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Preface

The aim of this book is to introduce the conceptual foundations of quantum
mechanics. To this end, we will start with the empirical evidence that quantum
mechanics is meant to explain, develop the standard formulation of quan-
tum mechanics and discuss how it explains the empirical evidence, and then
turn to the measurement problem and the various attempts to resolve it.

Since quantum mechanics is written in the language of linear algebra, we
will need some basic mathematical notions in order to say precisely what the
theory is. With few exceptions, almost everything should be accessible to a reader
comfortable with high-school algebra.

This book owes much to the insights of David Bohm, Hugh Everett III, Eugene
Wigner, John Bell, and David Albert. Everett and Wigner were the first to char-
acterize the measurement problem in the form that we will discuss it. Bohm and
Bell helped to set the stage for what a satisfactory resolution of the measurement
problem might look like. And Albert’s influence is evident throughout the book.

Theory selection involves a sort of cost-benefit analysis. We start with rough
intuitions concerning the nature of the world and a sense of the sorts of predictions
and explanations we want from a satisfactory physical theory, then we see how
much we can get given the constraints of inquiry. From this perspective, this book
might be thought of as a map of the conceptual options and explanatory trade-offs
one faces in constructing a theory that explains and predicts quantum phenomena.

It is impossible to evaluate the conceptual foundations of quantum mechanics
without reflecting on general philosophical questions concerning what we can
know about the physical world and what it means for a physical theory to explain
and predict. That the world is so deeply counterintuitive that one cannot trust even
one’s most cherished intuitions is one of the philosophical lessons of quantum
mechanics. Part of the argument here is that there are nevertheless better and worse
ways of understanding the quantum world.

The book is written the way I would explain quantum mechanics to a friend.
While there is a natural order of sorts, the structure is not linear. This means that
we will sometimes briefly discuss something before it is carefully explained. I have
put forward-looking references in a number of places to mark this.

This book is the result of many discussions with friends and colleagues and
contributions from students. Discussions with David Albert, Tim Maudlin, and
David Wallace over the years were particularly salient. I would also like to thank
Valia Allori, Thomas Barrett, Jeffrey Bub, Daniel Herrmann, J. B. Manchak,
Guillaume Massas, and Lant Pritchett for helpful comments on the book as it
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was being written; Abel Pefia for a close reading and excellent suggestions on an
early version of the manuscript; the editors at OUP for their expert guidance; and
Martha Tueller Barrett for her support at every turn. Finally, this project benefited
from an FQXi mini-grant and from the kind hospitality of the colleagues at the
University of Salzburg.

Jeff Barrett
Irvine, CA

6 July 2019
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1

Classical Mechanics

1.1 Quantum Mechanics and Philosophical Intuition

Quantum mechanics is arguably the most accurate physical theory we have ever
had, but it is deeply counterintuitive. It must be, in order to be empirically
adequate. The physical world does not accord well with our commonsense and
philosophical intuitions. And quantum phenomena are among the most recalci-
trant aspects of our empirical experience.

That even our most cherished intuitions are unreliable as a guide to the physical
world has an immediate philosophical consequence. There is no formulation of
quantum mechanics that accords with all of our classical intuitions. That said, it
is not at all clear which intuitions we should give up. While all formulations of
quantum mechanics are counterintuitive, different formulations involve different
conceptual sacrifices. We will start with the standard formulation of quantum
mechanics, study its properties and the conceptual problems it encounters, and
then consider some of the alternatives.

That there are different formulations of quantum mechanics that suggest quite
different sets of metaphysical commitments also has philosophical implications.
Alternative formulations of quantum mechanics concretely illustrate why it is
difficult to judge our current physical theories to be true, probably true, or even
probably approximately true. This is something we will return to after we have
had a chance to see the radically different ways that alternative formulations of
quantum mechanics describe the world.

The standard formulation of quantum mechanics has been used to illustrate
the contingent nature of even the most certain philosophical intuitions. The
philosopher and logician W. V. Quine famously appealed to the theory to argue
that logical truth was empirical. The core of his argument was that one might
have to modify even laws that had been taken by philosophers as necessary truths
in order to account for the recalcitrant experience described and predicted by
quantum mechanics. As Quine put the point, “[r]evision even of the logical law
of the excluded middle has been proposed as a means of simplifying quantum
mechanics; and what difference is there in principle between such a shift and
the shift whereby Kepler superseded Ptolemy, or Einstein Newton, or Darwin
Aristotle?” (1980, 43).

The standard formulation of quantum mechanics does not require one to
give up the law of excluded middle at the level of state attribution. A given
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quantum-mechanical state either obtains or not for a particular physical system
as usually understood. But on the standard interpretation of states, the law of the
excluded middle does not hold for property attribution. As a quick example, my
favorite bicycle might be in a superposition of being in the garage and not in the
garage. If so, it is not in fact determinately in the garage and not in fact deter-
minately not in the garage. And it is not partly in and partly out of the garage in
any classical sense either. On the standard interpretation of quantum-mechanical
states, this is a basic metaphysical issue, not an epistemic issue regarding what I
may or may not know regarding the location of the bicycle.

One might say that property attribution in quantum mechanics is geometrical,
not logical. Precisely what this means is something we will discuss in detail later,
but there is a matter of philosophical methodology to discuss now. When one
learns that the standard formulation of quantum mechanics treats properties
geometrically rather than logically, one might suppose that we have learned
something deep about the metaphysics of the physical world and that our pre-
theoretic intuitions concerning the metaphysics of property attribution have been
shown to be wrong. While this move of naturalizing metaphysics is tempting, to
imagine that one can simply read necessary metaphysical truths from quantum
mechanics would be to commit a mistake that is as bad as trusting the metaphys-
ical intuitions one found intuitively compelling before reflecting on the nature
of our quantum-mechanical experience. The standard formulation of quantum
mechanics is certainly one of the best physical theories we have ever had, but
any metaphysical conclusions one draws from it should be taken to be thoroughly
contingent.

There are several reasons for this. To begin, while the standard formulation of
quantum mechanics makes incredibly accurate predictions for sometimes wildly
counterintuitive experimental results (on the order of fourteen significant figures
for some measurements), there is good reason to believe that the theory is, at best,
incomplete and, on a strict reading, logically inconsistent. This is the quantum
measurement problem (something we will discuss in detail in Chapter 7). Insofar
as the standard theory is at best incomplete and arguably inconsistent, it is a
poor candidate for a reliable guide to metaphysical truth. Second, there are many
mutually incompatible alternative formulations of quantum mechanics. These
theories make empirical predictions that are similar to those made by the standard
formulation of quantum mechanics for the experiments we have performed so
far, but they explain the results of these experiments in often strikingly different
ways. In some cases they disagree regarding the results of future experiments.
Third, even if one had a particular favorite formulation of quantum mechanics,
one would still have a number of options regarding precisely how to use it
to provide explanations, and such alternative explanations often suggest quite
different metaphysical commitments. Finally, the history of quantum mechanics
provides ample evidence for the ways in which the particular formulations of even
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our most fundamental physical theories are contingent and hence unsuitable as a
source of necessary truths regarding the basic nature of the world.*

It is important to be clear about this. The reason we know that the standard
formulation of quantum mechanics is wrong is not pessimistic induction over
the descriptive failures of our past theories. Rather, the standard theory is either
incomplete in an empirically significant way on the most charitable reading or
logically inconsistent on an uncharitable but natural reading. Further, its basic
dynamical structure fails to mesh well with special relativity, the other cornerstone
of modern physics.

The measurement problem is not that quantum mechanics is counterintuitive.
It must be counterintuitive in order to make the right empirical predictions. The
measurement problem, rather, is that one can describe an experiment in the
language of quantum mechanics such that on plausible background assumptions
the standard theory predicts logically inconsistent results. One can avoid the
inconsistency by insisting that the standard theory is incomplete because it does
not say which result in fact occurs. But then one has the task of fixing the theory.

There are a number of very different ways to address the quantum measurement
problem. Each involves addressing the standard theory’s potential inconsistency
while retaining its successful empirical predictions.

A brief example may be helpful. Bohmian mechanics is one of the options for
how one might revise the standard formulation of quantum mechanics to resolve
the quantum measurement problem.> We will discuss this theory in detail in
Chapter 11. Bohm’s theory does not treat property attribution in the same way that
the standard formulation of quantum mechanics does. Here, when the quantum
state of my bike is a superposition of it being in the garage and it not being in the
garage, the bike really is either determinately in the garage or determinately not in
the garage. While the law of the excluded middle applies to position attribution on
this formulation of quantum mechanics, this does not mean that one has rescued
a classical set of philosophical intuitions from quantum mechanics. Position is
treated in a special, privileged way in Bohmian mechanics. This means that most of
what one classically takes as intrinsic observable physical properties (e.g. velocity,
kinetic energy, etc.) are not really physical properties at all. Rather, one might
think of them as the result of an elaborate illusion predicted by the theory. Hence
while Bohmian mechanics saves some classical intuitions, it violates others.

Bohmian mechanics is not the only theoretical alternative to the standard
formulation of quantum mechanics. But even a firm commitment to Bohmian
mechanics would not provide a definitive metaphysics. This is because there

! See Cushing (1994) for an extended discussion of the historical contingency of quantum
mechanics.

* This formulation of quantum mechanics was first proposed by David Bohm (1952) in response to
the quantum measurement problem.
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are always a number of quite different ways to understand the metaphysical
commitments associated with any particular formulation of quantum mechanics.’

The upshot is that while quantum mechanics illustrates how our philosophical
intuitions may mislead us, it does not deliver a ready-made description of the
world to replace those intuitions. Rather, it provides a number of quite different,
and not entirely satisfactory, metaphysical options.

Before we consider the conceptual problems that the standard formulation of
quantum mechanics encounters and how these problems might be addressed, we
need to understand how the theory works. A good place to start is by considering
where our classical intuitions go wrong.

1.2 Newtonian Mechanics

Classical mechanics was proposed by Isaac Newton (1687) in his Philosophice
Naturalis Principia Mathematica as a unified account of celestial and terrestrial
motion. It describes the physical world in terms of the motions of its constituent
objects. One might take particles to be the simplest sort of object.* A particle has
a position x, a velocity v, and a mass m, and it is acted on by various forces F.* The
mass of a particle and its initial position and velocity and the forces acting on it
determine how it moves.

Newton (1687, 83) presented the basic principles of his theory as three axioms,
or laws, of motion.

Law I. Every body perseveres in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed thereon. [That
is, an object moves at a constant velocity unless it is acted on by a force.]

Law II. The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that force
is impressed. [That is

F = ma = m(dv/dt) = dp/dt, (1.1)

* In the case of Bohmian mechanics, among one’s options are how one understands configuration
space, the dynamical laws of the theory, and which observables one chooses as determinate.

* For his part, Newton did not simply assume that the basic constituents of the world were particles.
He also provided an extensive development and presentation of continuum mechanics in the Principia.
In the continuum mechanics, the basic stuff of the physical world is modeled as smooth and uniform
substance that need not be thought of as an approximation for a large number of particles. Continuum
mechanics avoids some of the conceptual problems one encounters with particle mechanics. It does not,
however, solve the problems that led to quantum mechanics. See Mark Wilson (2015) for a discussion
of classical continuum mechanics. For now we will suppose that the basic constituents of the world are
particles.

*> We will use bold type to represent classical vector quantities like position, velocity, and momentum.
We will have more to say about vectors in Chapter 4.
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where F is the force impressed, m is the object’s mass, a the object’s acceleration, v
the object’s velocity, and p the object’s momentum.]

Law III. To every action there is always opposed an equal reaction: or the
mutual actions of two bodies upon each other are always equal, and directed to
contrary parts. [That is

Fab = _Fba'] (12)

Law II is the theory’s dynamics. It tells us how the velocity of an object changes
as forces are applied to it. The object’s velocity, in turn, tells us how its position
changes.

Given a plausible set of assumptions, classical mechanics is a deterministic
theory where how each particle moves is fully determined by the forces imposed
on it.° The current state of a physical system is given by the position, velocity, and
mass of each of its constituent objects. Given the state at any time together with
the forces acting between the objects, Law II fully determines the state at all future
and past times.

In this sense, classical mechanics describes a clockwork universe where every-
thing that happens is determined by the initial state of the fundamental physical
objects and the forces that act between the objects. However, it remains to say what
forces there are and how the forces themselves behave.

Newton’s account of gravitational interactions provided an example of a force
law. In modern notation, the gravitational force between two objects a and b is
given by the law of universal gravitation

—Gm,my,
2 b
ab

F,, = (1.3)

r

where F,, is the gravitational force on 4, G is the gravitational constant, m, and
my, are the masses of a and b respectively, and r;, is the directed distance between
the two objects.

If one supposes that gravitation is the only force, then the theory describes
a physical world where objects move along continuous well-defined trajectories
determined by the mutual attraction of the gravitational forces acting between
them. If the other forces, whatever those may be, could be similarly described,
it was thought that one would have a complete description and explanation of the
behavior of the physical world.

¢ If the forces imposed on the objects are unbounded or not always well defined, then all bets are off,
and the theory may not be deterministic. See Earman (1986) for a discussion of this and closely related
issues. If a system does not satisfy the required conditions, then it might not evolve in a deterministic
way, but, even then, the sort of indeterministic behavior that might be exhibited by a classical system is
believed to be fundamentally different from the sort indeterministic behavior predicted by the standard
formulation of quantum mechanics.
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As an indicator of the reception of this theory, Edmund Halley, the English
astronomer, mathematician, and physicist, was inspired to write an ode to
Newton’s achievement. The ode served as an introduction to Newtons (1687)
Principia. Among other things, the ode gives Halley’s assessment of the cognitive
status of the Newton’s theory:

Lo, for your gaze, the pattern of the skies!
What balance of the mass, what reckonings
Divine! Here ponder too the Laws which God,
Framing the Universe, set not aside

But made the fixed foundations of his work.

These were the laws that God himself set not aside in the creation of the world. Not
only did Newton have the physics right, but he had read the mind of God.

It was clear to everyone, including Newton himself, that the theory as described
in the Principia was incomplete. Perhaps most saliently there were forces other
than gravitation. To get a complete physical theory, one would need to characterize
these with similar precision. But what remained to be done looked to many like just
a bit of tidying up. Having the dynamics in hand that had been divinely established
to govern the motion of all physical objects provided a framework for filling in the
rest of the details.

Laws for other forces were subsequently added to the theory. Looking much
like Newton’s law of universal gravitation, Coulomb’s law gives the electric force
between charged objects:

— kqaqb

Fab 2
rab

(1.4)

where F,, is the electric force on a, k is Coulomb’s constant, g, and g, are the
charges of a and b respectively, and r,, is the directed distance between the two
objects.

But here the tidying up required some subtlety. It turned out that the electric
force was dynamically coupled to another force—the magnetic force. What was
needed was a dynamical account of how these forces were mediated and how
their behavior was interrelated. To this end, the electric and magnetic forces were
characterized as being mediated by the electric field E and the magnetic field B
respectively, and laws were proposed to describe how these fields interacted with
charged material objects and how the fields themselves interacted and evolved. The
result was four laws:

V-E =4mp
V-B=0
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VxE=_la_B
c ot
1 O0E
VXB=-(4 — 1,
c( o+ 6t>

where p is the total electric charge density, c is the speed of light, and J is the total
current density.” In order, these are Gauss’s law, Gauss’s law for magnetism, the
Maxwell-Faraday equation, and Ampeére’s circuital law. These laws describe how
electric and magnetic fields evolve and how they interact with matter and each
other. They are known collectively as Maxwell’s equations.

Two consequences of Maxwell’s equations will prove particularly important.
First, just as Newton’s second law describes material objects moving in a deter-
ministic way that depends on forces, Maxwell’s equations describe electric and
magnetic fields evolving in a deterministic way that depends on the motions of
material objects and fields. This maintains the picture of a clockwork universe,
just one that includes fields in addition to material objects. Second, Maxwell’s
equations predict that an accelerating charge will radiate electromagnetic waves
that will travel at the speed of light c. An accelerating charge, then, loses energy.
We will return to this in a moment.

With particles as fundamental material objects, we are left with the follow-
ing classical picture. Particles always have determinate positions, velocities, and
masses. The positions and velocities of the particles change in a deterministic way
as forces are imposed on them, and the particles follow determinate trajectories
over time. The motions of the particles and the fields determine the motions of the
fields, which, in turn, affect the forces on, and hence the motions of, the particles.
This picture is more complex than Newton’ first pass, but it is still a thoroughly
clockwork world under a plausible set of background assumptions.

There remained some tidying to do, but up to the late nineteenth century it
looked like classical mechanics was on track to provide a complete and unified
account of the physical world. And the overall picture was relatively intuitive.
There are fundamental physical objects, those objects have a set of basic physical
properties, and those properties evolve over time according to regular laws.
Things move when they are pushed, how fast they move depends on how hard
they are pushed, and when they move they follow determinate and well-defined
trajectories.

Together, the laws of classical mechanics allowed for detailed predictions and
explanations over a broad range of phenomena. Indeed, it was the predictive
strength of the theory that ultimately showed that it could not be right.

7 These equations involve a bit of vector analysis. This is one of the relatively few occasions in the
book where we will not discuss the mathematics in detail. What matters to us most here is the two
consequences of Maxwell’s equations described below.



8 CLASSICAL MECHANICS
1.3 Problems with Classical Mechanics

Quine€’s belief that even the laws of logic were empirical followed from his under-
standing of how our commitments change as we learn from empirical experience.

Any statement can be held true come what may, if we make drastic enough
changes elsewhere in the system.... A recalcitrant experience can...be
accommodated by any of various alternative reevaluations in various alternative
quarters of the total system. (1980, 43-4)

In this he was certainly right, both logically and historically.

No particular empirical problem was by itself fatal to classical mechanics.
Among the moves available to someone who wants to save classical mechanics
from recalcitrant experience are the introduction of new forces. On the face of it,
one just needs to postulate whatever forces it takes to get the right motions at the
right times.

Even so, empirical problems began to pile up. By the early twentieth century
it was clear that these problems were interrelated and pointed to something
deeply counterintuitive about the behavior of the physical world. We will briefly
consider two empirical problems that were historically important, then consider
two closely related problems where the clash between experience and our pre-
quantum intuitions was particularly clear.

One of the central problems with classical mechanics arose in trying to account
for black-body radiation. Black-body radiation is the electromagnetic radiation
(including light) that is emitted from a perfectly opaque and non-reflective object
by dint of its temperature alone. To get an idea of the phenomenon, imagine a
hollow sphere of non-reflective metal with a small hole punctured in one side.
In this setup the hole acts as a black body. Light going into the hole from
outside the sphere does not reflect back out. Hence the hole looks black at room
temperature. But as the sphere is heated, the hole will begin to glow dull red
then orange then bright yellow, perhaps eventually becoming bright blue if the
material can withstand the heat. While there is typically a dominant color to the
light emitted at a particular temperature, the full range of light emitted is always
a mixture of colors. This mixture is the frequency distribution of light from the
black body.

The problem is that classical mechanics makes entirely the wrong predictions for
this distribution. Indeed, on plausible background assumptions, classical statistical
mechanics predicts that a black body should emit a beam of light with infinite
energy no matter what the positive temperature. If one were to build a metal sphere
with a hole in the side, one might imagine a death-ray emanating from the hole
destroying the universe. But nothing even approximately like that happens.
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The physicist Max Planck got the right predictions for black-body radiation
in 1900, but to do so he made the implausible assumption that energy is always
exchanged in discrete packets, or quanta.®* What makes this implausible is that
classical mechanics places no constraints whatsoever on the quantity of energy
that might be exchanged between objects in an interaction.

The same implausible assumption helped to explain another puzzle. When light
strikes a metal surface, negatively charged particles, later identified as electrons,
were sometimes found to be emitted from the surface. But, contrary to what
one would expect from classical mechanics, the number of electrons emitted was
not a simple function of the energy density of the light. Very bright red light
might do nothing, while even the faintest blue light might produce a shower
of electrons. This is the photoelectric effect. The effect is inexplicable if light is
electromagnetic radiation whose interaction with matter is fully characterized by
Maxwell’s equations. To be sure, electromagnetic radiation should affect charged
particles, but the magnitude of the effect should depend on the intensity of the
radiation, not its frequency.

Albert Einstein explained the photoelectric effect in 1905 by assuming that
energy can only be transmitted in discrete quanta and that the energy associated
with each photon or quantum of light is given by hv, where h is Planck’s constant
and v is the frequency of the light.” This explanation, for which Einstein won his
Nobel Prize in Physics, is flatly incompatible with the view that light consists in
electromagnetic waves as described by Maxwell’s equations.

There was ample evidence from the early nineteenth century on for the wave-
like nature of light. As a form of electromagnetic radiation, it propagates, disperses,
diffracts, and interferes, as one would expect of a wave. Light’s wave-like behavior
was well-described by Maxwell’s equations. But there was also increasing evidence
for the particle-like nature of light. When low-intensity light strikes phospho-
rescent or photographic material, it appears to strike it at very precise, discrete
locations rather than hitting it over a broad smudged-out region as a wave would.
One sees sharply localized flashes on a phosphorescent screen or single black dots
on a photographic plate.

The classical two-slit experiment illustrates the dual nature of light. Consider a
light source (a laser, for example), a screen with two parallel slits cut in it, and a
plain screen beyond the slits (as in Figure 1.1A). If the slits are sufficiently close to
each other, a pattern of bright and dark lines can be seen on the screen beyond the
slits. The graph on the right of the figure indicates the relative brightness of the light
hitting the screen in each region. This sort of interference pattern is characteristic
of wave phenomena. It is as if the light waves incident on the barrier produce

8 Planck (1900) and see Pais (1982, 364-72) for a discussion putting this into historical context.
° See Pais (1982, 378-86).
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Figure 1.1. Two-slit interference patterns.

two light sources, one at each slit, that constructively and destructively interfere
with each other before hitting the screen. Where there is constructive interference,
the waves add and there is a bright line on the screen. Where there is destructive
interference, the waves cancel and there is a dark line on the screen.

But other details of the experiment seem flatly incompatible with a wave model
of light. At low intensities, one can observe individual flashes that suggest particles
of light hitting the screen at precise, but largely random, locations. The bright lines
in the interference pattern are just where more photons hit and the dark lines are
where fewer hit. These particles came to be called photons.

That said, a particle model of light also appears untenable since particles passing
through slits should not exhibit an interference pattern at all. By lowering the
intensity of the light sufficiently, one can ensure that there is only one photon trav-
eling through the device at a time. Suppose each such photon follows a trajectory
that either passes through slit a or through slit b. If a photon passes through slit a,
it should hit the screen directly behind slit a, and if it passes through slit b it should
hit the screen directly behind slit slit b. And, indeed, when one blocks one or the
other of the two slits, one observes the photons that still make it through simply
hitting the screen behind the unblocked slit (as in Figures 1.1B and C).

Since we are sending the photons through the device one at a time, if they can
be thought of as classical particles at all, one should see the sum of the two one-
slit patterns when both slits are open (as in Figure 1.1D). But that is not what
happens. When both slits are open the photons behave like waves and produce
an interference pattern (as in Figure 1.1A) even when the light is so dim that there
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is only one particle moving through the device at a time. If one thinks of each
photon as passing through a particular slit, then one must suppose that the particle
somehow detected whether the other slit was blocked. It then moves straight
back to the screen if the other slit is blocked but moves in a puzzling way that
eventually produces the distinctive wave-like interference pattern if the other slit
is unblocked.

All of this represents a fundamental explanatory failure of classical mechanics.
If one supposes that light is wave-like, classical mechanics can explain the inter-
ference pattern, but cannot explain finding photons at particular locations. If one
supposes that light is particle-like, it can explain finding photons at particular
locations, but cannot explain how they got there.

In order to explain how light behaves we need to know whether to think of it as
a wave, a particle, or something else. And, however we end up thinking of it, we
then need consistent dynamical laws that characterize its behavior.

Since each of the problems we have considered so far involves the nature
and behavior of light, one might imagine that classical mechanics does just fine
predicting the behavior of ordinary material objects like books or tables or rocks.
But this is not the case. Indeed, classical mechanics predicts that such ordinary
material objects—things like baseballs, trees, and such—are impossible.

1.4 The Stability of Matter

By the end of the nineteenth century there was good reason to believe that matter
was composed, in part, of relatively light, negatively charged particles. It was these
particles that were emitted in cathode ray tubes and released from a metal surface
by light in the photoelectric effect. These particles were called electrons.

But the very existence of electrons posed an immediate classical problem for the
stability of matter. Since electrons are negatively charged, they will, by Coulomb’s
law, repel each other, so there is no stable configuration of particles consisting of
just electrons. There must also be something that is positively charged to keep the
electrons from flying off and to cancel the negative charge on the electrons and
explain how an object might be electrically neutral.

The British physicist J. J. Thomson’s solution was to suppose that the atoms
that made up the fundamental elements like hydrogen, carbon, and potassium
consisted of a number of negatively charged electrons “enclosed in a sphere of
uniform positive electrification” (1904). There was just enough of this positive
electrification in each atom to balance the negative charge of the electrons and
render the atom electrically neutral (as in Figure 1.2C). Thomson’s plum-pudding
model had many virtues. Among these was that the electrons in an atom were
simply embedded in a positive-charged pudding and did not move, a point we
will return to in a moment.
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The problem with Thomson’s model was that it did not account well for
subsequent empirical data. In a series of experiments conducted between 1908
and 1913, Ernest Rutherford, Hans Geiger, and Ernest Marsden sent beams of
positively charged alpha particles, each of which thousands of times heavier than
an electron (and which were later found to be composed of two positively charged
protons and two neutral neutrons), at thin metal foils. Most of the alpha particles
passed straight through the foil. But they found that a few of the alpha particles
were deflected by large angles. Indeed, sometimes they were bounced almost
straight back.'® If Thomson’s model were correct, the positively charged alpha
particles would not bounce off the much lighter electrons or the positively charged
pudding. That they did bounce meant that there were small positively charged
objects in the atom that were much heavier than the alpha particles themselves.

So Thomson’s plum-pudding model of the atom was wrong. Rather than a
positively charged pudding with negatively charged electrons embedded in it, there
must be heavy, positively charged nuclei with much lighter negatively charged
electrons flying around them. But this was a model that Thomson had already ruled
out when he was thinking about the problem, and for good reason.

Consider how a negatively charged electron would move about a heavier,
positively charged nucleus. The problem is not that classical mechanics fails to
make predictions—it is that the predictions it makes are manifestly false.

Suppose that the electron is not moving (as in Figure 1.2A). Since the electron
and the nucleus are oppositely charged and the electron is much lighter, the
electron will accelerate and move toward the nucleus. As an accelerating charge,
Maxwell’s equations require the electron to emit electromagnetic radiation as
it falls into the nucleus. So the atom will quickly fall in on itself in a burst of
electromagnetic radiation.

So suppose that the electron is moving (as in Figure 1.2B). Since they are
oppositely charged, the electron will feel the attractive force of the nucleus and
accelerate toward it. Given that the electron is initially moving, it may begin to
orbit the heavier nucleus, but to orbit it must change its direction of motion and
hence accelerate, and as an accelerating charge, Maxwell’s equations again require
the electron to emit electromagnetic radiation. This radiation will carry energy
away from the electron. If the radiant energy comes from the electron’s potential
energy, then the electron will move closer to the nucleus. If it comes from the
electron’s kinetic energy, then the electron will move closer to the nucleus. Either
way, the electron spirals toward the nucleus emitting radiation as if falls. So the
atom will quickly fall in on itself in a burst of electromagnetic radiation.

While one might imagine that there might be some stable configuration of
positive and negative charges where the charges are precisely positioned so that

1% See Geiger (1908) and Geiger and Marsden (1913) for descriptions of these experiments.
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their forces cancel, it was proven by the British mathematician Samuel Earnshaw
(1842) that there is no stable stationary equilibrium for a collection of point
charges. And if the point charges are moving, then they will either leave the region
that is supposed to be occupied by the object or they will have to accelerate to stay
in the region. If they accelerate, then they will radiate, so there can be no stable
moving configuration either. Hence ordinary material objects like books or tables
or rocks cannot be stable under the dynamical laws of classical mechanics if they
are made of charged particles. And they are.

The upshot is that classical mechanics is flatly incompatible with the very
existence of the books, chairs, rocks, and other objects that make up the bulk of
our everyday experience. If there ever were such an object, it would immediately
self-destruct in a blinding flash of radiation. This is not an issue of fine-tuning the
theory. Classical mechanics makes perfectly clear predictions—it is just that its
predictions are utterly wrong.

Since the electrons in ordinary material objects cannot be stationary and they
cannot be moving, a natural place to start in constructing a new physical theory
would be to say what these electrons are in fact doing. But this turned out to be so
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difficult that the Danish physicist Niels Bohr, one of the central figures in the early
development of quantum mechanics, concluded that

There is no quantum world. There is only an abstract quantum physical descrip-
tion. It is wrong to think that the task of physics is to find out how Nature is.
Physics concerns what we can say about Nature.

[As reported by his colleague Aage Petersen (1963, 12), emphasis in original.]

More specifically, in the case of the electrons orbiting the nucleus of an atom, Bohr
believed that it was conceptually impossible to describe their motion.

The Irish physicist John Bell much later described the reaction of Bohr’s gener-
ation this way:

The physicists who first came upon such phenomena found them so bizarre that
they despaired of describing them in terms of ordinary concepts like space and
time, position and velocity. The founding fathers of quantum theory decided even
that no concepts could possibly be found which could permit direct description
of the quantum world. (1987, 170)

One can understand this reaction given the mounting empirical evidence that that
matter behaves in a deeply nonclassical, counterintuitive way. But, given human
nature as we find it, it is hard to resist the temptation of at least trying to describe
the world and explain our experience.

By the early 1930s there was a physical theory that provided dynamical expla-
nations for the behavior of quantum-mechanical systems like electrons. But before
describing that theory, we should first consider more systematically the empirical
evidence that it needs to explain. We will start by considering the behavior of
electrons in more detail."!

! See Becker (2018) for a spirited introduction to the conceptual history of quantum mechanics.
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Quantum Phenomena

2.1 Spin Properties

We will begin by considering the behavior of electrons in a number of simple,
idealized experiments. This behavior illustrates the most basic sort of empirical
evidence that quantum mechanics will have to cover in order to be empirically
adequate.’

Electrons exhibit spin properties.> The first experiments to observe spin prop-
erties were performed by Otto Stern and Walther Gerlach (1922a, 1922b, 1922¢)
when they set out to measure the magnetic moment of silver atoms by passing the
atoms through an inhomogeneous magnetic field. Classical mechanics predicts
that a beam of silver atoms will simply spread out in the direction of the field
gradient. But Stern and Gerlach found that the field split the initial beam of silver
atoms into two sharply defined beams (as in the bottom of Figure 2.1). And it split
the beam into precisely two beams regardless of the orientation of the field.

We will refer to the different directions that the inhomogeneous field might be
oriented by as the coordinate axes x, y, z, and various angles relative to these axes.
Silver atoms that are deflected one way when the field is oriented in the x-direction
are identified as x-spin up atoms and those deflected the other way are identified as
x-spin down atoms. If the field is oriented in the z-direction, one beam is identified
as the z-spin up atoms and the other as the z-spin down atoms. And so on for the
other directions the field might be oriented.

Individual electrons behave similarly. We will consider these properties in the
context of idealized boxes like those described by David Albert (1992) (as in
Figure 2.2). There are three types of Albert box. An x-spin box has three doors.
One labeled “in,” one labeled “t,,” and one labeled “| ,”” A z-spin box also has three
doors. One labeled “in,” one labeled “t,” and one labeled “|,” The x-spin and
z-spin boxes function much like idealized Stern-Gerlach devices. In particular,
they correlate an electron’s spin properties with its position. The third type of box

! As we will see later, quantum mechanics must do significantly more than cover these experiments
in order to be empirically adequate. Among the quantum phenomena that a fully satisfactory theory
must be able to explain are pair production and annihilation, scattering, EPR-type correlations, and the
curious behavior of neutral K mesons. But this is a good place to start.

> Many particles exhibit intrinsic angular momentum and hence spin properties. Electrons are
leptons and, like all leptons, are spin-1/2 particles. Photons, light quanta, are spin-1 particles.
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is what Albert calls a total-of-nothing box. It has two doors. One labeled “in” on
the left and one labeled “out” on the right. We will start by considering the x-spin
and z-spin boxes then discuss the total-of-nothing box later.?

In the following experiments we will suppose that we are supplied with a
collection of electrons that have not been prepared in any special way and that
we can send them through the boxes one at a time. We will keep track of what
happens when we do so. The predictions of an empirically adequate formulation
of quantum mechanics must agree with the results of these experiments. If one’s
formulation of quantum mechanics also allows one to follow the dynamical
evolution of the states of the electrons as they move through the boxes, then one
will be able to explain how the electrons are behaving to produce the observed
phenomena.

* One might think of the Albert x-spin and z-spin boxes as idealized Stern-Gerlach devices that
can handle individual charged particles like electrons. The behavior of an electron in a classical Stern-
Gerlach device is complicated by the fact that, unlike neutral silver atoms, its trajectory will also be
significantly affected by its charge. Albert boxes provide a helpful idealization. We will use similar
idealizations when they allow us to characterize basic empirical or theoretical concepts more clearly.
The thought is that one can add the complicating details back in once one understands the basic
conceptual foundations.
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2.2 Basic Properties of the Boxes

If one sends an electron that has not been prepared in any special way into an
x-spin box, it exits from the 1, door about half of the time and from the |, door
about half of the time (as in Figure 2.3).

If one takes an electron that exited from the 1, door and sends it into a second
x-spin box, then it will exit from the 1, door of that box as well, as long as it is
not disturbed as it travels between the boxes. Similarly, an electron that exits from
the |, door of the first box will exit from the |, door of the second box as long
as it is not significantly disturbed as it travels between the boxes. If one is careful,
the same behavior can be repeated indefinitely for a particular electron. But if the
electron is knocked around between the boxes, then all bets are off—the door it
exits from on the second x-spin box may well not agree with the door it exited
from on the first. And the more it is knocked around between boxes, the lower the
probability that the initial outcome will be repeated.

Similarly, if one sends an unprepared electron into a z-spin box, it exits from the
1, door about half of the time and from the |, door about half of the time. And,
if it is not disturbed, it will do the same thing it did with the first z-spin box if it
subsequently encounters other z-spin boxes.

One might naturally conclude that electrons have the property of being either
x-spin up or x-spin down and the property of being either z-spin up or z-spin
down, and that the two types of box sort electrons accordingly. More specifically,
the fact that careful repeated measurements yield the same result suggests that the

x-spin |

Ll - |

— | X-spin by
x-spin |,
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.1 |
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Figure 2.3. Basic behavior of spin boxes.
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electrons possess determinate spin properties. And the fact that the spin properties
of an electron change if it is knocked around indicates that these properties are
not immutable. But nothing so far has ruled out x-spin and z-spin being the same
physical property. It could be that the two types of box are really the same, just
differently labeled.

Consider the empirical relationship between x-spin and z-spin. Suppose one
sends an electron into an x-spin box and it comes out the T, door. If the electron
is then sent into a z-spin box, it exits from the 1, door about half of the time and
from the |, door about half of the time (as in Figure 2.4). Further, there is no
predictable pattern whatsoever to which z-spin door it exits from. It appears then
that the z-spin result is randomly determined. And the same is true for electrons
exiting the first box from the |, door.

Similarly, if one knows the z-spin of an electron, this tells one nothing whatso-
ever about its x-spin. A z-spin up electron is just as likely to be found to be x-spin
up as it is to be found x-spin down. And the same is true for a z-spin down electron.

Since the outcomes of x-spin and z-spin observations are completely uncorre-
lated, one might naturally conclude that the two spin quantities are independent.
Further, one might imagine that it is possible to know the values of both quantities
at the same time. But this is where one encounters another distinctively quantum-
mechanical phenomenon.

Suppose one sends an electron into an x-spin box, then into a z-spin box, then
into a second x-spin box (as in Figure 2.5). Suppose the electron exits from the
1, door of the first x-spin box. Given the evidence that x-spin and z-spin are
uncorrelated, the probability of it exiting from each door on the z-spin box is 1/2.
Suppose it exits from the |, door then enters the second x-spin box. The electron
exits the second x-spin box from the 1, door about half of the time and from the
1, door about half of the time. And the same thing happens if the electron exits
from the first two boxes from other doors. It seems that the intervening z-spin box
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Figure 2.5. The randomizing behavior of alternating spin boxes.

completely randomizes the x-spin of an electron passing through it. Similarly, the
z-spin of an electron seems to be completely randomized by an x-spin box.

This effect is different from knocking the electron around between x-spin boxes.
There the likelihood of repeating the original x-spin result is a function of how
much one disturbs the electron. Here it is not a matter of degree. An intervening
z-spin box completely randomizes the observed x-spin of the electron, and an
x-spin box completely randomizes the z-spin of an electron. And it is impossible
to build an x-spin or z-spin box that exhibits the type of sorting behavior we have
been considering but does not completely randomize the other spin property. The
observables x-spin and z-spin stand in a special relationship to each other. Given
the randomizing effect of an intervening observation of the complementary spin
property, one might conclude that it is impossible to know both the x-spin and
z-spin of an electron at the same time. While this is sometimes how quantum-
mechanical uncertainty is characterized, the actual situation, as we will see, is
significantly more subtle.*

There are three aspects of the experiments discussed so far that are notably non-
classical. First, since measuring spin properties involves the interaction between
smooth electromagnetic fields, one would expect a continuous range of possible
outcomes. But for a particular orientation of the magnetic field, electrons are either
deflected up or down.

* The Heisenberg uncertainty principle is sometimes taken to be that one does not know the
position of a particle if one knows its velocity, and vice versa. But, on the standard interpretation
of states, quantum-mechanical uncertainty is not about uncertainty regarding the values of possessed
physical properties. The orthodox view is that if a particle has a determinate velocity, it simply has
no determinate position. We will see why when we consider non-commuting spin properties in the
context of the two-path experiment.
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Second, while classical mechanics is deterministic, quantum phenomena are
fundamentally random and probabilistic. A Stern-Gerlach device is just a smooth
inhomogeneous magnetic field. Given its simplicity, one would not expect it
to randomize the properties of systems sent through it. Further, the interaction
between a particle and such a field is precisely the sort of thing that one would
expect classical mechanics to get right. A satisfactory formulation of quantum
mechanics, then, should tell us something about the source of the observed
randomness in this simple setup.

Third, the phenomena so far suggest that there are fundamental quantum-
mechanical constraints concerning one’s epistemic access to physical properties.
In classical mechanics there is no reason in principle why one cannot determine a
particle’s position and velocity, or any other set of properties, at the same time. And
one’s measurement results will be accurate to whatever degree of precision one’s
measuring device allows given the care with which it was designed and built. In
contrast, if one knows the x-spin of an electron, one must be maximally uncertain
concerning the result of a subsequent z-spin measurement, and if one knows the
z-spin of and electron, one must be maximally uncertain concerning the result
of a subsequent x-spin measurement. Unlike the situation in classical mechanics,
there appears to be no physical information about the electron’s spin properties or
anything else that would allow one to make the future prediction. This epistemic
limitation is closely related to the fundamentally stochastic nature of quantum
mechanics. The full specification of the physical state of a particle with a determine
x-spin simply fails to determine the result of a subsequent z-spin measurement.

2.3 Quantum-Mechanical Interference

The two-slit experiment discussed earlier illustrates quantum-mechanical interfer-
ence involving photons. Material particles like electrons also exhibit interference
effects. Here we will consider an experiment involving spin properties.

Interference effects are a characteristic variety of quantum-mechanical
phenomena. Importantly, the effect here does not involve interference between
different electrons. Rather, it occurs even when a single electron at a time is sent
through the apparatus.

Consider the two-path experiment illustrated in Figure 2.6. A z-spin up electron
e~ starts in region I and is sent into an x-spin box.” The device is set up so that if
the electron exits from the T, door, then it will travel along path A to region II and
if the electron exits from the |, door, then it will travel along path B to region II.
In each case, we will suppose that the electron is carefully deflected in such a way
that (1) the length of each of the two paths from I to I is two meters, and the speed

* One would know that the electron is z-spin up if it just came out the 1, door of a z-spin box.
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Figure 2.6. The two-path setup.

of the electron is a constant one meter per second, so it takes precisely two seconds
to make the trip; (2) the electron’s final velocity in region II is directly to the right
just as it was in region I; and (3) the spin of the electron is not disturbed in any
way on path A or B. We can test this last condition by sending electrons of known
spin down each of the two paths and checking their spins with the appropriate
box when they get to region II to make sure that the device has not disturbed the
electron’s initial state. Finally, we will also suppose that nothing in the environment
becomes correlated to the electron’s position or spin as it travels from I to II.

Suppose that the electron is sent through a z-spin box when it gets to region II.
The question is which door one should expect it to exit from.

We know that if the z-spin up electron were just sent through the z-spin box
directly, then it would come out the 1, door. But here we are sending it though
an x-spin box first, and our earlier experiments have given us very good reason
to believe that an x-spin box randomizes z-spin. More specifically, we know that
the probability of an x-spin up electron being found to be z-spin up is 1/2 and the
probability of it being found to be z-spin down is 1/2. And we know that the same
is true for an x-spin down electron. So if the electron exits the x-spin box from
the 1, door and hence takes path A, then it will have a 1/2 chance of being found
z-spin up in region II. And if the electron exits the x-spin box from the |, door and
takes path B, then it will have a 1/2 chance of being found z-spin up in region II.
So whichever path the electron takes, the probability of it exiting from the 1, door
of the z-spin box at the end of the experiment is 1/2. Hence, if we send a series of
electrons through the device one at a time, waiting for each to exit before we send
the next in, about half of the electrons will exit from the 1, door and about half
will exit from the |, door.

But this is not what happens at all. Rather, if no one is looking at the paths,
all of the electrons exit from the 1, door.® Hence, electrons that start z-spin up
in region I are all z-spin up again by the time they get to region IL In this setup,
the intervening x-spin box does nothing whatsoever to the z-spin of the electrons

¢ And electrons that are initially z-spin down always exit from the the |, door in the two-path
experiment.
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passing through it. An x-spin box does not randomize z-spin after all. And there is
good evidence here that it does not sort the electrons by x-spin either. If an electron
is x-spin up, then it is always found to exhibit unbiased, random dispositions when
it encounters a z-spin box. And similarly for x-spin down electrons. If the x-spin
box were sorting the electrons by x-spin and then sending each along the path
corresponding to its spin, then, depending on which path they took, the electrons
in region IT would be either x-spin up or x-spin down, so they would exhibit
unbiased, random dispositions when they encountered a z-spin box. But they are
all found to be z-spin up. Hence, we have good reason to believe that the x-spin box
never sorted them by x-spin to begin with. That all of the electrons are found to be
z-spin up in region II is an example of a quantum-mechanical interference effect.

This experiment also illustrates why it is difficult to say how electrons move
in a way that satisfies our classical intuitions. Consider an electron that starts in
region I. If it takes path A, then it is an x-spin up electron. But an x-spin up electron
will exhibit the unbiased, random disposition to exit from either door when it
encounters a z-spin box. So since the electron exhibits the sure-fire disposition
to exit from the 1, door, it did not take path A. But if the electron takes path B,
then, one might reason classically, it is an x-spin down electron. But an x-spin
down electron will also exhibit an unbiased, random disposition to exit from either
door when it encounters a z-spin box. So since the electron exhibits the sure-fire
disposition to exit from the 1, door, it did not take path B either. And there is good
empirical evidence that the electron does not take both paths or neither path. The
electron is always found on precisely one of the two paths whenever one looks
for it. Further, it is always found to be precisely where it should be given how fast
it is moving. Since it takes two seconds to get from region I to region II given the
setup, after one second, the electron will be found in the middle of path A or in the
middle of path B.

Just as one would expect from the earlier experiments, the probability of finding
the electron on either particular path if one looks is 1/2. Further, if one finds it on
path A, it will also be found to be x-spin up. And if one finds it on path B, it will
be x-spin down. So when one looks for the electron, it seems that the x-spin box
is sorting electrons by their x-spin and that their x-spins are randomly distributed
with equal probabilities. And if one finds the electron on one of the paths, it will be
either x-spin up or x-spin down, so it will exhibit an unbiased, random disposition
to exit from either door when it encounters the z-spin box in region II, or anywhere
else one wants to put it beyond the place where one found the electron. So finding
the electron on one of the two paths destroys the interference effect of its being
guaranteed to be found z-spin up in region II

Now we can see why it is not simply a matter of not knowing which path the
electron takes from I to IL. If the electron has the sure-fire disposition to exit by
the 1, door after it gets to region IL, it could not have determinately taken path A or
determinately taken path B. Had it taken one of these two paths, regardless of the
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issue of whether we knew which it took, then it was either x-spin up or it was x-spin
down. And either way, we know that such an electron will have only a probability
of 1/2 of exiting by the 1, door after passing through region II. We have good
empirical evidence then that the electron did not simply take one or the other of
the two paths and we just don't know which.

Just as in the two-slit interference experiment with photons, this two-path
experiment provides empirical evidence that the motions of fundamental particles
fail to satisfy our classical intuitions. Further, this failure is of a radical sort. To put
it in philosophical language, one might have thought that it was analytic to the
notion of a material particle that it always had a determinate position and hence
always followed a well-defined trajectory. But this now seems entirely wrong.

In addition to the issue of how the electrons are moving, the two-path experi-
ment poses another puzzle. The earlier spin experiments we considered seemed
to provide good empirical reason to suppose that an x-spin box completely
randomizes z-spin, but now we have even better empirical reason to suppose
that the box is doing nothing random whatsoever. But if that’s right, one might
naturally wonder what produces the random behavior we saw eariler of an electron
that enters a z-spin box after exiting from an x-spin box.

It turns out that the question of how quantum randomness arises is closely
related to the question of how electrons move. Indeed, one might distinguish
between different strategies for formulating quantum mechanics by how one
answers each of these two questions.”

2.4 How Electrons Move

There are a number of variants on the two-path experiment that one might
consider in order to get a better idea of how a z-spin electron moves here. If one
looks for the electron after one second, one always finds it to be either on path A or
on path B, with an equal chance of each. If one looks on path B and does not find
the electron, then one can infer that it is on path A. But if it is on path A, then it is x-
spin up, and x-spin up electrons exhibit unbiased random dispositions when they
encounter a z-spin box. And that is precisely what happens. If one looks at path B
and does not find the electron, this destroys the interference effect and the electron
may exit by either the 1, or |, door of the second box, each with a probability of 1/2.
More specifically, one might watch path B (as in Figure 2.7) while several z-spin up
electrons are fed into the x-spin box, one by one, with enough time for the last to
leave the entire apparatus before the next enters, and even if one sees none of these

7 The thought is that one might distinguish between different formulations of quantum mechanics
by considering how they explain determinate measurement records and the statistical distribution of
such records. These two issues will arise repeatedly as we discuss explanatory options.
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Figure 2.7. Two paths with an observer (who may see nothing on his path).

electrons on path B, and hence presumably never interacts with any of them because
they were never on the observed path, about half will exit the z-spin box from the 1,
door and about half from the |, door. And as soon as one stops watching the path,
all of the electrons will again exit from the 1, door. What matters is whether one is
watching the empty path when the electron would have been there had it taken that
path. So simply looking and seeing nothing instantaneously affects the behavior of
distant electrons.®

Given classical intuitions, it should not be possible to change the state of an
electron without interacting with it. When an observer looks at an empty path and
changes the statistical dispositions of a distant electron, the observer cannot be
interacting with the distant electron directly. Further, classical mechanics provides
no explanation for how the observer might be interacting with the electron
indirectly either. There are simply no good candidates in classical mechanics for
what might mediate such an interaction. The effect persists when the distance
between the two paths is increased and when they are shielded from each other
for electromagnetic interactions. Gravitational interactions are presumably too
weak. And the strong and weak nuclear forces are poor candidates given their short
range. More significantly, classical mechanics provides no dynamical account for
how these fields, or any other, might affect the statistical dispositions of a distant
electron when an observer looks at an empty path.

One can get a similar sort of quantum nonlocal behavior without an observer.
Placing a barrier on path B that would gently stop an electron that takes that path
(as in Figure 2.8) will also destroy the interference effect of getting a sure-fire z-spin
up result at the second box. If an electron does not get to region II, then one will
find it at the barrier. The electrons that get to region II took path A and hence never
even got close to the barrier. Nevertheless, they will exit from the 1, door about half
of the time and from the |, door about half of the time. This happens regardless of

® The experimental setup described here is relatively small. Similar behavior is seen when the
distances between the paths are much larger. Two-path experiments akin to this one have been
performed with light over astronomical distances.
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Figure 2.8. Two paths with a barrier on one.

the path in which one places the barrier, and it does not depend on whether one
ever looks to see if the electron did in fact hit the barrier. Further, it does not matter
when one decides which path to place the barrier on as long as the barrier is at a
location at a time when it would have blocked the electron had the electron taken
that path. Then the very presence of the barrier in a location where the electron
demonstrably did not go will cause it to exhibit unbiased, random dispositions
when it encounters the z-spin box in region II. Otherwise, without the barrier in
place on the path not taken, the electron will always exit from the 1, door. It is as if
an electron that gets through the device “knows” whether or not there was a barrier
on the path that it did not travel that would have blocked it had it traveled that path.

If one puts a barrier on both paths, then the electron does not get to region II
and one always finds that it hit precisely one of the two barriers if one checks. But
as we will see later, the standard formulation of quantum mechanics tells us that
even this apparently straightforward situation is more subtle than one might have
thought. The issue here turns on the phrase if one checks.

Suppose one wanted to determine which path the electron traveled without
disturbing the interference effect of the sure-fire disposition of the electron to be
found to be z-spin up in region II. One might try putting a camera on one of the
paths to detect the electron. But no matter how careful one is, if the camera is
sensitive enough to reliably record whether the electron took that path, then it will
destroy the inference effect even if the electron does not take the path the camera
is on and the resulting photograph is blank.

The simplest type of camera might involve a single particle. Suppose that one
places a single negatively charged particle p near path B so that if the electron e~
takes path B, then particle p would be moved from region a to region b and so
that if e~ takes path A, then particle p would stay in region a (as in Figure 2.9). In
this setup, particle p records the path taken by the electron in its position. If p ends
up in region g, then one might infer, given one’s classical intuitions concerning
physical records, that e~ took path A. And if p ends up in region b, then one might
infer that e~ took path B. But the very presence of the recording particle p on
path B, even if e~ does not take path B and particle p hence does not move at all,
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Figure 2.9. Two paths with a single recording particle.

again completely destroys the interference effect that the electron would otherwise
exhibit in region II. More generally, if there is any record whatsoever of which path
the electron followed or of its x-spin after passing through the x-spin box, or any
correlation between the x-spin of the electron and its environment, intentional or
not, then the interference effect will be destroyed and it will exit the z-spin box
from each door with probability 1/2.

Another way to tell which path the electron followed would be to slow electrons
on path B so that they take 2.1 seconds to get to region II instead of the usual
2 seconds. Then one knows that the electron took path A if it gets to region II
in 2 seconds and that it took path B if it gets there in 2.1 seconds. But making
electrons on one path take longer than those on the other again immediately
destroys the interference effect in region II regardless of how long it takes each
particular electron to get there.

In order to avoid interacting with the electron at all, one might try making one
of the two paths slightly longer than the other, say 2.1 meters rather than 2 meters.
Then the difference in the time it would take to travel each path would allow one
to tell which path the electron took. But again, making one path longer than the
other immediately destroys the interference effect in region II.

In short, the interference effect in region II is destroyed if one might know now
or could have any way of reliably inferring later which path the electron took. This
is related to the fact that one cannot simultaneously know both the x-spin and
z-spin of an electron. If one could know which path the electron took without
destroying the interference effect in region I, then one would know both its x-spin
and z-spin at the same time. The standard formulation of quantum mechanics tells
us that it is impossible to know the values of non-commuting physical quantities
simultaneously, and we have never had any empirical reason to suppose that the
theory is wrong in this.’

But again, there is good reason to believe that the real issue here is not one
of what one knows about the electron. The electron presumably cannot in fact

° There is, however, a sense in which one might know the values of non-commuting quantities in a
special context where one performs a self-measurement. See chapter 8 of Albert (1992).
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be taking either of the two classically possible paths. If it were, it would not be
guaranteed to be z-spin up at region II.

The standard formulation of quantum mechanics tells us that the problem is
with our classical intuitions. Specifically, it says that when one is looking, the
electron does not determinately travel either of the two classically possible paths,
it does not determinately travel both, and it does not determinately travel neither.
It also tells us that the reason an observer looking at an empty path destroys
the interference effect in region II is different from the reason placing a barrier
on the path not traveled or making one path longer than the other destroys the
interference effect. Further, it tells us that the reason that the interference effect is
destroyed when one records the path the electron takes in the position of a single
particle depends on whether or not one observes that record before the electron
gets to region II. We will see how all this works beginning in Chapter 4.

The results of the two-path experiments we have considered also suggest that the
world exhibits a sort of nonlocality. We will consider a more subtle sort of quantum
nonlocality when we discuss the EPR-Bell statistics in Chapter 6. A satisfactory
formulation of quantum mechanics must predict and explain both the two-path
phenomena and the EPR-Bell statistics.

2.5 Superpositions, Property Attribution,
and the Total-of-Nothing Box

The standard formulation of quantum mechanics tells us that if a test electron
is initially z-spin up in the sort of experiment we have been discussing, then it
will follow a superposition of the two paths. Saying precisely what this means is
one of the tasks of the theory, but we can get started on this here. An electron
that follows a superposition of the two trajectories does not determinately travel
path A or path B or both paths or neither path. Rather, the standard formulation
of quantum mechanics tells us that such an electron with have no determinate
classical trajectory whatsoever.

It will be important to make clear precisely what this means. In the two-path
setup, the theory tells us that after one second, the electron is not in fact on path A,
it is not in fact on path B, it is not in fact on both paths, and it is not in fact on
neither path. That is, there is simply no fact of the matter concerning its classical
location—it just does not have one. As David Albert has put the point, to ask where
such an electron is, on the standard interpretation of states, is to commit a category
mistake. It is like asking for the color of the number 7. Just as 7 is not the sort
of thing that has a color, an electron in a superposition of different positions is
not the sort of thing that has a position. But that the position of the electron is
indeterminate does not mean that we do not know where it is, and nor does it
mean that we cannot determine its position—it means that it simply fails to have
a determinate position. And when the electron has a determinate x-spin, it simply
fails to have a determinate z-spin, and the other way around.
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Property attribution in quantum mechanics is geometric rather than logical."®
Inasmuch as the electron does not behave like it is on either one of the two paths
or on both paths or on neither path, it is at least in some sense unsurprising that
quantum mechanics describes the electron as being in a state that is different from
each of these four classical options. As we will see later, one might say that after
one second the electron is at a 45° angle to being on path A and x-spin up and at
a 45° angle to being on path B and x-spin down. But the theory will need to tell us
how to understand such descriptions.

We will consider precisely how quantum mechanics uses geometric property
attribution to describe the motion of the electron once we have the theory. In
the meantime, let’s consider one last bit of evidence against the reliability of our
classical intuitions.

The third type of box is the one that Albert calls a total-of-nothing box. When
an electron with a known spin is sent through such a box, it exhibits precisely
the same spin after emerging from the other side as it did before—an x-spin up
electron stays x-spin up, an x-spin down electron stays x-spin down, a z-spin
up electron stays z-spin up, a z-spin down electron stays z-spin down, etc. Given
that there are no fields in the box that impose forces on the electron, it should
do nothing to an electron given our best classical understanding of the physical
world. And on this the standard formulation of quantum mechanics agrees. On
the standard interpretation of quantum-mechanical states, a total-of-nothing box
indeed does nothing whatsoever to an electron that passes through it. Nor does it
do anything to an electron that goes around it. But quantum mechanics predicts
that such a box may do something striking to an electron that is in a superposition
of passing through it and around it.

In the two-path setup a z-spin up electron that starts in region I, enters the x-
spin box, and travels a superposition of the two paths without being disturbed or
recorded in any way is always found to be z-spin up in region II. If under the same
conditions a total-of-nothing box is placed on path B (as in Figure 2.10), a z-spin
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Figure 2.10. Two paths with a total-of-noting box on one.

10 Jeff Bub (1997) describes this distinction well.
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up electron that starts in region I and enters the x-spin box is always found to be
z-spin down in region II. This is further empirical evidence that the electron does
not determinately take either of the two classically possible paths. The total-of-
nothing box demonstrably does nothing to an electron that goes through it and it
demonstrably does nothing to an electron that goes around it. But it dramatically
affects an electron that is in a superposition of going though it and around it."*

2.6 Random, Nonlocal, and Indeterminate

These idealized experiments illustrate some of the ways in which the physical
world violates our basic classical intuitions. There is good evidence that physical
systems exhibit random, in principle unpredictable behavior; that observations
in one place may have nonlocal effects on systems somewhere else even when
nothing is observed; that physical objects do not follow determinate trajectories;
and that classical property attribution fails more generally. The intuitions violated
here are sufficiently basic that one might reasonably, though entirely mistakenly,
have thought that they were metaphysically necessary. One might have taken a
situation where one observes nothing but affects the properties of a distant object
without anything mediating the distant interaction to be flatly unintelligible and
hence impossible or that physical property attribution must necessarily satisfy the
laws of classical logic.

While it is unclear at this point in the story which of our intuitions might be
preserved and at what cost, that the physical world is counterintuitive provides
good reason up front not to trust our pre-theoretic philosophical intuitions.
We will need to weigh such intuitions against each other in order to choose
between alternative formulations of quantum mechanics later, but inasmuch as
the empirical evidence itself is deeply counterintuitive, no empirically adequate
formulation of quantum mechanics can preserve all of our cherished philosophical
intuitions.

The task is to find a physical theory that gets the counterintuitive phenomena
right and instructs our pre-theoretic intuitions. We will begin with the standard
formulation of quantum mechanics, but first we will need some mathematical tools
to say what the theory is.

! More generally, the electron will be found to be z-spin up in region IT if there are an even number
of total-of-nothing boxes anywhere on either of the two paths, and it will be found to be z-spin down
if there are an odd number of total-of-nothing boxes on the paths. The total-of-nothing box illustrates
a version of the Aharonov-Bohm effect (1959).
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The Mathematics of Quantum Mechanics

3.1 Hilbert Space

We need a few basic mathematical notions to say what quantum mechanics is. In
this chapter we will characterize the geometric and algebraic properties of a num-
ber of mathematical objects and begin to discuss their physical interpretation.’

Quantum mechanics is written in the language of linear algebra. The state of a
physical system is represented by a unit-length vector |y) in Hilbert space .2
A Hilbert space is a collection of vectors that can be added to each other and
multiplied by real or complex numbers. It also has an inner product that takes
any pair of vectors and returns a number.’

Geometrically, a vector might be thought of as an arrow with a magnitude
and direction. If one defines an appropriate set of operations, the arrows in
Figure 3.1(a) can be taken to form a two-dimensional, real-valued vector space.
If one introduces a Cartesian coordinate system, one might represent a vector in
this space algebraically by translating the base of the arrow to the origin of the
coordinate system without changing its direction then taking the ordered pair
consisting of the x and y coordinates of the tip of the arrow (x, y) as the algebraic
representation. Figure 3.1(b) illustrates this for the vectors in Figure 3.1(a).*

For an n-dimensional vector space, one will in general need an n-tuple of
complex numbers (v{, v, ..., v,) to represent its vectors. There are two kinds of
vectors we will consider. Both satisfy the axioms for being a vector space. A ket-
vector is written as a column of complex numbers

V1

vy =]"2|. (3.1)

Vn

! While the physical significance of the mathematics is discussed here, readers with a background
in linear algebra may wish to proceed directly to the specification of the standard formulation of
quantum mechanics in the next chapter. One can find there a more efficient, though less user-friendly,
presentation of the relationship between the mathematics and physics.

? This notation for representing state vectors was introduced by P. A. M. Dirac. It is widely used as
it makes the sort of mathematical expressions that show up in quantum mechanics particularly easy to
read. We will see how the notion works as we go.

* A formal characterization of a Hilbert space, complex numbers, and related notions can be found
in Appendix A.

* Aswe will see, introducing a Cartesian coordinate system is equivalent to choosing an orthonormal
basis. Ultimately, we will talk in terms of a choice of basis in the context of a Hilbert space.
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Figure 3.2. Orthogonal quantum states. B

Corresponding to each ket-vector is a bra-vector that can be written as a row of
complex numbers

(v|=(vi‘ vy vn*). (3.2)

Each number in the bra-vector is the complex conjugate of the corresponding
number in the ket-vector. The bra-vector corresponding to |¢) + |x) is (¢]| + (x|
and the bra vector corresponding to «|¢) is a*(¢|. If all the numbers in a ket-vector
are real, then the corresponding bra-vector will contain precisely the same real
numbers.’

One might also construct a Hilbert space using a set of functions as vectors. One
just needs to make sure that the functions and one’s operations on them satisfy the
axioms for a Hilbert space (as described in Appendix A). We will start by supposing
that vectors are represented by n-tuples of real numbers. More specifically, we will
be able to represent the interactions between electrons and spin boxes with real-
valued two-dimensional vectors—vectors that can be represented as ordered pairs
of real numbers. We will, however, need more general representations later.

The first connection between the mathematics and physics concerns how phys-
ical states are represented. The quantum-mechanical state of a physical system
is represented by a vector of length one. The state of an electron e~ that is
determinately on path A is represented by a unit-length vector |A),, and the state
where it is determinately on path B is represented by a unit-length vector |B), that
is at a right angle to |A), (as in Figure 3.2). Note that the physical system that a
state vector describes is indicated by a subscript on the vector.

* A bit more detail may be helpful here. The bra-vectors form a co-space that is isomorphic to the
vector space formed by the ket-vectors. Each vector in the ket-space corresponds to a canonically dual
bra-vector in the co-space. Because of the canonical relation between the two spaces, a vector and its
dual can be thought of as the same vector, just written down differently. Physically, a state vector and
its dual represent precisely the same state.
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Figure 3.3. Vector addition and scalar multiplication.

Geometrically, one might think of the vector |v)+|w) as what one gets by putting
the tail of |w) at the tip of |v) and drawing an arrow from the tail of |v) to the tip of
|w) (as in Figure 3.3(a)). One gets the same result regardless of the order in which
one carries out this construction. If |v) and |w) are two-dimensional vectors, one
might represent their sum algebraically by matrix addition

a0 o
V) Wy vy +w,
Higher-dimensional vectors add the same way.

One can think of scalar multiplication as an operation that stretches or shortens
a vector without moving it off the ray that it is on (as in Figure 3.3(b)). Multiplying
a vector by a negative number flips the direction of the vector by 180°, but scalar

multiplication always keeps the vector on the same ray (as in Figure 3.3(b)).
Algebraically, multiplying a vector by a scalar just multiplies each number in the

matrix by the scalar.
alvy = “<v1> = ((xvl). (3.4)
V) av,

Vector addition together with scalar multiplication is used to represent super-
positions of quantum-mechanical states. If one is only interested in its position, the
state of an electron e~ that starts z-spin up is

—|A), + —=IB),

v

after it passes through the x-spin box in the two-path experiment. This state
describes the electron as being on a superposition of path A and path B. This is
a unit length vector, so it can represent a state. And the state it represents is at a
45° angle to the vector representing e being on path A and at a 45° angle to the
vector representing e being on path B (as in Figure 3.4). Unit-length vectors at
different angles to |A), and |B), like

V3

1
7|A>e + §|B>e

represent different physical superpositions.
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Figure 3.4. An electron on a superposition of paths. B

Figure 3.5. The inner product (v|w). (viw)

The superposition represented by the vector at a 45° angle in Figure 3.4 is not a
state where the electron is on one or the other or both paths. If e were on path A,
its state would be |A),, and if it were on path B, its state would be |B),. But paths A
and B are not irrelevant to the electron’s state. While it is not determinately on
either path, it is associated with a quantum-mechanical amplitude of 172 of
being on each path. The amplitudes are given by the scalar coefficients in the
superposition. Amplitudes determine quantum-mechanical probabilities.

Bra- and ket-vectors are used to characterize the inner product (v|w). The inner
product is related to both the length of vectors and the angle between them. The
length of a real-valued vector |v) is equal to /(v|v). Geometrically, the inner
product of two real-valued vectors (v|w) is the length of |v) times the length
of |w) times the cosine of the angle between the two vectors. So, if each of the
vectors is unit-length, which is always true when the vectors represent quantum-
mechanical states, (v|w) is just the cosine of the angle between the two vectors
or the orthogonal projection of one vector onto the other (as in Figure 3.5).
Consequently, if the inner product of two real-valued, unit-length vectors is 1,
then they are parallel, and hence the same vector representing the same physical
state. And if it is 0, then they are orthogonal representing different physical states.
States where physical properties differ classically are orthogonal.

Algebraically, the inner product of (v| and |w) is

(vjw) = (v’lk vy v,,*) 2= viw + viw, + e Viw, (3.5)

This can be thought of as matrix multiplication. If the vectors are two-dimensional
and real valued, as they will be for the next few chapters, then this expression
simplifies to

(vjw) = (Vl Vz) (;}Vl

) = VW + Vow,. (3.6)
2
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Probabilities in quantum mechanics are closely related to the inner product.
Specifically, if a system S is in initial state |§)g, the probability it will be found in
state |x)g if one observes it is

Kelol* = (Sldxie).

or the norm-squared of the inner product of the two states.

There are always many ways to express a given vector as a linear combination
(or sum with various coefficients on each of the terms) of other vectors in the
vector space. A basis for the space J{ is a linearly independent set of vectors such
that any vector |¢) in the space can be represented as a linear combination of
vectors in the set

l$) = Z a;|b;).

where a; are complex numbers and the index i goes from 1 to #n picking up each
of the elements in the basis. If this condition is satisfied, we say that the set spans
the space J. A basis is minimal in the sense that it will no longer span the space
if any vector is removed. Every basis for 7 has the same cardinality or number of
vectors. The dimension of the space H is the number of vectors in one of its bases.

Abasisis orthonormal if every element in the basis is unit-length and orthogonal
to every other element in the basis—that is, for different elements in the basis
|b;) and |by), (b;|by) = 0. While one can always represent a vector as a linear
combination of basis vectors, an orthonormal basis has properties that make it
especially easy to work with. If the basis is orthonormal, the coefficient on each
term is just the inner product of the vector represented by the expansion and the
corresponding element of the basis

|6) = " [b;)(b;|$). (3.7)

i

In quantum mechanics, every observable physical property or quantity corre-
sponds to an orthonormal basis. The state where electron e is determinately x-spin
up is represented by a unit-length vector |1,), and the state where it is determi-
nately x-spin down is represented by a unit-length vector ||,), that is orthogonal
to the first. The two determinate x-spin states, then, form an orthonormal basis for
a two-dimensional real-valued spin space (as in Figure 3.6(a)). And, as such, any
state |¢), in the space can be written as a linear combination of these two vectors

|¢>€ = al T}C>E + ﬁl ‘l’x>€’
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where the coeflicients « and f3 are such that the length of |¢), is 1.° This orthonor-
mal basis, then, represents the physical observable x-spin.

The physical observable z-spin is represented by a different orthonormal basis.
The z-spin basis is at an angle of 45° to the x-spin basis (as in Figure 3.6(b)). The
vector |1,), represents the state where e is determinately z-spin up, and || ), re-
presents the state where e is determinately z-spin down. Note that when the
electron has a determinate x-spin it does not have a determinate z-spin and when
it has a determinate z-spin it does not have a determinate x-spin. This is the precise
sense in which quantum-mechanical property attribution is geometric rather than
logical. It is the direction of the state vector that represents the properties of the
physical system.

The vectors of a Hilbert space can be acted on by operators. One might think of
an operator O as a machine that takes an input vector |¢) and produces an output
vector O|@). The vector resulting from the operation might be stretched, rotated,
reflected, or projected or some combination of such actions, or one might just get
the same vector out that one put in. Quantum mechanics uses linear operators to
represent physical properties and to specify how physical states evolve over time.
An operator L is linear if and only if

L(al) + Blx)) = aLlg) + BLIY).

That is, a linear operator yields the same result acting on the sum of two vectors as
it does acting on each vector then taking their sum and carrying over the original
coeflicients.

Algebraically, a linear operator on an n-dimensional space can be represented
as an n X n matrix, and the action of the operator on the vector as matrix
multiplication. So in the two-dimensional case

R a, a y ay vy + apv
Ay = ( 11 12)( 1) :< uvi +ap 2). (3.8)
A axn)\v; a vy +anv,

¢ The state space must be complex-valued to represent all possible spin properties of an electron. That
said, we can explain how electrons interact with x-spin and z-spin boxes restricting the coefficients to
real numbers. This also makes it easier to picture the states geometrically.
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For every linear operator on an n-dimensional Hilbert space J{ there isan n X n
matrix that represents the operator, and for every n X n matrix there is a linear
operator. Linear operators on an infinite-dimensional function space might take
the form of differential operators. But in the case of electron spin properties, one
needs only 2 X 2 matrices to represent the relevant linear operators.

Sometimes acting on a vector |y) with an operator A gives the original vector
times back a scalar constant A|y). When

Aly)y =Aly)

we say that |y) is an eigenvector of operator A with eigenvalue ). In this case, the
action of the operator may shrink or stretch the vector, but it does not rotate it off
the ray it is on.

Hermitian operators are a special type of linear operator that quantum mechan-
ics uses to represent observable physical properties. An operator is Hermitian if
one gets back the matrix representing the operator by reflecting the matrix along
its diagonal and taking the complex conjugate of every element in the matrix. That
is, a Hermitian operator is equal to its conjugate transpose H = A’ In terms of
the elements of a 3 X 3 matrix, this means that

s s ®
. ay ay a3 a]] 21 a31
— _ * * ®
A=|ay ay ay ay, a,, a, (3.9
* * *
dz; 4z 4s3 a13 23 33

A Hermitian operator has two properties that are particularly important for
its physical interpretation: its eigenvectors form an orthonormal basis and its
eigenvalues are real numbers.

As we saw earlier, there is a correspondence between physical observables
and orthonormal bases. Since the eigenvectors of a Hermitian operator form an
orthonormal basis, this means that there is also a correspondence between physical
observables and Hermitian operators. Given an appropriate state space J(, for
every physical observable there is a Hermitian operator, and for every Hermitian
operator there is a physical observable. The real eigenvalue associated with an
eigenvector is the value of the observable when the physical system is in the
eigenstate represented by that eigenvector.

The representation of spin states that we have been using, written in the x-spin

basis, is
1 0
[T = (0), [l = (1) (3.10)
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and
L ay
My =21 =( ). (3.11)
V2 2

One has a significant degree of freedom in choosing such a representation. Given
the precise way in which quantum-mechanical property attribution is geometric,
all that matters is the angles or inner products between the state vectors.

The states where x-spin is determinate and the states where z-spin is determinate
each form an orthonormal basis for the two-dimensional spin space and fully
represent the corresponding physical observable.” These two observables might
equivalently be represented by two Hermitian operators 6, and d,. The first has
the determinate x-spin states as eigenvectors and the second has the determinate
z-spin states as eigenvectors. Specifically, one can write the x-spin operator in the
x-spin basis as

It is easy to check that

={y 2)0)-()-+0)

So |1, is an eigenvector of G, with eigenvalue A = +1. And since

=, 2)0)-(2) ()

||,) is an eigenvector of &, with eigenvalue A = —1. The physical interpretation is
that if the quantum-mechanical state of an electron is an eigenstate of &,
with eigenvalue A = 4 1, then the electron determinately has the property of being
x-spin up, and if it is in an eigenstate of 4, with eigenvalue A =—1, then it
determinately has the property of being x-spin down.

Similarly, one can write the z-spin operator in the x-spin basis as

. 0 1
=\, o

7 Once one has a mathematical representation of the physics, it is sometimes convenient to use
mathematical and physical language interchangeably as in this sentence.
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Here one can check that the vector |1,) is an eigenvector of 6, with eigenvalue
A = +1 and the vector ||,) is an eigenvector of §, with eigenvalue A = —1. The
physical interpretation is that if the state of an electron is an eigenstate of 6, with
eigenvalue A = +1, then the electron determinately has the property of being z-spin
up, and if it is in an eigenstate of ¢, with eigenvalue A = —1, then it determinately
has the property of being z-spin down.

Since the eigenstates of z-spin form an orthonormal basis and since the eigen-
states of x-spin form an orthonormal basis, determinate x-spin states can be
written in terms of z-spin states using expression 3.7:

|Tx> = <Tz | Tx)l Tz> + <lz|Tx>| i’z) - |Tz> +—

1 1
wrrE"
1) = (11 Lol 1) + (o L) L) = 1|TZ>—i )

Yo

and the other way around

110 = 110 + e [T = ITx> +— le
ERRE

lz= xlz x lxlz *Lx:_x__lx'
o) = el 1) + Qe L) \/EH) \/§| )

So an electron with a determinate x-spin is in a superposition of z-spins and an
electron with a determinate z-spin is in a superposition of x-spins.

Unitary operators are another special type of linear operator. An operator U is
unitary if and only if

Ak

U0=00 =

b

where the operation is standard matrix multiplication and [ is the identity
operator. Geometrically, a unitary operator rotates a vector without changing
its length. Since the quantum dynamics that usually obtains is linear and the time-
evolution of a quantum-mechanical state is another quantum-mechanical state,
and since all states are unit-length, this is precisely the type of operator one needs
to represent the usual dynamics. We will say more precisely how states evolve once
we have the full theory.

The last mathematical tool that we will need is another type of multiplication.
The tensor product of an n-dimensional Hilbert space #(; and an m-dimensional
Hilbert space J(, is an n X m-dimensional Hilbert space ; @ H,. If the n
vectors |¢;) form an orthonormal basis for 7, and the m vectors |y;) form an
orthonormal basis for J(,, then the n X m vectors |¢;) ® |x;) form an orthonormal
basis for H; ® F(,. The tensor product of the two-dimensional vectors |v) and w)
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can be represented algebraically as

Viwy

W) ® [w) = V1 Q wi) _ | V1™
V2 wy VaWwy

VoW,

The tensor product of higher-dimensional vectors is represented analogously. The
tensor product associates across vector addition and both associates and commutes
with scalar multiplication.

Quantum mechanics uses tensor products to combine spaces that represent
different properties of the same system or properties of different quantum-
mechanical systems. Physically, the tensor product is read as logical and. The state
[Tx)e, ® |dx)e, is one where electron e, is x-spin up and electron e, is x-spin down.
The state |1,), ® |A), is one where electron e is both x-spin up and on path A.®

3.2 Spin Space

While a real-valued two-dimensional Hilbert space is all we will need for the next
few chapters, it is useful to see how complex-valued representations work. To this
end, we will briefly consider a full spin space representation for an electron.

It is possible to consider the spin of an electron along any ray in
three-dimensional space, not just those in the xz-plane. One might hence build
a y-spin box that is associated with the electron spin along the y-axis in physical
space, an axis that is orthogonal to both the x-axis associated with an x-spin box
and the z-axis associated with a z-spin box. But to represent y-spin we need a
richer mathematical structure.

A two-dimensional complex-valued Hilbert space allows one to represent any
spin state of an electron. Spin states, in general, are represented by vectors of the

form
_fay +byi
v)s = <a2 + b2i>

where a,, by, a,, and b, are real numbers; i = 4/ —1; and \/{y|y) = 1.

The y-spin operator written in the x-spin basis is

s (0
»o\ioo)

® Given its physical interpretation as logical and, one might take the tensor product between physical
states to commute.



40 THE MATHEMATICS OF QUANTUM MECHANICS

The operator 6, is Hermitian because taking the complex conjugate of each element
then taking the transpose of the matrix gives one back 6,. The two eigenstates of
y-spin are

1 i
_l Tx) + _l lx)
2 2

1) = Mt + LTI =
Y Y y \/— \/—

and

1 i
ﬁlm \/E|lx>'

The state |1,), is an eigenstate of 6, with eigenvalue A = +1, and the state || ), is
an eigenstate of 6, with eigenvalue A = —1. These two states represent e having the
determinate property y-spin up and y-spin down respectively.

While it is important to the physics to have a full spin representation for
electrons, we can get by with a two-dimensional, real-valued Hilbert space as long
as we are only concerned with the x-spin and z-spin boxes. Later we will need
higher-dimensional, complex-valued representations.’

Table 3.1 summarizes the mathematical notions we have discussed and their
physical interpretation in the standard formulation of quantum mechanics.

Hy) = (Tl ) + sl L)) =

® See Susskind and Friedman (2014) for further details regarding the representation of spin.



Table 3.1. Mathematical notions and physical interpretation on the standard formulation of quantum
mechanics (on the Schrodinger picture).

Mathematical notion

Algebraic representation

Physical interpretation

[ENFE—
[

O ® N Tk W

Unit-length vector
Vector sum

Scalar multiplication
Orthonormal basis
Inner product
Linear operator
Hermitian operator
Eigenvector and eigenvalue
Unitary operator
Norm-squared
Tensor product

[¥)s

[¥)s + [0)s

aly)s + Blx)s

{I¢i)s}

[¥)s = 2Abilwvs
L(alg) + Blx)) = aLlg) + BLIx)
a=0

H|¢)s = Alg)s
0U'U=00 =1
[Kgilv)I?

[9)s ® [W)s: [$r @ |y)s

Physical state of S

Superposition of |y)s and |x)s
Quantum-mechanical amplitudes
Determinate property states

State decomposition

Observables and linear dynamics
Physical observable

Value of determinate property state
Linear dynamics

Probability of collapse from |y)g to |¢y)s
Composition of properties and systems




4

The Standard Formulation
of Quantum Mechanics

4.1 The von Neumann-Dirac Theory

The standard formulation of quantum mechanics was described by P. A. M. Dirac
(1930) and revised by John von Neumann (1932) (1955)." The theory can be
expressed in five rules using the mathematical notions from the last chapter. The
rules provide a systematic treatment of the physical ideas introduced there.

1. Representation of states: The state of a physical system S is represented by a
vector |y)s of unit length in a Hilbert space J(.

2. Representation of observables: A physical observable O is represented by a
Hermitian operator O on the state space J(, and each Hermitian operator
on H corresponds to some observable.

3. Interpretation of states: A system S has a determinate value for observable O
if and only if it is in an eigenstate of O: that is, S has a determinate value
for O if and only if Oly)s = A|y)s, where O is the Hermitian operator
corresponding to O, |y)s is the vector representing the state of S, and the
eigenvalue A is a real number. In this case, one would with certainty get the
result A if one measured O of S.

4. Laws of motion:

I. Linear dynamics: if no measurement is made of a physical system §, it
will evolve in a deterministic, linear way: if the state of S is given by |y(#;))s
at time t,, then its state at a time ¢ will be given by U(t,, t,)|y(t,))s, where U
is a unitary operator on J that depends on the energy properties of S.

II. Nonlinear collapse dynamics: if a measurement is made of a system §, it
will instantaneously and nonlinearly jump to an eigenstate of the observable

' See Albert (1992) for an conceptual introduction to the theory with as little mathematics as
possible. Maudlin (2019) is also an excellent companion to the arguments we will discuss here.

? This is the Schrédinger picture of the standard theory. The theory can also be formulated in the
Heisenberg picture with observables rather than states evolving. In the Heisenberg picture, a density
matrix may represent an epistemic mixture over pure states. The Schrodinger picture is conceptually
clearer inasmuch as one is not tempted to muddle straightforward epistemic probabilities concerning
what state obtains with the probabilities that result from the collapse of the quantum-mechanical state.
One of the main achievements of von Neumann (1932) was to show the precise sense in which these two
formulations are equivalent (an earlier study of the equivalence of the theories was given by Schrédinger
(1926) himself). Their equivalence allows us to discuss the standard theory in the Schrédinger picture
without loss of generality.
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being measured (a state where the system has a determinate value of the
quantity being measured). If the initial state is given by |y)g and |y)s is an
eigenstate of O, then the probability of S collapsing to |y)s is equal to [(x|y)|*
(the square of the magnitude of the projection of the premeasurement state
onto the eigenstate). If a measurement is made, then the system instanta-
neously and randomly jumps from the initial superposition to an eigenstate
of the observable being measured

ly) = chh//k) — |y)),
k

where |cj|2 is the probability of ending up in the eigenstate ;).

5. Composition rule: If system S, is represented by an element |¢) of F; and
S, by an element |y) of J,, then the composite system S; + S, is represented
by an element |¢p) ® |y) of H; ® H,. Similarly, if property P, of system S
is represented by an element |¢) of F(; and an independent (quantum-
mechanically compatible) property P, of S by an element |y) of F(,, then
both properties can be simultaneously represented by an element |¢) ® |y)

of H; ® H,.

Rule 1 says that the quantum-mechanical state of a system is represented as a unit-
length vector in a Hilbert space. The dimension of the space depends on the system
and the physical properties one wants to represent. While one has considerable
flexibility in one’s representation, empirical results fix the angles between states.

If one is interested just in the x-spin and z-spin properties of an electron e,
one can represent the electron’s state in a two-dimensional, real-valued Hilbert
space J{; that is spanned by the orthonormal basis |1,), and || ,), and also by the
orthonormal basis |1,), and || ,), (as in Figure 3.6).

If one is interested just in the position of the electron and one only distinguishes
between it being in region I or on path A or on path B or in region II (as in Fig-
ure 4.1), then its state can be represented in a four-dimensional Hilbert space J(,
spanned by the orthonormal basis |I),, |A),, |B),, and |II), (as in Figure 4.2). Each

A
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Figure 4.1. Two-path experiment with four regions.
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e

i, B)e

Figure 4.2. Orthogonal states for each of the four regions.

of these vectors represents a state where e is determinately in the corresponding
region, and linear combinations of these vectors

|1//>e = a1|I>e + a2|A>e + a3|B>e + a4|H>e

represent e in various superpositions of being in each of the regions.

Rule 2 says that all physical observables are represented by Hermitian operators
and all Hermitian operators represent physical observables. Since the eigenvectors
of a Hermitian operator form an orthonormal basis, one can also think of this as a
correspondence between physical observables and orthonormal bases. A physical
observable is a physical quantity like x-spin, position, or velocity. A physical prop-
erty might be thought of as a system either having or not having a particular value
for a specified observable.

Rule 3 is sometimes called the eigenvalue-eigenstate link. It provides the
standard physical interpretation of quantum-mechanical states by describing how
property attribution works.? In doing so, it connects the representation of states
with the representation of observables. The rule stipulates that a system S has
a value for some observable if and only if it is in one of the eigenstates of that
observable. If so, the value of the observable is given by the eigenvalue associated
with that eigenstate. The eigenvalues of an observable, then, are the possible
results of a measurement of that observable. In terms of properties, a system S
determinately has a particular physical property if and only it is in an eigenstate
of having that property. A typical state will hence describe a system as neither
determinately having nor determinately not having a particular specified property.

The Hermitian operator representing the x-spin of an electron e is

s (1 0
*7\0 -1

written in the x-spin basis. The state |1,), is associated with eigenvalue +1, which,
given the choice of representation and the eigenvalue-eigenstate link, corresponds
to having the determinate property of being x-spin up. And the state || ), is

* This rule has been a part of the standard textbook presentation of quantum mechanics from Dirac
and von Neumann to the present. See Gilton (2016) for a brief history.
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associated with eigenvalue —1, which corresponds to having the determinate
property of being x-spin down.
The operator representing z-spin is

in the x-spin basis. Here the state | 1,), is associated with eigenvalue A = +1, and the
state | ,), is associated with eigenvalue A = — 1. These two states then correspond
to e having the determinate property z-spin up and z-spin down respectively.

On the standard interpretation of states, the two vectors |¢), and —|¢), represent
precisely the same physical state. What matters physically is the ray determined by
the state vector.

The other direction of the eigenvalue—eigenstate link says that if a system S is not
in an eigenstate of a particular observable, then it simply fails to have a value for
the observable at all. A system that is in an eigenstate of z-spin, for example, has no
x-spin. The operators representing these two observables do not commute.* On the
standard interpretation of states, this indicates that the properties are incompatible
and cannot be simultaneously determinate. It is not that the system in an eigenstate
of z-spin has an x-spin but we just do not know what it is. This is not an epistemic
issue. Rather, it is a part of the metaphysics of property atrribution on the standard
interpretation of states.

Since the eigenvectors of a Hermitian operator form an orthonormal basis,
there is also a physical observable corresponding to each orthonormal basis. This
means that there are a continuous infinity of different physical properties that
one can represent just in the two-dimensional space we are using to represent
x-spin and z-spin. Start with the x-spin basis and rotate it by some angle, keeping
the two basis vectors orthogonal. Each rotation, up to a right angle, corresponds
to a different physical observable. In this case, these observables correspond to
different orientations of the magnets in the Stern—-Gerlach apparatus. Note that
every state is an eigenstate of some physical observable. This means that while most
of the physical properties of a given system will fail to be determinate, it will always
have at least one determinate physical property.

The bases corresponding to the observables x-spin and z-spin are geometrically
as different as possible. Position and momentum are another example of physical
observables that are maximally different. If the value of one such observable is
known, then the result of a measurement of the other is maximally uncertain. This
is the structure of the Heisenberg uncertainty relations.

* That is, when one multiplies the first Hermitian operator by the second (using the standard rule
for matrix multiplication), one gets a different result than when one multiplies the second by the first.
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It is sometimes said that if one knows the x-spin of an electron, then one
is maximally uncertain regarding its z-spin, and if one knows its z-spin, then
one is maximally uncertain regarding its x-spin. But this way of putting it is
fundamentally wrong given the standard interpretation of states. It is not an issue
of one’s epistemic uncertainty regarding possessed properties. If an electron has
an x-spin, we are not uncertain regarding its x-spin. Rather, by the eigenvalue-
eigenstate link, it simply fails to have any determinate z-spin whatsoever. What
is uncertain is the result of a subsequent measurement of the non-commuting
observable. And rule 411 tells us why.’

This has always been an essential feature of the standard formulation of quan-
tum mechanics. Dirac contrasted the way that properties work in classical mechan-
ics and quantum mechanics in the first edition of his Principles of Quantum
Mechanics as follows:

In classical mechanics an observable always has a particular value for any state.

This is not so in quantum mechanics, where a special condition [O|y)g = A|y)s]

is necessary for an observable to have a particular value for a certain state.
(1930, 31)

After all, when the initially z-spin up electron in the two-path experiment of
Figure 4.1 ends up in a superposition of being on path A and being on path B,
there is very good empirical reason to believe that it cannot in fact be on one of the
two paths and we just do not know which. Specifically, if it were determinately on
one or the other of the two paths, it would be x-spin up or x-spin down and hence
could not have the sure-fire disposition to behave in the z-spin up way when it gets
to region I1.°

Dirac explained that the classical way of speaking is permissible when a system
is in an eigenstate of having a particular property. In that case, the system simply
has the property (1930, 30). Putting the two directions together, a physical system
has a definite value for an observable if and only if it is in an eigenstate of that
observable. Dirac then held the standard interpretation of quantum-mechanical
states from his first description of the theory.”

Rule 3 is not a dynamical law. The act of measuring an observable of a system
does not multiply the vector representing the system’s state by the Hermitian

* Another way to put the point is that the Heisenberg relations do not represent uncertainty
concerning the values of possessed properties but rather the geometric relationship between the bases
representing those quantities. In the case of x-spin and z-spin, the uncertainty relations correspond to
the fact that the basis for one observable is a 45° rotation of the basis for the other observable.

¢ We will see a way to avoid this conclusion when we discuss Bohmian mechanics in Chapter 11. But
historically, people took such empirical results as direct evidence for the standard eigenvalue-eigenstate
link.

7 As discussed in the present section, von Neumann’s understanding of the eigenvalue-eigenstate
link was tied to his understanding of state completeness and of the role played by the two dynamical
laws. See also his interpretational principle 8 (1955, 253). See Gilton (2016) for a general discussion of
the history of the eigenvalue-eigenstate link.
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operator representing the observable. The rule just says how Hermitian operators
represent physical observables and their values. What happens to a system when
it is not being measured is described by rule 4I. Rule 4II describes what happens
when a measurement is made.

Rule 4 gives the dynamical laws of the theory, and in doing so it treats measure-
ment as a primitive, undefined concept. Rule 41 says that when no measurement is
made, the system evolves in a deterministic, linear way that depends only on its
energy properties. This is the linear dynamics. Von Neumann called it process 2
(1955, 351-2 and 417-18). It describes how an electron e (or any other physical
system) moves when no measurements are being made of it. In contrast, rule 4II
says that when an observable of a system is measured, the system instantaneously
and randomly jumps to a state where it determinately has or determinately does
not have the property being observed with probabilities determined by the norm-
squared of the magnitude of the projection of the state onto each possible outcome.
This rule for assigning probabilities is sometimes called the Born rule, after Max
Born (1926) who first described it.® Rule 411 is sometimes called the collapse of the
quantum-mechanical state. Von Neumann called it process 1 (1955, 351-2 and
417-18). It explains the standard quantum statistics, why one gets a determinate
result when one performs a measurement, and why a repeated measurement yields
the same result if the system has not been disturbed between measurements.”

Dirac described the collapse dynamics in his textbook on quantum mechanics
as follows:

When we measure a real dynamical variable. .. the disturbance involved in the
act of measurement causes a jump in the state of the dynamical system. From
physical continuity, if we make a second measurement of the same dynamical
variable...immediately after the first, the result of the second measurement
must be the same as that of the first. Thus after the first measurement has been
made, there is no indeterminacy in the result of the second. Hence, after the first
measurement has been made, the system is in an eigenstate of the dynamical
variable.... This conclusion must still hold if the second measurement is not
actually made. In this way we see that a measurement always causes the system
to jump to an eigenstate of the dynamical variable that is being measured....
(1957, 36)

What Dirac referred to as the disturbance involved in the act of measurement here
is not something that can be understood classically nor is it something that can be
understood in terms of the linear dynamics (rule 4I). Rather, on the formulation

® See Pais (1986, 255-61) for a discussion of the history of Born’s proposal.

° The time-dependent Schrédinger dynamics is just a special case of the unitary dynamics described
by rule 4L It is used when one wants to describe the evolution of a wave function that assigns
amplitude densities to a continuous range of possible positions. In that case, the dynamics is written
as a differential equation to represent the continuous evolution of the wave function.
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of quantum mechanics Dirac presented, the collapse dynamics (rule 4II) simply
stipulates a fundamentally random evolution of the state of an object system on
measurement.

In his sharpening of Dirac’s initial presentation of the theory, von Neumann put
it as follows

We therefore have two fundamentally different types of interventions which can
occur in a system S.... First, the arbitrary changes by measurements which are
given by [rule 4II, von Neumann’s process 1]. Second, the automatic changes
which occur with the passage of time. These are given by [rule 41, von Neumann’s
process 2]. (1955, 351)

He repeatedly indicated that the random behavior of a system under measurement
was not the result of any lack of knowledge of “hidden parameters” that in fact
determine the measurement result. Rather, von Neumann believed that one should
“admit as a fact that the laws which govern the elementary process (i.e. the
laws of quantum mechanics) are of a statistical nature” And he believed that
a statistical interpretation of quantum mechanics involving fundamentally non-
causal processes was “the only consistently enforceable interpretation of quantum
mechanics” (1955, 209-10).'°

According to rule 4II, the probability of a measurement outcome is given by
the norm-squared of the inner product of the object system’s state and the state
corresponding to the outcome in question. The probability that an electron in
state |1,), would yield x-spin up as the result of an x-spin measurement is

i =5 7o) - ’(%) 1)+ (%)@

And, if it did, the electron would be left in the state |1,),. Since
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1% There is a puzzle here concerning what one means when one says that the state collapses described
by rule 411 are random, or as von Neumann put it arbitrary or capricious. The uncontentious idea is that
one expects that a sequence of quantum measurement results will not exhibit any specifiable pattern.
Closely related, one expects that there will be no specifiable betting strategy that will allow one to
do better than chance betting on these outcomes. One also expects the results of a random process
to exhibit a sort of statistical independence. There are, however, a number of ways that one might
understand these three conditions. Another puzzle concerns how one might have empirical evidence
that the process that generates one’s measurement results is in fact fundamentally random. While there
is much to say here, there are higher-priority puzzles at hand, like saying precisely when and why each
of the two specified dynamical laws obtains and why. See Barrett and Huttegger (2019) for a discussion
of quantum randomness.
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the probability of getting the result x-spin up is just the norm-squared of the
coefficient on the |1,) term. Similarly, the probability of getting x-spin down is the
norm-squared of the coefficient on the ||,) term, which is also 1/2.

Similarly, if the state were

AETJR 1Y

the probability of finding the electron on path A, if one were to look, would
be 3/4 and the probability of finding it on path B would be 1/4, and in each
case the collapse would leave it in the corresponding eigenstate of position. The
probabilities, again, are given by the norm-squared of the coefficients on each
term when the state is written in the basis associated with the observable one is
considering. We were interested in x-spin in the last case; here we are interested in
the electron’s position.

The collapse dynamics (rule 4IT) works closely with the eigenvalue-eigenstate
link (rule 3). If a system in fact either determinately had or determinately did not
have a property, then a measurement of the property would simply reveal whether
it had it or not. But the eigenvalue-eigenstate link tells us that the system only
determinately has or determinately does not have a particular property if it is
either in an eigenstate of having the property or in an eigenstate of not having
the property. Since most states do not satisfy this special condition, a system will
typically fail to have or not have a particular specified property. So for the outcome
of a measurement to reveal a determinate possessed property, the system must
somehow first get into an eigenstate of the observable being measured. And to get
the right quantum statistics, the eigenstate it ends up in must be randomly selected
with the standard quantum probabilities, with the norm-squared of the quantum-
mechanical amplitude associated with that possible outcome.

The eigenvalue-eigenstate link (rule 3) works closely with the dynamics to
explain the standard quantum statistics. The eigenvalue—eigenstate link is hence
an essential component of the standard formulation of quantum mechanics, not
an optional interpretational principle. This is why it has played a central conceptual
role from the earliest presentations of the standard theory.

While appealing to a distinction between the physical theory of quantum
mechanics and its interpretation is commonplace, it is often in practice unclear
how to distinguish between the two. How one understands quantum-mechanical
states, observables, and probabilities must fit with the dynamics of one’s particular
formulation of the theory. This is perhaps easiest to see when the standard theory
is contrasted with the alternative formulations of quantum mechanics like GRW
(which we will discuss in Chapter 8) and Bohmian mechanics (which we will
discuss in Chapter 11). The dynamical laws of GRW will require us to change
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how quantum-mechanical states are interpreted, and the interpretational strategy
of Bohmian mechanics will require different dynamical laws.

There are other reasons to be skeptical regarding the idea that one can sharply
distinguish between one’s physical theory and its interpretation. Inasmuch as
one takes one’s physical theory to provide explanations of physical processes,
phenomena, events, and so on, one’s theory must incorporate at least some
interpretational assumptions. One should want to include in one’s specification of
a theory those assumptions that play the most significant roles in its explanations
and predictions. While it is not always easy to decide precisely what assumptions
should count as part of a particular formulation of quantum mechanics, the
eigenvalue-eigenstate link clearly works together with the dynamical laws to
explain determinate measurement records and their statistical properties in the
standard collapse theory.

The eigenvalue-eigenstate link is closely related to the principle of state com-
pleteness. It has been widely held that the standard quantum-mechanical state
provides a complete and accurate representation of the state of a physical system S;
that there is simply nothing else that one could add. Suppose that this is true, and
consider a physical system S in a symmetric superposition of eigenstates of having
a classical property A and not having that property —A:

—|A>s + —|"A>s

VERRTE

If one believes that this vector provides a complete physical description of system S,
then whether or not it has property A cannot possibly be determinate as there
is, by the symmetry of the state, nothing whatsoever that could decide the issue.
Consider a non-symmetric state:

[¥)s = alA)s + BI=A)s.

Insofar as one believes that this state must be compatible with a measurement
yielding either the result A or the result —A, then if one believes that this vector
provides a complete physical description of the current state of the system, whether
or not S has property A cannot be determinate since there is nothing that could
decide which of the two conditions in fact obtains. So if S is not in an eigenstate of
having or an eigenstate of not having property A, then given the principle of state
completeness property A cannot be determinate.

The other direction of the eigenvalue-eigenstate link is relatively straightfor-
ward. Insofar as S would have the sure-fire disposition of exhibiting property A on
measurement when it is in state |A)g and since, by completeness, there is nothing
else that might determine this result, S has property A in this state.
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As von Neumann put the point, “it is evident that everything that can be said
about the state of a system must be derived from its wave function [the vector
representing its state]” (1955, 196). Insofar as one cannot derive whether S has
property A from the vector |y)g above, there is nothing whatsoever that one can
say regarding whether S has the property. The issue here concerns what physical
facts there are, not just what one can know about those facts. As von Neumann
explained later, “we believe that after having specified [the quantum state] we
know the state completely” (1955, 207). If |y)s is in fact a complete specification
of the state, then whether it has property A must be physically indeterminate. A
commitment to state completeness for von Neumann entails a commitment to the
eigenvalue-eigenstate link.

One last thing about rule 4 itself. There is a sense in which the standard
theory’s dynamics is essentially incomplete. The theory says that the state collapses
to a randomly determined eigenstate of the observable being measured when a
measurement is made, but it does not tell us what constitutes a measurement. That
measurement occurs in the standard theory as an undefined primitive term leads
to the quantum measurement problem. We will return to consider this problem in
detail after we see how the standard theory works (in Chapter 7). In the meantime,
we will suppose that what physical interactions should count as measurements is
clear enough to meaningfully apply the theory.

Rule 5 tells us how to combine the state representations for different subsystems
to get a state representation for a composite system and how to combine the state
representations involving quantum-mechanically independent properties of the
same system to get a state representation for both. We will briefly consider each of
these tasks in turn.

Consider two electrons, e; and e,. The spin of e; can be represented by a vector in
two-dimensional space J{, . The spin of e, can also be represented by a vector
in two-dimensional space #(,,. By rule 5, the spin state of the composite system e,
and e, can be represented by a vector in the four-dimensional space #, ® J(,,
(as in Figure 4.3). Since |1,),, and ||,),, form an orthonormal basis for 7, and
[T)e, and |1 ),, form an orthonormal basis for 7(,, , the four vectors | 1), ® [1)e,>

|Tx>e1 ® |TX>€2
1106 ® L2,
e, 1L,
N’x)el ® |Tx>cz
T, T, e, ® 1L,
f}[el 5{62 — .'}fgl X .’7{52

Figure 4.3. Tensor product representing different systems.
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|Tx>e ® ‘De

14 1y, | 1 11,06 ® 1),
11 e B
Fy Fy — H,Q I,

Figure 4.4. Tensor product representing different properties.

10 ® [Lde,s Lade, @ [T0)e, and [L)e, ® |1, form an orthonormal basis for
H, & H,,. Linear combinations of these vectors allows one to get the z-spin
eigenstates for the two particles as well.

Consider the spin and position of an electron e. The spin of e can be represented
by a vector in two-dimensional space #(; spanned by the orthonormal basis |1,),
and ||.), (as in Figure 4.4). Similarly, the four possible locations in the two-path
experiment can be represented by the vector in the four-dimensional space H,
spanned by the orthonormal basis |I),, |A),, |B),, and |II),. By rule 5, the spin and
position of e can be represented by a vector in the eight-dimensional space H; ®
H, spanned by the orthonormal basis |1,), ® |D., [Tx)e @ [A)es -0 [L)e @ [Des
[10e ® A v and | 1), @ [ID),.

Physically, the tensor product is read as logical and. So |1,),, ® |!.)., means
that e, is x-spin up and e, is z-spin down, and || ), ® |A), means that e is x-spin
up and on path A. Since we will be writing the tensor product often, we will
hereafter adopt the shorthand of writing |¢) ® |x) as |$)|x)- So |1 ).|A). represents
an x-spin up electron on path A.

Note that while e might have a determinate x-spin and a determinate position at
the same time, it cannot have a determinate x-spin and a determinate z-spin at the
same time. As a consequence, one cannot use rule 5 to represent the state of e as
[T)e ® [2).- Indeed, it feels wrong even typing this expression. The reason is that
x-spin and z-spin are quantum-mechanically interrelated quantities. Formally,
this is indicated by the fact that they correspond to different bases in the same
Hilbert space. Quantum mechanics does not tell us which physical quantities are
quantum-mechanically independent and which are not. This is something that
must be determined empirically.

A closely related empirical constraint on the representation of states is the
observed relative frequencies of one’s measurements results. If e has a determinate
x-spin and its z-spin is measured, it is found to be z-spin up about half the time
and z-spin down about half of the time. And if it has a determinate z-spin and its
x-spin is measured, it is found to be x-spin up about half the time and x-spin down
about half of the time. This is what fixes the angle between the x-spin and z-spin
bases at 45°.

There is a formal constraint on the representation of states that has to do
with the topology of Hilbert space. Since every possible value that an observable
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might have corresponds to a different orthogonal vector in the state space, the
dimension of the space must be at least the cardinality of the spectrum (the set of
possible values) of the observable one wants to represent. Since the theory requires
the state space to be separable, its dimension is at most countably infinite."!
This places a significant constraint on what observables one might represent.
In particular, one cannot represent quantities with continuous spectra like precise
position, velocity, or energy. A standard way around this is to use a Hilbert space
with an orthonormal basis corresponding to a countable discrete spectrum that
provides the degree of precision one needs in order to represent the behavior of
the particular physical system at hand.

Empirical considerations also constrain when each of the two dynamical laws is
used. The basic methodological rule of thumb that one learns as a physics student is
to use rule 4I unless one needs to explain a determinate measurement outcome. But
empirical constraints often require one to use rule 4I. As we shall see presently, one
must use the linear dynamics to describe the interactions between the electron and
the x-spin, z-spin, and total-of-nothing boxes in order to get the right empirical
results for the two-path experiments. We will return later (in Chapter 7) to the
more general question of when each law should be used as this is central to the
measurement problem.

The way that we have described the standard formulation of quantum mechan-
ics here is sometimes called the Schrédinger picture or wave mechanics. This is in
contrast to matrix mechanics or the Heisenberg picture. On the latter, one fixes a
state vector then gives the time-evolution of the physical system at hand in terms of
the evolution of the Hermitian operators representing one’s observables. Among
other things, von Neumann (1932) showed that these two ways of picturing
the standard formulation of quantum mechanics are equivalent in a very strong
mathematical sense and hence can be thought of as precisely the same physical
theory. Given its relative conceptual clarity, we will use the Schrodinger picture
throughout the book.

4.2 Spin Boxes and the Linear Dynamics

Consider an x-spin box (as in Figure 4.5(a)). The box is designed so that an x-spin
up electron in region I would end up an x-spin up electron in region II

|TX>€|I>€ - |TX>E|II>C

! A vector space is separable if and only if it has countable dimension. If this condition is satisfied,
then, given a specified basis, every vector in the space has a unique representation as a countable sum
of the elements of the basis with appropriate coefficients. This notion of the separability of a vector
space has nothing to do with quantum-mechanical notion of separability that we will discuss later in
this chapter.
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T (ERIY
I
I | I |

. : I
x-spin |, I z-spin |,
B | Figure 4.5. x-spin and z-spin boxes

(@ (b) with labeled positions.

II

and an x-spin down electron in region I would end up an x-spin down electron in
region III

|‘1’X>€|I>€ - |‘LX>E|III>6'

These two dispositions fully characterize what an x-spin box does to the spin and
position of an electron that encounters it.

Similarly, a z-spin box with similarly labeled positions (as in Figure 4.5(b)) is
characterized by the following two dispositions:

[T2)elDe = [12)[1D)e

and

H2elDe = [12) /D).

That is, it sends a z-spin up electron to region II without disturbing its spin and a
z-spin down electron to region III without disturbing its spin. This is precisely how
one would build boxes to sort electrons without disturbing them if spin properties
behaved classically. But they don't.

Consider the x-spin box again. Given how it is designed, we know what it does
to an x-spin up electron and to an x-spin down electron. But we need guidance
from the theory to figure out what it does to a z-spin up electron.

Suppose that we start with a z-spin up electron e in region I, then send it
through an x-spin box. Suppose further that no one looks at the electron, and
suppose that the electron, consequently, does not count as being measured. The
theory does not tell us what counts as a measurement, but, if anything does,
presumably an observer looking at the electron for the purpose of determining
its physical properties would. That the interaction with x-spin box does not count
as a measurement is just a guess at this point. But as we will see when we get to the
the empirical evidence from the two-path experiments, it is a good guess.

On the assumption that the interaction with the box does not count as a
measurement, the time-evolution of e is given by the deterministic linear dynamics
(rule 4I). In calculating how the state of the electron evolves, we will make essential
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use of the fact that this dynamics is linear. Recall that the action of a linear operator
on a superposition of two states is the same as the action of the operator on each of
the states individually, carrying over the coefficients from the superposition. That
is, the time-evolution operator U has the property that

Olalg) + Blx) = all¢) + BOJy).

The precise action of Uis determined by the energy properties of the system, which
are determined in this case by how the x-spin box is designed. Since the box sends
an x-spin up electron to region II without disturbing its spin, we know that

O110elDe = [ 1)/,

and since it sends an x-spin down electron to region III without disturbing its spin,
we also know that

Ol)eDe = [Lo)[TID),.

What it does to a z-spin up electron follows from this, the linearity of the dynamics,
and the relationship between x-spin and z-spin.

Suppose that it takes one second for the electron to go through the box. The
initial state of e at time ¢, is

W’(to»e = |Tz>e|1>e'

By rule 41, its state after one second is

W/(tl»e = ij(to»e
= U 1.)De
1

V2

1 1
T ere _J'ere
\/EIT>I>+\/§| >|>]
1

= O+ — 01100,

V2 V2

= ilTx>e|H>e + i|¢x>e|m>e.

V2 V2

=U

1
x/e _lxe Ie
|T>+\/§| >]|>

=U
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Here we have written each step in the calculation so that the basic algebra is as
clear as possible and to show how the linear operator U works. We will gradually
adopt a more efficient notation.

The first thing to notice is that after the electron has passed through the box, it
is no longer determinately z-spin up. But it is not that anything has happened to
randomize its spin. So far the entire evolution of the state has been completely
deterministic. Rather, it is that one can no longer represent the resultant state
|w(t,)). as the tensor product of z-spin up and something else. Hence, by rules 3
and 5, the electron is no longer determinately z-spin up.

The x-spin box puts the electron in a superposition of being x-spin up and in
region II and being x-spin down and in region III. Such an electron is not deter-
minately in region II, it is not determinately in region III, it is not determinately
in both, and it is not determinately in neither. Indeed, since the x-spin box has
correlated €’s position with its spin and has left it in a state that cannot be factored
into a tensor product of a spin state and a position state, it no longer even has a
determinate spin or position state to call its own. When this happens, we say that
the spin and the position of the electron are entangled. Entanglement is a decidedly
nonclassical notion. It plays an essential role in how quantum mechanics predicts
and explains a particularly subtle class of quantum phenomena.

The x-spin box does something similar to a z-spin down electron. Here the state
at time ¢ is

|1//(t0)>e = |lz>e|I>e'

So by the linear dynamics, its state after one second is

W/(tl))e = ljwl(to»e
= UlL)e/De
1 1
= Tx e~ T~ l«x e I e
\/El ) \/EI ) ]I )

1 1
_Txele__lxele
\/El )elD) 2| >I>]

= L0110, = =01 1.0,

V2 V2

= Ly, — 1) m),.

V2 V2

So the interaction leaves e in a different entangled superposition of being x-spin
up and in region II and being x-spin down and in region IIL

U

U
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The linear operator U that represents the physical action of a z-spin box evolves
states in an analogous way. In contrast to an x-spin box, a z-spin box does not do
anything fancy to electrons that start in an eigenstate of z-spin—it just sends z-spin
up electrons to region II and z-spin down electrons to region III. But, given this
and the linearity of the dynamics, an electron that starts x-spin up

|1//(t0)>e = |Tx>e|1>e

evolves as follows:

ly(t)e = Uly(to))e
= U 10D

L+ =

V2 V2

1 1
= zeIe _lzeIe
\/§|T>|>+\/E| >I>]

~ 1 .
Ul Tz>e|I>e +—= U| lz)elDe
V2

=U

| lz>e] D

=U

1
V2

1 1
= —|[1Me + —

V2 V2

Because this state does not factor, the electron is no longer determinately x-spin
up. Again, it does not even have determinate spin state to call its own. Rather, e is
in an entangled superposition of being z-spin up and in region II and being z-spin
down and in region III. And the z-spin box leaves an x-spin down electron in a
similar entangled superposition.

We have been using the fact that if one knows what the unitary time-evolution
operator U does to each element in a set of vectors that spans the possible
initial states of a system S, then one knows what it does to every possible initial
state. Since U is linear, one just writes the state of the system in terms of states
with known evolutions, then time-evolves each term and keeps the coefficients
with their corresponding terms. So if U|¢(ty))s = |¢(t1)i)s, one carries out the
transformation term by term to get the new time-evolved state

[ 42)e [T,

[w(to))s = a1lp(todr)s + ag|(to))s

U U
[w(t1))s = a1]p(t)h)s + ag|(t)e)s
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One often knows how each element of a particular basis would evolve in a
particular physical situation. When one does, one can simply rewrite the system’s
state in that basis, then calculate how the full state evolves by evolving each term
of the state written in the new basis and keeping the coefficients. Here we knew
what the spin boxes did to each of the elements of the corresponding spin basis
because we knew how the boxes were designed. We will use this trick repeatedly
to determine how physical systems will evolve under the linear dynamics.

4.3 Quantum Statistics

Consider again sending a z-spin up electron e through an x-spin box. The initial
state is

[y(to))e = [ T2)elDe
and, on the linear dynamics, the final state is

$
V2

This is a superposition of being x-spin up and in region II and being x-spin down
and in region III. Hence, given rules 3 and 5, one can no longer talk about €’s spin
at all without also talking about its position and one cannot talk about its position
without talking about its spin. But when we do this experiment and check, we
always find the electron with both a definite position and a definite spin after it
passes through the box. About half of the time we find it in region IT and x-spin up
and about half the time we find it in region IIT and x-spin down. So, by the time we
find the electron with determinate position and spin properties, it can no longer
be in this entangled state. The challenge is to say how it ends up in an eigenstate of
both position and x-spin and when this happens.

Whatever a measurement is, presumably an observer looking for an electron
and either finding it or not counts. If so, then this means that if the electron is
in the state |y(#,)), and one observes its position, then the state of the electron
must evolve according to the collapse dynamics (rule 41I). That is, the electron pre-
sumably must nonlinearly, randomly, and instantly collapse to an eigenstate of
position the moment one looks for it. The probabilities associated with each
possible measurement outcome are determined by the electron’s state just before
it was measured.

Let’s start with a slightly simpler case, one where we are just considering the spin
of the electron. Suppose one had a device that measured the x-spin of an electron
directly. Suppose the electron is initially in the state

1
(1)), = T IDe + —| 1) |IID),.
[w(t))) | 1|10 \/5|>|>
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|¢(tl)>e = ‘X| Tx>e + B| ‘Lx>e
1 0 o
=<(o)=#()= (3
written in the x-spin basis, immediately before the measurement. Then rule 4II

predicts that the probability that the post-measurement state |y(t,)), will be
1) 1s

2

= |(D(@) + (OP)* = |a?

(LIS = ’(1 ) (Z)

and the probability that it will be ||,), is

2

= |(0)(@) + (WP)I* = B>

KL § ) = ‘(O 1) (2)

Again, the probability of each possible outcome is given by the norm-squared of
the coefficient on the term in the initial state that corresponds to that outcome.
The coeflicient represents the quantum-mechanical amplitude associated with the
outcome. And the probability of a particular result is equal to the norm-squared
of the amplitude associated with that result.

Now consider the more complicated entangled state. If an electron is in the state

1 1

— 10 /D, + == L) 1D, (4.1)
2 V2

\/_

and we measure its position, there are two possible outcomes—it will be found to
be in either region II or in region III. And each of these possibilities is associated

W/(tl))e =

with an amplitude of 1/ V. Consequently, the collapse dynamics assigns each
possibility a probability of |1/ V2 |* = 1/2 of being realized on measurement.

If the electron is found in region II, then it is determinately not in region III. So
the collapse of the state multiplies the second term in |y(t,)), by zero, and e ends
up in the state

|V/(t2)>e = |Tx>e|H>e'

Similarly, if e is found in region III, then it is determinately not in region II. So the
collapse multiplies the first term in |y(#,)), by zero, and e ends up in the state

|l/,(t2)>e = |ix>e|HI>e
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In the first case, the electron ends up x-spin up and in region II, and, in the second,
x-spin down and in region III. In both cases, it now has both a determinate position
and a determinate x-spin. The fact that the two quantities are perfectly correlated
in the initial state ensures that if a collapse gives one of the quantities a determinate
value it will also give the other the corresponding determinate value.

Now we know how the spin boxes work. On the assumption that they interact
linearly with the electrons, an x-spin box just correlates the x-spin of the electron
with its position. When one looks for the electron, one measures its position. It is
this that gives the electron a determinate position which, in turn, gives it a determi-
nate x-spin. Because its x-spin and position are correlated, one can read its x-spin
from its position. On the assumption that boxes do not cause collapses, the random
behavior of the electrons arises from the subsequent position measurement, not
from the boxes. And the probabilities involved in the collapse process explain the
standard quantum statistics.

Electrons that start z-spin down behave similarly. If the electron starts in state

|1//(t0)>e = |lz>e|l>e
and is sent through the x-spin box, it will end up in the state

1 1
_| Tx>e|H>e - _| lx>e|HI>e
2 2

V2 V2

by the linear dynamics. When its position is subsequently measured, it will end up
in the state

[y(t))), =

|I//(t2)>e = |Tx>e|H>e (42)
with probability |1/4/2]> = 1/2, and in state
|1//(t2)>e = |lx>e|IH>e (43)

with probability |—1/ V2 |?=1/2. And z-spin boxes behave similarly on
observation.

When the electron is in a physical state like |y(t,)), that is simply represented
by a vector in Hilbert space, we say that it is in a pure state. If the electron were
already determinately in the state |1,),|II), or determinately in the state || ,),|III),
(with equal probability) before it was observed, and we just didn't know which,
one would say that it was in a statistical mixture of these two (pure) states. On
the assumption that the boxes do not cause collapses, the linear dynamics predicts
that, immediately before we observe the electron, the electron is in the pure state
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|y(#,))., not a statistical mixture of |1,.).|I), and |} ). |III),. In contrast, the collapse
dynamics, if we believed that it applied to the interaction between the electron and
the x-spin box, which we don’t, would predict the statistical mixture of [1,),|II),
and ||,.).|III), with equal probability immediately before the electron is observed.

So, if we are right to believe that an electron follows the linear dynamics when
it encounters an x-spin box (an assumption that we will return to in the next
chapter), an x-spin box does not typically sort electrons by their x-spin. And
it does not randomize their z-spin properties or anything else either. Rather, it
just correlates an electron’s spin with its position, which nearly always leads to
an entangled superposition of spin and position properties. And it does so in a
way that is fully deterministic. The electron’s state only evolves randomly when a
measurement is made. But, if this is right, then why does it seem that an intervening
x-spin box randomizes z-spin even when no one observes the electron?

4.4 Combining Boxes

Suppose one knows that an electron e is z-spin up because one just observed it
exiting from the 1, door of a z-spin box. Consider what happens under the linear
dynamics if one sends e through an x-spin box with a z-spin box positioned at
the 1, door (as in Figure 4.6). We need to keep track of five possible eigenstates of
position, one for each of the five regions indicated by Roman numerals; so we need
a five-dimensional vector space for the position part of the state. The spin part of
the state is again represented by a vector in a two-dimensional vector space. We will
suppose that e starts z-spin up in region I and takes one second to move through
each box.
The state of the electron at time ¢, is

|ll/(t0)>e = |Tz>e|1>e'

By the linear dynamics and how the x-spin box is designed, its state after one
second is

.1

z

1 II |

X
I | z-spin |,

Figure 4.6. x-spin followed by z-spin with x-spin | I
labeled positions.

\Y%
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[v(£)). = Ulty, t)w(t)).
= U(tO! tl)l Tz>e|1>e

~ 1 1
= U(t s tl) e Tx>e I>e +—= l’x>€ I>€
0 \/5| | \/El |

1 1 .
= —Ult, 1) 1)l De + EUUO’ )l el De

V2

1 1
= Tx>e H>e +—= lx>e HI)e'
ﬁ' | ﬁ' |

Again, we are going slowly in order to see how the theory works. Since the
dynamics is linear, to calculate what happens in the next second we get the final
state by considering what a z-spin box would do to each term of the state of the
electron described by |y(#;)), in the last line above. The z-spin box will not do
anything to the second term as it describes an electron that does not even enter
the box. So we just need to figure out what it will do to the first term.

While we do not know what a z-spin box will do to an x-spin up electron just
from the construction of the box, we do know what it will do to a z-spin up or
z-spin down electron. The trick is to rewrite this term in the z-spin basis, then
time-evolve each term in the resulting expression. Since

1 1
Tx)e == Tz>e +—= l’z>e
| \/El \/El

we can substitute this expression into the last line above to get

1 1 1 1
e:__Tze l' He _lerIe
[y (1)) \/E(ﬁl ) \/El >>| >+\/_| elTII)
= (311 + 3103 I+ = |¢>|1H>

1
= §| TZ>€|H>E + El ‘Lz>e|H>e + $| ix>e|HI>e-

Now we know what the z-spin box would do to each of the terms in this expression.
It would evolve the state represented by the first term to |1,).|IV), and the state
represented by the second term to ||,),|V),, and it would do nothing at all to the
state represented by the third term. So

ly(t,)), = Uty, t)|y(5))e

= (1, 1) (§| 10D+ 31 L)), + ﬁ ¢x>e|m>e)
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O, 1M, + 5 00t )] )l + % 0Ct,, )] L),

N = N

1 1
= 2 [10IV)e + [ 1) Ve + —| L) 1D,
[12)e] 52l \/El |

And the linear dynamics leaves the electron in an entangled superposition of being
z-spin up and in region IV and being z-spin down and in region V and being x-spin
down and in region III.

If one looks for the electron in this state, its state will instantly and randomly
collapse with probabilities determined by the amplitudes associated with each
possible outcome. The probability of finding it in region IV and hence z-spin up
is [1/2|* = 1/4. The probability of finding it in region V and hence z-spin down is
|1/2|* = 1/4. And the probability of finding it in region III and hence x-spin down
is |[14/22 = 1/2.

And these probabilities are precisely what one would expect if the x-spin box
completely randomized z-spin so that each box sent about half of the electrons out
of each of its doors. But nothing random occurred when the electron encountered
the x-spin box and interacted with it linearly. It just appears that something
random occurred. That is how one would explain the statistics if one believed that
each electron followed a determinate classical trajectory. But here the only random
event is the collapse that occurs when one observes the electron’s final position at
the end of the experiment.

At this point, it is natural to wonder again why we are so sure that the electrons
obey the linear dynamics and hence typically do not follow classical trajectories
when they interact with the boxes. The empirical evidence for this is given by
the results we get in the two-path experiments. We will discuss this in the next
chapter but first we will end this chapter by considering two other quick examples
of quantum-mechanical systems.

4.5 Physical Properties more Generally: K Mesons and Qubits

So far, we have been talking about the spin properties and positions of electrons,
but quantum mechanics treats all physical properties in the same basic way.
One represents a physical observable by finding a Hilbert space spanned by an
orthonormal basis corresponding to the observable one seeks to represent. Each
element of the basis will correspond to a different value that the observable might
take. Different rigid rotations of one orthonormal basis will correspond to the
various other physical properties that can be represented in the space. One’s
empirical evidence determines how one identifies these properties physically—
the statistics of one’s measurement results determines the angles between the
properties.
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The same vector space may represent different sets of related physical properties.
The following examples illustrate how this works in the context of very different
sets of physical properties.

Because of the way the standard theory treats properties, there is sometimes
no simple matter of fact about what sort of particle a particular fundamental
particle is. Neutral K mesons, like many other particles, have antiparticles with very
different physical properties. A K® meson has a strangeness of +1, for example,
while its antiparticle, a K® meson, has a strangeness of —1."*> Neutral K mesons are
typically found to be in superpositions of being K° mesons and being K° mesons
at the same time. This means that on the standard interpretation of quantum-
mechanical states, a neutral K meson is typically not a K® meson, not a K® meson,
not both, and not neither; rather, it is in a superposition of being both types of
particle simultaneously.

The quantum-mechanical representation of neutral K meson states works very
much like the representation of electron spin.'? The state where a neutral K meson
is determinately a K° particle is |[K°) and the state where it is determinately a
KO particle is |K°). These two states are mutually orthogonal and provide a basis
for the space of possible neutral K meson particle states.

The K-short meson K has a mean time to decay of about 8.95 X 107! seconds
and the K-long meson K; has a mean time to decay of about 5.11 X 107® seconds.
Each of these particles decays in a different way producing a different cascade
of particles. Ky and K; mesons can be represented as linear superpositions of
determinate K° and K° states

IKs) = %qm +R%)

and

1 _
Kp) = —(K°) — [R%)).
KLy \/E(l )= 1K)

The geometric relationship between each of these states can be seen in
Figure 4.7(a). The state of a particular neutral K meson will wobble about in
this state space when the particle is unobserved. As it does, the probabilities of
finding it as each type of particle if it is observed wobble with its state.*

'? Strangeness, like spin, is a basic property of fundamental particles. It is conserved in strong and
electromagnetic interactions but not in weak interactions.

'* The present description follows Baym’s (1969, 38-45) more detailed account.

' The behavior of neutral K mesons and particle decay and creation more generally is among the
phenomena that a satisfactory formulation of quantum mechanics must be able to explain. As we will
see, some of the formulations of quantum mechanics devised to address the quantum measurement
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Figure 4.7. State representations for

K mesons and qubits. (a) (b)

A qubit in a quantum computer might also be represented by vectors in such a
space (as in Figure 4.7(b)). A bit in a classical computer can take the value 0 or 1. In
contrast, a qubit b might take any superposition of the two orthogonal states |0},
and |1),

al0), + BI1),

where o and f3 are complex numbers.

The qubits in a quantum computer evolve according to linear dynamics rule 41
when unobserved. This allows one to execute a superposition of different classical
operations on the qubits. Since the dynamics is linear, classical operations on a
superposition of inputs will produce a superposition of classical results. If one
added the number # to a superposition of the two numbers j and k, for example,
one would get a superposition of j+ n and k+ n as the result. In this case, thereis a
sense in which one has performed two calculations in a single computational step.
One might, at least in principle, carry out an infinite superposition of different
calculations similarly. The aspirational idea behind a quantum computer is to
exploit such massively parallel processing. The problem is that if one simply reads
the result of a parallel calculation, one collapses it to a particular randomly selected
classical calculation. And performing a single, randomly determined calculation is
clearly worse than just doing the single classical calculation one cares about most.

There are, however, a few clever quantum algorithms that get around this
problem. While no quantum algorithm can solve a problem beyond what a
classical computer could solve if given enough time (that is, on the standard way of
setting them up, quantum computers are Turing-equivalent machines), there are
quantum algorithms that allow for faster computations than any known classical
algorithm. The best example of a useful quantum algorithm is Peter Shor’s (1996)
algorithm for factoring a number into its composite prime factors in polynomial
time. No known classical algorithm can factor a number this quickly.

problem (Chapter 7) account for the spin behavior of electrons more easily than they do field
phenomena like particle annihilation and creation.
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Quantum Interference

5.1 The Simple Two-Path Experiment

We are now in a position to see how the standard formulation of quantum
mechanics explains the results of the two-path interference experiments. Consider
the two-path experiment where we start with a z-spin up electron e in region I at
time #; (as in Figure 5.1). We will suppose that the electron is halfway through the
apparatus in one second #; and at region II in two seconds ¢, and that the changes
in direction as it travels do not affect its spin properties. We will also suppose
that no one looks at either of the two paths during the experiment and that e is
kept well-isolated from its environment. Finally, we will continue to assume that
the interaction between the electron and the spin boxes is correctly characterized
by the deterministic linear dynamics. That is, we will continue to suppose that
this interaction does not count as a measurement that collapses the state of
the electron.

Before we calculate what happens with a z-spin up electron, let’s consider what
the two-path apparatus does to x-spin up and x-spin down electrons. An x-spin up
electron would travel through the device like this

|I//(t0)>e = |Tx>e|1>e

1
Wl(tl))e = |Tx>e|A>e
\
W/(tz))e - |Tx>e|H>e'
A
. Txl L . Tzl .
L) >—--
ITZ>3|I>e x-spin l’x RN _’ -7 szPin lz v
-—— Eg— -

Figure 5.1. Two-path experiment with labeled positions.



THE SIMPLE TWO-PATH EXPERIMENT 67

And an x-spin down electron would travel through the device like this

|l//(t0)>e | ix)elDe

«—

W’(tl))e = |ix>e|B>e
)
W/(tz»e = |~lx>e|H>e'

Since any spin state of an electron in region I can be represented as a linear
combination of |1,).|I), and ||,).|I),, the dispositions of an electron in each of
these two x-spin eigenstates fully determines the unitary time-evolution of any
electron that starts in region I. Since the evolution is linear, we just write the initial
state in the x-spin basis, then time-evolve each term in the superposition, keeping
the original coeflicients.

The state of the z-spin up electron at time t is

|ll/(t0)>e = |Tz>e|1>e'

So, given the linearity of the dynamics and how the x-spin box is designed, its state
after one second is

[y(t))e = Ulty, t)|y(t))e
= Ulty, t)] 1.)elDe
1
NG

= L0ty 1) 10D + —= 0ty £)] L))

V2 V2

= L| Tx>e|A>e + L| lx>‘3|B>e'

V2 V2

Here the electron is in an entangled superposition of being x-spin up and on path A
and being x-spin down and on path B, and hence does not have any determinate
spin or position properties.

Given the linearity of the dynamics and the construction of the two-path
apparatus, the electron’s state after two seconds is

N 1
= U(t ’t ) e Tx>e I>e + lx)e I>€
0ot \/El | [l

ly(t), = Ulty, ) |y(t)).
1

V2

N 1
= U(tl,t ) — Tx>e A)e + lx>e B>e
2 ( \/El | el )
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= L U(tls t2)| Tx>e|A>e + L(-A](tl’ t2)| ‘Lx>e|B>e

V2 V2
= i|Tx>e|H>e + i|‘LX>€|H>€

V2 V2

1 1
= _Txe+_lxe IT),
(\/5| ) \/E| ))l)

= [ 12)e[1D)e.

So, putting the pieces together, the full time-evolution of the electron under the
linear dynamics is

II/’(t()»e = |Tz>e|1>e
l
(D) = =110l A)e + —=] 1).|B)
e ﬁ x/le e ﬁ x/e e
l

II/’(tz))e = |Tz>e|H>e'

And after two seconds the electron is simply z-spin up and in region II. And that’s
why, when no one looks, it exhibits the sure-fire disposition to exit from the 1,
door of the z-spin box. It is z-spin up.'

The interference effect of the electron being determinately z-spin up at the end of
the two-path apparatus is also how we know that it evolves by the linear dynamics
(rule 4I) and not by the collapse dynamics (rule 4II) when it interacts with an
x-spin box. For e to be z-spin up in region II on the standard theory it must have
traveled a superposition of the two paths, as predicted by the linear dynamics.
While it is in a superposition of being on path A and being on path B, it does
not have any determinate spin or position properties because its spin and position
properties are entangled. This is represented by the fact that the electron’s state after
one second cannot be factored into a tensor product of a spin state and a position
state. But after two seconds, its state can be factored into a product of spin and
position. And it is just a z-spin up electron in region II.

5.2 Measurement

Suppose that we run the same two-path experiment but we put an observer on
path B to see whether the electron follows that path (as in Figure 5.2). Again, the
electron e starts in state

! And if the electron is initially z-spin down, a similar narrative explains why it will certainly end up
z-spin down at the end of the two-path apparatus.
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Figure 5.2. Two paths with an observer.

W/(to))e = |Tz>e|1>e

and by the linear dynamics ends up in the state

LA + —

V2 V2

after it has passed through the x-spin box.

While this is not a state where the electron has a determinate position, it is a state
where an observer will find it on one or the other of the two paths if she looks for it.
And an observer intentionally looking for the electron to determine its position

|1//(t1)>e = | lx>e|B>e

presumably counts as a measurement of the electron’s position. In which case, the
collapse dynamics (rule 41I) tells us that the state of the electron will randomly and
nonlinearly collapse to an eigenstate of position with probabilities determined by
the norm-squared of the projection of the initial state |y(t,)), onto each possible
state where it has a determinate position.

Suppose that the observer looks for the electron on path B. The probability that
she will find it is the norm-squared of the amplitude corresponding to it being on
path B, which in this case is |1/\/§|2 = 1/2. If she finds it, then the probability of
the electron being on path A is zero and hence the amplitude associated with it
being on path A must also be zero. So if the electron is found on path B, then it is
also x-spin down, and its quantum state is |],).|B),. That is, the effect of finding
the electron on path B is to multiply the first term of |y(t;)), by zero. One then
renormalizes the vector to get the resultant state.

The probability that the observer will not find the electron on path B is one
minus the probability that she will: 1 —1/2 = 1/2. If she does not find it on path B,
then the probability of it being on path B is zero and hence the amplitude associated
with it being on path B must also be zero. This means that if it is not found on
path B, then the state |y(t,)), must collapse to |1,).|A), when the observer looks
for the electron and does not find it. So the effect of not finding the electron on
path B is to multiply the second term of |y(t,)), by zero.
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In short, the collapse dynamics together with the standard interpretation of
states requires that finding the electron on path B collapses the state to |],).|B).,
and not finding it on path B collapses the state to |1,).|A),. This is what explains
why if one finds the electron on path B, then it is x-spin down. And it explains why
if one does not find it on path B, then one will find it on path A if one looks for it
there and it will be x-spin up.

If the observer finds the electron on path B then allows it to continue moving
through the apparatus, the linear dynamics predicts that the x-spin down electron
will end up in the symmetric superposition of exiting from each of the z-spin
box doors

1y, - —

V2 V2

Then if one looks for it again, one will collapse the electron to an eigenstate of
position with probabilities given by the norm-squared of the amplitudes associated
with each possible outcome and hence, in this case, find it in region III and z-spin
up with probability |1/ \/E |* = 1/2 and find it in region IV and z-spin down with
probability | — 1/4/2> = 1/2.

Similarly, if the observer does not find the electron on path B, then the collapse
has put it on path A and x-spin up, so the linear dynamics predicts that its state
will be

[42)elTV)e-

$
V2

after passing through the z-spin box. Consequently, one will also find it in
region III and z-spin up with probability 1/2 and in region IV and z-spin down
with probability 1/2.

Again, if the observer does not look at path B, then one will always find the
electron in region III and z-spin up. The observer changes the state of the electron
by looking for it even if she does not find it. If she does not look for it, the state of
the electron just before it enters the z-spin box will be

1
| Tz>e|IH>e + _l lz>e|lv>e
V2

| TZ>€|II>€'

But if she does look for it, she causes it to collapse to an eigenstate of the position,
even if she does not see it, and the electron ends up in a statistical mixture of being
either determinately x-spin up

|1 D,
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with probability 1/2 or determinately x-spin down

|4 TDe

also with probability 1/2 just before it enters the z-spin box. And in each of these
two cases, the electron will end up in a superposition of exiting from each of the
z-spin doors.

There is something nonlocal about the observer looking in one place, not
finding the electron there, but affecting its dispositions somewhere else. But the
situation here is subtle. As the theory tells it, it is not that the state of a distant
electron is affected by the observer looking at the empty path. Rather, it is that
the observer’s looking at path B and not finding the electron there instantaneously
causes the electron to in fact be on path A when there was no such determinate
matter of fact before the observer looked. To be sure, looking for it affects the
state of the electron, but, since it is in an entangled state without any determi-
nate position (or even a determinate position state) before the observer looks,
the action is not one that affects the state of an object that is determinately distant.
Rather, it gives an object with no determinate position at all a determinate distant
position.

The measurement does not simply reveal that the electron is not on the path that
the observer is watching. The electron was decidedly not determinately on path A
before she looked. If it had been, then it would also have had a determinate x-spin
and, hence, would not exhibit the sure-fire disposition to exit from the 1, door of
the z-spin box had the observer not looked. The measurement does not reveal a
preexisting determinate fact, it makes the fact determinate.

For looking at a path and not seeing anything to count as a measurement, the
observer must be looking at a time when the theory predicts that she might find
the electron. That is, there must be a nonzero amplitude of the electron being in
the region that she is checking when she is checking it. Then, even when she does
not find it, the effect of the measurement is to collapse the state to one where the
electron is determinately not where she looked.

Such a collapse gives the same posterior probabilities for the result of subsequent
measurements as conditioning on new evidence. Bayes’ theorem tells us that the
probability of the electron being found in region R given that it is not found in the
disjoint region S is

_ PR
PRIS) = 1= s
where P(R) and P(S) are the prior probabilities of finding e in R and S as given by
rule 4I1. So, by the principle of strict conditionalization, the posterior probability
of finding e in R after not finding it in S is
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P(R)

5.3 Barriers

The theory tells us that something subtly different happens if one puts a physical
barrier on path B in the place of an observer (as in Figure 5.3). Suppose that the
electron starts z-spin up in region I at time #,. Suppose also that the barrier is gentle
so that if the electron hits it, it just slows the electron to a stop leaving it on path B
and not disturbing its spin properties. Suppose that at one second ¢, the electron
is on the paths, at two seconds it has had time to get to region II, and at three
seconds t; it has had time to get through the z-spin box. Finally, suppose that the
electron evolves in the standard linear, deterministic manner all the way through
the apparatus.

With this setup, an electron that started x-spin up would make it all the way
through the apparatus evolving as follows:

|v/(t0)>e = |Tx>e|1>e

1
|‘//(t1)>e = |Tx>e|A>e
!
|w(t2)>e = |Tx>e|H>e
!
YD) = —=I 16D, + = L)V,

V2 V2

And an electron that started x-spin down would be stopped by the barrier on path
B and, hence, evolve as follows:

Figure 5.3. Two paths with a barrier.
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|1l/(t0)>e = |lx>e|1>e
)
|1/j(t1)>e = le>e|B>e

«—

|W(t2)>e = |lx>e|B>e
)
|1//(t3)>e = |lx>e|B>e'

Again, these two dispositions fully characterize the interaction between an
electron and two-path apparatus.

It follows by the linear dynamics and the design of the apparatus that if the state
of the electron at time ¢, is

|V/(t0)>e = |Tz>e|I>ea

then its state after one second is

[y (1)) = Ulty, t)ly(tp)).
= U(tO’ t1)| Tz)elDe
1 1
— Tx e I et —=
\/El )elD) NG

1 . 1 .
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\/_
1 1
== Tx>e A)e +—= ix)e B>e'
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Here the electron is in an entangled superposition of being on path A and x-spin
up and being on path B and x-spin down. After two seconds, its state is

= Ulty, t,) [Le)elDe

ly(t,)), = U(ty, t)|y(1)))e
1
V2

1 . N
= L0, 1)1, ]A), + %U(rl, £)[L1)elB).

V2

= L1, + —

V2 V2

= 01, 1,) (ﬁ 1)l d) + —| ¢x>e|B>e)

[ 4)elBe-



74 QUANTUM INTERFERENCE

Which means that the electron is now in a superposition of being in region II
and x-spin up (because it took path A) and still being on path B and x-spin down
(because the barrier stopped it).

Note that, unlike the situation after two seconds in the original two-path
experiment, this state does not factor into a tensor product of a state where the
electron has a determinate spin and a state where it has a determinate position. The
effect of the barrier is to keep the electron’s spin and position properties entangled.
And this changes entirely the way the electron behaves when it encounters the
z-spin box.

By the linear dynamics, the state of the electron after three seconds is

ly(ts)). = Ulty, t)|y(12)).

R 1 1
= Uy, )| —| 101D, + —
zs(ﬁl /1) NG

The z-spin box will clearly do nothing to the second term that describes the
electron as still being on path B. But it will affect the first term.

We can calculate what the apparatus does to the first term by rewriting just that
term in the z-spin basis then time-evolving each term in the expression:

le>eIB>e> :

A 1 1 1 1
t e:UtZ’t — _Tze+_lze IIe+_‘LxeBe
ly(t3)) ( 3)[\/5(\5' ) \/El >)| ) \/El >|>]

1
_lxeBe
\/§| )e|B)

[4:)elBe-

= Uty ) [§| 1lID), + 3 L), +

R
V2

So with a barrier on path B the electron ends up in an entangled superposition of
being in region III and z-spin up, being in region IV and z-spin down, and being
on path B and x-spin down. Given the amplitudes associated with each term, when
one looks for the electron, one will cause it to collapse to an eigenstate of position,
and one will find it in region III and z-spin up with probability [1/2|* = 1/4, in
region IV and z-spin down with probability |1/2|* = 1/4, and on path B and x-spin
down with probability |1/4/22 = 1/2.

The presence of an observer on path B would prevent an electron that starts
z-spin up in region I from ending up determinately z-spin up in region II by
collapsing its state to one where it is either determinately x-spin up and on path A
or determinately x-spin down and on path B. In contrast, the presence of a barrier
on path B prevents the electron from ending up determinately z-spin up in region I
by keeping the electron’s spin and position properties from disentangling. The

1 1
= §| Tz>e|HI>e + §| lz)eIIV>e +
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interference effect of finding a z-spin up electron in region II is destroyed in each
case but for completely different reasons.’

It is important to be clear about this. The two ways of destroying the interfer-
ence effect here involve entirely different sequences of physical states exhibiting
radically different causal stories. The effect of the observer is to cause a nonlinear,
random collapse of the quantum-mechanical state on measurement. This produces
a determinate measurement result and leads to the statistical mixture of either

[up)e = | T.0)el 1), (5.1)

or
|down), = | 1) [1D). (5.2)

with probability 1/2 for each at time ¢,. The effect of the barrier on the electron is
more subtle and involves nothing nonlinear or random.

One might think of the barrier as producing a decoherence effect involving the
internal degrees of freedom of the electron. To say what this means, it will be useful
to first understand environmental decoherence, something we will turn to in the
next section. For now, note that, on the assumption that the barrier just stops the
electron, the standard theory predicts the following pure state for time t, when
there is a barrier instead of an observer:

L, + —

V2 V2

This state is completely different in character from each of the two states that might
evolve by the collapse dynamics when an observation is made. While all three
states exhibit the same unbiased statistics for electrons that make it through the
z-spin box, they are different physical states with different empirical properties.
An electron in state |up), will be found to be x-spin up, an electron in state [down),
will be found to be x-spin down, and an electron in state |super), will not exhibit
a determinate x-spin but will have sure-fire interference properties that are not

|super), =

| lx>e|B>e' (53)

shared by an electron in state |up), or |[down),.

There are other things that would act like the barrier here to prevent the
interference effect of the electron being z-spin up in region II. Suppose that we
do not stop the electron, but just slow it down on path B so that if it were to take
that path determinately, it would get to region II later than if it had taken path A.
In that case, an electron that took path A would be in region II at a time when

* The final state with the barrier here is very much like the state one gets when one sends an electron
through an x-spin followed directly by a z-spin box with no observation between the two boxes. Both
of these cases might be thought of as examples of internal decoherence.
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an electron that took path B would still be on path B, so the state predicted by
the linear dynamics would take precisely the same form as |super),. It is just that
the second term might represent the electron as being a bit further along path B.
One would also destroy the interference effect if one made one of the paths longer
than the other in order to determine which path the electron traveled to get to
region II. To get the interference effect both components of the state must describe
the electron as being in region II at the same time; otherwise, the state does not
factor as the electron being z-spin up and in region II.

One could randomly choose which path to put the barrier in after the electron
has passed the x-spin box. This is called a delayed-choice experiment. Given
the discussion so far, it should be clear that all that matters for destroying the
interference effect is that a barrier be in one or the other of the two paths at a
time such that it being there then would prevent a state that can be factored into
spin and position from evolving.

In the case of a delayed-choice experiment one might worry that the electrons
that get to the z-spin box are affected by the presence of the barrier on the path that
they did not take when they must have “decided which path to take” before the
barrier was even in place and “never even got close” to the barrier. But, as the
standard theory has it, the situation is significantly less intuitive than such worries
suggest. The electron that one finds when one looks for it at the z-spin box did
not get there by determinately following the path without the barrier. Indeed,
according to the theory, the electron was not determinately there before one looked
for it. Rather, it was in an entangled superposition of being at the z-spin box and
at the barrier.

When one imagines that an electron that gets through the apparatus must have
determinately followed a barrier-free trajectory, one is appealing to intuitions that
the theory tells us are simply mistaken. And the presence of interference effects
when there is no barrier provides good empirical reason to believe that the theory
is getting things right.

5.4 Decoherence

Suppose that, rather than directly looking to see which path the electron travels,
we set something up to record the trajectory it took. This might be done by placing
a camera on one of the paths. Or, more simply, we might just put a single particle p
on path B and arrange it so that it moves from region a to region b, without
disturbing e’s motion, if and only if the electron takes path B (as in Figure 5.4).
Here the record of the electron’s trajectory is made in terms of particle p’s position.

While it is perhaps less clear whether taking a photograph with a macroscopic
camera should count as a measurement in the theory, we have very good empirical
evidence that interactions between fundamental particles are accurately described
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Figure 5.4. Two paths with a recording particle.

by the linear dynamics. Hence, we will suppose that the evolution of the state of
the electron and recording particle are described by the linear dynamics.

This is the first time we have used the theory to describe a composite quantum-
mechanical system. We will continue to use the space we have been using to
represent the state of the electron. In addition, we need to keep track of the position
of the recording particle. For the purposes at hand, the position of the recording
particle can be represented by a vector in a two-dimensional space spanned by
the state |a), where p is determinately in region a and the state |b), where it is
determinately in region b. The state of the composite two-particle system then is
represented by a vector in the tensor product of these two spaces.

We will suppose that the electron starts in region I at time ¢, is through the
x-spin box in a half-second t,,,, has had time to interact with particle p by three
halves of a second t;/,, is at region II in two seconds t,, and is through the z-spin
box by three seconds ;. We will start by considering what the apparatus does over
the first two seconds for electrons that start in an eigenstate of x-spin.

If the electron starts x-spin up and in region I and the recording particle p starts
in region g, then the state of the composite system evolves as follows

|1l/(t0)>ep | Tx>e|1>e|a>p

«—

|W(t1/2)>e‘u = |Tx>e|A>e|a>p

«—

|V/(t3/2)>ep = |Tx>e|A>e|a>p
1
[¥(82))ep = [T)eDela),-

In this case, particle p stays in region a without moving, indicating that the electron
took path A and is hence x-spin up.
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If the electron starts x-spin down and in region I and the recording particle p
starts in region g, then the state of the composite system would evolve as follows

[¥(to))ep = [LadelDela),
\
[¥(t12))ep = [HdelBela)y
!
[¥(E372))ep = 112Dl B)elb)y
!
[W(£))ep = [ L) [TD|b),-

Here particle p moves from a to b, indicating that the electron took path B and is
x-spin down.
So if the composite system begins in the state

|1l/(t0)>ep = |Tz>e|l>e|a>p

1 1
_<\/§|Tx>e+\/E

= L 1)dDela), +

V2

it will evolve as follows on the linear dynamics

| lx>e) |Dela,
1

\/El LdelDela)y

ey = —= |10l D)elady + —| LYo Dela),

V2 V2
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1
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The final state here is a superposition of the electron being x-spin up and
in region II and p being in region a and the electron being x-spin down and in
region II and p being in region b. In this state the electron is in fact determinately

1
| Tx>e|H>e|a>p + E| lx>e|H>e|b>p'



DECOHERENCE 79

in region II, and, keeping in mind the physical interpretation of the tensor product
as logical and, we could factor out its position if we wanted. But the interaction
between e and p has left the electron’s x-spin entangled with particle p’s position.
Here the electron no longer even has a spin state to call its own, nor does particle p
have a position state of its own—while we initially had the choice of representing €’s
spin properties or p’s position properties independently or together, now they can
only be represented together.

To see what happens, we will write the state of the composite system at time ¢,
in terms of €’s z-spin basis as

1 1
V2 V2
1 1

1 1 1 1
==\ —F=llz/e T —=lv¥z/e He =\ T ~llzie T T=
ﬁ<ﬁ|T>+ﬁll>)l >|a>p+\/5(\/5|T> NG

1 1 1 1
= 5| Tz)elII>e|a>p + §| lz>e|H>e|a>p + §| Tz>e|H>e|b>p - 5| lz>e‘|H>2|b>p~

|1l/(t2)>ep = | Tx>e|H>e|a>p + |lx>e|H>e|b>p

| lz>e) [TDe|b),

We know how each term in this expression will evolve when the electron encoun-
ters the z-spin box. By the linearity of the dynamics

[W(t)p = 5110lDcla), + 51 LY ID,Ja), + 3110 0DIB), = 31 LY IDIb),

¥t = SI1lDlaY, + 5 LNIV)cla), + 31 1ITDBY, = 51 LY IV),IB),.

Here the probability of the electron being found in region III on measurement is
the sum of the probabilities of the state represented by the first and third terms
in this expression being realized: [1/2|*> + [1/2]> = 1/4 + 1/4 = 1/2. And the
probability of it being found in region IV on measurement is the sum of the
probabilities of the state represented by the second and fourth terms being realized:
12+ |- 12 =1/4+1/4=1/27

So the very presence of a recording particle p whose position becomes correlated
with the position of the electron destroys the interference effect in region II (of e
exhibiting the sure-fire disposition of ending up in region III when it starts z-spin
up) regardless of whether one ultimately finds p in region a or b. And it does this
without causing a collapse of the quantum-mechanical state.

* Note that observing the position of p in this state does not give the electron a determinate
position. Rather, it leaves the electron in a symmetric superposition of being in region II and being in
region III. More generally, a collapse to an eigenstate of one observable only makes another observable
determinate if the two observables were perfectly correlated in the initial state. See the discussion of
quantum records in the next section for further details regarding what one can infer regarding the state
of e from an observation of p. It turns out that much depends on when one observes p.
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The situation here is similar to the two-path experiment with the barrier on
path B. Both are examples of decoherence. While the electron does determinately
get to region II in two seconds in the environmental decoherence experiment we
just considered, the interaction between the electron and the recording particle p
leaves the electron’s spin properties entangled with p’s position so one cannot
factor out a determinate spin state for the electron. This happens if the state of
anything whatsoever in the electron’s environment or anywhere else becomes
either intentionally or unintentionally correlated to its x-spin as it moves through
the apparatus. In the two-path experiment with a barrier on path B, the electron’s
own position becomes correlated with its x-spin leaving its spin properties entan-
gled with its position. This internal correlation destroys the interference effect in
precisely the same way as an environmental correlation.

In general, if one does anything at all to record which path the electron
travels in the two-path experiment, one will necessarily be correlating the value
of one’s physical record with the electron’s position, and hence with its x-spin, and
consequently destroying the interference effect of finding it z-spin up in region II.
Such decoherence effects destroy interference effects but without causing a collapse
of the state. The interactions that produce the decoherence effect are perfectly
linear. The standard theory predicts the same statistics for a z-spin measurement
of an electron in region II if an observer previously collapses its state, putting
it on one or the other of the two paths, as it does if the state of a particle (or
anything else) becomes correlated with the position of the electron in such a
way as to record which path it traveled. But, again, the causal stories are entirely
different.

This difference is critically important to how the theory works. Both the
interaction with the recording particle p and the presence of a barrier on one of
the paths destroy the interference eftect by producing a physical correlation that
prevents one from being able to factor the electron’s state into a spin part and a
position part after two seconds. In the two-particle experiment involving e and
p» the correlation that destroys the interference effect is between the electron’s
x-spin and p’s position. In the one-particle barrier experiment, it is the correlation
between the electron’s x-spin and its own position. But if one observes which path
the electron is on, it is the random, nonlinear collapse of the quantum state that
destroys the interference effect.

The collapse of the state on measurement cannot be modeled as a decoherence
effect. If the position of the recording particle p is simply correlated to the electron’s
position by means of a linear interaction, the resultant state of the composite
system after two seconds will be

R

V2

L

V2

[y(t:))ep = ( [ Tdela), + le>e|b>p> D).
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But if one supposed that the interaction with recording particle p somehow
measured the electrons state, the state of the composite system would be

| 1)l @), [11),

or

[ Lelb),[11),

with probability 1/2 for each.

As in the experiment with the barrier on one path, the three states here exhibit
different physical properties. The first describes the electron and the recording
particle p as being in an entangled superposition of the electron being x-spin
up and p being in region a and the electron being x-spin down and p being in
region b. Here p’s position is quantum-mechanically correlated to the electron’s
x-spin, but neither p’s position nor the electron’s x-spin are determinate on the
standard interpretation of states. While the electron will exhibit no single-particle
interference effect in region IT in this state, since the recording particle p’s position
is not even determinate, this state could not possibly represent a measurement
where its position provided a determinate record of the measurement result.
Particle p’s position is, however, both correlated to the electron’s x-spin and
perfectly determinate in the second and third states. In contrast with the first
state, the recording particle p’s position in either of these states might represent
the determinate record of an x-spin measurement of the electron.

Given the standard interpretation of states, there is a good argument that the
state of a system must collapse on measurement. The entangled state produced
by internal or environmental decoherence is simply incompatible with there even
being a determinate measurement record.

5.5 Quantum Records

A quantum record, just like a classical record, involves correlating one’s recording
variable with the value of the physical quantity that one wants recorded. But the
sort of historical inferences one might make from a classical record typically don’t
hold for quantum records. To be sure, if the electron starts in an eigenstate of x-spin
and hence determinately travels one or the other of the two classically possible
trajectories, then looking at the position of the recording particle p will tell one
which path the electron took. If p ends up in region g, then the electron took path A;
and if p ends up in region b, then the electron took path B. But if the electron starts
in anything other than an eigenstate of x-spin, then the value of one’s record will
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not allow one to infer which determinate trajectory the electron traveled, for the
simple reason that it will not have traveled a determinate trajectory at all.
If the electron’s initial state is z-spin up, then the state of the composite system
will be
1 1
_| Tx>e|A>e|a>p + _| l‘x>e|B>e|b>p
2 V2

\/_

after 3/2 seconds. If one observes the position of p in this state, with probability 1/2
one will collapse the state to

Y(t312))ep =

|lup record)e, = | Ti)elA)ela), (5.4)
and find p in region a and with probability 1/2 one will collapse the state to
[down record),, = | 1,).[B).Ib), (55)

and find p in region b. So if one finds p in region g, then one will certainly also find
the electron x-spin up and on path A if one looks for it. One might naturally infer
that it got there by traveling along path A and that the fact that the electron never
got close enough to push it explains why particle p did not get pushed to region b.
And if one finds p in region b, one will also certainly find the electron x-spin down
and on path B if one looks. One might similarly infer that it got there by traveling
along path B and that particle p was pushed from a to b when the electron passed
by it. The upshot is that wherever one finds the recording particle p when one looks
at the record, nothing that one might subsequently observe regarding the position
of e or p will contradict the classical assumption that the position of p accurately
records the path that the electron in fact followed. But the classical history of
the electron’s motion that one intuitively infers from the record is utterly false
according to the theory. There is an important sense in which what one supposes
to be a record of the electron’s trajectory is not a record at all.

Consider the same experiment but where one decides not to observe the
position of p. As we have seen, the correlation between the electron’s x-spin and p’s
position would destroy the interference effect of finding a sure-fire z-spin up
electron in region II. But one would be able to show empirically that the state
was |y(t3/2)), and hence that the electron did not in fact take either path even
here by measuring a two-particle observable O that had |y(t; /2))ep @S an eigenstate
with eigenvalue +1 and the orthogonal state
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as an eigenstate with eigenvalue —1. In state |y(t3/,)),, measuring O would
certainly yield the result +1, but in state |up record),, or state [down record),, it
would yield the result 41 half the time and —1 the other half of the time. The sure-
fire disposition to get +1 for a measurement of O represents a new interference
effect predicted by the linear dynamics.

The crucial point here is that when decoherence destroys one interference effect,
it always produces another interference effect that one might at least in principle
observe. While there is no longer a single-particle interference effect involving
just e that that would show that the linear dynamics obtains, the theory predicts
that the composite system of e + p will exhibit a two-particle interference effect.
Specifically, if the linear dynamics alone correctly describes the behavior of the
composite system, then measuring O will yield a sure-fire result of +1. Further,
we have very good empirical evidence that simple two-particle systems like this
always obey the linear dynamics when unobserved. We will have more to say about
this later.

There is also something nonlocal about what happens to the electron when
one observes the position of the recording particle p. The situation here is a little
different from our earlier reflections regarding potential quantum nonlocality.
Suppose that one waits two seconds before observing p’s position. The state of the
composite system, with €’s position factored out, will be

L L
V2 V2

Here the electron is determinately in region II, so nothing that one does to p
will affect the electron’s position. But the electron’s x-spin remains entangled
with p’s position. As a consequence, if one measures p’s position and finds it in
region a, the electron instantaneously and nonlocally collapses to a state where
it is determinately x-spin up; and if one finds p in region b, then the electron
instantaneously and nonlocally collapses to a state where it is determinately x-spin
down. So measuring the position of p here instantaneously and nonlocally gives the
electron a determinate x-spin when it did not initially have one no matter how far
apart the two particles may be. Inasmuch as the possessed properties of the distant
electron immediately change when p is observed, this is a straightforward example
of action at a distance.

If the states of two systems are entangled, then one cannot represent the
state of either alone. Rather, the two systems must be understood as a single
system in an entangled state. Observing the state of either of the subsystems
may instantaneously and nonlocally change the state of the other subsystem by
changing the state of the composite system, no matter what the distance between

[y(t2))ep = ( | Tela), + le>e|b>p> |1D)..
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its parts is. If the electron and recording particle are entangled as in state |[y/(t3/2))ep
the electron might be 4.37 light years away in orbit about & Centauri and a
position measurement of p on Earth would both instantaneously disentangle the
two systems and randomly give the electron a determinate x-spin that it did not
determinately have before p’s position was observed.

5.6 Total-of-Nothing

Albert’s total-of-nothing box provides additional empirical evidence that the
standard formulation of quantum mechanics is getting things right. Given the
construction of the box, the theory predicts that if the spin state of an electron e
is |¢), when it enters the box, then it will be —|¢), when it exits from the other
side. This vector is on the same ray as |¢), and hence represents precisely the same
physical state according to the theory.

Taking these vectors to represent precisely the same state makes sense given how
one calculates probabilities. The probability of a measurement result is given by the
norm-squared of an inner product. The minus sign on a state will affect the sign
of the inner product, but it will have no effect on the norm-squared of that inner
product. Hence an electron in state |¢), exhibits precisely the same dispositions as
an electron in state —|¢),. To insist that there is a difference would be to insist on
a difference that has no empirical consequences. And, indeed, the spin properties
of an electron that passes through a total-of-nothing box are empirically the same
as its spin properties before. An x-spin up electron stays x-spin up, a z-spin down
electron stays z-spin down, and so on.

In order to calculate what happens to an electron that was initially z-spin up if a
total-of-nothing box is placed on path B of a two-path apparatus (as in Figure 5.5),
we will first consider what it would do to an x-spin up and an x-spin down electron.
An x-spin up electron would determinately take path A, miss the box, and hence
evolve as follows:

. |
-,
|Tz>g|1>g x-spin fo So - - z—spin lz v

~ -
~ -

~-_. M/ __-
nothing

B

Figure 5.5. Two paths with a total-of-nothing box.
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[¥(t0))ep = [ T)elDe
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[V(&2))ep = [ 1)1

An x-spin down electron would determinately take path B and, hence, go through
the total-of-nothing box:

[¥(t0))ep = [1adelDe
!

|W(tl/2)>ep = |lx>e|B>e

[¥(t372))ep = =1 dx)elB)e

1

|l//(t2)>ep = _| ix>e|H>e'

In this case, the box multiplies the state of the electron by —1, but this does nothing
whatsoever to its physical dispositions. It is still just an x-spin down electron when

it gets to region II.
Given this and the linearity of the dynamics, an electron that begins in the state

z-spin up would evolve as follows:
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So a z-spin up electron that enters the apparatus will be z-spin down when it gets
to region II, hence it will exhibit the sure-fire disposition to end up in region IV
rather than region III when it exits from the z-spin box.

The total-of-nothing box, then, does nothing to an electron that goes through it
and it does nothing to an electron that goes around it, but it dramatically affects the
state, and hence the dispositions, of an electron that is in a superposition of going
through it and around it. Multiplying a state by —1 does nothing since it leaves the
state on its original ray, but multiplying just one term of a superposition by —1
moves the state off its original ray. In the present case, it rotates the state by 90°,
which, in the context of the two-path apparatus, ultimately produces an electron
where the z-spin is flipped.

Note that the total-of-nothing box does not accomplish this by directly affecting
the spin of the electron in any way at any time. For this reason, it would presumably
be wrong to say that any action of the total-of-nothing box caused the z-spin of the
electron to flip. Nevertheless, it would not have flipped if the total-of-nothing box
had not been on path B.

5.7 The Wave Function

Among the historical motivations for quantum mechanics we started with were
the behavior of light and the stability of matter. We are now in a position to
say something regarding how the standard formulation of quantum mechanics
explains such phenomena.

In the two-slit experiment, the standard theory describes each photon as being
in a superposition of going through slit A and through slit B. The linear dynamics
predicts that such a photon will end up in a superposition of hitting the screen
in different regions. When one observes the screen, this measurement causes it to
collapse to a state where it has a determinate approximate position. The norm-
squared of the quantum-mechanical amplitude associated with each region gives
the probability of the photon being found in that region when one looks. The
distinctive interference distribution of photons on the screen is given by these
probabilities. This is a two-path interference effect akin to finding a z-spin up
electron at the end of the two-path apparatus discussed above. The final state of the
photon at the screen here is similarly the result of applying the linear dynamics to
the vector sum of the state of the photon going through slit A and through slit B.
And the standard formulation of quantum mechanics gets this state, and hence the
statistical distribution, just right.

With regard to the stability of matter, consider a hydrogen atom where the
electron is in the lowest energy state possible. Here the linear dynamics predicts
that the electron is in a spherically symmetric superposition of different locations
centered on the positively charged proton that constitutes the nucleus of the
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hydrogen atom. It also tells us that, while it does not have a determinate position,
there is a sense in which the electron is determinately not moving. This stationary
superposition, known as the 1s orbital, is stable under the unitary dynamics.
Consequently, as long as no one looks for the electron or kicks it around by more
conventional means, it will just sit there in a superposition of different positions
and a stable eigenstate of energy.

As with the photon in the two-slit experiment, the electron here is not determi-
nately in any particular region before it is observed. Rather, its state is represented
as a complex-valued wave function |y(r)), over possible positions r. The norm-
squared of the wave function gives the probability density for finding the electron
at a particular position. The wave function can be understood as a unit-length
vector in a Hilbert space # whose elements are functions. What it means for the
function |y(r)) to be unit-length is that

f AP = 1,
R

taking the integral here over all possible positions R. The inner product of |¢(r))
and [y(r)) is

f WOHdr
R

over all possible positions R.

An orthonormal basis for H consists in a set of unit-length functions
{¢1, ¢,, ...} such that any function in the space can be written as a linear combina-
tion of the elements of the space. This sum typically has an infinite number of terms

[W()e = D al$u()e = D VDI dp(r).-
k k

The probability of finding e in state |¢x(r)), if one measures the observable
corresponding to the orthonormal basis is |a|*> = [(y(r)|¢x(r))|*>. And the
probability P(R) of finding the electron in any particular region R is equal to

P(R) = f () P,
R

and [(y(r)|y(r))|? is the electron’s probability density.

For systems that contain more than one particle, the wave function is a complex-
valued function over configuration space. Configuration space has three dimen-
sions for each particle in the system one wants to describe. One might think of a
single point in the 3N-dimensional configuration space associated with a system S
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as giving the xy, y;, and z; coordinate for each particle k in S. The coordinates of
the point Q(f) might then be written as

(xl’yl’zl’xZ’yZ’ZZ’ o9 X Vi Zges - - ’xN’yN7ZN)'

Configuration space for one particle is ordinary 3-space; for two particles, it is a
six-dimensional space where each point represents the positions of each of the
two particles in 3-space; and so on. An immediate consequence is that, except
for the special case of a single particle, the wave function of a system cannot be
thought of as a simple field living in ordinary three-dimensional space. While
the wave function is important to the standard theory, a clear understanding
of configuration space and the wave function over configuration space will be
absolutely essential when we discuss GRW and Bohmian mechanics later.

One can often represent a systems quantum-mechanical state by considering
the amplitude of its configuration being in various of a finite set of disjoint regions
of configuration space. This has been our strategy up to now. When it works, this
allows one to get by with a finite-dimensional Hilbert space. We will continue to
do so when we can.

We have seen how the standard collapse formulation of quantum mechanics
predicts and explains all of the phenomena we have considered so far. The
theory is counterintuitive. But given that our experience of quantum-mechanical
systems is counterintuitive, any theory that makes the right empirical predictions
must be.

There are other sorts of phenomena that any empirically adequate formulation
of quantum mechanics would need to be able to predict. Among the most salient
of these are the EPR-Bell statistics we consider in the next chapter. These statistics
illustrate a subtle sort of non-locality that is predicted by the standard theory
and exhibited by the physical world. Inasmuch as the EPR-Bell statistics are also
counterintuitive, any theory that predicts them must be as well.
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Real and/or Local

6.1 The EPR Argument

While the standard formulation of quantum mechanics has been enormously
successful in making precise empirical predictions concerning counterintuitive
phenomena, there have always been discontents. Einstein was awarded the Nobel
prize in physics in particular for his work in quantum mechanics, but he was a per-
sistent critic of the theory.! His most influential argument was in the paper “Can
Quantum-Mechanical Description of Physical Reality Be Considered Complete?”
(1935), which he coauthored with Boris Podolsky and Nathan Rosen. Einstein,
Podolsky, and Rosen (EPR) answered the question posed by the title of their paper
by arguing that quantum mechanics in fact could not be considered to provide a
complete description of physical reality.

The EPR argument was based on two conditions they took to be uncontentious.
For a physical theory to be complete every element of physical reality must have a
counterpart in the theory. And, if one can predict the value of a quantity with
certainty without in any way disturbing a system, then there is an element of
physical reality corresponding to that quantity.

Both of these conditions make at least some intuitive sense. If there is a real
physical quantity that is not represented by one’s theory, then one’s theory is indeed
incomplete in the precise sense that there is a real physical quantity that it does
not represent. And, while this is a bit more subtle, if one can predict the result
of a future measurement with certainty without in any way disturbing a system,
then one might imagine that there must be some real fact about the system before
it was measured that explains one’s successful prediction. More specifically, one
might believe that the quantity that one is measuring must in fact already have
had the value that one predicts getting before it was measured and that it is this
that explains the successful prediction. And, if the quantity already has that value,
then it has it whether or not it is ever in fact measured. Hence, one might conclude,
there is an element of physical reality corresponding to the value of the quantity.

Putting the two conditions together, a physical theory is only complete if it
has a counterpart for every quantity of a system that can be predicted with

! The citation for Einstein’s 1921 Nobel prize (which he was awarded in November 1922) read “To
Albert Einstein for his services to theoretical physics and especially for his discovery of the photoelectric
effect” (Pais 1982, 386 and 503). Here discovery means quantum-mechanical explanation.
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Figure 6.1. Two electrons in the EPR state.

certainty without disturbing the system in any way. EPR argue that quantum
mechanics is incomplete by arguing that there are values of physical quantities that
are not represented in the theory but that one can predict with certainty without
disturbing the relevant physical system. While they used position and momentum
for their argument, one can give the same argument in terms of x-spin and z-spin.
Consider two electrons A and B in something we will call the EPR state

L
V2

Suppose that electron A is near Earth and electron B is near « Centauri some 4.37
light years away (as in Figure 6.1). Since the two particles do not move much
through the EPR story, we will just consider the spin part of their state here.

The EPR state describes the x-spins of the two particles as being anti-correlated.
Specifically, whatever x-spin one observes for one electron, one will observe the
opposite x-spin for the other. But the EPR state has a further, more general
property. It describes the spins of the two particles as anti-correlated in every
spin basis.

Consider z-spin as an example. To calculate the EPR state in the z-spin basis, we
start with the EPR state in the x-spin basis, substitute the expressions for z-spin,
then simplify.
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So whatever z-spin one observes for one particle, one will observe the opposite
z-spin for the other.

The EPR argument goes as follows. By measuring the x-spin of particle A, one
can predict the x-spin of particle B with certainty without disturbing it in any way.
One just predicts the opposite for particle B of whatever one gets for the x-spin of
particle A. And, given their classical and relativistic intuitions, EPR believed that
measuring the x-spin of particle A could not possibly (instantaneously) disturb the
distant particle B. So particle B must already have a determinate x-spin. It is that
already-posessed x-spin that explains the result one knows one would certainly
get when one measures particle B given that one by direct observation knows the
x-spin of A. Similarly, by measuring the z-spin of particle A, one can predict the
z-spin of particle B with certainty without disturbing it in any way. Again, one
just predicts the opposite z-spin. And since measuring A cannot affect distant
particle B, B must already have a determinate z-spin as well. Hence, the possessed
values of both x-spin and z-spin must be fully determinate, real physical properties
of particle B before we measure them of B. And since measuring particle A does not
disturb the properties of particle B in any way, the possessed values of both x-spin
and z-spin must be fully determinate, real physical properties of particle B even
before we measure anything of A and even if we change our mind and decide not
to measure A atall. And since this argument could also be run from the perspective
of first measuring particle B then predicting the results of measurements on
particle A, particle A must itself already have a determinate x-spin and z-spin as
well. Since the full quantum-mechanical description of the EPR state does not
tell us the values of the x-spin and z-spin of either particle, quantum mechanics
is incomplete. Further, inasmuch as it denies that any particle could possibly have
both a determinate x-spin and a determinate z-spin at the same time, one might
take the very conceptual structure of quantum mechanics to require the descriptive
incompleteness of the theory.

Because of its symmetry, the EPR state cannot possibly represent possessed
values for the x-spin and z-spin of the two particles under any interpretation. More
specifically, with regard to the standard theory, the eigenvalue-eigenstate link tells
us that it is simply nonsense to suppose that an electron has both an x-spin and a
z-spin at the same time. If an electron has a determinate x-spin, it cannot have a
determinate z-spin; and if it has a determinate z-spin, it cannot have a determinate
x-spin. So if one accepts EPR’s argument against state completeness, one must also
reject the standard eigenvalue-eigenstate link. If EPR are right, then the problem
is not just that quantum mechanics is incomplete—it is that the standard quantum
account of physical properties is fundamentally mistaken.

A key step in the argument turns on EPR’s implicit assumption that measuring
particle A could not possibly disturb the state of particle B in any way. Here they
are appealing to an intuitively plausible notion of locality where no action on
one system can instantaneously affect the state of a distant system. Of course,
there are good physical reasons for assuming something like this. Perhaps most
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significantly, special relativity does not allow for causal influences that propagate
faster than light.

For its part, the standard formulation of quantum mechanics predicts that
measuring the x-spin of particle A instantaneously gives particle B an x-spin that
it did not already have. If one were to measure the x-spin of particle A, the collapse
dynamics predicts that one would get the result x-spin up with probability 1/2,
and the final state of the composite system would be |1,)4|}.)5. In this case, one
would indeed get the result x-spin down for a subsequent measurement of B,
but not because B was x-spin down before one measured A. Rather, it is because
the measurement of the x-spin of A instantaneously gave B a determinate x-spin
when it did not have one before. Similarly, the collapse dynamics predicts that one
would get x-spin down for particle A with probability 1/2 leaving the composite
system in the state ||,)4|1,)5. Here one would get the result x-spin up for a
subsequent measurement of B, but not because B was already x-spin up. Rather,
it is again because the measurement of the x-spin of A instantaneously gave B a
determinate x-spin when it did not have one before. In each case, the collapse of
the state instantaneously changes the states of both particles by disentangling their
spins. On this description of measurement and account of property attribution,
one might argue that the standard collapse theory is complete in the sense that
whenever one can predict a result with certainty, there is a determinate quan-
tity that explains the reliability of the prediction. But it is not compatible with
relativity.

The collapse dynamics is closely tied to the eigenvalue-eigenstate link in the
standard formulation of quantum mechanics. Inasmuch as (1) particle B has no
x-spin on the standard interpretation of states before A is measured and (2) it
has the opposite x-spin as particle A immediately after A is measured, measuring
particle A’s x-spin must instantaneously change the state of B. That is, the collapse
dynamics must be nonlocal in the strong sense of being incompatible with relativity
to give entangled systems the determinate properties they need when and where
they need them on the standard interpretation of states.

The upshot is that when EPR conclude that by measuring the x-spin of parti-
cle A, one can predict the x-spin of particle B with certainty without disturbing it
in any way, they are not so much arguing that the standard theory is incomplete
as they are contradicting it. Their belief that measuring A cannot possibly affect
the state of B is incompatible with both (1) the collapse dynamics and (2) how the
eigenvalue—-eigenstate link characterizes the properties of the entangled particles.

* Einstein had already described his worries about the locality and completeness of quantum
mechanics at the 1927 Solvay Congress, at which he also described his concern with the mutual
compatibility of quantum mechanics and relativity. See Bacciagaluppi and Valentini (2009) for a
detailed discussion.
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EPR wanted a formulation of quantum mechanics that was complete and local
in a sense that is compatible with special relativity. A central question, then, is
whether there is any empirically adequate formulation of quantum mechanics that
is both complete and local in this sense.

6.2 Quantum Mechanics and Relativity

Quantum mechanics and special relativity are arguably the two best physical
theories we have ever had. Together, they are the cornerstones of modern physics.
But the standard collapse formulation of quantum mechanics and special relativity
are also logically incompatible with each other. To see why we will start by briefly
considering how special relativity works.’?

Special relativity describes how physical events are spatially and temporally
organized. In the theory, three-dimensional space and time are represented by a
single four-dimensional structure—spacetime. The theory provides each unaccel-
erated observer with a way of identifying which events are simultaneous in her
inertial frame. The set of events an inertial (unaccelerated) observer judges to be
simultaneous with each tick of her clock forms a surface in spacetime. And the
family of surfaces formed by her clock-ticks determines a foliation of spacetime.

Consider time t and one of the three spatial coordinates, call it x (as in
Figure 6.2(a)). An observer in inertial frame £ at rest relative to the laboratory
would judge the spacetime events on each of the dashed lines as simultaneous with
each of her clock-ticks while an observer moving to the right at a constant relative
velocity v in inertial frame £’ would judge the events on the dotted lines in this
figure as simultaneous with each of her clock-ticks.

Now suppose instead that observer £ is moving to the left relative to the
laboratory frame (as in Figure 6.2(b)). In this case, she would judge the spacetime
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Figure 6.2. Order of measurement events in different inertial frames.

* See Susskind and Friedman (2017) for an introduction to special relativity.
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events on each of the dashed lines in that figure as simultaneous with each of her
clock-ticks. Consider events A and B. In frame £ event A occurs between time t,
and time ¢, and event B occurs between time t; and time t,. So observer £ would
judge event A to occur before event B. But in £"’s inertial frame, whose planes of
simultaneity are represented by the dotted lines, event A occurs between time
and time #; and event B occurs between time #| and time #}. So observer £ would
judge event A to occur after event B. The principle of relativity, on which special
relativity is based, requires inertial observers to agree with each other regarding
all matters of physical fact. Since observers in the two inertial frames disagree
about the temporal order of the events, there is simply no physical matter of fact
about whether event A occurs before or after event B. This, however, is logically
incompatible with how the standard collapse formulation of quantum mechanics
accounts for determinate measurement outcomes.

Suppose that particles A and B are in the EPR state and that particle A is in
region A near Earth and particle B is in orbit about a Centauri. Suppose that an
observer on Earth measures particle A’s z-spin at noon 1 January 2050 (in the
laboratory inertial frame) and that an observer on « Centauri measures the x-spin
of particle B at noon 1 January 2050 plus one second (in the laboratory inertial
frame). Suppose, finally, that Figure 6.2(b) represents the geometric relationship
between the observers’ inertial frames and the two measurement events A and B.

Now consider whether particle B has a determinate x-spin just before the
a Centauri observer measures it. In the £ frame, as in the laboratory frame, the
Earth observer’s measurement occurs first and the o Centauri observer’s second.
So by the time the o Centauri observer measures the x-spin of her particle, the
Earth observer has caused a collapse of the state and the two particles are now
either in the state |T,)4|l )z oOr the state ||,)4|1,)s. Consequently, particle B
already has a perfectly determinate x-spin. In this inertial frame, the o Centauri
observer’s x-spin measurement will just reveal the local and fully determinate
physical matter of fact.

But in the £’ frame the a Centauri observer’s measurement occurs first and
the Earth observer’s measurement occurs second. So here when the a Centauri
observer measures the x-spin of her particle, the two particles are still in the
entangled EPR state and there is, hence, simply no determinate matter of fact con-
cerning the x-spin of particle B just before her measurement. Here the o Centauri
observer’s measurement is not simply revealing a determinate local property of
her particle. It is instantaneously giving particle B a randomly determined x-spin,
nonlocally giving particle A the opposite x-spin, and, in the process, disentangling
the states of the two particles. But in the £ frame, it is the Earth observer’s
measurement that gives each of the particles determinate x-spins.

Back to the question of whether particle B has a determinate x-spin just before
the o Centauri observer measures it. Since particle B has a determinate x-spin just



QUANTUM MECHANICS AND RELATIVITY 95

before the o Centauri observer measures it in the £ frame and does not have
a determinate x-spin in the £’ frame, there can be no physical matter of fact
concerning whether particle B has the local property of having a determinate x-spin
just before it is measured.

This leaves us in a position where we cannot consistently assign a state to the
two-particle system nor can we even consistently say whether or when one might
assign determinate local properties to particle B. The sort of nonlocality exhibited
by the standard theory is very strong—its account of determinate measurement
outcomes is logically incompatible with relativistic constraints.

Now consider the closely related question of whether the state of particle B is
entangled with the state of particle A just before the o Centauri observer measures
it. Since it is in one inertial frame and isn’t in another, entanglement cannot be a real
physical relation between the two EPR particles according to relativity, at least not
as entanglement is understood in the context of the standard theory. The problem
with that, as we will see shortly, is that we use the notion of entangled spacelike-
separated systems to explain quantum phenomena like the results of EPR-Bell-
type experiments. The upshot is that there are basic features of standard quantum
mechanics that are essential to how the theory explains quantum phenomena but
that are flatly incompatible with the dynamical constraints of relativity.

Rather than argue that the standard theory was incompatible with relativity,
EPR argued that the quantum-mechanical description of physical systems was
incomplete. The historical reason for this is that the immediate target of their
argument was Bohr’s Copenhagen interpretation of quantum mechanics.* From
the perspective of the standard theory, the problem is more one of compatibility
with relativity than incompleteness. To get a formulation of quantum mechanics
that is compatible with relativity, one might consider replacing the instantaneous
collapse of the quantum-mechanical state with a dynamical law that does not
require the choice of a preferred inertial frame.® But if one did so, one would
also need to revise how one understands quantum-mechanical entanglement and
property attribution more generally.

* Since their target was Bohr’s Copenhagen interpretation of quantum mechanics, they could not
argue that the theory was incompatible with relativity since it was entirely unclear whether the collapse
dynamics should count as a real dynamical process given Bohr’s particular brand of idealism. But that
does not mean that Bohr’s interpretation of quantum mechanics was a good one—just that it was, and
still is, extremely difficult to pin down. See Becker (2018) for a compelling critical account of Bohr
and his companions’ views on quantum mechanics. See Pais (1982 and 1986) for more traditional
sentiments.

* As we will see when we consider the idea of a hypersurface-collapse dynamics in connection with
GRWf (Chapter 8), the new dynamical law might involve collapses, but it will have to be significantly
more subtle than rule 4II. How one understands entanglement in a theory like GRWf is also very
different from in the standard theory.
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6.3 Bell’s Theorem

John von Neumann was convinced that the standard quantum-mechanical state
was complete and accurate, and hence that a “hidden variable” interpretation of
quantum mechanics that added extra parameters to the standard state description
in the way that EPR seem to have wanted was untenable. Indeed, many physicists
and philosophers believed that von Neumann had proven that there could be no
hidden-variable formulation of quantum mechanics. But this is simply wrong.
Indeed, there has long been a concrete counterexample.

Bohmian mechanics (which we will discuss in Chapter 11) is a formulation of
quantum mechanics developed by David Bohm in 1952 and is closely related to an
idea that Louis de Broglie described at the 1927 Solvay Congress.® It is a hidden-
variable theory that arguably makes the same statistical predictions as the standard
formulation of quantum mechanics for the experiments we have discussed so far.
Further, there is a sense in which it satisfies EPR’s intuitions concerning the reality
of physical quantities. In particular, it predicts that all of the intrinsic physical
properties of a system are fully determinate, and it both represents and describes
the evolution of these properties. But Bohmian mechanics is, like the standard
collapse theory, nonlocal in the strong sense that its dynamical laws are flatly
incompatible with the constraints of special relativity. The question then is whether
one can get alocal version of something like Bohmian mechanics that might satisfy
the implicit locality constraint that EPR appeal to in their argument.

In his famous 1964 paper, “On the Einstein Podolsky Rosen Paradox,” John Bell
described the situation as follows:

There have been attempts to show that...no “hidden variable” interpretation of
quantum mechanics is possible [here Bell cites von Neumann (1932)]. These
attempts have been examined elsewhere and found wanting [here Bell cites a
paper that he would later publish (1966)]. Moreover, a hidden variable inter-
pretation of elementary quantum theory has been explicitly constructed [here
Bell cites Bohm’s description of Bohmian mechanics (1952)]. That particular
interpretation has indeed a grossly nonlocal structure. This is characteristic,
according to the result to be proved here, of any such theory which reproduces
exactly the quantum mechanical predictions. (1964, 195)

Bell then proceeded to prove his famous theorem. Unlike many who later com-
mented on the significance of Bell’s theorem, Bell himself did not take the theorem
to count in any way against hidden-variable theories generally nor Bohmian
mechanics in particular. Indeed, since the problem with Bohmian mechanics
was that it was nonlocal, Bell just wanted to know whether one could somehow

¢ See Bacciagaluppi and Valentini (2009) for a discussion of de Broglie’s proposal.
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keep the sort of complete realism it provided while making the theory local. He
took his theorem to show that this was impossible. Bell, consequently, concluded
that Bohmian mechanics was the best way he could see to formulate quantum
mechanics.

Bell considered an experiment where one starts with a pair of particles A and B
in the EPR state and one can choose to measure various spin properties of each of
the two particles. In this setup, EPR would believe that each particle must have an
already-possessed spin property in every direction in which one might measure
its spin. It is these preexisting properties that explain why we can predict with
certainty the result of a measurement of any of these spin properties for a particle
without disturbing it by measuring the same property of the other particle. So, if
EPR are right, then there must be a more complete specification of the EPR state
given by that set of physical parameters that would in fact determine the result
of each individual spin measurement. It is this set of parameters that one would
have to add to the standard quantum-mechanical state in order for the theory to
be complete.

EPR also implicitly assumed that the measurement of one of the particles
does not in any way affect the other particle. Bell took this to mean that the
measurement of one particle does not affect the result of the spin measurement
on the other particle. In particular, the result one gets for the measurement of
particle B cannot depend on which spin observable one chooses to measure of
particle A—that the value of the physical parameter that determines the result
of the measurement on B at & Centauri cannot depend on which spin property
one choses to measure of A on Earth.

Bell showed, however, that if a theory satisfies these assumptions, then it cannot
make the same statistical predictions as the standard collapse formulation of
quantum mechanics. And it was later shown that the standard theory makes the
right empirical predictions for these measurements. Hence, no theory that satisfies
both EPRSs reality and locality assumptions can be empirically adequate.”

Again, Bell did not take this to mean that Bohm’s theory was unsatisfactory.
Rather, he concluded that one cannot do better than Bohmian mechanics. Bell
was a champion of Bohmian mechanics throughout his career. He explained
how the theory worked, defended it, extended it, and enumerated its virtues. We
will examine both Bohmian mechanics and how Bell understood it in detail in
Chapter 11. Here we will consider why he was not overly worried that it exhibited
a strong variety of nonlocality.

7 This does not mean that no formulation of quantum mechanics can be compatible with relativistic
constraints. As we will see when we discuss GRWT later (in section 8.4 in particular), one can get a
formulation of quantum mechanics that might be said to satisfy relativistic constraints. The theory,
however, does not satisfy EPR’s reality assumptions. One way to see this is that neither EPR particle has
any spin properties on GRWT.
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6.4 Bell-Type Theorems

We now have a family of Bell-type no-go theorems. These theorems are proven by
starting with a set of metaphysical assumptions, then using the axioms of classical
probability theory to prove that a particular statistical inequality must hold if
those assumptions are satisfied. A particular Bell-type theorem is interesting if the
assumptions used to derive it are intuitively plausible and the associated inequality
is violated by nature. In that case, one knows that at least one of the intuitively
plausible assumptions is in fact false. In order to see better how such Bell-type
arguments work in general, consider the following Bell-type no-go theorem.®
Consider two electrons in the EPR state

1

V2

And consider three physical directions along which one might measure their spin:
+60°, 0°, and —60° (as in Figure 6.3). Each of these directions corresponds to a
different spin property. The angles give the direction along which one would orient
the magnets on a Stern-Gerlach device to measure the particular spin property of

(l Tx)Al lx)B - | lx)A| Tx)B)'

each electron. Given how the standard theory represents physical properties, each
of these spin properties corresponds to a different orthonormal basis in the Hilbert
space J{ we use to represent electron spin. More specifically, the 0°-spin basis is at
a 30° angle to the +60°-spin basis in one direction and the —60°-spin basis in the
other.

Now consider three intuitively plausible assumptions. Given their commitments
and the observed spin properties of electrons, EPR would almost certainly have
endorsed each of these.

Assumption 1 (value definiteness): Particles A and B in fact have determinate
spin values in each of the three directions.

00

-60° +60°

Figure 6.3. Three spin properties labeled by magnet
angle.

® This theorem follows Wigner (1970) and (1976).
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Since this mirrors one of EPR’s central conclusions, they would certainly have
accepted this assumption. On this assumption, the three spin values for each of the
two particles

(A@ + 60°, A@0°, A@ — 60°; B@ + 60°, B@0°, B@ — 60°)

can be represented by six signs. The first sign is the value of particle A’s +60°-spin,
the second is the value of particle A’s 0°-spin, etc. These are the real physical
parameters that EPR would take to represent the possessed spin properties in each
direction. In this notion, then, (+ — +; — + —) represents A’s +60°-spin as up, its
0°-spin as down, and its —60°-spin as up; and it represents B’s +60°-spin as down,
its 0°-spin as up, and its —60°-spin as down. Let P(+ — +; — + —) be the epistemic
probability of those particular parameter values in fact obtaining.

Assumption 2 (anti-correlated spins): The possessed spins of the two particles
are opposite in each direction.

Since EPR took the possessed properties of the particles to be what explained
the result of measuring that property, and since the results of spin measurements
of the same spin property of the two particles in the EPR state are always found to
be opposite, they certainly would have accepted this assumption. This reduces the
number of possible determinate spin states for the two particles to eight:

+++-——)F+———H,F-+—-+-)+———++)
—++H+—)(—+=+—H),(——H++-)(———+++).

On each trial of the experiment, each of the devices, one at location A and the other
atlocation B, may be used to measure one of two possible spin properties. Suppose
that each spin-measuring device begins ready to measure spin in the 0° direction
and that one can turn the device at A to measure spin in the +60° direction and/or
turn the device at B to measure spin in the —60° direction. If a device is not turned,
then its measurement automatically defaults to measure spin in the 0° direction.

Assumption 3 (setting independence): The outcome of a spin measurement of
a particle is given by the value of its possessed spin in the direction being
measured.

One might think of this as a sort of locality assumption that also involves
what it means to measure a physical property. In the present context, it captures
both EPR’s sense that the result of a measurement must be explained by the
preexisting properties of the particle being measured and their sense that what



100 REAL AND/OR LOCAL

one chooses to measure of one particle cannot affect the possessed properties of the
other particle. Given Assumption 2, if one’s measurement of a particle changed a
spin property of that particle, then it would also have to change the corresponding
spin property of the distant particle instantaneously in order to keep the spins
opposite. So while no single assumption involves locality, a locality condition is
entailed by the three assumptions together.’

Given that one’s choice of what to measure does not change the value of what is
being measured, one can take the probabilities of one’s measurement results to be
equal to the probabilities of the corresponding values in fact obtaining. This means
that

P(+4 & +g|turn A)

or the probability of getting + for the result at A and + for the result at B, given
that one turns only the device at A, is just the probability that particle A has the
property + in the +60° direction (since the device at A was turned and, hence, is
oriented in the +60° direction) and particle B has the property + in the 0° direction
(since the device at Bwas not turned and, hence, is still oriented in the 0° direction).
Similarly

P(4+, & +g|turn B)

is the probability that particle A has the property + in the 0° direction and
particle B has the property + in the —60° direction. And

P(+, & +g|turn A & turn B)

is the probability that particle A has the property + in the +60° direction and
particle B has the property + in the —60° direction.

Suppose that the device at A is turned to the +60° orientation and the device
at B is left in the 0° orientation. Since the two states in the eight above where this
could happen (where A is + in the +60° direction and B is + in the 0° direction)
are mutually exclusive, it follows from the assumption that the probability of one’s
measurement results is equal to the probabilities of the corresponding values in
fact obtaining, together with the standard probability axioms, that the probability
of getting a + result at both A and B is

? There are also a number of implicit assumptions in a typical Bell-type argument, and that is true
here as well. It is typically assumed without comment, for example, that the observed nonclassical
Bell correlations are not explained by a pre-established harmony between the value of the parameter
that determines one’s measurement outcomes and what observables one in fact chooses to measure.
For their part, EPR would have been committed to such background assumptions. It was a key
methodological principle for Einstein that one assume the physical world to be such that one can do
meaningful experiments.
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P(+, & +glturn A) = P(+ —+;— + —) + P(+ — —; — + +).
Similarly
P(+, & +g|turn B) = P(+ + —;— — +) + P(— + —; + — +).
And
P(+4 & +g|turn A & turn B) = P(+ — —;— + +) + P(+ + —; — — +).
So

P(+, & +g|turn A & turn B) =P(+, & +g|turn A) + P(+, & +5|turn B)
—P+—-+—-+-)-P(—+—+—-+).

But since all probabilities must be greater than or equal to zero
P(+, & +g|turn A & turn B) < P(+,4 & +g|turn A) + P(+, & +g|turn B).

This last expression is a Bell-type inequality that follows from the assumptions that
went into the theorem.

For the angles specified here, quantum mechanics predicts that the probability
on the left of the inequality is 1/ sin®(60°) = 3s and that the sum of the probabilities
on the right is sin’(30°) =1/. Since 3s is not in fact less than or equal to 1/,
the empirical predictions of the standard formulation of quantum mechanics are
incompatible with the EPR assumptions. And since the standard predictions turn
out to be right, no empirically adequate description of the world can satisfy the
assumptions that go into the theorem. Hence, inasmuch as EPR would have agreed
to each of the three assumptions here, their metaphysical intuitions are simply
incompatible with the empirical properties of the physical world we inhabit."°

6.5 Quantum Property Attribution Redux

We are now in a position to summarize a few things that we have learned about
property attribution in the standard theory.

' Note that the threat to locality is not addressed by simply moving to a field theoretic formulation
of quantum mechanics. Field theory still must explain the observed EPR-Bell statistics. To do so, either
one must assume non-local entangled field states that are non-locally disentangled on measurement as
on the standard account or one must propose a clear alternative explaination.
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To begin, on the standard interpretation of states, a system in state |¢)g only
determinately has those properties for which |¢)s is an eigenstate, which is always
an impoverished set. On the linear dynamics, an electron will always have some
determinate property, but that property will virtually never be the property one sets
out to measure. Hence, given how property attribution works, the linear dynamics
alone cannot explain determinate measurement outcomes.

Quantum mechanics also allows a composite system to have properties that are
not a function of the properties of its parts. Consider a two-particle system in the
EPR state

1

V2

Since the total spin of the composite system AB as described by the first term is zero
and the total spin as described by the second term is zero, the composite system AB
is in an eigenstate of having a total x-spin of zero. And since the state has the same
form written in any other spin basis, the composite system AB is in an eigenstate of

(l Tx)Al lx)B - | lx)A| Tx)B)'

having a total spin in every other direction of zero as well. Consequently, the total
x-spin (and the total spin in every other direction) of the composite system AB is
in fact zero on the standard interpretation of states. But this is not because the sum
of the x-spins of the two particles is zero.

Since the states of the two particles are entangled, neither has a determinate spin
of any sort—indeed, neither particle even has a spin state to call its own. Hence
the determinate properties of the composite system cannot be understood to be a
function of the properties of its parts. Further, just considering spin properties for
a moment, neither particle has a property that might be used to distinguish it from
the other because neither has any determinate properties to call its own, yet there
are in fact two particles on the standard interpretation of states.'*

Finally, even when physical systems have determinate quantum states to call
their own, those states may not individuate the physical systems. It can happen,
for example, that the full physical state of two particles A and B is represented by
precisely the same vector in Hilbert space |¢), = |¢)p. In this case, each particle has
precisely the same determinate properties and hence there are again no properties
that might be used to distinguish the two particles.

6.6 EPR Morals

The empirical violation of Bell’s original inequality and the Bell-type inequality
we just considered means that no empirically adequate formulation of quantum

' Since each term is an eigenstate of there being two particles, the superposition is also an eigenstate
of there being two particles.



EPR MORALS 103

mechanics can satisfy EPR’s physical and philosophical intuitions. One might be
tempted to conclude from that there is nothing wrong with quantum mechanics
and everything wrong with EPR’s old-fashioned understanding of the world. But
this is too fast. While at least one of the assumptions EPR made must be wrong,
there remains the question of which must be sacrificed and precisely how. Moreover,
the standard formulation of quantum mechanics itself is not compatible with basic
relativistic constraints, which is a serious problem given the foundational role that
relativity plays as the other cornerstone of modern physics.

For many years, most physicists who thought about such things at all thought
that Bell’s theorem showed that one must give up EPR’s reality and/or completeness
assumptions. People typically did not think that locality or relativity was seriously
threatened. While one might ultimately adopt such a position, one should reflect
carefully on the explanatory sacrifice in doing so. On this view, there would be
physical facts that one could predict with certainty (like the result of an x-spin
measurement on a distant system) but no physical facts that explain why one can
predict them (in this case, no determinate x-spin properties of that system).

As we will see, Bell himself was willing to give up locality, even in the strong
sense of entertaining theories that were manifestly incompatible with the dynam-
ical constraints of relativity, in order to keep a much weakened version of EPR’s
reality and completeness conditions. What led him to this view was that Bohmian
mechanics already provided a clear example of precisely how one might do this
and get the right empirical predictions.

Perhaps the best argument against the standard response to Bell’s theorem is
that even if one is willing to give up reality and/or completeness, it is difficult to
formulate quantum mechanics in a way that is compatible with relativity. For its
part, the standard collapse theory is manifestly incompatible with standard rela-
tivistic constraints. We will consider two very different ways to get a formulation
of quantum mechanics that is arguably compatible with relativistic constraints
when we discuss GRWT and various ways of understanding Everett’s pure wave
mechanics. But one does not get compatibility with relativity for free. Both of these
approaches involve significant conceptual costs.

In the case of the standard theory, the collapse dynamics is the primary source
of the incompatibility with relativity. If one could figure out how to get by with just
the linear dynamics, then one would stand a much better chance of getting a theory
that is compatible with relativistic constraints. But as we have seen, the standard
interpretation of states requires the collapse dynamics—without collapses one
typically does not have determinate measurement outcomes at all. So giving up
the standard collapse dynamics would also require a radically different way of
interpreting quantum-mechanical states.

That said, giving up the collapse dynamics and adopting a new interpretation of
quantum-mechanical states is also not sufficient to get compatibility with relativity.
Bohmian mechanics both gives up the collapse dynamics, consequently requiring
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aradically new way of interpreting quantum-mechanics states, and is incompatible
with relativity.

But here we are getting ahead of the story again. Bohmian mechanics was not
meant to address the incompatibility of the standard theory and relativity, or even
to provide a more intuitive account of physical properties. It was meant to address
the quantum measurement problem.



7

The Quantum Measurement Problem

7.1 Wigner’s Friend

The philosopher Hillary Putnam tells of meeting Albert Einstein at Princeton for
tea in 1953. The conversation turned to the conceptual difficulties with quantum
mechanics. Einstein was most worried about the dynamical laws of the theory.
As Putnam tells the story,

What he said on that occasion was something like the following: “Look, I don’t
believe that when I am not in my bedroom my bed spreads out all over the room,
and whenever I open the door and come in it jumps into the corner”

(Putnam 2005, 624).

Einstein was right to worry.

The term measurement occurs in the standard collapse formulation of quantum
mechanics as an undefined primitive term. In particular, the linear dynamics
describes the evolution of a physical system when it is not measured and the
collapse dynamics describes its evolution when it is measured. Insofar as it is
unclear what counts as a measurement, the dynamics of the standard theory is
ambiguous. But the problem is more subtle than this might suggest.

The Wigner’s friend story describes a thought experiment where one observer
makes a measurement of a quantum system then is herself measured by another
observer. It can be thought of as a generalized version of Schrodinger’s famous
cat story.! It provides a good starting point for understanding the quantum
measurement problem.

The Wigner’s friend story was told by Eugene Wigner (1961), but Hugh Everett
III (1956), one of Wigner’s graduate students at Princeton, had already used it
to characterize the conceptual problems faced by the standard formulation of
quantum mechanics in a version of his PhD dissertation.” While Everett used
the story to explain why the standard theory was inconsistent, Wigner used it to

! Schrédinger (1935) told his cat story to illustrate how easily it is for microscopic superposition to
generate a superposition of ordinary properties of a macroscopic system—namely, he shows how one
might easily end up with a cat in an entangled superposition of being alive and dead under the linear
dynamics.

? John Wheeler was Everett’s PhD advisor. While Everett’s presentation is the earliest version of the
Wigner’s friend story I know, the basic structure of the story reflects von Neumann’s (1932) discussion
of when the collapse occurs in a sequence of measurement-like interactions. That said, von Neumann
believed that one’s choice of where to put the collapse did not matter empirically. That it does is
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Figure 7.1. The Wigner’s friend setup.

explain how he thought the standard theory worked. We will start with the story
as Wigner told it, then discuss how Everett and Wigner each understood it.

Consider a friend F, with a measuring device M, who is ready to measure the
x-spin of a system S. More specifically, suppose that the friend begins in a state
|“r”)r where she is ready to observe her measuring device and her measuring
device begins in a state |“r”),; where it is ready to measure the x-spin of S
(as in Figure 7.1). Suppose further that the friend is a perfect observer of the
measurement result indicated by the measuring device and that the measuring
device is perfect in correlating the position of the pointer that represents its result
with the x-spin of S. Finally, suppose that the measuring device correlates its
pointer with the x-spin of S at time #; and that the friend looks at the result
indicated by M’s pointer at time ¢,.

The measuring device has three states where it makes a simple determinate
report. In state |“r”),; it is ready to make a measurement on S, and it indicates
this fact with its pointer pointing at “ready” In state |“1,”),, it has completed
its measurement and its pointer points at “x-spin up” indicating the result of
the measurement. And in state |“],”);, it has completed its measurement and its
pointer indicates that the result was “x-spin down.”

The friend similarly has three states where she makes a simple determinate
report. We will understand these states in terms of her physical dispositions.
In state |“¢”)p the friend is ready to look at the position of the pointer on M and
to record the result of this observation. If the friend is in this state, she also has
the sure-fire physical disposition to answer “yes” if asked whether she is ready
to reliably observe the result indicated by the pointer on her measuring device.
We will suppose that she then records the result of her measurement as a brain
record. More specifically, in state |“1,”) she has looked at the pointer on M and has
recorded that it points at “x-spin up.” In this state she has the sure-fire disposition
to report “x-spin up” if she is asked what result she got. And in state |“],”)r she
has looked at the pointer, has recorded that it points at “x-spin down,” and has
the sure-fire disposition to report that it was “x-spin down.” Insofar as the sure-fire

something that both Everett and Wigner made clear in their discussions of such nested measurements.
See Wigner (1963) and (1981) for subsequent reflections on the measurement problem.
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disposition of an observer to report a particular result indicates her beliefs, the
friend believes that she in fact got whatever result she has the sure-fire disposition
to report that she got.

Assuming ideal correlating interactions between the three systems, the com-
posite system has the following two dispositions. If the object system begins in the

state |1,)s
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So if the x-spin of the object system is determinate, the story is easy. The measuring
device simply comes to indicate the x-spin of S; the friend ends up with a reliable
brain record, and hence a reliable belief, regarding the measurement outcome; and
she is prepared to reliably report the outcome of her measurement.

But suppose that the object system begins in a state that is not an eigenstate of
x-spin. Say, the z-spin up state

11,05 = V20 1,05 + [ 1)s)- (7.1)

The question of how the composite system evolves is now more subtle.

When the object system starts in an eigenstate of x-spin, we do not need to
know which interactions should ultimately count as measurements because the
collapse dynamics would not disturb a system that is already in an eigenstate of the
observable being measured. But now it matters. To see why, let’s start by supposing
that the linear dynamics correctly describes both the interaction between M and S
and the interaction between F and M.

Assuming the ideal correlating interactions just described, the linear dynamics
predicts that the state of the composite system FMS will evolve as follows:
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Because the dynamics is linear, one simply calculates the action of the dynamics
on the superposition by time-evolving each term separately using the composite
systeny’s dispositions and keeping the original coefficients.

The standard interpretation of states tells us that the final state here is one
where the friend has no determinate measurement record whatsoever. This is
reflected in the fact that if we asked her what measurement result she got, she
would not have the determinate disposition to respond “x-spin up” nor would
she have the determinate disposition to respond “x-spin down”. Rather, by the
linear dynamics, she would have the disposition to utter a symmetric superposition
of these two reports. And, hence, insofar as her mental state supervenes on her
physical state, she also fails to have the determinate belief that she got x-spin up
or the determinate belief that she got x-spin down.? Indeed, since her record is
entangled with both the position of M’s pointer and the x-spin of S, the friend
does not even have a proper quantum-mechanical state to call her own.

In contrast, if we suppose that the nonlinear collapse dynamics correctly
describes the interaction between M and S, then there would be a collapse between
times ¢, and ¢, and the composite system would evolve as follows:*

V210l )l Teds + TV 21P Dl 7l Lids
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* In the strong sense in which we are using the notion, we will say that the mental state of an agent
supervenes on her physical state if and only if her physical state can be understood as determining her
mental state. This notion allows for some distance between mental and physical states. Specifically, an
agent’s mental state might supervene on her physical state without itself being in any way the state of a
physical system.

* Note that we are assuming throughout, as the standard theory requires, that the linear dynamics
describes the time-evolution of the composite system whenever there is no collapse of the state.
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Hence the friend would determinately get one of the two possible measurement
outcomes, each with equal probability. And, given that her mental state supervenes
on her dispositions to report, she would determinately believe that she got that
result.

If the collapse occurs instead when F interacts with M, then there would be
a collapse between times t, and t, and the composite system would evolve as
follows:
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While this is a different sequence of states, the friend would again end up with
one or the other of the two possible determinate measurement records with equal
probability and with the corresponding belief.

So regardless of whether the collapse occurs between M and S or between F
and M, the state of the composite system FMS will ultimately either end up

[up)eais = 1“7 )l “T Dl Tods

or

[down)pns = [“L")el“ V" dml Lass

each with probability 1/2. And, unlike the state that evolves from the linear
dynamics alone, both of these describe the friend as having a perfectly determinate
measurement record on the standard interpretation of states.

The collapse dynamics does two essential things in the standard theory.
It explains how an observer ends up with a determinate measurement record given
the standard interpretation of states, and it explains why these results are randomly
distributed with the standard quantum statistics. But since the theory does not tell
us what constitutes a measurement, we do not know when the collapse occurs in
the chain of interactions between F, M, and S. Inasmuch as it is the collapse that is
supposed to explain there being a determinate measurement result, it presumably
must happen sometime before the friend is aware of the measurement result. But it
might happen when the measuring device interacts with the object system or when
the friend looks at the pointer on the measuring device. Or perhaps sometime else
in a more detailed characterization of the chain of correlating interactions.
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In order to avoid the problem of having to say precisely when the collapse
occurs, von Neumann argued that it does not matter empirically whether one puts
the collapse between M and S or between F and M.’ In either case, one gets the
state |up)pys with probability 1/2 and the state |down)p,s with probability 1/2.
But while it does not matter for the statistics for the result of the friend’s x-
spin measurement, it does matter for the full dynamical story and hence for the
statistical results one would get for other observables. In short, the sequence
of states of the composite system FMS depends on precisely when the collapse
occurs, and different states have different empirical properties for measurements
of the composite system. The Wigner’s friend story is ultimately a story of nested
measurements.

Suppose we want to know whether a collapse has happened at some point in the
interactions between the three systems. Consider a Hermitian operator A that has

4D ps = VV2ID)E 0l Tds + VV2I L)Ll Lds
=1/ \/5(|UP>FMS + [down)gys)

as an eigenvector corresponding to the eigenvalue A = +1 and
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=1/ \/§(|UP>FMS — |down)gys)

as an eigenvector corresponding to the eigenvalue A = —1 (as in Figure 7.2). Rule 2
tells us that there is a physical observable A corresponding to A.°

Suppose an external observer W measures the observable A of the composite
system FMS (as in the figure 7.1). If the linear dynamics correctly describes
the interactions between the three systems, then FMS will end up in the state
|[+1)ps> which, as the notation suggests, is an eigenstate of A with eigenvalue +1.

|[down) gpss

[+ pps

[up) s

[-1)Eums

Figure 7.2. Eigenstates of the A-observable.

® See von Neumann (1955, 420-1 and 439-45) for his reflections.
¢ See Albert (1986), Albert and Barrett (1995), and Barrett (1999) for discussions of A-measurements
and what they mean for the causal closure of worlds on Everettian formulations of quantum mechanics.
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Hence if the linear dynamics correctly describes the evolution of the composite
system, then an A-measurement of FMS will certainly yield the result +1. But if
a collapse occurred somewhere in the sequence of interactions between the three
systems (S, M, and F), then the final state of the composite system will be either
|up)eass or [down)gys. Since both [up)pys and |down)p,,s are at 45° angles to both
|[+1)pys and |—1)pys, the norm-squared of the inner product of each of these
states with |+1)gys is 1/2 and the norm-squared of the inner product of each
with |—1)gys is 1/2. So, if a collapse has occurred at any point in the interactions
between the three systems, one is no longer guaranteed to get the result +1 for an
A-measurement on FMS; rather, the probability of finding that A = +1is 1/2 and
the probability of finding that A = —1 is 1/2.

Consequently, if one performs a sequence of A-measurements on composite
systems like FMS after the internal interactions, one would be able to empirically
distinguish between the state one gets by applying the linear dynamics to the com-
posite system |+1)p,s and either of the states that might result from the collapse
dynamics |up)pys or |down)pys. Similarly, there are other A-type interference
observables that would tell one when in the chain of interactions between S, M,
and F the collapse occurred, if a collapse occurs at all.

7.2 The Measurement Problem

We are now in a position to say what the quantum measurement problem is.
The term measurement occurs in the standard collapse formulation of quantum
mechanics as an undefined primitive term. Whether a system is measured or not
determines when each of the theory’s two dynamical laws obtains. Specifically,
the deterministic linear dynamics describes the evolution of the state of a system
when it is not measured and the random nonlinear collapse dynamics describes its
evolution when it is measured. Since these two laws predict physically incompatible
states when applied to the same interaction, one must specify strictly disjoint
conditions for when each obtains for the theory to be logically consistent. Without
this, the standard theory is at best dynamically incomplete on the most charitable
reading. Further, since there are empirical consequences for when each of the two
dynamical laws obtains, the theory is incomplete in an empirically significant way.
If one happens to believe that measurement interactions are physical interactions
between physical systems like any other (and why wouldn't they be?), and thus
accurately described by the linear dynamics, then the theory is just logically
inconsistent.

The sort of incompleteness involved in the measurement problem is different
from the sort that EPR worried about. They worry that the theory does not
characterize the values of all of the elements of reality at a time—that it does
not specify the values of those quantities that can be determined with certainty
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while not disturbing the physical system. This is a worry regarding the synchronic
incompleteness of the quantum-mechanical state description. Here the issue con-
cerns the diachronic incompleteness of the dynamics. Since the theory’s dynamics
fails to specify how the quantum-mechanical state of a composite system will
evolve, even if one grants the standard quantum state descriptions, the theory
does not fully specify how such states evolve. This sort of incompleteness is
particularly salient in the context of the Wigner’s friend nested measurements.
Here the theory cannot make any empirical predictions whatsoever for the results
of A-type measurements of the composite system by dint of the fact that one does
not even know what quantum state to ascribe to the composite system following
the sequence of internal interactions.

Everett used his version of the Wigner’s friend story, which he called an “amus-
ing, but extremely hypothetical drama,” to examine what he called the question of
the consistency of the standard formulation of quantum mechanics (1956, 74-5).
Since the standard theory’s two dynamical laws predict incompatible states, he
concluded that it was logically inconsistent and hence untenable. This is a much
stronger verdict than that the theory is just dynamically incomplete. Everett was
led to it by his firmly held conviction that observers and their measuring devices
are physical systems like any other. If one supposes that observers and their
measuring devices are composed entirely of simpler physical systems interacting
with each other linearly, then interactions between measuring devices and other
physical systems must always obey the linear dynamics just like every other
interaction. And one immediately gets a logical contradiction if one’s theory ever
predicts a nonlinear collapse.

Since Everett believed that all physical systems, including sentient observers
and measuring devices, always obey the linear dynamics, he believed that the
composite system FMS would in fact end up, as required by the linear dynamics,
in the state

VN 210700l 1ds + 12
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after the sequence of correlating measurement interactions between the systems.
Consequently, he also believed that if the external observer W were to make an
A-measurement of the composite system FMS, he would with certainty get the
result +1.

What made the story “extremely hypothetical” is that Everett knew that it
would be extremely difficult to make a reliable A-measurement on a macroscopic
system like FMS in practice. Nevertheless, he held that one only has a satisfactory
formulation of quantum mechanics if one can provide a consistent account of
such nested measurements. And he believed that if such a measurement were ever
made, one would find that there was in fact no collapse of F’s state, M’s state, or
the state of the object system S at any point in the chain of interactions. But, if
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this is right, one is left with the puzzle of how to explain the friend’s determinate
measurement results (and the standard quantum statistics) at all in the context of
the linear dynamics alone.

We will consider Everett’s proposal for how to solve the measurement problem
later. For now, it is important to get clear on precisely why A-measurements are
extremely difficult.

7.3 Why A-Type Measurements are Difficult

Suppose an observer W wants to perform an A-measurement of the composite
FMS to determine whether or not his friend caused a collapse when she performed
her x-spin measurement and hence got one or the other of the two classically
possible determinate records. But suppose that, unknown to W, there is a single
particle p in the measuring device M that is positioned in such a way that (1) if the
pointer moves to the right to indicate the result “x-spin down,” it will push p from
region 0 to region 1, and (2) if the pointer moves to the left to indicate the result
“x-spin up,” it will leave p unmoved in region 0 (as in Figure 7.3).

The composite system consisting of FMSp, then, has the following two

dispositions:
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Figure 7.3. Environmental decoherence in an A-type
measurement.
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So, on the linear dynamics, the composite system would evolve as follows:
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Let’s call this final state |p-super)pys,. While it looks much like the final state in
the original Wigner’s friend story, it has very different physical properties.

Consider what would happen if observer W made an A-measurement of the
composite system in state |p-super)pys,. To do this, we need to write the state
in terms of eigenstates of the observable A. The following two identities, relating
expressions from our earlier discussion of the Wigner’s friend story, are useful for
the purpose at hand:

1
Yenss = —=(+ Diags + |~ Drass)
[up)rus \/E | Fms + | FMS

and

1
|down)pyis = —=(|+1)pms — =1 pms)-
V2

These identities are readily checked by writing |+1)zys and |—1)gys in terms
of |up)pys and |down)pys, as at the end of section 7.1, then substituting the
expressions above.

Using these identities, we can rewrite |p-super)pys, and simplify:
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So, calculating quantum probabilities in the usual way, the probability that
observer W will get the result A = 41 for his A-measurement is

127+ 12 =1/4+1/4=1/2

since this happens in the first and third terms. And the probability that he will get
the result A = —1is

1122+ | =122 =1/4+1/4=1/2

since this happens in the second and fourth terms. The correlation between the
position of M’s pointer and particle p means that, instead of being guaranteed of
getting the result A = +1, W gets each possible result about half the time. But these
no-collapse statistics are precisely the same statistics that W would get if he had
performed an A-measurement of FMS in either of the states |up)gas or |[down) g
that might result from a collapse when F makes her x-spin measurement. So if the
position of particle p becomes correlated to M’s pointer, then the result of W’s
A-measurement does not tell him anything whatsoever regarding whether his
friend caused a collapse of the quantum-mechanical state when she measured the
x-spin of system S. Environmental decoherence destroys the particular interfer-
ence effect that would be detected by an A-measurement just as if a collapse had
occurred when the friend F made her spin measurement.”

The phenomenon here is precisely the same as in the two-path experiment when
we put a particle on one of paths to record which path the electron traveled. In
both cases, something in the environment becomes correlated with the state of
the object system in a way that destroys the particular interference effect one set
out to measure. The interference effect of getting the sure-fire result A = +1 for a
measurement of FMS is destroyed if anything whatsoever becomes correlated with

7 Similarly, the value of the observable A will be randomized if the friends x-spin result gets
correlated to anything whatsoever in her environment. Hence the friend cannot communicate her result
to any external observer following an A-measurement without randomizing the value of A. As Albert
(1992) has argued, however, there is a sense in which the external observer can communicate the result
of his A-measurement to the friend without disturbing the friend’s memory or the value of A. Hence,
the friend alone may “know” the value of two non-commuting observables (as long as her thinking
about the result of her of x-spin measurement does not in any way produce a new record of this result).
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F’s brain record or the position of M’s pointer or the x-spin of S. So the correlation
between the position of M’s pointer and particle p’s position destroys this particular
interference effect.

Since environmental decoherence makes it look like a collapse has occurred
from the perspective of the interference effect detected by an A-measurement, it is
tempting to imagine that environmental decoherence, like the collapse dynamics,
explains why observers get determinate measurement results. The argument might
go something like this. The collapse dynamics yields a quantum-mechanical state
where there is a determinate x-spin record (either |up)gys or [down)p) and
it destroys the interference effect of getting A = 4 1. Environmental decoherence
destroys the interference effect of getting the sure-fire result A=+ 1. Hence
environmental decoherence yields a state where there is a determinate x-spin
measurement record. So we do not need the collapse dynamics since the linear
dynamics and environmental decoherence already explain why one gets determi-
nate measurement records.

But this is just sloppy. The collapse dynamics does indeed yield a quantum-
mechanical state where there is a determinate x-spin record, either |up)ps or
|down) gy, instead of the state predicted by the linear dynamics

V21Vl Tds + VNI LY dl s

Unlike the collapse dynamics, however, environmental decoherence involves a
fully linear interaction between the system and its environment—one that does
not yield a state where there is a determinate x-spin record. The interaction with p
yields the state

L L
V2 V2

Hence, on the standard interpretation of states, environmental decoherence does
nothing whatsoever to produce a determinate measurement record. Indeed, it pro-
duces a more complicated entangled superposition of incompatible measurement
records. And even if one drops the standard interpretation of states, if one keeps
state completeness, the friend cannot have a single determinate measurement
record here since the resultant state [p-super) s, fails to select one of the possible
records over the other as the actual result of the friend’s spin measurement.
Whenever environmental decoherence destroys one interference effect, it
always creates new interference effects that one might in principle detect. There
is an observable B of the larger composite system FMSp that has |p-super)pys,
as an eigenstate corresponding to the eigenvalue +1 and an orthogonal state
corresponding to the eigenvalue —1. A B-measurement would again allow

0T Daal 1)s100p + —=1“LDel Ll Lads 1)y
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the observer W to determine whether his friends x-spin measurement had
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caused a collapse in the context of this particular instance of environmental
decoherence. That said, a B-measurement would be even harder to make than
an A-measurement since it involves a strictly larger system that one would have
to be able to isolate and control. And the observer W would have to know that B
was the right observable to measure to determine whether the interaction was in
fact linear, which would require W to know exactly what sort of environmental
interaction had occurred.

The upshot is that it would be extremely difficult to measure an observable
that would determine whether or not the friend caused a collapse when she
measured the x-spin of her object system. It would require one to be able to
isolate and control every particle in the macroscopic system FMS to ensure that no
interactions produced correlations that would destroy the interference effect one
set out to measure of the composite system. Macroscopic systems contain many
particles that one would need to track, and they typically couple strongly with
their environments in complicated ways. This is why Everett called his version
of the Wigner’s friend story extremely hypothetical. But while environmental
decoherence makes it difficult to perform nested measurements that show that
the friend evolved linearly, this does not mean that environmental decoherence
explains the friend’s determinate spin result. Again, the full state of the composite
system after environmental decoherence fails to select either possible record over
the other as the actual result.

A satisfactory resolution of the quantum measurement problem requires one
to be able to tell the Wigner’s friend story consistently. And pointing out that a
nested measurement experiment with macroscopic systems would be extremely
difficult, or even technologically impossible, does nothing whatsoever to address
the problem. A satisfactory formulation of quantum mechanics should tell us
whether the final state of the Wigner’s friend story is something like [up)ps or
|down) gy or whether it is something like

V210060l 1ds + VA2 L0l L el s

If it is the former, it needs to say when and why the state of the composite
system collapsed. And if it is the latter, it needs to explain precisely how that state
describes there being a determinate measurement record. If our best formulation
of quantum mechanics cannot handle nested measurements, then we simply do
not understand the physical world.



8
The Collapse of the Quantum State

8.1 Wigner’s Solution

Eugene Wigner did not present his version of the friend story as a criticism of
quantum mechanics. Rather, it was part of his explanation for how one should
properly understand the theory. In particular, he used it to argue that the quantum-
mechanical state of a system must collapse when the system is apprehended by a
conscious mind.

Wigner held that a consistent formulation of quantum mechanics requires one
to endorse a strong variety of mind-body dualism, something that he believed
most physicists had already accepted.

Until not many years ago, the “existence” of a mind or soul would have been
passionately denied by most physical scientists.. .. There are [however] several
reasons for the return, on the part of most physical scientists, to the Spirit of
Descartes’ “Cogito ergo sum’.... When the province of physical theory was
extended to encompass microscopic phenomena, through the creation of quan-
tum mechanics, the concept of consciousness came to the fore again: it was not
possible to formulate the laws of quantum mechanics in a consistent way without
reference to consciousness. (1961, 168)

The worry about consistency here comes, as we saw in the last chapter, when one
tries to say when collapses occur. Wigner believed that one can avoid the quantum
measurement problem by opting for a strong Cartesian dualism.!

He argued for his proposed solution to the measurement problem as follows:

The important point is that the impression which one gains at an interaction
may, and generally does, modify the probabilities with which one gains the
various possible impressions at later interactions. In other words, the impression

! Descartes famously held that the mind and body were metaphysically distinct objects. This is one of
the central philosophical conclusions of his Meditations on First Philosophy (1641). The main argument
is that since one can be certain that one exists as a thinking being (I am thinking, therefore I exist) while
remaining uncertain whether one’s body is an illusion (produced perhaps by an evil demon), one’s mind
and one’s body cannot be the same thing. While it is unlikely that most physicists believed that quantum
mechanics committed them to this sort of mind-body dualism, it is significant that Wigner thought
they did. He was a co-recipient of the Nobel Prize in Physics two years later in 1963 for his work in
quantum mechanics and in particular the application of symmetry principles to the theory.
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one gains at an interaction, called also the result of an observation, modifies
the wave function of the system. ... [I]t is the entering of an impression into our
consciousness which alters the wave function because it modifies our appraisal
of the probabilities for different impressions which we expect to receive in the
future. It is at this point that the consciousness enters the theory unavoidably
and unalterably. (1961, 172-3)

But it is not just our appraisal of the probabilities for different future impressions
that changes when the impression one gains enters our consciousness. Wigner
required that a physical collapse of the state occurs whenever a conscious mind
apprehends the state of a measured system and gains the impression of the
measurement result. It is this change in the physical state that requires one to
change one’s appraisal of future probabilities.

On Wigner’s understanding of the theory, the dynamical laws of the standard
collapse formulation of quantum mechanics are sharpened as follows:

4. Laws of motion (Wigner):

I (Wigner). Linear dynamics: when no conscious mind apprehends the state
of a physical system §, it evolves in the standard deterministic, linear way:
U(ty, t)|w(ty))s, where U is a unitary operator.

IT (Wigner). Nonlinear collapse dynamics: when a conscious mind appre-
hends the state of a physical system S, it will instantaneously collapse to an
eigenstate of the observable being measured |y)s with the standard quantum
probabilities |(x|y)|?, where |y) is the initial state of the system.

He believed that this sharpening of the laws was “required” for the consistency
of the theory, and he considered it to be the “simplest way out” of the quantum
measurement problem (1961, 180).”

Wigner believed that both the interaction between the measuring device M and
the object system S and the interaction between the friend’s physical body F and
the measuring device M in the Wigners friend story were both perfectly ordinary
physical interactions and, hence, correctly described by the usual deterministic
linear dynamics. The composite physical system, then, evolves to the state
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But, Wigner argued, this cannot be the final state of the composite system. Rather,
in order for there to be a determinate result, the composite system FMS must be
either

? This is a modification to rule 4 of the standard formulation. We will characterize alternative
formulations of quantum mechanics by saying how they might be understood as modifications of the
standard theory. Unless otherwise noted, the rest of the theory stays the same.
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Wigner believed that were he to ask his friend the question “What did you feel
about the result of your measurement before I asked you?,” the friend would
certainly reply, “I told you already, I got the result [“1,” or “],”]” as the case
may be. That is, the friend would report that the result of her measurement “was
already decided in [her] mind” before she was asked (1961, 176). Hence Wigner
concluded:

If we accept this, we are driven to the conclusion that the proper wave function
immediately after the interaction of friend and object was already either
[state |up)pys] or [state |down)pys] and not the linear combination [state
|super)pysl. . .. It follows that the being with a consciousness must have a
different role in quantum mechanics than the inanimate measuring device. . ..
(1961, 176-7)

While it is not logically inconsistent to deny that the friend is right in reporting
that she already had a determinate measurement result before she was asked,
Wigner took such an option to be unacceptable. He argued that to deny that
the friend has the same sort of determinate experiences that we do “is surely an
unnatural attitude, approaching solipsism, and few people, in their hearts, will
go along with it” (1961, 177-8). Further, by a basic principle of charity, it must
be when the friend herself apprehends the state, and not just when Wigner asks
her what her result was, that the composite system collapses to a state where she
has a determinate measurement record. Given that everything else in the story
is just ordinary physical systems interacting in ordinary ways, the only principled
place to put the collapse is where a nonphysical entity, the friend’s mind, forms
an impression of the result. Here the friend simultaneously creates a determinate
physical record, makes that record accurate by causing a collapse of the correlated
measuring device and object system, and apprehends the value of the record.
And all this happens in a way that generates measurement records that satisfy the
standard quantum statistics.

In some sense, this proposal immediately solves the measurement problem by
saying when collapses occur. But one only really knows precisely when collapses
occur here if one knows precisely which physical systems are associated with minds
and the conditions under which these minds apprehend measurement outcomes.

For his part, Wigner advertised this as a feature of his theory and not a flaw.
Since minds affect the quantum-mechanical states of physical systems, they also
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affect the objective, observable properties of those systems. Namely, if it turns out
that one’s friend is not in fact conscious and hence does not cause a collapse, then
the state of the composite system FMS would be

UV2I U0l 1ds + VN1 LY L bl Lds:

and an A measurement of the composite system would certainly yield the result +1.
But if the friend caused a collapse, then the final state of the composite system
would be |up)pys or [down) gy, so an A measurement of the composite system
would yield result +1 or —1 each with probability 1/2. The upshot is that, while they
would be extraordinarily difficult to perform, there are at least in principle experi-
ments that would determine what systems cause collapses, and hence what systems
are conscious. Wigner took the fact that one now has an empirical way for deter-
mining what systems are conscious to be a virtue—the theory and our intuitions
concerning which systems are associated with conscious minds are inter-testable.

By saying how he thought the friend story should go, Wigner provided a
sharpening of the standard collapse theory and a proposed resolution to the
measurement problem. His proposal has the virtue of saying more precisely when
the linear dynamics and the collapse dynamics obtain. But it does not really pin this
down until one knows which systems are in fact conscious. One could appeal to
one’s intuitions about which systems are conscious, but this is arguably not much
better than appealing to one’s intuitions concerning which systems should count
as measuring devices on the standard theory.

The most salient problem is that Wigner’s theory requires a strong variety of
mind-body dualism where minds do not supervene on physical states but cause
physical events. An observer’s mental state is not determined by her physical
state. Rather, her mental state causes her physical state to collapse whenever
an impression enters into her consciousness, whatever that might mean. Wigner’s
proposal is a return to the spirit of Descartes, but insofar as one is committed to
mental processes supervening physical processes this is not an attractive prospect.

Finally, one would like one’s solution to the quantum measurement problem
to suggest how one might reconcile quantum mechanics with the dynamical
constrains of special relativity. But, of course, Wigner’s proposal for when and how
collapses occur is as incompatible with relativity as the standard formulation of
quantum mechanics, and for precisely the same reasons.

8.2 GRW*

Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber (GRW) (1985; 1986)
showed how to formulate a purely physical theory that says when and why
collapses occur without requiring a commitment to a strong variety of mind-body
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dualism. The thought is that one wants macroscopic systems to have determinate
classical properties so that one can explain things like tables with determinate
locations and the motion of the moon, but one also wants microscopic systems to
obey the linear dynamics so that one can explain things like interference effects
and the stability of matter. GRW accomplish this by changing the dynamical laws
of the theory. In order to understand the main idea behind their proposal, we will
start by considering a toy version of their theory we will call GRW*.

GRW?™ supposes that physical systems are composed of fundamental particles,
and it describes the particles in terms of their wave functions. Specifically, the
state of a particle p is given by a complex-valued function |y(r)), over the possible
positions where the particle might be found. The state of a collection of N particles
is given by their wave function over 3N-dimensional configuration space.’

GRW™ is just like the standard collapse formulation of quantum mechanics,
except that one replaces the linear dynamics and the collapse dynamics by a single
hybrid dynamical law:

4. Law of motion (GRW™): The state of every physical system S evolves in
the standard deterministic, linear way |y(t,))s = U(t,, t;)|w(ty))s except that
each particle in the system has a small probability A per unit time of
collapsing randomly to an eigenstate of position. The probability of a particle
collapsing to a position in a specified region is given by the standard
quantum probabilities.

Itis as if an external observer measures the position of a randomly selected particle
atarandomly selected time and collapses it to an eigenstate of position, except that
it happens spontaneously without requiring an observer of any sort. GRW chose
a collapse rate A of about 107'%/sec, or about once every 10® years. That makes
collapses rare for microscopic systems containing just a few particles but frequent
for macroscopic systems containing something in the order of Avogadro’s number
0f 6.022x10% particles. The idea is that microscopic systems will behave quantum-
mechanically most of the time, and macroscopic systems will behave almost
classically most of the time.

Consider the Wigner’s friend story in the context of GRW™*. Suppose that the
initial state of the friend’s object system S is

| 12)s + Bl La)s.
On the hybrid dynamics, the composite system evolves linearly until one of its
constituent particles collapses. Suppose that time ¢, is just before the first particle

in the composite system collapses. The system then starts by evolving as follows:

* See the discussion of the wave function and 3N-dimensional configuration space in section 5.7.
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Suppose the measuring device pointer is a macroscopic system (so that one can
read it) that indicates the measurement result by the direction it is pointing. Since
it is macroscopic, it contains something in the order of Avogadros number of
particles. Hence, it is very likely that one of the particles in the pointer, whose
position is now correlated to the x-spin of system S, will collapse to an eigenstate of
position. Consequently, GRW™ predicts that the state |y(#,)) gy Will be extremely
unstable. In order to see the sense in which it is unstable, we will rewrite it in terms
of the n particles that make up M’s pointer:

(D)) ems = al“T"Del T om0 Dy - - 10V, | 1ds
+ ﬁ|“r’,>F|“lx”>m1 |“lx”>m2 s |“ix”>mn| lx>S’

where my is the kth particle in the pointer, [“1,”),,, is the state where m is in
the region where the pointer indicates the result “x-spin up,” and [“|,”),,, is the
state where it is in the region where the pointer indicates the result “x-spin down.
Since n is very large, while the collapse rate for each particle is small, it is highly
likely that some particle will randomly collapse to an eigenstate of position in the
next fraction of a second. The hybrid dynamics tell us that the probability of it
collapsing to an eigenstate of position in the region where the pointer indicates
the result “x-spin up” is |a|? and the probability of it collapsing to an eigenstate of
position in the region where the pointer indicates the result “x-spin down” is |B|*.

Suppose that the first particle to collapse is particle m,;; (as in Figure 8.1). The
probability that it will collapse to an eigenstate of position in the region where the
pointer indicates the result “x-spin up” is |&|?. Suppose it does. Since particle m,;,
is now determinately in the “x-spin up” pointer region, the probability of finding
it in the “x-spin down” region is zero. If one assumes that the positions of all of
the particles that constitute the pointer are perfectly correlated, one can think
of the collapse as multiplying the second term of the state |y(t;))gys of the
composite system by zero. After renormalizing, the resultant state of the composite
system is

Figure 8.1. Unstable pointer superposition in GRW.
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In this case, the friend will see the pointer determinately indicating x-spin up
because its center of mass is in this region of ordinary space. Hence the friend
will end up in the state

[up)evs = 1“7 el “T Il Tads-

Similarly, the probability that particle m,,, will collapse to an eigenstate of position
in the pointer region “x-spin down” is |8|%, in which case the resultant state of the
composite system is

|w(t1.00001)>FMS = |“7”>F|“lx”)m1 |“ix”>m2 R |“lx”>mn| lx)S
= "Ll Ll

In this case, the friend will end up in state

[down)ewss = 1“1 Vel “ "Dl )s

and see the pointer determinately indicating x-spin down because its center of
mass is in this region of ordinary three-dimensional space.

So GRW* predicts the standard quantum statistics for the position of the
macroscopic measuring-device pointer, and hence predicts determinate position
records that satisfy the standard quantum statistics. And it does so without
requiring anything nonphysical to cause the collapse of the composite system.
GRW™ predicts the right quantum statistics for the determinate position of M’s
pointer regardless of whether any conscious entity observes it.

On the hybrid dynamics, microscopic systems with relatively few particles will
evolve linearly most of the time and will hence behave quantum mechanically, and
the frequent collapses of the particles to eigenstates of position in macroscopic
systems will keep their centers of mass close to eigenstates of position. And since
the expectation values for position evolve classically under the linear dynamics,
the expected positions of these centers of mass will evolve in an approximately
classical way.

This is how GRW™* explains the appearance of the classical, macroscopic world.
But one only gets determinate physical measurement records, and hence determi-
nate appearances, under special conditions.

Suppose one has an x-spin measuring device M' that records the result of
its measurement of the system S in the position of a single particle p instead
of the position of a macroscopic pointer. One might think of p as a microscopic
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pointer. Assuming that M" perfectly correlates the position of p with the x-spin
of S, the linear dynamics predicts that the composite system M'S will end up in
the state

a1 ] Tds + BIL " dwar | s

But since the position of only the particle p is correlated with the x-spin of S, GRW*
predicts that this state will be extremely stable. Hence, it is highly unlikely that
the interaction will produce a determinate measurement record. For this reason,
GRW™* would predict that there is likely no collapse of the state in the two-path
experiment where we tried to record the position of the electron in the position of
a single particle. Consequently, it would explain the destruction of the two-path
interference effect in that case as the result of decoherence effects and not a collapse
of the state of the electron.

There is a good argument that a measuring device with a pointer consisting
of a single particle should not count as a measuring device at all. If one wanted
to know where M"’s pointer was, one would need to read its position with a
second measuring device M* with a pointer one could see. Suppose that M*
perfectly correlates the position of its macroscopic pointer, and hence one that
can be seen, with the position of p. By the linear dynamics, the resultant state
will be

A T [0 0w | s + BIL "D [ Darr | dcds

Inasmuch as M*’s pointer contains on the order of Avogadro’s number of particles,
GRW™* predicts that this state will be extremely unstable since it is very likely that
a collapse of one of the particles in M*’s macroscopic pointer will collapse to an
eigenstate of position leaving the composite system in either state

|“Tx”>Mi |“Tx”>MT | Tx>S

or state
|“*Lx”>MJr' |“‘Lx”>MT | lx)S

with the standard quantum probabilities |a|* and |B|* respectively. And this second
interaction will very likely count as a successful measurement on the theory
yielding a perfectly determinate measurement record. In each of the collapsed final
states it will look like Mt had a determinate measurement record all along and that
the result that it recorded accurately represented the x-spin of S. But, of course,
M+t had no determinate measurement record and S had no determinate x-spin
before M*’s measurement.
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This is something characteristic of measurement in GRW*. A measurement
does not reveal the physical properties of an object system—it creates them.*
When S starts in the state

al Ts + Pl s

it does not have any determinate x-spin whatsoever. But when the position of
a measuring device’s macroscopic pointer becomes correlated to S’s x-spin and
a particle in that pointer collapses to an eigenstate of position, that gives S a
determinate x-spin by giving the pointer’s center-of-mass a determinate position.
That a pointer be macroscopic and well-correlated to the property of the object
system being measured is, however, not by itself sufficient for there to be a
determinate measurement record on GRW*. Suppose that one had a measuring
device M' that recorded the result of its x-spin measurement of S in the z-spins
of each particle in a system P consisting of an Avogadros number of spin-1/2
particles. Here the z-spins of the particles in P act as a sort of pointer—but not a
very good one given how GRW™* works. Suppose that the measurement interaction
between M' and S perfectly correlates M"’s pointer P with S’s x-spin. The linear
dynamics, then, predicts that the state of the composite system M’ + S will be

0(|“Tx”>MT| Tx)S + ﬁlul’x”>M7| l«x)S'

But here, since M"’s record is in terms of the z-spins of the particles of P and since
collapses to eigenstates of position do nothing to spin, this state is perfectly stable
under the GRW* dynamics. And it remains stable as long as no particle positions
become correlated with the x-spin of S or the z-spins of the particles in P.

That said, inasmuch as M"’s record involves the z-spins of many particles, it
may be difficult to keep the positions of particles in M"’s environment from
becoming correlated with the z-spins of the particles in its pointer. If the z-spins
of the particles in P become correlated with the positions of enough particles,
then the entangled superposition of the composite system consisting of S, M",
and its environment will be unstable. A collapse of any particle whose position
is well-correlated with any of the z-spins of the particles in P will collapse both the
z-spin of that particle and the x-spin of S. This will consequently yield a deter-
minate measurement record, and it will accurately represent the new-found and
new-made x-spin of S.

Here environmental interactions that would just produce decoherence effects
under the linear dynamics alone may also produce collapses on the GRW*
hybrid dynamics. And these collapses would then yield determinate physical

* Note that this is also true for other collapse theories. On Wigner’s theory, for example, there is
typically no matter of fact about the value of the observable being measured until it is measured.
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records—something that environmental decoherence cannot provide under the
linear dynamics.

The measurement records that ultimately determine whether or not a theory is
empirically adequate are those records that determine the experiences of human
observers. For his part, Wigner simply stipulated that mental states are always
determinate and cause collapses and then end up in states that agree with the
physical records produced by the collapses. This immediately guaranteed determi-
nate mental records on which one’s experience might supervene. Further, given the
details of the collapse dynamics, these records will exhibit the standard quantum
statistics. The directness of this explanation, however, is also what renders it
ad hoc. To the credit of the theory, since GRW* does not stipulate nonphysical
minds with always determinate states, it must account for the determinate experi-
ence of observers indirectly by appealing to standard physical facts.

Suppose that Q is a physical property on which the mental records of an
observer F in fact supervene. GRW™* will very likely make F's mental records
determinate and ensure that they are distributed in the standard quantum
mechanics way if the value of Q is either determined by or correlated with the
positions of a large number of particles after a measurement interaction. That is,
one likely gets a determinate mental record in the theory whenever the physical
record on which the mental record supervenes is in fact correlated with the
positions of many particles. Note that GRW™* does not treat all physical observables
the same way—position plays a special role in explaining how the theory seeks to
account for our experience.

That GRW™* requires that one’s measurement records ultimately supervene
on the positions of particles is a version of the preferred basis problem. Since
the Hilbert space formalism represents every physical observable of a system
in the same way, there is at least an ad hoc feel to a dynamics that singles
out one observable to make determinate, especially when position was chosen
precisely because its being determinate also plausibly makes determinate those
measurement records that we in fact take ourselves to have. Put the other way
around, GRW did not choose to make the z-spin of a particular neutrino near
the center of the spiral galaxy NGC 5457 determinate even though this was a
perfectly coherent theoretical option—that would have done nothing whatso-
ever to explain our determinate experience of coffee cups and baseballs. Rather,
they chose to make something determinate that arguably provides determinate
measurement records given how we in fact record measurement outcomes and
the sorts of interactions we believe typically obtain between those measure-
ment records and their environments. This particular ad hoc selection of a pre-
ferred observable has the virtue of plausibly providing determinate measurement
records. And choosing position as a physically preferred quantity is arguably less
ad hoc than Wigner’s proposal of simply stipulating that mental states are always
determinate.
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There are, however, two significant problems with choosing position as the
dynamically preferred physical quantity. The first problem is technical. GRW*
requires particles to collapse to eigenstates of position, but there are no such
eigenstates in the standard Hilbert space representation. The reason is that Hilbert
space needs to be separable, which means it can have at most a countably infinite
dimension. But since there are a continuously infinite number of possible posi-
tions, the Hermitian operator representing exact position would have to have a
continuously infinite number of mutually orthogonal eigenvectors. This is only
possible in a continuously infinite dimensional space, and such spaces are not
suitable for representing quantum-mechanical states since there is typically no
unique linear decomposition of a vector with respect to a given basis.

The second problem is physical. GRW™, like the standard theory and Wigner’s
theory, is not compatible with the constraints of relativity. Consider two particles A
and B and two x-spin measuring devices, one particle and one measuring device
at each end of the experiment M, and M3, that record their measurement results
in the positions of macroscopic pointers. The composite system starts in the
stable state

L
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and, given the properties of good measuring devices, evolves by the linear
dynamics to the unstable state
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When the first particle in the pointer of either M, or Mj collapses to an eigenstate
of position, the composite system will collapse to either

(|“Tx”>MA |“lx”>MB| Tx>A| l’x)B + I“‘Lx”>MA I“Tx”>MB| lx>A| Tx>B)'
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with probability 1/2 for each. The first pointer particle to collapse disentangles
the state of the composite system and instantaneously gives both its own pointer
and the pointer of the distant system determinate positions that correspond,
respectively, to the determinate x-spins it instantaneously gives the two particles A
and B. Since there is no physical matter of fact concerning the order of spacelike-
separated events, if M, and Mp are sufficiently far apart and if they make their



GRW* 129

measurements at the nearly same time in the laboratory frame of reference, there
will be no physical matter of fact concerning which pointer particle collapsed
first. But that means that there can be no consistent dynamical story for how the
systems disentangle if the two particles are described by a single wave function.

The incompatibility of GRW* and relativity can also be seen by the role played
by the new physical collapse rate constant A. Since relativistic clocks disagree in
different inertial frames, one must choose a preferred inertial frame in order to
even specify A. But special relativity requires that there be no preferred inertial
frame.

The incompatibility with relativity is particularly striking given the privileged
dynamical role played by exact position in GRW*. If there were eigenstates of
exact position, the expectation value of energy of such states would have to
be unbounded. The reason for this has to do with the quantum-mechanical
relationship between position and momentum. The quantum state representing
the position of a particle p is given by a complex-valued function |y(r)) over all
possible positions. The value of this function given the probability of finding the
particle in a spacial region R is

P(R) = f Kl dr.
R

Suppose that |y(r)) is a gaussian wave packet with a probability density given by
[{w(r)|w(r))|*. The same state can be expressed as a complex-valued function of
momentum |¢(p)) with a probability density given by [(¢(p)|$(p))|*. The two wave
functions |y(r)) and |§(p)) are related to each other by a mathematical operation
called a Fourier transform. This operation has two properties that matter here.
First, if |y(r)) is gaussian, then so is |¢(p)). Second, the narrower the gaussian
wave packet |y(r)), the wider the gaussian wave packet |¢(p)) and the other way
around (as in Figure 8.2).° This means that the sharper particle p’s position, the
less sharp its momentum. And this means that the more determinate p’s position,
the higher the probability of finding it with a large momentum. In the limit as p’s
position becomes perfectly determinate, the expectation value of its momentum is
unbounded, which means that the expectation value for its energy would also be
unbounded. The upshot is that if any particle in a measuring-device pointer ever
did collapse to a state where it had a perfectly precise position, the device would
explode, destroying the universe. This renders GRW* incompatible with relativity
insofar as one takes relativity to require the conservation of energy. Inasmuch
as the universe is still here, it also means that GRW™ is not even close to being
empirically adequate.

® The variable p in the expressions here is particle p’s momentum, and r is position.
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Figure 8.2. Wave functions in position and momentum space.

8.3 GRW

GRW explicitly recognized that GRW™ is empirically unacceptable. The theory
that they ultimately presented, which we will just call GRW, is similar to GRW*
except that they replaced the dynamics of the standard formulation of quantum
mechanics with a more complicated hybrid law:

4. Law of motion (GRW): The state of every physical system S evolves in the
standard deterministic, linear way |y(t,))s = Ulty, t;)|y(t,))s except that
each particle has a small probability A per unit time of randomly collapsing to
a narrow gaussian wave packet in position with width 1/4/a. The probability
of the wave packet being centered in a specified region R is given by the
standard quantum probabilities.

In contrast with the GRW* dynamics, the state here evolves as if an observer
made an unsharp quantum measurement of the position of a randomly selected
particle at random times and caused a corresponding unsharp collapse to a
narrow gaussian state that is close to an eigenstate of position. But, again, on the
hybrid dynamics this happens at a particular moment to the wave function in
3N-dimensional configuration space randomly and without the necessity of an
observation.

The hybrid dynamics still fails to conserve energy, but GRW chose the width
of the collapsed gaussian wave packet 1/+/a to be wide enough, given the particle
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collapse rate, to keep the violation of the conservation of energy low enough to
explain why we have not seen it yet. They also chose the width of the gaussian to
be narrow enough so that a collapsed system in that state might plausibly be said
to have an almost determinate position (specifically, they took 1/4/a~10™5cm).
Their choice of A~ 107!%/sec makes collapses rare for those systems we know
behave linearly and common for those systems that we take to have determinate
positions. Each of the two new physical parameters are carefully tuned to mesh
with the empirical evidence we have so far. So while all this is clearly ad hoc, it
works pretty well.

Consider this hybrid dynamics in the context of a measurement of the x-spin of
a system S. Suppose S starts in the symmetric superposition

1
V2

The linear dynamics, then, predicts that the state of the composite system M + S
will be

(115 + [dds)-

L
V2

If M records its result in the position of a macroscopic pointer, then this state is
unstable under rule 4(GRW) because of the choice of collapse rate. But this time,
when the first pointer particle collapses, it collapses to a narrow gaussian wave
packet instead of an eigenstate of position with the center of this wave packet
determined by the usual quantum probabilities. Suppose that the first pointer
particle to collapse is m,. Its wave packet has equal chance here of ending up
centered in region “1,” and centered in region “],”. Suppose it collapses to a state
that is centered in region “1,” Since the resultant state of m,, is a gaussian wave
packet, it is still in a superposition of being in region “,” and in region “|”. It
is just that the norm-squared of the amplitude associated with it being in region
“l,” is now very small. The effect of m,;’s collapse, then, is to multiply the second
term of the state above by a factor that is just slightly greater than zero. After
renormalizing, the resultant state is

U7l Tds + 1Ll dids)- 8.1)
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where |a]? > |B|*. Note that |grw),s is not an eigenstate of M’s pointer indicating
the result “1,” or anything else. On the standard interpretation of states, this is a
state where M is close to recording a determinate measurement result but doesn't,
Sis close to having a determinate x-spin but doesn’t, and the two systems are close
to being disentangled but aren’t. So this is a state where M fails to record or indicate
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any determinate measurement outcome whatsoever on the standard interpretation
of states.

This is known as the tails problem. Under plausible assumptions, |grw) s is close
(in the Hilbert space metric determined by the inner product) to a state where
the measurement record is determinately x-spin up. But if one wants to say that
|grw) s is a state where M determinately indicates the result x-spin up, then one
needs a new way to interpret quantum-mechanical states.

To this end, one might further tune the theory by replacing the standard
interpretation of states with a new rule 3(GRW):

3. Interpretation of states (GRW): A system S has a determinate property if and
only if it is sufficiently close to being in an eigenstate of having that property.

Here one can either choose a concrete standard of what one means by sufficiently
close once and for all or, as with classical treatments of vague predicates, allow
the standard to depend on the explanatory context at hand. One advantage of the
latter is that it does not involve adding another physical parameter to the theory.
If one wants to explain why one’s measuring device does not explode, one might
note that neither the pointer nor any of the particles that constitute it are in fact
in eigenstates of position. But if one wants to explain why the pointer appears
to record the determinate outcome x-spin up, one might argue that its center of
mass is close enough to an eigenstate of position that it should count as having the
corresponding determinate position.

That even classical predicates are typically vague for macroscopic systems gives
some plausibility to the proposed revision of the standard interpretation of states.
Consider the claim that the Eiffel Tower is in Paris. No one would take this to
mean that every atom of iron that was present in the original structure in 1889
is now in Paris. Some of the original Eiffel Tower atoms are almost certainly in
New York, which does precisely nothing to undermine the every-day truth that
the Eiffel Tower is in Paris. The predicate “is in Paris” is vague, but still useful.
The fact that the Eiffel Tower is in Paris (even when some of its original atoms are
in New York) explains why one sees the Eiffel Tower when one looks north-west
down the Champ de Mars. The thought is that the vague claim that the pointer
on a particular measuring device records the result x-spin up is similarly useful.
The fact that the pointer indicates the result x-spin up (even when it is not in
an exact eigenstate of position) explains why one sees it pointing at the result
x-spin up.

One might, however, object that there is an important disanalogy between the
two cases. The Eiffel Tower appears to be in Paris on classical grounds because most
of its (microscopic) parts are simply and determinately in Paris. But GRW does not
characterize any of the parts of the pointer as simply and determinately pointing at
any particular measurement result. Because of the infinite tails of the gaussian wave
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packet, one’s finest-grained description will always characterize the pointer and its
parts as being in an entangled superposition of recording all possible measurement
outcomes, being part of the motor of a taxi in Manhattan, being in orbit around «
Centauri, etc.

The real issue, one might insist, is not the language of vague predicates. Rather, it
is whether a pointer with an almost determinate position in the sense provided by
GRW looks like a pointer with a fully determinate position. It concerns whether the
theory correctly predicts our determinate experience of seeing macroscopic objects
with perfectly determinate positions.

For its part, the theory says that a physical observer will typically end up in an
entangled superposition of having recorded every possible measurement outcome.
One of the records will get most of the quantum-mechanical amplitude, but that
does not mean that it will feel like seeing a pointer with a fully determinate position.
All it means formally is that the norm-squared of one coefficient on one term in
the composite state is much larger than the other. The empirical adequacy of the
theory presumably depends on our being able to say what one would experience
in such a state. And that apparently has nothing to do with the language of vague
predicates.

That said, it is not at all clear that we need the center of mass of a system to
be exactly determinate in order to explain why it appears to have a determinate
classical position. Indeed, inasmuch as the expectation value for energy would be
unbounded under standard quantum assumptions, we have never seen a pointer
or any other physical system in an exact eigenstate of position, and we never
want to see it. Since the standard formulation of quantum mechanics does not
even allow one to represent such states, if that theory ever explained the apparent
determinate positions of macroscopic objects, then GRW arguably does as well.
Further, it is not at all clear that we need a physical theory to tell us what it feels
like to be in a particular physical state. It is, one might argue, enough for there to be
something physical on which our determinate experience might plausibly be taken
to supervene. And GRW arguably provides physical records that do that.

There is more to say about what one should want from a physical theory that
purports to be empirically adequate and hence to explain our experience. This will
be a recurring theme throughout the rest of the chapter and book. That it need only
predict something physical on which our determinate experience might be taken
to supervene is arguably too weak. We want the supervenience relation to be one
that meshes with our beliefs concerning the sorts of physical facts that might in
fact matter to experience. Starting with the next section, we will see how this plays
out in a number of concrete formulations of quantum mechanics.

Like GRW*, GRW has the salient virtue of treating all physical processes,
including measurement, in precisely the same way, but, unlike GRW™*, it has
the added virtue of predicting a relatively stable universe. GRW conclude that
their theory “reproduces in a consistent way quantum mechanics for microscopic
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objects and classical mechanics for macroscopic objects, and provides the basis for
a conceptually appealing description of quantum measurement” (Ghirardi et al.
1986, 491). But it also exhibits a number of unsatisfactory features.

Instead of the position being the preferred physical quantity as in GRW™*, here
it is almost position with gaussian width 1/4/a. Inasmuch as choosing position as
a preferred physical quantity and specifying a just-right collapse rate of A was
ad hoc, this choice makes the theory look still more ad hoc. Indeed, insofar
as GRW explicitly constructed their theory and chose the collapse rate A and
the gaussian width 1/4/a so that microscopic systems will almost always behave
linearly and hence exhibit distinctive quantum behavior and the centers-of-mass
of macroscopic systems will almost always remain close to eigenstates of position,
exhibit roughly classical behavior, and not heat up so much that we would have
already noticed, the theory is manifestly ad hoc from the start.

In addition to being ad hoc, there is nothing subtle about the incompatibility
of this version of GRW and relativity. Since clocks in different inertial frames
disagree, one must choose a preferred inertial frame to specify the collapse rate A;
but here, since different inertial frames do not agree on measurements of length
either, one must also choose a preferred inertial frame to specify the width 1/4/«
of the collapsed wave packet.

Consider the EPR experiment again. A collapse of a single particle in either of
the two pointers in GRW will instantaneously collapse the state of the composite
system just as in the standard theory. Here it will give both pointers almost
determinate positions; both particles almost determinate, almost opposite spins;
and almost disentangle the systems. The statistical distribution of such records will
be the same as predicted by the standard collapse theory. But like both the standard
theory and GRW™*, one must be able to specify the temporal order in which
spacelike separate events occur in GRW in order to tell a consistent dynamical
story, and special relativity says that there is simply no physical matter of fact
concerning the temporal order of spacelike separated events. The incompatibility
of GRW and relativity can also be seen in the violation of the conservation of
energy, something that relativity arguably requires. In short, if one believes that
special relativity is right, then this version of GRW can’t be.

8.4 GRWr, GRWm, and GRWf

There are various ways of understanding GRW. The ontological commitments
associated with each provide different accounts of experience.

Inasmuch as they take macroscopic systems to be constituted by particles, one
might imagine that Ghirardi, Rimini, and Weber are committed to an ontology
that includes particles. As they put it, a composite system is “a system of N parti-
cles” and the localization process (the spontaneous collapse of a particle) occurs
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“independently for each constituent of a many-particle system” (1986, 476). But
this is at least somewhat misleading. The theory characterizes the state of the parti-
cles in terms of the wave function of the composite system in configuration space.
Consequently, one cannot appeal to the particle-like properties of the particles to
account for the experience of observers. Rather, the talk of particles ultimately
just serves to characterize the degrees of freedom of the system and hence the
structure of the state space. Physically, the theory provides nothing beyond the
wave function of the composite system and how it evolves to account for our
experience.® As a result, the most straightforward way to interpret GRW is arguably
in terms of a direct wave function realism.

In parallel with the terminology we will use for other interpretations of the
GRW formalism, we will call this GRWr.” Here one takes the wave function in
configuration space to be a concrete physical object. As David Albert describes
the view,

The sorts of metaphysical objects that wave functions are, on this way of thinking,
are (plainly) fields—which is to say that they are the sorts of of objects whose
states one specifies by specifying the values of some set of numbers at every point
in the arena in which they live, the sorts of objects whose states one specifies
(in this case) by specifying the values of two numbers...at every point in the
configuration space of the universe. (2013, 53)

The theory is just GRW understood as describing a field in configuration space as
the only physically real thing. As Albert puts it, the world consists of “exactly one
physical object—the universal wave function” (Albert 2013, 54).

This view may seem to be closely analogous with the Eiffel Tower example. Here
one might imagine that a measuring device pointer indicates a particular result
because most of the field stuff that constitutes the pointer in fact indicates that
result after a measurement-like interaction. There is something right about this,
but the situation is more subtle than this quick characterization might suggest.

The wave function |y(7))s is a complex-valued function over points r in a
3N-dimensional configuration space, where N is the number of particle degrees
of freedom in system S.* As a result, the wave function representing the world is
a function in 3N-dimensional configuration space, where N is the total number
of particles in the universe, something many orders of magnitude greater than
Avogadro’s number. So if one takes |y(r))s to directly represent a physical object,

¢ On this view, particles cannot be understood as providing a primitive ontology for the theory. We
will discuss the significance of this as we go.

7 Inasmuch as this view might be understood as simply sharpening the ontological commitments of
GRW themselves, one might take GRW and GRWr to be the same theory. Calling it GRWTr here just
marks the explicit interpretation of the wave function as a physically real field in configuration space.

® As discussed in section 5.7.
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the only physical object, then it is an object that lives in an unimaginably high-
dimensional space, not in ordinary three-dimensional space. It is this object that we
are seeing when we observe pointers, baseballs, coffee cups, and such. Indeed,
we are ourselves also just manifestations of this single, high-dimensional object.
One is left, then, with the task of providing a dynamical story for how this
object gives rise to observers who seem to experience everyday three-dimensional
macroscopic objects situated in ordinary three-dimensional space. That one can
do precisely that should seem plausible. Given how the wave function evolves in
GRW, there is clearly something on which the standard quantum measurement
records might supervene. But the story one tells here requires some care.

In order to account for an observer’s experience of seeing an ordinary three-
dimensional object where she sees it, one needs a special sort of supervenience
relation. Specifically, one needs to suppose that one’s experience roughly super-
venes in a particular way on the observer’s brain-record degrees of freedom of the
full wave function in 3N-dimensional configuration. One needs a supervenience
relation that says something like: whenever the quantum state is within some cutoff
distance € of a brain-record eigenstate in Hilbert space, then one has a determinate
experience corresponding to that eigenstate. This special supervenience relation
provides an interpretational principle that ties physical states to experience. What
one is seeing when one looks at an ordinary extended object here are coarse-
grained features of the wave function in 3N-dimensional configuration space that
arise from the correlations between the physical degrees of freedom.

On GRWr all one has to explain one’s experience is an evolving field in
a high-dimensional space. It is the correlations in the degrees of freedom of
the 3N-dimensional wave function that produce the illusion of ordinary three-
dimensional objects in ordinary three-dimensional space behaving as we find
them. Space seems to be three-dimensional because of the structure of these
correlations. Specifically, it is because the Hamiltonian treats the degrees of
freedom in 3N-dimensional configuration space as if they described a collection of
N particles interacting in three dimensions.® The determinate experience of a three-
dimensional world inhabited by ordinary three-dimensional objects in GRWr
results from (1) the precise structure of correlations in the 3N-dimensional wave
function under the GRW dynamics, and (2) the special supervenience relation
that relates mental states and the 3N-dimensional wave function.'® But there are
other ways to understand GRW.

On GRWm one starts with the wave function in configuration space under
the GRW dynamics but understands it as coding for a continuous distribution of

° The Hamiltonian gives the energy properties of a physical system—in this case the entire physical
world. In so doing, it determines the linear operator that shows up in the standard quantum dynamics
by describing how the particle degrees of freedom are dynamically related.

1% See Albert (2013) and (2015) for discussions regarding how one might account for experience in
GRW-type theories. See also Maudlin (2019) for a critical discussion of configuration space realism.
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matter in ordinary three-dimensional space.'* Specifically, one uses the wave func-
tion in configuration space to calculate the marginal mass distribution associated
with each particle in three-dimensional space then sums over the mass densities
for all N particles.'? This gives a description of the physical world in terms of a con-
tinuous distribution of matter at each time. We and everything we see are the result
of this continuous matter sloshing about in ordinary three-dimensional space.

Inasmuch as this view involves a matter field in ordinary space, it might also
seem to be closely analogous to the Eiffel Tower example. Here one might imagine
that one sees the measurement pointer where one does because it is just a pointer-
shaped bump in the distribution of matter and one simply sees the location of the
bump when one looks for the pointer. But again, the situation is more subtle than
it might at first appear.

Here one needs to spell out the details of the dynamical story that ties one’s
brain record of the position of the pointer to the mass density that constitutes
the pointer. Inasmuch as this story will involve details of how the wave function
evolves in 3N-configuration space, it is unclear that the account of experience one
ends up with is significantly more intuitive than on GRWr. The point is that one
is not directly seeing the pointer on GRWm. Observation is mediated either by the
universal wave function in 3N-dimensional configuration space or by something
like a brute-fact law for the evolution of the matter density that codes for the
dynamical information in the wave function. In neither case is this particularly
intuitive. We will return to this issue of intuitiveness in connection with GRWf
since it arguably has all of the virtues of GRWm plus a few extra.

On GRWf the wave function in configuration space determines the probability
densities of flashes in ordinary 3-space, and it is constellations of such flashes
that explain the appearance of macroscopic objects.'”> One might calculate the
location of flashes by evolving of the wave function in configuration space under
the standard GRW dynamics, then associating a flash with the spacetime point at
the center of the gaussian wave packets that are generated by the random collapses.
Since flashes just occupy spacetime locations, they are not the sort of things that
have energies. Hence, one might argue, there is in fact no actual violation of
conservation of energy."*

Allori, Goldstein, Tumulka, and Zanghi describe how GRWf accounts for our
experience:

' This view was proposed by Benatti et al. (1995). See Allori (2013) for a description of the approach
and a comparison with other options.

12 See Allori, Goldstein, Tumulka, and Zanghi (2012) for a prescription for how to do this.

'* The inspiration for this view can be traced to John Bell’s (1987, 181-95) discussion of quantum
interference phenomena. See also Tumulka (2007) and Allori (2013, 67-8) for descriptions of this
approach.

'* That said, insofar as the flashes constitute pointers that indicate the same measurement outcomes
as pointers in GRW, it would nevertheless appear that there was a small violation of conservation of
energy—precisely the violation predicted by standard GRW.
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[F]or a reasonable choice of the parameters of the GRWf theory, a cubic centime-
ter of solid matter contains more than 10® flashes per second. That is to say that
large numbers of flashes can form macroscopic shapes, such as tables and chairs.
That is how we find an image of our world in GRWf. (2012, 6)

But if one takes the flash ontology seriously, flashes are more than just the
manifest image of the world—there is a sense in which they are the world. On
this account, physical objects are constituted by constellations of flashes. There is,
however, an important sense in which we never see the flashes that constitute an
extended object.

The flashes that constitute an object are not themselves the manifest image of
the object. Inasmuch as the flashes do not show up in the theory’s dynamics, they
do not do anything. Specifically, they do not cause an observer’s experience of
the positions, shapes, or anything else of the extended three-dimensional objects
they constitute. Flashes just occupy spacetime points, distributed with the standard
quantum statistics.

To be sure, the theory predicts that there will be a statistical correlation between
the flashes that constitute an extended object and the flashes that constitute a
good observer’s brain records of that object. So if one explains on€’s determinate
experience by supposing that it supervenes on the value of one’s brain-record
flashes, one might infer probabilities concerning the position or shape of an
extended object from one’s experience. But one’s experience does not supervene
on the flashes that constitute the extended objects one takes oneself to see. Rather,
it supervenes on the flashes that constitute one’s brain records, assuming that one
can make good sense of that. Again, the correlation between the two is mediated by
either the wave function in 3N-dimensional configuration space or by something
like a brute-fact law that codes for the dynamical information in the wave function
and determines the correlated locations of the flashes.

That flashes have no dynamical role in GRWf is an important feature of the
theory. It allows for a sort of dynamical compatibility between GRWf and relativity.
Since flashes just occupy spacetime points and do not do anything dynamically and
since there is nothing non-relativistic about the statistical distribution of flashes,
one just needs a relativistic description of the evolution of the wave function to get
a relativistic formulation of GRWf.*?

Roderick Tumulka (2007) has shown how to do this. Getting a relativistic
description of the evolution of the wave function involves a trick. Consider a
situation where we want to represent a pair of distant particles in something like
an EPR state. Rather then there being a simple matter of fact regarding their

'* The distribution of flashes is described by the standard quantum statistics, which do not allow one
to send superluminal signals nor do they select any preferred inertial frame. See Bell (1987, 52-62) for
one discussion.
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composite state or the state of either particle alone, the trick is to allow the
wave function of the composite system to depend on the choice of a spacelike
hypersurface.'® Since the wave function is hypersurface-dependent, there is typ-
ically no simple matter of fact regarding whether a GRW collapse has occurred
at a time. While the state of the composite system depends on one’s choice of
inertial frame, the states associated with different inertial frames (associated with
different families of hyperplanes) can be related in such a way that they are all
compatible with the standard quantum statistics for the location of flashes under
the GRW dynamics. This is possible because the standard quantum statistics do
not themselves select a preferred inertial frame. So the collection of hyperplane-
dependent wave functions does not determine a preferred inertial frame precisely
because they are hyperplane-dependent, and the statistical distribution of flashes
does not determine a preferred inertial frame either. Since all one has are the
hyperplane-dependent wave functions and the spacetime flashes, and since neither
of these determines an inertial frame, such a formulation of GRWf might be
understood as satisfying the dynamical constraints of relativity.

There are two things to note. First, this does not mean that GRWfis local. There is
a sense in which the standard quantum statistics themselves characterize nonlocal
correlations. Specifically, while a hypersurface-dependent formulation of GRWf is
dynamically compatible with relativity, the distribution of flashes still violates the
Bell inequalities. In this sense, a sense weaker than dynamical incompatibility with
relativity, the theory is nonlocal just by dint of being empirically adequate. Second,
since there is typically no simple matter of fact concerning the wave function
of a system at a time, this means that the flashes must determine the values of
the local measurement records. On this view, one might argue, the collection of
hypersurface-dependent wave functions just amounts to a part of the statistical
recipe for where to put flashes. And again, any particular distribution of flashes
over spacetime is perfectly compatible with the dynamical constraints of relativity.

While such a theory is dynamically compatible with relativity in the sense just
described, there is also a sense in which it is not a relativistic theory at all. One
might expect a truly relativistic formulation of quantum mechanics to predict the
phenomena that are taken to be characteristic of relativistic quantum mechanics,
phenomena like particle creation and annihilation, how photons are found to
scatter from a single free electron, etc. One should want novel relativistic quantum
phenomena to result naturally from imposing relativistic constraints on quantum
mechanics. One should not have to put such phenomena in later by hand.'” The

'¢ This idea has a long tradition among people who want to formulate a collapse theory that does
not require one to select a preferred inertial frame. See for example Aharonov and Albert (1981). Note
that the wave function remains a function in 3N-configuration space—it is just (typically) a different
function for each choice of spacelike hyperplane.

7 One would, for example, like to be able to derive something like the Klein-Nishina (1929)
scattering formula from one’s relativistic formulation of quantum mechanics. This consideration also
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explanation of the phenomena should follow from the relativistic dynamics in the
context of quantum mechanics. Settling for compatibility with relativistic con-
straints by simply stipulating hypersurface-dependent states is nothing like that.*®

8.5 Empirical Ontology and Experience

We have seen how GRW might be formulated in terms of a physically real field in
configuration space, a matter distribution in ordinary three-dimensional space,
and flashes at spacetime points. Such options represent different choices of an
empirical ontology. One’s choice of empirical ontology specifies the basic structure
of the physical world and hence the entities that one can appeal to in explaining
experience.

A recurring issue over the next few chapters concerns the sort of empirical
ontology that would allow for a satisfactory account of experience. One approach
is to require that the empirical ontology be a primitive ontology—an ontology of
ordinary objects or fields in three-dimensional space that directly explain our
experience.'” The thought is that if a theory has a primitive ontology, then one
can think of the objects of the theory as providing a manifest image of the world
that simply corresponds to our experience of a three-dimensional world with
ordinary three-dimensional objects in motion. Indeed, this is precisely how Allori,
Goldstein, Tumulka, and Zanghi characterize how flashes in GRWT explain our
experience (2012, 6). Here the primitive ontology is taken to be a suitable surrogate
for specifying what is directly observable in the theory.

But we have seen that the situation is significantly more subtle than this might
suggest. Given that we do not directly see the flashes that constitute everyday
objects on GRWf one needs an account of how it is that the primitive ontology,
being what it is (in this case flashes situated in spacetime), makes determinate our
most immediately accessible records. That the ontology is primitive is supposed

applies in the context of formulations of Bohmian mechanics that seek to account for relativistic
phenomena by sticking them in by hand. Everettian formulations of quantum mechanics are arguably
the best positioned to explain genuinely relativistic phenomena. But, as we will see over the next two
chapters, it is nontrivial for such theories to explain even determinate measurement records.

'® That said, it may be possible to make some progress here. Tumulka’s characterization of the
state of a relativistic system is given by a multi-time wave function with one time variable for each
of the N particle degrees of freedom. The evolution of the multi-time wave function is given by N
linear equations that must satisfy a consistency condition. This condition is automatically satisfied
for Hamiltonians describing non-interacting particles, but it is very difficult to satisfy for interacting
particles in even the simplest of situations. But there is reason to suppose that the prospects are better
for the state of a multi-time quantum field. In addition to allowing for a consistent account of particle-
like interactions, such a formulation might allow one to capture something like particle creation and
annihilation phenomena. See Lienert, Petrat, and Tumulka (2017) for a discussion.

'* See Allori (2013) for a description and motivation of this approach.
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to help in providing this account, but, insofar as the flashes that constitute the
objects we take ourselves to see are themselves not directly observable and are
mediated by either the 3N-dimensional wave function or something like a brute-
fact law that codes for the same information, it is unclear why a primitive ontology
of three-dimensional objects is automatically preferable to an empirical ontology
more generally, perhaps one that like GRWr appeals to the wave function in
configuration space directly.

In both GRWr and GRWT one has something on which mental states might be
take to supervene, but in neither theory is the explanation particularly intuitive.
Whether one prefers the account of experience provided by GRWr over the
account provided by GRWT turns on whether one finds it more plausible that
mental states roughly supervene on brain-record degrees of freedom of the wave
function (as required by GRWr) or that they supervene on the positions of brain-
record flashes (as required by GRWY). Primitive ontologists prefer GRWf because
the flashes can be understood as objects with ordinary spatial locations. But
one can easily imagine someone who prefers the dynamical and/or metaphysical
economy of GRWr.

Ultimately, one wants an empirical ontology that provides records on which
one’s experience might plausibly be taken to supervene. Unsurprisingly, there are
competing intuitions regarding precisely what this should be and, hence, what
the best formulation of quantum mechanics and the most plausible account of
experience will look like. We will return to discuss competing empirical ontologies
and their relative virtues again when we consider Bohmian mechanics and variants
of that theory (Chapters 11 and 12), but we will begin in the next chapter with the
general issue of what it should even mean for a physical theory to be empirically
adequate.

GRW also faces a less subtle empirical issue, one that we should get out of the
way before moving on. If physical objects really do appear to warm up as predicted
by the standard GRW dynamics, then that would be a remarkable empirical success
for the theory. It would make the worries we have expressed along the way seem
entirely beside the point. But we arguably already have good inductive reason to
believe that the nonlinear behavior predicted by GRW never happens.

Whenever we have been technologically able to measure an interference effect
that would determine whether a system evolves linearly or collapses, we have
always found that it evolves linearly. This was true for the simplest physical
systems, and it has proven true as we have learned how to measure interference
effects involving increasingly more complex systems.>* We are in the possession
then of a sort of inductive argument on the complexity of the physical systems
we have observed that they always evolve linearly. This does not immediately rule

2% See Fein et al. (2019) for a description of recent experiments.
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out the GRW formulation. GRW themselves explicitly chose a collapse width and
collapse rate so that their theory was not ruled out by what had been observed
to that time. And, while the region for choosing these parameters has been
significantly reduced by careful experimental work since then, there is still some
room to make a choice. That the choice is clearly ad hoc is why I would bet against
the novel predictions of the theory. It could be right, but I do not believe it.

There is also a significant philosophical issue at hand, one that concerns how one
understands physical theories more generally. When one goes from the standard
collapse theory to GRW, one changes the dynamical laws of the theory, but, as we
have seen, one must also change how one interprets the theory by giving up the
standard eigenvalue—eigenstate link. This illustrates why it is virtually impossible
to separate a physical theory from its interpretation.

The various GRW-type theories we have considered explain determinate mea-
surement outcomes differently and their explanations are all radically different
from the standard theory’s. The special dynamical role that position plays in
GRW goes hand in hand with how states are interpreted in GRWr, GRWm, and
GRWHE. The mathematical specification of the physical theory and the physical
interpretation of the mathematical objects work together to make predictions and
provide explanations. Inasmuch as physical theories provide explanations and
those explanations depend on how one understands the theory, one’s interpre-
tational principles are an essential part of one’s physical theory.
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Pure Wave Mechanics

9.1 Everett’s Solution to the Measurement Problem

Hugh Everett III developed his relative-state formulation of quantum mechanics
while a graduate student in physics at Princeton University. His doctoral thesis
(1957a) was accepted in March 1957 and a paper covering essentially the same
material was published in July of the same year (1957b)." DeWitt and Graham
(1973) later published Everett’s longer, more detailed description of the theory
in a collection of papers on the topic. The published version was revised from a
longer draft thesis that Everett (1956) had given John Wheeler, his Ph.D. adviser,
in January 1956 under the title “Wave Mechanics Without Probability”* While
Everett always favored the description of the theory as presented in the longer
thesis, Wheeler, in part because of Bohr’s disapproval of Everett’s critical approach,
insisted on the revisions that led to the much shorter thesis that Everett ultimately
defended.

Everett’s proposal for solving the quantum measurement problem was to simply
drop the collapse dynamics (rule 4II) from the standard formulation of quantum
mechanics and take the resulting physical theory to provide a complete and
accurate description of all physical systems in the context of all possible physi-
cal interactions. Everett called the resulting theory pure wave mechanics. When
supplemented with the notions of relative states and typical branches, he called it
the relative-state formulation of pure wave mechanics.’?

There is a sense in which dropping the collapse dynamics from the standard
formulation of quantum mechanics immediately solves the quantum measure-
ment problem. Since there is only one dynamical law, there is no longer a threat
of a contradiction and the measurement process is a physical process just like any
other. Further, as mentioned at the end of the last chapter, the fact that the linear
dynamics has always been found to correctly describe the time-evolution of a

! See Barrett and Byrne (2012, 173-96) for the text of the short thesis with notes and historical
and conceptual introductions. References to Everett’s work here follow the page numbering of that
collection. See also Byrne (2010) for a biography of Everett and Osnaghi, Freitas, and Freire (2009) for
a description of the reception of Everett’s work.

* See Barrett and Byrne (2012, 72-172) for the text of the long thesis with notes.

* See Barrett and Byrne (2012) and Barrett (2014) for detailed descriptions of Everett’s relative-
state formulation of quantum mechanics. See Barrett (2015) and (2017) for more details regarding
the arguments in this and the next chapter.
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system whenever we have been able to test its predictions provides good empirical
reason for dropping the collapse dynamics.

Simply dropping the collapse dynamics, however, immediately leads to two new
problems. Without the collapse dynamics, one needs another way of accounting
for determinate measurement records and for quantum probabilities. After all,
quantum mechanics is only empirically adequate because it predicts determinate
measurement records distributed with the standard quantum statistics.

Everett believed that he could deduce the standard statistical predictions of
quantum mechanics, the predictions that depend on rule 41I in the standard
collapse formulation, in terms of the subjective experiences of observers who are
themselves treated as ordinary physical systems within pure wave mechanics. He
described his proposed deduction as follows:

We shall be able to introduce into [pure wave mechanics] systems which rep-
resent observers. Such systems can be conceived as automatically functioning
machines (servomechanisms) possessing recording devices (memory) and which
are capable of responding to their environment. The behavior of these observers
shall always be treated within the framework of wave mechanics. Furthermore,
we shall deduce the probabilistic assertions of Process 1 [rule 4II] as subjective
appearances to such observers, thus placing the theory in correspondence with
experience. We are then led to the novel situation in which the formal theory is
objectively continuous and causal, while subjectively discontinuous and prob-
abilistic. While this point of view thus shall ultimately justify our use of the
statistical assertions of the orthodox view, it enables us to do so in a logically
consistent manner, allowing for the existence of other observers. (1956, 778)

His project, then, was to show that the memory records of an observer as described
by quantum mechanics without the collapse dynamics would agree with those
predicted by the standard formulation with the collapse dynamics. This ultimately
amounted to showing that a typical relative observer, modeled as a physical
automaton within pure wave mechanics, would have fully determinate relative
measurement records that were statistically distributed as if they resulted from
collapses with the standard quantum probabilities. Everett’s notion of a typical
relative observer associated with a typical branch of the quantum-mechanical state
played a central role in his explanation of quantum statistics.

To see how this was supposed to work, let’s return to the Wigner’s friend story
but consider it as Everett told it. Suppose that the friend F, her measuring device,
and her object system begin in the state*

el m(edl T)s + Bl Lids)-

* The notation r indicates that the associated system is ready to make a measurement. As the states
we consider become increasingly complicated, we will simplify notation where possible.
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Given the properties of a good measuring device and observer, the linear dynamics
predicts that the resultant state will be

leverett)pys = af“T Vel “T Il Tids + Bl L VEl“ LDl L)

Everett insisted that since there are no collapses of the quantum-mechanical state,
the external observer W is right to believe that the composite system FMS is in
this entangled superposition of having recorded mutually incompatible results.
Further, he believed that an A-type measurement would empirically show that this
was the case. As he put this point more generally:

It is...improper to attribute any less validity or “reality” to any element of a
superposition than any other element, due to [the] ever present possibility of
obtaining interference effects between the elements. All elements of a superposi-
tion must be regarded as simultaneously existing. (1956, 150)

But he also knew that it would be extraordinarily difficult to actually perform an
A-type interference measurement to show that this is the state that in fact obtained.
This is what he meant when he said that the story was “extremely hypothetical”
Nevertheless, he believed that for the sake of the empirical consistency of quantum
mechanics the entangled superposition |everett) s must be the final state of the
composite system.

That said, Everett also believed that it would appear to the friend that she
had a perfectly ordinary and fully determinate measurement record if she were
in the state |everett)pys. One sense in which this is true is that, under plausible
assumptions, an ideal friend would have the sure-fire disposition to report that
she has a perfectly ordinary measurement result.’

9.2 The Bare Theory

Let’s start with the question of what the world would look like to the friend if there
were no collapses on measurement. To do so, we will consider the dispositions of an
ideal observer in the context of the bare theory. The bare theory is just the standard
collapse formulation of quantum mechanics but without the collapse dynamics
(rule 4I). And we will suppose that we can read the friend’s experiences and beliefs
from what she would report about her physical measurement records.

® There are several quite different ways to reconstruct Everett’s formulation of quantum mechanics.
In this chapter we will try to stay as close as possible to what he actually said. We will discuss alternative
Everettian formulations of quantum mechanics in the next chapter.
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The bare theory has only the eigenvalue-eigenstate link (rule 3) as an inter-
pretational principle. Everett adds a number of auxiliary assumptions to the bare
theory to get his relative-state formulation. But since it is simple and has a number
of suggestive properties, the bare theory is a good place to start. The bare theory is
one way of understanding what Everett meant by pure wave mechanics.

The bare theory’s suggestive properties will each correspond to an absolute
property of an observer in Everett’s relative-state formulation. Absolute properties
are properties that hold for almost all of an observer’s relative states in the norm-
squared amplitude measure. We will return to this point later. We will start by
discussing each of the bare theory’s suggestive properties in turn.

9.2.1 Determinate result

The first suggestive property of the bare theory concerns why it might seem that
there is a determinate measurement result when there isn't one. The entangled
superposition |everett)p,;s predicted by the bare theory does not describe the
friend as having a determinate measurement record on the eigenvalue—eigenstate
link, but there is a sense in which it describes the friend as believing that she has
a perfectly ordinary, fully determinate measurement result—something similar to
what one would expect from a collapse of the quantum-mechanical state.

Suppose that F is reliable at reporting that she has a determinate measurement
record when she does and that she is reliable at reporting that she does not have
a determinate measurement record when she does not. Suppose further that F's
sure-fire dispositions to report in fact reliably indicate her experiences and beliefs.
It is the assumption that an observer’s experience supervenes on her physical
dispositions in a straightforward way that allows Everett to deduce appearances
from physical states.

Consider what happens if W asks F whether she had a measurement record
before F measures the x-spin of a system S that is x-spin up. Let |r), be the state
where W is ready to ask the question and |r, r); be the state where F is ready to
answer the question and ready to make the measurement. Given the dispositions
of a reliable friend, the composite physical system would evolve as follows:

[Ywlrs el Teds
!

n0”)w|“no”, e[l Te)s-

|u

Here F says “no” since she has not performed the measurement yet, and W hears
“no” because that’s what F said because that’s what she believes.
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Consider what happens if F performs her measurement and gets one of the two
results, then W asks F whether she got a perfectly ordinary, fully determinate result.
If F got the result x-spin up, then the composite system would evolve as follows:

I wlrs “Tel Tl Tads
!
“yes™ wl“yes”, “T)el “127dml Ta)s-

Here F says “yes” since she in fact got a determinate result, and W hears “yes”
because that’s what F said because that’s what she believes. The composite system
would also have the disposition:

IDwlrs “LE Ll deds
l
[“yes™ w1 “yes”, “La™ Vel “Vadml Lds-

Here F says “yes” since she in fact got a determinate result, and W hears “yes”
because that’s what F said because that’s what she believes.

Now suppose instead that the composite system starts in the entangled super-
position represented by |everett)z,s when W asks his question. Given the linear
dynamics, the composite system evolves as follows:

[P wlalr, “170el 1wl Tds + Bl “L7elr “Lal dads)
= alnwlr, “0E 1 Il 1s + BIndwlr, “L7elr “Ldul Los
1

a“yes” )y yes”, “Tel Tl Tads + Bl yes™dwl yes”, “Lelr L7l dods
= |“yesyw(al“yes”, “D el Dl Tods + Bl yes”, “Lelr “Ldul dods)-

Here F answers the question with “yes” not because she has a determinate result but
because the linear dynamics requires her to report that she has a determinate result
given her dispositions to report so in the two cases where she does in fact have one
or the other of the possible determinate measurement records. So, assuming that
her reports in fact accurately describe her experience and beliefs, it will appear to
the friend that she has a perfectly ordinary, fully determinate measurement result
when she doesn't.

This is what it feels like to be Wigner’s friend. She will believe that the pointer
on M indicates either the determinate result “t,” or the determinate result “|,”, that
precisely one of these two options is realized, and that it is as sharply and precisely
realized as in the two simpler cases. And if W asks her if the description of her
cognitive state in the last sentence is accurate, she will report that it is. The upshot
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is that it will look like a collapse has occurred and produced a single determinate
result when the friend is in fact in an entangled superposition of having recorded
contradictory measurement results.

Assuming then that the observer’s sure-fire report of her experience in fact
represents her experience, the linear dynamics produces the illusion of a perfectly
ordinary, fully determinate measurement result when there isn’t one. But this is a
curious sort of experience. It is an experience of there being determinate content to
ameasurement record when the record in fact has no determinate content. Assum-
ing that she believes precisely what she has the determinate disposition to report,
the friend believes that she got a determinate result of either x-spin up or x-spin
down since she is in an eigenstate of agreeing to this characterization. But it is also
the case that there is no particular spin result that she determinately believes that
she got since she is not in an eigenstate of reporting that she got x-spin up and she
is not in an eigenstate of reporting that she got x-spin down.

In his argument that the friend must cause a collapse of the state, Wigner
appealed to a principle of charity. The friend must cause a collapse and hence
ultimately have a perfectly determinate physical record because Wigner thought
that he himself would in similar circumstances. He thought that he knew what it
would be like to be in the friend’s position, and he thought that it was obvious that
he would not be in an entangled superposition of having recorded incompatible
results. But the determinate-result property suggests that if one were in fact in
an entangled superposition of having incompatible measurement results, it would
look like one had a determinate measurement record.

9.2.2 Repeatability

It will also appear to the ideal friend that her measurement result is repeatable.
Suppose F repeats her measurement of S without disturbing it between measure-
ments then W asks F if she got the same result for each measurement. If F is
reliable when S is in an eigenstate of x-spin, then the composite system has the
disposition:

IDwlr, “1275 Del“1™s Dl Ta)s
!
Il 17 Tl 17 DDl Tds
!
“yes™dwl yes”, “07 Dl 17 1wl s

Here F reports that her results agree since she in fact got the determinate result
x-spin up both times she measured S. And the disposition:
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Iwlrs “L7 el L7 Dl s
!
Iwlrs L7 “Lel L™ Ll ds
!
“yes™dwl yes”, “L7 “Lel U™ “Udml s

Here F reports that her results agree since she in fact got the determinate result
x-spin down both times she measured S.

Now suppose that the composite system FMS starts in the state |everett)ps,
F repeats her x-spin measurement, then W asks F if she got the same result
both times she measured S. By the linear dynamics the composite system evolves
as follows

[y wladr, 1.7 D07 Dl Ts + Blr “L7s DL Pl L)
!
rhwlalr, “07 DRl 17 0l Tads + Blrs “L7 “LDel L™ 1wl Leds)
!
“yes™)w(al“yes”, “0.7 “070el 07 070wl Tods + BIyes™s “U7 “Lel L™ “Lul Lds)-

Here F reports that her two x-spin results agree. So the linear dynamics predicts
that it will appear to F that she got determinate results for each of her two x-
spin measurements and that the determinate results agree when she in fact got
no determinate results at all.

The upshot of the determinate-result property and the repeatability property
together is that if W asks F whether it appears that a collapse has occurred leaving
her object system in an eigenstate of the observable being measured, she will say
“yes”. So assuming that her experience agrees with her dispositions to report, it
will appear to the friend that a collapse has occurred and produced a perfectly
ordinary, fully determinate, and repeatable result when no collapse has occurred
and the friend in fact has no determinate repeatable result.

9.2.3 Intersubjective agreement

The illusions predicted by the bare theory allow for a sort of intersubjective
agreement as well. Suppose that W now decides to check the x-spin of S himself
then we ask him whether his result agrees with the result that F got. Suppose that W
is reliable when S has a determinate x-spin and F has a determinate measurement
record of that x-spin. The composite system has the disposition
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I Dwl“ 12 Tl s
!
Iy Wl Tl T Dl 1ds
1
1“yes”, “Twl 0 Vel Tl Tads

in which W reports that his result agrees with F’s result because they both got the
determinate result x-spin up when they measured S, and the disposition

I Dwl“Ldel LDl s
1
I “Ldwl b el Ll Lads
1
I“yes”, “Ldwl b 2el bl dads

in which W reports that his result agrees with F’s result because they both got the
determinate result x-spin down when they measured S.

By the linear dynamics, then, if the initial state of FMS starts in the state
|everett), s, the composite system evolves as follows:

Iy Dw(al“T7Del 00l Tads + BI“Lel“ L7 dual )
!
alr, Tl VR 0l Tds + Bl “Ldwl L Dl "l Lads
!
a“yes”, “Tdwl N0E 0l Tds + BIEyes™, “Ldwl L del "L Dl dcds:

So when we ask W whether he got the same x-spin result for S as F did he will
end up in a superposition of saying “yes” and saying “yes” which sounds precisely
like “yes”

On the assumption that W believes what he reports, this means that W will
believe that he got precisely the same x-spin result as F. They will agree that a
collapse has occurred and they will believe that they agree regarding the result of
that collapse. But no collapse has occurred and there are in fact no determinate
x-spin measurement records.

There is a sense in which it will appear to the observers whose behavior is
treated within the framework of pure wave mechanics that there are determinate
measurement results. But, again, this is subtle. It does not appear to the friend
that her result was x-spin up, and neither does it appear that the result was x-spin
down; rather, it appears that the result was either x-spin up or x-spin down. One
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might think of this as a disjunctive experience. It is an experience devoid of ordinary
determinate phenomenal content inasmuch as it is not the determinate experience
of x-spin up and it is not the determinate experience of x-spin down.

9.2.4 Relative frequency and randomness

One can also get results concerning the appearance of a random process with the
standard quantum probabilities from just the deterministic linear dynamics. These
properties, however, only apply in the limit as an observer performs an infinite
number of measurements.

Consider an automaton M that is ready to make and record the results of an
infinite series of measurements on each of an infinite series of systems S; in the
initial state

(Xl Tx)Sk + ﬁl l’x)Sk (91)

(as in Figure 9.1).° Suppose that M interacts with each system in turn and perfectly
correlates its kth memory register with the x-spin of system S by the linear dynam-
ics. This will produce an increasingly complicated entangled superposition of
different sequences of measurement outcomes. After one measurement, the state
of M and S, in the determinate-record basis will be

al Ml Ds, + BVl s, - 9.2)

After two measurements, the state of M, S, and S, will be

@Dl s | D, + 0B T4 D5, s,

(9.3)
+ Bal“U17)ul Ds, [ Ds, + Bl Ds, | Vs, -

S S, S Sk
L L J L e )
alt)s, +BlLs, alt)s, + Bl s,
=
[P 7 13 s T D

Figure 9.1. Experimental setup for relative frequency and randomness results.

¢ We will simplify notation in the following discussion by suppressing the subscripts on the x-spin
properties and both the subscripts and quotation marks on the measurement records.
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M) BT BT a1l BT Falltl) Ballit) Bl

Figure 9.2. Branches after the first three steps.

Figure 9.2 illustrates the first three steps of the branching process and the ampli-
tudes associated with each branch.

Using this setup, Everett (1956, 126-7) briefly sketched an argument for some-
thing we might call the relative frequency property:

Relative Frequency For any § > 0 and ¢ > 0, there exists a k such that, after
k measurements, the sum of the norm-squared of the amplitude associated with
each branch where the distribution of spin-up results is within ¢ of |a|* and the
distribution of spin-down results is within € of |B|? is within 8 of 1.

And he even more briefly sketched (1956, 127-8) an argument for something we
might call the randomness property:

Randomness The sum of the norm-squared of the amplitude associated with each
branch where the sequence of relative records satisfies all standard criteria for
being random goes to one as the number of measurements gets large.

It follows from the relative frequency and randomness properties that M will
approach a state where it has the sure-fire disposition to report that its measure-
ment results were randomly distributed with the standard quantum probabilities
|a|? and |B|? for x-spin up and x-spin down respectively.”

Consequently, treating observers as automata, the bare theory predicts that it
will appear to an observer that she gets perfectly ordinary, fully determinate, and
repeatable measurement results, and in the limit it will appear to her that these
results are randomly distributed with the standard quantum probabilities. In other
words, there is a sense in which the linear dynamics alone predicts that it will appear
to an observer, treated within the framework of pure wave mechanics, that there

7 Both of these results can in fact be proven. See Hartle (1968) for an early discussion of the relative
frequency result and Barrett (1999) for a proof of both results in the context of the bare theory.
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are random collapses of the quantum-mechanical state precisely as predicted by
the standard collapse dynamics (rule 4IT).

9.3 Pure Wave Mechanics with just the Standard
Interpretation of States

The determinate-result, repeatability, and intersubjective-agreement properties
are how the bare theory seeks to address the determinate-result problem. While the
observer will typically not in fact have ordinary determinate measurement records,
she will believe that she does. The relative frequency and randomness properties
are how it seeks to address the probability problem. It predicts that it will appear
to an observer that her measurement records are randomly distributed with the
standard quantum probabilities in the limit as she performs an infinite number of
measurements when she in fact has no determinate measurement records.

Pure wave mechanics has the virtue of being extremely simple. Further, there
is no collapse dynamics to conflict with the linear dynamics or with relativistic
constraints. To make pure wave mechanics compatible with relativity, one would
just need to put the linear dynamics into a form that is compatible with relativistic
constraints, something that is typically taken to provide no special difficulties.®

Everett’s relative-state formulation, however, suggests that he had a different sort
of account of experience in mind from what the bare theory provides. It is not
difficult to see why one might want something more.

While one might argue that there is an exotic sense in which the bare theory
predicts the same experience as the standard collapse theory, there is also a
straightforward sense in which it does not. For its part, the standard theory does
not predict that the friend will be under the illusion that she got a perfectly ordinary
determinate x-spin result. It simply predicts that she will in fact get a perfectly
ordinary determinate x-spin result. Further, the standard theory does not predict
that an observer will converge to a state where she will be under the illusion that
her results were randomly distributed with the standard relative frequencies in
the limit as she performs an infinite number of measurements. It predicts that she
will get a determinate result for every measurement and that over time her actual
results will with an increasingly high probability exhibit the standard quantum
statistics. These represent significant differences between the empirical predictions
of the bare theory and the standard theory.

® While there is currently no relativistic field theory that satisfactorily addresses the measurement
problem, the difficulty here has more to do with explaining determinate records and less to do with
providing a relativistic formulation of the linear dynamics. That said, there is a tension between even
the linear dynamics and relativistic constraints. See Albert (2013) for one discussion. The problem is
particularly clear if one believes that there is a simple matter of fact concerning whether two systems
are entangled. See Barrett (2014) for an extended discussion of this point.
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A central issue in assessing alternative formulations of quantum mechanics
concerns what it should mean for a physical theory to be empirically adequate.
The present distinction is between explaining why one in fact got a particular
measurement result and explaining why one believes that one got some determi-
nate result when one in fact did not get any particular result at all. If one takes a
theory to be empirically adequate only if it explains the empirical evidence that
we take ourselves to have pre-theoretically, then the bare theory is not empirically
adequate. Rather than explain what we take ourselves to see in the laboratory, it
explains why we don’t in fact see any such thing but nevertheless believe we do.

But this is not to say that we have good empirical evidence for rejecting the
bare theory. For all we know it might describe our world. But if it does, then
we are under the illusion that we have definite measurement outcomes when
we don't, and that poses a serious methodological problem. If the bare theory is
true, then the physical world is such that one can never have reliable empirical
evidence for accepting the bare theory. We will say that such a theory is empirically
incoherent.” Since the bare theory is empirically incoherent, if it is true, then our
world violates the preconditions for the possibility of empirical inquiry. It is a
remarkable feature of the quantum measurement problem that it has led us to take
seriously empirically incoherent theories.

9.4 The Relative-State Formulation of Pure Wave Mechanics

While Everett explicitly appealed to the bare theory’s formal properties, his strategy
for explaining experience was more straightforward. Rather than argue that one
is under the illusion that one has determinate results when one in fact doesn't,
he argued that pure wave mechanics could be understood as representing the
actual statistical content of an observer’s experience. More specifically, he argued
that his relative-state formulation of pure wave mechanics was both consistent and
empirically faithful *°

Everett believed that pure wave mechanics immediately solved the quantum
measurement problem by getting rid of the potential conflict between the linear
dynamics and the collapse dynamics. He took the key to explaining determinate
records and probabilities in pure wave mechanics to be the distinction between
absolute and relative states. This distinction was based on the the principle of the
fundamental relativity of states. He explained the principle as follows:

® See Barrett (1996) and (1999) for discussions of the bare theory and the notion of empirical
incoherence.
1 See Barrett (2011a) and (2015) for discussions of what Everett meant in requiring that a satis-
factory formulation of quantum mechanics be empirically faithful and the relationship between this
notion and empirical adequacy.
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There does not, in general, exist anything like a single state for one subsystem of
a composite system. Subsystems do not possess states that are independent of the
states of the remainder of the system, so that the subsystem states are generally
correlated with one another. One can arbitrarily choose a state for one subsystem,
and be led to the relative state for the remainder. Thus we are faced with a
fundamental relativity of states, which is implied by the formalism of composite
systems. It is meaningless to ask the absolute state of a subsystem—one can only
ask the state relative to a given state of the remainder of the subsystem.'*

Relative states might be thought of as introducing a branch indexical to the theory.
Just as the state of a physical system may differ at different times, the state of a
system here may differ at different branches. It is in the relative branch states that
one finds an observer’s determinate (but relative) measurement records. We will
first reflect on how the branch indexical works, then how Everett thought of it.

Consider a physical system S that is composed of two subsystems A and B. The
absolute state of S is just its ordinary quantum-mechanical state, and, as usual, it
is represented by a vector |y) of unit length in a Hilbert space J(. If the absolute
state of S can be written in the form

lv)s = Z ailyidalxids

then |yy), is the state of subsystem A relative to the state of B being |y)s.
This allows one to also distinguish between absolute and relative properties. The
system S has an absolute property if and only if it is in an eigenstate of having that
property. If |y, ) 4 is the state of subsystem A relative to the state of Bbeing |y, )z and
if |y) 4 is an eigenstate of property P and |, )p is an eigenstate of property Q, then
subsystem A has property P relative to subsystem B having property Q. Everett
called the terms in the superposition Y. a;|v;)4|x;)s elements or branches of the
state of S.

After she has performed her measurement of system S, the state of Wigner’s
friend F can be written as

o “T7El Tl Tads + B Del L Dual s

While F does not have an absolute result to her measurement in this state, she got
the result x-spin up relative to M’s pointer indicating x-spin up and S being x-spin
up and she got the result x-spin down relative to M’s pointer indicating x-spin down
and S being x-spin down. When written in the determinate-record basis, then, the

' Everett presents this as the central interpretational principle with just slightly different words and
italics in both the long and short versions of his thesis (1956, 103) and (1957, 180). The quotation here
follows the latter.
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state of the composite system here has two branches, one where F got x-spin up
and one where she got x-spin down.

Everett took the relative records associated with each branch to explain the
friend’s experience. As he put it in conversation with Abner Shimony some years
later, “Each individual branch looks like a perfectly respectable world where
definite things have happened” (Barrett and Byrne 2012, 276)."> One can get a
sense of what Everett had in mind when he said this by considering what he said
about what we called the bare theory’s suggestive properties.

When Everett is describing the determinate result property for a state like
|everett)pys, he says

[IIn each element of the superposition. .., the object-system state is a particular
eigenstate of the observer, and furthermore the observer-system state describes the
observer as definitely perceiving that particular system state. It is this correlation
that allows one to maintain that a measurement has been performed.

(1956, 121)

So the friend got a determinate measurement result because each relative friend
state describes her as having a determinate result. If F repeats her x-spin measure-
ment, she ends up in a state like

(Xl“ x”’ “TX”>F|“Tx”, “Tx”>M| Tx>s + ﬁl“ x”’ «lx”>F|«lxn’ “\LX”>M| lx>s.

Regarding the repeatability property, Everett says:

Again, we see that each element [in the resulting superposition] describes a
system eigenstate, but this time also describes the observer as having obtained
the same result for each of the two observations. Thus for each separate state
of the observer in the final superposition, the result of the observation was
repeatable, even though different for different states. This repeatability is, of
course, a consequence of the fact that after the observation the relative system
state for a particular observer state is the corresponding eigenstate. (1956, 122)

So the friend gets the same result for each of the two measurements because she
gets the same result within each relative state.

The difference between the relative-state formulation and the bare theory is that
here the friend actually gets perfectly determinate relative results. The determinate
experience of getting the result x-spin up is explained by the relative state where
she records x-spin up and the determinate experience of getting the result x-spin

' This quotation is the only place I know where Everett himself directly associates branches with
worlds.
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down is explained by the relative state where she records x-spin down. Further, the
friend repeats the result x-spin up relative to S being x-spin up and she repeats the
result x-spin down relative to S being x-spin down.

So while the explanation of determinate experience here is different, the sugges-
tive properties of the bare theory are still relevant. One way to think of this is that by
telling us what absolute properties obtain for a composite system, they tell us what
a typical relative observer will experience. That there will appear to be a collapse
is an absolute property of the observer. As we have seen, the composite system is
simply in an eigenstate of the observer believing that she has a determinate result.
But, in the present case, this means that every relative observer will believe she got
a perfectly determinate measurement result. Of course, what result a particular
relative observer believes she got is a relative fact. That every relative observer
believes that she got a determinate result, then, is explained by the fact that each
relative observer in fact has a perfectly determinate relative record. This relative
result characterizes the content of that relative observer’s experience.

The situation is only slightly more subtle in the case of the limiting suggestive
properties. Regarding the state that one gets in the limit as an observer measures
an infinite sequence of systems, Everett explains that

[1]f we consider the sequences to become longer and longer (more and more
observations performed) each memory sequence of the final superposition will
satisfy any given criterion for a randomly generated sequence, generated by the
independent probabilities [|a|?> and |f|?], except for a set of total measure which
tends toward zero as the number of observations becomes unlimited. Hence all
averages of functions over any memory sequence, including the special case of
frequencies, can be computed from the probabilities [|a|? and |f|*], except for
a set of memory sequences of measure zero. We have therefore shown that the
statistical assertions of [the collapse process] will appear to be valid to almost all
observers described by separate elements of the superposition...in the limit as
the number of observations goes to infinity. (1956, 127)

The measure that Everett has in mind in referring to almost all relative observers is
the norm-squared of the coeflicient associated with each term in the superposition
of memory sequences. He stipulated this as a measure of typicality over branches
of the quantum-mechanical state. While it is not generally true that most branches
by count will exhibit the standard quantum statistics, it is true that the sum of
the norm-squared of the coefficients on those terms that do exhibit the standard
quantum statistics will go to one as the number of measurements gets large. Hence,
atypical relative observer in the norm-squared coefficient sense of typical will record
measurement results that exhibit the standard quantum statistics. And in the limit
almost all relative observers, in the norm-squared amplitude measure, will exhibit



158 PURE WAVE MECHANICS

the standard quantum statistics. This was the single fact that Everett thought was
most significant in understanding his theory.

Everett argued that a similar result holds for measurements that are less than
perfect. And from this he concluded that a typical relative observer will have the
subjective experience of random collapses with the standard quantum probabili-
ties. This was his promised deduction of the predictions of the standard collapse
theory in terms of the subjective experience of observers treated in the framework
of pure wave mechanics.

While pure wave mechanics is a deterministic theory that says nothing what-
soever about probability, Everett wanted to provide some sense in which it might
be understood as predicting the standard quantum probabilities. His argument
amounts to this: inasmuch as the relative measurement records of a typical relative
observer will exhibit the standard quantum statistics, it will appear to a typical
relative observer that the standard quantum probabilities obtain.

Note that Everett did not seek to deduce quantum probabilities over branches.
The probability associated with each branch is always just one. Rather, he wanted
to derive the appearance of the standard quantum probabilities from the statistics
of records within a typical branch. Within a typical branch, in his norm-squared
amplitude sense of typical, it will appear that the measurement outcomes were
determined by the standard quantum probabilities. This is the significance of the
relative frequency and randomness properties of the bare theory for Everett.'?

9.5 Everett’s Empiricism

Instead of trying to explain precisely what a relative observer is metaphysically,
Everett adopted a throughly empiricist attitude toward the theory. As he put
the point: “There can be no question of which theory is ‘true’ or ‘real —the
best that one can do is reject those theories which are not isomorphic to sense
experience” (Barrett and Byrne 2012, 253). He just wanted a theory that was
consistent and empirically faithful. He explained what he meant by this in a letter
to the physicist Bryce DeWitt, who would later become a strong supporter of pure
wave mechanics:

First, I must say a few words to clarify my conception of the nature and purpose
of physical theories in general. To me, any physical theory is a logical construct
(model), consisting of symbols and rules for their manipulation, some of whose
elements are associated with elements of the perceived world. If this association

'* This differs from the tradition of Everettian attempts to derive probabilistic expectations from
pure wave mechanics. See Deutsch (1999), Saunders (2010), and Wallace (2010b) for recent examples
of this tradition.
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is an isomorphism (or at least a homomorphism) we can speak of the theory as
correct, or as faithful. The fundamental requirements of any theory are logical
consistency and correctness in this sense.'*

In the long version of his PhD thesis, he further explained that “[t]he word
homomorphism would be technically more correct, since there may not be a one-
one correspondence between the model and the external world” (1956, 169).

So let’s consider the two conditions. The relative-state formulation of pure
wave mechanics is clearly consistent. It is just the bare theory with an added
distinction between absolute and relative states and a specified typicality measure
over branches. One might think of it as the standard theory without rule 4II but
with a stronger version of rule 3 that includes a description of what relative states
are and the specification of what it means for a relative state to be typical. Since
there is no collapse, there is nothing that might be inconsistent in the theory.

For Everett, a theory was empirically faithful, and hence adequately explained
experience, if and only if there was a homomorphism between its model and the
world as experienced. The relative-state formulation is empirically faithful because
an observer’s actual experience can be found as a relative sequence of records
associated with a typical relative observer. While most relative sequences will not
agree with a given observer’s actual experience, Everett took every element of the
superposition to be equally real in the operational sense that one could always, at
least in principle, perform an A-type interference measurement that would detect
the presence of other branches, branches with relative records that one would not
take to characterize one’s actual measurement results.

Importantly, Everett did not derive the standard probabilistic predictions of
quantum mechanics regarding chance events, and he knew it. He clearly and
repeatedly insisted that there were no probabilities in pure wave mechanics. This is
also reflected in the early title of his thesis as Wave Mechanics without Probability.
Rather than claim that his theory predicted the same chance events as predicted
by the nonlinear collapse dynamics, Everett showed that it would appear to a
typical relative observer that there had been such events. It was to this end that
he argued that an observer’s relative measurement records in a typical branch
would appear to be randomly distributed with the standard quantum probabilities.
His account appealed to notions that one simply does not have in pure wave
mechanics or the bare theory. Everett added a model of observers as automata
to tie experience to physical records. He added the notion of relative states to
characterize relative sequences of records. And he added a typicality measure to
say which relative sequences of records matter for experience.

' This passage is from Everett’s letter to DeWitt dated 31 May 1957. See Barrett and Byrne (2012,
252-6) for the full text of the letter and commentary.
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While the typicality measure that Everett chose to add to pure wave mechanics
has a number of natural properties, it also has an ad hoc flavor to it. The norm-
squared amplitude measure over branches is just the ordinary quantum probably
measure over outcomes. And since the standard theory predicts that on€’s records
will probably satisfy the standard quantum statistics, it is unsurprising that a
typical observer’s records in precisely the same measure will satisty the standard
quantum statistics. That said, Everett can use whatever typicality measure he wants
in his claim that the relative records in a typical branch will exhibit the standard
quantum statistics as long as he explicitly specifies it as a part of his relative-state
formulation.

The auxiliary assumptions Everett added to pure wave mechanics to get the
relative-state formulation pay off in providing an account of an observer’s mea-
surement results in terms of the relative records of a typical observer. And since
the dynamics are still purely linear, it provides an appropriate starting point for
formulating a relativistic theory. The interpretational apparatus is a bit more
involved, but it remains a very simple theory.

Some have worried that the relative-state formulation requires one to choose a
preferred physical basis.> Each branch describes a relative observer with deter-
minate relative records but only if one writes the state of the composite system in
a special determinate-record basis. That said, inasmuch as Everett just wanted a
theory that satisfies his condition for being empirically faithful, he arguably does
not need a physically preferred basis. For the theory to be empirically faithful, one
just needs to be able to find an observer’s actual experience associated with a typical
sequence of relative records. One finds it in a branch of the state of the composite
system written in the determinate-record basis, but that need not require that there
be anything physically privileged about that basis. This squares with both Everett’s
view that there is no privileged way to individuate branches and his operationalist
conception of his theory.'®

The most significant problem with the relative-state formulation is that empir-
ical faithfulness is a very weak standard of empirical adequacy. Its weakness can
been seen in the fact that while it is empirically faithful, it does not predict that
an observer will probably record the standard quantum statistics or should expect
to record the standard quantum statistics. To be sure, the theory predicts that a
typical branch, in the norm-squared amplitude sense of typical, will exhibit the
standard quantum statistics, but it does not predict that an observer’s future branch
will be typical or probably typical or should be expected to be typical, or anything
like that.

1% See Barrett (1999) for a discussion of this worry.
1% See Everett’s principle of the relatively of states. See also his marginal notes in reply to John Bell
for his view that there is no physically preferred basis (Barrett and Byrne 2012, 287).
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The relative-state formulation tells us that the sequence of records in a typical
branch will appear to be determined by the standard quantum probabilities, but
it does not tell us that a typical branch is probable right now or that one should
expect one’s future records to be determined by the relative sequence of a typical
branch. One could add an assumption like that to the theory, something we
will discuss in the next chapter, but Everett did not do so. A move like that
would require probabilities over branches and something for those probabilities to
describe.

Pure wave mechanics does not make probabilistic predictions even when sup-
plemented with relative states. Inasmuch as a probability is a measure over possi-
bilities where precisely one is realized and insofar as all possibilities are realized
in pure wave mechanics, Everett is right to insist that there can be no probabilities
associated with alternative relative sequences of measurement records. Similarly,
any understanding of typicality that somehow involves any sort of selection of a
typical relative sequence of records is incompatible with pure wave mechanics
inasmuch as the theory describes no such thing. Neither can the typicality measure
represent an expectation of the standard quantum statistics obtaining for one’s
actual relative sequence of measurement records since all such sequences are
equally actual in the model. Insofar as the theory describes anything happening, it
describes everything happening, so there is no particular sequence of measurement
records that might be taken as probable or expected in any standard sense of the
terms. We will have more to say about this in the next chapter.

For the purpose of understanding Everett's own views, it is important to be
clear that he does not solve the probability problem by showing that measure-
ment records that satisfy the standard quantum statistics are probable or to be
expected. Rather, he specifies a measure, then shows that in that weighting over
branches almost all of the weight ends up associated with branches where the
relative observer has a sequence of records that satisfy the standard quantum
statistics. That is what it means when he says that the theory is empirically faithful.
Since neither pure wave mechanics nor the relative-state formulation assigns
probabilities over branches, they do not make probabilistic predictions for future
events and, hence, do not make the same empirical predictions as the standard
collapse theory.



10
Many Worlds and Such

10.1 Extending Pure Wave Mechanics

While pure wave mechanics does not explain determinate measurement records
or quantum probabilities on its own, its simplicity and manifest consistency make
it a good starting point for constructing a formulation of quantum mechanics
that avoids the measurement problem. If one adds the standard interpretation
of states, as in the bare theory, one can explain why an observer would believe
that she has determinate measurement records in special situations when she in
fact has no such records. If one further adds the distinction between absolute
and relative states and specifies a typicality measure over branches, one can
explain why a typical relative observer will have relative records that exhibit the
standard quantum statistics. But such accounts of experience are more exotic than
compelling.

One would like to have a theory that simply predicts the determinate measure-
ment records we in fact take ourselves to have with the standard forward-looking
quantum probabilities. If so, we need stronger auxiliary assumptions than Everett
made. But we also want to keep the theory as simple and plausible as possible.
Ideally, one would want to add the most modest auxiliary assumptions one can to
pure wave mechanics that deliver an account of experience that one can in good
conscience accept.

Since the post-measurement states predicted by pure wave mechanics typically
do nothing whatsoever to explain the presence of determinate measurement
records, one must add something that says the sense in which the physical
state represents determinate measurement records. Similarly, since pure wave
mechanics says nothing at all about probabilities, if one wants one’s theory to
make probabilistic predictions, then one must add something that allows one to
derive probabilities of the sort one requires. And insofar as one takes one’s physical
theory to explain determinate measurement records and quantum probabilities,
these auxiliary assumptions should be specified along with the rest of the theory.

There has been significant disagreement regarding how to best understand
Everett’s formulation of quantum mechanics. This disagreement has been driven
at least in part by the desire for an account of experience that is both richer and
more straightforward than those provided by the bare theory or the relative-state
formulation.
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Since the various Everettian formulations of quantum mechanics are often only
loosely related to Everett’s own views, we will focus here on just evaluating each
proposed formulation on its own merits. Each supplements pure wave mechanics
with different auxiliary assumptions which, in turn, suggest different explanations
of determinate measurement records and quantum probabilities. The auxiliary
assumptions often involve metaphysical commitments. These commitments typ-
ically do real explanatory work in accounting for determinate records and the
statistics they exhibit.

We will start with a few examples of many-worlds interpretations. We will
consider some of the problems they encounter and how they might be addressed.
We will then discuss a number of closely related theories.

10.2 Splitting-Worlds

While Everett himself did not present his theory as a many-worlds interpretation,
this is how the physicist Bryce DeWitt (1971) and his student Neill Graham (1973)
understood it. We will call their approach the splitting-worlds theory.

The splitting-worlds theory postulates a quantum-mechanical state for the
whole universe that always evolves linearly without collapsing. As the state evolves,
the universe splits “into a multitude of mutually unobservable but equally real
worlds, in each of which every good measurement has yielded a definite result and
in most of which the familiar statistical quantum laws hold” (DeWitt and Graham
1973, v).

The idea is that there is a separate, but equally real, physical world corresponding
to each branch of the quantum-mechanical state. When a measurement is made, an
observer’s world splits and each of the resultant worlds contains a different physical
copy of the observer. Each copy of the observer has a perfectly determinate
measurement record, but different copies typically have different records.

There are a few things to note to get started. First, since this splitting process is
supposed to create an objectively real world for each branch, it now matters to the
physics how one decomposes the state into branches. Hence the theory requires
that one choose a physically preferred basis or some rule for specifying such a
basis. Second, the insistence that worlds are mutually unobservable differs from
Everett’s own view as he explicitly held that it was always possible in principle to
observe quantum interference between branches. Finally, if one associates each
branch with one world, it is typically not true that most branches by count will

! In his popular account of the splitting-worlds theory, DeWitt (1970) described it as being held by
Everett, Wheeler, and Graham. There was, however, never a single theory that Everett, Wheeler, and
Graham would all have endorsed. For his part, as we will see, Everett strongly disagreed with both
DeWitt and Graham.
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exhibit the standard quantum statistics. Rather, as we saw in the last chapter, it is
only most branches in the norm-squared amplitude measure that will exhibit the
standard quantum statistics. We will return to this last point in a moment.”

DeWitt described his reaction when he first considered Everett’s theory: “I still
recall vividly the shock I experienced on first encountering this multiworld con-
cept. The idea of 10'%7 slightly imperfect copies of oneself all constantly splitting
into further copies, which ultimately become unrecognizable, is not easy to recon-
cile with common sense” (DeWitt and Graham 1973, 161). But he felt better about
this after Everett sent him a letter explaining how the theory itself explains why he
would not feel any splitting process. Everett’s argument might be summarized as
follows. To detect such a split, one would need something that could be thought of
as a record of the splitting process or the existence of alternative worlds produced
by the process. Such records are not produced in typical measurement interactions.
For his part, Everett knew that one could only record the production of branches
corresponding to different measurement outcomes if one performed something
like an A-type measurement of the observer whose measurement interaction
caused the split. But, as he noted in the long version of his thesis, while not
impossible, that would be extremely difficult.

The splitting-worlds theory might be understood as the standard formulation
of quantum mechanics without the collapse dynamics (rule 4II) but with a new
interpretational rule for quantum-mechanical states. The idea is to replace the
standard interpretation of states (rule 3) with something like the following:

3. Interpretation of states (splitting worlds): There is a basis B such that when
the state of the universe |y)y is written in B each term in the expansion
describes an actual physical world in the quantum state characterized by that
term and all measurement records are in fact determinate in every world.
The standard interpretation of quantum states then applies to the state of
each world.

One wants to choose the basis B to be one that would make measurement records
determinate in every world. When a measurement is made, then the universe
splits, and there is a different, but perfectly determinate, measurement outcome
in each of the resulting worlds.

Consider a universe consisting of just Wigner’s friend and her measuring device
and object system. Choose a basis B that makes determinate whatever physical
quantity the measuring device M uses (as a pointer variable) to indicate the result
of its x-spin measurement. Suppose that the state of the composite system FMS is
initially

? As we will see, DeWitt and Graham ultimately associated many worlds with each Everett branch.
For the basic splitting-worlds theory described here, we will suppose that there is just one world for
each branch.
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Written in the determinate-record basis, this state has just one term, so there is
just one world. In this world the friend F is ready to look at the pointer on the
measuring device, the measuring device M is ready to measure the x-spin of S,
and S is in a superposition of x-spin up and x-spin down.

When M measures the x-spin of S, the composite system evolves by the linear
dynamics to
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Here there are two terms, so there are now two worlds. The interaction between M
and S caused the split. In one world the friend F is ready to observe M’s pointer,
Ms pointer indicates the result x-spin up, and S is determinately x-spin up. In the
other the friend F is ready to observe M’s pointer, M’s pointer indicates the result
x-spin down, and S is determinately x-spin down (as in Figure 10.1).

When F looks at M’s pointer, the composite system evolves by the linear
dynamics to
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Figure 10.1. Worlds resulting from a spin measurement.
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Here there are still two worlds. In one the friend sees the pointer indicating
the result x-spin up and the object system is x-spin up, and in the other the
friend sees the pointer indicating the result x-spin down and the object system is
x-spin down.

Since there is nothing in the theory so far that tells one how to identify worlds
across time, one might add an auxiliary assumption that says that these are the
same two worlds we had after M’s interaction with S as indicated by the lines
connecting the frames in Figure 10.1. In that case, one might think of the friend
as getting the x-spin result she does in each world because the pointer is already
indicating a determinate result in that world. On this view, the measuring device
indicates a perfectly determinate measurement record in each world and the friend
just checks to see what it is.

The explanation of why an observer gets a determinate measurement outcome,
then, is entirely straightforward. Each observer gets a determinate measurement
outcome for the simple reason that each has a fully determinate measure-
ment record in each world she inhabits. But this explanation comes at a cost.

The preferred basis B determines when worlds split. In the Wigner’s friend
story as just told, we chose the determinate physical quantity to be one that makes
M’s pointer reading determinate in each world. On that choice, the world splits
when M’s pointer position becomes correlated with S’s x-spin. But if we chose,
instead, a preferred basis that makes F’s brain record determinate directly, the
world would not split until F’s brain state becomes correlated with the reading
of M’s pointer. In this case, the splitting-worlds story would look like the sequence
of events in Figure 10.2. This is a very different sequence of physical events from
the case where one uses M’s pointer reading to determine what worlds there are.

One wants worlds to split whenever one needs them to split to explain deter-
minate measurement records. In other words, one wants worlds to split in the
splitting-worlds theory precisely when one would want a collapse to occur on the
standard collapse theory. Indeed, the splitting worlds theory is very much like a
collapse theory with a different collapsed world for each possible measurement
outcome. The upshot is that choosing the preferred basis B here is exactly as
difficult as providing a satisfactory specification of when collapses occur in the
standard theory. But if we knew how to do that, we would be able to solve the
quantum measurement problem in the context of the standard collapse theory.

Because world-splitting events are essentially collapse events that produce
multiple worlds, the splitting-worlds theory is also incompatible with relativistic
constraints. In place of having to say precisely when an object system collapses
in a frame-invariant way, one now has to say precisely when worlds split. If
anything, the situation is worse here as one also has the issue of what it could even
mean for worlds to split in a relativistic theory. If spacetime itself is supposed to
split, one must presumably specify another super-spacetime in which to tell that
dynamical story.
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Figure 10.2. Worlds if splits occur later in the measurement process.

Another problem with the splitting-worlds theory concerns probability. While
the right choice of preferred basis will explain determinate measurement records,
the theory does not predict the right quantum probabilities for an observer’s future
measurement records. Insofar as each copy of the friend has an equal claim to being
the future friend, the probability that F gets x-spin up is simply one. And so is the
probability that she gets x-spin down. But that’s the wrong answer.

One can distinguish here between two closely related problems involving quan-
tum statistics. The first concerns how to get the probabilistic prediction that F will
find herself in the world where she records x-spin up with probability || and
will find herself in the world where she records x-spin down with probability |]?.
This problem involves forward-looking probabilities. Part of this problem is that F
will find herself in each world. The second problem concerns why one should
expect the records in one’s world at a particular time to exhibit the standard
quantum statistics. This problem involves accounting for one’s current records.
Which problem one finds more pressing depends on the sort of explanation of
quantum statistics one wants. Since the second problem is easier, let’s start with it.

Everett showed that the relative records in a typical branch, in his norm-squared
amplitude measure sense of typical, will exhibit the standard quantum statistics. In
the splitting-worlds theory this means that the physical records in a typical world
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in this measure will exhibit the standard quantum statistics. So to explain why
one should expect one’s current records to exhibit the standard quantum statistics
one just needs to explain why one should expect one’s world to be typical in this
sense. Put this way, it might seem like an easy task, so easy that it is hardly worth
mentioning that there is a task at all. But it requires care.

That something is typical does not mean that it is probable. Pennies are typically
made of zinc. But that does not logically entail that the penny sitting on the right-
hand side of my desk is probably made of zinc. To infer that one would need
to know something like that the penny was randomly selected in an unbiased
measure from the set of all pennies. If so, this is a highly nontrivial property of
the penny. Similarly, if one wanted to explain why one should expect the standard
quantum statistics to hold for the relative records in one’s world, then one would
need to know something like that one’s world was randomly selected in the norm-
squared-amplitude measure over branches. Even to say that and have it make sense,
one would need a way to determine what worlds there are and would need to be
able clearly say what it could possibly mean for a world to be randomly selected as
the one that is actually experienced.

The splitting-worlds formulation, like pure wave mechanics, says nothing about
quantum probabilities. Consequently, one would need to add further auxiliary
assumptions to the splitting-worlds theory to get anything like the standard quan-
tum probabilistic predictions or the expectation of the standard quantum statistics.
There is nothing wrong with doing so, but one only has a clear account if one
understands where the probabilities come from and what they are probabilities of.

10.3 Probability and Typical Worlds

DeWitt initially described the splitting-worlds formulation of quantum mechanics
as we have characterized the theory, but this is not the version that DeWitt and
Graham ultimately favored. A short digression on their favored formulation of the
theory will help to clarify what one would have to add to pure wave mechanics to
get probabilistic predictions.® Again, we will distinguish between forward-looking
probabilities and synchronic probabilities that explain our current records.
DeWitt and Graham did not believe that Everett had provided a satisfactory
account of quantum probabilities. They thought that the problem was with his
typicality measure over branches. Putting it in terms of worlds, Everett had shown
that a typical world in the norm-squared amplitude measure sense of typical would
exhibit the standard quantum statistics. While that is true, what bothered DeWitt
and Graham was that it is usually not the case that most worlds by simple count will

* See Barrett (2017) for a more detailed discussion of typicality and probability in many-worlds
formulations of quantum mechanics.
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exhibit the standard quantum statistics. As Graham put it, “it is extremely difficult
to see what significance [Everett’s] measure can have when its implications are
completely contradicted by a simple count of the worlds involved” (1973, 236).

What DeWitt and Graham wanted was a theory where most worlds exhibited the
standard quantum statistics. Only then did they believe that one would be able to
provide a satisfactory explanation for why one should expect one’s measurement
records to exhibit the standard quantum statistics. To this end, Graham stipulated
a rule for how worlds split such that the number of worlds that exhibit a particular
outcome after a measurement interaction was proportional to the square of the
coeflicient on the term describing that outcome. This ad hoc splitting procedure
ensured that almost all worlds by simple count will exhibit the standard quantum
statistics.*

Observers have determinate measurement outcomes on this version of the
splitting-worlds theory because measurement records are determinate in each
world—there are just a lot more worlds here than in the basic splitting-worlds
theory. But having more worlds does not provide any advantage in addressing the
probability problem. Seeing why will help to clarify the relation between typicality
measures and probabilities.’

To begin, we know what Everett thought of DeWitt’s criticism and Graham’s
proposal from his marginal notes on his personal copy of the DeWitt-Graham
(1973) anthology. Where DeWitt (1971, 185) claimed that Everett’s typicality
argument was unsatisfying, Everett wrote in the margin “only to you!” And where
Graham (1973, 236) claimed that Everett’s typicality measure was unmotivated,
Everett wrote in the margin “bullshit”® Everett knew that he could stipulate any
measure of typicality he wanted over branches, then use that measure to make
claims about the properties of typical branches. Since the norm-squared amplitude
measure over branches is just the standard quantum probably measure over
outcomes, his choice has a special feel to it. But that’s fine as long as one explicitly
acknowledges the particular choice of measure in one’s theory.

That DeWitt and Graham believed that making something true of most
branches by simple count was the only satisfactory way to explain why an observer
should expect his results to exhibit the standard quantum statistics tells us
something about the type of explanation they were looking for and the auxiliary

* Graham (1973) presented his “two step” splitting procedure as an extension of what he called
Everetts “one step” account of measurement. On Graham’s account, one introduces a third macro-
scopic apparatus that mediates between a microscopic system and a macroscopic observer, then that
apparatus comes to thermodynamical equilibrium with its environment. The partition of branches that
Graham subsequently stipulated for the resulting state differs from the determinate-record partition
that Everett derived by assuming that the linear dynamics fully described the measurement interaction.

® See Goldstein (2012) for one approach to the relationship between typicality and probability in
physics. See Hemmo and Shenker (2015) for a discussion of the relationship between typicality and
probability in Bohmian mechanics. See Kent (2010) for additional worries concerning recent many-
worlds formulations of quantum mechanics.

¢ See Barrett and Byrne (2012, 365-6) for photocopies of these pages.
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assumptions they were willing to make to get it. To begin, DeWitt and Graham
took the talk of physically real worlds somehow inhabited by copies of observers
seriously, arguably much more seriously than Everett himself did inasmuch as he
did not present his theory in terms of splitting worlds.” Second, they seem to have
wanted standard forward-looking probabilities, something that Everett does not
get with his conclusions regarding the statistical properties of typical sequences
of relative measurement records at a specified time. Finally, their intuitions were
apparently guided by a principle of indifference that says something like: if there
are n possibilities, then, in the absence of other information, one should assign
probability 1/x to each possibility.®

Given this, an account of quantum probabilities might go something like the
following. Most quantum worlds by simple count exhibit the standard quantum
statistics on the DeWitt-Graham specification for how to partition the universal
state into worlds. Since, by the principle of indifference, it is equally likely that one
would find oneself in each such world, one should with high probability expect to
find that one’s actual measurement results exhibit the standard quantum statistics.

But there are several problems with this. First, it is unclear precisely what such
quantum probabilities are probabilities of. Since there are no chance events nor
uncertainties stipulated by pure wave mechanics itself, one needs to add something
to the theory to which probabilities might refer. Even if one adds a preferred
partition of worlds, inasmuch as there is a copy of the observer in each of the post-
measurement worlds, one would need to explain why the probability of finding the
observer in any particular world is something other than one.

As suggested by the language we have been using, one might try to make sense of
the probabilities in a many-worlds theory as self-location probabilities. The idea is
to add auxiliary assumptions to the theory that allow one to show that one should
with high probability expect to find oneself in a world where one’s measurement
results exhibit the standard quantum statistics, whatever that might mean.’

The extent to which this strategy works depends on the details of one’s meta-
physical commitments and the sort of explanation one wants. If I believe that
I'will in fact inhabit all future worlds, then my forward-looking probability of each
possible future measurement outcome is simply one. But if there were a law that
said that my synchronic self-location probabilities were equal to the norm-squared
amplitude measure associated with each world, I might explain why I expect my
current records to exhibit the standard quantum statistics.

If one wanted to make sense of the standard forward-looking quantum prob-
abilities in a splitting-worlds theory, one would need to add something to the
metaphysics that would allow one to talk sensibly about precisely one future

7 See Barrett (2011b) for a discussion of Everett’s metaphysical views.

® There are a number of discussions of the difficulties one encounters in applying the principle of
indifference to branches. See, for examples, Barrett (1999, 168-73) and Greaves (2007).

® Self-location probabilities are a recurring topic in Saunders, Barrett, Kent, and Wallace (eds)
(2010). See also Vaidman (2012).
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world being somehow realized for an observer at the expense of the others. Then,
depending on how one sets it up, such probabilities might be understood in terms
of chances or subjective degrees of belief concerning a perfectly ordinary matter of
fact—namely, the world one will in fact inhabit. To do this, one must specify both
how to calculate forward-looking probabilities and, importantly, precisely what
they are probabilities of.

With care, there are a number of ways that one can get the standard forward-
looking quantum probabilities for a many-worlds theory. On the many-threads
theory, something we will discuss in detail in section 10.6, worlds do not split.*°
Rather, there is one world for every possible complete world history, or thread,
and a probability measure over these possible complete worlds. One way to
picture this set of worlds is by associating a thread to each possible way one
might travel through the complete branching structure described by the splitting-
worlds theory. The theory then assigns the standard quantum probabilities to each
such world history. From the perspective of a particular observer, these are the
probabilities that each is the world she in fact inhabits. This provides epistemic
probabilities at a time that she can use to calculate forward-looking probabilities
as she conditions on observed properties of the world she inhabits. Since neither
she nor her world splits, she can make perfectly clear sense of forward-looking self-
location quantum probabilities as epistemic probabilities regarding future events
in the world she in fact inhabits.

In contrast, on a many-worlds formulation where worlds split and there is
no way to identify an observer with any single future self, an observer must
assign a probability of one to each of her future selves if she assigns forward-
looking probabilities at all. Because of this, when people talk about self-location
probabilities, they typically have synchronic probabilities rather than forward-
looking probabilities in mind. After one makes a measurement and causes a split, a
relative observer finds herself in a world. She can then ask regarding the probability
that she is in fact in a world where the result was, say, x-spin up. But, inasmuch as
such probabilities do not tell one what one should expect as the result before the
measurement, they do not capture standard quantum predictions.

DeWitt and Graham seem to have wanted an explanation that addressed the
question of what measurement statistics one should expect. It is unsurprising
that they would inasmuch as it is precisely such forward-looking probabilistic
predictions that make quantum mechanics empirically attractive in the first place.
But if so, they clearly failed to deliver it. Graham sensed as much:

Thus we conclude that values of the relative frequency near [the standard pre-
dictions] will be found in the majority of Everett worlds of the apparatus and
observer. If we assume our own world to be a “typical” one, then we may expect

1 See Barrett (1999) for a detailed description of this approach and how it relates to other
no-collapse theories. As we will see, one also gets perfectly good forward-looking probabilities
from no-collapse theories like Bohmian mechanics (Chapter 11) and the single- and many-minds
theories (section 10.5).
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a human or mechanical observer to perceive relative frequencies in accord with
the [standard predictions]. Why we should be able to assume our own world to
be typical is, of course, itself an interesting question, but one that is beyond the
scope of the present paper. (1973, 252)

One needs at least this assumption to get from talk of typical worlds to talk of
quantum probabilities or expectations.

A second problem with the DeWitt and Graham line of argument is their
implicit assumption of a principle of indifference. It is clearly not the case as a
simple matter of rationality that if there are n possibilities, then the probability of
each is 1/n. Consider the two possibilities (1) the sun will explode tomorrow and
(2) the sun will not explode tomorrow. It is simply false that the probability of each
is 1/2. This is why an ignorance clause is typically included in such principles: if
there are N possibilities and if one has no other information, then the probability
one should assign to each possibility is 1/n. But, even so, there is no reason at all
to require a rational agent to assign probabilities in this way."*

For something to be a principle of reason, there should be negative consequ-
ences of some sort for not heeding it. A good Bayesian, however, might assign any
set of prior probabilities that are coherent (i.e. satisfy the standard axioms of prob-
ability theory) and non-dogmatic (i.e. not zero or one) to her n hypotheses without
fear of finding herself committed to a Dutch book or failing to respond appropri-
ately to relevant evidence. The probabilities that a rational agent should assign are
always simply whatever coherent, non-dogmatic credences she in fact has. These
might be evenly distributed over the possibilities at hand or not. That there is no
failure of reason if the agent’s de facto priors are not evenly distributed over a given
partition is evident from the fact that nothing bad will happen as a result.

Closely related, it is entirely unclear how one might understand a principle of
indifference as having any specific content. One can only assign probability 1/# to
each possibility if one knows what the possibilities are. A principle of indifference,
then, only has content when supplemented with the choice of a specific partition.
The philosopher Bas van Fraassen’s (1989) cube factory story illustrates the point.
Suppose one only knows that a factory produces cubes with a side between 0
and 2 meters. If one considers side length, one might imagine that a principle of
indifference requires that one take the probability of a randomly selected cube
having a side between 0 and 1 to be 1/2 since side lengths range from 0 to
2. If one considers volume, one might imagine that a principle of indifference
requires that one take the probability of a randomly selected cube having a volume
between 0 and 1 to be 1/4 since volumes range from 0 to 4. But since having
a side length between 0 and 1 is the same thing as having a volume between

' The principle of indifference goes back to at least Pierre-Simon Laplace. See Hajek (2011) for a
brief introduction to the history of the principle. See Zabell (2016) for an example of early worries
regarding its status as a principle of reason.
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0 and 1, the different partitions, each perfectly natural given different interests,
yield inconsistent probability assignments.

The moral is that there is no content to a principle of indifference without a
specified partition and what partition one finds natural depends on one’s interests.
Inasmuch as each is tailored to a specific application, any particular principle of
indifference is a poor candidate for a general principle of reason. One might assign
even priors over whatever set of possibilities one currently takes as salient, but I can
see no plausible argument for a principle of reason that compels one to do so.

Returning to the issue at hand, since pure wave mechanics specifies no canonical
decomposition of the full state, it cannot, by itself, tell one what set of branches
one should use in assigning each branch probability 1/x. This problem is made
particularly acute by the fact that choosing a determinate-record basis in order
to guarantee that each relative observer has determinate measurement records
then assigning each branch probability 1/n typically yields the wrong quantum
probabilities anyway. DeWitt and Graham must assume both a principle of indif-
ference and a special, preferred way to individuate branches to even get started
in deriving the standard quantum probabilities. Stipulating precisely the right
number of duplicate worlds to get the right quantum probabilities on a principle
of indifference that one finds intuitively attractive is manifestly ad hoc."?

Finally, it is entirely unclear why one should expect one’s intuitions concerning
what one finds to be rational or natural to be relevant to the laws of physics.
Even if one had an intuitively compelling principle for assigning objective prior
probabilities to physical possibilities, there is no good reason to trust it here.
Quantum phenomena themselves vividly illustrate the unreliability of our physical
intuitions. If one accepts such a principle, it must be as a part of one’s commitment
to the particular formulation of quantum mechanics it serves. We will see how this
works in a concrete case when we consider the distribution postulate in Bohmian
mechanics (Chapter 11).

There is a long tradition of people adding principles to pure wave mechanics
that would allow one to derive the standard quantum probabilities over branches.
A number of such derivations pass through a step where it is argued that one
should be indifferent among a specified set of branches with equal quantum
amplitudes.*® Different derivations appeal to different assumptions here, but any

'? Indifferent priors are sometimes suggested as a way of representing a complete lack of initial
information. But judgments of one’s lack of information are also relative to one’s interests. As suggested
by the box-factory example, if one is interested in information regarding side length, one partition
may seem more natural; if one is interested in information regarding volume, another partition
may. Similarly, in the context of pure wave mechanics, if one is interested in information regarding
determinate measurement records, one decomposition of the state may seem more natural; if one is
interested in information regarding another observable, say energy, another decomposition may. And,
as we just saw, the application of a principle of indifference over different partitions typically yields
incoherent probability assignments.

* See, for example, Wallace (2010b) and Sebens and Carroll (2015). Inasmuch as they require that
nontrivial auxiliary assumptions derive quantum probabilities, the suggestion is that they should be
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argument that gets to this step is making assumptions that are together equivalent
to assuming something like a special principle of indifference. The more direct
one’s appeal to a principle of indifference, the quicker the argument, but, for the
reasons we have just been considering, also the less compelling the argument.

Returning to Everett’s project for a moment, insofar as he was not concerned to
derive probabilities over branches, he had little use for a principle of indifference. In
order to account for appearances within a typical branch, he just needed to specify
a typicality measure over branches. One would need something like a principle of
indifference to infer probabilities over branches from typicalities over branches.**

If one wants probabilities over branches, one needs (1) something that says
how to assign probabilities over branches and (2) something that says what the
probabilities concern. To get a theory that makes the standard quantum predic-
tions one further needs a way to assign forward-looking probabilities to possible
measurement outcomes.

10.4 Decohering Worlds

Choosing the special preferred basis in the context of the splitting-worlds theory
is as difficult as saying when collapses occur in the standard collapse theory.
The decohering-worlds formulation of quantum mechanics seeks to address this
problem by providing a rule that determines what worlds there are given (1) the
physical interactions between the systems of interest and (2) a specified level of
description of those systems. This provides a way to characterize alternative sets
of post-measurement worlds that each contain determinate measurement records
at a specified level of description.*

Worlds on this view are emergent. How one characterizes them depends on one’s
level of description, but they are nevertheless fully real entities. David Wallace
gives an analogy between worlds and tigers. Just as one might understand tigers
as emergent patterns, or structures, within the states of a classical microphysical
theory, one should understand worlds as emergent patterns, or structures, within
the global quantum-mechanical state (2010a, 56). Such worlds, like medium-sized
objects in a microphysical theory, might be individuated differently at different
levels of description. At a particular level of description one might identify worlds

specified along with the rest of the physical theory. We will say more about Wallace’s approach in
particular when we discuss decohering worlds in the next section.

'* Let’s call such an auxiliary assumption, one connecting typicalities to probabilities, a x-principle.
A *-principle might be thought of as a sort of generalized principle of indifference. One needs to
supplement one’s theory with a *-principle to assign probabilities to branches. But one also needs to
say what such probabilities are probabilities of.

'* See Saunders (2010) and Wallace (2012) for descriptions of the decohering worlds formulation of
quantum mechanics. The decohering worlds formulation is closely related to the decohering histories.
See Griffiths (1984) and Gell-Mann and Hartle (1990) for descriptions of this approach.
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with substructures of the quantum state. As Wallace puts it, they are “mutually
dynamically isolated structures instantiated within the quantum state, which are
structurally and dynamically ‘quasiclassical’ ” (2010a, 70). Because of the constant
possibility of interference effects between branches and the contingency on one€’s
level of description, one might put it more precisely by saying that worlds are quasi-
isolated, quasiclassical structures at an appropriately specified level of description.

Proponents of the decohering worlds formulation like to think of it as nothing
more than Everett’s pure wave mechanics.'® It is, however, better characterized as
pure wave mechanics with at least two auxiliary assumptions. One is a rule for
how to individuate worlds given the interactions between physical systems, and
the other is a rule for what probabilities are and how to assign them to worlds. The
rules for individuating states and assigning probabilities are typically presented as
self-evident given the dynamics of the theory or as resulting directly from basic
principles of reason. Regarding the former, the thought is that emergent worlds
are just found in the decohering structure described by the theory. Regarding the
latter, the thought is that probabilities over these worlds are determined by basic
principles of rational action that one would arguably want to adopt if one were
committed to decohering worlds as an accurate description of the physical world."”

There is good methodological reason to include whatever auxiliary assumptions
are central to one’s physical explanations in the description of one’s physical
theory. The specification of what constitutes a physical world and how such worlds
are individuated is meant to do real explanatory work in accounting for deter-
minate measurement records. And since pure wave mechanics itself says nothing
whatsoever regarding quantum probabilities, the details of one’s understanding
of probabilities in decohering worlds have real explanatory work to do as well.
In short, tracking the auxiliary assumptions one needs to explain determinate
measurement records and whatever is meant to count as quantum probabilities
will help us be clear concerning what is doing the explaining and, hence, what one
might want to include in one’s specification of the theory itself.

One might take the rule for how to understand and individuate worlds as having
something like the following form:

3. Interpretation of states (decohering worlds): There is a branching struc-
ture B(t) that is associated with the linearly evolving state of the universe
|w(#))y- This branching structure is determined at a specified level of descrip-
tion L by the decohering interactions between physical systems. Each branch

¢ While it is quite different from what Everett had in mind, proponents of the decohering worlds
formulation typically ascribe it to Everett. They further adopt his goal of deducing the standard
quantum probabilities from pure wave mechanics alone. But unlike Everett, they typically want self-
location probabilities over worlds rather than quantum statistics within a branch.

7 See Wallace (2010b) for a careful description of how probabilities over branches are derived. We
will have more to say about this in a moment.
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in B(¢) represents a world at level of description L. The properties of this
world are determined by the local state associated with that branch.

On this view, the world will split (at a specified level of description) whenever
the state of a superposed object system becomes correlated to the state of a
recording property of a measuring device that decoheres with its environment
at the specified level of description. Since decoherence is always a matter of
degree, one might think of the level of description as specifying how much and
what sort of decoherence one requires in order to feel comfortable saying that
the worlds have split given the systems and properties one finds salient at the
given level of description. This depends on what one wants to explain. If one is
just interested in a coarse-grained specification of something like the position
of a macroscopic pointer, typical decoherence effects will guarantee determinate
measurement records in each roughly specified, decoherence-induced branch. The
observer’s determinate experience of seeing the pointer indicating a particular
result is to be explained by the fact that she occupies a world where the pointer
in fact indicates that result at an appropriate level of description.'®

Whenever the environment is correlated with the value of a physical record, the
record will be determinate at a level of description appropriate for characterizing
the value of the record. Inasmuch as actual measurement records are meant to be
read, it will be hard to keep macroscopic records from decohering in precisely that
parameter used to indicate the measurement result. Hence most systems that one
would think of as indicating a measurement result, systems like the pointer on
a real measuring device, will indicate a determinate measurement result in each
world at a level of description appropriate for describing macroscopic systems.

To see how this works, let’s return to the Wigner’s friend story but consider it in
a less idealized context. On the decohering-worlds formulation, worlds begin to
split relative to the a macroscopic-pointer level of description when the position
of the pointer on the friend’s measuring device M becomes correlated with the
x-spin of S. Since the pointer is a macroscopic system, in any everyday-world
version of the story its environment will very quickly become correlated with
its position. Environmental decoherence dynamically selects the approximate-
pointer-position basis as privileged since it is a property to which the environment
correlates at the specified level of description. Including the environment E, the
resultant state will be something like
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when written in the environmentally selected basis. Here there are two roughly
defined worlds—one where S is x-spin up and M records x-spin up and the other

1% See Wallace (2012, 46-102) for a description of the process by which approximate decohering
worlds form at a specified level of description.
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Figure 10.3. Rough decohering worlds resulting from a spin measurement.

where S is x-spin down and M records x-spin down. Then after F looks at the
pointer, the state will be something like
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again with two roughly defined worlds—one where one where S is x-spin up and M
and F record x-spin up and the other where S is x-spin down and M and F record
x-spin down (as in Figure 10.3). The dotted lines indicate that the worlds are
dependent on one’s level of description and, even so, a bit fuzzy—indeed, fuzzy
enough that there is typically no simple matter of fact about how many worlds
there are. But more on this in a moment.

Because of the interaction with the environment, the final state above is not
an eigenstate of the usual Wigner’s friend A observable. If W were to make an
A-measurement, he would get the results +1 and —1 with approximately equal
probability just as when a single particle is correlated with the pointer position."
That is, W would not get the interference effect of always getting the result +1
and hence not detect interference between the branches. Hence, in this specific

'* The result +1 is still slightly favored as long as the correlation with the environment is less than
perfect.
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and limited sense, it would seem to W that a collapse had occurred in the box. Of
course, there is another A-type observable of the composite system FEMS that has
the final state above as an eigenstate with eigenvalue +1. Call this observable B.
If W measured B it would show that there was in fact no splitting of worlds
into causally isolated entities. But measuring B would be yet more difficult than
measuring A since one would necessarily need to include the environment in the
measurement and the environment will itself decohere.

But it is not the difficulty in making an A-type measurement that explains
the experience of a determinate measurement outcome. Observers typically do
not even try to make such measurements. Rather, the explanation is that there
is a level of description appropriate for characterizing the relevant properties of
the macroscopic systems and the properties of these systems at this level of
description are such that each copy of the friend inhabits a different world and
each world presents the friend with a determinate measurement record at that level
of description.

In order to explain the friend’s determinate experience, one wants to say that
there are two friends inhabiting different worlds at the end of the measurement
and that each has a different, yet perfectly determinate, measurement record.
The decohering-worlds formulation provides this, but only at a specified level of
description. If one wants to capture Everett’s understanding of the Wigner’s friend
story, one must also be able to say that, at another level of description, there is just
one world inhabited by a single friend who is part of the composite system that is
in an eigenstate of an A observable and would, hence, exhibit the inference effect
of yielding +1 as the result of the A-measurement if it were ever performed. That
one cannot in fact measure it does nothing whatsoever to change the fact that the
linear dynamics requires an interference outcome if one could measure it. Both of
these facts can be accommodated by decohering worlds, but at different levels of
description.

The decohering worlds formulation, then, provides a sense in which one might at
a specified level of description understand the post-measurement state as one where
there are two friends, each with a determinate measurement record. It is this that is
meant to explain the experience of a determinate measurement outcome. There is
also a sense in which one might at another level of description understand the post-
measurement state as one where there is just one friend without any particular
determinate measurement record. It is this that would explain why the composite
system is in an eigenstate of a A-type observable if one could ever make such a
measurement. How many worlds there are and the states of those worlds depends
on one’s level of description, and one chooses a level of description appropriate to
what one wants to explain.

Macroscopic systems will evolve almost classically in each world at a level of
description appropriate for describing the interactions between such systems. This
is because under the linear dynamics the state of each world will evolve classically
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as long as the branch that characterizes that world does not split or interfere with
another branch, and decohering worlds are precisely those for which one should
expect not to see splitting or interference effects between branches on typical
interactions at the appropriate level of description. Part of the point of saying
almost classically is that the worlds are virtually never perfectly isolated at any level
of description.

In order to understand this as more than just a discussion of linguistic conven-
tion, one needs to take seriously the emergent metaphysics. One wants to be able
to say something like that the friend sees the result x-spin up because there really
is a copy of the friend seeing that result at a level of description appropriate for
describing friends and their experience. The point is just that whether one gets
a satisfactory explanation of what it is like to live in such a physical world will
depend on the details of the metaphysical story of emergence one tells and how
one understands experience in that story.

The branching process by which worlds emerge is always a matter of degree. It
begins as environmental decoherence progressively destroys interference effects
at one€’s specified level of description. For everyday physical systems, one would
expect the environment never to be perfectly correlated with the decohering
property of one’s object system, hence one should always expect some interference
between branches, and hence some nonclassicality, even at a level of description
aimed at characterizing properties of macroscopic systems. Further, inasmuch as
decoherence is always a matter of degree, there is never a simple matter of fact
concerning how many worlds there or what the properties of those worlds are.*
Such questions must always be asked relative to a specified level of description.
Since there is always a measurement that would in principle detect interference
effects between different worlds that are individuated at one level of description,
there is always a level of description at which the worlds did not split at all.

Of course, decoherence effects alone cannot explain why an observer gets a
determinate measurement record. Here they are being used to specify a rule for
how and when worlds split at a given level of description. The explanatory work is
being done by the emergent metaphysics. It is the fact that the observer inhabits
a real world with a determinate measurement result at an appropriate level of
description for talking about such things that is meant to explain why she really
sees that result. And since the level of description one requires for an explanation
of macroscopic behavior immediately selects a rough decomposition of the global
state into worlds, the decohering-worlds formulation is arguably a significant
improvement over the metaphysical story provided by the splitting-worlds theory
discussed earlier.

% As Wallace puts it “there is actually no such thing as the number of branches” (2012, 120). See also
Wallace (2012, 99-102).
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The metaphysical interpretation of the quantum formalism plays an essential
role here. Level of description talk does not address the determinate experience
problem. That the formalism provides a rough sense with which one might
describe the observer as having a determinate record at a given level of descrip-
tion does nothing to explain the observer actually having a determinate experi-
ence corresponding to that record. There are typically copies of the observer at
that level of description that have incompatible records, and there are typically
other levels of description that describe the observer as not having any determinate
records at all, indeed levels of description that fail even to characterize there being
a determinate observer. The explanation for why a given observer in fact has a
specified determinate experience is given by the metaphysical commitment to
there actually being an emergent observer with that record. Again we see that the
formulation of quantum mechanics and one’s interpretation of the formulation are
not independent—metaphysics plays an essential role in the theory’s explanations.

This leaves us with the problem of accounting for probabilities. If one wants
probabilities over decohering worlds, then inasmuch as each world is equally real,
one needs a rule that assigns something like self-location probabilities to each
of the decohering worlds at a specified level of description. This requires further
auxiliary assumptions.

Wallace (2010b) shows how one might derive such a rule in the context of the
decohering-worlds formulation supplemented with a set of ten auxiliary assump-
tions concerning how a rational agent would behave in the context of a world
described by such a theory.*! The idea is to show that an agent who satisfies those
assumptions would act as if the standard quantum probabilities obtained. While
the auxiliary assumptions are presented as basic principles of reason, since some of
them concern such things as an agent’s preferences when faced with a superposition
of options, they go well beyond the assumptions of classical decision theory. As a
result, this is manifestly not a case of deriving the standard quantum probabilities
from pure wave mechanics alone. Rather, this approach is best understood as
showing how one might try to make sense of rational choice if one were already
committed to the truth of the decohering-worlds formulation of pure wave mechanics.
There is nothing wrong with making such auxiliary assumptions, but since they
are essential to explaining quantum probabilities and since quantum probabilities
represent the empirical content of the theory, there is a good methodological
argument for including them in oné€’s specification of the physical theory.

Given appropriate auxiliary assumptions, one can get synchronic self-location
probabilities on the decohering-worlds formulation without much difficulty, but it
is much less clear how to get the standard forward-looking quantum-mechanical
probabilities. The problem is that since every copy of one’s future self is fully
realized in an emergent world at an appropriate level of description, there is a

! Wallace’s derivation is a carefully executed version of the decision-theoretic approach to proba-
bility in Everettian quantum mechanics introduced by David Deutsch (1999).
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straightforward sense in which the forward-looking self-location probability asso-
ciated with each possible measurement outcome is just one. There is nothing here
that the standard quantum probabilities might concern. Without forward-looking
probabilities, one does not have the usual quantum predictions concerning what
one should expect regarding future measurement outcomes. Hence one ultimately
lacks the standard grounds for rational action understood in the standard way.

While it encounters significant conceptual problems, the decohering-worlds
formulation has two notable virtues. First, since splitting is just a matter of
decoherence at a level of description, this theory, like pure wave mechanics, can be
described in a way that is compatible with relativistic constraints.?? Further, unlike
GRW-type theories and Bohmian mechanics, the decohering-worlds formulation
does not require any special choice of preferred physical observable. Rather, like
pure wave mechanics itself, the formalism provides a framework theory that can
be applied to almost any basic characterization of the physical world.

10.5 Single-Mind and Many-Minds Theories

Albert and Loewer’s (1988) single- and many-minds theories provide one way to
make clear what one means by both synchronic and future-directed self-locating
probabilities. The single-mind theory might be thought of as pure wave mechanics
with the usual linear dynamics and with the following stipulation and auxiliary
dynamical rule:

4*. Mental dynamics (single mind): Every physical observer Fis associated with
a mind that always has a determinate mental state M. The observer’s mind
is associated with a branch in F’s physical state written in the determinate-
record basis. The physical records represented by the branch determine the
mental state M. When the branch splits, the observer’s mind is randomly
associated with one of the resulting branches, with probabilities propor-
tional to the norm-squared of their respective coefficients, and the new
branch determines F’'s new mental state.

On this rule an observer’s mental state is randomly determined by the usual
quantum probabilities each time a measurement-type interaction involving F’s
physical records occurs.

Consider the Wigner’s friend story. The friend’s mental state M starts in the
“ready to make a measurement” state, then, after F physically interacts with M, the
friend’s mind is randomly associated with the first term of the state resulting from
the linear dynamics

2 Tt is, however, unclear that one could introduce standard forward-looking probabilities and
preserve this virtue.
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with probability |a|> and with the second term with probability ||>. In the first
case, the friend’s mental state M records the result “x-spin up” and in the second
case it records the result “x-spin down” More generally, the probability of an
observer getting a particular result is the standard quantum probability of getting
that result conditional on the branch the observer’s mind is associated with before
the measurement.”®

The physical observer will typically be in an entangled superposition of having
recorded mutually incompatible results. Since it will always be in principle possible
to detect interference between branches, every branch will be physically real in
Everett’s operational sense. In particular, an A-measurement of the composite
system FMS will indicate that there is no collapse on measurement. But the
friend’s mental state will always represent her as having recorded a particular, fully
determinate result. From her perspective, it will appear that a random collapse
occurred with the standard quantum probabilities. And, unlike in the bare theory,
the observer will have a perfectly ordinary mental record of the outcome given by
her mental state M.

In contrast with the situation in most many-worlds theories, understanding
standard forward-looking probabilities here is easy. The probability of an observer
getting a particular result is just the chance that her mind will in fact end up
associated with the branch representing the corresponding physical record. While
the strong mind-body dualism involved in the single-mind theory may strike
one as wildly implausible, the explanation of probabilities is perfectly clear. The
metaphysics does real explanatory work by saying what the quantum probabilities
are probabilities of. Here they are simply descriptive of the stochastic evolution of
the observer’s mental state M.

There is a sense in which the mental dynamics of the single-mind theory is
fully determined by the suggestive properties of the bare theory alone if one
requires that an observer’s mental state agree with what she will have the sure-fire
disposition to report. In particular, the bare theory’s limiting properties tell us that
the observer will approach a state where she has the sure-fire disposition to report
that her results were randomly distributed with the standard quantum-mechanical
relative frequencies. For this report to be in fact true, her sequence of mental
records must be randomly determined by the standard quantum probabilities
precisely as specified by the single-mind theory’s mental dynamics. The suggestive
properties of the bare theory similarly place very strong constraints on the deter-
minate records one might introduce to any no-collapse formulation of quantum
mechanics.**

** The single-mind theory might be thought of as a hidden-variable theory where the hidden variable
is an observer’s actual mental state.

** This includes placing dynamical constraints on hidden-variable theories like Bohmian mechanics
(Chapter 11). See Barrett (1999) for a discussion of this and of the “transcendental” strategy for
extending the bare theory more generally.
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The single-mind theory might be understood as a no-collapse hidden-variable
formulation of quantum mechanics where the observer’s mental state M, rather
than a physical parameter like position as in Bohmian mechanics (Chapter 11), is
the so-called hidden variable that explains her determinate measurement records.
Among its virtues is that, unlike other hidden-variable theories, the single-mind
theory requires no physically preferred basis. Rather, the preferred basis is just part
of the rule that connects physical states to mental states. The single-mind theory
also clearly provides determinate measurement records in terms of the observers’
mental states, and hence directly explains the observer’s experience. But this direct
explanation comes at a cost.

This way of getting determinate measurement records and forward-looking
probabilities is blatantly ad hoc. Since an observer’s mental state does not super-
vene on her physical state, like Wigner’s solution to the measurement problem, the
single-mind theory requires a strong variety of mind-body dualism. Indeed, the
particular way that supervenience fails here leads to a sort of solipsism.

Consider the Wigner’s friend story again. Suppose that F’s mental state records
x-spin up as her measurement outcome. Suppose that W then measures the x-spin
of S. The mental dynamics predicts that W will get the mental-state result
x-spin down with probability |B|>. Suppose he does. Here F and W will have
incompatible mental records for the same “physical” property, but they will never
know it. When they compare their results, by means of a physical process described
by the linear dynamics, F and W will end up believing that they got precisely the
same result because of the bare theory’s intersubjective agreement property. So
they will be under the illusion that their experiences agree when they in fact do not.

This type of illusion is less pernicious than the sort predicted by the bare
theory. At least here the observers really get determinate measurement results
with perfectly ordinary determinate content, and they get these results with the
standard forward-looking probabilities. Nevertheless, since there is no reliable
means for them to share their experiences, if the theory is in fact true, an observer
could only check its predictions against her own experience. One might say that
the theory is empirically coherent, but only with respect to one’s own experience.

Albert and Loewer proposed their many-minds theory specifically to address
this failure of supervenience. The many-minds theory associates a continuous
infinity of minds with each physical observer. One might think of the theory as
pure wave mechanics supplemented with the following stipulation and auxiliary
dynamics:

4*. Mental dynamics (many minds): Every physical observer F is associated
with a continuous infinity of minds. Each of these minds is independently
associated with a branch in F’s determinate-record basis and always has the
corresponding determinate mental state. When the branch that a particular
mind is associated with splits, that mind is randomly associated with one of
the resulting branches with probabilities determined by the norm-squared
of their respective coeflicients.



184 MANY WORLDS AND SUCH

Here the mental state of each mind evolves just as in the single-mind theory, only
there are more of them. The (global) observer experiences all possible measure-
ment outcomes in the sense that some of her minds experience each, but each
(local) mind has the fully determinate experience of a particular measurement
outcome. It is the local minds that are meant to explain ordinary experience.

Now with probability one there will be some mind of W that gets the same
result as any particular one of F's minds. So agreement between F and W is, in this
curious sense, agreement between sentient agents. One will be able to determine
the proportion of an observer’s minds with each mental state from the amplitudes
associated with the branches of the observer’s physical state. But associating each
observer with a continuous infinity of minds seems a high price to pay for this
exotic and relatively weak variety of supervenience.

On both the single-mind and many-minds theories, the physical state evolves in
a linear way that is compatible with the constraints of special relativity. For what
it’s worth, inasmuch as the proportion of an observer’s minds with each possible
mental state supervenes on her physical state, one might take this weak sort of
global mental state (but not the local states of the individual minds) to evolve in a
way that is compatible with relativistic constraints on the many-minds theory.

Whether or not one thinks that the sort of supervenience one gets provides a
sufficient motivation for the theory, the many-minds formulation is instructive
inasmuch as it illustrates how one might construct a non-splitting many-worlds
theory. The thought is to suppose that the complete history of the world as it
appears to each of a particular observer’s minds is in fact the history of a non-
splitting, physically distinct world. As each mind evolves, it traces a path through
the branching structure determined by the evolution of the global quantum-
mechanical state written in the determinate-record basis. Each path, or thread,
is then understood as the history of a non-splitting physical world. This is the idea
behind the many-threads formulation of quantum mechanics.

10.6 Many Threads and Many Maps

The many-threads formulation of quantum mechanics provides another way to
make sense of both synchronic and forward-looking probabilities. The theory
might be thought of as pure wave mechanics with the following rule:

4. World dynamics (many threads): There is an infinite set of non-splitting
worlds. The history of each world corresponds to a path through the branch-
ing structure determined by the evolution of the global quantum state
written in the determinate-record basis B. The prior probability of each
world being ours is given by the standard quantum probability assigned to
its history.
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The quantum-mechanical state, its linear evolution, the preferred basis, and the
norm-squared amplitude measure might be understood here as together providing
a procedure for specifying the set of possible complete histories and a probability
measure over that set. The particular sequence of measurement records we experi-
ence is explained by the fact that those are the actual physical records of the world
we inhabit. The prior probability of each possible world history being ours is given
by the standard quantum probabilities. And, as we learn further properties of our
world, we condition on this evidence to update our degrees of belief concerning
future events.*®

Since there is no branching process to copy an observer, there is no special
problem in assigning forward-looking probabilities to future measurement results.
Probabilities of future events are simply degrees of belief concerning the features
of the world history one takes oneself to in fact inhabit.

At root, the many-threads formulation of quantum mechanics just consists in
a procedure for specifying a set of physically possible worlds along with their
complete histories and a probability measure over the set of world histories that
indicates the prior probability of each being ours.*

If one wants something that looks more like a relativistic formulation of quan-
tum mechanics, one might generalize the notion slightly and consider a many-
maps theory. Such a theory consists in a set of complete spacetime maps of events
(which might be given in terms of something like particle locations, mass densities,
or flashes) and an epistemic probability measure over that set of maps. Each map
would give the full spacetime history of a possible physical world, and the measure
over the set of maps might be thought of as the prior probability that each presents
the history of our world.

We have already seen something very like a many-maps theory. Tumulka’s
(2007) relativistic formulation of GRWf might be understood as using hypersurface-
dependent wave functions to provide a rule for distributing flashes in spacetime.
On this view, the theory might be understood as a specified set of possible
spacetime maps of flashes together with an epistemic probability distribution
over the set representing the prior probability of each world being the one we in
fact inhabit. One’s determinate measurement records are then taken to supervene
on local constellations of flashes in the map that is descriptive of our world.

Similarly, a hidden-variable theory like Bohmian mechanics (Chapter 11) might
be understood as a many-threads theory where there is one world history for each

> As described in the last section, the many-threads theory might be thought as the many-minds
theory where the trajectory of each mind determines the complete history of a physically possible world.
See Barrett (1999) and (2005b) for more detailed discussions of the many-threads and many-maps
approaches.

2¢ The worlds are individuated by their full histories and never split. As suggested by the wording
here, quantum probabilities are stipulated by the theory and are naturally thought of as epistemic. The
way that one individuates the possible worlds might involve decoherence considerations. This type of
theory is sometimes called a many-histories formulation of quantum mechanics. See Griffiths (1984)
and Gell-Mann and Hartle (1990) for examples of this approach.



186 MANY WORLDS AND SUCH

possible initial particle configuration relative to the wave function and where the
distribution postulate provides an epistemic probability measure of each world
history in fact being ours. But this can be looked at the other way around as well.
Since we only need one world, our world, to explain our actual experience, the
other worlds in a many-threads theory are in an important sense superfluous.
Given this, one might think of a many-threads theory as a hidden-variable theory
that gives epistemic probabilities for all possible evolutions of the hidden variable,
only one of which describes our actual world.

It is clear what the quantum probabilities associated with future events concern
on a many-threads or many-maps interpretation of quantum mechanics. They
simply represent the epistemic probability that those events will occur in our
world. More generally, if one adopts a metaphysics of non-splitting worlds, the
standard quantum probabilities can be understood as degrees of belief concerning
what the future looks like in the world one in fact inhabits.

Inasmuch as a many-maps theory just consists of a set of possible spacetime
maps and an epistemic probability measure over that set, one might argue that it
is compatible with relativity by dint of the fact that are no dynamical laws that
might be incompatible with the dynamical constraints of relativity. But this is a
particularly cheap variety of compatibility, and, as we discussed in connection
with Tumulka’s relativistic formulation of GRWI, that a theory is compatible with
relativistic constraints does not mean that it is relativistic theory in the sense of
predicting relativistic quantum phenomena. One might try to reverse-engineer
such relativistic phenomena as pair-production and -annihilation as events in
the context of a many-maps formulation of quantum mechanics, but one should
want such phenomena to follow from the dynamical constraints of relativity in the
context of quantum mechanics. Pasting relativistic phenomena into a theory after
the fact is bound to look as ad hoc as it in fact is.

The explanatory weakness of the approach goes deeper. Many-threads and
many-maps formulations fail to provide any dynamical explanations at all. The
explanation for every event is just because that’s what happens here and now in the
physical world we inhabit. Of course, a typical world in the sense given by the epis-
temic probability measure associated with a many-maps theory can be expected
to exhibit the standard quantum statistics, but it should be clear by this point
why there is nothing particularly virtuous in that. That said, depending on one’s
sense of the relative explanatory costs, one might be willing to give up dynamical
explanation in order to get the sort of account of probability that one wants. It is
presumably a significant virtue that one can understand probabilities in a perfectly
straightforward way as epistemic probabilities concerning self-location in worlds
with complete histories in the context of a many-threads or many-maps theory.”’”

%7 The situation here is closely analogous to the one faced by those Bohmians who specify Bohmian
mechanics (Chapter 11) in terms of a typicality measure then aim to get probabilities from typicalities.
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While a many-threads or many-maps formulation of quantum mechanics
avoids the sort of mind-body dualism of something like the single- and many-
minds theories, this also comes at a cost. The determinate-record basis in a
many-threads or many-maps theory is physically preferred. As in the splitting-
worlds theory, one’s choice of B determines what physical properties will in fact be
determinate in each of the physically possible worlds. Insofar as one’s choice of B
is designed to make actual measurement records determinate, stipulating a just-
right set of physical facts looks blatantly ad hoc. Of course, one might try to take
some of the sting out of this by using decoherence considerations to individuate
the threads or maps at a specified level of description.

10.7 Epistemological, Pragmatic, and
Information-Theoretic Interpretations

On the many-threads formulation the quantum-mechanical state is just used to
get an epistemic probability measure over possible physical histories. In a similar
spirit, there is a class of information-theoretic formulations of quantum mechanics
where the standard quantum-mechanical state is understood as representing an
agent’s epistemic or informational state. On this sort of theory, the collapse of the
state simply represents the fact that the observer has learned something about the
system measured. There are a number of such theories, and each works a little
differently.*®

Suppose observer F is prepared to measure the x-spin of a system S in an
eigenstate of z-spin. On an epistemological interpretation, that F assigns S the state

LA2( 1,05 + 1 1s)

before the measurement indicates that F does not know what the measurement
result will be and assigns unbiased probabilities over each possibility as indicated
by the norm-squared coefficients. That she assigns | | ,)s after getting x-spin down

Here one argues that physical worlds that are typical in a sense specified by ones theory should
be expected to exhibit the standard quantum phenomena, then one supplements the theory with
auxiliary assumptions that allow one to infer that one should expect to find oneself in a world that
is typical in just this sense. For examples of this approach see Bricmont et al. (eds) (2001). Here,
as in the Everettian tradition, one cannot derive probabilities from typicalities without auxiliary
assumptions. And since these assumptions play a salient explanatory role in the theory (by explaining
ones probabilistic expectations), the clearest strategy is to add the auxiliary assumptions to one’s
specification of the theory.

8 See Fuchs (2010), Healey (2012), and Bub (2015) for examples in this tradition. See also Chiribella
and Spekkens (eds) (2016) for a discussion of information-theoretic approach and generalized proba-
bilistic formulations of quantum mechanics.
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as the result indicates that she now knows what she would get if she were to measure
the x-spin of the system again.

Inasmuch as quantum states represent the epistemological states of observers,
states are indexed to observers on this approach. In the Wigner’s friend story, the
external observer W might assign the state

1 1
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to the composite system F + S when F herself assigns the state |“|,”)g| |, )s to that
system. In this case, the state from W'’s perspective indicates that he does not yet
know what result F got but does believe that an A-measurement of F + S would
yield the result +1 in agreement with his description of the state as this particular
entangled superposition.

On an epistemological interpretation, one might take an observer’s beliefs
to concern the values of physical quantities that are not fully described by the
quantum-mechanical state or, more simply, to concern expectations for the results
of future measurements. In the first case, the theory might be thought of as a sort
of hidden-variable theory. In the second, it looks more like a predictive algorithm.

There are a number of puzzles such theories face. One of these concerns self-
measurement.”® If F performs an x-spin measurement on S and gets x-spin down,
then the state of F + S from her perspective is |“l,”)g| l,)s. If W performs
an A-measurement on F + S and gets the result +1, then the state of F + S
from his perspective is the entangled superposition above. But if F performs an
A-measurement on F + S in this situation, then the linear dynamics requires that
she also gets the result +1 in which case the state of F + S from her perspective
will be both |“|,”)5| | )5 and the entangled superposition above. The agent, then,
is left with an inconsistent epistemic state.*®

One might address the inconsistency here by using systems rather than agents
to index quantum states. Along these lines, F might maintain logical consistency
by assigning the state | | )s to the system S but, like W, assign the entangled super-
position above to the system F + S. But inasmuch as quantum states are indexed
to systems and not agents on such a proposal, they are not well characterized as
simply representing the epistemic state of agents.*!

2% See Albert (1992) for an extended discussion of self-measurement.

3 See Hagar and Hemmo (2006) for other considerations along these lines.

*! There is also a class of theorems that cause problems for specific epistemological formulations
of quantum mechanics. The most famous of these is the PBR theorem (Pusey, Barrett, and Rudolph
2011 and 2012). That there is always some way to get around such theorems, however, is evident
in the observation that any consistent formulation of quantum mechanics that purports to describe
the physical world might be reinterpreted as giving merely statistical information regarding what one
should expect regarding the results of future measurements.
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A more general and telling problem with such formulations is that we have
formulations of quantum mechanics that are just as good predictively but that
aim to be more directly descriptive of the physical world. A theory that can be
taken as descriptive of physical states and processes provides a richer variety of
explanation than one that explicitly does not purport to do so. The attractiveness
of epistemological, pragmatic, and information-theoretic interpretations of quan-
tum mechanics, then, depends on one believing that those formulations of
quantum mechanics that we have formulated with the aim of describing the
physical world are ultimately unsatisfactory even when just understood as predictive
algorithms. It is difficult to see the argument for taking such a line.
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Bohmian Mechanics

11.1 Bohm’s Theory

Bohmian mechanics (1952) is a no-collapse hidden-variable theory. The quantum-
mechanical state is represented by a wave function that evolves according to the
linear dynamics. But particles also always have fully determinate positions. And
they move in a way that is fully determined by the evolution of the wave function.
While it will take a while to explain precisely what this means, one might think
of the theory as pure wave mechanics but where the actual particle configuration
at a time selects a single effective branch of the total wave function. This selection
then, in turn, determines the effective properties of all physical systems.

In its simplest form Bohm's theory is characterized by the following principles:*

1. Representation of states: The complete physical state of a system S at time ¢
is given by the wave function |y(g, f))s over configuration space and a point
in configuration space Q(?).

2. Representation of observables: All observations are ultimately measure-
ments of position. The value of a measurement record is determined by
the wave function |y(g,t))s and the configuration Q(f). Specifically, the
empirical content of the record is given by the effective wave function
selected by the configuration.’

3. Interpretation of states: The position of every particle is always determinate
and is given by the configuration Q(¢).

4. Laws of motion:

I. Linear dynamics: The wave function evolves in the standard unitary way.
In the simplest case this is given by

ihaW’(% s

S = ly(a.0)s.

! This description of Bohn's theory follows Bell (1987, 127) rather than Bohm’s (1952) original
quantum-potential description.

? Presentations of Bohmian mechanics typically just say something along the lines of the first
sentence of this rule. We will consider here what the second and third sentences mean and how they
follow from the details of how measurement works in Bohmian mechanics. See Diirr, D., S. Goldstein,
and N. Zanghi (1992) for an an introduction to the idea of an effective wave function.
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I1. Particle dynamics: Particles move according to

dQ(®) _ 1 Im({y(g, DIVily(g, D))
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where my, is the mass of particle k and Q is the current configuration.

5. Distribution postulate: The prior epistemic probability of the configura-
tion Q(#,) being in region R of configuration space at an initial time ¢, is
given by the standard quantum probability

fl(w(q, to)|v(q, to))|dr.
R

6. Composition: One composes the wave function associated with different
systems and properties using the tensor product in the standard way.

Recall that configuration space for a system S is a 3N-dimensional space where N
is the number of particles in S. Each point in configuration space, then, deter-
mines the three-dimensional position of each particle in S. The usual quantum-
mechanical state representing particle positions can be given as a complex-valued
function over configuration space. But configuration space plays a more central,
conceptual role here.

In Bohmian mechanics, both the wave function |y(q,t))s and the current
particle configuration Q(f) evolve in configuration space. Since the integral of the
probability density |(y(g, t,)|v(q, t)))|* over configuration space is always one, one
might think of probability as a compressible fluid. As the wave function evolves
deterministically according to the standard linear dynamics, rule 41 (Bohm), the
probability fluid flows about in configuration space just as a high-dimensional,
compressible fluid might. The auxiliary particle dynamics, rule 4II (Bohm), char-
acterizes the point representing the full particle configuration Q(t) as being carried
along by the probability current in configuration space as if it were a massless
particle. The evolution of this point in 3N-dimensional configuration space, in
turn, determines how the N particles of the system move in ordinary three-
dimensional space.

This picture of the wave function as a field in configuration space that pushes
around the current configuration is crucial to understanding the theory. As John
Bell, a strong proponent of Bohmian mechanics, put it:

No one can understand this theory until he is willing to think of y as a real objective
field rather than just a “probability amplitude.” Even though it propagates not in
3-space but in 3N-space. (1987, 128)°

* The italics here are Bell’s. They indicate the importance he placed on this passage. Because dynam-
ical stories are most naturally told in configuration space in Bohmian mechanics, some proponents of
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The quantum probabilities specified by rule 5 can be thought of as epistemic. Given
the dynamics, if the epistemic probability density for the particle configuration is
ever given by the standard quantum probabilities |y(g, £)|?, then it will continue
to be so until one makes an observation. Since one can think of the configura-
tion as being carried by the probability current, the epistemic probability of the
configuration being in a region R changes precisely as the amount of probability
fluid in R changes. After a measurement, the posterior epistemic probabilities are
given by the standard quantum probabilities conditional on the value of one’s
record. This distribution is given by the norm-squared of the effective wave function
given the record.” Since the distribution postulate stipulates that one assign a prior
probability density |y(q, t,)|* to the particle configuration at time f,, Bohmian
mechanics predicts the standard quantum probabilities for the distribution of
particles.” One might want to weaken the distribution postulate so that it just says
that an initial state is typical in the measure over configuration space given by
|y(g, t)|%, but then, as we saw in the discussion of Everettian quantum mechanics,
one would need to add something else to the theory to get from talk of typical
states to probabilistic predictions.®

In Bohmian mechanics, particle positions are always determinate, and it is this
that is supposed to explain experience. For his part, Bell believed that getting the
right “positions of things” was both necessary and sufficient to explain experience.
He explained how observation works in the theory as follows:

The fundamental interpretative rule of the model is just that [the particle posi-
tion] is the real position of the particle at time ¢, and that observation of position
will yield this value. Thus the quantum statistics of position measurements, the
probability density [|[{w(q, t,)|¥(g, £,))|*] is recovered immediately. But many
other measurements reduce to measurements of position. For example, to
“measure the spin component g, the particle is allowed to pass through a Stern-
Gerlach magnet and we see whether it is deflected up or down, i.e. we observe
position at a subsequent time. Thus the quantum statistics of spin measurements
are also reproduced, and so on. (1987, 34)

the theory take the real physical world to consist of the full particle configuration and a field represented
by the full wave function in configuration space. See, for example, Albert (2013) and (2015). For
this variety of wave-function realist, the appearance of ordinary three-dimensional objects occupying
locations in three-dimensional space is an emergent illusion, akin to the sort of illusions predicted by
GRWT, generated by the evolution of the particle configuration and this high-dimensional field.

* See Diirr, Goldstein, and Zanghi (1993) for a discussion of the equivariance of the standard
quantum probability distribution.

* Note that Bohmian mechanics violates both directions of the standard eigenvalue-eigenstate link.
Every particle always has a determinate position even when it is not in an eigenstate of position, and it
almost never is. And, as we will see (p. 197), it is possible for the wave function to represent a particle
as being in an eigenstate of one location when the particle is in fact somewhere else.

¢ For this sort of typicality approach in Bohmian mechanics and discussions of it see Diirr, Goldstein,
and Zanghi (1992), Callender (2007), Goldstein (2012), and Hemmo and Shenker (2015).
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Given this description, one might imagine that the theory explains experience
because we directly see where things are—that the real positions of things are
simply given, and that we, hence, have immediate epistemic access to those
positions. Then, since the theory predicts the standard quantum probabilities for
the positions of things, it makes the standard quantum predictions insofar as every
measurement is in fact ultimately a measurement of position. Hence, one might
suppose, an ontology of things with positions immediately explains our experience
in the context of the theory.

But observation in Bohmian mechanics is more subtle than this description
might suggest. Observing the position of something is an indirect process, and
it never quite tells one where the thing is. One cannot simply see where an electron
is after it passes though a Stern-Gerlach device or at any other time. The issue is
not that electrons are small and hard to detect. It is that if one ever did know the
precise position of any object, or even just knew it more precisely than allowed
by the standard quantum probabilities, then one would be able to predict its
future behavior more precisely than the standard quantum probabilities allow. The
empirical adequacy of Bohmian mechanics depends on the fact that we do not have
epistemic access to the precise position of anything.

Determinate particle positions play a role in explaining determinate records,
and hence experience, but not by directly representing the empirical content
of those records. Rather, determinate positions explain determinate records in
Bohmian mechanics by selecting an effective wave function or branch of the
quantum-mechanical state.

We will get at what this means in two steps. First, we will consider what the
theory predicts regarding the motion of a particle in a spin device of the sort
described by Bell. Then we will consider what it means to observe the position of
something. This will illustrate how contextual properties like spin work, the nature
of measurement records, and how the theory explains experience.

11.2 Basic Spin Experiments

Consider an x-spin experiment of the sort Bell describes. A few preliminary
reflections will help to set up the experiment.

In Bohmian mechanics the precise physical geometry of one’s measuring device
matters. We will consider a particle passing through a Stern-Gerlach magnet
where the inhomogeneous magnetic field is oriented in the x-direction.

For the purpose of describing these experiences, we will suppose that localized
wave packets are spherically symmetric with a constant diameter and a uniform
probability density. This assumption makes the dynamical stories we tell easier
to picture. One can drop this idealizing assumption once one has a basic sense of
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how the theory works and replace it with something more like realistic gaussian
wave packets.

Since configuration space for a single particle is ordinary three-dimensional
space, the state of an electron is given by its position in ordinary three-dimensional
space and a wave function defined over ordinary three-dimensional space.

Finally, as we have seen, the wave packet associated with an electron can be
represented as a tensor product of a spin component and a position component.
In Bohmian mechanics, one might think of the position component as describing
the density of the probability fluid and the spin component as characterizing the
flavor of the wave packet.

We will first consider how the electrons wave function behaves, then how the
electron itself moves. Suppose that the electron’s initial wave packet is |1,),|0), (as
in Figure 11.1(a)). This might be thought of as representing an x-spin-up-flavored,
spherically symmetric, three-dimensional droplet of probability fluid in region 0.
The spin flavor of the wave packet determines how it will move in the x-spin device.
Given the standard setup of the x-spin device, the x-spin-up-flavored wave packet
[T)e|0), would be deflected up to region up,_and hence evolve to |1,).[up, ). In
contrast, the x-spin-down-flavored packet ||,).|0), would be deflected down to
region down, and hence evolve to ||,),|down,), (as in Figure 11.1(b)).

The distribution postulate tells us that the initial position of the electron is
determined by the standard quantum probabilities. In this case that means that
the electron is inside its associated wave packet with probability one. Since we are
supposing that the probability density is uniform in the packet, the electron has
an equal probability of being in the top half and bottom half of its spherical wave
packet on this side view, and an equal probability of being in the right half and
left half if one were looking at the wave packet from a top-down perspective, etc.
Further, by volume, the electron has an equal chance of being in the top half of
the top half and the bottom half of the top half and an equal chance of being in
the top half of the bottom half and the bottom half of the bottom half of the wave
packet, etc. In short, while we know with probability one that the electron is in its
associated wave packet, we do not know where it is in that wave packet beyond the
probability densities given by the wave function.
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Figure 11.1. How the wave function is deflected by Stern-Gerlach magnets.
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Figure 11.2. How the wave function moves the electron.

Suppose that the electron happens to begin in the top half of an x-spin-up-
flavored wave packet as indicated in Figure 11.2. Given the standard setup, the
wave packet will evolve from [1,),|0), to [1,).[up, ). For its part, the electron
will move as if it were a massless particle being pushed along by the probability
current in configuration space. Since, for a single particle, configuration space
is just ordinary three-dimensional space, the electron will be carried by its wave
packet to region up, as the wave packet itself moves there. And if the electrons
initial wave packet were ||,),|0),, the wave packet would evolve to ||.),|down,),
carrying the electron along with it to region down,.

What it means for an electron to be x-spin up on this account is that it is
associated with an x-spin-up-flavored wave packet. Such an electron moves like an
x-spin up particle because its x-spin-up-flavored wave packet moves as one would
expect an x-spin up particle to move and carries the electron along with it. Spin
properties are not intrinsic. Rather, they are contextual properties that particles
have by virtue of their being associated with a particular flavor of wave packet.”

Now consider how a z-spin up wave packet would behave in an x-spin device.
Suppose again that the wave packet starts in region 0. Since
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l
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and since

| Lx)el0)e
1
| Lx)e|down,),,

7 Most of the usual physical properties one might consider are contextual in Bohmian mechanics.
Contextual properties are not robust intrinsic properties. Part of what this means is that the value
of the contextual property one gets on measurement depends on precisely how one performs the
measurement. But since Bohmian mechanics makes the standard quantum statistical predictions for
measurement outcomes, that most properties are contextual poses no empirical problem whatsoever
for the theory.
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by the linearity of the wave function dynamics
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This means that the initial z-spin up wave packet |1,).|0), will split symmetri-
cally into two x-spin-flavored wave packets. The x-spin-up-flavored wave packet
[Tc)elup, ). will end up in region up  and the x-spin-down-flavored wave packet
[ )e|down,), will end up in region down, (as in Figure 11.3).

Suppose that the electron starts located in the top half of the initial z-spin up
wave packet as illustrated in Figure 11.4. As that wave packet moves toward the
magnetic field, it will carry the electron to the right. Since the wave packets have
uniform probability density, when the x-spin up and x-spin down wave packets
begin to split, the electron will initially feel no probability currents in the up or
down direction. It will just continue moving directly to the right. But as the x-spin
packets move apart, the electron will eventually only feel the probability current
from one of the two packets. When this happens the motion of the electron will be
fully determined by the motion of that wave packet.
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Figure 11.3. How a z-spin wave function evolves in an x-spin device.
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Figure 11.4. How an (initially) z-spin electron moves in an x-spin device.
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Because of the symmetry of the wave packets and how they come apart in
the x-spin device, the probability current in the x-direction on the plane that is
perpendicular to the x-direction and through the middle of the initial wave packet
will always be zero. An electron that starts in the fop half of the initial z-spin
up wave packet will end up in the x-spin up wave packet and will be deflected
toward region up . And it will continue to act like an x-spin up electron as long
as it remains associated with the x-spin-up-flavored wave packet. In this case, the
electron’s effective wave function will be |1,).[up ). Similarly, if an electron started
in the bottom half of the initial z-spin up wave packet, it would end up in the x-spin
down wave packet and be deflected toward region down,. And it would continue
to act like an x-spin down electron as long as it remained associated with the
x-spin-down-flavored wave packet. In this case, the electron’s effective wave func-
tion will be || ,),|down,),.

The evolution of the electron’s wave function and position are fully deter-
ministic. The theory predicts the standard quantum probabilities as epistemic
probabilities. We do not know where the electron will end up since we do not
know where it started. By the distribution postulate, the probability of the electron
initially being in the top half and the probability of it being in the bottom half of
the initial z-spin wave packet are each 1/2, so the probability of it ending up x-spin
up and the probability of it ending up x-spin down are also each 1/2. This is why a
z-spin up electron has an equal probability of ending up x-spin up or x-spin down
in an x-spin device. The story for an electron initially associated with a z-spin down
wave packet proceeds along precisely the same lines.

On the idealized assumptions we are making, an electron that started precisely
in the center of the initial z-spin wave packet would end up stranded in a region of
zero wave function support since it would never feel any probability currents in the
x-direction. One direction of the eigenvalue-eigenstate link is routinely violated
by the theory since particles always have exact determinate positions while their
wave functions are rarely if ever precise eigenstates of position. This shows one way
that the other direction might be violated.

Now consider what happens if we change the inhomogeneous magnetic field
so that the x-spin up wave packet |1,),.|0), is deflected toward region down, and
the x-spin down wave packet is deflected toward region up_(as in Figure 11.5).°
If the electron begins in the top half of the initial z-spin up wave packet, it will
again be deflected toward region up , but now this means that it is associated with
the x-spin down wave packet. Hence the electron will behave like an x-spin down
electron. So for a given initial state of the electron, the details of how we set up the
x-spin device determine its resulting x-spin. But, however one sets up the device,
the epistemic probability of getting each of the two possible x-spin results is 1/2.

® This can be done either by flipping the field gradient or by exchanging the poles on the magnets.
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Figure 11.5. The contextuality of spin results.

Back to the original setup, let’s consider more precisely how the electron moves
in Figure 11.4. Since the two x-spin wave packets that make up the initial z-spin
wave packet are separating in the x-direction before the electron itself starts to
move in the x-direction, the relative position of the electron in its final wave packet
is different from its relative position in its initial wave packet. More specifically, if
the electron starts in the top half of the top half of its initial z-spin up wave packet,
it will end up in the top half of its final x-spin up wave packet. But if it starts in the
bottom half of the fop half of its initial wave packet, it will end up in the bottom
half of its final x-spin up wave packet. Similarly, if the electron starts in the top
half of the bottom half of its initial wave packet, it will end up in the top half of its
final x-spin down wave packet. And if it starts in the bottom half of the bottom half
of its initial wave packet, it will end up in the bottom half of its final x-spin down
wave packet.’

The electron in Figure 11.4 starts in the bottom half of the top half of its initial
wave packet, so it ends up in the bottom half of its final x-spin up wave packet. This
shift in the relative position of the electron in its wave packet is critically important
to the probabilistic predictions of the theory. It is what explains why one cannot
predict the motion of the electron in a second x-spin device after it passes through
an intervening z-spin device.

Suppose we send a z-spin up electron through an x-spin device and suppose
that the electron begins in the bottom half of the fop half of its initial wave packet
(as in Figure 11.6). From our side-view perspective, the electron will end up in
the bottom half of the resulting x-spin up wave packet and will be deflected with
this wave packet up to up . If we immediately send the electron through a second
x-spin device, it would again be deflected in the x-spin up direction. Indeed, as
long as it is associated with the x-spin up wave packet, it will act like an x-spin up
electron.

° For more realistic wave packets where the probability density is neither uniform nor bounded, the
electron’s motion is more complicated, but the idea is the same. In that case, one would think of the
electron’s relative position in terms of its position relative to the total probability of the wave packet.



BASIC SPIN EXPERIMENTS 199

v 1)
S w
top 0-
bottom % @ dow,
L w

x-spin
side view

Figure 11.6. Alternating spin measurements (initial side view).
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Figure 11.7. Alternating spin measurements (top-down view).

But suppose we send this x-spin up electron through a z-spin device before
sending it through a second x-spin device (as in Figure 11.7). Since the magnetic
field of the z-spin device is at a right angle to the magnetic field of the x-spin
device, consider the motion of the wave packet and electron from the top-down
perspective. The z-spin device splits the initial x-spin up wave packet into a
z-spin up packet that is deflected left to region up, and a z-spin down packet that
is deflected right to region down,. What matters for the electron’s motion here is
whether it starts in the left half or right half of the initial x-spin up packet. If it
starts in the left half (as in Figure 11.7), then it is carried by the z-spin up wave
packet to region up,.

Now suppose we send this z-spin up electron through a second x-spin device
(as in Figure 11.8). Returning to the side view, the electron is still in the bottom
half of the wave packet where it was left after its x-position was shifted by the first
x-spin device. The second x-spin device will split the z-spin wave packet into an
x-spin up wave packet and an x-spin down wave packet, but this time the electron
will be deflected down because it is in the bottom half of the z-spin up packet—
because that is where it was left after passing through the first x-spin device as
it started in the bottom half of the top half of the initial z-spin wave packet at the
very beginning of the experiment (as in Figure 11.6). By the distribution postulate,
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Figure 11.8. Alternating spin measurements (final side view).

the electron had an equal chance of starting in the top half of the top half or the
bottom half of the fop half of the initial wave packet by volume, so the probability
that it will end up with each of the possible x-spins after the second x-spin device
is 1/2. The shift in the position of the electron relative to its wave packet that was
produced by the first x-spin device is why it behaves randomly in a second x-spin
device after passing through an intervening z-spin device.

11.3 Interference and the Two-Path Experiment

Bohmian mechanics explains interference effects by predicting how interactions
between wave packets in configuration space affect the motions of particles.
Considering precisely how this works will also help to set up the discussion of
what it means to observe the position of a particle in the theory.

Consider the two-path experiment with x-spin. Since there is only one particle,
configuration space is ordinary three-dimensional space. We will describe the
evolution of the electron’s wave function (as in Figure 11.9). We will then consider
what this means for the motion of the electron.

An initial x-spin up wave packet in the two-path experiment would evolve as
follows:
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and the probability currents generated by the motion of the wave packet would
carry an electron associated with it from region 0 along path A to region 0.
Similarly, an initial x-spin down wave packet would evolve as follows:
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Figure 11.9. How the wave function evolves in the two-path experiment.
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carrying an associated electron from region 0 along path B to region 0'.
So, if the electron begins associated with a z-spin up wave packet, by the linearity
of the dynamics, the wave function will evolve as follows:
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Here the initial wave packet splits and the x-spin up packet travels path A to
region 0" and the x-spin down packet travels path B to region 0'. The trajectory
of the electron depends on its position in the initial z-spin up packet.

If the electron is in the top half of the initial z-spin up wave packet (as in
Figure 11.10), it will be carried by the x-spin up wave packet along path A, and
it will behave like an x-spin up electron as long as it is associated with an x-spin-
up-flavored wave packet. Meanwhile, the empty x-spin down wave packet travels
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Figure 11.10. How the electron moves in the Bohmian two-path experiment.

path B to region 0'. If the two wave packets come together in the same symmetric
way that they came apart, the electron will again be associated with a z-spin up
wave packet and will thus act like a z-spin up particle. It will also go back to its
initial relative position in its wave packet. And if the electron starts in the bottom
half of the initial z-spin up wave packet it will travel path B, act like an x-spin
down electron along the way, then act like a z-spin up electron again when the two
wave packets come together in region 0. This is how a z-spin up particle exhibits a
determinate x-spin if one checks it while it is on path A or B but returns to acting
z-spin up in region 0'.

This story is very different from the one we told in the context of the standard
theory. It is also very different from the one that one would tell in Wigner’s
theory, GRW, or a decohering-worlds theory. In those theories, the electron is
in a superposition of traveling path A and traveling path B and hence does not
determinately travel either path. Here the electron determinately travels precisely
one of the two paths and the wave function travels both. We know that the wave
function travels both paths because of the interference effect that produces z-spin
up dispositions in region 0’, what happens when we block one of the paths, and
the effect of a total-of-nothing box on either path.

If a barrier gently blocks the path that the electron travels, then it will stop the
wave packet that guides the electron and hence stop the electron. If one checks
the spin of the blocked electron, one will find that it exhibits the x-spin property
matching the wave-packet flavor associated with that path. A barrier on the path
that the electron does not travel will stop the empty wave packet that takes that
path. The electron and the wave packet that guides it will get to region 0’, but it
will not meet up with the wave packet that was blocked on the other path, so it will
continue to be associated with a wave packet with the determinate x-spin flavor
matching the path the electron took and hence continue to act like an x-spin up
or an x-spin down particle (as the case may be) when it gets to region 0’. The
same thing would happen if one or the other of the two x-spin wave packets were
slowed down or diverted or if one path were longer than the other or if anything
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Figure 11.11. An x-spin up electron in the two-path experiment with a recording
particle.

else happened to prevent the two packets from overlapping at the same time in
region 0'. One only gets the interference effect of having a z-spin up electron in
region 0’ if the two x-spin wave packets come together at the same place and time
so that the electron is again associated with a z-spin-up-flavored wave packet.

Placing a total-of-nothing device on one of the two paths does not change the
spin flavor of the wave packet that goes through it, but it changes the spin flavor
of the final wave packet in region 0’ from z-spin up to z-spin down when the
two x-spin wave packets come together. Note that here, as in the basic two-path
experiment, the empty wave packet only makes an empirical difference if it comes
to overlap the actual particle configuration (here the position of the electron)
and hence changes the effective wave function of the system (here the electron’s
effective wave packet). Understanding the role of the effective wave function is the
key to understanding how measurement works in the theory.

11.4 Measurements and Records

In order to consider what it means to measure the position of the electron in the
theory, we will introduce a second system to record the result of the measurement.
A measuring device in Bohmian mechanics is just a physical system that produces
a position record of a property of a system by correlating that property with the
position of the record. In the simplest case, one might record the position of one
particle in the position of another. But even with just two particles, one can no
longer tell the dynamical story in ordinary three-dimensional space as both the
composite system’s wave function and configuration live in six-dimensional con-
figuration space. Understanding how observation works in Bohmian mechanics
requires a dynamical story in configuration space.
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Suppose we set things up in the two-path experiment so that the path traveled
by the electron e is recorded in the position of a particle p. To this end, we might, as
earlier, put particle p in region a and arrange its interaction with e so that p moves
from region a to region b if and only if e takes path B. Since particles only move
in response to the changes in the wave function, one characterizes the interaction
between the two particles by saying how the wave function of the composite system
evolves.

Given the recording dispositions that we want for p, if e starts x-spin up (as in
Figure 11.11), we want the composite system to evolve as follows:
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And, just slightly more interestingly, if e starts x-spin down (as in Figure 11.13),
we want the composite system to evolve as follows:
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Consider how the two-particle configuration evolves, and hence how the ordinary
positions of the two particles evolve, in each of these cases. The coordinates that
matter most to the dynamical story are €’s x-position and p’s x-position, so those
are the coordinates we will track in the figures. We will consider the two simple
cases first.

Suppose that the two-particle configuration starts associated with the wave
packet |1,).|0)|a), (asin Figure 11.11). This puts the electron e starting in region 0
and particle p starting in region a. The interaction between the two particles can
be seen in configuration space as illustrated in figure 11.12. As the wave packet
evolves in configuration space, the probability current pushes the two-particle
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Figure 11.12. An x-spin up electron and recording particle in configuration space.
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Figure 11.13. An x-spin down electron with a recording particle.

configuration in such a way that e moves from the center position in region 0
up along path A then back down to the center at region 0’. Since there are no
probability currents in particle p’s x-direction (or any of its other coordinates) it
simply stays where it is. In this case, the recording particle p does not move at all,
reliably indicating that e took path A and is effectively x-spin up.

Suppose that the configuration starts associated with the wave packet
[x)elO)ela), (as in Figure 11.13). Again, e starts in region 0 and p starts in
region a. As the wave packet evolves in configuration space (as in Figure 11.14),
the probability current pushes the two-particle configuration in such a way that e
moves from region 0 down along path B, then p moves from region a to region b,
then e moves back up to the center at region 0'. In this case, the recording particle p
moves from region a to region b, reliably indicating that e took path B and is
effectively x-spin down.

Now consider what happens when the configuration starts associated with the
wave packet |1,),|0),|a), (as in Figure 11.15). By the linearity of the dynamics, the
wave function of the composite system evolves in configuration space as follows:
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Figure 11.14. The x-spin down electron and recording particle in configuration
space.
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Note that, unlike the situation with just one particle, the final wave packet here is
not z-spin up flavored.

Here the x-spin device splits the initial wave packet in configuration space.
Consider two cases.

In Figure 11.15 the two-particle configuration begins in the top half of the
configuration wave packet in €’s x-position. On the auxiliary dynamics, the two-
particle configuration will be carried along by the probability current in configu-
ration space as if it were a massless particle. By symmetry considerations just like
those in the single particle case, this means that the configuration will be picked
up by the x-spin-up-flavored wave packet. And this means that e will take path A
and will end up effectively x-spin up and p will not move from region a (as in
Figure 11.16). Here p reliably records that e took path A.

Now suppose instead that the configuration begins in the bottom half of the
wave packet in e’s x-position (as in Figure 11.17). Here this means that the
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Figure 11.15. A z-spin up electron in the top half with a recording particle.
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Figure 11.16. A z-spin up electron with a recording particle in configuration space.
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Figure 11.17. A z-spin up electron in the bottom half of its wave packet with a
recording particle.
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Figure 11.18. A z-spin up electron in the bottom half of its wave packet with a
recording particle in configuration space.

configuration will be picked up by the x-spin-down-flavored wave packet, which
means that particle e will take path B and will end up effectively x-spin down and
particle p will move from region a to region b (as in Figure 11.18). Here p reliably
records that e took path B.

Note that while the two x-spin wave packets end up in the same region of
three-dimensional space, they do not overlap in configuration space. Hence the
configuration remains associated with the x-spin-up-flavored wave packet in the
first case (as in Figures 11.15 and 11.16) and with the x-spin-down-flavored wave
packet in the second case (as in Figures 11.17 and 11.18). The position of particle p
reliably records both the path taken by e in each case and that the electron ends up
effectively x-spin up in the first case and effectively x-spin down in the second.
More precisely, the record in the first case tells us that the effective wave function
for the two particles is |1,),|0).|a), and the record in the second case tells us that
the effective wave function for the two particles is || )¢|0").|b),.

It is in this precise sense that the value of a measurement record in Bohmian
mechanics indicates the branch of the wave function selected by the actual con-
figuration. The content of the record is given by the effective wave function of the
composite system. To be sure, the value of the record tells one something about
the actual configuration that one did not already know, but it never tells one
precisely where any particle is. If one knew anything more regarding the positions
of particles than what is given by the effective wave function, then one would be
able to make empirical predictions that violate the standard quantum probabilities.

11.5 Surreal Trajectories and Decoherence
The very existence of a position record can significantly affect the behavior of

the measured system. Consider the same two-path experimental setup with the
recording particle p but this time we will allow the wave packets to pass through
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Figure 11.19. Electron trajectory if there is no interaction between e and p.

each other in region 0’ so that the x-spin down wave packet continues to region A’
and the x-spin up wave packet continues to region B'. The electron starts associated
with a z-spin up wave packet in region 0 and the recording particle starts in region a
with positions as indicated in Figure 11.19.

First consider how the electron behaves if there is no interaction whatsoever
between e and p and hence no measurement record is made of the path traveled by
the electron. Since the two particles start in separable states and since they do not
interact, we could just consider how e’s state evolves in ordinary three-dimensional
space, but we will keep the two-particle configuration space representation for the
purpose of comparison.

Here the wave function of the composite system evolves as follows:
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Figure 11.20. The electron’s surreal trajectory in configuration space.

The initial wave packet splits, but since there is no correlation between €’s position
and spin and p’s position, the state ends up separable in region 0'.

Since there is no interaction, the recording particle p does not move at all and
no record is made. In configuration space the evolution looks like Figure 11.20.
The electron, however, does a number of curious things on this trajectory.

The electron starts in the bottom half of the top half of its wave packet, so
when the wave packet splits, it ends up in the bottom half of the x-spin up wave
packet and is carried along path A by the associated probability currents. But since
there is no interaction with p, the two x-spin wave packets end up overlapping in
configuration space when they reach region 0. This produces a z-spin up wave
packet in region 0’. And the probability current shifts e’s relative position in its
wave packet back to where it started at the beginning of the experiment as the
x-spin wave packets come together. The x-spin wave packets then pass through
each other in region 0'. Since e is in the top half of the wave packet again, it gets
picked up by the wave packet headed toward region A" again, but this time it is the
x-spin down packet. The electron is carried to region A" by the associated proba-
bility current and ends up effectively x-spin down.

Here the electron follows what is sometimes called a surreal trajectory.'® It starts
z-spin up in region 0, becomes x-spin up while passing through the magnets,
travels along path A, becomes z-spin up again in region 0’, bounces out of this
classically field-free region, becomes x-spin down, and ends up in region A’.
This bouncing behavior and the spontaneous change in spin in region 0’, which

' Englert, Scully, Siissmann, and Walther (1992) argue that surreal trajectories pose an empirical
problem for Bohmian mechanics in as much as such trajectories are never seen. But, as we will see, the
theory itself explains why they are never seen. In short, they go away whenever one looks for them. A
more recent line of argument against Bohmian mechanics is given by Frauchiger and Renner (2018).
They use an extended version of the Wigner’s friend story to argue that Bohmian mechanics violates
the standard quantum predictions (something they call assumption Q). Their argument, however,
involves a misunderstanding of how state preparation and measurement work in a no-collapse theory
like Bohmian mechanics. In brief, as Lazarovici and Hubert (2018) show, Frauchiger and Renner do
not keep track of the full quantum state of the systems involved in their story.
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contains no classical fields whatsoever, violates both conservation of momentum
and conservation of angular momentum. That we never see anything like this was
once given as an argument against Bohmian mechanics.'* But the theory itself
explains why we never see such bounces.

To see the electron bounce, one would need to see that it was initially on path A
then see that it ends up in region A’. But if one sees it on path A, then the theory
predicts that the electron does not bounce. It is the measurement record of it being
on path A that keeps it from bouncing.

Consider the experiment again, but this time we will allow p to record the posi-
tion of e. In this case, the wave function of the composite system evolves as follows:
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Because of the correlation between e’s position and spin and p’s position, this
dynamical story involves both particles in an essential way, so it must be told in
configuration space (as in Figure 11.21).

Since the two-particle configuration starts in the top half of the wave packet in
e’s x-direction, it becomes associated with the x-spin up wave packet when the
z-spin wave packet splits in configuration space (as in Figure 11.21). The two-
particle configuration is then carried by the probability current in configuration
space in such a way that the electron travels along path A and p stays in region a.
But this time when the electron enters region 0’, the two wave packets do not

! Englert et al. (1992) thought that this was a serious problem for Bohmian mechanics since we
never in fact see such trajectories. Bohmian mechanics, however, predicts that one would never see
such trajectories since measurement records in position prevent such behavior.
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Figure 11.21. The effect of a measurement record in configuration space.
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Figure 11.22. The effect of a measurement record in ordinary space.

overlap in configuration space and hence do not produce a z-spin up wave packet.
This is because the interaction where p records €’s position shifts the x-spin down
wave packet in configuration space in p’s x-direction so that the two wave packets
miss each other. But, since they miss each other, the two-particle configuration
only feels the probability current from the x-spin up wave packet and is carried to
region B’ in €’s x-direction, which means that e moves through region 0" without
bouncing and ends up effectively in region B’ and still effectively x-spin up. And
the electron will continue to behave like an x-spin up particle as long as the
configuration selects an effective wave function that is x-spin-up-flavored for e.
In ordinary 3-space this trajectory looks like Figure 11.22.'> Note that even
though p does not move in this case, the fact that e took path A and is hence
effectively x-spin up is recorded by p being at location a because the interaction
between the two particles correlates p’s position with both €’s position and x-spin
as represented by the wave function of the composite system. The two-particle

' Contrast this with the surreal trajectory (in Figure 11.19) when there is no interaction between e
and p.
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configuration then selects an effective x-spin for e and a corresponding record for p.
Of course, if the electron begins in the bottom half of the initial wave packet, it
would take path B and p would move to region b indicating that e is in fact on
path B.

In either case, the very existence of the measurement record prevents the electron
from bouncing out of the field-free region 0'. This is why we never see surreal
trajectories. While momentum is not conserved in Bohmian mechanics, observed
momentum is. The existence of the record also provides the electron with stable
effective spin properties. Here the electron stays x-spin up even when passing
through region 0'.

In order to get interference effects, the wave packets and the two-particle
configuration must overlap at the same time in configuration space. The only way
that this can happen here is if the measurement record is erased by carefully
disentangling p’s position from e’s position and x-spin. This would undo the shift in
the x-spin down wave packet in p’s x-direction. Then one might put the two x-spin
wave packets back together in €’s position and get back to a z-spin up wave packet
and the associated z-spin up interference behavior for e. The degrees of freedom
involved here make this difficult to accomplish.

That position records stabilize the physical properties of the object system and
lead to classical behavior by destroying interference effects provides an important
role for environmental decoherence in Bohmian mechanics. Insofar as interactions
between a system and its environment produce (unintentional) position records of
the system’s properties, they stabilize the properties of the system and promote its
classical behavior. Since the properties of a macroscopic system that we think of as
classical are typically recorded in the positions of systems in its environment, such
systems and properties will indeed behave classically in Bohmian mechanics.

11.6 How the Theory Explains Experience

We can now say what one sees when one observes the position of a particle
in Bohmian mechanics. Suppose that the recording particle p in the two-path
experiment moves to region b. This does not tell us precisely where the electron
is. It might be anywhere in the wave packet that traveled path B.'> Rather, it tells
us which wave packet the configuration (and hence the electron) is associated
with. That is, the empirical content of the record, what one can deduce from the
value of the record, is given by the effective wave function selected by the current

'* Indeed, it could be anywhere where this wave packet provides positive wave function support.
And, for more realistic wave packets, that means that it could be virtually anywhere. That said, for a
well-designed experiment the electron is probably on (or very nearly on) path B.
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particle configuration. This is what an observer has epistemic access to given her
measurement record. In this precise sense, this is what she sees.

If Bohmian mechanics correctly describes the physical world and if one ever had
direct epistemic access to the positions of particles, one would be able to make
predictions more precisely than allowed by the standard quantum probabilities.
The very empirical adequacy of the theory depends on the fact that one never
directly observes the precise position of anything.

Particle positions do not typically by themselves determine the content of
a measurement record. Given the contextual nature of measurement, the same
particle positions might represent different measurement outcomes by selecting
different-flavored wave packets. And the wave function does not typically deter-
mine the content of a measurement record by itself either. The wave function
typically fails to specify any particular outcome. It is the particle configuration
and the wave function together that determine the value of the record. The
effective wave function selected by the particular configuration both determines
the empirical content of the record and tracks the dispositional properties of
the measured system. For a formulation of quantum mechanics to explain our
experience, it needs to characterize something that exhibits the standard quantum
statistics and on which one might plausibly take one’s experience to supervene.
In Bohmian mechanics this is the effective wave function selected by the current
particle configuration.

11.7 EPR and Relativity

Bohmian mechanics is manifestly incompatible with the constraints of relativity.
The dynamics makes essential use of configuration space to explain the standard
quantum statistics by means of the correlated motions of distant particles. The
very idea of configuration space is incompatible with relativity. The point in
configuration space Q(f) represents the positions of all the particles in a system
at time ¢ no matter how far apart they may be. To make any sense of this at all
one would need to choose a preferred inertial frame, which would violate a basic
principle of relativity.

Consider how the theory explains the results of an EPR experiment.'* Suppose
one has two particles e, and ¢, in the EPR state

L
V2

where particle e, is located at A on Earth with one observer and particle e, is
located at B in orbit about « Centauri with another. The observer at A will measure

(e, [ dade, + 1 Lide,] Tx)e,) (11.1)

'* This story follows Albert (1992, 156-60).
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Figure 11.24. Trajectory in configuration space if A’s measurement is first.

the x-spin of e, at noon 1 January 2050 (in the laboratory inertial frame) and the
observer at B will measure the x-spin measurement of ¢, at noon 1 January 2050
plus one second (in the laboratory inertial frame), each on their respective particle.
The experimental setup is illustrated in Figure 11.23.

Since these two measurement events are spacelike separated, there is no matter
of fact about which is first. There are inertial frames where observer A’s measure-
ment is first (as in the laboratory frame) and there are others where B performs
her measurement first.

Since the spin properties of the two particles are entangled, we have no choice
but to tell the dynamical story in configuration space. The initial state of the two
particles is given by an EPR-flavored wave packet in six-dimensional configuration
space and a point in that configuration space representing the positions of the two
particles. Suppose that the two-particle configuration is such that each particle is
in the top half of the wave packet in its x-direction (as in Figures 11.23 and 11.24).
Again, we will just track the x-positions of the two particles in configuration space.

Consider an inertial frame where A’s measurement occurs first (as in
Figure 11.24). When she performs her measurement, the linear dynamics requires
the initial EPR-flavored wave packet to split in configuration space in e,’s
x-direction. Given the usual way of setting up the magnets so that x-spin up wave
packets are deflected up and x-spin down wave packets are deflected down, the
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[Tx)e, [Lx)e,-flavored wave packet is deflected up in e,’s x-direction, and the
[Lx)e, |1 x)e,-flavored wave packet is deflected down in e,’s x-direction. Since
the two-particle configuration starts in the top half of the EPR-flavored wave
packetin e,’s x-direction, the configuration ends up associated with the [1,). 1),
wave packet, which means that e, is deflected up. When B measures the x-spin
of ey, the |1,),, [{+),, Wave packet is deflected down in e;’s x-direction, and the
[Lx)e, ITx)e, Wave packet is deflected up in e;’s x-direction. Since the configuration
is associated with the [1,), |l.)., Wave packet, e, is deflected down. In this case,
the configuration selects an effective wave function such that e, ends up effectively
an x-spin up electron and e, ends up effectively an x-spin down electron. That the
two electrons exhibit opposite x-spin is good since spin is anti-correlated in the
EPR state.

Now consider an inertial frame where B’s measurement occurs first (as in
Figure 11.25). Here the linear dynamics requires the initial EPR-flavored wave
packet to split in configuration space in e;’s x-direction. So the [1,),, [ )., -flavored
wave packet is deflected down in e;’s x-direction, and the || ), |1 )., -flavored wave
packet is deflected up in e, ’s x-direction. Since the two-particle configuration starts
in the top half of the wave packet in e;’s x-direction, this time it ends up associated
with the | |,),, [1,)., Wave packet, so this time e, is deflected up. When A measures
the x-spin of e,, the [1,),_|1.)e, Wave packet is deflected up in e,’s x-direction, and
the 1), [T+), Wave packet is deflected down in e,’s x-direction. But now since
the configuration is associated with the [|,), |1,)., Wave packet, e, is deflected
down. In this case, the configuration selects an effective wave function such that
e, ends up effectively an x-spin down electron and e, ends up effectively an x-spin
up electron. Again, it is good that the x-spins are opposite. But it is not good that
the theory predicts different x-spin results depending on the temporal order of the
measurements at A and B.

Since there is no matter of fact regarding the temporal order of spacelike sepa-
rated events in special relativity, there can be no physical facts that depend on the
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Figure 11.25. Trajectory in configuration space if B’s measurement is first.
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temporal order of such events. But the outcomes of EPR measurements depend on
the temporal order of the spacelike separated measurements. So Bohmian mechanics
is dynamically incompatible with relativity. That the dynamical incompatibility
between Bohmian mechanics and relativity is not subtle is illustrated by the fact
that one would be able to send superluminal messages if one knew the initial
particle configuration in the present experiment.

Suppose that observer A performs her measurement first. If she knows that
she is making the first measurement and if she knows that the two-particle
configuration is in the top half of the wave packet in e,’s x-direction, then she
would know that e, will deflect in the up direction no matter how she orients the
inhomogeneous magnetic field on her device. This means that (in the standard
orientation) her measurement will associate the configuration with the [1,),_ |1 ),
wave packet. This would make e, effectively x-spin up and e, effectively x-spin
down. So when observer B gets around to checking her particle (in the standard
orientation), it will be deflected down. But by changing the orientation of her field,
in just the way we considered when we discussed contextual properties earlier,
observer A can arrange things so that the [{,), |1,)., Wave packet is the one that is
deflected in the up direction at her end of the experiment. The particle e, will again
be deflected up, but now e, is effectively x-spin down and e, is effectively x-spin
up. So when observer B gets around to checking her particle, it will be deflected up.

The upshot is that observer A can instantaneously control the motion of
particle e, no matter how far away it is if she knows the relative position of e,
in the initial EPR-flavored wave packet. If the distribution postulate is satisfied,
then she does not know the relative position of e, in its wave packet. That said, she
is still instantaneously affecting e,’s motion by the field orientation she chooses. It
is just that she does not know how.

That Bohmian mechanics is nonlocal in a way that renders it flatly incompatible
with relativity is an essential feature of the theory. It uses such nonlocal interac-
tions to get the right anti-correlation statistics here and the right EPR-Bell statistics
more generally.

11.8 Virtues and Vices

Bohmian mechanics is a no-collapse formulation of quantum mechanics that
makes the standard forward-looking probabilistic predictions for the positions of
particles. And since it treats measurement interactions precisely the same way that
it treats other physical interactions, it resolves the quantum measurement problem
by providing a consistent account of nested measurements.

In the context of the Wigner’s friend experiment, Bohmian mechanics predicts
that the friend, her measuring device, and the particle she is measuring will
all evolve according to the linear dynamics. The configuration of the composite
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system will select an effective wave function that represents a perfectly determinate
x-spin result for the friend. Because this is an effective wave function for the entire
composite system and since the friend’s brain state is correlated with the pointer
position which is correlated to the x-spin of the object system, all of the parts of
the composite system will behave in a way that is consistent with the result. And if
an external observer were ever able to make an A-measurement of the composite
system, he would get the result +1 with probability one.'® Inasmuch as the wave
function always evolves linearly, Bohmian mechanics is in principle empirically
distinguishable from a collapse formulation of quantum mechanics like Wigner’s
theory or GRW.

One might worry that Bohmian mechanics, unlike pure wave mechanics, com-
mits one to a particle ontology. But the Bohmian approach can be applied to almost
any choice of fundamental physical ontology, making the general hidden-variable
approach a sort of framework theory. We will see a concrete example of how
this works when we discuss Bell's Bohmian field theory in the next chapter. The
problem is that while the Bohmian approach can be used to provide a quantum-
mechanical dynamics for any physical observable, we don't know what observable
it should be talking about.'® It is in this sense that it encounters a version of the
preferred-basis problem.

Proponents of Bohmian mechanics often argue that since particles with ordi-
nary three-dimensional positions constitute a primitive ontology, they are pre-
cisely the sort of thing that one needs to provide a satisfactory account for
experience. But, as we have seen, measuring the position of something in Bohmian
mechanics is more subtle than directly seeing its location in ordinary three-
dimensional space. Indeed, the theory allows for a plausible argument that the
appearance of ordinary things in ordinary three-dimensional space is best under-
stood as a sort of illusion generated by the way the 3N-dimensional configuration
selects an effective component of the wave function in 3N-dimensional configura-
tion space. Regardless of whether one calls it an illusion, inasmuch as the content
of an observer’s experience is given by the effective wave function selected by the
total configuration of her measuring system, the primitive ontology of particles
with ordinary three-dimensional positions is not what explains the observer’s
experience.

Rather than being directly observable things that single-handedly constitute our
manifest image of the world, the particles in Bohmian mechanics play the role of

'* This is the configuration that would get all of the probability when one correlates the pointer
position on an A-measuring device with the A-property of the composite system FMS.

' As we will see in the next chapter, the problem is not that one must choose particle position to be
a privileged physical quantity to make a Bohm-type theory work. The problem, rather, is that one must
choose some privileged physical quantity to be determinate and that quantity must, by dint of its being
determinate, account for all of our physical records. Not only do we not know what quantity to choose,
but any just right choice for explaining our experience is bound to look ad hoc given the other choices
one might have made.
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selecting a single branch of the quantum-mechanical state as the effective wave
function that is in fact realized on measurement. The content of one’s measurement
record is given by the effective wave function, which, in turn, provides something
on which one€’s experience might plausibly supervene.'”

One other connection before moving on. As mentioned in the discussion of
the many-threads formulation (Chapter 10), Bohmian mechanics may be thought
of as a sort of non-splitting, many-worlds theory. Specifically, to get a Bohmian
many-threads theory, fix the wave function for the world at some initial time t,,
then consider a different non-splitting physical world corresponding to each pos-
sible initial particle configuration with a history given by how that configuration
would evolve under the Bohmian deterministic dynamics.'® One might take the
theory to consist of this set of possible world histories and the measure over
this set given by the probability that the distribution postulate assigns to the
initial configuration that characterizes each world. These probabilities are the prior
probabilities that each possible world is the world we in fact inhabit. One updates
by conditioning on what one learns of the actual world. This picture captures the
idea that Bohmian mechanics might be thought of as pure wave mechanics with
a new variable, the total configuration, that selects the actual branch at each time
and hence determines a complete history.

Arguably, the most significant problem with Bohmian mechanics is its manifest
dynamical incompatibility with relativity. The theory relies on strongly nonlocal
interactions that violate relativistic constraints to explain things like the EPR-
Bell statistics. Bell thought that one might lessen the worry over the theory’s
incompatibility with relativity somewhat by considering a Bohmian field theory.
We now turn to that.

'7 The suggestion here is in contrast to the view that particle configuration is superfluous in Bohmian
mechanics and that the theory is hence no better off than pure wave mechanics. See Brown and
Wallace (2005) for such an argument. By selecting a single effective wave function, the Bohmian particle
configuration does something that pure wave mechanics cannot—it provides precisely one physical
record as a possible target for experiential supervenience.

'® See section 10.6 for a characterization of the many-threads theory.
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Empirical Ontology and Explanation

12.1 The Explanatory Work of Metaphysics

The quantum measurement problem encourages us to consider what it is that we
should expect from a satisfactory physical theory. We like to think of our best
physical theories as descriptive of the physical world in some strong sense, but
none of the formulations of quantum mechanics we have considered stands out
as the one that clearly has things right. While even our best physical theories are
always provisional, the situation here seems significantly worse.

The alternative formulations of quantum mechanics we have considered often
suggest radically different metaphysical commitments, even when they are for-
mulations of the same basic theory. GRW comes in wave function (GRWr),
mass density (GRWm), and flash (GRWY) versions. Pure wave mechanics may
be reformulated in terms of a single world with illusions of determinate records,
a single world with relative facts, splitting worlds, decohering worlds, a single
world with one mind for each observer, a single world with many minds for
each observer, many threads, many maps, or physical hidden variables. Some
formulations of quantum mechanics are stochastic, others are deterministic. Some
are purely physical, others require one to embrace a strong form of mind-body
dualism.

But quantum mechanics failing to provide anything like a canonical meta-
physics does not mean that metaphysics doesn’t matter. As we have seen repeat-
edly, the metaphysical commitments one associates with a particular formulation
plays an essential role in explaining what measurement records are and why they
can be expected to exhibit the standard quantum statistics."

Since the same basic theoretical framework will often provide different expla-
nations given different metaphysical commitments, insofar as one individuates
theories by the explanations they provide, it makes sense to take alternative
metaphysical interpretations of a basic theoretical framework as representing

! See Lewis (2016) for a more general discussion of the ways that one’s metaphysical commitments,
may matter to one’s understanding of quantum mechanics and quantum mechanics may matter to one’s
metaphysical commitments, including issues such as causation, part-whole relations, and freewill.
See also Maudlin (2019) for a series of inventive arguments involving the metaphysical implications
of quantum mechanics. Some of these contrast with the arguments we have considered over the
last few chapters and hence provide a broader perspective on the metaphysical options one has for
understanding quantum mechanics.
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alternative physical theories.” The thought is that one is only clear about the
descriptive content of one’s theory when one is clear about how it explains our
experience, and one is only clear about that in the context of a specific set of
metaphysical commitments.

Explanations that appeal to metaphysical commitments often take the form of
descriptive stories. Such stories may say why an event occurs, or why it should
be expected, or how it is physically possible. Richer explanatory stories may
characterize mechanisms, describe how events are caused, or account for the
existence of emergent entities or structures of a particular sort. It is in this way
that our metaphysical commitments are in service of our best understanding of
the physical world and the explanations that go with it.

In the standard collapse theory and Wigner’s theory, probabilities are the result
of fundamental chance events. But in theories like Bohmian mechanics, where
there are no chance events, probabilities are purely epistemic. While they are
alternative formulations of the same basic theory, GRWr, GRWm, and GRWf
describe quite different physical worlds and, hence, explain the object of on€’s
experience differently. Wigner’s commitment to a strong mind-body dualism is
essential to his account of how observers end up with determinate measurement
records and why their records exhibit the standard quantum statistics. Albert
and Loewer’s many-minds and single-minds theories also involve a commit-
ment to a strong variety of mind-body dualism, but since minds do not cause
physical events, these theories provide a very different account of determinate
records and quantum probabilities. While the single- and many-minds theories are
no-collapse theories, the sort of dualism they embrace makes it particularly easy to
say what future-looking self-location probabilities might consist in. Worlds split on
the splitting-worlds and decohering-worlds theories and they do not split on the
many-threads theory, which, again, matters for the sort of quantum probabilities
one can make sense of on the two approaches. The emergent nature of worlds
and that there is no simple matter of fact about how many worlds there are on
the decohering-worlds theory means that the account of determinate experience
provided by the theory is necessarily associated with a level of description. This
is not the case in the splitting-worlds theory, where one chooses a physically
preferred basis once and for all. In Bohmian mechanics, what it means to have
a determinate measurement record and why such records can be expected to be

? Along these lines, one might be tempted to insist that two physical theories are equivalent
if and only if they provide the same explanations. But this does not settle the general issue of
theoretical equivalence without agreement concerning what it is for two theories to provide the same
explanations. Indeed, this strategy pushes, I think, in the wrong direction. I do not take there to be
plausible necessary and sufficient conditions for theoretical equivalence. Rather, it seems, questions of
theoretical equivalence often turn on whether alternative explanations are the same or different given
the explanatory purposes at hand. And here metaphysical talk can play the role both of expressing the
explanatory purposes at hand (one might, for example, seek a causal account of a particular type) and
fulfilling those purposes (in this case, providing a causal narrative of the sort desired).
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distributed according to the standard quantum statistics is a result of the special
role played by position in the theory. But, back to where we started, there is
nothing at all special about position in the standard collapse theory or Wigner’s
refinement of it.

This quick list of philosophical refections is just a reminder that the meta-
physical commitments one associates with a physical theory are essential to the
explanations the theory provides. This is why meaningful arguments over the
metaphysical commitments of a particular formulation of quantum mechanics
are arguments over alternative varieties of physical explanation. Since none of
the formulations of quantum mechanics that have been proposed so far satisfy
all the explanatory demands one might reasonably have for a satisfactory physical
theory, dogmatic adherence to any particular formulation with its associated
metaphysical commitments makes little sense. But, again, that does not mean that
there is nothing at stake in the choice—there are real trade-offs in how alternative
formulations of quantum mechanics characterize the physical world and, hence,
in how they account for our experience. With this in mind, we will consider one
last example of ontology and explanation.

12.2 Beables and Experience

John Bell was an ardent proponent of Bohmian mechanics, which went hand in
hand with his sense that the proper path to explaining experience is by getting the
“positions of things” right. But this does not mean that he was entirely satisfied
with the standard Bohmian metaphysics of particles in motion.

Part of Bell’s worry concerned the compatibility of Bohmian mechanics with
relativistic constraints. As he put the problem, “When the cogency of Bohm’s rea-
soning is admitted, a final protest is often this: it is all nonrelativistic” (1987, 171).
Bell believed that this protest was best addressed by showing how to construct a
Bohmian field theory. He thought that, while it would still be incompatible with
relativity, such a theory would show that one could nevertheless do real physics
of the sort that one might have thought could only be done in a truly relativistic
theory. But he also wanted a theory that ultimately involved a metaphysics of
things with positions, since he felt that would best secure a satisfactory account
of experience. This explanatory commitment to a particular sort of metaphysics
influenced how Bell set about constructing his field theory.

The local beable that Bell chose to make determinate was fermion number density
at each point on a spatial lattice. The always-determinate fermion number density
here is analogous to the always-determinate particle configuration in Bohmian
mechanics—it is the metaphysics of fermion density in spacetime regions that
is supposed to explain why measurements yield determinate outcomes. As Bell
explained it:
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The beables of the theory are those elements which might correspond to elements
of reality, to things which exist. Their existence does not depend on observation.
Indeed observation and observers must be made out of beables.

(1987, 174)

The local beables here are the primitive ontology of the theory. The thought is that
one’s experience supervenes on determinate measurement records which in turn
supervene on the local state of the physical world which is composed of elements
of the primitive ontology associated with the theory. If the world described by the
theory predicts measurement records that exhibit the standard quantum statistics,
then the theory accounts for our experience. One might take the account to be
better or worse depending on the plausibility of our experience in fact supervening
on such records.

On Bell's Bohmian field theory (1987, 174-7), n(t) is the fully determinate
fermion-number configuration at time . It is a point in a fermion-number config-
uration space that assigns a field value to every point on the spatial lattice at time .
The linear dynamics describes the time-evolution of the quantum-mechanical part
of the state

d
= |ty = —iH|t
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where |f) is a wave function over fermion-number configuration space. The
auxiliary dynamics then describes how the determinate local field values evolve as
the wave function evolves. There is some flexibility in the choice of dynamics that
will not make an empirical difference to the statistical predictions of the theory.
Bell stipulated that the transition probability from field configuration m to field
configuration n over time interval dt is dtT,,,, where
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One can think of the dynamics for n(t) as describing a random walk through a
field-configuration space, where each point in the space represents a complete spec-
ification of the fermion number density at every point in the lattice representing
ordinary three-dimensional space. The number of particles at every point in ordi-
nary three-dimensional space then will always be determinate. Bell showed that
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if the epistemic probability over possible fermion-number configurations is ever
equal to the standard quantum probabilities, then one should always expect it to be
so on this dynamics. Among other things, this means that one will get the standard
EPR-Bell statistics for nonlocally entangled fermion-number-density field states.

Bell expressed the potential worry that the “the very sharpness of this reformula-
tion [of quantum field theory] brings into focus some awkward questions.” First, he
noted that the theory “does not inspire complete happiness” since “there is nothing
unique about the choice of fermion number density as basic local beable. .. [w]e
could have others instead, or in addition” (1987, 178). This is the preferred basis
problem again. The problem in part concerns what metaphysical commitments
will provide the most compelling account of experience. The worry is that one
might choose the wrong physical quantity to make determinate.

In standard Bohmian mechanics one supposes that experience is explained by
determinate particle positions. In Bell's Bohmian field theory one supposes that
it is fermion number density that explains experience. Any argument for one
being the one and only canonical choice of local beable serves to undermine one’s
arguments for the other. And there are an infinite number of other options that
Bell might have considered.

This fact is worth a moment of reflection. One can provide a Bohm-Bell
type dynamics for most any physical quantity Q that one wants to be always
determinate.® Jereon Vink (1993) gave perhaps the best illustration of how to
do this. VinK’s approach was based on Bell’s, but his aim was different. VinK’s
idea was to make all physical quantities determinate then to use the generalized
Bohm-Bell-Vink dynamics to describe their evolution. But it is a consequence of
the Kochen-Specker theorem (1967) that one cannot make every physical quantity
determinate in such a way that their possessed values both exhibit the standard
quantum statistics and satisfy the standard functional relationships between the
quantities—like that the value of position-squared is the square of the value of
position.* The upshot is that if one makes all physical quantities determinate, then
it is unclear what these determinate quantities are supposed to represent. On the
other hand, one might argue, if one chooses to make only one privileged physical
quantity determinate, then one has already lost the functional relationships that
provide the usual understanding of that quantity.®> And, more salient to the present

*> Along these lines, one might take Q-theory as a Bohmian schema theory where Q is the physical
parameter that describes one’s primitive ontology and hence explains the determinate values of one’s
local physical records.

* See chapter 11 of Earman (1986) for a discussion of Kochen-Specker and related theorems. That
one cannot make all physical quantities simultaneously determinate while preserving their functional
relationships clearly poses a significant problem for anyone like EPR who takes physical quantities to be
real (as described earlier, in Chapter 6). As Earman argues, it is unclear that one has a choice between
this sort of naive realism and locality inasmuch as there is reason to doubt that one can entirely satisfy
either classical intuition.

® See Barrett (2005a) for a discussion of Vink’s proposal and the virtues and costs to
implementing it.
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example, if one does feel justified in choosing just one always-determinate beable
to make determinate, what should it be?

While Bell chose to make a field variable determinate in order to get a theory
that might be made compatible with relativity at some level, he also knew what
kind of account of experience he wanted when he chose fermion number density
as the single, always-determinate beable. Given his commitment to the sort of
explanation Bohmian mechanics gives for experience, he held that “[w]hat is
essential is to be able to define the positions of things, including the positions
of instrument pointers or (the modern equivalent) of ink on computer output”
(1987, 175). He settled on stipulating an always-determinate fermion number den-
sity as one way to accomplish this. While Bell recognized a number of options, he
reported that “I do not see how this choice can be made experimentally significant,
so long as the final results of experiments are defined so grossly as by the positions
of instrument pointers, or of ink on paper” (1987, 178). That is, insofar as fermion
density number can be expected to account for the determinate positions of things
like pointer positions and ink on paper, it explains our experience.

Bell’s choice of local beable was arguably a good one for explaining experience,
but it is clearly not canonical—there are, as he clearly noted, others that would serve
as well. For his part, Bell's approach to the problem was pragmatic. He argued for
determinate particle position being the right choice in Bohmian mechanics and for
determinate fermion number density being the right choice for his field theory, and
for flashes being the right choice in GRW.® He wanted something that (1) provided
the strongest variety of compatibly one could get with relativistic considerations
and (2) would plausibly give macroscopic objects effectively determinate positions,
banking on his sense that determinate positions are enough to explain all of our
experience.

Whether or not one shares Bell’s guiding intuition, it is clearly not the case
that any choice of beable will provide a compelling account of experience. Taking
the total angular momentum of all of the cows in Oberwinkl (a small town near
Salzburg) as the one and only always-determinate beable would presumably do
little to explain our experience generally. The plausibility of one’s account of
experience depends on the details of one’s empirical ontology. And, as we saw
in the context of Bohmian mechanics, the precise way that it depends on one’s
empirical ontology can be subtle.

Bell chose fermion number density as determinate because he thought that this
would make the positions of things (i.e. pointers and ink on paper) determinate
and hence explain our determinate experience. But, just as in Bohmian mechanics,
one cannot know more about the fermion number density than allowed by the
standard quantum probabilities given the current wave function. This means that

¢ For Bell's views regarding the flash ontology in GRW, see Bell (1987, 181-95) and Allori (2013,
67-8).
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one does not directly see the fermion number densities here any more than one
directly sees the precise positions of particles in the basic theory. Rather, by an
analogous argument, the empirical content of a good measurement record in Bell’s
field theory is given by the effective wave function selected by the current fermion
number density. We will return to this in a moment.

There is, of course, something curious about the very idea of choosing what
physical quantity to make determinate. It is presumably a matter of physical
fact, not explanatory convenience, whether particle position or fermion number
density or some other physical property is in fact metaphysically determinate.
If possible, one would like to know what the real ontology of the world is, how
it behaves, precisely how perception works, and hence what really determines our
experience. This presumably has little to do with choosing an empirical ontology
that satisfies our metaphysical intuitions.

The second awkward thing Bell noted was that while his theory agrees with
standard quantum field theory empirically, the dynamics relies on the choice of
a preferred inertial frame and is, hence, incompatible with relativity.” On his
dynamics, spacelike separated fermion number densities evolve simultaneously
just like spacelike separated particle positions do on standard Bohmian mechanics.
Regarding this problem, Bell reported that “[I] am unable to prove, or even
formulate clearly, the proposition that a sharp formulation of quantum field
theory, such as that set out here, must disrespect serious Lorentz invariance.
But it seems to me that this is probably so” (1987, 179). The problem again is
that Bohmian field theory, just like standard Bohmian mechanics, explains the
EPR-Bell statistical correlations in a way that is dynamically incompatible with
relativistic constraints.®

12.3 Metaphysics and Empirical Adequacy

The ontology one associates with a theory allows one to say what counts as a mea-
surement record in the theory. How compelling on€’s explanation of experience is
depends on the plausibility that our experience in fact supervenes on records so
constituted.

7 Just like Bohmian mechanics, for example, Bohmian field theory does not allow for superluminal
signaling but does allow for superluminal effects. Again, it is only because one does not know the actual
initial field configuration that one cannot send signals.

® For a selection of approaches to Bohmian field theory and tentative suggestions for relativistic for-
mulations of Bohmian mechanics see Diirr, Goldstein, Tumulka, and Zanghi (2005); Diirr, Goldstein,
Norsen, Struyve, and Zanghi (2013); Vink (2017); and Deckert, Esfeld, and Oldofredi (2018). While
not relativistic in a standard sense, these proposals illustrate how one might incorporate relativistic
phenomena like particle creation and annihilation into a hidden-variable theory. That the EPR-Bell
correlations can be explained in a way that is compatible with relativistic constraints in GRWf is an
arguable advantage over Bohmian mechanics. While it lacks a dynamics, the many-maps formulation
is the closest that I know to something like this for Bohmian mechanics.
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We want a formulation of quantum mechanics that we can take as empirically
adequate. That means that the associated empirical ontology needs to be one on
which we can take our actual experience to supervene. To do this, the theory
needs to predict determinate records that satisfy the standard quantum statistics.
Given that we often intuitively think of our physical records as supervening on
the positions and motions of nearby objects, one might suppose that the empirical
ontology must be a primitive ontology to be satisfactory, but empirical adequacy
comes in different types and degrees depending on how one’s theory characterizes
records and on precisely how one’s experience is taken to supervene on them.

One might take a physical theory to be weakly adequate if one can understand
it as describing a world that contains anything whatsoever on which one€’s
experience might be taken to supervene; and more strongly adequate if one can
take it to describe a world that contains something on which one’s experience
might plausibly supervene given one’s background commitments concerning
what physical facts are actually relevant to experience. The distinction here is
not canonical. Rather, it is a matter of the sense and the degree to which the
theory allows one to plausibly model how an observer might end up with the
measurement records she takes herself to have, given our background assumptions
about how we experience the world (which may come from cognitive science,
physiology, common sense, etc.).

Suppose that a physical theory predicts the existence of a book in an under-
ground vault in New York City that accurately describes my full experience.
Such a theory would automatically be weakly adequate no matter what else it
predicted since it provides something on which my experience might be taken to
supervene. But if the content of the book is the only thing on which my experience
might supervene, then the theory is only weakly adequate. Given my background
commitments concerning what in fact determines my experience, it is implausible
that it is determined by descriptions in a distant underground vault no matter
how detailed and accurate they may be. Indeed, given my background beliefs,
it is unclear to me how I might even have epistemic access to the content of
the book.

As a limiting case, a theory that described a physical world with such a book
might be taken to be weakly adequate inasmuch as it would contain something on
which my actual experience might supervene (the descriptions in the book) even
if the world contains nothing but the book. But given what I in fact take as relevant
to my experience, a world containing a book of my experiences and nothing else
is entirely unacceptable as a world that really accounts for my experience. Again,
one wants one’s physical theory to describe a world on which one’s measurement
records, or more directly experience, might plausibly be taken to supervene given
one’s background beliefs about the relationship between mental and physical states.
Of course, one’s background beliefs might ultimately require some tuning, but
there are also limits to plausible explanation.
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The general issue here concerns what it should mean for a physical theory
to be empirically adequate. The suggestion is that there is no canonical set of
necessary and sufficient conditions for what should count as an adequate account
of experience. Rather, what one requires for empirical adequacy depends on
the explanatory trade-offs presented by the theory one is considering. On this
view, the empirical adequacy of a theory is a matter of cost-benefit analysis and
compromise.

The upshot is that a weakly adequate theory might allow for impressive pre-
dictions but provide entirely unsatisfactory explanations of experience. This is
worth a bit more detail. For strong adequacy it is not enough that there merely
be something on which one’s experience might supervene. One wants a theory
and associated ontology that predicts measurement records that can plausibly be
taken to determine the empirical content of one’s experience given those facts that
we take to be relevant to experience. In quantum mechanics this can be expected
to involve the theory telling us how measurement interactions produce records
on which the empirical content of our experience might supervene given one’s
background assumptions concerning how experience works. So, among other
things, one needs to consider what the theory itself allows one to know. Being
able to model a situated observer in one’s theory is arguably a precondition for the
possibility of providing a plausible explanation for how the observer has epistemic
access to measurement outcomes.’

One can guarantee a direct account of determinate experience by choosing the
right empirical ontology. In the single-mind theory, Albert and Loewer simply
stipulate that an observer’s mental state is always determinate then randomly
associate it with a branch of the wave function with the standard quantum
probabilities.'® But this is where cost-benefit considerations kick in—it is the very
effectiveness of this proposal that marks it as ad hoc. One gets a direct account
of determinate experience but only at the cost of violating general explanatory
commitments regarding how our experience in fact supervenes on physical states.

Back to the vault example, it is not impossible that the book determines my
experience. Rather, it is implausible that it does given my background com-
mitments about what physical facts might be relevant to my experience. Given

° This is closely related to the notion of empirical coherence discussed earlier. Note that a purely
epistemic, pragmatic, or information-theoretic formulation of quantum mechanics, one that just
provides a predictive algorithm and does not even aim to describe physically situated observers, does
not face the threat of empirical incoherence. But this cannot be considered a virtue when it is only
because the theory is not descriptively strong enough to even make sense of the threat. Such theories
are never strongly empirically adequate. Indeed, even what we are calling a weakly adequate theory
arguably exhibits a stronger sort of empirical adequacy than a predictive algorithm. The former at least
seeks to describe a physical world that would explain our experience. See Ismael (2007) for a discussion
of the notion of a situated observer. Here our explanatory aims are significantly more modest.

' Note that this provides an immediate account of experience without there being a primitive
ontology in the usual three-dimensional object sense.
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everyday, pre-theoretic notions about how perception works, one might want a
formulation of quantum mechanics that predicts determinate properties for the
objects in my visual field or, perhaps more directly, a sequence of brain states that
can be understood as representing a determinate sequence of perceptions that one
would take to agree with one’s experience.

Proponents of alternative formulations of quantum mechanics often differ in
their background commitments regarding the explanatory demands a satisfactory
account of experience should satisfy. We ultimately want to account for both
quantum phenomena and our everyday experience of a world that appears to be
constituted by three-dimensional macroscopic objects with determinate classical
properties. But, as we have seen, there are many ways that one might go about
providing such an account and not all of these involve a primitive ontology.

Bell thought that making the positions of things determinate, then having those
positions exhibit the standard quantum statistics provided the most plausible
explanation of experience. This is the idea behind a primitive ontology. One insists
that an empirically adequate physical theory should account for our experience
of a world that appears to be constituted by three-dimensional macroscopic
objects with definite properties in terms of an ontology consisting of basic entities
in motion in ordinary three-dimensional space or spacetime that provides the
manifest image of the world.!* The strategy involves two thoughts. The first is
that our experience of the physical world is properly characterized in terms of
the apparent motion of ordinary three-dimensional macroscopic objects, and the
second is that the apparent motion of ordinary three-dimensional macroscopic
objects is properly taken to supervene on the positions of more basic entities in
ordinary three-dimensional space. The basic entities of a primitive ontology are
usually taken to be something like particles with always-determinate positions
(as in Bohmian mechanics), flashes at spacetime points (as in GRWf), or fermion
densities at spacetime points (as in Bell’s field theory). While flashes and fermion
densities already require one to go beyond the requirement that a primitive
ontology must consist in objects in motion, they still involve spatially situated
things and, hence, might be taken to be close enough to the intuitive mark.

There is something intuitively attractive in having a theory with a primitive
ontology. Such a picture is familiar from classical mechanics. But how this works
in a formulation of quantum mechanics can be subtle and not particularly well-
connected with the intuitions that led one to favor one’s choice of primitive
ontology in the first place.'?

1 See Allori (2013).

!> And just because a strategy is intuitive and familiar does not mean that it is the only option.
Another salient option here is Albert’s (2013) proposal of taking configuration space to be basic and
accounting for three-dimensional space and its objects as emergent entities.
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12.4 Empirical Ontology and Experience

Consider again how one gets determinate measurement records from the positions
of things and what these records mean in Bohmian mechanics. The theory tells us
that one never sees precisely where a particle, or anything else, is. Rather, in the
two-path experiment, the record “a” indicates that the particle configuration has
selected |1,).|A).|a), as the effective wave function. Inasmuch as our experience
supervenes on such records, it supervenes on the effective wave function selected
by the 3N-dimensional particle configuration. That the effective wave function is
what one most directly sees in Bohmian mechanics is flatly incompatible with the
intuition that the theory provides a satisfactory account of experience because of
its primitive ontology. Indeed, that the theory’s ontology is primitive is arguably
irrelevant to its account of experience.

Because particle configuration satisfies the standard quantum statistics in
Bohmian mechanics, so does the effective wave function it selects. Since there
is something on which our experience might supervene, Bohmian mechanics is at
least weakly empirically adequate. Further, given that our experience supervenes
on the effective wave function, the theory provides a plausible account for how an
observer might have precisely the limited epistemic access to the positions of things
described by the standard quantum statistics. The degree to which the theory is
strongly adequate depends on how plausible one finds it that our experience in fact
supervenes on such records.

While position plays an important role in how Bohmian mechanics accounts
for our experience, the theory also provides a dynamical explanation for how
position records make correlated physical properties effectively determinate. When
one looks for the electron in the two-path experiment, the record “a” indicates
that the configuration has selected |1,).|A).|a), as the effective wave function. This
means that p is effectively in region g, e is effectively on path A, and e is effectively
x-spin up. So if, contrary to our pre-theoretic intuitions, our most immediately
accessible perceptual records are in terms of x-spin we are still fine as long as
the position of something gets correlated to x-spin over the course of a typical
measurement. Since pretty much everything would get correlated to the position of
something in a typical measurement of a macroscopic system, particle position is
a good tentative candidate for one’s empirical ontology. And, for the same reason,
so is fermion density.

Providing something on which our experience might supervene is like getting
the descriptions in the vault right. But Bohmian mechanics does significantly more
than that. It explains how and the extent to which we have epistemic access to the
positions of the objects we measure. It also explains how properties other than
position might be effectively determinate. Such dynamical stories provide a stronger,
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richer variety of empirical adequacy than a theory that just provides something on
which one’s experience might be taken to supervene.*?

The sense and degree to which a theory and its associated empirical ontology
might be taken to be strongly empirically adequate depends on how well the
theory models our epistemic access to the world, all things considered. Strong and
weak empirical adequacy differ in the plausibility and explanatory richness of the
account of experience provided by the theory. We want the strongest variety of
empirical adequacy we can get given our background theoretical and explanatory
commitments.

12.5 Philosophical Morals

In order to be empirically adequate, quantum mechanics must be counterintuitive.
This is reflected in the fact that each formulation of quantum mechanics that we
have considered violates basic common-sense and philosophical intuitions. There
are two consequences. One is methodological, the other is epistemological.

The methodological consequence is one cannot trust one’s common-sense or
philosophical intuitions to get the world right. While our pre-theoretic intuitions
guide our evaluation of alternative formulations of quantum mechanics, the
physical world is ultimately counterintuitive. One might evaluate one’s theoretical
options with the aim of deciding which is most attractive on balance. But since
alternative formulations of quantum mechanics exhibit both conceptual virtues
and vices, our intuitions, even if they could be trusted to track the truth, which
they clearly cannot, will never deliver an unambiguous winner.

This brings us to the epistemological moral. All of the formulations of quantum
mechanics that we have considered are somehow descriptive of the physical world.
If nothing else, each predicts the quantum phenomena we have observed so far
that fall within the descriptive domain of the particular formulation. But the
striking differences between how each describes the physical world show how
little this means. While there is likely some sense in which each formulation is
approximately true, the striking differences between how they describe the physical
world illustrate just how little we know regarding the sense in which they might be
approximately true."* Given our epistemic situation, the best strategy is to keep all
of the serious theoretical options on the table while we aim for something better.

> One does the same thing in GRWr, GRWE, or GRWm when one shows how the dynamics predicts
wave functions, flashes, or mass distributions that exhibit appropriately correlated measurement
records that capture the standard quantum statistics and hence allow for successful action.

'* See Barrett (2003) (2008) for discussions of what it might mean to take a physical theory like
quantum mechanics to be approximately true.
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With respect to the proper choice of empirical ontology and debates concerning
such things as primitive ontology and configuration space realism more specifi-
cally, there is arguably not much to be gained by trying to stipulate an intuitively
preferred metaphysics up front. Rather, given our epistemic situation, one might
more profitably adopt a flexible view of the matter without trying to stipulate how
our experience ought to supervene on the physical world once and for all.

But a pragmatic approach does not mean that anything goes. One wants a
theory that allows for a rich and compelling account of experience and hence
can be taken as strongly adequate. But strong adequacy is a matter of degree and
always depends on one’s background theoretical and explanatory commitments.
One might consequently expect our judgments concerning the degree to which a
theory is strongly adequate to be influenced by what we learn as we try to formulate
more compelling theories.

Given the difficulty of the task at hand, one might take a formulation of quantum
mechanics to be a significant achievement if it is logically consistent and at least
weakly empirically adequate over nonrelativistic phenomena. We have considered
a number of ways to get at least that. What we should want now is a formulation
of quantum mechanics that we can clearly understand as being strongly adequate
over relativistic phenomena.



APPENDIX A

A Formal Characterization of Hilbert Space

A Hilbert space is a separable vector space with an inner product satisfying the following
. 1
axioms:

1. The sum of any two vectors |¢) and |y) in J€ is also a vector |¢) + |y) in F. Vector
addition satisfies the following properties:

a @)+ 10 =10 +1¢)
b (1) + ) + [y = [9) + (I0) + [¥)).
c. There is a zero vector |0) such that |¢) + |0) = |¢).
d. For every vector |¢) in J(, there is an inverse —|¢) in H such that
9) + (=[¢)) = 10)-
2. Avector |¢) in  multiplied by a complex number « is also a vector «|¢) in . Scalar
multiplication has the following properties:

a. a(Bl)) = (aP)lg).
b. 1/¢) = [¢).
. a(lg) + X)) = alg) + aly).
d. (@+BIg) = alg) + Blo).

3. For vectors in #(, there is an inner product (¢|x) with the following properties:
a. (gl + [y = () + (Bly).
b. (¢Dly) = a(ly).

c. (¢ly) = (y|¢)*, where = represents the complex conjugate.
d. (¢|¢) > 0,and (¢|¢) = 0 onlyif |¢) = 0.

4. H is continuous and its dimension is at most countably infinite.

A complex number has the form a + bi where a and b are real numbers and i = \V—=1. The
complex conjugate of a + bi is (a + bi)* = a — bi.” The last axiom above characterizes two
topological properties of a Hilbert space. The space is separable if and only if its dimension
is at most countably infinite. If the space is separable, then there is a natural way to represent
each vector as a linear combination of the elements of an orthonormal basis. This allows one
to calculate quantum-mechanical probabilities in the usual way.

On the standard formulation of quantum mechanics, the unit-length elements of Hilbert
space represent physical states. Linear operators on the Hilbert space represent observ-
able physical properties and dynamical laws. In particular, Hermitian operators represent
observable properties, and the linear dynamics is represented by a family of linear operators.

! An early characterization of the Hilbert space representation of quantum mechanical states is found
in von Neumann (1932, 1955).

2 Wolfram MathWorld is an online resource for basic mathematical notions. It contains short articles
on most of the mathematical notions we discuss here. As a start, a brief overview of complex numbers
can be found at <http://mathworld.wolfram.com/ComplexNumber.html>.
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