation
TASLock, 151, 519–521, 526, 527
TOLock, 164, 165
TTASLock, 151, 154, 519–521, 526, 527

Lock striping, 310, 329
Lock-free hash set, see Hash set
Lock-free method, 65, 103, 205, 355
Lock-free object, 66
Lock-free queue, see Queue
Lock-free stack, see Stack
Lock-free universal construction, see Universal

construction
Lock-freedom, 65, 67

vs. wait-freedom, 66
LockedQueue, 188
LockFreeExchanger, 255, 256
LockFreeHashSet, 319–321
LockFreeList, 220, 345
LockFreeQueue, 236–238
LockFreeQueueRecycle, 243
LockFreeSkipList, 345–347, 349–355, 371, 372
LockFreeStack, 252–254
Locking, problems, 467
LockOne, 25
Lockout-freedom, 24
LockTwo, 26, 27
Log, in universal construction, 131
Logarithmic search structure, 335
Logical bucket (of lock-free hash set), 315
Logical removal, 216, 220, 221, 337, 338, 347, 372
LongStream, 423
Lost wakeup, 187, 501
Low contention, see Contention
Lower bound, number of locations, 39

M
(m,n)-assignment problem, 113
M-valued register, see Register
Main memory, 521, 523
Map (a stream), see Stream
Mapper, 408

KMeans, 411
WordCount, 410, 411

Mapper task, 407
Mapper thread, 406
MapReduce, 408, 409

implementation, 411,
MapReduce, 406–408 413
Mark bit, 221
Matching invocation and response, 60
Matrix, 379, 380
Matrix multiplication, 377, 378, 381
MatrixAddTask, 381, 382
MatrixMulTask, 381, 383

Index 547

MatrixMultiply, 425
MatrixVector, 423
Maximal progress, 66, 68
Maximum speedup, 13
MemManager, 455, 458, 460, 461
Memory barrier, 149, 529
Memory consistency, relaxed, 528
Memory consistency model, 64
Memory contention, see Contention
Memory controller, 152
Memory fence, see Memory barrier
Memory management, 240, 454

automatic, see Garbage collection
delegating reclamation, 455
epoch-based, 462
manual, 453
protecting memory, 455, 456

Memory model
C++, 512
Java, see Java memory model

Memory model, see Memory consistency model
Memory reclamation, see Memory management
Merger, 281, 282
MERGER network, 279, 283, 284
MESI protocol, see Cache coherence protocol
Method, 52

deadlock-free, see Deadlock-free method
Java, 497
lazy, see Lazy method
lock-free, see Lock-free method
obstruction-free, see Obstruction-free method
partial, see Partial method
starvation-free, see Starvation-free method
synchronous, see Synchronous method
total, see Total method
wait-free, see Wait-free method

Method call, 53, 80
complete, 61
interval of, 61
linearization point, see Linearization point
overlapping, 61
pending, 54, 61
precedence relation, 62, 80
successful, 202
unsuccessful (or failed), 202

Minimal progress, 66, 68
Miss, cache, see Cache miss
MMThread, 378
Modular system design, 57
Modularity, 183
Monitor, 183, 187, 244, 498, 516, 517
Move, thread, 93
Multi-reader multi-writer (MRMW) register, see

Register

Multi-reader single-writer (MRSW) register, see
Register

MultiConsensus, 114
Multicore, 1, 527
Multiple assignment object, 113
Multiple assignment problem, 113
Multiprogrammed environment, 390
Multithreaded architecture, 528
Mutual exclusion, 5, 10, 21–47, 147–182

deadlock-free, 39
properties of, 8

N
Network

balancing, see Balancing network
comparison, see Comparison network
counting, see Counting network
sorting, see Sorting network
switching, see Switching network

Node
BoundedQueue, 231, 232
C++ list, 456
CombiningTree, 268, 271–273
LazySkipList, 339, 340
LFUniversal, 131
list-based sets, 202
LockFreeQueue, 237, 238
LockFreeStack, 252, 253
PrioritySkipList, 372
StaticTreeBarrier, 438, 439
SynchronousDualQueue, 246, 247
TreeBarrier, 436, 437
Universal, 131

Nonblocking algorithms, problems, 470
Nonblocking correctness condition, see Correctness

condition
linearizability, 59

Nonblocking method, 56
Nonblocking object implementation, 56
Nonblocking operation, 56
Nonblocking progress condition, see Progress

condition
Nonblocking synchronization, 201, 220, 225, 315

price of, 225
Nontrivial register, 117
Nonuniform memory access system, see NUMA

system
Notification time, 432
notify(), Java, 501
notify_all(), C++, 512
notifyAll(), Java, 501
notify_one(), C++, 512
NUMA architecture, cacheless, 161, 163
NUMA system, 166, 522

548 Index

O
Object, 52

consensus, see Consensus object
deterministic, see Deterministic object
Java, 497
lock-free, see Lock-free object
multiple assignment, see Multiple assignment

object
obstruction-free, see Obstruction-free object
sequential, see Sequential object
shared concurrent, 76
universal, see Universal object
wait-free, see Wait-free object

Object history, legal, 61
Object implementation, wait-free, see Wait-free

object
Object state, 52
Object subhistory, see Subhistory
Obliterating, 41
Obstruction-free method, 66
Obstruction-free object, 66
Obstruction-free snapshot, see Snapshot
Obstruction-freedom, 66, 68
ODDEVEN network, 294, 295
OneBit, 47
Open addressing, see Hashing
Operation, blocking, see Blocking operation
Operation, nonblocking, see Nonblocking operation
Optimistic synchronization, 201, 211, 355

coarse-grained, 215
OptimisticList, 212–215
Order

program, see Program order
real-time, see Real-time order
write, 80

Orec, see Ownership record
Overlapping method calls, see Method call
Overwriting, 41
Ownership record (orec), 485

P
Padding, 158, 159
Parallel prefix computation, 443
Parallel sorting, 293
Parallelism, 1, 386

analyzing, 385
data, see Data parallelism
inherent, see Inherent parallelism

ParallelStream, 419–421
Partial method, 61, 229, 230
Partial order (strict), 61
Partial queue, see Queue
PeekableStack, 141
Pending method call, see Method call
Performance measure, 265

Performance (of multiprocessor programs),
analyzing, 2

Periodic, 287
PERIODIC network, 285, 288
Periodic counting network, see Counting network
Persistent communication, 9
Peterson, 27, 28, 148

generalized, 30
Peterson lock, generalized, 44
Peterson’s algorithm, 27, 43
PhasedCuckooHashSet, 324–326
Physical removal, 216, 220–222, 338, 347, 372
Pipelining, 287, 298
Polynomial, 402
Pool, 229
Pool, 265

bounded, 229
fork-join, see Fork-join pool
thread, see Thread pool
unbounded, 229

Postcondition, 52
PQueue, 359
Precedence graph, timestamps, see Timestamp
Precedence relation

events, see Event
intervals, see Interval
method call, see Method call

Precondition, 52
Predecessor task, 384
Prefix, 443
Priority inversion, 467
Priority queue, 359

bounded-range, 359
heap-based, 363
range, 360
skiplist-based, 371
unbounded-range, 359, 363, 371

PrioritySkipList, 371–374
Prism, 290
Probabilistic data structure, 336
Probe set, see Hashing
Process, 387
Processor, 387, 390, 521, 522
Producer, 229, 230, 244
Producer–consumer problem, 9, 10
Producer–consumer property, 10
Program correctness, 2
Program order, 54
Progress condition, 64–68, 205

blocking, 56, 67
deadlock-freedom, see Deadlock-freedom
dependent, 68
guarantees maximal progress, 68
guarantees minimal progress, 68
independent, 67

Index 549

lock-freedom, see Lock-freedom
nonblocking, 56, 65, 66
obstruction-freedom, see Obstruction-freedom
starvation-freedom, see Starvation-freedom
wait-freedom, see Wait-freedom

Progress guarantee, see Progress condition
Protocol

cache coherence, see Cache coherence protocol
consensus, see Consensus protocol
coordination, see Coordination protocol

Protocol state, 105

Q
QNode

CLHLock, 160
CompositeLock, 174
MCSLock, 162
TOLock, 164

Queue, 125, 187
Queue, 230

bounded, 230, 231
consensus number, 110, 111
lock-free, 236
partial, 230
priority, see Priority queue
single-enqueuer/single-dequeuer, 52
synchronous, 244
total, 235
unbounded, 235, 236

Queue implementation
LockBasedQueue, 50
WaitFreeQueue, 52

Queue lock, 156, 170, 171
timeout, 163

QueueConsensus, 110
Quicksort, 297
Quiescent balancer, see Balancer
Quiescent balancing network, see Balancing

network
Quiescent consistency, 59, 359, 361, 363, 373, 374

compositionality of, 60
does not preserve program order, 60
nonblocking, 60
pools and counters, 276
vs. linearizability, 60
vs. sequential consistency, 60

Quiescent object, 59

R
r-bounded waiting, 42
Random number generator, importance of

thread-local, 257, 503
Randomization, 297, 298, 503
Randomized consensus protocol, see Consensus

protocol

RangePolicy, 258, 259
RateLimiter, 200
Read lock, 189
Read–modify–write operation, 5, 116
Read–modify–write register, see Register
Read–write register, see Register
Reader, 189
Readers–writers lock, 189–192
Readers–writers problem, 11, 12
ReadWriteLock, 189
Ready (node), 388
Real-time order, 56, 61
Rebalancing, 363
Recursive split-ordering, 315
RecursiveAction, 379, 381
RecursiveTask, 379
RecursiveWordCount, 421
RecursiveWordCountTask, 421, 422
Redo log, 487
Reduce (a stream), see Stream
Reducer, 408

KMeans, 411
WordCount, 410, 412

Reducer task, 407
Reducer thread, 406
Reentrant lock, 187, 194
ReentrantLock, 50, 187, 505
Reference counting, 454
Refinable hash set, see Hash set
RefinableCuckooHashSet, 331–333
RefinableHashSet, 312, 313
Register, 77
Register, 54, 76

1-regular, 102
atomic, 77, 85, 87, 90, 105, 106
atomic MRMW, 90
atomic MRSW, 87, 90
atomic SRSW, 85, 87
Boolean, 76, 84
Common2, 117, 118
M-valued, 77, 84
multi-reader multi-writer (MRMW), 90
multi-reader single-writer (MRSW), 78, 79,

82–84, 87, 90, 92
nontrivial, 117
read–modify–write, 116
read–write, 76
regular, 79, 83–85
regular Boolean MRSW, 83
regular M-valued MRSW, 84
regular MRSW, 79
regular SRSW, 79, 85
safe, 78, 82, 83
safe Boolean MRSW, 83
safe MRSW, 78, 82

550 Index

safe SRSW, 78
single-reader single-writer (SRSW), 78, 79, 85,

87
wait-free, 91
wraparound, 102

Register constructions, 81–91
Regular Boolean MRSW register, see Register
Regular M-valued MRSW register, see Register
Regular MRSW register, see Register
Regular register, see Register
Regular SRSW register, see Register
RegularBooleanMRSWRegister, 83
RegularMRSWRegister, 84
Release (a lock), see Lock
Release (a semaphore), 196
Remote thread, 166
Rendezvous, 230, 244, 298
Representation invariant, 204
Reservation, 244

fulfill, 245, 247
Resource-acquisition-is-initialization (RAII) idiom,

510
Response, 53, 60, 80, 130
Response, matching invocation, 60
RevBarrier, 447
Reverse tree barrier, see Barrier
RMW operation, see Read–modify–write operation
RMWConsensus, 117
Robustness, 275
Rooms, 198, 263
Runnable, Java, 497, 498
Runs solo, thread, 107

S
Safe Boolean MRSW register, see Register
Safe MRSW register, see Register
Safe register, see Register
Safe SRSW register, see Register
SafeBooleanMRSWRegister, 82
Safety, 2
Sample sorting, 293, 296

generalization of quicksort, 297
randomization, 297

Saturate counting network, see Counting network
Scan operation, 92
Schedule, 65

fair, 66
greedy, 388

Scheduler, 65, 387, 388
Semaphore, 196
Semaphore, 194
Sense reversing barrier, see Barrier
SenseBarrier, 433, 434
Sentinel node, 203, 232, 235, 238, 246, 247, 317,

336

SeqObject, 130
SeqSnapshot, 93
Sequence lock, 468
Sequential bottleneck, see Bottleneck
Sequential consistency, 55, 56

nonblocking, 56
not compositional, 57
not guaranteed on real systems, 149
vs. linearizability, 59
vs. quiescent consistency, 60

Sequential consistency, 53–58
Sequential heap, see Heap
Sequential history, see History
Sequential object, 130, 134
Sequential skiplist, see Skiplist
Sequential specification, 53, 61
SequentialHeap, 364, 365
Sequentially consistent, modern systems are not, 64
SequentialRegister, 77
Set, 202
SetAgree, 123
Shared cache state, see Cache state
Shared concurrent object, 76
Shared counter, 4
Shared-memory computational model, 75
Shared-memory multiprocessors, 1
Side effect, 52
SimpleBarrier, incorrect, 432, 433
SimpleLinear, 360
SimpleReadWriteLock, 190, 191
SimpleSnapshot, 94
SimpleTDBarrier, 441
SimpleTree, 361
Single-enqueuer/single-dequeuer queue, see Queue
Single-reader single-writer register, see Register
SkipList, 335, 336
Skiplist, 335, 371

balancing property, 336
level, 335
probabilistic, 336
sequential, 335
shortcut, 336

Skiplist property, 337
not maintained, 346

SkipQueue, 371, 373, 374
lock-free, 374
quiescently consistent, 373, 374

sleep(), Java, 502
Smoothing network, 299
Snapshot, 92
Snapshot

atomic, 81, 92, 113
obstruction-free, 92
wait-free, 93

Snooping, see Bus

Index 551

Software bitonic counting network, see Counting
network

Software combining, 266
Software periodic counting network, see Counting

network
Software transaction, see Transactional memory
Solo, thread runs, 107
Sorting, 292

in-place, 295
Sorting network, 293

bitonic, 295
isomorphic to counting network, 294
synchronous, 295

Span law, 386
Span (parallelism analysis), 386
Specification, sequential, see Sequential

specification
Speedup, 12, 386
Spin lock, 147
Spinning, 526

local, see Local spinning
Spinning lock implementation, 56, 147, 184
Split-ordering, recursive, see Recursive

split-ordering
SRSW register, see Register
SSSP (single-source shortest-path), 426
Stack, 251

incorrect, 263, 264
Stack, 251

lock-free, 251
unbounded, 251

Stamp, 242, 391
StampedSnap, 95, 96
StampedValue, 86
Starvation, 24, 66
Starvation-free lock, see Lock
Starvation-free method, 67
Starvation-freedom, 8, 10, 24, 25, 67, 68
State

bivalent, see Bivalent
object, see Object state
protocol, see Protocol state
univalent, see Univalent

Static tree barrier, see Barrier
StaticTreeBarrier, 438, 439
Status, combining, see Combining status
std::atomic, C++, 452, 508, 512
std::condition_variable, C++, 511
std::lock_guard, C++, 510
std::mutex, C++, 509
std::recursive_mutex, C++, 509
std::shared_mutex, C++, 509
std::thread, C++, 508
std::unique_lock_wrapper, C++, 510
Step property, see Balancing network

StickyBit, 123
Store buffer, see Write buffer
Store operation, 39, 76
Stream, 414
Stream, 416

aggregate operation, 415, 416
filter, 407
intermediate operation, 415
lazy computation, 415
map, 407
reducer, 407
terminal operation, 415

Stream programming, 406, 414
StripedCuckooHashSet, 329, 330
StripedHashSet, 310
Striping, lock, see Lock striping
Subhistory, 61

object, 61
thread, 61

Successful method call, see Method call
Successor task, 384
Supplier, 409
Switching network, 302

adding network, 302
Symmetric multiprocessing (SMP), 522
Synchronization

blocking, see Blocking synchronization
coarse-grained, see Coarse-grained

synchronization
fine-grained, see Fine-grained synchronization
lazy, see Lazy synchronization
nonblocking, see Nonblocking synchronization
optimistic, see Optimistic synchronization

Synchronization event, Java, 505
Synchronization primitive, 103, 529, 530

relative power, 103
synchronized block or method, Java, 187, 500, 505
Synchronous method, 229, 230
Synchronous queue, see Queue
SynchronousDualQueue, 246, 247
SynchronousQueue, 244, 245
System state, 39

T
Tail (of queue), 230
Task, 377, 390
TDBarrier, 440, 441
Team consensus, 124
Termination detection barrier, see Barrier
Test-and-set instruction, 150
Test-and-set lock, 150, 519
Test-and-test-and-set lock, 151, 519
Thief, work stealing, 389

552 Index

Thread
C#, 514, 515
Java, 498, 499

Thread, 1, 76, 387, 390, 521, 522
C++, 508
C#, 514
conflict, 66
Java, 497
join, 498, 508
local, 166
mapper, 406
reducer, 406
remote, 166
runs solo, 107
start, 498
worker, 377
yield, see Yielding

Thread as state machine, 21
Thread ID, 25
Thread pool, 377

advantages, 377
Thread subhistory, see Subhistory
Thread-local variable, 157, 240, 241, 502, 513, 517
Thread-oblivious lock, 169
ThreadContext, 458, 460, 461
ThreadID, 3, 25

C#, 517
Java, 502, 503

thread_local, C++, 513
ThreadLocal, Java, 502
ThreadLocalRandom, Java, 503
ThreadStart, C#, 514, 515
ThreadStatic, C#, 517
Throughput, 265

vs. latency, 267
Timeout, 163, 172
Timestamp, 36, 46
Timestamp, 76

bounded, 35
precedence graph, 36

Timestamp system, 46
Timestamping, 85, 90
TimestampSystem, 36
TLE, see Transactional lock elision
Total method, 56, 61, 229, 230
Total order, 62
Total queue, see Queue
TourBarrier, 445
Tournament tree barrier, see Barrier
Transaction descriptor, 485
Transactional lock elision (TLE), 478
Transactional memory, 481

hardware, 494
hybrid, 492, 493
software, 483, 484

Transactional programming, 467, 472
data structures, 493
hardware support, 475
self-abort, 483

Transient communication, 9
TREE network, 289
Tree barrier, see Barrier
Tree width, 266
TreeBarrier, 435–437
TreeNode, 361, 362
TurnArbiter, 171
TwoThreadLockFreeQueue, 249

U
Unbounded pool, see Pool
Unbounded queue, see Queue
Unbounded stack, see Stack
Unbounded work stealing deque, see Work stealing

deque
Unbounded-range priority queue, see Priority queue
UnboundedDEQue, 395–399
UnboundedQueue, 236
UnboundedResizeLockFreeHashSet, 334
Undo log, 486
Univalent, 105
Universal, 135, 138
Universal class, 130
Universal construction, 129, 131, 134

lock-free, 130, 132, 133
log, 131
wait-free, 134–136

Universal object, 129, 130
Unsuccessful method call, see Method call

V
Valence, 105
Validation, 211, 212, 214, 487

value-based, 490, 491
Variable, auxiliary, see Auxiliary variable
Version number, 173
Victim, work stealing, 389
volatile, omitted declarations, 26
volatile array, special attention required, 506
volatile field, Java, 150, 451, 506
volatile keyword, Java, 64, 529

W
wait()

C++, 511
Java, 500, 501

Wait-free consensus, 104
Wait-free method, 65, 205, 215, 220, 225, 339, 348,

355
Wait-free object, 65, 103

Index 553

Wait-free object implementation, 78
Wait-free register, see Register, wait-free
Wait-free snapshot, see Snapshot
Wait-free universal construction, see Universal

construction
Wait-freedom, 65, 67

bounded, 33
vs. lock-freedom, 66

Waiting, 8
r-bounded, 42

Waiting filter, 301
Wakeup, lost, see Lost wakeup
Well founded ordered set, 203
Well-formed history, see History
Well-formed use of locks, 23
WFSnapshot, 96
Width (of a tree), 266
Window, 223
WordCount, 405, 406

MapReduce-based, 410
stream-based, 416, 417

Work dealing, 389, 397

Work distribution, 389
Work law, 386
Work (parallelism analysis), 385
Work stealing, 389
Work stealing deque, 390–399

bounded, 391
unbounded, 395

Worker, 199, 377, 379
Worker thread, 377
WorkSharingThread, 400
WorkStealingThread, 390, 440, 442
Wraparound register, see Register
Write absorption, 528
Write buffer, 149, 528
Write lock, 189
Write order, 80
WriteOnceRegister, 101
Writer, 189

Y
yield(), Java, 502
Yielding (a processor), 390, 502

	Contents
	Preface
	Acknowledgments
	Suggested ways to teach the art of multiprocessor programming
	1 Introduction
	1.1 Shared objects and synchronization
	1.2 A fable
	1.2.1 Properties of a mutual exclusion protocol
	1.2.2 The moral

	1.3 The producer-consumer problem
	1.4 The readers-writers problem
	1.5 The harsh realities of parallelization
	1.6 Parallel programming
	1.7 Chapter notes
	1.8 Exercises

	2 Mutual exclusion
	2.1 Time and events
	2.2 Critical sections
	2.3 Two-thread solutions
	2.3.1 The LockOne class
	2.3.2 The LockTwo class
	2.3.3 The Peterson lock

	2.4 Notes on deadlock
	2.5 The ﬁlter lock
	2.6 Fairness
	2.7 Lamport's Bakery algorithm
	2.8 Bounded timestamps
	2.9 Lower bounds on the number of locations
	2.10 Chapter notes
	2.11 Exercises

	3 Concurrent objects
	3.1 Concurrency and correctness
	3.2 Sequential objects
	3.3 Sequential consistency
	3.3.1 Sequential consistency versus real-time order
	3.3.2 Sequential consistency is nonblocking
	3.3.3 Compositionality

	3.4 Linearizability
	3.4.1 Linearization points
	3.4.2 Linearizability versus sequential consistency

	3.5 Quiescent consistency
	3.5.1 Properties of quiescent consistency

	3.6 Formal deﬁnitions
	3.6.1 Histories
	3.6.2 Linearizability
	3.6.3 Linearizability is compositional
	3.6.4 Linearizability is nonblocking

	3.7 Memory consistency models
	3.8 Progress conditions
	3.8.1 Wait-freedom
	3.8.2 Lock-freedom
	3.8.3 Obstruction-freedom
	3.8.4 Blocking progress conditions
	3.8.5 Characterizing progress conditions

	3.9 Remarks
	3.10 Chapter notes
	3.11 Exercises

	4 Foundations of shared memory
	4.1 The space of registers
	4.2 Register constructions
	4.2.1 Safe MRSW registers
	4.2.2 A regular Boolean MRSW register
	4.2.3 A regular M-valued MRSW register
	4.2.4 An atomic SRSW register
	4.2.5 An atomic MRSW register
	4.2.6 An atomic MRMW register

	4.3 Atomic snapshots
	4.3.1 An obstruction-free snapshot
	4.3.2 A wait-free snapshot
	4.3.3 Correctness arguments

	4.4 Chapter notes
	4.5 Exercises

	5 The relative power of primitive synchronization operations
	5.1 Consensus numbers
	5.1.1 States and valence

	5.2 Atomic registers
	5.3 Consensus protocols
	5.4 FIFO queues
	5.5 Multiple assignment objects
	5.6 Read-modify-write operations
	5.7 Common2 RMW operations
	5.8 The compareAndSet operation
	5.9 Chapter notes
	5.10 Exercises

	6 Universality of consensus
	6.1 Introduction
	6.2 Universality
	6.3 A lock-free universal construction
	6.4 A wait-free universal construction
	6.5 Chapter notes
	6.6 Exercises

	7 Spin locks and contention
	7.1 Welcome to the real world
	7.2 Volatile ﬁelds and atomic objects
	7.3 Test-and-set locks
	7.4 Exponential back-off
	7.5 Queue locks
	7.5.1 Array-based locks
	7.5.2 The CLH queue lock
	7.5.3 The MCS queue lock

	7.6 A queue lock with timeouts
	7.7 Hierarchical locks
	7.7.1 A hierarchical back-off lock
	7.7.2 Cohort locks
	7.7.3 A cohort lock implementation

	7.8 A composite lock
	7.9 A fast path for threads running alone
	7.10 One lock to rule them all
	7.11 Chapter notes
	7.12 Exercises

	8 Monitors and blocking synchronization
	8.1 Introduction
	8.2 Monitor locks and conditions
	8.2.1 Conditions
	8.2.2 The lost-wakeup problem

	8.3 Readers-writers locks
	8.3.1 Simple readers-writers lock
	8.3.2 Fair readers-writers lock

	8.4 Our own reentrant lock
	8.5 Semaphores
	8.6 Chapter notes
	8.7 Exercises

	9 Linked lists: The role of locking
	9.1 Introduction
	9.2 List-based sets
	9.3 Concurrent reasoning
	9.4 Coarse-grained synchronization
	9.5 Fine-grained synchronization
	9.6 Optimistic synchronization
	9.7 Lazy synchronization
	9.8 Nonblocking synchronization
	9.9 Discussion
	9.10 Chapter notes
	9.11 Exercises

	10 Queues, memory management, and the ABA problem
	10.1 Introduction
	10.2 Queues
	10.3 A bounded partial queue
	10.4 An unbounded total queue
	10.5 A lock-free unbounded queue
	10.6 Memory reclamation and the ABA problem
	10.6.1 A naïve synchronous queue

	10.7 Dual data structures
	10.8 Chapter notes
	10.9 Exercises

	11 Stacks and elimination
	11.1 Introduction
	11.2 An unbounded lock-free stack
	11.3 Elimination
	11.4 The elimination back-off stack
	11.4.1 A lock-free exchanger
	11.4.2 The elimination array

	11.5 Chapter notes
	11.6 Exercises

	12 Counting, sorting, and distributed coordination
	12.1 Introduction
	12.2 Shared counting
	12.3 Software combining
	12.3.1 Overview
	12.3.2 An extended example
	12.3.3 Performance and robustness

	12.4 Quiescently consistent pools and counters
	12.5 Counting networks
	12.5.1 Networks that count
	12.5.2 The bitonic counting network
	12.5.2.1 A software bitonic counting network
	12.5.2.2 Proof of correctness
	12.5.2.3 A periodic counting network
	12.5.2.4 A software periodic counting network

	12.5.3 Performance and pipelining

	12.6 Diffracting trees
	12.7 Parallel sorting
	12.8 Sorting networks
	12.8.1 Designing a sorting network
	12.8.1.1 A bitonic sorting algorithm

	12.9 Sample sorting
	12.10 Distributed coordination
	12.11 Chapter notes
	12.12 Exercises

	13 Concurrent hashing and natural parallelism
	13.1 Introduction
	13.2 Closed-address hash sets
	13.2.1 A coarse-grained hash set
	13.2.2 A striped hash set
	13.2.3 A reﬁnable hash set

	13.3 A lock-free hash set
	13.3.1 Recursive split-ordering
	13.3.2 The BucketList class
	13.3.3 The LockFreeHashSet<T> class

	13.4 An open-address hash set
	13.4.1 Cuckoo hashing
	13.4.2 Concurrent cuckoo hashing
	13.4.3 Striped concurrent cuckoo hashing
	13.4.4 A reﬁnable concurrent cuckoo hash set

	13.5 Chapter notes
	13.6 Exercises

	14 Skiplists and balanced search
	14.1 Introduction
	14.2 Sequential skiplists
	14.3 A lock-based concurrent skiplist
	14.3.1 A bird's-eye view
	14.3.2 The algorithm

	14.4 A lock-free concurrent skiplist
	14.4.1 A bird's-eye view
	14.4.2 The algorithm in detail

	14.5 Concurrent skiplists
	14.6 Chapter notes
	14.7 Exercises

	15 Priority queues
	15.1 Introduction
	15.1.1 Concurrent priority queues

	15.2 An array-based bounded priority queue
	15.3 A tree-based bounded priority queue
	15.4 An unbounded heap-based priority queue
	15.4.1 A sequential heap
	15.4.2 A concurrent heap

	15.5 A skiplist-based unbounded priority queue
	15.6 Chapter notes
	15.7 Exercises

	16 Scheduling and work distribution
	16.1 Introduction
	16.2 Analyzing parallelism
	16.3 Realistic multiprocessor scheduling
	16.4 Work distribution
	16.4.1 Work stealing
	16.4.2 Yielding and multiprogramming

	16.5 Work-stealing deques
	16.5.1 A bounded work-stealing deque
	16.5.2 An unbounded work-stealing deque
	16.5.3 Work dealing

	16.6 Chapter notes
	16.7 Exercises

	17 Data parallelism
	17.1 MapReduce
	17.1.1 The MapReduce framework
	17.1.2 A MapReduce-based WordCount application
	17.1.3 A MapReduce-based KMeans application
	17.1.4 The MapReduce implementation

	17.2 Stream computing
	17.2.1 A stream-based WordCount application
	17.2.2 A stream-based KMeans application
	17.2.3 Making aggregate operations parallel

	17.3 Chapter notes
	17.4 Exercises

	18 Barriers
	18.1 Introduction
	18.2 Barrier implementations
	18.3 Sense reversing barrier
	18.4 Combining tree barrier
	18.5 Static tree barrier
	18.6 Termination detection barriers
	18.7 Chapter notes
	18.8 Exercises

	19 Optimism and manual memory management
	19.1 Transitioning from Java to C++
	19.2 Optimism and explicit reclamation
	19.3 Protecting pending operations
	19.4 An object for managing memory
	19.5 Traversing a list
	19.6 Hazard pointers
	19.7 Epoch-based reclamation
	19.8 Chapter notes
	19.9 Exercises

	20 Transactional programming
	20.1 Challenges in concurrent programming
	20.1.1 Problems with locking
	20.1.2 Problems with explicit speculation
	20.1.3 Problems with nonblocking algorithms
	20.1.4 Problems with compositionality
	20.1.5 Summary

	20.2 Transactional programming
	20.2.1 An example of transactional programming

	20.3 Hardware support for transactional programming
	20.3.1 Hardware speculation
	20.3.2 Basic cache coherence
	20.3.3 Transactional cache coherence
	20.3.4 Limitations of hardware support

	20.4 Transactional lock elision
	20.4.1 Discussion

	20.5 Transactional memory
	20.5.1 Run-time scheduling
	20.5.2 Explicit self-abort

	20.6 Software transactions
	20.6.1 Transactions with ownership records
	20.6.2 Transactions with value-based validation

	20.7 Combining hardware and software transactions
	20.8 Transactional data structure design
	20.9 Chapter notes
	20.10 Exercises

	A Software basics
	A.1 Introduction
	A.2 Java
	A.2.1 Threads
	A.2.2 Monitors
	A.2.3 Yielding and sleeping
	A.2.4 Thread-local objects
	A.2.5 Randomization

	A.3 The Java memory model
	A.3.1 Locks and synchronized blocks
	A.3.2 Volatile ﬁelds
	A.3.3 Final ﬁelds

	A.4 C++
	A.4.1 Threads in C++
	A.4.2 Locks in C++
	A.4.3 Condition variables
	A.4.4 Atomic variables
	A.4.5 Thread-local storage

	A.5 C#
	A.5.1 Threads
	A.5.2 Monitors
	A.5.3 Thread-local objects

	A.6 Appendix notes

	B Hardware basics
	B.1 Introduction (and a puzzle)
	B.2 Processors and threads
	B.3 Interconnect
	B.4 Memory
	B.5 Caches
	B.5.1 Coherence
	B.5.2 Spinning

	B.6 Cache-conscious programming, or the puzzle solved
	B.7 Multicore and multithreaded architectures
	B.7.1 Relaxed memory consistency

	B.8 Hardware synchronization instructions
	B.9 Appendix notes
	B.10 Exercises

	Bibliography
	Index

