

David Cuartielles

Andreas Göransson

Eric Foster-Johnson

A practical, no-nonsense guide to Java

The Java Workshop

The Java Workshop

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: David Cuartielles, Andreas Göransson, and Eric Foster-Johnson

Technical Reviewer: Darryl Pierce

Managing Editor: Manasa Kumar

Acquisitions Editor: Sarah Lawton

Production Editor: Shantanu Zagade

Editorial Board: Shubhopriya Banerjee, Mayank Bhardwaj, Ewan Buckingham,
Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Pramod Menon,
Bridget Neale, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First Published: August 2019

Production Reference: 1260819

ISBN: 978-1-83864-996-8

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Getting Started 1

Introduction .. 2

Writing, Compiling, and Executing Your Hello World Program 2

Exercise 1: Creating Your Hello World Program in Java 3

Basic Syntax and Naming Conventions ... 9

Printing Out Different Data Types ... 11

Variables and Variable Types ... 12

Exercise 2: Printing Different Types of Data ... 12

Primitive versus Reference Data Types .. 15

Null .. 16

Chars and Strings ... 17

Exercise 3: Declaring Strings ... 18

Doing Some Math ... 19

Exercise 4: Solving a Simple Trigonometry Problem 20

Comments Help You to Share Code .. 22

CLI versus GUI .. 23

Exercise 5: Running the Code from the CLI .. 23

Activity 1: Obtaining the Minimum of Two Numbers 24

Summary ... 25

Chapter 2: Learning the Basics 27

Introduction .. 28

Controlling the Flow of Your Programs ... 28

Exercise 1: Creating a Basic if Statement .. 29

Comparison Operators .. 32

Exercise 2: Using Java Comparison Operators ... 33

Nested if Statements ... 35

Exercise 3: Implementing a Nested if Statement ... 35

Branching Two Ways with if and else .. 36

Exercise 4: Using if and else Statements ... 37

Using Complex Conditionals ... 39

Exercise 5: Using Logical Operators to Create Complex Conditionals 40

Using Arithmetic Operators in an if Condition ... 42

The Ternary Operator ... 43

Exercise 6: Using the Ternary Operator .. 43

Equality Can Be Tricky ... 45

Exercise 7: Comparing Decimal Values ... 45

Comparing Strings ... 46

Using Switch Statements .. 48

Exercise 8: Using Switch .. 49

Exercise 9: Allowing Cases to Fall Through ... 50

Using Java 12 Enhanced Switch Statements ... 52

Exercise 10: Using Java 12 Switch Statements .. 52

Looping and Performing Repetitive Tasks .. 54

Looping with the For Loop .. 55

Exercise 11: Using a Classic for Loop ... 55

Exercise 12: Using an Enhanced for Loop ... 56

Jumping Out of Loops with Break and Continue ... 57

Exercise 13: Using Break and Continue ... 58

Using the While Loop ... 59

Exercise 14: Using a While Loop ... 60

Using the Do-While Loop ... 61

Handling Command-Line Arguments .. 62

Exercise 15: Testing Command-Line Arguments .. 62

Converting Command-Line Arguments .. 64

Exercise 16: Converting String to Integers and Doubles 64

Diving Deeper into Variables – Immutability .. 65

Comparing Final and Immutable ... 66

Using Static Values ... 66

Using Local Variable Type Inference ... 67

Activity 1: Taking Input and Comparing Ranges .. 68

Summary ... 69

Chapter 3: Object-Oriented Programming 71

Introduction .. 72

The Anatomy of a Class ... 72

Working with Objects in Java .. 74

Checking the Precedence of a Class with instanceof 78

Exercise 1: Creating the WordTool Class ... 79

Activity 1: Adding the Frequency-of-Symbol Calculation to WordTool 87

Inheritance in Java ... 88

Overriding and Hiding Methods ... 90

Avoiding Overriding: Final Classes and Methods ... 93

Overloading Methods and Constructors .. 94

Recursion .. 96

Annotations .. 98

Interfaces .. 102

Inner Classes .. 103

Documenting with JavaDoc .. 105

Activity 2: Adding Documentation to WordTool ... 110

Summary ... 111

Chapter 4: Collections, Lists, and Java's Built-In APIs 113

Introduction .. 114

Arrays .. 115

Activity 1: Searching for Multiple Occurrences in an Array 123

Sets .. 124

Lists .. 130

Exercise 1: Creating the AnalyzeInput Application 136

Maps .. 138

Iterating through Collections ... 141

Exercise 2: Bringing Analytics into the AnalyzeInput Application 145

Sorting Collections ... 148

Exercise 3: Sort the Results from the AnalyzeInput Application 150

Properties ... 155

Activity 2: Iterating through Large Lists ... 160

Summary ... 161

Chapter 5: Exceptions 163

Introduction .. 164

A Simple Exception Example .. 164

NullPointerException – Have No Fear ... 169

Catching Exceptions .. 172

Exercise 1: Logging Exceptions .. 177

Throws and Throw ... 179

Exercise 2: Breaking the Law (and Fixing It) .. 181

The finally Block ... 184

Activity 1: Designing an Exception Class Logging Data 185

Best Practices for Handling Exceptions .. 186

Where Do Exceptions Come from? .. 190

Summary ... 190

Chapter 6: Libraries, Packages, and Modules 193

Introduction .. 194

Organizing Code into Packages .. 194

Importing Classes ... 194

Exercise 1: Importing Classes .. 195

Fully Qualified Class Names .. 197

Importing All Classes in a Package ... 198

Dealing with Duplicated Names .. 199

Static Imports .. 199

Creating a Package ... 200

Naming Your Package .. 200

Directories and Packages ... 201

Exercise 2: Creating a Package for a Fitness Tracking App 202

Building JAR Files ... 208

Exercise 3: Building a JAR File .. 209

Defining the Manifest ... 210

Exercise 4: Building an Executable JAR File .. 211

Build Tools ... 212

Maven ... 213

Exercise 5: Creating a Maven Project ... 214

Exercise 6: Adding Java Sources to the Maven Project 217

Exercise 7: Building the Maven Project .. 224

Exercise 8: Creating an Executable JAR with Maven 225

Using Gradle .. 226

Exercise 9: Creating a Gradle Project ... 227

Exercise 10: Building an Executable JAR with Gradle 229

Using Third-Party Libraries .. 231

Finding the Libraries ... 231

Adding a Project Dependency ... 232

Exercise 11: Adding a Third-Party Library Dependency 232

Using the Apache Commons Lang Library ... 235

Exercise 12: Using the Apache Commons Lang Library 236

Using Modules ... 237

Creating Modules .. 239

Exercise 13: Creating a Project for a Module ... 240

Exercise 14: Creating a Second Module Using the First One 242

Activity 1: Tracking Summer High Temperatures 245

Summary ... 248

Chapter 7: Databases and JDBC 251

Introduction .. 252

Relational Databases ... 252

Relational Database Management Systems ... 253

Installing a Database .. 254

Exercise 1: Running the H2 Database ... 254

Introducing SQL ... 256

Exercise 2: Creating the customer Table .. 256

Inserting Data into a Table .. 258

Exercise 3: Inserting Data .. 259

Retrieving Data .. 259

Relating Tables .. 262

Exercise 4: Creating the email Table ... 262

Selecting Data from Multiple Tables .. 263

Modifying Existing Rows .. 264

Exercise 5: Modifying email Data .. 264

Deleting Data ... 265

JDBC – Accessing Databases from Java .. 265

Connecting to Databases ... 266

Querying Data with JDBC ... 267

Exercise 6: Querying Data with JDBC .. 268

Sanitizing User Input .. 272

Using Prepared Statements ... 272

Transactions and Rollback ... 274

Exercise 7: Using Prepared Statements with Transactions 275

Simplifying JDBC Programming ... 277

Using Object-Relational Mapping Software ... 278

Database Connection Pooling ... 279

Non-Relational, or NoSQL, Databases .. 280

Activity 1: Track Your Progress .. 280

Summary ... 281

Chapter 8: Sockets, Files, and Streams 283

Introduction .. 284

Listing Files and Directories ... 285

Separating Directories from Files ... 289

Exercise 1: Listing the Contents of Subdirectories 292

Creating and Writing to a File ... 297

Activity 1: Writing the Directory Structure to a File 302

Reading an Existing File ... 304

Reading a Properties File .. 306

Exercise 2: Creating a Properties File from the CLI 309

What Are Streams? ... 312

The Different Streams of the Java Language ... 316

What Are Sockets? .. 320

Creating a SocketServer ... 321

Writing Data on and Reading Data from a Socket 323

Activity 2: Improving the EchoServer and EchoClient Programs 326

Blocking and Non-Blocking Calls ... 328

Summary ... 328

Chapter 9: Working with HTTP 331

Introduction .. 332

Exploring HTTP ... 332

HTTP Request Methods .. 334

Representational State Transfer ... 334

Request Headers ... 335

Using HttpUrlConnection .. 336

Exercise 1: Creating a HEAD Request ... 338

Reading the Response Data with a GET Request .. 340

Exercise 2: Creating a GET Request .. 341

Dealing with Slow Connections .. 342

Requesting Parameters .. 342

Handling Redirects .. 343

Creating HTTP POST Requests .. 343

Exercise 3: Sending JSON Data with POST Requests 343

Parsing HTML Data .. 346

Exercise 4: Using jsoup to Extract Data from HTML 348

Delving into the java.net.http Module .. 350

Exercise 5: Getting HTML Contents Using the java.net.http Module 352

Activity 1: Using the jsoup Library to Download Files from the Web 353

Summary ... 354

Chapter 10: Encryption 357

Introduction .. 358

Plaintext ... 358

Ciphertext .. 358

Ciphers ... 358

Keys .. 360

Symmetric Key Encryption .. 360

Exercise 1: Encrypting the String using Advanced
Encryption Standard ... 361

Block Ciphers .. 366

Initialization Vectors ... 366

Stream Ciphers .. 367

Asymmetric Key Encryption ... 367

Exercise 2: Encrypting the String Using the RSA Asymmetric
Key Encryption .. 367

Encrypting Files .. 371

Exercise 3: Encrypting a file ... 372

Summary ... 380

Chapter 11: Processes 383

Introduction .. 384

Launching a Process .. 384

Sending Input to a Child Process .. 387

Capturing the Output of a Child Process .. 390

Storing the Output of a Child Process in a File 391

Activity 1: Making a Parent Process to Launch a Child Process 393

Summary ... 395

Chapter 12: Regular Expressions 397

Introduction .. 398

Decrypting Regular Expressions .. 398

Character Classes .. 399

Character Sets ... 400

Quantifiers ... 400

Anchors .. 401

Capturing Groups .. 401

Escaped Characters .. 401

Flags .. 402

Exercise 1: Implementing Regular Expressions .. 402

Activity 1: Regular Expressions to Check
If the Entrance is Entered in the Desired Format 406

Regular Expressions in Java .. 407

Exercise 2: Extracting the Domain Using Pattern Matching 408

Exercise 3: Extracting Links Using Pattern Matching 415

Summary ... 422

Chapter 13: Functional Programming
with Lambda Expressions 425

Introduction .. 426

Background .. 426

Functional Programming .. 426

Side Effects ... 426

Deterministic Functions ... 428

Pure Functions ... 429

Exercise 1: Writing Pure Functions .. 429

Immutability of State .. 433

Exercise 2: Creating an Immutable Class ... 434

Activity 1: Modifying Immutable Lists .. 439

Immutable Collections ... 440

Exercise 3: Overriding the String Method .. 441

Functional Interfaces .. 443

Lambda Expressions .. 444

Exercise 4: Listing Spare Tires ... 445

Summary ... 452

Chapter 14: Recursion 455

Introduction .. 456

Delving into Recursion .. 456

Exercise 1: Using Recursion to Overflow the Stack 457

Trying Tail Recursion .. 459

Exercise 2: Using Recursion to Calculate Factorials 459

Processing an XML Document ... 461

Exercise 3: Creating an XML File .. 462

Introducing the DOM XML API .. 465

Exercise 4: Traversing an XML Document .. 467

Activity 1: Calculating the Fibonacci Sequence ... 474

Summary ... 475

Chapter 15: Processing Data with Streams 477

Introduction .. 478

Creating Streams ... 479

Parallel Streams .. 481

Encounter Order ... 482

Closing Streams ... 482

Terminal Operations .. 484

Intermediate Operations .. 489

Exercise 1: Using the Stream API .. 495

Activity 1: Applying Discount on the Items .. 499

Using Collectors ... 499

I/O Streams .. 508

Exercise 2: Converting CSV to a List .. 510

Activity 2: Searching for Specifics ... 516

Summary ... 516

Chapter 16: Predicates and Other Functional Interfaces 519

Introduction .. 520

Predicate Interface .. 520

Exercise 1: Defining a predicate .. 521

Activity 1: Toggling the Sensor states .. 530

Consumer Interface .. 530

Exercise 2: Producing Side Effects ... 531

Function .. 538

Exercise 3: Extracting Data .. 538

Activity 2: Using a Recursive Function ... 542

Activity 3: Using a Lambda Function .. 542

Summary ... 542

Chapter 17: Reactive Programming with Java Flow 545

Introduction .. 546

Publisher ... 548

SubmissionPublisher .. 548

Subscriber ... 549

Subscription ... 550

Exercise 1: A Simple Application with a Single Publisher
and a Single Subscriber .. 550

Processor .. 560

Exercise 2: Using a Processor to Convert a Stream
of Strings to Numbers .. 561

Activity 1: Let NumberProcessor Format Values as Integers 588

Summary ... 588

Chapter 18: Unit Testing 591

Introduction .. 592

Getting Started with Unit Tests .. 592

Introducing JUnit ... 593

Writing Unit Tests with JUnit ... 593

Exercise 1: Writing a First Unit Test .. 596

Exercise 2: Writing a Successful Test .. 600

Deciding What to Test .. 602

Writing Parameterized Tests ... 603

Exercise 3: Writing a Parameterized Test .. 605

When Tests Won't Work – Disabling Tests ... 607

Test Setup .. 608

Exercise 4: Using Test Setup and Cleanup Methods 608

Mocking .. 611

Testing with Mocks Using Mockito ... 611

Exercise 5: Using Mocks when Testing ... 614

Activity 1: Counting the Words in the String ... 620

Summary ... 620

Chapter 19: Reflection 623

Introduction .. 624

Reflection Basics .. 624

Exercise 1: Getting Class Information ... 626

Determining Constructors ... 634

Exercise 2: Extracting a List of Constructors ... 635

Instantiating New Objects ... 637

Exercise 3: Instantiating Objects .. 638

Getting Methods ... 640

Exercise 4: Extracting Method Information ... 640

Getting a Single Method ... 643

Calling Methods .. 643

Exercise 5: Calling Methods ... 644

Getting Fields ... 646

Exercise 6: Getting Field Information ... 647

Setting Field Values ... 648

Drawbacks of Reflection .. 650

Reflection in the Real World – Dependency Injection 650

Exercise 7: Using Dependency Injection .. 652

Reflection in the Real World – JSON Data and RESTful Services 654

Using the Jackson Library .. 656

Exercise 8: Converting JSON Data Using Jackson .. 658

Activity 1: Take-Out Food Delivery Using Drones and JSON 665

Summary ... 667

Chapter 20: Optionals 669

Introduction .. 670

Instantiating Optional Objects .. 670

Getting Values ... 672

The Presence Actions ... 676

Exercise 1: Create Your Own Class Using Optionals 678

map versus flatMap .. 683

Returning with filter ... 685

Activity 1: Experimenting with Filters ... 687

Chaining Optionals to the Stream .. 688

Summary ... 690

Chapter 21: References 693

Introduction .. 694

Java Memory Management .. 694

Memory Leaks .. 695

Strong References ... 695

Weak References .. 696

Exercise 1: Weak References ... 697

Reference Queues ... 702

Exercise 2: Creating a Shopping Cart .. 703

Activity 1 – Using Multiple Weak References in a Reference Queue 707

WeakHashMap .. 707

Exercise 3: WeakHashMap ... 708

Activity 2: Clearing Cross-Referenced Objects .. 711

Activity 3: Solving the Memory Problem ... 711

Soft References ... 712

Exercise 4: Soft References .. 712

Activity 4: Forcing the Soft Reference to Be Cleaned 715

Phantom References .. 715

Exercise 5: Phantom Reference ... 715

Summary ... 725

Chapter 22: Concurrent Tasks 727

Introduction .. 728

Thread Class versus Runnable Interfaces ... 728

Some Thread Properties .. 731

Activity 1 – Prioritize Tasks .. 736

Sleep, Join, Interrupt ... 738

Shared Resources ... 746

Synchronized ... 747

Exercise 1: Making a Thread That Counts and Discounts 748

Atomic Variables/Operations .. 757

Thread Pools .. 761

Activity 2 – Random Amounts of Tasks .. 766

Actor Model ... 767

Summary ... 768

Chapter 23: Using the Future API 771

Introduction .. 772

Futures .. 772

Thread Pools ... 773

The Executor Interface ... 773

Employing the Thread Pool .. 775

Exercise 1: Implementing Bubble Sort ... 776

Activity 1: Comparing Sorting .. 783

The Fork/Join Framework ... 783

Exercise 2: Implementing Merge Sort .. 783

Activity 2: Improving the MergeSort algorithm ... 792

Working with Futures ... 793

Exercise 3: Comparing Merge and Bubble Sorts ... 794

Activity 3: Optimizing Sorting .. 812

Scheduling Futures ... 812

Summary ... 813

Appendix 815

Index 921

About

This section briefly introduces this book and the software requirements to complete all of the
included activities and exercises.

Preface

>

ii | Preface

About the Book
The Java Workshop is heavily geared towards getting you build-ready for the real world.
A step-by-step approach to learning helps you develop and reinforce key skills in a
way that feels engaging and rewarding, without dragging you down into long-running
lectures on dry, underlying theory. We use real examples that lead to real results.

As you progress through the book, you'll find key concepts broken down into
convenient, individual sections. Designed to accommodate short reading sessions as
well as intense, laser-focused study, you'll find that the included step-by-step exercises
and open-ended activities help you embed and reinforce what you've learned in a
hands-on, practical context. With every chapter carefully designed to let you learn at
your own pace, you get to decide how quickly you progress and how you fit learning
within your schedule.

About the Chapters

Chapter 1, Getting Started, covers the basics of writing and testing programs, a first step
towards building all the code that you will find in this book.

Chapter 2, Learning the Basics, covers the basic syntax of the Java language, especially
ways to control the flow of your applications.

Chapter 3, Object-Oriented Programming, provides an overview of OOP and details the
aspects that make Java a popular language.

Chapter 4, Collections, Lists, and Java's Built-In APIs, covers the popular Java collections
framework, which is used to store, sort, and filter data.

Chapter 5, Exceptions, provides recommendations on how to deal with exceptions
on a more conceptual level, providing a list of best practices that any professional
programmer will follow.

Chapter 6, Libraries, Packages, and Modules, introduces you to various ways to package
and bundle Java code, along with tools to help you build Java projects.

Chapter 7, Databases and JDBC, shows how to use JDBC to access relational databases
from your Java applications.

Chapter 8, Sockets, Files, and Streams, aids you in working with external data storage
systems.

Chapter 9, Working with HTTP, explains how to create programs that connect to a
specific web server and downloads data.

Chapter 10, Encryption, explores how applying encryption to your software is vital to
safeguard yours, or your customers, integrity, data, and business.

About the Book | iii

Chapter 11, Processes, briefly discusses how processes function and are dealt with in
Java.

Chapter 12, Regular Expressions, decrypts what regular expressions mean and looks at
how this comes in handy in Java.

Chapter 13, Functional Programming with Lambda Expressions, discusses how Java
doubles up as a functional programming language, and how lambda expressions are
used to perform pattern matching in Java.

Chapter 14, Recursion, looks at a couple of problems that are solved using the recursion
technique.

Chapter 15, Processing Data with Streams, explains how you can use streams to write
more expressive programs with fewer lines of code, and also how you can easily chain
multiple operations on large lists.

Chapter 16, Predicates and Other Functional Interfaces, explores some of the valid use
cases of functional interfaces.

Chapter 17, Reactive Programming with Java Flow, talks about the Java Flow API and the
advantages of the Reactive Streams specification.

Chapter 18, Unit Testing, delves into testing with JUnit, one of the primary testing
frameworks for Java.

Chapter 19, Reflection, talks about how to use Java's Reflection API and implement
dependency injection.

Chapter 20, Optionals, helps you deal with null references in code and shows you how
to make the whole interaction with the data a lot smoother using the Optional class.

Chapter 21, References, talks about the four types of references available in Java – strong,
weak, soft, and phantom references.

Chapter 22, Concurrent Tasks, talks about running multiple tasks at the same time using
threads, otherwise known as multithreading.

Chapter 23, Using the Future API, covers scheduling long-running tasks without
blocking your user interface.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
can nest if statements within any block of code, including the block of code that
follows an if statement."

iv | Preface

A block of code is set as follows:

if (i == 5) {

 System.out.println("i is 5");

}

i = 0;

New terms and important words are shown like this: "Every Java Virtual Machine (JVM)
does come with a set of available ciphers with different transformations."

Words that you see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "Click on Create New Project."

Before You Begin

While all the code present in the course runs on all Java compilers, we have used IntelliJ
IDEA on our systems. All the instructions in the exercises and the activities are tailored
to work on IntelliJ. To install IntelliJ on your system, visit https://www.jetbrains.com/
idea/.

Installing the Code Bundle

Download the code files from GitHub at https://github.com/TrainingByPackt/
The-Java-Workshop and place them in a new folder called C:\Code. Refer to these code
files for the complete code bundle.

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://github.com/TrainingByPackt/The-Java-Workshop
https://github.com/TrainingByPackt/The-Java-Workshop

Learning Objectives

By the end of this chapter, you will be able to:

• Write and compile your first "hello world" program

• Differentiate between CLI and GUI

• Hold data in variables and understand the basic concepts behind them

• Comment your code

In this chapter, we will be covering the fundamentals of Java. We will see how to run simple
programs in Java.

Getting Started

1

2 | Getting Started

Introduction
When learning how to program in almost any programming language, the first example
you will typically test is called "hello world." It is the simplest application possible: the
aim is to write the expression "hello world" to whatever user interface the programming
environment offers. Executing this program will introduce you to the basics of writing
code using the IntelliJ editor, using different types of data to be printed to the user
interface, and adding comments to your code.

When writing your first program, you will also discover how Java's syntax is constructed
and how it relates to other languages such as C or C++. Understanding the syntax is
key to starting to read code: you will learn how to distinguish where commands and
functions begin and end, how parameters are passed over between blocks of code, and
how to leave comments that will help you when revisiting your software in the future.

This chapter covers the basics of writing and testing programs as a first step toward
building all the code that you will find in this book.

Writing, Compiling, and Executing Your Hello World Program
In the preface, you saw how to install the IntelliJ development environment. While it is
possible to write Java code with literally any text editor, we believe it is good to see how
to create applications using state-of-the-art tools such as the aforementioned software
package.

However, prior to guiding you step by step through getting your first program to run,
we should take a look at the code that will become your first executable running on
Java. The following code listing shows the program. Read through it, and we will later
revise what each one of the parts is doing:

Example01.java

public class Main {

 public static void main (String[] args)

 {

 System.out.println("Hello World!";

 }

}

Writing, Compiling, and Executing Your Hello World Program | 3

The first line is what we call a class definition. All programs in Java are called classes.
A program might consist of several classes. Classes carry inside them everything they
need to perform the task they were designed for. For a class to be executable in Java,
it must contain a method called main. In this program, you can see how the Main class
contains a method called main that will be printing the sentence "Hello World!" to the
system's default output.

The code included in the class definition (public class Main) indicates that the class
itself is public, which means that it will be accessible from other programs running
on your computer. The same happens for the method definition (public static void
main(String[] args)). There is, however, a series of other things that require our
attention:

• static signifies that there is nothing in the system instantiating the main method.
Because of the way the Java Virtual Machine works, the main method needs to be
static, or it will not be possible to execute it.

• void indicates that the main method will not be returning anything to any code
calling it. Methods could, in fact, send an answer to a piece of code executing it, as
we will see later in the book.

• main is the name of the method. You cannot assign this a different name, since it is
the method that makes the program executable and needs to be named this way.

• String[] args are the parameters of the main method. Parameters are passed as a
list of strings. In other words, the program could take arguments from other parts
within your computer and use them as data. In the particular case of the main
method, these are strings that could be entered on the command-line interface
(CLI) when calling the program.

Exercise 1: Creating Your Hello World Program in Java

IntelliJ provides you with a pre-made "hello world" template. Templates help you to get
started faster with your code, as they provide the components you may need to speed
up development. Templates can also be used for educational purposes – this is the case
when it comes to testing "hello world."

4 | Getting Started

Let's start the editor for the first time. We will leave some options as they are by default.
We will later see how to personalize some of the options to better suit our needs:

1. Open IntelliJ and you will see a window giving you several options. Click on Create
New Project. It should be the first option in the list:

Figure 1.1: Creating a new project on IntelliJ IDE

Writing, Compiling, and Executing Your Hello World Program | 5

2. A new interface should appear. The default options here are meant for creating a
Java program, so you just need to click Next:

Figure 1.2: Creating a new Java project

6 | Getting Started

3. Check the box to create the project from a template. Click on Java Hello World
and then click Next:

Figure 1.3: Create a Java Hello World project from template

4. Name the project chapter01. Then, click Finish:

Figure 1.4: Create a Hello World Project

Writing, Compiling, and Executing Your Hello World Program | 7

5. As we haven't chosen a folder to store the projects (intentionally), IntelliJ will offer
you the possibility to create a default project folder inside your user space. Click
OK:

Figure 1.5: Default project folder option on IntelliJ IDE

6. You will see a popup with tips on how to use the software. If you have never
used a development environment of this type before, then this is a good way to
get information about how it functions every time IntelliJ boots up. Choose your
preferences and then click Close:

Figure 1.6: Tip on how to use the IDE

7. IntelliJ reminds you regarding the possibility of using a special tab dedicated to
learning more about the environment in relation to programming. Click Got It.

8 | Getting Started

8. The editor presents a menu bar, a code navigation bar, a project navigation area,
and the actual editor where you can see the code we explained earlier. Now it is
time to test it. Click on the Run button (this is the triangle on the right-hand side
of the code navigation bar).

Figure 1.7: Execute the program by clicking on the Run button

9. When the program runs, a terminal window unfolds at the bottom of IntelliJ. Here,
you can see how the software called your JVM, the program's outcome, and a line
from the editor reading Process finished with exit code 0, which means that no
errors occurred.

Writing, Compiling, and Executing Your Hello World Program | 9

Figure 1.8: JVM showing the output

Note

Since we took all the options by default for this example, you will see that our
program is called Main.java. In the following chapter, we will see how to create
programs that we then name ourselves.

Basic Syntax and Naming Conventions

The first thing you will have noticed in the hello world program, when it comes to
syntax, is how we group the code into blocks marked within sets of curly braces – { and
}. The Main class contains the main method. In other words, main is nested inside Main.
This is how classes are defined in Java – in principle, they contain all of the methods
they are going to use.

10 | Getting Started

Another aspect of the Java syntax is that capitalization matters. If a command is defined
as Print, it differs from another command called print, and the compiler will identify
them as different. Capitalization falls under a convention, an unwritten rule among
programmers on how names should be formatted in Java. You will have noticed that
the class is called HelloWorld. In Java, the convention establishes that methods, classes,
variables, and so on should be named by joining words together using capitals as a way
to mark the separation between words. In addition, the names of classes should start
with capitals.

Note

When you are starting off, it is easy to get confused between syntax, which is rigid
and must be respected for the compiler to function, and conventions, which are
intended for developers to better understand how code is supposed to function.

To some extent, the Java compiler doesn't care about whitespace characters, but there
is a convention about using them to make code more readable. The first code listing you
saw (Example01.java) can be rewritten as follows, and will have the exact same result
once compiled and executed:

Example02.java

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

The System.out.println("Hello World!") function call will print out the expected
message on the CLI. The command is nested inside the main(String[] args) method
definition, which is nested inside the class definition. You could add more blank spaces,
but it will not affect the functionality of the program. This is part of the syntax of Java,
but also of other programming languages such as C, C++, and Scala.

Also, note that "Hello World!" is a String, a type of data. The following section will
explore what types of data can be sent as parameters to the System.out.println()
method call.

Writing, Compiling, and Executing Your Hello World Program | 11

Printing Out Different Data Types

In Java, it is common to define methods that have the capability to use different sets
of parameters. For example, the System.out.println() method can print other types
of data that are not just pieces of text. You could, as an example, try to print out a
simple number and see the result. Example03.java adds a couple of lines to the code to
showcase different types of data:

Example03.java

public class Main {

 public static void main(String[] args) {

 System.out.println("This is text");

 System.out.println('A');

 System.out.println(53);

 System.out.println(23.08f);

 System.out.println(1.97);

 System.out.println(true);

 }

}

The previous example will print out four lines to the CLI, representing the different
arguments given to the System.out.println() method. The outcome will look as follows:

This is text

A

53

23.08

1.97

true

Process finished with exit code 0

You see six different types of data in this result: some text, a character, an integer
number, two different kinds of decimal numbers, and a truth statement. In the Java
programming language, we define those types of data as String, char, int, float, double,
and boolean, respectively. There is a lot more to learn about data types, but let's first
introduce a new topic: variables. This will help to understand why data types are
important.

12 | Getting Started

Variables and Variable Types

Variables are human-readable names given to slots of your computer memory. Each
one of those slots can store some data, such as a number, a piece of text, a password, or
the value of the temperature outside. This kind of data is what we call a variable type.
There are as many variable types as there are data types in our programming language.
The type of data we are using defines the amount of memory allocated to store the
data. A byte (which is made up of 8 bits) is smaller than an integer (which is made up of
32 bits). A string comprises several characters, hence making it bigger than an integer.

byte, int (short for integer), String, and char (short for character) are variable types.
To make use of a variable, you need to define it for the compiler to understand that
it needs it in order to allocate some space for storing data. The variable definition is
done by first determining its type, followed by the variable's name, and then you can
optionally initialize it with a certain value.

The following code listing shows how to define a couple of variables of different types:

// a counter

int counter = 0;

// a String

String errMsg = "You should press 'NEXT' to continue";

// a boolean

boolean isConnected = false;

Let's now work through an exercise where you will modify the code listing from
Example03.java in order to print out the values coming from the variables.

Exercise 2: Printing Different Types of Data

In this exercise, we shall declare variables of different data types and print it as an
output. To do so, perform the following steps:

1. Open IntelliJ. If you didn't get to try the code listing from Example03.java, let's
start by creating a new project using the HelloWorld template:

Writing, Compiling, and Executing Your Hello World Program | 13

Figure 1.9: Create a new Java project

2. Once you have reached the step when you have the code generated by the
development environment, copy all of the code, erase it, and paste in the code
from the Example03.java listing instead:

3. Try out the code, and check that the outcome is what it should be, as explained in
Printing Out Different Data Types.

4. Start by declaring a new variable of the String type and initialize it:

public class Main {
 public static void main(String[] args) {
 String t = "This is text";
 System.out.println("This is text");
 System.out.println('A');
 System.out.println(53);
 System.out.println(23.08f);

14 | Getting Started

 System.out.println(1.97);
 System.out.println(true);
 }
}

5. Next, substitute the text in the first System.out.println() command with the
variable. As the variable is linked to the piece of memory containing the string,
executing the program will give the same result:

public class Main {
 public static void main(String[] args) {
 String t = "This is a text";
 System.out.println(t);
 System.out.println('A');
 System.out.println(53);
 System.out.println(23.08f);
 System.out.println(1.97);
 System.out.println(true);
 }
}

6. Continue by declaring a variable of the char type, another of the int type, one of
the double type, and finally, one of the boolean type. Proceed to use the variable
names instead of the values when printing out to the CLI:

public class Main {
 public static void main(String[] args) {
 String t = "This is a text";
 char c = 'A';
 int i = 53;
 float f = 23.08f;
 double d = 1.97;
 boolean b = true;
 System.out.println(t);
 System.out.println(c);
 System.out.println(i);
 System.out.println(f);
 System.out.println(d);
 System.out.println(b);
 }
}

Writing, Compiling, and Executing Your Hello World Program | 15

With this example, not only have you learned about different types of data and the
variables that store this data, but also about how methods can handle more than one
data type.

Note

Notice how the float type, when defined, requires the letter f to be appended after
the number. This way, Java will be able to distinguish between these two types of
decimal variables.

Primitive versus Reference Data Types

Some data types are built on top of others. For example, strings are made of sequences
of characters, so, in a sense, without characters, there would be no strings. You could
say that characters are more core to the language than strings are. Like characters,
there are other data types that are used to define the properties of a programming
language. These data types, fundamental for the construction of the language itself, are
what we call primitive data types.

The following table describes some of the basic types of variables you will find in Java,
along with their characteristics:

Figure 1.10: Basic types in Java

16 | Getting Started

The eight primitive data types represent truth levels (boolean), integral numbers (byte,
short, int, and long), floating point numbers (float and double), and characters (char).
The second exercise showcased how to use variables from some of these types within
our programs.

Note

String is not a primitive data type. It is what we call a reference data type. A
mnemotechnic that could help you remember why it is called "reference" is that
it is not linking to the actual data, but to the position in memory where the data
is stored; hence, it is "a reference." There are other reference data types that you
will be introduced to later in the book. Note that float and double are not precise
enough to deal with some uses of decimal numbers, such as currencies. Java has a
high-precision decimal data type called BigDecimal, but it is not a primitive type.

Null

In the same way that primitive data types have a default value, reference data types,
which could be made of any kind of data, have a common way to express that they
contain no data. As an example of a reference typed variable, the default value for a
string that is defined as empty is null.

Null is a lot more complex than that, though – it can also be used to determine
termination. Continuing with the example of the string, when stored in memory, it will
be made of an array of characters ending with null. In this way, it will be possible to
iterate within a string, since there is a common way to signify that you have reached its
end.

It is possible to modify the content of the computer memory during the execution of a
program. We do this using variables in code. The next code listing will show you how to
create an empty variable of the String type and modify its value while the program is
running:

Example04.java

public class Main {

 public static void main(String[] args) {

 String t = null;

 System.out.println(t);

 t = "Joe ...";

 System.out.println(t);

Writing, Compiling, and Executing Your Hello World Program | 17

 t = "went fishing";

 System.out.println(t);

 }

}

The previous example shows how to declare an empty string, how its value can be
modified throughout the program, and how the program will cope with displaying the
content of an empty string. It literally prints out the word null on the CLI. See the full
outcome of the program:

null

Joe ...

went fishing

Process finished with exit code 0

The program declares an empty variable, and by assigning new values to it, overwrites
the variable's contents with new content.

Chars and Strings

As explained in Primitive versus Reference Data Types, strings are made of sequences
of characters. A character is a symbol representing a letter in the alphabet, a digit, a
human-readable symbol such as the exclamation mark, or even symbols invisible to the
eye, such as the blank space, end-of-line, or tabulation characters. Strings are variables
that refer to a part of the memory containing a one-dimensional array of characters.

Java allows the use of the mathematical composition of characters into strings. Let's
take the previous example that printed the message "Joe . . . went fishing." Let's
modify this so that it will add the different parts of the string together instead of
overwriting the variable at each step:

Example05.java

public class Main {

 public static void main(String[] args) {

 String t = null;

 System.out.println(t);

 t = t + "Joe . . . ";

 System.out.println(t);

18 | Getting Started

 t = t + "Joe . . . went fishing";

 System.out.println(t);

 }

}

The outcome for this program will be the following:

null

nullJoe ...

nullJoe ... went fishing

Process finished with exit code 0

What happens here is that the program prints the string as we make it grow longer by
appending new parts to it. However, the result is a non-desired one (unless you really
want the program to print null in front of the string).

Now it is time to see what happens when you do not declare a variable properly.
Let's modify the previous code listing and observe the outcome from the development
environment.

Exercise 3: Declaring Strings

Let's modify the code example from Example05.java to see how the development
environment will respond to the non-valid declaration of a variable. To do so, perform
the following steps:

1. Start by creating a program using the HelloWorld template and overwrite all of the
code with the listing from the Example05.java file.

2. Try the program. You should get the outcome presented earlier in this section.

3. Modify the line where the string is declared to be as follows:

String t;

4. When executing the program, you will get an error as the result:

Error:(4, 28) java: variable t might not have been initialized

5. Declare the string to be empty, as in, containing no characters. You can do this by
using the following line of code to declare the string:

String t = "";

Writing, Compiling, and Executing Your Hello World Program | 19

After making this modification, the program's result will be as follows:

Joe ...
Joe … went fishing

Process finished with exit code 0

Doing Some Math

You could say that the code presented in the Example05.java file's listing represents a
way to add strings. This operation of adding strings is called concatenation. At the same
time, it is possible to run all kinds of simple and complex mathematical operations using
variables as part of the equation.

The basic mathematical operators in Java are addition (+), subtraction (-), multiplication
(*), and division (/). An example of some operations being performed is presented here:

t = a + 5;

b = t * 6.23;

n = g / s - 45;

The order in which operations will be performed is that of normal math: multiplication
and division first, followed by addition and subtraction. If nesting is needed, you could
use braces:

h = (4 + t) / 2;

f = j * (e – 5 / 2);

There are other mathematical operators, such as square root (sqrt()), minimum (min()),
and round up a number (round()). Calling to some of these more advanced operations
will require calling the methods from the Math library within Java. Let's see some
example code that will execute some mathematical operations to see how this works,
later using this to try and solve a simple equation from trigonometry:

Example06.java

public class Main {

 public static void main(String[] args) {

 float f = 51.49f;

 System.out.println(f);

20 | Getting Started

 int i = Math.round(f);

 System.out.println(i);

 }

}

In the preceding example, you declare a variable of the float type and print it. Next,
you declare a variable of the int type and initialize it with the result of rounding the
previous variable, which eliminates the fractional part of the number. You can see that
round() is part of Java's Math library and therefore has to be called this way.

Math.round() and System.out.println() are examples of calls to methods that belong
to the standard Java libraries Math and System, respectively. Java comes with a plethora
of useful methods that will make your interaction with the software quick and easy. We
will look at them later in the book.

Exercise 4: Solving a Simple Trigonometry Problem

The goal of this exercise is to solve the hypotenuse of a right triangle, given the lengths
of the other two sides. Note that the formula for calculating the hypotenuse of a
right-angled triangle is as follows: h2 = a2 + b2

Figure 1.11: A right angled triangle with sides as a and b and h as the hypotenuse

Writing, Compiling, and Executing Your Hello World Program | 21

To do this, perform the following steps:

1. Take, once more, the HelloWorld template as a point of departure for the exercise,
create the program, and then let's build a new program by modifying its contents.

2. Declare the values to each one of the problem's variables. Initialize the one
corresponding to the hypotenuse with 0. Make all the variables of the double type:

double a = 3;
double b = 4;
double h = 0;

3. Given that the addition of the squares of a and b equals the square of h, rewrite the
equation as follows:

h = Math.sqrt(a*a + b*b);

The sqrt() method is used to obtain the square root of a number.

4. Add the necessary code to print out the result:

System.out.println(h);

The expected outcome of this program should be the following:

5.0

Process finished with exit code 0

5. Programming languages typically offer more than one way to solve a problem. In
this particular case, you could solve the calculation of the square of the a and b
variables by using the Math.pow() method. This will calculate the power of a base
by an exponent that is given as a parameter:

h = Math.sqrt(Math.pow(a,2) + Math.pow(b,2));

The form of the final program, given all the modifications, is as follows:

public class Main {
 public static void main(String[] args) {
 double a = 3;
 double b = 4;
 double h = 0;
 h = Math.sqrt(Math.pow(a,2) + Math.pow(b,2));
 System.out.println(h);
 }
}

22 | Getting Started

Comments Help You to Share Code

Until now, you have just been writing programs and testing them. But if you intend to
be part of a large software project where you will collaborate with others in the making
of an application, you will have to share your code with others. Sharing code is an
important part of the work of the contemporary developer, and, in order to share code,
you will have to annotate it so that others can understand why you decided to solve
certain challenges the way you did in your code.

There are two ways to comment code in Java: inline comments, which are marked using
a double-slash, //; and more extensive comments, typically used at the beginning of
large blocks of code, which are marked with an opening tag comprising a slash and an
asterisk, /*, and a closing tag comprising an asterisk and a slash, */.

The following example showcases how to add comments to the resulting program from
the previous exercise:

Example07.java

public class Main {

 public static void main(String[] args) {

 double a = 3; // first side of the triangle

 double b = 4; // second side of the triangle

 double h = 0; // hypotenuse, init with value 0

 // equation to solve the hypotenuse

 h = Math.sqrt(Math.pow(a,2) + Math.pow(b,2));

 System.out.println(h); // print out the results

 }

}

Writing, Compiling, and Executing Your Hello World Program | 23

In the previous example, we commented both the opening of the program and each one
of the lines. The idea is to highlight different ways to comment code – inline, before a
line, at the beginning of the code. You will notice some special things in the comments;
for instance, the opening comment includes the author of the code (eventually, you will
also include your contact information) as well as a copyright notice, letting people know
to what extent they are allowed to reuse your code.

Note

Copyright notices for code depend on a specific company's policies most of the
time, and vary for almost every project. Be careful when adding these to your code.

CLI versus GUI

In this book, we are going to be using the CLI as a way to test and deploy code. On the
other hand, we will be writing the code using the IntelliJ development environment,
which has a graphical user interface (GUI). We are intentionally avoiding making
programs that will be using a GUI to interact with users. Java, in its current form, is
mostly used as a service running on a server, and therefore the generation of GUIs is
not the main goal behind the use of Java.

Up to this point, this book has invited you to run the code from the IntelliJ environment.
The following exercise will help you to create a fully compiled application and run it
from the CLI.

Exercise 5: Running the Code from the CLI

We will start from the creation of the HelloWorld example. We will compile it and then
look for it from a terminal window. You have to remember which folder you created
your program in, as we will be executing it from there. In this example, we called the
folder chapter01. If you named it differently, you will have to remember to use the
correct folder name when necessary in the code for this exercise:

1. Click on the Build Project button (this is the hammer on the toolbar), and check
that the system is not throwing any errors. If there are any, the console at the
bottom of the window will open up, indicating the possible errors:

24 | Getting Started

2. Next, open the terminal within the editor, and you will see a button at the bottom
of the environment's window. This will show a CLI starting at the location where
the program was created. You can see the contents of the folder by typing the ls
command:

usr@localhost:~/IdeaProjects/chapter01$ ls
chapter01.iml out src

3. There will be two different folders and one file. We are interested in checking the
folder named out. It is the one containing the compiled version of our program.

4. Navigate to that folder by issuing the cd out command. This folder contains a
single subfolder called production – enter it, as well as the subsequent chapter01
subfolder:

usr@localhost:~/IdeaProjects/chapter01$ cd out
usr@localhost:~/IdeaProjects/chapter01/out$ cd production
usr@localhost:~/IdeaProjects/chapter01/out/production$ cd chapter01
usr@localhost:~/IdeaProjects/chapter01/out/production/chapter01$ ls
Main.class

5. Once at the right folder, you will find a file called Main.class. This is the compiled
version of your program. To execute it, you need to call the java Main command.
You will see the program's outcome directly at the CLI:

usr@localhost:~/IdeaProjects/chapter01/out/production/chapter01$ java Main
Hello World!

Activity 1: Obtaining the Minimum of Two Numbers

Write a program that will check two numbers entered as variables and print out the
message "The minimum of numbers: XX and YY is ZZ", where XX, YY, and ZZ represent
the values of the two variables and the result of the operation, respectively. To do this,
perform the following steps:

1. Declare 3 double variables: a, b, and m. Initialize them with the values 3, 4 and 0
respectively.

2. Create a String variable r, it should contain the output message to be printed.

Summary | 25

3. Use the min() method to obtain the minimum of the two numbers and store the
value in m.

4. Print the results.

Note

The solution for the activity can be found on page 816.

Summary
This chapter introduced you to the use of the IntelliJ development environment, which
is the basic tool that will be used throughout the book. Many of IntelliJ's features
are common in other tools, along with the language used in menus and the overall
programming interface.

You have seen some basic aspects of Java's syntax, how classes are defined, how code
is nested inside curly braces, and how semicolons end each one of the commands.
Comments help make the code more readable, both for others with whom you may
collaborate and for yourself when reviewing your code in the future.

The primitive types offer a collection of possible variable types to be used in your
programs to carry data, store the results of operations, and transfer information
between different blocks of code.

All examples in this chapter are built from modifying an initial example that we used
as a point of departure: "hello world" – that is, printing a string on the CLI. In later
chapters, you will learn how to create your own classes from scratch, name them
according to your needs, and store them in different folders. The next chapter will
specifically cover statements in Java that control the flow of the programs.

Learning Objectives

By the end of this chapter, you will be able to:

• Use if, else, else if, and switch-case statements to control the flow of your programs

• Run for, while, and the do-while loops to perform repetitive tasks

• Pass command-line arguments to modify how programs run

• Implement immutable, static (global) variables, along with Java's variable type inference
mechanism

In this chapter, we will be executing programs that do not have the typical linear flow that we
have seen so far.

Learning the Basics

2

28 | Learning the Basics

Introduction
Business applications have lots of special-case conditions. Such conditions may include
finding changes in allocation rules starting at a particular year, or handling different
types of employees differently based on their designation. To code for such special
cases, you will require conditional logic. You basically tell the computer to perform a set
of actions when a particular condition is met.

Before we delve into advanced Java topics, you need to know the basics of Java
syntax. While some of this material might seem simple, you'll find you need to use the
techniques and syntax shown in this chapter repeatedly in your applications.

As you've seen in Chapter 1, Getting Started, Java's syntax borrows heavily from C and
C++. That's true for conditional statements that control the flow of your programs
as well. Java, like most computer languages, allows you to control the flow of your
programs using conditional statements. This chapter covers the basic syntax of the Java
language, especially ways in which you can control the flow of your applications.

This chapter, and the next one on object-oriented programming, will give you a good
working knowledge of how Java programs work. You'll be able to take on more advanced
APIs and topics. So, plow through this material to get ready to tackle bigger things.

Controlling the Flow of Your Programs
Imagine paying a bill from your e-wallet. You will only be able to make the payment
if the credit balance in your e-wallet is greater than or equal to the bill amount. The
following flowchart shows a simple logic that can be implemented:

Figure 2.1: A representative flow chart for an if-else statement

Controlling the Flow of Your Programs | 29

Here, the credit amount dictates the course of action of the program. To facilitate such
scenarios, Java uses the if statement.

With the if statement, your application will execute a block of code if (and only if) a
particular condition is true. In the following code, if the happy variable is true, then the
block of code immediately following the if statement will execute. If the happy variable
is not true, then the block of code immediately following the if statement will not
execute.

boolean happy = true;// initialize a Boolean variable as true

if (happy) //Checks if happy is true

 System.out.println("I am happy.");

Exercise 1: Creating a Basic if Statement

In most software industries, you are only working on a module of the code, and
you might know the value stored in a variable. You can use if statements and print
statements in such cases. In this exercise, use an if statement to check if the values of
variables assigned are true or false:

1. Create a directory for examples from this chapter and others. Name the folder
sources.

2. In IntelliJ, select File -> New -> Project from the File menu.

3. In the New Project dialog box, select a Java project. Click Next.

4. Check the box to create the project from a template. Click on Command Line App.
Click on Next.

5. Name the project chapter02.

6. For the project location, click the button with three dots (…) and then select the
sources folder you created previously.

7. Delete the base package name so that this entry is left blank. You will use Java
packages in the Chapter 6, Libraries, Packages, and Modules.

30 | Learning the Basics

8. Click Finish.

IntelliJ will create a project named chapter02, as well as a src folder inside
chapter02. This is where your Java code will reside. IntelliJ also creates a class
named Main:

public class Main {

 public static void main(String[] args) {
 // write your code here
 }
}

Rename the class named Main to Exercise01. (We're going to create a lot of small
examples in this chapter.)

9. Double-click in the text editor window on the word Main and then right-click it.

10. From the contextual menu, select Refactor | Rename…, enter Exercise01, and then
press Enter.

You will now see the following code:

public class Exercise01 {

 public static void main(String[] args) {
 // write your code here
 }
}

11. Within the main() method, define two Boolean variables, happy and sad:

 boolean happy = true;
 boolean sad = false;

12. Now, create two if statements, as follows:

 if (happy)
 System.out.println("I am happy.");

 // Usually put the conditional code into a block.
 if (sad) {
 // You will not see this.
 System.out.println("The variable sad is true.");
 }

Controlling the Flow of Your Programs | 31

The final code should look similar to this:

Exercise01.java

public class Exercise01 {

 public static void main(String[] args) {
 boolean happy = true;
 boolean sad = false;
 if (happy)
 System.out.println("I am happy.");

 // Usually put the conditional code into a block.
 if (sad) {
 // You will not see this.
 System.out.println("The variable sad is true.");
 }
 }
}

13. Click the green arrow that is just to the left of the text editor window that points
at the class name Exercise01. Select the first menu choice, Run Exercise01.main().

14. In the Run window, you'll see the path to your Java program, and then the
following output:

I am happy.

The line I am happy. comes from the first if statement, since the happy Boolean variable
is true.

Note that the second if statement does not execute, because the sad Boolean variable
is false.

You almost always want to use curly braces to define the code block following an if
condition. If you don't, you may find odd errors in your programs. For example, in the
following code, the second statement, which sets the i variable to zero, will always get
executed:

if (i == 5)

 System.out.println("i is 5");

 i = 0;

32 | Learning the Basics

Unlike languages such as Python, indentation doesn't count in Java. The following shows
what will actually execute with greater clarity:

if (i == 5) {

 System.out.println("i is 5");

}

i = 0;

The last line is always executed because it is outside the if statement after the curly
braces closes.

Comparison Operators

In addition to Java's Booleans, you can use comparisons in conditional statements.
These comparisons must form a Boolean expression that resolves to true or false.
Comparison operators allow you to build Boolean expressions by comparing values.
Java's main comparison operators include the following:

Figure 2.2: The comparison operators in Java

The comparison operators such as == do not work the way you would expect for textual
values. See the Comparing Strings section later in this chapter to see how to compare
text values.

Note

A single equals sign, =, is used to assign a value. Two equals signs, ==, is used to
compare values. Therefore, generally, you never use = in a Boolean expression to
check a condition.

Controlling the Flow of Your Programs | 33

Exercise 2: Using Java Comparison Operators

An online retail store provides free delivery only if the destination is within a
10-kilometer (km) radius of the store. Using comparison operators, we can code this
business logic, given the distance between the nearest store location and home:

1. In the Project pane in IntelliJ, right-click on the folder named src.

2. Choose New -> Java Class from the menu.

3. Enter Exercise02 for the name of the new class.

4. Define the method named main():

public static void main(String[] args) {

}

5. Inside the main() method, define the variables we'll use for comparisons:

int maxDistance = 10; // km
int distanceToHome = 11;

6. Enter the following if statements after the variable declarations:

if (distanceToHome > maxDistance) {
 System.out.println("Distance from the store to your home is");
 System.out.println(" more than " + maxDistance + "km away.");
 System.out.println("That is too far for free delivery.");
}

if (distanceToHome <= maxDistance) {
 System.out.println("Distance from the store to your home is");
 System.out.println(" within " + maxDistance + "km away.");
 System.out.println("You get free delivery!");
}

34 | Learning the Basics

The final code should look similar to the following:

Exercise02.java

public class Exercise02 {
 public static void main(String[] args) {
 int maxDistance = 10; // in kms
 int distanceToHome = 11;

 if (distanceToHome > maxDistance) {
 System.out.println("Distance from the store to your home is");
 System.out.println(" more than " + maxDistance + "km away.");
 System.out.println("That is too far for free delivery.");
 }

 if (distanceToHome <= maxDistance) {
 System.out.println("Distance from the store to your home is");
 System.out.println(" within " + maxDistance + "km away.");
 System.out.println("You get free delivery!");
 }
 }
}

7. Run the Exercise02 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Distance from the store to your home is
 more than 10km away.
That is too far for free delivery.

Controlling the Flow of Your Programs | 35

Nested if Statements

Nesting implies embedding a construct within another code construct. You can nest
if statements within any block of code, including the block of code that follows an if
statement. Here is an example of how the logic in a nested if statement is evaluated:

Figure 2.3: A representative flow chart for a nested if-else statement

Exercise 3: Implementing a Nested if Statement

In the following exercise, we will nest an if statement within another if statement to
check if the speed of the vehicle is above the speed limit, and if so, whether it is above
the finable speed:

1. Using the techniques from the previous exercise, create a new class named
Exercise03.

2. Declare the speed, speedForFine, and maxSpeed variables with the values of 75, 70,
and 60 respectively:

public class Exercise03 {
 public static void main(String[] args) {
 int speed = 75;
 int maxSpeed = 60;
 int speedForFine = 70;
 }
}

36 | Learning the Basics

3. Create a nested if statement, where the outer if statement checks if the speed is
greater than or equal to the maximum speed limit, and the inner loop checks if the
speed is greater than or equal to the speed limit for a fine:

// Nested if statements.

if (speed <= maxSpeed) {
 System.out.println("Speed is less than or equal to the max.
speed limit");

 if (speed < maxSpeed) {
 System.out.println("Speed is less than the max. speed
limit");
 }

4. Run the Exercise03 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

You're over the speed limit
You are eligible for a fine!

Note

Try changing the value of speed in the code and then running the program again.
You will see how different speed values produce different outputs.

Branching Two Ways with if and else

An else statement following the code block for an if statement gets executed if the if
statement condition is not true. You can also use else if statements to provide for an
additional test.

The basic syntax is as follows:

 if (speed > maxSpeed) {

 System.out.println("Your speed is greater than the max. speed limit");

 } else if (speed < maxSpeed) {

 System.out.println("Your speed is less than the max. speed limit");

 } else {

 System.out.println("Your speed is equal to the max. speed limit");

 }

Controlling the Flow of Your Programs | 37

The third line (in the else block) will only print if neither of the first two lines (the if or
else if code blocks) was true. Whatever the value of speed, only one of the lines will
print.

Exercise 4: Using if and else Statements

A fair-trade coffee roaster offers a discount of 10% if you order more than 5 kg of whole
coffee beans, and a discount of 15% if you order more than 50 kg. We'll code these
business rules using if, else if, and else statements:

1. Using the techniques from the previous exercise, create a new class named
Exercise04.

2. Enter the main method and declare the variables as follows:

public static void main(String[] args) {
 int noDiscount = 0;
 int mediumDiscount = 10; // Percent
 int largeDiscount = 15;

 int mediumThreshold = 5; // Kg
 int largeThreshold = 50;

 int purchaseAmount = 40;
}

3. Enter the following if, else if, and else statements:

if (purchaseAmount >= largeThreshold) {

 System.out.println("You get a discount of " + largeDiscount + "%");

} else if (purchaseAmount >= mediumThreshold) {

 System.out.println("You get a discount of " + mediumDiscount + "%");
} else {
 // Sorry
 System.out.println("You get a discount of " + noDiscount + "%");
}

Notice that we check against the largest threshold first. The reason for this is that
a value greater than or equal to largeThreshold will also be greater than or equal to
mediumThreshold.

38 | Learning the Basics

The entire example appears in Exercise04.java:

Exercise04.java

public class Exercise04 {
 public static void main(String[] args) {
 int smallDiscount = 0;
 int mediumDiscount = 10; // Percent
 int largeDiscount = 15;

 int mediumThreshold = 5; // Kg
 int largeThreshold = 50;

 int purchaseAmount = 40;

 if (purchaseAmount >= largeThreshold) {

 System.out.println("You get a discount of " + largeDiscount +
"%");

 } else if (purchaseAmount >= mediumThreshold) {

 System.out.println("You get a discount of " + mediumDiscount +
"%");
 } else {
 // Sorry
 System.out.println("You get a discount of " + smallDiscount +
"%");
 }
 }
}

4. Run the Exercise04 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

You get a discount of 10%

Controlling the Flow of Your Programs | 39

Using Complex Conditionals

Java allows you to create complex conditional statements with logical operators. Logical
operators are generally used on only Boolean values. In the following table are some of
the logical operators available in Java:

• AND (&&): a && b will be evaluated to true if both a and b are true

• OR (||): a || b will be evaluated to true if either a or b, or both are true

• NOT (!): !a be evaluated to true if a is false

Use the conditional operators to check more than one condition in an if statement. For
example, the following shows an if statement where both conditions must be true for
the overall if statement to execute:

boolean red = true;

boolean blue = false;

if ((red) && (blue)) {

 System.out.println("Both red AND blue are true.");

}

In this case, the overall expression resolves to false, since the blue variable is false, and
the print statement will not execute.

Note

Always use parentheses to make your conditionals clear by grouping the
conditions together.

You can also check if either, or both, of the expressions are true with the || operator:

boolean red = true;

boolean blue = false;

if ((red) || (blue)) {

 System.out.println("Either red OR blue OR both are true.");

}

40 | Learning the Basics

In this case, the overall expression resolves to true, since at least one part is true.
Therefore, the print statement will execute:

boolean blue = false;

if (!blue) {

 System.out.println("The variable blue is false");

}

The value of blue is initialized to false. Since we are checking the NOT of the blue
variable in the if statement, the print statement will execute. The following exercise
shows how we can use logical operators.

Exercise 5: Using Logical Operators to Create Complex Conditionals

This exercise shows an example of each of the conditional operators described
previously. When writing an application that works with data from a fitness tracker, you
are tasked with coding a check against normal heart rates while exercising.

If a person is 30 years old, a normal heart rate should be between 95 beats per minute
(bpm) and 162 bpm. If the person is 60 years old, a normal heart rate should be between
80 and 136 bpm.

Let's use the following steps for completion:

1. Using the techniques from the previous exercise, create a new class named
Exercise05 in the main method and declare variables.

public static void main(String[] args) {
 int age = 30;
 int bpm = 150;
}

2. Create an if statement to check the heart rate of a 30-year old person:

if (age == 30) {
 if ((bpm >= 95) && (bpm <= 162)) {
 System.out.println("Heart rate is normal.");
 } else if (bpm < 95) {
 System.out.println("Heart rate is very low.");
 } else {
 System.out.println("Heart rate is very high.");
 }

We have nested conditionals to check the allowable range for 30-year-olds.

Controlling the Flow of Your Programs | 41

3. Create an else if statement to check the heart rate of a 60-year old person:

} else if (age == 60) {
 if ((bpm >= 80) && (bpm <= 136)) {
 System.out.println("Heart rate is normal.");
 } else if (bpm < 80) {
 System.out.println("Heart rate is very low.");
 } else {
 System.out.println("Heart rate is very high.");
 }
}

We have nested conditionals to check the allowable range for 60 year old.

4. Run the Exercise05 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Heart rate is normal.

5. Change age to 60 and re-run the program; your output should be as follows:

Heart rate is very high.

The full source code for this exercise follows:

Exercise05.java

public class Exercise05 {

 public static void main(String[] args) {

 int age = 30;

 int bpm = 150;

 if (age == 30) {

 if ((bpm >= 95) && (bpm <= 162)) {

 System.out.println("Heart rate is normal.");

 } else if (bpm < 95) {

 System.out.println("Heart rate is very low.");

 } else {

42 | Learning the Basics

 System.out.println("Heart rate is very high.");

 }

 } else if (age == 60) {

 if ((bpm >= 80) && (bpm <= 136)) {

 System.out.println("Heart rate is normal.");

 } else if (bpm < 80) {

 System.out.println("Heart rate is very low.");

 } else {

 System.out.println("Heart rate is very high.");

 }

 }

 }

}

Using Arithmetic Operators in an if Condition

You can use arithmetic operators as well in Boolean expressions, as shown in
Example01.java:

Example01.java

public class Example01 {

 public static void main(String[] args) {

 int x = 2;

 int y = 1;

 if ((x + y) < 5) {

 System.out.println("X added to Y is less than 5.");

 }

 }

}

Controlling the Flow of Your Programs | 43

The output in this case would be as follows:

X added to Y is less than 5

Here, the value of (x + y) is calculated, and then the result is compared to 5. So, since
the result of x added to y is 3, which is less than 5, the condition holds true. Therefore,
the print statement is executed. Now that we have seen the variations of the if else
statement, we will now see how we can use the ternary operator to express the if else
statements.

The Ternary Operator

Java allows a short-hand version of an if else statement, using the ternary (or three-
part) operator, ?:. This is often used when checking variables against an allowed
maximum (or minimum) value.

The basic format is: Boolean expression ? true block : false block, as follows:

x = (x > max) ? max : x;

The JVM resolves the (x > max) Boolean expression. If true, then the expression returns
the value immediately after the question mark. In this case, that value will be set into
the x variable since the line of code starts with an assignment, x =. If the expression
resolves to false, then the value after the colon, :, is returned.

Exercise 6: Using the Ternary Operator

Consider the minimum height requirement for a roller coaster to be 121 centimeters
(cm). In this exercise, we will check for this condition using the ternary operator. To
complete the exercise, perform the following steps:

1. Using the techniques from the previous exercise, create a new class named
Exercise06.

2. Declare and assign values to the height and minHeight variables. Also, declare a
string variable to print the output message:

 public static void main(String[] args) {
 int height = 200;
 int minHeight = 121;
 String result;

44 | Learning the Basics

3. Use the ternary operator to check the minimum height requirement and set the
value of result:

result = (height > minHeight) ? "You are allowed on the ride" : "Sorry you
do not meet the height requirements";

System.out.println(result);
}

So, if height is greater than minHeight, the first statement will be returned (You are
allowed on the ride). Otherwise, the second statement will be returned (Sorry
you do not meet the height requirements).

Your code should look similar to this:

Exercise06.java

public class Exercise06 {

 public static void main(String[] args) {
 int height = 200;
 int minHeight = 121;
 String result;

 result = (height > minHeight) ? "You are allowed on the ride" :
 "Sorry you do not meet the height requirements";

 System.out.println(result);
 }
}

4. Run the Exercise06 program.

In the Run window, you'll see the path to your Java program, and then the
following output:

You are allowed on the ride

Controlling the Flow of Your Programs | 45

Equality Can Be Tricky

Java decimal types such as float and double (and the object versions, Float and Double)
are not stored in memory in a way that works with regular equality checks.

When comparing decimal values, you normally need to define a value that represents
what you think is close enough. For example, if two values are within .001 of each other,
then you may feel that is close enough to consider the values as equal.

Exercise 7: Comparing Decimal Values

In this exercise, you'll run a program that checks if two double values are close enough
to be considered equal:

1. Using the techniques from the previous exercise, create a new class named
Exercise07.

2. Enter the following code:

public class Exercise07 {
 public static void main(String[] args) {
 double a = .6 + .6 + .6 + .6 + .6 + .6;
 double b = .6 * 6;

 System.out.println("A is " + a);
 System.out.println("B is " + b);

 if (a != b) {
 System.out.println("A is not equal to B.");
 }

 // Check if close enough.
 if (Math.abs(a - b) < .001) {
 System.out.println("A is close enough to B.");
 }
 }
}

46 | Learning the Basics

The Math.abs() method returns the absolute value of the input, making sure the
input is positive.

We will learn more about the Math package in Chapter 6, Libraries, Packages, and
Modules.

3. Run the Exercise07 program using the green arrow to the left.

In the run window, you'll see the path to your Java program, and then the following
output:

A is 3.6
B is 3.5999999999999996
A is not equal to B.
A is close enough to B.

Note how a and b differ due to the internal storage for the double type.

Note

For more on how Java represents floating-point numbers, see https://ieeexplore.
ieee.org/document/4610935.

Comparing Strings

You cannot use == to compare two strings in Java. Instead, you need to use the String
class' equals method. This is because == with String objects just checks whether they
are the exact same object. What you'll normally want is to check if the string values are
equal:

String cat = new String("cat");

String dog = new String("dog");

if (cat.equals(dog)) {

 System.out.println("Cats and dogs are the same.");

}

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

Controlling the Flow of Your Programs | 47

The equals method on a String object called cat returns true if the passed-in String,
dog, has the same value as the first String. In this case, these two strings differ. So, the
Boolean expression will resolve to false.

You can also use literal strings in Java, delineating these strings with double quotes.
Here's an example:

if (dog.equals("dog")) {

 System.out.println("Dogs are dogs.");

}

This case compares a String variable named dog with the literal string "dog".

Example09 shows how to call the equals method:

Example09.java

public class Example09 {

 public static void main(String[] args) {

 String cat = new String("cat");

 String dog = new String("dog");

 if (cat.equals(dog)) {

 System.out.println("Cats and dogs are the same.");

 }

 if (!cat.equals(dog)) {

 System.out.println("Cats and dogs are not the same.");

 }

 if (dog.equals(dog)) {

 System.out.println("Dogs are dogs.");

 }

 // Using literal strings

 if (dog.equals("dog")) {

 System.out.println("Dogs are dogs.");

48 | Learning the Basics

 }

 // Can compare using a literal string, too.

 if ("dog".equals(dog)) {

 System.out.println("Dogs are dogs.");

 }

 }

}

You should get the following output:

Cats and dogs are not the same.

Dogs are dogs.

Dogs are dogs.

Dogs are dogs.

Using Switch Statements

The switch statement is similar to a group of nested if-else-if statements. With
switch, you can choose from a group of values.

The basic syntax follows:

switch(season) {

 case 1: message = "Spring";

 break;

 case 2: message = "Summer";

 break;

 case 3: message = "Fall";

 break;

 case 4: message = "Winter";

 break;

 default: message = "That's not a season";

 break;

}

Controlling the Flow of Your Programs | 49

With the switch keyword, you place the variable to be checked. In this case, we're
checking a variable called season. Each case statement represents one possible value
for the switch variable (season). If the value of season is 3, then the case statement that
matches will be executed, setting the message variable to the String Fall. The break
statement ends the execution for that case.

The default statement is used as a catch-all for any unexpected value that doesn't
match the defined cases. The best practice is to always include a default statement.
Let's see how to implement this logic in a program.

Exercise 8: Using Switch

In this exercise, you'll run a program that maps a number to a season:

1. Using the techniques from the previous exercise, create a new class named
Exercise08.

2. Enter in the main() method and set up these variables:

public static void main(String[] args) {
 int season = 3;
 String message;
}

3. Enter the following switch statement.

switch(season) {
 case 1: message = "Spring";
 break;
 case 2: message = "Summer";
 break;
 case 3: message = "Fall";
 break;
 case 4: message = "Winter";
 break;
 default: message = "That's not a season";
 break;
}

50 | Learning the Basics

4. And enter a println statement to show us the results:

System.out.println(message);

Note

You can find the code for this exercise here:

5. Run the Exercise08 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Fall

Because the season variable is set to 3, Java executes the case with 3 as the value,
so in this case, setting the message variable to Fall.

Note

There is no one rule for when to use a switch statement as opposed to a series of
if-else statements. In many cases, your choice will be based on the clarity of the
code. In addition, switch statements are limited in only having cases that hold a
single value, while if statements can test much more complicated conditions.

Normally, you'll put a break statement after the code for a particular case. You don't
have to. The code will keep executing from the start of the case until the next break
statement. This allows you to treat multiple conditions similarly.

Exercise 9: Allowing Cases to Fall Through

In this exercise, we determine a temperature adjustment for the porridge in
Goldilocks and the Three Bears. If the porridge is too hot, for example, let's reduce the
temperature. If it's too cold, let's raise the temperature:

1. Using the techniques from the previous exercise, create a new class named
Exercise09.

2. Enter in the main() method and set up these variables:

public static void main(String[] args) {
 int tempAdjustment = 0;
 String taste = "way too hot";
}

Controlling the Flow of Your Programs | 51

3. Next, enter the following switch statement:

switch(taste) {
 case "too cold": tempAdjustment += 1;
 break;
 case "way too hot": tempAdjustment -= 1;
 case "too hot": tempAdjustment -= 1;
 break;
 case "just right": // No adjustment
 default:
 break;
}

4. Print out the results:

System.out.println("Adjust temperature: " + tempAdjustment);

5. Run the Exercise09 program using the green arrow to the left.

In the run window, you'll see the path to your Java program, and then the following
output:

Adjust temperature: -2

Look carefully at the switch statement. If the value of the taste variable is too
cold, then increment the temperature by 1. If the value is too hot, decrement
the temperature by 1. But notice there is no break statement, so the code keeps
executing and adjusts the temperature down by another 1. This implies that if the
porridge is too hot, the temperature is decremented by 1. If it's way too hot, it's
decremented by 2. If the porridge is just right, there is no adjustment.

Note

Starting with Java 7, you can use Strings in switch statements. Prior to Java 7, you
could not.

52 | Learning the Basics

Using Java 12 Enhanced Switch Statements

Java 12 offers a new form of the switch statement. Aimed at switch statements that are
essentially used to determine the value of a variable, the new switch syntax allows you
to assign a variable containing the result of the switch.

The new syntax looks like this:

int tempAdjustment = switch(taste) {

 case "too cold" -> 1;

 case "way too hot" -> -2;

 case "too hot" -> -1;

 case "just right" -> 0;

 default -> 0;

};

This switch syntax does not use break statements. Instead, for a given case, only the
code block after -> gets executed. The value from that code block is then returned as
the value from the switch statement.

We can rewrite the Exercise09 example using the new syntax, as shown in the following
exercise.

Note

IntelliJ needs a configuration to support Java 12 switch statements.

Exercise 10: Using Java 12 Switch Statements

In this exercise, we will work on the same example as in the previous exercise;
however, we will implement the new switch case syntax that is made available by Java
12. Before we start with the program there, you'll have to make changes to the IntelliJ
configuration. We will set that up in the initial few steps of the exercise:

1. From the Run menu, select Edit Configurations.

2. Click on Edit Templates.

3. Click on Application.

Controlling the Flow of Your Programs | 53

4. Add the following to the VM options:

--enable-preview

5. Click OK.

This turns on the IntelliJ support for Java 12 enhanced switch statements.

6. Using the techniques from the previous exercise, create a new class named
Exercise10.

7. Enter in the main() method and set up this variable:

public static void main(String[] args) {
 String taste = "way too hot";
}

8. Define a switch statement as follows:

 int tempAdjustment = switch(taste) {
 case "too cold" -> 1;
 case "way too hot" -> -2;
 case "too hot" -> -1;
 case "just right" -> 0;
 default -> 0;
 };

Note the semi-colon after switch. Remember, we are assigning a variable to a value
with the whole statement.

9. Then print out the value chosen:

 System.out.println("Adjust temperature: " + tempAdjustment);

10. When you run this example, you should see the same output as in the previous
example:

Adjust temperature: -2

54 | Learning the Basics

The full code is as follows:

Exercise10.java

public class Exercise10 {

 public static void main(String[] args) {

 String taste = "way too hot";

 int tempAdjustment = switch(taste) {

 case "too cold" -> 1;

 case "way too hot" -> -2;

 case "too hot" -> -1;

 case "just right" -> 0;

 default -> 0;

 };

 System.out.println("Adjust temperature: " + tempAdjustment);

 }

}

Looping and Performing Repetitive Tasks
In this chapter, we cover using loops to perform repetitive tasks. The main types of loop
are as follows:

• for loops

• while loops

• do-while loops

for loops repeat a block a set number of times. Use a for loop when you are sure how
many iterations you want. A newer form of the for loop iterates over each item in a
collection.

while loops execute a block while a given condition is true. When the condition
becomes false, the while loop stops. Similarly, do-while loops execute a block and then
check a condition. If true, the do-while loop runs the next iteration.

Looping and Performing Repetitive Tasks | 55

Use while loops if you are unsure how many iterations are required. For example, when
searching through data to find a particular element, you normally want to stop when
you find it.

Use a do-while loop if you always want to execute the block and only then check if
another iteration is needed.

Looping with the For Loop

A for loop executes the same block of code for a given number of times. The syntax
comes from the C language:

for(set up; boolean expression; how to increment) {

// Execute these statements…

}

In the preceding code, we can see that:

• Each part is separated by a semicolon, (;).

• The set up part gets executed at the beginning of the entire for loop. It runs once.

• The boolean expression is examined at each iteration, including the first. So long
as this resolves to true, the loop will execute another iteration.

• The how to increment part defines how you want a loop variable to increment.
Typically, you'll add one for each increment.

The following exercise will implement a classic for loop in Java.

Exercise 11: Using a Classic for Loop

This exercise will run a for loop for four iterations, using the classic for loop syntax:

1. Using the techniques from the previous exercise, create a new class named
Exercise11.

2. Enter a main() method and the following code:

public static void main(String[] args) {
 for (int i = 1; i < 5; i++) {
 System.out.println("Iteration: " + i);
 }
}

56 | Learning the Basics

3. Run the Exercise11 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4

Here is how the program executes:

• int i = 1 is the for loop set up part.

• The Boolean expression checked each iteration is i < 5.

• The how to increment part tells the for loop to add one to each iteration using the
++ operator.

• For each iteration, the code inside the parentheses executes. It continues like this
until the Boolean expression stops being true.

In addition to the old classic for loop, Java also offers an enhanced for loop designed to
iterate over collections and arrays.

We will cover arrays and collections in greater detail later in the book; for now, think
of arrays as groups of values of the same data type stored in a single variable, whereas
collections are groups of values of different data types stored in a single variable.

Exercise 12: Using an Enhanced for Loop

Iterating over the elements of arrays means that the increment value is always 1, and
the start value is always 0. This allows Java to reduce the syntax of a form to iterate over
arrays. In this exercise you will loop over all items in a letters array:

1. Using the techniques from the previous exercise, create a new class named
Exercise12.

2. Enter a main() method:

public static void main(String[] args) {

}

Looping and Performing Repetitive Tasks | 57

3. Enter the following array:

String[] letters = { "A", "B", "C" };

Chapter 4, Collections, Lists, and Java's Built-In APIs, will cover the array syntax in
greater depth. For now, we have an array of three String values, A, B, and C.

4. Enter an enhanced for loop:

for (String letter : letters) {
 System.out.println(letter);
}

Notice the reduced syntax of the for loop. Here, the variable letter iterates over
every element in the letters array.

5. Run the Exercise12 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

A
B
C

Jumping Out of Loops with Break and Continue

A break statement, as we saw in the switch examples, jumps entirely out of a loop. No
more iterations will occur.

A continue statement jumps out of the current iteration of the loop. Java will then
evaluate the loop expression for the next iteration.

58 | Learning the Basics

Exercise 13: Using Break and Continue

This exercise shows how to jump out of a loop using break, or jump to the next iteration
using continue:

1. Using the techniques from the previous exercise, create a new class named
Exercise13.

2. Enter a main() method:

public static void main(String[] args) {
}

3. Define a slightly longer array of String values:

String[] letters = { "A", "B", "C", "D" };

4. Enter the following for loop:

for (String letter : letters) {
}

This loop will normally iterate four times, once for each letter in the letters array.
We'll change that though, with the next code.

5. Add a conditional to the loop:

if (letter.equals("A")) {
 continue; // Jump to next iteration
}

Using continue here means that if the current letter equals A, then jump to the
next iteration. None of the remaining loop code will get executed.

6. Next, we'll print out the current letter:

System.out.println(letter);

For all iterations that get here, you'll see the current letter printed.

7. Finish the for loop with a conditional using break:

if (letter.equals("C")) {
 break; // Leave the for loop
}

If the value of letter is C, then the code will jump entirely out of the loop. And
since our array of letters has another value, D, we'll never see that value at all. The
loop is done when the value of letter is C.

Looping and Performing Repetitive Tasks | 59

8. Run the Exercise13 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

B
C

Exercise13.java holds the full example:

Exercise13.java

public class Exercise13 {
 public static void main(String[] args) {

 String[] letters = { "A", "B", "C", "D" };

 for (String letter : letters) {
 if (letter.equals("A")) {
 continue; // Jump to next iteration
 }
 System.out.println(letter);

 if (letter.equals("C")) {
 break; // Leave the for loop
 }
 }
 }
}

Using the While Loop

In many cases, you won't know in advance how many iterations you need. In that case,
use a while loop instead of a for loop.

A while loop repeats so long as (or while) a Boolean expression resolves to true:

while (boolean expression) {

 // Execute these statements…

}

Similar to a for loop, you'll often use a variable to count iterations. You don't have to do
that, though. You can use any Boolean expression to control a while loop.

60 | Learning the Basics

Exercise 14: Using a While Loop

This exercise implements a similar loop to Exercise10, which shows a for loop:

1. Using the techniques from the previous exercise, create a new class named
Exercise14.

2. Enter a main() method:

public static void main(String[] args) {

}

3. Enter the following variable setting and while loop:

int i = 1;
while (i < 10) {
 System.out.println("Odd: " + i);
 i += 2;
}

Note how this loop increments the i variable by two each time. This results in
printing odd numbers.

4. Run the Exercise14 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Odd: 1
Odd: 3
Odd: 5
Odd: 7
Odd: 9

Note

A common mistake is to forget to increment the variable used in your Boolean
expression.

Looping and Performing Repetitive Tasks | 61

Using the Do-While Loop

The do-while loop provides a variant on the while loop. Instead of checking the
condition first, the do-while loop checks the condition after each iteration. This means
with a do-while loop, you will always have at least one iteration. Normally, you will only
use a do-while loop if you are sure you want the iteration block to execute the first time,
even if the condition is false.

One example use case for the do-while loop is if you are asking the user a set of
questions and then reading the user's response. You always want to ask the first
question.

The basic format is as follows:

do {

 // Execute these statements…

} while (boolean expression);

Note the semicolon after the Boolean expression.

A do-while loop runs the iteration block once, and then checks the Boolean expression
to see if the loop should run another iteration.

Example17.java shows a do-while loop:

Example17.java

public class Example17 {

 public static void main(String[] args) {

 int i = 2;

 do {

 System.out.println("Even: " + i);

 i += 2;

 } while (i < 10);

 }

}

62 | Learning the Basics

This example prints out even numbers.

Note

You can use break and continue with while and do-while loops too.

Handling Command-Line Arguments
Command-line arguments are parameters passed to the main() method of your Java
program. In each example so far, you've seen the main() method takes in an array of
String values. These are the command-line arguments to the program.

Command-line arguments prove their usefulness by giving you one way of providing
inputs to your program. These inputs are part of the command line launching the
program, when run from a Terminal shell window.

Exercise 15: Testing Command-Line Arguments

This exercise shows how to pass command-line arguments to a Java program, and also
shows how to access those arguments from within your programs:

1. Using the techniques from the previous exercises, create a new class named
Exercise15.

2. Enter the following code:

public class Exercise15 {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 System.out.println(i + " " + args[i]);
 }
 }
}

This code uses a for loop to iterate over all the command-line arguments, which
the java command places into the String array named args.

Each iteration prints out the position (i) of the argument and the value (args[i]).
Note that Java arrays start counting positions from 0 and args.length holds the
number of values in the args array.

To run this program, we're going to take a different approach than before.

Handling Command-Line Arguments | 63

3. In the bottom of the IntelliJ application, click on Terminal. This will show a
command-line shell window.

When using IntelliJ for these examples, the code is stored in a folder named src.

4. Enter the following command in the Terminal window:

cd src

This changes to the folder with the example source code.

5. Enter the javac command to compile the Java program:

javac Exercise15.java

This command creates a file named Exercise15.class in the current directory.
IntelliJ normally puts these .class files into a different folder.

6. Now, run the program with the java command with the parameters you want to
pass:

java Exercise15 cat dog wombat

In this command, Exercise15 is the name of the Java class with the main() method,
Exercise15. The values following Exercise15 on the command line are passed
to the Exercise15 application as command-line arguments. Each argument is
separated by a space character, so we have three arguments: cat, dog, and wombat.

7. You will see the following output:

0 cat
1 dog
2 wombat

The first argument, at position 0 in the args array, is cat. The argument at position
1 is dog, and the argument at position 2 is wombat.

Note

The java command, which runs compiled Java programs, supports a set of
command-line arguments such as defining the available memory heap space. See
the Oracle Java documentation at https://docs.oracle.com/en/java/javase/12/tools/
java.html for details on the command-line arguments that control the execution of
your Java programs.

https://docs.oracle.com/en/java/javase/12/tools/java.html
https://docs.oracle.com/en/java/javase/12/tools/java.html

64 | Learning the Basics

Converting Command-Line Arguments

Command-line arguments appear in your Java programs as String values. In many cases,
though, you'll want to convert these String values into numbers.

If you are expecting an integer value, you can use Integer.parseInt() to convert a
String to an int.

If you are expecting a double value, you can use Double.parseDouble() to convert a
String to a double.

Exercise 16: Converting String to Integers and Doubles

This exercise extracts command-line arguments and turns them into numbers:

1. Using the techniques from the previous exercises, create a new class named
Exercise16.

2. Enter the main() method:

public class Exercise16 {
 public static void main(String[] args) {

 }
}

3. Enter the following code to convert the first argument into an int value:

 if (args.length > 0) {
 int intValue = Integer.parseInt(args[0]);
 System.out.println(intValue);
 }

This code first checks if there is a command-line argument, and then if so,
converts the String value to an int.

4. Enter the following code to convert the second argument into a double value:

 if (args.length > 1) {
 double doubleValue = Double.parseDouble(args[1]);
 System.out.println(doubleValue);
 }

This code checks if there is a second command-line argument (start counting with
0) and if so, converts the String to a double value.

Handling Command-Line Arguments | 65

5. Enter the javac command introduced in Chapter 1, Getting Started, to compile the
Java program:

javac Exercise16.java

This command creates a file named Exercise16.class in the current directory.

6. Now, run the program with the java command:

java Exercise16 42 65.8

You will see the following output:

42
65.8

The values printed out have been converted from String values into numbers
inside the program. This example does not try to catch errors, so you have to
enter the inputs properly.

Note

Both Integer.parseInt() and Double.parseDouble() will throw
NumberFormatException if the passed-in String does not hold a number. See
Chapter 5, Exceptions, for more on exceptions.

Diving Deeper into Variables – Immutability

Immutable objects cannot have their values modified. In Java terms, once an immutable
object is constructed, you cannot modify the object.

Immutability can provide a lot of advantages for the JVM, since it knows an immutable
object cannot be modified. This can really help with garbage collection. When writing
programs that use multiple threads, knowing an object cannot be modified by another
thread can make your code safer.

Note

See Chapter 22, Concurrent Tasks, for more information on threads and
concurrency.

In Java, String objects are immutable. While it may seem like you can assign a String to
a different value, Java actually creates a new object when you try to change a String.

66 | Learning the Basics

Comparing Final and Immutable

In addition to immutable objects, Java provides a final keyword. With final, you cannot
change the object reference itself. You can change the data within a final object, but
you cannot change which object is referenced.

Contrast final with immutable. An immutable object does not allow the data inside the
object to change. A final object does not allow the object to point to another object.

Using Static Values

A static variable is common to all instances of a class. This differs from instance
variables that apply to only one instance, or object, of a class. For example, each
instance of the Integer class can hold a different int value. But, in the Integer class,
MAX_VALUE and MIN_VALUE are static variables. These variables are defined once for all
instances of integers, making them essentially global variables.

Note

Chapter 3, Object-Oriented Programming, delves into classes and objects.

Static variables are often used as constants. To keep them constant, you normally want
to define them as final as well:

public static final String MULTIPLY = "multiply";

Note

By convention, the names of Java constants are all uppercase.

Example20.java defines a constant, MULTIPLY:

Example20.java

public class Example20 {

 public static final String MULTIPLY = "multiply";

 public static void main(String[] args) {

 System.out.println("The operation is " + MULTIPLY);

 }

}

Handling Command-Line Arguments | 67

Because the MULTIPLY constant is a final value, you will get a compilation error if your
code attempts to change the value once set.

Using Local Variable Type Inference

Java is a statically typed language, which means each variable and each parameter has a
defined type. As Java has provided the ability to create more complex types, especially
related to collections, the Java syntax for variable types has gotten more and more
complex. To help with this, Java version 10 introduced the concept of local variable type
inference.

With this, you can declare a variable of the var type. So long as it is fully clear what
type the variable really should be, the Java compiler will take care of the details for you.
Here's an example:

var s = new String("Hello");

This example creates a new String for the s variable. Even though s is declared with
the var keyword, s really is of the String type. That is, this code is equivalent to the
following:

String s = new String("Hello");

With just a String type, this doesn't save you that much typing. When you get to more
complex types, though, you will really appreciate the use of the var keyword.

Note

Chapter 4, Collections, Lists, and Java's Built-In APIs, covers collections, where you will
see really complex types.

Example21.java shows local variable type inference in action:

Example21.java

public class Example21 {

 public static void main(String[] args) {

 var s = new String("Hello");

 System.out.println("The value is " + s);

 var i = Integer.valueOf("42");

68 | Learning the Basics

 System.out.println("The value is " + i);

 }

}

When you run this example, you will see the following output:

The value is Hello

The value is 42

Activity 1: Taking Input and Comparing Ranges

You are tasked with writing a program that takes a patient's blood pressure as input and
then determines if that blood pressure is within the ideal range.

Blood pressure has two components, the systolic blood pressure and the diastolic blood
pressure.

According to bloodpressureuk.org, the ideal systolic number is more than 90 and
less than 120. 90 and below is low blood pressure. Above 120 and below 140 is called
pre-high blood pressure, and 140 and over is high blood pressure.

The ideal diastolic blood pressure is between 60 and 80. 60 and below is low. Above 80
and under 90 is pre-high blood pressure, and over 90 is high blood pressure.

Figure 2.4: Ideal ranges for systolic and diastolic blood pressures

For the purpose of this activity, if either number is out of the ideal range, report that as
non-ideal blood pressure:

1. Write an application that takes two numbers, the systolic blood pressure and the
diastolic blood pressure. Convert both inputs into int values.

2. Check if there is the right number of inputs at the beginning of the program. Print
an error message if any inputs are missing. Exit the application in this case.

3. Compare against the ideal rates mentioned previously. Output a message
describing the inputs as low, ideal, pre-high, or high blood pressure.

To print an error message, use System.err.println instead of System.out.println.

Summary | 69

4. Try out your program with a variety of inputs to ensure it works properly.

You'll need to use the Terminal pane in IntelliJ to compile and run the program
with command-line input. Look back at Exercises 15 and 16 for details on how to
do this.

5. The blood pressure is typically reported as systolic blood pressure/diastolic blood
pressure.

Note

The solution for this activity can be found on page 820.

Summary
This chapter covered a lot of Java syntax, things you need to learn to be able to tackle
the more advanced topics. You'll find yourself using these techniques in just about every
Java application you write.

We started out by controlling the flow of the program using conditional statements
such as if, else if, else, and switch statements.

We then moved on to the different loops that can be used to perform repetitive tasks.
And then we looked at how to provide values during runtime using command-line
arguments. This is one way to pass inputs to your Java applications. Every example in
this chapter created a class, but we never did much with these classes.

In the next chapter, you'll learn about classes, methods, and object-oriented
programming, and how you can do a lot more with classes.

Learning Objectives

By the end of this chapter, you will be able to:

• Create and instantiate your classes

• Create methods that can handle data inside your classes

• Code recursive methods

• Override existing methods to make your own

• Overload the definition of methods to accommodate different scenarios with different
parameters to the same method or constructor

• Annotate code to inform the compiler about specific actions to be taken with code

In this chapter, we will look at how Java implements OOP concepts.

Object-Oriented
Programming

3

72 | Object-Oriented Programming

Introduction
A Java class is a template that is used to define data types. Classes are composed
of objects carrying data and methods that are used to perform operations on that
data. Classes can be self-contained, extend other classes with new functionalities, or
implement features from other classes. In a way, classes are categories that allow us to
define what kind of data can be stored within them, as well as the ways in which that
data can be handled.

Classes tell the compiler how to build a certain object during runtime. Please refer to
the explanation of what objects are in the Working with Objects in Java topic.

The basic structure of a class definition looks like this:

class <name> {

 fields;

 methods;

}

Note

Class names should start with a capital letter, as in TheClass, Animal, WordCount,
or any other string that somehow expresses the main purpose of the class. If
contained in a separate file, the filename containing the source should be named
like the class: TheClass.java, Animal.java, and so on.

The Anatomy of a Class

There are different software components in classes. The following example shows a
class that includes some of the main ones.

Example01.java

class Computer {

 // variables

 double cpuSpeed; // in GHz

 // constructor

 Computer() {

Introduction | 73

 cpuSpeed = 0;

 }

 // methods

 void setCpuSpeed (double _cpuSpeed) {

 cpuSpeed = _cpuSpeed;

 }

 double getCpuSpeed () {

 return cpuSpeed;

 }

}

public class Example01 {

 public static void main(String[] args) {

 Computer myPC = new Computer();

 myPC.setCpuSpeed(2.5);

 System.out.println(myPC.getCpuSpeed());

 }

}

The outcome of this example is:

2.5

Process finished with exit code 0

The previous code listing shows the definition of a basic class called Computer, which
includes variables and methods to deal with one of the properties of the class computer
– in this case, cpuSpeed. The code shows two different classes. The first one is the
blueprint for how to define objects of the Computer type in your programs. The second
one, Example01, is the one that will be executed after compilation and will make an
instance of the Computer class in the form of an object called myPC.

74 | Object-Oriented Programming

There is one more component inside the class, the constructor, which is optional,
as Java includes a default constructor for all your classes. Constructors are used to
initializing the basic properties of classes, and so are used when assigning values to
variables, for instance. In our case, the operation performed by the constructor is
initializing the cpuSpeed variable with a value of 0:

// constructor

Computer() {

 cpuSpeed = 0;

}

It is also possible for constructors to have parameters. You could have the constructor
of the class be this:

// constructor

Computer(double _c) {

 cpuSpeed = _c;

}

In this way, you could call the constructor with:

Computer myPC = new Computer(2.5);

That would also require a parameter. In addition, classes can have more than one
constructor. This will be explained later in the chapter.

Working with Objects in Java
Objects are to classes what variables are to data types. While classes define the
structure and possible actions of a certain data type, objects are actual usable parts of
the computer memory containing that data. The action of creating an object is known
as making an instance of a class. In a sense, it is like making a copy of the template and
then modifying it by accessing its variables or methods. Let's see this in action:

Computer myPC = new Computer(2.5);

myPC is the actual object. We would say that myPC is an object of the class Computer in
colloquial terms.

Working with Objects in Java | 75

The different fields and methods inside the class can be accessed by typing the name
of the object followed by a period and the name of the variable or method you want to
address. Making any changes to the variables or calling the methods will take effect
only within the scope of that object. If you had more objects of the same class in your
program, each one of them would have a piece of memory of its own. An example of
how to address a method is as follows:

myPC.setCpuSpeed(2.5);

An example of how to address a variable, on the other hand, would be the following
assignment:

myPC.cpuSpeed = 2.5;

Because of the way the Computer class has been defined, the last two code listings
have the exact same effect. The whole class has been defined – by default – as public,
which means that all the methods, variables, and objects from the class are available to
be called with the mechanism described previously. It could be necessary to prevent
users from directly interacting with the variables within the class and only allow their
modification through certain methods. The different components within a class can be
defined as public or private. The former will make the component available to be used
as shown so far, while the latter will hinder the ability of other developers to access that
part. The following example shows how to make the cpuSpeed variable private:

Example02.java

class Computer {

 // variables

 private double cpuSpeed; // in GHz

 // constructor

 Computer() {

 cpuSpeed = 0;

 }

 // methods

 void setCpuSpeed (double _cpuSpeed) {

 cpuSpeed = _cpuSpeed;

 }

 double getCpuSpeed () {

76 | Object-Oriented Programming

 return cpuSpeed;

 }

}

public class Example02 {

 public static void main(String[] args) {

 Computer myPC = new Computer();

 myPC.setCpuSpeed(2.5);

 System.out.println(myPC.getCpuSpeed());

 }

}

The result of this code listing is the same as before:

2.5

Process finished with exit code 0

If you tried to access the cpuSpeed variable directly from the Example02 class, the
program would throw an exception. The following example shows such a case. Try it
out to see how the debugger informs you when you try to access a private variable:

Example03.java

class Computer {

 // variables

 private double cpuSpeed; // in GHz

 // constructor

 Computer() {

 cpuSpeed = 0;

 }

Working with Objects in Java | 77

 // methods

 void setCpuSpeed (double _cpuSpeed) {

 cpuSpeed = _cpuSpeed;

 }

 double getCpuSpeed () {

 return cpuSpeed;

 }

}

public class Example03 {

 public static void main(String[] args) {

 Computer myPC = new Computer();

 myPC.setCpuSpeed(2.5);

 System.out.println(myPC.cpuSpeed);

 }

}

The result of this program is:

Example03.java:23: error: cpuSpeed has private access in Computer

 System.out.println(myPC.cpuSpeed);

1 error

Process finished with exit code 1.

What the compiler shows is an error in the Computer class, which has been derived from
java.lang.

78 | Object-Oriented Programming

Checking the Precedence of a Class with instanceof
You can check whether an object is an instance of a specific class. This can be
convenient for things such as error checking, handling data in different ways depending
on its precedence, and more. The following example shows the checkNumber method,
which can discriminate between different types of variables and will print different
messages based on that:

Example04.java

public class Example04 {

 public static void checkNumber(Number val) {

 if(val instanceof Integer)

 System.out.println("it is an Integer");

 if(val instanceof Double)

 System.out.println("it is a Double");

 }

 public static void main(String[] args) {

 int val1 = 3;

 double val2 = 2.7;

 checkNumber(val1);

 checkNumber(val2);

 }

}

The outcome of the previous example is:

it is an Integer

it is a Double

Process finished with exit code 0

Checking the Precedence of a Class with instanceof | 79

Exercise 1: Creating the WordTool Class

WordTool is a class that will help you to perform a series of operations on a piece of
text, including counting the number of words, looking at the frequency of letters, and
searching for the occurrence of a specific string:

1. Open IntelliJ and click on the File | New | Project menu options:

Figure 3.1: Creating a new project

80 | Object-Oriented Programming

2. A new interface unfolds. The default options are meant for creating a Java
program. You just need to click Next:

Figure 3.2: The New Project dialog box

3. Check the box to create the project from a template. Select the template for the
Command Line App. Click Next:

Checking the Precedence of a Class with instanceof | 81

Figure 3.3: Creating a project from template

4. Name the project WordTool. Click Finish:

Figure 3.4: Adding the Project name

82 | Object-Oriented Programming

5. By default, the template calls your basic class Main. Let's change that to WordTool.
First, navigate within the new project to the Main.java file; it is displayed as the
main entry in the list:

Figure 3.5: A template Java program

Checking the Precedence of a Class with instanceof | 83

6. Right-click on the Main entry and, in the drop-down list, select the Refactor
option. Within that, select Rename…:

Figure 3.6: Refactoring the Java class

84 | Object-Oriented Programming

7. A dialog window pops up. Write in it the name of the class, WordTool. The
checkboxes allow you to choose which parts of the code will be refactored to fit
the new name of the class:

Figure 3.7: Renaming the class in IntelliJ

Checking the Precedence of a Class with instanceof | 85

8. You will see that the class is now called WordTool and the file is WordTool.java:

Figure 3.8: WordTool

9. Create the constructor for the class; it will be empty, in this case:

WordTool() {};

86 | Object-Oriented Programming

10. Add a method to count the number of words in a string:

public int wordCount (String s) {
 int count = 0; // variable to count words

 // if the entry is empty or is null, count is zero
 // therefore we evaluate it only otherwise
 if (!(s == null || s.isEmpty())) {
 // use the split method from the String class to
 // separate the words having the whitespace as separator
 String[] w = s.split("\\s+");
 count = w.length;
 }

 return count;
}

11. Add a method to count the number of letters in a string, and add the ability to
count both with and without whitespace characters:

public int symbolCount (String s, boolean withSpaces) {
 int count = 0; // variable to count symbols

 // if the entry is empty or is null, count is zero
 // therefore we evaluate it only otherwise
 if (!(s == null || s.isEmpty())) {
 if (withSpaces) {
 // with whitespaces return the full length
 count = s.length();
 } else {
 // without whitespaces, eliminate whitespaces
 // and get the length on the fly
 count = s.replace(" ", "").length();
 }
 }
 return count;
}

12. In the main class, create an object of the WordTool class and add a String variable
containing some text of your choice:

WordTool wt = new WordTool();
String text = "The river carried the memories from her childhood.";

Checking the Precedence of a Class with instanceof | 87

13. Add code inside the main method to print out the calculations made by WordTool:

System.out.println("Analyzing the text: \n" + text);
System.out.println("Total words: " + wt.wordCount(text));
System.out.println("Total symbols (w. spaces): " + wt.symbolCount(text,
true));
System.out.println("Total symbols (wo. spaces): " + wt.symbolCount(text,
false));

14. Run the program; the outcome should be as follows:

Analyzing the text:
The river carried the memories from her childhood.
Total words: 8
Total symbols (w. spaces): 50
Total symbols (wo. spaces): 43

Process finished with exit code 0

Note

You can use the trick presented in this exercise to create classes for all the
examples in this book, just by using the template and refactoring them to have the
example name. After that, you will just need to copy the code in a fresh project.

Activity 1: Adding the Frequency-of-Symbol Calculation to WordTool

Add a method to the previously created WordTool class to calculate the frequency of a
certain symbol. To do so, perform the following steps:

1. Add a method to count the number of words in a string.

2. Add a method to count the number of letters in a string, and add the possibility of
separating the case of having whitespaces or not.

3. In the main class, create an object of the WordTool class and add a string variable
containing a line of text of your choice.

4. Add code inside the main method to print out the calculations made by WordTool.

The expected outcome of this activity is as follows:

Analyzing the text:
The river carried the memories from her childhood.
Total words: 8
Total symbols (w. spaces): 50

88 | Object-Oriented Programming

Total symbols (wo. spaces): 43
Total amount of e: 7

Process finished with exit code 0

Note

The solution for this activity can be found on page 821.

Inheritance in Java
Inheritance is a key principle of object-oriented programming. It entails the transfer of
the existing structure of one class, including its constructor, variables, and methods,
to a different class. The new class is called the child class (or subclass), while the one
it's inheriting from is called the parent class (or superclass). We say that the child
class extends the parent one. The child class is said to extend the parent class in the
sense that it not only inherits whatever structures are defined by the parent, but it
also creates new structures. The following example shows a parent class and how the
child class extends it by adding a new method to it. We will take the Computer class
we defined earlier as a parent and create a new class called Tablet, which is a type of
computer.

Example05.java

class Computer {

 // variables

 private double cpuSpeed; // in GHz

 // constructor

 Computer() {

 cpuSpeed = 0;

 }

 // methods

 void setCpuSpeed (double _cpuSpeed) {

 cpuSpeed = _cpuSpeed;

 }

Inheritance in Java | 89

 double getCpuSpeed () {

 return cpuSpeed;

 }

}

class Tablet extends Computer {

 // variables

 private double screenSize; // in inches

 // methods

 void setScreenSize (double _screenSize) {

 screenSize = _screenSize;

 }

 double getScreenSize () {

 return screenSize;

 }

}

public class Example05 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 myTab.setCpuSpeed(2.5);

 myTab.setScreenSize(10);

 System.out.println(myTab.getCpuSpeed());

 System.out.println(myTab.getScreenSize());

 }

}

Notice how the definition of the Tablet class does not include any methods called
setCpuSpeed() or getCpuSpeed(); however, when calling them, not only does the program
not give any errors, but the commands are also successfully launched.

90 | Object-Oriented Programming

This is because the definition of the Tablet class extends the Computer class, thus
inheriting all its internal objects, variables, and methods. When creating an object of the
Tablet class, such as myTab, the JVM reserves space in memory for a cpuSpeed variable
and the setter and getter methods that go with it.

Overriding and Hiding Methods
When extending a class, it is possible to redefine some of the methods that are part
of it. Overriding means to rewrite something's functionality. This is done by making
a new declaration of the method with the same name and properties of the method
from the original class. This is demonstrated in the following example. Note that we're
continuing, for the sake of clarity, with Computer and Tablet, but they have been cleaned
up so as not to make the example programs too long.

Example06.java

class Computer {

 public void whatIsIt() {

 System.out.println("it is a PC");

 }

}

class Tablet extends Computer {

 public void whatIsIt() {

 System.out.println("it is a tablet");

 }

}

class Example06 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 myTab.whatIsIt();

 }

}

Overriding and Hiding Methods | 91

Since Tablet extends Computer, you could modify the main class in the program to be as
follows:

class Example06 {

 public static void main(String[] args) {

 Computer myTab = new Tablet();

 myTab.whatIsIt();

 }

}

Technically, tablets are computers, which means that you can create an object of the
Tablet class by defining it as Computer in the first place. The result for both cases will be
the same:

it is a tablet

Process finished with exit code 0

The result is the same for both classes because both the child and parent classes
include a non-static method called whatIsIt(). When calling the method, the overriding
one will have priority. This is done by the JVM at runtime. This principle is what we
call runtime polymorphism. There can be multiple definitions of the same method, and
which definition will be executed is decided during the execution of the program.

But what would happen if the method you called was static? This could be a design
decision taken by the developer who is creating the class you are extending and
therefore is a situation out of your control. In this case, it is not possible to override the
method. The child class can, however, hide the method defined by the parent using the
same mechanism. The next code listing demonstrates this.

Example07.java

class Computer {

 public static void whatIsIt() {

 System.out.println("it is a PC");

 }

}

class Tablet extends Computer {

 public static void whatIsIt() {

92 | Object-Oriented Programming

 System.out.println("it is a tablet");

 }

}

class Example07 {

 public static void main(String[] args) {

 Computer myTab = new Tablet();

 myTab.whatIsIt();

 }

}

The outcome of this example is:

it is a PC

Process finished with exit code 0

The decision of what method should be used with static methods is not taken at
runtime but during compilation, and this ensures that the method from the parent
class is the one being called. This action is called hiding instead of overriding. It is still
possible to call the method in the Tablet class. To do so, you should modify the code in
the main class to the following:

class Example07 {

 public static void main(String[] args) {

 Computer myTab = new Tablet();

 Tablet.whatIsIt();

 }

}

Note how we clearly specify the actual class you call for this. The result of the modified
example is:

it is a tablet

Process finished with exit code 0

Overriding and Hiding Methods | 93

Avoiding Overriding: Final Classes and Methods

If you want to stop other developers from overriding parts of your class, you can
declare the methods you want to protect as final. An example of this could be a class
that deals with temperature. The method that converts from Celsius into Fahrenheit is
final, as it makes no sense to override such a method.

Example08.java

class Temperature {

 public double t = 25;

 public double getCelsius() {

 return t;

 }

 final public double getFahrenheit() {

 return t * 9/5 + 32;

 }

}

class Example08 {

 public static void main(String[] args) {

 Temperature temp = new Temperature();

 System.out.println(temp.getCelsius());

 System.out.println(temp.getFahrenheit());

 }

}

94 | Object-Oriented Programming

This program will give this result:

25.0

77.0

Process finished with exit code 0

Note

Alternatively, you can declare a whole class final. A final class cannot be
extended. An example of such a class is String. You could ask whether it defeats
the purpose of object-oriented programming to have a class that cannot be
extended. But there are some classes that are so fundamental to the programming
language, such as String, that they are better kept as they are.

Overloading Methods and Constructors
One very interesting property of Java is how it allows you to define methods that have
the same conceptual functionality as each other by using the same name but changing
either the type or number of parameters. Let's see how this could work.

Example09.java

class Age {

 public double a = 0;

 public void setAge (double _a) {

 a = _a;

 }

 public void setAge (int year, int month) {

 a = year + (double) month / 12;

 }

 public double getAge () {

Overloading Methods and Constructors | 95

 return a;

 }

}

class Example09 {

 public static void main(String[] args) {

 Age age = new Age();

 age.setAge(12.5);

 System.out.println(age.getAge());

 age.setAge(9, 3);

 System.out.println(age.getAge());

 }

}

Note

Look at the highlighted portion in the preceding code. As we are taking the integer
parameter month and dividing it by a number, the result of the operation will be
a double. To avoid possible errors, you need to convert the integer into a floating
comma number. This process, called casting, is done by adding the new type
between brackets in front of the object, variable, or operation we want to convert.

The result of this example is:

12.5

9.25

Process finished with exit code 0

This shows that both methods modify the a variable in the Age class by taking different
sets of parameters. This same mechanism for having conceptually equivalent results
from different blocks of code can be used for the constructors of a class, as shown in
the following example.

Example10.java

class Age {

 public double a = 0;

96 | Object-Oriented Programming

 Age (double _a) {

 a = _a;

 }

 Age (int year, int month) {

 a = year + (double) month / 12;

 }

 public double getAge () {

 return a;

 }

}

class Example10 {

 public static void main(String[] args) {

 Age age1 = new Age(12.5);

 Age age2 = new Age(9, 3);

 System.out.println(age1.getAge());

 System.out.println(age2.getAge());

 }

}

In this case, as a way to show the functionality, instead of instantiating a single object
and calling the different methods to modify its variables, we had to create two different
objects, age1 and age2, with one or two parameters, as those are the possible options
offered by the constructors available in the Age class.

Recursion
Programming languages allow the usage of certain mechanisms to simplify solving a
problem. Recursion is one of those mechanisms. It is the ability of a method to call
itself. When properly designed, a recursive method can simplify the way a solution to a
certain problem is expressed using code.

Recursion | 97

Classic examples in recursion include the computation of the factorial of a number or
the sorting of an array of numbers. For the sake of simplicity, we are going to look at the
first case: finding the factorial of a number.

Example11.java

class Example11 {

 public static long fact (int n) {

 if (n == 1) return 1;

 return n * fact (n – 1);

 }

 public static void main(String[] args) {

 int input = Integer.parseInt(args[0]);

 long factorial = fact (input);

 System.out.println(factorial);

 }

}

To run this code, you will need to go to the terminal and call the example from there
with java Example11 m, where m is the integer whose factorial will be calculated.
Depending on where you created the project on your computer, it could look like this
(note that we have shortened the path to the example to keep it clean):

usr@localhost:~/IdeaProjects/chapter03/[...]production/Example11$ java
Example11 5

120

Or, it could look like this:

usr@localhost:~/IdeaProjects/chapter03/[...]production/Example11$ java
Example11 3

6

The result of the call is the factorial: 120 is the factorial of 5, and 6 is the factorial of 3.

While it might not seem so intuitive at first sight, the fact method calls itself in the
return line. Let's take a closer look at this:

public static long fact (int n) {

 if (n == 1) return 1;

 return n * fact (n – 1);

}

98 | Object-Oriented Programming

There are a couple of conditions that you need to meet when designing a functional
recursive method. Otherwise, the recursive method will not converge to anything:

1. There needs to be a base condition. This means you need something that will stop
the recursion from happening. In the case of the fact method, the base condition
is n being equal to 1:

if (n == 1) return 1;

2. There needs to be a way to computationally reach the base condition after a
certain number of steps. In our case, every time we call fact, we do it with a
parameter that is one unit smaller than the parameter of the current call to the
method:

return n * fact (n – 1);

Annotations
Annotations are a special type of metadata that can be added to your code to inform the
compiler about relevant aspects of it. Annotations can be used during the declaration
of classes, fields, methods, variables, and parameters. One interesting aspect of
annotations is that they remain visible inside classes, indicating whether a method is an
override to a different one from a parent class, for example.

Annotations are declared using the @ symbol followed by the annotation's name. There
are some built-in annotations, but it is also possible to declare your own. At this point,
it is important to focus on some of the built-in ones, as it will help you to understand
some of the concepts presented so far in this chapter

The most relevant built-in annotations are @Override, @Deprecated, and
@SuppressWarnings. These three commands inform the compiler about different aspects
of the code or the process of producing it.

@Override is used to indicate that a method defined in a child class is an override of
another one in a parent class. It will check whether the parent class has a method
named the same as the one in the child class and will provoke a compilation error
if it doesn't exist. The use of this annotation is displayed in the following example,
which builds on the code we showcased earlier in the chapter about the Tablet class
extending the Computer class.

Example12.java

class Computer {

 public void whatIsIt() {

 System.out.println("it is a PC");

Annotations | 99

 }

}

class Tablet extends Computer {

 @Override

 public void whatIsIt() {

 System.out.println("it is a tablet");

 }

}

class Example12 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 myTab.whatIsIt();

 }

}

@Deprecated indicates that the method is about to become obsolete. This typically
means that it will be removed in a future version of the class. As Java is a living language,
it is common for core classes to be revised and new methods to be produced, and for
the functionality of others to cease being relevant and get deprecated. The following
example revisits the previous code listing, if the maintainer of the Computer class has
decided to rename the whatIsIt() method getDeviceType().

Example13.java

class Computer {

 @Deprecated

 public void whatIsIt() {

 System.out.println("it is a PC");

 }

 public void getDeviceType() {

 System.out.println("it is a PC");

100 | Object-Oriented Programming

 }

}

class Tablet extends Computer {

 @Override

 public void whatIsIt() {

 System.out.println("it is a tablet");

 }

}

class Example13 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 myTab.whatIsIt();

 }

}

Calling the compilation of the previous example will issue a warning about the fact that
the whatIsIt() method will soon be no longer used. This should help developers plan
their programs, as they'll know that some methods may disappear in the future:

Warning:(13, 17) java: whatIsIt() in Computer has been deprecated

@SuppressWarnings makes the compiler hide the possible warnings that will be defined
in the annotation's parameters. It should be mentioned that annotations can have
parameters such as overrides, deprecation, divzero, and all. There are more types of
warnings that can be hidden, but it is too early to introduce them. While we are not
going to go deeper into this concept at this point, you can see an example of this in the
following code listing.

Example14.java

class Computer {

 @Deprecated

 public void whatIsIt() {

 System.out.println("it is a PC");

 }

Annotations | 101

 public void getDeviceType() {

 System.out.println("it is a PC");

 }

}

@SuppressWarnings("deprecation")

class Tablet extends Computer {

 @Override

 public void whatIsIt() {

 System.out.println("it is a tablet");

 }

}

class Example14 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 myTab.whatIsIt();

 }

}

When calling the compilation of the latest example, you will see a difference in
comparison to the previous one, as the compilation of this one will not produce any
warnings regarding the deprecation of the whatIsIt() method.

Note

You should be careful when using @SuppressWarnings as it can hide risks
derived from potential malfunctions of your code. Especially avoid using @
SuppressWarnings("all"), as it could mask warnings that could be producing
runtime errors in other parts of your code.

102 | Object-Oriented Programming

Interfaces
Interfaces are reference types in Java. As such, they define the skeleton of classes
and objects but without including the actual functionality of methods. Classes
implement interfaces but do not extend them. Let's look at an example of a simple
interface, further developing the idea of building classes to represent different types of
computers.

Example15.java

interface Computer {

 public String getDeviceType();

 public String getSpeed();

}

class Tablet implements Computer {

 public String getDeviceType() {

 return "it is a tablet";

 }

 public String getSpeed() {

 return "1GHz";

 }

}

class Example15 {

 public static void main(String[] args) {

 Tablet myTab = new Tablet();

 System.out.println(myTab.getDeviceType());

 System.out.println(myTab.getSpeed());

 }

}

Inner Classes | 103

As you might have guessed, the output for this example is:

it is a tablet

1GHz

Process finished with exit code 0

Some relevant notes on interfaces follow:

• Interfaces can extend other interfaces.

• Unlike classes, which can only extend one class at a time, interfaces can extend
multiple interfaces at once. You do so by adding the different interfaces separated
by commas.

• Interfaces have no constructors.

Inner Classes
Classes, as we have seen so far, cannot be hidden to other parts of the program. In
code terms, they cannot be made private. To offer this kind of security mechanism, Java
developed so-called inner classes. This type of class is declared nested within other
classes. A quick example of this follows:

Example16.java

class Container {

 // inner class

 private class Continent {

 public void print() {

 System.out.println("This is an inner class");

 }

 }

 // method to give access to the private inner class' method

 void printContinent() {

 Continent continent = new Continent();

 continent.print();

104 | Object-Oriented Programming

 }

}

class Example16 {

 public static void main(String[] args) {

 Container container = new Container();

 container.printContinent();

 }

}

The result of the previous example is:

This is an inner class

Process finished with exit code 0

The previous example is a case of a non-static inner class. There are two more:
method-local inner classes (these are defined inside a method) and anonymous classes.
There is no big difference in how method-local classes are declared in comparison
to what you've seen so far. A method-local inner class's main characteristic is that it
is defined only for the scope of that method; it cannot be called by other parts of the
program.

When it comes to anonymous inner classes, they make for an interesting case that
deserves to be studied. The reason for their existence is to make code more concise.
With anonymous classes, you declare and instantiate the class at the same time. This
means that for such a class, only one object is created. Anonymous classes are typically
created by extending existing classes or interfaces. Let's look at an example defining
one of these specific types of anonymous classes:

Example17.java

class Container {

 int c = 17;

 public void print() {

 System.out.println("This is an outer class");

 }

}

class Example17 {

Documenting with JavaDoc | 105

 public static void main(String[] args) {

 // inner class

 Container container = new Container() {

 @Override

 public void print() {

 System.out.println("This is an inner class");

 }

 };

 container.print();

 System.out.println(container.c);

 }

}

This example shows how an anonymous class can be created in an ad hoc way to
override a single method from the original class. This is one of the many possible
applications of this type of inner class. The output of this program is:

This is an inner class

17

Process finished with exit code 0

Documenting with JavaDoc
Javadoc is a tool that comes with the JDK that can be used to generate documentation
of classes directly from properly commented code. It requires the use of a specific
type of commenting that is different from the ones seen in Chapter 01, Getting Started.
There, we saw that comments can be added to code using either // or /* or */. JavaDoc
uses a specific type of marking to detect what comments were intentionally made
for documentation purposes. Javadoc comments are contained within /** and */. A
simple example follows.

Example18.java

/**

 * Anonymous class example

 * This example shows the declaration of an inner class extending

 * an existing class and overriding a method. It can be used as a

106 | Object-Oriented Programming

 * technique to modify an existing method for something more suitable

 * to our purpose.

 *

 * @author Joe Smith

 * @version 0.1

 * @since 20190305

 */

class Container {

 int c = 17;

 public void print() {

 System.out.println("This is an outer class");

 }

}

public class Example18 {

 public static void main(String[] args) {

 // inner class

 Container container = new Container() {

 @Override

 public void print() {

 System.out.println("This is an inner class");

 }

 };

 container.print();

 System.out.println(container.c);

 }

}

Note

If you are going to generate documentation from a class, you need to make sure
the class is public, otherwise, the JavaDoc generator will complain about the fact
that it makes no sense to document classes that aren't public.

Documenting with JavaDoc | 107

The new comments include information about the program itself. It is good practice
to explain, in some detail, what the program does. Sometimes, it may be convenient
to even add blocks of code. In order to support that extra information, there are tags
that allow the addition of specific features or metadata to the documentation. @author,
@version, and @since are examples of such metadata – they determine who made the
code, the version of the code, and when it was first created, respectively. There is a long
list of possible tags that you can use; visit https://docs.oracle.com/javase/8/docs/
technotes/tools/unix/javadoc.html#CHDBEFIF for more information.

JavaDoc renders the documentation as one or more HTML files. Therefore, it is possible
to also add HTML markup to help messages. You could change the documentation part
of the previous example as follows:

/**

 * <H1>Anonymous class example</H1>

 * This example shows the declaration of an inner class extending

 * an existing class and overriding a method. It can be used as a

 * technique to modify an existing method for something more suitable

 * to our purpose.

 *

 * @author Joe Smith

 * @version 0.1

 * @since 20190305

 */

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDBEFIF
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDBEFIF

108 | Object-Oriented Programming

Finally, you can create the documentation file by selecting Tools | Generate JavaDoc
from the menu:

Figure 3.9: Generating JavaDoc

Documenting with JavaDoc | 109

The JavaDoc generation dialog box will pop up and give you some options. Make sure
that you insert the folder where you want the documentation file to be stored (/tmp in
the example) and tick the checkboxes for the @author and the @version:

Figure 3.10: Specifying the scope for the JavaDoc

110 | Object-Oriented Programming

This will generate an HTML file that is formatted in the same way that official Java
documentation is:

Figure 3.11: The generated JavaDoc

Activity 2: Adding Documentation to WordTool

Create documentation for the class created in Exercise 01.

1. Make sure you document each one of the examples and add enough metadata for
people to know how to handle the different methods.

2. Export the resulting documentation file.

Note

The solution for this activity can be found on page 823.

Summary | 111

Summary
This chapter introduced you to the core of object-oriented programming: the ability to
create classes and do operations with them, such as extend them, override parts of the
code, or create local instances of classes on the fly (also called inner classes).

The examples we looked at showed you the importance of creating classes to structure
your code better and improve how economical your code is. If there are several classes
within a specific context, it is very likely that they will have common characteristics
that could be described in a parent class or even an interface.

A part of the chapter was dedicated to operations done with the compiler. As a
developer, you may want to inform others about when certain parts of your code will be
deprecated, or whether a method from a specific class has been overridden. Annotating
code is a good technique for keeping some level of communication with others. You also
saw how to turn off possible warnings coming from annotations, as they may bother
you during development.

Finally, the process of documentation was presented. This is relevant when sharing
code or passing it over to other people.

Learning Objectives

By the end of this chapter, you will be able to:

• Explain the structure of the built-in Collections API

• Perform standard operations on data stored in sets, lists, and maps

• Explain the benefits of using the Java collections framework

• Populate lists from arrays and examine the relationship between lists and arrays

This chapter introduces you to the powerful Java collections framework, which is used to store,
sort, and filter data.

Collections, Lists, and
Java's Built-In APIs

4

114 | Collections, Lists, and Java's Built-In APIs

Introduction
Java comes with a built-in Collections API, allowing you to manipulate data structures
with very little effort. A collection is an object that contains multiple elements.
Collections are used to store, share, process, and communicate aggregated data. We
call this system the Java collections framework.

As part of this framework, there are different components that are used to optimize our
interaction with the actual data:

• Interfaces: Abstract data types that represent collections

• Implementations: Specific implementations of the collection interfaces

• Algorithms: Polymorphic methods used to process the data within a collection for
operations such as sorting and searching

Note

Other programming languages have their own collection frameworks. For example,
C++ has the Standard Template Library (STL). Java boasts simplicity when it
comes to its collection framework.

Using the collections framework has many benefits, including a reduction in the
complexity of creating programs that deal with data structures, an increase in the
performance of programs, a reduction in the effort required for developers to get
started with using or creating APIs, and an increase in the reuse of functioning
software.

The collections framework is relevant even when handling data that can be accessed
not just by a single process but by several processes simultaneously, as would be the
case in multithreaded programming scenarios. However, it is not the intention of this
chapter to deal with concurrent programming.

The Collections API comes with five main interfaces:

• Set: A collection that contains no duplicates

• List: An ordered collection or sequence, allowing for duplicates

• Queue: A collection that sorts data in the order of its arrival, typically handled as a
First In First Out (FIFO) process

• Deque: Essentially a queue that allows for data insertion at both ends – can be
handled both as FIFO and Last In First Out (LIFO)

• Map: Relates keys – which must be unique – to values

Arrays | 115

In this chapter, we will look at the definition of, and examples of uses for, the main
interfaces: lists, sets, and maps. The framework has even more interfaces than the ones
listed previously, but the others are either just variations of those listed or are outside
the scope of this chapter. Furthermore, we will look at how arrays work in much more
depth than we have previously.

The definition of a simple collection – in this case, a specific type of set would be as
follows:

Set mySet = new HashSet();

Note

The different available classes for sets, lists, queues, deques, and maps are named
after the interfaces. The different classes present different properties, as we will
see later in the chapter.

Arrays
Arrays are part of the collections framework. There are some static methods that can
be used to manipulate arrays. The operations you can perform are creating, sorting,
searching, comparing, streaming, and transforming arrays. You were introduced to
arrays in Chapter 2, Learning the Basics, where you saw how they can be used to store
data of the same type. The declaration of an array is quite straightforward. Let's see
what an array of strings would look like:

String[] text = new String[] { "spam", "more", "buy" };

Running operations on an array is as easy as calling some of the methods contained in
the java.util.Arrays package. For example, sorting the previous array would require
calling the following:

java.util.Arrays.sort(text);

The methods dedicated to handling arrays include one method that could be used to
print out full arrays as if they were strings. This can be very handy when debugging a
program:

System.out.println(java.util.Arrays.toString(text));

This will print the arrays and display each element separated by commas and within
square brackets, []. If you executed the previous command after sorting the declared
array of strings, the outcome would be:

[buy, more, spam]

116 | Collections, Lists, and Java's Built-In APIs

As you can see, the array has been sorted in ascending alphabetical order. There is a
difference between that way of printing out an array and using a for loop to iterate
throughout an array:

for (int i = 0; i < text.length; i++)

 System.out.print(text[i] + " ");

This would give the following as the result:

buy more spam

If you want to write your code in a slightly cleaner way, you could import the whole
java.util.Arrays API at the beginning of your program, which would allow you to call
the methods by omitting the java.util part of the command. See the following example
highlighting this technique:

Example01.java

import java.util.Arrays;

public class Example01 {

 public static void main(String[] args) {

 String[] text = new String[] { "spam", "more", "buy" };

 Arrays.sort(text);

 System.out.println(Arrays.toString(text));

 for (int i = 0; i < text.length; i++)

 System.out.print(text[i] + " ");

 }

}

The outcome will be:

[buy, more, spam]

buy more spam

Process finished with exit code 0

Arrays | 117

If you were to make a new array that you wanted to be filled up with the same data for
all cells, there is the possibility of calling the java.util.Arrays.fill() method, as shown
here:

int[] numbers = new int[5];

Arrays.fill(numbers, 0);

Such a command would create an array filled with zeros:

[0, 0, 0, 0, 0]

Creating arrays with prefilled data can also be done with a copy of a preexisting array.
It is possible to create an array by copying part of one array, or by instantiating a larger
one where the old one would just be part of it. Both methods are shown in the following
example, which you can test in your editor:

Example02.java

import java.util.Arrays;

public class Example02 {

 public static void main(String[] args) {

 int[] numbers = new int[5];

 Arrays.fill(numbers, 1);

 System.out.println(Arrays.toString(numbers));

 int [] shortNumbers = Arrays.copyOfRange(numbers, 0, 2);

 System.out.println(Arrays.toString(shortNumbers));

 int [] longNumbers = Arrays.copyOf(numbers, 10);

 System.out.println(Arrays.toString(longNumbers));

 }

}

118 | Collections, Lists, and Java's Built-In APIs

This example will print the numbers, shortNumbers (which is shorter), and longNumbers
(which is longer) arrays. The newly added positions in the array will be filled with zeros.
If it was an array of strings, they would be filled up with null. The outcome of this
example is:

[1, 1, 1, 1, 1]

[1, 1]

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

Process finished with exit code 0

You can compare arrays by calling the java.utils.Arrays.equals() or java.util.Arrays.
deepEquals() methods. The difference between them is that the latter can look through
nested arrays. A simple comparison example of the former method in use follows:

Example03.java

import java.util.Arrays;

public class Example03 {

 public static void main(String[] args) {

 int[] numbers1 = new int[3];

 Arrays.fill(numbers1, 1);

 int[] numbers2 = {0, 0, 0};

 boolean comparison = Arrays.equals(numbers1, numbers2);

 System.out.println(comparison);

 int[] numbers3 = {1, 1, 1};

 comparison = Arrays.equals(numbers1, numbers3);

Arrays | 119

 System.out.println(comparison);

 int[] numbers4 = {1, 1};

 comparison = Arrays.equals(numbers1, numbers4);

 System.out.println(comparison);

 }

}

In this example, we create four arrays: numbers1, numbers2, numbers3, and numbers4. Only
two of them are the same, containing three instances of 1. In the example, you can see
how the last three arrays are compared to the first one. You can also see how the last
array differs not in content, but in size. The outcome of this code is:

false

true

false

Process finished with exit code 0

Note

Since this chapter is not looking into such a complex data structure as nested
arrays, we will not show an example of java.util.Arrays.deepEquals(). If you're
interested, you should consider checking the Java reference at https://docs.oracle.
com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.
lang.Object:A-.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-

120 | Collections, Lists, and Java's Built-In APIs

Searching within arrays is done through different algorithms behind the scenes. It is
obviously a lot faster to perform searches on sorted arrays than on unsorted ones. The
method to be invoked to run such a search on a sorted array is Arrays.binarySearch().
As it has many possible parameter combinations, it is recommended to visit the official
documentation for the method. The following example illustrates how it works:

Example04.java

import java.util.Arrays;

public class Example04 {

 public static void main(String[] args) {

 String[] text = {"love","is", "in", "the", "air"};

 int search = Arrays.binarySearch(text, "is");

 System.out.println(search);

 }

}

This code is going to search for the word the inside the array text. The result is:

-4

Process finished with exit code 0

This is wrong! binarySearch is an optimized search algorithm within the collections
framework, but it is not optimal when used with unsorted arrays. This means
that binarySearch is mainly very useful for determining whether an object can be
found within an array (by sorting it first). At the same time, we will need a different
algorithm when we must search through unsorted arrays and when there are multiple
occurrences of a value.

Arrays | 121

Try the following modification of the previous example:

String[] text = {"love","is", "in", "the", "air"};

Arrays.sort(text);

int search = Arrays.binarySearch(text, "is");

System.out.println(search);

The outcome, since the array is sorted, will be:

2

Process finished with exit code 0

It is only a coincidence in this case that "is" happens to be in the same place in the
unsorted and the sorted versions of the array. Making use of the tools you've been
learning about, it should be possible for you to create an algorithm that can iterate
throughout an array and count all the existing items, even if they are repeated, as
well as locating their positions within the array. See Activity 1, Searching for Multiple
Occurrences in an Array in this chapter, where we challenge you to write such a
program.

You can also transform objects of the java.util.Arrays class into strings with the
Arrays.toString() method, as we saw at the beginning of this section, into a list with
Arrays.asList() (we will see this in a later section, as well as in Example05) or into a set
with Arrays.setAll().

Arrays and collections play important roles in software development. This section of
the chapter dives into the differences between them as well as how they can be used
together. If you search the internet for the relationship between these two constructs,
most references you find will be focused on the differences, such as:

• Arrays have fixed sizes, while collections have variable sizes.

• Arrays can hold objects of any kind, but also primitives; collections cannot contain
primitives.

• Arrays will hold homogeneous elements (elements that are all the same nature),
while collections can hold heterogeneous elements.

• Arrays have no underlying data structure, while collections are implemented using
standard structures.

122 | Collections, Lists, and Java's Built-In APIs

If you know the amount of data you are going to be dealing with, arrays are the
preferred tool, mainly because arrays perform better than lists or sets in such cases.
However, there will be countless occasions when you don't know the amount of data
you will be dealing with, which is where lists will be handy.

Also, arrays can be used to programmatically populate collections. We will be doing this
throughout this chapter as a way of saving you the time of having to manually type all
the data that will end up inside a collection, for example. The following example shows
how to populate a set using an array:

Example05.java

import java.util.*;

public class Example05 {

 public static void main(String[] args) {

 Integer[] myArray = new Integer[] {3, 25, 2, 79, 2};

 Set mySet = new HashSet(Arrays.asList(myArray));

 System.out.println(mySet);

 }

}

In this program, there is an array of Integer used to initialize an object of the HashSet
class, which is later printed out.

The outcome of this example is:

[2, 3, 25, 79]

Process finished with exit code 0

The previous code listing shows a couple of interesting things. First of all, you will
notice that the output to the program is sorted; that is because the conversion of the
array to a list using Arrays.asList() will make the dataset inherit the properties of a list,
which means that it will be sorted. Also, since the data has been added to a set and sets
do not include duplicates, duplicate number two is left out.

Arrays | 123

It is important to note that with collections, you can specify the type to be stored. As
such, there would be a difference between the declaration in the previous example,
where we displayed a generic declaration, and what follows. The type is declared here
using the name given within angle brackets, <>. In this case, it is <Integer>. You could
rewrite the instantiation of the object as follows:

Set<Integer> mySet = new HashSet<Integer>(Arrays.asList(myArray));

You will see that the result of executing the program will be the same.

Activity 1: Searching for Multiple Occurrences in an Array

Write a program that will search for multiple occurrences of a certain word in an array
of strings, where each one of the objects is a single word. Use the following array, a
famous quote by Frank Zappa, as a point of departure:

String[] text = {"So", "many", "books", "so", "little", "time"};

The word to search for is so. but you will have to consider that it shows up twice
and that one instance is not in lowercase. As a hint, the method to compare
two strings without looking at the specific casing of any of the letters in them is
text1.compareToIgnoreCase(text2). To do so, perform the following steps:

1. Create the text array.

2. Create the variable that contains the word to be searched for: so

3. Initialize the variable occurrence to -1.

4. Create a for loop to iterate through the array to check for the occurrence.

That will give the following result:

Found query at: 0

Found query at: 3

Process finished with exit code 0

Note

The solution for this activity can be found on page 827.

124 | Collections, Lists, and Java's Built-In APIs

Sets
Sets within the collections framework are the programmatic equivalent of mathematical
sets. This means that they can store objects of a specific type while avoiding duplicates.
In the same way, sets offer methods that will let you handle data as you would in
mathematics. You can add objects to a set, check whether a set is empty, combine
the elements of two sets to add all their elements into a single set, see what objects
coincide with each other between two sets, and calculate the difference between two
sets.

In the java.util.Sets class, we find three interfaces used to represent sets: HashSet,
TreeSet, and LinkedHashSet. The differences between them are straightforward:

• HashSet will store data without guaranteeing the order of iteration.

• TreeSet orders a set by value.

• LinkedHashSet orders a set by arrival time.

Each of these interfaces is meant to be used under specific circumstances. Let's look at
a couple of examples of sets, departing from the one in Example05, and look at how we
can add other methods to check how to operate sets. The first step is populating a set
from an array. There are several methods for doing so; let's use the one that is probably
the quickest to implement:

Example06.java

import java.util.*;

public class Example06 {

 public static void main(String[] args) {

 String[] myArray = new String[] {"3", "25", "2", "79", "2"};

 Set mySet = new HashSet();

 Collections.addAll(mySet, myArray);

 System.out.println(mySet);

 }

}

Sets | 125

The above line of code shows how to add all the elements of the array to the set; when
printing the results, we get:

[2, 79, 3, 25]

Process finished with exit code 0

Please note that the order of the resulting print may vary for you. As explained earlier,
HashSet, because of the way it is implemented, cannot guarantee any sorting of the
content. If you performed the following example using Integer instead of String for the
data, it would end up being sorted:

Example07.java

import java.util.*;

public class Example07 {

 public static void main(String[] args) {

 Integer[] myArray = new Integer[] {3, 25, 2, 79, 2};

 Set mySet = new HashSet();

 Collections.addAll(mySet, myArray);

 System.out.println(mySet);

 }

}

The result of this program is:

[2, 3, 25, 79]

Process finished with exit code 0

126 | Collections, Lists, and Java's Built-In APIs

This means that the results end up being sorted, even if we don't request it.

Note

The fact that the set in this example is sorted is a mere coincidence. Please be
aware that this may not be the case in other situations. Example08 will show the
union operation between two sets, and there the data will not be sorted.

Working with sets involves working with packages of data and performing operations
with them. The union operation for two sets is displayed in the following example:

Example08.java

import java.util.*;

public class Example08 {

 public static void main(String[] args) {

 Integer[] numbers1 = new Integer[] {3, 25, 2, 79, 2};

 Integer[] numbers2 = new Integer[] {7, 12, 14, 79};

 Set set1 = new HashSet();

 Collections.addAll(set1, numbers1);

 Set set2 = new HashSet();

 Collections.addAll(set2, numbers2);

 set1.addAll(set2);

 System.out.println(set1);

 }

}

Sets | 127

This program will print, as its output, the resulting set from the union of the two sets
described by the two arrays at the beginning of the main method of the example:

[2, 3, 7, 25, 12, 14, 79]

Process finished with exit code 0

Besides HashSet, we also find TreeSet, and here is where data will be sorted by value.
Let's simply change the types of the sets in the previous example and see the result:

Set set1 = new TreeSet();

Collections.addAll(set1, numbers1);

Set set2 = new TreeSet();

Collections.addAll(set2, numbers2);

This, when changed in the previous example, will give the following sorted set as a
result:

[2, 3, 7, 12, 14, 25, 79]

You might be wondering about the pros and cons of using each type of set. When
sorting, you are trading speed for tidiness. Therefore, if you are working with large sets
of data and speed is a concern, you will have to decide whether it is more convenient
to have the system operate faster, or have the results sorted, which would allow faster
binary searches through the dataset.

Given this last modification, we could perform other operations with the data, such as
the intersection operation, which is invoked with the set1.retainAll(set2) method.
Let's see it in action:

Example09.java

import java.util.*;

public class Example09 {

 public static void main(String[] args) {

 Integer[] numbers1 = new Integer[] {3, 25, 2, 79, 2};

 Integer[] numbers2 = new Integer[] {7, 12, 14, 79};

128 | Collections, Lists, and Java's Built-In APIs

 Set set1 = new TreeSet();

 Collections.addAll(set1, numbers1);

 Set set2 = new TreeSet();

 Collections.addAll(set2, numbers2);

 set1.retainAll(set2);

 System.out.println(set1);

 }

}

For the output, given that the arrays are used to populate the arrays, we will get only
those numbers that exist in both arrays; in this case, it is just the number 79:

[79]

Process finished with exit code 0

The third type of set, LinkedHashSet, will sort the objects in order of their arrival. To
demonstrate this behavior, let's make a program that will add elements to the set one by
one using the set.add(element) command.

Example10.java

import java.util.*;

public class Example10 {

 public static void main(String[] args) {

 Set set1 = new LinkedHashSet();

 set1.add(35);

 set1.add(19);

 set1.add(11);

Sets | 129

 set1.add(83);

 set1.add(7);

 System.out.println(set1);

 }

}

When running this example, the result will be sorted by the way the data arrived in the
set:

[35, 19, 11, 83, 7]

Process finished with exit code 0

For the sake of experimentation, use the next 2 minutes to chalk out the set
construction into HashSet once more:

Set set1 = new LinkedHashSet();

The result of this modified program is uncertain. For example, I got:

[35, 19, 83, 7, 11]

Process finished with exit code 0

This is, again, an unsorted version of the same set of data.

To close our explanation of the possible methods that you can use with sets, let's use
LinkedHashSet to run an experiment where we will find the difference between two sets.

Example11.java

import java.util.*;

public class Example11 {

 public static void main(String[] args) {

 Set set1 = new LinkedHashSet();

 set1.add(35);

 set1.add(19);

 set1.add(11);

130 | Collections, Lists, and Java's Built-In APIs

 set1.add(83);

 set1.add(7);

 Set set2 = new LinkedHashSet();

 set2.add(3);

 set2.add(19);

 set2.add(11);

 set2.add(0);

 set2.add(7);

 set1.removeAll(set2);

 System.out.println(set1);

 }

}

In this case, both sets are slightly different, and by determining the difference, the
algorithm behind set1.removeAll(set2) will look for the occurrences of each item in
set2 within set1 and eliminate them. The result of this program is:

[35, 83]

Process finished with exit code 0

Finally, if you just want to check whether the whole of a set is contained within another
set, you can call the set1.containsAll(set2) method. We'll leave that for you to explore
– just be aware that the method simply responds with a Boolean stating whether the
statement is true or false.

Lists
Lists are ordered collections of data. Unlike sets, lists can have repeated data. Having
data contained within lists allows you to perform searches that will give the locations
of certain objects within a given list. Given a position, it is possible to directly access an
item in a list, add new items, remove items, and even add full lists. Lists are sequential,
which makes them easy to navigate using iterators, a feature that will be explored in full
in a later section in the chapter. There are also some methods for performing range-
based operations on sublists.

Lists | 131

There are two different list implementations: ArrayList and LinkedList. Each of them is
ideal depending on the circumstances. Here, we will work with ArrayList mainly. Let's
start by creating and populating an instance, then search for a certain value, and given
its location within the list, we'll print out the value.

Example12.java

import java.util.*;

public class Example12 {

 public static void main(String[] args) {

 List list = new ArrayList();

 list.add(35);

 list.add(19);

 list.add(11);

 list.add(83);

 list.add(7);

 System.out.println(list);

 int index = list.indexOf(19);

 System.out.println("Find 19 at: " + index);

 System.out.println("Component: " + list.get(index));

 }

}

The output of this example is:

[35, 19, 11, 83, 7]

Find 19 at: 1

Component: 19

Process finished with exit code 0

132 | Collections, Lists, and Java's Built-In APIs

The indexOf method informs you about the location of an object passed to the method
as a parameter. It's sibling method, lastIndexOf, reports the location of the last
occurrence of an object in the list.

You should look at a list as a series of nodes connected by links. If one of the nodes is
eliminated, the link that used to point to it will be redirected to the following item in the
list. When adding nodes, they will be attached by default at the end of the list (if they
are not duplicated). As all the nodes in the collection are of the same type, it should be
possible to exchange the locations of two nodes in a list.

Let's experiment with removing an item from a list and ascertaining the locations for
objects located immediately before and after the removed item:

Example13.java

import java.util.*;

public class Example13 {

 public static void main(String[] args) {

 List list = new ArrayList();

 list.add(35);

 list.add(19);

 list.add(11);

 list.add(83);

 list.add(7);

 System.out.println(list);

 int index = list.lastIndexOf(83);

 System.out.println("Before: find 83 at: " + index);

 list.remove(index - 1);

Lists | 133

 System.out.println(list);

 index = list.lastIndexOf(83);

 System.out.println("After: find 83 at: " + index);

 }

}

This program creates a list, prints it out, looks for a node in the list, and prints its
location. Then, it removes an item in the list and repeats the previous process to show
that the node has been removed from the list. This is a clear difference from the case
with arrays, where it is not possible to remove items from them, and thus it is not
possible to change their size. Observe the output of the previous example:

[35, 19, 11, 83, 7]

Before: find 83 at: 3

[35, 19, 83, 7]

After: find 83 at: 2

Process finished with exit code 0

It is also possible to change the content of a node. In the previous example, instead
of removing a node, change list.remove(index-1); to the following and check the
outcome:

list.set(index - 1, 99);

The final array will have substituted 11 for 99.

If instead of deleting one node, you wanted to empty the whole list, the command to
the issue would be:

list.clear();

134 | Collections, Lists, and Java's Built-In APIs

Using subList(), an operator that generates lists from lists, it is possible to, for example,
delete a range of cells within a list. See the following example, which deletes part of a
string array, changing its meaning when printing it:

Example14.java

import java.util.*;

public class Example14 {

 public static void main(String[] args) {

 List list = new ArrayList();

 list.add("No");

 list.add("matter");

 list.add("what");

 list.add("you");

 list.add("do");

 System.out.println(list);

 list.subList(2,4).clear();

 System.out.println(list);

 }

}

Look at the following result:

[No, matter, what, you, do]

[No, matter, do]

Process finished with exit code 0

Lists | 135

The list object has been modified by running the example code so that it becomes
shorter. The two index numbers used in the subList() method is the places in the list
where the method starts and stops. The result of subList() can also be assigned to a
different variable of the same List type, resulting in a reduced copy of the list in the
code, after performing the subList() operation.

Look at the following modification in the latest code listing:

List list1 = list.subList(2,4);

System.out.println(list1);

This will print out the list that was made of the nodes that were deleted in the previous
example.

There are a lot of interesting algorithms within the collections framework that offers
relevant functionality for operating with lists:

• sort: Put the elements of a list in a certain order.

• shuffle: Randomize the locations of all objects in a list.

• reverse: Invert the order of a list.

• rotate: Move objects to the end of a list, and when they reach the end, have them
show up at the other end.

• swap: Swap two elements with one another.

• replaceAll: Replace all occurrences of an element in a list using a parameter.

• fill: Fill the content of a list with one value.

• copy: Make more instances of a list.

• binarySearch: Perform optimized searches within a list.

• indexOfSubList: Search for the occurrence of a piece (a set of consecutive nodes)
of a list.

• lastIndexOfSubList: Search for the last occurrence of a piece of a list.

Note

Lists generated from arrays using Arrays.asList() do not behave in the same
way as the objects of the List class described in this section. The lists coming
from arrays have a fixed length, which means that elements cannot be removed
from the array. The reason for this is that java.util.Arrays implement its own
ArrayList class inside the package, one that is different from the one in the
collections framework. Confusing, isn't it?

136 | Collections, Lists, and Java's Built-In APIs

Exercise 1: Creating the AnalyzeInput Application

In this exercise, we will create a new application that will respond to the CLI by storing
whatever strings are provided to it, then run some statistical operations on the data,
such as word counting, determining the most frequent word or the most frequent
letter, and so on. The idea is to give you an idea of how to use the collections framework
instead of other tools to do such operations. This time, we will do something special:
instead of getting the data from the CLI as arguments to the script, we will use the
java.io.Console API, which allows the reading of different types of strings from the
terminal, such as usernames (plain strings) and passwords. The goal of this application
is to read the input until a line with only the "*" symbol (asterisk) is captured. Once
the termination symbol is entered, the text will be processed, and the statistics will be
delivered to the terminal:

1. Open IntelliJ and create a new Java program using the CLI template. Name the
project AnalyzeInput.

2. Start by creating a simple program that can read a line from the terminal and
printing it out:

import java.io.Console;

public class AnalyzeInput {
 public static void main(String[] args) {
 Console cons;
 String line = "";
 if ((cons = System.console()) != null && (line = cons.readLine())
!= null) {
 System.out.println("You typed: " + line);
 }
 }
}

3. Execute the program from the CLI by calling java AnalyzeInput from the right
folder and interact with it:

usr@localhost:~/IdeaProjects/ch04/out/production/ch04$ java AnalyzeInput
hej this is an example
You typed: hej this is an example

4. You must import java.io.Console, which allows you to instantiate objects of the
Console class. You can also see the call to cons = System.console(), which will
make sure that the terminal is ready for you to read the data, and line = cons.
readLine(), which will ensure that when hitting the Enter key on the keyboard, the
resulting data is not empty.

Lists | 137

5. The next step is storing the data we are capturing in a collection. Since we don't
know the size this could be, we should be using ArrayList <String> to store the
data. Also, to store data for as long as we want, we can modify the if statement
and make it into a while loop. Finally, use the add method to add the lines into a
list (note that the following code listing will never exit, so bear with us and do not
execute it yet):

import java.util.*;
import java.io.Console;

public class Exercise01 {
 public static void main(String[] args) {
 ArrayList <String> text = new ArrayList<String>();
 Console cons;
 String line = "";
 while ((cons = System.console()) != null && (line = cons.
readLine()) != null) {
 text.add(line);
 }
 System.out.println("You typed: " + text);
 }
}

6. Modify the while loop to include the condition we established for finishing the
data capture process – the arrival of a line with only an asterisk symbol:

while (!line.equals("*")
 && (cons = System.console()) != null
 && (line = cons.readLine()) != null) {

7. The outcome will happen only when you type the asterisk symbol alone in a line,
as seen in this log while interacting with the program:

usr@localhost:~/IdeaProjects/ch04/out/production/ch04$ java AnalyzeInput
this is the array example
until you type *
alone in a line
*
You typed: [this is the array example, until you type *, alone in a line,
*]

138 | Collections, Lists, and Java's Built-In APIs

8. Since we used ArrayList to store the different strings, you could be typing
until you exhaust the computer's memory. Now it is possible to execute some
commands to work with the strings. The first step will be turning the whole of the
text into a list. This will require going through the different strings and splitting
them into parts that will be added to a larger list. The easiest trick is to use the
split() method using a whitespace character as a separator. Modify the main
method to look like the following, and you will see that the result is now a list with
all the words separated as single nodes in the list:

public static void main(String[] args) {
 ArrayList <String> text = new ArrayList<String>();
 Console cons;
 String line = "";
 while (!line.equals("*")
 && (cons = System.console()) != null
 && (line = cons.readLine()) != null) {
 List<String> lineList = new ArrayList<String>(Arrays.asList(line.
split(" ")));
 text.addAll(lineList);
 }
 System.out.println("You typed: " + text);
}

9. Having all the data stored in this way allows for the use of a lot of the methods
available in the collections framework that will let you do operations with data.
Let's start by counting all the words in the text (including the closing symbol, "*").
Just add the following at the end of the main method:

System.out.println("Word count: " + text.size());

The result of this exercise is a program that is ready to be used for further analysis of
the data. But in order to continue doing so, we need to make use of a tool that has not
yet been introduced, which is the iterator. We will come back to this example later in
the chapter and finish off the application by adding some extra functionality to it.

Maps
The collections framework offers one more interface, java.util.Map, which can be used
when dealing with data that is stored as key-value pairs. This type of data storage is
becoming more and more relevant as data formats such as JSON are slowly taking over
the internet. JSON is a data format that is based on having data stored in the form of
nested arrays that always respond to the key-value structure.

Maps | 139

Having data organized in this way offers the possibility of having a very simple way
to look for data – by means of the keys instead of using, for example, an index, as we
would do in an array. Keys are the way we can identify the block of data we are looking
for within a map. Let's look at a simple example of a map before looking at alternatives
to maps:

Example15.java

The following example shows how to create a simple map and how to print some
messages based on the information available within it. The first thing that you will
notice in comparison to other interfaces in the collections framework is that we do not
add elements to the map – we put elements in the map. Also, elements have two parts:
the key (in our case, we are using strings) and the value (which can be heterogeneous in
nature):

import java.util.*;

public class Example15 {

 public static void main(String[] args) {

 Map map = new HashMap();

 map.put("number", new Integer(1));

 map.put("text", new String("hola"));

 map.put("decimal", new Double(5.7));

 System.out.println(map.get("text"));

 if (!map.containsKey("byte")) {

 System.out.println("There are no bytes here!");

 }

 }

}

140 | Collections, Lists, and Java's Built-In APIs

This program will give the following result:

hola

There are no bytes here!

Process finished with exit code 0

Since there is no key named "bytes" in the code, the maps.containsKey() method will
answer accordingly, and the program will inform the user about it. The main methods
available in this interface are:

• put (Object key, Object value)

• putAll (Map map)

• remove (Object key)

• get (Object key)

• containsKey (Object key)

• keySet()

• entrySet()

All but the last two are self-explanatory. Let's focus on augmenting our previous
example to see what those two methods do. Make the following addition to the code to
see what keySet() and entrySet() have to offer:

System.out.println(map.entrySet());

System.out.println(map.keySet());

The outcome of the modified code listing will be:

hola

There are no bytes here!

[number=1, text=hola, decimal=5.7]

[number, text, decimal]

Process finished with exit code 0

Iterating through Collections | 141

In other words, entrySet() will print the whole map using the key = value formula, while
keySet() will respond with the set of keys within the map.

Note

You might have realized this by now: keys must be unique – there cannot be two of
the same keys in a map.

We will not go deeper into maps at this point because they are, to an extent, a
repetition of what we saw with sets. There are three different classes for maps: HashMap,
TreeMap, and LinkedHashMap. The last two are put in order, while the first one is neither
sorted nor arranged in order of arrival. You should use these classes according to your
needs.

Iterating through Collections
Earlier in this chapter, when working with Exercise 01, we stopped when we were about
to make searches through the data. We made it to the point where we had to iterate
through the data and look for characteristics such as word frequency.

Iterators are used in Java to browse through collections. Let's look at a simple example
that involves extracting the elements from a simple list one by one and printing them
out.

Example16.java

import java.util.*;

public class Example16 {

 public static void main(String[] args) {

 List array = new ArrayList();

 array.add(5);

 array.add(2);

 array.add(37);

 Iterator iterator = array.iterator();

 while (iterator.hasNext()) {

 // point to next element

142 | Collections, Lists, and Java's Built-In APIs

 int i = (Integer) iterator.next();

 // print elements

 System.out.print(i + " ");

 }

 }

}

The output of this program is:

5 2 37

Process finished with exit code 0

Iterators such as this one are the most generic ones in the collections framework
and can be used with lists, sets, queues, and even maps. There are other less-broad
implementations of the iterators that allow for different ways to browse through
data, for example, in lists. As you saw in the latest code listing, the iterator.hasNext()
method checks whether there is a node after the one we are at in the list. When starting
the iterator, the object points to the first element in the list. Then, hasNext() responds
with a Boolean stating whether there are more nodes hanging from it. The iterator.
next() method will move the iterator to the following node in the collection. This kind
of iterator does not have the possibility of going back in the collection; it can only move
forward. There is one final method in the iterator, called remove(), which will eliminate
the current element that the iterator is pointing to from the collection.

If we used listIterator() instead, we would have had a lot more options for navigating
collections, such as adding new elements and changing elements. The following
code listing demonstrates how to go through a list, add elements, and modify them.
listIterator works only with lists:

Example17.java

import java.util.*;

public class Example17 {

 public static void main(String[] args) {

 List <Double> array = new ArrayList();

 array.add(5.0);

 array.add(2.2);

 array.add(37.5);

Iterating through Collections | 143

 array.add(3.1);

 array.add(1.3);

 System.out.println("Original list: " + array);

 ListIterator listIterator = array.listIterator();

 while (listIterator.hasNext()) {

 // point to next element

 double d = (Double) listIterator.next();

 // round up the decimal number

 listIterator.set(Math.round(d));

 }

 System.out.println("Modified list: " + array);

 }

}

In this example, we create a list of Double, iterate through the list, and round up each of
the numbers. The outcome of this program is:

Original list: [5.0, 2.2, 37.5, 3.1, 1.3]

Modified list: [5, 2, 38, 3, 1]

Process finished with exit code 0

By calling listIterator.set(), we modify each of the items in the list and the second
System.out.println() command shows where the numbers have been rounded up or
down.

144 | Collections, Lists, and Java's Built-In APIs

The final iterator example we are going to see in this section is a trick to iterate
through a map. This could come in handy in scenarios where you want to perform some
operations on data within a map. By using the entrySet() method – which returns a list
– it is possible to have an iterator over a map. See the following example to understand
how this works:

Example18.java

import java.util.*;

public class AnalyzeInput {

 public static void main(String[] args) {

 Map map = new HashMap ();

 map.put("name", "Kristian");

 map.put("family name", "Larssen");

 map.put("address", "Jumping Rd");

 map.put("mobile", "555-12345");

 map.put("pet", "cat");

 Iterator <Map.Entry> iterator = map.entrySet().iterator();

 while (iterator.hasNext()) {

 Map.Entry entry = iterator.next();

 System.out.print("Key = " + entry.getKey());

 System.out.println(", Value = " + entry.getValue());

 }

 }

}

Iterating through Collections | 145

This program will iterate through a map and print the contents as they were stored in
HashMap. Remember that these types of objects are not sorted in any specific way. You
can expect an output like the following:

Key = address, Value = Jumping Rd

Key = family name, Value = Larssen

Key = name, Value = Kristian

Key = mobile, Value = 555-12345

Key = pet, Value = cat

Process finished with exit code 0

Given that we now have ways to iterate through collections, we can move on to an
exercise that picks up where we left off: iterating through a list for data analysis.

Exercise 2: Bringing Analytics into the AnalyzeInput Application

We are going to start from where we left off at the end of Exercise 1, Creating the
AnalyzeInput Application. We managed to capture the text typed in the terminal and
store it as a list of strings. This time, we are going to use a method from the collections
framework called frequency, which will respond with the number of times a certain
object can be found inside a list. As words could be repeated in a sentence, we first
need to figure out a way to extract the unique elements in a list:

1. Sets are objects in the collections framework that keep only one copy of each
element. We saw an example of this earlier in the chapter. We will create a HashSet
instance and copy all the elements from the list into it. This will automatically
eliminate duplicates:

Set <String> textSet = new HashSet <String> ();
textSet.addAll(text);

2. The next step, now that we have the set, is to create an iterator that will check
how many copies of each element from the set can be found in the list:

Iterator iterator = textSet.iterator();

146 | Collections, Lists, and Java's Built-In APIs

3. Using the same technique that we saw in previous examples for how to iterate
through a set, we will find the next node in the set and check in the list for the
frequency of the string stored in the node:

while (iterator.hasNext()) {
 // point to next element
 String s = (String) iterator.next();

 // get the amount of times this word shows up in the text
 int freq = Collections.frequency(text, s);

 // print out the result
 System.out.println(s + " appears " + freq + " times");
}

4. The whole program will look like this:

import java.util.*;
import java.io.Console;

public class AnalyzeInput {
 public static void main(String[] args) {
 ArrayList <String> text = new ArrayList <String> ();
 Console cons;
 String line = "";
 while (!line.equals("*")
 && (cons = System.console()) != null
 && (line = cons.readLine()) != null) {
 List <String> lineList = new ArrayList <String> (Arrays.
asList(line.split(" ")));
 text.addAll(lineList);
 }
 System.out.println("You typed: " + text);
 System.out.println("Word count: " + text.size());

 Set <String> textSet = new HashSet <String> ();
 textSet.addAll(text);

 Iterator iterator = textSet.iterator();

Iterating through Collections | 147

 while (iterator.hasNext()) {
 // point to next element
 String s = (String) iterator.next();

 // get the amount of times this word shows up in the text
 int freq = Collections.frequency(text, s);

 // print out the result
 System.out.println(s + " appears " + freq + " times");
 }
 }
}

5. The outcome will depend on the kind of text you type. For the sake of testing, try
the following (we will stick to this data entry for the rest of the chapter – you can
copy and paste it to the terminal each time you call the application):

this is a test
is a test
test is this
*

6. The full outcome of this input will be:

You typed: [this, is, a, test, is, a, test, test, is, this, *]
Word count: 11
a appears 2 times
test appears 3 times
this appears 2 times
is appears 3 times
* appears 1 times

7. While the result is correct, it is not easy to read through. Ideally, results should be
sorted. For example, by descending values of frequency, so that it is easy to see at
a glance the most and least frequent words. This is the time to make yet another
stop in the exercise as we need to introduce the idea of sorting before we move on
with it.

148 | Collections, Lists, and Java's Built-In APIs

Sorting Collections
As we have seen, there are some classes in the collections framework that force the
items within them to be sorted. Examples of that are TreeSet and TreeMap. The aspect to
explore in this section is how to use existing sorting mechanisms for lists, but also for
cases that have datasets with more than one value per data point.

The exercise we are doing throughout this chapter is a good example of a case where
there are data points with more than one value. For each data point, we need to store
the word for which we are calculating the frequency and the frequency itself. You might
think that a good technique to sort that out is by storing the information in the form of
maps. The unique words could be the keys, while the frequencies could be the values.
This could be achieved by modifying the final part of the previous program to look like
this:

Map map = new HashMap();

while (iterator.hasNext()) {

 // point to next element

 String s = (String) iterator.next();

 // get the amount of times this word shows up in the text

 int freq = Collections.frequency(text, s);

 // print out the result

 System.out.println(s + " appears " + freq + " times");

 // add items to the map

 map.put(s, freq);

}

TreeMap mapTree = new TreeMap();

mapTree.putAll(map);

System.out.println(mapTree);

Sorting Collections | 149

While this is an interesting and simple approach to sorting (copying the data into a
structure that is sorted by nature), it presents the problem that data is sorted by key
and not by value, as the following result of the previous code highlights:

Word count: 11

a appears 2 times

test appears 3 times

this appears 2 times

is appears 3 times

* appears 1 times

{*=1, a=2, is=3, test=3, this=2}

So, if we want to sort these results by value, we need to figure out a different strategy.

But let's step back for a second and analyze what tools are offered in the collections
framework for sorting. There is a method called sort() that can be used to sort lists. An
example of this is as follows:

Example19.java

import java.util.*;

public class Example19 {

 public static void main(String[] args) {

 List <Double> array = new ArrayList();

 array.add(5.0);

 array.add(2.2);

 array.add(37.5);

 array.add(3.1);

 array.add(1.3);

 System.out.println("Original list: " + array);

 Collections.sort(array);

150 | Collections, Lists, and Java's Built-In APIs

 System.out.println("Modified list: " + array);

 }

}

The result of this program is:

Original list: [5.0, 2.2, 37.5, 3.1, 1.3]

Modified list: [1.3, 2.2, 3.1, 5.0, 37.5]

Process finished with exit code 0

Given a list, I could sort it this way just fine – it would even be possible to navigate
through it backward using listIterator to sort a list in descending order. However,
these methods do not solve the issue of sorting data points with multiple values. In such
a case, we would need to create a class to store our own key-value pair. Let's see how to
implement this by continuing with the exercise we have been dealing with throughout
the chapter.

Exercise 3: Sort the Results from the AnalyzeInput Application

We now have a program that, given some input text, identifies some basic
characteristics of the text, such as the number of words in the text or the frequency of
each of the words. Our goal is to be able to sort the results in descending order to make
them easier to read. The solution will require the implementation of a class that will
store our key-value pairs and makes a list of objects from that class:

1. Create a class containing the two data points: the word and its frequency.
Implement a constructor that will take values and pass them to class variables.
This will simplify the code later:

class DataPoint {
 String key = "";
 Integer value = 0;

 // constructor
 DataPoint(String s, Integer i) {
 key = s;
 value = i;
 }
}

Sorting Collections | 151

2. When calculating the frequency for each word, store the results in a newly created
list of objects of the new class:

List <DataPoint> frequencies = new ArrayList <DataPoint> ();

while (iterator.hasNext()) {
 // point to next element
 String s = (String) iterator.next();

 // get the amount of times this word shows up in the text
 int freq = Collections.frequency(text, s);

 // print out the result
 System.out.println(s + " appears " + freq + " times");

 // create the object to be stored
 DataPoint datapoint = new DataPoint (s, freq);

 // add datapoints to the list
 frequencies.add(datapoint);
}

3. Sorting is going to require the creation of a new class using the Comparator
interface, which we are just introducing now. This interface should implement
a method that will be used to run comparisons within the objects in the array.
This new class must implement Comparator <DataPoint> and include a single
method called compare(). It should have two objects of the class being sorted as
parameters:

class SortByValue implements Comparator<DataPoint>
{
 // Used for sorting in ascending order
 public int compare(DataPoint a, DataPoint b)
 {
 return a.value - b.value;
 }
}

152 | Collections, Lists, and Java's Built-In APIs

4. The way we call the Collections.sort() algorithm using this new comparator is by
adding an object of that class as a parameter to the sort method. We instantiate it
directly in the call:

Collections.sort(frequencies,new SortByValue());

5. This will sort the frequencies list in ascending order. To print the results, it is no
longer valid to make a direct call to System.out.println(frequencies) because it is
now an array of objects and it will not print the contents of the data points to the
terminal. Iterate through the list in the following way instead:

System.out.println("Results sorted");
for (int i = 0; i < frequencies.size(); i++)
 System.out.println(frequencies.get(i).value
 + " times for word "
 + frequencies.get(i).key);

6. If you run the program using the same input that we have been using for the last
couple of examples, the outcome will be:

Results sorted
1 times for word *
2 times for word a
2 times for word this
3 times for word test
3 times for word is

7. Our goal is to sort the results in descending order and, to do that, we will need
to add one more thing to the call to the sort algorithm. When instantiating the
SortByValue() class, we need to tell the compiler that we want the list to be sorted
in reverse order. The collections framework already has a method for this:

Collections.sort(frequencies, Collections.reverseOrder(new
SortByValue()));

8. For the sake of clarity, let's look at how the full program looks now, as we have
been introducing a lot of modifications:

import java.util.*;
import java.io.Console;

class DataPoint {
 String key = "";
 Integer value = 0;

 // constructor

Sorting Collections | 153

 DataPoint(String s, Integer i) {
 key = s;
 value = i;
 }
}

class SortByValue implements Comparator<DataPoint>
{
 // Used for sorting in ascending order
 public int compare(DataPoint a, DataPoint b)
 {
 return a.value - b.value;
 }
}

public class AnalyzeInput {
 public static void main(String[] args) {
 ArrayList <String> text = new ArrayList <String> ();
 Console cons;
 String line = "";
 while (!line.equals("*")
 && (cons = System.console()) != null
 && (line = cons.readLine()) != null) {
 List <String> lineList = new ArrayList <String> (Arrays.
asList(line.split(" ")));
 text.addAll(lineList);
 }
 System.out.println("You typed: " + text);
 System.out.println("Word count: " + text.size());

 Set <String> textSet = new HashSet <String> ();
 textSet.addAll(text);

 Iterator iterator = textSet.iterator();

 List <DataPoint> frequencies = new ArrayList <DataPoint> ();

 while (iterator.hasNext()) {
 // point to next element
 String s = (String) iterator.next();

 // get the amount of times this word shows up in the text

154 | Collections, Lists, and Java's Built-In APIs

 int freq = Collections.frequency(text, s);

 // print out the result
 System.out.println(s + " appears " + freq + " times");

 // create the object to be stored
 DataPoint datapoint = new DataPoint (s, freq);

 // add datapoints to the list
 frequencies.add(datapoint);
 }

 Collections.sort(frequencies,
 Collections.reverseOrder(new SortByValue()));

 System.out.println("Results sorted");
 for (int i=0; i<frequencies.size(); i++)
 System.out.println(frequencies.get(i).value
 + " times for word "
 + frequencies.get(i).key);
 }
}

9. A full interaction path with this program, from the moment we call it to include
the data entry, would be as follows:

user@localhost:~/IdeaProjects/ch04/out/production/ch04$ java AnalyzeInput
this is a test
is a test
test is this
*
You typed: [this, is, a, test, is, a, test, test, is, this, *]
Word count: 11
a appears 2 times
test appears 3 times
this appears 2 times
is appears 3 times
* appears 1 times

Properties | 155

Results sorted
3 times for word test
3 times for word is
2 times for word a
2 times for word this
1 times for word *

Properties
Properties in the collections framework are used to maintain lists of key-value
pairs where both are of the String class. Properties are relevant when obtaining
environmental values from the operating system, for example, and are the grounding
class for many other classes. One of the main characteristics of the Properties class is
that it allows the definition of a default response in the case of a search for a certain key
not being satisfactory. The following example highlights the basics of this case:

Example20.java

import java.util.*;

public class Example20 {

 public static void main(String[] args) {

 Properties properties = new Properties();

 Set setOfKeys;

 String key;

 properties.put("OS", "Ubuntu Linux");

 properties.put("version", "18.04");

 properties.put("language", "English (UK)");

 // iterate through the map

 setOfKeys = properties.keySet();

 Iterator iterator = setOfKeys.iterator();

 while(iterator.hasNext())

 {

156 | Collections, Lists, and Java's Built-In APIs

 key = (String)iterator.next();

 System.out.println(key +

 " = " + properties.getProperty(key));

 }

 System.out.println();

 // looking for URL that not in list

 String value = properties.getProperty("keyboard layout", "not
found");

 System.out.println("keyboard layout = " + value);

 }

}

Before diving into the results, you will notice that in properties, we put rather than
add new elements/nodes. This is the same as we saw with maps. Also, you will have
noticed that to iterate, we used the keySet() technique that we saw when iterating
through maps earlier. Finally, the particularity of Properties is that you can set a
default response in the case of the searched-for property not being found. This is what
happens in the example when searching for keyboard layout – it was never defined, so
the getProperty() method will answer with its default message without crashing the
program.

The result of this program is:

version = 18.04

OS = Ubuntu Linux

language = English (UK)

keyboard layout = not found

Process finished with exit code 0

Properties | 157

Another interesting method to be found in the Properties class is the list(); it comes
with two different implementations that allow you to send the contents of a list to
different data handlers. We can stream the whole properties list to a PrintStreamer
object, such as System.out. This offers a simple way of displaying what is in a list without
having to iterate through it. An example of this follows:

Example21.java

import java.util.*;

public class Example21 {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put("OS", "Ubuntu Linux");

 properties.put("version", "18.04");

 properties.put("language", "English (UK)");

 properties.list(System.out);

 }

}

That will result in:

version=18.04

OS=Ubuntu Linux

language=English (UK)

Process finished with exit code 0

158 | Collections, Lists, and Java's Built-In APIs

The propertyNames() method returns an Enumeration list, and by iterating through it, we
will obtain the keys to the whole list. This is an alternative to creating a set and running
the keySet() method.

Example22.java

import java.util.*;

public class Example22 {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put("OS", "Ubuntu Linux");

 properties.put("version", "18.04");

 properties.put("language", "English (UK)");

 Enumeration enumeration = properties.propertyNames();

 while (enumeration.hasMoreElements()) {

 System.out.println(enumeration.nextElement());

 }

 }

}

That will result in:

version

OS

language

Process finished with exit code 0

Properties | 159

The final method we will introduce you to from Properties at this point is
setProperty(). It will modify the value of an existing key, or will eventually create a new
key-value pair if the key is not found. The method will answer with the old value if the
key exists, and answer with null otherwise. The next example shows how it works:

Example23.java

import java.util.*;

public class Example23 {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put("OS", "Ubuntu Linux");

 properties.put("version", "18.04");

 properties.put("language", "English (UK)");

 String oldValue = (String) properties.setProperty("language",
"German");

 if (oldValue != null) {

 System.out.println("modified the language property");

 }

 properties.list(System.out);

 }

}

Here is the outcome:

modified the language property

-- listing properties --

version=18.04

160 | Collections, Lists, and Java's Built-In APIs

OS=Ubuntu Linux

language=German

Process finished with exit code 0

Note

There are more methods in the Properties class that deals with storing and
retrieving lists of properties to/from files. While this is a very powerful feature from
the Java APIs, as we haven't yet introduced the use of files in this book, we will not
discuss those methods here. For more information at this point, please refer to
Java's official documentation.

Activity 2: Iterating through Large Lists

In contemporary computing, we deal with large sets of data. The purpose of this activity
is to create a random-sized list of random numbers to perform some basic operations
on data, such as obtaining the average.

1. To start, you should create a random list of numbers.

2. To compute the average, you could create an iterator that will go through the list
of values and add the weighted value corresponding to each element.

3. The value coming from the iterator.next() method must be cast into a Double
before it can be weighed against the total number of elements.

If you've implemented everything properly, the results of the averaging should
similar to:

Total amount of numbers: 3246
Average: 49.785278826074396

Or, it could be:

Total amount of numbers: 6475

Average: 50.3373892275651

Note

The solution for this activity can be found on page 827.

Summary | 161

If you managed to make this program work, you should think about how to take
advantage of being able to simulate large sets of data like this one. This data could
represent the amount of time between different arrivals of data in your application,
temperature data from the nodes in an Internet of Things network being captured
every second, or... the possibilities are endless. By using lists, you can make the size of
the dataset as endless as their working possibilities.

Summary
This chapter introduced you to the Java collections framework, which is a very powerful
tool within the Java language that can be used to store, sort, and filter data. The
framework is very big and offers tools in the form of interfaces, classes, and methods,
some of which are beyond the scope of this chapter. We have focused on Arrays, Lists,
Sets, Maps, and Properties. But there are others, such as queues and dequeues, that are
worth exploring on your own.

Sets, like their mathematical equivalents, store unique copies of items. Lists are like
arrays that can be extended endlessly and support duplicates. Maps are used when
dealing with key-value pairs, something very common in contemporary computing,
and do not support the use of two of the same keys. Properties work very much like
HashMap (a specific type of Map) but offer some extra features, such as the listing all their
contents to streams, which simplify the printing out of the contents of a list.

Some of the classes offered in the framework are sorted by design, such as TreeHash and
TreeMap, while some others are not. Depending on how you want to handle data, you will
have to decide which is the best collection based on the kind of operations you want to
perform.

There are standard techniques for looking through data with iterators. These iterators,
upon creation, will point to the first element in a list. Iterators offer some basic
methods, such as hasNext() and next(), that state whether there is more data in the list
and extract data from the list, respectively. While those two are common to all iterators,
there are others, such as listIterator, that are much more powerful and allow, for
example, the addition of new elements to a list while browsing through it.

We have looked at a chapter-long example that used many of these techniques, and we
have introduced the use of the console to read data through the terminal.

In the next chapter, we will cover exceptions and how to handle them.

Learning Objectives

By the end of this chapter, you will be able to:

• Identify the situations that produce exceptions in your code

• Catch and handle an exception

• Log the details of an exception

• Throw an exception to the calling class

• Differentiate between types of exceptions

• Create your own exception class

This chapter discusses how exceptions are dealt with in Java.

Exceptions

5

164 | Exceptions

Introduction
Exceptions are not errors, or, more accurately, exceptions are not bugs, even if you
might perceive them to be when they crash your programs! Exceptions are situations
that occur in your code when there is a mismatch between the data you are handling
and the method or command you are using to process it.

In Java, there is a class that is dedicated to errors. Errors are unexpected situations that
affect programs on the JVM level. For example, if you fill-up the program stack through
an unconventional use of memory, then your whole JVM will crash. Unlike errors,
exceptions are situations that your code, when properly designed, can catch on the fly.

Exceptions are not as drastic as errors, even if the result for you, the developer, will
be the same – that is, a non-working program. In this chapter, we are inviting you to
make your programs crash by intentionally provoking exceptions that you will later
learn how to catch (that is, handle) and avoid. Depending on how you develop the catch
mechanism, you can decide on whether to get your program to recover and continue
operating or to gracefully end its execution with a human-readable error message.

A Simple Exception Example
Let's start by provoking a simple exception in your code. First, type in the following
program in the Integrated Development Environment (IDE) and execute it:

Example01.java

public class Example01 {

 public static void main(String[] args) {

 // declare a string with nothing inside

 String text = null;

 // you will see this at the console

 System.out.println("Go Java Go!");

 // null'ed strings should crash your program

 System.out.println(text.length());

 // you will never see this print

 System.out.println("done");

A Simple Exception Example | 165

 }

}

Here is the output:

Go Java Go!

Exception in thread "main" java.lang.NullPointerException

 at Example01.main(Example01.java:11)

Process finished with exit code 1

The previous code listing shows how the program starts executing a command
that works fine. The sentence Go Java Go! is printed on the console, but then a
NullPointerException shows up, highlighting that something exceptional happened.
In this case, we tried to print the length of a string initiated to null by calling text.
length(). Since there is no length to be calculated (that is, we don't even have an
empty string), either System.out.println() or text.length() provoked the exception.
Additionally, there was an error at that point, so the program exited and the final
call to System.out.println("done") was not executed. You could try to separate both
commands to see what the outcome will be:

// null'ed strings should crash your program

int number = text.length();

System.out.println(number);

Here is the output:

Go Java Go!

Exception in thread "main" java.lang.NullPointerException

 at Example01.main(Example01.java:11)

Process finished with exit code 1

If you check the line numbers in the IDE, you will see that the exception takes place on
the line where we are trying to get the length of the string. Now that we know the cause
of the problem, there are two ways around this issue: either we fix the data (note that
there will be situations where this will be impossible), or we include a countermeasure
in our code to detect the exceptions and then handle or ignore them. The action of
handling an unexpected event is what we call catching the exception. On the other
hand, bypassing the event is called throwing the exception. Later in the chapter, we will
explore different ways of doing both of these actions, as well as good practices for when
writing code-handling exceptions.

166 | Exceptions

However, before learning about how to avoid or handle exceptions, let's provoke some
more. Almost every Java API includes the definition of an exception that can help to
propagate errors towards the main class, and thus the developer. In that way, it will be
possible to avoid situations where the code will break in front of the user's eyes.

The exceptions covered by the Java APIs are what we call built-in exceptions. It is also
possible to create your own when you define a class. Talking about classes, let's try to
get a character from a non-existing location within an object instantiated from String
and see what happens:

Example02.java

public class Example02 {

 public static void main(String[] args) {

 // declare a string of a fixed length

 String text = "I <3 bananas"; // 12 characters long

 // provoke an exception

 char character = text.charAt(15); // get the 15th element

 // you will never see this print

 System.out.println("done");

 }

}

The IDE will respond with the following:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String
index out of range: 15

 at java.lang.String.charAt(String.java:658)

 at Example02.main(Example02.java:8)

Process finished with exit code 1

Note that the text variable is only 12 characters long. When trying to extract the 15th
character, the IDE will issue an exception and terminate the program. In this case, we
got one called StringOutOfBoundsException. There are many different types of built-in
exceptions.

A Simple Exception Example | 167

Here's a list of the various types of exceptions:

• NullPointerException

• StringOutOfBoundsException

• ArithmeticException

• ClassCastException

• IllegalArgumentException

• IndexOutOfBoundsException

• NumberFormatException

• IllegalAccessException

• InstantiationException

• NoSuchMethodException

As you can see, the names of the different exceptions are quite descriptive. When you
get one, it should be quite easy to figure out where to find more information about it
within the Java documentation in order to mitigate the problem. We classify exceptions
as checked or unchecked:

• Checked exceptions: These are highlighted during compilation. In other words,
your program will not make it to the end of the compilation process, and therefore
you will not be able to run it.

• Unchecked exceptions: These show up during program execution; therefore, we
also call them runtime exceptions. The examples that have been shown in this
chapter so far (NullPointerException and StringOutOfBoundsException) are both
unchecked.

Why Two Types of Exception?

There are two possibilities for exceptions: either we, as developers, make a mistake
and don't realize that our way of handling data is going to produce an error
(such as when we are trying to get the length of an empty string or when we are
dividing a number by zero), or the error happens because we are uncertain about
the nature of the data we will be gathering during an exchange with something
external to our program (such as when getting parameters from the CLI and they
are of the wrong type). In cases like the first one, checked exceptions make more
sense. The second scenario is the reason why we need unchecked exceptions. In
this second case, we should develop strategies to handle potential threats to the
proper execution of the program.

168 | Exceptions

Making an example of a checked exception is slightly more complicated because we
have to anticipate things that will not be introduced in depth until a later chapter.
However, we consider that the following example, which displays an example of
IOException, is simple enough even if it includes a couple of classes that haven't been
touched on in the book yet:

Example03.java

import java.nio.file.*;

import java.util.*;

public class Example03 {

 public static void main(String[] args) {

 // declare a list that will contain all of the files

 // inside of the readme.txt file

 List<String> lines = Collections.emptyList();

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

 // you will never see this print

 Iterator<String> iterator = lines.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

}

The newest thing in this code listing is the use of java.nio.file.*. This is an API that
includes classes and methods to manage files, among other things. The goal of this
program is to read a whole text file called readme.txt into a list that will then be printed
using an iterator, as we saw in Chapter 4, Collections, Lists, and Java's Built-In APIs.

This is a case where a checked exception could occur when calling Files.
readAllLines() if there is no file to be read because of, for example, having a
wrongly declared filename. The IDE knows this and, therefore, it flags that there
is a potential risk.

NullPointerException – Have No Fear | 169

Note how the IDE displays a warning from the moment we write the code. Furthermore,
when trying to compile the program, the IDE will respond with the following:

Error:(11, 35) java: unreported exception java.io.IOException; must be
caught or declared to be thrown

Catching and throwing are the two strategies that you can use to avoid exceptions. We
will talk about them in more detail later in the chapter.

NullPointerException – Have No Fear
We presented the concept of null within Java in a previous chapter. As you may recall,
null is the value that is implicitly assigned to an object upon creation, that is, unless
you assign a different value to it. Related to null is the NullPointerException value. This
is a very common event that can and will happen to you for a variety of reasons. In this
section, we will highlight some of the most common scenarios of this in an effort to
introduce you to a different way of thinking when dealing with any type of exception in
your code.

In Example01, we examined the process of trying to perform operations on an object
that was pointing to null. Let's look at some other possible cases:

Example04.java

public class Example04 {

 public static void main(String[] args) {

 String vehicleType = null;

 String vehicle = "car";

 if (vehicleType.equals(vehicle)) {

 System.out.println("it's a car");

 } else {

 System.out.println("it's not a car");

 }

 }

}

170 | Exceptions

The outcome of this example would be the following:

Exception in thread "main" java.lang.NullPointerException

 at Example04.main(Example04.java:5)

Process finished with exit code 1

You could have prevented this exception if you had written your code to compare the
existing variable with the potentially null one instead.

Example05.java

public class Example05 {

 public static void main(String[] args) {

 String vehicleType = null;

 String vehicle = "car";

 if (vehicle.equals(vehicleType)) {

 System.out.println("it's a car");

 } else {

 System.out.println("it's not a car");

 }

 }

}

The preceding code will produce the following result:

it's not a car

Process finished with exit code 0

As you can see, there is no conceptual difference between the examples; however, there
is a difference at the code level. This difference is enough for your code to issue an
exception upon compilation. This is because the equals() method for the String class
is prepared to handle the situation of its parameter being null. On the other hand, a
String variable that is initialized to null cannot have access to the equals() method.

NullPointerException – Have No Fear | 171

A very common situation for provoking a NullPointerException occurs when trying to
call non-static methods from an object initialized to null. The following example shows
a class with two methods that you can call to see whether they produce the exception.
You can do this by simply commenting or uncommenting each of the lines calling the
methods from main(). Copy the code in the IDE and try the two cases:

Example06.java

public class Example06 {

 private static void staticMethod() {

 System.out.println("static method, accessible from null reference");

 }

 private void nonStaticMethod() {

 System.out.print("non-static method, inaccessible from null
reference");

 }

 public static void main(String args[]) {

 Example06 object = null;

 object.staticMethod();

 //object.nonStaticMethod();

 }

}

There are other cases when this exception can appear, but let's focus on how to deal
with exceptions. The following sections will describe different mechanisms you can use
to enable your programs to recover from unexpected situations.

172 | Exceptions

Catching Exceptions
As mentioned earlier, there are two ways to handle exceptions: catching and throwing.
In this section, we will deal with the first of these methods. Catching an exception
requires encapsulating the code that might generate an unwanted result into a specific
statement, as shown in the following code snippet:

try {

 // code that could generate an exception of the type ExceptionM

} catch (ExceptionM e) {

 // code to be executed in case of exception happening

}

We can put this code to test with any of the previous examples. Let's demonstrate how
we could stop the exception we found in the first example of the chapter, where we
tried to check the length of a string that was initialized to null:

Example07.java

public class Example07 {

 public static void main(String[] args) {

 // declare a string with nothing inside

 String text = null;

 // you will see this at the console

 System.out.println("Go Java Go!");

 try {

 // null'ed strings should crash your program

 System.out.println(text.length());

 } catch (NullPointerException ex) {

 System.out.println("Exception: cannot get the text's length");

 }

Catching Exceptions | 173

 // you will now see this print

 System.out.println("done");

 }

}

As you can see, we have wrapped the potentially broken code inside a try-catch
statement. The result of this code listing is very different from the result that we saw
previously:

Go Java Go!

Exception: cannot get the text's length

done

Process finished with exit code 0

Mainly, we find that the program is not interrupted until the end. The try section of the
program detects the arrival of the exception, and the catch part will execute a specific
code if the exception is of the NullPointerException type.

Several catch statements can be placed in sequence after the call to try as a way
to detect different types of exceptions. To try this out, let's go back to the example
where we were trying to open a non-existing file and try to catch the reason for
readAllLines() stopping the program:

Example08.java

import java.io.*;

import java.nio.file.*;

import java.util.*;

public class Example08 {

 public static void main(String[] args) {

 // declare a list that will contain all of the files

 // inside of the readme.txt file

 List<String> lines = Collections.emptyList();

174 | Exceptions

 try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

 } catch (NoSuchFileException fe) {

 System.out.println("Exception: File Not Found");

 } catch (IOException ioe) {

 System.out.println("Exception: IOException");

 }

 // you will never see this print

 Iterator<String> iterator = lines.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

}

As we saw earlier in the chapter, we have made a program that tries to open a
non-existing file. The exception that we got then was IOException. In reality, that
exception is triggered by NoSuchFileException, which is escalated and triggers
IOException. Therefore, we get that exception on the IDE. When implementing the
multiple try-catch statements, as shown in the previous example, we get the following
outcome:

Exception: File Not Found

Process finished with exit code 0

This means that the program detects the NoSuchFileException and, therefore, prints
the message included in the corresponding catch statement. However, if you want to
see the full sequence of exceptions triggered by the non-existing readme.txt file, you
can use a method called printStackTrace(). This will send to the output everything
that was on the way to the proper execution of the program. To see this, simply add the
following highlighted changes to the previous example:

try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

} catch (NoSuchFileException fe) {

Catching Exceptions | 175

 System.out.println("Exception: File Not Found");

 fe.printStackTrace();

} catch (IOException ioe) {

 System.out.println("Exception: IOException");

}

The output of the program will now include a full printout of the different exceptions
triggered during program execution. You will see the output of the stack is inverted:
first, you will see the reason why the program stopped (NoSuchFileException), and it will
end with the method that starts the process that provokes the exception (readAllLines).
This is due to the way exceptions are built. As we will discuss later, there are many
different types of exceptions. Each one of these types is defined as a class of exceptions,
which may be extended by several other subclasses of exceptions. If an extension of a
certain type occurs, then the class that it is extending will also appear when printing
out the stack. In our case, NoSuchFileException is a subclass of IOException.

Note

Depending on your operating system, the different nested exceptions for dealing
with opening a file will probably be called differently.

We have been catching two different exceptions – one nested inside the other. It
should also be possible to handle exceptions coming from different classes, such as
IOException and NullPointerException. The following example demonstrates how to
do this. If you are dealing with exceptions that are not a subclass of one another, it is
possible to catch both exceptions using a logical OR operator:

Example09.java

import java.io.*;•

import java.nio.file.*;

import java.util.*;

public class Example09 {

 public static void main(String[] args) {

 // declare a list that will contain all of the files

 // inside of the readme.txt file

176 | Exceptions

 List<String> lines = Collections.emptyList();

 try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

 } catch (NullPointerException|IOException ex) {

 System.out.println("Exception: File Not Found or NullPointer");

 ex.printStackTrace();

 }

 // you will never see this print

 Iterator<String> iterator = lines.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

}

As you can see, it is possible to handle both exceptions in a single catch statement.
However, if you want to handle the exceptions differently, you will have to work with
the object containing the information about the exception, which, in this case, is ex. The
keyword you need to distinguish the between the exceptions that you may be handling
simultaneously is instanceof, as shown in the following modification of the previous
example:

try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

} catch (NullPointerException|IOException ex) {

 if (ex instanceof IOException) {

 System.out.println("Exception: File Not Found");

 }

 if (ex instanceof NullPointerException) {

Catching Exceptions | 177

 System.out.println("Exception: NullPointer");

 }

}

How Many Different Exceptions Can You Catch in a Single Try?

The fact is that you can daisy chain as many catch statements as you need to.
If you use the second method that we discussed in this chapter (that is, using
the OR statement), then you should remember that it is not possible to have a
subclass together with its parent class. For example, it is not possible to have
NoSuchFileException and IOException together in the same statement – they
should be placed in two different catch statements.

Exercise 1: Logging Exceptions

There are two main actions that you can perform when catching exceptions, besides
any type of creative coding you may want to do to respond to the situation: logging or
throwing. In this exercise, you will learn how to log the exception. In a later exercise,
you will learn how to throw it instead. As we will reiterate in the Best Practices for
Handling Exceptions section of this chapter, you should never do both at once:

1. Create a new Java project in IntelliJ using the template for CLI. Name it
LoggingExceptions. You will be creating classes inside it that you can then use
later in other programs.

2. In the code, you need to import the logging API by issuing the following command:

import java.util.logging.*;

3. Declare an object that you will be using to log the data into. This object will be
printed to the terminal upon program termination; therefore, you don't need to
worry about where it will end up at this point:

Logger logger = Logger.getAnonymousLogger();

4. Provoke an exception, as follows:

String s = null;

try {
 System.out.println(s.length());
} catch (NullPointerException ne) {
 // do something here
}

178 | Exceptions

5. At the time of catching the exception, send the data to the logger object using the
log() method:

logger.log(Level.SEVERE, "Exception happened", ne);

6. Your full program should read as follows:

import java.util.logging.*;

public class LoggingExceptions {
 public static void main(String[] args) {
 Logger logger = Logger.getAnonymousLogger();

 String s = null;

 try {
 System.out.println(s.length());
 } catch (NullPointerException ne) {
 logger.log(Level.SEVERE, "Exception happened", ne);
 }
 }
}

7. When you execute the code, the output should be as follows:

may 09, 2019 7:42:05 AM LoggingExceptions main
SEVERE: Exception happened
java.lang.NullPointerException
 at LoggingExceptions.main(LoggingExceptions .java:10)

Process finished with exit code 0

8. As you can see, the exception is logged at the determined SEVERE level, but the
code ends without an error code because we were able to handle the exception.
The log is useful because it tells us where the exception happened in the code and,
additionally, helps us to find the place of where we can dig deeper into the code
and fix any potential issues.

Throws and Throw | 179

Throws and Throw
You can choose not to deal with some caught exceptions in your code at a low level,
as described in the previous section. It could be interesting to filter out an exception's
parent class and focus on detecting a subclass that might be of more importance to us.
The throws keyword is used in the definition of the method you are creating and where
the exception may occur. In the following case, which is a modification of Example 09,
we should call throws in the definition of main():

Example10.java

import java.io.*;

import java.nio.file.*;

import java.util.*;

public class Example10 {

 public static void main(String[] args) throws IOException {

 // declare a list that will contain all of the files

 // inside of the readme.txt file

 List<String> lines = Collections.emptyList();

 try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

 } catch (NoSuchFileException fe) {

 System.out.println("Exception: File Not Found");

 //fe.printStackTrace();

 }

 // you will never see this print

 Iterator<String> iterator = lines.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

}

180 | Exceptions

As you can see, we are throwing any IOException that is occurring during runtime. In
this way, we can focus on catching the one that actually happens: NoSuchFileException.
It is possible to throw more than one exception type in this way by separating them
using commas.

An example of such a method definition is as follows:

public static void main(String[] args) throws IOException,
NullPointerException {

The one thing that is not possible is having an exception class and its subclass being
thrown in the same method definition – just as we saw when trying to catch more than
one exception in a single catch statement. It is also interesting to see that throws is
operating at a certain scope; for example, we could disregard a certain exception within
a method in a class but not a different one.

On the other hand, there is yet another keyword that you will find relevant for dealing
with exceptions as you advance in your understanding of the term. The throw keyword
(note that this is not throws) will explicitly invoke an exception. You can use this to
create your own exceptions and try them out in your code. We will demonstrate in a
later section how you can create your own exception, and then we will use throw as part
of the example to also see how exceptions propagate. The main reason to use throw is
if you want your code to hand over an exception occurring within your class to another
one higher up in the hierarchy. For the sake of learning about how this works, let's look
at the following example:

Example11.java

public class Example11 {

 public static void main(String args[]) {

 String text = null;

 try {

 System.out.println(text.length());

 } catch (Exception e) {

 System.out.println("Exception: this should be a
NullPointerException");

 throw new RuntimeException();

 }

 }

}

Throws and Throw | 181

In this case, we reproduce the NullPointerException example we saw earlier by trying
to call the length() method on a string initialized as null. However, if you run this code,
you will see that the exception that is being displayed is RuntimeException:

Exception: this should be a NullPointerException

Exception in thread "main" java.lang.RuntimeException

 at Example11.main(Example11.java:9)

Process finished with exit code 1

The reason for this is the call to throw new RuntimeException() that we issued in the
catch block. As you can see, when dealing with the exception, we are provoking a
different exception. This can be very useful for catching exceptions and piping them
through your own exceptions, or simply catching the exception, giving a meaningful
message to help the user understand what went down, and then letting the exception
continue its own path, and eventually crashing the program if the exception is not
handled at a higher level in the code.

Exercise 2: Breaking the Law (and Fixing It)

In this example, we are going to create our own checked exception class. We will define
a class and then experiment by provoking that exception, logging its results, and then
analyzing them:

1. Create a new Java project in IntelliJ using the template for CLI. Name it
BreakingTheLaw. You will be creating classes inside it that you can use later in other
programs.

2. In the code, create a new class to describe your exception. This class should
extend the base Exception class. Call it MyException and include the empty
constructor:

public class BreakingTheLaw {
 class MyException extends Exception {

 // Constructor
 MyException() {};
 }

 public static void main(String[] args) {
 // write your code here
 }
}

182 | Exceptions

3. Your constructor should include all the possibilities to be thrown. This implies that
the constructor needs to contemplate several different cases:

// Constructor
public MyException() {
 super();
}
public MyException(String message) {
 super(message);
}
public MyException(String message, Throwable cause) {
 super(message, cause);
}
public MyException(Throwable cause) {
 super(cause);
}

4. This will allow us to now wrap any exception with our newly formed exception.
However, there are a couple of modifications that we should apply to our program
in order for it to compile. First, we need to make the exception class static for it to
work in the context we are using it in:

public static class MyException extends Exception {

5. Next, you need to make sure that the main class is throwing your new exception
since you are going to be issuing that exception in the code:

public static void main(String[] args) throws MyException {

6. Finally, you need to generate some code that will provoke an exception, such as
NullPointerException, when trying to get the length of a String initialized to null,
catch it, and then throw it away using our newly created class:

public static void main(String[] args) throws MyException {
 String s = null;

 try {
 System.out.println(s.length());
 } catch (NullPointerException ne) {
 throw new MyException("Exception: my exception happened");
 }
}

Throws and Throw | 183

7. The result of running this code is as follows:

Exception in thread "main" BreakingTheLaw$MyException: Exception: my
exception happened
 at BreakingTheLaw.main(BreakingTheLaw.java:26)

Process finished with exit code 1

8. You can now experiment with the call to throw by using any other of the
constructors in the class. We just tried one that includes our own error message,
so let's add the stack trace for the exception:

throw new MyException("Exception: my exception happened", ne);

9. What will make the output slightly more informative is that it will now include
information about the exception that generated our own NullPointerException:

Exception in thread "main" BreakingTheLaw$MyException: Exception: my
exception happened
 at BreakingTheLaw.main(BreakingTheLaw.java:26)
Caused by: java.lang.NullPointerException
 at BreakingTheLaw.main(BreakingTheLaw.java:24)

Process finished with exit code 1

10. You have now learned how to use throw to wrap an exception into your own
exception class. This can be very handy when dealing with a large codebase and
having to look for the exceptions generated by your code in a long log file, or
similar. For your reference, you can view the full example in the following code
listing:

public class BreakingTheLaw {
 class MyException extends Exception {
 // Constructor
 public MyException() {
 super();
 }
 public MyException(String message) {
 super(message);
 }
 public MyException(String message, Throwable cause) {
 super(message, cause);
 }
 public MyException(Throwable cause) {
 super(cause);

184 | Exceptions

 }
 }

 public static void main(String[] args) throws MyException {
 String s = null;

 try {
 System.out.println(s.length());
 } catch (NullPointerException ne) {
 throw new MyException("Exception: my exception happened");
 }
 }
}

The finally Block
The finally block can be used to execute some common code after any of the catch
blocks used to handle a series of different exceptions in the code. Going back to our
example where we tried to open a non-existing file, a modified version of it including a
finally statement would look like the following:

Example12.java

import java.io.*;

import java.nio.file.*;

import java.util.*;

public class Example12 {

 public static void main(String[] args) {

 // declare a list that will contain all of the files

 // inside of the readme.txt file

 List<String> lines = Collections.emptyList();

 try {

 // provoke an exception

 lines = Files.readAllLines(Paths.get("readme.txt"));

 } catch (NoSuchFileException fe) {

 System.out.println("Exception: File Not Found");

The finally Block | 185

 } catch (IOException ioe) {

 System.out.println("Exception: IOException");

 } finally {

 System.out.println("Exception: Case Closed");

 }

 // you will never see this print

 Iterator<String> iterator = lines.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

}

The output of the preceding example is as follows:

Exception: File Not Found

Exception: Case Closed

Process finished with exit code 0

After the catch block detecting the NoSuchFileException, the handling mechanism
jumps into the finally block and executes whatever is in it, which, in this case, implies
printing yet another line of text to the output.

Activity 1: Designing an Exception Class Logging Data

We have seen examples of how to log exceptions and how to throw them. We have also
learned how to create exception classes and throw them. With all that information, the
goal of this activity is to create your own exception class that should log the different
exceptions in terms of severity. You should make an application that is based on the
arguments to the program, and the program will respond to the logging exceptions in
different ways. Just to have a common ground, use the following standard:

1. If the input is number 1, issue the NullPointerException with a severity level of
SEVERE.

2. If the input is number 2, issue the NoSuchFileException with a severity level of
WARNING.

186 | Exceptions

3. If the input is number 3, issue the NoSuchFileException with a severity level of
INFO.

4. In order to make this program, you will need to consider making your own
methods for issuing exceptions, such as the following:

public static void issuePointerException() throws NullPointerException {
 throw new NullPointerException("Exception: file not found");
}

public static void issueFileException() throws NoSuchFileException {
 throw new NoSuchFileException("Exception: file not found");
}

Note

The solution for this activity can be found on page 829.

Best Practices for Handling Exceptions
Dealing with exceptions in your code requires following a set of best practices in order
to avoid deeper issues when writing your programs. This list of common practices is
of relevance to your code in order to keep some degree of professional programming
consistency:

The first piece of advice is to avoid throwing or catching the main Exception class. You
need to be as specific as possible when dealing with an exception. Therefore, a case like
the following is not recommended:

Example13.java

public class Example13 {

 public static void main(String args[]) {

 String text = null;

 try {

 System.out.println(text.length());

 } catch (Exception e) {

Best Practices for Handling Exceptions | 187

 System.out.println("Exception happened");

 }

 }

}

This code listing will catch any exception, with no granularity. So, how are you
supposed to properly handle the exception this way?

In the following section, we will do a quick recap of where the Exception class is located
within the Java API structure. We will examine how it hangs from the Throwable class
at the same level as the Error class. Therefore, if you were to catch the Throwable
class, you would mask possible errors occurring in your code and not only exceptions.
Remember that errors are those situations when your code should be exited because
they alert to a real malfunction that could lead to the misuse of JVM resources.

Masking such a scenario behind a catch could stall the whole JVM. Therefore, avoid
code like the following:

try {

 System.out.println(text.length());

} catch (Throwable e) {

 System.out.println("Exception happened");

}

In Exercise 2, Breaking the Law (and Fixing It) you saw how to make your own exception
class. As discussed, it is possible to redirect exceptions toward others by using throw. It
is good practice to not disregard the stack trace of the original exception since it will
help you to debug the source of the issue in a better way. Therefore, when catching
the original exception, you should consider passing over the whole stack trace as a
parameter to the exception constructor:

} catch (OriginalException e) {

 throw new MyVeryOwnException("Exception trace: ", e);

}

In the same exercise, when making your own exception, you learned how to use the
system's log to store the information of the exception. You should avoid both logging
the exception and throwing it once more. You should try to log at the highest level
possible in your code. Otherwise, you will get duplicated information about the
situation inside your log, making the debugging a lot more complicated. Therefore, we
recommend that you use the following:

throw new NewException();

188 | Exceptions

Alternatively, you can use the following inside the same catch block, but not for both:

log.error("Exception trace: ", e);

Additionally, when logging information, try to use a single call to the system's log. As
your code grows bigger, there will be multiple processes working in parallel, thus a lot
of different sources will be issuing log commands:

log.debug("Exception trace happened here");

log.debug("It was a bad thing");

This will most likely not show up as two consecutive lines in the log, but as two lines
that are far apart. Instead, you should do something like this:

log.debug("Exception trace happened here. It was a bad thing");

When dealing with multiple exceptions, some being subclasses of others, you should
catch them in order, starting from the most specific. We have seen this in some of the
examples in this chapter when, for example, dealing with NoSuchFileException and
IOException. Your code should look like this:

try {

 tryAnExceptionCode();

} catch (SpecificException se) {

 doTheCatch1();

} catch (ParentException pe) {

 doTheCatch2();

}

If you are not planning to catch the exception at all, but you are still forced to use the
try block for the code to compile, use a finally block to close whatever actions were
initiated prior to the exception. An example of this is opening a file that should be
closed prior to leaving the method, which will happen because of the exception:

try {

 tryAnExceptionCode();

} finally {

 closeWhatever();

}

Best Practices for Handling Exceptions | 189

The throw keyword is a very powerful tool, as you have noticed. Being able to redirect
exceptions allows you to create your own strategy for handling different situations and,
additionally, it means that you don't have to rely on the strategy provided by default by
the JVM. However, you should be careful with placing throw in some of the blocks when
catching. You should avoid using throw inside a finally block as it will mask the original
reason for the exception.

In a way, this is in line with the "throw early, catch late" principle when dealing with
Java exceptions. Imagine that you are doing a low-level operation that is part of a larger
method. For example, you are opening a file as part of a piece of code that will parse its
contents and look for patterns. If the action of opening the file fails due to an exception,
it is a better option to simply throw that exception to the following method for it to put
in context and be able to decide at a higher level how to proceed with the whole task.
You should handle the exceptions only when you can make final decisions at a higher
level.

We saw the use of printStackTrace() throughout the previous examples as a way
to see the full source of an exception. While it is very interesting to be able to see
that when debugging some code, it is also almost irrelevant when not being in that
mindset. Therefore, you should make sure to either delete or comment away all the
printStackTrace() commands you might have been using. Other developers will have to
determine where they want to put their probes when analyzing the code later if that is
ever needed.

In a similar manner, when dealing with exceptions in whatever way inside your
methods, you should remember to document things properly in your Javadoc. You
should add an @throws declaration to clarify what kind of exception arrives and
whether it is handled, passed over, or what:

/**

* Method name and description

*

* @param input

* @throws ThisStrangeException when ...

*/

public void myMethod(Integer input) throws ThisStrangeException {

 ...

}

190 | Exceptions

Where Do Exceptions Come from?
Moving away from the more-pragmatic approach we have followed in this chapter, it
is now time to put things into perspective and understand where things come from in
the larger schema of the Java API. Exceptions, as mentioned in a previous section, hang
from the Throwable class, which is part of the java.lang package. They are on the same
level as errors (which we explained earlier). In other words, both Exception and Error
are subclasses of Throwable.

Only object instances of the Throwable class can be thrown by the Java throw statement;
therefore, the way we had to define our own exception implied using this class as a
point of departure. As stated in the Java documentation for the Throwable class, this
includes a snapshot of the execution stack at the time of creation. This allows you
to look for the source of the exception (or the error) because it includes the state of
computer memory at that time. A throwable object can contain the reason for which it
was constructed. This is what is known as the chained exception facility because one
exceptional event might be caused by a certain chain of exceptions. This is something
we have seen when analyzing the stack traces in some of the programs in this chapter.

Summary
We have taken a very hands-on approach to this chapter. We started by making your
code break in different ways, and then explained the differences between an error and
an exception. Then, we focused on ways to handle the latter, because those are the only
ones that should not make your program crash immediately.

Exceptions can be handled by catching or throwing. The former is done by observing
the different exceptions and defining different strategies to respond to the situations by
means of a try-catch statement. You have the option of either resending the exception
to a different class with the throw or responding within the catch block. Independently
of what strategy you follow, you can set the system to execute some final lines of code
after handling the exception using the finally block.

This chapter also included a series of recommendations on how to deal with exceptions
on a more conceptual level. You have a list of best practices that any professional
programmer will follow.

Finally, at the practical level, you worked on a number of exercises that guided you
through classic scenarios of dealing with exceptions, and you have seen different tools
that you can use to debug your code, such as logs and printStackTrace().

Learning Objectives

By the end of this chapter, you will be able to:

• Organize your code into packages

• Build a JAR file from your packages

• Create an executable JAR file using Maven and other build tools

• Include third-party open source libraries in your projects

• Create a Java module to group your packages together

This chapter introduces you to various ways of packaging and bundling Java code, along with
tools to help build Java projects.

Libraries, Packages,
and Modules

6

194 | Libraries, Packages, and Modules

Introduction
Any sophisticated Java application will require many separate Java classes. Java provides
several ways to help you organize your classes, one of which is the concept of packages.
You can collect multiple compiled packages together into a Java library, or a JAR file.
Furthermore, you can use modules to provide a higher level of abstraction in your code,
exposing only those elements that you consider appropriate.

When you start to create larger applications, you'll want to take advantage of Java's
handy build tools, of which Maven and Gradle are the most popular. Build tools make it
easier to build large projects, that might depend on other projects and libraries. Build
tools also provide standard ways to run tests, as well as packaging the project.

Both Maven and Gradle help significantly with the inclusion of third-party open-source
libraries in your applications. There are thousands of such libraries available.

Organizing Code into Packages
Java packages together related classes, interfaces, enums (a data type that contains a
data type that contains a fixed group of constants), and annotations (contain metadata).
In other words, a package is a collection of Java types brought together under a
common name. Using a common name makes it easier to find code in larger projects,
and helps to keep your code separate from other, perhaps similar, code. For example,
more than one package might contain a class named Rectangle, so referring to the
appropriate package will allow you to specify which Rectangle class you're looking for.
Packages allow you to organize your code, which becomes more and more important as
you work on larger and larger applications.

Java's API includes hundreds of classes divided into packages, such as java.math and
java.net. As you'd expect, java.math has mathematics-related classes, and java.net has
networking-related classes.

Importing Classes

When you use Java classes from packages other than java.lang, you need to import
them using an import statement. The Java compiler imports all classes in the java.lang
package by default. Everything else is up to you.

Here's an example:

import java.time.DayOfWeek;

import java.time.LocalDateTime;

Organizing Code into Packages | 195

This code imports two types from the java.time package, DayOfWeek and LocalDateTime.
Now, DayOfWeek is a Java enum representing days of the week. LocalDateTime is a class
that holds a date and a time.

Once you import these types, you can use them in your code, as follows:

LocalDateTime localDateTime = LocalDateTime.now();

DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The week day is: " + day);

Exercise 1: Importing Classes

In this exercise, we will display the current day of the week, and we will use the java.
time package to extract system date and time.

1. In IntelliJ, select File, New, and then Project from the File menu.

2. In the New Project Dialog, select a Java project. Click Next.

3. Check the box to create the project from a template. Click on Command Line App.
Click Next.

4. Name the project chapter06.

5. For the project's location, click the button with three dots (…), and then select the
source folder you created previously.

6. Enter com.packtpub.chapter06 as the base package name. We'll do more with
packages later in this chapter.

7. Click Finish.

IntelliJ will create a project named chapter06, as well as an src folder inside
chapter06. This is where your Java code will reside. Inside this folder, IntelliJ will
create subfolders for com, packtpub, and chapter06.

IntelliJ also creates a class named Main:

public class Main {

 public static void main(String[] args) {
 // write your code here
 }
}

Rename the class named Main to Example01.

196 | Libraries, Packages, and Modules

8. Double-click in the text editor window on the word Main.

9. Right-click and select Refactor | Rename… from the menu.

10. Enter Example01 and press Enter.

You will now see the following code:

public class Example01 {

 public static void main(String[] args) {
 // write your code here
 }
}

Now enter the following code inside the main() method:

LocalDateTime localDateTime = LocalDateTime.now();

DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The weekday is: " + day);

IntelliJ should offer the option to import the two types, DayOfWeek and
LocalDateTime. If, for some reason, you click the wrong button, you can add the
following lines after the package statement and prior to the definition of the class:

package com.packtpub.chapter06;

import java.time.DayOfWeek;
import java.time.LocalDateTime;

public class Example01 {

11. Now, click on the green arrow just to the left of the text editor window that points
to the class name, Example01. Select the first menu choice, Run Example01.main().

12. In the Run window, you'll see the path to your Java program, and then some
output such as this:

The weekday is: SATURDAY

You should see the current day of the week.

The package statement identifies the package in which this code resides. See the
Creating a Package section later in this chapter for more information on this topic.

Organizing Code into Packages | 197

Fully Qualified Class Names

You don't have to use import statements. Instead, you can use the fully qualified class
name, as shown here:

java.time.LocalDateTime localDateTime = java.time.LocalDateTime.now();

The fully qualified name includes both the package and the type name. the following
example would also give us the same result as the Exercise 01, Importing Classes.

Example02.java

package com.packtpub.chapter06;

public class Example02 {

 public static void main(String[] args) {

 java.time.LocalDateTime localDateTime = java.time.LocalDateTime.
now();

 java.time.DayOfWeek day = localDateTime.getDayOfWeek();

 System.out.println("The weekday is: " + day);

 }

}

Usually, importing classes and types makes your code easier to read and requires less
typing. In large projects, you will find very long package names. Placing these long
names in front of every declaration will make your code much harder to read. Most Java
developers will import classes, unless you have two classes with the same name but
stored in separate packages.

Note

Most IDEs, such as IntelliJ, can find most classes for you, and will offer to import the
class.

198 | Libraries, Packages, and Modules

Importing All Classes in a Package

You can import all classes in a package using an asterisk, *, to represent all the classes
in a package, as follows:

import java.time.*;

The asterisk is considered a wildcard character and imports all public types from the
given package, in this case, java.time. The Java compiler will automatically import any
types from this package that you use in your code.

Note

Using the wildcard imports may bring in different classes to the ones you intended.
Some packages use common class names, such as Event, Duration, or Distance,
that may conflict with type names you want to use. So, if you use the wildcard
import, you may end up with the wrong class imported. Normally, it is best to
import only the types that you require.

Example03.java shows how to use wildcard imports:

package com.packtpub.chapter06;

import java.time.*;

public class Example03 {

 public static void main(String[] args) {

 LocalDateTime localDateTime = LocalDateTime.now();

 DayOfWeek day = localDateTime.getDayOfWeek();

 System.out.println("The weekend is: " + day);

 }

}

When you run this program, you will see output like the following, depending on the
day of the week:

The weekday is: MONDAY

Organizing Code into Packages | 199

Dealing with Duplicated Names

If, for some reason, you have to use two different classes with the same name, you'll
need to use the fully qualified class names.

When you work with third-party libraries, you may find that there are multiple classes
in your project with the same name. StringUtils, for example, is defined in multiple
packages in multiple libraries. In this case, use the fully qualified class names to
disambiguate. Here is an example:

boolean notEmpty = org.springframework.util.StringUtils.isNotEmpty(str);

boolean hasLength = org.apache.commons.lang3.StringUtils.hasLength(str);

These are two classes with the same basic name, StringUtils, that come from different
third-party libraries. You will learn more about third-party libraries later on in this
chapter.

Static Imports

Many classes define constants, usually defined as static final fields. You can use these
constants by importing the enclosing class and then referencing them from the class
name, as shown in Chapter 3, Object-Oriented Programming. For example, Java defines
the end of time with the MAX constant in the LocalDateTime class.

Example04.java shows how to statically import LocalDateTime. MAX to see when the
universe will end, at least according to the company behind Java:

package com.packtpub.chapter06;

import java.time.LocalDateTime;

public class Example04 {

 public static void main(String[] args) {

 System.out.println("The end of time is: " + LocalDateTime.MAX);

 }

}

When you run this program, you will see the following output:

The end of time is: +999999999-12-31T23:59:59.999999999

200 | Libraries, Packages, and Modules

Creating a Package

As discussed earlier, once you start writing more complex Java programs, you will want
to bundle your code together in a package. To create a package, you should observe the
following steps:

1. Name your package.

2. Create the appropriate source directory for the package.

3. Create classes and other types, as needed, in the new package.

Naming Your Package

Technically, you can name your Java packages anything you want, so long as you stick
to the rules for naming variables and types in Java. Don't use characters that Java will
interpret as code. For example, you cannot use a hyphen, -, in a Java package name. The
Java compiler will think you are performing subtraction. You cannot use Java's reserved
words, such as class, either.

Typically, you'll use your organization's domain name in reverse for your package
names. For example, if the domain name is packtpub.com, then your package names
would start with com.packtpub. You will almost always want to add descriptive names
after the domain part to allow you to organize your code. For example, if you were
making a medical application that pulled data from a fitness tracking device, you might
create packages such as the following:

• com.packtpub.medical.heartrate

• com.packtpub.medical.tracker

• com.packtpub.medical.report

• com.packtpub.medical.ui

Organizing Code into Packages | 201

Use names that make sense for your organization, as well as for the purpose of the
classes in the package.

The reason for using your organization's domain name is, in part, to prevent your Java
packages from having the same name as packages in third-party libraries. The domain
names are already made unique by domain name registrars. Using the domain names
in reverse makes for more understandable names for packages as you delve deeper and
deeper into the package tree, such as com.packtpub.medical.report.daily.exceptions.
Furthermore, this convention helps separate packages from multiple organizations.

Note

The classes provided with Java APIs reside in packages starting with java or javax.
Don't use these names for your packages.

Generally, you'll want to group classes, interfaces, enums, and annotations that are
related to the same package.

Directories and Packages

Java makes heavy use of directories to define packages. Every dot in a package name,
such as java.lang, indicates a sub-folder.

In the IntelliJ project you created for this chapter, you also created a package named
com.packtpub.chapter06. Using IntelliJ's Project pane, you can see the folders created
for the package.

1. Click on the gear icon in the Project pane.

2. Uncheck the Compact Middle Packages option.

202 | Libraries, Packages, and Modules

3. You will now see a folder for com.packtpub.chapter06, as shown in Figure 6.1:

Figure 6.1: IntelliJ's Project pane can show the individual folders that make up a Java package

Note

The folder structure might vary based on the number of examples you have tried
out in this chapter.

Normally, you'll want to leave IntelliJ's Compact Middle Packages setting on, as it makes
the project organization easier to see at a glance.

Exercise 2: Creating a Package for a Fitness Tracking App

We've created a package, com.packtpub.chapter06, that acts as a catch-all for examples
in this chapter. In this exercise, we'll create another package to gather together a
related set of classes.

When creating an application that interacts with a fitness tracker, you want a package
for classes that relate to tracking daily steps. Users will define a goal for the number of
steps they want to take in a day, say 10,000. The tracker will record the number of steps
taken so far, along with a collection of the daily totals:

Organizing Code into Packages | 203

1. In the IntelliJ Project pane for the chapter06 project created previously, click the
gear icon. Make sure Flatten Packages and Hide Empty Middle Packages are both
selected.

2. Remain in the Project pane, and right-click on the src folder. Select New, and then
Package. Enter the com.packtpub.steps package name, and then click OK. This is
our new package.

3. Right-click on the com.packtpub.steps package, select New, and then select Java
Class. Enter the Steps class name.

4. Enter the following field definitions:

private int steps;
private LocalDate date;

5. Allow IntelliJ to import java.time.LocalDate, or simply enter the following code
after the package statement and before the definition of the class:

package com.packtpub.steps;

import java.time.LocalDate;

/**
 * Holds steps taken (so far) in a day.
 */
public class Steps {
 private int steps;
 private LocalDate date;

}

6. Right-click within the class definition. Choose Generate… from the menu. Then,
select Constructor. Select both steps and the date, and then click OK.

You'll see a brand-new constructor, as follows:

public Steps(int steps, LocalDate date) {
 this.steps = steps;
 this.date = date;
}

204 | Libraries, Packages, and Modules

7. Right-click within the class definition again. Choose Generate…, and then select
Getter and Setter. Select both steps and the date, and then click OK. You'll now
see the getter and setter methods:

public int getSteps() {
 return steps;
}

public void setSteps(int steps) {
 this.steps = steps;
}

public LocalDate getDate() {
 return date;
}

public void setDate(LocalDate date) {
 this.date = date;
}

We now have our first class in the new package. Next, we'll create another class.

8. Right-click on the com.packtpub.steps package in the Project pane, select New,
and then select Java Class. Enter the DailyGoal class name.

9. Enter the following field definition:

int dailyGoal = 10000;

Note that we default the daily steps goal to 10,000 steps.

10. Right-click within the class definition. Choose Generate… from the menu. Then,
select Constructor, followed by dailyGoal, and then click OK.

11. Define the following method, which is used to determine whether a Steps object
has achieved the daily goal:

public boolean hasMetGoal(Steps steps) {
 if (steps.getSteps() >= dailyGoal) {
 return true;
 }

 return false;
}

Organizing Code into Packages | 205

12. Right-click on the com.packtpub.steps package in the Project pane, select New,
and then select Java Class. Enter the WeeklySteps class name.

13. Enter the following fields:

List<Steps> dailySteps = new ArrayList<>();
DailyGoal dailyGoal;

You will need to import java.util.List and java.util.ArrayList.

14. Right-click within the class definition again. Choose Generate…, and then select
Getter and Setter. Select both dailySteps and dailyGoal, and then click OK. You'll
now see the getter and setter methods.

To use this new class, we'll add some methods to determine the best day (the day
with the greatest number of steps), total the steps, and format the output.

15. Enter the following method to determine the best day for steps:

public DayOfWeek bestDay() {
 DayOfWeek best = DayOfWeek.MONDAY;

 int max = 0;
 for (Steps steps : dailySteps) {
 if (steps.getSteps() > max) {
 max = steps.getSteps();
 best = steps.getDate().getDayOfWeek();
 }
 }

 return best;
}

16. Now, enter the following method to total the weekly number of steps:

public int getTotalSteps() {
 int total = 0;
 for (Steps steps : dailySteps) {
 total += steps.getSteps();
 }

 return total;
}

Note that both methods iterate over dailySteps. These two methods could be
combined into one.

206 | Libraries, Packages, and Modules

In a real fitness tracking application, you would probably have a smartphone or a
web user interface. For this example, though, we'll simply generate a string of the
results of the weekly steps.

17. Enter the following method:

public String format() {

 StringBuilder builder = new StringBuilder();

 builder.append("Total steps: " + getTotalSteps() + "\n");

 for (Steps steps : dailySteps) {
 if (dailyGoal.hasMetGoal(steps)) {
 builder.append("YAY! ");
 } else {
 builder.append(" ");
 }

 builder.append(steps.getDate().getDayOfWeek());
 builder.append(" ");
 builder.append(steps.getSteps());

 DayOfWeek best = bestDay();
 if (steps.getDate().getDayOfWeek() == best) {
 builder.append(" ***** BEST DAY!");
 }
 builder.append("\n");
 }

 return builder.toString();
}

This method uses StringBuilder and DayOfWeek, both part of the Java API. An
encouraging message, YAY!, appears with each day the user met the step goal. The
best day also gets an uplifting message.

18. To help initialize the weekly step data, we'll create a convenience method (a
method that exists to simplify our code and reduce typing):

public void addDailySteps(int steps, LocalDate date) {

 dailySteps.add(new Steps(steps, date));
}

Organizing Code into Packages | 207

19. To test the entire step-tracking package, we'll create a main() method that shows
how everything fits together:

public static void main(String[] args) {
 // Initialize sample data.
 DailyGoal dailyGoal = new DailyGoal(10000);

 WeeklySteps weekly = new WeeklySteps();
 weekly.setDailyGoal(dailyGoal);

 int year = 2021;
 int month = 1;
 int day = 4;

 weekly.addDailySteps(11543, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(12112, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(10005, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(10011, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(9000, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(20053, LocalDate.of(year, month, day));
 day++;
 weekly.addDailySteps(20048, LocalDate.of(year, month, day));

 System.out.println(weekly.format());
}

Normally, you would put this type of code into a unit test, which is a special
code designed to make sure your classes and algorithms are correct. Refer to
Chapter 18, Unit Testing, for more information on unit testing.

208 | Libraries, Packages, and Modules

20. Click on the green arrow just to the left of the text editor window that points
to the WeeklySteps class name. Select the first menu choice, Run 'WeeklySteps.
main()'.

You'll see output along the lines of the following, for a week of fitness data (in the
year 2021):

Total steps: 92772
YAY! MONDAY 11543
YAY! TUESDAY 12112
YAY! WEDNESDAY 10005
YAY! THURSDAY 10011
 FRIDAY 9000
YAY! SATURDAY 20053 ***** BEST DAY!
YAY! SUNDAY 20048

Now that you have an idea of the basics of Java code organization, we will look into a
special kind of file known as the Java Archive.

Building JAR Files

A JAR file, short for Java Archive, holds multiple files and provides a platform-neutral
way to distribute Java code. For a Java library, a JAR file will contain the compiled .class
files, and perhaps additional files, such as the configuration data, certificates, and image
files, called resources, that are required by the library. Specialized versions of JAR files
are used to package and deploy server-side Java applications.

A WAR file, short for web archive, contains the compiled Java code and resources for a
web application. An EAR file, short for enterprise archive, contains the compiled Java
code and resources for a full server-side Java Enterprise Edition (JavaEE) application.
Under the hood, a JAR file is a compressed ZIP file.

To build a JAR file, we can use the following command:

jar cvf jar_file_name files_to_put_in

The c option tells the jar command to create a new JAR file. The f option specifies the
filename of the new JAR file. This filename should appear immediately after the options.
Finally, you list all the files to place in the JAR file, typically, .class files.

Note

The v option (part of cvf) stands for verbose; that is, it is optional, and tells the JAR
tool to output verbose output while it works.

Organizing Code into Packages | 209

Exercise 3: Building a JAR File

In this exercise, we'll compile the Java code for the com.packtpub.steps package and
then build a JAR file:

1. In the Terminal pane in IntelliJ, run the following commands:

cd src
javac com/packtpub/steps/*.java

The javac command created .class files in the com/packtpub/steps folder.

2. Next, create a JAR file with the following command:

jar cvf chapter6.jar com/packtpub/steps/*.class

This command will generate output because we are using the verbose option:

added manifest
adding: com/packtpub/steps/DailyGoal.class(in = 464) (out= 321)(deflated
30%)
adding: com/packtpub/steps/Steps.class(in = 622) (out= 355)(deflated 42%)
adding: com/packtpub/steps/WeeklySteps.class(in = 3465) (out= 1712)
(deflated 50%)

You'll then see the new JAR file, chapter6.jar, in the current directory. By convention,
use the .jar filename extension for JAR files.

Note

The name jar, and the command-line syntax, are based on a much earlier UNIX and
Linux tool called tar.

Like with all compressed files, we will have to decompress the JAR files too, before we
start using them. To extract all the files from a JAR file, use the jar xvf command:

jar xvf chapter6.jar

210 | Libraries, Packages, and Modules

In this case, chapter6.jar is the name of the JAR file.

Note

The JAR command-line options are treated in order. In this case, the f option
requires a filename parameter. If you add another option that also requires a
parameter (such as e, mentioned later in Exercise 04, Building an Executable JAR File),
then the filename needs to come before that additional parameter.

To see what is inside a JAR file, use the jar tf command. In this case, you can see inside
your new JAR file by running the following command from the Terminal pane:

jar tf chapter6.jar

You will see a listing of the files in the JAR file as the output:

META-INF/

META-INF/MANIFEST.MF

com/packtpub/steps/DailyGoal.class

com/packtpub/steps/Steps.class

com/packtpub/steps/WeeklySteps.class

Notice how the jar command created a folder named META-INF and a file named
MANIFEST.MF in that folder.

By default, the jar command will create a MANIFEST.MF file with the following content:

Manifest-Version: 1.0

Created-By: 11.0.2 (Oracle Corporation)

The file lists a version number and the version of Java created that the file, in this case,
Java 11 from Oracle.

Defining the Manifest

The MANIFEST.MF file is used to provide information to Java tools regarding the content
of the JAR file. You can add versioning information, electronically sign the JAR file, and
so on. Probably the most useful thing to add to a JAR file's manifest is to identify the
main class. This option names the class with a main() method that you would want to
run from the JAR file. In essence, this creates an executable JAR file.

Organizing Code into Packages | 211

An executable JAR file allows you to run the Java application inside the JAR file with a
command such as this:

java -jar chapter6.jar

To do this, you need to create an entry in the MANIFEST.MF file that defines the main
class. For example, for the WeeklySteps Java class, you'd create an entry in the MANIFEST.
MF file with the following:

Main-Class: com.packtpub.steps.WeeklySteps

Exercise 4: Building an Executable JAR File

In this exercise, we'll add a Main-Class entry to the MANIFEST.MF file inside a JAR file:

1. Recreate the JAR file with the following command (all on one line):

jar cvfe chapter6.jar com.packtpub.steps.WeeklySteps com/packtpub/steps/*.
class

The e option defines an entry point, in other words, the Main-Class header. Since
the JAR command-line options are dealt with in a sequential order, this means that
you provide the JAR filename first, and then the name of the main class (the entry
point). These options can easily be mixed up.

With this jar command, you'll see output like the following:

added manifest
adding: com/packtpub/steps/DailyGoal.class(in = 464) (out= 321)(deflated
30%)
adding: com/packtpub/steps/Steps.class(in = 622) (out= 355)(deflated 42%)
adding: com/packtpub/steps/WeeklySteps.class(in = 251) (out= 185)(deflated
26%)

2. Now we can run our Java application from the JAR file:

java -jar chapter6.jar

212 | Libraries, Packages, and Modules

This command should generate the output shown in Exercise 02, Creating a
Package for a Fitness Tracking App:

Total steps: 92772
YAY! MONDAY 11543
YAY! TUESDAY 12112
YAY! WEDNESDAY 10005
YAY! THURSDAY 10011
 FRIDAY 9000
YAY! SATURDAY 20053 ***** BEST DAY!
YAY! SUNDAY 20048

Note

You can find out more about the jar command, as well as the other Java tools, at
https://docs.oracle.com/en/java/javase/12/tools/tools-and-command-reference.
html.

Manually building a JAR file when you have a single package isn't that hard. When
you start to add more and more packages, though, manually building JAR files and
manipulating the contents becomes quite cumbersome. There are much easier ways to
do this, most notably, by using a Java build tool that can aid in making JAR files.

Build Tools

As applications become more and more complex, you'll find it essential to use a Java
build tool. Build tools allow you to do the following:

• Build Java applications that span multiple packages.

• Make your builds easier to run and maintain.

• Make your builds consistent.

https://docs.oracle.com/en/java/javase/11/tools/tools-and-command-reference.html
https://docs.oracle.com/en/java/javase/11/tools/tools-and-command-reference.html

Organizing Code into Packages | 213

• Create a library or multiple libraries from your code.

• Download and include third-party libraries in your applications.

These items just scratch the surface of what Java build tools can do for you.

The two main Java build tools are as follows:

• Maven, which issues XML configuration files

• Gradle, which uses a Groovy-based, domain-specific language for configuration

Note

Refer to https://maven.apache.org/ for more on Maven, and https://gradle.org/ for
more on Gradle.

Maven

Maven has very specific ideas about how your software projects should be structured.
For example, Maven expects your source code to go into a folder named src. In general,
it is best not to fight Maven's expectations.

Note

Refer to https://maven.apache.org/guides/introduction/introduction-to-the-
standard-directory-layout.html for more on Maven's expectations about the
directory structure for your projects.

https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

214 | Libraries, Packages, and Modules

Exercise 5: Creating a Maven Project

IntelliJ provides some very handy features when working with Maven. We'll now use
those features to create a Maven project:

1. In IntelliJ, go to the File menu, select New, and then Project….

2. In the New Project dialog, select Maven. Then, click Next, as shown in Figure 6.2:

Figure 6.2: Selecting Maven when creating a Maven project

Organizing Code into Packages | 215

On the next screen, you'll need to enter three values, as shown in Figure 6.3:

Figure 6.3: Entering GroupId, ArtifactId, and Version

3. For GroupId, enter com.packtpub.steps.

GroupId in Maven identifies the overall project. Normally, you'll use the main
package name for your work as GroupId.

4. For ArtifactId, enter steps.

ArtifactId is the name you want for any JAR file you create, without the version
number. Maven will add the version information for you.

5. Leave the Version as 1.0-SNAPSHOT.

Note

In Maven, SNAPSHOT versions represent work in progress. When you come to
make a release, you'll normally remove the SNAPSHOT portion of the version
information.

6. Click Next.

7. On the next screen, it will default the IntelliJ project name to steps (from
ArtifactId). Select a project location on disk and then click Finish.

216 | Libraries, Packages, and Modules

You now have a Maven project.

In the Project pane, note the directory structure created. You will find an src folder.
This holds the project source code. Under src, you'll see folders called main and test.
The main folder is where your Java source code resides. The test folder is where your
unit tests reside. Unit tests are Java classes that test the main code.

Note

Refer to Chapter 18, Unit Testing, for more information on unit tests.

In both the main and test folders, you'll see folders named java. This indicates Java
source code (as opposed to Groovy or Kotlin code, for example).

Figure 6.4 shows the directory structure with the src/main/java and src/test/java
folders:

Figure 6.4: The src/main/java and src/test/java folders for a Maven project

When Maven builds your project, compiling the code and building JAR files, it
incorporates the output of the build in a folder named target.

You'll also see a file named pom.xml. Short for Project Object Model, POM provides
Maven's configuration, which tells Maven what you want to build and how to do it.

Organizing Code into Packages | 217

The default POM created by IntelliJ, pom.xml, has the following content:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.steps</groupId>

 <artifactId>steps</artifactId>

 <version>1.0-SNAPSHOT</version>

</project>

You should see groupId, artifactId, and the version information you entered when
creating the project in IntelliJ.

Exercise 6: Adding Java Sources to the Maven Project

We'll now add the

1. Start by going to the src/main/java folder.

2. Right-click, select New, and then select Package.

3. Enter com.packtpub.steps as the package name.

4. Next, bring in the three source files from Exercise 02. You can copy the files from
before.

5. Copy Steps.java, DailyGoal.java, and WeeklySteps.java into this project.

Now, let's have a look at the three files. First, here's Steps.java:

package com.packtpub.steps;

import java.time.LocalDate;

/**

 * Holds steps taken (so far) in a day.

 */

218 | Libraries, Packages, and Modules

public class Steps {

 private int steps;

 private LocalDate date;

 public Steps(int steps, LocalDate date) {

 this.steps = steps;

 this.date = date;

 }

 public int getSteps() {

 return steps;

 }

 public void setSteps(int steps) {

 this.steps = steps;

 }

 public LocalDate getDate() {

 return date;

 }

 public void setDate(LocalDate date) {

 this.date = date;

 }

}

Organizing Code into Packages | 219

Here is DailyGoal.java:

package com.packtpub.steps;

public class DailyGoal {

 int dailyGoal = 10000;

 public DailyGoal(int dailyGoal) {

 this.dailyGoal = dailyGoal;

 }

 public boolean hasMetGoal(Steps steps) {

 if (steps.getSteps() >= dailyGoal) {

 return true;

 }

 return false;

 }

}

And here is WeeklySteps.java:

package com.packtpub.steps;

import java.time.DayOfWeek;

import java.time.LocalDate;

import java.util.ArrayList;

import java.util.List;

public class WeeklySteps {

 List<Steps> dailySteps = new ArrayList<>();

 DailyGoal dailyGoal;

 public DayOfWeek bestDay() {

220 | Libraries, Packages, and Modules

 DayOfWeek best = DayOfWeek.MONDAY;

 int max = 0;

 for (Steps steps : dailySteps) {

 if (steps.getSteps() > max) {

 max = steps.getSteps();

 best = steps.getDate().getDayOfWeek();

 }

 }

 return best;

 }

 public int getTotalSteps() {

 int total = 0;

 for (Steps steps : dailySteps) {

 total += steps.getSteps();

 }

 return total;

 }

 public String format() {

 StringBuilder builder = new StringBuilder();

 builder.append("Total steps: " + getTotalSteps() + "\n");

 for (Steps steps : dailySteps) {

 if (dailyGoal.hasMetGoal(steps)) {

 builder.append("YAY! ");

Organizing Code into Packages | 221

 } else {

 builder.append(" ");

 }

 builder.append(steps.getDate().getDayOfWeek());

 builder.append(" ");

 builder.append(steps.getSteps());

 DayOfWeek best = bestDay();

 if (steps.getDate().getDayOfWeek() == best) {

 builder.append(" ***** BEST DAY!");

 }

 builder.append("\n");

 }

 return builder.toString();

 }

 public void addDailySteps(int steps, LocalDate date) {

 dailySteps.add(new Steps(steps, date));

 }

 public List<Steps> getDailySteps() {

 return dailySteps;

 }

 public void setDailySteps(List<Steps> dailySteps) {

 this.dailySteps = dailySteps;

 }

 public DailyGoal getDailyGoal() {

222 | Libraries, Packages, and Modules

 return dailyGoal;

 }

 public void setDailyGoal(DailyGoal dailyGoal) {

 this.dailyGoal = dailyGoal;

 }

 public static void main(String[] args) {

 // Initialize sample data.

 DailyGoal dailyGoal = new DailyGoal(10000);

 WeeklySteps weekly = new WeeklySteps();

 weekly.setDailyGoal(dailyGoal);

 int year = 2021;

 int month = 1;

 int day = 4;

 weekly.addDailySteps(11543, LocalDate.of(year, month, day));

 day++;

 weekly.addDailySteps(12112, LocalDate.of(year, month, day));

 day++;

 weekly.addDailySteps(10005, LocalDate.of(year, month, day));

 day++;

 weekly.addDailySteps(10011, LocalDate.of(year, month, day));

 day++;

 weekly.addDailySteps(9000, LocalDate.of(year, month, day));

 day++;

 weekly.addDailySteps(20053, LocalDate.of(year, month, day));

 day++;

Organizing Code into Packages | 223

 weekly.addDailySteps(20048, LocalDate.of(year, month, day));

 System.out.println(weekly.format());

 }

}

1. Call up Steps.java in the IntelliJ editor window.

You'll notice that a number of errors appear in the project. This is because Maven
does not default to using Java 12. The next step fixes this.

2. Call up pom.xml in the IntelliJ editor window.

3. Enter the following after groupId, artifactId, and version:

<groupId>com.packtpub.steps</groupId>
<artifactId>steps</artifactId>
<version>1.0-SNAPSHOT</version>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>12</source>
 <target>12</target>
 </configuration>
 </plugin>
 </plugins>
</build>

As you enter this configuration, notice how IntelliJ offers to help you type in the
XML elements.

4. When you finish, IntelliJ will display an alert that Maven projects need to be
imported. Click on Import Changes.

The red error lines for Steps and WeeklySteps should disappear.

You should now be able to build your project. This is covered in Exercise 07.

224 | Libraries, Packages, and Modules

Exercise 7: Building the Maven Project

1. First, go to the steps project, and then click on the Maven tab near the top-right
corner of the IntelliJ window.

2. Expand the steps project.

3. Expand Lifecycle.

You will now see a list of Maven goals, as shown in Figure 6.5:

Figure 6.5: IntelliJ's Maven pane

4. Double-click on package. In the Run pane, you will see a lot of output. Maven is a
very verbose tool by default. The project is now built.

5. Look in the target directory. You will see the output of the build.

Maven creates a JAR file named steps-1.0-SNAPSHOT.jar. This holds all the
compiled .class files.

The Maven-created JAR file is not an executable JAR, though. Exercise 08, Creating
an Executable JAR with Maven will show you how to configure Maven to create an
executable JAR.

Organizing Code into Packages | 225

Exercise 8: Creating an Executable JAR with Maven

1. In the Steps project, call up pom.xml in the IntelliJ editor window.

2. Enter the following after the <plugin> section for the Maven compiler plugin:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation=
 "org.apache.maven.plugins.shade.resource.
ManifestResourceTransformer">
 <mainClass>com.packtpub.steps.WeeklySteps</
mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

This configuration brings in the Maven shade plugin, which provides one of the
main ways to create an executable JAR. The shade plugin will also create a JAR with
all the necessary dependencies, such as third-party libraries, which makes this
Maven plugin pretty handy.

3. Run the package goal in the Maven pane.

You will see a lot more output.

226 | Libraries, Packages, and Modules

4. Switch to the Terminal pane.

5. Change to the target directory:

cd target

6. Run the executable JAR:

java -jar steps-1.0-SNAPSHOT.jar

You will see output such as the following:

Total steps: 92772
YAY! MONDAY 11543
YAY! TUESDAY 12112
YAY! WEDNESDAY 10005
YAY! THURSDAY 10011
 FRIDAY 9000
YAY! SATURDAY 20053 ***** BEST DAY!
YAY! SUNDAY 20048

There is a lot more to Maven. This chapter has just touched the surface of this build
tool.

Note

Refer to https://maven.apache.org/ for a number of tutorials on Maven.

Using Gradle

While Maven can do a lot for you, it is often inflexible and confusing, especially for
larger projects. Trying to solve those problems led to the creation of Gradle. For
example, in Maven, each POM file builds one thing, such as a JAR file. With Gradle, you
can perform additional tasks with the same build file (Gradle's equivalent of a POM file).

Gradle is a lot more flexible than Maven, and generally—but not always—easier to
understand.

https://maven.apache.org/

Organizing Code into Packages | 227

Exercise 9: Creating a Gradle Project

1. First, go to IntelliJ, and, in the File menu, select New and then Project.

2. Select Gradle and, in the right-hand pane, leave Java checked, as shown in Figure
6.6:

Figure 6.6: Selecting Gradle when creating a new project

228 | Libraries, Packages, and Modules

3. Click Next. Enter GroupId, ArtifactId, and Version, much like you did for the
Maven project, as shown in Figure 6.7:

Figure 6.7: Entering GroupId, ArtifactId, and Version

4. Enter com.packtpub.steps for GroupId.

5. Enter steps-gradle for ArtifactId.

6. Leave the version information at 1.0-SNAPSHOT.

Note that Gradle uses the same mechanism as Maven for identifying
dependencies.

7. Click Next.

8. Leave all the default options. Create a separate module for each source set, and
use the default gradle wrapper.

9. Click Next.

10. On the next screen, it will default the IntelliJ project name to steps-gradle (from
ArtifactId). Select a project location on disk and then click Finish.

IntelliJ will build things for a bit, and then you can look at the new project
directory.

IntelliJ creates Gradle projects along very similar lines to Maven projects. You will see
the same main and test folders inside src, for example.

Organizing Code into Packages | 229

You'll also see two new files:

• build.gradle provides the main configuration file for Gradle.

• settings.gradle contains some additional settings.

The build.gradle file generated by IntelliJ holds the following configuration:

plugins {

 id 'java'

}

group 'com.packtpub.steps'

version '1.0-SNAPSHOT'

sourceCompatibility = 1.8

repositories {

 mavenCentral()

}

dependencies {

 testCompile group: 'junit', name: 'junit', version: '4.12'

}

Exercise 10: Building an Executable JAR with Gradle

In this exercise, we'll add the same three Java classes as used in the Maven example, and
then configure the build.gradle file to create an executable JAR file. We'll work in the
steps-gradle project created in the previous exercise.

1. In the steps-gradle project, go to the src/main/java folder.

2. Right-click, and select New and then Package.

3. Enter com.packtpub.steps as the package name.

4. Next, bring in the three source files from Exercise 02. You can copy the files from
before.

230 | Libraries, Packages, and Modules

5. Call up the build.gradle file in the IntelliJ text editor.

6. Set sourceCompatibility to 12:

sourceCompatibility = 12

7. Add the following section at the end of the build.gradle file:

jar {
 manifest {
 attributes 'Main-Class': 'com.packtpub.steps.WeeklySteps'
 }
}

8. Click on the Gradle tab near the top-right corner of the IntelliJ window.

9. Expand the steps-gradle project, then Tasks, and then build.

10. Double-click on ASSEMBLE to build the project.

You'll see that Gradle outputs much less text than Maven. When it's done, you'll
see a build directory. This is similar to the target directory used by Maven. The
Java .class files and JAR files are placed in the build directory.

11. Switch to the Terminal pane.

12. Change to the build/libs directory:

cd build
cd libs

13. Run the executable JAR:

java -jar steps-gradle-1.0-SNAPSHOT.jar

You should see the same output as before.

As with Maven, there are a lot more things you can do with Gradle.

Note

You can read more about Gradle at https://docs.gradle.org/. You can find more on
how Gradle handles Java projects at https://docs.gradle.org/current/userguide/
java_plugin.html.

https://docs.gradle.org/
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html

Organizing Code into Packages | 231

Using Third-Party Libraries

One of the best things about developing with Java is the thousands of open source
third-party libraries available. A third-party library is a group of ready-made packages
that you can use in your own programs. This means you can implement specific
functionality without having to code it from scratch.

Everything from the Spring Boot framework to logging libraries and simple utilities
can be found online. And, to make things easier, both the Maven and Gradle build
tools support the downloading of third-party libraries and the incorporation of these
libraries into your project.

Finding the Libraries

There is a huge set of third-party libraries available for Java. To see a description of
some, a good starting point is https://github.com/akullpp/awesome-java, which lists
many Java libraries and frameworks.

The Spring, Hibernate, Apache, Eclipse, and BouncyCastle projects provide a huge
number of libraries. They can all be found at the link mentioned previously, and are
good places to search for whatever functionality you're looking for.

Before selecting an open source library, you will want to take a look at the following
topics:

• Documentation – Good documentation not only helps you learn how to use
the library, but acts as a good indicator for the maturity of the library. Can you
understand how to use the library? If not, this library is probably not for you.

• Community – An active community shows that the library is being used. It also
provides a glimpse into how the library's maintainers treat people who ask
questions. Look for mailing lists and discussion groups about the library.

• Momentum – Check to see how often the library gets updates. You'll want to
choose libraries that are under active development.

• Does it work for you? – Always try each library to see that it actually works for
your project and that you can understand how to use the library.

https://github.com/akullpp/awesome-java

232 | Libraries, Packages, and Modules

• License – Can you legally use this library? Make sure first. Refer to https://
opensource.org/licenses for a listing of the most common open source licenses.
Read the license and see whether this will work for your organization. If the
license looks too weird or restrictive, avoid the library.

Note

Always look at the license for any open source library to make sure your
organization can legally use the library in the manner you want to use it.

Once you find a library that looks promising, the next step is to import the library into
your application.

Adding a Project Dependency

A third-party library that you include in your project is called a dependency. Think
of this as meaning your project now depends on this library. Both Maven and Gradle
identify dependencies similarly. You'll need the following:

• GroupId

• ArtifactId

• Version information

• A repository where the build tool can download the library

The most commonly used third-party open source libraries can be downloaded from a
large repository called Maven Central, located at http://central.maven.org/maven2/.

You can search for the group, artifact, and version information on a handy site located
at https://mvnrepository.com/.

A good, useful open source library is Apache Commons Lang, which contains handy classes
for working with strings and numbers.

Exercise 11: Adding a Third-Party Library Dependency

In this exercise, we'll add the Apache Commons Lang library to the Gradle project
created in Exercises 09 and 10 previously. In these exercises, we'll add just one to
simplify the entire setup.

In large, complex projects, you will often see a lot of dependencies. The concepts used
here apply when you start adding more dependencies:

https://opensource.org/licenses
https://opensource.org/licenses
http://central.maven.org/maven2/
https://mvnrepository.com/

Organizing Code into Packages | 233

1. Search on https://mvnrepository.com/ for Apache Commons Lang. You should
find the page on this library at https://mvnrepository.com/artifact/org.apache.
commons/commons-lang3.

2. Look for the latest released version. At the time of writing, the version is 3.8.1.

Notice how many releases there are. This library seems to be under active
development.

3. Click on the 3.8.1 link.

4. Look at the license information. The Apache license is compatible with most
organizations.

On this page, you will see a set of tabs for different Java build tools, with the
Maven tab selected by default. Inside the tab, you'll see the group, artifact, and
version information in the format used in a Maven POM file.

5. Click on the Gradle tab to see the same information formatted for Gradle, as
shown in Figure 6.8:

Figure 6.8: Using the Gradle tab to see the Gradle dependency information

https://mvnrepository.com/
https://mvnrepository.com/artifact/org.apache.commons/commons-lang3
https://mvnrepository.com/artifact/org.apache.commons/commons-lang3

234 | Libraries, Packages, and Modules

6. Copy this text and add it to the dependencies block in your build.gradle file.

7. Change the word compile to implementation:

implementation group: 'org.apache.commons', name: 'commons-lang3',
version: '3.8.1'

The compile dependency in Gradle is replaced by the implementation dependency
in more recent versions of Gradle.

8. In the IntelliJ alert that states that Gradle projects need to be imported, click
Import Changes.

We now have the library in the project. We next need to do two things. First, we
need to configure Gradle to build an executable JAR with all the dependencies.
Second, we need to use the new dependency, the new library, in our code.

The next step is to add the Gradle shadow plugin to the project. This plugin
combines your code in a project, along with any third-party libraries and other
dependencies, into a single JAR file that holds everything needed.

Note

You can find more information on the Gradle shadow plugin at https://
imperceptiblethoughts.com/shadow/ and https://github.com/johnrengelman/
shadow.

9. Call up build.gradle in the IntelliJ text editor.

10. Replace the plugins block with the following:

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.github.jengelman.gradle.plugins:shadow:2.0.1'
 }
}

apply plugin: 'java'
apply plugin: 'com.github.johnrengelman.shadow'

This tells Gradle to bring the shadow plugin into our project.

https://imperceptiblethoughts.com/shadow/
https://imperceptiblethoughts.com/shadow/
https://github.com/johnrengelman/shadow
https://github.com/johnrengelman/shadow

Organizing Code into Packages | 235

11. Go to the Gradle pane in IntelliJ. Click the Refresh icon (the two circular arrows).

12. Expand the new shadow tasks.

13. Double-click on shadowJar.

This will build a new JAR file, steps-gradle-1.0-SNAPSHOT-all.jar, that contains the
project code, along with all the dependencies. Notice that the format is artifact Id
– version – all.jar.

14. Switch to the Terminal pane.

15. Enter the following commands:

cd build
cd libs
java -jar steps-gradle-1.0-SNAPSHOT-all.jar

You will then see the output of the Steps application.

Next, we'll use the new library in the application.

Using the Apache Commons Lang Library

When using a new library, it is usually good to start with a look at the documentation.
For a Java utility library, Javadoc is a good first place to start.

For the Apache Commons Lang library, you can find the Javadoc at https://commons.
apache.org/proper/commons-lang/javadocs/api-release/index.html. Open the first
package, org.apache.commons.lang3.

In this package, you'll find a really handy set of utility classes, including the excellent
StringUtils class. StringUtils provides a number of methods for working with strings.
And, better yet, the methods are null safe, so if you pass in a null string, your code won't
throw an exception.

Open the StringUtils Javadoc. You will see a lot of good documentation relating to this
class.

https://commons.apache.org/proper/commons-lang/javadocs/api-release/index.html
https://commons.apache.org/proper/commons-lang/javadocs/api-release/index.html

236 | Libraries, Packages, and Modules

Exercise 12: Using the Apache Commons Lang Library

In this exercise, we'll use two methods of the handy StringUtils class, leftPad() and
rightPad(). These methods ensure that a string has a certain length by padding space
characters on the left or right.

We'll use these methods to make the Steps application output look a bit better:

1. In IntelliJ, call up the WeeklySteps class into the text editor.

2. Scroll down to the format() method.

3. Replace that method with the following code:

public String format() {

 StringBuilder builder = new StringBuilder();

 builder.append("Total steps: " + getTotalSteps() + "\n");

 for (Steps steps : dailySteps) {
 if (dailyGoal.hasMetGoal(steps)) {
 builder.append("YAY! ");
 } else {
 builder.append(" ");
 }

 String day = steps.getDate().getDayOfWeek().toString();

 builder.append(StringUtils.rightPad(day, 11));
 builder.append(" ");
 String stp = Integer.toString(steps.getSteps());
 builder.append(StringUtils.leftPad(stp, 6));

 DayOfWeek best = bestDay();
 if (steps.getDate().getDayOfWeek() == best) {
 builder.append(" ***** BEST DAY!");
 }
 builder.append("\n");
 }

 return builder.toString();
}

Organizing Code into Packages | 237

This code pads out the days of the week to a consistent length. It does the same to
the daily steps count.

4. Run the shadowJar build task again from the Gradle pane.

5. In the Terminal pane, in the build/libs directory, run the following command:

java -jar steps-gradle-1.0-SNAPSHOT-all.jar

You will see output that is now better aligned:

Total steps: 92772
YAY! MONDAY 11543
YAY! TUESDAY 12112
YAY! WEDNESDAY 10005
YAY! THURSDAY 10011
 FRIDAY 9000
YAY! SATURDAY 20053 ***** BEST DAY!
YAY! SUNDAY 20048

Just about every Java project you work on will require more than one dependency.

Using Modules

Java packages allow you to gather together related classes (and other types). You can
then bundle a number of packages into a JAR file, creating a library you can use.

Modules go a step further and allow you encapsulate your libraries efficiently. This
means you can declare which of a module's public classes (and other types) can be
accessed outside the module.

Note

Java version 9 and higher supports modules called the Java Platform Module
System, or JPMS.

238 | Libraries, Packages, and Modules

In addition, modules can declare explicit dependencies on other modules. This helps
clean up the mess of Java classpaths. Instead of searching the classpath for classes, a
module will search directly for a named dependent module. This really helps when you
bring in a lot of dependencies. With a large Java application, some libraries may depend
on different versions of the same libraries, causing all sorts of problems. Instead, each
module allows you to isolate its dependencies from the rest of the application.

Modules look in what is called a module path. The module path just lists modules, not
classes.

Within a module, packages in a module can be exported. If a package in a module is not
exported, then no other module can use that package.

A module that wants to use code from another module must indicate that it requires
the other module. Inside a module, your code can only make use of packages that are
exported in the dependent module.

Note

When you start using modules, you'll want to convert each Java library you create
into one or more modules. You can only have one module per JAR file.

Note

The original project that created Java's module system was called PROJECT JIGSAW.
Refer to http://openjdk.java.net/projects/jigsaw/ for more on modules. A big part of
the effort was to add modules to the Java Development Kit, or JDK. This allows
you to create smaller JDKs aimed at mobile platforms, for example.

To see all the modules that make up the JDK, use the java command.

From the IntelliJ Terminal pane, run the following command:

java --list-modules

http://openjdk.java.net/projects/jigsaw/

Organizing Code into Packages | 239

You will see a lot of modules in the output (shortened here):

java.base@11.0.2

java.compiler@11.0.2

java.datatransfer@11.0.2

java.desktop@11.0.2

java.instrument@11.0.2

java.logging@11.0.2

java.management@11.0.2

java.management.rmi@11.0.2

java.naming@11.0.2

java.net.http@11.0.2

…

jdk.hotspot.agent@11.0.2

jdk.httpserver@11.0.2

jdk.internal.ed@11.0.2

The modules with names starting with java are classes that we consider part of the JDK,
that is, classes you can use in your Java code. Modules with names starting with jdk are
modules that are required internally by the JDK. You should not use those classes.

Creating Modules

A module groups together a set of Java packages and additional resources (files). Each
module requires a module-info.java file, which specifies what the module exports as
well as what other modules are required.

240 | Libraries, Packages, and Modules

Exercise 13: Creating a Project for a Module

In this exercise, we'll create an IntelliJ project that we can use to explore Java modules
and then create a Java module inside the project:

1. From the File menu, select New and then Project….

2. Select a Java project and click Next, as shown in Figure 6.9:

Figure 6.9: Selecting a Java project

Organizing Code into Packages | 241

3. Do not specify a project template. Click Next, as shown in Figure 6.10:

Figure 6.10: Do not select a project template

4. Name the project modules.

5. Click Finish. You now have an empty Java project. The next step will be to create a
very simple module.

6. From the File menu, select New and then Module….

7. Make sure Java is selected. Click Next.

8. Enter com.packtpub.day.module for the module name. Make sure that the content
root and the file location both show com.packtpub.day.module under the modules
folder.

9. Click Finish. You now have a module.

It can be confusing at first that the module name, com.packtpub.day.module, gets
created as a single directory.

Note

Normally, with packages, each dot in the name indicates a separate subfolder. With
modules, you get a folder name with dots.

242 | Libraries, Packages, and Modules

IntelliJ has created a folder named com.packtpub.day.module in the project, and
also an src folder under com.packtpub.day.module.

10. Right-click on the src folder under com.packtpub.day module.

11. Select New and then Package.

12. Enter com.packtpub.day as the name of the package.

13. Right-click on the new package, com.packtpub.day, select New, and then Java
class. Name the class Today.

14. In the text editor window, add a method to the new class:

public String getToday() {
 return LocalDate.now().getDayOfWeek().toString();
}

This method returns the day of the week for the current day as a string.

15. Right-click on the package com.packtpub.day, select New, and then select module-
info.java.

16. In the text editor, add the following exports line inside the module block:

module com.packtpub.day.module {
 exports com.packtpub.day;
}

com.packtpub.day module exports one package, com.packtpub.day. Anything else
added to this module will be hidden.

Now that we have a module, the next step is to use this module in another module. This
will show how modules can control what classes get exported for use by other modules,
and what classes remain private within the module. The modules exist side by side, but
both need to be included in your project's module path—the module equivalent of Java's
classpath.

Exercise 14: Creating a Second Module Using the First One

Next, we'll create a second very simple module that uses the com.packtpub.day module
created previously.

1. From the File menu, select New and then Module….

2. Make sure Java is selected, and then click Next.

3. Name this module com.packtpub.message.module.

Organizing Code into Packages | 243

4. Click Finish.

5. Right-click on the src folder under com.packtpub.message module.

6. Select New and then Package.

7. Name the package com.packtpub.message and click OK.

8. Right-click on the com.packtpub.message package. Select New and module-info.
java.

9. Right-click on the com.packtpub.message package. Select New and Java Class.

10. Name the class Message.

11. In the text editor, edit the Message class and import the Today class:

import com.packtpub.day.Today;

12. Also in the text editor, create a main() method as follows:

public static void main(String[] args) {
 Today today = new Today();
 System.out.println("Today is " + today.getToday());
}

13. Edit the module-info.java file in the com.packtpub.message.module module. Add the
following requires statement:

module com.packtpub.message.module {
 requires com.packtpub.day.module;
}

The requires statement will show an error. We need to add the com.packtpub.day.
module module as a dependency within the IntelliJ project.

14. From the File menu, select Project Structure.

15. Click on Modules.

16. Select message.module under com.packtpub.

17. Click the Dependencies tab.

18. Click the + icon at the bottom of the dialog window and select Module
Dependency….

19. Select com.packtpub.day.module and click OK.

You should see the new module dependency added, as shown in Figure 6.11.

244 | Libraries, Packages, and Modules

20. Click OK in the previous dialog. The error should no longer be present.

21. In the Message class, click the green arrow to the left of the class definition, and
select Run 'Message.main()'.

You will see output like this:

Today is THURSDAY

Figure 6.11: The IntelliJ project structure dialog showing the new module dependency on the
com.packtpub.day.module module

Organizing Code into Packages | 245

Activity 1: Tracking Summer High Temperatures

Studies on changing climate have determined what summer high temperatures will be
like in the year 2100.

You can see this information for many world cities at https://www.climatecentral.org/
wgts/global-shifting-cities/index.html.

Create an application to display how high summer temperatures are projected to be in
the year 2100 with no major emission cuts, or with moderate emission cuts.

To do this, follow these steps:

1. Create a new Gradle project in IntelliJ.

2. Bring in the Guava third-party library as a dependency. Refer to https://github.
com/google/guava for more on Guava.

3. Create a class named City that holds the name of a city, the name of the country
where the city is located, and its summer high temperature. Remember that
IntelliJ can generate getter and setter methods for you.

4. Create a class named SummerHigh that holds a base city, along with the city that
most closely matches the 2100 summer projections if no emission cuts are made,
and the city that matches the 2100 summer projections if moderate emission cuts
are made (based on data from Climate Central).

5. Create a class named SummerHighs to hold the overall data store. This class should
have methods to retrieve the data by city name (regardless of case) or country
name (regardless of case).

6. Use a Guava Table to hold the underlying SummerHigh data, using a Table like this:

Table<String String, SummerHigh> data = HashBasedTable.create();

7. Create a Main class that takes in either a city or a country name, looks up the
appropriate data, and then prints it out. Use a command-line parameter of -city
for a city lookup and -country for a country lookup.

The entire code base for the project should be incorporated in an executable JAR.
Run this JAR from the IntelliJ Terminal pane.

You should be able to run this JAR similarly to the following:

java -jar temps-1.0-all.jar -city London

https://www.climatecentral.org/wgts/global-shifting-cities/index.html
https://www.climatecentral.org/wgts/global-shifting-cities/index.html
https://github.com/google/guava
https://github.com/google/guava

246 | Libraries, Packages, and Modules

You should generate output like the following:

In 2100, London, United Kingdom 20.4 C will be like
 Milan, Italy 25.2 C with no emissions cuts,
 Paris, France 22.7 C with moderate emissions cuts

8. Add a temperature converter class that can output the temperatures in degrees
Fahrenheit instead of Celsius.

9. Add a -f command-line option that tells the application to return temperatures
in degrees Fahrenheit.

10. Create a class called TempConverter to perform the conversion.

11. Use the following formula to convert the unit of temperature:

double degreesF = (degreesC * 9/5) + 32

You should then be able to run the application:

java -jar temps-1.0-all.jar -city London -f

You should then see the temperature output in degrees Fahrenheit. Here's an
example:

In 2100, London, United Kingdom 68.72 F will be like
 Milan, Italy 77.36 F with no emissions cuts,
 Paris, France 72.86 F with moderate emissions cuts

Note

The solution for this activity can be found on page 831. Refer to https://github.
com/google/guava/wiki/NewCollectionTypesExplained for more information on the
Table class. Hint: look at the row() and column() methods. We use this class to
allow lookups by city or country.

Summertime High Temperatures

Here are some selected cities from the Climate Central map. Each city is listed with its
summertime high temperature. Feel free to include these cities in your program. You
can add more cities from Climate Central if you like.

https://github.com/google/guava/wiki/NewCollectionTypesExplained
https://github.com/google/guava/wiki/NewCollectionTypesExplained

Organizing Code into Packages | 247

London, United Kingdom, 20.4 °C:

• Will be like Paris, France, 22.7 °C, with moderate emission cuts.

• Will be like Milan, Italy, 25.2 °C, with no emission cuts.

Stockholm, Sweden, 19.3 °C:

• Will be like Vilnius, Lithuania, 21.7 °C, with moderate emission cuts.

• Will be like Kiev, Ukraine, 24.2 °C, with no emission cuts.

Barcelona, Spain, 25.7 °C:

• Will be like Madrid, Spain, 28.9 °C, with moderate emission cuts.

• Will be like Izmir, Turkey, 32.2 °C, with no emission cuts.

New York, US, 27.7 °C:

• Will be like Belize City, Belize, 31.3 °C, with moderate emission cuts.

• Will be like Juarez, Mexico, 34.4 °C, with no emission cuts.

Tokyo, Japan, 26.2 °C:

• Will be like Beijing, China, 29.0 °C, with moderate emission cuts.

• Will be like Wuhan, China, 31.2 °C, with no emission cuts.

Note

The solution to this activity can be found on page 808.

248 | Libraries, Packages, and Modules

Summary
In this chapter, we saw how packages allow you to organize your code better, which
becomes essential when working on large projects. When you use classes from another
package, you need to import these classes into your code.

When you create your own packages, place your code into packages based on the
purpose of the code and name these packages based on your organization's internet
domain name. For example, you might create packages called com.packtpub.medical.
report and com.packtpub.medical.heartrate.

You will often incorporate your Java code into a JAR file. A JAR file is like a compiled
library of Java code. Executable JAR files contain the name of a Java class with a main()
method that you can run with the java-jar command.

Java build tools such as Maven or Gradle help a lot when working on large projects.
These two build tools also support downloading and using third-party open source Java
libraries, libraries that are used in just about every large Java project.

Modules form a newer way to separate code. In the next chapter, we shall cover
relational databases and using Java with databases.

Learning Objectives

By the end of this chapter, you will be able to:

• Create tables in relational databases

• Write basic SQL queries to retrieve and modify data

• Access databases from JDBC in Java applications

• Run queries from JDBC

• Use the JDBC PreparedStatement interface to allow for parameterized SQL statements

• Insert and update data from JDBC

• Handle the exceptions that JDBC calls can throw

This chapter shows how to use JDBC to access relational databases from your Java applications.

Databases and JDBC

7

252 | Databases and JDBC

Introduction
Databases, especially relational databases, are used in thousands of applications,
from small home-based applications to huge enterprise systems. To help us write
applications that access databases, Java provides a few very handy tools, starting with
Java Database Connectivity (JDBC).

JDBC allows Java applications to connect to a myriad of databases, provided you have
the correct driver, a Java library designed to communicate with a given database. Once
connected, JDBC provides an API for accessing databases in a manner that is mostly
generic. You'll only encounter a few areas where you need to know the specifics of the
underlying database implementation.

Relational Databases
Originally defined by E. F. Codd, relational databases store data in tables, made up of
columns and rows. For example, the following table could be used to store customer
information:

Figure 7.1: A database table of customers

In this customer table example, each row has four columns: an ID, a username, a first
name, and a last name.

Note

In addition to celebrities such as Sting, Cher, and Bono, some ethnic groups use
just one name. You will not always have first and last names.

Each row needs a unique way to distinguish that row from all others, called a unique
primary key. In this case, the ID column acts as a unique key. In this table, you could
also use the username as a unique key.

Some tables use a single column as a key, while others use the values in multiple
columns to form the key, called a composite key.

Relational Database Management Systems | 253

Most databases use more than one table. You can relate tables to other tables based on
information within a row.

For example, in an online system, each customer might have multiple email addresses.
You can model this relationship using a separate table for email addresses, as shown in
Table 2:

Figure 7.2: A database table for email addresses

In table 2, each row has its own unique ID, with the EMAIL_ID column. Each row also
links back to the customer table by holding an ID for the user table in the CUSTOMER_ID
column. This allows the EMAIL table to link to the CUSTOMER table. User bobmarley, for
example, has two email addresses in the system, one for home and one for work.

Note

These email addresses are not real.

In this hypothetical example, there may also be tables for postal addresses, customer
preferences, billing, and other things. Each table would likely relate back to the
customer table.

To use a relational database, you need a Relational Database Management System
(RDBMS), the software that manages the tables.

Relational Database Management Systems
Some of the most common RDBMSes include Oracle, MySQL, SQL Server, PostgreSQL,
and DB2. In each case, you have software that runs on a server (or servers) to manage
the data, along with separate client software to query and manipulate the data.

To use an RDMS, you first need to install the database software.

254 | Databases and JDBC

Installing a Database

In this chapter, we'll use an open-source database called H2. H2 is written entirely in
Java, so you can run it wherever you run a JVM, such as in Windows, Linux, or macOS
systems. On account of its portability and simplicity, H2 works well for the database
tables we'll create in this chapter.

H2 has some nice features in that it comes with a browser-based database console that
you can use to access the database.

Note

H2 can also be used inside your applications as an embedded in-memory
database. In this case, the database server and client both exist within your Java
application.

To install H2, go to http://www.h2database.com and download the All Platforms zip
file. When downloaded, unzip the file, which will create a folder named h2.

Inside the h2 folder, you will see sub-folders named bin, docs, service, and src. The
documentation in the docs folder is also available online.

The bin folder contains the H2 database software bundled into a jar file. It also contains
a Windows batch file and a Unix/Linux shell script.

Exercise 1: Running the H2 Database

Now that you have installed the database, the next step is to get the database up and
running. To do this, perform the following steps:

1. To run the H2 database, you can use one of the scripts in the bin folder, or simply
run the jar file. For example:

java -jar h2*.jar

Regardless of how you launch the H2 database, you can access it from a browser.
On some systems, such as macOS, H2 will open the database console in your
default browser.

http://www.h2database.com

Relational Database Management Systems | 255

2. If it does not open automatically, you can simply point your browser to
http://10.0.1.7:8082/.

3. You will see the login pane with the information filled in, as shown in Figure 7.1:

Figure 7.3: The login pane for the web database console

All the information should be filled in correctly when you start. The database
driver (discussed later in this chapter) is org.h2.Driver, the JDBC URL is
jdbc:h2:~/test, the username is sa (for system administrator), and the password is
empty.

Obviously, on a real database, you'd use an actual password.

256 | Databases and JDBC

4. Click Connect.

In a few moments, you'll see the main console pane, and you're in.

Note

By default, H2 will store databases in your home directory. With this database
named test, you should see two files in your home directory with names starting
with test and ending with db.

Once you have the H2 database installed and running, the next step is to start creating
tables. To do so, you need to write commands in a language called SQL.

Introducing SQL
Structured Query Language (SQL and often pronounced "sequel") provides a common
language for querying and manipulating data in relational databases. While there are
a few differences, SQL mostly works the same in relational database systems such as
Oracle, SQL Server, MySQL, and H2.

The first thing you need to do is to create a table. To do so, use the CREATE TABLE SQL
command. To create a table, you must provide the name of the table, the names, and
types of the columns, and any constraints.

Exercise 2: Creating the customer Table

Use the SQL CREATE TABLE command to create a customer table. It should contain the
customer ID and the users' first and last names.

1. Enter the following SQL commands in the upper-right input pane:

CREATE TABLE IF NOT EXISTS customer
(
CUSTOMER_ID long,
USERNAME varchar(255),
FIRST_NAME varchar(255),
LAST_NAME varchar(255),
UNIQUE(USERNAME),
PRIMARY KEY (CUSTOMER_ID)
);

Introducing SQL | 257

2. After entering the SQL command, click on the Run button.

Figure 7.2 shows the main database console window:

Figure 7.4: The H2 database console after creating a table

Notice in Figure 7.4 that once the table is created, you see the table name,
CUSTOMER, in the left-hand pane. You can click on the + symbol to expand the table
entry and see the columns, as shown in Figure 7.4.

The CREATE TABLE command can be broken down into its component parts. The
command starts with CREATE TABLE. After that, IF NOT EXISTS means to not attempt to
recreate the table if it already exists (the ALTER TABLE command is used to change the
structure of an existing table):

CREATE TABLE IF NOT EXISTS customer

Next comes the table name, customer.

After a parenthesis, you will see the definition of the columns and then the constraints:

CUSTOMER_ID long,

USERNAME varchar(255),

FIRST_NAME varchar(255),

LAST_NAME varchar(255),

258 | Databases and JDBC

The CUSTOMER_ID column is of the long type, like the Java long type. This column will be
the unique primary key.

The USERNAME, FIRST_NAME, and LAST_NAME columns are all of the varchar type. The varchar
type holds variable-length character (text) data up to a maximum number of characters,
specified here as 255 characters.

Next comes the constraints:

UNIQUE(USERNAME),

PRIMARY KEY (USER_ID)

The USERNAME column must be unique, and the CUSTOMER_ID column is the primary key.
(The primary key must also be unique.) The database will enforce these constraints
when you insert data. Note that you can list multiple columns names, separated by
commas, to create a composite primary key. This means that the combination of values
in those columns must be unique.

The entire command ends with a closing parenthesis and a semicolon. SQL uses a
semicolon in the same way as Java to indicate the end of a statement.

Inserting Data into a Table

To insert data into a table, use the INSERT INTO command. The basic syntax is as follows:

INSERT INTO table_name

(column1, column2, column3, column4)

VALUES (value1, value2, value3, value4);

You first list the columns and then provide values for those columns. You must provide
a value for all columns that do not allow nulls. In this case, the CUSTOMER_ID and the
USERNAME are required. Each must also be unique.

Note

SQL uses a single quote character to delimit strings. If you need to enter a quote
character, use two together, such as Java''s. Don't try smart quotes, as are used
in some word processors.

Introducing SQL | 259

Exercise 3: Inserting Data

This exercise again uses the H2 web console.

1. Enter the following SQL in the upper-right input pane:

INSERT INTO customer
(CUSTOMER_ID, USERNAME, FIRST_NAME, LAST_NAME)
VALUES (1, 'bobmarley', 'Bob', 'Marley');

2. After entering the SQL command, click on the Run button.

3. Repeat these two steps with the following two SQL statements:

INSERT INTO customer
(CUSTOMER_ID, USERNAME, FIRST_NAME, LAST_NAME)
VALUES (2, 'petertosh', 'Peter', 'Tosh');

INSERT INTO customer
(CUSTOMER_ID, USERNAME, FIRST_NAME, LAST_NAME)
VALUES (3, 'jimmy', 'Jimmy', 'Cliff');

Note

Most RDBMSes support types that will automatically manage ID numbers for a
primary key. The syntax does differ in different database software, however. Refer
to http://www.h2database.com/html/datatypes.html for the IDENTIIY type for H2.

Retrieving Data

To retrieve data from a table (or tables), use the SELECT command. The SQL SELECT
command lets you query for data. You must specify what you are looking for.

The basic syntax is as follows:

SELECT what_columns_you_want

FROM table_name

WHERE criteria_you_want;

You can provide a comma-delimited list of columns to return, or use an asterisk, *, to
indicate you want all the columns returned. The simplest query follows:

SELECT * from customer;

http://www.h2database.com/html/datatypes.html

260 | Databases and JDBC

You should now see all the rows returned, as displayed in Figure 7.3:

Figure 7.5: Querying all the rows from the customer table

You can refine your query with a WHERE clause. For example:

SELECT * from customer

WHERE first_name = 'Bob';

This will return all rows that have a first_name column value equal to Bob, which, so far,
would be just one row.

You can use a wild card query with the LIKE modifier:

SELECT * from customer

WHERE username LIKE '%e%';

This query returns all rows where the username has an e.

In SQL, the percent sign acts as a wild card. This example has a wild card at the
beginning of the value, and another at the end. You can use just one wild card, for
example, to query for the end of a value:

SELECT * from customer

WHERE username LIKE '%ey';

This example queries for all records that have a username value that ends in ey.

Introducing SQL | 261

You can make a more detailed query using OR or AND in the WHERE clause. For example:

SELECT * from customer

WHERE

 first_name = 'Peter'

OR

 last_name = 'Cliff';

This example returns all rows where the first_name is Peter or the last_name is Cliff,
which is two rows in this example.

With an OR operator, the SELECT statement returns all rows that match either of the
criteria. With an AND operator, both parts of the criteria must match:

SELECT * from customer

WHERE

 first_name = 'Peter'

AND

 last_name = 'Cliff';

This example will return zero rows since no row matches both criteria.

Thus far, we've used an asterisk to indicate that we want all columns returned. You can
specify a comma-delimited list of column names instead. For example:

SELECT first_name, last_name from customer

order by

last_name, first_name;

This example also uses the ORDER BY clause to tell the database to return the records in
a certain order, in this case, sorted by last_name and then first_name.

SQL uses two dashes, --, to indicate the start of a comment, as shown here:

-- This is a comment.

SQL queries can get quite complex. These examples just provide a small taste.

Note

For more information on SQL, you can refer to the following Packt video: https://
www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-
master-sql-mysql-video.

https://www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-master-sql-mysql-video
https://www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-master-sql-mysql-video
https://www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-master-sql-mysql-video

262 | Databases and JDBC

Relating Tables

Most databases include multiple tables, and many of these tables will be related. From
the earlier example, we can relate the customer table to a separate table for email
addresses. In the previous example, each row in the email table included the ID of the
related row in the customer table.

Exercise 4: Creating the email Table

This exercise uses the H2 web console.

1. Enter the following SQL in the upper-right input pane:

CREATE TABLE IF NOT EXISTS email
(
EMAIL_ID long,
CUSTOMER_ID long,
EMAIL_ADDRESS varchar(255),
EMAIL_TYPE varchar(255),
PRIMARY KEY (EMAIL_ID)
);

2. After entering the SQL command, click the Run button.

3. Include the following INSERT statement, and then click the Run button:

INSERT INTO email
(EMAIL_ID, CUSTOMER_ID, EMAIL_ADDRESS, EMAIL_TYPE)
VALUES (1,1, 'bob@example.com', 'HOME');

4. Include the following INSERT statement, and then click on the Run button:

INSERT INTO email
(EMAIL_ID, CUSTOMER_ID, EMAIL_ADDRESS, EMAIL_TYPE)
VALUES (2,1, 'bob.marley@big_company.com', 'WORK');

5. Include the following INSERT statement, and then click on the Run button:

INSERT INTO email
(EMAIL_ID, CUSTOMER_ID, EMAIL_ADDRESS, EMAIL_TYPE)
VALUES (3,2, 'petertosh888@example.com', 'HOME');

Introducing SQL | 263

Notice how we must manage the IDs, both EMAIL_ID and the related CUSTOMER_ID. This
can be quite a pain to manage. Java libraries, such as Hibernate, that map Java objects to
relational tables can help with this.

Note

Hibernate is considered an ORM, or Object-Relational Mapper. For more
information on Hibernate, refer to http://hibernate.org/.

Once you have data in multiple related tables, you can query from multiple tables at
once, joining the results together.

Selecting Data from Multiple Tables

When you use the SQL select statement to query data from multiple tables, you need
to list all the columns (from all the tables) that you wish to be returned, along with the
criteria to search in the WHERE clause. In the WHERE clause, you will need to join the two
tables on some common value.

For example, the email table has a customer_id column to join back to the customer
table. To join that, write a query along the lines of the following:

SELECT username, email_address

FROM customer, email

WHERE email_type = 'HOME'

AND

email.customer_id = customer.customer_id;

In this query, we ask for the username from the customer table, along with the email_
address from the email table. The FROM section lists both the customer and email tables.

The WHERE clause gets more interesting. This query looks for all email addresses where
the type is HOME. To join this back to the customer table, and to ensure you are getting
the right customer, the query adds a join where the customer_id email table column
corresponds to the customer_id customer table column. This ensures that you get the
correct customers aligned.

http://hibernate.org/

264 | Databases and JDBC

Modifying Existing Rows

The UPDATE command lets you modify existing rows. To update data, you need to specify
which rows to change, along with the values to change. The basic syntax is as follows:

UPDATE table_name

SET column1 = value1, column2 = value2

WHERE where_clause_to_find_rows

Exercise 5: Modifying email Data

If a user, such as bobmarley, switches to a different work email, you would need to
update the email table. To do so, perform the following steps:

1. Go to the H2 database console.

2. Include the following SQL query, and then click Run:

SELECT * from email;

This command lets you see what values are in the table now before we change
anything.

3. Next, enter the following UPDATE statement, and then click Run:

UPDATE email
SET EMAIL_ADDRESS = 'bob.marley@another_company.com'
WHERE customer_id = 1
AND email_type = 'WORK';

This query changes the email_address entry for the customer, bobmarley, but just
the WORK email.

4. Now, run the select query again (and click Run) to see how the table has changed:

SELECT * from email;

You should now see the results as shown in the following table:

Figure 7.6: Output of the query

Introducing SQL | 265

Deleting Data

To remove data from a table, use the DELETE command:

DELETE FROM table_name

WHERE criteria_for_which_rows_to_delete;

For example, to remove the work email for the customer, bobmarley, you would use a
command such as the following:

DELETE FROM email

WHERE customer_id = 1

AND email_type = 'WORK';

Note

When you have tables that are related, deleting data becomes trickier. If you delete
a customer, for example, you need to delete all rows from the email table for this
customer, too. In this example, the email table depends on the customer table, but
the opposite is not true.

In all the examples so far in this chapter, we've used SQL in the H2 console to work with
the data in a test database. In your Java applications, you will use JDBC to accomplish
much the same goals.

JDBC – Accessing Databases from Java

JDBC provides a common API to work with databases. Mostly, JDBC works with
relational databases, but you can work with any data source for which you have a JDBC
driver, the Java library that communicates with the data source and implements the
JDBC API.

Note

One of the best parts of JDBC is that most driver libraries are written in Java, so you
can use these drivers from any platform that runs the JVM.

The first thing you need to do with JDBC is connect to a data source, typically a
database.

266 | Databases and JDBC

Connecting to Databases

The simplest way to connect to a database using JDBC is to use the getConnection()
method on the java.sql.DriverManager class:

Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa", "");

This method takes three parameters:

• The JDBC URL, which starts with jdbc:h2 tells DriverManager to look for an H2
JDBC driver. ~/test tells H2 to look for a database named test in the current user's
home directory. (This is the user—you—running the Java program.) test is the
default database name created by H2.

• The username to connect under, in this case, sa, for the system administrator.

• The password, in this case, is empty.

Note

Other than H2, you will likely never have an empty password when connecting to a
database. H2 sets up the sa account that you can use for testing by default.

The getConnection() method returns a java.sql.Connection object, which you can use
as a starting point for working with a database.

Note

There are other ways to connect to a database, especially when using connection
pools, described later in this chapter.

Almost every JDBC operation can throw a java.sql.SQLException, so you will usually
wrap JDBC calls in a try-catch block.

When you are done with a JDBC connection, you should close the connection:

conn.close();

Introducing SQL | 267

Querying Data with JDBC

To query from a database with JDBC, create java.sql.Statement and then execute a
query:

String sql = "SELECT * from customer order by username";

statement = conn.createStatement();

ResultSet results = statement.executeQuery(sql);

Create a statement using the Connection object. You can then execute a SQL query
using the executeQuery() method, which returns a java.sql.ResultSet object.

The ResultSet API can be confusing at first. It is based on the idea of a cursor, a record
of the program's position within the data. By calling next() on a ResultSet, you move
the cursor to the next row.

So, the normal flow for a query will look something like the following:

String sql = "SELECT * from customer order by username";

statement = conn.createStatement();

ResultSet results = statement.executeQuery(sql);

while (results.next()) {

 // Process the current row.

}

ResultSet starts with a position—the cursor—prior to the first row, so you need to call
next() to get the very first row of data. The next() method returns false when it has
reached the end of the data.

Part of the reason for iterating through a ResultSet like this is because some database
tables hold so many records that you could not hold them all in memory at the same
time. Hence, the general technique is to process one row at a time.

With each row of data, call get methods on the ResultSet. For example, to get a string
value, call getString():

String username = results.getString("USERNAME");

268 | Databases and JDBC

In this example, we pass the name of the column to getString(). It returns the value of
the USERNAME column for the current row.

You can also pass the position of the column in the results. For example:

String username = results.getString(2);

The position number is the position of the column in the results, which is dependent on
the query.

Note

Unlike almost everything else in Java, JDBC columns start counting at 1, not 0.

You have to know the type of data in the column to call the proper get method. For
example, to get a long value, call getLong():

Long id = results.getLong("CUSTOMER_ID");

Note

You can call getObject() if you are unsure of the type of data in the column.

When done with a ResultSet, call close(). Similarly, when you're done with a statement,
call close(). Calling the close() method on these objects frees up resources.

Exercise 6: Querying Data with JDBC

This exercise will create an IntelliJ project, bring in a dependency for the H2 database
JDBC driver, and then query the database:

1. Select New and then Project… from the File menu in IntelliJ.

2. Select Gradle for the type of project. Click Next.

3. For the Group Id, enter com.packtpub.db.

4. For the Artifact Id, enter customers.

5. For the Version, enter 1.0.

6. Accept the default on the next pane. Click Next.

7. Leave the project name as customers.

8. Click Finish.

Introducing SQL | 269

9. Call up build.gradle in the IntelliJ text editor.

10. Set sourceCompatibility to 12:

sourceCompatibility = 12

11. Replace the plugins block with the following, just as we did in Chapter 6, Libraries,
Packages, and Modules:

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.github.jengelman.gradle.plugins:shadow:2.0.1'
 }
}

apply plugin: 'java'
apply plugin: 'com.github.johnrengelman.shadow'

12. Add the following dependency to incorporate the H2 library in the project:

// https://mvnrepository.com/artifact/com.h2database/h2
implementation group: 'com.h2database', name: 'h2', version: '1.4.197'

Note that the same jar file that provides the JDBC driver also includes the entire
database software.

13. Add the following to the end of the project's build.gradle file to define the main
class for the executable jar:

jar {
 manifest {
 attributes 'Main-Class': 'com.packtpub.db.Query
 }
}

14. In the src/main/java folder, create a new Java package.

15. Enter com.packtpub.db as the package name.

16. Right-click on this package in the Project pane and create a new Java class named
Query.

270 | Databases and JDBC

17. Create a main() method for the Query class:

public static void main(String[] args) {

 String sql = "SELECT * from customer order by username";

 Statement statement;

 Connection conn;
 try {
 conn = DriverManager.getConnection("jdbc:h2:~/test", "sa", "");

 statement = conn.createStatement();

 ResultSet results = statement.executeQuery(sql);

 while (results.next()) {
 Long id = results.getLong("CUSTOMER_ID");
 String username = results.getString("USERNAME");
 String firstName = results.getString("FIRST_NAME");
 String lastName = results.getString("LAST_NAME");

 System.out.println(id + " " + username + " " +
 firstName + " " + lastName);
 }

 if (results != null) {
 results.close();
 }

 if (statement != null) {
 statement.close();
 }

 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

This program establishes a connection to an H2 database. Notice how all the JDBC
calls are wrapped in a try-catch block.

Introducing SQL | 271

After establishing a connection, the program asks the Connection to create a
Statement. Calling executeQuery() on the Statement runs the query, returning a
ResultSet. With a while loop, the program iterates over each row in the ResultSet,
extracting data, and printing.

In the end, the program closes the resources used.

This sets up an executable jar that will run the Query class. Remember to run the
shadowJar Gradle task to build the executable jar with dependencies.

When you run this program, you should see output similar to the following:

1 bobmarley Bob Marley
3 jimmy Jimmy Cliff
2 petertosh Peter Tosh

Note that the query asked the database to order the results by username.

If you are connected to the database from the H2 web console, you will see an error like
the following when you run this program:

org.h2.jdbc.JdbcSQLException: Database may be already in use: null. Possible
solutions: close all other connection(s); use the server mode [90020-197]

You should also see the full stack trace for the error. This error indicates that you
are already logged into the database as user sa. Click on the disconnect icon in the
upper-left corner of the H2 web console to close the web console's connection to the
database.

In the Query class in Exercise 6, Querying Data with JDBC, we used a string for the SQL
query. That works fine when your program generates the entire SQL statement itself.
However, if you accept user input and then build a string for the SQL, your program
may be vulnerable to SQL injection attacks, where a malicious user inputs SQL syntax
designed to cause havoc to your database.

Note

For a more detailed look at SQL injection vulnerabilities, refer to https://www.
owasp.org/index.php/SQL_Injection.

Because of this risk, you should sanitize any user input prior to placing it in a SQL
statement.

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection

272 | Databases and JDBC

Sanitizing User Input

To sanitize user input:

• You can properly sanitize the data yourself. You could disallow characters that
could form SQL syntax, for example.

• You can use the PreparedStatement interface and set the values on the prepared
statement. JDBC will then sanitize the input for you.

Using Prepared Statements

A JDBC prepared statement takes in a SQL statement with placeholders for the data
values. With most databases, JDBC sends the SQL to the database to be compiled. When
you send a SQL statement to a database, the database needs to compile the SQL into an
internal format that is native to the database, from which the database can execute the
statement.

With a regular statement, you can provide a SQL statement to methods such as
executeQuery() and executeUpdate(). You can reuse the Statement and provide a
completely different SQL statement.

With a PreparedStatement, on the other hand, you prepare the statement with a SQL
string, and that is all you get. Luckily, though, you provide placeholders for the data
values. This means that you can reuse a PreparedStatement to insert multiple records
into a table, for example.

From Exercise 5, Modifying email Data, we use an UPDATE statement:

UPDATE email

SET EMAIL_ADDRESS = 'bob.marley@another_company.com'

WHERE customer_id = 1

AND email_type = 'WORK';

Introducing SQL | 273

With a PreparedStatement, you would use a question mark, ? as a placeholder for the
input values:

String sql = "UPDATE email " +

 "SET EMAIL_ADDRESS = ? " +

 "WHERE customer_id = ? " +

 "AND email_type = ? ";

Note

In a prepared statement, you do not need to place single quotes around string
placeholders. JDBC will take care of that for you.

These placeholders need to be filled in prior to using PreparedStatement. For example:

statement = conn.prepareStatement(sql);

statement.setString(1, "bob.marley@another_company.com");

statement.setLong(2, 1L);

statement.setString(3, "WORK");

int rowsChanged = statement.executeUpdate();

Pass your SQL string, with placeholders, to the prepareStatement() method on a
connection. Then, call setString(), setLong(), and so on, to fill in the placeholder
values. With each set method call, you pass the index of the placeholder to fill, starting
with 1 for the first placeholder. Then, pass the value to fill in. JDBC will handle the
prevention of SQL injection attacks.

As for a regular Statement, you can call executeQuery() to perform a SQL query, or
executeUpdate() to modify the database. The executeUpdate() method handles INSERT,
UPDATE, and DELETE SQL statements.

In this example, executeUpdate() returns the number of rows in the table that was
modified.

One of the primary benefits of using prepared statements is that JDBC will sanitize
the input values so that you don't have to. The other primary benefit is improved
performance. If you execute the same SQL statement again and again, or a nearly
similar statement with just different values, then using a prepared statement will speed
things up, mostly due to pre-compiling the statement.

274 | Databases and JDBC

Transactions and Rollback

In relational databases, transaction groups a set of SQL statements together. Either all
the statements succeed, or the transaction will get rolled back, undoing the statements.
In addition, databases treat all the statements within a transaction as happening at the
same time, which helps to ensure that the data has integrity.

In JDBC, a transaction continues until you call commit() on the connection. If there is a
failure, you should call rollback() on the connection to restore the data to the state it
held prior to the transaction.

By default, a JDBC connection starts in auto-commit mode. This means that each
JDBC connection gets committed one at a time. If you want to group a few statements
together in a transaction, you first need to turn off auto-commit mode:

conn.setAutoCommit(false);

Note

After turning off auto-commit mode, you should turn it back on when done
accessing the database.

When you want to end a transaction and commit the results to the database, call
commit():

conn.commit();

If an SQLException gets thrown, you'll want to roll back the transaction:

} catch (SQLException e) {

 e.printStackTrace();

 try {

 if (conn != null) {

 conn.rollback();

 }

 } catch (SQLException nested) {

 nested.printStackTrace();

 }

}

Introducing SQL | 275

This code shows one of the most tedious parts of working with JDBC. In your exception
handler for an SQLException, the calls made, such as rollback(), can also throw another
SQLException, which you need to catch. You'll find that JDBC code is full of try-catch-
finally blocks with nested try-catch blocks. Exercise 7, Using Prepared Statements with
Transactions, shows this technique in action.

Exercise 7: Using Prepared Statements with Transactions

In this exercise, we'll create another Java class that uses a JDBC PreparedStatement to
update data in the email table and wrap that update in a JDBC transaction.

1. In IntelliJ, create a new class named Prepared and create a main() method.

2. Import the required libraries:

package com.packtpub.db;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

3. Enter the following code in the Prepared class.

public class Prepared {
 public static void main(String[] args) {

 Connection conn = null;
 PreparedStatement statement = null;

 String sql = "UPDATE email " +
 "SET EMAIL_ADDRESS = ? " +
 "WHERE customer_id = ? " +
 "AND email_type = ? ";

The Prepared class starts by defining a SQL UPDATE statement using placeholders.
This SQL statement will later get placed in a PreparedStatement.

276 | Databases and JDBC

4. In the first try-catch block, the program gets a Connection to the database and
then calls setAutoCommit() with a parameter of false to turn off auto-commit
mode. JDBC now expects the program to manage transactions.

 try {
 conn = DriverManager.getConnection("jdbc:h2:~/test", "sa",
"");
 conn.setAutoCommit(false);

 statement = conn.prepareStatement(sql);
 statement.setString(1, "bob.marley@another_company.com");
 statement.setLong(2, 1L);
 statement.setString(3, "WORK");

 int rowsChanged = statement.executeUpdate();

 conn.commit();

 System.out.println("Number rows changed: " + rowsChanged);

 } catch (SQLException e) {
 e.printStackTrace();

 try {
 if (conn != null) {
 conn.rollback();
 }
 } catch (SQLException nested) {
 nested.printStackTrace();
 }

 } finally {
 try {
 conn.setAutoCommit(true);

 if (statement != null) {
 statement.close();
 }

 conn.close();

Introducing SQL | 277

 } catch (SQLException nested) {
 nested.printStackTrace();
 }
 }
 }
}

When you run the main() method, you should see output like the following:

Number rows changed: 1

Just one row should be modified.

The program passes the SQL string to the connection's prepareStatement() method.
This creates a PreparedStatement initialized with the given SQL. Next, the program fills
in the placeholder values in the PreparedStatement.

When it's done, the program calls executeUpdate() on the statement, commits the
transaction and then tells us the number of rows that were changed.

If any of the JDBC calls throws an SQLException, the catch block prints the stack
trace and then calls rollback() on the connection. Calling rollback() can also throw
SQLException, so the program catches that as well, printing the stack trace.

The finally block from the original try-catch-finally block restores auto-commit
transaction mode, and then calls close() on the PreparedStatement and the connection,
each of which might also result in an SQLException.

Simplifying JDBC Programming

As you can see from the examples, programming with JDBC is tedious. Because of that,
a lot of projects have developed wrappers over the JDBC API in order to simplify making
JDBC calls.

Java itself contains a number of utility classes, such as JdbcRowSet, which wrap ResultSet
objects and provide a somewhat simpler API.

Note

The Spring framework provides a number of utilities to simplify JDBC
programming. Refer to https://spring.io/guides/gs/relational-data-access/ for more
information.

By far the most popular way to access databases without the inconvenience of the JDBC
API is to use object-relational mapping software.

https://spring.io/guides/gs/relational-data-access/

278 | Databases and JDBC

Using Object-Relational Mapping Software

As the name suggests, object-relational mapping, or ORM, software maps between the
world of objects and the world of relational tables. With an ORM, you typically write a
Java class that represents one row of a table.

For example, the following class could represent a row in the customer table:

Customer.java

package com.packtpub.db;

public class Customer {

 Long customerId;

 String username;

 String firstName;

 String lastName;

 public Customer(Long customerId, String username,

 String firstName, String lastName) {

 this.customerId = customerId;

 this.username = username;

 this.firstName = firstName;

 this.lastName = lastName;

 }

 @Override

 public String toString() {

 return "Customer{" +

 "customerId=" + customerId +

 ", username='" + username + '\'' +

 ", firstName='" + firstName + '\'' +

 ", lastName='" + lastName + '\'' +

 '}';

 }

}

Introducing SQL | 279

The Customer class is what is often called a Plain Old Java Object (POJO). ORM software
then allows you to use query tables and get back a list of POJOs, or fill in data in a POJO
and then persist that object to the database. In the majority of cases, ORM software
uses reflection to discover the fields in the class and map those to columns in the table.

Note

Chapter 19 covers reflection.

The Java Persistence API, or JPA, provides a standardized API to define the mapping
between objects and database tables using annotations to describe the mapping. JPA
also defines an API for persisting POJOs to database tables.

Underneath the standard Java Persistence API, you need to use a JPA provider, a library
that implements the JPA. The most commonly used JPA provider is called Hibernate.

Note

For more information on JPA, refer to https://docs.oracle.com/javaee/7/tutorial/
partpersist.htm. JPA is part of the Java Enterprise Edition (JavaEE).

Database Connection Pooling

The DriverManager.getConnection() method can take a good bit of time to establish a
connection to a database. To help with this, you can use a database connection pool.

Connection pools set up multiple and managed connections to a database. Your
application can then request a free connection from the pool. Your code uses the
connection and then returns it to the pool.

Some of the main connection pool software libraries are:

• HikariCP, from https://www.baeldung.com/hikaricp

• Apache Commons DBCP, from https://commons.apache.org/proper/commons-
dbcp/

• C3p0, from https://github.com/swaldman/c3p0

• The Tomcat connection pool, from http://tomcat.apache.org/tomcat-7.0-doc/
jdbc-pool.html

https://docs.oracle.com/javaee/7/tutorial/partpersist.htm
https://docs.oracle.com/javaee/7/tutorial/partpersist.htm
https://www.baeldung.com/hikaricp
https://commons.apache.org/proper/commons-dbcp/
https://commons.apache.org/proper/commons-dbcp/
https://github.com/swaldman/c3p0
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

280 | Databases and JDBC

Non-Relational, or NoSQL, Databases

Relational databases work well when you have data that works well with the columns
and rows in SQL database tables. In the real world, not all data fits neatly into this
model. This has led to the creation of NoSQL databases, database management software
that does not support relational tables.

Note

Oddly enough, some NoSQL databases support a SQL-like language for accessing
data.

NoSQL databases all differ, and some of the categories to describe these databases
overlap. Terrastore, https://code.google.com/archive/p/terrastore/, and MongoDB,
https://www.mongodb.com/, are considered document storage databases. In these
systems, you store a full document, typically a structured document.

Cassandra, http://cassandra.apache.org/, and HBase, http://hbase.apache.org/, are
sometimes referred to as column-store or column family databases, which store data in
columns as opposed to storing data in rows, as is done with most SQL databases. If you
organize the columns properly, these databases can very quickly retrieve data. You can
also store a huge number of columns.

Neo4j, https://neo4j.com/, is a graph database. In a graph database, you retrieve data
by following relationships between elements. These relationships form a graph.

Activity 1: Track Your Progress

1. Set up database tables in the H2 database to track your progress through this
course.

2. Create a table called student, where each record holds information on a student,
such as you. Define the ID, first name, and last name columns.

3. Create a table called chapter, where each record holds information on a chapter.
Define columns for an ID (use the chapter number) and chapter title. For
simplicity, you can just enter the chapters up to and including this one.

4. Create a table to relate students to chapters, called student_progress. This table
should have columns for the ID of a student, the ID of a chapter, and a date for
when the chapter was completed. Use the SQL DATE type and pass the data as yyyy-
MM-dd. This table should have a composite primary key.

You can use the H2 web console to create the tables and insert records.

https://code.google.com/archive/p/terrastore/
https://www.mongodb.com/
http://cassandra.apache.org/
http://hbase.apache.org/
https://neo4j.com/

Summary | 281

5. Create two Java programs that use JDBC:

One to query all the chapters a given student has completed, and when. Take
as inputs the student's first and last name. This should generate output like the
following:

BOB MARLEY
2019-03-01 2 Learning the Basics
2019-03-01 7 Databases and JDBC

One to insert chapter completion. Take as inputs the student's first and last name,
along with a chapter number. The program should mark that chapter as having
been completed today.

Because both programs take in user input, be sure to use a PreparedStatement in
each to handle potential malicious input data. You can create these programs as
part of the customer's project created previously in this chapter.

Note

The solution for the activity can be found on page 845.

Summary
This chapter introduced relational database management systems (RDBMSes) and
the SQL language, which is used for working with relational databases. We used an
all-Java database called H2. SQL is a language that's used to retrieve and modify data
stored in a relational database. JDBC is a Java API that communicates with a relational
database. You can use SQL commands to retrieve and modify data. There is a lot more
to databases than can be presented in a single chapter, but after working through the
exercises, you should be able to start working with databases using SQL and JDBC. A
book or training course on SQL can help you delve into advanced database topics.

Note

The Packt video SQL Beginner to Guru: MySQL Edition - Master SQL with MySQL:
https://www.packtpub.com/application-development/sql-beginner-guru-mysql-
edition-master-sql-mysql-video will help you advance your SQL skills.

In the next chapter, you'll learn about networking and files using Java.

https://www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-master-sql-mysql-video
https://www.packtpub.com/application-development/sql-beginner-guru-mysql-edition-master-sql-mysql-video

Learning Objectives

By the end of this chapter, you will be able to:

• Create, open, read, and write to external files using Java

• Distinguish between buffered and unbuffered methods

• Identify when to use the java.io or java.nio APIs

• Communicate between two different programs running on remote computers

This chapter will help you work with external data storage systems.

Sockets, Files, and
Streams

8

284 | Sockets, Files, and Streams

Introduction
On an operating system level, files and directories are kind of similar. They are names
representing a link to something in storage, whether it is your hard drive, somewhere
in the cloud, or the USB drive in your pocket. However, at a conceptual level, they are
inherently different. Files contain information, while directories link to other directories
and files.

There are two main APIs that deal with the data: java.io and java.nio. Both APIs can be
used to navigate directories and manipulate files. The information about the location of
a file is called a pathname. It contains the full information of the directory in your hard
drive in which the file resides, all the way to the file's name and extension. It should
have the following form:

/folder_1/folder_2/[...]/folder_n/file.extension

Different operating systems refer to files and folder structures differently. In Unix
systems (such as Linux or macOSX), the / symbol represents the separation between
folders. Having one at the beginning of the pathname indicates an absolute positioning
against the root folder of the system. Not having that symbol will indicate a relative
positioning against the classpath or the path where our program is being executed
from. In Windows computers, the folder separator is \, and the root is determined by a
hard drive label. By default, the root folder in Windows is C:, but you can also store files
in any other drive, such as D:.

The main difference between the two APIs mentioned previously (that is, java.io and
java.nio) in the way they read and write data. The first one, java.io, can work with
streams (this is a concept that we will explore later in the chapter) and carries data
byte to byte in a blocking manner from one point to another. The second one, java.
nio works with buffers. This means that data is read and written in chunks into a part
of the memory (a buffer) and not directly from the stream. This allows non-blocking
communication, which will, for example, allow your code to continue doing something
else without having to wait until all the data is sent – you simply start copying the
information into the buffer and move on to doing other things.

When it comes to files, the big difference is how using one method or the other will
translate into faster or slower programs when trying to perform the same task in
different ways. We will mainly focus on using java.nio, since it is easier to use files
with it, and then refer to java.io occasionally. The java.nio.file (note the difference
from java.io.File) API defines classes and interfaces for the JVM – which makes use of
files, their attributes, and filesystems – is more recent, and offers an easier way to use
interfaces. However, this is not true for all cases, as we will see in this chapter.

Listing Files and Directories | 285

Listing Files and Directories
We are going to examine how to list files and directories in different ways. These
techniques can come in handy when checking whether a certain file exists, which will
allow you to give more sensitive information to users when, for example, trying to
find a properties file. If you detect that the file you're looking for doesn't exist and, at
the same time, you notice that you are not in the right directory, you could make your
program locate the actual folder in which the file resides, or you could simply inform
the user about this situation.

Note

There are different techniques to list the files and directories at any location on
your computer. You must choose wisely depending on the circumstances. While
the latest API seems more complex at first sight, as you will see in the following
examples, it is a lot more powerful than any of the previous versions.

Let's start with the old way of listing the contents of a directory. In the next exercise,
we will only use java.io. It requires making a call to File(dir).list(), where dir is a
string representing the name of the folder you want to access. To ensure the code in
this book works with your operating system, we have chosen to check your operating
system's temporary folder. Java stores that in a JVM property, which is labeled java.
io.tmpdir. Therefore, the call to getProperty() at the beginning of the method extracts
the name of the folder. For example, for any Unix OS, that property points to the /tmp
folder.

Your temporary folder is going to be filled up with a lot of files and folders created by
the different programs running in your computer. Therefore, we have chosen to display
only the first five listed by the OS – the order is determined by the OS. Unless you sort
the results of calling list(), you will most likely not find any logic in how the output is
sorted:

Example01.java

import java.io.*;

import java.util.*;

public class Example01 {

 public static void main(String[] args) throws IOException {

286 | Sockets, Files, and Streams

 String pathString = System.getProperty("java.io.tmpdir");

 String [] fileNames = new File(pathString).list();

 for (int i = 0; i < 5; i++) {

 System.out.println(fileNames[i]);

 }

 }

}

The output of this example will be as follows:

Slack Crashes

+~JF8916325484854780029.tmp

gnome-software-CAXF1Z

.XIM-unix

.X1001-lock

Process finished with exit code 0

Note

Since the contents of computers are different for every one of us – even within
specific folders – the kind of information you will see as output to the code listings
in this chapter will look different from what you will see in your terminal.

In the previous example, we have been intentionally hiding the part of the APIs that take
care of each block of code to simplify the code listing. If you remove the three import
statements from the code and follow the instructions from the IDE to add the more
granular APIs to handle this code, you will get the following instead:

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

Listing Files and Directories | 287

You have learned about almost all these APIs throughout the book up to now. Even
java.io.File was briefly presented in the chapter on exceptions to catch IOException.
In the following examples, we will follow the same principle, just to keep the program
headers as short as possible. However, it is better to reduce the lines of code.

Let's explore another way to list the contents of a directory, but this time using java.
nio:

Example02.java

import java.io.IOException;

import java.nio.file.*;

import java.util.*;

public class Example02 {

 public static void main(String[] args) throws IOException {

 String pathString = System.getProperty("java.io.tmpdir");

 List<String> fileNames = new ArrayList<>();

 DirectoryStream<Path> directoryStream;

 directoryStream = Files.newDirectoryStream(Paths.get(pathString));

 for (Path path : directoryStream) {

 fileNames.add(path.toString());

 }

 for (int i = 0; i < 5; i++) {

 System.out.println(fileNames.get(i));

 }

 }

}

288 | Sockets, Files, and Streams

The output of this listing is different from the previous example, as you can see here:

/tmp/Slack Crashes

/tmp/+~JF8916325484854780029.tmp

/tmp/gnome-software-CAXF1Z

/tmp/.XIM-unix

/tmp/.X1001-lock

Process finished with exit code 0

Here, the full path to the directories and files are shown. This has to do with the way
DirectoryStream captures information from the OS. The for loop in this example might
look new for you. This has to do with how we work with streams. We haven't explained
them yet, and we will not do so until later in this chapter. But you can see what it is
doing: it creates a buffer that stores the information about the different directories
inside. Then, it is possible to iterate through the buffer using the for(Path path :
directoryStream) statement if there is data in it. Since we don't know about its size from
the start, we will need a list to store the string containing the contents of the directory.
However, at this point, we are still not calling the java.util.stream API yet, since
DirectoryStream belongs to the java.nio API.

Another code listing that uses streams properly is shown here. Note that we do not
show its output because it's the same as the previous example:

Example03.java

import java.io.IOException;

import java.nio.file.*;

import java.util.stream.Stream;

public class Example03 {

 public static void main(String[] args) throws IOException {

 String pathString = System.getProperty("java.io.tmpdir");

 Path path = Paths.get(pathString);

Listing Files and Directories | 289

 Stream<Path> fileNames = Files.list(path);

 fileNames.limit(5).forEach(System.out::println);

 }

}

Separating Directories from Files

Imagine that you want to mark files differently from directories when listing a folder's
contents. In order to do so, you can use a method from java.nio called isDirectory(),
as shown in the following example:

Example04.java

import java.io.IOException;

import java.nio.file.*;

import java.util.*;

public class Example04 {

 public static void main(String[] args) throws IOException {

 String pathString = System.getProperty("java.io.tmpdir");

 List<String> fileNames = new ArrayList<>();

 DirectoryStream<Path> directoryStream;

 directoryStream = Files.newDirectoryStream(Paths.get(pathString));

 for (Path path : directoryStream) {

 fileNames.add(path.toString());

 }

 for (int i = 0; i < 5; i++) {

 String filePath = fileNames.get(i);

 String fileType = Files.isDirectory(Paths.get(filePath)) ? "Dir" :
"Fil";

290 | Sockets, Files, and Streams

 System.out.println(fileType + " " + filePath);

 }

 }

}

We have highlighted the part of the code that is new compared with the previous
example in which we accessed the directory using the java.nio API. Files.isDirectory()
requires an object of the Paths class. Paths.get() transforms the path from a directory
item, passed as a string to the actual instance of the Paths class. With that, Files.
isDirectory() will answer with a Boolean that is true if the item is a directory and false
if not. We used an inline if statement to assign the string Dir or Fil, depending on
whether we are dealing with a directory or with a file. The result of this code listing is
as follows:

Dir /tmp/Slack Crashes

Fil /tmp/+~JF8916325484854780029.tmp

Dir /tmp/gnome-software-CAXF1Z

Dir /tmp/.XIM-unix

Fil /tmp/.X1001-lock

Process finished with exit code 0

As you can see, in the temporary directory, there are both files and subdirectories. The
next question is how to list the content of the subdirectories. We will approach that
question as an exercise, but before we do that, try one more example that will list only
those items that are directories. This is a more advanced technique, but it will give us
an excuse to step back and try to implement our own solution with the knowledge we
have gained so far:

Example05.java

import java.io.IOException;

import java.nio.file.*;

import java.util.*;

import java.util.stream.Collectors;

public class Example05 {

 public static void main(String[] args) throws IOException {

Listing Files and Directories | 291

 String pathString = System.getProperty("user.home");

 List<Path> subDirectories = Files.walk(Paths.get(pathString), 1)

 .filter(Files::isDirectory)

 .collect(Collectors.toList());

 for (int i = 0; i < 5; i++) {

 Path filePath = subDirectories.get(i);

 String fileType = Files.isDirectory(filePath) ? "Dir" : "Fil";

 System.out.println(fileType + " " + filePath);

 }

 }

}

First, to show that there is the possibility of using other environment variables (that's
what we call the system properties as defined for your OS), we changed the folder to
user.home, which corresponds to your user space, or the directory where you will
typically store your files. Please be careful from now on to avoid any kind of accidents
with your files.

Files.walk() will extract the directory structure up to a certain depth, in our case,
one. The depth represents how many levels of subdirectories your code will be digging
into. filter(Files::isDirectory) is going to exclude anything that is not a directory.
We have not seen filters yet, but it is a clear enough concept to not need any further
explanation at this point. The final part of the call, collect(Collectors.toList()), will be
creating a list of the output. This means that the subDirectories object will contain a list
of paths to directories. That is why in this example, unlike the previous one, we do not
have to make a call to Paths.get(filePath). The output of that call will depend on what
your OS is and whatever you have in your home folder. The result on my computer,
which runs a version of Linux, is as follows:

Dir /home/<userName>

Dir /home/<userName>/.gnome

Dir /home/<userName>/Vídeos

Dir /home/<userName>/.shutter

Dir /home/<userName>/opt

Process finished with exit code 0

292 | Sockets, Files, and Streams

Here, <userName> corresponds to the user's nickname on the computer. As you can
see, this is only representing the contents of the directory initialized at pathString. The
question is, can we represent the content of the nested subdirectories to the initial
pathString in our program?

Exercise 1: Listing the Contents of Subdirectories

Let's make a program to navigate through subdirectories using the knowledge we have
gained so far. It might not be the most optimal way of solving this challenge, but it will
work:

1. Let's start with the latest example, where we used a call to Files.walk() with
a depth of 1 and a filter to list the contents – just the directories – of a certain
directory, pathString. The depth in a directory search determines how many levels
of subdirectories our will program navigate into. Level 1 is the same level as where
the search is initiated. Level 2 indicates that we should also represent the contents
of the directories inside the main directory. In principle, it should be as easy as
giving the call a higher value for depth, like this:

List<Path> subDirectories = Files.walk(Paths.get(pathString), 2)
 .filter(Files::isDirectory)
 .collect(Collectors.toList());

2. But here is the catch! When running a call like that, it is likely that there are
directories or files that your program is not allowed to access. An exception
regarding permissions will be fired and your program will stop:

Exception in thread "main" java.io.UncheckedIOException: java.nio.file.
AccessDeniedException: /home/<userName>/.gvfs
 at java.nio.file.FileTreeIterator.fetchNextIfNeeded(FileTreeIterator.
java:88)
 at java.nio.file.FileTreeIterator.hasNext(FileTreeIterator.java:104)
[...]
 at java.util.stream.ReferencePipeline.collect(ReferencePipeline.
java:499)
 at Example04.main(Example04.java:13)
Caused by: java.nio.file.AccessDeniedException: /home/<userName>/.gvfs
 at sun.nio.fs.UnixException.translateToIOException(UnixException.
java:84)
 at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.
java:102)
[...]

Listing Files and Directories | 293

 at java.nio.file.FileTreeIterator.fetchNextIfNeeded(FileTreeIterator.
java:84)
 ... 9 more

Process finished with exit code 1

3. Accessing any directory or file that is contained in any of these subdirectories,
which are under strict administrative user permissions, will make this program
crash. It is of no use to catch this exception because the result will still be a
non-functional directory listing. There is a pretty advanced technique to get this
to work, but you have not been introduced to everything you need to know in
order to do so. Instead, let's focus on the tools you have gained so far to create
your own method to dig into subdirectories and extract their contents.

4. Let's go back to Example 03 and modify it to just display directories inside user.
home:

String pathString = System.getProperty("user.home");
Path path = Paths.get(pathString);

Stream<Path> fileNames = Files.list(path).filter(Files::isDirectory);
fileNames.limit(5).forEach(System.out::println);

5. As you can see, we have applied the filter() method we saw earlier. We could
have also implemented the alternative of checking with isDirectory(), as we saw
in Example 04, but this is cleaner, and simplicity is key.

6. Based on the idea that list() can give you the contents of any folder, let's call
it again for each filename. This means we will have to modify the forEach()
statement we are using so that we can access the second level of nested
directories:

fileNames.limit(5).forEach((item) -> {
 System.out.println(item.toString());
 try {
 Stream<Path> fileNames2 = Files.list(item).
filter(Files::isDirectory);
 fileNames2.forEach(System.out::println);
 } catch (IOException ioe) {}
});

294 | Sockets, Files, and Streams

7. As you can see, the highlighted code is a repetition of the code we had earlier, with
the name of the object changed to fileNames2. This time, we removed the limit,
which means it will print the output of any subdirectories each directory has. The
real novelty is how we have gone from calling just System.out::print to writing
more complex code where we first print out the path we are at, and then we print
the paths to the subfolders of that path. We are anticipating something called a
lambda expression here. They will be explained in a later chapter. However, the
code here is easy enough for you to understand. For each (item) in the fileNames
buffer, we will perform the operations just mentioned. The result looks like this:

/home/<userName>/.gnome
/home/<userName>/.gnome/apps
/home/<userName>/Vídeos
/home/<userName>/Vídeos/technofeminism
/home/<userName>/Vídeos/Webcam
/home/<userName>/Vídeos/thumbnail
/home/<userName>/.shutter
/home/<userName>/.shutter/profiles
/home/<userName>/opt
/home/<userName>/opt/Python-3.4.4
/home/<userName>/.local
/home/<userName>/.local/share
/home/<userName>/.local/bin
/home/<userName>/.local/lib

Process finished with exit code 0

8. Also, IOException must be caught at the time of generating the list, otherwise the
code will not compile. throw IOException in the declaration of the main method
doesn't apply to the forEach() expression because it is one level deeper in the
program's scope. We are looking at an inline definition of a method in this case.
But the question is, how can we get around the idea of having an arbitrary depth in
the directory exploration?

9. Digging deeper in the java.nio API, we find the walkFileTree() method, which can
browse through directory structures up to a certain depth – two in the following
example – and offers the possibility of overriding some of its methods to decide
what happens when reaching a directory item and trying to access it. A call to this
method could look like this:

Path path = Paths.get(System.getProperty("user.home"));

Files.walkFileTree(path, Collections.emptySet(), 2, new
SimpleFileVisitor<Path>() {

Listing Files and Directories | 295

 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes
attrs) {
 System.out.println(dir.toString());
 return FileVisitResult.CONTINUE;
 }
});

10. Here, you can see how the preVisitDirectory() method is called at the time of
trying to open a directory item in a folder. A program including that line will
run until, for example, a permissions-related exception arrives. If there is no
exceptional situation, the overridden method will print out all directory names
up to two levels of depth. In the case of the home directory we are experimenting
with, we know that there is a folder that Java's default user permissions are not
enough for our program to gain access to. Therefore, if we run this program, we
will see it operate normally until an exception is reached:

/home/<userName>/.gnome/apps
/home/<userName>/Vídeos/technofeminism
/home/<userName>/Vídeos/Webcam
[...]
/home/<userName>/.local/lib
Exception in thread "main" java.nio.file.AccessDeniedException: /
home/<userName>/.gvfs
 at sun.nio.fs.UnixException.translateToIOException(UnixException.
java:84)
 at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.
java:102)
 at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.
java:107)
 at sun.nio.fs.UnixFileSystemProvider.
newDirectoryStream(UnixFileSystemProvider.java:427)
 at java.nio.file.Files.newDirectoryStream(Files.java:457)
 at java.nio.file.FileTreeWalker.visit(FileTreeWalker.java:300)
 at java.nio.file.FileTreeWalker.next(FileTreeWalker.java:372)
 at java.nio.file.Files.walkFileTree(Files.java:2706)
 at Exercise01.main(Exercise01.java:11)

Process finished with exit code 1

296 | Sockets, Files, and Streams

11. The preVisitDirectory() method will tell the walkFileTree method that it should
continue to work through its return. The issue here is that because of the
AccessDeniedException, our program will not enter preVisitDirectory(). We need
to override yet another method called visitFileFailed() to see how to handle any
kind of exception that occurs when trying to access an item in the directory:

@Override
public FileVisitResult visitFileFailed(Path file, IOException exc)
 throws IOException {
 System.out.println("visitFileFailed: " + file);
 return FileVisitResult.CONTINUE;
}
The output of this will be the desired result, as follows:
/home/<userName>/.gnome/apps
/home/<userName>/Vídeos/technofeminism
[...]
/home/<userName>/.local/lib
visitFileFailed: /home/<userName>/.gvfs
/home/<userName>/.config/Atom
[...]
/home/<userName>/drive_c/Program Files
/home/<userName>/drive_c/Program Files (x86)
/home/<userName>/drive_c/users
/home/<userName>/drive_c/windows
/home/<userName>/.swt/lib

Process finished with exit code 0

The conclusion of this process is that even though there are many ways to
perform the same task, the way those solutions are implemented will allow us
to have control. In this case, the walk() method is not enough for us to handle
exceptions easily, so we had to explore an alternative that, in the end, turned out
to be easier to understand.

For reference, the final code resulting from this exercise should be as follows:

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.Collections;

public class Exercise01 {

Creating and Writing to a File | 297

 public static void main(String[] args) throws IOException {
 Path path = Paths.get(System.getProperty("user.home"));

 Files.walkFileTree(path, Collections.emptySet(), 2, new
SimpleFileVisitor<Path>() {
 @Override
 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
 System.out.println(dir.toString());
 return FileVisitResult.CONTINUE;
 }
 @Override
 public FileVisitResult visitFileFailed(Path file, IOException
exc)
 throws IOException {
 System.out.println("visitFileFailed: " + file);
 return FileVisitResult.CONTINUE;
 }
 });
 }
}

Creating and Writing to a File
Once we are familiar with how to list the contents of directories, the next logical step
is to proceed with the creation of files and folders. Let's start by creating and writing
data into a file by using java.nio. The easiest way to create a file using this API requires
calling the following:

Files.createFile(newFilePath);

At the same time, creating a directory is as simple as this:

Files.createDirectories(newDirPath);

As a good practice, you should check whether directories and/or files exist prior to
creating any with the same name. There is a simple method that will look into any
objects of the Path class to see whether any can be found in the folder our program is
exploring:

Files.exists(path);

298 | Sockets, Files, and Streams

Let's put all of this together into a single example that will create a folder, and then a
file inside the folder:

Example06.java

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

public class Example06 {

 public static void main(String[] args) {

 String pathString = System.getProperty("user.home") + "/javaTemp/";

 Path pathDirectory = Paths.get(pathString);

 if(Files.exists(pathDirectory)) {

 System.out.println("WARNING: directory exists already at: " +
pathString);

 } else {

 try {

 // Create the directory

 Files.createDirectories(pathDirectory);

 System.out.println("New directory created at: " +
pathString);

 } catch (IOException ioe) {

 System.out.println("Could not create the directory");

 System.out.println("EXCEPTION: " + ioe.getMessage());

 }

 }

Creating and Writing to a File | 299

 String fileName = "temp.txt";

 Path pathFile = Paths.get(pathString + fileName);

 if(Files.exists(pathFile)) {

 System.out.println("WARNING: file exists already at: " +
pathFile);

 } else {

 try {

 // Create the file

 Files.createFile(pathFile);

 System.out.println("New file created at: " + pathFile);

 } catch (IOException ioe) {

 System.out.println("Could not create the file");

 System.out.println("EXCEPTION: " + ioe.getMessage());

 }

 }

 }

}

The result of this code listing, the first time you execute it, should be as follows:

New directory created at: /home/<userName>/javaTemp/

New file created at: /home/<userName>/javaTemp/temp.txt

Process finished with exit code 0

Any subsequent executions should give us the following result:

WARNING: directory exists already at: /home/<userName>/javaTemp/

WARNING: file exists already at: /home/<userName>/javaTemp/temp.txt

Process finished with exit code 0

300 | Sockets, Files, and Streams

This created a file that is essentially empty. Making use of the terminal, you could list
the size of the file by calling the ls -lah ~/javaTemp/temp.txt command, which will
throw a result like the following:

-rw-r--r-- 1 userName dialout 0 maj 15 13:57 /[...]/temp.txt

This means that the file takes zero bytes of hard drive space. This means that the file
is there, but it is empty. Writing text to the file can easily be done using a method from
the java.nio.file.Files API: write(). The only issue is that it is not trivial passing
arguments to this method. In its easiest interface, you must pass two arguments: the
Path object and a List containing a text. On top of that, there is a risk that the file may
not exist, which requires handling the classic IOException. It could be something like
this:

try {

 Files.write(pathFile, Arrays.asList("hola"));

 System.out.println("Text added to the file: " + pathFile);

} catch (IOException ioe) {

 System.out.println("EXCEPTION: " + ioe.getMessage());

}

Note

When calling write() to write text to a file, you don't have to add the end-of-line
symbol at the end of the string. It will be added automatically by the method as
one would expect when using commands such as println().

Once you have added the last code snippet to the latest example, the program will give
the following result:

WARNING: directory exists already at: /home/<userName>/javaTemp/

WARNING: file exists already at: /home/<userName>/javaTemp/temp.txt

Text added to the file: /home/<userName>/javaTemp/temp.txt

Process finished with exit code 0

The previous example just writes text to the file but also deletes everything that was
there before. In order to append text instead, you need to modify the call to the write
command:

Files.write(pathFile, Arrays.asList("hola"), StandardOpenOption.APPEND);

Creating and Writing to a File | 301

The highlighted part of the call is responsible for determining what text will be added
at the end of the file instead of erasing everything and writing everything from scratch.
The following example simply appends text to an existing file:

Example07.java

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

import java.util.Arrays;

public class Example07 {

 public static void main(String[] args) {

 String pathString = System.getProperty("user.home") + "/javaTemp/
temp.txt";

 Path pathFile = Paths.get(pathString);

 String text = "Hola,\nme da un refresco,\npor favor?";

 if(Files.exists(pathFile))

 try {

 Files.write(pathFile, Arrays.asList(text),
StandardOpenOption.APPEND);

 System.out.println("Text added to the file: " + pathFile);

 } catch (IOException ioe) {

 System.out.println("EXCEPTION: " + ioe.getMessage());

 }

 }

}

302 | Sockets, Files, and Streams

This program appended a whole sentence to the example text file. The final content of
the file will read is as follows:

hola

Hola,

me da un refresco,

por favor?

This is asking for a soda in Spanish. Let's examine, in the next section, how to read the
file we just created.

Activity 1: Writing the Directory Structure to a File

This activity's goal is to program an application that will read the directory structure,
starting from a directory that is stored in a variable. The results will be written to a
text file so that for each nesting level, you will include either a tab space or four white
spaces to indent nested folders visually from their respective parents. Also, you will
have to show only the name of the folder and not the full path to it. In other words, the
content of the file should correspond to the following structure:

Directory structure for folder: /folderA/folderB/.../folderN

folderN

 folderN1

 folderN11

 folderN12

 ...

 folderN2

 folderN21

 folderN22

 ...

 folderN3

 folderN31

 folderN32

 ...

 ...

 folderNN

Creating and Writing to a File | 303

1. The program that you will have to create will need to have a certain depth of
directories as a parameter, but we recommend you don't go too deep with this – a
maximum of 10 is fine:

Files.walkFileTree(path, Collections.emptySet(), 10, new
SimpleFileVisitor<Path>() ...

2. When working with the obtained paths to the directories, you need to split the
resulting string using the / symbol as a separator and then take the last item.
Additionally, you will have to print the number of indents based on the depth,
which will require having some code that can estimate the current depth given the
initial path. A trick for solving those problems could be by making the content of
preVisitDirectory() like the following:

// get the path to the init directory
String [] pathArray = path.toString().split("/");
int depthInit = pathArray.length;

// get the path to the current folder
String [] fileArray = dir.toString().split("/");
int depthCurrent = fileArray.length;

// write the indents
for (int i = depthInit; i < depthCurrent; i++) {
 System.out.print(" ");
 // HINT: copy to list or write to file here
}

// write the directory name
System.out.println(fileArray[fileArray.length – 1]);
// HINT: copy to list or write to file here

Note

The solution for this activity can be found on page 853.

304 | Sockets, Files, and Streams

Reading an Existing File
Reading a file can be done in a simple way. The question is about where you will store
the data once you have it. We will work with lists, iterate through the lists, and then
print out the results to System.out. The next example uses readAllLines() to open the
existing file and reads the contents into the computer's memory, putting them into the
fileContent list. After that, we use an iterator to go through each line and send them to
the Terminal:

Example08.java

import java.io.IOException;

import java.nio.file.*;

import java.util.List;

public class Example08 {

 public static void main(String[] args) {

 String pathString = System.getProperty("user.home") + "/javaTemp/
temp.txt";

 Path pathFile = Paths.get(pathString);

 try {

 List<String> fileContent = Files.readAllLines(pathFile);

 // this will go through the buffer containing the whole file

 // and print it line by one to System.out

 for (String content:fileContent){

 System.out.println(content);

 }

 } catch (IOException ioe) {

 System.out.println("WARNING: there was an issue with the file");

 }

 }

}

Reading an Existing File | 305

The temp.txt file is the one where we saved a message earlier; therefore, the result will
be as follows:

hola

Hola,

me da un refresco,

por favor?

Process finished with exit code 0

If the file wasn't there (you may have deleted it after the previous exercise), you would
instead get the following:

WARNING: there was an issue with the file

Process finished with exit code 0

A different approach that gets the same result, but avoids Lists and uses Streams
instead, is as follows:

Example09.java

import java.io.IOException;

import java.nio.file.*;

public class Example09 {

 public static void main(String[] args) {

 String pathString = System.getProperty("user.home") + "/javaTemp/
temp.txt";

 Path pathFile = Paths.get(pathString);

 try {

 Files.lines(pathFile).forEach(System.out::println);

 } catch (IOException ioe) {

306 | Sockets, Files, and Streams

 System.out.println("WARNING: there was an issue with the file");

 }

 }

}

Reading a Properties File
Property files store key-value (also called key-map) pairs in a standard format. An
example of the content of such a file is:

#user information

name=Ramiro

familyName=Rodriguez

userName=ramiroz

age=37

bgColor=#000000

This is a made-up example of the properties file for an imaginary user. Note how the
comment is marked using a hashtag symbol, #. You will use properties files to store the
configurable parameters of applications or even for localization strings.

Let's try reading a properties file. You can create a text file in the same temporary
folder that we created in the user's space earlier in the chapter. Name it user.properties
and write to it the contents of the preceding example. This follows an example of a
program using java.io to read and print out the contents of a properties file. Given the
way Java works, there is no better alternative to performing this task than using java.
nio.

Note

Reading the contents of a properties file consists not just in getting each line of the
file, but also parsing the key-value pairs and being able to extract data from them.

The first thing you will notice is that reading the properties file requires opening
a file as a stream – again, a concept we will explore later in the chapter – using
FileInputStream. From there, the Properties class contains a method called load() that
can extract the key-value pairs from the data stream. To clean up the code listing, we
have separated the loading and printing aspects of the code from the ones handling the
opening of the file. Additionally, we have made sure that all exceptions are handled in
the main class, just to have a single point where we can manage them, which makes for
more readable code.

Reading a Properties File | 307

Example10.java

import java.io.*;

import java.util.Properties;

public class Example10 {

 public static void PrintOutProperties(FileInputStream fileStream) throws
IOException{

 Properties properties = new Properties();

 properties.load(fileStream);

 System.out.println("name: " + properties.getProperty("name"));

 System.out.println("family name: " + properties.
getProperty("familyName"));

 System.out.println("nick: " + properties.getProperty("userName"));

 System.out.println("age: " + properties.getProperty("age"));

 System.out.println("background color: " + properties.
getProperty("bgColor"));

 }

 public static void main(String[] args) throws IOException {

 String pathString = System.getProperty("user.home") + "/javaTemp/
user.properties";

 FileInputStream fileStream = null;

 try {

 fileStream = new FileInputStream(pathString);

 PrintOutProperties(fileStream);

 } catch (FileNotFoundException fnfe) {

 System.out.println("WARNING: could not find the properties file");

 } catch (IOException ioe) {

308 | Sockets, Files, and Streams

 System.out.println("WARNING: problem processing the properties
file");

 } finally {

 if (fileStream != null) {

 fileStream.close();

 }

 }

 }

}

There is also an aspect that we have not yet discussed in this chapter. Streams must be
closed once you are done working with them. This means that they will be unavailable
for further data handling after you close them. This step is important for avoiding
any kind of JVM memory issues during runtime. Therefore, the example code calls
fileStream.close() once we are done loading the properties file. If you remember the
Good Practices section in Chapter 5, Exceptions, it was mentioned that you should close
streams inside the finally statement. This is also the reason why this program must
throw IOException in the main method. If you wanted to handle this in a clean way (by
avoiding nested try-catch statements or using throws IOException in the main method),
you can wrap the whole try block in a method that you would, in turn, call from the
main method where you could catch the IOException. Look at the forthcoming exercise
to see how this is done.

The output of the previous example is as follows:

name: Ramiro

family name: Rodriguez

nick: ramiroz

age: 37

background color: #000000

Process finished with exit code 0

There are interesting methods within the Properties class for you to explore. For
example, properties.keys() will return an enumeration of all the keys in the file, in
our case name, familyName, userName, and so on. This specific method is inherited by
Properties because of its relation to the Hashtable class. It is recommended that you
read through the API's documentation for this class to discover the other interesting
methods you can make use of.

Reading a Properties File | 309

When it comes to the properties files location, they could be stored inside the
classpath, sometimes even inside the actual JAR file, which provides a very compact way
to distribute applications with properties files inside.

The next aspect to explore is how to programmatically make your own properties files.
Let's look into this topic through a step-by-step exercise.

Exercise 2: Creating a Properties File from the CLI

In this exercise, you will be making an application capable of creating a properties file
(or modifying an existing one) from input on the CLI. You will pass the properties file's
name and key-value pairs as arguments to your program. This will allow you to create
any kind of properties file easily. An example of the expected call to the application will
be as follows:

usr@localhost:~/[...]/Exercise02$ java Exercise02 myProperties.properties
name=Petra

The process of operations in such a program is simple. First, you need to check whether
the file exists. If so, load the properties. Then, add the new properties or modify the
existing ones with the data handed over as an argument. Later, write the information
to the file and give feedback to the user on the final content sent to the file. In that
way, the user will be able to see that the modifications they made are working without
having to open the file.

Let's see how to make such a program step by step:

1. Open IntelliJ and create a new Java CLI project called Exercise02.

2. First, we need to check whether the properties file we are defining in the CLI
already exists. The program we are going to implement will check whether the file
exists. If that is the case, it will open it and load the existing properties. The rest of
the arguments in the CLI will be used to either modify existing key-value pairs or
add new ones. To see whether a properties file exists and load it, we will need to
execute the following:

if (Files.exists(pathFile)) {
 properties = LoadProperties(pathString);
}

310 | Sockets, Files, and Streams

3. Loading the properties is done reusing the code from Example 10, but wrapping
it into the LoadPoperties() method that we called in the previous step. Let's
implement it to return an object of the Properties class (note what we did to
implement the finally statement to make sure that the stream is closed after a
possible exception. We had to initialize the stream as null):

public static Properties LoadProperties (String pathString)
 throws IOException {
 Properties properties = new Properties();

 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(pathString);
 properties.load(fileInputStream);
 } catch (FileNotFoundException fnfe) {
 System.out.println("WARNING: could not find the properties file");
 } catch (IOException ioe) {
 System.out.println("WARNING: problem processing the properties
file");
 } finally {
 if (fileInputStream != null) {
 fileInputStream.close();
 }
 }

 return properties;
}

4. If the file doesn't exist, it will be created when calling the store() method later –
there is no need to create an empty file at this point.

5. Next, we need to read the remaining arguments at the CLI from the arg[] array
and push them, one by one, into the properties object. The properties object
inherits its behavior from the Hashtable class, which handles key-value pairs.
The setProperty() method will be used to either modify an existing property
or to write a new one. Since the arguments are expressed as a string formatted
as key=value, we can use split() to separate the arguments we need to pass to
setProperty():

for (int i = 1; i < args.length; i++) {
 String [] keyValue = args[i].split("=");
 properties.setProperty(keyValue[0], keyValue[1]);
}

Reading a Properties File | 311

6. We are going to be writing to a file, but instead of using a stream that will be
inputting data, we will use one that will be outputting data. Its name is simple
to infer, FileOutputStream. The declaration of a variable of that class will be as
follows:

FileOutputStream fileOutputStream = new FileOutputStream(pathString);

7. To add some comments to the properties file, we simply need to add a parameter
to the store() method. In this case, just to add some contextual information, let's
add a timestamp by calling the following:

java.time.LocalDate.now()

8. We call the store() method, which will send the properties into the file. We will
be overwriting whatever existed in it before. This call uses, as an argument, the
output Stream and whatever comment we have chosen:

properties.store(fileOutputStream, "# modified on: " + java.time.LocalDate.
now());

9. To improve the program's usability, make a method that will iterate through the
whole properties set and print it out. In that way, the user can see whether they
wrote things properly:

public static void PrintOutProperties(Properties properties) {
 Enumeration keys = properties.keys();
 for (int i = 0; i < properties.size(); i++) {
 String key = keys.nextElement().toString();
 System.out.println(key + ": " + properties.getProperty(key));
 }
}

The code for the full exercise is available on GitHub:

10. Run the code with, for example, the following call in the CLI. In this case, we
are intentionally modifying the file we have been working with throughout the
chapter. The program will print out the modified set. Please note that there is no
clear order to the key-value pairs:

[...]/Exercise02$ java Exercise02 user.properties name=Pedro
age: 37
familyName: Rodriguez
name: Pedro
bgColor: #000000
userName: ramiroz

312 | Sockets, Files, and Streams

11. Open the resulting file in a text editor and see whether your changes took effect
or not. Also note that the comments, as well as the \ sign added by the store()
method to avoid the color parameter (which is expressed in HEX format using the
hashtag symbol) being misunderstood as a comment.

12. You could now consider making other modifications to the program so it can
clear up an existing file, append several files, and more. You could do that using
different commands as arguments.

What Are Streams?

Streams in Java are sequences of bytes and eventually, by extension, also objects. You
can understand a stream as a flow of data between two places. Creating a variable of the
stream type is like opening a peephole to look into a pipe carrying water between two
containers and seeing the water passing through. What we are trying to say is that data
inside a stream is always changing.

As we have seen before, we have two different ways of looking at things in this chapter:
one through the lens of the java.io API and one through the java.nio API. While
the second one works at a more abstract and therefore easier level, the first one is
extremely powerful and low-level. Continuing with the water analogy, java.io would
allow you to see the drops, while java.nio would let you play only with 1-liter bottles at
a time. Each one of them has its advantages.

Streams in java.io can be as granular as going down to the level of the byte. If we were,
for example, to look at a stream of sound data coming from the computer's microphone
input, we would see the different bytes representing the sound, one by one. The other
API, java.nio is buffer-oriented, and not so much stream-oriented. While this is true,
there is a way to work with streams in java.nio. Because of its simplicity, in this section,
we will see an example relating to java.nio, while in the following section, we will deal
with streams using the API that is best prepared is to handle them: java.io.

Streams in java.nio are sequences of objects (not arbitrary unsorted data). Since those
objects belong to specific classes, streams offer the possibility of applying the objects'
corresponding methods to the stream directly. The result of applying a method to a
stream is yet another stream, which means that methods can, therefore, be pipelined.

We have seen different streams in this chapter, mainly because streams play such
a big role in Java that it is almost impossible to do any kind of file-related example
without using them. Now you will see how they work in more depth. This will help you
understand some of the aspects that may not have been so clear to you so far.

Reading a Properties File | 313

The nature of streams is typically hard to grasp in the first place. As mentioned, they are
not plain data structures. Information is arranged in the form of objects. Input is taken
from Arrays, I/O channels in the program, or Collections. The kinds of operation we
can perform on streams are as follows:

• map (intermediate): This will let you map objects following a predicate that you
can give as an argument.

• filter (intermediate): This is used to exclude some elements from the whole
stream.

• sorted (intermediate): This will sort the stream.

• collect (terminal): This will put the results of the different operations into an
object a form, for example, a list.

• forEach (terminal): This will iterate through all of the objects in the stream.

• reduce (terminal): This operates the stream to answer a single value.

We have marked each one of the operations with either intermediate or terminal. The
former means that the operation that will be performed will give another stream as a
result, and therefore it should be possible to chain another operation onto it afterward.
The latter means that there cannot be further operations performed after that one has
finished.

Until now, you have seen some of those operations in action in this chapter. You can go
back to the examples where those operations showed up and revisit them. It will make
it a lot clearer what filter(), collect(), and forEach() are doing. Let's see the other
three operations in action:

Example11.java

import java.io.IOException;

import java.nio.file.*;

import java.util.*;

public class Example11 {

 public static void main(String[] args) {

 String pathString = System.getProperty("user.home") + "/javaTemp/
numbers.txt";

314 | Sockets, Files, and Streams

 Path pathFile = Paths.get(pathString);

 // if the numbers file doesn't exist, create a file with 10 random
numbers

 // between 0 and 10, so that we can make something with them

 if (Files.notExists(pathFile)) {

 int [] numbers = new int[10];

 for (int i = 0; i < 10; i++) {

 numbers[i] = (int) (Math.random() * 10);

 }

The complete code of Example11.java is available at Chapter 1/Code.java.

This example is divided into two parts. The first half of the program checks whether
a file called numbers.txt exists in the javaTemp folder that we have been using
throughout the chapter. If this file doesn't exist, the program creates it with Files.
createFile(pathFile) and then populates it with 10 random numbers previously stored
in an array of int called numbers. The call to Files.write(pathFile, Arrays.asList("" +
n), StandardOpenOption.APPEND) is responsible for adding each number in the array as
separate lines in the file. The resulting file will look like this:

<contents of javaTemp/numbers.txt>

5

3

1

3

6

2

6

2

7

8

Reading a Properties File | 315

The idea of having one number per line is that we can then read the file as a list,
transform the list into a stream, and then start making different operations. The
simplest operation consists of calling fileContent.forEach(System.out::print), which
will print the raw data as the output:

Raw data

5313626278

Before applying other operations, such as sorted(), we need to transform the data
into a stream, something that is done with the stream() method. This is done using the
following:

fileContent.stream().sorted().forEach(System.out::print)

The result of this operation will be sorted. Equal values will show up side by side,
repeated:

Sorted data

1223356678

With map(), we will be able to handle the data and perform different operations on it.
For example, here, we multiply it by 2 and print it to the terminal:

fileContent.stream().map(x -> Integer.parseInt(x)*2).forEach(System.
out::print):

The result is as follows:

Mapped data

106261241241416

Finally, there are different terminations that can be used. To do this, we will use
lambda expressions, which are not introduced until a much later chapter. However, the
following is easy enough to not need any further explanation. To perform the sum of all
the numbers, we need to do the following operation:

System.out.println(

 fileContent

 .stream()

 .map(x -> Integer.parseInt(x))

 .reduce(Integer::sum));

316 | Sockets, Files, and Streams

The following is the result:

Sum of data

Optional[43]

Note that, when reading the file, we have read it as a List of String, and therefore, the
numbers are stored as strings. This means that, in order to operate them as numbers,
we need to cast them back into integers, which is done through the call to Integer.
parseInt(x).

The Different Streams of the Java Language

To discuss types of streams, we need to take one step back and move away from
java.nio and into java.io. This API is the one that has the best support for streams.
Depending on the situation, streams can either go into the program or out from the
program. This gives us two main interfaces for streams: InputStream and OutputStream.

Within each of those two main categories, there are four ways to look at streams from
the perspective of the type of data they are dealing with: File, ByteArray, Filter, or
Object. In other words, there is a FileInputStream class, a FileOutputStream class, a
ByteArrayInputStream class, and more.

According to Javadocs, it is important to understand that there is a hierarchy of
streams. All streams are built on top of byte streams. But we should try, as much as
possible, to use the kind of stream type that is the closest in the hierarchy to the kind
of data we are using. For example, if we were to deal with a series of images coming
from the internet, we should avoid working at a low level with byte streams to store the
images, and we should use object streams instead.

Note

Read more about streams in the official Java documentation at https://docs.oracle.
com/javase/tutorial/essential/io/bytestreams.html.

How would it then open and print out a file using java.io and FileInputStream? We saw
a bit of this when dealing with the properties files. Let's do the lowest-level example
possible that will read a file and print out its contents byte by byte:

Example12.java

import java.io.FileInputStream;

import java.io.IOException;

public class Example12 {

https://docs.oracle.com/javase/tutorial/essential/io/bytestreams.html
https://docs.oracle.com/javase/tutorial/essential/io/bytestreams.html

Reading a Properties File | 317

 public static void main(String[] args) throws IOException {

 FileInputStream inStream = null;

 try {

 inStream = new FileInputStream(

 System.getProperty("user.home") + "/javaTemp/temp.
txt");

 int c;

 while ((c = inStream.read()) != -1) {

 System.out.print(c);

 }

 } finally {

 if (inStream != null) {

 inStream.close();

 }

 }

 }

}

This example opens the temp.txt file we created earlier in the chapter and prints out its
contents. Remember that it contained some plain text in the lines of hola\nHola,\nme da
un When looking at the terminal, what you will read will be something like this:

1041111089710721111089744101091013210097321171103211410110211410111599111441
011211111432102971181111146310

Process finished with exit code 0

You might be wondering – what happened to the text? As you know, every symbol of
the English alphabet is represented by a standard called ASCII. This standard represents
each symbol with a number. It differentiates uppercase from lowercase, different
symbols such as exclamation marks or hashtags, numbers, and more. An excerpt of the
ASCII table representing the lowercase symbols is as follows:

97 a 107 k 117 u

98 b 108 l 118 v

99 c 109 m 119 w

318 | Sockets, Files, and Streams

100 d 110 n 120 x

101 e 111 o 121 y

102 f 112 p 122 z

103 g 113 q

104 h 114 r

105 I 115 s

106 j 116 t

If you start taking the stream of numbers you get and parse it using the table for the
ASCII symbols, you will see that 104 corresponds to h, 111 to o, 108 to l, and 97 to a. If
you had a full ASCII table (including capitals, symbols, and numbers) you would be able
to decode the whole message. We did get the content of the file, but we didn't interpret
the data we got in our program, which rendered the output unreadable. This is the
reason why you should try to use a higher-level kind of stream, which will stop you
having to decode the information at such a low level, which for characters – as in this
example – is not such a big deal. But data transfers between software entities can get
complex very quickly.

Let's examine another way of performing the same operation of opening the file, but
with a different type of stream. In this case, we will use FileReader, which is a different
type of stream, on top of FileInputStream. To get the stream in the form of characters
and pass it over to BufferedReader, which is a stream class that includes the possibility
of reading full lines of a text. Since we know that our file contains text arranged in lines,
this will probably be the best way to see the contents of the file in a neat way:

Example13.java

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class Example13 {

 public static void main(String[] args) throws IOException {

 BufferedReader inStream = null;

 try {

 FileReader fileReader = new FileReader(

Reading a Properties File | 319

 System.getProperty("user.home") + "/javaTemp/temp.txt");

 inStream = new BufferedReader(fileReader);

 String line;

 while ((line = inStream.readLine()) != null) {

 System.out.println(line);

 }

 } finally {

 if (inStream != null) {

 inStream.close();

 }

 }

 }

}

The output of this example will be what we expected to see in the first place:

hola

Hola,

me da un refresco,

por favor?

Process finished with exit code 0

In a nutshell, the information is the same, but it matters how we look at it. Using a
higher-level class from the stream family will offer us better methods to handle the
same information in a different yet more usable way.

There is another concept that we haven't introduced yet, and that is the difference
between buffered streams and unbuffered streams. When working at a low level with
java.io, you will be most likely working in an unbuffered way. This means that you will
be addressing the OS directly from your code. Those exchanges are computationally
hungry, especially in comparison with loading any information into a buffer inside the
JVM and operating directly there instead (it doesn't mean that it will not be accessing
the OS directly – it will, but it will optimize its use.

320 | Sockets, Files, and Streams

This example is clearly using BufferedReader, which differs from the previous one. We
mentioned earlier in the chapter how java.nio works with buffers – this means that,
unlike java.io, it doesn't offer the possibility of doing those direct calls to the OS. In
a way, it is better because it is less prone to errors. If you have a properly constructed
API with all the methods needed to perform whatever you want to do, you should avoid
using other less optimal tools.

What Are Sockets?

A socket is the endpoint of a bidirectional communication channel between two
programs operating over a network. It is as if a virtual cable was connecting those
two programs, offering the possibility of sending data back and forth. Java's APIs have
classes to easily construct programs at both ends of the communication. The exchanges
on, for example, the internet happen over a TCP/IP network, where we distinguish
between the roles of those that participate in the communication. There are servers
and clients. The former can be implemented using the ServerSocket class, while the
latter can use the socket class.

The way the communication process works involves both parties. The client will send a
request to the server asking for a connection. This is done through one of the available
TCP/IP ports on your computer. If the connection is accepted, the socket is opened at
both ends. The endpoints at the server and the client will be uniquely identifiable. This
means that you will be able to use that port for multiple connections.

Knowing how to deal with sockets, together with streams, will allow you to work with
information coming directly from the internet, which will bring your programs to the
next level. In the following sections, we are going to see how to implement a client and
a server to prototype this communication.

Note

While working with these examples, make sure your computer's security system
(firewalls and the like) allow communicating over whatever port you decide to use.
It wouldn't be the first time someone has wasted several hours thinking their code
is wrong when the issue is somewhere else.

Reading a Properties File | 321

Creating a SocketServer

Trying to read data from sockets requires a little involvement from existing networked
resources. If you want to have a program that connects to a server, you will require
a known server before you can even try the connection. On the internet, there are
servers offering the possibility of connecting, opening a socket, sending data, and
receiving it back. These servers are called EchoServers – a name that leaves little doubt
about what they do.

On the other hand, you can implement your own server and play it safe. Oracle offers
a simple example of an EchoServer for you to test. This is going to be a new kind of
challenge because you are going to need to run two programs on your computer at
once: the EchoServer and whatever client you will implement.

Let's start by implementing the EchoServer that you can get from https://docs.oracle.
com/javase/tutorial/networking/sockets/examples/EchoServer.java. The code for
you to analyze is included in the next example. Note that we have removed the opening
disclaimer and code comments to keep it short:

Example14.java (EchoServer)

import java.net.*;

import java.io.*;

public class Example14 {

 public static void main(String[] args) throws IOException {

 if (args.length != 1) {

 System.err.println("Usage: java Example14 <port number>");

 System.exit(1);

 }

 int portNumber = Integer.parseInt(args[0]);

 try (

 ServerSocket serverSocket =

 new ServerSocket(Integer.parseInt(args[0]));

 Socket clientSocket = serverSocket.accept();

https://docs.oracle.com/javase/tutorial/networking/sockets/examples/EchoServer.java
https://docs.oracle.com/javase/tutorial/networking/sockets/examples/EchoServer.java

322 | Sockets, Files, and Streams

 PrintWriter out =

 new PrintWriter(clientSocket.getOutputStream(), true);

 BufferedReader in = new BufferedReader(

 new InputStreamReader(clientSocket.getInputStream()));

) {

 String inputLine;

 while ((inputLine = in.readLine()) != null) {

 out.println(inputLine);

 }

 } catch (IOException e) {

 System.out.println("Exception caught when trying to listen on
port "

 + portNumber + " or listening for a connection");

 System.out.println(e.getMessage());

 }

 }

}

The first part of the code checks that you have selected a port for your server to be
listening to. This port number is given as an argument on the CLI:

if (args.length != 1) {

 System.err.println("Usage: java EchoServer <port number>");

 System.exit(1);

}

If no port was chosen, this program will simply exit. Remember, as we mentioned
earlier, to make sure that whatever port you use, it is not blocked by your computer's
firewall.

The call to ServerSocket(Integer.parseInt(args[0])) will start the object of the
ServerSocket class, configuring the port defined in the arguments to call the program as
the one to listen to. Later, serverSocket.accept() will block the server and make it wait
until a connection arrives. Once it arrives, it will be automatically accepted.

Reading a Properties File | 323

In the beginning code in this example, there are two different streams: BufferReader
in for the input, and PrinterWriter out for the output. As soon as a connection is
established, in will get the data, and out will send it – without any further processing
– back to the socket. The server program will run until forcing an exit when pressing
Ctrl+C on the terminal.

To get the server started, you will need to compile it using the build icon (the hammer)
and call it from the terminal using a specific port name. Try port 8080, because that is
typically used for experiments like the one, we are going to do now:

usr@localhost:~/IdeaProjects/[...]/Example14$ java Example14 8080

If everything goes as planned, the program will start running and will not print any
messages. It is there just waiting for a connection to be made.

Note

Remember that, by default, your own computer always has the IP number
127.0.0.1, which allows you to figure out the IP number of your computer in the
network. We will use this for the connection with the client.

Writing Data on and Reading Data from a Socket

While our server runs in the background, we will need to produce a simple program
that will open a socket and send something to the server. To do this, you need to create
a new project in the IDE but in a separate window. Remember that your server is
currently running!

The simplest client that you can produce is Oracle's companion to the EchoServer. For
obvious reasons, it is called EchoClient, and you can find it at https://docs.oracle.com/
javase/tutorial/networking/sockets/examples/EchoClient.java.

Example15.java (EchoClient)

import java.io.*;

import java.net.*;

public class Example15 {

 public static void main(String[] args) throws IOException {

 if (args.length != 2) {

 System.err.println(

https://docs.oracle.com/javase/tutorial/networking/sockets/examples/EchoClient.java
https://docs.oracle.com/javase/tutorial/networking/sockets/examples/EchoClient.java

324 | Sockets, Files, and Streams

 "Usage: java EchoClient <host name> <port number>");

 System.exit(1);

 }

 String hostName = args[0];

 int portNumber = Integer.parseInt(args[1]);

 try (

 Socket echoSocket = new Socket(hostName, portNumber);

 PrintWriter out =

 new PrintWriter(echoSocket.getOutputStream(), true);

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(echoSocket.
getInputStream()));

 BufferedReader stdIn =

 new BufferedReader(

 new InputStreamReader(System.in))

) {

 String userInput;

 while ((userInput = stdIn.readLine()) != null) {

 out.println(userInput);

 System.out.println("echo: " + in.readLine());

 }

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host " + hostName);

 System.exit(1);

 } catch (IOException e) {

 System.err.println("Couldn't get I/O for the connection to " +

 hostName);

 System.exit(1);

 }

Reading a Properties File | 325

 }

}

Note that, in this case, instead of creating a SocketServer object, we create a Socket
object. This second program introduces the idea of using one of the system streams
to capture data and send it to the socket: System.in. This program will run for as long
as the input in System.in is not null. This is something that cannot really be achieved
through direct interaction with System.in, because we will be just pressing keys on the
keyboard. Therefore, you will need to call Ctrl + C to stop the client, just as was the case
with the server.

Note how sending data to the server is done with out.println(), where out is a
PrinterWriter object, a stream, that is constructed on top of the Socket. On the other
hand, to read the incoming Socket, we have implemented a BufferedReader object
called in. Since it is buffered, we can poll the object whenever we want. The call to out.
readLine() and in.readLine() is blocking. It will not stop reading from System.in or
from the socket until the end of the line has been reached.

This makes this reader synchronous because it waits for the user to type, sends the
data, and, finally, waits until getting an answer from the socket.

Note

Every operating system makes three different system streams available to the JVM:
System.in, System.out, and System.err. As they are streams, you can use the full
power of the Stream classes to read data from them, put them into buffers, parse
them, and so on.

To get the client started, you will need to compile it using the build icon (the hammer)
and call it from the terminal using a specific IP and port name. Try the IP 127.0.0.1 and
port 8080. Remember that you need to start the server before you start the client:

usr@localhost:~/IdeaProjects/[...]/Example14$ java Example15 127.0.0.1 8080

From that moment on, and until you issue the Ctrl + C command, for as long as the
server is connected, you will be able to type whatever you want on the terminal, and
when you press Enter, it will be sent to and from the server. Upon arrival, the client will
write it to the terminal by adding the message echo before it. We highlight the response
coming from the server by making the typeface bold:

Hello

echo: Hello

Also, when forcing an exit on the client, it will force an exit on the server.

326 | Sockets, Files, and Streams

Activity 2: Improving the EchoServer and EchoClient Programs

In this activity, you will have to make improvements to the programs in the last two
sections. First, you will have to add some text to the data relayed on the server to make
it easier for the user to understand that the data was sent back from the server. Let's
make it a counter that will act as a sort of a unique ID for the exchange. In this way, the
answer from the server will be shown with a number added to the message:

Hello

echo: 37-Hello

On the other hand, you should add a command in the client that will send a termination
signal to the server, which will exit, and then it will exit itself. To terminate any of the
programs, you can call System.exit() after sending a message to the terminal informing
the user that the program is ending. As a termination command, you could make
something simple, such as a message that contains the word bye.

1. The expected results will require you to modify both the server and the client
in a very similar way. On the client-side, you will have to do something like the
following:

while ((userInput = stdIn.readLine()) != null) {
 out.println(userInput);
 if (userInput.substring(0,3).equals("bye")) {
 System.out.println("Bye bye!");
 System.exit(0);
 }
 System.out.println("echo: " + in.readLine());
}

On the server, the modifications should look like the following:

int contID = 0;
while ((inputLine = in.readLine()) != null) {
 contID++;
 out.println(contID + "-" + inputLine);
 if (inputLine.substring(0,3).equals("bye")) {
 System.out.println("Bye bye!");
 System.exit(0);
 }
}

Reading a Properties File | 327

The expected interaction between the server and the client should be as follows:

Figure 8.1: The interaction between the client and the server.

Note

The solution for this activity can be found on page 854.

328 | Sockets, Files, and Streams

Blocking and Non-Blocking Calls

This is a topic we have been covering in this chapter, but we have not addressed it
directly. The java.io read and write operations are blocking. This means that the
program will wait until the data is fully read or until the data has been fully written.
However, working with buffered streams as implemented in java.nio allows you to
check whether the data is ready to be read. When writing data, java.nio will copy the
data to the buffer and let the API write the data to the channel by itself. This allows an
entirely different programming style where we don't need to wait for the operations
to happen. At the same time, this means that we will not have low-level control of the
communication. A different part of the JVM performs that action for us.

Summary
In this chapter, you have been introduced to two main APIs in the Java language: java.io
and java.nio. They have some overlapping functions, and they are needed to deal with
streams and files. On top of that, you have seen how to work with sockets, a natural
source of data that can only be handled with streams.

There have been a series of examples looking at how to capture data from the terminal,
which in the end happened to be stream (System.in), and we saw how to process it
using streams with all sorts of high-level functions, such as filter, map, sorted, foreach,
reduce, and collect. You have seen how to open files, but also properties files, and how
java.nio is very capable with the former, but not with the latter.

From a more practical perspective, this chapter has introduced one important
technique that was only explained in theory in an earlier chapter: how to use finally to
close streams, and in this way avoid potential memory issues during runtime. You have
seen that, in order to handle exceptions cleanly, you may have to move blocks of code
into methods. In this way, you can avoid throwing exceptions and can always process
them with try-catch statements.

In order to play around with sockets, you have experimented with building an
EchoServer and an EchoClient. In this way, you had two different programs interacting
with one another and sending data over the internet. You saw how to run both the
server and the client on your own computer, and now it is maybe time to try those two
programs running on different computers.

Finally, the two activities in this chapter introduced you to creating or modifying
properties files on the fly by typing key-value pairs as arguments to a program, and
remotely controlling another program via commands over the internet.

In the next chapter, you'll learn about HTTP and how to create a program that connects
to a specific web server and downloads data.

Learning Objectives

By the end of this chapter, you will be able to:

• Make HTTP requests using Java's HttpUrlConnection class

• Retrieve data using the GET and HEAD requests

• Send JSON-formatted data using the POST request

• Parse HTML content using the open-source jsoup library

• Make HTTP requests with the java.net.http module

In this chapter, we will examine the fundamentals of HTTP and create a program that connects
to a specific web server and downloads data.

Working with HTTP

9

332 | Working with HTTP

Introduction
The Hypertext Transfer Protocol (HTTP) forms the base for the World Wide Web.
Using HTTP's request-response protocol, a client, such as a web browser, can request
data from a server. In the World Wide Web, a web browser requests content such as
HTML, JavaScript, images, and more, and then displays the results. In many cases, the
content that is returned is fairly static.

Java applications typically differ. In most cases with Java, you will send requests to
specialized backend web services for gathering data or updating systems. In both cases,
though, the Java coding remains the same.

This chapter covers how to make HTTP requests from Java applications and parse the
response data.

Exploring HTTP
With HTTP, a client application sends a specially formatted request to a server and
then awaits a response. Technically, HTTP is a stateless protocol. This means that the
server is not required to maintain any state information related to the client. Each client
request can be treated individually as a new operation. The server does not need to
store client-specific information.

Many servers do maintain some sort of state across multiple requests, though, such as
when you make a purchase online, and the server needs to store the products you have
selected; however, the basic protocol does not require this.

HTTP is a textual protocol (with allowances for compression). An HTTP request includes
the following parts:

• An operation (called a request method), a resource identifier for the operation,
and optional parameters on a line.

• Request headers; one per line.

• An empty line.

• A message body, which is optional.

• Each line ends with two characters: a carriage return and a line feed character.

HTTP uses the following two main concepts for identifying the resources that you are
interested in:

• A resource identifier in the Universal Resource Identifier (URI) format identifies a
resource on a server.

Exploring HTTP | 333

• A Universal Resource Locator (URL) includes a URI, along with the network
protocol information, the server, and port number. URLs are what you type into
the address bar of web browsers.

Java includes classes for both concepts: java.net.URI and java.net.URL.

For example, consider the following URL: http://example.com:80/.

In this example, the http identifies the protocol. The server is example.com, and the port
number is 80 (the default HTTP port number). The trailing/character identifies the
resource on the server, in this case, the top-level or root resource.

Most modern websites use the HTTPS protocol. This is a more secure version of HTTP
because the data that is sent to and from the server is encrypted.

For example, consider the following URL: https://www.packtpub.com/.

In this case, the protocol is https and the server is www.packtpub.com. The port defaults
to 443 (the default port for HTTPS). As before, the trailing/character identifies the
resource on the server.

A URI can either have the full networking location or be relative to a server. The
following are all valid URIs:

• https://www.packtpub.com/tech/java

• http://www.example.com/docs/java.html

• /tech/java

• /docs/java.html

• file:///java.html

URL is an older term, and generally represents the full specification of a resource on the
internet. That said, like URIs, you can have relative URLs as well, such as java.html. In
most cases, people talk about URIs.

In general, though, your Java applications will use the URL class to establish HTTP
connections.

Note

You can read more about URIs at https://tools.ietf.org/html/rfc3986 and URLs at
https://tools.ietf.org/html/rfc1738.

https://www.packtpub.com/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc1738

334 | Working with HTTP

HTTP Request Methods

Each HTTP request starts with a request method, such as GET. The method names
come from the early days of the World Wide Web. These methods include the following:

• GET: This retrieves data from the server.

• HEAD: This is like a GET request but just retrieves the header information and
does not include the response body.

• POST: This sends data to the server. Most HTML forms on web pages send the
form data you fill in as a POST request.

• PUT: This also sends data to the server. A PUT request is often used to modify a
resource, replacing the contents of the existing resource.

• DELETE: This requests the server to delete the given resource.

• TRACE: This echoes back the request data that is received by the server. This can
be useful for debugging.

• OPTIONS: This lists the HTTP methods that the server supports for a given URL.

Note

There are other HTTP methods as well, notably CONNECT and PATCH. The
HttpUrlConnection class, described in this chapter, only supports the ones listed
here.

Representational State Transfer

Representational State Transfer (REST) is a term that is used to describe web services
that use HTTP as a transport protocol. You can think of this as HTTP with objects.
With a RESTful web service, for example, a GET request normally returns an object,
formatted in the JavaScript Object Notation (JSON). JSON provides a way to encode an
object as text in a manner that is independent of the programming language used. JSON
formats data as name-value pairs or arrays using JavaScript syntax:

{

 "animal": "dog",

 "name": "biff"

}

Exploring HTTP | 335

In this example, the object has two properties: animal and name.

Note

Many RESTful web services send and receive data in JSON format. You can refer to
Chapter 19, Reflection, for more information on JSON.

With web services, a POST request is typically used to create a new object, a PUT
request is used to modify an existing object (by replacing it with the new data), and a
DELETE request is used to delete an object.

Note

Some frameworks use different meanings for POST and PUT operations. The
approach here is the approach that is used by the Spring Boot framework.

You'll find that Java is used a lot to create RESTful web services as well as web service
clients.

Note

You can read the HTTP specification at https://tools.ietf.org/html/rfc7540 or read
an overview of HTTP at https://developer.mozilla.org/en-US/docs/Web/HTTP/
Overview. You can refer to https://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm for more information on REST web services. Additionally, you
can refer to https://www.json.org for more information on JSON.

Request Headers

A request header is a name-value pair that provides some information to the server.
For example, the User-Agent request header identifies the application running on
behalf of the user, typically the web browser. Almost all User-Agent strings start with
Mozilla/5.0 for historical reasons and because some sites will not render properly
without mentioning the now-ancient Mozilla web browser. Servers do use the User-
Agent header to guide browser-specific rendering. For example, consider the following:

Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1

https://tools.ietf.org/html/rfc7540
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.json.org

336 | Working with HTTP

This User-Agent setting identifies an iPhone browser. The Referer header (spelled
incorrectly for historical reasons) identifies the web page you are coming from. The
Accept header lists the format for the data you'd like, such as text/html. The Accept-
Language header lists a language code, such as de for German (Deutsch) if you'd like the
response to be in German.

One important point about request headers is that each header can contain multiple
values (which are comma separated), even if in most cases you will provide a single
value.

Note

You can see a list of commonly used request headers at https://en.wikipedia.org/
wiki/List_of_HTTP_header_fields.

HTTP response messages also contain headers. These response headers can tell your
application information about the remote resources.

Now that we've mentioned the highlights of HTTP, the next step is to start making
network requests.

Using HttpUrlConnection
The java.net.HttpUrlConnection class provides the main way to access HTTP resources
from Java. To establish an HTTP connection, you can use code like the following:

String path = "http://example.com";

URL url = new URL(path);

HttpURLConnection connection = (HttpURLConnection) url.openConnection();

connection.setRequestMethod("HEAD");

This code sets up a URL initialized with a link to example.com. The openConnection()
method on the URL then returns HttpUrlConnection. Once you have HttpUrlConnection,
you can set the HTTP method (HEAD, in this case). You can get data from the server,
upload data to the server, and specify request headers.

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Using HttpUrlConnection | 337

With HttpUrlConnection, you can call setRequestProperty() to specify a request header:

connection.setRequestProperty("User-Agent", "Mozilla/5.0");

Each request generates a response, which may be successful or not. To check the
response, get the response code:

int responseCode = connection.getResponseCode();

A code of 200 is a success. There are other codes in the 200 range that also indicate a
success, but with conditions, such as 204, which indicates success but with no content.
Codes in the 300s indicate redirects. Codes in the 400s point to client errors, such as
the dreaded 404 Not Found error, and codes in the 500s point to server errors.

Note

You can see a list of HTTP response codes at https://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html. These are also defined as constants in the
HttpUrlConnection class.

Each response typically comes with a message, such as OK. You can retrieve this
message by calling getResponseMessage():

System.out.println(connection.getResponseMessage());

To see the headers in the response, call getHeaderFields(). This method returns a map
of headers, where the value is a list of strings:

Map<String, List<String>> headers = connection.getHeaderFields();

for (String key : headers.keySet()) {

 System.out.println("Key: " + key + " Value: " + headers.get(key));

}

Note

With HTTP, each header can have multiple values, which is why the value in the
map is a list.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

338 | Working with HTTP

You can also retrieve headers one at a time. We can pull all this together and write a
short Java program that creates an HTTP HEAD request.

Exercise 1: Creating a HEAD Request

This exercise will send a HEAD request to example.com, which is an official practice
domain you can use for testing:

1. Select New and then Project from the File menu in IntelliJ.

2. Select Gradle for the type of project. Click Next.

3. For the Group Id, enter com.packtpub.net.

4. For the Artifact Id, enter chapter09.

5. For the Version, enter 1.0.

6. Accept the default setting on the next pane. Click Next.

7. Leave the project name as chapter09.

8. Click Finish.

9. Call up build.gradle in the IntelliJ text editor.

10. Change sourceCompatibility so that it is 12:

sourceCompatibility = 12

11. In the src/main/java folder, create a new Java package.

12. Enter com.packtpub.http as the package name.

13. Right-click this package in the Project pane and create a new Java class named
HeadRequest.

14. Enter the following code:

package com.packtpub.http;

import java.io.IOException;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.List;
import java.util.Map;

Using HttpUrlConnection | 339

public class HeadRequest {
 public static void main(String[] args) {
 String path = "http://example.com";

 try {
 URL url = new URL(path);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("HEAD");
 connection.setRequestProperty("User-Agent", "Mozilla/5.0");

 int responseCode = connection.getResponseCode();
 System.out.println("Code: " + responseCode);
 if (responseCode != HttpURLConnection.HTTP_OK) {
 System.out.println("Got an unexpected response code");
 }
 System.out.println(connection.getResponseMessage());

 // Returned HTTP headers.
 Map<String, List<String>> headers =
 connection.getHeaderFields();

 for (String key : headers.keySet()) {
 System.out.println(key + ": " + headers.get(key));

 }

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

340 | Working with HTTP

When you run this program, you will see an output like the following:

Code: 200
OK
Accept-Ranges: [bytes]
null: [HTTP/1.1 200 OK]
X-Cache: [HIT]
Server: [ECS (sec/96DC)]
Etag: ["1541025663+gzip"]
Cache-Control: [max-age=604800]
Last-Modified: [Fri, 09 Aug 2013 23:54:35 GMT]
Expires: [Mon, 18 Mar 2019 20:41:30 GMT]
Content-Length: [1270]
Date: [Mon, 11 Mar 2019 20:41:30 GMT]
Content-Type: [text/html; charset=UTF-8]

The code of 200 indicates our request was successful. You can then see the
response headers. The square brackets in the output come from the default way
that Java prints out lists.

You should feel free to change the initial URL to a site other than example.com.

Reading the Response Data with a GET Request

With a GET request, you must get InputStream from the connection to see the response.
Call getInputStream() to get the data sent back by the server for the resource (URL)
you requested. If the response code indicates an error, get getErrorStream() to
retrieve information about the error, such as a Not Found page. If you expect textual
data in the response, such as HTML, text, XML, or more, you can wrap InputStream in
BufferedReader:

BufferedReader in = new BufferedReader(

 new InputStreamReader(connection.getInputStream())

);

String line;

while ((line = in.readLine()) != null) {

 System.out.println(line);

}

in.close();

Using HttpUrlConnection | 341

Exercise 2: Creating a GET Request

This exercise prints out the HTML content from example.com. You can change the URL
if you wish to and experiment with other web sites:

1. In IntelliJ's Project pane, right-click on the com.packtpub.http package. Select New
and then Java Class.

2. Enter GetRequest as the name of the Java class.

3. Enter the following code for GetRequest.java:

package com.packtpub.http;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

public class GetRequest {
 public static void main(String[] args) {
 String path = "http://example.com";

 try {
 URL url = new URL(path);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("GET");

 BufferedReader in = new BufferedReader(
 new InputStreamReader(connection.getInputStream())
);

 String line;
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }

342 | Working with HTTP

 in.close();
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

4. Run this program, and you will see the brief HTML content of example.com.

Using this technique, we can write a program to print out the content of a web page
using a GET request.

Dealing with Slow Connections
HttpUrlConnection offers two methods to help with slow connections:

connection.setConnectTimeout(6000);

connection.setReadTimeout(6000);

Call setConnectTimeout() to adjust the timeout when establishing the network
connection to the remote site. The value you give as input should be in milliseconds.
Call setReadTimeout() to adjust the timeout when reading data on the input stream.
Again, provide the new timeout input in milliseconds.

Requesting Parameters

With many web services, you'll have to input parameters when making a request. HTTP
parameters are encoded as name-value pairs. For example, consider the following:

String path = "http://example.com?name1=value1&name2=value2";

In this case, name1 is the name of a parameter, and so is name2. The value of the name1
parameter is value1, and the value of name2 is value2. Parameters are separated by an
ampersand character, &.

Note

If the parameter values are simple alphanumeric values, you can enter them as
shown in the example. If not, you need to encode the parameter data using URL
encoding. You can refer to the java.net.URLEncoder class for more details on this.

Creating HTTP POST Requests | 343

Handling Redirects

In many cases, when you make an HTTP request to a server, the server will respond
with a status indicating a redirect. This tells your application that the resource has
moved to a new location, in other words; you should use a new URL.

HttpUrlConnection will automatically follow HTTP redirects. You can turn this off using
the setInstanceFollowRedirects() method:

connection.setInstanceFollowRedirects(false);

Creating HTTP POST Requests
POST (and PUT) requests send data to the server. For a POST request, you need to turn
on the output mode of HttpUrlConnection and set the content type:

connection.setRequestMethod("POST");

connection.setRequestProperty("Content-Type", "application/json");

connection.setDoOutput(true);

Next, to upload the data, here assumed to be a String, use code like the following:

DataOutputStream out =

 new DataOutputStream(connection.getOutputStream());

out.writeBytes(content);

out.flush();

out.close();

With web browsing, most POST requests send form data. From Java programs, however,
you are more likely to upload JSON or XML data with POST and PUT requests. Once you
upload the data, your program should read the response, especially to see whether the
request was successful.

Exercise 3: Sending JSON Data with POST Requests

In this exercise, we'll send a small JSON object to the httpbin.org test site. The site
won't do anything with our data except echo it back, along with some metadata about
the request:

1. In IntelliJ's Project pane, right-click on the com.packtpub.http package. Select New
and then Java Class.

2. Enter PostJson as the name of the Java class.

http://httpbin.org

344 | Working with HTTP

3. Enter the following code for PostJson.java:

package com.packtpub.http;

import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

public class PostJson {
 public static void main(String[] args) {
 /*
 {
 "animal": "dog",
 "name": "biff"
 }
 */
 String content = "{ \"animal\": \"dog\", \"name\": \"biff\" }";

 String path = "http://httpbin.org/post";

 try {
 URL url = new URL(path);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("POST");
 connection.setRequestProperty("Content-Type",
 "application/json");
 connection.setDoOutput(true);

 DataOutputStream out =
 new DataOutputStream(connection.getOutputStream());
 out.writeBytes(content);
 out.flush();
 out.close();

Creating HTTP POST Requests | 345

 int responseCode = connection.getResponseCode();
 System.out.println("Code: " + responseCode);
 if (responseCode != HttpURLConnection.HTTP_OK) {
 System.out.println("Got an unexpected response code");
 }

 BufferedReader in = new BufferedReader(
 new InputStreamReader(connection.getInputStream())
);

 String line;
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 in.close();

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

4. Run this program, and you should see an output like the following:

Code: 200
{
 "args": {},
 "data": "{ \"animal\": \"dog\", \"name\": \"biff\" }",
 "files": {},
 "form": {},
 "headers": {
 "Accept": "text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2",
 "Content-Length": "35",
 "Content-Type": "application/json",
 "Host": "httpbin.org",
 "User-Agent": "Java/11.0.2"
 },

346 | Working with HTTP

 "json": {
 "animal": "dog",
 "name": "biff"
 },
 "origin": "46.244.28.23, 46.244.28.23",
 "url": "https://httpbin.org/post"
}

Note

The Apache HttpComponents library can help simplify your work with HTTP. For
more information, you can refer to http://hc.apache.org/.

Parsing HTML Data
An HTML document looks something like the following, but usually with a lot more
content:

<!doctype html>

<html lang="en">

 <head>

 <title>Example Document</title>

 </head>

 <body>

 <p>A man, a plan, a canal. Panama.</p>

 </body>

</html>

HTML structures a document into a tree-like format, as shown in this example by
indentation. The <head> element appears inside the <html> element. The <title>
element appears inside the <head> element. An HTML document can have many levels of
hierarchy.

Note

Most web browsers provide an option to view a page's source. Select that and
you'll see the HTML for the page.

http://hc.apache.org/

Parsing HTML Data | 347

When you run a GET request from a Java application, you need to parse the returned
HTML data. Typically, you parse that data into a tree structure of objects. One of the
handiest ways to do this is with the open-source jsoup library.

jsoup provides methods to connect using HTTP, download the data, and parse that data
into elements that reflect the hierarchy of HTML on the page.

Using jsoup, the first step is to download a web page. To do so, you can use code like
the following:

String path = "https://docs.oracle.com/en/java/javase/12/";

Document doc = Jsoup.connect(path).get();

This code downloads the official Java 12 documentation start page, which contains a
lot of links to specific Java documentation. The parsed HTML data gets placed into
the Document object, which contains Element objects for each HTML element. This is
purposely similar to Java's XML parsing API, which similarly parses XML documents
into a tree structure of objects. Each element in the tree may have child elements. jsoup
provides an API to access these child elements in a similar way to the Java XML parsing
API.

Note

You can find a lot of useful documentation on the jsoup library at
https://jsoup.org/.

On the Java 12 documentation page, you will see many links. In the underlying HTML,
many of these links appear as follows:

<ul class="topics">

 API
Documentation

If we wanted to extract the URI link (https://docs.oracle.com/en/java/javase/12/
docs/api/overview-summary.html, in this case) as well as the descriptive text (API
Documentation), we would need to traverse the to the LI list item tag, and then get
the HTML link, which is held in an A tag, called an anchor.

https://jsoup.org/
https://docs.oracle.com/en/java/javase/12/docs/api/overview-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/overview-summary.html

348 | Working with HTTP

One of the handy features of jsoup is that you can use select elements from the HTML
using a selector syntax that is similar to the one that is offered by CSS and the jQuery
JavaScript library.

To select all UL elements that have a CSS class of topic, you can use code like the
following:

Elements topics = doc.select("ul.topics");

Once you have the selected elements, you can iterate over each one, as follows:

for (Element topic : topics) {

 for (Element listItem : topic.children()) {

 for (Element link : listItem.children()) {

 String url = link.attr("href");

 String text = link.text();

 System.out.println(url + " " + text);

 }

 }

}

This code starts at the UL level and goes down to the child elements under the UL
tag, which would normally be LI, or list item, elements. Each LI element on the Java
documentation page has one child, that is, an anchor tag with a link.

We can then pull out the link itself, which is held in the href attribute. We can also
extract the English descriptive text used for the link.

Note

You can find a lot more information about HTML at https://www.w3schools.com/
html/ and https://www.packtpub.com/application-development/learn-example-
foundations-html-css-javascript-video.

Exercise 4: Using jsoup to Extract Data from HTML

This exercise demonstrates how to use the jsoup API to extract link URIs and
descriptive text from an HTML document. Use this as an example of how you would
parse other HTML documents in your projects.

https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.packtpub.com/application-development/learn-example-foundations-html-css-javascript-video
https://www.packtpub.com/application-development/learn-example-foundations-html-css-javascript-video

Parsing HTML Data | 349

Go to https://docs.oracle.com/en/java/javase/12/ in a web browser. You can see the
official Java documentation.

We are going to extract the links in the main part of the page under section headings
such as Tools and Specifications.

If you inspect the API Documentation link in the Specifications section, you will see the
link to the documentation resides in a UL element with a CSS class name of topics. As
shown previously, we can use the jsoup API to find all the UL elements with that CSS
class name:

1. Edit the build.gradle file in IntelliJ.

2. Add the following to the dependencies block:

// jsoup HTML parser from https://jsoup.org/
implementation 'org.jsoup:jsoup:1.11.3'

3. Choose to Import Changes from the popup that appears after adding the new
dependency.

4. In IntelliJ's Project pane, right-click on the com.packtpub.http package. Select New
and then Java Class.

5. Enter JavaDocLinks as the name of the Java class.

6. Enter the following code for JavaDocLinks.java:

package com.packtpub.http;

import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;

import java.io.IOException;

public class JavaDocLinks {
 public static void main(String[] args) {

 try {
 String path = "https://docs.oracle.com/en/java/javase/12/";

 Document doc =
 Jsoup.connect(path).get();

https://docs.oracle.com/en/java/javase/12/

350 | Working with HTTP

 Elements topics = doc.select("ul.topics");

 for (Element topic : topics) {
 for (Element listItem : topic.children()) {
 for (Element link : listItem.children()) {
 String url = link.attr("href");
 String text = link.text();

 System.out.println(url + " " + text);
 }
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

In this exercise, we used the jsoup API to download an HTML document. Once
downloaded, we extracted the link URIs and descriptive text associated with each
link. Together, this provides a good overview of the jsoup API, so you can use it in your
projects.

Delving into the java.net.http Module
Java 11 adds a brand new HttpClient class in the new java.net.http module. The
HttpClient class uses a modern builder pattern (also called a fluent API) to set up HTTP
connections. It then uses a Reactive Streams model to support both synchronous and
asynchronous requests.

Note

You can refer to Chapter 16, Predicates and Other Functional Interfaces, and
Chapter 17, Reactive Programming with Java Flow, for more on Java's Stream API and
Reactive Streams. See https://docs.oracle.com/en/java/javase/12/docs/api/java.net.
http/java/net/http/package-summary.html for an overview of the java.net.http
package in the module.

With the builder model, you can configure things such as timeouts and then call the
build() method. The HttpClient class you get is immutable:

HttpClient client = HttpClient.newBuilder()

 .version(HttpClient.Version.HTTP_2)

https://docs.oracle.com/en/java/javase/12/docs/api/java.net.http/java/net/http/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.net.http/java/net/http/package-summary.html

Delving into the java.net.http Module | 351

 .followRedirects(HttpClient.Redirect.NORMAL)

 .connectTimeout(Duration.ofSeconds(30))

 .build();

In this example, we specify the following:

• HTTP version 2.

• The client should follow redirects normally, except if the redirect is from the more
secure HTTPS to the less secure HTTP. This is the default behavior for HttpClient.
Redirect.NORMAL.

• The connect timeout will be 30 seconds.

The HttpClient class can be used for multiple requests. The next step is to set up an
HTTP request:

HttpRequest request = HttpRequest.newBuilder()

 .uri(URI.create("http://example.com/"))

 .timeout(Duration.ofSeconds(30))

 .header("Accept", "text/html")

 .build();

With this request:

• The URL is http://example.com/.

• The timeout on reading is 30 seconds.

• We set the Accept header to request the text/html content.

Once built, call send() on the client to send the request synchronously or call
sendAsync() to send the request asynchronously. If you call send(), the call will block
and your application will wait for the data to be returned. If you call sendAsync(), the
call will return right away and your application can later check to see whether the data
has arrived. Use sendAsync() if you want to process the data in a background thread.
Refer to Chapter 22, Concurrent Tasks, for more details on background threads and how
to perform tasks concurrently:

HttpResponse<String> response =

 client.send(request, HttpResponse.BodyHandlers.ofString());

In this example, the request body handler specifies that we want the contents back as a
string.

352 | Working with HTTP

Exercise 5: Getting HTML Contents Using the java.net.http Module

In this exercise, we'll recreate Exercise 02 and get the contents of a web page. While
it may seem like there is more code involved, the java.net.http module can be very
flexible since you can introduce lambda expressions to handle the response. Chapter 13,
Functional Programming with Lambda Expressions, covers lambda expressions:

1. In IntelliJ's Project pane, right-click the com.packtpub.http package. Select New
and then Java Class.

2. Enter NetHttpClient as the name of the Java class.

3. Enter the following code for NetHttpClient.java:

package com.packtpub.http;

import java.io.IOException;
import java.net.URI;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.time.Duration;

public class NetHttpClient {
 public static void main(String[] args) {

 HttpClient client = HttpClient.newBuilder()
 .version(HttpClient.Version.HTTP_2)
 .followRedirects(HttpClient.Redirect.NORMAL)
 .connectTimeout(Duration.ofSeconds(30))
 .build();

 HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("http://example.com/"))
 .timeout(Duration.ofSeconds(30))
 .header("Accept", "text/html")
 .build();
 HttpResponse<String> response = null;

 try {
 response =
 client.send(request,
 HttpResponse.BodyHandlers.ofString());
 } catch (IOException e) {

Delving into the java.net.http Module | 353

 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Code: " + response.statusCode());
 System.out.println(response.body());
 }
}

When you run this program, you should see the same results as the GetRequest
program created in Exercise 02, Creating a GET Request.

Activity 1: Using the jsoup Library to Download Files from the Web

With this activity, you will download the Java titles available through Packt. Go to
http://hc.apache.org in a web browser. Notice the list of components on the page,
such as HttpComponents Core and HttpComponents Client. The activity will be to
write a program to print the names for those component libraries. We choose this page
because the Apache organization rarely changes the structure of these project pages.

Look at the HTML content of this page. The list of components appear in an HTML
section similar to the following:

<div class="section">

 <h3>

 HttpComponents Core

 </h3>

...

</div>

Hint

You can use the Inspect function of your Web browser to view the underlying
HTML content for the list of components.

1. Using the jsoup library, access http://hc.apache.org.

2. Download the HTML content.

3. Find all DIV elements with a CSS class of section.

4. Find the H3 element inside the DIV. Note there are other elements underneath
the DIV.

http://hc.apache.org
http://hc.apache.org

354 | Working with HTTP

5. Find the A element inside the H3 element. Extract the text for the element and
print the text.

6. When run, you should see the following output:

HttpComponents Core
HttpComponents Client
HttpComponents AsyncClient
Commons HttpClient (legacy)

Note

The solution for the activity can be found on page 859.

Summary
This chapter introduces HTTP networking, which is often used to connect to RESTful
web services from within Java applications. HTTP is a textual request-response
protocol. A client sends a request to a server and then gets a response. Each HTTP
request has a method such as GET for retrieving data, POST for sending data, and so on.
In Java applications, you will often send and receive text formatted as JSON.

The HttpUrlConnection class provides the primary way to make HTTP requests. Your
code writes to an output stream to send data and reads the response from an input
stream. The open-source jsoup library provides a convenient API to retrieve and parse
HTML data. Starting with Java 11, you can use the java.net.http module for a more
modern Reactive Streams approach to HTTP networking. In the next chapter, you'll
learn about certificates and encryption, both commonly used with HTTP networking.

Learning Objectives

By the end of this chapter, you will be able to:

• Describe Symmetric Key Encryption

• Describe Asymmetric Key Encryption

• Implement encryption using AES

• Implement encryption using RSA

• Differentiate between block and stream ciphers

This chapter discusses Java's support for encryption.

Encryption

10

358 | Encryption

Introduction
Encryption is the process of scrambling data so that it can be sent in plain sight
between two or more parties without anyone else being able to understand what
was sent. Today, almost everything you do online is encrypted, be it reading an email,
sending a photo to a popular social network, or downloading source code. Most serious
websites today are also encrypted. Applying encryption to your software is vital for
safeguarding your integrity, data, and business, as well as that of your customer.

Note

Encryption is a very complicated topic that gets more complex every year as we
try to safeguard our applications from new malicious code and individuals. This
chapter will not go into detail about how encryption should be implemented in
software. Instead, we will explain how you can use the APIs that are available
within Java.

In Java, we have a collection of classes and interfaces that have been specifically created
for handling most security-related cases on the Java platform – they're all gathered
in what is called the Java Cryptography Architecture (JCA). Within the JCA lies the
foundation for building secure applications in Java. Several other secure libraries within
Java use the JCA to implement their security. With the JCA, you can create your own
custom security providers or you can use the already available standard providers. In
most cases, using the standard providers should be enough.

Plaintext

In cryptographic terms, plaintext means the data that you wish to encrypt. Cleartext
is another popular term that is used interchangeably with plaintext depending on who
you ask.

Ciphertext

This is the encrypted version of plaintext. This is the data that is safe to send to the
receiving party.

Ciphers

A cipher is a mathematical function, or algorithm, that is used to encrypt plaintext data
into ciphertext. However, a cipher is not enough to create ciphertext from plaintext –
you also require a key that defines the unique way your encryption will work. All keys
are generated uniquely. Depending on the type of cipher you make, you'll have one or
two keys to encrypt and decrypt your data.

Introduction | 359

To initialize a cipher in Java, you'll need to know three things about it: the algorithm
used, the mode, and the type of padding. Different ciphers work in different ways, so
defining the correct transformation is critical to avoid causing exceptions or creating
insecure applications:

Cipher cipher = Cipher.getInstance(<transformation>);

cipher.init(Cipher.ENCRYPT_MODE, <key>);

The algorithms or ciphers are kept in what we call cryptographic providers (or just
providers). Depending on the system in which the application is running, you may not
have access to all kinds of ciphers out of the box. In some cases, you may even have to
install additional providers to access the cipher you wish you use.

However, every Java Virtual Machine (JVM) does come with a set of available ciphers
with different transformations. At the very least, you'll always find the following
transformations available on any JVM today:

• AES/CBC/NoPadding

• AES/CBC/PKCS5Padding

• AES/ECB/NoPadding

• AES/ECB/PKCS5Padding

• AES/GCM/NoPadding

• DES/CBC/NoPadding

• DES/CBC/PKCS5Padding

• DES/ECB/NoPadding

• DES/ECB/PKCS5Padding

• DESede/CBC/NoPadding

• DESede/CBC/PKCS5Padding

• DESede/ECB/NoPadding

• DESede/ECB/PKCS5Padding

• RSA/ECB/PKCS1Padding

• RSA/ECB/OAEPWithSHA-1AndMGF1Padding

• RSA/ECB/OAEPWithSHA-256AndMGF1Padding

360 | Encryption

Keys

Every cipher requires at least one key to encrypt the plaintext and decrypt the
ciphertext. Depending on the type of cipher, the key can be either symmetric or
asymmetric. Usually, you'll work with keys stored in non-volatile memory, but you can
also generate keys from code. In the JCA, there is a simple command that is used to
generate a key for a specific cipher:

KeyPair keyPair = KeyPairGenerator.getInstance(algorithm).
generateKeyPair();

Symmetric Key Encryption
Symmetric encryption is usually considered less safe than asymmetric encryption. This
is not because the algorithms are less secure than asymmetric encryption, but because
the key that is used to unlock the content must be shared by more than one party. The
following diagram illustrates how symmetric encryption works, in general terms.

Figure 10.1: Symmetric encryption

You can create keys for symmetric encryption in this way:

Key key = KeyGenerator.getInstance(<algorithm>).generateKey();

Note that one of the most popular symmetric encryption methods today is the
Advanced Encryption Standard (AES).

Symmetric Key Encryption | 361

Exercise 1: Encrypting the String using Advanced Encryption Standard

In this exercise, we will encrypt the "My secret message" string using AES:

1. If IntelliJ is already started but no project is open, then select Create New Project.
If IntelliJ already has a project opened, then select File -> New -> Project from the
menu.

2. In New Project Dialog, select a Java project. Click on Next.

3. Check the box to create the project from a template. Select Command Line App.
Then, click on Next.

4. Give the new project the name Chapter10.

5. IntelliJ will give you a default project location; if you wish to select your own, you
can enter it here.

6. Set the package name to com.packt.java.chapter10.

7. Click on Finish. IntelliJ will create your project called Chapter10 with the standard
folder structure. IntelliJ will also create the main entry point for your application,
called Main.java.

8. Rename this file to Exercise1.java. When you're done, it should look like this:

package com.packt.java.chapter10;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here
 }
}

9. Decide on the algorithm that you want to use for your encryption – in this
example, we're using AES –then, generate the key for the encryption. Generating
the key may cause an exception if the selected algorithm isn't supported by any of
the providers on the system:

package com.packt.java.chapter10;

import javax.crypto.KeyGenerator;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise1 {

362 | Encryption

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key privateKey = KeyGenerator.
getInstance(algorithm).generateKey();
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 }
}

Note

In this exercise, we're using a variable to store the key. However, in most real-
life scenarios, you'll likely use a less volatile form of storage – such as a file or
database.

10. The next step is to define the actual encryption transformation to use. As
mentioned previously, the transformation contains information about how
to handle the cipher. In this case, we're using AES, which is a block cipher, so
we need to define how to apply the key to each block of the plaintext data.
Additionally, we need to define whether there should be any padding – and what
that padding should look like:

package com.packt.java.chapter10;

import javax.crypto.KeyGenerator;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise1 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key privateKey = KeyGenerator.
getInstance(algorithm).generateKey();

Symmetric Key Encryption | 363

 String transformation = algorithm + "/ECB/
NoPadding";
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 }
}

We already chose AES as the algorithm, so we're starting the transformation with
that. Following this, we've decided to go for the less-safe Electronic Code Book
(ECB) transformation mode, which means we're applying the key in the same way
for each block of plaintext data. Finally, we've defined that we'll use no padding if a
block in the plaintext data is shorter than the cipher block length.

11. Query the system for the cipher with the suggested transformation. This method
can throw both NoSuchAlgorithmException and NoSuchPaddingException – make
sure to handle this if that is the case:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise1 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key privateKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/ECB/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);

364 | Encryption

 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 }
 }
}

12. Encrypting and decrypting is almost identical when compared to the Java API.
When encrypting a plaintext file, you initiate the cipher in encryption mode, and
when decrypting a ciphertext file, you initiate the cipher in decryption mode. This
may cause InvalidKeyException if the key is wrong:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise1 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key privateKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/ECB/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, privateKey);
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {

Symmetric Key Encryption | 365

 e.printStackTrace();
 }
 }
}

13. In fact, encrypting your text is a two-step process, and you always need to adjust
your work depending on the actual bytes of the data. Since we're working on a
String, you will need to get the actual bytes of this String:

package com.packt.java.chapter10;

import javax.crypto.*;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise1 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key privateKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/ECB/
PKCS5Padding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, privateKey);

 String plaintext = "My secret message";
 byte[] ciphertext= new byte[cipher.
getOutputSize(plaintext.getBytes().length)];
 int encryptedLength = cipher.update(plaintext.
getBytes(), 0, plaintext.getBytes().length, encrypted);
 cipher.doFinal(ciphertext, encryptedLength);
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();

366 | Encryption

 } catch (BadPaddingException e) {
 e.printStackTrace();
 } catch (IllegalBlockSizeException e) {
 e.printStackTrace();
 } catch (ShortBufferException e) {
 e.printStackTrace();
 }
 }
}

As you may have noticed, there are a lot of things that could go wrong when
working with encryption. Usually, you should handle these exceptions gracefully,
but in this case, we'll just print them.

14. Now, the last thing to do is print the encrypted version of the text to verify that
you've encrypted the data. You should see gibberish in the terminal – that's fine –
it just means you've succeeded in hiding the plaintext message in a ciphertext file:

What happens if you change the transformation padding to NoPadding?

What happens if you keep the PKCS5Padding but change the plaintext message to
"This is 16 bytes"?

Try to decrypt the message by instead initializing the cipher to MODE_DECRYPT, and
then passing the ciphertext rather than the plaintext message. Remember, you
need to use the same key for this process to work; otherwise, you'll see gibberish
again.

Block Ciphers
AES is a block cipher, meaning that encryption is handled on one block of plaintext at a
time. A block size depends on the key size; that is, a larger key means a larger block.

Initialization Vectors

Some of the transformation modes for block ciphers require you to work with an
initialization vector – it's an improvement that handles the obvious repeat pattern
of the ECB mode. This is easily visualized by an image showing the difference in
encryption using AES/ECB and AES/CBC.

CBC refers to Cipher Block Chaining and, in short, it scrambles the current block of
data based on the previous block of data. Or, if it was the first block, it scrambles the
data based on the initialization vector.

Asymmetric Key Encryption | 367

Stream Ciphers

A stream cipher, on the other hand, works by encrypting each byte at a time. There is
a theoretical discussion about what is known as "the one-time pad," which represents
the ideal stream encryption. These are, in theory, extremely secure, but are also very
impractical, as the key must be the same length as the plaintext data. With large
plaintext data, such keys are impossible to use.

Asymmetric Key Encryption
In asymmetric key encryption, the private key is held by one party only – the receiver or
owner of the data. The sender of the data, who is not considered the owner, uses what
we call a public key to encrypt the data. The public key can be held by anyone without
jeopardizing any previously encrypted messages. This is considered a more secure way
of handling encryption, as only the receiver can decrypt the message.

Exercise 2: Encrypting the String Using the RSA Asymmetric Key Encryption

Encrypt the "My secret message" message using the Rivest–Shamir–Adleman (RSA)
asymmetric key encryption. This is a public/private key combination:

1. Open the Chapter10 project in IDEA if it's not already open.

2. Create a new Java class using the File -> New -> Java Class menu.

3. Enter Exercise2 as Name, and then select OK. You should now have an empty class
in your project:

package com.packt.java.chapter10;

public class Exercise2 {
}

4. Add a main method – you'll write all your code in that for this exercise:

package com.packt.java.chapter10;

public class Exercise2 {

 public static void main(String[] args) {
 }
}

368 | Encryption

5. Declare a plaintext String with the content "My secret message":

package com.packt.java.chapter10;

public class Exercise2 {

 public static void main(String[] args) {
 String plaintext = "My secret message";
 }
}

6. Add another string "RSA" in which you'll write the algorithm for this exercise:

package com.packt.java.chapter10;

public class Exercise2 {

 public static void main(String[] args) {
 String plaintext = "My secret message";
 String algorithm = "RSA";
 }
}

7. Because RSA is an asymmetric form of key encryption, you need to generate a key
pair instead of a key. Catch the exception if the algorithm is not found:

package com.packt.java.chapter10;

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;

public class Exercise2 {

 public static void main(String[] args) {
 try {
 String plaintext = "My secret message";
 String algorithm = "RSA";
 KeyPair keyPair = KeyPairGenerator.
getInstance(algorithm).generateKeyPair();
 } catch (NoSuchAlgorithmException e) {

Asymmetric Key Encryption | 369

 e.printStackTrace();
 }
 }
}

8. Define the transformation; we'll go with electronic code block and PKCS1Padding
for this exercise:

package com.packt.java.chapter10;

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;

public class Exercise2 {

 public static void main(String[] args) {
 try {
 String plaintext = "My secret message";
 String algorithm = "RSA";
 KeyPair keyPair = KeyPairGenerator.
getInstance(algorithm).generateKeyPair();
 String transformation = algorithm + "/ECB/
PKCS1Padding";
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 }
}

9. Create a cipher for the algorithm and initialize it with the chosen transformation.
Remember to always use the public key when encrypting with RSA:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import java.security.InvalidKeyException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;

public class Exercise2 {

370 | Encryption

 public static void main(String[] args) {
 try {
 String plaintext = "My secret message";
 String algorithm = "RSA";
 KeyPair keyPair = KeyPairGenerator.
getInstance(algorithm).generateKeyPair();
 String transformation = algorithm + "/ECB/
PKCS1Padding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, keyPair.
getPublic());
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 }
 }

10. Finally, encrypt the plaintext into ciphertext, you'll notice that the ciphertext is
much larger when using RSA than AES. This is because of the key size.

package com.packt.java.chapter10;

import javax.crypto.*;
import java.security.InvalidKeyException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;

public class Exercise2 {

 public static void main(String[] args) {
 try {
 String plaintext = "My secret message";
 String algorithm = "RSA";
 KeyPair keyPair = KeyPairGenerator.
getInstance(algorithm).generateKeyPair();
 String transformation = algorithm + "/ECB/
PKCS1Padding";
 Cipher cipher = Cipher.

Encrypting Files | 371

getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, keyPair.
getPublic());

 byte[] ciphertext = new byte[cipher.
getOutputSize(plaintext.getBytes().length)];
 int encryptedLength = cipher.update(plaintext.
getBytes(), 0, plaintext.getBytes().length, ciphertext);
 cipher.doFinal(ciphertext, encryptedLength);

 System.out.println(new String(ciphertext));
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 } catch (BadPaddingException e) {
 e.printStackTrace();
 } catch (IllegalBlockSizeException e) {
 e.printStackTrace();
 } catch (ShortBufferException e) {
 e.printStackTrace();
 }
 }
}

You can also use the decrypt logic for RSA. Remember to use the private key when
decrypting; otherwise, it will not work.

Encrypting Files
Encrypting files is very much like encrypting strings. However, with large files, it may
be wise to empty the cipher streams. However, if the file is too large, or if there are
multiple files, then it may be wise to apply CipherStreams – note that this is not to be
confused with Stream Cipher.

CipherStreams inherit most of their behavior from InputStream and OutputStream of Java,
with the modification that if you read a file, you can decrypt it, or if you write a file, you
can encrypt it with the supplied cipher.

372 | Encryption

Exercise 3: Encrypting a file

The following Exercise displays how to encrypt a file, You can find this file in the code
repository.

1. Open the Chapter10 project in IDEA if it's not already open.

2. Create a new Java class, using the File | New | Java Class menu.

3. Enter Exercise3 as Name, and then select OK. You should now have an empty class
in your project:

package com.packt.java.chapter10;

public class Exercise3 {
}

4. Add a main method in which you'll write the code for this exercise:

package com.packt.java.chapter10;

public class Exercise3 {

 public static void main(String[] args) {
 }
}

5. Define the algorithm to use for your encryption; we'll go back to AES for this
exercise and generate the key:

package com.packt.java.chapter10;

import javax.crypto.KeyGenerator;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }

Encrypting Files | 373

 }
}

6. Get an instance of the cipher and initialize it for encryption:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 }
 }
}

7. Create a file for the encryption; you can download the plaintext.txt file from
the book's GitHub repository if you wish. Alternatively, you can just create your
own text file using lipsum – or even better, copy a document from your computer.
We're placing these files in the "res" folder of your project:

package com.packt.java.chapter10;

import javax.crypto.Cipher;

374 | Encryption

import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.io.File;
import java.nio.file.Path;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 Path pathToFile = Path.of("res/plaintext.txt");
 File plaintext = pathToFile.toFile();
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 }
 }
}

8. In addition to this, create a file that will hold the encrypted contents. Make sure
the file doesn't already exist:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.io.File;
import java.nio.file.Path;

Encrypting Files | 375

import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 Path pathToFile = Path.of("res/plaintext.txt");
 File plaintext = pathToFile.toFile();

 File ciphertext = Path.of("res/ciphertext.
txt").toFile();
 if (ciphertext.exists()) {
 ciphertext.delete();
 }
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 }
 }
}

9. Now it's time to add the cipher streams. In this instance, we need FileInputStream
to read the contents of the plaintext.txt file, FileOutputStream to write an
initialization vector, and CipherOutputStream to perform the encryption:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.CipherOutputStream;

376 | Encryption

import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.io.*;
import java.nio.file.Path;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 Path pathToFile = Path.of("res/plaintext.txt");
 File plaintext = pathToFile.toFile();

 File ciphertext = Path.of("res/ciphertext.
txt").toFile();
 if (ciphertext.exists()) {
 ciphertext.delete();
 }

try
{
FileInputStream fileInputStream = new FileInputStream(plaintext);
FileOutputStream fileOutputStream = new FileOutputStream(ciphertext);
CipherOutputStream cipherOutputStream =
new CipherOutputStream(fileOutputStream, cipher)); {
}
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {

Encrypting Files | 377

 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

10. Write the initlization vector; you will find it in the initialized cipher. Make sure to
use FileOutputStream as we do not want to encrypt these bytes:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.CipherOutputStream;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.io.*;
import java.nio.file.Path;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {
 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 Path pathToFile = Path.of("res/plaintext.txt");
 File plaintext = pathToFile.toFile();

 File ciphertext = Path.of("res/ciphertext.
txt").toFile();

378 | Encryption

 if (ciphertext.exists()) {
 ciphertext.delete();
 }

try (FileInputStream fileInputStream = new FileInputStream(plaintext);
FileOutputStream fileOutputStream = new FileOutputStream(ciphertext);
CipherOutputStream cipherOutputStream =
new CipherOutputStream(fileOutputStream, cipher)) {
fileOutputStream.write(cipher.getIV());
}
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

11. Finally, write the contents of FileInputStream to CipherOutputStream, allowing the
contents to be encrypted in the process:

package com.packt.java.chapter10;

import javax.crypto.Cipher;
import javax.crypto.CipherOutputStream;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.io.*;
import java.nio.file.Path;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;

public class Exercise3 {

 public static void main(String[] args) {
 try {

Encrypting Files | 379

 String algorithm = "AES";
 Key secretKey = KeyGenerator.
getInstance(algorithm).generateKey();
 String transformation = algorithm + "/CBC/
NoPadding";
 Cipher cipher = Cipher.
getInstance(transformation);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 Path pathToFile = Path.of("res/plaintext.txt");
 File plaintext = pathToFile.toFile();

 File ciphertext = Path.of("res/ciphertext.
txt").toFile();
 if (ciphertext.exists()) {
 ciphertext.delete();
 }

 try (FileInputStream fileInputStream =
new FileInputStream(plaintext);
FileOutputStream fileOutputStream = new FileOutputStream(ciphertext);
 CipherOutputStream
cipherOutputStream =
new CipherOutputStream(fileOutputStream, cipher)) {
 fileOutputStream.write(cipher.getIV());
 byte[] buffer = new byte[1024];
 int length;
 while ((length = fileInputStream.
read(buffer)) > 0){
 cipherOutputStream.
write(buffer, 0, length);
 }
 }
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 e.printStackTrace();
 } catch (InvalidKeyException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();

380 | Encryption

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

There are numerous ways of working with files in Java, and this is just one way of
encrypting the contents. If you have larger files, perhaps BufferedReader would be
a good option to use.

12. Instead of encrypting a file, use the cipher streams to encrypt a whole folder.
Perhaps the best practice here is to first compress the folder into a ZIP archive
and then encrypt that file.

Summary
The JCA contains everything you need to work with encryption. In this chapter, you've
only really scratched the surface of this major framework. In most cases, this is just
enough to get you started, but if you intend to dive deeper into this framework, you
should first learn about cryptography on a deeper level.

In the next chapter, we will cover the launching of processes, as well as sending input
and capturing the output of child processes.

Learning Objectives

By the end of this chapter, you will be able to:

• Create a process from either the Runtime class or from the ProcessBuilder class

• Send data from a parent process to its child

• Receive data from the child process from the parent

• Store the outcomes of a process in a file

In this chapter, we will quickly look at how Java handles processes.

Processes

11

384 | Processes

Introduction
The java.lang.Process class is used to look for information about, and launch, runtime
processes. If you want to understand how the Process class works, you can start by
looking at the Runtime class. All Java programs include an instance of the Runtime class.
It is possible to get information about the Runtime class by calling the getRuntime()
method and assigning its outcome to a variable of the Runtime class. With that, it
is possible to obtain information about the JVM environment that commands your
program:

Example01.java

public class Example01 {

 public static void main(String[] args) {

 Runtime runtime = Runtime.getRuntime();

 System.out.println("Processors: " + runtime.availableProcessors());

 System.out.println("Total memory: " + runtime.totalMemory());

 System.out.println("Free memory: " + runtime.freeMemory());

 }

}

Processes carry the information relating to a program being launched on a computer.
Each operating system handles processes differently. What the JVM offers with the
Process class is an opportunity to control them in the same way. This is done through a
single method of the Runtime class, called exec(), which returns an object of the Process
class. Exec has different implementations that allow you to simply issue a command, or
to do so by modifying the environmental variable, and even the directory the program
will run from.

Launching a Process
As mentioned earlier, a process is launched with exec(). Let's look at a simple example
where we will call the Java compiler, something that is done the same way from the
terminal on any operating system:

Example02.java

import java.io.IOException;

public class Example02 {

Launching a Process | 385

 public static void main(String[] args) {

 Runtime runtime = Runtime.getRuntime();

 try {

 Process process = runtime.exec("firefox");

 } catch (IOException ioe) {

 System.out.println("WARNING: something happened with exec");

 }

 }

}

When running this example, if you happen to have Firefox installed, it will launch
automatically. You could change that to be any other application on your computer. The
program will exit with no error, but it will not do anything besides that.

Now, let's add a couple of lines to the previous example so that the program you just
opened will be closed after 5 seconds:

Example03.java

import java.io.IOException;

import java.util.concurrent.TimeUnit;

public class Example03 {

 public static void main(String[] args) {

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 process = runtime.exec("firefox");

 } catch (IOException ioe) {

 System.out.println("WARNING: something happened with exec");

 }

 try {

 process.waitFor(5, TimeUnit.SECONDS);

386 | Processes

 } catch (InterruptedException ie) {

 System.out.println("WARNING: interruption happened");

 }

 process.destroy();

 }

}

The waitFor(timeOut, timeUnit) method will wait for the process to end for 5 seconds.
If it was waitFor() without parameters, it would wait for the program to end by itself.
Following the 5-second timeout, the process variable will call the destroy() method,
which will stop the process immediately. This example is, therefore, opening and
closing an application over a short period of time.

There is an alternative way of launching a process that doesn't require the creation
of a Runtime object. This other method makes use of the ProcessBuilder class. The
construction of a ProcessBuilder object will require the actual command to be executed
as a parameter. The following example is a revision of the previous one, with the
addition of this new constructor:

Example04.java

import java.io.IOException;

public class Example04 {

 public static void main(String[] args) {

 ProcessBuilder processBuilder = new ProcessBuilder("firefox");

 Process process = null;

 try {

 process = processBuilder.start();

 } catch (IOException ioe) {

 System.out.println("WARNING: something happened with exec");

 }

 try {

 process.waitFor(10, TimeUnit.SECONDS);

Launching a Process | 387

 } catch (InterruptedException ie) {

 System.out.println("WARNING: interruption happened");

 }

 process.destroy();

 }

}

There are a couple of things you should be aware of. First, the process includes the call
to the command as an argument in the constructor. However, that does not launch the
process until you call processBuilder.start(). The only issue is that the object resulting
from ProcessBuilder does not include the same method as the one coming from the
Process API. For example, methods such as waitFor() and destroy() are not available,
therefore, if those were needed, you would have to instantiate an object of Process
before you could call it in your program.

Sending Input to a Child Process

Once the process is running, it would be interesting to pass over some data to it. Let's
make a small program that will echo whatever you type on the CLI back to it. Later, we
will write a program that will launch the first application and that will send text for it to
print. This simple echo program could be like the one in the following example:

Example05.java

public class Example05 {

 public static void main(String[] args) throws java.io.IOException

 {

 int c;

 System.out.print ("Let's echo: ");

 while ((c = System.in.read ()) != '\n')

 System.out.print ((char) c);

 }

}

388 | Processes

As you can see, this simple program will be reading from the System.in stream until you
press Enter. Once that happens, it will exit gracefully:

Let's echo: Hello World

Hello World

Process finished with exit code 0

In the first line of the preceding output, we enter the string 'Hello World' for this
example, which is echoed on the next line. Next, you can make another program that
will launch this example and send some text to it:

Example06.java

import java.io.*;

import java.util.concurrent.TimeUnit;

public class Example06 {

 public static void main(String[] args) throws IOException {

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 // for Linux / MacOS

 process = runtime.exec(
 "java -cp ../../../../Example05/out/production/Example05:
Example05");

 // for Windows

 // process = runtime.exec(

 // "java -cp ../../../../Example05/out/production/Example05;
Example05");

 } catch (IOException ioe) {

 System.out.println("WARNING: couldn't start your app");

 }

 try {

 process.waitFor(5, TimeUnit.SECONDS);

Launching a Process | 389

 } catch (InterruptedException ie) {

 System.out.println("WARNING: interrupted exception fired");

 }

 OutputStream out = process.getOutputStream();

 Writer writer = new OutputStreamWriter(out);

 writer.write("This is how we roll!\n"); // EOL to ensure the process
sends back

 writer.flush();

 process.destroy();

 }

}

This example has two interesting tricks that you need to look into. The first is the call
to the previous example. Since we have to launch a Java application, we need to call the
java executable with the cp parameter, which will indicate the directory in which JVM
should be looking for the example compiled. You just compiled and tried out Example05,
which means that there is already a compiled class in your computer.

Note

After the call to the cp parameter, in Linux/macOS, you need to add a colon (:)
before the name of the class, whereas in the case of Windows, you should use a
semicolon (;).

Once you compile this example, its relative path to the previous example is ../../../../
Example05/out/production/Example05. This might be completely different in your
case, depending on how you named your project folders.

You should also note in the code listing how the code captures the output from the
process. There, you can see the declaration of the OutStream that is linked to the one
coming from the process. In other words, we are linking an outgoing stream from
Example06 to the System.in in the Example05 application. In order to be able to write
strings to it, we construct a Writer object that exposes a write method with the ability
to send strings to the stream.

390 | Processes

We can call this example from the CLI using:

usr@localhost:~/IdeaProjects/chapter11/[...]production/Example06$ java
Example06

The result is nothing. The reason for this is that System.out on the echo example
(Example05) is not made available to the application that initiated the process. If we
want to use it, we need to capture it inside Example06. We will see how to do that in the
following section.

Capturing the Output of a Child Process
We now have two different programs; one that can run by itself (Example05), and one
that is executed from another one, which will also try to send information to it and
capture its output. The purpose of this section is to capture the output from Example05
and print it out to a terminal.

To capture whatever is being sent by the child process to System.out, we need to create
a BufferedReader in the parent class that will be fed from the InputStream that can be
instantiated from the process. In other words, we need to enhance Example06 with the
following:

InputStream in = process.getInputStream();

Reader reader = new InputStreamReader(in);

BufferedReader bufferedReader = new BufferedReader(reader);

String line = bufferedReader.readLine();

System.out.println(line);

The reason for needing a BufferedReader is that we are using the end of the line (EOL
or "\n") as a marker for a message between processes. That allows the utilization of
methods such as readLine(), which will block the program until it captures an EOL;
otherwise, we could stick to the Reader object.

Once you have added that to the example, calling the previous program from the
terminal will result in the following output:

usr@localhost:~/IdeaProjects/chapter11/[...]production/Example06$ java
Example06

Let's echo: This is how we roll!

After this output, the program will end.

An important aspect to consider is that since BufferedReader is of a buffered nature,
it requires the use of flush() as a way to force the data we sent to the buffer to be
sent out to the child process. Otherwise, it will be waiting forever when JVM gives it a
priority, which eventually could bring the program to a stall.

Storing the Output of a Child Process in a File | 391

Storing the Output of a Child Process in a File
Wouldn't it be useful to store the data in a file? This is one of the reasons why you may
be interested in having a process to run a program (or a series of programs) – capturing
their output in a log file to study them. By adding a small modification to the process
launcher, you could capture whatever it is that is sent to System.out by the other
program. This is really powerful as you could make a program that could be used to
launch any existing command in your operating system and capture all of its output,
which could be used later to conduct some sort of forensic analysis of the outcomes:

Example07.java

import java.io.*;

import java.util.concurrent.TimeUnit;

public class Example07 {

 public static void main(String[] args) throws IOException {

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 // for Linux / MacOS

 process = runtime.exec(

 "java -cp ../../../../Example05/out/production/Example05:
Example05");

 // for Windows

 // process = runtime.exec(

 // "java -cp ../../../../Example05/out/production/Example05;
Example05");

 } catch (IOException ioe) {

 System.out.println("WARNING: couldn't start your app");

 }

 try {

 process.waitFor(5, TimeUnit.SECONDS);

 } catch (InterruptedException ie) {

392 | Processes

 System.out.println("WARNING: interrupted exception fired");

 }

 // write to the child's System.in

 OutputStream out = process.getOutputStream();

 Writer writer = new OutputStreamWriter(out);

 writer.write("This is how we roll!\n");

 writer.flush();

 // prepare the data logger

 File file = new File("data.log");

 FileWriter fileWriter = new FileWriter(file);

 BufferedWriter bufferedWriter = new BufferedWriter(fileWriter);

 // read from System.out from the child

 InputStream in = process.getInputStream();

 Reader reader = new InputStreamReader(in);

 BufferedReader bufferedReader = new BufferedReader(reader);

 String line = bufferedReader.readLine();

 // send to screen

 System.out.println(line);

 // send to file

 bufferedWriter.write(line);

 bufferedWriter.flush();

 process.destroy();

 }

}

Storing the Output of a Child Process in a File | 393

The outcome will be not just writing the result to the terminal, but also creating a
data.log file that will contain the exact same sentence.

Activity 1: Making a Parent Process to Launch a Child Process

In this activity, we will create a parent process that will launch a child process that will
print out an increasing series of numbers. The outcomes of the child process will be
captured by the parent, which will print them to the terminal.

To stop the program from running forever to reach infinity, the child process should
stop when a certain number is reached. Let's take 50 as a limit for this activity, at which
point the counter will exit.

At the same time, the parent process will read the inputs and compare them with a
certain number, for example, 37, after which the counter should restart. To ask the child
process to restart, the parent should send a single-byte command to the child. Let's use
an asterisk (*) for this activity. You should use the sleep() command so that printing on
the terminal doesn't happen too quickly. A good configuration would be sleep(200).

Given the abovementioned brief, the expected output from running the child program
on its own is as follows:

0

1

2

3

[...]

49

50

394 | Processes

But, when called from the parent program, the outcome should be:

0

1

2

[...]

36

37

0

1

[loops forever]

1. The child should have an algorithm that looks like the following:

int cont = 0;
while(cont <= 50) {
 System.out.println(cont++);

 sleep(1000);

 if (System.in.available() > 0) {
 ch = System.in.read();
 if (ch == '*') {
 cont = 0;
 }
 }
}

Here, there is a call to System.in.available() to check whether there is any data in
the output buffer from the child program.

2. On the other hand, the parent program should consider including something along
the lines of:

if (Integer.parseInt(line) == 37) {
 writer.write('*');
 writer.flush(); // needed because of the buffered output
}

Summary | 395

This would detect whether the number that just arrived as a String will be converted
to an Integer, and from there it would be compared to the limit we suggested for the
counting to reset.

We didn't go in-depth in terms of all of the methods offered by the Process class. It is
therefore recommended to wrap the work in this chapter in good old-school reference
documentation and visit JavaDoc to see what else this class has to offer.

Note

The solution for this activity can be found at page 861. You can read more about
the Process class on Oracle's official documentation: https://docs.oracle.com/
javase/8/docs/api/java/lang/Process.html.

Summary
In this short chapter, you were introduced to the Process class in Java. You got to see
how a process that outputs to System.out can be captured in the parent program. At the
same time, you also saw how the parent can easily send data to the child. The examples
showed that it is possible to launch not just your own programs, but also any other
program, such as a web browser. The possibilities for building software automation with
programs including the Process API are endless.

We also saw the importance of streams in terms of intra-process communication.
Basically, you have to create streams on top of streams to develop more complex data
structures, which will allow the code to run a lot faster. The next chapter will cover
regular expressions.

https://docs.oracle.com/javase/8/docs/api/java/lang/Process.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Process.html

Learning Objectives

By the end of this chapter, you will be able to:

• Construct expressions to search for information

• Perform simple full-body matches using regular expressions

• Extract substrings from a text using groups and non-capturing groups

• Perform recursive matches to extract a set of similar elements from a text

This chapter discusses regular expressions and looks at how why they are useful in Java.

Regular Expressions

12

398 | Regular Expressions

Introduction
Quite often in your career, you'll find that searching for information is vital when
solving problems: searching for documentation, searching for a specific line of code, or
just making a program that extracts information from a given body of text into data that
the program can understand.

A regular expression is a specific language for defining these search rules, much like
Java is a language to construct programs. The syntax can be quite complex. When you
see a regular expression for the first time, it can be daunting.

The following is a very basic pattern matcher for an email address construction, with
many flaws:

/.+\@.+\..+/

If you're seeing this for the first time, you might think that it's a typographical error, or
that a cat was involved! However, it's perfectly legitimate code. We'll dive deeper into
the construction of this example shortly, but first, let's take a look at a more thorough
pattern matcher that validates an email address' construction:

/[a-zA-Z]+[a-zA-Z0-9]+\@[a-zA-Z0-9]{2,}\.[a-zA-Z]{2,}/

This looks like even more gibberish to the novice. . .perhaps the same cat was making a
nest on your keyboard!

In this chapter, we uncover the logic behind this madness. We will start with decrypting
what regular expressions mean and look at how this will come in handy in Java.

Decrypting Regular Expressions
The way regular expressions are constructed follows some basic rules that are the
same on every platform and implementation; however, there are some implementation-
specific rules that might vary depending on the platform and implementation the
regular expression was constructed for.

Let's revisit our initial email pattern matching /.+\@.+\..+/ expression. We can see
that it starts with a slash mark like this, / and ends with a /. These are the opening and
closing markers for the expression; anything within these characters belongs to the
actual expression.

Decrypting Regular Expressions | 399

Regular expressions are constructed from a few basic components; they are character
classes, anchors, groups, and special escape characters. Then, we have the quantifiers
that control how many of the preceding characters should be matched. Last but not
least, we have the expression flags, which control certain behaviors for the whole
expression. Let's look at them in more detail in the upcoming sections.

Character Classes

Character classes define the sets of characters that the pattern matcher will search for.
The set is defined in square brackets.

The expression [xyz] will match an x, a y, or a z. These are case sensitive, so an X will
not match. If you're matching characters that follow alphabetically, you can replace the
expression with a range. Instead of [xyz], you can write [x-z]. This is very convenient if
you want to cover many characters in your expression:

Figure 12.1: Regular expressions for character classes

There are also predefined character classes. These allow you to search for specific sets
of characters without having to type out the full character set. For example, the dot
(.) shown earlier will match any character except for line breaks. Written out in full as
a set, the expression for this search would look like [^\n\r], so you can see how just
using . is quicker and easier. You can see in the following tables what the ^, \n, and \r
symbols represent.

You can also search using negated sets. This will match everything that is not part of
that set.

400 | Regular Expressions

Character Sets

A character set matches any character defined in the set. The following figure shows a
couple of examples:

Figure 12.2: Regular expressions for character sets

Predefined character sets help you build quick expressions. The following figure lists
predefined character sets, which are useful for building quick expressions:

Figure 12.3: Regular expressions for predefined character sets

Quantifiers

Quantifiers are simple rules that allow you to define how the preceding character sets
should be matched. Should only one of the characters be allowed, or a range between
one and three? See the following figure for acceptable quantifiers:

Figure 12.4: Regular expressions for quantifiers

Decrypting Regular Expressions | 401

Anchors

Anchors give you one extra dimension of control so you can define the boundaries in a
text rather than the text itself:

Figure 12.5: Regular expressions for anchors

Capturing Groups

Capturing groups allow you to group tokens in an expression to form sub-strings. Any
capturing token can be used within a group, including nesting other groups. They also
allow for reuse in the expression using references:

Figure 12.6: Regular expressions for capturing groups

Escaped Characters

You can use the \ character to escape characters to match them in the string. It is
useful for matching serialized data such as XML and JSON. It is also used to match
non-text characters such as a tab and a newline.

Here are some common escaped characters:

Figure 12.7: Regular expressions for escaped characters

402 | Regular Expressions

Flags

Any characters placed directly after the closing marker are called flags. There are five
flags, which you may combine in any way, though you may avoid using flags altogether.

Figure 12.8: Regular expressions for flags

Now that you have a basic understanding of how these regular expressions work, let's
look at a full-fledged example in the following exercise.

Exercise 1: Implementing Regular Expressions

Using an online regular expression checker, we'll build a regular expression that verifies
whether a street address is correctly specified. The format that the address follows is
the street name followed by the street number. The street name and the street number
are separated by a single whitespace.

We will check if the following common Swedish addresses are valid or not:

• Strandvagen 1

• Storgatan 2

• Ringvagen3

• Storgatan

Note:

We will use https://regexr.com/ for this exercise because of its easy-to-use
interface and modern feel. However, the regular expression should work on other
platforms as well.

https://regexr.com/

Decrypting Regular Expressions | 403

To complete the exercise, perform the following steps:

1. Visit https://regexr.com/.

2. Enter three different local addresses of your choice in the space under the title
Text, at least one should be incorrectly formatted. The addresses I've chosen are
Strandvagen 1, Storgatan 2, and Ringvagen3. These are all very common street
names in Sweden, the last of which is incorrectly formatted as it is lacking a
whitespace between the street name and the number.

Figure 12.9: Inputting incorrectly formatted text

From the simple rules we defined, we can extract the following:

• the street address must start with a name

• the street address should have a number

https://regexr.com/

404 | Regular Expressions

3. Add the first rule, the name is an alphabetic-only word (which contains only
letters):

Figure 12.10: Adding the first rule

Decrypting Regular Expressions | 405

4. Let there be, at most, one empty space between the digit and the number. We can
see that already one address is incorrectly formatted:

Figure 12.11: Modifying the rule to consider one empty space between digit and number

406 | Regular Expressions

5. Add at least one digit to the address. Now, one more address has disappeared:

Figure 12.12: Modifying the rule to add one digit to the address

This example shows a simple procedure to construct a regular expression to
validate an address.

Activity 1: Regular Expressions to Check If the Entrance is Entered in the

Desired Format

Add one more rule to the preceding regular expression; allow for one optional character
after the number. This will define which entrance to use at an address that has multiple
entrances, for example, Strandvagen 1a or Ringvagen 2b.

Note

The solution for this activity can be found on page 865.

Regular Expressions in Java | 407

Regular Expressions in Java
Now that you have an idea of how regular expressions can be used to match patterns,
this topic will focus on how regular expressions can be used within Java applications. To
use regular expressions in Java, the java.util.regex package is available. The two main
classes there are called Pattern and Matcher.

The Pattern class handles the actual pattern; it validates, compiles, and returns a
Pattern object that you can store and reuse multiple times. It can also be used to
perform quick validations against a supplied string.

The Matcher class allows us to extract more information, and to perform different kinds
of matching on the supplied text.

Creating a Pattern object is as simple as using the static compile method.

For example, you would like to compile a pattern to ensure that a text contains at least
one a. Your Java code should be as follows:

Pattern pattern = Pattern.compile("a+");

Matcher matcher = pattern.matcher("How much wood would a woodchuck chuck if
a woodchuck could chuck wood?");

Boolean matches = matcher.matches();

Note

In Java, we shouldn't supply the starting and ending token of the regular
expression. With the Pattern object, then, you can perform a match on a given
string.

Note that this method will attempt to match the entire string to the regular expression;
if only part of the string matches the regular expression, it will return false.

If, instead, you just wish to make a quick validation, you can use the static matches
method, which will return a Boolean; it is just a shorthand for doing exactly the same as
the previous example:

boolean matches = Pattern.matches("a+", "How much wood would a woodchuck
chuck if a woodchuck could chuck wood?");

408 | Regular Expressions

Exercise 2: Extracting the Domain Using Pattern Matching

In this exercise, you will extract every part of a URL and store them in variables, starting
with the protocol, then the domain, and then finally the path:

1. If IntelliJ IDEA is already started, but no project is open, select Create New
Project. If IntelliJ already has a project open, select File -> New -> Project from
the menu.

2. In the New Project dialog, select a Java project. Click Next.

3. Check the box to create the project from a template. Select Command Line App.
Click Next.

4. Give the new project the name Chapter12.

5. IntelliJ will provide a default project location. You can enter any other desired
location as well.

6. Set the package name to com.packt.java.chapter12.

7. Click Finish. Your project will be created with the standard folder structure, and
an entry point class for your program.

8. Rename this file Exercise2.java. When you're done, it should look like this:

package com.packt.java.chapter12;

public class Exercise2 {

 public static void main(String[] args) {
// write your code here
 }
}

Regular Expressions in Java | 409

9. Declare this book's website url, which we'll split into separate parts. If you haven't
visited the website yet, you can find it at https://www.packtpub.com/application-
development/mastering-java-9:

package com.packt.java.chapter12;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";
 }
}

10. We'll start by finding just the protocol using regular expressions. Declare a string
to hold the regular expression and call it regex. It should contain at least the
letters http and an optional s. Wrap the whole expression in a group to ensure you
can extract it as a substring later:

package com.packt.java.chapter12;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s]?)";
 }
}

Note

This is, of course, just one example of extracting the protocol. You can experiment
with finding strings before the first colon or other interesting expressions.

https://www.packtpub.com/application-development/mastering-java-9
https://www.packtpub.com/application-development/mastering-java-9

410 | Regular Expressions

11. Compile the expression into a pattern object. Since we're not performing a global
match, we'll not use the shorthand. Instead, we'll create the Matcher for later use:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
 mastering-java-9";

 String regex = "(http[s]?)";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);
 }
}

12. Attempt to find the first group, using the find() method:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s]?)";

Regular Expressions in Java | 411

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();
 }
}

Note

You can find the number of available groups using the groupCount() method. This
is very useful if you want to loop through all groups in order.

13. If any matches were found, start extracting the groups into variables. For now,
simply print the variable:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s]?)";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();
 if (foundMatches) {
 String protocol = matcher.group(1);

 System.out.println("Protocol: " + protocol);
 }
 }
}

412 | Regular Expressions

14. Before capturing the domain name, we need to ignore the useless characters
between that and the protocol – the ://. Add a non-capturing group for those
characters:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s])(?:://)";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();
 if (foundMatches) {
 String protocol = matcher.group(1);

 System.out.println("Protocol: " + protocol);
 }
 }
}

15. Now add a third group to the regular expression to find the domain. We'll try to
find the whole domain, letting the www application notation be optional:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/

Regular Expressions in Java | 413

mastering-java-9";

 String regex = "(http[s])(?:://)([w]{0,3}\\.?[a-zA-Z]+\\.[a-zA-Z]
{2,3})";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();
 if (foundMatches) {
 String protocol = matcher.group(1);

 System.out.println("Protocol: " + protocol);
 }
 }
}

16. Now, collect the domain group and print it:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s])(?:://)([w]{0,3}\\.?[a-zA-Z]+\\.[a-zA-Z]
{2,3})";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();
 if (foundMatches) {
 String protocol = matcher.group(1);
 String domain = matcher.group(2);

 System.out.println("Protocol: " + protocol);

414 | Regular Expressions

 System.out.println("domain: " + domain);
 }
 }
}

17. Finally, extract the path components and print them to the terminal:

package com.packt.java.chapter12;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise2 {

 public static void main(String[] args) {

 String url = "https://www.packtpub.com/application-development/
mastering-java-9";

 String regex = "(http[s])(?:://)([w]{0,3}\\.?[a-zA-Z]+\\.[a-zA-Z]
{2,3})(?:[/])(.*)";

 System.out.println(regex);

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(url);

 boolean foundMatches = matcher.find();

 if (foundMatches) {
 String protocol = matcher.group(1);
 String domain = matcher.group(2);
 String path = matcher.group(3);

 System.out.println("Protocol: " + protocol);
 System.out.println("domain: " + domain);
 System.out.println("Path: " + path);
 }
 }
}

Regular Expressions in Java | 415

When running this exercise, you should see the following text in the terminal:

(http[s])(?:://)([w]{0,3}\.?[a-zA-Z]+\.[a-zA-Z]{2,3})(?:[/])(.*)

Protocol: https

domain: www.packtpub.com

Path: application-development/mastering-java-9

This example shows how to use capturing groups to extract only the vital information
from a small string. However, you'll notice that the match is only performed once. In
Java, it's easy to do a recursive match on a large body of text using similar techniques to
this.

Exercise 3: Extracting Links Using Pattern Matching

In this exercise, you'll perform a recursive matching on the Packt website to extract all
links, then print these links in the terminal. For simplicity, we'll use an already saved
dump of the Packt website - of course you can go ahead and download the website on
your own using curl, wget, or similar tools depending on the platform you're using. You
can also view the source of the website in your favorite browser and copy it to a file.

1. Open the Chapter12 project in IntelliJ IDEA if it's not already open.

2. Create a new Java class by going to File -> New -> Java Class.

3. Enter Exercise 3 as the name and click OK. IntelliJ IDEA will create a new class,
which should look something like this:

package com.packt.java.chapter12;

public class Exercise3 {
}

4. Create the main entry point for your program – the static main method:

package com.packt.java.chapter12;

public class Exercise3 {

 public static void main(String[] args) {

 }

}

416 | Regular Expressions

5. Copy the Packt website dump into your project's res folder. If the folder doesn't
exist, create it as a sibling to src.

6. Read the contents of the file into a new string; call it packtDump:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

7. Start creating a regular expression for capturing links from a website. They usually
look something like this. We need to look for the starting and the ending tokens of
the link, and capture anything in between:

visible text

Start by looking for the opening token, "<a href=\":

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class Exercise3 {

Regular Expressions in Java | 417

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")";
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

8. Add another non-capturing group for the ending token. The link ends with the
next instance of double quotation marks ("):

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")(?:\"{1})";
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

418 | Regular Expressions

9. Finally, add the only capturing group needed for this regular expression – the link
group:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")([^\"]+)(?:\"{1})";
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

10. Compile the pattern and match it against the packtDump string:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise3 {

 public static void main(String[] args) {

Regular Expressions in Java | 419

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")([^\"]+)(?:\"{1})";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(packtDump);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

11. Create a list for storing the links:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")([^\"]+)(?:\"{1})";

 Pattern pattern = Pattern.compile(regex);

420 | Regular Expressions

 Matcher matcher = pattern.matcher(packtDump);

 List<String> links = new ArrayList<>();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

12. Finally, loop through all matches and add them to the list. We only have one
capturing group here, so there's no need to check the number of groups and loop
through them:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise3 {

public static void main(String[] args) {

String filePath = System.getProperty("user.dir") + File.separator + "res"
+ File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

String regex = "(?:<a href=\")([^\"]+)(?:\"{1})";

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(packtDump);

 List<String> links = new ArrayList<>();

while (matcher.find()) {

Regular Expressions in Java | 421

 links.add(matcher.group(1));
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

13. Now you can wrap the exercise up by printing the list to the terminal:

package com.packt.java.chapter12;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res" + File.separator + "packt.txt";
 try {
 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")([^\"]+)(?:\"{1})";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(packtDump);

 List<String> links = new ArrayList<>();

 while (matcher.find()) {
 links.add(matcher.group(1));
 }

422 | Regular Expressions

 System.out.println(links);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

}

Executing this exercise you should see a long list of, both relative and absolute, links in
your terminal.
[/account, #, /register, https://account.packtpub.com/, https://www.packtpub.
com/account/password, #, /, /all, /tech, /, /books/content/support, https://hub.
packtpub.com, ...]

You've successfully extracted the links from the Packt website. A real-world
application may use this to build site-maps or otherwise document how websites are
interconnected. The next step in this program is all up to you! This will let you analyze
the content of the Packt website more thoroughly:

• Remove any non-functional links such as # and links back to home /.

• Also, remove all links that start with http; only the relative links should remain.

• The first path of the relative links represents the category of that book. Divide the
books on the website into different categories and see which category is the most
popular.

Summary
In this chapter, you've learned how to use regular expressions to search and extract
information from large bodies of text. This can be very handy when parsing structured
or semi-structured data. Regular expressions are not specific to Java. The Java
implementation may differ slightly from other platforms and languages; however,
the general syntax remains the same. In the next chapter, you'll start looking at a
programming paradigm that is growing in popularity. Functional programming, while
not originally intended for Java, can help you to write programs that you can test more
easily, which may limit the number of state-changing problems.

Learning Objectives

By the end of this chapter, you will be able to:

• Explain, in general terms, the difference between Object-Oriented Programming (OOP)
and Functional Programming (FP).

• Explain, in general terms, what a pure function is.

• Explain the difference between a functional interface and a normal interface.

• Use lambda expressions as callbacks to events.

• Perform data filtering using simple lambda expressions.

This chapter discusses how Java doubles up as a functional programming language, and lambda
expressions are used to perform pattern matching in Java.

Functional
Programming with

Lambda Expressions

13

426 | Functional Programming with Lambda Expressions

Introduction
While Java has been around for over 20 years now, and FP has been around for even
longer than Java, it's not been until recently that the topic of FP has caught traction
in the Java community. This is probably due to Java being an inherently imperative
programming language – when learning Java, you learn OOP.

However, the movements in the mainstream programming community have, in the past
few years, shifted more toward FP. These days, you can see it on every platform – from
the web to mobile to servers. FP concepts are everywhere.

Background

FP has been around for a very long time even though it is a relatively new topic in Java.
In fact, it has been around even longer than the first personal computer – it has its
origins in the lambda calculus study that Alonzo Church created in the 1930s.

The name "lambda" comes from the Greek symbol, which was the symbol Church
decided to use when describing the rules and mathematical functions for his lambda
calculus.

The lambda identity function is, quite simply, a function returning the input parameter
– that is, the identity. In a more normal mathematical script.

As you can see, lambda calculus is a simple approach to use for expressing
mathematical equations. However, it doesn't necessarily have to be mathematical. In
its truest form, it's a function with one argument and a body where the arithmetic
happens. In lambda calculus, the function is a first-class citizen – meaning it can be
treated like any other variable. You can even combine multiple lambdas if you require
multiple attributes in your function.

Functional Programming
FP boils down to two things: side effects and determinism. These concepts form the
basis of what we call FP, and they are also the easiest things for newcomers to grasp in
this paradigm because they don't introduce new, complex patterns.

Side Effects

When writing a program, we often strive to get some form of side effect – a program
without side effects is a very dull program, as nothing would happen. However, side
effects are also a common headache when trying to test a program reliably as its state
may change unpredictably.

Functional Programming | 427

A very useful class in Java is the Math class; it contains all sorts of mathematical helpers
and is likely to be used in all Java applications, either directly or indirectly. Here is an
example of printing a pseudo-random number to the console:

public static void main(String[] args) {

 System.out.println(Math.random());

}

If we dig into the code of Math.java and review the details of the random() function, we
will notice that it uses an object, randomNumberGenerator, that doesn't belong exclusively
to the random() function:

public final class Math {

 ...

 public static double random() {

 return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();

 }

 ...

}

It also calls nextDouble() on the randomNumberGenerator object. This is what we refer
to as a side effect; the random function reaches outside its own home, or body, and
performs changes on other variables or classes. These variables, in turn, can be by other
functions or objects that may or may not produce their own side effects. This behavior
is a red flag when you are trying to implement a program in FP fashion because it's
unpredictable. It can also be more difficult to make it safe to use in a multithreaded
environment.

Note

The Math.random() function, by design, delivers an unpredictable result. However,
as an example, it serves us well to highlight the concept of side effects. The random
function is also safe to use in multithreaded environments (for the most part) –
Sun and Oracle have done their homework!

As the Math.random() function produces different results for the same arguments, it's
defined as a non-deterministic function.

428 | Functional Programming with Lambda Expressions

Deterministic Functions

A deterministic function is defined as a function that will always produce the same
result for the same arguments, no matter how many times, or when, you execute the
function:

public static void main(String[] args) {

 System.out.println(Math.random());

 System.out.println(Math.random());

}

In this example, Math.random() is called twice, and will always print two different values
to the terminal. No matter how many times you call Math.random(), it will always give
different results – as, by design, it's not deterministic:

public static void main(String[] args) {

 System.out.println(Math.toRadians(180));

 System.out.println(Math.toRadians(180));

}

Running this simple code, we can see that the Math.toRadians() function will give
the same result for both functions, and doesn't seem to change anything else in the
program. This is a hint that it is deterministic – let's dig into the function and review it:

public final class Math {

 ...

 private static final double DEGREES_TO_RADIANS = 0.017453292519943295;

 ...

 public static double toRadians(double angdeg) {

 return angdeg * DEGREES_TO_RADIANS;

 }

 ...

}

The function, as expected, will not change anything from the outside world and will
always produce the same result. This means that we can consider it as a deterministic
function. However, it does read a constant that lives outside of the function's scope; this
is something of an edge case of what we can call a pure function.

Pure Functions | 429

Pure Functions
The purest of functions can be considered black boxes, meaning that what happens
inside the function is not really of any interest to the programmer. They are only
interested in what is put into the box, and what comes out of it as a result – that's
because there will always be a result of a pure function.

The pure function takes arguments and produces a result based on these arguments.
The pure function will never change the state of the outside world or rely on it.
Everything that is required by the function should be available inside it, or as an input
to it.

Exercise 1: Writing Pure Functions

A grocery retail store has a system for managing their stock; however, the company that
built their software has gone bankrupt and has lost all the source code for their system.
This is a system that only allows customers to buy one thing at a time. Because their
customers want to buy two things at a time, never more or less, they have asked you
to implement a function that takes the price of two products and returns the sum of
those two prices. They want you to implement this without causing any side effects or
incompatibilities with their current system. You'll implement this as a pure function:

1. If IntelliJ is already started but no project is open, then select Create New Project.
If IntelliJ already has a project open, then select File -> New -> Project from the
menu.

2. In New Project dialog, select the Java project. Then, click on Next.

3. Check the box to create the project from a template. Select Command Line App.
Then, click on Next.

4. Give the new project the name Exercise1.

5. IntelliJ will give you a default project location; if you wish to select one, you can
enter it here.

6. Set the package name to com.packt.java.chapter13.

430 | Functional Programming with Lambda Expressions

7. Click on Finish. IntelliJ will create your project, called Exercise1, with the standard
folder structure. IntelliJ will also create the main entry point for your application,
called Main.java; it will look like the following code snippet:

package com.packt.java.chapter13;

public class Main {

 public static void main(String[] args) {
 // write your code here
 }
}

8. Rename Main.java to Exercise1.java.

9. Create a new function in the Main class, placing it under the main(String[] args)
function. Call the new function sum and let it return an integer value. This function
should take two integers as input. For the simplicity of the code, we'll make the
function a static utility function:

package com.packt.java.chapter13;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here
 }

 static int sum(int price1, int price2) {
 }
}

10. All this function should do is return the sum of the two arguments – price1 and
price2:

package com.packt.java.chapter13;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here

Pure Functions | 431

 }

 static int sum(int price1, int price2) {
 return price1 + price2;
 }
}

11. Call this new method a few times using the same parameters in your main function:

package com.packt.java.chapter13;

public class Exercise1 {

 public static void main(String[] args) {
 System.out.println(sum(2, 3));
 System.out.println(sum(2, 3));
 System.out.println(sum(2, 3));
 }

 static int sum(int price1, int price2) {
 return price1 + price2;
 }
}

12. Now run your program and observe the output.

Note

The System.out.println() method is considered by many as an impure function
because it manipulates the terminal – which is, of course, "the outside world"
because, at some point in the call stack, the function will reach outside of its body
to manipulate an OutputStream instance.

The function you just wrote takes two arguments and produces a whole new output,
without modifying anything outside the function's scope. Congratulations! You've taken
the first step toward writing applications in a more functional way.

432 | Functional Programming with Lambda Expressions

Another important consideration when writing functional programs is how to handle
the state in your application. In OOP, we attack the problem of handling state in
large applications by using the divide-and-conquer strategy. Here, each object in the
application contains a little piece of the state of the entire application.

An implicit attribute of this type of state handling is the ownership and mutability of the
state. Each object often has a private state that is accessible using a public interface –
the object's method. If, for example, we review the ParseException.java class from the
OpenJDK source code, we'll find this pattern as well:

package java.text;

public class ParseException extends Exception {

 private static final long serialVersionUID = 2703218443322787634L;

 public ParseException(String s, int errorOffset) {

 super(s);

 this.errorOffset = errorOffset;

 }

 public int getErrorOffset() {

 return errorOffset;

 }

 private int errorOffset;

}

Here, we can see one private member variable called errorOffset. This member
variable is writeable from the constructor and is accessible for other objects via the
getErrorOffest() method. We can also imagine a class that has another method that
changes the errorOffset value – that is, a setter.

Pure Functions | 433

One possible problem with this approach to state handling is multithreaded
applications. If two or more threads were to either read or write to this member
variable, we would usually see unpredictable changes. These changes can, of course, be
mended in Java by using synchronization. However, synchronization comes at a cost –
it's complicated to plan access accurately and, often, we end up with race conditions.
It's also quite an expensive procedure in any language that supports it.

Note

Using synchronization is quite popular, and is a safe way to build multithreaded
applications. However, one of the downsides of synchronization – apart from it
being very expensive – is that it effectively makes our application behave as a
single-threaded application, as all threads accessing the synchronized data must
wait their turn to handle the data.

In FP, we try to avoid using synchronization by instead saying that our state should
always be immutable – effectively negating the need for synchronization.

Immutability of State

When the state is immutable, it essentially means that it cannot change, ever. There is
a common way of writing this rule in FP that goes something like this: replace your data
rather than editing it in place.

As we discussed in Chapter 3, Object-Oriented Programming, one of the core concepts
of OOP is inheritance; that is, the ability to create child classes that build upon,
or inherit, the functionality already present in parent classes, but also add new
functionality to the child classes. In FP, this becomes relatively tricky because we're
targeting data that should never change.

The easiest way of making data unchangeable in Java is by using the final keyword.
There are three ways of using the final keyword in Java: locking variables for change,
making methods impossible to override, and making classes impossible to extend.
When building immutable data structures in Java, it's often not enough with just one of
these methods – we need to use two or sometimes even all three.

434 | Functional Programming with Lambda Expressions

Exercise 2: Creating an Immutable Class

A local furniture carpenter has set up shop on your street and has asked you to build
the storage mechanism for a simple shopping cart application, which they will use
internally for people ordering furniture. The application should be able to safely handle
multiple people editing it at the same time from different threads. The salespeople will
take orders on the phone and the carpenters will be editing the price in hours spent
and material used. The shopping cart must be immutable! To do this, perform the
following steps:

1. In the Project pane in IntelliJ, right-click on the folder named src.

2. Choose New -> Java Class in the menu and enter Exercise2.

3. Define the main method in your new class:

package com.packt.java.chapter13;

public class Exercise2 {

 public static void main(String[] args) {
 }
}

4. Create a new inner class called ShoppingCart, and then make it final to ensure
that it cannot be extended or its behavior changed. Your code should now look
something like this:

package com.packt.java.chapter13;

public class Exercise2 {

 public static void main(String[] args) {
 }

 public static final class ShoppingCart {
 }
}

5. We also need items to put into this cart, so create a simple data object for
ShoppingItem, give it a name and price attribute, and then make the class
immutable. We'll later use this class to instantiate a few different objects to test
the mutability of our ShoppingCart class:

package com.packt.java.chapter13;

Pure Functions | 435

public class Exercise2 {

 public static void main(String[] args) {
 }

 public static final class ShoppingCart{
 }

 private static final class ShoppingItem {
 private final String name;
 private final int price;

 public ShoppingItem(String name, int price) {
 this.name = name;
 this.price = price;
 }
 }
}

6. Add a list in which we will keep all the items for this immutable shopping
cart. Make sure that you declare the list with the final keyword, keeping it
unchangeable:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.List;

public class Exercise2 {
 ...
 public static final class ShoppingCart{
 private final List<ShoppingItem> mShoppingList = new ArrayList<>();
 }
 ...
}

Now we have a way to create items for our customers to purchase, and we also
have a bag for our customers to put their selected items in. However, we lack a
way for our customers to add items to the shopping cart.

436 | Functional Programming with Lambda Expressions

7. In the object-oriented approach to solving this problem, we could add a method
called addItem(ShoppingItem shoppingItem):

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.List;

public class Exercise2 {
 ...
 private final class ShoppingCart{
 private final List<ShoppingItem> mShoppingList = new ArrayList<>();

 public void addItem(ShoppingItem item) {
 mShoppingList.add(item);
 }
 }
 ...
}

Looking at this solution from an FP approach, we can already see that it will
modify the collection. This is something that we're desperately trying to avoid
as multiple people will be working on this shopping cart at the same time. In this
case, using the final keyword has no impact since the contents of a final list can
still change. One basic approach to solving this in a functional way is to return a
new ShoppingCart when adding an item.

8. Add a new constructor to the ShoppingCart class and let it take a list as an
argument. Then, pass this list to mShoppingList of the ShoppingCart class and make
it unmodifiable with the Collections.unmodifiableList() method:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Exercise2 {
 ...
 public static final class ShoppingCart{
 public final List<ShoppingItem> mShoppingList;

 public ShoppingCart(List<ShoppingItem> list) {
 mShoppingList = Collections.unmodifiableList(list);

Pure Functions | 437

 }

 public void addItem(ShoppingItem item) {
 mShoppingList.add(item);
 }
 }
 ...
}

9. Rewrite the addItem(ShoppingItem item) method and let it return a new
ShoppingCart item instead of void. Copy the list of the previous ShoppingCart items
into a temporary list and add another item to it. Then, pass this temporary list to
the constructor and return the newly created ShoppingCart object:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Exercise2 {
 ...
 public static final class ShoppingCart{
 public final List<ShoppingItem> mShoppingList;

 public ShoppingCart(List<ShoppingItem> list) {
 mShoppingList = Collections.unmodifiableList(list);
 }

 public ShoppingCart addItem(ShoppingItem item) {
 List<ShoppingItem> newList = new ArrayList<>(mShoppingList);
 newList.add(item);
 return new ShoppingCart(newList);
 }
 }
 ...
}

In this code, we can see that the constructor now accepts a list of ShoppingItem
classes; we can also see that the list is directly saved as an unmodifiable list. This is
a special type of list in Java – one that throws an exception whenever you attempt
to modify it in any way, either directly or through its iterator.

438 | Functional Programming with Lambda Expressions

We can also see that the addItem(ShoppingItem item) function now returns a new
ShoppingCart, with a whole new list, but with the items from the previous shopping
list shared between the two ShoppingCart instances. This is an acceptable solution
even for a multithreaded environment as the ShoppingItem classes are final and,
therefore, may never change their state.

Note

Java 8 introduced the Stream API, which was a whole new way of working with
collections, that is, a more FP-based approach. You can read more about the
Stream API in Chapter 15, Processing Data with Streams. In this chapter, we'll focus
on solutions that don't use the Stream API.

10. Now you need to use this new ShoppingCart in a program. Edit your main method,
and then let it create an empty ShoppingCart first. Then, add a new shopping item
to that cart, storing the newly created ShoppingCart in another variable. Finally,
add another ShoppingItem to the second ShoppingCart, again storing the new
ShoppingCart in a new variable:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Exercise2 {

 public static void main(String[] args) {
 ShoppingCart myFirstCart = new ShoppingCart(new
ArrayList<ShoppingItem>());
 ShoppingCart mySecondCart = myFirstCart.addItem(new
ShoppingItem("Chair", 150));
 ShoppingCart myThirdCart = mySecondCart.addItem(new
ShoppingItem("Table",350));
 }

 public static final class ShoppingCart{
 public final List<ShoppingItem> mShoppingList;

 public ShoppingCart(List<ShoppingItem> list) {
 mShoppingList = Collections.unmodifiableList(list);

Pure Functions | 439

 }

 public ShoppingCart addItem(ShoppingItem item) {
 List<ShoppingItem> newList = new ArrayList<>(mShoppingList);
 newList.add(item);
 return new ShoppingCart(newList);
 }
 }

 private static final class ShoppingItem {
 private final String name;
 private final int price;

 public ShoppingItem(String name, int price) {
 this.name = name;
 this.price = price;
 }
 }
}

11. Place a breakpoint on the last line and debug your code. You'll notice the carts
that are created when calling addItem maintain their own unmodifiable list of
ShoppingItem, but the immutable ShoppingItem are shared across the lists.

The Collections.unmodifiableList() method and other similar methods (such as Set,
Map, and SortedList) are not providing any immutability to the list itself. They produce
a view of the list that prohibits any change. However, anyone with a reference to the
actual list will still be able to change the data.

In Exercise 2, the lists are safe as the main method doesn't keep any reference to the
lists, so no one outside can change it. However, this is not the recommended path
for when attempting to implement a program using a functional approach – don't
trust anyone to follow rules unless they strictly must. Since Java 9, there are now real
immutable collections that are available.

Activity 1: Modifying Immutable Lists

Add a new behavior to your ShoppingCart:

1. Create a removeItem(ShoppingItem) function.

2. Create a function that takes multiple ShoppingItem as arguments, either as a list or
as variable arguments.

440 | Functional Programming with Lambda Expressions

3. Modify your ShoppingCart to take multiple items of each ShoppingItem, for example,
four chairs and one table. Additionally, modify the addItem(ShoppingItem) and
removeItem(ShoppingItem) functions.

Note

The solution for this activity can be found on page 867.

Immutable Collections

Using Collections.unmodifiableList is a quick way to provide an unmodifiable version
of an existing list. Another option available since Java 9 is to use the immutable
collections with factory methods. These factory methods allow you to create three
different immutable collection types: List, Set, and Map.

Note

There are a few libraries that provide more optimized immutable collections; one
popular example is Guava with its ImmutableArrayList and other types.

If we were to use the List factory methods instead of the Collections class in our
shopping cart, it could look something like this:

public class Main {

 ...

 public static final class ShoppingCart {

 public final List<ShoppingItem> mShoppingList;

 public ShoppingCart(List<ShoppingItem> list) {

 mShoppingList = List.copyOf(list);

 }

 public ShoppingCart addItem(ShoppingItem item) {

 List<ShoppingItem> newList = new ArrayList<>(mShoppingList);

Pure Functions | 441

 newList.add(item);

 return new ShoppingCart(newList);

 }

 }

}

Here, we can see that there's very little difference to what we had before. Instead
of using Collections.unmodifiableList() to create an unmodifiable view of the list,
we create an immutable copy of this list with List.copyOf(). The difference in our
example is invisible for the user – however, at the bottom, they're based on different
implementations; the UnmodifiableCollection and ImmutableCollections classes,
respectively.

Exercise 3: Overriding the String Method

In this exercise, we'll make a small technical proof of the difference between
UnmodifiableCollection and ImmutableCollection classes. For this example, we'll need to
override the toString() method for the ShoppingItem and ShoppingCart classes:

1. Add the toString() method to the ShoppingItem class, and then let it return the
name:

 private static final class ShoppingItem {

 ...

 @Override

 public String toString() {

 return name + ", " + price;

 }

 }

2. Add the toString() method to the ShoppingCart class. Then, let it return a
concatenated string for all the ShoppingItem in the list:

 public static final class ShoppingCart {

 ...

 public String toString() {

 StringBuilder sb = new StringBuilder("Cart: ");

 for (int i = 0; i < mShoppingList.size(); i++) {

442 | Functional Programming with Lambda Expressions

 sb.append(mShoppingList.get(i)).append(", ");

 }

 return sb.toString();

 }

 }

3. Now we have a simple way of printing the contents of a ShoppingCart using the
toString() method. To demonstrate the difference, replace the code in the
main method. Add a few books to a standard list, and then copy this list into an
unmodifiable version and an immutable version. Print the two copies:

public static void main(String[] args) {
 List<ShoppingItem> books = new ArrayList<>();
 books.add(new ShoppingItem("Java Fundamentals", 100));
 books.add(new ShoppingItem("Java 11 Quick Start", 200));

 List<ShoppingItem> immutableCopy = List.copyOf(books);
 List<ShoppingItem> unmodifiableCopy = Collections.
unmodifiableList(books);

 System.out.println(immutableCopy);
 System.out.println(unmodifiableCopy);
}

4. Now remove the first item, the Java Fundamentals book, from the original books list
and print the two copies again:

public static void main(String[] args) {
 List<ShoppingItem> books = new ArrayList<>();
 books.add(new ShoppingItem("Java Fundamentals", 100));
 books.add(new ShoppingItem("Java 11 Quick Start", 200));

 List<ShoppingItem> immutableCopy = List.copyOf(books);
 List<ShoppingItem> unmodifiableCopy = Collections.
unmodifiableList(books);

 System.out.println(immutableCopy);
 System.out.println(unmodifiableCopy);

Pure Functions | 443

 books.remove(0);

 System.out.println(immutableCopy);
 System.out.println(unmodifiableCopy);
}

This simple example provides proof of the difference between an unmodifiable view
and an immutable copy. In the unmodifiable version, the list can still be changed, and
the unmodifiable view will pick up on that change, whereas the immutable version will
ignore that change because it contains a new list of items.

Functional Interfaces

Functional interfaces are declared as standard Java interfaces, except they're only
allowed to contain one abstract function, but can contain any number of default or
static functions.

The Comparator interface is one of the older interfaces of Java. It has been with us since
version 1.2 and has seen many several over the years. However, the biggest change yet is
probably the move to become a functional interface in Java 8.

Reviewing the changes on the Comparator interface in Java 8, you'll notice some
interesting changes. First, the interface has grown from 4 lines of code to 80 lines,
excluding package declaration and comments. Then, you'll notice that there's a new
annotation at the top:

@FunctionalInterface

This annotation marks that this is now a functional interface. Its main purpose is
to tell the reader that this interface is intended to follow the functional interfaces
specification as defined in Java 8. If it fails to follow those guidelines, the Java compiler
should print an error.

After the two original abstract function declarations, you'll find no less than seven
default functions. These default functions were introduced in Java 8 to add new
functionality to interfaces without breaking backward compatibility. The default
functions are always public and will always contain a code block. They can return a
value, but this is not required by the specification.

Finally, we'll find a total of nine static functions. Since Java 8, the functional interface
can contain any number of static methods, they work very much like the static
methods found in normal classes. You will explore more details about building and using
functional interfaces in a later chapter in this book.

444 | Functional Programming with Lambda Expressions

Lambda Expressions
Along with the functional improvements in Java 8, there also came Lambda expressions.
One of the primary improvements with lambdas is the code readability – most of the
boilerplate code for interfaces is now gone.

A very commonly used interface is the Runnable interface; it's used in multithreaded
applications to perform any type of task in the background, such as downloading a large
file from a network. In Java 7 and earlier versions, you'd often see the Runnable interface
used as an anonymous instance:

new Thread(new Runnable() {

 @Override

 public void run() {

 }

}).start();

Since Java 8, the preceding five lines of code can now be simplified by using a lambda
expression instead:

new Thread(() -> {

}).start();

As you can see, the code becomes much more readable when we remove a lot of the
boilerplate code.

The lambda expression consists of two main components: the arguments and the body.
Additionally, between these two components, there is always an arrow operator (which
is also known as a lambda operator). The body also contains the optional return value.
The parentheses contain the optional arguments for the lambda expression. Because it's
an FP component, though, you'll want to use arguments:

(int arg1, int arg2) -> { return arg1 + arg2; }

You can also omit the type of the arguments as those will be inferred by the functional
interface that the lambda expression implements:

(arg1, arg2) -> { return arg1 + arg2; }

If you have only one argument, you can omit the parentheses:

arg1 -> { return arg1; }

However, if you have no arguments in your lambda, then you must include the
parentheses:

() -> { return 5; }

Lambda Expressions | 445

Then there is the function body; if you have many lines of code in your lambda logic,
you must use the curly brackets to enclose the body:

(arg1, arg2) -> {

 int sum = arg1 + arg2;

 return sum;

}

However, if you only have one single line of code, you can omit the curly brackets and
immediately return the value:

(arg1, arg2) -> return arg1 + arg2;

Finally, you can also omit the return keyword if all you have is a single line of code:

(arg1, arg2) -> arg1 + arg2;

If we were to write the lambda calculus identity function in Java, assuming we have a
functional interface called Identity, it would look something like this:

Identity identity = x -> x;

One commonly used interface is the Comparator interface, which is used in almost any
object you wish to order, specifically in a collection of some form.

Exercise 4: Listing Spare Tires

A racing team has contacted you to organize their stock of spare tires because it's in a
mess. They've asked you to write an application that will show the list of available tires
in order of size, starting with the biggest tire.

To do this, you'll build a lambda function that implements the Comparator functional
interface. For reference, this is the base view of the Comparator interface, excluding the
default and static functions:

@FunctionalInterface

public interface Comparator<T> {

 int compare(T o1, T o2);

}
1. In the Project pane in IntelliJ, right-click on the folder named src.

2. Choose New -> Java Class in the menu, and then enter Exercise4.

446 | Functional Programming with Lambda Expressions

3. Define the main method in your new class:

package com.packt.java.chapter13;

public class Exercise4 {

 public static void main(String[] args) {
 }
}

4. Create a new inner class called Tire. It should have a size variable that is the
diameter of the tire in inches. Make sure that the class and size are declared as
final to adhere to the FP guidelines:

package com.packt.java.chapter13;

public class Exercise4 {

 public static void main(String[] args) {
 }

 public static final class Tire {
 private final int size;
 }
}

5. Create the Tire constructor, taking one argument – the size – and passing that
to the member variable. Additionally, override the toString() method to print the
size of the tire:

package com.packt.java.chapter13;

public class Exercise4 {

 public static void main(String[] args) {
 }

 public static final class Tire {
 private final int size;
 public Tire(int size) {

Lambda Expressions | 447

 this.size = size;
 }

 @Override
 public String toString() {
 return String.valueOf(size);
 }
 }
}

6. Create a list of tires that need to be sorted into your main method:

package com.packt.java.chapter13;

import java.util.List;

public class Exercise4 {

 public static void main(String[] args) {
 List<Tire> tires = List.of(
 new Tire(17),
 new Tire(16),
 new Tire(18),
 new Tire(14),
 new Tire(15),
 new Tire(16));
 }

 public static final class Tire {
 private final int size;
 public Tire(int size) {
 this.size = size;
 }

 @Override
 public String toString() {
 return String.valueOf(size);
 }
 }
}

448 | Functional Programming with Lambda Expressions

7. Create the actual lambda expression, using the Comparator functional interface,
that you will use to sort the immutable list of tires. It should take two arguments,
and return the difference in size. Remember that the lambda expression infers a
lot of the structure – you won't need to specify the types or return a keyword in
this simple example. The lambda expression is a first-class citizen, so it's fine to
store it in a variable for later use:

package com.packt.java.chapter13;

import java.util.Comparator;
import java.util.List;

public class Exercise4 {

 public static void main(String[] args) {
 List<Tire> tires = List.of(
 new Tire(17),
 new Tire(16),
 new Tire(18),
 new Tire(14),
 new Tire(15),
 new Tire(16));

 Comparator<Tire> sorter = (t1, t2) -> t2.size - t1.size;
 }

 public static final class Tire {
 private final int size;
 public Tire(int size) {
 this.size = size;
 }

 @Override
 public String toString() {

Lambda Expressions | 449

 return String.valueOf(size);
 }
 }
}

Note

You can, of course, also apply the lambda expression as an anonymous instance –
that way, you can save a few lines of code while keeping the code very readable.

8. Apply the lambda expression in the sort method. The List.sort() method
modifies the content of the list, so you need to copy your immutable list of tires
before sorting it:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class Exercise4 {

 public static void main(String[] args) {
 List<Tire> tires = List.of(
 new Tire(17),
 new Tire(16),
 new Tire(18),
 new Tire(14),
 new Tire(15),
 new Tire(16));

 Comparator<Tire> sorter = (t1, t2) -> t2.size - t1.size;

 List<Tire> sorted = new ArrayList<>(tires);
 sorted.sort(sorter);
 }

450 | Functional Programming with Lambda Expressions

 public static final class Tire {
 private final int size;
 public Tire(int size) {
 this.size = size;
 }

 @Override
 public String toString() {
 return String.valueOf(size);
 }
 }
}

9. Finally, print the result:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class Exercise4 {

 public static void main(String[] args) {
 List<Tire> tires = List.of(
 new Tire(17),
 new Tire(16),
 new Tire(18),
 new Tire(14),
 new Tire(15),
 new Tire(16));

 Comparator<Tire> sorter = (t1, t2) -> t2.size - t1.size;

 List<Tire> sorted = new ArrayList<>(tires);
 sorted.sort(sorter);

 System.out.println(sorted);
 }

 public static final class Tire {
 private final int size;
 public Tire(int size) {

Lambda Expressions | 451

 this.size = size;
 }

 @Override
 public String toString() {
 return String.valueOf(size);
 }
 }
}

10. To make this program functional, you could move the sorting intelligence to a
pure function that takes a list as an argument, then performs the sorting on a copy
of that list and returns the immutable sorted list. This way, you will avoid keeping a
reference of the mutable list in your main program:

package com.packt.java.chapter13;

import java.util.ArrayList;
import java.util.List;

public class Exercise4 {

 public static void main(String[] args) {
 List<Tire> tires = List.of(
 new Tire(17),
 new Tire(16),
 new Tire(18),
 new Tire(14),
 new Tire(15),
 new Tire(16));

 List<Tire> sorted = getSortedList(tires);

 System.out.println(sorted);
 }

 private static List<Tire> getSortedList(List<Tire> tires) {
 List<Tire> sorted = new ArrayList<>(tires);
 sorted.sort((t1, t2) -> t2.size - t1.size);
 return List.copyOf(sorted);
 }

 public static final class Tire {

452 | Functional Programming with Lambda Expressions

 private final int size;
 public Tire(int size) {
 this.size = size;
 }

 @Override
 public String toString() {
 return String.valueOf(size);
 }
 }
}

Great! You've created your first lambda expression, based on an already present
Functional interface, and you've then used it to sort a list of tires. There are lots of
functional interfaces available since Java 8, and you've probably already been using most
of them; we'll explore this in more detail later in the book.

Summary
It shouldn't matter what order different threads act on your data, and you should
be able to easily add functionality that doesn't affect older parts of your application.
Following these FP concepts allows you to build code that can easily be used in
multithreaded applications, as well as to build code that can be tested very easily for
problems and regression bugs. It also often makes your code much more readable.

Using the core concepts of FP that you've learned about in this chapter – pure functions
and immutability – can lead to performance issues in some cases, specifically when
modifying large datasets. There are ways to get around these, as we'll explore in later
chapters.

Because Java was designed for an OOP approach, it can be a bit daunting to get into FP
at first, but if you "go functional" in only certain parts of your code, the transition from
OOP may become easier.

In the next chapter, we'll focus on how to navigate larger datasets and repeat code
without using loops.

Learning Objectives

By the end of this chapter, you will be able to:

• Write recursive methods to handle mathematical formulas and other recurrent
processing needs

• Use recursive techniques to process XML files with the Document Object Model (DOM) API

• Blow the Java call stack away by not coding a terminating condition

In this chapter, we will see how using recursion helps in writing effective code.

Recursion

14

456 | Recursion

Introduction
Recursion is where a method calls itself, over and over again. Recursion, when used
safely, can be a useful programming technique, but the key is to use it safely.

An important point is that recursion is just a programming technique. You can often
avoid it, if you want by, writing some form of an iterative loop. If the problem you are
solving is truly recursive, however, then the iterative approach will tend to be much
more complex and the corresponding recursion code will appear much simpler and
more elegant.

This chapter delves into this handy programming technique.

Delving into Recursion
Recursion is useful for many mathematical problems, such as when working with
cellular automata, Sierpinski triangles, and fractals. In computer graphics, recursion
can be used to help generate realistic-looking mountains, plants, and other natural
phenomena. Classic problems, such as the Tower of Hanoi, work well with recursion.

In Java applications, you will often use recursion when traversing tree data structures,
including XML and HTML documents.

Note

You can refer to http://www.cs.cmu.edu/~cburch/pgss97/slides/0716-recurse.html
for more information on the Tower of Hanoi problem.

A simple example of recursion looks like the following:

public int add(int num) {

 return add(num + 1);

}

In this example, each call to the add() method will call itself with a number that is one
greater than the one used for the current call.

Note

You always need a termination condition to stop the recursion. This example does
not have one.

http://www.cs.cmu.edu/~cburch/pgss97/slides/0716-recurse.html

Delving into Recursion | 457

Exercise 1: Using Recursion to Overflow the Stack

This example demonstrates what happens when you don't provide a way for a recursive
method to stop. Hint: bad things happen to your program. Follow these steps to
perform the exercise:

1. Select New and then select Project… from the File menu in IntelliJ.

2. Select Gradle for the type of project. Click on Next.

3. For Group Id, enter com.packtpub.recursion.

4. For Artifact Id, enter chapter14.

5. For Version, enter 1.0.

6. Accept the default on the next pane. Click on Next.

7. Leave the project name as chapter14.

8. Click on Finish.

9. Call up build.gradle in the IntelliJ text editor.

10. Change sourceCompatibility so that it is set to 12 as shown here:

sourceCompatibility = 12

11. In the src/main/java folder, create a new Java package.

12. Enter com.packtpub.recursion as the package name.

13. Right-click on this package in the Project pane and create a new Java class named
RunForever.

14. Enter the recursive method as follows:

public int add(int num) {
 return add(num + 1);
}

15. Enter a main() method as follows:

public class RunForever {
 public static void main(String[] args) {
 RunForever runForever = new RunForever();

 System.out.println(runForever.add(1));
 }
}

458 | Recursion

16. Run this program; you will see it fail with an exception:

Exception in thread "main" java.lang.StackOverflowError
 at com.packtpub.recursion.RunForever.add(RunForever.java:11)

The full code follows next:

RunForever.java

package com.packtpub.recursion;

public class RunForever {

 public int add(int num) {

 return add(num + 1);

 }

 public static void main(String[] args) {

 RunForever runForever = new RunForever();

 System.out.println(runForever.add(1));

 }

}

We can fix this problem by providing a terminating condition to stop the recursion, as
shown in the following RunAndStop.java file:

RunAndStop.java

package com.packtpub.recursion;

public class RunAndStop {

 public static void main(String[] args) {

 RunAndStop runAndStop = new RunAndStop();

 System.out.println(runAndStop.add(1));

 }

Delving into Recursion | 459

 public int add(int num) {

 if (num < 100) {

 return add(num + 1);

 }

 return num;

 }

}

When you run this program, you will see the following output:

100

Trying Tail Recursion

Tail recursion is when the last executable statement of the recursive method is a call to
itself. Tail recursion is important because the Java compiler could—but doesn't at this
time—...jump back to the start of the method. This helps because the compiler wouldn't
have to store the stack frame for the method call, making it more efficient and using
less memory on the call stack.

Exercise 2: Using Recursion to Calculate Factorials

Factorials are great examples for demonstrating how recursion works.

You can calculate the factorial of an integer by multiplying the number with all the
positive numbers that are less than itself. For example, the factorial of 4, also written as
4!, is calculated as 4 * 3 * 2 * 1. Carry out the following steps to perform the exercise:

1. Right-click on the com.packtpub.recursion package name.

2. Create a new Java class named Factorial.

3. Enter the recursive method:

public static int factorial(int number) {
 if (number == 1) {
 return 1;
 } else {
 return number * factorial(number - 1);
 }
}

460 | Recursion

Since a factorial is a number multiplied by all positive numbers less than itself,
in each call to the factorial() method, it returns the number multiplied by the
factorial of the number minus one. If the passed-in number is 1, it returns simply
the number 1.

4. Enter the main() method, which launches the factorial calculation:

public static void main(String[] args) {

 System.out.println(factorial(6));
}

This code will calculate the factorial of 6, which is also represented as 6 factorial
or 6!.

5. When you run this program, you will see the following output:

720

The full code follows next:

Factorial.java

package com.packtpub.recursion;

public class Factorial {

 public static int factorial(int number) {

 if (number == 1) {

 return 1;

 } else {

 return number * factorial(number - 1);

 }

 }

 public static void main(String[] args) {

 System.out.println(factorial(6));

 }

}

Delving into Recursion | 461

Factorials and many other mathematical concepts work well with recursion. Another
common task that fits with this programming technique is processing a hierarchical
document, such as XML or HTML.

Processing an XML Document

XML documents have nodes. Each node may have child nodes; for example:

<cities>

 <city>

 <name>London</name>

 <country>United Kingdom</country>

 <summertime-high-temp>20.4 C</summertime-high-temp>

 <in-year-2100>

 <with-moderate-emission-cuts>

 <name>Paris</name>

 <country>France</country>

 <summertime-high-temp>22.7 C</summertime-high-temp>

 </with-moderate-emission-cuts>

 <with-no-emission-cuts>

 <name>Milan</name>

 <country>Italy</country>

 <summertime-high-temp>25.2 C</summertime-high-temp>

 </with-no-emission-cuts>

 </in-year-2100>

 </city>

</cities>

In this XML snippet, the <cities> element has one child element, <city>. The <city>
child element, in turn, has four child elements.

Note

This data comes from https://www.climatecentral.org/wgts/global-shifting-cities/
index.html and was used in an exercise in Chapter 6, Libraries, Packages, and
Modules.

https://www.climatecentral.org/wgts/global-shifting-cities/index.html
https://www.climatecentral.org/wgts/global-shifting-cities/index.html

462 | Recursion

Now, consider how you would write code to process the above XML data. Java comes
with classes to parse the XML file. The only issue is what to do with the XML document
once you have parsed it into Java objects. That's where recursion can be useful.

You could write code to process each <city> element, such as the data for London. In
that element, the code would extract the data from the child elements, such as the
name of the city, the name of the country, and the summertime high temperature.

Note how the two additional cities, Paris and Milan, are shown. This data could be
processed in a similar way to how the London data was processed. Once you see the
similarity, you may find that recursion proves useful.

Exercise 3: Creating an XML File

To demonstrate how to parse and then recursively traverse XML documents, we need
some XML data:

1. Right-click on src/main/resources and select New and then File.

2. Enter cities.xml as the name of the file.

3. Enter the following XML data into the file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<cities>
 <city>
 <name>London</name>
 <country>United Kingdom</country>
 <summertime-high-temp>20.4 C</summertime-high-temp>
 <in-year-2100>
 <with-moderate-emission-cuts>
 <name>Paris</name>
 <country>France</country>
 <summertime-high-temp>22.7 C</summertime-high-temp>
 </with-moderate-emission-cuts>
 <with-no-emission-cuts>
 <name>Milan</name>
 <country>Italy</country>
 <summertime-high-temp>25.2 C</summertime-high-temp>
 </with-no-emission-cuts>
 </in-year-2100>
 </city>
 <city>
 <name>Stockholm</name>
 <country>Sweden</country>

Delving into Recursion | 463

 <summertime-high-temp>19.3 C</summertime-high-temp>
 <in-year-2100>
 <with-moderate-emission-cuts>
 <name>Vilnius</name>
 <country>Lithuania</country>
 <summertime-high-temp>21.7 C</summertime-high-temp>
 </with-moderate-emission-cuts>
 <with-no-emission-cuts>
 <name>Kiev</name>
 <country>Ukraine</country>
 <summertime-high-temp>24.2 C</summertime-high-temp>
 </with-no-emission-cuts>
 </in-year-2100>
 </city>
 <city>
 <name>New York</name>
 <country>US</country>
 <summertime-high-temp>27.7 C</summertime-high-temp>
 <in-year-2100>
 <with-moderate-emission-cuts>
 <name>Belize City</name>
 <country>Belize</country>
 <summertime-high-temp>31.3 C</summertime-high-temp>
 </with-moderate-emission-cuts>
 <with-no-emission-cuts>
 <name>Juarez</name>
 <country>Mexico</country>
 <summertime-high-temp>34.4 C</summertime-high-temp>
 </with-no-emission-cuts>
 </in-year-2100>
 </city>
 <city>
 <name>Tokyo</name>
 <country>Japan</country>
 <summertime-high-temp>26.2 C</summertime-high-temp>
 <in-year-2100>
 <with-moderate-emission-cuts>
 <name>Beijing</name>
 <country>China</country>
 <summertime-high-temp>29.0 C</summertime-high-temp>
 </with-moderate-emission-cuts>
 <with-no-emission-cuts>

464 | Recursion

 <name>Wuhan</name>
 <country>China</country>
 <summertime-high-temp>31.2 C</summertime-high-temp>
 </with-no-emission-cuts>
 </in-year-2100>
 </city>
 <city>
 <name>Barcelona</name>
 <country>Spain</country>
 <summertime-high-temp>25.7 C</summertime-high-temp>
 <in-year-2100>
 <with-moderate-emission-cuts>
 <name>Madrid</name>
 <country>Spain</country>
 <summertime-high-temp>28.9 C</summertime-high-temp>
 </with-moderate-emission-cuts>
 <with-no-emission-cuts>
 <name>Izmir</name>
 <country>Turkey</country>
 <summertime-high-temp>32.2 C</summertime-high-temp>
 </with-no-emission-cuts>
 </in-year-2100>
 </city>
</cities>

Java includes more than one API for processing XML data. With the Simple API for XML
(SAX), you can process an XML document one event at a time. Events include starting
an element, getting some text from within an element, and ending an element.

With the DOM, the API reads in an XML document, and then your code can traverse the
elements in the tree of DOM elements. The API that fits best with recursive processing
is the DOM API.

Note

You can find more information about the Java XML APIs at https://docs.oracle.com/
javase/tutorial/jaxp/dom/readingXML.html and https://docs.oracle.com/javase/
tutorial/jaxp/TOC.html.

https://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.html
https://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.html
https://docs.oracle.com/javase/tutorial/jaxp/TOC.html
https://docs.oracle.com/javase/tutorial/jaxp/TOC.html

Delving into Recursion | 465

Introducing the DOM XML API

With the DOM API, you can use a DocumentBuilder class to parse an XML file into a tree
of objects in memory. These objects all implement the org.w3c.Node interface. The node
interface allows you to extract data from each XML element and then retrieve all the
child nodes under a node.

Regular XML elements, such as <city> in our example, implement the Element interface,
which extends the Node interface. Additionally, textual items implement the Text
interface. And, the overall document is represented by the Document interface.

The entire DOM is hierarchical. For example, consider the following:

<city>

 <name>London</name>

</city>

In this short snippet, <city> is an element, and has a child element for <name>. The
London text is a child of the <name> element. The London text will be held in an object that
implements the Text interface.

Note

The DOM API needs to load the entire XML document into a hierarchy of nodes.
The DOM API would not be appropriate for a large XML document, as you could
run out of memory.

When using the DOM API, the first step is to load an XML file and parse it into the
hierarchy of objects.

To do that, you need a DocumentBuilder class:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Once you have a DocumentBuilder class, you can parse an XML file to get a Document
interface:

File xmlFile = new File("src/main/resources/cities.xml");

Document document = builder.parse(xmlFile);

466 | Recursion

Since a Document is a Node, you can start processing all the child nodes. Typically, you
start with the first child of the Document interface (<cities> in our earlier example):

Node node = document.getFirstChild();

NodeList children = node.getChildNodes();

for (int i = 0; i < children.getLength(); i++) {

 Node child = children.item(i);

}

The call to getFirstChild() returns the first child of the document, which is the top-level
XML element. You can then call getChildNodes() to retrieve all the immediate child
elements. Unfortunately, the NodeList object returned is not a List and not a Collection
interface, which makes iterating over the child nodes more difficult.

You can then use recursion to get the child nodes of any given node, and the children of
those children, and so on. For example, look at the following:

if (node.hasChildNodes()) {

 indentation += 2;

 NodeList children = node.getChildNodes();

 for (int i = 0; i < children.getLength(); i++) {

 Node child = children.item(i);

 if (child.getNodeType() == Node.TEXT_NODE) {

 printText(child.getTextContent());

 } else {

 traverseNode(child, indentation);

 }

 }

}

Delving into Recursion | 467

In this example, we first check whether a given node has child nodes. If not, we have
nothing to do. If there are child nodes, we'll use the same technique shown previously
to get each child node.

Once we have a node, the code checks whether the node is a Text node by using the
getNodeType() method. If the node is a Text node, we'll print out the text. If not, we'll
make a recursive call with the child node. This will retrieve all the children of the child
node, and so on.

Exercise 4: Traversing an XML Document

In this exercise, we'll write code to traverse the tree of node objects parsed from the
cities.xml file created in Exercise 3, Creating an XML File. The code will print out the
XML elements as text. Carry out the following steps to complete the exercise:

1. Edit the build.gradle file. Add new dependency for the Apache Commons Lang
library:

dependencies {
 testCompile group: 'junit', name: 'junit', version: '4.12'

 // https://mvnrepository.com/artifact/org.apache.commons/commons-lang3
 implementation group: 'org.apache.commons', name: 'commons-lang3',
version: '3.8.1'

}

This library has a few helpful utility methods that we will use when generating the
output.

2. Right-click on the com.packtpub.recursion package name.

3. Create a new Java class named XmlTraverser.

4. Enter the following method to load an XML file into the DOM tree:

public Document loadXml() {
 Document document = null;

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();

 File xmlFile = new File("src/main/resources/cities.xml");
 document = builder.parse(xmlFile);

468 | Recursion

 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }

 return document;
}

Note how this code catches all the possible exceptions from reading in the file and
parsing the XML content.

5. Next, enter in a method to print the Text node content:

public void printText(String text) {
 if (StringUtils.isNotBlank(text)) {
 System.out.print(text);
 }
}

This method uses the Apache StringUtils class to check whether the text is blank
or not. You'll find that the DOM API populates a lot of blank Text nodes.

6. To help represent the hierarchical nature of XML documents, enter a utility
method for indenting:

public void indent(int indentation) {
 System.out.print(StringUtils.leftPad("", indentation));
}

Again, we use the StringUtils class to do the tedious work of padding an empty
string with a given number of spaces.

7. Next, we create the main recursive method:

public void traverseNode(Node node, int indentation) {

 indent(indentation);
 System.out.print(node.getNodeName() + " ");

 if (node.hasChildNodes()) {
 indentation += 2;

 NodeList children = node.getChildNodes();

Delving into Recursion | 469

 for (int i = 0; i < children.getLength(); i++) {
 Node child = children.item(i);

 if (child.getNodeType() == Node.TEXT_NODE) {
 printText(child.getTextContent());
 } else {
 System.out.println(); // previous line
 traverseNode(child, indentation);
 }
 }
 }
}

This method prints out the name of the input node (which will be the city, country,
or something similar). It then checks for child nodes. If the child node is a Text
node, it prints out the text. Otherwise, this method calls itself recursively to
process all the children of the child node.

8. To get going, create a short method to start the recursive calls from the first child
of the XML document:

public void traverseDocument(Document document) {
 traverseNode(document.getFirstChild(), 0);
}

9. Next, we need a main() method to load the XML file and traverse the document:

public static void main(String[] args) {

 XmlTraverser traverser = new XmlTraverser();

 Document document = traverser.loadXml();

 // Traverse XML document.
 traverser.traverseDocument(document);
}

10. When you run this program, you will see the following output:

cities
 city
 name London
 country United Kingdom
 summertime-high-temp 20.4 C
 in-year-2100

470 | Recursion

 with-moderate-emission-cuts
 name Paris
 country France
 summertime-high-temp 22.7 C
 with-no-emission-cuts
 name Milan
 country Italy
 summertime-high-temp 25.2 C
 city
 name Stockholm
 country Sweden
 summertime-high-temp 19.3 C
 in-year-2100
 with-moderate-emission-cuts
 name Vilnius
 country Lithuania
 summertime-high-temp 21.7 C
 with-no-emission-cuts
 name Kiev
 country Ukraine
 summertime-high-temp 24.2 C
 city
 name New York
 country US
 summertime-high-temp 27.7 C
 in-year-2100
 with-moderate-emission-cuts
 name Belize City
 country Belize
 summertime-high-temp 31.3 C
 with-no-emission-cuts
 name Juarez
 country Mexico
 summertime-high-temp 34.4 C
 city
 name Tokyo
 country Japan
 summertime-high-temp 26.2 C
 in-year-2100
 with-moderate-emission-cuts
 name Beijing
 country China

Delving into Recursion | 471

 summertime-high-temp 29.0 C
 with-no-emission-cuts
 name Wuhan
 country China
 summertime-high-temp 31.2 C
 city
 name Barcelona
 country Spain
 summertime-high-temp 25.7 C
 in-year-2100
 with-moderate-emission-cuts
 name Madrid
 country Spain
 summertime-high-temp 28.9 C
 with-no-emission-cuts
 name Izmir
 country Turkey
 summertime-high-temp 32.2 C

The full source code of this exercise follows next:

XmlTraverser.java

package com.packtpub.recursion;

import org.apache.commons.lang3.StringUtils;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import java.io.File;

import java.io.IOException;

472 | Recursion

public class XmlTraverser {

 public Document loadXml() {

 Document document = null;

 DocumentBuilderFactory factory = DocumentBuilderFactory.
newInstance();

 try {

 DocumentBuilder builder = factory.newDocumentBuilder();

 File xmlFile = new File("src/main/resources/cities.xml");

 document = builder.parse(xmlFile);

 } catch (SAXException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (ParserConfigurationException e) {

 e.printStackTrace();

 }

 return document;

 }

 public void printText(String text) {

 if (StringUtils.isNotBlank(text)) {

 System.out.print(text);

 }

 }

Delving into Recursion | 473

 public void indent(int indentation) {

 System.out.print(StringUtils.leftPad("", indentation));

 }

 public void traverseNode(Node node, int indentation) {

 indent(indentation);

 System.out.print(node.getNodeName() + " ");

 if (node.hasChildNodes()) {

 indentation += 2;

 NodeList children = node.getChildNodes();

 for (int i = 0; i < children.getLength(); i++) {

 Node child = children.item(i);

 if (child.getNodeType() == Node.TEXT_NODE) {

 printText(child.getTextContent());

 } else {

 System.out.println(); // previous line

 traverseNode(child, indentation);

 }

 }

 }

 }

 public void traverseDocument(Document document) {

 traverseNode(document.getFirstChild(), 0);

 }

474 | Recursion

 public static void main(String[] args) {

 XmlTraverser traverser = new XmlTraverser();

 Document document = traverser.loadXml();

 // Traverse XML document.

 traverser.traverseDocument(document);

 }

}

Activity 1: Calculating the Fibonacci Sequence

The Fibonacci sequence is a series of numbers where each number is the sum of the
previous two numbers. Write a recursive method to generate the first 15 numbers of the
Fibonacci sequence. Note that the Fibonacci value for 0 is 0, and the Fibonacci value for
1 is 1.

The Fibonacci sequence goes 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and so on.

So, you can use the following as a guide:

fibonacci(4) =

fibonacci(3) + fibonacci(2) =

{fibonacci(2) + fibonacci(1)} + {fibonacci(1) + fibonacci(0)} =

{fibonacci(1) + fibonacci(0) + fibonacci(1) + fibonacci(0)} + {fibonacci(1) + fibonacci(0)} =

1 + 0 + 1 + 0 + 1 + 0 = 3

We'll use a recursive method to calculate the Fibonacci value for a given input, and then
create a loop to display the sequence. To do so, perform the following steps:

1. Create the fibonacci method.

2. Check if the value passed to the fibonacci method is 0, if yes then return 0.

3. Also, check if the value passed to the fibonacci method is 1, if yes then return 1.

4. Else, add the fibonacci values of the previous two numbers.

5. In the main method, create a for loop that initializes from 0 to 15 and call the
fibbonaci method.

Summary | 475

When you run your program, you should see an output like the following:

0

1

1

2

3

5

8

13

21

34

55

89

144

233

377

Note

The solution for this activity can be found on page 870.

Summary
Recursion is a handy programming technique that is used for a few complex problems.
You'll find recursion commonly in mathematical formulas, as well as when traversing
hierarchical data structures such as binary trees or XML documents. With recursion,
a Java method or a class calls itself. When using recursion, you want to always code a
terminating condition. If not, you'll find your application quickly runs out of memory
on the Java call stack. In the next chapter, you'll learn about predicates and functional
programming with Java.

Learning Objectives

By the end of this chapter, you will be able to:

• Use the Java Stream API to work with arrays and collections

• Explain the difference between a parallel stream and a sequential stream

• Use different types of intermediate operations to filter, map, and otherwise mutate
stream structures

• Use different types of terminal operations and reducers to extract data from a stream
of elements

• Apply different types of collectors to wrap stream elements in new containers

This chapter discusses the Stream API in Java that allows you to write effectively, with fewer lines
of code.

Processing Data
with Streams

15

478 | Processing Data with Streams

Introduction
Java 8 introduced the new Stream API. With streams, Java programmers can now use a
more declarative style of writing programs that you previously only saw in functional
programming languages or functional programming libraries.

Using streams, you can now write more expressive programs with fewer lines of code,
and easily chain multiple operations on large lists. Streams also make it simple to
parallelize your operations on lists – that is, should you have very large lists or complex
operations. One thing that is important to remember about streams is that, while it
might appear as though they're an improved collection, they're actually not. Streams do
not have any storage of their own – instead, they use the storage of the supplied source.

In Java, there are four types of streams: Stream, which is used for streaming objects;
IntStream, which is for streaming integers; LongStream, which streams longs; and finally,
DoubleStream, which, of course, streams doubles. All of these streams work in exactly
the same way, except they're specialized to work with their respective types.

Note

Diving into the code, you'll find that each of these types is just an interface with
static methods pointing back to the StreamSupport class. This is the core API for
anyone wanting to write stream-specific libraries. However, when building an
application, you're usually fine to use the four standard stream interfaces and
static generator functions.

The source of a stream can be either single elements, collections, arrays, or even files.
Following the stream source is a number of intermediate operations that form the core
pipeline. The pipeline ends with a terminal operation that, usually, either loops through
the remaining elements to create a side effect or reduces them to a specific value – for
example, counting how many elements there are left in the last stream.

Note

Streams are lazily constructed and executed – this means that a stream is not run
until the terminal operation has been executed. Source elements are also only
read as needed; that is, only the required elements are carried through to the next
operation.

Creating Streams | 479

Creating Streams
There are multiple ways of creating streams in Java; the simplest of these is by using the
Stream.of() function. This function can take either a single object or multiple objects in
varargs:

Stream<Object> objectStream = Stream.of(new Object());

If you have multiple objects in your stream, then use the varargs version:

Stream<Object> objectStream = Stream.of(new Object(), new Object(), new
Object());

The primitive versions of these streams work in an identical fashion – just replace the
Object instances with integers, longs, or doubles.

You can also create streams from different collections; for example, lists and arrays.
Creating a stream from a list will look like this:

List<String> stringList = List.of("string1", "string2", "string3");

Stream<String> stringStream = stringList.stream();

To create a stream from an array of items, you can use the Arrays class, just like the
primitive versions of streams do:

String[] stringArray = new String[]{"string1", "string2", "string3"};

Stream<String> stringStream = Arrays.stream(stringArray);

There is one special type of stream that covers the dreaded null type gracefully, and is
detailed as follows:

Stream<Object> nullableStream = Stream.ofNullable(new Object());

This stream will take one single object that can be null. If the object is null, then it
will generate an empty stream; alternatively, if the object is not null, it will generate a
stream of that one object. This can, of course, be very handy in situations where we're
unsure about the state of sources.

Another way to generate a stream of elements is by using the Stream.iterate()
generator function. This function will generate an infinite number of elements in your
stream until you tell it to stop, starting at the seed element:

Stream<Integer> stream = Stream.iterate(0, (i) -> {

 return i + 1;

}).limit(5);

480 | Processing Data with Streams

In this example, we're creating a stream of five elements, starting with index 0. This
stream will contain the elements 0, 1, 2, 3, and 4:

Note

The Stream.iterate() generator function can be quite hazardous if you do not
provide the proper limits. There are a number of ways to create infinite streams
– usually by placing operations in the wrong order or forgetting to apply a limit to
the stream.

There is also a special Builder class, which is embedded in the Stream type. This Builder
class allows you to add elements as you create them; it removes the need to keep an
ArrayList – or other collection – as a temporary buffer for elements.

The Builder class has a very simple API – you can accept() an element into the builder,
which is perfect when you want to generate elements from a loop:

Stream.Builder<String> streamBuilder = Stream.builder();

for (int i = 0; i < 10; i++) {

 streamBuilder.accept("string" + i);

}

You can also add() elements to the builder. The add() method allows chaining, which
is perfect for when you don't want to generate elements from a loop, but instead add
them in a single line:

Stream.Builder<String> streamBuilder = Stream.builder();

streamBuilder.add("string1").add("string2").add("string3");

To create the stream using a builder, you can call the build() method when all the
methods have been added. However, note that if you try to add elements to the builder
after the build() method has been called, it will throw an IllegalStateException:

Stream<String> stream = streamBuilder.build();

All these simple ways of creating streams use the same underlying helper class, called
StreamSupport. This class has a number of helpful and advanced methods for creating
streams with different properties. The common denominator for all of these streams is
Spliterator.

Creating Streams | 481

Parallel Streams

Streams are either sequential or parallel in the Java Stream API. Sequential streams
use just a single thread in order to perform any operation. Usually, you'll find that this
stream is more than enough to solve most problems; however, sometimes, you may
require multiple threads running on multiple cores.

Parallel streams are operated on in parallel by multiple threads on multiple cores.
They utilize ForkJoinPool in the JVM to launch multiple threads. They can be a very
powerful tool when you find yourself in a performance hotspot. However, as parallel
streams utilize multiple threads, you should be wary of using them unless needed – the
overhead of parallel streams may very well create more problems than they solve.

Note

Parallel streams are a double-edged sword – they can be extremely useful in
certain situations, however, at the same time, they can completely lock your
program down. As parallel streams utilize the common ForkJoinPool, they spawn
threads that may block your application and other system components to such a
degree that the user will be affected.

To create a parallel stream, you can use the Collections.parallelStream() method,
which will attempt to create a parallel stream:

List.of("string1", "string2", "string3").parallelStream()

Alternatively, you can make a stream parallel by using the BaseStream.parallel()
intermediate operation:

List.of(1, 2, 3).stream().parallel()

Note that, at any point between the source and the terminal operation, you can change
the type of the stream, using the BaseStream.parallel() or BaseStream.sequential()
operations. These operations will only have an impact on the stream if they need to
change the underlying state of the stream – if the stream already has the correct state,
it will simply return itself. Calling BaseStream.parallel() multiple times will have no
impact on performance:

List.of(1, 2, 3).stream().parallel().parallel().parallel()

482 | Processing Data with Streams

Encounter Order

Depending on the type of the source for the stream, it may have a different encounter
order. Lists, for example, have a built-in ordering of elements – this is also called the
index. The ordering of the source also means that elements will be encountered in that
order; however, you can change this encounter order using the BaseStream.unordered()
and Stream.sorted() intermediate operations.

The unordered() operation doesn't change the ordering of a stream; instead, it only
attempts to remove a specific attribute and informs us whether a stream is ordered or
not. The elements will still have a specific order. The whole point of unordered streams
is to make other operations more performant when applied to parallel streams. Applying
the unordered() operation to a sequential stream will make it non-deterministic.

Closing Streams

Much like the streams of previous Java versions – InputStream and OutputStream, the
Stream API includes a close() operation. However, in most cases, you'll never actually
need to worry about closing your streams. The only time you should worry about
closing your streams is when the source is a system resource – such as files or sockets,
which need to be closed to avoid hogging resources from the system.

The close() operation returns void, meaning that after you call close(), the stream is
unavailable for any other intermediate or terminal operations; although it is possible
to register close handlers that will be informed when the stream has been closed. The
close handler is a Runnable functional interface – preferably, you'll register them using a
lambda function:

Stream.of(1, 2, 3, 4).onClose(() -> {

 System.out.println("Closed");

}).close();

You can register any number of close handlers in your pipeline. The close handlers will
always run even if any one of them renders an exception in their code. Additionally, it is
worth noting that they will always be called in the same order in which they're added to
the pipeline, regardless of the encounter order of the stream:

Stream.of(1, 2, 3, 4).onClose(() -> {

 System.out.println("Close handler 1");

}).onClose(() -> {

Creating Streams | 483

 System.out.println("Close handler 2");

}).onClose(() -> {

 System.out.println("Close handler 3");

}).close();

Note

Even if it's possible to register a close handler on any stream, it might not actually
run if the stream doesn't need to be closed.

Since Java 7, there is an interface called AutoCloseable, which will attempt to
automatically close held resources in a try-with-resources statement. The BaseStream
interface, which all streams inherit from, extends this AutoCloseable interface. This
means that any stream will attempt to release resources automatically if wrapped in a
try-with-resources statement:

try (Stream<Integer> stream = Stream.of(6, 3, 8, 12, 3, 9)) {

 boolean matched = stream.onClose(() -> {

 System.out.println("Closed");

 }).anyMatch((e) -> {

 return e > 10;

 });

 System.out.println(matched);

}

While the preceding example does work, there's rarely any reason to wrap a basic
stream in a try-with-resources statement, other than if you explicitly need to run logic
when the stream has finished running. This example will first print true to the terminal,
and after that print Closed.

484 | Processing Data with Streams

Terminal Operations

Every pipeline needs to end with a terminal operation; without this, the pipeline will
not be executed. Unlike intermediate operations, terminal operations may have various
return values as they mark the end of the pipeline. You cannot apply another operation
after a terminal operation.

Note

When a terminal operation is applied to a stream, you cannot use that stream
again. Therefore, storing references to streams in code can cause confusion as to
how that reference might be used – you're not allowed to "split" a stream into two
different use cases. If you attempt to apply operations on a stream that already
had the terminal operation executed, then it will throw an IllegalStateException
with the message stream has already been operated upon or closed.

There are 16 different terminal operations in the Stream API – each of them with their
own specific use cases. The following is an explanation of each of them:

• forEach: This terminal operator acts like a normal for loop – it will run some code
for each element in the stream. This is not a thread-safe operation, so you'll need
to provide synchronization should you find yourself using shared state:

Stream.of(1, 4, 6, 2, 3, 7).forEach((n) -> { System.out.println(n); });

If this operation is applied on a parallel pipeline, the order in which elements are
acted on will not be guaranteed:

Stream.of(1, 4, 6, 2, 3, 7).parallel().forEach((n) -> { System.out.
println(n); });

If the order in which the elements are acted on matters, you should use the
forEachOrdered() terminal operation instead.

• forEachOrdered: Much like the forEach() terminal operation, this will allow you to
perform an action for each element in the stream. However, the forEachOrdered()
operation will guarantee the order in which elements are processed, regardless of
how many threads they're processed on:

Stream.of(1, 4, 6, 2, 3, 7).parallel().forEachOrdered((n) -> { System.out.
println(n); });

Here, you can see a parallel stream with a defined encounter order. Using the
forEachOrdered() operation, it will always encounter elements in the natural,
indexed order.

Creating Streams | 485

• ToArray: These two terminal operations will allow you to convert the elements of
the stream into an array. The basic version will generate an Object array:

Object[] array = Stream.of(1, 4, 6, 2, 3, 7).toArray();

If you need a specific type of array, you can supply a constructor reference for the
type of array you need:

Integer[] array = Stream.of(1, 4, 6, 2, 3, 7).toArray(Integer[]::new);

A third option is to also write your own generator for the toArray() operation:

Integer[] array = Stream.of(1, 4, 6, 2, 3, 7).toArray(elements -> new
Integer[elements]);

• Reduce: To perform a reduction on a stream means to only extract the interesting
parts of the elements of that stream and reduce them to a single value. There
are two generic reduce operations available. The first, simpler one, takes an
accumulator function as an argument. It is usually used after a map operation is
applied on a stream:

int sum = Stream.of(1, 7, 4, 3, 9, 6).reduce(0, (a, b) -> a + b);

The second, more complex version takes an identity that also acts as the initial
value of the reduction. It also requires an accumulator function where the
reduction takes place, as well as a combining function to define how two elements
are reduced:

int sum = Stream.of(1, 7, 4, 3, 9, 6).reduce(0, (total, i) -> total + i,
(a, b) -> a + b);

In this example, the accumulator adds up the result of the combining function to
the identity value, which, in this case, is the total sum of the reduction.

• Sum: This is a more specific reduction operation, which will sum all elements in
the stream. This terminal operation is only available for IntStream, LongStream, and
DoubleStream. To use this functionality in a more generic stream, you would have
to implement a pipeline using the reduce() operation, usually preceded by a map()
operation. The following example illustrates the use of IntStream:

int intSum = IntStream.of(1, 7, 4, 3, 9, 6).sum();
System.out.println(intSum);

This will print the result as 30. The following example illustrates the use of
LongStream:

long longSum = LongStream.of(7L, 4L, 9L, 2L).sum();
System.out.println(longSum);

486 | Processing Data with Streams

This will print the result as 22. The following example illustrates the use of
DoubleStream:

double doubleSum = DoubleStream.of(5.4, 1.9, 7.2, 6.1).sum();
System.out.println(doubleSum);

This will print the result as 20.6.

• Collect: The collection operation is like the reduce operation, in that it takes
the elements of a stream and creates a new result. However, instead of reducing
the stream to a single value, collect can take the elements and generate a new
container or collection that holds all the remaining elements; for example, a list.
Usually, you would use the Collectors help class, as it contains a lot of ready-to-
use collect operations:

List<Integer> items = Stream.of(6, 3, 8, 12, 3, 9).collect(Collectors.
toList());
System.out.println(items);

This would print [6, 3, 8, 12, 3, 9] to the console. You can review more usages
of Collectors in the Using Collectors section. Another option is to write your own
supplier, accumulator, and combiner for the collect() operation:

List<Integer> items = Stream.of(6, 3, 8, 12, 3, 9).collect(
 () -> { return new ArrayList<Integer>(); },
 (list, i) -> { list.add(i); },
 (list, elements) -> { list.addAll(elements); });
System.out.println(items);

This can, of course, be simplified in this example by using method references:

List<Integer> items = Stream.of(6, 3, 8, 12, 3, 9).collect(ArrayList::new,
List::add, List::addAll);
System.out.println(items);

• Min: As the name suggests, this terminal operation will return the minimum value,
wrapped in an Optional, of all elements in the stream specified according to a
Comparator. In most cases, you'd use the Comparator.comparingInt(), Comparator.
comparingLong(), or Comparator.comparingDouble() static helper functions when
applying this operation:

Optional min = Stream.of(6, 3, 8, 12, 3, 9).min((a, b) -> { return a -
b;});
System.out.println(min);

This should write Optional[3].

Creating Streams | 487

• Max: The opposite of the min() operation, the max() operation returns the value of
the element with the maximum value according to a specified Comparator, wrapped
in an Optional:

Optional max = Stream.of(6, 3, 8, 12, 3, 9).max((a, b) -> { return a -
b;});
System.out.println(max);

This will print Optional[12] to the terminal.

• Average: This is a special type of terminal operation that is only available on
IntStream, LongStream, and DoubleStream. It returns an OptionalDouble containing
the average of all elements in the stream:

OptionalDouble avg = IntStream.of(6, 3, 8, 12, 3, 9).average();
System.out.println(avg);

This will give you an Optional with the containing value 6.833333333333333.

• Count: This is a simple terminal operator returning the number of elements in
the stream. It's worth noting that, sometimes, the count() terminal operation will
find more efficient ways of calculating the size of the stream – in these cases, the
pipeline will not even be executed:

long count = Stream.of(6, 3, 8, 12, 3, 9).count();
System.out.println(count);

• anyMatch: The anyMatch() terminal operator will return true if any of the elements
in the stream match the specified predicate:

boolean matched = Stream.of(6, 3, 8, 12, 3, 9).anyMatch((e) -> { return e
> 10; });
System.out.println(matched);

As there is an element with a value above 10, this pipeline will return true.

• allMatch: The allMatch() terminal operator will return true if all the elements in
the stream match the specified predicate:

boolean matched = Stream.of(6, 3, 8, 12, 3, 9).allMatch((e) -> { return e
> 10; });
System.out.println(matched);

Since this source has elements whose values are below 10, it should return false.

488 | Processing Data with Streams

• noneMatch: Opposite to allMatch(), the noneMatch() terminal operator will return
true if none of the elements in the stream match the specified predicate:

boolean matched = Stream.of(6, 3, 8, 12, 3, 9).noneMatch((e) -> { return e
> 10; });
System.out.println(matched);

Because the stream has elements of values above 10, this will also return false.

• findFirst: This retrieves the first element of the stream, wrapped in an Optional:

Optional firstElement = Stream.of(6, 3, 8, 12, 3, 9).findFirst();
System.out.println(firstElement);

This will print Optional[6] to the terminal. If there were no elements in the
stream, it would instead print Optional.empty.

• findAny: Much like the findFirst() terminal operation, the findAny() operation
will return an element wrapped in an Optional. This operation, however, will
return any one of the elements that remain. You should never really assume which
element it will return. This operation will, usually, act faster than the findFirst()
operation, especially in parallel streams. It's ideal when you just need to know
whether there are any elements left but don't really care about which remain:

Optional firstElement = Stream.of(7, 9, 3, 4, 1).findAny();
System.out.println(firstElement);

• Iterator: This is a terminal operator that generates an iterator that lets you
traverse elements:

Iterator<Integer> iterator = Stream.of(1, 2, 3, 4, 5, 6)
 .iterator();
while (iterator.hasNext()) {
 Integer next = iterator.next();
 System.out.println(next);
}

• SummaryStatistics: This is a special terminal operation that is available for
IntStream, LongStream, and DoubleStream. It will return a special type – for example,
IntSummaryStatistics – describing the elements of the stream:

IntSummaryStatistics intStats = IntStream.of(7, 9, 3, 4,
1).summaryStatistics();
System.out.println(intStats);
LongSummaryStatistics longStats = LongStream.of(6L, 4L, 1L, 3L, 7L).
summaryStatistics();
System.out.println(longStats);

Intermediate Operations | 489

DoubleSummaryStatistics doubleStats = DoubleStream.of(4.3, 5.1, 9.4, 1.3,
3.9).summaryStatistics();
System.out.println(doubleStats);

This will print all the summaries of the three streams to the terminal, which
should look like this:

IntSummaryStatistics{count=5, sum=24, min=1, average=4,800000, max=9}
LongSummaryStatistics{count=5, sum=21, min=1, average=4,200000, max=7}
DoubleSummaryStatistics{count=5, sum=24,000000, min=1,300000,
average=4,800000, max=9,400000}

Intermediate Operations
A stream can take any number of intermediate operations following the creation of the
stream. An intermediate operation is often a filter or mapping of some type, but there
are other types as well. Every intermediate operation returns another stream – that
way, you can chain any number of intermediate operations to your pipeline.

The order of intermediate operations is very important as the stream returned from
an operation will only reference the remaining or required elements of the previous
stream.

There are several different types of intermediate operations. The following is an
explanation of each of them:

• Filter: As the name suggests, this intermediate operation will return a subset of
elements from the stream. It uses a predicate when applying the matching pattern,
which is a functional interface that returns a Boolean. The easiest and most
common way to implement this is using a lambda function:

Stream.of(1, 2, 3, 4, 5, 6)
 .filter((i) -> { return i > 3; })
 .forEach(System.out::println);

In this example, the filter method will filter away any elements that have a value
that is 3 or lower. The forEach() terminal operation will then take the remaining
elements and print them all in a loop.

• Map: The map operation will apply a special function to every element of the
stream and return the modified elements:

Stream.of("5", "3", "8", "2")
 .map((s) -> { return Integer.parseInt(s); })
 .forEach((i) -> { System.out.println(i > 3); });

490 | Processing Data with Streams

This pipeline will take the strings, convert them to integers using the map()
operation, and then print either true or false depending on whether the parsed
string value is more than 3. This is just one simple example of map; this method is
incredibly versatile in transforming your stream into something very different.

There are also special versions of this intermediate operation that will return
integer values, long values, and double values. They're called mapToInt(),
mapToLong(), and mapToDouble(), respectively:

Stream.of("5", "3", "8", "2")
 .mapToInt((i) -> { return Integer.parseInt(i); })
 .forEach((i) -> { System.out.println(i > 3); });

Note that these special case map operations will return IntStream, LongStream, or
DoubleStream rather than Stream<Integer>, Stream<Long>, or Stream<Double>.

• flatMap: This gives you an easy way of flattening a multidimensional data
structure into one single stream; for example, a stream of objects that themselves
contain objects or arrays. With flatMap(), you can take these subelements and
concatenate them into a single stream:

Stream.of(List.of(1, 2, 3), List.of(4, 5, 6), List.of(7, 8, 9))
 .flatMap((l) -> { return l.stream(); })
 .forEach((i) -> { System.out.print(i); });

In this example pipeline, we're creating a stream from multiple lists; then, in the
flatMap operation, we're extracting streams of each list. The flatMap operation
then concatenates them into a single stream, which we loop through with forEach.
The terminal will print out the full stream: 123456789.

The flatMap function also exists as an integer, long, and double special operations
– flatMapToInt, flatMapToLong, and flatMapToDouble – which, of course, will return
the respective typed stream:

• Distinct: This will return all the unique elements in the stream. If there are
duplicate elements in the stream, the first item will be returned:

Stream.of(1, 2, 2, 2, 2, 3)
 .distinct()
 .forEach((i) -> { System.out.print(i); });

Here, we're starting with a stream of six elements, however, four of them are
identical in value. The distinct() operation will filter these elements and the
remaining three will be printed to the terminal.

Intermediate Operations | 491

• Sorted: The sorted intermediate operation exists in two versions. The first version,
without arguments, assumes that the elements of the map can be sorted in the
natural order – implementing the Comparable interface. If they can't be sorted,
then an exception will be thrown:

Stream.of(1, 3, 6, 4, 5, 2)
 .sorted()
 .forEach((i) -> { System.out.print(i); });

The second version of the sorted operation takes a Comparator as an argument, and
will return the sorted elements accordingly:

Stream.of(1, 3, 6, 4, 5, 2)
 .sorted((a, b) -> a - b)
 .forEach((i) -> { System.out.print(i); });

• Unordered: The opposite of sorted, the unordered intermediate operation will
impose an unordered encounter order on the streams elements. Using this
operation on parallel streams can, sometimes, improve the performance, as
certain intermediate and terminal stateful operations perform better with a more
relaxed ordering of elements:

Stream.of(1, 2, 3, 4, 5, 6)
 .unordered()
 .forEach((i) -> { System.out.print(i); });
System.out.println();
Stream.of(1, 2, 3, 4, 5, 6)
 .parallel()
 .unordered()
 .forEach((i) -> { System.out.print(i); });

• Limit: This returns a new stream with n number of elements. If the number of
elements is fewer than the requested limit, it has no effect:

Stream.of(1, 2, 3, 4, 5, 6)
 .limit(3)
 .forEach((i) -> { System.out.print(i); });

The result of running this example will be 123, ignoring any elements beyond the
third element.

492 | Processing Data with Streams

• Skip: This skips the first n elements of this stream and returns the remaining
elements in a new stream:

Stream.of(1, 2, 3, 4, 5, 6)
 .skip(3)
 .forEach((i) -> { System.out.print(i); });

This will print 456 to the terminal, skipping the first three elements.

• Boxed: The special primitive streams, IntStream, LongStream, and DoubleStream,
all have access to the boxed() operation. This operation will "box" each primitive
element in the class version of said type, and return that stream. IntStream will
return Stream<Integer>, LongStream will return Stream<Long>, and DoubleStream will
return Stream<Double>:

IntStream.of(1, 2)
 .boxed()
 .forEach((i) -> { System.out.println(i + i.getClass().
getSimpleName()); });
System.out.println();
LongStream.of(3, 3)
 .boxed()
 .forEach((l) -> { System.out.println(l + l.getClass().
getSimpleName()); });
System.out.println();
DoubleStream.of(5, 6)
 .boxed()
 .forEach((d) -> { System.out.println(d + d.getClass().
getSimpleName()); });

This example will take each primitive stream, box it in the corresponding object
type, and then print the value together with the class name of the type:

1Integer
2Integer

3Long
4Long

5.0Double
6.0Double

Intermediate Operations | 493

• takeWhile: This is a special type of operation that acts differently depending on
whether the stream is ordered or not. If the stream is ordered – that is, it has a
defined encounter order – it will return a stream containing the longest streak of
matching elements that match the predicate, starting with the first element in the
stream. This stream of elements, which always starts with the first element, is also
sometimes called a prefix:

Stream.of(2, 2, 2, 3, 1, 2, 5)
 .takeWhile((i) -> { return i == 2; })
 .forEach((i) -> { System.out.println(i); });

This pipeline will print 222 to the terminal. You should note, however, that this
operation will return an empty stream if the first element doesn't match the
predicate. This is because of the inner workings of takeWhile(); that is, it will start
at the first element and continue until the first element fails to match – giving you
an empty stream:

Stream.of(1, 2, 2, 3, 1, 2, 5)
 .takeWhile((i) -> { return i == 2; })
 .forEach((i) -> { System.out.println(i); });

If the stream is unordered – that is, it has no defined encounter order – the
takeWhile() operation may return any matching subset of elements, including the
empty subset. In this use case, a filter() operation might be more suitable.

• dropWhile: The dropWhile() operation is the opposite of takeWhile(). Just like
takeWhile(), it will act differently depending on whether the stream is ordered or
not. If the stream is ordered, it will drop the longest prefix matching the predicate,
instead of returning the prefix like takeWhile() does:

Stream.of(2, 2, 2, 3, 1, 2, 5)
 .dropWhile((i) -> { return i == 2; })
 .forEach((i) -> { System.out.print(i); });

This pipeline will print 3125 to the terminal, dropping the matching prefix, which
is the first three 2's. If the stream is unordered, the operation may drop any subset
of elements, or drop an empty subset, effectively returning the whole stream. Be
careful when using this operation on unordered streams.

• Parallel: This returns a parallel stream. By default, the operations in a parallel
stream run on threads from the common ForkJoinPool. Most streams are
sequential unless specifically created as parallel, or turned into parallel using this
intermediate operation.

• Sequential: This returns a sequential stream and is the opposite of parallel.

494 | Processing Data with Streams

• Peek: This intermediate operation is mainly used to examine the stream
after other intermediate operations have been applied. Usually, the goal is to
understand how the operations have affected the elements. In the following
example, we're printing how each element traverses each stream operation in the
pipeline:

long count = Stream.of(6, 5, 3, 8, 1, 9, 2, 4, 7, 0)
 .peek((i) -> { System.out.print(i); })
 .filter((i) -> { return i < 5; })
 .peek((i) -> { System.out.print(i); })
 .map((i) -> { return String.valueOf(i); })
 .peek((p) -> { System.out.print(p); })
 .count();
System.out.println(count);

The terminal will read 653338111922244470005 in this example. What we can quickly
deduce is that any elements with a value of 5 or above will only be printed once.
Peek will follow each element in turn through the whole stream – that's why the
order may seem odd. 6 and 5 will only be printed once, as they're filtered after the
first peek operation. 3, however, will be triggered on all three peek() operations,
hence there are three 3's in a row. The last number 5 in the output is just the
count of the remaining elements.

While the peek() operation is most commonly used to examine elements as they
traverse the pipeline, it is also possible to mutate the elements of the stream using
these operations. Consider the following class definition:

class MyItem {
 int value;
 public MyItem(int value) {
 this.value = value;
 }
}

Then, consider adding a number of these values to a stream that has a mutating
peek operation applied to it:

long sum = Stream.of(new MyItem(1), new MyItem(2), new MyItem(3))
 .peek((item) -> {
 item.value = 0;
 })
 .mapToInt((item) -> { return item.value; })
 .sum();
System.out.println(sum);

Intermediate Operations | 495

The sum of these objects should have been, if we disregard the peek() operation, 6.
However, the peek operation is mutating each object to have a value of zero – effectively
making the sum zero. While this is possible, it was never designed to be used like this.
Using peek() to mutate is not recommended as it is not thread-safe, and accessing any
shared state might cause exceptions. The different map() operations are usually a better
option.

Exercise 1: Using the Stream API

An online grocery shop that allows customers to collect, and save, multiple different
shopping carts at the same time has asked you to implement a joint checkout for their
multiple-shopping cart system. The checkout procedure should concatenate the price
for all items in all shopping carts, and then present that to the customer. To do this,
perform the following steps:

1. If IntelliJ is already started but no project is open, then select Create New Project.
If IntelliJ already has a project opened, then select File | New | Project from the
menu.

2. In the New Project dialog box, select the Java project, and then click Next.

3. Check the box to create the project from a template. Select Command Line App,
and then click Next.

4. Give the new project the name Chapter15.

5. IntelliJ will give you a default project location. If you wish to select one, you may
enter it here.

6. Set the package name to com.packt.java.chapter15.

7. Click Finish.

IntelliJ will create your project, called Chapter15, with the standard folder
structure. IntelliJ will also create the main entry point for your application, called
Main.java.

8. Rename this file to Exercise1.java. When you're done, it should look like this:

package com.packt.java.chapter15;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here
 }
}

496 | Processing Data with Streams

9. Create a new inner class, called ShoppingArticle. Make it static so that we can
easily access it from the main entry point for our program. This class should
contain the name of the article and the price of that article. Let the price be a
double variable:

private static final class ShoppingArticle {
 final String name;
 final double price;

 public ShoppingArticle(String name, double price) {
 this.name = name;
 this.price = price;
 }
}

10. Now create a simple ShoppingCart class. In this version, we will only allow one item
per article in the cart, so a list will be enough to keep the articles in ShoppingCart:

private static final class ShoppingCart {
 final List<ShoppingArticle> mArticles;

 public ShoppingCart(List<ShoppingArticle> list) {
 mArticles = List.copyOf(list);
 }
}

11. Create your first shopping cart, fruitCart, and add three fruit articles to it –
Orange, Apple, and Banana – one of each type. Set the per-unit price to 1.5, 1.7, and
2.2 Java-$ each:

public class Exercise1 {

 public static void main(String[] args) {
 ShoppingCart fruitCart = new ShoppingCart(List.of(
 new ShoppingArticle("Orange", 1.5),
 new ShoppingArticle("Apple", 1.7),
 new ShoppingArticle("Banana", 2.2)
));
 }
 ...
}

Intermediate Operations | 497

12. Create another ShoppingCart, but this time with vegetables – Cucumber, Salad, and
Tomatoes. Set a price in Java-$ for them as well, as 0.8, 1.2, and 2.7:

public class Exercise1 {

 public static void main(String[] args) {

 ShoppingCart fruitCart = new ShoppingCart(List.of(
 new ShoppingArticle("Orange", 1.5),
 new ShoppingArticle("Apple", 1.7),
 new ShoppingArticle("Banana", 2.2)
));

 ShoppingCart vegetableCart = new ShoppingCart(List.of(
 new ShoppingArticle("Cucumber", 0.8),
 new ShoppingArticle("Salad", 1.2),
 new ShoppingArticle("Tomatoes", 2.7)
));
 }
 ...
}

13. Wrap up the test shopping carts with a third and final shoppingCart containing
some meat and fish. They're usually a little more expensive than fruit and
vegetables:

public class Exercise1 {

 public static void main(String[] args) {

 ShoppingCart fruitCart = new ShoppingCart(List.of(
 new ShoppingArticle("Orange", 1.5),
 new ShoppingArticle("Apple", 1.7),
 new ShoppingArticle("Banana", 2.2)
));

 ShoppingCart vegetableCart = new ShoppingCart(List.of(
 new ShoppingArticle("Cucumber", 0.8),
 new ShoppingArticle("Salad", 1.2),
 new ShoppingArticle("Tomatoes", 2.7)
));

 ShoppingCart meatAndFishCart = new ShoppingCart(List.of(

498 | Processing Data with Streams

 new ShoppingArticle("Cod", 46.5),
 new ShoppingArticle("Beef", 29.1),
 new ShoppingArticle("Salmon", 35.2)
));
 }
 ...
}

14. Now it's time to start implementing the function that will calculate the total
price of all the items in the shopping carts. Declare a new function that takes a
ShoppingCart vararg as an argument and returns a double. Let it be static so that
we can easily use it in the main function:

private static double calculatePrice(ShoppingCart... carts) {
}

15. Build a pipeline starting with a stream of all of the carts:

private static double calculatePrice(ShoppingCart... carts) {
 return Stream.of(carts)
}

16. Add a flatMap() operation to extract a single stream of ShoppingArticles for all
ShoppingCarts:

private static double calculatePrice(ShoppingCart... carts) {
 return Stream.of(carts)
 .flatMap((cart) -> { return cart.mArticles.stream(); })
}

17. Extract the price for each ShoppingArticle using the mapToDouble() operation; this
will create a DoubleStream:

private static double calculatePrice(ShoppingCart... carts) {
 return Stream.of(carts)
 .flatMap((cart) -> { return cart.mArticles.stream(); })
 .mapToDouble((item) -> { return item.price; })
}

18. Finally, reduce the prices of all ShoppingArticle to a sum, using the sum() method
that is available in DoubleStream:

private static double calculatePrice(ShoppingCart... carts) {
 return Stream.of(carts)
 .flatMap((cart) -> { return cart.mArticles.stream(); })

Using Collectors | 499

 .mapToDouble((item) -> { return item.price; })
 .sum();
}

19. Now you have a function that will reduce a list of ShoppingCart to a unified sum in
Java-$. All you have to do now is to apply this function to your ShoppingCart class,
and then print out the resulting sum to the terminal, rounding it to two decimals:

public static void main(String[] args) {
 ...

 double sum = calculatePrice(fruitCart, vegetableCart,
meatAndFishCart);
 System.out.println(String.format("Sum: %.2f", sum));
}

You've now created your first complete piece of code using the functional Java Stream
API. You've created a stream of complex objects, applying a mapping operation to the
elements of the stream to transform them, and then another mapping operation to
transform the elements yet again, changing the stream type twice. Finally, you reduced
the whole stream to a single primitive value that was presented to the user.

Activity 1: Applying Discount on the Items

Improve the preceding example by adding a function that applies a discount for
certain items in the shopping carts, before calculating the final price. Ensure the price
calculation is still correct.

Note

The solution for this activity can be found on page 871.

Using Collectors
Collectors in Java are a very powerful tool when you need to extract certain data points,
descriptions, or elements from large data structures. They offer a very understandable
way of describing what you want to do with a stream of elements, without needing to
write complex logic.

500 | Processing Data with Streams

There are a number of helpful default implementations of the Collector interface that
you can start using easily. Most of these collectors will not allow null values; that is, if
they find a null value in your stream, they will throw a NullPointerException. Before
using a collector to reduce your elements in any of these containers, you should take
care to handle null elements in the stream.

The following is an introduction to all default Collectors:

• ToCollection: This generic collector will allow you to wrap your elements in any
known class implementing the Collection interface; examples include ArrayList,
HashSet, LinkedList, TreeSet, and others:

List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.toCollection(TreeSet::new));

• ToList: This will reduce your elements into an ArrayList implementation. If you
need a more specific type of list, you should use the toCollection() collector:

List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.toList());

• ToUnmodifiableList: This is essentially the same as the toList() collector, with
the one difference that it uses the List.of() generator function to make the list
unmodifiable:

List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.toUnmodifiableList());

• ToSet: This wraps the elements in a HashSet:

List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.toSet());

• ToUnmodifiableSet: This is just like the toSet() collector, with the difference
being that it will use the Set.of() generator to create an unmodifiable set:

List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.toUnmodifiableSet());

• Joining: This collector will use a StringBuilder to concatenate the elements of the
stream into a string without any separating characters:

String joined = List.of("one", "two", "three", "four", "five")

Using Collectors | 501

 .stream()
 .collect(Collectors.joining());
System.out.println(joined);

This will print onetwothreefourfive to the terminal. If you need the elements to be
separated by, for example, a comma, use Collectors.joining(","):

String joined = List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.joining(","));
System.out.println(joined);

In this example, you get one,two,three,four,five printed to the terminal. Finally,
you have the option of adding a prefix and a suffix to the generated string as well:

String joined = List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.joining(",", "Prefix", "Suffix"));
System.out.println(joined);

The prefix and suffix are added to the string, not each element. The generated
string will look like: Prefixone,two,three,four,fiveSuffix.

• Mapping: This is a special type of collector that allows you to apply a mapping to
each element of the stream before applying a defined collector:

Set<String> mapped = List.of("one", "two", "three", "four", "five")
 .stream()
 .collect(Collectors.mapping((s) -> { return s + "-suffix"; },
Collectors.toSet()));
System.out.println(mapped);

Here, we're starting with a source of List<String> and collecting to a Set<String>.
But before we collect, we're concatenating a -suffix string to each element using
the mapping() collector.

• FlatMapping. Just like the flatMap() intermediate operation, this collector will
allow you to apply a flat mapping to the stream elements, before collecting
them to a new container. In the following example, we start with a source,
List<Set<String>>, then we flatten it out to a Stream<Set<String>> and apply
Collector.toList() – effectively turning all the sets into a single list instead:

List<String> mapped = List.of(
 Set.of("one", "two", "three"),
 Set.of("four", "five"),
 Set.of("six")
)

502 | Processing Data with Streams

 .stream()
 .collect(Collectors.flatMapping(
 (set) -> { return set.stream(); },
 Collectors.toList())
);
System.out.println(mapped);

• Filtering: Just like the filter() intermediate operation, here, you're allowed to
apply a filtering before you

Set<String> collected = List.of("Andreas", "David", "Eric")
 .stream()
 .collect(Collectors.filtering(
 (name) -> { return name.length() < 6; },
 Collectors.toSet())
);
System.out.println(collected);

• CollectingAndThen: This special collector will allow you to finish the collection
off with a special function; for example, turning your collection into an immutable
collection:

Set<String> immutableSet = List.of("Andreas", "David", "Eric")
 .stream()
 .collect(Collectors.collectingAndThen(
 Collectors.toSet(),
 (set) -> { return Collections.unmodifiableSet(set); })
);
System.out.println(immutableSet);

• Counting: This produces the same result as the count() intermediate operation:

long count = List.of("Andreas", "David", "Eric")
 .stream()
 .collect(Collectors.counting());
System.out.println(count);

• MinBy: This collector is equivalent to using the min() terminal operator. The
following example will print Optional[1] to the terminal:

Optional<Integer> smallest = Stream.of(1, 2, 3)
 .collect(Collectors.minBy((a, b) -> { return a - b; });
System.out.println(smallest);

Using Collectors | 503

• MaxBy: You'll get the same result using this collector as you would with the max()
terminal operator:

Optional<Integer> biggest = Stream.of(1, 2, 3)
 .collect(Collectors.maxBy((a, b) -> { return a - b; }));
System.out.println(biggest);

• SummingInt: This is an alternative to the reduce() intermediate operation, and is
used to calculate the sum of all elements in the stream:

int sum = Stream.of(1d, 2d, 3d)
 .collect(Collectors.summingInt((d) -> { return d.intValue(); }));
System.out.println(sum);

• SummingLong: This is the same as Collector.summingInt(), but will instead
produce a sum in the long type:

long sum = Stream.of(1d, 2d, 3d)
 .collect(Collectors.summingLong((d) -> { return d.longValue();
}));
System.out.println(sum);

• SummingDouble: This is the same as Collector.summingLong(), but will instead
produce a sum in the double type:

double sum = Stream.of(1, 2, 3)
 .collect(Collectors.summingDouble((i) -> { return i.doubleValue();
}));
System.out.println(sum);

• averagingInt: Returns the average the integers passed:

double average = Stream.of(1d, 2d, 3d)
 .collect(Collectors.averagingInt((d) -> { return d.intValue();
}));
System.out.println(average);

• averagingLong: Returns the average the longs passed:

double average = Stream.of(1d, 2d, 3d)
 .collect(Collectors.averagingLong((d) -> { return d.longValue();
}));
System.out.println(average);

504 | Processing Data with Streams

• averagingDouble: Returns the average of the numbers passed in the argument:

double average = Stream.of(1, 2, 3)
 .collect(Collectors.averagingDouble((i) -> { return
i.doubleValue(); }));
System.out.println(average);x§

• Reducing: This is a collector that reduces the element of the stream to an optional.
This is best utilized when used in combination with other collectors; otherwise,
you are probably better off using the normal reduce() terminal operator, which
this collector inherits its name and operation from.

• GroupingBy: This collector will group elements according to a given function and
collect them according to a given collection type. Consider the following example
class, describing a car:

private static class Car {
 String brand;
 long enginePower;
 Car(String brand, long enginePower) {
 this.brand = brand;
 this.enginePower = enginePower;
 }

 public String getBrand() {
 return brand;
 }

 @Override
 public String toString() {
 return brand + ": " + enginePower;
 }
}

If you would like to sort a few cars according to their brand and collect them into
new containers, then it's simple with the groupingBy() collector:

Map<String, List<Car>> grouped = Stream.of(
 new Car("Toyota", 92),
 new Car("Kia", 104),
 new Car("Hyundai", 89),
 new Car("Toyota", 116),
 new Car("Mercedes", 209))
 .collect(Collectors.groupingBy(Car::getBrand));
System.out.println(grouped);

Using Collectors | 505

Here, we have four different cars. Then, we apply the groupingBy() collector based
on the brand of cars. This will produce a Map<String, List<Car>> collection, where
String is the brand of the car, and the List contains all the cars for said brand.
This will always return Map; however, it is possible to define what kind of collection
to gather the grouped elements in. In the following example, we've grouped them
into Set instead of the default list:

Map<String, Set<Car>> grouped = Stream.of(
 new Car("Toyota", 92),
 new Car("Kia", 104),
 new Car("Hyundai", 89),
 new Car("Toyota", 116),
 new Car("Mercedes", 209))
 .collect(Collectors.groupingBy(Car::getBrand, Collectors.
toSet()));
System.out.println(grouped);

The groupingBy collector becomes even more powerful if you combine it with
another collector; for example, the reducing collector:

Map<String, Optional<Car>> collected = Stream.of(
 new Car("Volvo", 195),
 new Car("Honda", 96),
 new Car("Volvo", 165),
 new Car("Volvo", 165),
 new Car("Honda", 104),
 new Car("Honda", 201),
 new Car("Volvo", 215))
 .collect(Collectors.groupingBy(Car::getBrand, Collectors.
reducing((carA, carB) -> {
 if (carA.enginePower > carB.enginePower) {
 return carA;
 }
 return carB;
 })));
System.out.println(collected);

In this example, we group the cars by brand and then reduce them to only show
the car of each brand with the most powerful engine. This kind of combination, of
course, also works with other collectors, such as filtering, counting, and others:

• GroupingByConcurrent: This is a concurrent and unordered version of the
groupingBy collector, and has the exact same API.

506 | Processing Data with Streams

• PartitioningBy: The partitioningBy collector works in a similar way to the
groupingBy collector, with the difference being that it will group elements into
two collections that either matches a predicate or doesn't match a predicate. It
will wrap these two collections into Map, where the true keyword will reference
the collection of elements that matches the predicate, and the false keyword will
reference the elements that don't match the predicate:

Map<Boolean, List<Car>> partitioned = Stream.of(
 new Car("Toyota", 92),
 new Car("Kia", 104),
 new Car("Hyundai", 89),
 new Car("Toyota", 116),
 new Car("Mercedes", 209))
 .collect(Collectors.partitioningBy((car) -> { return car.
enginePower > 100; }));
System.out.println(partitioned);

You can also select which kind of collection the elements should be wrapped in,
just like the groupingBy collector:

Map<Boolean, Set<Car>> partitioned = Stream.of(
 new Car("Toyota", 92),
 new Car("Kia", 104),
 new Car("Hyundai", 89),
 new Car("Toyota", 116),
 new Car("Mercedes", 209))
 .collect(Collectors.partitioningBy((car) -> { return car.
enginePower > 100; }, Collectors.toSet()));
System.out.println(partitioned);

• ToMap: This collector will allow you to create a map from your stream elements by
defining a mapping function, where you provide a key and value to put into the
map. Often, this is just a unique identifier in the element and the element itself.

This can be a little bit tricky because if you provide a duplicate element, then your
pipeline will throw an IllegalStateException since Map is not allowed duplicate
keys:

Map<String, Integer> mapped = List.of("1", "2", "3", "4", "5")
 .stream()
 .collect(Collectors.toMap((s) -> {
 return s;
 }, (s) -> {

Using Collectors | 507

 return Integer.valueOf(s);
 }));
System.out.println(mapped);

This simple example demonstrates how to map a string representation of an
integer to the actual integer. If you know you may have duplicate elements, then
you can supply a merge function to resolve that conflict:

Map<String, Integer> mapped = List.of("1", "2", "3", "4", "5", "1", "2")
 .stream()
 .collect(Collectors.toMap((s) -> {
 return s;
 }, (s) -> {
 return Integer.valueOf(s);
 }, (a, b) -> {
 return Integer.valueOf(b);
 }));
System.out.println(mapped);

You also have the option of generating your own type of Map by applying a factory
function at the very end of the collector. Here, we're telling the collector to
generate a fresh TreeMap for us:

TreeMap<String, Integer> mapped = List.of("1", "2", "3", "4", "5", "1",
"2")
 .stream()
 .collect(Collectors.toMap((s) -> {
 return s;
 }, (s) -> {
 return Integer.valueOf(s);
 }, (a, b) -> {
 return Integer.valueOf(b);
 }, () -> {
 return new TreeMap<>();
 }));
System.out.println(mapped);

• ToUnmodifiableMap: This is essentially the same as toMap, with the same API;
however, it returns unmodifiable versions of Map instead. This is perfect for when
you know you will never mutate the data in Map.

508 | Processing Data with Streams

• ToConcurrentMap: Because of the way Map is implemented, it can be a bit
hazardous to performance when using it in parallel streams. In this case, it's
recommended that you use the toConcurrentMap() collector instead. This has a
similar API to the other toMap functions – with the difference being that it will
return instances of ConcurrentMap rather than Map.

• Summarizing: This is a collector that enables summary statistics for non-primitive
streams. It is perfect if you need to display some statistics about complex objects
without having to first apply other intermediate operations. Considering the Car
class from previous collectors, you could produce a summary of all car engines like
this:

LongSummaryStatistics statistics = Stream.of(
 new Car("Volvo", 165),
 new Car("Volvo", 165),
 new Car("Honda", 104),
 new Car("Honda", 201)
).collect(Collectors.summarizingLong((e) -> {
 return e.enginePower;
}));
System.out.println(statistics);

I/O Streams

Apart from collections and other primitives, you can use files and I/O streams as
sources in your pipelines. This makes writing tasks against servers very descriptive.

Because these types of resources generally need to be closed properly, you should use
a try-with-resources statement to ensure the resources are handed back to the system
when you're done with them.

Consider having a CSV file called authors.csv with these contents:

Andreas, 42, Sweden

David, 37, Sweden

Eric, 39, USA

You can put this file into a stream using a try-with-resources statement:

String filePath = System.getProperty("user.dir") + File.separator + "res/
authors.csv";

try (Stream<String> authors = Files.lines(Paths.get(filePath))) {

 authors.forEach((author) -> {

 System.out.println(author);

Using Collectors | 509

 });

} catch (IOException e) {

 e.printStackTrace();

}

In I/O streams, you can add onClose handlers to get notified when the stream is
closed. Unlike other streams, this will be closed automatically when the resources
for the stream have been closed – in this example, that's handled automatically by
the try-with-resources statement. In the following example, we've added an onClose
handler that will print the word Closed when the stream has been closed:

try (Stream<String> authors = Files.lines(Paths.get(filePath))) {

 authors.onClose(() -> {

 System.out.println("Closed");

 }).forEach((author) -> {

 System.out.println(author);

 });

} catch (IOException e) {

 e.printStackTrace();

}

Here is the same example written with an InputStream instead. Notice that the code is
now more verbose, having three nested object creations:

try (Stream<String> authors = new BufferedReader(

 new InputStreamReader(new FileInputStream(filePath))).lines()

) {

 ...

} catch (FileNotFoundException e) {

 e.printStackTrace();

}

510 | Processing Data with Streams

Exercise 2: Converting CSV to a List

A web-based grocery shop has implemented its very own database based on a standard
Java List collection and has also implemented a backup system where the database
is backed up to CSV files. However, they still haven't built a way of restoring a said
database from a CSV file. They have asked you to build a system that will read such a
CSV file, inflating its contents to a list.

The database backup CSV file contains one single type of object: ShoppingArticle. Each
article has a name, a price, a category, and finally, a unit. The name should be a String, the
category should a String, the price a double, and the unit a String:

1. Open the Chapter15 project in IDEA if it's not already open.

2. Create a new Java class, using File| New | Java.

3. Enter Exercise2 as the name, and then select OK.

IntelliJ will create your new class; it should look something like the following
snippet:

package com.packt.java.chapter15;

public class Exercise2 {
}

4. Add a main method to this class. This is where you'll write the bulk of your
application. Your class should now look like this:

package com.packt.java.chapter15;

public class Exercise2 {

 public static void main(String[] args) {
 }
}

5. Create a ShoppingArticle inner class and make it static so that you can easily use it
in the main method. Override the toString method to make it easy to print articles
to the terminal later:

private static class ShoppingArticle {
 final String name;
 final String category;
 final double price;
 final String unit;

Using Collectors | 511

 private ShoppingArticle(String name, String category, double price,
String unit) {
 this.name = name;
 this.category = category;
 this.price = price;
 this.unit = unit;
 }

 @Override
 public String toString() {
 return name + " (" + category + ")";
 }
}

6. Create a new folder in your project called res if it doesn't already exist. Then, place
it in the root, next to the src folder.

7. Copy the database.csv file from GitHub to your project and place it in the res
folder.

8. Back in your Exercise2.java class, add a function that produces
List<ShoppingArticle>. This will be our function to load the database into a
list. Since the function will be loading a file, it needs to throw an I/O exception
(IOException):

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 return null;
}

9. Call this function from your main method:

public static void main(String[] args) {
 try {
 List<ShoppingArticle> database = loadDatabaseFile();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

512 | Processing Data with Streams

10. Start by loading the database file with a try-with-resources block. Use Files.lines
to load all the lines from the database.csv file. It should look something like this:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 }
 return null;
}

11. Let's peek into the stream in order to look at the state of it right now. Intermediate
operations will only run when there's a terminal operation defined, so add a
count() at the end just to force it to execute the whole pipeline:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).count();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

This should print every single line of the file. Notice that it also prints the header
line – which we're not really interested in when converting to ShoppingArticles.

12. Since we're not really interested in the first row, add a skip operation just before
the count() method:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).count();

Using Collectors | 513

 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

13. Now you have every single line of the database file loaded as elements in the
stream, except for the header. It's time to extract every piece of data from those
lines – a suitable operation for this is map. Split every line into String arrays using
the split() function:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).map((line) -> {
 return line.split(",");
 }).count();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

14. Add another peek operation to find out how the map operation changed the stream
– your stream type should now be Stream<String[]>:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).map((line) -> {
 return line.split(",");
 }).peek((arr) -> {
 System.out.println(Arrays.toString(arr));

514 | Processing Data with Streams

 }).count();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

15. Add another map operation, but this time to turn the stream into
Stream<ShoppingArticle>:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).map((line) -> {
 return line.split(",");
 }).peek((arr) -> {
 System.out.println(Arrays.toString(arr));
 }).map((arr) -> {
 return new ShoppingArticle(arr[0], arr[1], Double.
valueOf(arr[2]), arr[3]);
 }).count();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

16. Now you can peek again to ensure the articles were created properly:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).map((line) -> {
 return line.split(",");
 }).peek((arr) -> {
 System.out.println(Arrays.toString(arr));
 }).map((arr) -> {
 return new ShoppingArticle(arr[0], arr[1], Double.

Using Collectors | 515

valueOf(arr[2]), arr[3]);
 }).peek((art) -> {
 System.out.println(art);
 }).count();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

17. Collect all the articles in a list. Use an unmodifiable list to protect the database
from unwanted modifications:

private static List<ShoppingArticle> loadDatabaseFile() throws IOException
{
 try (Stream<String> stream = Files.lines(Path.of("res/database.csv")))
{
 return stream.peek((line) -> {
 System.out.println(line);
 }).skip(1).map((line) -> {
 return line.split(",");
 }).peek((arr) -> {
 System.out.println(Arrays.toString(arr));
 }).map((arr) -> {
 return new ShoppingArticle(arr[0], arr[1], Double.
valueOf(arr[2]), arr[3]);
 }).peek((art) -> {
 System.out.println(art);
 }).collect(Collectors.toUnmodifiableList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
}

This may seem a little bit verbose, as some operations could have been applied together
to make it shorter. However, there's a point to keeping every single operation small,
and that's to make the whole logic very transparent. If you find a problem with the
pipeline, you can simply move a single operation in the pipeline, and that should sort all
problems.

If you combine multiple steps in an operation, it's more difficult to move the operations
around in the pipeline or to replace it fully.

516 | Processing Data with Streams

Activity 2: Searching for Specifics

With the database loaded, apply some searching logic:

1. Build a function that will find the cheapest fruit from a list of ShoppingArticles.

2. Build a function that will find the most expensive vegetable from a list of
ShoppingArticles.

3. Build a function that will gather all fruits in a separate list.

4. Build a function that will find the five least expensive articles in the database.

5. Build a function that will find the five most expensive articles in the database.

Note

The Solution for this Activity can be found on page 874.

Summary
Descriptive code is always an ideal to strive for when writing programs. The simpler the
code is, the easier it will be to communicate your intentions to colleagues and other
interested parties.

The Java Streams API allow you to construct simple, and highly descriptive functions -
quite often they'll be pure functions since the Streams API makes it very easy to avoid
manipulating state.

In the next chapter, we'll dive deeper into functional programming topic, exploring the
different functional interfaces available.

Learning Objectives

By the end of this chapter, you will be able to:

• Describe functional interfaces

• Build and apply predicates

• Use predicate composition to model complex behavior

• Create consumer interfaces to change the state of your program

• Use functions to extract useful constructs

This chapter explores all the valid use cases of functional interfaces.

Predicates and Other
Functional Interfaces

16

520 | Predicates and Other Functional Interfaces

Introduction
Alongside the many other improvements in Java 8, such as the streaming API, method
references, optionals, and collectors, there are the interface improvements that allow
default and static methods known as functional interfaces. These are interfaces with
one single abstract method, which enables their transformation into lambdas. You can
read more about this in Chapter 13, Functional Programming with Lambda Expressions.

There are a total of 43 unique functional interfaces in the java.util.function package;
most of them are variants of the same kind of interface, albeit with different data types.
In this chapter, we'll introduce you to the predicate functional interface, along with a
few other selected interfaces.

Here, you'll find that many of the functional interfaces operate in very similar ways,
often just replacing the type of data that the interface can operate on.

Predicate Interface
The predicate interface is a quite simple, yet surprisingly elegant and complex,
functional interface that allows you, as a programmer, to define functions that describe
the state of your program in the shape of Booleans. In Java, speech predicates are
one-argument functions that return a Boolean value.

The predicate API looks like this:

boolean test(T t);

However, the predicate API also utilizes the new interface features of Java 8. Its sports
default and static functions to enrich the API, allowing more complex descriptions of
your program's state. Here, three functions are important:

Predicate<T> and(Predicate<T>);

Predicate<T> or(Predicate<T>);

Predicate<T> not(Predicate<T>);

With these three functions, you can chain predicates to describe more complex
queries on your program's state. The and function will combine two or more predicates,
ensuring that every predicate supplied returns true.

The or function is equivalent to a logical OR, letting you short-circuit the predicate
chain when required.

Finally, the not function returns the negated version of the predicate supplied, and it
has the exact same effect as calling negate() on the supplied predicate.

Predicate Interface | 521

There is also a helper function to build a predicate that checks whether two objects
are identical according to the equals method on said objects. We can use the static
isEqual(Object target) method to build that predicate for two objects. Let's now look
at an example in terms of defining a predicate.

Exercise 1: Defining a predicate

Defining a predicate is quite simple. Consider building the backend server of a home
alarm system. This system needs to easily understand the state of numerous different
sensors at the same time – instances such as: Is the door open or closed? Is the battery
healthy or not? Are the sensors connected?

Building such a system is a complex task. We'll try simplifying the process in this
exercise:

1. If IntelliJ is already started, but no project is open, select Create New Project. If
IntelliJ already has a project open, select File -> New -> Project from the menu.

2. In New Project dialog, select a Java project. Click Next.

3. Check the box to create the project from a template. Select Command Line App.
Click Next.

4. Give the new project the name Chapter16.

5. IntelliJ will give you a default project location. If you wish to select one, you may
enter it here.

6. Set the package name to com.packt.java.chapter16.

7. Click Finish.

Your project will be created with the standard folder structure, and with an entry
point class for your program. It will look something like this:

package com.packt.java.chapter16;

public class Main {
 public static void main(String[] args) {
 // write your code here
 }
}

522 | Predicates and Other Functional Interfaces

8. Rename this file to Exercise1.java, making sure to use the Refactor | Rename
menu. When you're done, it should look like this:

package com.packt.java.chapter16;

public class Exercise1 {
 public static void main(String[] args) {
 // write your code here
 }
}

9. The alarm system will have three different kinds of sensors – a Gateway sensor, a
Movement sensor, and a Fire sensor. They will all have the same basic qualities but
may differ in certain aspects. Create the Base sensor interface and let it have two
getter/setter pairs. The first pair should be called batteryHealth and will return
an integer between 0 and 100, and the second pair will be a Boolean value called
triggered:

package com.packt.java.chapter16;

public interface Sensor {
 int batteryHealth();
 void batteryHealth(int health);
 boolean triggered();
 void triggered(boolean state);
}

10. Create the Gateway Sensor class, and allow it to implement the Sensor interface
and return instance variables:

package com.packt.java.chapter16;

public class Gateway implements Sensor {

 private int batteryHealth;

 private boolean triggered;

 @Override
 public int batteryHealth() {
 return batteryHealth;
 }

 @Override

Predicate Interface | 523

 public void batteryHealth(int health) {
 this.batteryHealth = health;
 }

 @Override
 public boolean triggered() {
 return triggered;
 }

 @Override
 public void triggered(boolean state) {
 triggered = state;
 }
}

11. Do the same thing for the Movement and Fire sensor classes, except the Fire sensor
will also have the current temperature, and the movement sensor will return the
strength of the ambient light in the room:

package com.packt.java.chapter16;

public class Fire implements Sensor {

 private int batteryHealth;

 private boolean triggered;

 private int temperature;

 @Override
 public int batteryHealth() {
 return batteryHealth;
 }

 @Override
 public void batteryHealth(int health) {

 }

 @Override
 public boolean triggered() {
 return triggered;

524 | Predicates and Other Functional Interfaces

 }

 @Override
 public void triggered(boolean state) {

 }

 public int temperature() {
 return temperature;
 }

}
package com.packt.java.chapter16;

public class Movement implements Sensor {

 private int batteryHealth;

 private boolean isTriggered;

 private int ambientLight;

 @Override
 public int batteryHealth() {
 return batteryHealth;
 }

 @Override
 public void batteryHealth(int health) {

 }

 @Override
 public boolean triggered() {
 return isTriggered;
 }

 @Override
 public void triggered(boolean state) {

 }

Predicate Interface | 525

 public int ambientLight() {
 return ambientLight;
 }

}

12. Add constructors to all three sensor classes, utilizing IntelliJ helpers to this end.
Open the Fire class, use the Code | Generate menu, and select Constructor.

13. Select all three variables and click OK. Your Fire class should now look something
like this:

package com.packt.java.chapter16;

public class Fire implements Sensor {

 private int batteryHealth;

 private boolean triggered;

 private int temperature;

 public Fire(int batteryHealth, boolean isTriggered, int temperature) {
 this.batteryHealth = batteryHealth;
 this.triggered = isTriggered;
 this.temperature = temperature;
 }

 @Override
 public int batteryHealth() {
 return batteryHealth;
 }

 @Override
 public void batteryHealth(int health) {

 }

 @Override
 public boolean triggered() {
 return triggered;
 }

526 | Predicates and Other Functional Interfaces

 @Override
 public void triggered(boolean state) {

 }

 public int temperature() {
 return temperature;
 }

}

14. Generate constructors for the Gateway and Movement sensors as well.

15. You should now have three functioning classes representing sensor states in your
program.

16. It's now time to describe your first predicate class, the predicate that describes
whether a sensor has a triggered alarm. Create a new class, and call it HasAlarm:

package com.packt.java.chapter16;

public class HasAlarm {
}

17. Implement the Predicate interface, using Sensor as the type definition. In the test
function, return the trigger status of the sensor:

package com.packt.java.chapter16;

import java.util.function.Predicate;

public class HasAlarm implements Predicate<Sensor> {

 @Override
 public boolean test(Sensor sensor) {
 return sensor.triggered();
 }

}

Predicate Interface | 527

18. Back in your program's entry point, the main method, create a list of sensors and
add a few Gateway sensors to it:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;

public class Exercise1 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 }
}

19. Use a for loop in the main method to iterate through the list. In the for loop, add
an if statement that uses the predicate to check whether an alarm was triggered:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise1 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 for (Sensor sensor : sensors) {

528 | Predicates and Other Functional Interfaces

 if (new HasAlarm().test(sensor)) {
 System.out.println("Alarm was triggered");
 }
 }
 }
}

Note:

You may very well ask yourself what the point of this is. This is no different from
using the sensor's public triggered() function. This is also an uncommon way of
applying predicates, but it illustrates how predicates work. A much more common
approach involves using streams and lambdas.

20. Now, create another predicate and call it HasWarning. In this class, we'll simply
check whether the battery status is below a threshold of 10, which will symbolize
10% in our example:

package com.packt.java.chapter16;

import java.util.function.Predicate;

public class HasWarning implements Predicate<Sensor> {

 public static final int BATTERY_WARNING = 10;

 @Override
 public boolean test(Sensor sensor) {
 return sensor.batteryHealth() < BATTERY_WARNING;
 }

}

21. Use the HasAlarm and HasWarning predicates to generate a newly composed
predicate. Instantiate the HasAlarm predicate and apply the default or() function to
chain the HasWarning predicate as well:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

Predicate Interface | 529

public class Exercise1 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 for (Sensor sensor : sensors) {
 if (new HasAlarm().test(sensor)) {
 System.out.println("Alarm was triggered");
 }
 }
 }
}

22. Add a new if statement in the for loop using the newly composed predicate:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise1 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

530 | Predicates and Other Functional Interfaces

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 for (Sensor sensor : sensors) {
 if (new HasAlarm().test(sensor)) {
 System.out.println("Alarm was triggered");
 }

 if (hasAlarmOrWarning.test(sensor)) {
 System.out.println("Alarm or warning was triggered");
 }
 }
 }
}

As mentioned earlier, applying predicates – or any other functional interface, for that
matter – directly on objects in loops like this is uncommon. Instead you usually use the
Java streams API.

Activity 1: Toggling the Sensor states
Rewrite the program once more, adding a scanner to your program to toggle sensor
states from the command line. Each sensor should be capable of at least toggling the
battery health and triggered status. When a sensor has updated, you should check the
system for changes and generate a proper response on the command line if a warning
or alarm has been triggered.

Note

The solution to this Activity can be found on page 878.

Consumer Interface

In functional programming, we're often told to avoid side effects in our code. The
consumer functional interface, however, is an exception to this rule. Its only purpose is
to produce a side effect based on the state of the argument. The consumer has quite a
simple API, the core function of which is called accept() and doesn't return anything:

void accept(T);

This can also be used for chaining multiple consumers by using the andThen() function,
which returns the newly chained consumer:

Consumer<T> andThen(Consumer<T>);

Activity 1: Toggling the Sensor states | 531

Exercise 2: Producing Side Effects

Continuing the previous exercise, let's now look at an example where we add
functionality for reacting to warnings and alarms in the system. You can use consumers
to produce side effects and for storing the current state of the system in variables:

1. Copy the Exercise1.java class, and call it Exercise2. Remove the whole for loop,
but leave the instantiated predicate.

2. Create a new static Boolean variable in Exercise2, and call it alarmServiceNotified:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise2 {

 static boolean alarmServiceNotified;

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());
 }
}

Note

This is, of course, not the manner in which you'd commonly apply static variables
(if you ever really should use static variables). However, in this example, it makes it
a lot easier to illustrate side effects.

532 | Predicates and Other Functional Interfaces

3. Create a new class, call it SendAlarm, and allow it to implement the consumer
interface. It should look something like this:

package com.packt.java.chapter16;

import java.util.function.Consumer;

public class SendAlarm implements Consumer<Sensor> {
 @Override
 public void accept(Sensor sensor) {

 }
}

4. Inside the accept(Sensor sensor) function, check whether the sensor has been
triggered. If it has been triggered, set the static variable to true:

package com.packt.java.chapter16;

import java.util.function.Consumer;

public class SendAlarm implements Consumer<Sensor> {
 @Override
 public void accept(Sensor sensor) {
 if (sensor.triggered()) {
 Exercise2.alarmServiceNotified = true;
 }
 }
}

5. Back in the main method, instantiate a new SendAlarm consumer:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise2 {

 static boolean alarmServiceNotified;

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();

Activity 1: Toggling the Sensor states | 533

 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 SendAlarm sendAlarm = new SendAlarm();

 }
}

6. Using streams, first, filter the list of sensors based on the previously defined
composed predicate. Then, use forEach to apply the SendAlarm consumer to each
of the sensors that have an alarm or warning triggered:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise2 {

 static boolean alarmServiceNotified;

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

534 | Predicates and Other Functional Interfaces

 SendAlarm sendAlarm = new SendAlarm();

 sensors.stream().filter(hasAlarmOrWarning).forEach(sendAlarm);
 }
}

7. Now, add an if statement, checking whether the alarm service was notified, and
print a message if it was:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class Exercise2 {

 static boolean alarmServiceNotified;

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 SendAlarm sendAlarm = new SendAlarm();

 sensors.stream().filter(hasAlarmOrWarning).forEach(sendAlarm);

 if (alarmServiceNotified) {
 System.out.println("Alarm service notified");
 }
 }
}

Activity 1: Toggling the Sensor states | 535

8. Build one more consumer, and this time call it ResetAlarm:

package com.packt.java.chapter16;

import java.util.function.Consumer;

public class ResetAlarm implements Consumer<Sensor> {
 @Override
 public void accept(Sensor sensor) {
 }
}

9. Add logic to the ResetAlarm accept() function to set batteryHealth to 50 and
Triggered to false. Also, set the static notification variable to false:

package com.packt.java.chapter16;

 import java.util.function.Consumer;

public class ResetAlarm implements Consumer<Sensor> {

 @Override
 public void accept(Sensor sensor) {
 sensor.triggered(false);
 sensor.batteryHealth(50);

 Exercise2.alarmServiceNotified = false;
 }
}

10. Instantiate the new ResetAlarm consumer, and then apply it after the SendAlarm
consumer using the andThen() function:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;

public class Exercise2 {

 static boolean alarmServiceNotified;

536 | Predicates and Other Functional Interfaces

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 if (sensors.stream().anyMatch(hasAlarmOrWarning)) {
 System.out.println("Alarm or warning was triggered");
 }

 SendAlarm sendAlarm = new SendAlarm();

 ResetAlarm resetAlarm = new ResetAlarm();

 sensors.stream().filter(hasAlarmOrWarning).forEach(sendAlarm.
andThen(resetAlarm));

 if (alarmServiceNotified) {
 System.out.println("Alarm service notified");
 }
 }
}

11. Finally, a bonus. At the very end of Exercise 2's main method, apply the negated
version of the hasAlarmOrWarning predicate, and print out an Everything okay
message:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;

Activity 1: Toggling the Sensor states | 537

public class Exercise2 {

 static boolean alarmServiceNotified;

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 if (sensors.stream().anyMatch(hasAlarmOrWarning)) {
 System.out.println("Alarm or warning was triggered");
 }

 SendAlarm sendAlarm = new SendAlarm();

 ResetAlarm resetAlarm = new ResetAlarm();

 sensors.stream().filter(hasAlarmOrWarning).forEach(sendAlarm.
andThen(resetAlarm));

 if (alarmServiceNotified) {
 System.out.println("Alarm service notified");
 }

 if (sensors.stream().anyMatch(hasAlarmOrWarning.negate())) {
 System.out.println("Nothing was triggered");
 }
 }
}

538 | Predicates and Other Functional Interfaces

Function
The function, functional interface – yes, it's called a function – was introduced mainly
to translate one value into another. It is often used in mapping scenarios. It also
contains default methods to combine multiple functions into one, and chain functions
after one another.

The main function in the interface is called apply, and it looks like this:

R apply(T);

It defines a return value, R, and an input to the function. The idea is that the return
value and input don't have to be of the same type.

The composition is handled by the compose function, which also returns an instance of
the interface, which means that you can chain compositions. The order is right to left;
in other words, the argument function is applied before the calling function:

Function<V, R> compose(Function<V, T>);

Finally, the andThen function allows you to chain functions after one another:

Function<T, V> andThen(Function<R, V>);

Let's now look at an example where we can use functions.

Exercise 3: Extracting Data

Extract all of the alarm system data as integers; battery percentages, temperatures,
triggered status, and others, depending on how far you've taken your alarm system.
Start by extracting the battery health data:

1. Copy the Exercise2 class and call it Exercise3.

2. Remove everything except the list of sensors. Your class should look something
like this:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;

public class Exercise3 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));

Function | 539

 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Gateway(18, false));
 sensors.add(new Gateway(9, false));
 }
}

3. Create a new class, call it ExtractBatteryHealth, and let it implement the
Function<T, R> functional interface. Override the apply function. Your class should
look like this:

package com.packt.java.chapter16;

import java.util.function.Function;

public class ExtractBatteryHealth implements Function<Sensor, Integer> {
 @Override
 public Integer apply(Sensor sensor) {
 return null;
 }
}

4. In the apply function, make it return the battery health, as follows:

package com.packt.java.chapter16;

import java.util.function.Function;

public class ExtractBatteryHealth implements Function<Sensor, Integer> {

 @Override
 public Integer apply(Sensor sensor) {
 return sensor.batteryHealth();
 }

}

5. Instantiate your new ExtractBatteryHealth function and add a few more sensors
to the list if you haven't already done so:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;

540 | Predicates and Other Functional Interfaces

public class Exercise3 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Fire(78, false, 21));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Movement(87, false, 45));
 sensors.add(new Gateway(18, false));
 sensors.add(new Fire(32, false, 23));
 sensors.add(new Gateway(9, false));
 sensors.add(new Movement(76, false, 41));

 ExtractBatteryHealth extractBatteryHealth = new
ExtractBatteryHealth();
 }
}

6. Finally, use the java streams map operation and apply your new instance of
ExtractBatteryHealth. Terminate the stream with a toArray operation. You should
now have an array of all your battery health:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.List;

public class Exercise3 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Fire(78, false, 21));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Movement(87, false, 45));
 sensors.add(new Gateway(18, false));
 sensors.add(new Fire(32, false, 23));
 sensors.add(new Gateway(9, false));

Function | 541

 sensors.add(new Movement(76, false, 41));

 ExtractBatteryHealth extractBatteryHealth = new
ExtractBatteryHealth();

 Integer[] batteryHealths = sensors.stream().
map(extractBatteryHealth).toArray(Integer[]::new);
 }
}

7. Print your battery health to the terminal:

package com.packt.java.chapter16;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class Exercise3 {

 public static void main(String[] args) {
 List<Sensor> sensors = new ArrayList<>();
 sensors.add(new Gateway(34, false));
 sensors.add(new Gateway(14, true));
 sensors.add(new Fire(78, false, 21));
 sensors.add(new Gateway(74, false));
 sensors.add(new Gateway(8, false));
 sensors.add(new Movement(87, false, 45));
 sensors.add(new Gateway(18, false));
 sensors.add(new Fire(32, false, 23));
 sensors.add(new Gateway(9, false));
 sensors.add(new Movement(76, false, 41));

 ExtractBatteryHealth extractBatteryHealth = new
ExtractBatteryHealth();

 Integer[] batteryHealths = sensors.stream().
map(extractBatteryHealth).toArray(Integer[]::new);

 System.out.println(Arrays.toString(batteryHealths));
 }
}

542 | Predicates and Other Functional Interfaces

Activity 2: Using a Recursive Function

Calculate the average battery health in your alarm system, either through a loop, a
stream, or a recursive function.

Note

The solution for this activity can be found on page 880.

Activity 3: Using a Lambda Function

Instead of instantiating the ExtractBatteryHealth functional interface, use a lambda
andstore a reference to that.

Note

The solution for this activity can be found on page 882.

Summary
In this chapter, you've explored how to use the functional interfaces provided by Java
8. You've used them both in loops, on single instances, and in streams, all of which are
valid use cases for functional interfaces. However, you'll quickly find that they're more
commonly used together with streams, and then they're often described as lambdas,
rather than instances of functional interfaces because it's less verbose.

There are many pre-defined functional interfaces in Java, but only a few of them are
unique in the way they work. Most are just primitive versions of the different functions,
such as IntPredicate, LongPredicate, DoublePredicate, and Predicate.

In the next chapter, you'll learn more about the Reactive Streams initiative, the Flow
API, and what Java does to build good foundational interfaces for reactive programming
in Java.

Learning Objectives

By the end of this chapter, you will be able to:

• Explain, in general terms, the motivation for Flow and Reactive Streams

• Explain the functioning of a Publisher

• Explain the functioning of a Subscriber

• Explain the purpose of a Processor

• Use the basic SubmissionPublisher to build a reactive application using Flow

• Implement a simple Subscriber and Processor using Flow

This chapter talks about the Java Flow API and the advantages of the Reactive Streams
specification.

Reactive
Programming with

Java Flow

17

546 | Reactive Programming with Java Flow

Introduction
The Reactive Streams specification presents an ongoing development within software
architecting, referred to as Reactive Systems. These systems, ideally, have the following
advantages:

• A faster response

• More controlled responses in relation to one another

• Increased reliability

A natively supported API for developing Reactive Systems or applications was
introduced in Java 9, called Flow.

The Java 9 Flow API was not intended to compete with the already developed, highly
adopted, and appreciated reactive libraries or APIs available out there. The biggest
reason for the advent of the Flow API was the need for a common denominator
amongst these libraries – that the core of reactive programming should be the same
regardless of which implementation you use. That way, you can easily translate from
one implementation to another.

To achieve this, the Java Flow API adheres to the Reactive Streams specification, which
is also the specification that most of the libraries available use as a blueprint for their
design. The Reactive Streams initiative, which designed the specification, was started in
2013 by Netflix and several other large corporations with a vested interest in delivering
content reliably.

Note

While they may share a lot of the same lingo, the Flow API is not in any way
related to the Streams API of Java 8. They are focused on solving different kinds of
problems.

In simple terms, reactive programming is a way to write programs using components
that communicate with each other by streaming events. These events are often
asynchronous in nature and should never overwhelm the receiving party. Within a
reactive system, there are two main components – publishers and subscribers. This is
similar to a networked pub/sub system but on a micro-scale.

Introduction | 547

The Java Flow API (or rather Reactive Streams, which Flow adheres to) has three main
actors:

• The Publisher has the knowledge of the available data and pushes it on-demand to
any interested subscriber.

• The Subscriber is the one demanding the data.

• The Processor may sit between a publisher and a subscriber. Processors can
intercept and transform the published data before releasing it to a subscriber
or another processor. Thus, the processor can act as both a subscriber and a
publisher.

Communication between these components is both of a pull and push nature. The
subscriber first asks the publisher to send, at most, n messages. That's the pull part of
the communication. Following that request, the publisher will begin to send messages
to the subscriber, but it will never exceed n messages.

Figure 17.1: Communication between the Subscriber and the Publisher

When the publisher has sent the final message, it will provide a notification that the
sending of messages is complete, and the subscriber may then act as needed – probably
requesting more messages or aborting the communication entirely.

548 | Reactive Programming with Java Flow

The entire Flow API, which we will look into further in this chapter, is defined in a
single Java class. It contains one interface for each of the actors, and an extra interface
describing the subscription object, which is the messaging link between the publisher
and subscriber.

Publisher
The publisher holds the data that other components are interested in getting. The
publisher will wait until a subscriber who is interested in the data requests n-number of
items to be sent, and will only then start sending those items to the subscriber.

Asking for a specific number of items, rather than asking for everything, is called
backpressure, and is very important in the Reactive Streams specification. This
backpressure lets listeners request only as many items as they can handle at a time,
ensuring that the application will not stall or crash.

The interface for Publisher in Flow, and Reactive Streams looks like this:

@FunctionalInterface

public static interface Publisher<T> {

 public void subscribe(Subscriber<? super T> subscriber);

}

You'll notice that it's a functional interface, which can be implemented as a lambda,
should you wish.

SubmissionPublisher

Creating a fully functional Publisher can be quite a complicated endeavor. Luckily, Flow
includes a complete implementation called SubmissionPublisher. We'll use this class in
several examples in this chapter.

You can use SubmissionPublisher either directly, as a component, or as a superclass for
your extended Publisher. SubmissionPublisher requires an Executor and a buffer size. By
default, it will use the common ForkJoinPool and a buffer size of 256:

SubmissionPublisher<?> publisher = new SubmissionPublisher<>();

SubmissionPublisher<?> publisher = new SubmissionPublisher<>(ForkJoinPool.
commonPool(), Flow.defaultBufferSize());

Subscriber | 549

The choice of executor should be based on how your application is designed and the
tasks it is supposed to handle. In some cases, the common ForkJoinPool is the best
choice, while in other situations, a scheduled thread pool may work better. You may
need to try different executors and buffer sizes to find the combination that best suits
your needs:

SubmissionPublisher<?> publisher = new SubmissionPublisher<>(Executors.
newCachedThreadPool(), 512);

You may also use SubmissionPublisher as a superclass for your own implementation.

In the following example, MyPublisher extends SubmissionPublisher, but defines a fixed
threadpool executor rather than the common ForkJoinPool executor:

public class MyPublisher extends SubmissionPublisher<String> {

 public MyPublisher() {

 super(Executors.newFixedThreadPool(1), Flow.defaultBufferSize());

 }

}

Subscriber
The subscriber represents the end-user. It receives the data at the very end of the
stream and acts on it. The action may include updating a user interface, pushing it to
another component, or transforming it in any way.

The interface of the subscribers contains four different callbacks, each of which
represents a message of some type from the publisher or the subscriber itself:

• onSubscribe: The onSubscribe method is invoked as soon as the subscriber has
a valid subscription. Generally, this is used to kick-start the delivery of items
from the publisher. The Subscriber will typically inform the Publisher here, by
requesting another item.

• onNext: The onNext method is invoked when another item is made available from
the Publisher.

• onError: The onError method is invoked when an error occurs. This usually means
that the subscriber will no longer receive any more messages and should be closed
down.

• onComplete: The onComplete method is invoked by the publisher when the final
item has been sent.

550 | Reactive Programming with Java Flow

The following example illustrates all of these callbacks:

public static interface Subscriber<T> {

 public void onSubscribe(Subscription subscription);

 public void onNext(T item);

 public void onError(Throwable throwable);

 public void onComplete();

}

Subscription

A Subscriber may use the Subscription API to control a publisher, either by requesting
more items, or by canceling the subscription altogether:

public static interface Subscription {

 public void request(long n);

 public void cancel();

}

It is the Publisher who creates the subscriptions. It does this whenever a Subscriber
has subscribed to that Publisher. If a Subscriber happens to subscribe twice to one
publisher, it will fire the onError() callback with IllegalStateException.

Exercise 1: A Simple Application with a Single Publisher and a Single

Subscriber

In this exercise, we will build an application with a single Publisher and a single
Subscriber. The Publisher will send a string of messages to the Subscriber, which will
then print it to the terminal. The messages are found in the lipsum.txt file, which
should be placed in your projects /res folder. For this exercise, we will use the common
ForkJoinPool to generate the executor:

1. If IntelliJ is already started, but no project is open, select Create New Project. If
IntelliJ already has a project opened, select File New Project from the menu.

2. In New Project dialog, select a Java project, and then click Next.

3. Check the box to create the project from a template. Select Command Line App,
and then click Next.

Subscriber | 551

4. Name the new project Chapter17.

5. IntelliJ will give you a default project location. If you wish to select a different one,
you may enter it here.

6. Set the package name to com.packt.java.chapter17.

7. Click Finish.

IntelliJ will create your project, called Chapter17, with the standard folder
structure. IntelliJ will also create a main entry point called Main.java.

8. Rename this file to Exercise1.java. When you're done, it should look like this:

package com.packt.java.chapter17;
public class Exercise1 {
 public static void main(String[] args) {
 // write your code here
 }
}

9. We will use SubmissionPublisher in this exercise. This is a fully functional
implementation of the Publisher interface, which you can use to demonstrate the
basic functionality of a reactive application. Declare a default SubmissionPublisher,
as shown here, and then initialize it:

package com.packt.java.chapter17;

import java.util.concurrent.SubmissionPublisher;

public class Exercise1 {

 public static void main(String[] args) {
 SubmissionPublisher<String> publisher = new
SubmissionPublisher<>();
 }
}

552 | Reactive Programming with Java Flow

10. Flow doesn't come with any already available implementations of Subscriber,
so we will need to implement our own Subscriber. Create a new class called
LipsumSubscriber, and allow it to implement the Flow.Subscriber interface. Your
new class should look something like the following example:

package com.packt.java.chapter17;
import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {
 @Override
 public void onSubscribe(Flow.Subscription subscription) {

 }

 @Override
 public void onNext(String item) {

 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

11. The subscriber has four methods to implement. The onSubscribe method will be
called by the publisher when the Subscription object has been created. Usually,
you'll store a reference to that subscription so that you can issue requests to the
publisher, create a Flow.Subscription member variable in your LipsumSubscriber
class, and store the reference from the onSubscribe method:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {

Subscriber | 553

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 }

 @Override
 public void onNext(String item) {

 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

12. Usually, you'll also request at least one item when the subscription has been
created. Use the request method to ask for one item from the publisher:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {

554 | Reactive Programming with Java Flow

 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

13. Looking at the next method in the class, called onNext, this is the callback executed
by the Publisher whenever an item is issued to all subscribers. In this example, we
will simply print the contents of the item:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 System.out.println(item);
 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override

Subscriber | 555

 public void onComplete() {

 }
}

14. To keep getting more items from the publisher, we need to keep requesting them
– this is what is called backpressure. It's the subscriber who is in control in terms
of how many items it can handle at a time. In this exercise, we'll handle one item
at a time and then request another. Request another item after you've printed the
current item to the console:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 System.out.println(item);
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

556 | Reactive Programming with Java Flow

15. The subscriber can use the methods onError and onComplete to perform a cleanup
and make sure that no resources are kept in vain. In this example, we will simply
print the error and a completion message:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;

public class LipsumSubscriber implements Flow.Subscriber<String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 System.out.println(item);
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println(throwable.getMessage());
 }

 @Override
 public void onComplete() {
 System.out.println("completed");
 }
}

16. Back in the main method, create a new subscriber and allow it to subscribe to the
publisher:

package com.packt.java.chapter17;

import java.util.concurrent.SubmissionPublisher;

Subscriber | 557

public class Exercise1 {

 public static void main(String[] args) {
 SubmissionPublisher<String> publisher = new
SubmissionPublisher<>();

 LipsumSubscriber lipsumSubscriber = new LipsumSubscriber();

 publisher.subscribe(lipsumSubscriber);
 }
}

17. However, this will not actually do anything. The publisher still has no data to send,
so we need to provide the data to the publisher as well. We'll use the lipsum.txt
file as the source. Copy the file to the res/ folder in your project. Create the folder
if it doesn't already exist:

package com.packt.java.chapter17;

import java.util.concurrent.SubmissionPublisher;

public class Exercise1 {

 public static void main(String[] args) {
 SubmissionPublisher<String> publisher = new
SubmissionPublisher<>();

 LipsumSubscriber lipsumSubscriber = new LipsumSubscriber();

 publisher.subscribe(lipsumSubscriber);

 String filePath = "res/lipsum.txt";
 }
}

558 | Reactive Programming with Java Flow

18. To send the words from the lipsum.txt file to the Publisher, you need to load
the file into some kind of container. We will use the Stream API to load the words,
and then push them to the publisher immediately. Wrap the stream in a try-with-
resources block to enable the JVM to auto-close the resource after loading it:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.SubmissionPublisher;
import java.util.stream.Stream;

public class Exercise1 {

 public static void main(String[] args) {
 SubmissionPublisher<String> publisher = new
SubmissionPublisher<>();

 LipsumSubscriber lipsumSubscriber = new LipsumSubscriber();

 publisher.subscribe(lipsumSubscriber);

 String filePath = "res/lipsum.txt";

 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 words.flatMap((l) -> Arrays.stream(l.split("[\\s.,\\n]+"))).
forEach(publisher::submit);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Subscriber | 559

Here, we are loading the file as a stream of strings. It will load the lines from
the file into one string each. Since every line may contain multiple words, we
need to apply a flat mapping to each line to extract the words. We are using a
simple regular expression to split the lines into words, looking for one or more
whitespaces, punctuation items, or a new line.

Note

You can read more about the Streams API, and the different methods used here, in
Chapter 15, Processing Data with Streams.

19. At this point, the program will execute and print all the words available in the file.
However, you may notice that it does not print any completion messages. That is
because we haven't actually notified the subscribers that the stream has ended.
Send the completion signal, as seen here:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.SubmissionPublisher;
import java.util.stream.Stream;

public class Exercise1 {

 public static void main(String[] args) {
 SubmissionPublisher<String> publisher = new
SubmissionPublisher<>();

 LipsumSubscriber lipsumSubscriber = new LipsumSubscriber();

 publisher.subscribe(lipsumSubscriber);

 String filePath = "res/lipsum.txt";

 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 words.flatMap((l) -> Arrays.stream(l.split("[\\s.,\\n]+"))).
forEach(publisher::submit);
 publisher.close();
 } catch (IOException e) {

560 | Reactive Programming with Java Flow

 e.printStackTrace();
 }
 }
}

Running this program should yield the following output in the console:

Lorem
ipsum
dolor
sit
amet
consectetur
adipiscing
elit
Pellentesque
malesuada
ultricies
ultricies
Curabitur
...

Having built your first reactive application, you may notice that it doesn't really make
much sense to use this extra logic in a very simple program, as shown in this example.
Applying the Reactive Streams concept to a simple example makes very little sense as it
is meant to be used in asynchronous applications, where you may not be sure when, or
if, a Subscriber can currently receive messages.

Processor
The Processor is something of a chameleon in Flow – it may act as both a Subscriber
and a Publisher.

There are several different reasons for adding an interface such as the Processor. One
reason may be that you have a stream of data that you do not fully trust. Imagine an
asynchronous flow of data from a server, where data is delivered over a UDP connection
that lacks promises of delivery — this data will eventually be corrupted and you need to
handle that. A simple way would be to inject a filter of some kind between the publisher
and subscriber. This is where a Processor excels.

Another reason for using a Processor could be to separate a polymorphic data stream
between different subscribers so that alternative actions may be taken based on the
data type.

Processor | 561

Exercise 2: Using a Processor to Convert a Stream of Strings to Numbers

In this exercise, we will first build a publisher that periodically publishes a string from
a text file. Then, we will use a scheduler to control the timer. The subscriber should
then attempt to transform a said string to a number. The numbers.txt file will be used to
build this application. In this example, we will also show how to clean up the handling of
the data using a Supplier implementation to make the data source abstract.

The numbers.txt file contains intentional errors that we will handle by applying a
processor before the subscriber:

1. Open the Chapter17 project in IDEA if it's not already opened.

2. Create a new Java class, using the File New Java Class menu.

3. In the Create New Class dialog, enter Exercise2 as Name, and select OK.

IntelliJ will create your new class. It should look something like the following
snippet:

package com.packt.java.chapter17;

public class Exercise2 {
}

4. Add a main method to this class:

package com.packt.java.chapter17;

public class Exercise2 {

 public static void main (String[] args) {
 }
}

5. We will continue using the basic SubmissionPublisher supplied in the Flow
library, but in this exercise, we'll create our own subclass. Create a new class
called NumberPublisher. This should extend SubmissionPublisher, as shown in the
following code block:

package com.packt.java.chapter17;

import java.util.concurrent.SubmissionPublisher;

public class NumberPublisher extends SubmissionPublisher<String> {
}

562 | Reactive Programming with Java Flow

6. Our new NumberPublisher should publish numbers periodically to any interested
Subscriber. There are several different options in terms of how to accomplish this,
but probably the easiest solution is to use a Timer. Add a Timer, and a TimerTask to
your publisher:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {
 }
 };

 public NumberPublisher() {
 }
}

7. When the publisher is shutting down, so should Timer. Override the publisher's
close() method, and add a call to the cancel() method of Timer just before the
publisher is about to shut down:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {

Processor | 563

 }
 };

 public NumberPublisher() {
 }

 @Override
 public void close() {
 timer.cancel();
 super.close();
 }
}

8. There are two different ways to let the publisher send items to the connected
subscribers – using either submit() or offer(). submit() works in a fire-and-
forget fashion, while offer() lets the publisher retry sending the item once using
a handler. In our case, submit() would work just fine. But, before you can submit,
you need some data. Add a Supplier to the Publisher using dependency injection:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Supplier;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {
 }
 };
 final Supplier<String> supplier;

 public NumberPublisher(Supplier<String> supplier) {
 this.supplier = supplier;

564 | Reactive Programming with Java Flow

 }

 @Override
 public void close() {
 timer.cancel();
 super.close();
 }
}

Note

A supplier is a functional interface that is often used to deliver results – to anyone
and anything.

9. Now that we know how to get the data we need using Supplier, we can actually
send it to the subscribers. Inside the run() method of TimerTask, add a call to
submit() and get the data from the supplier:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Supplier;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {
 submit(supplier.get());
 }
 };
 final Supplier<String> supplier;

 public NumberPublisher(Supplier<String> supplier) {
 this.supplier = supplier;

Processor | 565

 }

 @Override
 public void close() {
 timer.cancel();
 super.close();
 }
}

10. One last thing remains, because the publisher may run into trouble when
attempting to either get items from the supplier or send items onward. We need
to catch any exception when attempting to execute the submit() method. Add a
try-catch clause, and use a closeExceptionally() method to inform any subscriber
that we ran into difficulty. Executing closeExceptionally() will force the publisher
into a state where it cannot send anything else out:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Supplier;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {
 try {
 submit(supplier.get());
 } catch (Exception e) {
 closeExceptionally(e);
 }
 }
 };
 final Supplier<String> supplier;

 public NumberPublisher(Supplier<String> supplier) {
 this.supplier = supplier;

566 | Reactive Programming with Java Flow

 }

 @Override
 public void close() {
 timer.cancel();
 super.close();
 }
}

11. Now, TimerTask is fully implemented. The data is injected into Publisher using
Supplier, and shutdown handling is ready. All that remains to do is to actually
schedule periodic publishing. Using Timer, schedule TimerTask for repeat
execution every 1 second. Since TimerTask accepts only milliseconds, we need to
remember to multiply the delay by 1000. We're also setting the initial delay to 1000
milliseconds:

package com.packt.java.chapter17;

import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Supplier;

public class NumberPublisher extends SubmissionPublisher<String> {

 final Timer timer = new Timer();
 final TimerTask timerTask = new TimerTask() {
 @Override
 public void run() {
 try {
 submit(supplier.get());
 } catch (Exception e) {
 closeExceptionally(e);
 } }
 };
 final Supplier<String> supplier;

 public NumberPublisher(Supplier<String> supplier) {
 this.supplier = supplier;
 this.timer.schedule(timerTask, 1000, 1000);

Processor | 567

 }

 @Override
 public void close() {
 timer.cancel();
 super.close();
 }
}

12. Now that our NumberPublisher is ready, we need to start feeding it data, but in
order to feed it the data that should be published, we need to load the data. The
data we're going to send is located in the numbers.txt file. Copy the numbers.txt
file to the /res folder, creating the folder if it doesn't already exist.

13. In the Exercise2 class, create a new method called getStrings(), which will return
the numbers from the numbers.txt file as Strings:

package com.packt.java.chapter17;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 }
}

14. In this new method, create a variable called filePath. Let it point to the numbers.
txt file, located in the /res folder. We will use this filePath variable to load the file
contents in the next step:

package com.packt.java.chapter17;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 }
}

568 | Reactive Programming with Java Flow

15. Load the file contents into a String stream, and then wrap the load in a try-with-
resources block so that we don't need to care about releasing the file resources
when we're done:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 try (Stream<String> words = Files.lines(Paths.get(filePath))) {

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

16. The numbers.txt file contains lots of numbers and some other characters that
might cause trouble later on. But, in order to actually decode the file to single
words, we need to review the structure of the file. Let's open it, and you should
see something like this – multiple rows with a column-like structure:

6 2e 22 4 11 59 73 41 60 8
42 91 99 89 17 96 54 24 77 36
12 9 64 0a 31 75 1 14 34 56
67 78 37 87 93 92 100 28 47 5
52 85 29 38 21 88 65 81 25 70
95 3 74 2 35 84 32 66 86 69
58 45 48 10 26 53 40 13 49 94
98 71 39 68 76 43 63 7g 72 80
61 46 57 18 79 27 20 83 82 33
97 2h 50 44 15 16 55 30 19 51

Processor | 569

17. The stream of strings we've just loaded will not be of much help. Each item in the
stream will represent a whole line, and we need to transform the stream before
it will be useful to us. First of all, apply a flatMap operator to create a new stream
for each item in the original stream. This will let us split each line up into multiple
items, and return them to the main stream:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 return words.flatMap((line) -> Arrays.stream(line.split("[\\
s\\n]+")))
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Note

You can read more about processing data with Streams in Chapter 15, Processing
Data with Streams, and regular expressions in Chapter 12, Regular Expressions.

570 | Reactive Programming with Java Flow

18. The stream now contains items representing each column for each line. But, in
order to use the data, we need to filter it based on length as we don't want any 0
length words, and then we need to turn the stream into an array of strings. Filter
the items of the stream, allowing only words with a length in excess of 0 to pass:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 return words.flatMap((line) -> Arrays.stream(line.split("[\\
s\\n]+")))
 .filter((word) -> word.length() > 0)
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

19. Now, turn the whole stream into an array of strings. This will return an array of
strings to the caller of the method. However, if we do have an error in reading
the file, we need to return something too. Return null at the very end of the
getStrings() method. The publisher will interpret null as an error and throw
NullPointerException, closing the connection to the subscriber:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;

Processor | 571

import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 return words.flatMap((line) -> Arrays.stream(line.split("[\\
s\\n]+")))
 .filter((word) -> word.length() > 0)
 .toArray(String[]::new);
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

20. The data for our little program is ready for pushing into the publisher so that it
can send it to any interested subscriber. Now, we need to build a supplier that will
take these strings and send them to the publisher, one by one, when the publisher
requests them. Create a supplier in the main method of the Exercise2 class:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 @Override
 public String get() {
 return null;

572 | Reactive Programming with Java Flow

 }
 };
 }
}

21. Let the Supplier call getStrings() to retrieve the full array:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 @Override
 public String get() {
 String[] data = getStrings();
 return null;
 }
 };
 }
}

22. The Supplier, however, cannot return the entire dataset; it is designed to return
one string at a time. For this to work, we need to keep an index of the last string
sent to Supplier:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

Processor | 573

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override
 public String get() {
 String[] data = getStrings();
 return data[index];
 }
 };
 }
}

23. This will constantly return the first number in the file, and that's not what we
want. So, we need to increment the index every time someone asks the supplier
for a string:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override
 public String get() {
 String[] data = getStrings();
 return data[index++];
 }
 };
 }
}

574 | Reactive Programming with Java Flow

24. This, however, will throw an exception when we reach the final number in the file.
So, we need to protect against that. In this case, we'll return null when we reach
the end. Add an if statement, checking that we haven't gone too far:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override
 public String get() {
 String[] data = getStrings();
 if (index < data.length - 1) {
 return data[index++];
 } else {
 return null;
 }
 }
 };
 }
}

25. The supplier is now ready to be used by our NumberPublisher. Create an instance
of NumberPublisher in the main() method of Exercise2, passing the supplier as an
argument:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.function.Supplier;

Processor | 575

import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override
 public String get() {
 String[] data = getStrings();
 if (index < data.length - 1) {
 return data[index++];
 } else {
 return null;
 }
 }
 };

 NumberPublisher publisher = new NumberPublisher(supplier);
 }
}

26. Create a Subscriber and allow it to request an item on subscription success.
Then, request a new item every time it receives an item – backpressure! While
implementing the subscriber, add printouts for every method so that we can easily
see what's happening:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.Flow;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override

576 | Reactive Programming with Java Flow

 public String get() {
 String[] data = getStrings();
 if (index < data.length - 1) {
 return data[index++];
 } else {
 return null;
 }
 }
 };

 NumberPublisher publisher = new NumberPublisher(supplier);

 publisher.subscribe(new Flow.Subscriber<>() {
 Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 System.out.println("onNext: " + item);
 subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println("onError: " + throwable.getMessage());
 }

 @Override
 public void onComplete() {
 System.out.println("onComplete()");
 }
 });
 }
}

Processor | 577

Running this code, you should get an output to the console, and the entire file
should print:

onNext: 6
onNext: 2e
onNext: 22
onNext: 4
onNext: 11
onNext: 59
onNext: 73
...

27. However, in the subscriber, we expect to get data we can easily transform into
integers. If we apply simple integer parsing to the text, we'll end up in trouble:

publisher.subscribe(new Flow.Subscriber<>() {
 Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 System.out.println("onNext: " + Integer.valueOf(item));
 subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println("onError: " + throwable.getMessage());
 }

 @Override
 public void onComplete() {
 System.out.println("onComplete()");
 }
});

578 | Reactive Programming with Java Flow

This will stop, with a parse exception, when reaching the second item, 2e, which,
of course, is not an integer:

onNext: 6
onError: For input string: "2e"

To rectify the problem with the broken subscriber, you can, of course, catch the
exception right there. But, in this exercise, we will involve a filter processor in
the mix. Processor will subscribe to Publisher, and Subscriber will subscribe to
Processor. In essence, Processor is both a Publisher and a Subscriber. To make
this simple for us, allow NumberProcessor to extend SubmissionPublisher, just like
NumberPublisher does.

Figure 17.2: Communication between the Subscriber, the Processor, and the Publisher

Processor | 579

28. Create a class called NumberProcessor, allow it to extend SubmissionPublisher, and
implement the Flow.Processor interface:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {
 @Override
 public void onSubscribe(Flow.Subscription subscription) {

 }

 @Override
 public void onNext(String item) {

 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

29. NumberProcessor will subscribe to NumberPublisher, and, just like the subscriber, it
needs to store a reference to the publisher so that it can control when to request
new items. Store the reference received in onSubscribe() as a private field in the
processor. Also, take this opportunity to request the first item from the publisher:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

580 | Reactive Programming with Java Flow

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {

 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

30. Whenever you receive an item from the publisher, you need to also request the
next item, just like the subscriber would:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;

Processor | 581

 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {

 }

 @Override
 public void onComplete() {

 }
}

31. If the subscription to NumberPublisher is closed, we also need to inform
the subscriber that there was a problem. Likewise, we need to inform the
subscriber when the subscription ended. In the onError() callback, add a call to
closeExceptionally(), and, in onComplete(), add a call to close():

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);
 }

 @Override
 public void onNext(String item) {
 this.subscription.request(1);

582 | Reactive Programming with Java Flow

 }

 @Override
 public void onError(Throwable throwable) {
 closeExceptionally(throwable);
 }

 @Override
 public void onComplete() {
 close();
 }
}

32. The processor is almost done. The one thing that is missing is communicating
the received items back to the subscriber. We will do this in the onNext()
callback method. However, since we know that there may be invalid values, we
want to filter those. We'll use a predicate for this, declaring a predicate to the
NumberProcessor class:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Predicate;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 private Predicate<String> predicate = new Predicate<String>() {
 @Override
 public boolean test(String s) {
 return false;
 }
 };

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);

 }

Processor | 583

 @Override
 public void onNext(String item) {
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 closeExceptionally(throwable);
 }

 @Override
 public void onComplete() {
 close();
 }
}

33. The predicate is a simple functional interface that is used to verify the input using
a test() method. The test() method should always return true if the value was
acceptable, or false if it was faulty. In our predicate, we will attempt to parse the
string supplied. If the parsing is successful, we will return true; otherwise, we will
return false:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Predicate;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 private Predicate<String> predicate = new Predicate<String>() {
 @Override
 public boolean test(String s) {
 try {
 Integer.valueOf(s);
 return true;
 } catch (NumberFormatException e) {
 return false;
 }

584 | Reactive Programming with Java Flow

 }
 };

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);

 }

 @Override
 public void onNext(String item) {
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 closeExceptionally(throwable);
 }

 @Override
 public void onComplete() {
 close();
 }
}

34. Back in the onNext() callback, we can now use our predicate to verify the value
supplied before we submit it to the subscribers:

package com.packt.java.chapter17;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;
import java.util.function.Predicate;

public class NumberProcessor extends SubmissionPublisher<String>
implements Flow.Processor<String, String> {

 private Flow.Subscription subscription;

 private Predicate<String> predicate = new Predicate<String>() {
 @Override
 public boolean test(String s) {

Processor | 585

 try {
 Integer.valueOf(s);
 return true;
 } catch (NumberFormatException e) {
 return false;
 }
 }
 };

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 this.subscription.request(1);

 }

 @Override
 public void onNext(String item) {
 if (predicate.test(item)) {
 submit(item);
 }
 this.subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 closeExceptionally(throwable);
 }

 @Override
 public void onComplete() {
 close();
 }
}

Note

You can read more about predicates and how to use them in Chapter 16, Predicates
and Other Functional Interfaces.

586 | Reactive Programming with Java Flow

35. Now that your Processor is ready, inject it between NumberPublisher and
Subscriber:

package com.packt.java.chapter17;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.Flow;
import java.util.function.Supplier;
import java.util.stream.Stream;

public class Exercise2 {

 public static void main(String[] args) {
 Supplier<String> supplier = new Supplier<String>() {
 int index;
 @Override
 public String get() {
 String[] data = getStrings();
 if (index < data.length - 1) {
 return data[index++];
 } else {
 return null;
 }
 }
 };

 NumberPublisher publisher = new NumberPublisher(supplier);

 NumberProcessor processor = new NumberProcessor();

 publisher.subscribe(processor);

 processor.subscribe(new Flow.Subscriber<>() {
 Flow.Subscription subscription;

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 this.subscription = subscription;
 subscription.request(1);

Processor | 587

 }

 @Override
 public void onNext(String item) {
 System.out.println("onNext: " + Integer.valueOf(item));
 subscription.request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println("onError: " + throwable.getMessage());
 }

 @Override
 public void onComplete() {
 System.out.println("onComplete()");
 }
 });
 }

 private static String[] getStrings() {
 String filePath = "res/numbers.txt";
 try (Stream<String> words = Files.lines(Paths.get(filePath))) {
 return words.flatMap((line) -> Arrays.stream(line.split("[\\
s\\n]+")))
 .filter((word) -> word.length() > 0)
 .toArray(String[]::new);
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

After running this example, you should see that the processor filters the faulty
number values from the file before they reach the subscriber:

onNext: 6
onNext: 22
onNext: 4
onNext: 11
onNext: 59

588 | Reactive Programming with Java Flow

onNext: 73
onNext: 41
onNext: 60
onNext: 8
...

This example shows how to take content from a publisher and pass it through a
processor to ensure that the values are valid.

Activity 1: Let NumberProcessor Format Values as Integers

Improve NumberProcessor further. Let it not only verify that the values can be parsed as
integers, but also publish them to the subscriber as integers. The subscriber should only
accept integer values, and no longer need to parse the received values.

Note

The solution for this activity can be found on page 885.

Summary
In this chapter, you've learned the basics of Reactive Streams components, how they
communicate, and their respective roles in a reactive application.

In most cases, you should avoid using the Flow API to build reactive applications as
there are much more advanced and user-friendly reactive libraries available out there.
The Flow API provides only the basic building blocks for reactive applications, while
implementations such as Akka or RxJava will give you a richer experience, providing
essential functionality such as throttling, filtering, and debouncing, to name a few. If
you're interested in delving deeper into reactive programming, there are entire books
devoted to the subject.

As mentioned before, Flow provides the basis for building your own Reactive Streams
library, however complex that may be. Should you, against all the odds, wish to
implement a Reactive Streams library of your own, you should start by reviewing the
Reactive Streams Technology Compatibility Kit. This test-based kit will enable you to
ensure that your implementation follows the Reactive Streams rules.

After the next chapter, which focuses on unit testing, you should be all set to start
looking at the compatibility kit and build your own Reactive Streams library.

Learning Objectives

By the end of this chapter, you will be able to:

• Test your Java code with unit tests

• Use JUnit assertions to verify that your code is correct

• Pass parameters to tests to allow you to run the same test on a set of data inputs

• Use mocking to mock out external dependencies so that you can concentrate on testing a
single Java class

This chapter delves into testing with JUnit, one of the primary testing frameworks for Java.

Unit Testing

18

592 | Unit Testing

Introduction
Testing allows you to make sure your Java code performs correctly. For example, if
you were calculating employees' pay, then you would want the code to be accurate;
otherwise, your organization may face legal consequences. While not every
programming issue leads to legal doom, it is still a good idea to test your code.

Writing tests while you code, as opposed to when you are done, can speed up your
work. That's because you won't be spending time trying to figure out why things don't
seem to work. Instead, you will know exactly what part of the code isn't correct. This is
especially useful for any code that requires complex logic.

In addition to this, as new enhancements get added to the code, you will want to make
sure that nothing in the new code breaks the old functionality. Having a suite of well-
written unit tests can really help in this regard. If you are a new developer hired into a
team that has been working on an application for some time, a good suite of tests is a
sign that your team follows engineering best practices.

Getting Started with Unit Tests
A unit test tests one unit of code. In Java terms, this usually means that a unit test tests
a single Java class. The test should run quickly, so you know whether there are any
problems as soon as possible.

A unit test is a separate Java class designed just for testing. You should write separate
test methods for each part of the original class you want to test. Typically, the more
fine-grained the test, the better.

Sometimes, due to necessity, a unit test will test more than one class. That's OK and
not something to worry about. In general, though, you want to concentrate on writing
separate tests for each class in your Java application.

Note

Writing your Java classes so that they are easy to test will improve your code. You'll
have better code organization, clearer code, and better quality as a result.

Integration tests, on the other hand, test a part of the entire system, including external
dependencies. For example, a unit test should not access a database. That's the job of
integration tests.

Getting Started with Unit Tests | 593

Functional tests go further and test an entire system all in one, such as an online
banking application or a retail store application. This is sometimes called end-to-end
testing.

Note

Software development job interviews tend to go badly if you say you do not believe
in writing tests.

Introducing JUnit

JUnit provides the most widely used test framework for Java code. Now on version 5,
JUnit has been around for years.

With JUnit, your tests reside in test classes, that is, classes that use JUnit's framework
to validate your code. These test classes reside outside of the main application code.
That's why both Maven and Gradle projects have two subdirectories under the src
directory: main, for your application code, and test, for the tests.

Typically, tests are not part of your built application. So, if you build a JAR file for your
application, the tests will not be part of that JAR file.

JUnit has been around for a long time, and you will find the official documentation at
https://junit.org/junit5/docs/current/user-guide/ and the official site at https://
junit.org/junit5/.

Note

Another popular test framework is called Spock. Spock uses the Groovy
language, which is a JVM language that is similar to Java. You can refer to http://
spockframework.org/ for more information about Spock. TestNG is another
Java unit testing framework. You can refer to https://testng.org/doc/ for more
information about TestNG.

Writing Unit Tests with JUnit

Oozie is a workflow scheduler for the Hadoop big data clusters. Oozie workflows
are jobs that perform tasks on potentially massive amounts of data stored in Hadoop
clusters. Oozie coordinator jobs run workflow jobs on a schedule.

https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/
https://junit.org/junit5/
http://spockframework.org/
http://spockframework.org/
https://testng.org/doc/

594 | Unit Testing

When defining a schedule, you typically set three values:

• The starting timestamp, which defines when the coordinator should start a
workflow job.

• The ending timestamp, which defines when the coordinator should end.

• A frequency, in minutes, at which the coordinator should launch jobs. For example,
a frequency of 60 specifies launching a workflow job every 60 minutes (that is,
each hour), from the starting timestamp to the ending timestamp.

Note

You can refer to https://oozie.apache.org/ for more information about Oozie
coordinators and even more scheduling options. For now, we'll just concentrate on
validating the coordinator scheduling information.

Here, we're going to define a simple JavaBean class that holds the scheduling
information and then write a JUnit test to validate a coordinator schedule.

The basic bean looks like the following (with the getters, setters, and constructors not
shown):

public class CoordSchedule {

 private String startingTimestamp;

 private String endingTimestamp;

 private int frequency;

}

The starting and ending timestamps are String values based on an assumption that this
bean would hold data read in from a configuration file. It also allows us to validate the
String format for the timestamps.

Note

Remember that IntelliJ can generate constructors along with the getter and setter
methods.

Now, consider what you would want to test, along with how you would write those
tests. Testing edge cases is a good idea.

https://oozie.apache.org/

Getting Started with Unit Tests | 595

For a coordinator, here are the rules:

• The ending timestamp must be after the starting timestamp.

• Both timestamps must be in UTC in the format of yyyy-MM-ddTHH:mmZ (this is the
ISO 8601 format).

• The frequency must be less than 1,440 (that is, the number of minutes in a normal
day). Oozie provides alternative configuration settings to go beyond this limitation.
For now, we'll just test against this limit.

• The frequency should be greater than 5 (this is an arbitrary rule designed to
prevent new workflows starting while another workflow is still running).

To create a test, you create a separate test class. Test classes should have a single
no-argument constructor. Test classes cannot be abstract classes.

Note

If you work with the Maven build tool (refer to Chapter 6, Libraries, Packages, and
Modules), then your test classes should all have names that end in Test, Tests, or
TestCase. All test classes in this chapter have names ending in Test.

JUnit uses the @Test annotation to identify a test method. You can add a @DisplayName
annotation to specify the text to be displayed should the test fail. This can make your
test reports easier to read:

@Test

@DisplayName("Frequency must be less than 1440")

void testFrequency() {

}

Inside your test methods, use the Assertions class methods to validate the results:

Assertions.assertTrue(schedule.getFrequency() < 1440);

Note

JUnit provides a few other assertion methods, such as assertEquals() and
assertAll().

596 | Unit Testing

Exercise 1: Writing a First Unit Test

This example shows the basics of writing a JUnit unit test. For this exercise, we are just
testing whether the properties are correct. Typically, you will also test program logic:

1. Select New and then Project… from the File menu in IntelliJ.

2. Select Gradle for the type of project. Click on Next.

3. For Group Id, enter com.packtpub.testing.

4. For Artifact Id, enter chapter18.

5. For Version, enter 1.0.

6. Accept the default settings on the next pane. Click on Next.

7. Leave the project name as chapter18.

8. Click on Finish.

9. Call up build.gradle in the IntelliJ text editor.

10. Change sourceCompatibility so that it is set to 12:

sourceCompatibility = 12

11. Remove the JUnit dependency defined in the build.gradle file (it is for an older
version). Replace that dependency with the following dependencies:

testImplementation('org.junit.jupiter:junit-jupiter-api:5.4.2')
testImplementation('org.junit.jupiter:junit-jupiter-engine:5.4.2')

This brings in JUnit 5 to our project, rather than JUnit 4.

Add the following to build.gradle after the dependencies section:

test {
 useJUnitPlatform()
}

This ensures that you use the JUnit 5 test platform for running tests.

12. In the src/main/java folder, create a new Java package.

13. Enter com.packtpub.testing as the package name.

14. In the src/test/java folder, create a new Java package.

Getting Started with Unit Tests | 597

15. Enter the same name, com.packtpub.testing.

The src/test/java folder is where you will place your test classes. The src/main/
java folder is where the application classes are located.

16. Right-click on this package in the src/main/java folder and create a new Java
class named CoordSchedule.

17. Enter two constants that we'll use to validate the data:

public static final int MAX_FREQUENCY = 1440;
public static final int MIN_FREQUENCY = 5;

18. Enter the properties of this class:

private String startingTimestamp;
private String endingTimestamp;
private int frequency;

19. With the editor cursor inside the class (that is, between the starting and ending
curly braces), right-click and choose Generate….

20. Select Constructor and then select all three properties. You should see a
constructor like the following:

public CoordinatorSchedule(String startingTimestamp,
 String endingTimestamp, int frequency) {
 this.startingTimestamp = startingTimestamp;
 this.endingTimestamp = endingTimestamp;
 this.frequency = frequency;
}

21. Again, with the editor cursor inside the class (that is, between the starting and
ending curly braces), right-click and choose Generate….

22. Select Getter and Setter and then select all three properties. You will then see the
get and set methods for each of the three properties.

23. Enter the following method to parse the String timestamp value:

private Date parseTimestamp(String timestamp) {
 Date date = null;
 SimpleDateFormat format =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'",
 Locale.getDefault());

598 | Unit Testing

 format.setTimeZone(TimeZone.getTimeZone("UTC"));
 try {
 date = format.parse(timestamp);
 } catch (ParseException e) {
 e.printStackTrace();
 }

 return date;
}

24. Enter the following two utility methods to return the Date objects for the two
timestamps:

public Date getStartingTimestampAsDate() {
 return parseTimestamp(startingTimestamp);
}

public Date getEndingTimestampAsDate() {
 return parseTimestamp(endingTimestamp);
}

These methods allow other code to get the timestamps in date format, rather than
as a string.

We now have the Java class that we are going to test.

The next step is to create a unit test class.

25. Right-click on this package in the src/test/java folder and create a new Java class
named CoordScheduleTest.

26. Enter the following test method:

@Test
@DisplayName("Frequency must be less than 1440")
void testFrequency() {
 CoordSchedule schedule = new CoordSchedule(
 "2020-12-15T15:32Z",
 "2020-12-30T05:15Z",
 60
);

 Assertions.assertTrue(schedule.getFrequency() < 50);
}

Getting Started with Unit Tests | 599

Note that this test should fail because we use a maximum value of 50 instead of the
actual requirement, which is a maximum of 1,440. It is good to see what failure will
look like first.

27. Click on the Gradle pane. Expand Tasks and then expand verification.

28. Double-click on Test. This runs the Gradle test task. This will show an output like
the following (with most of the stack trace omitted for clarity):

> Task :compileJava UP-TO-DATE
> Task :processResources NO-SOURCE
> Task :classes UP-TO-DATE
> Task :compileTestJava UP-TO-DATE
> Task :processTestResources NO-SOURCE
> Task :testClasses UP-TO-DATE
> Task :test FAILED

expected: <true> but was: <false>
org.opentest4j.AssertionFailedError: expected: <true> but was: <false>
at com.packtpub.testing.CoordScheduleTest.testFrequency(CoordScheduleTest.
java:19)
com.packtpub.testing.CoordScheduleTest > testFrequency() FAILED
 org.opentest4j.AssertionFailedError at CoordScheduleTest.java:19
1 test completed, 1 failed
FAILURE: Build failed with an exception.

29. This isn't a very nice test report. Luckily, JUnit provides a much nicer report. Click
on the Gradle elephant icon and the test report will appear in your web browser:

Figure 18.1: The IntelliJ Run pane with the Gradle icon shown

600 | Unit Testing

30. Switch to your web browser and you will see the test report:

Figure 18.2: The test report as displayed in the browser

You will see a list of failed tests with the text from the DisplayName annotation. For
each failed test, you can drill down into the test.

This provides a much better format with which to display the test results.

Next, we'll fix the broken test and validate the other rules.

Exercise 2: Writing a Successful Test

Now that we have a test that fails, we'll fix the test and add test methods to verify the
starting and ending timestamps:

1. Edit CoordScheduleTest in IntelliJ.

2. Replace the testFrequency() method with the following code:

@Test
@DisplayName("Frequency must be less than 1440")
void testFrequency() {
 CoordSchedule schedule = new CoordSchedule(
 "2020-12-15T15:32Z",
 "2020-12-30T05:15Z",
 60
);

 int frequency = schedule.getFrequency();
 Assertions.assertTrue(frequency
 < CoordSchedule.MAX_FREQUENCY);

Getting Started with Unit Tests | 601

 Assertions.assertTrue(frequency
 > CoordSchedule.MIN_FREQUENCY);
}

3. Add a test method to check for an incorrectly formatted date:

@Test
@DisplayName("Timestamp will be null if not formatted correctly")
void testStartingTimestamps() {
 CoordSchedule schedule = new CoordSchedule(
 "2020/12/15T15:32Z",
 "2020-12-15T15:35Z",
 60
);

 Date starting = schedule.getStartingTimestampAsDate();

 // Timestamp is not formatted properly.
 Assertions.assertNull(starting);
}

4. Add a test method to verify that the ending timestamp is later than the starting
timestamp:

@Test
@DisplayName("Ending timestamp must be after starting")
void testTimestamps() {
 CoordSchedule schedule = new CoordSchedule(
 "2020-12-15T15:32Z",
 "2020-12-15T15:35Z",
 60
);

 Date starting = schedule.getStartingTimestampAsDate();
 Assertions.assertNotNull(starting);

 Date ending = schedule.getEndingTimestampAsDate();
 Assertions.assertNotNull(ending);

 Assertions.assertTrue(ending.after(starting));
}

5. Click on the Gradle pane. Expand Tasks and then expand verification.

602 | Unit Testing

6. Double-click on Test. This runs the Gradle test task. This will show an output like
the following (with most of the stack trace omitted for clarity):

Testing started at 14:59 ...
14:59:33: Executing tasks ':cleanTest :test --tests "com.packtpub.testing.
CoordScheduleTest"'...

> Task :cleanTest
> Task :compileJava
> Task :processResources NO-SOURCE
> Task :classes
> Task :compileTestJava
> Task :processTestResources NO-SOURCE
> Task :testClasses
> Task :test
java.text.ParseException: Unparseable date: "2020/12/15T15:32Z"
 at java.base/java.text.DateFormat.parse(DateFormat.java:395)
 at com.packtpub.testing.CoordSchedule.parseTimestamp(CoordSchedule.
java:64)
 at com.packtpub.testing.CoordSchedule.
getStartingTimestampAsDate(CoordSchedule.java:49)
 at com.packtpub.testing.CoordScheduleTest.
testStartingTimestamps(CoordScheduleTest.java:41)

…

BUILD SUCCESSFUL in 0s
4 actionable tasks: 4 executed
14:59:34: Tasks execution finished ':cleanTest :test --tests "com.packtpub.
testing.CoordScheduleTest"'.

Notice that the incorrectly formatted timestamp shows an exception stack trace
(truncated here for length). This was expected (the input timestamp was not correct), so
it is not an error. These tests should succeed.

Deciding What to Test

You can always write more tests, so, sooner or later, you need to decide on what you
really do need to test.

Getting Started with Unit Tests | 603

It is normally a good idea to focus on:

• What code, if in error, would cause the greatest impact?

• What code is depended on the most by other code? This code should get extra
tests.

• Are you checking for edge cases, such as maximum and minimum values?

In order to simplify writing better tests, and especially to deal with a few edge cases,
you may want to use parameterized tests.

Writing Parameterized Tests

A parameterized test is a unit test that accepts parameters. Instead of all the test values
being set in the test method, you can pass parameters. This makes it much easier to
test multiple cases. For example, when processing string data, you may want to test
multiple strings, including null and empty strings.

With a parameterized test, you need to specify the parameters you want to pass to the
test. JUnit will pass these parameters as actual method parameters to your test. For
example, look at the following:

@ParameterizedTest

@ValueSource(ints = { 10000, 11000 })

public void testMetStepGoal(int steps) {

 DailyGoal dailyGoal = new DailyGoal(DAILY_GOAL);

 Assertions.assertTrue(dailyGoal.hasMetGoal(steps));

}

In this example, you use a @ParameterizedTest annotation instead of @Test. This tells
JUnit to look for the parameters.

The @ValueSource annotation defines two values to get passed to the test method: 10000
and 11000. In both cases, this test assumes that the passed-in parameters will each
result in the hasMetGoal() method returning true.

Note

Parameterized tests make JUnit much more acceptable to someone who uses
Spock.

604 | Unit Testing

JUnit will call the test method once for each value in the @ValueSource list, so two times
in this example.

The @ValueSource annotation expects a list of values to pass to the test method. If you
have more complex values, you can use the @CsvSource annotation instead.

The @CsvSource annotation takes a comma-separated set of values. For example, look at
the following:

@ParameterizedTest

@CsvSource({

 "10, false",

 "9999, false",

 "10000, true",

 "20000, true"

})

public void testHasMetStepGoal(int steps, boolean expected) {

 // …

}

In this example, the first call to testHasMetStepGoal() will return 10 for the steps
parameter and false for the expected parameter. Note that JUnit converts the types for
you. Similar to @ValueSource, each data line results in a separate call to the test method.

@CsvSource is very handy if you want to pass in a number of values to be compared
against each other, or in the case here, where you would want to pass both good and
bad values, along with a parameter that indicates whether the test is expected to be
true or not.

Because the values within @CsvSource are stored as strings, you need some special
syntax to handle empty strings, null strings, and strings with spaces:

@CsvSource({

 "'A man, a plan, a canal. Panama', 7",

 "'Able was I ere I saw Elba', 7",

 ", 0",

 "'', 0"

})

The first line has a string with spaces. Use single quote characters (') to delimit strings
with spaces.

Getting Started with Unit Tests | 605

The third line has just a comma for the first parameter. JUnit will pass null for this
construct.

The fourth line has two single quotes used to generate an empty string.

In addition to @CsvSource, you can load the data from an external comma-separated
value (CSV) file using the @CsvFileSource annotation.

Note

JUnit supports a few other ways to get the parameter values, including from a
separate file, from a method you write, and more. You can refer to https://junit.
org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests for more
information about parameterized tests.

Exercise 3: Writing a Parameterized Test

Let's assume that you are writing code that accesses a wearable fitness device. One of
the things the device tracks is the number of steps the wearer takes in a given day. You
can then compare the number of steps taken against a daily goal. Has the wearer met
this goal?

This example demonstrates how to write a parameterized test, based on the daily step
goal from Chapter 6, Libraries, Packages, and Modules:

1. Edit build.gradle.

2. Add the following to the dependencies block:

testImplementation('org.junit.jupiter:junit-jupiter-params:5.4.2')

3. This dependency brings in support for the parameterized tests.

4. Right-click on the com.packtpub.testing package in the src/main/java folder.
Select New and Java Class.

5. Enter DailyGoal as the class name.

6. Enter the following code for this class:

int dailyGoal = 10000;

public DailyGoal(int dailyGoal) {

 this.dailyGoal = dailyGoal;
}

https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests

606 | Unit Testing

public boolean hasMetGoal(int steps) {
 if (steps >= dailyGoal) {
 return true;
 }

 return false;
}

This is the class we will test.

7. Right-click on the com.packtpub.testing package in the src/test/java folder.
Select New and Java Class.

8. Enter DailyGoalTest as the class name.

9. Enter the following constant for the device wearer's daily step goal:

public static final int DAILY_GOAL = 10000;

10. Next, enter a test method for step counts that meet or exceed the daily goal:

@ParameterizedTest
@ValueSource(ints = { 10000, 11000 })
public void testMetStepGoal(int steps) {
 DailyGoal dailyGoal = new DailyGoal(DAILY_GOAL);

 Assertions.assertTrue(dailyGoal.hasMetGoal(steps));
}

With a daily step goal of 10000 steps, 10000 and 11000 both meet this goal.

11. Next, we'll test the result when the step count is lower than the daily step goal:

@ParameterizedTest
@ValueSource(ints = { 10, 9999 })
public void testNotMetStepGoal(int steps) {
 DailyGoal dailyGoal = new DailyGoal(DAILY_GOAL);

 Assertions.assertFalse(dailyGoal.hasMetGoal(steps));
}

Notice how 9999 is just one step below the goal.

Next, enter a test method using the @CsvSource values for the test parameters:

@ParameterizedTest
@CsvSource({
 "10, false",

Getting Started with Unit Tests | 607

 "9999, false",
 "10000, true",
 "20000, true"
})
public void testHasMetStepGoal(int steps, boolean expected) {
 DailyGoal dailyGoal = new DailyGoal(DAILY_GOAL);

 // Using a lambda will lazily evaluate the expression
 Assertions.assertTrue(
 dailyGoal.hasMetGoal(steps) == expected,
 () -> "With " + steps +
 " steps, hasMetGoal() should return " +
 expected);
}

This test method is a bit more complicated. Each call to the test passes two
parameters.

The lambda expression in the call to Assertions.assertTrue() is the error message.
Using a lambda expression means that the error message won't get evaluated
unless the test assertion fails.

When you run this test class, it should succeed.

When Tests Won't Work – Disabling Tests

The @Disabled annotation allows you to disable a test. Normally, it is not good practice
to simply disable any test that fails. This defeats the whole idea of testing. However, you
may come across times where, due to some condition outside of your control, you just
must disable tests. For example, if you are using the code from another group, and that
group has broken an expectation or introduced a bug in its code, you may need to—
temporarily—disable tests that depend on that code:

@Disabled("Until platform team fixes issue 5578")

@Test

public void testThatShouldNotFail() {

 // …

}

You can add the @Disabled annotation to an entire test class, or just to a test method, as
shown in the preceding code block.

608 | Unit Testing

Test Setup

In many tests, you may need to perform some setup work, as well as cleanup work after
the test. For example, you may want to initialize the objects that are needed for the test.
JUnit provides a number of life cycle annotations to support such work.

If you annotate a method with @BeforeEach, JUnit will run that method before running
each test method. Similarly, methods annotated with @AfterEach are run after each test
method. If you want to run the setup or clean up the code just once for a test class, you
can use @BeforeAll and @AfterAll. These two methods come with some restrictions,
though.

JUnit creates a new instance of your test class for each test method. This ensures your
tests run in isolation and avoid what is called test pollution, where one test impacts
another test. Normally, this is a good thing, because tracking down test failures that
depend on the order of the test execution is particularly frustrating.

Because JUnit creates a new instance of the test class for each test method, the @
BeforeAll and @AfterAll methods must be static. Additionally, the data that these
methods initialize or clean up should also be static.

If you don't want to create static methods, you can change JUnit's policy of creating a
new instance of the test class for each test method.

If you annotate your test class with the following, JUnit will create just one instance of
the test class shared by all the test methods:

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

You'll see an example of this in the Mocking section.

Exercise 4, Using Test Setup and Cleanup Methods demonstrates how to code these
setup and cleanup methods.

Exercise 4: Using Test Setup and Cleanup Methods

This exercise demonstrates a simple unit test with placeholder methods for both setting
up and cleaning up. The test will verify a simple class that converts Celsius temperature
values to Fahrenheit:

1. Right-click on the com.packtpub.testing package in the src/main/java folder.
Select New and Java Class.

2. Enter TempConverter as the class name.

3. Enter the following method:

public static double convertToF(double degreesC) {

Getting Started with Unit Tests | 609

 double degreesF = (degreesC * 9/5) + 32;

 // Round to make nicer output.
 return Math.round(degreesF * 10.0) / 10.0;
}

4. Right-click on the com.packtpub.testing package in the src/test/java folder.
Select New and Java Class.

5. Enter TempConverterTest as the class name.

6. Enter the following test method that checks for -40.0 degrees on both
temperature scales:

@Test
public void testFahrenheitWhenCold() {
 // -40 C == -40 F
 double degreesC = -40.0;

 double degreesF = TempConverter.convertToF(degreesC);

 Assertions.assertEquals(degreesC, degreesF);
}

This temperature is unpleasant regardless of the temperature scale used.

Notice how this test uses the assertEquals() assertion.

7. Enter another test method to ensure the conversion works when the temperature
is 100.0 degrees Celsius:

@Test
public void testFahrenheitWhenHot() {
 // 100 C == 212 F
 double degreesC = 100.0;

 double degreesF = TempConverter.convertToF(degreesC);

 Assertions.assertEquals(212.0, degreesF);
}

8. Next, enter a method to be run before all the tests:

@BeforeAll
public static void runBeforeAllTests() {
 System.out.println("Before all tests");
}

610 | Unit Testing

Note that this method must be static (or you must use the class-level annotation
listed previously).

Normally, you would use this method to set up complex test data instead of just
printing a value.

9. Enter a method to be run after all the tests:

@AfterAll
public static void runAfterAllTests() {
 System.out.println("After all tests");
}

Again, this method must be static.

10. Now, enter a method to be run before each of the two test methods:

@BeforeEach
public void runBeforeEachTest() {
 System.out.println("Before each test");
}

11. Similarly, enter a method to be run after each test method:

@AfterEach
public void runAfterEachTest() {
 System.out.println("After each test");
}

12. Click on the green arrow by the class statement and select Run
'TempConverterTest'. The test should run without errors.

You will see an output like the following:

Before all tests
Before each test
After each test
Before each test
After each test
After all tests
BUILD SUCCESSFUL in 0s
4 actionable tasks: 2 executed, 2 up-to-date

Note how the @BeforeAll method is only run once. Then, with each test method,
the @BeforeEach and @AfterEach methods are executed. Finally, the @AfterAll
method is executed.

Getting Started with Unit Tests | 611

Mocking

A unit test is supposed to test just one Java class. There are times, however, where a
class is heavily dependent on other classes, and perhaps even external systems such
as databases or handheld devices. In these cases, a technique called mocking proves
useful. Mocking is where you mock out the other dependencies so that you can test just
the class you want to look at.

A mock is a class used just for testing that pretends to be some external dependency.
With a mocking framework, you can examine a mocked class to ensure that the right
methods were called the right number of times with the right parameters.

Mocking works great when you have code that queries for data in a database or external
system. What you do is create an instance that is a mock for a particular class. Then,
when the query method gets called, you have the mock return arbitrary test data. This
avoids the dependency on the external system.

Mocking also works great when you want to verify that a particular method was
called, without actually calling that method. Think of an email notifier that sends email
messages on some kind of failure. In a unit test, you don't want actual email messages
to get sent. (In an integration or functional test, however, you should verify that the
messages do get sent.)

Testing with Mocks Using Mockito

Mockito is a great framework for adding mocks to your testing. Say that you have an
application that monitors workflows running in a big data cluster; these could be Oozie
workflows mentioned previously, or any other type of workflows.

Your application gets the status of the workflows by calling a remote web service. In
your unit tests, you don't want to call the remote web service. Instead, you just want to
mock out the external system.

The code we want to test will look something like the following:

WorkflowStatus workflowStatus = workflowClient.getStatus(id);

if (!workflowStatus.isOk()) {

 emailNotifier.sendFailureEmail(workflowStatus);

}

First, the code calls a remote web service to get the status of a workflow, based on
the workflow ID. Then, if the workflow status is not OK, the code sends an email
message. For unit tests, we need to mock both the call to getStatus() and the call to
sendFailureEmail().

612 | Unit Testing

The WorkflowClient class manages the HTTP communication to the remote web service.

A call to the getStatus() method with a workflow ID returns the status of that given
workflow:

WorkflowStatus workflowStatus = workflowClient.getStatus(id);

Note

You can refer to Chapter 9, Working with HTTP, for more information about HTTP
and web services.

With Mockito, the first thing you need to do is to create a mock of the WorkflowClient
class:

import static org.mockito.Mockito.*;

workflowClient = mock(WorkflowClient.class);

The next step is to stub out the call to getStatus(). In Mockito terminology, when
something happens, then a particular result is returned. In this case, the stubbed code
should return a prebuilt WorkflowStatus object with the desired status of a test:

String id = "WORKFLOW-1";

WorkflowStatus workflowStatus =

 new WorkflowStatus(id, WorkflowStatus.OK);

when(workflowClient.getStatus(id)).thenReturn(workflowStatus);

In this code, we first set up a string of the workflow ID and then construct a
WorkflowStatus object with a successful status (OK). The crucial code starts with
when(). Read this code when the getStatus call is made with the given ID on the mock
WorkflowClient class, and then return our prebuilt WorkflowStatus object.

In this case, Mockito is looking for an exact match. The passed-in workflow ID must
match, or the mock will not return the specified result. You can also specify that the
mock should return the result with any input workflow ID, as shown in the following:

when(workflowClient.getStatus(anyString())).thenReturn(workflowStatus);

Getting Started with Unit Tests | 613

In this case, the anyString() call means any string value passed in will match. Note that
Mockito has other calls, such as anyInt().

Note

Mockito includes very good documentation at https://site.mockito.org/. You can do
a lot more with mocks than the examples shown here, but you should avoid the
temptation to mock everything.

With the call to the external web service mocked out, the next step is to check whether
a failure email gets sent. To do this, mock the class that sends email failure messages:

import static org.mockito.Mockito.*;

EmailNotifier emailNotifier = mock(EmailNotifier.class);

In the code we want to test, the email message is sent only on failures. So, we will want
to test two things:

• The email is not sent if the status is OK.

• The email is sent if the status is not OK.

In both cases, we will use Mockito to check the number of times the sendFailureEmail()
method gets called. If it is zero times, then no email is sent. If it is one or more times,
then an email message is sent.

To ensure that no email message was sent, use code like the following:

verify(emailNotifier, times(0)).sendFailureEmail(workflowStatus);

This code checks that the sendFailureEmail() method was called zero times, that is, not
called at all.

To verify that the email message was sent, you can specify the number of times as 1:

verify(emailNotifier, times(1)).sendFailureEmail(workflowStatus);

You can also use Mockito's shortcut, which assumes the method gets called just once:

verify(emailNotifier).sendFailureEmail(workflowStatus);

In more complex tests, you may want to ensure a method gets called a few times.

As mentioned previously, JUnit creates a new instance of your test class for each test
method. When mocking, you may want to set up the mocks once, instead of every time
a test method runs.

https://site.mockito.org/

614 | Unit Testing

To tell JUnit to create just one instance of the test class and share it among all test
methods, add the following annotation to the class:

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

public class WorkflowMonitorTest {

 private EmailNotifier emailNotifier;

 private WorkflowClient workflowClient;

 private WorkflowMonitor workflowMonitor;

 @BeforeAll

 public void setUpMocks() {

 emailNotifier = mock(EmailNotifier.class);

 workflowClient = mock(WorkflowClient.class);

 workflowMonitor =

 new WorkflowMonitor(emailNotifier, workflowClient);

 }

}

The setUpMocks() method will get called once before all the test methods run. It sets
up the two mock classes and then passes the mock objects to the constructor for the
WorkflowMonitor class.

The following exercise shows all these classes together, using Mockito-based mocks in
the unit test.

Exercise 5: Using Mocks when Testing

This exercise creates a WorkflowMonitor class and then uses mock objects to handle
external dependencies:

1. In the src/main/java folder in the IntelliJ Project pane, create a new Java package.

2. Enter com.packtpub.workflow as the package name.

3. In the src/test/java folder, create a new Java package.

4. Enter the same name, com.packtpub.workflow.

5. Edit build.gradle.

Getting Started with Unit Tests | 615

6. Add the following to the dependencies block:

testImplementation("org.mockito:mockito-core:2.+")

7. Right-click on the com.packtpub.workflow package in the src/main/java folder.
Select New and Java Class.

8. Enter WorkflowStatus as the class name.

9. Enter the following code for this simple value object class:

public static final String OK = "OK";
public static final String ERROR = "ERROR";

private String id;
private String status = OK;

public WorkflowStatus(String id, String status) {
 this.id = id;
 this.status = status;
}

public boolean isOk() {
 if (OK.equals(status)) {
 return true;
 }
 return false;
}

In a real system, this class would hold additional values, such as when the
workflow started, when it stopped, and other information on the workflow. The
status information was simplified for this exercise.

10. Right-click on the com.packtpub.workflow package in the src/main/java folder.
Select New and Java Class.

11. Enter EmailNotifier as the class name.

12. Enter the following method:

public void sendFailureEmail(WorkflowStatus workflowStatus) {
 // This would have actual code...
}

In a real application, this would send email messages. For simplicity, we'll leave
that blank.

616 | Unit Testing

13. Right-click on the com.packtpub.workflow package in the src/main/java folder.
Select New and Java Class.

14. Enter WorkflowClient as the class name.

15. Enter the following method:

public WorkflowStatus getStatus(String id) {
 // This would use HTTP to get the status.
 return new WorkflowStatus(id, WorkflowStatus.OK);
}

Again, this is simplified.

16. Right-click on the com.packtpub.workflow package in the src/main/java folder.
Select New and Java Class.

17. Enter WorkflowMonitor as the class name.

18. Enter the following properties:

private EmailNotifier emailNotifier;
private WorkflowClient workflowClient;

19. Right-click on the class, choose Generate… and then choose Constructor.

20. Select both properties and then click on OK.

21. Enter the following method:

public void checkStatus(String id) {
 WorkflowStatus workflowStatus = workflowClient.getStatus(id);

 if (!workflowStatus.isOk()) {
 emailNotifier.sendFailureEmail(workflowStatus);
 }
}

This is the method we will test using mock objects.

22. Right-click on the com.packtpub.workflow package in the src/test/java folder.
Select New and Java Class.

23. Enter WorkflowMonitorTest as the class name.

24. Annotate the class so that we can create a @BeforeAll method:

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

Getting Started with Unit Tests | 617

25. Enter the following properties and set up the @BeforeAll method:

private EmailNotifier emailNotifier;
private WorkflowClient workflowClient;
private WorkflowMonitor workflowMonitor;

@BeforeAll
public void setUpMocks() {
 emailNotifier = mock(EmailNotifier.class);
 workflowClient = mock(WorkflowClient.class);

 workflowMonitor =
 new WorkflowMonitor(emailNotifier, workflowClient);
}

This sets up the mock objects and then instantiates a WorkflowMonitor object using
the mocked dependencies.

26. Enter the following test method to test a case when the workflow is successful:

@Test
public void testSuccess() {
 String id = "WORKFLOW-1";
 WorkflowStatus workflowStatus =
 new WorkflowStatus(id, WorkflowStatus.OK);

 when(workflowClient.getStatus(id)).thenReturn(workflowStatus);

 workflowMonitor.checkStatus(id);

 verify(emailNotifier, times(0)).sendFailureEmail(workflowStatus);
}

We should also test a case where the workflow status is not OK.

27. Enter the following test method:

 @Test
 public void testFailure() {
 String id = "WORKFLOW-1";
 WorkflowStatus workflowStatus =
 new WorkflowStatus(id, WorkflowStatus.ERROR);

 when(workflowClient.getStatus(anyString())).
thenReturn(workflowStatus);

618 | Unit Testing

 workflowMonitor.checkStatus(id);

 verify(emailNotifier).sendFailureEmail(workflowStatus);
 }
}

28. Click on the green arrow by the class statement and select Run
'WorkflowMonitorTest'. The test should run without errors.

The full code of the test follows next:

WorkflowMonitorTest.java

package com.packtpub.workflow;

import static org.mockito.Mockito.*;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestInstance;

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

public class WorkflowMonitorTest {

 private EmailNotifier emailNotifier;

 private WorkflowClient workflowClient;

 private WorkflowMonitor workflowMonitor;

 @BeforeAll

 public void setUpMocks() {

 emailNotifier = mock(EmailNotifier.class);

 workflowClient = mock(WorkflowClient.class);

 workflowMonitor =

 new WorkflowMonitor(emailNotifier, workflowClient);

Getting Started with Unit Tests | 619

 }

 @Test

 public void testSuccess() {

 String id = "WORKFLOW-1";

 WorkflowStatus workflowStatus =

 new WorkflowStatus(id, WorkflowStatus.OK);

 when(workflowClient.getStatus(id)).thenReturn(workflowStatus);

 workflowMonitor.checkStatus(id);

 verify(emailNotifier, times(0)).sendFailureEmail(workflowStatus);

 }

 @Test

 public void testFailure() {

 String id = "WORKFLOW-1";

 WorkflowStatus workflowStatus =

 new WorkflowStatus(id, WorkflowStatus.ERROR);

 when(workflowClient.getStatus(anyString())).thenReturn(workflowStatus);

 workflowMonitor.checkStatus(id);

 verify(emailNotifier).sendFailureEmail(workflowStatus);

 }

}

620 | Unit Testing

Activity 1: Counting the Words in the String

Word count is of paramount value in the publishing industry. Write a class that, given a
string, will count all the words in the string.

1. You can use the split() method to break up the string into words, using the
\s+ regular expression to separate the words, which matches whitespace
characters(that is, spaces and tabs). Name this class WordCount.

2. Trim the input string to remove any spaces at the beginning or end.

Note that an empty string should generate zero for the word count; so should a
null string. Input strings that are all spaces should generate zero as well.

3. Once you have the class written, write a parameterized unit test for that class. Use
the parameters and @CsvSource to pass in a string along with the expected word
count. Be sure to include punctuation such as commas and periods in your input
strings. In addition to this, be sure to include input strings with null strings and
empty strings in the input parameters.

Note

The solution for this activity can be found on page 888.

Summary
This chapter introduced unit testing. Testing is good and you want to write tests for
all your Java code. If you write good tests, then you can feel confident your code was
written correctly.

JUnit provides the most popular testing framework for writing Java unit tests. There
are other frameworks you can try as well. The @Test annotation on a method tells JUnit
that the given code is considered a test. JUnit will execute the test and see whether it
succeeds. The JUnit assertions class contains a few static methods that you can use to
verify the test results.

A parameterized test is a test into which you pass a few parameters. This is very useful
when writing tests for code that you want to ensure can handle a variety of inputs.
Mocking is a technique where you mock out external dependencies so that a unit test
can concentrate on testing just one class.

In the next chapter, you'll learn about reflection, which is a technique where you can, at
runtime, gain information about Java classes.

Learning Objectives

By the end of this chapter, you will be able to:

• Use Java's Reflection API to extract information from classes at runtime

• Instantiate new objects from constructor information

• Call methods on an object from method information

• Set values in fields according to the name of the field

• Describe how dependency injection works

• Use the Jackson JSON library to convert objects to JSON strings, and then convert JSON
strings back to objects

This chapter talks about how to use Java's Reflection API and implement dependency injection.

Reflection

19

624 | Reflection

Introduction
Reflection is how you gain information about a Java class at runtime. Usually starting
with an unknown object, you can use reflection to inspect an object's properties and
methods, and even modify the object. Reflection can prove to be incredibly useful when
initializing objects from values in configuration files, and when you send data over a
network connection. Frameworks such as Spring Boot support dependency injection,
where your Java objects are created and properly initialized by the framework. This
technique uses reflection.

This chapter covers how your programs can gain information on Java classes at
runtime. This is especially useful when injecting dependencies into an object, and when
serializing and deserializing JSON data.

Reflection Basics
The Java Reflection API allows you to get information about an object at runtime. The
main entry point into this API is using a class called Class. Objects of the Class type
contain information describing a Java class.

You can call getClass() on any Java object to get the Class for that object. There is also
a field called class that you can access, which is helpful for enums, interfaces, arrays,
and other elements that don't fit into the standard object model and therefore don't
have a getClass() method.

The Reflection API works because Java defines classes for the concepts of a class, a
constructor, a method, a field, and so on.

Once you have a Class object, you can call getName() to get the full name of the class,
including the package name. You can call getSimpleName() to get the base name of the
class. Here's an example:

System.out.println("Full name: " + String.class.getName());

System.out.println("Base name: " + String.class.getSimpleName());

This code will print out the following:

Full name: java.lang.String

Base name: String

Some other methods that provide information on a class include the following:

• isEnum() returns true if the Class represents an enum.

• isAnnotation() returns true if the Class represents an annotation.

Reflection Basics | 625

• isInterface() returns true if the Class represents an interface.

• getSuperclass() returns the super (or parent) class for the Class. This is often
java.lang.Object, the parent of all Java classes.

Note

You can find many more methods that return information on a Class by looking
at the javadoc documentation for Class at https://docs.oracle.com/en/java/
javase/12/docs/api/java.base/java/lang/Class.html.

The isAssignableFrom() method can be a bit confusing. This method returns true if the
passed-in class can be converted to the Class (or interface) you are calling from. For
example, if you have an interface called Mammal that represents one type of animal, you
can check whether Tiger can be cast to Mammal:

if (Mammal.class.isAssignableFrom(Tiger.class)) {

 System.out.println("A Tiger can be cast to a Mammal.");

}

If the isAssignableFrom() method returns true, then you could write the following code:

Tiger tiger = new Tiger();

Mammal mammal = (Mammal) tiger;

Casting allows you to treat an object of one type as another. This can be especially
useful when overriding methods.

Call getInterfaces() to get all the interfaces that this Class implements directly. That
means the class must directly declare that it implements the given interfaces. For
example, a class called Tiger may implement an interface called Mammal as well as the
standard Java Serializable interface:

public class Tiger implements Mammal, Serializable {

}

If you call getInterfaces() on Tiger.class, you will see Mammal and Serializeable.
However, if you have a subclass called SiberianTiger as follows, you will not get any
result from calling getInterfaces():

public class SiberianTiger extends Tiger {

}

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html

626 | Reflection

Even though SiberianTiger extends Tiger, it does not directly declare that it
implements any interfaces.

We pull all these calls together in the following exercise.

Exercise 1: Getting Class Information

This exercise creates a number of simple classes and interfaces, as well as an enum
related to animals. Then, it extracts the class-based information on these types using
Java's Reflection API. The purpose of this exercise is to show how to obtain information
on objects. The information returned provides a bit of insight into how Java's class
hierarchy is built. Follow these steps:

1. Select New and then Project… from the File menu in IntelliJ.

2. Select Gradle for the type of project. Click Next.

3. For Group Id, enter com.packtpub.reflection.

4. For Artifact Id, enter chapter19.

5. For Version, enter 1.0.

6. Accept the default on the next pane. Click Next.

7. Leave the project name as chapter19.

8. Click Finish.

9. Call up build.gradle in the IntelliJ text editor.

10. Set sourceCompatibility to 12:

sourceCompatibility = 12

11. In the src/main/java folder, create a new Java package.

12. Enter com.packtpub.reflection as the package name.

13. Right-click on the com.packtpub.reflection package and create a new Java class
named Animal. Change this class to an interface by changing the word class to
interface, and enter the following:

public interface Animal {
 boolean hasLegs();
}

Reflection Basics | 627

14. Right-click on the com.packtpub.reflection package and create a new Java class
named Mammal. Change this class to an interface and enter the following:

public interface Mammal extends Animal {
 boolean hasFur();
}

This gets us two very simple Java interfaces.

15. Right-click on the com.packtpub.reflection package and create a class named
Tiger.

16. Make this class implement two interfaces, Mammal and Serializeable:

public class Tiger implements Mammal, Serializable {
}

17. Enter three simple Boolean methods as follows:

public boolean hasLegs() {
 return true;
}

public boolean hasFur() {
 return true;
}

public boolean burnsBright() {
 return true;
}

The hasLegs() method is required by the Animal interface. Similarly, hasFur() is
required by the Mammal interface. The final method, burnsBright(), is not part of
any interface we have defined.

18. Next, right-click on the com.packtpub.reflection package and create a class
named SiberianTiger. This class is empty, but should extend Tiger:

public class SiberianTiger extends Tiger {
}

19. Right-click on the com.packtpub.reflection package and create a class named
Pets.

628 | Reflection

20. Change this class to an enum as follows:

public enum Pets {
 CAT, DOG, WOMBAT
}

We now have some very simple interfaces, classes, and an enum that we will use to
extract class information using the Reflection API.

21. Right-click on the com.packtpub.reflection package and create a class named
ClassInfo.

This class will extract information on the types we have just created.

22. Enter the following fields for this class:

private String fullName;
private String simpleName;
private boolean isEnum = false;
private boolean isAnnotation = false;
private boolean isInterface = false;
private boolean isMammal = false;
private List<Class> interfaces;
private String superClass;

23. Enter a method called extractInfo() as follows:

private void extractInfo(Class c) {
 fullName = c.getName();
 simpleName = c.getSimpleName();

 isEnum = c.isEnum();
 isAnnotation = c.isAnnotation();
 isInterface = c.isInterface();

 Class sup = c.getSuperclass();
 if (sup != null) {
 superClass = sup.getName();
 }

 interfaces = Arrays.asList(c.getInterfaces());

 if (Mammal.class.isAssignableFrom(c)) {
 isMammal = true;
 }
}

Reflection Basics | 629

This method is the most important part of this exercise. The extractInfo()
method pulls information about a passed-in class.

Note how the interfaces are stored inside a list instead of an array (which the
Reflection API provides). This makes things easier to process later.

24. Enter a toString() method to print out the information extracted from the
passed-in class:

public String toString() {
 StringBuilder builder = new StringBuilder(100);
 builder.append(simpleName + " - " + fullName);

 builder.append("\n super class: " + superClass);
 builder.append("\n is enum: " + isEnum);
 builder.append("\n is annotation: " + isAnnotation);
 builder.append("\n is interface: " + isInterface);
 builder.append("\n is assignable from Mammal: " + isMammal);

 builder.append("\n interfaces: ");
 if (interfaces.size() > 0) {
 interfaces.forEach(inf ->
 builder.append(inf.getSimpleName() + " "));
 } else {
 builder.append("none");
 }

 return builder.toString();
}

StringBuilder provides a handy way to build up a string from a number of
component parts, especially if some of those parts are optionally added. You then
call toString() when done to get all the parts assembled into a string.

The only complicated part of this method is the lambda expression used to get the
simple name of all interfaces that this class implements.

25. Next, create a simple constructor that expects a class:

public ClassInfo(Class c) {
 extractInfo(c);
}

630 | Reflection

To pull this all together, create a main() method that extracts information on a
number of Java types:

public static void main(String[] args) {

 ClassInfo classInfo = new ClassInfo(Tiger.class);
 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(SiberianTiger.class);
 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(java.lang.String.class);
 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(Pets.class);
 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(Mammal.class);
 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(ClassInfo.class);
 System.out.println(classInfo.toString());

 if (Mammal.class.isAssignableFrom(Tiger.class)) {
 System.out.println("A Tiger can be cast to a Mammal.");
 }
}

When you run this class, you will see the following output:

Tiger - com.packtpub.reflection.Tiger
 super class: java.lang.Object
 is enum: false
 is annotation: false
 is interface: false
 is assignable from Mammal: true
 interfaces: Mammal Serializable
SiberianTiger - com.packtpub.reflection.SiberianTiger
 super class: com.packtpub.reflection.Tiger
 is enum: false
 is annotation: false
 is interface: false
 is assignable from Mammal: true

Reflection Basics | 631

 interfaces: none
String - java.lang.String
 super class: java.lang.Object
 is enum: false
 is annotation: false
 is interface: false
 is assignable from Mammal: false
 interfaces: Serializable Comparable CharSequence Constable ConstantDesc
Pets - com.packtpub.reflection.Pets
 super class: java.lang.Enum
 is enum: true
 is annotation: false
 is interface: false
 is assignable from Mammal: false
 interfaces: none
Mammal - com.packtpub.reflection.Mammal
 super class: null
 is enum: false
 is annotation: false
 is interface: true
 is assignable from Mammal: true
 interfaces: Animal
ClassInfo - com.packtpub.reflection.ClassInfo
 super class: java.lang.Object
 is enum: false
 is annotation: false
 is interface: false
 is assignable from Mammal: false
 interfaces: none
A Tiger can be cast to a Mammal.

The full source code for ClassInfo.java is as follows:

package com.packtpub.reflection;

import java.util.Arrays;

import java.util.List;

public class ClassInfo {

 private String fullName;

 private String simpleName;

632 | Reflection

 private boolean isEnum = false;

 private boolean isAnnotation = false;

 private boolean isInterface = false;

 private boolean isMammal = false;

 private List<Class> interfaces;

 private String superClass;

 private void extractInfo(Class c) {

 fullName = c.getName();

 simpleName = c.getSimpleName();

 isEnum = c.isEnum();

 isAnnotation = c.isAnnotation();

 isInterface = c.isInterface();

 Class sup = c.getSuperclass();

 if (sup != null) {

 superClass = sup.getName();

 }

 interfaces = Arrays.asList(c.getInterfaces());

 if (Mammal.class.isAssignableFrom(c)) {

 isMammal = true;

 }

 }

 public String toString() {

 StringBuilder builder = new StringBuilder(100);

 builder.append(simpleName + " - " + fullName);

Reflection Basics | 633

 builder.append("\n super class: " + superClass);

 builder.append("\n is enum: " + isEnum);

 builder.append("\n is annotation: " + isAnnotation);

 builder.append("\n is interface: " + isInterface);

 builder.append("\n is assignable from Mammal: " + isMammal);

 builder.append("\n interfaces: ");

 if (interfaces.size() > 0) {

 interfaces.forEach(inf ->

 builder.append(inf.getSimpleName() + " "));

 } else {

 builder.append("none");

 }

 return builder.toString();

 }

 public ClassInfo(Class c) {

 extractInfo(c);

 }

 public static void main(String[] args) {

 ClassInfo classInfo = new ClassInfo(Tiger.class);

 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(SiberianTiger.class);

 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(java.lang.String.class);

 System.out.println(classInfo.toString());

634 | Reflection

 classInfo = new ClassInfo(Pets.class);

 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(Mammal.class);

 System.out.println(classInfo.toString());

 classInfo = new ClassInfo(ClassInfo.class);

 System.out.println(classInfo.toString());

 if (Mammal.class.isAssignableFrom(Tiger.class)) {

 System.out.println("A Tiger can be cast to a Mammal.");

 }

 }

}

Determining Constructors

Call getDeclaredConstructors() to get all the constructors for a class:

List<Constructor> constructors =

 Arrays.asList(c.getDeclaredConstructors());

 for(Constructor con : constructors) {

 System.out.println(" " + con.toGenericString());

 }

Since getDeclaredConstructors() returns an array, it often makes sense to put it inside a
list.

Each Constructor object contains information about the constructor. You can see
the most important information by calling toGenericString(). This method returns a
string with formatted information about the constructor, such as whether it is public,
protected, or private, along with the types of the parameters.

Reflection Basics | 635

For example, the output for the constructors for the string class includes the following:

public java.lang.String(java.lang.String)

public java.lang.String()

public java.lang.String(byte[],java.nio.charset.Charset)

You can call getDeclaredConstructor() to get a specific constructor. Pass the parameter
types to the method. For example, to get a String class constructor that has a single
string parameter, you can use code such as the following:

Constructor constructor =

 String.class.getDeclaredConstructor(String.class);

To get a default constructor that has no parameters, use code such as the following:

Constructor constructor =

 String.class.getDeclaredConstructor();

Exercise 2: Extracting a List of Constructors

Constructors are useful when you want to instantiate new objects of a class but
don't have the details of the class readily available. In this exercise, we will extract
constructor information:

1. Begin inside IntelliJ. First, go in the project pane in the chapter19 project. (We'll
use this project for a number of examples.)

2. Right-click on the com.packtpub.reflection package name and create a new Java
class named ConstructorInfo.

3. Enter the following method to extract constructor information for a given Class
object:

public static void extractConstructors(Class c) {

 List<Constructor> constructors =
 Arrays.asList(c.getDeclaredConstructors());

 System.out.println(c.getSimpleName());
 for(Constructor con : constructors) {
 System.out.println(" " + con.toGenericString());
 }
}

636 | Reflection

4. Enter a main() method that calls extractConstructors() with a variety of Java
types, including classes, an enum, and an interface:

public static void main(String[] args) {
 extractConstructors(ClassInfo.class);
 extractConstructors(SiberianTiger.class);
 extractConstructors(Pets.class);
 extractConstructors(Animal.class);
 extractConstructors(java.lang.String.class);
}

5. Run this program, and you will see the following output:

ClassInfo
 public com.packtpub.reflection.ClassInfo(java.lang.Class)
SiberianTiger
 public com.packtpub.reflection.SiberianTiger()
Pets
 private com.packtpub.reflection.Pets()
Animal
String
 public java.lang.String(byte[])
 public java.lang.String(byte[],int,int)
 public java.lang.String(byte[],java.nio.charset.Charset)
 public java.lang.String(byte[],java.lang.String) throws java.
io.UnsupportedEncodingException
 public java.lang.String(byte[],int,int,java.nio.charset.Charset)
 java.lang.String(char[],int,int,java.lang.Void)
 java.lang.String(java.lang.AbstractStringBuilder,java.lang.Void)
 public java.lang.String(java.lang.StringBuilder)
 public java.lang.String(java.lang.StringBuffer)
 java.lang.String(byte[],byte)
 public java.lang.String(char[],int,int)
 public java.lang.String(char[])
 public java.lang.String(java.lang.String)
 public java.lang.String()
 public java.lang.String(byte[],int,int,java.lang.String) throws java.
io.UnsupportedEncodingException
 public java.lang.String(byte[],int)
 public java.lang.String(byte[],int,int,int)
 public java.lang.String(int[],int,int)

For each type, the program prints out the simple name for the type, such as String
or Pets. Then, the program lists all the constructors.

Reflection Basics | 637

One of the most handy uses for the Constructor class is to instantiate new objects.

Instantiating New Objects

The Reflection API includes a way to instantiate new objects of a given class. Using a
Constructor object, you can call newInstance() on that object to create a new instance
of the class using the given constructor.

In most cases, when you construct objects this way, you'll have some expectations.
For example, most frameworks that instantiate new instances assume there is a
no-argument constructor.

Note

Refer to Chapter 3, Object-Oriented Programming, for more information on
constructors.

For example, the following code will create a new instance using a no-argument
constructor:

 Class c;

 // …

 try {

 Object obj = c.getDeclaredConstructor().newInstance();

 SiberianTiger tiger = (SiberianTiger) obj;

 System.out.println("Do tigers burn bright? " +

 tiger.burnsBright());

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 e.printStackTrace();

638 | Reflection

 } catch (NoSuchMethodException e) {

 e.printStackTrace();

 }

}

When you run this code, as shown in the following exercise, you will see this output:
Do tigers burn bright? true

Note

You can also call newInstance() on a java.lang.reflect.Constructor object
and pass parameters to the constructor. This is needed if there is no no-argument
constructor for the class. There is also a newInstance() method on Class, but this
has been deprecated since Java 9.

You can get the Class object for a given class name by using the static Class.forName()
method:

Class c = null;

try {

 c = Class.forName("com.packtpub.reflection.SiberianTiger");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

We combine these two techniques in the following exercise to create a new
SiberianTiger object.

Exercise 3: Instantiating Objects

This exercise calls Class.forName() to get a Class object and then creates a new
instance of that class, catching the necessary exceptions:

1. Right-click on the com.packtpub.reflection package name and create a new Java
class named TigerMaker.

2. Create a main() method:

public static void main(String[] args) {

}

Reflection Basics | 639

3. Enter the following code to get a Class object:

Class c = null;
try {
 c = Class.forName("com.packtpub.reflection.SiberianTiger");
} catch (ClassNotFoundException e) {
 e.printStackTrace();
}

4. Enter the following code to instantiate the object and call a method on the object:

if (c != null) {
 try {
 Object obj = c.getDeclaredConstructor().newInstance();

 SiberianTiger tiger = (SiberianTiger) obj;

 System.out.println("Do tigers burn bright? " +
 tiger.burnsBright());

 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 } catch (NoSuchMethodException e) {
 e.printStackTrace();
 }
}

5. Run this program and you will see the following program output:

Do tigers burn bright? true

This exercise casts the instantiated object to the SiberianTiger class and calls a known
method on that class. But what happens if you don't know about the class in advance?
In this case, you can use the Reflection API to get information on the available methods,
as well as invoke methods.

640 | Reflection

Getting Methods

Getting information on methods on a class is the first step to calling those methods,
all without knowing details of the class in advance. This is very useful in situations
where you want code that is generic, for example, when communicating with a backend
system that includes databases that you don't know the details of in advance. Java
provides a number of APIs built on this concept.

Call getMethods() on a Class object to get an array of the public methods on the class,
including inherited methods:

Class c;

List<Method> methods = Arrays.asList(c.getMethods());

Each Method object that is returned can be queried to determine the number and
type of parameters, the return type, and so on. In addition, Method provides a handy
method called toGenericString(), which was introduced earlier. Much like calling
toGenericString() on a Constructor, calling toGenericString() on a Method returns a
formatted string describing the method and its parameters. The following shows some
examples returned by toGenericString():

public boolean com.packtpub.reflection.Tiger.burnsBright()

public static com.packtpub.reflection.Pets com.packtpub.reflection.Pets.
valueOf(java.lang.String)

public final native java.lang.Class<?> java.lang.Object.getClass()

public final void java.lang.Object.wait(long,int) throws java.lang.
InterruptedException

Instead of getMethods(), you can also call getDeclaredMethods(), which returns all
methods declared directly on the class, but not inherited methods.

The following exercise extracts information on all the public methods available in a
class.

Exercise 4: Extracting Method Information

1. To begin this exercise, right-click on the com.packtpub.reflection package name
and create a new Java class named MethodInfo.

2. Enter the following static method to extract information on the methods available
for a given class:

public static void extractMethods(Class c) {

 List<Method> methods = Arrays.asList(c.getMethods());

Reflection Basics | 641

 System.out.println(c.getSimpleName());

 for(Method method : methods) {
 System.out.println(" " + method.toGenericString());
 }
}

3. Enter a main method to extract public method information from a number of types:

public static void main(String[] args) {
 extractMethods(SiberianTiger.class);
 extractMethods(Pets.class);
 extractMethods(Animal.class);
 extractMethods(java.lang.Object.class);
}

When you run this program, you will see the following output:

SiberianTiger
 public boolean com.packtpub.reflection.Tiger.hasLegs()
 public boolean com.packtpub.reflection.Tiger.hasFur()
 public boolean com.packtpub.reflection.Tiger.burnsBright()
 public final native void java.lang.Object.wait(long) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait(long,int) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait() throws java.lang.
InterruptedException
 public boolean java.lang.Object.equals(java.lang.Object)
 public java.lang.String java.lang.Object.toString()
 public native int java.lang.Object.hashCode()
 public final native java.lang.Class<?> java.lang.Object.getClass()
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()
Pets
 public static com.packtpub.reflection.Pets[] com.packtpub.reflection.
Pets.values()
 public static com.packtpub.reflection.Pets com.packtpub.reflection.Pets.
valueOf(java.lang.String)
 public final java.lang.String java.lang.Enum.name()
 public final boolean java.lang.Enum.equals(java.lang.Object)
 public java.lang.String java.lang.Enum.toString()
 public final int java.lang.Enum.hashCode()
 public int java.lang.Enum.compareTo(java.lang.Object)

642 | Reflection

 public final int java.lang.Enum.compareTo(E)
 public static <T extends java.lang.Enum<T>> T java.lang.Enum.
valueOf(java.lang.Class<T>,java.lang.String)
 public final java.util.Optional<java.lang.Enum$EnumDesc<E>> java.lang.
Enum.describeConstable()
 public final java.lang.Class<E> java.lang.Enum.getDeclaringClass()
 public final int java.lang.Enum.ordinal()
 public final native void java.lang.Object.wait(long) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait(long,int) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait() throws java.lang.
InterruptedException
 public final native java.lang.Class<?> java.lang.Object.getClass()
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()
Animal
 public abstract boolean com.packtpub.reflection.Animal.hasLegs()
Object
 public final native void java.lang.Object.wait(long) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait(long,int) throws java.lang.
InterruptedException
 public final void java.lang.Object.wait() throws java.lang.
InterruptedException
 public boolean java.lang.Object.equals(java.lang.Object)
 public java.lang.String java.lang.Object.toString()
 public native int java.lang.Object.hashCode()
 public final native java.lang.Class<?> java.lang.Object.getClass()
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()

Under each type, such as SiberianTiger or Pets, you will see the public methods
that are available, including the parameters, return types, and what exceptions,
if any, the method may throw. Many of these methods, such as wait(), notify(),
toString(), and hashCode(), are inherited from java.lang.Object, the parent of
Java classes. This is the reason why you can call toString() on any Java object. The
Object section shows you the methods provided by this class.

Reflection Basics | 643

Getting a Single Method

If you know a method name and its parameters, you can call getMethod(). For example,
when working with the java.util.Properties class, you can get the setProperty()
method as follows:

Properties properties = new Properties();

Method setProp = null;

try {

 Class c = properties.getClass();

 setProp = c.getMethod("setProperty", String.class, String.class);

} catch (NoSuchMethodException e) {

 e.printStackTrace();

}

The setProperty() method takes two parameters, the String name of the property, and
the String value for the property.

Once you have information on methods, you can also call these methods using the
Reflection API.

Calling Methods

Each Method object has an invoke() method. You need to pass the object and the
parameters for the method, using a variable number of arguments. The basic format is
as follows:

Object results = method.invoke(target, parameter1, parameter2);

In this example, target is the object on which you want to invoke the method.
parameter1 and parameter2 are parameters to the method.

644 | Reflection

The following exercise shows how to call a method using the Reflection API.

Exercise 5: Calling Methods

This exercise calls the setProperty() method for a Properties object:

1. Right-click on the com.packtpub.reflection package name and create a new Java
class named MethodInvoker.

2. Enter the following constant and create a main() method:

public static final String NAME = "name";

public static void main(String[] args) {

}

3. Enter the following code in the main() method to get the setProperty() method:

Properties properties = new Properties();

Method setProp = null;
try {
 Class c = properties.getClass();

 setProp = c.getMethod("setProperty", String.class, String.class);
} catch (NoSuchMethodException e) {
 e.printStackTrace();
}

4. Enter the following code to invoke this method:

if (setProp != null) {
 try {
 setProp.invoke(properties, NAME, "Bob Marley");
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
}

Reflection Basics | 645

5. Enter the following code so we can verify that the property was indeed set:

// See if our property was set.
System.out.println(properties.getProperty(NAME));

When you run this program, you will see the following output:

Bob Marley

The full source code for MethodInvoker.java is as follows:

package com.packtpub.reflection;

import java.lang.reflect.InvocationTargetException;

import java.lang.reflect.Method;

import java.util.Properties;

public class MethodInvoker {

 public static final String NAME = "name";

 public static void main(String[] args) {

 Properties properties = new Properties();

 Method setProp = null;

 try {

 Class c = properties.getClass();

 setProp = c.getMethod("setProperty", String.class, String.
class);

 } catch (NoSuchMethodException e) {

 e.printStackTrace();

 }

646 | Reflection

 if (setProp != null) {

 try {

 setProp.invoke(properties, NAME, "Bob Marley");

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 }

 // See if our property was set.

 System.out.println(properties.getProperty(NAME));

 }

}

Getting Fields

Similar to the calls for getting methods from a Class object, getFields() returns the
fields of a class, including inherited fields. However, getFields() does not return private
fields, and most fields in Java classes are declared private. Call getDeclaredFields()
to return all fields on a class, including private fields. This method does not return
inherited fields, though:

List<Field> fields = Arrays.asList(c.getDeclaredFields());

Also similar to the calls for getting method information, the java.lang.reflect.Field
class provides a handy toGenericString() method that describes the field:

for(Field field : fields) {

 System.out.println(" " + field.toGenericString());

}

For each field, toGenericString() returns whether the field is public, protected, private,
and so on. It lists the type of field, as well as its name.

You can see this in action in the following exercise. Getting information on fields is the
first step to modifying field values. This is useful for initializing objects when you don't
want to create code for each type of object separately, for example, initializing objects
from data in configuration files.

Reflection Basics | 647

Exercise 6: Getting Field Information

This exercise extracts information on the fields of a number of classes:

1. Right-click on the com.packtpub.reflection package name and create a new Java
class named FieldInfo.

2. Enter the following method to extract field information:

public static void extractFields(Class c) {

 List<Field> fields = Arrays.asList(c.getDeclaredFields());

 System.out.println(c.getSimpleName());

 if (fields.size() < 1) {
 System.out.println(" No fields");
 } else {
 for(Field field : fields) {
 System.out.println(" " + field.toGenericString());
 }
 }
}

3. Enter a main method to call extractFields() to print out field information on a
number of classes, an enum, and an interface:

public static void main(String[] args) {
 extractFields(ClassInfo.class);
 extractFields(SiberianTiger.class);
 extractFields(Pets.class);
 extractFields(Animal.class);
 extractFields(java.lang.String.class);
}

4. Run this program, and you will see the following output:

ClassInfo
 private java.lang.String com.packtpub.reflection.ClassInfo.fullName
 private java.lang.String com.packtpub.reflection.ClassInfo.simpleName
 private boolean com.packtpub.reflection.ClassInfo.isEnum
 private boolean com.packtpub.reflection.ClassInfo.isAnnotation
 private boolean com.packtpub.reflection.ClassInfo.isInterface
 private boolean com.packtpub.reflection.ClassInfo.isMammal
 private java.util.List<java.lang.Class> com.packtpub.reflection.
ClassInfo.interfaces

648 | Reflection

 private java.lang.String com.packtpub.reflection.ClassInfo.superClass
SiberianTiger
 No fields
Pets
 public static final com.packtpub.reflection.Pets com.packtpub.reflection.
Pets.CAT
 public static final com.packtpub.reflection.Pets com.packtpub.reflection.
Pets.DOG
 public static final com.packtpub.reflection.Pets com.packtpub.reflection.
Pets.WOMBAT
 private static final com.packtpub.reflection.Pets[] com.packtpub.
reflection.Pets.$VALUES
Animal
 No fields
String
 private final byte[] java.lang.String.value
 private final byte java.lang.String.coder
 private int java.lang.String.hash
 private static final long java.lang.String.serialVersionUID
 static final boolean java.lang.String.COMPACT_STRINGS
 private static final java.io.ObjectStreamField[] java.lang.String.
serialPersistentFields
 public static final java.util.Comparator<java.lang.String> java.lang.
String.CASE_INSENSITIVE_ORDER
 static final byte java.lang.String.LATIN1
 static final byte java.lang.String.UTF16

This exercise shows us what fields are declared on a class, whether the fields are
private, and their types.

Once you have information on the fields, the next step is to set the values of the fields.

Setting Field Values

Call getDeclaredField() to get the Field object for one named field. Once you have a
Field object, you can modify its value:

Field field = c.getDeclaredField(fieldName);

Reflection Basics | 649

In most cases, fields are private, so you will need to catch a potential
IllegalAccessException and your code will not modify the field. To get around this, call
setAccessible() with a parameter of true. This permits access to private fields:

field.setAccessible(true);

You will almost always want to call this since most fields are private. If the call to
setAccessible() succeeds, you can then proceed to modify the value of the field.

Note

There are restrictions on setAccessible(). It will not work in all cases, especially
if your code is in a different module from the class you are attempting to modify.
Refer to the following link for more information on setAccessible():

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/reflect/
Field.html#setAccessible(boolean)

Then, call set() to modify the value:

field.set(object, value);

To pull this together, you can write code to set a field's value:

Object object;

Class c = object.getClass();

Field field = c.getDeclaredField("username");

field.setAccessible(true);

field.set(object, "bobmarley");

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/reflect/Field.html#setAccessible(boolean)
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/reflect/Field.html#setAccessible(boolean)

650 | Reflection

You'll get a chance to try this out in the section on dependency injection.

Note

There is a lot more to Java's Reflection API. Refer to the following link for more
information on this API: https://docs.oracle.com/javase/tutorial/reflect/TOC.html.

Drawbacks of Reflection

Performance – Reflection is slow. That's why newer frameworks such as Micronaut
perform the necessary operations at compile time instead of runtime.

Breaks encapsulation – One of the benefits of object-oriented design is the ability to
hide the internals of an object. An object provides a certain functionality, but you don't
need to know exactly how. Reflection breaks all this encapsulation by exposing the
inner elements of a class.

Security – Certain Java security measures can interfere with reflection, such as
code that uses a SecurityManager. Refer to https://docs.oracle.com/javase/tutorial/
essential/environment/security.html for more on security managers.

Complexity – Java's Reflection API is complex and often leads to confusing code.

That said, reflection is commonly used in real-world enterprise Java applications,
especially for dependency injection.

Reflection in the Real World – Dependency Injection

Dependency injection is one of the most common uses of reflection. Dependency
injection provides a technique for Java code to get dependencies, such as
database connections, configuration values, and so on. Dependency injection
replaces older techniques, such as using factory objects to obtain dependencies.
(DocumentBuilderFactory of the XML API introduced in Chapter 14, Recursion, is one
example of using factory objects.)

With dependency injection, your objects don't acquire the dependent objects
themselves. Instead, a container object—usually part of a framework—acquires the
dependent objects on behalf of your code and then injects those objects into your
objects. This is usually done by calling setter methods on your classes.

https://docs.oracle.com/javase/tutorial/reflect/TOC.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html

Reflection Basics | 651

The primary benefits of dependency injection are that your code doesn't have to know
how to get all the dependencies. Instead, that's the job of the framework's container.
This tends to make your code simpler, and the classes you write tend to be more loosely
coupled than in situations where your code needs to acquire all the dependencies itself.
Note that while your code is simpler, dependency injection frameworks can be quite
complex. You are removing complexity in your code at the expense of using a complex
framework.

In addition, using dependency injection makes it much easier to swap out one set of
dependencies for another. For example, if your application talks to a database, one set
of dependencies would represent the production database. When you first write your
code and want to test it out, you don't want to test against the production database,
due to the risk of data corruption or other problems. Instead, your code will first talk
to a database in a lower environment, sometimes called a stage or a QA environment.
Using dependency injection means that your code doesn't change, just the injected
dependencies.

Because it helps simplify your code, dependency injection tends to make your code
easier to test. In fact, that's where dependency injection became really popular.
Frameworks such as Spring provide dependency injection along with a lot of support
for unit testing. In the early days, its support for unit testing was one of the main things
that made Spring popular (back in an era when unit testing was not used very much).

Dependency injection is often used with the following frameworks:

• Spring Boot: One of the most commonly used frameworks for Java enterprise
applications (https://spring.io/projects/spring-boot).

• Google Guice: A lightweight dependency injection framework (https://github.
com/google/guice).

• Micronaut: A framework that performs compile-time dependency injection, not
at runtime; because of this, Micronaut does not use reflection. This framework
shows a way to perform dependency injection in a new way that is much faster
than reflection (https://micronaut.io/).

https://spring.io/projects/spring-boot
https://github.com/google/guice
https://github.com/google/guice
https://micronaut.io/

652 | Reflection

The following exercise shows a simple example of dependency injection.

Exercise 7: Using Dependency Injection

To provide a flavor of the real-world use of dependency injection, this exercise creates
a class to connect to a database using Java Database Connectivity (JDBC), covered in
Chapter 7, Databases and JDBC. A dependency injector acts as a minimal framework
container, injecting the dependencies needed for the JDBC connection.

1. To work on this exercise, right-click on the com.packtpub.reflection package
name and create a new Java class named Database.

2. Enter the following fields:

private String url;
private String driver;
private String username;
private String password;

These are the fields needed to connect to a database.

3. Enter a connect method. Leave it empty for this exercise. Here, we are interested
in injecting the configuration for acing databases, not actually querying a database
(Chapter 7, Databases and JDBC, shows how to fill in the code for this method):

public void connect() {
 // Connect to database.
}

4. Right-click in the class, select Generate, and then select Getter and Setter. Select
all four fields and click OK.

5. Right-click in the class, select Generate, and then select toString. Click OK.

6. Right-click on the com.packtpub.reflection package name and create a new Java
class named DependencyInjector.

This simple class will mimic the work done by dependency injection frameworks.

7. Enter a method to set a value on a field:

void setField(Object object, Class c, String fieldName, Object value) {
 try {
 Field field = c.getDeclaredField(fieldName);

 field.setAccessible(true);

Reflection Basics | 653

 field.set(object, value);

 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (NoSuchFieldException e) {
 e.printStackTrace();
 }
}

This method provides the code for dependency injection. Given an object and
a class, this method looks up the given field name. The code then turns on
accessibility, because it is very likely this field is declared to be private. Next, the
method calls set() to modify the field value.

8. Enter a method to initialize the database connection:

public Database init(String username, String password,
 String url, String driver) {
 Database database = new Database();
 Class c = Database.class;

 // Set values.
 setField(database, c, "username", username);
 setField(database, c, "password", password);
 setField(database, c, "url", url);
 setField(database, c, "driver", driver);

 return database;
}

This method creates a new Database object and fills that object's fields with JDBC
connection parameters.

Note

In a real dependency injection framework, the code probably wouldn't know about
the Database class, and instead would create an instance based on a class name
using Class.forName() and c.getDeclaredConstructor().newInstance(), as
mentioned previously.

654 | Reflection

9. Enter a main() method to inject the values:

public static void main(String[] args) {
 DependencyInjecter injecter = new DependencyInjecter();

 Database database = injecter.init("bobmarley", "password",
 "jdbc:h2:~/test", "org.h2.Driver");

 System.out.println(database.toString());
}

10. Run this program, and you will see the following output:

Database{url='jdbc:h2:~/test', driver='org.h2.Driver',
username='bobmarley', password='password'}

As you can see in the output, the values for a JDBC URL, a driver name, a username,
and a password were successfully injected into the Database object.

Reflection in the Real World – JSON Data and RESTful Services

RESTful web services tend to make a lot of use of JavaScript Object Notation (JSON)
formatting when exchanging data between networked applications. With RESTful web
services, small applications, often called microservices, communicate with each other
over HTTP, the networking protocol of the web. Data you want to pass between services
gets encoded in string format. Using the JSON format for data exchange, where objects
appear as snippets of JavaScript text, means that it doesn't matter what language or
technologies are used to code the microservices.

JSON formats data as name-value pairs or arrays using JavaScript syntax. Here's an
example:

{

 "animal": "dog",

 "name": "biff"

}

Reflection Basics | 655

Java's reflection comes in when you want to convert an object into JSON for
transmission, or you want to parse the JSON content of a message and convert it into a
Java object. Reflection provides the most general-purpose way to convert JSON data to
and from Java objects.

Note

Refer to https://www.json.org/ for more information on JSON and Chapter 9,
Working with HTTP, for an introduction to HTTP network communication.

Because RESTful services are used so much, there are a number of excellent JSON
libraries you can choose from:

• Jackson, available at https://github.com/FasterXML/jackson, provides one of the
most commonly used JSON libraries for the Java ecosystem. This library supports
the JAX-RS Java standard.

• Jersey, available at https://jersey.github.io/, provides another JSON library. This
library also supports the JAX-RS Java standard.

• Gson, available at https://github.com/google/gson, provides a very simple library
from Google for converting Java objects to and from JSON.

Because Jackson is used so commonly in Java applications, we'll use that library in this
chapter.

Let's assume you want to retrieve the position of the International Space Station
(ISS) above Earth. A handy site called Open-Notify provides a simple, free RESTful web
service to retrieve that location.

The data from this web service (located at http://api.open-notify.org/iss-now.json)
comes back as JSON:

{

 "message" : "success",

 "timestamp" : 1556049969,

 "iss_position" : {

 "latitude" : "50.9579",

 "longitude" : "-164.1579"

 }

}

https://www.json.org/
https://github.com/FasterXML/jackson
https://jersey.github.io/
https://github.com/google/gson
http://api.open-notify.org/iss-now.json

656 | Reflection

timestamp is a UNIX timestamp (but in seconds, not milliseconds), which you can use to
instantiate a Java ZonedDateTime object.

The iss_position object tells us the latitude and longitude of the ISS at that time. Note
that this will likely be mapped as a child object in Java.

Note

Refer to http://open-notify.org/Open-Notify-API/ISS-Location-Now/ for more on
Open-Notify web services. Also, don't use these services too frequently, as Open-
Notify provides one of the few web services you can access without registering for
an application key.

Once you have a web service and some data, the next step is to create Java classes for
this data, and then convert the objects to and from JSON using the Jackson library.

Using the Jackson Library

With the Jackson library, you use ObjectMapper to convert objects to JSON and JSON
text to objects.

To convert a JSON string to an object, you can use code such as this:

String json; // Retrieved from Web service.

ObjectMapper objectMapper = new ObjectMapper();

try {

 IssPosition position = objectMapper.readValue(json, IssPosition.class);

} catch (IOException e) {

 e.printStackTrace();

}

In this example, we have a string of JSON data, json, that was presumably retrieved from
the RESTful web service.

The readValue() method converts the JSON string to an object of the given class.

Note

You need to have a default constructor (with no parameters) for the class.
Otherwise, the conversion won't work.

http://open-notify.org/Open-Notify-API/ISS-Location-Now/

Reflection Basics | 657

You can then convert back to a JSON-formatted string by using the
writeValueAsString() method:

ObjectMapper objectMapper = new ObjectMapper();

try {

 String json = objectMapper

 .writerWithDefaultPrettyPrinter()

 .writeValueAsString(position);

 System.out.println("As JSON:\n" + json);

} catch (JsonProcessingException e) {

 e.printStackTrace();

}

The call to writerWithDefaultPrettyPrinter() customizes the JSON conversion from
ObjectMapper to pretty-print the JSON rather than output the JSON string as a single
line. For smaller JSON packets as well as during development, pretty-printing the JSON
data really helps. But with larger JSON packets, pretty-printing can increase the size of
the data, sometimes significantly.

The Jackson ObjectMapper uses a default naming strategy to convert the JSON to Java
and Java to JSON. With the default naming strategy, the name iss_position will not get
mapped properly to a field named issPostion.

You can address this in two different ways. First, you can change the default naming
strategy used by ObjectMapper to use the so-called snake-case naming strategy:

ObjectMapper objectMapper = new ObjectMapper();

objectMapper.setPropertyNamingStrategy(PropertyNamingStrategy.SNAKE_CASE);

The snake-case format is all lowercase, with underscore characters between words.
(Contrast this with camel case, for example, writeValueAsString.)

Second, you can use a Jackson annotation, JsonProperty, in your data class to define
exactly what JSON property Jackson should map to the field:

@JsonProperty(value="iss_position")

public LatLong getIssPosition() {

 return issPosition;

}

658 | Reflection

In this case, the iss_position JSON gets mapped to the issPosition field.

Note

The Jackson library provides many more features than shown here, especially for
cases when you need to customize the conversion to and from JSON. Refer to
https://github.com/FasterXML/jackson for more information on Jackson.

The following exercise shows an example of an application that retrieves JSON data
from a RESTful web service and then converts that data to and from a Java object.

Exercise 8: Converting JSON Data Using Jackson

This exercise will pull in the Jackson dependencies, create objects to hold the ISS's
location, and then create a REST service that retrieves the data, showing how to go back
and forth with JSON data:

1. Edit the build.gradle file. Add the following dependency to the dependencies
section:

implementation group: 'com.fasterxml.jackson.core',
 name: 'jackson-databind', version: '2.9.8'

2. Right-click on the com.packtpub.reflection package name and create a new Java
class named LatLong.

3. Enter the following fields and a toString() method:

private String latitude;
private String longitude;

public String toString() {
 return "latitude: " + latitude + ", longitude: " + longitude;
}

4. This class just holds the position of the ISS.

5. Right-click on the class, select Generate, and then select Getter and Setter.
Choose both fields and click OK.

6. Right-click on the com.packtpub.reflection package name and create a new Java
class named IssPosition.

https://github.com/FasterXML/jackson

Reflection Basics | 659

7. Enter the following fields and toString() method:

private String message;
private long timestamp;

private LatLong issPosition;

public String toString() {
 return "message: " + message +
 ", timestamp: " + convertToDate() +
 ", iss_position: " + issPosition.toString();
}

Note the use of a child LatLong object to hold the actual position. This maps to the
JSON data from the web service.

8. Right-click on the class, select Generate, and then select Getter and Setter.
Choose all the fields and click OK.

9. Modify the getIssPosition() generated method to add a Jackson annotation as
follows:

@JsonProperty(value="iss_position")
public LatLong getIssPosition() {

 return issPosition;
}

This provides the proper mapping for the JSON data.

10. Create a method to convert the UNIX timestamp number into an actual date
object and return a formatted string:

public String convertToDate() {
 ZonedDateTime utc =
 Instant.ofEpochMilli(timestamp * 1000L)
 .atZone(ZoneOffset.UTC);
 return utc.toString();
}

Next, we'll create the REST service code to acquire the JSON data.

11. Right-click on the com.packtpub.reflection package name and create a new Java
class named RestService.

660 | Reflection

12. Add the following field, along with the getter and setter methods:

private String path;

public String getPath() {
 return path;
}

public void setPath(String path) {
 this.path = path;
}

Note that you can generate the getter and setter methods.

13. Enter the following method to get the JSON data as a string from the RESTful
Open-Notify web service:

public String getIssPositionAsString() {
 StringBuilder buffer = new StringBuilder();

 try {
 URL url = new URL(path);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("GET");

 BufferedReader in = new BufferedReader(
 new InputStreamReader(connection.getInputStream())
);

 String line;
 while ((line = in.readLine()) != null) {
 buffer.append(line);
 buffer.append("\n");
 }
 in.close();
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {

Reflection Basics | 661

 e.printStackTrace();
 }

 return buffer.toString();
}

14. Next, enter the following method to get the JSON data and convert that data to an
IssPosition object:

public IssPosition getIssPosition() {
 IssPosition position = null;

 String json = getIssPositionAsString();

 ObjectMapper objectMapper = new ObjectMapper();

 try {
 position = objectMapper.readValue(json, IssPosition.class);
 } catch (IOException e) {
 e.printStackTrace();
 }

 return position;
}

This method uses the getIssPositionAsString() method to get the JSON data, and
then converts that JSON string into an IssPosition object.

15. Enter a main() method to set up RestService, query the Open-Notify service, and
then convert the IssPosition object back to a JSON string:

public static void main(String[] args) {
 RestService restService = new RestService();
 restService.setPath("http://api.open-notify.org/iss-now.json");

 // Get JSON as object.
 IssPosition position = restService.getIssPosition();
 System.out.println(position);

662 | Reflection

 // Convert back to JSON.
 ObjectMapper objectMapper = new ObjectMapper();
 try {
 String json = objectMapper
 .writerWithDefaultPrettyPrinter()
 .writeValueAsString(position);

 System.out.println("As JSON:\n" + json);
 } catch (JsonProcessingException e) {
 e.printStackTrace();
 }
}

Note also that we inject the URL for the web service into the RestService object,
using dependency injection.

16. Run this program. You should see the following output:

message: success, timestamp: 2019-04-23T20:46:45Z, iss_position: latitude:
-42.7390, longitude: -25.0279
As JSON:
{
 "message" : "success",
 "timestamp" : 1556052405,
 "iss_position" : {
 "latitude" : "-42.7390",
 "longitude" : "-25.0279"
 }
}

The first line holds the output of the IssPositiontoString() method. The rest of
the output comes from the Jackson conversion of the IssPosition object back into
a JSON string.

The full code for RestService.java follows:

package com.packtpub.reflection;

import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.BufferedReader;

import java.io.IOException;

Reflection Basics | 663

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

public class RestService {

 private String path;

 public String getPath() {

 return path;

 }

 public void setPath(String path) {

 this.path = path;

 }

 public String getIssPositionAsString() {

 StringBuilder buffer = new StringBuilder();

 try {

 URL url = new URL(path);

 HttpURLConnection connection =

 (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("GET");

 BufferedReader in = new BufferedReader(

 new InputStreamReader(connection.getInputStream())

);

 String line;

 while ((line = in.readLine()) != null) {

664 | Reflection

 buffer.append(line);

 buffer.append("\n");

 }

 in.close();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 return buffer.toString();

 }

 public IssPosition getIssPosition() {

 IssPosition position = null;

 String json = getIssPositionAsString();

 ObjectMapper objectMapper = new ObjectMapper();

 try {

 position = objectMapper.readValue(json, IssPosition.class);

 } catch (IOException e) {

 e.printStackTrace();

 }

 return position;

 }

 public static void main(String[] args) {

 RestService restService = new RestService();

Reflection Basics | 665

 restService.setPath("http://api.open-notify.org/iss-now.json");

 // Get JSON as object.

 IssPosition position = restService.getIssPosition();

 System.out.println(position);

 // Convert back to JSON.

 ObjectMapper objectMapper = new ObjectMapper();

 try {

 String json = objectMapper

 .writerWithDefaultPrettyPrinter()

 .writeValueAsString(position);

 System.out.println("As JSON:\n" + json);

 } catch (JsonProcessingException e) {

 e.printStackTrace();

 }

 }

}

Activity 1: Take-Out Food Delivery Using Drones and JSON

You are working on a project to deliver take-out food via drones. Due to the range of
the drone communications and safety concerns, the delivery must be within 5 km of
the restaurant. Note that this is 5 km by air, not by road. So, you'll need to calculate the
distance using a spherical method using the Haversine formula:

1. Create a class called Location that holds latitudinal and longitudinal values. Set the
type as double for each.

2. Create a class called Delivery with the location for the customer, along with the
location of the restaurant.

3. Calculate the distance using the Haversine formula and include the distance in the
class. Determine whether the delivery location is within the permitted 5 km range.

666 | Reflection

4. Use the Haversine formula described at http://www.faqs.org/faqs/geography/
infosystems-faq/. (Scroll down to question Q5.1.)

5. Based on this formula, you can use the following method to calculate the distance,
using an approximate of the Earth's radius (6,367 km) and calculations in radians:

public static final double EARTH_RADIUS = 6367;

public static double haversine(double latitude1, double longitude1,
 double latitude2, double longitude2) {

 double deltaLat = Math.toRadians(latitude2 - latitude1);
 double deltaLong = Math.toRadians(longitude2 - longitude1);

 double lat1Radians = Math.toRadians(latitude1);
 double lat2Radians = Math.toRadians(latitude2);

 double a = Math.pow(Math.sin(deltaLat / 2),2) +
 Math.cos(lat1Radians) *
 Math.cos(lat2Radians) *
 Math.pow(Math.sin(deltaLong / 2),2);

 double greatCircleDistance = 2 * Math.asin(Math.sqrt(a));
 return EARTH_RADIUS * greatCircleDistance;
}

6. Once this is complete, write a program that, given a customer location and a
restaurant location, calculates the distance and then converts the object to JSON.

7. Then, go the other way and, using reflection, convert a JSON string back into an
instance of this class.

The JSON should look something like this:

{
 "customer" : {
 "latitude" : 59.369422,
 "longitude" : 18.053931
 },
 "restaurant" : {
 "latitude" : 59.308545,

http://www.faqs.org/faqs/geography/infosystems-faq/
http://www.faqs.org/faqs/geography/infosystems-faq/

Summary | 667

 "longitude" : 18.066242
 },
 "distance" : 6.800841971845111,
 "withinMaximum" : false
}

By using JSON, you will make this drone system one that can work with a RESTful web
service.

You can try using these locations (or find locations for yourself using a tool such as
Google Maps):

• Customer at Minnesota State Capitol, Minnesota, USA, 44.955276, -93.102228.
Local restaurant at 44.943946, -93.104265.

• Customer at Victoria and Albert Museum, London, UK, 51.497559, -0.172427. Local
restaurant at 51.485540, -0.162114.

• Customer at Natural History Museum, Stockholm, Sweden, 59.369072, 18.053856.
Local restaurant at 59.308545, 18.066242. (This one is too far away for drone
delivery, alas.)

Note

The solution for this activity can be found on page 890.

Summary
Java's Reflection API lets you get information about Java classes at runtime. You can
start with an object, get its class, and then extract all sorts of information about the
class, as well as its constructors, methods, and fields. Once you have gathered this
information, you can instantiate new objects, call methods, and set field values.

Reflection bogs down performance, but it has some very good real-world uses.
Frameworks such as Spring Boot use reflection to provide dependency injection, which
allows our classes to be less tightly coupled and easier to test.

Another common real-world use for reflection comes with network communications,
especially with RESTful web services. Reflection is used to convert JSON string data into
Java objects (and vice versa).

In the next chapter, you will learn about Optionals, a Java feature that can help your
applications better deal with null objects.

Learning Objectives

By the end of this chapter, you will be able to:

• Create and read objects of the Optional class

• Avoid null checks in your code, and increase code readability

• Recognize possible NullPointerScenarios in your code that can be avoided with optionals

This chapter explores all the valid use cases of functional interfaces.

Optionals

20

670 | Optionals

Introduction
Optionals help us in dealing with null references in code. They allow for the
implementation of elegant strategies for objects to report back the non-existence of
a nested object. Optionals are Java's response to reducing the code-nesting overhead
that happens with null-related error handling. Optionals are containers, but unlike
collections or arrays, they contain only one value. The other difference with the
optionals is that, when empty, an optional is not pointing to null, but will respond with
a boolean indicating that it has nothing assigned to it.

Until now, when declaring, for example, an empty string, we would do something like:

String s = null;

This operation allows us to check whether any values have been assigned to s but at the
price of having to define operations throughout our code that have to be ready to catch
any potential NullPointerException because of the uncertainty of not having anything
inside s. Optionals will allow you to create objects with nothing inside in the following
way:

Optional<String> s = Optional.empty();

Optionals are containers

As containers, you can put anything inside optionals. However, it only makes
sense to use them in cases where data could potentially end up pointing to a null
reference. Remember not to over-do your code and use the tools only when they
are needed.

Instantiating Optional Objects

With Optional, you can instantiate any kind of objects. There might be cases where you
are unsure whether the data you will be pushing into those objects will end up being
null. Therefore, there are two different ways of instantiating a non-empty object.

First, you could create an optional variable out of an existing non-null piece of data. In
that case, you will call Optional.of():

String s = "tomato";

Optional<String> st = Optional.of(s);

On the other hand, if there was a chance that your variable could end up pointing to
null, you should instead use Optional.ofNullable():

String s = null;

Optional<String> st = Optional.ofNullable(s);

Introduction | 671

An example of such a String variable could be the result of a call to the operating
system asking for a non-existing property:

String s = System.getProperty("server.name");

The response of System.getProperty() in such a case will be null, which will require
using the second of the aforementioned strategies when defining the optional – you
will have to call Optional.ofNullable(). Let's explore one example now, looking at the
different possibilities in one go, and study the outcomes:

Example01.java

import java.util.Optional;

public class Example01 {

 public static void main(String[] args) {

 // the empty object

 Optional<String> textEmpty = Optional.empty();

 System.out.println("Empty Optional: " + textEmpty);

 // non nullable construction

 Optional<String> textNonNullable = Optional.of("not nullable");

 System.out.println("Non-Empty Optional:" + textNonNullable);

 // nullable construction using a non existing property

 String property = System.getProperty("server.name");

 Optional<String> textNullable = Optional.ofNullable(property);

 System.out.println("ofNullable null Optional: " + textNullable);

 // to force NullPointerException, use the null property on non
nullable construction

 Optional<String> textNull = Optional.of(property);

 System.out.println("of null Optional: " + textNull);

 }

}

672 | Optionals

The output of this example includes a part of the code that runs properly, up to the
point where we force a NullPointerException to demonstrate how ofNullable() differs
from of():

Empty Optional: Optional.empty

Non-Empty Optional:Optional[not nullable]

ofNullable null Optional: Optional.empty

Exception in thread "main" java.lang.NullPointerException

 at java.util.Objects.requireNonNull(Objects.java:203)

 at java.util.Optional.<init>(Optional.java:96)

 at java.util.Optional.of(Optional.java:108)

 at Example01.main(Example01.java:20)

Process finished with exit code 1

In the preceding code, we have highlighted the output prior to the arrival of the
exception. You can see here how we are not printing out the contents of the object, but
its container. In the next section, you will learn to get the actual contents of the object.

Getting Values

To extract the data from the optional container, you will need to use one of the
following methods: get(), orElse(), orElseGet(), or orElseThrow(), depending on
the circumstances. You should be aware that prior to getting the contents, you
will have to make sure the object is not empty, otherwise the program will throw a
NoSuchElementException. Let's see how each one of them works and let's force some
exceptions to learn how the compiler will behave:

Example02.java

import java.util.Optional;

public class Example02 {

 public static void main(String[] args) {

 // non nullable construction

 Optional<String> textNonNullable = Optional.of("not nullable");

Introduction | 673

 System.out.println("Non-Empty Optional:" + textNonNullable.get());

 // the empty object

 Optional<String> textEmpty = Optional.empty();

 System.out.println("Empty Optional: " + textEmpty.get());

 }

}

We have highlighted the call to get() to make the difference between this code and the
one in Example01 visible. Also, the call to both the non-empty and empty objects have
been intentionally inverted so that we can see some output before the arrival of the
exception.

The result of the preceding code is the same as before:

Non-Empty Optional:not nullable

Exception in thread "main" java.util.NoSuchElementException: No value
present

 at java.util.Optional.get(Optional.java:135)

 at Example02.main(Example02.java:12)

Process finished with exit code 1

Important

The only way to avoid these exceptions happening is to check whether the object is
empty, which is something we will see in the next section.

On the other hand, you can play with orElse() to pass a value to the object in case it
is empty. This is the mechanism that will allow you to define a default value for your
empty objects:

Example03.java

import java.util.Optional;

public class Example03 {

 public static void main(String[] args) {

674 | Optionals

 // non nullable construction

 Optional<String> textNonNullable = Optional.of("not nullable");

 String textNonNullableSafe = textNonNullable.orElse("this is empty");

 System.out.println("Non-Empty Optional:" + textNonNullableSafe);

 // the empty object

 Optional<String> textEmpty = Optional.empty();

 String textEmptySafe = textEmpty.orElse("this is empty");

 System.out.println("Empty Optional: " + textEmptySafe);

 }

}

Note how the call to orElse() removes the call to get() from the picture. The result of
this program will be the following:

Non-Empty Optional:not nullable

Empty Optional: this is empty

Process finished with exit code 0

The this is empty string is only called if the object happens to be empty. Alternatively,
you could call orElseGet(), giving a supplier function as a parameter, in the following
way:

// the empty object

Optional<String> textEmpty = Optional.empty();

String textEmptySafe = textEmpty.orElseGet(() -> { return "this is empty";});

System.out.println("Empty Optional: " + textEmptySafe);

The result of this modification will be the same as for Example03. However, the
possibility of having our own function instead of simply responding a default value is
very powerful.

Introduction | 675

Finally, it is also possible to make the API respond with a self-made exception instead
of the already mentioned NoSuchElementException. To do this, you need to create your
own exception and then refer to it within the call to orElseThrow(), as in the following
example:

Example04.java

import java.util.Optional;

public class Example04 {

 public static class MyVeryOwnException extends Exception {

 // you should have some more stuff in here

 }

 public static void main(String[] args) throws MyVeryOwnException {

 // non nullable construction

 Optional<String> textNonNullable = Optional.of("not nullable");

 String textNonNullableSafe = textNonNullable.orElse("this is empty");

 System.out.println("Non-Empty Optional:" + textNonNullableSafe);

 // the empty object

 Optional<String> textEmpty = Optional.empty();

 String textEmptySafe = textEmpty.orElseThrow(

 () -> { return new MyVeryOwnException(); }

);

 System.out.println("Empty Optional: " + textEmptySafe);

 }

}

676 | Optionals

The output of the preceding example is:

Non-Empty Optional:not nullable

Exception in thread "main" Example04$MyVeryOwnException

 at Example04.lambda$main$0(Example04.java:16)

 at java.util.Optional.orElseThrow(Optional.java:290)

 at Example04.main(Example04.java:16)

Process finished with exit code 1

Here, you can see how our own exception is triggered when detecting the fact that the
object is empty.

Note

You need to throw the exception in the definition of the main method in the class,
otherwise, the program will detect the exception and it will not compile.

The Presence Actions

While you can decide different techniques as to how to operate when the optional
happens to be empty, there are different tools in the API to detect this situation:
isPresent(), isEmpty(), and ifPresent(). The first two are going to tell us with a boolean
whether the object is empty, while the last one allows you to directly act on the object
should it not be empty. Let's see an example comparing the first two:

Example05.java

import java.util.Optional;

public class Example05 {

 public static class MyVeryOwnException extends Exception {

 // you should have some more stuff in here

 }

 public static void main(String[] args) throws MyVeryOwnException {

 // non nullable construction

Introduction | 677

 Optional<String> textNonNullable = Optional.of("not nullable");

 if (textNonNullable.isPresent()) {

 System.out.println("Non-Empty Optional:" + textNonNullable.
get());

 }

 // the empty object

 Optional<String> textEmpty = Optional.empty();

 if (textEmpty.isEmpty()) {

 System.out.println("this object is empty");

 } else {

 System.out.println("Empty Optional: " + textEmpty.get());

 }

 }

}

The output of the previous example is:

Non-Empty Optional:not nullable

this object is empty

Process finished with exit code 0

As you can see, we can both detect whether the object is empty, and act upon it. This
is, in a way, like the comparison to null that you were doing before you knew about the
existence of the Optional class, only much more elegant.

Very important

Unless you have updated your JDK to Java 11 or later, the call to isEmpty() will not
work as it was incorporated for the first time as part of Java 11.

678 | Optionals

The last action you can use, ifPresent(), includes the possibility of acting upon existing
data by means of function calls that you can pass directly as parameters to the call, as
shown in the next code snippet:

// non nullable construction

Optional<String> textNonNullable = Optional.of("not nullable");

textNonNullable.ifPresent(

 (String s) -> System.out.println("Non-Empty Optional:" + s)

);

The result of this code is equivalent to the part of Example05 dedicated to this same
operation, only that in this case, we can use a lambda operation to determine what to
do with the data in case the optional is not empty.

Exercise 1: Create Your Own Class Using Optionals

As a way to spice up the rest of the examples in this chapter, let's create a class that
uses the Optional class when defining its interactions with the rest of the code:

1. Open IntelliJ and create a new project named Exercise01.

2. Define a class. Let's call it Human, as it will be used to define different people. Add
some characteristics that will help in distinguishing between the different people.
Take some simple characteristics, including age, gender, and name:

public static class Human {
 private String name;
 private Integer age;
 private String gender;
[...]

3. Define the setter functions for each one of those characteristics:

// setters
public void setName(String _name) {
 name = _name;
}

public void setAge(Integer _age) {
 age = _age;
}

public void setGender(String _gender) {
 gender = _gender;
}

Introduction | 679

4. Add a series of constructors capable of adding parameters:

// constructors (there could be more)
Human () {
 // empty constructor, do nothing
}

Human (String _name) {
 name = _name;
}

Human (String _name, Integer _age) {
 name = _name;
 age = _age;
}

Human (String _name, Integer _age, String _gender) {
 name = _name;
 age = _age;
 gender = _gender;
}

Human (String _name, String _gender) {
 name = _name;
 gender = _gender;
}

5. Finally, add the getter functions that provide support for our optionals. Remember
that when defining a human, you may not have all of the information needed to fill
in all of the data pertaining to that person:

// getters
public Optional<String> getName() {
 return Optional.ofNullable(name);
}

public Optional<Integer> getAge() {
 return Optional.ofNullable(age);
}

public Optional<String> getGender() {
 return Optional.ofNullable(gender);
}

680 | Optionals

6. For full reference, the complete class will appear as follows:

public static class Human {
 private String name;
 private Integer age;
 private String gender;

 // getters
 public Optional<String> getName() {
 return Optional.ofNullable(name);
 }

 public Optional<Integer> getAge() {
 return Optional.ofNullable(age);
 }

 public Optional<String> getGender() {
 return Optional.ofNullable(gender);
 }

 // setters
 public void setName(String _name) {
 name = _name;
 }

 public void setAge(Integer _age) {
 age = _age;
 }

 public void setGender(String _gender) {
 gender = _gender;
 }

 // constructors (there could be more)
 Human () {
 // empty constructor, do nothing
 }

 Human (String _name) {
 name = _name;
 }

Introduction | 681

 Human (String _name, Integer _age) {
 name = _name;
 age = _age;
 }

 Human (String _name, Integer _age, String _gender) {
 name = _name;
 age = _age;
 gender = _gender;
 }

 Human (String _name, String _gender) {
 name = _name;
 gender = _gender;
 }
}

7. Import the APIs from java.util, that is, ArrayLists, Iterator, and Optional, that
are required for this example to run:

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Optional;

8. Try out the class by declaring some humans in the code, and check what happens
when you get some output data:

public static void main(String[] args) {
 ArrayList<Human> humans = new ArrayList<Human>();
 humans.add(new Human("Maria"));
 humans.add(new Human("Petter", 32));
 humans.add(new Human("Janna", "female"));
 humans.add(new Human("Silvio", 55, "male"));

 Iterator<Human> theHuman = humans.iterator();

 // print a table header
 System.out.println("name\tage\tgender");
 System.out.println("-------------------");

 // print the table content
 while (theHuman.hasNext()) {
 Human human = theHuman.next();

682 | Optionals

 // the name is a mandatory parameter, will always be there
 human.getName().ifPresent((String s) -> System.out.print(s +
"\t"));

 // the age is optional, if not present, insert a tab
 human.getAge().ifPresent((Integer s) -> System.out.print(s +
"\t"));
 if(human.getAge().isEmpty()) {
 System.out.print("\t");
 }

 // the gender is optional, but since there are no other
 // parameters, we do not need to add an extra tabulator
 human.getGender().ifPresent((String s) -> System.out.print(s));

 // print the EOL
 System.out.println();
 }
}

9. The output from this example will be a table featuring the data we introduced in
the code. Note how using Optional has allowed for much clearer code, avoiding if
statements that would compare each parameter to null:

name age gender

Maria
Petter 32
Janna female
Silvio 55 male

Process finished with exit code 0

Note

This example includes a whole series of techniques covered in previous chapters,
including Iterators, lambda operators, ArrayLists, etc. Browse back in the book if
you need to refresh some of that knowledge.

Introduction | 683

map versus flatMap

There are other mechanisms to browse through the data contained in the objects we
have defined using optionals. Let's take, as a point of departure, the final code from
Exercise01 that was listing information about different people. The question is: can
we be completely sure that the data nodes in the ArrayList won't be empty if we were
populating the List using data coming from a Stream? The obvious answer to this
question is "no", for the reason that when reading the data in the array, we could use
optionals to read the data. This will require revising the code inside the while loop to
use optionals:

// print the table content

while (theHuman.hasNext()) {

 Optional<Human> human = Optional.ofNullable(theHuman.next());

[...]

Once we have this revised version of the human object, we could obtain the different
pieces of data by calling the getter functions. For example, to get the name, you should
call:

// the name is a mandatory parameter, will always be there

human.get().getName().ifPresent((String s) -> System.out.print(s + "\t"));

As you can see, first, you need to get the object from the Optional container, and then
call getName() to extract the actual name, which happens to be yet another Optional
that you will assess using ifPresent(). With map, you can perform this operation
differently:

// the name is a mandatory parameter, will always be there

human.map(Human::getName).get().ifPresent((String s) -> System.out.print(s +
"\t"));

The call to map() will apply the function given as an argument to the value (in our case,
the getter) and wrap the result in an Optional. Therefore, we need to call get() to
extract that result before we can chain it into the next action.

In contrast, flatMap() will not wrap the outcome into an optional, and will simply return
the value. Therefore, the following code snippet will do the same operation as the one
before, but in a cleaner way:

// the name is a mandatory parameter, will always be there

human.flatMap(Human::getName).ifPresent((String s) -> System.out.print(s +
"\t"));

684 | Optionals

This will allow us to rewrite the code inside the while loop in the main method of
Exercise 01:

// print the table content

while (theHuman.hasNext()) {

 Optional<Human> human = Optional.of(theHuman.next());

 // the name is a mandatory parameter, will always be there

 human.flatMap(Human::getName).ifPresent((String s) -> System.out.print(s
+ "\t"));

 if(human.flatMap(Human::getName).isEmpty()) {

 System.out.print("no name\t");

 }

 // the age is optional, if not present, insert a tab

 human.flatMap(Human::getAge).ifPresent((Integer s) -> System.out.print(s
+ "\t"));

 if(human.flatMap(Human::getAge).isEmpty()) {

 System.out.print("\t");

 }

 // the gender is optional, but since there are no other

 // parameters, we do no need to add an extra tabulator

 human.flatMap(Human::getGender).ifPresent((String s) -> System.out.
print(s));

 // print the EOL

 System.out.println();

}

Introduction | 685

This is not only a very elegant piece of code but is also protected against completely
empty objects. You can test this by calling humans.add(new Human()); when defining
the ArrayList and, in that way, add an empty object that will result in having no name
printed in the table:

name age gender

Maria

Petter 32

Janna female

Silvio 55 male

no name

Process finished with exit code 0

Returning with filter

You could say that applying map() or flatMap() to the Optional object, as shown in the
previous section, could be like some sort of filter to the actual object. There is, however,
a method – called filter() – that you could use on objects of the Optional class to
separate pieces of data from one another. Filters are applied on optionals using a
predicate as a parameter and return yet another optional that allows us to chain filters
one after the other. Let's consider once again the code coming from Exercise 01. Let's
modify its while loop to get some information about the data. For example, let's make a
program that will print out to the table only those entries for people who are male.

But before that, just to make the example more interesting, let's fully populate the table
with data by modifying the program to be as follows:

humans.add(new Human("Maria", 27, "female"));

humans.add(new Human("Petter", 32, "male"));

humans.add(new Human("Janna", 47,"female"));

humans.add(new Human("Silvio", 55, "male"));

humans.add(new Human());

686 | Optionals

We keep the last call to an empty object to see how the code is resisting this kind of
empty node in the list:

Example06.java (Note: excerpt)

[…]

// print the table content

while (theHuman.hasNext()) {

 Optional<Human> human = Optional.of(theHuman.next());

 boolean isMale = human

 .flatMap(Human::getGender)

 .filter(g -> g.equals("male"))

 .isPresent();

 // print only if it is male

 if(isMale) {

 // the name is a mandatory parameter, will always be there

 human.flatMap(Human::getName).ifPresent((String s) -> System.out.
print(s + "\t"));

 if (human.flatMap(Human::getName).isEmpty()) {

 System.out.print("no name\t");

 }

 // the age is optional, if not present, insert a tab

 human.flatMap(Human::getAge).ifPresent((Integer s) -> System.out.
print(s + "\t"));

 if (human.flatMap(Human::getAge).isEmpty()) {

 System.out.print("\t");

 }

 // the gender is optional, but since there are no other

Introduction | 687

 // parameters, we do no need to add an extra tabulator

 human.flatMap(Human::getGender).ifPresent((String s) -> System.out.
print(s));

 // print the EOL

 System.out.println();

 }

}

[...]

As you can see here, a filter has been defined to extract the information only from those
entries tagged as male. You are free to explore how to implement other filters to extract
other kinds of information.

Executing this code will produce the following output:

name age gender

Petter 32 male

Silvio 55 male

Process finished with exit code 0

Activity 1: Experimenting with Filters

You have just learned how filters work with optionals, so why not try to make some
other filters? Can you revise the code to show just the information about those who are
over 40 years old? Can you extract the information from anyone female under the age
of 30?

1. To the question about extracting the information from those individuals over 40,
you will need to implement a filter such as the following:

human.flatMap(Human::getAge).filter(g -> g > 40).isPresent();

688 | Optionals

2. To the question about extracting the information from any female under 30,
you will have to create two filters, one after the next, and then run a Boolean
intersection of those:

boolean f1 = human.flatMap(Human::getAge).filter(g -> g < 30).isPresent();
boolean f2 = human.flatMap(Human::getGender).filter(g ->
g.equals("female")).isPresent();

[...]
if (f1 & f2) {
[...]

Note

The solution for this activity can be found on page 898.

Chaining Optionals to the Stream

We have seen throughout the whole chapter how it is possible to chain different
methods one after the next in long commands so that data is piped from one process
to the next. The next step to be considered is to look at the possibility of transforming
an object of any of the List-related classes into a Stream, something that has been
possible since Java 9, and that allows for the use of a whole range of very interesting
methods belonging to the Stream class. You could explore them further on your own,
but, as a way to get started with using it, take a look at the following example, which is a
modification of Exercise 01:

Example07.java (Note: excerpt)

public static void main(String[] args) {

 ArrayList<Human> humans = new ArrayList<Human>();

 humans.add(new Human("Maria"));

 humans.add(new Human("Petter", 32));

 humans.add(new Human("Janna", "female"));

 humans.add(new Human("Silvio", 55, "male"));

Introduction | 689

 // first test: findFirst in stream

 System.out.println("First test");

 Optional<Human> result = humans.stream().findFirst();

 // first method: chain of flatMap with lambda filter and protection against
exception

 if (result.isPresent())

 System.out.println(result.flatMap(Human::getAge).filter(g -> g < 30).
orElse(-1));

 // second method: lambda of chain with lambda filter and protection
against exception

 result.ifPresent(s -> System.out.println(s.getAge().filter(g -> g < 30).
orElse(-1)));

 // second test: check age of everyone in stream

 System.out.println("Second test");

 humans.stream().forEach((Human h) -> {

 System.out.println(h.getAge().orElse(-1));

 }

);

}

In this example, you can see how we are making use of two different techniques around
the Stream class. First, we transform the list of optionals into a stream with the call to
humans.stream(), and then we try one of the two techniques: extract the first object
with findFirst(), and execute certain code for every item in the stream with forEach().
The output of this example will be as follows:

First test

-1

-1

690 | Optionals

Second test

-1

32

-1

55

Process finished with exit code 0

As you can see, in the first test, we are checking the age of the first element, "Maria" –
who had no age in the List and, therefore, will answer with null – and printing out the
outcome in two different ways. You can see that chaining different commands can lead
to the same result, only that the second mechanism mentioned earlier, that is, using
ifPresent(), turns out to be a lot cleaner than the other one.

In the second test, we iterate through the stream with forEach() and print out the age
in each case, or -1 in case of the age being empty.

Summary
In this chapter, you've been introduced to the use of optionals as a way to avoid
the omnipresent NullPointerException. Using the Optional class makes the whole
interaction with the data a lot smoother by removing all of the null comparisons from
your code.

Optionals allow the chaining of a whole series of different methods as a way to simplify
the interaction with datasets and get tidier code snippets when gathering or searching
through data. Since data might not always be complete, the risk exists that your dataset
may have some empty fields. Optionals are necessary as a way to minimize the potential
exceptions that would show up in our code, were we not careful when checking
potential appearances of memory registers pointing to null.

When it comes to the practical aspects of the chapter, you have been introduced to
the creation of your own "NullPointerException-free" classes, with getters, setters, and
more specific constructors. You have also seen different ways to optimize the code
by using commands such as isPresent(), and flatMap(). Finally, you saw how to take
advantage of the stream() method that lets you transform your lists of data into streams
that you can then iterate through and handle in an easier way.

Learning Objectives

By the end of this chapter, you will be able to:

• Explain the differences between the four kinds of references in Java.

• Explain how memory is managed by the garbage collector.

• Apply weak references to illustrate how objects are immediately cleared by the garbage
collector.

• Apply soft references to illustrate how objects can survive even after all strong references
have been removed.

• Explain how phantom references work.

• Use a WeakHashMap that automatically adjusts its size when the memory is cleared.

This chapter talks about types of References and how to use them in Java.

References

21

694 | References

Introduction
One of the primary arguments for using Java has always been its garbage collector. In
c/c++, you're always obligated to manage the creation and destruction of any objects in
your application code. However, in Java, you often forget about this process because the
garbage collector attempts to carry out most of the memory management for you.

While it makes getting started in programming slightly easier than other, non-garbage
collected environments, Java can cause a lot of headaches when dealing with advanced
applications where obscure memory leaks happen just because of the way the garbage
collector works in Java.

Simply put, the garbage collector will clean up any garbage you throw around in your
program. It will follow you around, picking up anything you forget about. Objects that
are no longer used – or referenced – will be cleaned up and the memory held by them
will be returned to the system.

If you keep long-lived references to any objects that fail to be garbage collected, then
the memory stack your application uses will keep growing. This is what is called a
memory leak. To work around these memory problems, apart from structuring the use
of your objects in a way that references are never kept longer than needed, you can
also define your references such that they allow themselves to be garbage collected
more easily. In Java, we have four different types of references – strong, weak, soft, and
finally, phantom references.

Java Memory Management
When you start a Java program it also fires up the JVM, which in turns reserves memory
space specifically for your program on the system, also called memory allocation.
One important reason for this memory allocation is making space for the objects your
program needs to remember the heap is the part of memory in which your objects live.

The heap may grow and shrink as needed by your program, but as you understand it's
also limited because your program will unlikely be the sole resident on the computer. To
work around this the JVM employs something called the garbage collector.

Simply put, a garbage collector cleans up any occupied memory blocks which your
program doesn't reference any more. If you keep long-lived references to any objects
that fail to be garbage collected, then the memory space your application uses will
keep growing. This is what is called a memory leak. To work around these memory
problems, apart from structuring the use of your objects in a way that references are
never kept longer than needed, you can also define your references such that they allow
themselves to be garbage collected more easily. In Java we have four different types of
references - strong, weak, soft, and finally the phantom reference.

Memory Leaks | 695

A healthy heap should look like the following simple illustration, the unused objects are
the same as the dereferenced objects:

Figure 21.1: An illustration of a healthy heap

Memory Leaks
A memory leak, then, can be defined as the difference between dereferenced objects
and unused objects. If there are more unused objects than dereferenced objects, then
you might very well have at least one memory leak.

Unused objects, however, are not always a bad thing. Most of the time the unused
objects are actually dereferenced objects which the garbage collector will clean up. It is
when the object is unused but still has references to it that it becomes a memory drain.
The following image illustrates the unhealthy heap:

Figure 21.2: An illustration of an unhealthy heap

Strong References

Strong references are the most common type in any program you will ever write.
They're so common, we usually never even label them. Perhaps you never even think of
them as strong references at all, just normal declarations. Let's look at an example:

ShoppingCart cart = new ShoppingCart();

696 | References

Here, the cart object has a strong reference to the ShoppingCart object. As long as that
reference is kept alive, the garbage collector is not allowed to touch the memory of
that object – hence the memory will be kept intact. However, as soon as you clear the
reference, you give the garbage collector the option to clear the memory space where
the actual string was kept, making it available for new allocations.

Let's clear the reference by setting the object to null, thus making it available for
garbage collection.

cart = null;

Note

Dereferencing objects in Java doesn't automatically clear the memory right away,
however, it will let the garbage collector know that the memory where the object
was stored can be collected. The garbage collector will do this at different times
depending on its strategy.

Weak References

A weak reference, which might be the second most commonly used reference type in
Java, is a reference that cannot, by itself, prohibit the garbage collector from sweeping
it out of memory.

You can, however, create a strong reference from a weak reference; should you need to
block it from garbage collection, you do so by calling .get() on the reference.

You can create a weak reference by passing the object that you wish to create a weak
reference from into the constructor. You can pass any type of object you wish to this
weak reference:

WeakReference<ShoppingCart> weakReference = new
WeakReference<>(shoppingCart);

To access the object that weakReference is referencing, you simply call .get() on the
reference:

ShoppingCart shoppingCart = weakReference.get();

if (null != shoppingCart) {

 shoppingCart.purchase();

}

Memory Leaks | 697

This will return the reference of the weak reference – note that we store the referent
in a strong reference before accessing it; this is because the garbage collector may
otherwise feel like clearing the reference while you're accessing it, which might then
cause NullPointerException.

The null check we do before accessing the object is to ensure that the object wasn't
already collected before calling get().

Exercise 1: Weak References

Create a program that visualizes how weak references are cleared by the garbage
collector in Java:

1. If IntelliJ is already started but no project is open, select Create New Project. If
IntelliJ already has a project open, select File -> New -> Project from the menu.

2. In the New Project Dialog, select a Java project. Click Next.

3. Check the box to create the project from a template. Select Command Line App.
Click Next.

4. Give the new project the name Chapter21.

5. IntelliJ will give you a default project location. If you wish to select one, you can
enter it here.

6. Set the package name to com.packt.java.chapter21.

7. Click Finish.

IntelliJ will create your project, which is called Chapter21. It will also create the
main entry point for the program in the Main.java class. It should look something
like the following:

package com.packt.java.chapter21;

public class Main {

 public static void main(String[] args) {
 // write your code here
 }
}

698 | References

8. Rename the Main.java class as Exercise1:

package com.packt.java.chapter21;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here
 }
}

9. Create a new class, call it MyObject, and override the finalize method to print a
message to the terminal. Declare the class in the same file as the main method:

package com.packt.java.chapter21;

public class Exercise1 {

 public static void main(String[] args) {
 // write your code here
 }
}

class MyObject {
 @Override
 protected void finalize() throws Throwable {
 super.finalize();
 System.out.println("Finalize called.");
 }
}

Note

The finalize method is called by the garbage collector when it is about to be
cleared from memory. Usually, you use it to clean more advanced objects. In this
example, it's just used to show that an object has been handled by the garbage
collector.

The finalize method was deprecated in Java 9, meaning it is scheduled for
removal in a future release of Java. It was decided to deprecate finalization because
it has several issues; the most absurd issue is that it may actually cause memory
issues in your program, when the whole point of finalization is to ensure memory
is returned to the system properly.

Memory Leaks | 699

10. Create an instance of the MyObject class and print it to the terminal:

package com.packt.java.chapter21;

public class Exercise1 {

 public static void main(String[] args) {
 MyObject myObject = new MyObject();
 System.out.println(myObject);
 }
}

When printing the object, it will print the hashcode of said object; it should look
something like this: com.packt.java.chapter21.MyObject@2d209079.

11. Create a weak reference with the myObject instance as the referent:

package com.packt.java.chapter21;

import java.lang.ref.WeakReference;

public class Exercise1 {

 public static void main(String[] args) {
 MyObject myObject = new MyObject();
 System.out.println(myObject);

 WeakReference<MyObject> weakReference = new
WeakReference<>(myObject);
 }
}

12. Use the get() method on the weak reference to collect a strong reference to
the instance, then print that reference. At this point, there will be two strong
references to the object – the first from when the instance was created, and the
second from when it was collected from the reference:

package com.packt.java.chapter21;

import java.lang.ref.WeakReference;

public class Exercise1 {

 public static void main(String[] args) {
 MyObject myObject = new MyObject();

700 | References

 System.out.println(myObject);

 WeakReference<MyObject> weakReference = new
WeakReference<>(myObject);

 MyObject myObject2 = weakReference.get();
 System.out.println(myObject2);
 }
}

You should now have two identical hashcodes printed to the terminal, looking
something like the following:

com.packt.java.chapter21.MyObject@2d209079

com.packt.java.chapter21.MyObject@2d209079

Note

In a real case, you would use a null check on the newly acquired instance from the
weak reference, just to make sure that the garbage collector hadn't already cleared
it. In this example, it's safe because we know that there is a strong reference
already – so it can't be collected.

13. Now it's time to run the garbage collector, but before you do, make sure to set the
two strong references, myObject and myObject2, to null. When you remove the two
strong references, only the weak reference will remain. The garbage collector will
take the hint and clear the instance from memory:

package com.packt.java.chapter21;

import java.lang.ref.WeakReference;

public class Exercise1 {

 public static void main(String[] args) {
 MyObject myObject = new MyObject();
 System.out.println(myObject);

 WeakReference<MyObject> weakReference = new
WeakReference<>(myObject);

 MyObject myObject2 = weakReference.get();

Memory Leaks | 701

 System.out.println(myObject2);

 myObject = null;
 myObject2 = null;

 System.gc();
 System.runFinalization();
 }
}

Notice that the message, Finalize called, is printed to the terminal.

14. As final proof that the referent has been collected, call get one more time in an
attempt to acquire a strong reference. Then, print that reference – it should be
null:

package com.packt.java.chapter21;

import java.lang.ref.WeakReference;

public class Exercise1 {

 public static void main(String[] args) {
 MyObject myObject = new MyObject();
 System.out.println(myObject);

 WeakReference<MyObject> weakReference = new
WeakReference<>(myObject);

 MyObject myObject2 = weakReference.get();
 System.out.println(myObject2);

 myObject = null;
 myObject2 = null;

 System.gc();
 System.runFinalization();

 MyObject myObject3 = weakReference.get();
 System.out.println(myObject3);
 }
}

702 | References

The final output should look something like this.

com.packt.java.chapter21.MyObject@2d209079

com.packt.java.chapter21.MyObject@2d209079

null

Finalize called.

Weak references are great in some cases, for example, when you are working on a
multi-threaded user interface application, where a long-running background task
may need to update a user interface component. What happens if said component
has disappeared before the long-running task has completed? This is quite a common
situation on mobile platforms – programs may be interrupted by a phone call at any
time.

The resources need to be cleaned properly when required by the system, and Weak
References can sometimes help in doing just that.

Reference Queues

When using non-strong references in Java, you also have the option of adding a
reference queue to your references – except a phantom reference, which requires a
reference queue. A reference queue is a component that allows the garbage collector to
communicate back to your program when a referent has been cleaned from memory.

A reference queue, however, doesn't use callbacks. Instead, you need to poll a reference
queue to discover if anything has happened. There are two strategies to using reference
queues: either you poll them continuously using a thread or worker, or you poll them
whenever you're about to create a reference for the said queue. WeakHashMap does the
latter.

There are two ways to poll a reference queue. The first option is to use the poll()
method. This method will immediately check what the state of the queue is. If there is
something available, it will return it to you – or null if the queue is empty.

The second way isn't really polling the queue, it is using the remove() method. This will
block the thread until a reference has become available.

Memory Leaks | 703

Exercise 2: Creating a Shopping Cart

Create a simple shopping cart program using a weak reference for the active shopping
cart. As soon as the user has completed the purchase of the items in the shopping
cart, it should be converted into an order – and any reference to the cart should be
destroyed. Use the reference queue to discover when the shopping cart has been
destroyed.

1. Open the Chapter21 project in IntelliJ IDE if it's not already open:

2. Create a new Java class, by going to File -> New -> Java Class.

3. Give the class the name Exercise2 and click OK. You should have a class like this:

package com.packt.java.chapter21;

public class Exercise2 {
}

4. Create a main method; we'll use this to execute our whole program:

package com.packt.java.chapter21;

public class Exercise2 {

 public static void main(String[] args) {

 }
}

5. Create the ShoppingCart class. It doesn't need to have any contents right now,
but let it override the finalize() method to show when the garbage collector has
cleared this instance from memory:

class ShoppingCart {

 @Override
 protected void finalize() throws Throwable {
 super.finalize();
 System.out.println("Finalized");
 }
}

704 | References

6. Instantiate ShoppingCart. This will represent the user's current shopping cart.
Then, create a WeakReference of that instance, passing a reference queue to the
constructor. We can later poll that reference queue for status updates:

package com.packt.java.chapter21;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class Exercise2 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 WeakReference<ShoppingCart> weakReference = new
WeakReference<>(shoppingCart, referenceQueue);
 }
}

7. Poll the reference queue to check whether the garbage collector has started
clearing the referent. At this point, there should be nothing in the queue:

package com.packt.java.chapter21;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class Exercise2 {

 public static void main(String[] args) throws InterruptedException {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 WeakReference<ShoppingCart> weakReference = new
WeakReference<>(shoppingCart, referenceQueue);

 System.out.println(String.format("ShoppingCart has %sbeen
cleared.", (referenceQueue.poll() == null ? "not " : "")));

Memory Leaks | 705

 }
}

Note

There is a gotcha when working with reference queues: if there is nothing
immediately available in the queue, the object may not have been cleared by
the garbage collector – even if we know it should have been. There are a few
ways around this that often helps in simple examples like this. Either let the
thread sleep for between a few milliseconds and then poll, or use the System.
runFinalization() method to trigger object finalizations. This is required because
the Garbage collector is not entirely predictable.

This is one reason why, in some cases, you'd prefer to have a separate thread
polling the reference queue continuously.

8. Set the strong reference to null and then run the garbage collector. Ask the queue
once more if there is something the garbage collector has cleared:

package com.packt.java.chapter21;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class Exercise2 {

 public static void main(String[] args) throws InterruptedException {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 WeakReference<ShoppingCart> weakReference = new
WeakReference<>(shoppingCart, referenceQueue);

 System.out.println(String.format("ShoppingCart has %sbeen
cleared.", (referenceQueue.poll() == null ? "not " : "")));

 shoppingCart = null;

 System.gc();

706 | References

 System.runFinalization();

 System.out.println(String.format("ShoppingCart has %sbeen
cleared.", (referenceQueue.poll() == null ? "not " : "")));
 }
}

At this point, the ShoppingCart should have been cleared; if not, try to increase the
sleep time – give the garbage collector a little more time to clear the memory.

9. Check that the weak reference doesn't hold on to the ShoppingCart any more:

package com.packt.java.chapter21;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class Exercise2 {

 public static void main(String[] args) throws InterruptedException {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 WeakReference<ShoppingCart> weakReference = new
WeakReference<>(shoppingCart, referenceQueue);

 System.out.println(String.format("ShoppingCart has %sbeen
cleared.", (referenceQueue.poll() == null ? "not " : "")));

 shoppingCart = null;

 System.gc();

 System.runFinalization();

 System.out.println(String.format("ShoppingCart has %sbeen
cleared.", (referenceQueue.poll() == null ? "not " : "")));

Memory Leaks | 707

 System.out.println(String.format("ShoppingCart reference %sexist",
(weakReference.get() == null ? "does not " : "")));
 }
}

After running this program you should see the following output to your terminal:

ShoppingCart has not been cleared.

Finalized

ShoppingCart has been cleared.

ShoppingCart reference does not exist

Activity 1 – Using Multiple Weak References in a Reference Queue

Add multiple different weak references, each using its own instance, and then let
the garbage collector clear all of them. Loop through all references in the reference
queue. Use the forEach method of the ReferenceQueue. You should see the following in
terminal:

Reference queue does not contain references

Finalized

Finalized

Finalized

Reference was cleared

Reference was cleared

Reference was cleared.

Note

The solution for this activity can be found on page 902.

WeakHashMap

Probably one of the most commonly used implementations of weak references is
WeakHashMap, a canonical map. The keys within the map are, in fact, all weak references,
and whenever the garbage collector wipes any one of the keys from memory,
WeakHashMap will clear said item from the map. This is all possible because of reference
queues. Every time an item is added to the map, it polls the reference queue to see if
any item has been cleared from memory – and will remove non-existent references
from the map.

708 | References

Exercise 3: WeakHashMap

Using WeakHashMap, store students and their test results. Create a simple student class,
and then store a number of students in the map. Set one student object to null and
view the size of the WeakHashMap change. Get the reference to the remaining item and
print the test result.

1. Open the Chapter21 project in IntelliJ IDE if it's not already open:

2. Create a new Java class, by going to File -> New -> Java Class.

3. Enter Exercise3 as the name and click OK. Your new class should look like this:

package com.packt.java.chapter21;

public class Exercise3 {
}

4. Create a main method. We'll use this to execute our whole program:

package com.packt.java.chapter21;

public class Exercise3 {

 public static void main(String[] args) {

 }
}

5. Create the Student class. Let it contain one property – the student's name:

package com.packt.java.chapter21;

public class Student {
 String name;
 public Student(String name) {
 this.name = name;
 }
}

6. Create the students Harry and Jenny:

package com.packt.java.chapter21;

public class Exercise3 {

 public static void main(String[] args) {

Memory Leaks | 709

 Student harry = new Student("Harry");
 Student jenny = new Student("Jenny");
 }
}

7. Create a WeakHashMap for storing student results and add both students to the map.
Give them arbitrary test results:

package com.packt.java.chapter21;

import java.util.WeakHashMap;

public class Exercise3 {

 public static void main(String[] args) {
 Student harry = new Student("Harry");
 Student jenny = new Student("Jenny");

 WeakHashMap<Student, Integer> testResults = new WeakHashMap<>();
 testResults.put(harry, 23);
 testResults.put(jenny, 25);
 }
}

At this point, the WeakHashMap will contain two test results – one for Harry and one for
Jenny. You can prove this by printing the size of the map:

package com.packt.java.chapter21;

import java.util.WeakHashMap;

public class Exercise3 {

 public static void main(String[] args) {

 Student harry = new Student("Harry");

 Student jenny = new Student("Jenny");

710 | References

 WeakHashMap<Student, Integer> testResults = new WeakHashMap<>();

 testResults.put(harry, 23);

 testResults.put(jenny, 25);

 System.out.println("Test results: " + testResults.size());

 }

}

However, if we set one of the student objects to null, the WeakHashMap will, after the
garbage collector starts its work, remove the value for the null key:

package com.packt.java.chapter21;

import java.util.WeakHashMap;

public class Exercise3 {

 public static void main(String[] args) {

 Student harry = new Student("Harry");

 Student jenny = new Student("Jenny");

 WeakHashMap<Student, Integer> testResults = new WeakHashMap<>();

 testResults.put(harry, 23);

 testResults.put(jenny, 25);

 System.out.println("Test results: " + testResults.size());

 harry = null;

 System.gc();

 System.runFinalization();

 System.out.println("Test results: " + testResults.size());

 }

}

Memory Leaks | 711

WeakHashMap is excellent in certain use cases, such as when you need a collection of
objects and are sure that strong references will not be stored elsewhere out of scope.
However, WeakHashMap is not foolproof; you can fool it simply by letting the value
refer to the key object – much like a database could contain dual foreign keys between
tables.

You can also create a new class for storing test results that also stores a reference to
the student object. For each student instance, create a result instance that references
the student instance. Then attempt to nullify a student and perform garbage collection.
Because the result (value) contains a strong reference to the student (key), the garbage
collector shouldn't clear the memory. Find a way of fixing this faulty behavior using
weak references.

Activity 2: Clearing Cross-Referenced Objects

Create a new class for storing test results, call it TestResult. This class should also store
a reference to the student object. For each student instance, create a result instance
which references the student instance they should be cross-referencing. Then attempt
to nullify a student and perform a garbage collection.

Because the result (value) is containing a strong reference to the student (key) the
garbage collector shouldn't clear the memory, verify that the student object is not
cleared by the garbage collector.

Note

The solution for this activity can be found on page 903.

Activity 3: Solving the Memory Problem

Attempt to fix this memory problem, when a student is marked as null it should be
cleared by the garbage collector. Implement this fix without modifying the main
program, only the TestResult class.

Note

The solution for this activity can be found on page 904.

712 | References

Soft References

Soft references behave almost identically to weak references. The big difference is that
the garbage collector will only clear the memory reference if the application is about to
run out of memory space – the dreaded OutOfMemoryError exception. If the application
is in a healthy state, the garbage collector will let the soft reference stay alive a little
longer than the usual.

Exercise 4: Soft References

Create a program that illustrates that a soft reference is not immediately cleared by
the garbage collector when it has an opportunity. Instead, the soft reference should be
available even after running the garbage collector.

1. Open the Chapter21 project in IntelliJ IDE if it's not already open:

2. Create a new Java class by going to File -> New -> Java Class.

3. Give the class the name Exercise4 and click OK. The new class should look like
this:

package com.packt.java.chapter21;

public class Exercise4 {
}

4. Create a main method; we'll use this to execute our whole program:

package com.packt.java.chapter21;

public class Exercise4 {

 public static void main(String[] args) {

 }
}

5. Reuse the ShoppingCart class from the previous exercise. Create an instance of the
ShoppingCart class:

package com.packt.java.chapter21;

public class Exercise4 {

 public static void main(String[] args) {

Memory Leaks | 713

 ShoppingCart shoppingCart = new ShoppingCart();
 }
}

6. Create a SoftReference for the new ShoppingCart instance without a reference
queue:

package com.packt.java.chapter21;

import java.lang.ref.SoftReference;

public class Exercise4 {

 public static void main(String[] args) {

 ShoppingCart shoppingCart = new ShoppingCart();

 SoftReference<ShoppingCart> softReference = new
SoftReference<>(shoppingCart);
 }
}

7. Set the shoppingCart object to null and run the garbage collector:

import java.lang.ref.SoftReference;

public class Exercise4 {

 public static void main(String[] args) {

 ShoppingCart shoppingCart = new ShoppingCart();

 SoftReference<ShoppingCart> softReference = new
SoftReference<>(shoppingCart);

 shoppingCart = null;

 System.gc();
 System.runFinalization();
 }
}

714 | References

8. At this point, a weak reference would most likely have been cleared by the garbage
collector – however, a soft reference is unlikely to be cleared unless your program
is running out of memory. Grab the referent from the soft reference and print it to
the terminal:

package com.packt.java.chapter21;

import java.lang.ref.SoftReference;

public class Exercise4 {

 public static void main(String[] args) {

 ShoppingCart shoppingCart = new ShoppingCart();

 SoftReference<ShoppingCart> softReference = new
SoftReference<>(shoppingCart);

 shoppingCart = null;

 System.gc();
 System.runFinalization();

 ShoppingCart shoppingCart2 = softReference.get();

 System.out.println(String.format("ShoppingCart was %scleared.",
(shoppingCart2 == null ? "" : "not ")));
 }
}

You can, if you wish, experiment with Thread.sleep(); however, a soft reference is
very unlikely to be cleared by the garbage collector because of the small amount of
memory used in the application. For a soft reference to be cleared, your program
should be on the verge of throwing an OutOfMemoryException.

Memory Leaks | 715

Activity 4: Forcing the Soft Reference to Be Cleaned

Attempt to force the Soft Reference to be cleaned, there are a number of ways to
force the reference to be cleaned. For example, try modifying the heap memory size
while also generating large objects in your program. You should see this output in the
terminal:

Finalized

ShoppingCart was cleared.

Note

The solution for this activity can be found on page 905.

Phantom References

Phantom references are probably the least used, and known, reference type in Java.
Much like the name suggests, the reference acts as a phantom, something that you
cannot grasp. In other words, you cannot call .get() on a phantom reference and
expect it to return the target referent – it will always return null.

When the garbage collector finds a phantom reference that is eligible for collection, it
will start cleaning said referent from memory by running its finalizer() method. When
this has been done, it will notify the reference queue of its progress.

Exercise 5: Phantom Reference

Build a program which controls when a ShoppingCart is about to be garbage collected
using PhantomReferences. Then clear that reference from memory entirely.

1. Create a new Java class, using the menu File -> New -> Java Class.

2. Give the class the name Exercise5, and click OK. The new class should look like
this.

package com.packt.java.chapter21;

public class Exercise5 {
}

716 | References

3. Create the entry point for the exercise, the main method.

package com.packt.java.chapter21;

public class Exercise5 {

 public static void main(String[] args) {

 }
}

4. Create the ShoppingCart object which we will track using a PhantomReference.

package com.packt.java.chapter21;

public class Exercise5 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();
 }
}

5. Then, create the actual Phantom Reference for this ShoppingCart. Remember, a
PhantomReference always requires a ReferenceQueue so well need to create that first.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 PhantomReference<ShoppingCart> phantomReference = new
PhantomReference<>(shoppingCart, referenceQueue);
 }
}

Memory Leaks | 717

6. In any other reference you can acquire a strong reference using the .get()
method. However, in PhantomReferences that will always return null the object is a
ghost. Ensure this is true by printing the result of the .get() method.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

 PhantomReference<ShoppingCart> phantomReference = new
PhantomReference<>(shoppingCart, referenceQueue);

 System.out.println("ShoppingCart acquired from reference: " +
phantomReference.get());
 }
}

7. Ensure that the ReferenceQueue is empty by polling it.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

718 | References

 PhantomReference<ShoppingCart> phantomReference = new
PhantomReference<>(shoppingCart, referenceQueue);

 System.out.println("ShoppingCart acquired from reference: " +
phantomReference.get());

 System.out.println("Queue is empty? " + (null == referenceQueue.
poll()));
 }
}

At this point the program should print the following output to the terminal,
showing that we cannot collect a strong reference using the .get() method,
and that the ReferenceQueue is still empty meaning nothing is ready for garbage
collection.

ShoppingCart acquired from reference: null
Queue is empty? true

8. We will build our own listener using a Runnable and a Thread to check when the
PhantomReference is ready for handling by the garbage collector. Add an inner class
which implements the Runnable interface, call it PhantomListener.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 @Override
 public void run() {

 }
 }
}

Memory Leaks | 719

9. To be able of establishing if the reference is ready for garbage collection we need
to supply the reference to the listener. Add a constructor which takes both a
PhantomReference and a ReferenceQueue as argument, and store those as fields in
the listener implementation.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 PhantomReference reference;
 ReferenceQueue referenceQueue;

 public PhantomListener(PhantomReference reference, ReferenceQueue
referenceQueue) {
 this.reference = reference;
 this.referenceQueue = referenceQueue;
 }

 @Override
 public void run() {

 }
 }
}

10. There are two different ways of proceeding now, but they use the same basic
mechanism. We need to check that the PhantomReference is queued on the
ReferenceQueue either we poll the ReferenceQueue for new references and compare
those to the Reference were interested in listening for, or we simply check if our
reference is enqueued using the .isEnqueued() method.

720 | References

11. Add a loop to the run() method of the listener, checking if the reference has been
enqueued. If the reference is not enqueued we should wait a little and then check
again.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 PhantomReference reference;
 ReferenceQueue referenceQueue;

 public PhantomListener(PhantomReference reference, ReferenceQueue
referenceQueue) {
 this.reference = reference;
 this.referenceQueue = referenceQueue;
 }

 @Override
 public void run() {
 while (!reference.isEnqueued()) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Memory Leaks | 721

12. This will keep checking if the reference is enqueued or not, every 10 milliseconds.
When it finally is enqueued we will exit the loop and proceed to the next line in
the run() method. Print a helpful message to the console after the while loop as
finished.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 PhantomReference reference;
 ReferenceQueue referenceQueue;

 public PhantomListener(PhantomReference reference, ReferenceQueue
referenceQueue) {
 this.reference = reference;
 this.referenceQueue = referenceQueue;
 }

 @Override
 public void run() {
 while (!reference.isEnqueued()) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Reference was enqueued!");
 }
 }
}

722 | References

13. When the PhantomReference has moved to the ReferenceQueue it means were ready
for any custom finalization actions. In our ShoppingCart we dont really need those,
but if we were building a complex image-editing software we might need to delete
large cached copies. In our example well simply create a method in the listener
which will print a message. Because were in a background thread context it would
be safe, from a user interface point of view, to start long running tasks here.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 PhantomReference reference;
 ReferenceQueue referenceQueue;

 public PhantomListener(PhantomReference reference, ReferenceQueue
referenceQueue) {
 this.reference = reference;
 this.referenceQueue = referenceQueue;
 }

 @Override
 public void run() {
 while (!reference.isEnqueued()) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Reference was enqueued!");

Memory Leaks | 723

 customFinalization();
 }

 private void customFinalization() {
 System.out.println("Running custom finalization logic.");
 }
 }
}

14. Now that our object is finalized we can move on to clearing the PhantomReference
once and for all. Calling .clear() will set the internal reference in the queue to
null. There is a small catch though, unless we poll the ReferenceQueue for the
available reference, the Queue will remain populated even when calling .clear().
Add logic to poll the ReferenceQueue and then clear the found reference.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ...
 }

 private static class PhantomListener implements Runnable {

 PhantomReference reference;
 ReferenceQueue referenceQueue;

 public PhantomListener(PhantomReference reference, ReferenceQueue
referenceQueue) {
 this.reference = reference;
 this.referenceQueue = referenceQueue;
 }

 @Override
 public void run() {

724 | References

 while (!reference.isEnqueued()) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Reference was enqueued!");

 customFinalization();

 Reference polledReference = referenceQueue.poll();
 polledReference.clear();
 }

 private void customFinalization() {
 System.out.println("Running custom finalization logic.");
 }
 }
}

15. Thats the end of our basic PhantomListener, it should tell us when the ShoppingCart
is about to be cleared from memory. Now we need to create the listener in our
main method. Create a Thread, supplying an instance of our PhantomListener, and
then directly start that Thread.

package com.packt.java.chapter21;

import java.lang.ref.PhantomReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;

public class Exercise5 {

 public static void main(String[] args) {
 ShoppingCart shoppingCart = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new
ReferenceQueue<>();

Phantom references are especially useful when there is a need to know exactly when
the referent is about to be cleared. Perhaps you need to do special cleanups for the
object or maybe issue a new object when memory is guaranteed to be free.

Summary | 725

Summary
After all of this, you might ask yourself why not always use references? Wouldn't cleaning
be much more efficient? No – in fact, you should limit the use of references to cases
when it actually makes a difference. Strong references are faster to access as they don't
require the execution of any methods – and don't inherently require a null check.

Be careful when using references – since the garbage collector runs in its own thread,
it doesn't really care what your program is currently doing. It may sweep the carpet
from under your feet while you're standing there – always store strong references
to the referents before using them. To actually access a referent object, you need to
hold a strong reference to the reference object itself – it may seem obvious, but you'll
sometimes forget. A good idea is to use fields when working with long-lived references.
In the next chapter, we'll look at concurrent programming.

Learning Objectives

By the end of this chapter, you will be able to:

• Create threads that will perform tasks in parallel in your programs

• Decide on the best strategy to create threads: either the Thread class or Runnable
interfaces, depending on the circumstances

• Implement safe mechanisms to share computing resources when you have multiple
parallelized threads trying to read and write from the same variables at once

This chapter talks about how to run tasks concurrently in Java.

Concurrent Tasks

22

728 | Concurrent Tasks

Introduction
Contemporary processors, the cores of our computers, have the ability to parallelize
processes. This is done at different levels within the processor. On the one hand,
processors have multiple cores, which means that there are multiple CPUs capable of
running operations. On the other hand, each of the processors can prioritize tasks,
putting some of them aside if something more urgent comes along and going back to
business after attending to the emergency. Processes can be categorized in terms of
their priority level.

We looked at processes earlier in Chapter 11, Processes. Threads relate to processes
because they perform operations that take up CPU time, but they differ in the sense
that processes can have one or more threads executing tasks. In that sense, we
call threads lightweight processes. Processes have their own private set of runtime
resources, and threads within a process share those resources. This is one of their
strengths, but also one of their weaknesses, as you will discover while trying out the
examples in this chapter.

A distinction that needs to be made is the difference between multitasking and
multithreading. While the first one is more of a conceptual definition, the second
one refers to the actual implementation of the concept. In this chapter, we will talk
about multiple tasks running at the same time using threads, otherwise known as
multithreading.

Thread Class versus Runnable Interfaces
There are two methods of creating threads. First, there is the possibility of extending
the Thread class. This is simple, but also limiting because it does not allow extending
other classes because, in Java, multiple inheritance is not possible. You could implement
the Runnable interface instead, which permits extending other classes. On the other
hand, the Thread class provides some inbuilt methods, such as interrupt() and
yield(), which can be found in other programming languages, and which you might
already be familiar with. Runnable does not implement these multithreading-specific
methods.

There is yet another way to implement multithreaded software. It requires working
with the Future API, which will be explained in the final chapter of the book. If you are
interested in comparing how different these methods are, we recommend that you fast
forward to the next chapter at the end of this section.

Thread Class versus Runnable Interfaces | 729

Let's start by studying a simple example that creates a thread by extending the Thread
class:

Example01.java

class MyOwnThread extends Thread {

 String name = "";

 MyOwnThread(String _name) {

 name = _name;

 }

 public void run() {

 System.out.println("Thread " + name + " running");

 }

}

public class Example01 {

 public static void main(String[] args) {

 MyOwnThread threadA = new MyOwnThread("A");

 MyOwnThread threadB = new MyOwnThread("B");

 threadA.start();

 threadB.start();

 }

}

The output of this example could be as follows:

Thread A running

Thread B running

Process finished with exit code 0

730 | Concurrent Tasks

On the other hand, it could also be as follows:

Thread B running

Thread A running

Process finished with exit code 0

It depends on how the processor decides to execute the tasks at each point in time;
therefore, the output might vary.

The method for creating a thread with the same output, but using the Runnable
interface, is as follows:

Example02.java

class MyOwnThread implements Runnable {

 String name = "";

 MyOwnThread(String _name) {

 name = _name;

 }

 public void run() {

 System.out.println("Thread " + name + " running");

 }

}

public class Example02 {

 public static void main(String[] args) {

 Thread threadA = new Thread(new MyOwnThread("A"));

 Thread threadB = new Thread(new MyOwnThread("B"));

Thread Class versus Runnable Interfaces | 731

 threadA.start();

 threadB.start();

 }

}

The output of this example will be the same as we saw in Example01.java. As you can
see, the main change is how the actual implementation of the Thread happens. As you
can see in the example, the thread is constructed – in this case – by instantiating the
Thread class, passing the newly made object of the MyOwnThread() class as a parameter.

Some Thread Properties

There are some methods in the Thread API that are interesting to use when dealing with
parallelizing tasks between blocks of code. For example, it is possible to obtain the ID
that identifies the thread inside the Java Virtual Machine(JVM) by issuing the following
from within a thread:

Thread.currentThread().getId()

The call to currentThread() will give you a reference to the thread you are in, while
getId() is one of the many methods within the Thread API that can give you information
about and/or control the thread. One interesting method is getName(). In the previous
examples, just to make the code standard with the code in other chapters, we declared
a variable within the thread class that was used to store the name of the thread. It
turns out that the standard template for a thread already includes the ability to make
a declaration with a name. As an example, let's rewrite Example02.java, but using
the getName() method. In order to set the name, you will have to call setName() after
creating the thread object:

Example03.java

class MyOwnThread implements Runnable {

 public void run() {

 System.out.println("Thread " + Thread.currentThread().getName() + "
running");

 }

}

732 | Concurrent Tasks

public class Example03 {

 public static void main(String[] args) {

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

 threadA.start();

 threadB.start();

 }

}

The result will be the same as before. We will just have cleaner code because we will be
implementing the internal mechanisms from the API instead of overriding them with
our own code without adding any extra features to it.

Let's add some other relevant information from the threads and print it out to see how
the threads react to it:

Example04.java

class MyOwnThread implements Runnable {

 public void run() {

 System.out.println("Thread " + Thread.currentThread().getName() + "
running");

 System.out.println("ID " + Thread.currentThread().getId());

 System.out.println("Priority " + Thread.currentThread().
getPriority());

 }

}

public class Example04 {

 public static void main(String[] args) {

 Thread threadA = new Thread(new MyOwnThread());

Thread Class versus Runnable Interfaces | 733

 threadA.setName("A");

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

 threadA.start();

 threadB.start();

 }

}

A possible result of this program will be the following:

Thread A running

Thread B running

ID 13

ID 12

Priority 5

Priority 5

Process finished with exit code 0

Looking at this code, how are we supposed to understand which part of the output comes
from which thread? As you see, the data comes out tangled, because the threads are
executed in parallel. Modify the class to get it to print the name at the beginning of
each printout:

class MyOwnThread implements Runnable {

 public void run() {

 System.out.println(

 Thread.currentThread().getName() +

 ": Thread " +

 Thread.currentThread().getName() +

 " running"

);

 System.out.println(

 Thread.currentThread().getName() +

 ": ID " +

734 | Concurrent Tasks

 Thread.currentThread().getId()

);

 System.out.println(

 Thread.currentThread().getName() +

 ": Priority " +

 Thread.currentThread().getPriority()

);

 }

}

A possible output given this modification of the class definition could be:

A: Thread A running

B: Thread B running

B: ID 13

A: ID 12

B: Priority 5

A: Priority 5

Process finished with exit code 0

This confirms that the code is executed in an order that depends on the way the
processor assigns priorities to each process. Just for the sake of experimenting, let's
change the priority for each thread. By default, as you can infer by looking at the
example's output, all threads get priority 5 assigned. The larger the number, the higher
the priority. Let's call the corresponding setter method for threadA and threadB so that
one of them gets fast-tracked into the JVM. We will be using the constants defined
inside the Thread API: MIN_PRIORITY and MAX_PRIORITY:

Example05.java

class MyOwnThread implements Runnable {

 public void run() {

 System.out.println(

 Thread.currentThread().getName() +

 ": Thread " +

 Thread.currentThread().getName() +

Thread Class versus Runnable Interfaces | 735

 " running"

);

 System.out.println(

 Thread.currentThread().getName() +

 ": ID " +

 Thread.currentThread().getId()

);

 System.out.println(

 Thread.currentThread().getName() +

 ": Priority " +

 Thread.currentThread().getPriority()

);

 }

}

public class Example05 {

 public static void main(String[] args) {

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

 threadA.setPriority(Thread.MAX_PRIORITY);

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

 threadB.setPriority(Thread.MIN_PRIORITY);

 threadA.start();

 threadB.start();

 }

}

736 | Concurrent Tasks

If you run this example, the result will not be what you expect. One of the possible
outputs is:

A: Thread A running

B: Thread B running

B: ID 13

A: ID 12

A: Priority 10

B: Priority 1

Process finished with exit code 0

This, as you see, is not clearly prioritizing A over B. This is because of how short the list
of tasks to perform by the thread is. The following activity invites you to experiment
even further and see how to make an example that could demonstrate that the
prioritization works for real.

Exceptions might happen

There is a potential risk for exceptions when calling setter methods from
Thread.currentThread(), such as setName() or setPriority(), therefore, you
should prepare your code to throw exceptions such as SecurityException or
IllegalArgumentException. To know which exceptions correspond to each one of
the setters, take a look at the Javadocs dedicated to the Thread API.

Activity 1 – Prioritize Tasks

Modify Example05.java to demonstrate that setting priorities in threads will assign
a lower probability of execution to those that have a lower priority set up. We saw
earlier, through a simple test, that short threads do not give a consistent result. It is
not possible to see, in that case, whether having a higher priority has any effect on how
threads are executed.

1. You could get the run() method in the interface to print out a lot more than
in Example05.java, which only prints out three values. If you added a counter,
you could see how the output will be that threadA finishes earlier every time.
Something like the following will do this:

for (int i = 0; i < 100; i++)
 System.out.println(Thread.currentThread().getName() + ": count: " + i);

Thread Class versus Runnable Interfaces | 737

An excerpt of a possible output of this experiment is:

B: Thread B running

A: Thread A running

B: ID 13

A: ID 12

B: Priority 1

A: Priority 10

B: count: 0

A: count: 0

A: count: 1

A: count: 2

A: count: 3

A: count: 4

[...]

B: count: 32

B: count: 33

A: count: 72

A: count: 73

[...]

A: count: 97

A: count: 98

A: count: 99

B: count: 61

B: count: 62

B: count: 63

B: count: 64

[..]

B: count: 95

B: count: 96

B: count: 97

738 | Concurrent Tasks

B: count: 98

B: count: 99

Process finished with exit code 0

Note

The solution for this activity can be found on page 907.

Sleep, Join, Interrupt

There are different mechanisms that deal with timing threads. If you wanted to make
sure a certain thread was not executed until another one was done, you could call
join() after starting the thread that is supposed to wait. If the intention is to simply get
a thread to wait for some time, you could use sleep(). And, if you wanted to take any of
those threads our of their waiting state, you could call interrupt() on them.

With these simple operations, it is possible to control the flow of the code in a very
simple way. This doesn't apply to access to shared resources, though (explaining that
is the aim of the following two sections in the chapter); thus, let's focus on a couple of
examples to see how sleep(), join(), and interrupt() work.

Let's start by checking the functionality of join(). The following example has two
lines commented out. They are the respective calls to get threadA and threadB to wait.
We suggest you first run the example as it is, and later uncomment each of the lines
separately to see how it affects the program's output. There are four possible scenarios
based on the different combinations of commenting/uncommenting those two lines:

Example06.java

class MyOwnThread implements Runnable {

 public void run() {

 String name = Thread.currentThread().getName();

 System.out.println(name + ": Thread " + name + " running");

 for (int i = 0; i < 3; i++)

 System.out.println(name + ": count: " + i);

 }

}

Thread Class versus Runnable Interfaces | 739

public class Example06 {

 public static void main(String[] args) throws InterruptedException{

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

 threadA.start();

 //threadA.join();

 threadB.start();

 //threadB.join();

 System.out.println("this is the end");

 }

}

Note the highlight in the call to throw InterruptedException, which is meant to catch
any possible exceptions when using join() in the program.

The output of the first possible combination, when both threadA.join() and threadB.
join() are commented out, is:

this is the end

B: Thread B running

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

B: count: 0

B: count: 1

B: count: 2

Process finished with exit code 0

740 | Concurrent Tasks

If you run the example a couple of times, you will see that threads A and B will start
at different times, but the common characteristic is that this is the end will always
be printed first. This means that neither threadA nor threadB ever finishes before the
end of the main thread. With join(), we can force the following code to wait until the
execution of the previous thread's code is done. Uncomment both calls to join, and you
will get the following output:

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

B: Thread B running

B: count: 0

B: count: 1

B: count: 2

this is the end

Process finished with exit code 0

As you can see, threadB is made to wait until threadA is done, and the main thread waits
until threadB is done. Let's now comment once more the call to threadB.join() to see
what the result will be:

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

this is the end

B: Thread B running

B: count: 0

B: count: 1

B: count: 2

Process finished with exit code 0

Thread Class versus Runnable Interfaces | 741

Finally, the last possible combination will require you to comment out threadA.join()
and uncomment threadB.join(). This will make the output the following:

B: Thread B running

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

B: count: 0

B: count: 1

B: count: 2

this is the end

Process finished with exit code 0

But it could also be:

A: Thread A running

B: Thread B running

B: count: 0

B: count: 1

B: count: 2

this is the end

A: count: 0

A: count: 1

A: count: 2

Process finished with exit code 0

As you see, this last scenario is making sure that threadB is executed towards the end
just before the main thread ends. However, threadA could be executed at any point,
either before or after the main thread ends. This series of examples has shown that the
threads execute based on how we order them to proceed based on the use of join().

742 | Concurrent Tasks

While join() forces parts of the program to wait for others to end, sleep() will just tell
them to wait for a certain amount of time, expressed in milliseconds, which we will pass
as a parameter. The following example integrates the use of both sleep() and join()
to show how the main thread waits until the end of two processes that will sleep for a
random amount of time before they print out the output to the terminal:

Example07.java

class MyOwnThread implements Runnable {

 public void run() {

 String name = Thread.currentThread().getName();

 int sleepTime = (int) (Math.random() * 5000);

 System.out.println(name + ": Sleep for: " + sleepTime);

 try {

 Thread.sleep(sleepTime);

 } catch (InterruptedException ie) {

 System.out.println("Exception: " + ie.getMessage());

 }

 System.out.println(name + ": Thread " + name + " running");

 for (int i = 0; i < 3; i++)

 System.out.println(name + ": count: " + i);

 }

}

public class Example07 {

 public static void main(String[] args) throws InterruptedException{

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

Thread Class versus Runnable Interfaces | 743

 threadA.start();

 threadB.start();

 threadA.join();

 threadB.join();

 System.out.println("this is the end");

 }

}

We have highlighted the modifications made to the thread definition class, including
the creation of a random number that will be used to put the thread to sleep() for that
time. The call to sleep() has to be put inside a try-catch statement. A possible output of
the program is as follows:

A: Sleep for: 201

B: Sleep for: 4576

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

B: Thread B running

B: count: 0

B: count: 1

B: count: 2

this is the end

Process finished with exit code 0

In this output, you can see that threadA will wait a fifth of a second before running. The
other, threadB, will start after 4.5 seconds. Throughout the calls to threadA.join() and
threadB.join(), we make the main thread wait until the other two processes are done
before it can exit.

744 | Concurrent Tasks

The final example in this section is looking at the interrupt() method, which you can
use to interrupt whatever a thread is doing at that time. Let's put a thread – MyOwnThread
– to sleep for a while and with yet another thread – MyInterruptThread – we will send an
interrupt for MyOwnThread to come out of the sleep state and finish the execution of the
thread after throwing an exception:

Example08.java

class MyOwnThread implements Runnable {

 public void run() {

 String name = Thread.currentThread().getName();

 int sleepTime = 10000;

 System.out.println(name + ": Sleep for: " + sleepTime);

 try {

 Thread.sleep(sleepTime);

 } catch (InterruptedException ie) {

 System.out.println(name + ": Exception: " + ie.getMessage());

 }

 System.out.println(name + ": Thread " + name + " running");

 for (int i = 0; i < 3; i++)

 System.out.println(name + ": count: " + i);

 }

}

class MyInterruptThread implements Runnable {

 Thread threadToInterrupt;

 int timeout;

 MyInterruptThread (Thread _threadToInterrupt, int _timeout) {

 threadToInterrupt = _threadToInterrupt;

 timeout = _timeout;

 }

Thread Class versus Runnable Interfaces | 745

 public void run() {

 String name = Thread.currentThread().getName();

 String nameToInterrupt = threadToInterrupt.getName();

 System.out.println(

 name +

 ": I am thread: " +

 name +

 " stopping thread: " +

 nameToInterrupt

);

 try {

 Thread.sleep(timeout);

 } catch (InterruptedException ie) {

 System.out.println(name + ": Exception: " + ie.getMessage());

 }

 // stop the other thread

 threadToInterrupt.interrupt();

 }

}

public class Example08 {

 public static void main(String[] args) throws InterruptedException{

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

 Thread threadB = new Thread(new MyInterruptThread(threadA, 1000));

 threadB.setName("B");

 threadA.start();

746 | Concurrent Tasks

 threadB.start();

 threadA.join();

 threadB.join();

 System.out.println("this is the end");

 }

}

In this example, threadA is supposed to wait for 10 seconds before printing the counter
to System.out. The other class, threadB, will wait for a certain time, which is given as a
parameter in the constructor, and then issue an interrupt to threadA, which also was
given as a parameter threadB's constructor. This call to interrupt() will get threadA out
from sleep. Since we are capturing the interrupt, the program will run to the end, giving
the following output:

A: Sleep for: 10000

B: I am thread: B stopping thread: A

A. Exception: sleep interrupted

A: Thread A running

A: count: 0

A: count: 1

A: count: 2

this is the end

Process finished with exit code 0

Shared Resources

Up to this point in the chapter, we have taken an empirical approach to explain the
different aspects around threads. It is now time to introduce some relevant aspects
regarding the Java Specifications (specs for short) that determine how threads will
access memory and other computational resources during runtime. The specs mention
three different types of orders that have to be considered in programs:

• Program order

• Synchronization order

• Happens-before order

Thread Class versus Runnable Interfaces | 747

Program order decrees that the execution of tasks within a thread will happen
sequentially. "Within a sequentially consistent execution, there is a total order over all
individual actions [...] and each individual action is atomic and is immediately visible
to every thread." The concept of visibility is relevant here. It says that if the action of a
thread can be seen by a second thread, so can the result. In more practical terms, this
means that two threads could share memory space, in the sense that they could have
access to the same variables, collections, and so on.

But having access to the same resources leads to issues such as the possibility of
a thread modifying a variable that a different one might need before its value has
even been read. To accomplish this action-centered order, the specs talk about
synchronization order, which will make sure that actions respect an order of execution.
For example, a method calling for a thread to start synchronizes with the first action
in the thread. Another typical synchronization action would be a thread sending an
interrupt to another thread.

Finally, there is a final concept, which is known as the happens-before relationship.
Actions can be ordered following this relationship if "one action happens-before another,
then the first is visible to and ordered before the second." The specs define the happens-
before relationship as a mathematical function that relates how x happens-before y:
hb(x,y). There are some basic operations that could be inferred from that. For example,
given two relationships, hb(x,y) and hb(y,z), it is obvious that there is a third relationship:
hb(x,z).

However, as mentioned earlier, it is not the goal of this book to dig any deeper into
these theoretical concepts about the Java programming language. These concepts
are needed to understand how some of the methods explained earlier work, and how
synchronization and atomic operations work.

Synchronized

Synchronizing between threads means that we will be giving mutually exclusive access
to resources to just one thread at a time. If a certain resource is being used by a thread,
it will be possible to lock access to others. The way this is done in Java is through
monitors. Each Java object is associated with a monitor that can be locked and unlocked
by threads. The way of determining that one block of code is being locked requires
defining the code using the synchronized keyword. This keyword establishes a happens-
before relationship between actions in the blocks of code.

It is not easy to describe how synchronized works because it is doing something that
is invisible. In order to help you understand how it works, let's do an exercise that will
guide you step by step through making a slightly more complex program to test this
scenario.

748 | Concurrent Tasks

Exercise 1: Making a Thread That Counts and Discounts

Imagine a situation where you are processing a stream of data. It could be a series of
websites that you are downloading and parsing inside a web crawler, or filtering images
that you are getting from a different service, or whatever. You want to implement
real-time analytics in this service, which means that you will be gathering some data
about how many objects are arriving for you to process and how many are leaving once
processing is done.

In this situation, you could start by building a thread that will increment every time
a new object arrives and decrement every time one leaves. Let's call it ObjectCounter.
You will also need a couple of threads, one that represents the arrival of objects,
ObjectIncrement, and one that represents the departure of objects, ObjectDecrement.
ObjectIncrement will increase at a certain pace, while ObjectDecrement will decrease at
a different pace. The first value indicates the frequency of arrival, while the second one
indicates how quickly we process the objects. There is a third time to represent, and
this is the time that it takes for ObjectCounter to compute the analytics.

In this way, when an object arrives, ObjectIncrement should report to ObjectCounter,
which will take some time to process. At some point, ObjectDecrement will indicate
that the system has processed an object. These operations can be simulated like this
because of the independence of variables. Also, remember that we are over-simplifying
a system as a way to learn about how synchronized works, and not necessarily looking
for a mathematically correct model!

1. Open IntelliJ, and create a new project called Exercise01.

2. Let's start by creating the ObjectCounter class. Its main characteristics are one
method for increasing the counter, one for decreasing it, and an endless while
loop inside run() that will exit whenever it gets an interrupt. The interrupt will be
caught and a call to return will exit the loop and end the thread. The goal of this
loop is to print out the value of the counter once every 500 milliseconds:

class ObjectCounter implements Runnable {
 public int counter;

 public synchronized void increment() {
 counter++;
 }

 public synchronized void decrement() {
 counter--;
 }

 public String getName() {

Thread Class versus Runnable Interfaces | 749

 return Thread.currentThread().getName();
 }

 public void run() {
 while(true) {
 System.out.println("\n" + getName() + ": Counter: " +
counter);
 try {
 Thread.sleep(500);
 } catch (InterruptedException ie) {
 System.out.println("\n" + getName() + ": Exception: " +
ie.getMessage());
 return;
 }
 }
 }
}

3. In order to simulate the fact that operating the statistics behind the usage of data
takes time, we can put that process to sleep after increasing or decreasing the
counter. We could do it by adding a new method, called pause(), that will delay the
process a little by making a call to sleep(). We will also have to add the call to it
within the increment() and decrement() methods:

public void pause(int sleepTime) {
 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException ie) {
 System.out.println(getName() + ": Exception: " + ie.getMessage());
 }
}

public synchronized void increment() {
 counter++;
 pause(100);
}

public synchronized void decrement() {
 counter--;
 pause(100);
}

750 | Concurrent Tasks

4. The next step is the creation of the thread that will simulate the arrival of
the objects to process. It has three variables: the thread to call for counting
(threadToCount), an integer containing the frequency at which new objects
will be arriving (objectFreq), and the number of arrivals we will be simulating
(simulationSize):

class ObjectIncrement implements Runnable {
 ObjectCounter threadToCount;
 int objectFreq;
 int simulationSize;

 ObjectIncrement(ObjectCounter _threadToCount, int _objectFreq, int
_simulationSize) {
 threadToCount = _threadToCount;
 objectFreq = _objectFreq;
 simulationSize = _simulationSize;
 }

 public void run() {
 String name = Thread.currentThread().getName();

 System.out.println(name + ": counting in thread");

 for (int i = 0; i < simulationSize; i++) {
 threadToCount.increment();

 try {
 Thread.sleep(objectFreq);
 } catch (InterruptedException ie) {
 System.out.println(name + ": Exception: " +
ie.getMessage());
 }
 }
 }
}

Thread Class versus Runnable Interfaces | 751

5. The way the run() method works in ObjectIncrement is by trying to increase
the counter in ObjectCounter once every objectFreq milliseconds a total of
simulationSize times. This same idea can be used to create the ObjectDecrement
thread. There is one difference, which relates to the fact that it should not be
possible to decrement an object if the counter reaches zero. Also, we should keep
on decrementing for as long as the simulation is running. We have highlighted this
in the code:

class ObjectDecrement implements Runnable {
 ObjectCounter threadToDiscount;
 int objectFreq;
 int simulationSize;

 ObjectDecrement (ObjectCounter _threadToCount, int _objectFreq, int
_simulationSize) {
 threadToDiscount = _threadToCount;
 objectFreq = _objectFreq;
 simulationSize = _simulationSize;
 }

 public void run() {
 String name = Thread.currentThread().getName();

 System.out.println(name + ": discounting in thread");

 // discount only if there is something in
 while (simulationSize > 0) {
 if (threadToDiscount.counter > 0) {
 threadToDiscount.decrement();

 try {
 Thread.sleep(objectFreq);
 } catch (InterruptedException ie) {
 System.out.println(name + ": Exception: " +
ie.getMessage());
 }

 simulationSize--;
 }
 }
 }
}

752 | Concurrent Tasks

6. Since you have implemented the threads using the Runnable interface, in order
to work with the main features from threads, such as making a call to join()
or interrupt(), you will have to construct your thread objects in a two-step
process. First, you will have to build either an ObjectCounter, ObjectIncrement, or
ObjectDecrement object, to instantiate Thread later. ObjectCounter will look like this:

ObjectCounter _threadA = new ObjectCounter();
Thread threadA = new Thread(_threadA);

7. Let's name the processes A, B, and C, so that things are smaller on the terminal
window, because we will be printing out a lot of data. Also, the creation of
the ObjectIncrement and ObjectDecrement objects require the passing of some
parameters. It makes sense to have objects arriving at a higher pace than they
leave the system in order for us to simulate how it could run:

ObjectCounter _threadA = new ObjectCounter();
Thread threadA = new Thread(_threadA);
threadA.setName("A");
ObjectIncrement _threadB = new ObjectIncrement(_threadA, 5,
simulationSize);
Thread threadB = new Thread(_threadB);
threadB.setName("B");
ObjectDecrement _threadC = new ObjectDecrement(_threadA, 10,
simulationSize);
Thread threadC = new Thread(_threadC);
threadC.setName("C");

8. The simulationSize variable has to be defined. It will indicate how many objects
will be arriving and departing throughout the whole simulation. The simulation is
packed with different calls to sleep(). This means that the program will not end
immediately. As a way to compare performance between simulations and when
changing parameters, it would be good to check the time before starting the
process of calling threads and after they have exited the simulation by using the
java.lang.System. currentTimeMillis() method. The difference between the times
will give you the total number of milliseconds the program was running for:

long startTime = currentTimeMillis();
threadA.start();
threadB.start();
threadC.start();

threadB.join();

Thread Class versus Runnable Interfaces | 753

threadC.join();
threadA.interrupt();
long endTime = currentTimeMillis();

System.out.println("exec time: " + (endTime - startTime));

9. For reference, here is the full main class of the example:

import static java.lang.System.currentTimeMillis;

public class Exercise01 {

 public static void main(String[] args) throws InterruptedException{
 int simulationSize = 100;
 ObjectCounter _threadA = new ObjectCounter();
 Thread threadA = new Thread(_threadA);
 threadA.setName("A");
 ObjectIncrement _threadB = new ObjectIncrement(_threadA, 5,
simulationSize);
 Thread threadB = new Thread(_threadB);
 threadB.setName("B");
 ObjectDecrement _threadC = new ObjectDecrement(_threadA, 10,
simulationSize);
 Thread threadC = new Thread(_threadC);
 threadC.setName("C");

 long startTime = currentTimeMillis();
 threadA.start();
 threadB.start();
 threadC.start();

 threadB.join();
 threadC.join();
 threadA.interrupt();
 long endTime = currentTimeMillis();

 System.out.println("exec time: " + (endTime - startTime));
 }
}

754 | Concurrent Tasks

10. Note the calls to join(), which ensure that both processes are computed one
after the other, and the call to interrupt(), which will force the ObjectCounter
thread to finish. Now it is time to try the whole example at once, but there is
one more modification we can make before doing so, as a way to see whether
we are executing increasing or decreasing commands. Modify the methods in
ObjectCounter to look like this:

public synchronized void increment() {
 counter++;
 System.out.print(getName() + "+, ");
 pause(100);
}

public synchronized void decrement() {
 counter--;
 System.out.print(getName() + "-, ");
 pause(100);
}

11. The final form of the ObjectCounter class will be as follows:

class ObjectCounter implements Runnable {
 public int counter;

 public void pause(int sleepTime) {
 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException ie) {
 System.out.println(getName() + ": Exception: " +
ie.getMessage());
 }
 }

 public synchronized void increment() {
 counter++;
 System.out.print(getName() + "+, ");
 pause(100);
 }

Thread Class versus Runnable Interfaces | 755

 public synchronized void decrement() {
 counter--;
 System.out.print(getName() + "-, ");
 pause(100);
 }

 public String getName() {
 return Thread.currentThread().getName();
 }

 public void run() {
 while(true) {
 System.out.println("\n" + getName() + ": Counter: " +
counter);
 try {
 Thread.sleep(500);
 } catch (InterruptedException ie) {
 System.out.println("\n" + getName() + ": Exception: " +
ie.getMessage());
 return;
 }
 }
 }
}

12. These modifications will be printing out which thread (B or C) is calling for an
increase (+) or a decrease (-). If you execute the full program, the output will be as
follows:

B: counting in thread
C: discounting in thread
B+,
A: Counter: 0
C-, B+, C-, B+, C-,
A: Counter: 0
B+, C-, B+, C-, B+,
[...]

756 | Concurrent Tasks

C-, B+, C-, B+, C-,
A: Counter: 0
B+, C-, B+, C-, B+,
A: Counter: 1
C-, B+, C-, B+, C-,
A: Counter: 0
exec time: 20254

A: Exception: sleep interrupted

Process finished with exit code 0

If you run the exercise code that we have so far, you will get a very similar result,
but not necessarily the same total execution time. It actually depends on how
many things are running on your computer and how the JVM is affected. The
one thing that seems clear is that, because of the configuration of the different
times (times of arrival, departure, and process), the simulation ends up having
always one object in, one object out. Or does it? The total time, 20.254, can be
roughly estimated by thinking that we are making 100 simulations where the
delay for increasing/decreasing the counter is 100. This means approximately
20.000 milliseconds just to bring the objects in and out. This is because of using
synchronized as a way to protect the counter variable.

13. We can try to make the increment() and decrement() methods run without being
synchronized to see whether that affects the program in any way. Modify your
code in those two methods as follows:

public void increment() {
 counter++;
 System.out.print(getName() + "+, ");
 pause(100);
}

public void decrement() {
 counter--;
 System.out.print(getName() + "-, ");
 pause(100);
}

Thread Class versus Runnable Interfaces | 757

When running the code, the result will look slightly different, and will also run a
lot more quickly, about twice as quickly:

C: discounting in thread
B: counting in thread
B+, C-,
A: Counter: 0
B+, C-, B+, C-, B+, C-, B+, C-, B+,
A: Counter: 1
C-, B+, C-, B+, C-, B+, C-, B+, C-,
A: Counter: 0
B+, C-, B+, C-, B+, C-, B+, C-, B+,
[...]
A: Counter: 4
B+, C-, B+, C-, B+, C-, B+, C-,
A: Counter: 4
C-, C-, C-, C-, exec time: 11090

A: Exception: sleep interrupted

Process finished with exit code 0

What we see here is how – by not having the methods synchronized – the two
threads operate much more quickly because they are not waiting for the other
to finish operating on the ObjectCounter thread. While this is something that,
for this example, might not be critical, remember that both the increment() and
decrement() methods are operating on the counter variable and that both could
end up overlapping operations. Synchronizing is just one of the mechanisms to
ensure data consistency, but, as this exercise proves, it demands a lot of resources.
As we will see in later sections, there are better alternatives for cases like this that
could be considered relatively simple when it comes to sharing resources.

Atomic Variables/Operations

The concept of atomics is linked to the idea of synchronization, but instead of looking
at large shared resources, it works at the level of the variable. Synchronizing threads
create the job; however, this affects performance because the threads not accessing
the resource get either blocked or suspended, and suspending and resuming is a costly
process in terms of CPU and memory usage, as we mentioned during Exercise 01,
Making a Thread That Counts and Discounts in this chapter. Since threads are typically
small – or, as we defined them earlier, lightweight processes – we might end up in a
situation in which the time dedicated to suspend and resume is greater than the time
used in the actual execution.

758 | Concurrent Tasks

Atomic operations are to threads what optionals are to the handling of null
comparisons; they operate at the core of the issue, freeing the system of having to do
higher-level operations to confront exceptional scenarios. When dealing with threads
trying to simultaneously access variables or methods, atomics perform a comparison
operation on the resource and if it doesn't correspond to the value it should have
(because someone changed it in the process of accessing it), the resource will be
made inaccessible for this last call. Instead of blocking the whole thread, you can act
upon this situation at an atomic level (hence the name) directly and decide whether to
attempt the change again later.

Taking as a starting point the code from Exercise 01, Making a Thread That Counts and
Discounts, we can modify the ObjectCounter thread to support this feature instead. It
will require a couple of changes because AtomicIntegers, the class dedicated to objects
that contain numbers, is not exactly like the ones from the class in Exercise 01. We need
to use and implement our own getter, which will also require making a change in the
ObjectDecrement comparison we used to check whether anything had arrived in our
process before decrementing the counter:

Example09.java (ObjectCounter class)

class ObjectCounter implements Runnable {

 public AtomicInteger counter = new AtomicInteger(0);

 public void pause(int sleepTime) {

 try {

 Thread.sleep(sleepTime);

 } catch (InterruptedException ie) {

 System.out.println(getName() + ": Exception: " +
ie.getMessage());

 }

 }

 public void increment() {

 counter.incrementAndGet();

 System.out.print(getName() + "+, ");

Thread Class versus Runnable Interfaces | 759

 pause(100);

 }

 public void decrement() {

 counter.decrementAndGet();

 System.out.print(getName() + "-, ");

 pause(100);

 }

 public int get() {

 return counter.get();

 }

 public String getName() {

 return Thread.currentThread().getName();

 }

 public void run() {

 while(true) {

 System.out.println("\n" + getName() + ": Counter: " + counter);

 try {

 Thread.sleep(500);

 } catch (InterruptedException ie) {

 System.out.println("\n" + getName() + ": Exception: " +
ie.getMessage());

 return;

 }

 }

 }

}

760 | Concurrent Tasks

In the previous code listing, we have highlighted the modifications to the previous
version of the class. There is one line that needs to change in ObjectDecrement. At the
call to threadToDiscount.counter, it should now read as follows:

if (threadToDiscount.get() > 0) {

This will give us a program that will run much more quickly, because resources are
allocated differently. The output of the program will be similar to the following:

C: discounting in thread

B: counting in thread

C-, B+,

A: Counter: 0

B+, C-, B+, C-, B+, C-, B+, C-,

A: Counter: 0

B+, C-, B+, C-, B+, C-, B+, C-, B+, C-,

[...]

C-, B+, C-, B+, C-, B+, C-, B+,

A: Counter: 4

C-, B+, C-, B+, C-, B+, B+, C-, B+, C-,

A: Counter: 4

B+, C-, B+, C-, B+, C-, B+, C-, B+,

A: Counter: 5

C-, C-, C-, C-, C-,

A: Counter: 0

A: Exception: sleep interrupted

exec time: 11135

Process finished with exit code 0

Thread Class versus Runnable Interfaces | 761

As you can see, the arrivals do, at some point, win out against the departures, and the
counter reaches a number larger than 1, as we saw in the synchronized example.

Atomic versus volatile

There is a common misconception that atomic and volatile are the same thing.
Volatile variables are, in a sense, a special case of atomic variables, since the
operations around reading and writing are, in fact, making the variable visible to all
threads and protected. However, something like an increment of a volatile variable
(such as i++) requires at least two accesses to memory and will not be atomic any
longer, thus requiring a call to synchronize the block of code doing the increment.
Atomic classes offer protection for operations such as these as well.

Thread Pools

You have, throughout the chapter, seen examples that deal with a couple of threads at
once. In real-life applications, threads are used in situations where hundreds of copies
of the same thread are put to service requests from the outside. Examples of this
include the creation of servers that respond to HTTP requests and bank applications
making database requests.

There are two challenges when working with threads this way. Threads in Java are
mapped to the OS; therefore, starting many threads at once might exhaust your whole
system resources, affecting other programs also running on it. At the same time,
running threads in parallel forces the system to perform a lot of context switching,
which also takes away computation time.

Thread Pools are tools that help to prevent these issues when working with repetitions
of the same thread. One of the most important savings is the time that is dedicated to
the creation, starting, and invocation of a thread. The pools are implemented using the
Executor interfaces. In a nutshell, what these do is to create a small series of threads
dedicated to executing tasks from Runnable objects (threads), taken from a queue where
they wait for their turn to run. In contrast to randomly creating threads that will slowly
be filling up the available memory, thread pools limit the amount of simultaneously
executed threads and keep the others waiting. While this will eventually increase the
total execution time for a thread, because it might have to wait before it starts, it will
ensure the system's consistency.

762 | Concurrent Tasks

Let's create a simple example of a thread that will perform an operation and, instead of
calling a bunch of those threads in the wild, let's run them through an Executor. In this
case, the thread will count until 10 and print the counter once every 100 milliseconds.
The thread pool will be capable of operating 5 threads at a time (POOL_SIZE) and the
number of threads to be created is 10 (TOTAL_THREADS):

Example10.java

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

class MyThread implements Runnable {

 private String name;

 MyThread (String _name) {

 name = _name;

 }

 public void pause(int sleepTime) {

 try {

 Thread.sleep(sleepTime);

 } catch (InterruptedException ie) {

 System.out.println(name + ": Exception: " + ie.getMessage());

 }

 }

 public void run() {

 System.out.println(name + ": start");

 for (int i = 0; i < 10; i++) {

 System.out.println(name + ": operation: " + i);

 pause(100);

 }

 System.out.println(name + ": stop");

Thread Class versus Runnable Interfaces | 763

 }

}

public class Example10 {

 public static void main(String[] args) {

 int POOL_SIZE = 5;

 int TOTAL_THREADS = 10;

 // create an array of threads

 Runnable[] threads = new MyThread[TOTAL_THREADS];

 // systematically create threads named A, B, C ...

 for(int i = 0; i < threads.length; i++) {

 threads[i] = new MyThread(Character.toString((char)('A' + i)));

 }

 // construct the Thread Pool

 ExecutorService pool = Executors.newFixedThreadPool(POOL_SIZE);

 // send the threads to the pool and let it run them

 for (int i = 0; i < threads.length; i++) {

 pool.execute(threads[i]);

 }

 // end

 pool.shutdown();

 System.out.println("the end, my friend");

 }

}

764 | Concurrent Tasks

Please note the call to Executors.newFixedThreadPool(POOL_SIZE) that will be creating
one of the available types of thread pools, the one with a fixed amount of positions to
handle threads. If you are interested in reading about the other available types, check
out the Javadocs: https://docs.oracle.com/javase/tutorial/essential/concurrency/
pools.html

The output of this example is simple. You can see how the main thread ends first, and
then the different threads in the pool (named A, B, C …) are executed in order in groups
of 5. Once one of the threads is done, the executor brings in a new thread in its place:

the end, my friend

A: start

E: start

B: start

C: start

D: start

C: operation: 0

D: operation: 0

E: operation: 0

A: operation: 0

B: operation: 0

C: operation: 1

D: operation: 1

[…]

A: operation: 9

B: operation: 9

C: stop

F: start

F: operation: 0

D: stop

G: start

G: operation: 0

E: stop

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Thread Class versus Runnable Interfaces | 765

H: start

H: operation: 0

A: stop

I: start

I: operation: 0

B: stop

J: start

J: operation: 0

F: operation: 1

G: operation: 1

[…]

I: operation: 9

J: operation: 9

F: stop

G: stop

H: stop

I: stop

J: stop

Process finished with exit code 0

Nothing is perfect

Thread pools help to prevent the overusing of a computer's resources when
dealing with threads within our own application. The three main risks arising from
misusing pools are deadlocks, thread leakages, and resource thrashing. The first
one consists of having threads waiting for a shared resource from another thread.
Leakages happen when threads throw an exception that's not caught by the pool,
making the thread exit, and leaving the pool with one less slot available. If the pool
is too large, we will be thrashing resources from the rest of the JVM; therefore, you
need to plan the sizes accordingly.

766 | Concurrent Tasks

Activity 2 – Random Amounts of Tasks

Given Example10, modify the code so that instead of having to count until 10, the
threads will count a random amount of times between 1 and 10. The goal of this
experiment is seeing how the executor responds to tasks of different durations, unlike
in Example 10. where all of them were equal in sample size and duration. Also, modify
the call to printing when the thread starts, to include the total sample size so that you
can see how many operations each thread will be doing.

The expected output from this activity could be as follows:

the end, my friend

C: start 3

C: operation: 0

D: start 6

B: start 8

D: operation: 0

B: operation: 0

A: start 6

A: operation: 0

E: start 8

E: operation: 0

C: operation: 1

D: operation: 1

[...]

H: stop

J: stop

I: operation: 4

I: operation: 5

I: stop

Process finished with exit code 0

Note

The solution for this activity can be found on page 908.

Thread Class versus Runnable Interfaces | 767

Actor Model

There is one more way to work with concurrent processes in Java, which is called the
Actor model, and it is based on the idea of creating a series of code blocks that will work
independently from one another by implementing a messaging system. Carl Hewitt
came up with this idea and presented it in a seminal paper he co-authored with Peter
Bishop and Richard Steiger in 1973 entitled: "A Universal Modular Actor Formalism
for Artificial Intelligence." Actors will not share common resources directly. Also,
their methods will not be available to other actors. Data will be exchanged through
asynchronous communication between actors.

The basic philosophy behind the actor model establishes the following:

Contemporary computation devices are not really sharing memory/resources any
longer since CPUs are operating with cache memories that exchange data as if they
were in a computer network.

Efficient processing cannot include blocking of resources. Instead, the different
actors will have to exchange messages and trust that others will perform their tasks.
Each actor will have to implement its own failsafes in case there is no response to any
requests.

Actors are therefore complex software entities that have a mailbox, a behavior,
messages, an execution environment, and an address.

Actors do not share their state in any way that is not through an exchange of messages.
Their internal resources will not be available to other processes.

This implies a very different way of thinking in terms of the computation of complex
tasks, and it is closer to the idea of microservices, which is still a trend in modern
service architecture design.

Note

The JDK does not implement its own actor model API; therefore, if you want to
experiment with this way of programming concurrency, we recommend you take a
look at the Akka framework, probably the most relevant API at this point. You can
find it at https://akka.io.

https://akka.io

768 | Concurrent Tasks

Summary
In this chapter, you have learned about different ways of approaching concurrency in
Java. You were introduced to the Thread API and shown how to create Runnable classes
that could perform operations using different resources on your computer.

When it comes to using resources, you saw that there is a potential risk of either
damaging the data or making wrong decisions based on unexpected alterations to the
data because of different blocks of code accessing those resources at the same time.
Two different alternatives were outlined: using synchronized blocks of code, or using
atomic interfaces.

This chapter has been heavy on examples, as we build a program capable of simulating
the functionality of a system just to see how differently it performs when having, or
not having, synchronized access to parts of the memory. We later saw equally fast
alternatives using atomic interfaces.

A final alternative to concurrent programming was presented through the Actor model
approach. Since the standard JDK does not include an API to test this approach, you
were invited to find out more by exploring a third-party API. In the next chapter, we will
discuss using the Future API.

Learning Objectives

By the end of this chapter, you will be able to:

• Implement the Bubble sort and Merge sort algorithms

• Employ ExecutorServices for multithreaded applications

• Utilize ForkJoinPool to build recursive multithreaded programs

• Implement the Future class

This chapter explains how to use the Executor, ExecutorService, threadpools, and fork-join pool
in multithreaded applications..

Using the Future API

23

772 | Using the Future API

Introduction
Threading is one of the most important concepts of modern application development,
be it building user interfaces that communicate with multiple large datasets and
remote services, or implementing a backend server that can handle several thousand
connections at once – handling those flows relies on a solid threaded environment.
Creating a threaded application that doesn't falter or throw exceptions can be difficult.

Java comes with a few special helper classes that will manage threaded environments
for you to some extent. In this chapter, you'll learn how to schedule long-running tasks
without blocking your user interface.

Futures
In Java, we have a special type called Future which encapsulates the final result of some
task that will be completed in the future.

Much like the Optional interface, the Future interface allows you to verify the state of
the result and retrieve it when the task is completed.

The Future contains five utility functions to check the state of the result, as follows:

public interface Future<V> {

 boolean cancel(boolean mayInterruptIfRunning);

 boolean isCancelled();

 boolean isDone();

 V get() throws InterruptedException, ExecutionException;

 V get(long timeout, TimeUnit unit)

 throws InterruptedException, ExecutionException, TimeoutException;

}

To check if the result is completed, you can use the isDone() and isCancelled()
methods respectively. If the isDone() method returns true, you can, safely, call the get()
method.

Note

The get method will wait until the result is available. You can provide a timeout to
the get() method also, to avoid waiting indefinitely.

Thread Pools | 773

Thread Pools
While threads are our go-to method for deploying applications that work
asynchronously or perform parallel tasks, they are also a big resource drain in Java
because of the way in which threads work. To create a thread, a JVM has to go through
a number of intensive tasks, which all end up in the creation of a native thread. If you
only have one task to schedule for asynchronous execution, you'll likely experience no
problems.

However, if you need to execute many tasks at once, the thread, which is a tool that is
supposed to improve the performance of your program, may actually slow you down if
employed improperly.

For example, if your tasks are very short-lived, the overhead of creating many new
threads may slow your program down rather than speed it up. Thread pools solve this
by caching threads for re-use rather than discarding them.

Thread pools are middlemen between you and the threads that you need to employ.
They control the number of parallel threads you need for your application and listen for
state changes in threads. An important characteristic of thread pools is that they don't
throw away the resources you spent so much time allocating.

The concept is simple – reuse a limited set of threads to run all your asynchronous
tasks on. To manage this dilemma, thread pools leverage queues, which define when
and how tasks should be delivered to the available threads. You can customize a thread
pool with several different parameters and also customize the way in which the queue
works. However, in most cases, the predefined factory methods in the ExecutorService
will suffice.

The Executor Interface

Everything boils down to a simple interface, Executor. It contains just one single
method, execute, which takes Runnable as its argument.

public interface Executor {

 void execute(Runnable command);

}

This interface, however, doesn't really enforce the use of threads. It simply states
that it will execute Runnable, which means invoking the run method. It may happen
immediately or at some time in the future. It might even execute on the main thread.
All of these properties are implementation specifics that are outside the scope of the
interface.

774 | Using the Future API

However, one thing that is important to note is that the execute method doesn't allow
for return values. This means that changing the state of the program after an executor
has run requires you to use locks or synchronization, which of course will defeat, in
part, the purpose of threading in the first place.

There is another slightly more intricate interface, called ExecutorService, which extends
Executor:

public interface ExecutorService extends Executor {

 void shutdown();

 List<Runnable> shutdownNow();

 boolean isShutdown();

 boolean isTerminated();

 boolean awaitTermination(long timeout, TimeUnit unit)

 throws InterruptedException;

 <T> Future<T> submit(Callable<T> task);

 <T> Future<T> submit(Runnable task, T result);

 Future<?> submit(Runnable task);

 <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)

 throws InterruptedException;

 <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,

 long timeout, TimeUnit unit)

 throws InterruptedException;

 <T> T invokeAny(Collection<? extends Callable<T>> tasks)

Thread Pools | 775

 throws InterruptedException, ExecutionException;

 <T> T invokeAny(Collection<? extends Callable<T>> tasks,

 long timeout, TimeUnit unit)

 throws InterruptedException, ExecutionException, TimeoutException;

}

ExecutorService adds, on top of the inherited execute method, a number of lifecycle
methods that help you control and monitor the state of the tasks of ExecutorService.
It allows you to shut down the whole service, either gracefully (where each currently
active task will be allowed to finish) or abruptly (where all tasks will be forced to stop).

There are a number of invoke and submit methods in this interface. The submit
methods will all execute a single task and then return Future, which is a special type
representing the result of an asynchronous operation. The invokeAll and invokeAny
functions execute a collection of tasks, where invokeAll will return a list of Futures and
invokeAny will return the result of the first task that finishes.

Note

While modifying a collection of tasks, or any of the tasks within a collection, you
might run into trouble. Applying the core concepts of functional programming
is recommended, meaning that you should use final objects and unmodifiable
collections.

Most factory executors implement this interface. But there is one more level in
this hierarchy of executors – the ScheduledExecutorService, which builds upon
ExecutorService. Just as the name implies, it adds functionality to schedule things for
execution at a later time. We will explore that in Scheduling Futures section of this
chapter.

Employing the Thread Pool

There are four primary factory implementations of Executor, each suitable for specific
use cases:

• The single-thread executor

• The fixed-size thread pool

• The cached thread pool

• The work-stealing thread pool (A new addition in Java 8)

776 | Using the Future API

The single thread executor is the simplest to grasp. It maintains a single thread to
handle all the tasks supplied to the queue sequentially according to the first-in, first-
out principle, also known as a FIFO queue. The syntax used for single thread executors
is as follows:

ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();

The fixed-size thread pool manages a pre-defined number of threads, and thus, it can
handle multiple tasks in parallel. This also uses a FIFO method. Defining a fixed-size
thread pool of size 1 is identical to creating a single thread executor. The syntax used
for a fixed-size thread executor is as follows:

ExecutorService fixedThreadPool = Executors.newFixedThreadPool(6);

The cached thread pool has no specific bounds on the maximum number of available
threads; it will simply create threads as needed. However, once a task is completed, it
will keep that thread around for 60 seconds for other tasks in the queue. The queue in
cached thread pools doesn't work exactly like the two other thread pools. As the cached
thread pool will always either have a thread available, or will create a new one when
needed, the queue will only ever contain a single item and block until that item has
been supplied to a thread. The syntax used for the cached thread executor is as follows:

ExecutorService cachedThreadPool = Executors.newCachedThreadPool();

Exercise 1: Implementing Bubble Sort

Implement the bubble sort algorithm in Java using a single task executor. Bubble sort is
a comparative sorting algorithm that is rarely used because it is quite slow.

The sorting algorithm works by iterating through the dataset and ordering two
elements at a time. This iteration is repeated over and over until the elements are
sorted. This works because you constantly move the largest and the smallest items of
the set to opposite ends. (Hence the name 'bubble sort', as you can imagine the smallest
element 'bubbling to the top of the dataset'.)

The pseudo code for this sorting algorithm looks like this:

Define n items to be sorted

SET swapped true

WHILE flag

 SET swapped false

Thread Pools | 777

 FOR each item - 1 in the list

 IF currentItem > nextItem THEN

 Swap items

 SET swapped true

 END IF

 END FOR

END WHILE

1. If IntelliJ is already running, and no project is open, click the Create New Project
button. If IntelliJ already has a project opened select File New Project from
the menu.

2. In the New Project dialog, select a Java project and click Next.

3. Check the box to create the project from a template. Select Command Line App
and then click Next.

4. Give the new project the name Chapter23.

5. IntelliJ will give you a default project location. If you wish to select a different one,
you can enter it here.

6. Set the package name to com.packt.java.chapter23.

7. Click Finish.

Your project will be created with the standard folder structure, and the program
will have an entry point class. It should look like this:

package com.packt.java.chapter23;

public class Main {

 public static void main(String[] args) {
// write your code here
 }
}

8. Rename the Main class to Exercise1.

778 | Using the Future API

9. The sorting should run in its own thread. For this, we need Runnable. Create a new
class, call it BubbleSort, and let it implement the Runnable interface:

package com.packt.java.chapter23;

public class BubbleSort implements Runnable {
 @Override
 public void run() {

 }
}

10. We will implement the actual sorting algorithm for the dataset within the run()
method. However, to even start sorting, we need access to the data. Create a
constructor that takes any number of integers as an argument and then stores
them as a single array:

package com.packt.java.chapter23;

public class BubbleSort implements Runnable {

 private int[] data;

 public BubbleSort(int... values) {
 this.data = values;
 }

 @Override
 public void run() {

 }
}

11. Sorting happens in the process of iterating through the dataset, comparing each
item to the next. Create a loop that continues until n - 1 items, where n is the
length of the dataset. If the item currently under consideration is larger than the
next, they should switch places:

package com.packt.java.chapter23;

public class BubbleSort implements Runnable {

 private int[] data;

Thread Pools | 779

 public BubbleSort(int... values) {
 this.data = values;
 }

 @Override
 public void run() {
 int n = data.length;
 for (int i = 0; i < n - 1; i++) {
 int currentItem = data[i];
 int nextItem = data[i + 1];

 if (currentItem > nextItem) {
 data[i] = nextItem;
 data[i + 1] = currentItem;
 }
 }
 }
}

Running this BubbleSort in an executor will render the first pass through the
array, likely moving some items around depending on what your dataset looks like.
However, to finish the sort, you will need to iterate this until you've satisfied the
condition that the loop hasn't moved any items around.

12. Wrap the for loop in a while loop to continue sorting until it is complete:

package com.packt.java.chapter23;

public class BubbleSort implements Runnable {

 private int[] data;

 public BubbleSort(int... values) {
 this.data = values;
 }

 @Override
 public void run() {
 int n = data.length;
 boolean moved = true;
 while (moved) {

780 | Using the Future API

 moved = false;
 for (int i = 0; i < n - 1; i++) {
 int currentItem = data[i];
 int nextItem = data[i + 1];

 if (currentItem > nextItem) {
 data[i] = nextItem;
 data[i + 1] = currentItem;
 moved = true;
 }
 }
 }
 }
}

13. Back in the main method, fetch a single thread executor from the factory methods.
Then, run an execution on a new dataset containing the values of {5, 2, 1, 3, 7,
9, 6, 4, 8, 10}:

package com.packt.java.chapter23;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Exercise1 {

 public static void main(String[] args) {
 ExecutorService service = Executors.newSingleThreadExecutor();

 service.execute(new BubbleSort(5, 2, 1, 3, 7, 9, 6, 4, 8, 10));
 }
}

As things currently are, the program would never end because we have not shut
down the executor. The executor will keep running, listening for new tasks to
handle until it is shut down, either forcefully or gracefully.

Thread Pools | 781

14. To shut down the executor, enter the following code:

package com.packt.java.chapter23;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Exercise1 {

 public static void main(String[] args) {
 ExecutorService service = Executors.newSingleThreadExecutor();

 service.execute(new BubbleSort(5, 2, 1, 3, 7, 9, 6, 4, 8, 10));

 service.shutdown();
 }
}

15. Finally, print the initial array to be sorted, and the final sorted array in the
BubbleSort class.

package com.packt.java.chapter23;

import java.util.Arrays;

public class BubbleSort implements Runnable {

 private int[] data;

 public BubbleSort(int... values) {
 this.data = values;
 }

 @Override
 public void run() {

782 | Using the Future API

 System.out.println(Arrays.toString(data));
 int n = data.length;
 boolean swapped = true;
 while (swapped) {
 swapped = false;
 for (int i = 0; i < n - 1; i++) {
 int currentItem = data[i];
 int nextItem = data[i + 1];

 if (currentItem > nextItem) {
 data[i] = nextItem;
 data[i + 1] = currentItem;
 swapped = true;
 }
 }
 }
 System.out.println(Arrays.toString(data));
 }
}

The output of this exercise should look something like this:

[5, 2, 1, 3, 7, 9, 6, 4, 8, 10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this exercise, you've implemented a BubbleSort algorithm and then letting an
ExecutorService run that algorithm for you, effectively minimizing any thread-logic
you'd otherwise need to implement.

Note

There is an improvement that could be implemented in this sorting algorithm as it
always 'bubbles' the largest or the smallest item to the end of the set. So, on this
basis, you can assume that it is sufficient to iterate through fewer and fewer items
with each iteration. In the first pass-through, you'd iterate through n items; the
second round, n-1 items; the third, n-2, and so on.

The Fork/Join Framework | 783

Activity 1: Comparing Sorting

Change the single thread executor to a fixed size and run multiple sorting threads on
different datasets. Compare the difference between sorting moves performed on the
sets: {5, 1, 2, 4, 3, 6} and {1, 3, 2, 5, 4, 7}. Also, improve the sorting algorithm so
that it may complete the sorting of the dataset with fewer iterations.

Note

The solution for this activity can be found on page 911.

Finally, there is the quite recently added work-stealing pool, which really isn't a thread
pool at all; it's actually what we call a Fork-Join pool.

The Fork/Join Framework
Much like the thread pool, ForkJoinPool also uses threads, but it employs them in a
much more sophisticated way. Instead of simply pairing a task with a thread, the
fork-join pool employs the idea of divide-and-conquer or, as the name states,
forking tasks off into micro-tasks and then joining all of the results into a single
understandable result.

In practice, this forking is performed by recursively breaking down the task at hand
until you cannot break it down anymore. After dividing the larger tasks into smaller
subtasks, the fork-join framework will then join all of the results back together in a
single result.

This framework allows you to build both an execution-only recursive task and a
recursive task that also returns a value to the caller. RecursiveAction will not return a
value; however, the RecursiveTask class will do so.

Exercise 2: Implementing Merge Sort

A typical problem in computer science is that of sorting datasets. One approach to
sorting datasets is the merge sort algorithm. It is a typical divide-and-conquer solution
to the sorting problem. Hence, merge sort is quite suitable for our use as an exercise in
employing the fork/join framework.

The merge sort algorithm works by recursively splitting the original array until its size
is of length one, and then orders the minimal arrays according to a specific rule. Then, it
merges the result back, step by step, until the whole array has been merged and sorted,
see the pseudocode below.

784 | Using the Future API

Since the merge sort is a divide-and-conquer strategy we will view them as two
different pseudocode snippets. We will start with the divide-part, the MergeSort
algorithm.

Define n items to be sorted

Split n items into two lists, a and b

CALL MergeSort with a

CALL MergeSort with b

CALL Merge lists a and b

The Merge algorithm looks like this in pseudocode:

Define list left and list right to be merged

Create new list of length left + right

SET l = 0

SET r = 0

SET i = 0

FOR all items in result

 IF l >= left.length

 SET result[i] = right[r++]

 ELSE IF r >= right.length

 SET result[i] = left[l++]

 ELSE

 IF left[l] < right[r]

 SET result[i] = left[l++]

 ELSE

 SET result[i] = right[r++]

 END IF

 END IF

END FOR

The Fork/Join Framework | 785

The beautiful aspect of this sorting technique and other recursive techniques,
compared to bubble sort, is that it can benefit from running on multiple threads –
something that bubble sort cannot do:

1. Open the Chapter23 project in IDEA if it's not already open.

2. Create a new Java class by going to File New Java Class.

3. Enter Exercise2 as the name and click OK. IDEA will create a new class that should
look something like this:

package com.packt.java.chapter23;

public class Exercise2 {
}

We will revisit this main class a little later in the exercise, but for now, let's focus on
the sorting algorithm.

4. Create a MergeSort class by extending the RecursiveTask class. We need to use
RecursiveTask because we intend to return a value, which will be the sorted array.
Let this class accept integer values as arguments to its constructor, as these values
are what need to be sorted:

package com.packt.java.chapter23;

import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

 private int[] data;

 public MergeSort(int ...values) {
 this.data = values;
 }

 @Override
 protected int[] compute() {
 return new int[0];
 }
}

786 | Using the Future API

5. The compute method is where all the magic happens. Start by checking whether
the data is a 1-length array. If it is, return that array, because it cannot be split
further:

package com.packt.java.chapter23;

import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

 private int[] data;

 public MergeSort(int ...values) {
 this.data = values;
 }

 @Override
 protected int[] compute() {
 if (data.length == 1) {
 return data;
 }

 return new int[0];
 }
}

6. If the array is longer than 1 item, it needs to be split up into two new arrays. These
will later be issued to new MergeSort tasks. Call the first array left, and the second
array right, defining which sides of the original array they represent:

package com.packt.java.chapter23;

import java.util.Arrays;
import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

The Fork/Join Framework | 787

 private int[] data;

 public MergeSort(int ...values) {
 this.data = values;
 }

 @Override
 protected int[] compute() {
 if (data.length == 1) {
 return data;
 }

 int middle = data.length / 2;
 int[] left = Arrays.copyOfRange(data, 0, middle);
 int[] right = Arrays.copyOfRange(data, middle, data.length);
 return new int[0];
 }
}

7. Create two new MergeSort tasks, supplying the new arrays to each of them. Then
run the invokeAll method to fork the two new tasks from the current thread:

package com.packt.java.chapter23;

import java.util.Arrays;
import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

private int[] data;

public MergeSort(int ...values) {
 this.data = values;
 }

@Override
protected int[] compute() {
 if (data.length == 1) {
 return data;
 }

788 | Using the Future API

 int middle = data.length / 2;
 int[] left = Arrays.copyOfRange(data, 0, middle);
 int[] right = Arrays.copyOfRange(data, middle, data.length);

 MergeSort leftTask = new MergeSort(left);
 MergeSort rightTask = new MergeSort(right);

 invokeAll(leftTask, rightTask);

 return new int[0];
 }
}

8. This will launch two more threads, each repeating the same logic as the current
thread. The result of the current thread should be the merged result of the two
new threads. To merge them, we need to wait for the two threads to finish.
Create two new arrays representing the result of each new thread and call them
leftResult and rightResult:

package com.packt.java.chapter23;

import java.util.Arrays;
import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

 private int[] data;

 public MergeSort(int ...values) {
 this.data = values;
 }

 @Override
 protected int[] compute() {
 if (data.length == 1) {
 return data;

The Fork/Join Framework | 789

 }

 int middle = data.length / 2;
 int[] left = Arrays.copyOfRange(data, 0, middle);
 int[] right = Arrays.copyOfRange(data, middle, data.length);

 MergeSort leftTask = new MergeSort(left);
 MergeSort rightTask = new MergeSort(right);

 invokeAll(leftTask, rightTask);

 int[] leftResult = leftTask.join();
 int[] rightResult = rightTask.join();

 return new int[0];
 }
}

Note

Joining the threads here is a blocking operation that may throw exceptions or
errors.

9. Merge the two arrays, keeping in mind that the two array results may overlap. You
shouldn't simply assume that all items in leftResult should be ordered before the
rightResult items. Create a merge method that takes two arrays and returns one
merged array:

package com.packt.java.chapter23;

import java.util.Arrays;
import java.util.concurrent.RecursiveTask;

public class MergeSort extends RecursiveTask<int[]> {

 private int[] data;

 public MergeSort(int ...values) {

790 | Using the Future API

 this.data = values;
 }

 @Override
 protected int[] compute() {
 if (data.length == 1) {
 return data;
 }
 int middle = data.length / 2;
 int[] left = Arrays.copyOfRange(data, 0, middle);
 int[] right = Arrays.copyOfRange(data, middle, data.length);

 MergeSort leftTask = new MergeSort(left);
 MergeSort rightTask = new MergeSort(right);

 invokeAll(leftTask, rightTask);

 int[] leftResult = leftTask.join();
 int[] rightResult = rightTask.join();

 return merge(leftResult, rightResult);
 }

 private int[] merge(int[] left, int[] right) {
 int[] result = new int[left.length + right.length];

int l = 0, r = 0;
for (int i = 0; i < result.length; i++) {
 if (l >= left.length) {
 result[i] = right[r++];
 } else if (r >= right.length) {
 result[i] = left[l++];
 } else {
 if (left[l] < right[r]) {
 result[i] = left[l++];
 } else {
 result[i] = right[r++];
 }
}
}

The Fork/Join Framework | 791

 return result;
 }
}

10. Back in the main class, add a main method:

package com.packt.java.chapter23;

public class Exercise2 {

 public static void main(String[] args) {

 }
}

11. Create a new ForkJoinPool using the constructor:

package com.packt.java.chapter23;
import java.util.concurrent.ForkJoinPool;
public class Exercise2 {

 public static void main(String[] args) {

 ForkJoinPool forkJoinPool = new ForkJoinPool();
 }
}

12. Now, invoke given array, and store the result in an array. Here, we're just giving a
random sequence of numbers:

package com.packt.java.chapter23;

import java.util.concurrent.ForkJoinPool;

public class Exercise2 {

 public static void main(String[] args) {

 ForkJoinPool forkJoinPool = new ForkJoinPool();
 int[] result = forkJoinPool.invoke(new MergeSort(1, 4, 7, 3, 5, 9,
12, 54, 32, 3, 2, 87, 24));
 }
}

792 | Using the Future API

13. Print the result and verify that it is actually in the correct order:

package com.packt.java.chapter23;

import java.util.Arrays;
import java.util.concurrent.ForkJoinPool;

public class Exercise2 {

 public static void main(String[] args) {

 ForkJoinPool forkJoinPool = new ForkJoinPool();
 int[] result = forkJoinPool.invoke(new MergeSort(1, 4, 7, 3, 5, 9,
12, 54, 32, 3, 2, 87, 24));

 System.out.println(Arrays.toString(result));
 }
}

After running this program, you should see the following result in the terminal:

[1, 2, 3, 3, 4, 5, 7, 9, 12, 24, 32, 54, 87]

The merge sort, as you've seen, is a more complex approach but can also be much more
time-efficient as it is a truly multi-threaded algorithm. It's usually preferred over the
simple BubbleSort.

Note

Subdividing tasks does not always provide a performance benefit. Sometimes, the
tasks may already be so small that the performance hit of scheduling a new thread
may actually slow your program down rather than speeding it up.

Activity 2: Improving the MergeSort algorithm

The basic MergeSort you've built in Exercise 2 is quite effective, however it is possible
to improve further by not splitting down to 1-length data sets. Instead, split them down
to 2-length data set and sort that set directly and then begin merging the result.

Note

The solution for this activity can be found on page 913.

The Fork/Join Framework | 793

Working with Futures

The Future type, which you've already seen mentioned in the different Executor
interfaces, is a wrapper to hold data for an execution that may not have finished yet, for
example, when fetching data from an online source is taking a long time, and may even
fail if there are connection problems. This is a case where using a Future would be wise.
A Future can be implemented as shown in the following example:

package java.util.concurrent;

public interface Future<V> {

 boolean cancel(boolean mayInterruptIfRunning);

 boolean isCancelled();

 boolean isDone();

 V get() throws InterruptedException, ExecutionException;

 V get(long timeout, TimeUnit unit)

 throws InterruptedException, ExecutionException, TimeoutException;

}

The interface is concise and simple to remember. A Future, which is submitted to an
executor, can take any of these three states:

• Is currently running

• Has finished its execution

• Has been cancelled

In the interface, you have two methods that wrap these states. isDone will return false
while the Future is still working. When the Future has successfully, or unsuccessfully,
finished its execution, the isDone method will return true.

If the Future was cancelled before finishing, using the cancel method, the isCancelled
method will return true.

794 | Using the Future API

The following figure summarizes these two methods:

Figure 23.1: State of Future for isDone and isCancelled

The actual result of the Future is collected using the get() method, which is a blocking
operation. However, if you first verify whether the Future has finished, the get()
method will not block.

Exercise 3: Comparing Merge and Bubble Sorts

The provided database.csv file contains 1,000 members of an organization. Sort them
based on their salary in ascending order. Do this with two different sorting algorithms –
bubble sort and merge sort. Measure the difference in the time taken by each of the two
sorting processes, then print the time it takes in the mm:ss:ms format:

1. Open the Chapter23 project in IntelliJIDE if it's not already open.

2. Create a new Java class by going to File New Java Class.

3. Enter Exercise3 as the name and click OK. IDEA will create a new class that should
look something like the following:

package com.packt.java.chapter23;

public class Exercise3 {
}

Adding the main method will create an entry point for the program.

package com.packt.java.chapter23;

public class Exercise3 {

The Fork/Join Framework | 795

 public static void main(String[] args) {

 }
}

4. Create a class called Member. It should have the member variables age, firstName,
lastName, title, and salary. Because we know that we will instantiate this type
only when reading the database, and we know that the database is in a certain
format, we can use the following code:

package com.packt.java.chapter23;

public class Member {

 int age;
 String firstName;
 String lastName;
 String title;
 double salary;

 public Member(String fromString) {
 String[] parts = fromString.split(",");

 this.age = Integer.valueOf(parts[0]);
 this.firstName = parts[1];
 this.lastName = parts[2];
 this.title = parts[3];
 this.salary = Double.valueOf(parts[4]);
 }
}

5. Copy the database.csv file into your project's res folder, or create it if doesn't
exist.

796 | Using the Future API

6. Using streams, map each line of the database to a new member and then collect it
in a List. Wrap this in a utility function called parseMembers:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) {
 }

 private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.map(Member::new).collect(Collectors.toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

Note

You can read more about Streams in Chapter 8, Sockets, Files, and Streams.

The Fork/Join Framework | 797

7. In the main method, get the file path to your database and extract all members into
a list using parseMembers:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res/database.csv";
 List<Member> members = parseMembers(filePath);
 }

 private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.map(Member::new).collect(Collectors.toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

798 | Using the Future API

8. Now you have a list of all members, but it is unordered. Create a class called
BubbleSortMember. It will be very similar to the bubble sort class used in Exercise
1, except that in this exercise, we are working with objects, and we want to use
Callable to read the value from the result.BubbleSortMember should take a list of
members as an argument in the constructor:

package com.packt.java.chapter23;

import java.util.List;

public class BubbleSortMember implements Callable<List<Member>> {

 private List<Member> data;

 public BubbleSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 public List<Member> call() throws Exception { {
 }
}

9. Implement the sorting logic in the run method. Make sure to sort the array based
on salary, with the largest salary to the left in the list:

package com.packt.java.chapter23;

import java.util.List;

public class BubbleSortMember implements Callable<List<Member>> {

 private List<Member> data;

The Fork/Join Framework | 799

 public BubbleSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 public List<Member> call() throws Exception {
 List<Member> copied = new ArrayList<>(data);
 int n = copied.size();
 boolean swapped = true;
 while (swapped) {
 swapped = false;
 for (int i = 0; i < n - 1; i++) {
 Member currentItem = copied.get(i);
 Member nextItem = copied.get(i + 1);

if (currentItem.salary < nextItem.salary) {
 copied.set(i, nextItem);
 copied.set(i + 1, currentItem);
 swapped = true;
 }
 }
 return copied;
 }
 }
}

10. Back in the main method, create a new single-thread executor for measuring
the performance of the bubble sort algorithm. Catch the Future if you feel like
verifying the sorted result:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.*;

800 | Using the Future API

import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) throws ExecutionException,
InterruptedException {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res/database.csv";
 List<Member> members = parseMembers(filePath);

 ExecutorService executorService = Executors.
newSingleThreadExecutor();
 Future<List<Member>> bubbleResult = executorService.submit(new
BubbleSortMember(members));
 try { bubbleSort.get(); } catch
(InterruptedException e) { e.printStackTrace(); } catch
(ExecutionException e) { e.printStackTrace(); }
 }

 private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.skip(1).map(Member::new).collect(Collectors.
toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

11. Add timers for calculating the time taken by the bubble sort algorithm to sort the
data:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.time.Duration;
import java.time.temporal.ChronoUnit;

The Fork/Join Framework | 801

import java.util.List;
import java.util.concurrent.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) throws ExecutionException,
InterruptedException {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res/database.csv";
 List<Member> members = parseMembers(filePath);

 ExecutorService executorService = Executors.
newSingleThreadExecutor();
 long bubbleSortStart = System.nanoTime();
 Future<List<Member>> bubbleResult = executorService.submit(new
BubbleSortMember(members));
try { bubbleSort.get(); } catch (InterruptedException e)
{ e.printStackTrace(); } catch (ExecutionException e) {
e.printStackTrace(); }

 Duration bubbleSortDuration = Duration.of(System.nanoTime() -
bubbleSortStart, ChronoUnit.NANOS);
 System.out.println(String.format("BubbleSort: %02dm:%02ds:%02dms",
bubbleSortDuration.toMinutes(), bubbleSortDuration.toSeconds(),
bubbleSortDuration.toMillis()));

 executorService.shutdown();
 }

 private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.skip(1).map(Member::new).collect(Collectors.
toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

802 | Using the Future API

12. Now implement the merge sort for Members objects. Create the MergeSortMember
class. Make it implement RecursiveTask so that we can have a value returned:

package com.packt.java.chapter23;

import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {
 @Override
 protected List<Member> compute() {
 return null;
 }
}

13. Add a constructor that takes a List as an argument:

package com.packt.java.chapter23;

import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 protected List<Member> compute() {
 return null;
 }
}

14. If the size of the data is just 1, let it return the data since it cannot be divided
further:

package com.packt.java.chapter23;

import java.util.List;
import java.util.concurrent.RecursiveTask;

The Fork/Join Framework | 803

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

@Override
 protected List<Member> compute() {
 if (data.size() == 1) {
 return data;
 }

 return null;
 }
}

15. Divide the list up into two equally sized sublists and call them left and right:

package com.packt.java.chapter23;

import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

@Override
 protected List<Member> compute() {
 if (data.size() == 1) {

804 | Using the Future API

return data;
 }

 int middle = data.size() / 2;
 List<Member> left = data.subList(0, middle);
 List<Member> right = data.subList(middle, data.size());

 return null;
 }
}

16. Create two new MergeSortMember tasks and invoke them using invokeAll. Then, let
the program wait for them to finish executing:

package com.packt.java.chapter23;

import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

@Override
 protected List<Member> compute() {
 if (data.size() == 1) {
 return data;
 }

 int middle = data.size() / 2;
 List<Member> left = data.subList(0, middle);
 List<Member> right = data.subList(middle, data.size());

 MergeSortMember leftTask = new MergeSortMember(left);
 MergeSortMember rightTask = new MergeSortMember(right);

The Fork/Join Framework | 805

 invokeAll(leftTask, rightTask);

 List<Member> leftResult = leftTask.join();
 List<Member> rightResult = rightTask.join();

 return null;
 }
}

17. Now it is time to merge the results and return to the next level in the hierarchy.
Create the merge function and let it take the two lists, left and right, as its
arguments and then return a single list containing all the members:

package com.packt.java.chapter23;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

public MergeSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 protected List<Member> compute() {
 if (data.size() == 1) {
 return data;
 }

int middle = data.size() / 2;
 List<Member> left = data.subList(0, middle);
 List<Member> right = data.subList(middle, data.size());

MergeSortMember leftTask = new MergeSortMember(left);
MergeSortMember rightTask = new MergeSortMember(right);

 invokeAll(leftTask, rightTask);

806 | Using the Future API

List<Member> leftResult = leftTask.join();
List<Member> rightResult = rightTask.join();

 return null;
 }

 private List<Member> merge(List<Member> left, List<Member> right) {
 List<Member> result = new ArrayList<>(left.size() + right.size());

 return result;
 }
}

18. Let the compute method return the result of the merge of rightResult and
leftResult:

package com.packt.java.chapter23;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 protected List<Member> compute() {
 if (data.size() == 1) {
 return data;
 }

 int middle = data.size() / 2;
 List<Member> left = data.subList(0, middle);
 List<Member> right = data.subList(middle, data.size());

The Fork/Join Framework | 807

 MergeSortMember leftTask = new MergeSortMember(left);
 MergeSortMember rightTask = new MergeSortMember(right);

 invokeAll(leftTask, rightTask);

 List<Member> leftResult = leftTask.join();
 List<Member> rightResult = rightTask.join();

 return merge(leftResult, rightResult);
 }

 private List<Member> merge(List<Member> left, List<Member> right) {
 int totalMembers = left.size() + right.size();
 List<Member> result = new ArrayList<>(totalMembers);

 return result;
 }
}

19. Add the merging logic. It is the same as in Exercise 2. Make sure that, if the
salaries on the left and right are not in the correct order when viewed as one list,
this order is corrected:

package com.packt.java.chapter23;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MergeSortMember extends RecursiveTask<List<Member>> {

 private List<Member> data;

 public MergeSortMember(List<Member> data) {
 this.data = data;
 }

 @Override
 protected List<Member> compute() {

808 | Using the Future API

 if (data.size() == 1) {
 return data;
 }

int middle = data.size() / 2;
 List<Member> left = data.subList(0, middle);
 List<Member> right = data.subList(middle, data.size());

MergeSortMember leftTask = new MergeSortMember(left);
MergeSortMember rightTask = new MergeSortMember(right);

 invokeAll(leftTask, rightTask);

 List<Member> leftResult = leftTask.join();
 List<Member> rightResult = rightTask.join();

 return merge(leftResult, rightResult);
 }

private List<Member> merge(List<Member> left, List<Member> right) {
 int totalMembers = left.size() + right.size();
 List<Member> result = new ArrayList<>(totalMembers);

 int l = 0, r = 0;
 for (int i = 0; i < totalMembers; i++) {
 if (l >= left.size()) {
 result.add(i, right.get(r++));
 } else if (r >= right.size()) {
 result.add(i, left.get(l++));
 } else {
 if (left.get(l).salary > right.get(r).salary) {
 result.add(i, left.get(l++));
 } else {
 result.add(i, right.get(r++));
 }
 }
 }

 return result;
 }
}

The Fork/Join Framework | 809

20. Use the newly constructed MergeSortMember in the main method. Use a
ForkJoinPool to execute the merge sort:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.time.Duration;
import java.time.temporal.ChronoUnit;
import java.util.List;
import java.util.concurrent.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) {

String filePath = System.getProperty("user.dir") + File.separator + "res/
database.csv";
 List<Member> members = parseMembers(filePath);

ExecutorService executorService = Executors.newSingleThreadExecutor();
 long bubbleSortStart = System.nanoTime();
 Future<List<Member>> bubbleSort = executorService.submit(new
BubbleSortMember(members));
try { bubbleSort.get(); } catch (InterruptedException e)
{ e.printStackTrace(); } catch (ExecutionException e) {
e.printStackTrace(); }
Duration bubbleSortDuration = Duration.of(System.nanoTime() -
bubbleSortStart, ChronoUnit.NANOS);
 System.out.println(String.format("BubbleSort: %02dm:%02ds:%02dms",
bubbleSortDuration.toMinutes(), bubbleSortDuration.toSeconds(),
bubbleSortDuration.toMillis()));

 executorService.shutdown();

 ForkJoinPool forkJoinPool = new ForkJoinPool();
 List<Member> mergeSort = forkJoinPool.invoke(new
MergeSortMember(members));

810 | Using the Future API

 }

private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.skip(1).map(Member::new).collect(Collectors.
toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

21. Finally, measure the time taken for sorting using the merge sort algorithm and
compare it to the time taken using the bubble sort algorithm:

package com.packt.java.chapter23;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.time.Duration;
import java.time.temporal.ChronoUnit;
import java.util.List;
import java.util.concurrent.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Exercise3 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator
+ "res/database.csv";
 List<Member> members = parseMembers(filePath);

 ExecutorService executorService = Executors.
newSingleThreadExecutor();
 long bubbleSortStart = System.nanoTime();
 Future<List<Member>> bubbleSort = executorService.submit(new
BubbleSortMember(members));
 try {

The Fork/Join Framework | 811

 bubbleSort.get();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 Duration bubbleSortDuration = Duration.of(System.nanoTime() -
bubbleSortStart, ChronoUnit.NANOS);
 System.out.println(String.format("BubbleSort: %02dm:%02ds:%02dms",
bubbleSortDuration.toMinutes(), bubbleSortDuration.toSeconds(),
bubbleSortDuration.toMillis()));

 executorService.shutdown();

ForkJoinPool forkJoinPool = new ForkJoinPool();
 long mergeSortStart = System.nanoTime();
 List<Member> mergeSort = forkJoinPool.invoke(new
MergeSortMember(members));
 Duration mergeSortDuration = Duration.of(System.nanoTime() -
mergeSortStart, ChronoUnit.NANOS);
 System.out.println(String.format("MergeSort: %02dm:%02ds:%02dms",
mergeSortDuration.toMinutes(), mergeSortDuration.toSeconds(),
mergeSortDuration.toMillis()));
 }

 private static List<Member> parseMembers(String filePath) {
 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {
 return authors.skip(1).map(Member::new).collect(Collectors.
toList());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

In this example, we can observe the difference between the performance of the two
sorting algorithms on a list of objects. An important observation is that the merge sort
in this example is likely to be several times slower than the bubble sort, which may raise
an eyebrow or two.

812 | Using the Future API

Activity 3: Optimizing Sorting

Try to optimize the merge sort algorithm so that it is faster than the bubble sort
algorithm, as it should be. Remove as many object instantiations as you can.

Now sort the database according to age, and print the details of the 10 oldest members
to the terminal, including their first and last names, age, title, and salary.

Note

The solution for this activity can be found on page 915.

Scheduling Futures

Sometimes, we are required to perform tasks at a later time, or regularly at given
intervals. This is where the ScheduledExecutorService interface comes into the picture.
This interface is very simple and almost self-explanatory. The following example
demonstrates its implementation:

public interface ScheduledExecutorService extends ExecutorService {

 public ScheduledFuture<?> schedule(Runnable command,

 long delay, TimeUnit unit);

 public <V> ScheduledFuture<V> schedule(Callable<V> callable,

long delay, TimeUnit unit);

public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,

long initialDelay,

long period,

TimeUnit unit);

 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,

 long initialDelay,

 long delay,

 …TimeUnit unit);

}

Summary | 813

The two schedule methods will execute either a callable or a runnable after a set delay.
The delay can be set in any unit of time you wish.

The scheduleAtFixedRate method will start the tasks at a given interval, while the
scheduleAtFixedDelay method will force a period of time to elapse between the ending
of one task and the beginning of the next. Both of them will continue until they are
stopped or a task throws an exception.

Summary
In this chapter, we have had a closer look at Executor, the ExecutorService, thread
pools, and the fork-join pool. They each have their specific use cases and features as
demonstrated in this chapter. The Executor Service is better suited to repeated tasks
that don't need to share data, whereas the fork-join pool excels when recursive tasks
are required.

However, they all share one attribute – they build on top of the Thread class, which
is our go-to tool for building multithreaded applications in Java. But it also has many
caveats when it comes to causing performance problems and buggy applications. Be
careful when implementing multithreaded programs, and make sure to use factory
methods and helpers where possible.

About

This section is included to assist you in performing the activities present in the book. It includes
detailed steps that are to be performed by the students to complete and achieve the objectives
of the book.

Appendix

>

816 | Appendix

Chapter 1: Getting Started

Activity 1 - Solution

The expected code output of this activity should look like the one in the Activity1.java
code listing:

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Optional;

public static class Human {

 private String name;

 private Integer age;

 private String gender;

 // getters

 public Optional<String> getName() {

 return Optional.ofNullable(name);

 }

 public Optional<Integer> getAge() {

 return Optional.ofNullable(age);

 }

 public Optional<String> getGender() {

 return Optional.ofNullable(gender);

 }

 // setters

 public void setName(String _name) {

 name = _name;

 }

Chapter 1: Getting Started | 817

 public void setAge(Integer _age) {

 age = _age;

 }

 public void setGender(String _gender) {

 gender = _gender;

 }

 // constructors (there could be more)

 Human () {

 // empty constructor, do nothing

 }

 Human (String _name) {

 name = _name;

 }

 Human (String _name, Integer _age) {

 name = _name;

 age = _age;

 }

 Human (String _name, Integer _age, String _gender) {

 name = _name;

 age = _age;

 gender = _gender;

 }

 Human (String _name, String _gender) {

 name = _name;

 gender = _gender;

 }

818 | Appendix

}

public class Exercise01_v2 {

 public static void main(String[] args) {

 ArrayList<Human> humans = new ArrayList<Human>();

 humans.add(new Human("Maria"));

 humans.add(new Human("Petter", 32));

 humans.add(new Human("Janna", "female"));

 humans.add(new Human("Silvio", 55, "male"));

 Iterator<Human> theHuman = humans.iterator();

 // print a table header

 System.out.println("name\tage\tgender");

 System.out.println("-------------------");

 // print the table content

 while (theHuman.hasNext()) {

 Optio‐nal<Human> human = Optional.of(theHuman.next());

 // the name is a mandatory parameter, will always be there

 human.flatMap(Human::getName).ifPresent((String s) -> System.out.
print(s + "\t"));

 if(human.flatMap(Human::getName).isEmpty()) {

 System.out.print("no name\t");

 }

 // the age is optional, if not present, insert a tab

 human.flatMap(Human::getAge).ifPresent((Integer s) -> System.out.
print(s + "\t"));

 if(human.flatMap(Human::getAge).isEmpty()) {

Chapter 1: Getting Started | 819

 System.out.print("\t");

 }

 // the gender is optional, but since there are no other

 // parameters, we do no need to add an extra tabulator

 human.flatMap(Human::getGender).ifPresent((String s) -> System.
out.print(s));

 // print the EOL

 System.out.println();

 }

 }

}

820 | Appendix

Chapter 2: Learning the Basics

Activity - Solution

1. In main(), introduce an if statement to check if the arguments entered are of the
right length:

public class Activity1 {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Error. Usage is:");
 System.err.println("Activity1 systolic diastolic");
 System.exit(-1);
 }

2. Parse these arguments as int values and save them in variables:

 int systolic = Integer.parseInt(args[0]);
 int diastolic = Integer.parseInt(args[1]);

3. Check the different values entered to see whether the blood pressure is in the
desired range using the following code:

 System.out.print(systolic + "/" + diastolic + " is ");

 if ((systolic <= 90) || (diastolic <= 60)) {
 System.out.println("low blood pressure.");
 } else if ((systolic >= 140) || (diastolic >= 90)) {
 System.out.println("high blood pressure.");
 } else if ((systolic >= 120) || (diastolic >= 80)) {
 System.out.println("pre-high blood pressure.");
 } else {
 System.out.println("ideal blood pressure.");
 }
 }
}

Chapter 3: Object-Oriented Programming | 821

Chapter 3: Object-Oriented Programming

Activity 1: Solution
public class WordTool {

 WordTool() {};

 public int wordCount (String s) {

 int count = 0; // variable to count words

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 // use the split method from the String class to

 // separate the words having the whitespace as separator

 String[] w = s.split("\\s+");

 count = w.length;

 }

 return count;

 }

 public int symbolCount (String s, boolean withSpaces) {

 int count = 0; // variable to count symbols

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 if (withSpaces) {

 // with whitespaces return the full length

 count = s.length();

 } else {

822 | Appendix

 // without whitespaces, eliminate whitespaces

 // and get the length on the fly

 count = s.replace(" ", "").length();

 }

 }

 return count;

 }

 public int getFrequency (String s, char c) {

 int count = 0;

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 count = s.length() - s.replace(Character.toString(c), "").
length();

 }

 return count;

 }

 public static void main(String[] args) {

 WordTool wt = new WordTool();

 String text = "The river carried the memories from her childhood.";

 char search = 'e';

 System.out.println("Analyzing the text: \n" + text);

 System.out.println("Total words: " + wt.wordCount(text));

 System.out.println("Total symbols (w. spaces): " +
wt.symbolCount(text, true));

 System.out.println("Total symbols (wo. spaces): " +
wt.symbolCount(text, false));

Chapter 3: Object-Oriented Programming | 823

 System.out.println("Total amount of " + search + ": " +
wt.getFrequency(text, search));

 }

}

Activity 2: Solution
/**

 * <H1>WordTool</H1>

 * A class to perform calculations about text.

 *

 * @author Joe Smith

 * @version 0.1

 * @since 20190305

 */

public class WordTool {

 WordTool() {};

 /**

 * <h2>wordCount</h2>

 * returns the amount of words in a text, takes a string as parameter

 *

 * @param s

 * @return int

 */

 public int wordCount (String s) {

 int count = 0; // variable to count words

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 // use the split method from the String class to

 // separate the words having the whitespace as separator

824 | Appendix

 String[] w = s.split("\\s+");

 count = w.length;

 }

 return count;

 }

 /**

 * <h2>symbolCount</h2>

 * returns the amount of symbols in a string with or without counting
spaces

 *

 * @param s

 * @param withSpaces

 * @return int

 */

 public int symbolCount (String s, boolean withSpaces) {

 int count = 0; // variable to count symbols

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 if (withSpaces) {

 // with whitespaces return the full length

 count = s.length();

 } else {

 // without whitespaces, eliminate whitespaces

 // and get the length on the fly

 count = s.replace(" ", "").length();

 }

 }

Chapter 3: Object-Oriented Programming | 825

 return count;

 }

 /**

 * <h2>getFrequency</h2>

 * returns the amount of occurrences of a symbol in a strint

 *

 * @param s

 * @param c

 * @return int

 */

 public int getFrequency (String s, char c) {

 int count = 0;

 // if the entry is empty or is null, count is zero

 // therefore we evaluate it only otherwise

 if (!(s == null || s.isEmpty())) {

 count = s.length() - s.replace(Character.toString(c), "").
length();

 }

 return count;

 }

 /**

 * <h2>main</h2>

 * uses an example string to demonstrate how the class works

 *

 * @param args

 */

 public static void main(String[] args) {

 WordTool wt = new WordTool();

826 | Appendix

 String text = "The river carried the memories from her childhood.";

 char search = 'e';

 System.out.println("Analyzing the text: \n" + text);

 System.out.println("Total words: " + wt.wordCount(text));

 System.out.println("Total symbols (w. spaces): " +
wt.symbolCount(text, true));

 System.out.println("Total symbols (wo. spaces): " +
wt.symbolCount(text, false));

 System.out.println("Total amount of " + search + ": " +
wt.getFrequency(text, search));

 }

}

The documentation site resulting from this activity should look like the one displayed in
the following screenshot:

Figure 3.12: Documentation Site

Chapter 4: Collections, List, and Java's Built-In APIs | 827

Chapter 4: Collections, List, and Java's Built-In APIs

Activity 1: Solution

A possible answer to this activity could be as follows:

import java.util.Arrays;

public class Activity01 {

 public static void main(String[] args) {

 String[] text = {"So", "many", "books", "so", "little", "time"};

 String searchQuery = "so";

 int occurrence = -1;

 for(int i = 0; i < text.length; i++) {

 occurrence = text[i].compareToIgnoreCase(searchQuery);

 if (occurrence == 0) {

 System.out.println("Found query at: " + i);

 }

 }

 }

}

Activity 2: Solution
import java.util.*;

public class Activity02 {

 public static void main(String[] args) {

 List <Double> numbers = new ArrayList <Double> ();

 // random creates a number between 0 and 1

 // round removes the decimal

 // finally we cast it to long

828 | Appendix

 long numNodes = (long) Math.round(Math.random() * 10000);

 System.out.println("Total amount of numbers: " + numNodes);

 // create random numbers between 0 and 100

 for (int i = 0; i < numNodes; i++) {

 numbers.add(Math.random() * 100);

 }

 // create an iterator to look through the data

 Iterator iterator = numbers.iterator();

 Double average = 0.0;

 while(iterator.hasNext()) {

 average += (Double) iterator.next() / numNodes;

 }

 // print out the average

 System.out.println("Average: " + average);

 }

}

Chapter 5: Exceptions | 829

Chapter 5: Exceptions

Activity: Solution
import java.nio.file.NoSuchFileException;

import java.util.logging.*;

public class Activity01 {

 public static void issuePointerException() throws NullPointerException {

 throw new NullPointerException("Exception: Null Pointer");

 }

 public static void issueFileException() throws NoSuchFileException {

 throw new NoSuchFileException("Exception: File Not Found");

 }

 public static void main(String[] args) {

 Logger logger = Logger.getAnonymousLogger();

 int exceptionNum = Integer.valueOf(args[0]);

 switch (exceptionNum) {

 case 1:

 try {

 issuePointerException();

 } catch (NullPointerException ne) {

 logger.log(Level.SEVERE, "Exception happened", ne);

 }

 break;

830 | Appendix

 case 2:

 try {

 issueFileException();

 } catch (NoSuchFileException ne) {

 logger.log(Level.WARNING, "Exception happened", ne);

 }

 break;

 case 3:

 try {

 issueFileException();

 } catch (NoSuchFileException ne) {

 logger.log(Level.INFO, "Exception happened", ne);

 }

 break;

 }

 }

}

Chapter 6: Libraries, Packages, and Modules | 831

Chapter 6: Libraries, Packages, and Modules

Activity: Solution

1. Create an IntelliJ Gradle project. Here are the files to create or modify:

settings.gradle:
rootProject.name = 'temps'
build.gradle:
buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.github.jengelman.gradle.plugins:shadow:2.0.1'
 }
}

apply plugin: 'java'
apply plugin: 'com.github.johnrengelman.shadow'

group 'com.packtpub.temps'
version '1.0'

sourceCompatibility = 12

repositories {
 mavenCentral()
}

dependencies {
 testCompile group: 'junit', name: 'junit', version: '4.12'

 implementation 'com.google.guava:guava:27.0.1-jre'
}

jar {
 manifest {
 attributes 'Main-Class': 'com.packtpub.temps.Main'
 }
}

832 | Appendix

2. Create a class named City. Add the following fields and constructor:

package com.packtpub.temps;

public class City {
 private String name;
 private String country;
 double summertimeHigh; // In degrees C

 public City(String name, String country, double summertimeHigh) {
 this.name = name;
 this.country = country;
 this.summertimeHigh = summertimeHigh;
 }
}

3. Right-click inside the class. Choose Generate, and then Getter and Setter. Select
all the fields and click OK. This will generate the getter and setter methods:

public String getName() {
 return name;
}

public void setName(String name) {
 this.name = name;
}

public String getCountry() {
 return country;
}

public void setCountry(String country) {
 this.country = country;
}

public double getSummertimeHigh() {
 return summertimeHigh;
}

public void setSummertimeHigh(double summertimeHigh) {
 this.summertimeHigh = summertimeHigh;
}

Chapter 6: Libraries, Packages, and Modules | 833

4. Add a method to convert degrees to Fahrenheit. This method uses the TempCon-
verter class:

public String format(boolean fahrenheit) {
 String degrees = summertimeHigh + " C";
 if (fahrenheit) {
 degrees = TempConverter.convertToF(summertimeHigh) + " F";
 }
 return name + ", " + country + " " + degrees;
}

The full code for City.java is as follows:

package com.packtpub.temps;

public class City {
 private String name;
 private String country;
 double summertimeHigh; // In degrees C

 public City(String name, String country, double summertimeHigh) {
 this.name = name;
 this.country = country;
 this.summertimeHigh = summertimeHigh;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }

 public double getSummertimeHigh() {

834 | Appendix

 return summertimeHigh;
 }

 public void setSummertimeHigh(double summertimeHigh) {
 this.summertimeHigh = summertimeHigh;
 }

 public String format(boolean fahrenheit) {
 String degrees = summertimeHigh + " C";

 if (fahrenheit) {
 degrees = TempConverter.convertToF(summertimeHigh) + " F";
 }
 return name + ", " + country + " " + degrees;
 }
}

5. Create a class named SummerHigh to hold the city information for summer high
temperatures. Enter the following properties and constructor:

package com.packtpub.temps;

public class SummerHigh {
 private City base;
 private City moderateCuts;
 private City noCuts;

 public SummerHigh(City base, City moderateCuts, City noCuts) {
 this.base = base;
 this.moderateCuts = moderateCuts;
 this.noCuts = noCuts;
 }
}

6. Right-click inside the class. Choose Generate, and then Getter and Setter. Select
all the fields and click OK. This will generate the getter and setter methods:

public City getBase() {
 return base;
}

public void setBase(City base) {
 this.base = base;

Chapter 6: Libraries, Packages, and Modules | 835

}

public City getModerateCuts() {
 return moderateCuts;
}

public void setModerateCuts(City moderateCuts) {
 this.moderateCuts = moderateCuts;
}

public City getNoCuts() {
 return noCuts;
}

public void setNoCuts(City noCuts) {
 this.noCuts = noCuts;
}

7. Enter a format method in order to render the output readable:

public String format(boolean fahrenheit) {
 StringBuilder builder = new StringBuilder();

 builder.append("In 2100, ");
 builder.append(base.format(fahrenheit));
 builder.append(" will be like\n ");
 builder.append(noCuts.format(fahrenheit));
 builder.append(" with no emissions cuts,");
 builder.append("\n ");
 builder.append(moderateCuts.format(fahrenheit));
 builder.append(" with moderate emissions cuts");
 return builder.toString();
}

836 | Appendix

8. This code makes use of the City class format() method. The full source code for
SummerHigh.java is as follows:

package com.packtpub.temps;

public class SummerHigh {
 private City base;
 private City moderateCuts;
 private City noCuts;

 public SummerHigh(City base, City moderateCuts, City noCuts) {
 this.base = base;
 this.moderateCuts = moderateCuts;
 this.noCuts = noCuts;
 }

 public City getBase() {
 return base;
 }

 public void setBase(City base) {
 this.base = base;
 }

 public City getModerateCuts() {
 return moderateCuts;
 }

 public void setModerateCuts(City moderateCuts) {
 this.moderateCuts = moderateCuts;
 }

 public City getNoCuts() {
 return noCuts;
 }

Chapter 6: Libraries, Packages, and Modules | 837

 public void setNoCuts(City noCuts) {
 this.noCuts = noCuts;
 }

 public String format(boolean fahrenheit) {
 StringBuilder builder = new StringBuilder();

 builder.append("In 2100, ");
 builder.append(base.format(fahrenheit));
 builder.append(" will be like\n ");
 builder.append(noCuts.format(fahrenheit));
 builder.append(" with no emissions cuts,");
 builder.append("\n ");
 builder.append(moderateCuts.format(fahrenheit));
 builder.append(" with moderate emissions cuts");

 return builder.toString();
 }
}

9. Create a class called SummerHighs. This class holds a table of SummerHigh objects.
Enter the following field and constructor to initialize the table:

package com.packtpub.temps;

import com.google.common.collect.HashBasedTable;
import com.google.common.collect.Table;

import java.util.Map;

public class SummerHighs {
 private Table<String, String, SummerHigh> data;

 public SummerHighs() {
 data = HashBasedTable.create();
 }
}

838 | Appendix

10. Enter a method to get summer high temperature information by city:

public SummerHigh getByCity(String city) {
 Map<String, SummerHigh> row = data.row(city.toLowerCase());

 SummerHigh summerHigh = null;
 for (String key : row.keySet()) {
 summerHigh = row.get(key);
 }

 return summerHigh;
}

This method uses the Guava library Table class.

11. Enter a method to get summer high temperature information by country:

public SummerHigh getByCountry(String country) {
 Map<String, SummerHigh> column = data.column(country.toLowerCase());
 SummerHigh summerHigh = null;

 for (String key : column.keySet()) {
 summerHigh = column.get(key);
 }

 return summerHigh;
}

This method also uses the Guava library's Table class.

12. Now create a number of convenience methods to make adding cities easier:

// Convenience methods to help initialize data.
public void addSummerHigh(SummerHigh summerHigh) {
 City baseCity = summerHigh.getBase();

 data.put(baseCity.getName().toLowerCase(),
 baseCity.getCountry().toLowerCase(), summerHigh);
}

public SummerHigh createSummerHigh(City base, City moderateCuts,
 City noCuts) {
 return new SummerHigh(base, moderateCuts, noCuts);
}

Chapter 6: Libraries, Packages, and Modules | 839

public City createCity(String name, String country, double summertimeHigh)
{
 return new City(name, country, summertimeHigh);
}

13. Then, create a method to initialize the summer high temperature data described
previously:

public void initialize() {

 addSummerHigh(
 createSummerHigh(
 createCity("London", "United Kingdom", 20.4),
 createCity("Paris", "France", 22.7),
 createCity("Milan", "Italy", 25.2)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("Stockholm", "Sweden", 19.3),
 createCity("Vilnius", "Lithuania ", 21.7),
 createCity("Kiev", "Ukraine", 24.2)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("New York", "US", 27.7),
 createCity("Belize City", "Belize ", 31.3),
 createCity("Juarez", "Mexico", 34.4)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("Tokyo", "Japan", 26.2),
 createCity("Beijing", "China", 29.0),
 createCity("Wuhan", "China", 31.2)
)
);

 addSummerHigh(

840 | Appendix

 createSummerHigh(
 createCity("Barcelona", "Spain", 25.7),
 createCity("Madrid", "Spain ", 28.9),
 createCity("Izmir", "Turkey", 32.2)
)
);
 }

The full source code for SummerHighs.java is as follows:

package com.packtpub.temps;

import com.google.common.collect.HashBasedTable;
import com.google.common.collect.Table;

import java.util.Map;

public class SummerHighs {
 private Table<String, String, SummerHigh> data;

 public SummerHighs() {
 data = HashBasedTable.create();
 }

 public SummerHigh getByCity(String city) {
 Map<String, SummerHigh> row = data.row(city.toLowerCase());

 SummerHigh summerHigh = null;

 for (String key : row.keySet()) {
 summerHigh = row.get(key);
 }

 return summerHigh;
 }

 public SummerHigh getByCountry(String country) {
 Map<String, SummerHigh> column = data.column(country.
toLowerCase());

 SummerHigh summerHigh = null;

Chapter 6: Libraries, Packages, and Modules | 841

 for (String key : column.keySet()) {
 summerHigh = column.get(key);
 }

 return summerHigh;
 }

 public void initialize() {

 addSummerHigh(
 createSummerHigh(
 createCity("London", "United Kingdom", 20.4),
 createCity("Paris", "France", 22.7),
 createCity("Milan", "Italy", 25.2)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("Stockholm", "Sweden", 19.3),
 createCity("Vilnius", "Lithuania ", 21.7),
 createCity("Kiev", "Ukraine", 24.2)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("New York", "US", 27.7),
 createCity("Belize City", "Belize ", 31.3),
 createCity("Juarez", "Mexico", 34.4)
)
);

 addSummerHigh(
 createSummerHigh(
 createCity("Tokyo", "Japan", 26.2),
 createCity("Beijing", "China", 29.0),
 createCity("Wuhan", "China", 31.2)
)
);

842 | Appendix

 addSummerHigh(
 createSummerHigh(
 createCity("Barcelona", "Spain", 25.7),
 createCity("Madrid", "Spain ", 28.9),
 createCity("Izmir", "Turkey", 32.2)
)
);
 }

 // Convenience methods to help initialize data.
 public void addSummerHigh(SummerHigh summerHigh) {
 City baseCity = summerHigh.getBase();

 data.put(baseCity.getName().toLowerCase(),
 baseCity.getCountry().toLowerCase(), summerHigh);
 }

 public SummerHigh createSummerHigh(City base, City moderateCuts,
 City noCuts) {
 return new SummerHigh(base, moderateCuts, noCuts);
 }

 public City createCity(String name, String country, double
summertimeHigh) {
 return new City(name, country, summertimeHigh);
 }

}

14. Create a class named Main to run our program. Then, create a main() method as
follows:

package com.packtpub.temps;

public class Main {
 public static void main(String[] args) {
 // Initialize data
 SummerHighs summerHighs = new SummerHighs();
 summerHighs.initialize();

 boolean fahrenheit = false;

 // Handle inputs

Chapter 6: Libraries, Packages, and Modules | 843

 if (args.length < 2) {
 System.err.println("Error: usage is:");
 System.err.println(" -city London");
 System.err.println(" -country United Kingdom");
 }

 String searchBy = args[0];
 String name = args[1];

 SummerHigh high = null;

 if ("-city".equals(searchBy)) {
 high = summerHighs.getByCity(name);
 } else if ("-country".equals(searchBy)) {
 high = summerHighs.getByCountry(name);
 }

 // Activity 2
 if (args.length > 2) {
 if ("-f".equals(args[2])) {
 fahrenheit = true;
 }
 }

 // Output data
 if (high != null) {
 System.out.println(high.format(fahrenheit));
 } else {
 System.out.println(name + " was not found");
 }
 }
}

844 | Appendix

15. Finally, create a class named TempConverter to convert from degrees Celsius to
degrees Fahrenheit:

package com.packtpub.temps;

public class TempConverter {
 public static double convertToF(double degreesC) {
 double degreesF = (degreesC * 9/5) + 32;

 // Round to make nicer output.
 return Math.round(degreesF * 10.0) / 10.0;
 }
}

Chapter 7: Databases and JDBC | 845

Chapter 7: Databases and JDBC

Activity: Solution

1. The student table holds information on the student:

CREATE TABLE IF NOT EXISTS student
(
STUDENT_ID long,
FIRST_NAME varchar(255),
LAST_NAME varchar(255),
PRIMARY KEY (STUDENT_ID)
);

2. The chapter table has a chapter number and a name:

CREATE TABLE IF NOT EXISTS chapter
(
CHAPTER_ID long,
CHAPTER_NAME varchar(255),
PRIMARY KEY (CHAPTER_ID)
);

Note that the chapter ID is the chapter number.

3. The student_progress table maps a student ID to a chapter ID, indicating that a
particular student completed a particular chapter:

CREATE TABLE IF NOT EXISTS student_progress
(
STUDENT_ID long,
CHAPTER_ID long,
COMPLETED date,
PRIMARY KEY (STUDENT_ID, CHAPTER_ID)
);

Note that by using both student ID and chapter ID as the composite primary key,
each student can complete each chapter just once. There are no do-overs.

846 | Appendix

4. Here is a hypothetical student:

INSERT INTO student
(STUDENT_ID, FIRST_NAME, LAST_NAME)
VALUES (1, 'BOB', 'MARLEY');

Note that in order to make it easier to match the names, we insert all of them in
uppercase.

5. The following INSERT statements provide data for the first seven chapters:

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (1, 'Getting Started');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (2, 'Learning the Basics');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (3, 'Object-Oriented Programming: Classes and Methods');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (4, 'Collections, Lists, and Java's Built-In APIs');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (5, 'Exceptions');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (6, 'Modules, Packages, and Libraries');

INSERT INTO chapter
(CHAPTER_ID, CHAPTER_NAME)
VALUES (7, 'Databases and JDBC');

Note the two single quotes used to insert text with a quote.

Chapter 7: Databases and JDBC | 847

6. To add a record of student_progress, generate an INSERT statement like the

7. following:

INSERT INTO student_progress
(STUDENT_ID, CHAPTER_ID, COMPLETED)
VALUES (1, 2, '2019-08-28');

This should be done within a Java program using a PreparedStatement.

8. To query for a student's progress, use a query such as the following:

SELECT first_name, last_name, chapter.chapter_id, chapter_name, completed
FROM student, chapter, student_progress
WHERE first_name = 'BOB'
AND last_name = 'MARLEY'
AND student.student_id = student_progress.student_id
AND chapter.chapter_id = student_progress.chapter_id
ORDER BY chapter_id;

Note that the first name and last name will be input by the user. This should be
placed in PreparedStatement.

The ORDER BY clause ensures that the output will appear in chapter order.

9. The ShowProgress program outputs the chapters a given student has completed:

package com.packtpub.db;
import java.sql.*;
public class ShowProgress {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Error: please enter the first and last
name.");
 System.exit(-1);
 }
 // Get student first and last name as inputs.
 String firstName = args[0].toUpperCase();
 String lastName = args[1].toUpperCase();
 // Query all chapters completed for the student.
 String sql = "SELECT chapter.chapter_id, chapter_name, completed "
+
 "FROM student, chapter, student_progress " +
 "WHERE first_name = ? " +
 "AND last_name = ? " +
 "AND student.student_id = student_progress.student_id " +

848 | Appendix

 "AND chapter.chapter_id = student_progress.chapter_id " +
 " order by chapter_id";

 PreparedStatement statement = null;

 Connection conn = null;

 try {
 conn = DriverManager.getConnection("jdbc:h2:~/test", "sa",
"");

 statement = conn.prepareStatement(sql);
 statement.setString(1, firstName);
 statement.setString(2, lastName);

 ResultSet results = statement.executeQuery();

 System.out.println(firstName + " " + lastName);

 while (results.next()) {
 Long chapterId = results.getLong("CHAPTER_ID");
 String chap = chapterId.toString();
 if (chap.length() < 2) {
 chap = " " + chap;
 }

 StringBuilder builder = new StringBuilder();
 builder.append(results.getDate("COMPLETED"));
 builder.append(" ");
 builder.append(chap);
 builder.append(" ");
 builder.append(results.getString("CHAPTER_NAME"));

 System.out.println(builder.toString());
 }

 if (results != null) {
 results.close();
 }

Chapter 7: Databases and JDBC | 849

 if (statement != null) {
 statement.close();
 }

 } catch (SQLException e) {
 e.printStackTrace();

 } finally {
 try {
 if (statement != null) {
 statement.close();
 }

 conn.close();
 } catch (SQLException nested) {
 nested.printStackTrace();
 }
 }
 }
}

Note how the input first and last names are forced to uppercase prior to searching
the database. Also, note that we do not allow two students to have the same name.
This is not realistic.

After querying, the program outputs the student's name and then one line for each
chapter completed.

10. To run this program, build the shadowJar task in Gradle, and then run a command
such as the following in the IntelliJ Terminal window:

java -cp customers-1.0-all.jar com.packtpub.db.ShowProgress bob marley

The jar file is located in the libs subdirectory of the build directory.

The output will appear as follows:

BOB MARLEY
2019-03-01 2 Learning the Basics
2019-03-01 3 Object-Oriented Programming: Classes and Methods
2019-03-01 7 Databases and JDBC

850 | Appendix

11. The RecordProgress program adds a student_progress record:

package com.packtpub.db;

import java.sql.*;

public class RecordProgress {
 public static void main(String[] args) {

 // Get input
 if (args.length < 3) {
 System.err.println("Error: please enter first last chapter.");
 System.exit(-1);
 }

 // Get student first and last name and chapter number.
 String firstName = args[0].toUpperCase();
 String lastName = args[1].toUpperCase();

 long chapterId = Long.parseLong(args[2]);

 // Store a student_progress record
 RecordProgress progress = new RecordProgress();

 progress.storeStudentProgress(firstName, lastName, chapterId);

 }

 public void storeStudentProgress(String firstName,
 String lastName, long chapterId) {

 Connection conn = null;
 PreparedStatement statement = null;

 String insertProgress = "INSERT INTO student_progress " +
 "(STUDENT_ID, CHAPTER_ID, COMPLETED)" +
 "VALUES (?, ?, ?);";

Chapter 7: Databases and JDBC | 851

 try {
 conn = DriverManager.getConnection("jdbc:h2:~/test", "sa",
"");

 // The chapter ID is the same as the chapter number.

 // Get the student ID by looking up from the student's name.
 Long studentId = getStudentId(conn, firstName, lastName);

 statement = conn.prepareStatement(insertProgress);
 statement.setLong(1, studentId);
 statement.setLong(2, chapterId);

 // Completed now.
 statement.setDate(3, new Date(System.currentTimeMillis()));

 int rowsChanged = statement.executeUpdate();

 System.out.println("Number rows added: " + rowsChanged);

 } catch (SQLException e) {
 e.printStackTrace();

 } finally {
 try {
 if (statement != null) {
 statement.close();
 }

 conn.close();
 } catch (SQLException nested) {
 nested.printStackTrace();
 }
 }
 }

852 | Appendix

 public Long getStudentId(Connection conn, String firstName,
 String lastName) throws SQLException {
 Long studentId = 1L;

 String findStudent = "SELECT student_id from student" +
 " WHERE first_name = ? " +
 " AND last_name = ? ";

 PreparedStatement statement = conn.prepareStatement(findStudent);
 statement.setString(1, firstName);
 statement.setString(2, lastName);

 ResultSet results = statement.executeQuery();

 // We expect only one row returned.
 while (results.next()) {
 studentId = results.getLong(1);
 }

 return studentId;
 }
}

12. To run this program, use a command such as the following:

java -cp customers-1.0-all.jar com.packtpub.db.RecordProgress bob marley 4

You will see output like the following:

Number rows added: 1

As before, the input names are forced to uppercase prior to searching the
database.

Chapter 8: Sockets, Files, and Streams | 853

Chapter 8: Sockets, Files, and Streams

Activity 1: Solution
import java.io.IOException;

import java.nio.file.*;

import java.nio.file.attribute.BasicFileAttributes;

import java.util.Collections;

public class Activity01 {

 public static void main(String[] args) throws IOException {

 Path path = Paths.get(System.getProperty("user.home"));

 Files.walkFileTree(path, Collections.emptySet(), 3, new
SimpleFileVisitor<Path>() {

 @Override

 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {

 String [] pathArray = path.toString().split("/");

 int depthInit = pathArray.length;

 String [] fileArray = dir.toString().split("/");

 int depthCurrent = fileArray.length;

 for (int i = depthInit; i < depthCurrent; i++) {

 System.out.print(" ");

 }

854 | Appendix

 System.out.println(fileArray[fileArray.length - 1]);

 return FileVisitResult.CONTINUE;

 }

 @Override

 public FileVisitResult visitFileFailed(Path file, IOException
exc)

 throws IOException {

 System.out.println("visitFileFailed: " + file);

 return FileVisitResult.CONTINUE;

 }

 });

 }

}

Activity 2: Solution

Client.java

import java.io.*;

import java.net.*;

public class Client {

 public static void main(String[] args) throws IOException {

 if (args.length != 2) {

 System.err.println(

 "Usage: java EchoClient <host name> <port number>");

 System.exit(1);

 }

 String hostName = args[0];

 int portNumber = Integer.parseInt(args[1]);

Chapter 8: Sockets, Files, and Streams | 855

 try (

 Socket echoSocket = new Socket(hostName, portNumber);

 PrintWriter out =

 new PrintWriter(echoSocket.getOutputStream(), true);

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(echoSocket.
getInputStream()));

 BufferedReader stdIn =

 new BufferedReader(

 new InputStreamReader(System.in))

) {

 String userInput;

 // THIS IS THE MODDED CODE

 while ((userInput = stdIn.readLine()) != null) {

 out.println(userInput);

 if (userInput.substring(0,3).equals("bye")) {

 System.out.println("Bye bye!");

 System.exit(0);

 }

 System.out.println("echo: " + in.readLine());

 }

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host " + hostName);

 System.exit(1);

 } catch (IOException e) {

 System.err.println("Couldn't get I/O for the connection to " +
hostName);

856 | Appendix

 System.exit(1);

 }

 }

}

To PD: Apply SC-File style to Client.java

Server.java

import java.net.*;

import java.io.*;

public class Server {

 public static void main(String[] args) throws IOException {

 if (args.length != 1) {

 System.err.println("Usage: java EchoServer <port number>");

 System.exit(1);

 }

 int portNumber = Integer.parseInt(args[0]);

 try (

 ServerSocket serverSocket =

 new ServerSocket(Integer.parseInt(args[0]));

 Socket clientSocket = serverSocket.accept();

 PrintWriter out =

 new PrintWriter(clientSocket.getOutputStream(),
true);

Chapter 8: Sockets, Files, and Streams | 857

 BufferedReader in = new BufferedReader(

 new InputStreamReader(clientSocket.
getInputStream()));

) {

 String inputLine;

 // THIS IS THE ADDED CODE

 int contID = 0;

 while ((inputLine = in.readLine()) != null) {

 contID++;

 out.println(contID + "-" + inputLine);

 if (inputLine.substring(0,3).equals("bye")) {

 System.out.println("Bye bye!");

 System.exit(0);

 }

 }

 } catch (IOException e) {

 System.out.println("Exception caught when trying to listen on
port "

 + portNumber + " or listening for a connection");

 System.out.println(e.getMessage());

 }

 }

}

858 | Appendix

The expected interaction between the server and the client should be as follows:

Figure 8:2: Interaction between server and client

Chapter 9: Working with HTTP | 859

Chapter 9: Working with HTTP

Activity: Solution

The program is relatively short. The main task is to figure out the CSS query for the
select() method call:

package com.packtpub.http;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Document;

import org.jsoup.nodes.Element;

import org.jsoup.select.Elements;

import java.io.IOException;

public class Activity1 {

 public static void main(String[] args) {

 try {

 String url = "http://hc.apache.org/";

 Document doc =

 Jsoup.connect(url).get();

 Elements sections = doc.select("div.section");

 for (Element div : sections) {

860 | Appendix

 for (Element child : div.children()) {

 String tag = child.tagName();

 if (tag.equalsIgnoreCase("h3")) {

 Elements links = child.getElementsByTag("a");

 for (Element link : links) {

 System.out.println(link.text());

 }

 }

 }

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Chapter 11: Processes | 861

Chapter 11: Processes

Activity: Solution

1. The child should have an algorithm that looks like the following:

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;

import static java.lang.Thread.sleep;

public class Child {

 public static void main(String[] args) throws java.io.IOException,
InterruptedException {
 int ch;
 System.out.print ("Let's echo: ");

 // echo out whatever comes from system in
 while ((ch = System.in.read ()) != '\n')
 System.out.print ((char) ch);

 // the Child process will be logged in a file here
 BufferedWriter bufferedWriter = new BufferedWriter(
 new FileWriter(new File("mycal2022.txt")));

 int cont = 0;
 while(cont <= 50) {
 System.out.println(cont++);

 // add this to loop the counting (useful for testing)
 //cont %= 50;

862 | Appendix

 // added this to log data in local file + EOL
 bufferedWriter.write(cont + "\n");
 bufferedWriter.flush();

 sleep(1000);

 if (System.in.available() > 0) {
 ch = System.in.read();

 // reset counter if asterisk
 if (ch == '*') {
 cont = 0;
 }
 }
 }
 bufferedWriter.close();
 }
}

Here, there is a call to System.in.available() to check whether there is any data in
the output buffer from the child program.

2. On the other hand, the parent program should consider including something along
the lines of:

import java.io.*;
import java.util.concurrent.TimeUnit;

public class Parent {
 public static void main(String[] args) throws IOException {
 Runtime runtime = Runtime.getRuntime();
 Process process = null;

 try {
 // for Linux / MacOS

Chapter 11: Processes | 863

 process = runtime.exec("java -cp ../../../../Child/out/
production/Child: Child");
 // for Windows
 // process = runtime.exec("java -cp ../../../../Child/out/
production/Child; Child");
 } catch (IOException ioe) {
 System.out.println("WARNING: couldn't start your app");
 }

 try {
 process.waitFor(5, TimeUnit.SECONDS);
 } catch (InterruptedException ie) {
 System.out.println("WARNING: interrupted exception fired");
 }

 System.out.println("trying to write");
 OutputStream out = process.getOutputStream();
 Writer writer = new OutputStreamWriter(out);
 writer.write("This is how we roll!\n");
 writer.flush();

 File file = new File("data.log");
 FileWriter fileWriter = new FileWriter(file);
 BufferedWriter bufferedWriter = new BufferedWriter(fileWriter);

 System.out.println("trying to read");
 InputStream in = process.getInputStream();
 Reader reader = new InputStreamReader(in);
 BufferedReader bufferedReader = new BufferedReader(reader);
 String line = bufferedReader.readLine();

 // send to screen
 System.out.println(line);

864 | Appendix

 // send to file
 bufferedWriter.write(line);
 bufferedWriter.flush();

 while (line != null) {
 // send to screen
 System.out.println(line);

 // send to file + EOL
 bufferedWriter.write(line + "\n");
 bufferedWriter.flush();

 // read next line
 line = bufferedReader.readLine();

 // this will force the reset of the counter
 // the program will therefore never end
 if (Integer.parseInt(line) == 37) {
 writer.write('*');
 writer.flush(); // needed because of the buffered output
 System.out.println("sent message");
 }
 }
 process.destroy();
 }
}

Chapter 12: Regular Expressions | 865

Chapter 12: Regular Expressions

Activity: Solution
package com.packt.java.chapter12;

import java.io.File;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class Activity1 {

 public static void main(String[] args) {

 String filePath = System.getProperty("user.dir") + File.separator +
"res" + File.separator + "packt.txt";

 try {

 String packtDump = new String(Files.readAllBytes(Paths.
get(filePath)));

 String regex = "(?:<a href=\")(?!http[s]?:/)(?![#])(?:[^\"])
([^\"]+)(?:\")";

 Pattern pattern = Pattern.compile(regex);

 Matcher matcher = pattern.matcher(packtDump);

866 | Appendix

 List<String> links = new ArrayList<>();

 while (matcher.find()) {

 links.add(matcher.group(1));

 }

 Map<String, Integer> groups = new HashMap<>();

 for (String link : links) {

 String group = link;

 if (link.contains("/")) {

 group = link.substring(0, link.indexOf("/"));

 }

 if (!groups.containsKey(group)) {

 groups.put(group, 0);

 }

 int value = groups.get(group) + 1;

 groups.put(group, value);

 }

 System.out.println(links);

 System.out.println(groups);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Chapter 13: Functional Programming with Lambda Expressions | 867

Chapter 13: Functional Programming with Lambda Expressions

Activity: Solution
package com.packt.java.chapter13;

import java.util.*;

public class Activity1 {

 public static void main(String[] args) {

 ShoppingCart myFirstCart = new ShoppingCart(new HashMap<>());

 ShoppingCart mySecondCart = myFirstCart.addItem(new
ShoppingItem("Chair", 150));

 ShoppingCart myThirdCart = mySecondCart.addItem(new
ShoppingItem("Table", 350));

 ShoppingCart myFourthCart = myThirdCart.removeItem(new
ShoppingItem("Table", 350));

 ShoppingCart myFifthCart = myFourthCart.addItem(new
ShoppingItem("Table", 350));

 ShoppingCart mySixthCart = myFifthCart.addItem(new
ShoppingItem("Table", 350));

 }

 private static final class ShoppingItem {

 private final String name;

 private final int price;

 public ShoppingItem(String name, int price) {

 this.name = name;

868 | Appendix

 this.price = price;

 }

 }

 public static final class ShoppingCart {

 public final Map<String, Integer> mShoppingList;

 public ShoppingCart(Map<String, Integer> list) {

 mShoppingList = Collections.unmodifiableMap(list);

 }

 public ShoppingCart addItem(ShoppingItem item) {

 Map<String, Integer> newList = new HashMap<>(mShoppingList);

 int value = 0;

 if (newList.containsKey(item.name)) {

 value = newList.get(item.name);

 }

 newList.put(item.name, ++value);

 return new ShoppingCart(newList);

 }

 public ShoppingCart removeItem(ShoppingItem item) {

 Map<String, Integer> newList = new HashMap<>(mShoppingList);

 int value = 0;

 if (newList.containsKey(item.name)) {

 value = newList.get(item.name);

 }

 if (value > 0) {

 newList.put(item.name, --value);

 }

 return new ShoppingCart(newList);

Chapter 13: Functional Programming with Lambda Expressions | 869

 }

 public ShoppingCart addItems(ShoppingItem... items) {

 Map<String, Integer> newList = new HashMap<>(mShoppingList);

 ShoppingCart newCart = null;

 for (ShoppingItem item : items) {

 newCart = addItem(item);

 }

 return newCart;

 }

 }

}

870 | Appendix

Chapter 14: Recursion

Activity: Solution

Here is the full code for this activity:

Fibonacci.java

package com.packtpub.recursion;

public class Fibonacci {

 // Generates the value for this number

 public static int fibonacci(int number) {

 if (number == 0) {

 return number;

 } else if (number == 1) {

 return 1;

 } else {

 return (fibonacci(number - 1) + fibonacci(number - 2));

 }

 }

 public static void main(String[] args) {

 for (int i = 0; i < 15; i++) {

 System.out.println(fibonacci(i));

 }

 }

}

Chapter 15: Processing Data with Streams | 871

Chapter 15: Processing Data with Streams

Activity 1: Solution

1. Build a function that will find the cheapest fruit from a list of ShoppingArticles.

2. Build a function that will find the most expensive vegetable from a list of
ShoppingArticles.

3. Build a function that will gather all fruits in a separate list.

4. Build a function that will find the five most expensive articles in the database.

5. Build a function that will find the five least expensive articles in the database.

The detailed code is provided below:

 package com.packt.java.chapter15;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.stream.Stream;

public class Activity1 {

 public static void main(String[] args) {

 ShoppingCart fruitCart = new ShoppingCart(List.of(

 new ShoppingArticle("Orange", 1.5),

 new ShoppingArticle("Apple", 1.7),

 new ShoppingArticle("Banana", 2.2)

));

 ShoppingCart vegetableCart = new ShoppingCart(List.of(

 new ShoppingArticle("Cucumber", 0.8),

 new ShoppingArticle("Salad", 1.2),

 new ShoppingArticle("Tomatoes", 2.7)

872 | Appendix

));

 ShoppingCart meatAndFishCart = new ShoppingCart(List.of(

 new ShoppingArticle("Cod", 46.5),

 new ShoppingArticle("Beef", 29.1),

 new ShoppingArticle("Salmon", 35.2)

));

 double sum = calculatePrice(fruitCart, vegetableCart,
meatAndFishCart);

 System.out.println(String.format("Sum: %.2f", sum));

 Map<String, Double> discounts = Map.of("Cod", 0.2, "Salad", 0.5);

 double sumDiscount = calculatePriceWithDiscounts(discounts,
fruitCart, vegetableCart, meatAndFishCart);

 System.out.println(String.format("Discount sum: %.2f", sumDiscount));

 }

 private static double calculatePrice(ShoppingCart... carts) {

 return Stream.of(carts)

 .flatMap((cart) -> { return cart.mArticles.stream(); })

 .mapToDouble((item) -> { return item.price; })

 .sum();

 }

 private static final class ShoppingCart {

 final List<ShoppingArticle> mArticles;

 public ShoppingCart(List<ShoppingArticle> list) {

 mArticles = List.copyOf(list);

 }

Chapter 15: Processing Data with Streams | 873

 }

 private static final class ShoppingArticle {

 final String name;

 final double price;

 public ShoppingArticle(String name, double price) {

 this.name = name;

 this.price = price;

 }

 }

 private static double calculatePriceWithDiscounts(Map<String, Double>
discounts, ShoppingCart... carts) {

 return Stream.of(carts)

 .flatMap((cart) -> { return cart.mArticles.stream(); })

 .mapToDouble((item) -> {

 if (discounts.containsKey(item.name)) {

 return item.price - item.price * discounts.get(item.
name);

 }

 return item.price;

 })

 .sum();

 }

}

874 | Appendix

Activity 2: Solution
package com.packt.java.chapter15;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.util.Arrays;

import java.util.Comparator;

import java.util.List;

import java.util.Optional;

import java.util.stream.Collectors;

import java.util.stream.Stream;

public class Activity2 {

 public static void main(String[] args) {

 try {

 List<ShoppingArticle> database = loadDatabaseFile();

 System.out.println(database);

 System.out.println("Cheapest fruit: " +
findCheapestFruit(database));

 System.out.println("Most expensive vegetable: " +
findMostExpensiveVegetable(database));

 System.out.println("Fruits: " + findFruits(database));

 System.out.println("Five most expensive articles: " +
findFiveMostExpensive(database));

Chapter 15: Processing Data with Streams | 875

 System.out.println("Five cheapest articles: " +
findFiveCheapest(database));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 private static List<ShoppingArticle> loadDatabaseFile() throws
IOException {

 try (Stream<String> stream = Files.lines(Path.of("res/database.
csv"))) {

 return stream.peek((line) -> {

 System.out.println(line);

 }).skip(1).map((line) -> {

 return line.split(",");

 }).peek((arr) -> {

 System.out.println(Arrays.toString(arr));

 }).map((arr) -> {

 return new ShoppingArticle(arr[0], arr[1], Double.
valueOf(arr[2]), arr[3]);

 }).peek((art) -> {

 System.out.println(art);

 }).collect(Collectors.toUnmodifiableList());

 } catch (IOException e) {

 e.printStackTrace();

 }

 return null;

 }

 private static class ShoppingArticle {

 final String name;

 final String category;

876 | Appendix

 final double price;

 final String unit;

 private ShoppingArticle(String name, String category, double price,
String unit) {

 this.name = name;

 this.category = category;

 this.price = price;

 this.unit = unit;

 }

 @Override

 public String toString() {

 return name + " (" + category + ")";

 }

 }

 private static ShoppingArticle findCheapestFruit (List<ShoppingArticle>
articles) {

 return articles.stream()

 .filter((article) -> article.category.equals("Fruits"))

 .min(Comparator.comparingDouble(article -> article.price))

 .orElse(null);

 }

 private static ShoppingArticle findMostExpensiveVegetable
(List<ShoppingArticle> articles) {

 return articles.stream()

 .filter((article) -> article.category.equals("Vegetables"))

 .max(Comparator.comparingDouble(article -> article.price))

 .orElse(null);

 }

Chapter 15: Processing Data with Streams | 877

 private static List<ShoppingArticle> findFruits (List<ShoppingArticle>
articles) {

 return articles.stream()

 .filter((article) -> article.category.equals("Fruits"))

 .collect(Collectors.toList());

 }

 private static List<ShoppingArticle> findFiveCheapest
(List<ShoppingArticle> articles) {

 return articles.stream()

 .sorted(Comparator.comparingDouble(article -> article.
price))

 .limit(5)

 .collect(Collectors.toList());

 }

 private static List<ShoppingArticle> findFiveMostExpensive
(List<ShoppingArticle> articles) {

 return articles.stream()

 .sorted((article1, article2) -> Double.compare(article2.
price, article1.price))

 .limit(5)

 .collect(Collectors.toList());

 }

}

878 | Appendix

Chapter 16: Predicates and Other Functional Interfaces

Activity 1: Solution
package com.packt.java.chapter16;

import java.util.ArrayList;

import java.util.List;

import java.util.Scanner;

import java.util.function.Predicate;

public class Activity1 {

 public static void main(String[] args) {

 List<Sensor> sensors = new ArrayList<>();

 sensors.add(new Gateway(34, false));

 sensors.add(new Gateway(44, false));

 sensors.add(new Gateway(74, false));

 sensors.add(new Gateway(56, false));

 sensors.add(new Gateway(18, false));

 sensors.add(new Gateway(92, false));

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter sensor index:");

 while (scanner.hasNext()) {

 int index = scanner.nextInt();

 if (index < 0) {

 continue;

 }

Chapter 16: Predicates and Other Functional Interfaces | 879

 System.out.print("Enter (b)attery health or toggle (t)riggered
status:");

 String action = scanner.next();

 if (action.toLowerCase().equals("b")) {

 System.out.print("Enter battery health:");

 sensors.get(index).batteryHealth(scanner.nextInt());

 } else if (action.toLowerCase().equals("t")) {

 sensors.get(index).triggered(!sensors.get(index).
triggered());

 }

 printAlarmStatus(sensors);

 System.out.print("Enter sensor index:");

 }

 }

 private static void printAlarmStatus(List<Sensor> sensors) {

 Predicate<Sensor> hasAlarmOrWarning = new HasAlarm().or(new
HasWarning());

 boolean alarmOrWarning = false;

 for (Sensor sensor : sensors) {

 if (hasAlarmOrWarning.test(sensor)) {

 alarmOrWarning = true;

 }

 }

880 | Appendix

 if (alarmOrWarning) {

 System.out.println("Alarm, or warning, was triggered!");

 for (Sensor sensor : sensors) {

 System.out.println(sensor.batteryHealth() + ", " + sensor.
triggered());

 }

 }

 }

}

Activity 2: Solution
package com.packt.java.chapter16;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.stream.Stream;

public class Activity2 {

 public static void main(String[] args) {

 List<Sensor> sensors = new ArrayList<>();

 sensors.add(new Gateway(34, false));

 sensors.add(new Gateway(14, true));

 sensors.add(new Fire(78, false, 21));

 sensors.add(new Gateway(74, false));

 sensors.add(new Gateway(8, false));

Chapter 16: Predicates and Other Functional Interfaces | 881

 sensors.add(new Movement(87, false, 45));

 sensors.add(new Gateway(18, false));

 sensors.add(new Fire(32, false, 23));

 sensors.add(new Gateway(9, false));

 sensors.add(new Movement(76, false, 41));

 ExtractBatteryHealth extractBatteryHealth = new
ExtractBatteryHealth();

 Integer[] batteryHealths = sensors.stream().
map(extractBatteryHealth).toArray(Integer[]::new);

 System.out.println(Arrays.toString(batteryHealths));

 System.out.println(loopedAverageHealth(batteryHealths));

 System.out.println(streamedAverageHealth(batteryHealths));

 System.out.println(recursiveAverageHealth(batteryHealths,
batteryHealths.length - 1));

 }

 private static double loopedAverageHealth(Integer[] batteryHealths) {

 double average = 0;

 for (int i = 0; i < batteryHealths.length; i++) {

 average += batteryHealths[i];

 }

 average = average / batteryHealths.length;

 return average;

 }

882 | Appendix

 private static double streamedAverageHealth(Integer[] batteryHealths) {

 return Stream.of(batteryHealths)

 .mapToDouble(Integer::intValue)

 .average()

 .orElse(0);

 }

 private static double recursiveAverageHealth(Integer[] batteryHealths,
int index) {

 double average = batteryHealths[index] / (double) batteryHealths.
length;

 if (index == 0) {

 return average;

 } else {

 return average + recursiveAverageHealth(batteryHealths, index -
1);

 }

 }

}

Activity 3: Solution
package com.packt.java.chapter16;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.function.Function;

import java.util.stream.Stream;

public class Activity3 {

 public static void main(String[] args) {

 List<Sensor> sensors = new ArrayList<>();

Chapter 16: Predicates and Other Functional Interfaces | 883

 sensors.add(new Gateway(34, false));

 sensors.add(new Gateway(14, true));

 sensors.add(new Fire(78, false, 21));

 sensors.add(new Gateway(74, false));

 sensors.add(new Gateway(8, false));

 sensors.add(new Movement(87, false, 45));

 sensors.add(new Gateway(18, false));

 sensors.add(new Fire(32, false, 23));

 sensors.add(new Gateway(9, false));

 sensors.add(new Movement(76, false, 41));

 Function<Sensor, Integer> extractBatteryHealth = sensor -> sensor.
batteryHealth();

 Integer[] batteryHealths = sensors.stream().
map(extractBatteryHealth).toArray(Integer[]::new);

 System.out.println(Arrays.toString(batteryHealths));

 System.out.println(loopedAverageHealth(batteryHealths));

 System.out.println(streamedAverageHealth(batteryHealths));

 System.out.println(recursiveAverageHealth(batteryHealths,
batteryHealths.length - 1));

 }

 private static double loopedAverageHealth(Integer[] batteryHealths) {

 double average = 0;

884 | Appendix

 for (int i = 0; i < batteryHealths.length; i++) {

 average += batteryHealths[i];

 }

 average = average / batteryHealths.length;

 return average;

 }

 private static double streamedAverageHealth(Integer[] batteryHealths) {

 return Stream.of(batteryHealths)

 .mapToDouble(Integer::intValue)

 .average()

 .orElse(0);

 }

 private static double recursiveAverageHealth(Integer[] batteryHealths,
int index) {

 double average = batteryHealths[index] / (double) batteryHealths.
length;

 if (index == 0) {

 return average;

 } else {

 return average + recursiveAverageHealth(batteryHealths, index -
1);

 }

 }

}

Chapter 17: Reactive Programming with Java Flow | 885

Chapter 17: Reactive Programming with Java Flow

Activity: Solution
package com.packt.java.chapter17;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.Arrays;

import java.util.concurrent.Flow;

import java.util.function.Supplier;

import java.util.stream.Stream;

public class Activity1 {

 public static void main(String[] args) {

 Supplier<String> supplier = new Supplier<String>() {

 int index;

 @Override

 public String get() {

 String[] data = getStrings();

 if (index < data.length - 1) {

 return data[index++];

 } else {

 return null;

 }

 }

 };

 NumberPublisher publisher = new NumberPublisher(supplier);

886 | Appendix

 NumberProcessorEnhanced processor = new NumberProcessorEnhanced();

 publisher.subscribe(processor);

 processor.subscribe(new Flow.Subscriber<>() {

 Flow.Subscription subscription;

 @Override

 public void onSubscribe(Flow.Subscription subscription) {

 this.subscription = subscription;

 subscription.request(1);

 }

 @Override

 public void onNext(Integer item) {

 System.out.println("onNext: " + item);

 subscription.request(1);

 }

 @Override

 public void onError(Throwable throwable) {

 System.out.println("onError: " + throwable.getMessage());

 }

 @Override

 public void onComplete() {

 System.out.println("onComplete()");

 }

 });

 }

Chapter 17: Reactive Programming with Java Flow | 887

 private static String[] getStrings() {

 String filePath = "res/numbers.txt";

 try (Stream<String> words = Files.lines(Paths.get(filePath))) {

 return words.flatMap((line) -> Arrays.stream(line.split("[\\
s\\n]+")))

 .filter((word) -> word.length() > 0)

 .toArray(String[]::new);

 } catch (IOException e) {

 e.printStackTrace();

 }

 return null;

 }

}

888 | Appendix

Chapter 18: Unit Testing

Activity: Solution

The WordCount class can be written as follows:

WordCount.java

package com.packtpub.testing;

public class WordCount {

 public int countWords(String text) {

 int count = 0;

 if (text != null) {

 String trimmed = text.trim();

 if (trimmed.length() > 0) {

 String[] words = trimmed.split("\\s+");

 count = words.length;

 }

 }

 return count;

 }

}

Notice how the countWords() method checks for a null string. In addition to this, if not
null, the countWords() method trims any spaces at the beginning or end of the string. It
then checks whether there is a length greater than zero to eliminate the input with just
spaces.

Chapter 18: Unit Testing | 889

You can then write a parameterized test as follows:

WordCountTest.java

package com.packtpub.testing;

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.params.ParameterizedTest;

import org.junit.jupiter.params.provider.CsvSource;

public class WordCountTest {

 @ParameterizedTest

 @CsvSource({

 "'A man, a plan, a canal. Panama', 7",

 "'Able was I ere I saw Elba', 7",

 ", 0",

 "'', 0",

 "' ', 0",

 "' A cat in the hat with spaces ', 7"

 })

 public void testWordCounts(String text, int expected) {

 WordCount wordCount = new WordCount();

 int count = wordCount.countWords(text);

 Assertions.assertEquals(expected, count,

 "Expected " + expected + " for input[" + text + "]");

 }

}

890 | Appendix

Chapter 19: Reflection

Activity: Solution

1. The Location class (Location.java) just holds latitudinal and longitudinal values.
You can generate the getter and setter methods:

package com.packtpub.activity;

public class Location {
 private double latitude;
 private double longitude;

 public Location() {
 // Needed for conversion from JSON.
 }

 public Location(double latitude, double longitude) {
 this.latitude = latitude;
 this.longitude = longitude;
 }

 public double getLatitude() {
 return latitude;
 }

 public void setLatitude(double latitude) {
 this.latitude = latitude;
 }

 public double getLongitude() {
 return longitude;
 }

 public void setLongitude(double longitude) {
 this.longitude = longitude;
 }

 public String toString() {
 return latitude + ", " + longitude;
 }
}

Chapter 19: Reflection | 891

2. Note that this class must have a no-parameter constructor for the JSON
conversion.

3. The Delivery class is more complicated (Delivery.java):

package com.packtpub.activity;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;

public class Delivery {
 public static final double EARTH_RADIUS = 6367;
 public static final double MAX_DISTANCE = 5.0;

 private Location customer;
 private Location restaurant;
 private double distance;
 private boolean withinMaximum = false;

 public void init(double customerLat, double customerLong,
 double restaurantLat, double restaurantLong) {
 customer = new Location(customerLat, customerLong);
 restaurant = new Location(restaurantLat, restaurantLong);
 distance = calculateDistance();

 withinMaximum = false;
 if (distance <= MAX_DISTANCE) {
 withinMaximum = true;
 }
 }
 public double calculateDistance() {
 return haversine(customer.getLatitude(),
 customer.getLongitude(),
 restaurant.getLatitude(),
 restaurant.getLongitude());
 }

 public String toString() {
 StringBuilder builder = new StringBuilder();

892 | Appendix

 builder.append("Delivery \n");
 builder.append(" Customer: ");
 builder.append((customer.toString()));
 builder.append(("\n Restaurant: "));
 builder.append((restaurant.toString()));

 builder.append("\n Distance: ");
 builder.append(distance);
 builder.append(" km");

 if (withinMaximum) {
 builder.append("\n Is within maximum distance of ");
 } else {
 builder.append("\n Is not within maximum distance of ");
 }

 builder.append(MAX_DISTANCE);
 return builder.toString();
 }

 // Generated getters and setters.
 public Location getCustomer() {
 return customer;
 }

 public void setCustomer(Location customer) {
 this.customer = customer;
 }

 public Location getRestaurant() {
 return restaurant;
 }

 public void setRestaurant(Location restaurant) {
 this.restaurant = restaurant;
 }

 public double getDistance() {
 return distance;
 }

 public void setDistance(double distance) {

Chapter 19: Reflection | 893

 this.distance = distance;
 }

 public boolean isWithinMaximum() {
 return withinMaximum;
 }
 public void setWithinMaximum(boolean withinMaximum) {
 this.withinMaximum = withinMaximum;
 }

 // See http://www.faqs.org/faqs/geography/infosystems-faq/ Q5.1
 public static double haversine(double latitude1, double longitude1,
 double latitude2, double longitude2) {
 double deltaLat = Math.toRadians(latitude2 - latitude1);
 double deltaLong = Math.toRadians(longitude2 - longitude1);

 double lat1Radians = Math.toRadians(latitude1);
 double lat2Radians = Math.toRadians(latitude2);

 double a = Math.pow(Math.sin(deltaLat / 2),2) +
 Math.cos(lat1Radians) *
 Math.cos(lat2Radians) *
 Math.pow(Math.sin(deltaLong / 2),2);
 double greatCircleDistance = 2 * Math.asin(Math.sqrt(a));
 return EARTH_RADIUS * greatCircleDistance;
 }

 public static void main(String[] args) {

 // State Capitol, Minnesota, USA
 Delivery delivery = new Delivery();
 delivery.init(
 44.955276, -93.102228,
 44.943946, -93.104265
);
 System.out.println(delivery);
 // Victoria and Albert Museum, London, UK
 delivery.init(
 51.497559, -0.172427,
 51.485540, -0.162114

894 | Appendix

);
 System.out.println(delivery);
 // Natural History Museum, Stockholm, Sweden
 delivery.init(
 59.369072, 18.053856,
 59.308545, 18.066242

);
 System.out.println(delivery);
 // Convert to JSON.
 String json = null;
 ObjectMapper objectMapper = new ObjectMapper();
 try {
 json = objectMapper
 .writerWithDefaultPrettyPrinter()
 .writeValueAsString(delivery);

 System.out.println("As JSON:\n" + json);
 } catch (JsonProcessingException e) {
 e.printStackTrace();
 }
 // Convert from JSON to object.
 try {
 delivery = objectMapper.readValue(json, Delivery.class);
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println("From JSON: " + delivery);
 }
}

4. In this code, the init() method stores the two locations and calculates the
distance using the Haversine formula shown previously:

public void init(double customerLat, double customerLong,
 double restaurantLat, double restaurantLong) {
 customer = new Location(customerLat, customerLong);
 restaurant = new Location(restaurantLat, restaurantLong);
 distance = calculateDistance();
 withinMaximum = false;

Chapter 19: Reflection | 895

 if (distance <= MAX_DISTANCE) {
 withinMaximum = true;
 }
}

5. The customer location and the restaurant location are each held in Location
objects. The calculateDistance() method returns the distance between the two
locations. If the distance is less than, or equal to, the maximum allowed, then the
withinMaximum Boolean value is set to true.

6. The calculateDistance() method acts as a convenience wrapper over the
Haversine formula that performs the actual calculation:

public double calculateDistance() {
 return haversine(customer.getLatitude(),
 customer.getLongitude(),
 restaurant.getLatitude(),
 restaurant.getLongitude());
}

7. The toString() method exists just to print out the information in a manner that
is easy to read. This method uses a StringBuilder to build a string value from the
parts.

The getter and setter methods are generated by IntelliJ.

8. The main() method sets up three deliveries (at the locations shown previously).
The code calls the delivery.init() method with the locations of the customer and
the restaurant. Here's an example:

delivery.init(
 51.497559, -0.172427,
 51.485540, -0.162114
);
System.out.println(delivery);

896 | Appendix

9. Since the init() method calculates the distance between the restaurant and the
customer, the code simple-prints the delivery objects, which call the toString()
method to generate a summary of the delivery information and the distance.

The main() method then converts the last delivery to a JSON string, and then
converts the JSON string back to a Delivery object, printing the data in the object
so you can verify it.

The following code converts a Delivery object into a string in JSON format:

// Convert to JSON.
String json = null;
ObjectMapper objectMapper = new ObjectMapper();
try {
 json = objectMapper
 .writerWithDefaultPrettyPrinter()
 .writeValueAsString(delivery);
 System.out.println("As JSON:\n" + json);
 } catch (JsonProcessingException e) {
 e.printStackTrace();
}

10. And the following code converts the JSON-formatted string back to a Delivery
object:

// Convert from JSON to object.
try {
 delivery = objectMapper.readValue(json, Delivery.class);
} catch (IOException e) {
 e.printStackTrace(); }
 System.out.println("From JSON: " + delivery);

11. The last line prints out the delivery information so that you can verify
the conversion.

When you run this program, you will see the following output:

Delivery
 Customer: 44.955276, -93.102228
 Restaurant: 44.943946, -93.104265
 Distance: 1.2691988042129678 km
 Is within maximum distance of 5.0
Delivery
 Customer: 51.497559, -0.172427
 Restaurant: 51.48554, -0.162114
 Distance: 1.5142726944874043 km

Chapter 19: Reflection | 897

 Is within maximum distance of 5.0
Delivery
 Customer: 59.369072, 18.053856
 Restaurant: 59.308545, 18.066242
 Distance: 6.7625947361664975 km
 Is not within maximum distance of 5.0
As JSON:
{
 "customer" : {
 "latitude" : 59.369072,
 "longitude" : 18.053856
 },
 "restaurant" : {
 "latitude" : 59.308545,
 "longitude" : 18.066242
 },
 "distance" : 6.7625947361664975,
 "withinMaximum" : false
}
From JSON: Delivery
 Customer: 59.369072, 18.053856
 Restaurant: 59.308545, 18.066242
 Distance: 6.7625947361664975 km
 Is not within maximum distance of 5.0

898 | Appendix

Chapter 20: Optionals

Activity: Solution
import java.util.ArrayList;

import java.util.Iterator;

import java.util.Optional;

class Human {

 private String name;

 private Integer age;

 private String gender;

 // getters

 public Optional<String> getName() {

 return Optional.ofNullable(name);

 }

 public Optional<Integer> getAge() {

 return Optional.ofNullable(age);

 }

 public Optional<String> getGender() {

 return Optional.ofNullable(gender);

 }

 // setters

 public void setName(String _name) {

 name = _name;

 }

 public void setAge(Integer _age) {

 age = _age;

Chapter 20: Optionals | 899

 }

 public void setGender(String _gender) {

 gender = _gender;

 }

 // constructors (there could be more)

 Human () {

 // empty constructor, do nothing

 }

 Human (String _name) {

 name = _name;

 }

 Human (String _name, Integer _age) {

 name = _name;

 age = _age;

 }

 Human (String _name, Integer _age, String _gender) {

 name = _name;

 age = _age;

 gender = _gender;

 }

 Human (String _name, String _gender) {

 name = _name;

 gender = _gender;

 }

}

900 | Appendix

public class Main {

 public static void main(String[] args) {

 ArrayList<Human> humans = new ArrayList<Human>();

 humans.add(new Human("Maria"));

 humans.add(new Human("Petter", 32));

 humans.add(new Human("Janna", "female"));

 humans.add(new Human("Silvio", 55, "male"));

 humans.add(new Human("Annika", 25, "female"));

 Iterator<Human> theHuman = humans.iterator();

 // print a table header

 System.out.println("females under 30");

 System.out.println("name\tage\tgender");

 System.out.println("-------------------");

 // print the table content

 while (theHuman.hasNext()) {

 Optional<Human> human = Optional.of(theHuman.next());

 boolean isMale = human

 .flatMap(Human::getGender)

 .filter(g -> g.equals("male"))

 .isPresent();

 // female under 30

 boolean f1 = human.flatMap(Human::getAge).filter(g -> g < 30).
isPresent();

 boolean f2 = human.flatMap(Human::getGender).filter(g ->
g.equals("female")).isPresent();

 // print results

Chapter 20: Optionals | 901

 if (f1 & f2) {

 // the name is a mandatory parameter, will always be there

 human.flatMap(Human::getName).ifPresent((String s) -> System.
out.print(s + "\t"));

 if (human.flatMap(Human::getName).isEmpty()) {

 System.out.print("no name\t");

 }

 // the age is optional, if not present, insert a tab

 human.flatMap(Human::getAge).ifPresent((Integer s) -> System.
out.print(s + "\t"));

 if (human.flatMap(Human::getAge).isEmpty()) {

 System.out.print("\t");

 }

 // the gender is optional, but since there are no other

 // parameters, we do no need to add an extra tabulator

 human.flatMap(Human::getGender).ifPresent((String s) ->
System.out.print(s));

 // print the EOL

 System.out.println();

 }

 }

 }

}

902 | Appendix

Chapter 21: References

Activity 1: Solution
package com.packt.java.chapter21;

import java.lang.ref.ReferenceQueue;

import java.lang.ref.WeakReference;

public class Activity1 {

 public static void main(String[] args) throws InterruptedException {

 ShoppingCart shoppingCart1 = new ShoppingCart();

 ShoppingCart shoppingCart2 = new ShoppingCart();

 ShoppingCart shoppingCart3 = new ShoppingCart();

 ReferenceQueue<ShoppingCart> referenceQueue = new ReferenceQueue<>();

 WeakReference<ShoppingCart> weakReference1 = new
WeakReference<>(shoppingCart1, referenceQueue);

 WeakReference<ShoppingCart> weakReference2 = new
WeakReference<>(shoppingCart2, referenceQueue);

 WeakReference<ShoppingCart> weakReference3 = new
WeakReference<>(shoppingCart3, referenceQueue);

 System.out.println(String.format("Reference queue does %scontain
references", (referenceQueue.poll() == null ? "not " : "")));

 shoppingCart1 = null;

 shoppingCart2 = null;

 shoppingCart3 = null;

 System.gc();

Chapter 21: References | 903

 System.runFinalization();

 WeakReference<ShoppingCart> shoppingCartReferece = null;

 while ((shoppingCartReferece = (WeakReference<ShoppingCart>)
referenceQueue.poll()) != null) {

 System.out.println(String.format("Reference was %scleared",
shoppingCartReferece.get() == null ? "": "not "));

 }

 }

}

Activity 2: Solution
package com.packt.java.chapter21;

import java.util.WeakHashMap;

public class Activity2 {

 public static void main(String[] args) {

 Student harry = new Student("Harry");

 TestResult harryResult = new TestResult(harry);

 Student jenny = new Student("Jenny");

 TestResult jennyResult = new TestResult(jenny);

 WeakHashMap<Student, Integer> testResults = new WeakHashMap<>();

 testResults.put(harry, 23);

 testResults.put(jenny, 25);

 System.out.println("Test results: " + testResults.size());

 harry = null;

 System.gc();

904 | Appendix

 System.runFinalization();

 System.out.println("Test results: " + testResults.size());

 }

 private static class TestResult {

 Student student;

 TestResult(Student student) {

 this.student = student;

 }

 }

}

Activity 3: Solution
package com.packt.java.chapter21;

import java.lang.ref.WeakReference;

import java.util.WeakHashMap;

public class Activity3 {

 public static void main(String[] args) {

 Student harry = new Student("Harry");

 TestResult harryResult = new TestResult(harry);

 Student jenny = new Student("Jenny");

 TestResult jennyResult = new TestResult(jenny);

 WeakHashMap<Student, Integer> testResults = new WeakHashMap<>();

 testResults.put(harry, 23);

 testResults.put(jenny, 25);

 System.out.println("Test results: " + testResults.size());

Chapter 21: References | 905

 harry = null;

 System.gc();

 System.runFinalization();

 System.out.println("Test results: " + testResults.size());

 }

 private static class TestResult {

 WeakReference<Student> student;

 TestResult(Student student) {

 this.student = new WeakReference<>(student);

 }

 }

}

Activity 4: Solution
package com.packt.java.chapter21;

import java.lang.ref.SoftReference;

public class Activity4 {

 public static void main(String[] args) throws InterruptedException {

 ShoppingCart shoppingCart = new ShoppingCart();

 SoftReference<ShoppingCart> softReference = new
SoftReference<>(shoppingCart);

// Also set the maximum heap size using VM option -XmX2M (maximum heap to
2MB)

 for (int i = 0; i < 1_000_000; i++) {

906 | Appendix

 Student student = new Student("student");

 }

 shoppingCart = null;

 ShoppingCart shoppingCart2 = softReference.get();

 System.out.println(String.format("ShoppingCart was %scleared.",
(shoppingCart2 == null ? "" : "not ")));

 }

}

Chapter 22: Concurrent Tasks | 907

Chapter 22: Concurrent Tasks

Activity 1: Solution
class MyOwnThread implements Runnable {

 public void run() {

 System.out.println(

 Thread.currentThread().getName() +

 ": Thread " +

 Thread.currentThread().getName() +

 " running");

 System.out.println(

 Thread.currentThread().getName() +

 ": ID " +

 Thread.currentThread().getId());

 System.out.println(

 Thread.currentThread().getName() +

 ": Priority " +

 Thread.currentThread().getPriority());

 for (int i = 0; i < 100; i++)

 System.out.println(Thread.currentThread().getName() + ": count: "
+ i);

 }

}

public class Example05 {

 public static void main(String[] args) {

 Thread threadA = new Thread(new MyOwnThread());

 threadA.setName("A");

908 | Appendix

 threadA.setPriority(Thread.MAX_PRIORITY);

 Thread threadB = new Thread(new MyOwnThread());

 threadB.setName("B");

 threadB.setPriority(Thread.MIN_PRIORITY);

 threadA.start();

 threadB.start();

 }

}

Note

The class name here is Example05 as we have modified the code from the previous
example. Note that the class name is Activity01 in the code file on GitHub.

Activity 2: Solution
import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

class MyThread implements Runnable {

 private String name;

 MyThread (String _name) {

 name = _name;

 }

 public void pause(int sleepTime) {

 try {

 Thread.sleep(sleepTime);

 } catch (InterruptedException ie) {

 System.out.println(name + ": Exception: " + ie.getMessage());

 }

Chapter 22: Concurrent Tasks | 909

 }

 public void run() {

 // solution for Activity02

 int SAMPLES = 1 + (int)(Math.random()*9);

 System.out.println(name + ": start " + SAMPLES);

 for (int i = 0; i < SAMPLES; i++) {

 System.out.println(name + ": operation: " + i);

 pause(100);

 }

 System.out.println(name + ": stop");

 }

}

public class Example10 {

 public static void main(String[] args) {

 int POOL_SIZE = 5;

 int TOTAL_THREADS = 10;

 // create an array of threads

 Runnable[] threads = new MyThread[TOTAL_THREADS];

 // systematically create threads named A, B, C ...

 for(int i = 0; i < threads.length; i++) {

 threads[i] = new MyThread(Character.toString((char)('A' + i)));

 }

910 | Appendix

 // construct the Thread Pool

 ExecutorService pool = Executors.newFixedThreadPool(POOL_SIZE);

 // send the threads to the pool and let it run them

 for (int i = 0; i < threads.length; i++) {

 pool.execute(threads[i]);

 }

 // end

 pool.shutdown();

 System.out.println("the end, my friend");

 }

}

Note

The class name here is Example10 as we have modified the code from the previous
example. Note that the class name is Activity02 in the code file on GitHub.

Chapter 23: Using the Future API | 911

Chapter 23: Using the Future API

Activity 1: Solution

ImprovedBubbleSort.java

package com.packt.java.chapter23;

import java.util.Arrays;

public class ImprovedBubbleSort implements Runnable {

 private int[] data;

 public ImprovedBubbleSort(int... values) {

 this.data = values;

 }

 @Override

 public void run() {

 System.out.println(Arrays.toString(data));

 int n = data.length;

 int passes = 0;

 for (int i = 1; i < n; i++) {

 passes++;

 for (int j = 0; j < n - i; i++) {

 int currentItem = data[j];

 int nextItem = data[j + 1];

 if (currentItem > nextItem) {

 data[j] = nextItem;

 data[j + 1] = currentItem;

 }

 }

912 | Appendix

 }

 System.out.println(Arrays.toString(data));

 System.out.println("Passes: " + passes);

 }

}

Activity1.java

package com.packt.java.chapter23;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Activity1 {

 public static void main(String[] args) {

 ExecutorService service = Executors.newFixedThreadPool(2);

 service.execute(new BubbleSort(5, 1, 2, 4, 3, 6));

 service.execute(new ImprovedBubbleSort(5, 1, 2, 4, 3, 6));

 service.execute(new BubbleSort(1, 3, 2, 5, 4, 7));

 service.execute(new ImprovedBubbleSort(1, 3, 2, 5, 4, 7));

 service.shutdown();

 }

}

Chapter 23: Using the Future API | 913

Activity 2: Solution
package com.packt.java.chapter23;

import java.util.Arrays;

import java.util.concurrent.ForkJoinPool;

public class Activity2 {

 public static void main(String[] args) {

 ForkJoinPool forkJoinPool = new ForkJoinPool();

 int[] result = forkJoinPool.invoke(new ImprovedMergeSort(1, 4, 7, 3,
5, 9, 12, 54, 32, 3, 2, 87, 24));

 System.out.println(Arrays.toString(result));

 }

}

package com.packt.java.chapter23;

import java.util.Arrays;

import java.util.concurrent.RecursiveTask;

public class ImprovedMergeSort extends RecursiveTask<int[]> {

 private int[] data;

 public ImprovedMergeSort(int ...values) {

 this.data = values;

 }

 @Override

 protected int[] compute() {

914 | Appendix

 if (data.length == 2) {

 if (data[0] > data[1]) {

 return new int[] {data[1], data[0]};

 }

 return data;

 } else if (data.length == 1) {

 return data;

 }

 int middle = data.length / 2;

 int[] left = Arrays.copyOfRange(data, 0, middle);

 int[] right = Arrays.copyOfRange(data, middle, data.length);

 ImprovedMergeSort leftTask = new ImprovedMergeSort(left);

 ImprovedMergeSort rightTask = new ImprovedMergeSort(right);

 invokeAll(leftTask, rightTask);

 int[] leftResult = leftTask.join();

 int[] rightResult = rightTask.join();

 return merge(leftResult, rightResult);

 }

 private int[] merge(int[] left, int[] right) {

 System.out.println("merge");

 int[] result = new int[left.length + right.length];

 int l = 0, r = 0;

 for (int i = 0; i < result.length; i++) {

 if (l >= left.length) {

 result[i] = right[r++];

Chapter 23: Using the Future API | 915

 } else if (r >= right.length) {

 result[i] = left[l++];

 } else {

 if (left[l] < right[r]) {

 result[i] = left[l++];

 } else {

 result[i] = right[r++];

 }

 }

 }

 return result;

 }

}

Activity 3: Solution
package com.packt.java.chapter23;

import java.io.File;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.time.Duration;

import java.time.temporal.ChronoUnit;

import java.util.List;

import java.util.concurrent.*;

import java.util.stream.Collectors;

import java.util.stream.Stream;

public class Activity3 {

 public static void main(String[] args) {

916 | Appendix

 String filePath = System.getProperty("user.dir") + File.separator
+ "res/database.csv";

 List<Member> members = parseMembers(filePath);

 ExecutorService executorService = Executors.
newSingleThreadExecutor();

 long bubbleSortStart = System.nanoTime();

 Future<List<Member>> bubbleSort = executorService.submit(new
BubbleSortMemberAge(members));

 try {

 bubbleSort.get();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 }

 Duration bubbleSortDuration = Duration.of(System.nanoTime() -
bubbleSortStart, ChronoUnit.NANOS);

 System.out.println(String.format("BubbleSort: %02dm:%02ds:%02dms",
bubbleSortDuration.toMinutes(), bubbleSortDuration.toSeconds(),
bubbleSortDuration.toMillis()));

 try {

 List<Member> sortedMembers = bubbleSort.get();

 printMembers(sortedMembers);

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 }

 executorService.shutdown();

 System.out.println();

Chapter 23: Using the Future API | 917

 ForkJoinPool forkJoinPool = new ForkJoinPool();

 long mergeSortStart = System.nanoTime();

 List<Member> mergeSort = forkJoinPool.invoke(new
MergeSortMemberAge(members));

 Duration mergeSortDuration = Duration.of(System.nanoTime() -
mergeSortStart, ChronoUnit.NANOS);

 System.out.println(String.format("MergeSort: %02dm:%02ds:%02dms",
mergeSortDuration.toMinutes(), mergeSortDuration.toSeconds(),
mergeSortDuration.toMillis()));

 printMembers(mergeSort);

 }

 private static List<Member> parseMembers(String filePath) {

 try (Stream<String> authors = Files.lines(Paths.get(filePath))) {

 return authors.skip(1).map(Member::new).collect(Collectors.
toList());

 } catch (IOException e) {

 e.printStackTrace();

 }

 return null;

 }

 private static void printMembers(List<Member> members) {

 for (int i = 0; i < 10; i++) {

 Member member = members.get(i);

 printMember(member);

 }

 }

 private static void printMember(Member member) {

 StringBuilder stringBuilder = new StringBuilder();

 stringBuilder.append(member.firstName).append(" ").append(member.

918 | Appendix

lastName).append(" is ");

 stringBuilder.append(member.age).append(" years. Works as
").append(member.title).append(" and earns ");

 stringBuilder.append(member.salary).append(" Java-$");

 System.out.println(stringBuilder.toString());

 }

}

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
addall: 124-128, 138,

145-146, 153, 486
a-java:119
algorithm: 120-121, 130,

152, 358-365, 368-370,
372-377, 379, 394,
776, 778, 782-785, 792,
799-800, 810, 812

all-java:281
annotate: 22, 71, 608, 616
anonymous: 104-105,

107, 444, 449
apache: 199, 213, 217,

223, 225-226, 231-236,
279-280, 346, 353,
467-468, 471, 594

arraylist: 131-132, 134-135,
137-138, 141-142, 146,
149, 151, 153, 205, 219,
286-287, 289, 419-421,
435-440, 442, 449-451,
480, 486, 500, 527-529,
531-541, 681, 683, 685,
688, 799, 805-808

artifact: 232-233, 235,
268-269, 338, 457,
467, 596, 626

assertall:595
asterisk: 22, 136-137,

198, 259, 261, 393
asymmetric: 357,

360, 367-368

B
beforeall: 608-610,

614, 616-618
beforeeach: 608, 610
bgcolor: 306-307, 311

bigdecimal:16
blueprint: 73, 546
boolean: 11-12, 14, 16,

29-32, 39-40, 42-43,
47, 55-56, 59-61, 86,
118, 130, 142, 199, 204,
219, 290, 407, 411-414,
483, 487-489, 506, 520,
522-526, 528, 531-535,
537, 582-584, 604,
606-607, 615, 626-628,
632, 640-642, 647-649,
670, 676, 686, 688, 772,
774, 779, 782, 793, 799

breakpoint:439
browse: 141-142,

294, 682-683
browser: 254-255, 332,

335-336, 349, 353,
395, 415, 599-600

bubblesort: 778-782, 792,
800-801, 809-811

buffer: 284, 288, 294,
304, 319, 328, 379, 390,
394, 480, 548-549,
660-661, 663-664

builder: 206, 220-221,
236, 350, 465, 467, 472,
480, 629, 632-633

built-in: 57, 67, 98,
113-114, 166, 168, 482

C
calculus: 426, 445
callable: 774-775,

798, 812-813
callback: 550, 554,

581-582, 584
caller: 570, 783
canonical:707
catch-all: 49, 202

charat:166
charset: 340, 635-636
checkboxes: 84, 109
checked: 49, 56,

167-168, 181, 227
cipher: 358-360, 362-367,

369-371, 373-380
ciphertext: 358,

360, 364-366,
370-371, 375-379

classinfo: 628-631,
633-634, 636, 647-648

classpath: 234, 238,
242, 269, 284, 309

codebase:183
coding: 40, 177, 332, 455
column: 246, 252-253,

258, 260-261, 263-264,
268, 280, 570

command: 10, 14, 24, 29,
62-63, 65, 80, 115-117,
128, 133, 143, 164-165,
177, 195, 208-212,
237-238, 248, 256-259,
262, 264-265, 300,
325-326, 360-361,
384, 386-387, 391, 393,
408, 429, 495, 521, 530,
550, 697, 773, 777, 812

condition: 28-29, 31-32,
36, 39, 42-43, 54,
61, 98, 137, 455-456,
458, 475, 607, 779

console: 23, 136-138, 146,
152-153, 161, 164-165,
172, 254-257, 259, 262,
264-265, 271, 280, 427,
486, 555, 560, 577, 721

cpuspeed: 72-77, 88-90
crypto: 361-365,

369-370, 372-378
csvsource: 604-606, 620

D
database: 252-259, 261,

264-274, 276, 279-281,
362, 510-516, 592,
611, 650-654, 711, 761,
794-797, 800-801,
809-810, 812

dataset: 122, 127, 161, 572,
690, 776, 778-780, 783

datatypes:259
dateformat:602
dayofweek: 194-198,

205-206, 219-221, 236
deadlocks:765
debugger:76
decrypt: 358, 360,

366-367, 371
decryption:364
deploy: 23, 208
desktop:239
divzero:100
doctype:346
document: 46, 106, 110,

189, 280, 346-350,
373, 422, 455, 461-462,
464-469, 471-474

dofinal: 365, 371
domain: 200-201, 248,

338, 408, 412-415
dothecatch:188
double: 11, 14, 16, 21-22,

24, 45-47, 64-65,
72-78, 88-89, 93-96,
139, 142-143, 149, 160,
246, 417, 427-428,
486, 490, 492, 496,
498-499, 503-504,
510-511, 514-515,
608-609, 665-666, 795

do-while: 27, 54-55, 61-62

E
echoserver: 321-323,

326, 328
emptylist: 168, 173,

176, 179, 184
emptyset: 294, 297, 303
encrypt: 358-361,

364-365, 367,
370-377, 379-380

endpoint:320
entryset: 140-141, 144
enumdesc:642
exception: 76, 163-190,

235, 275, 292-293,
295-296, 298-301,
310, 322, 361, 368,
389, 392, 432, 437,
458, 482, 491, 511, 530,
565-566, 574, 578, 599,
602, 672-673, 675-676,
689, 712, 742, 744-746,
749-751, 754-760, 762,
765, 798-799, 813

export:110
exported: 238, 242
extend: 72, 88, 102-103,

111, 181, 433, 561,
578-579, 627

F
factorial: 97, 459-460
filearray:303
filename: 72, 168,

208-211, 293, 299
filepath: 289-291, 416-421,

508-509, 557-559,
567-571, 587, 796-797,
800-801, 809-811

filereader: 318-319
filestream: 307-308
filetype: 289-291
filewriter:392
finally: 14, 108, 111, 130,

137, 156, 182, 184-185,
188-190, 208, 276-277,
308, 310, 315, 317, 319,
325, 328, 363, 370,
378, 408, 414, 418, 420,
438, 443, 445, 450,
478, 498-499, 501, 510,
520, 536, 538, 540, 610,
675, 679, 690, 694, 721,
741, 747, 781, 783, 810

findany:488
findfirst: 488, 689
finding: 28, 97, 231, 409
firewall:322
fork-join: 771, 783, 813
format: 43, 61, 138,

205-207, 220, 223, 233,
235-236, 272, 306, 312,
332, 335-336, 346, 402,
406, 499, 588, 594-595,
597-598, 600, 643,
654, 657, 704-707, 714,
794-795, 801, 809, 811

framework: 113-115, 120,
124, 135-136, 138-139,
142, 145, 148-149, 152,
155, 161, 231, 277, 335,
380, 593, 611, 620, 624,
650-653, 767, 783

G
gateway: 522, 526-527,

529, 531, 533-534,
536-541

getage: 94-96, 679-680,
682, 684, 686-689

getbrand: 504-505
getbytes: 365, 371
getcelsius:93
getclass: 492, 624,

640-645, 649
getdate: 204-206,

218, 220-221, 236
getdefault:597
getfields:646
getgender: 679-680,

682, 684, 686-688
getkey:144
getlength: 466, 469, 473
getlong: 268, 270
getmessage: 298-301,

322, 556, 576-577, 587,
742, 744-745, 749-751,
754-755, 758-759, 762

getmethod: 643-645
getmethods:640
getname: 624, 628, 632,

679-680, 682-684,
686, 731-736, 738,
742, 744-745, 748-751,
754-756, 758-759

getobject:268
getpath: 660, 663
getpublic: 370-371
getrequest: 341, 353
getruntime: 384-385,

388, 391
getspeed:102
getstatus: 611-612,

616-617, 619
getsteps: 204-206,

218-221, 236
getstring: 267-268, 270
getstrings: 567-576,

586-587

getter: 90, 204-205, 245,
522, 594, 597, 652,
658-660, 679, 683, 758

gettoday: 242-243
getvalue:144
github: 231, 234, 245-246,

269, 279, 311, 373,
511, 651, 655, 658

global: 27, 66, 410

H
hadoop:593
hashcode: 641-642, 699
hashmap: 139, 141,

144-145, 148, 161
hashset: 115, 122-127, 129,

145-146, 153, 500
hashtable: 308, 310
helper: 480, 486, 521, 772

I
if-else: 28, 35, 50
immutable: 27, 65-66,

350, 433-435, 439-443,
448-449, 451, 502

inherit: 122, 371, 433, 483
inline: 22-23, 290, 294
in-memory:254
intellij: 2-4, 7-8, 12, 23, 25,

29-30, 33, 52-53, 63,
69, 79, 84, 136, 177, 181,
195-197, 201-203, 209,
214-215, 217, 223-225,
227-230, 234-236, 238,
240, 242-245, 268-269,
275, 309, 338, 341,
343, 349, 352, 361,
408, 415, 429-430,
434, 445, 457, 495, 510,
521, 525, 550-551, 561,

594, 596, 599-600,
614, 626, 635, 678, 697,
703, 708, 712, 748, 777

intstats:488
intstream: 478, 485,

487-488, 490, 492
intsum:485
invoke: 180, 639, 643-644,

646, 775, 791-792,
804, 809, 811

invokeall: 774-775,
787-790, 804-805,
807-808

invokeany: 774-775
isdone: 772, 793-794
isempty: 86, 676-677,

682, 684, 686
isenqueued: 719-722, 724
isenum: 624, 628-629,

632-633, 647
isequal:521
ismale:686
ismammal: 628-629,

632-633, 647
isnotblank: 468, 472
isnotempty:199
isolate:238
isolation:608
ispresent: 676-677,

686-690
isshutdown:774
iss-now: 655, 661, 665
iteration: 54-59, 61-62,

124, 776, 782

J
javabean:594
javadoc: 105-110, 189,

235, 395, 625
javadocs: 235, 316,

736, 764

javaee: 208, 279
java-jar:248
javascript: 332,

334, 348, 654
javase: 63, 107, 119, 212,

316, 321, 323, 347,
349-350, 395, 464,
625, 649-650, 764

javatemp: 298-301,
304-305, 307,
313-314, 317, 319

jax-rs:655
jcenter: 234, 269
jdbc-pool:279
jdbcrowset:277

K
key-map:306
keypair: 360, 368-371
keyset: 140-141, 155-156,

158, 337, 339
keyvalue:310
key-value: 138, 150,

155, 159, 161, 306,
309-311, 328

kick-start:549

L
lambda: 294, 315, 352,

425-426, 444-445,
448-449, 452, 482, 489,
520, 542, 548, 607, 629,
676, 678, 682, 689

library: 19-20, 114, 194,
208, 213, 231-238, 245,
248, 252, 265, 269,
279, 331, 346-348,
353-354, 467, 561, 588,
623, 655-656, 658

license: 232-233
loadxml: 467, 469, 472, 474
localdate: 203-204,

206-207, 217-219,
221-223, 242, 311

locale:597
localhost: 24, 97, 136-137,

154, 309, 323, 325, 390

M
macosx:284
maven-:217
metadata: 98, 107,

110, 194, 343
meta-inf:210
methodinfo:640
modifier:260
mutability: 432, 434
mutable:451

N
nullable: 671-678
nullify:711

O
objectfreq: 750-751
openjdk: 238, 432
opensource:232
outstream:389
overridden: 111, 295
override: 71, 91, 93,

98-101, 105-106, 111,
278, 295-297, 433, 441,
444, 446-448, 450-452,
504, 510-511, 522-526,
528, 532, 535, 539,
552-556, 562-567,
571-577, 579-587, 698,
703, 718-723, 778-779,

781, 785-788, 790,
798-799, 802-807

P
paradigm: 422, 426
parseint: 64-65, 97,

315-316, 321-322,
324, 394, 489-490

patharray:303
pathfile: 299-301,

304-305, 309, 314
pathname:284
pathstring: 286-289,

291-293, 298-299,
301, 304-305, 307,
309-311, 313-314

pathtofile: 374-377, 379
plugin: 223, 225,

230, 234, 269
protocol: 332-334, 354,

408-409, 411-415, 654
prototype:320
pseudocode: 783-784
python:32

R
random: 160, 314, 427-428,

742-743, 766, 791
readingxml:464
readline: 136-138, 146,

153, 319, 322, 324-326,
340-341, 345, 390,
392, 660, 663

readme: 168, 173-176,
179, 184

readvalue: 656, 661, 664
render: 335, 779
repository: 232, 372-373
restful: 334-335, 354,

654-656, 658, 660, 667

restore:274
runtime: 69, 72, 91-92,

101, 167, 180, 308,
328, 383-386, 388,
391, 620, 623-624,
650-651, 667, 728, 746

-rw-r--r--:300
rxjava:588

S
safari:335
script: 136, 254, 426
secretkey: 372-377, 379
sensor: 522-541
server: 23, 253-254, 256,

271, 320-323, 325-328,
331-337, 340, 343, 354,
521, 560, 671, 772

servers: 253, 320-321,
332, 335, 426, 508, 761

service: 23, 254, 334-335,
534, 536-537, 611-613,
655-656, 658-662,
667, 748, 761, 767,
775, 780-781, 813

setage: 94-95, 678, 680
setall:121
setdate: 204, 218
setfield: 652-653
setgender: 678, 680
setlong: 273, 276
setname: 678, 680,

731-733, 735-736, 739,
742, 745, 752-753

setofkeys:155
setpath: 660-661,

663, 665
setprop: 643-646
setsteps: 204, 218
setstring: 273, 276
setter: 90, 204-205, 245,

432, 522, 594, 597,
650, 652, 658-660,
678, 734, 736

site-maps:422
spring: 48-49, 231, 277,

335, 624, 651, 667
sql-like:280
stringlist:479

T
ternary: 43-44
testcase:595
thread: 65, 165-166, 170,

181, 183, 292, 295, 351,
444, 458, 481, 549,
672-673, 676, 702,
705, 714, 718, 720-722,
724-725, 727-755,
757-766, 768, 773,
775-776, 778, 780, 783,
787-788, 792, 813

threshold: 37, 528
throwable: 182-183, 187,

190, 550, 552-556,
576-577, 579-585,
587, 698, 703

thrown: 169, 180, 182,
190, 274, 491

throws: 179-180, 182,
184, 186, 189, 277, 285,
287-290, 296-297,
307-308, 310, 317-318,
321, 323, 387-388,
391, 437, 511-515, 636,
640-642, 675-676,
698, 703-706, 739, 742,
745, 753, 772, 774-775,
793, 798-801, 813

timestamp: 311, 594-595,
597-598, 601-602,
655-656, 659, 662

timeunit: 385-386,
388, 391, 772,
774-775, 793, 812

timezone:598
tmpdir: 285-289
toarray: 485, 540-541,

571, 587
tofile: 374-377, 379
tomcat:279
toradians: 428, 666
toseconds: 801, 809, 811
tostring: 115-117, 121, 206,

221, 236, 242, 278, 287,
289, 293, 295, 297, 303,
311, 441-442, 446-448,
450-452, 504, 510-511,
513-515, 541, 629-630,
632-634, 641-642, 652,
654, 658-659, 661,
664, 763, 782, 792

U
ubuntu: 155-160
upload: 336, 343
user-agent: 335-337,

339, 345
user-guide: 593, 605
username: 252, 255-260,

263, 266-268, 270-271,
278, 291-292, 294-296,
299-300, 306-308,
311, 649, 652-654

V
validate: 406, 593-595,

597, 600
valueof: 67, 447, 449-452,

494, 507, 514-515,
577, 583, 585, 587,
640-642, 795

vararg:498
varchar: 256-258, 262
version: 24, 43, 67, 99,

106-107, 109, 129,
155-159, 184, 210, 215,
217, 223, 228-229,
232-235, 237, 268-269,
291, 333, 335, 338,
350-352, 358, 366, 440,
442-443, 457, 462, 467,
479, 485, 491-492, 496,
505, 520, 536, 593, 596,
626, 658, 683, 760

versioning:210

W
warning: 100, 169, 185,

298-300, 304-308,
310, 385-389, 391-392,
528, 530, 533, 536-537

workflow: 593-595,
611-612, 614-618

workflow-: 612, 617, 619
workflows: 593, 595, 611
working: 28-29, 72, 74,

126-127, 141, 161, 188,
214, 232, 235, 248, 266,
275, 281, 303, 308-309,
311, 316, 319-320, 328,
331, 365-366, 380, 436,
438, 456, 592, 612, 643,
655, 665, 702, 705,
725, 728, 761, 793, 798

workings:493
wouldn: 320, 391,

459, 653, 725
wrapped: 173, 270, 483,

486-488, 506
wrapper: 228, 793
wrappers:277
wrapping:310

writeable:432
writebytes: 343-344
writing: 2, 22-23, 40, 65,

68, 165, 186, 200, 233,
294, 297, 300-302, 311,
323, 328, 393, 426, 429,
431-433, 455-456, 478,
508, 516, 592-593, 596,
600, 603, 605, 620, 761

wrongly:168

X
x-cache:340
xim-unix: 286, 288, 290
xmlfile: 465, 467, 472

Y
yourself: 25, 69, 272, 481,

484, 528, 667, 725

Z
zoneoffset:659

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Writing, Compiling, and Executing Your Hello World Program
	Exercise 1: Creating Your Hello World Program in Java
	Basic Syntax and Naming Conventions
	Printing Out Different Data Types
	Variables and Variable Types
	Exercise 2: Printing Different Types of Data
	Primitive versus Reference Data Types
	Null
	Chars and Strings
	Exercise 3: Declaring Strings
	Doing Some Math
	Exercise 4: Solving a Simple Trigonometry Problem
	Comments Help You to Share Code
	CLI versus GUI
	Exercise 5: Running the Code from the CLI
	Activity 1: Obtaining the Minimum of Two Numbers

	Summary

	Chapter 2: Learning the Basics
	Introduction
	Controlling the Flow of Your Programs
	Exercise 1: Creating a Basic if Statement
	Comparison Operators
	Exercise 2: Using Java Comparison Operators
	Nested if Statements
	Exercise 3: Implementing a Nested if Statement
	Branching Two Ways with if and else
	Exercise 4: Using if and else Statements
	Using Complex Conditionals
	Exercise 5: Using Logical Operators to Create Complex Conditionals
	Using Arithmetic Operators in an if Condition
	The Ternary Operator
	Exercise 6: Using the Ternary Operator
	Equality Can Be Tricky
	Exercise 7: Comparing Decimal Values
	Comparing Strings
	Using Switch Statements
	Exercise 8: Using Switch
	Exercise 9: Allowing Cases to Fall Through
	Using Java 12 Enhanced Switch Statements
	Exercise 10: Using Java 12 Switch Statements

	Looping and Performing Repetitive Tasks
	Looping with the For Loop
	Exercise 11: Using a Classic for Loop
	Exercise 12: Using an Enhanced for Loop
	Jumping Out of Loops with Break and Continue
	Exercise 13: Using Break and Continue
	Using the While Loop
	Exercise 14: Using a While Loop
	Using the Do-While Loop

	Handling Command-Line Arguments
	Exercise 15: Testing Command-Line Arguments
	Converting Command-Line Arguments
	Exercise 16: Converting String to Integers and Doubles
	Diving Deeper into Variables – Immutability
	Comparing Final and Immutable
	Using Static Values
	Using Local Variable Type Inference
	Activity 1: Taking Input and Comparing Ranges

	Summary

	Chapter 3: Object-Oriented Programming
	Introduction
	The Anatomy of a Class

	Working with Objects in Java
	Checking the Precedence of a Class with instanceof
	Exercise 1: Creating the WordTool Class
	Activity 1: Adding the Frequency-of-Symbol Calculation to WordTool

	Inheritance in Java
	Overriding and Hiding Methods
	Avoiding Overriding: Final Classes and Methods

	Overloading Methods and Constructors
	Recursion
	Annotations
	Interfaces
	Inner Classes
	Documenting with JavaDoc
	Activity 2: Adding Documentation to WordTool

	Summary

	Chapter 4: Collections, Lists, and Java's Built-In APIs
	Introduction
	Arrays
	Activity 1: Searching for Multiple Occurrences in an Array

	Sets
	Lists
	Exercise 1: Creating the AnalyzeInput Application

	Maps
	Iterating through Collections
	Exercise 2: Bringing Analytics into the AnalyzeInput Application

	Sorting Collections
	Exercise 3: Sort the Results from the AnalyzeInput Application

	Properties
	Activity 2: Iterating through Large Lists

	Summary

	Chapter 5: Exceptions
	Introduction
	A Simple Exception Example
	NullPointerException – Have No Fear
	Catching Exceptions
	Exercise 1: Logging Exceptions

	Throws and Throw
	Exercise 2: Breaking the Law (and Fixing It)

	The finally Block
	Activity 1: Designing an Exception Class Logging Data

	Best Practices for Handling Exceptions
	Where Do Exceptions Come from?
	Summary

	Chapter 6: Libraries, Packages, and Modules
	Introduction
	Organizing Code into Packages
	Importing Classes
	Exercise 1: Importing Classes
	Fully Qualified Class Names
	Importing All Classes in a Package
	Dealing with Duplicated Names
	Static Imports
	Creating a Package
	Naming Your Package
	Directories and Packages
	Exercise 2: Creating a Package for a Fitness Tracking App
	Building JAR Files
	Exercise 3: Building a JAR File
	Defining the Manifest
	Exercise 4: Building an Executable JAR File
	Build Tools
	Maven
	Exercise 5: Creating a Maven Project
	Exercise 6: Adding Java Sources to the Maven Project
	Exercise 7: Building the Maven Project
	Exercise 8: Creating an Executable JAR with Maven
	Using Gradle
	Exercise 9: Creating a Gradle Project
	Exercise 10: Building an Executable JAR with Gradle
	Using Third-Party Libraries
	Finding the Libraries
	Adding a Project Dependency
	Exercise 11: Adding a Third-Party Library Dependency
	Using the Apache Commons Lang Library
	Exercise 12: Using the Apache Commons Lang Library
	Using Modules
	Creating Modules
	Exercise 13: Creating a Project for a Module
	Exercise 14: Creating a Second Module Using the First One
	Activity 1: Tracking Summer High Temperatures

	Summary

	Chapter 7: Databases and JDBC
	Introduction
	Relational Databases
	Relational Database Management Systems
	Installing a Database
	Exercise 1: Running the H2 Database

	Introducing SQL
	Exercise 2: Creating the customer Table
	Inserting Data into a Table
	Exercise 3: Inserting Data
	Retrieving Data
	Relating Tables
	Exercise 4: Creating the email Table
	Selecting Data from Multiple Tables
	Modifying Existing Rows
	Exercise 5: Modifying email Data
	Deleting Data
	JDBC – Accessing Databases from Java
	Connecting to Databases
	Querying Data with JDBC
	Exercise 6: Querying Data with JDBC
	Sanitizing User Input
	Using Prepared Statements
	Transactions and Rollback
	Exercise 7: Using Prepared Statements with Transactions
	Simplifying JDBC Programming
	Using Object-Relational Mapping Software
	Database Connection Pooling
	Non-Relational, or NoSQL, Databases
	Activity 1: Track Your Progress

	Summary

	Chapter 8: Sockets, Files, and Streams
	Introduction
	Listing Files and Directories
	Separating Directories from Files
	Exercise 1: Listing the Contents of Subdirectories

	Creating and Writing to a File
	Activity 1: Writing the Directory Structure to a File

	Reading an Existing File
	Reading a Properties File
	Exercise 2: Creating a Properties File from the CLI
	What Are Streams?
	The Different Streams of the Java Language
	What Are Sockets?
	Creating a SocketServer
	Writing Data on and Reading Data from a Socket
	Activity 2: Improving the EchoServer and EchoClient Programs
	Blocking and Non-Blocking Calls

	Summary

	Chapter 9: Working with HTTP
	Introduction
	Exploring HTTP
	HTTP Request Methods
	Representational State Transfer
	Request Headers

	Using HttpUrlConnection
	Exercise 1: Creating a HEAD Request
	Reading the Response Data with a GET Request
	Exercise 2: Creating a GET Request

	Dealing with Slow Connections
	Requesting Parameters
	Handling Redirects

	Creating HTTP POST Requests
	Exercise 3: Sending JSON Data with POST Requests

	Parsing HTML Data
	Exercise 4: Using jsoup to Extract Data from HTML

	Delving into the java.net.http Module
	Exercise 5: Getting HTML Contents Using the java.net.http Module
	Activity 1: Using the jsoup Library to Download Files from the Web

	Summary

	Chapter 10: Encryption
	Introduction
	Plaintext
	Ciphertext
	Ciphers
	Keys

	Symmetric Key Encryption
	Exercise 1: Encrypting the String using Advanced Encryption Standard

	Block Ciphers
	Initialization Vectors
	Stream Ciphers

	Asymmetric Key Encryption
	Exercise 2: Encrypting the String Using the RSA Asymmetric Key Encryption

	Encrypting Files
	Exercise 3: Encrypting a file

	Summary

	Chapter 11: Processes
	Introduction
	Launching a Process
	Sending Input to a Child Process

	Capturing the Output of a Child Process
	Storing the Output of a Child Process in a File
	Activity 1: Making a Parent Process to Launch a Child Process

	Summary

	Chapter 12: Regular Expressions
	Introduction
	Decrypting Regular Expressions
	Character Classes
	Character Sets
	Quantifiers
	Anchors
	Capturing Groups
	Escaped Characters
	Flags
	Exercise 1: Implementing Regular Expressions
	Activity 1: Regular Expressions to Check If the Entrance is Entered in the Desired Format

	Regular Expressions in Java
	Exercise 2: Extracting the Domain Using Pattern Matching
	Exercise 3: Extracting Links Using Pattern Matching

	Summary

	Chapter 13: Functional Programming with Lambda Expressions
	Introduction
	Background

	Functional Programming
	Side Effects
	Deterministic Functions

	Pure Functions
	Exercise 1: Writing Pure Functions
	Immutability of State
	Exercise 2: Creating an Immutable Class
	Activity 1: Modifying Immutable Lists
	Immutable Collections
	Exercise 3: Overriding the String Method
	Functional Interfaces

	Lambda Expressions
	Exercise 4: Listing Spare Tires

	Summary

	Chapter 14: Recursion
	Introduction
	Delving into Recursion
	Exercise 1: Using Recursion to Overflow the Stack
	Trying Tail Recursion
	Exercise 2: Using Recursion to Calculate Factorials
	Processing an XML Document
	Exercise 3: Creating an XML File
	Introducing the DOM XML API
	Exercise 4: Traversing an XML Document
	Activity 1: Calculating the Fibonacci Sequence

	Summary

	Chapter 15: Processing Data with Streams
	Introduction
	Creating Streams
	Parallel Streams
	Encounter Order
	Closing Streams
	Terminal Operations

	Intermediate Operations
	Exercise 1: Using the Stream API
	Activity 1: Applying Discount on the Items

	Using Collectors
	I/O Streams
	Exercise 2: Converting CSV to a List
	Activity 2: Searching for Specifics

	Summary

	Chapter 6: Predicates and Other Functional Interfaces
	Introduction
	Predicate Interface
	Exercise 1: Defining a predicate

	Activity 1: Toggling the Sensor states
	Consumer Interface
	Exercise 2: Producing Side Effects

	Function
	Exercise 3: Extracting Data
	Activity 2: Using a Recursive Function
	Activity 3: Using a Lambda Function

	Summary

	Chapter 17: Reactive Programming with Java Flow
	Introduction
	Publisher
	SubmissionPublisher

	Subscriber
	Subscription
	Exercise 1: A Simple Application with a Single Publisher and a Single Subscriber

	Processor
	Exercise 2: Using a Processor to Convert a Stream of Strings to Numbers
	Activity 1: Let NumberProcessor Format Values as Integers

	Summary

	Chapter 18: Unit Testing
	Introduction
	Getting Started with Unit Tests
	Introducing JUnit
	Writing Unit Tests with JUnit
	Exercise 1: Writing a First Unit Test
	Exercise 2: Writing a Successful Test
	Deciding What to Test
	Writing Parameterized Tests
	Exercise 3: Writing a Parameterized Test
	When Tests Won't Work – Disabling Tests
	Test Setup
	Exercise 4: Using Test Setup and Cleanup Methods
	Mocking
	Testing with Mocks Using Mockito
	Exercise 5: Using Mocks when Testing
	Activity 1: Counting the Words in the String

	Summary

	Chapter 19: Reflection
	Introduction
	Reflection Basics
	Exercise 1: Getting Class Information
	Determining Constructors
	Exercise 2: Extracting a List of Constructors
	Instantiating New Objects
	Exercise 3: Instantiating Objects
	Getting Methods
	Exercise 4: Extracting Method Information
	Getting a Single Method
	Calling Methods
	Exercise 5: Calling Methods
	Getting Fields
	Exercise 6: Getting Field Information
	Setting Field Values
	Drawbacks of Reflection
	Reflection in the Real World – Dependency Injection
	Exercise 7: Using Dependency Injection
	Reflection in the Real World – JSON Data and RESTful Services
	Using the Jackson Library
	Exercise 8: Converting JSON Data Using Jackson
	Activity 1: Take-Out Food Delivery Using Drones and JSON

	Summary

	Chapter 20: Optionals
	Introduction
	Instantiating Optional Objects
	Getting Values
	The Presence Actions
	Exercise 1: Create Your Own Class Using Optionals
	map versus flatMap
	Returning with filter
	Activity 1: Experimenting with Filters
	Chaining Optionals to the Stream

	Summary

	Chapter 21: References
	Introduction
	Java Memory Management
	Memory Leaks
	Strong References
	Weak References
	Exercise 1: Weak References
	Reference Queues
	Exercise 2: Creating a Shopping Cart
	Activity 1 – Using Multiple Weak References in a Reference Queue
	WeakHashMap
	Exercise 3: WeakHashMap
	Activity 2: Clearing Cross-Referenced Objects
	Activity 3: Solving the Memory Problem
	Soft References
	Exercise 4: Soft References
	Activity 4: Forcing the Soft Reference to Be Cleaned
	Phantom References
	Exercise 5: Phantom Reference

	Summary

	Chapter 22: Concurrent Tasks
	Introduction
	Thread Class versus Runnable Interfaces
	Some Thread Properties
	Activity 1 – Prioritize Tasks
	Sleep, Join, Interrupt
	Shared Resources
	Synchronized
	Exercise 1: Making a Thread That Counts and Discounts
	Atomic Variables/Operations
	Thread Pools
	Activity 2 – Random Amounts of Tasks
	Actor Model

	Summary

	Chapter 23: Using the Future API
	Introduction
	Futures
	Thread Pools
	The Executor Interface
	Employing the Thread Pool
	Exercise 1: Implementing Bubble Sort
	Activity 1: Comparing Sorting

	The Fork/Join Framework
	Exercise 2: Implementing Merge Sort
	Activity 2: Improving the MergeSort algorithm
	Working with Futures
	Exercise 3: Comparing Merge and Bubble Sorts
	Activity 3: Optimizing Sorting
	Scheduling Futures

	Summary

	Appendix
	Index

