

Hyatt Saleh

Get ready to develop your own high-performance

machine learning algorithms with scikit-learn

The

Machine
Learning
Workshop
Second Edition

The Machine Learning Workshop
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Hyatt Saleh

Reviewers: John Wesley Doyle, Akshat Gupta, Harshil Jain, Vikraman Karunanidhi,
Subhojit Mukherjee, Madhav Pandya, Aditya Rane, and Subhash Sundaravadivelu

Managing Editor: Rutuja Yerunkar

Acquisitions Editors: Manuraj Nair, Kunal Sawant, Sneha Shinde, Anindya Sil,
and Karan Wadekar

Production Editor: Shantanu Zagade

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: November 2018
Second edition: July 2020
Production reference: 1210720
ISBN: 978-1-83921-906-1
Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Chapter 1: Introduction to Scikit-Learn 	  1

Introduction ... 2

Introduction to Machine Learning .. 3

Applications of ML ..  3

Choosing the Right ML Algorithm ...  4

Scikit-Learn .. 6

Advantages of Scikit-Learn ..  8

Disadvantages of Scikit-Learn ...  9

Other Frameworks ..  10

Data Representation ...  10

Tables of Data ..  10

Features and Target Matrices ...  12

Exercise 1.01: Loading a Sample Dataset and Creating
the Features and Target Matrices ...  13

Activity 1.01: Selecting a Target Feature and Creating
a Target Matrix ..  16

Data Preprocessing ..  18

Messy Data ..  18

Missing Values..19

Outliers...21

Exercise 1.02: Dealing with Messy Data ...  23

Dealing with Categorical Features ..  30

Feature Engineering ...  30

Exercise 1.03: Applying Feature Engineering to Text Data ....................  31

Rescaling Data ...  33

Exercise 1.04: Normalizing and Standardizing Data ...............................  34

Activity 1.02: Pre-processing an Entire Dataset ......................................  37

Scikit-Learn API ..  38

How Does It Work? ..  38

Estimator..38

Predictor...40

Transformer...40

Supervised and Unsupervised Learning ...  42

Supervised Learning ...  42

Unsupervised Learning ..  44

Summary ...  46

Chapter 2: Unsupervised Learning –
Real-Life Applications 	  49

Introduction ..  50

Clustering ..  50

Clustering Types ..  51

Applications of Clustering ..  52

Exploring a Dataset – Wholesale Customers Dataset .......................  53

Understanding the Dataset ...  54

Data Visualization ..  55

Loading the Dataset Using pandas ...  56

Visualization Tools ..  57

Exercise 2.01: Plotting a Histogram of One Feature
from the Circles Dataset ..  59

Activity 2.01: Using Data Visualization to Aid
the Pre-processing Process ...  62

k-means Algorithm ...  63

Understanding the Algorithm ...  63

Initialization Methods...64

Choosing the Number of Clusters...65

Exercise 2.02: Importing and Training the k-means
Algorithm over a Dataset ...  66

Activity 2.02: Applying the k-means Algorithm to a Dataset .................  70

Mean-Shift Algorithm ..  71

Understanding the Algorithm ...  72

Exercise 2.03: Importing and Training the Mean-Shift
Algorithm over a Dataset ...  74

Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset .............  76

DBSCAN Algorithm ...  76

Understanding the Algorithm ...  77

Exercise 2.04: Importing and Training the DBSCAN
Algorithm over a Dataset ...  78

Activity 2.04: Applying the DBSCAN Algorithm to the Dataset ..............  80

Evaluating the Performance of Clusters ...  80

Available Metrics in Scikit-Learn ...  81

Exercise 2.05: Evaluating the Silhouette Coefficient Score
and Calinski–Harabasz Index ..  83

Activity 2.05: Measuring and Comparing the Performance
of the Algorithms ..  85

Summary ...  87

Chapter 3: Supervised Learning – Key Steps 	  89

Introduction ..  90

Supervised Learning Tasks ...  90

Model Validation and Testing ...  91

Data Partitioning ...  91

Split Ratio ...  93

Exercise 3.01: Performing a Data Partition on a Sample Dataset .........  95

Cross-Validation ..  98

Exercise 3.02: Using Cross-Validation to Partition the Train
Set into a Training and a Validation Set ...  99

Activity 3.01: Data Partitioning on a Handwritten Digit Dataset ........  102

Evaluation Metrics ...  102

Evaluation Metrics for Classification Tasks ...  103

Confusion Matrix...103

Accuracy..104

Precision...105

Recall...105

Exercise 3.03: Calculating Different Evaluation Metrics
on a Classification Task ..  106

Choosing an Evaluation Metric ...  109

Evaluation Metrics for Regression Tasks ...  109

Exercise 3.04: Calculating Evaluation Metrics
on a Regression Task ..  111

Activity 3.02: Evaluating the Performance of the Model
Trained on a Handwritten Dataset ...  113

Error Analysis ...  114

Bias, Variance, and Data Mismatch ..  115

Exercise 3.05: Calculating the Error Rate on Different
Sets of Data  ...  119

Activity 3.03: Performing Error Analysis on a Model
Trained to Recognize Handwritten Digits ..  122

Summary ...  123

Chapter 4: Supervised Learning Algorithms:
Predicting Annual Income 	  125

Introduction ..  126

Exploring the Dataset ..  126

Understanding the Dataset ...  127

The Naïve Bayes Algorithm ..  131

How Does the Naïve Bayes Algorithm Work? ..  132

Exercise 4.01: Applying the Naïve Bayes Algorithm  ............................  135

Activity 4.01: Training a Naïve Bayes Model
for Our Census Income Dataset ..  138

The Decision Tree Algorithm ..  139

How Does the Decision Tree Algorithm Work? .....................................  139

Exercise 4.02: Applying the Decision Tree Algorithm  ..........................  141

Activity 4.02: Training a Decision Tree Model
for Our Census Income Dataset ..  143

The Support Vector Machine Algorithm ...  143

How Does the SVM Algorithm Work? ...  144

Exercise 4.03: Applying the SVM Algorithm ...  148

Activity 4.03: Training an SVM Model for Our Census
Income Dataset ...  150

Error Analysis ...  150

Accuracy, Precision, and Recall ...  151

Summary ...  155

Chapter 5: Supervised Learning – Key Steps 	  157

Introduction ..  158

Artificial Neural Networks ..  158

How Do ANNs Work? ..  159

Forward Propagation..161

Cost Function...162

Backpropagation...163

Updating the Weights and Biases..164

Understanding the Hyperparameters ..  165

Number of Hidden Layers and Units...165

Activation Functions..166

Regularization..167

Batch Size..167

Learning Rate...168

Number of Iterations..168

Applications of Neural Networks ..  168

Limitations of Neural Networks ..  169

Applying an Artificial Neural Network ..  169

Scikit-Learn's Multilayer Perceptron ..  170

Exercise 5.01: Applying the MLP Classifier Class ...................................  170

Activity 5.01: Training an MLP for Our Census Income Dataset .........  172

Performance Analysis ...  174

Error Analysis ..  174

Hyperparameter Fine-Tuning ..  175

Model Comparison ...  178

Activity 5.02: Comparing Different Models to Choose
the Best Fit for the Census Income Data Problem ...............................  179

Summary ...  180

Chapter 6: Building Your Own Program 	  183

Introduction ..  184

Program Definition ..  184

Building a Program – Key Stages ...  184

Preparation..185

Creation..185

Interaction..186

Understanding the Dataset ...  187

Activity 6.01: Performing the Preparation and Creation
Stages for the Bank Marketing Dataset ...  192

Saving and Loading a Trained Model ..  194

Saving a Model ..  195

Exercise 6.01: Saving a Trained Model  ..  195

Loading a Model ..  197

Exercise 6.02: Loading a Saved Model  ...  198

Activity 6.02: Saving and Loading the Final Model
for the Bank Marketing Dataset ...  199

Interacting with a Trained Model ..  201

Exercise 6.03: Creating a Class and a Channel to Interact
with a Trained Model  ...  202

Activity 6.03: Allowing Interaction with the Bank
 Marketing Dataset Model ...  205

Summary ...  206

Appendix 	  209

Index 	  259

Preface

ii | Preface

About the Book
Machine learning algorithms are an integral part of almost all modern applications.
To make the learning process faster and more accurate, you need a tool flexible and
powerful enough to help you build machine learning algorithms quickly and easily.
With The Machine Learning Workshop, Second Edition, you'll master the scikit-learn
library and become proficient in developing clever machine learning algorithms.

The Machine Learning Workshop, Second Edition, begins by demonstrating how
unsupervised and supervised learning algorithms work by analyzing a real-
world dataset of wholesale customers. Once you've got to grips with the basics,
you'll develop an artificial neural network using scikit-learn and then improve its
performance by fine-tuning hyperparameters. Towards the end of the workshop,
you'll study the dataset of a bank's marketing activities and build machine learning
models that can list clients who are likely to subscribe to a term deposit. You'll also
learn how to compare these models and select the optimal one.

By the end of The Machine Learning Workshop, Second Edition, you'll not only have
learned the difference between supervised and unsupervised models and their
applications in the real world, but you'll also have developed the skills required
to get started with programming your very own machine learning algorithms.

Audience

The Machine Learning Workshop, Second Edition, is perfect for machine learning
beginners. You will need Python programming experience, though no prior
knowledge of scikit-learn and machine learning is necessary.

About the Chapters

Chapter 1, Introduction to Scikit-Learn, introduces the two main topics of the book:
machine learning and scikit-learn. It explains the key steps of preprocessing your
input data, separating the features from the target, dealing with messy data, and
rescaling the values of data.

Chapter 2, Unsupervised Learning – Real-Life Applications, explains the concept
of clustering in machine learning by covering the three most common
clustering algorithms.

Chapter 3, Supervised Learning – Key Steps, describes the different tasks that can be
solved through supervised learning algorithms: classification and regression.

About the Book | iii

Chapter 4, Supervised Learning Algorithms: Predicting Annual Income, teaches the
different concepts and steps for solving a supervised learning data problem.

Chapter 5, Artificial Neural Networks: Predicting Annual Income, shows how to solve a
supervised learning classification problem using a neural network and analyze the
results by performing error analysis.

Chapter 6, Building Your Own Program, explains all the steps required to develop a
comprehensive machine learning solution.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
path names, dummy URLs, user input, and Twitter handles are shown as follows:

"Load the titanic dataset using the seaborn library."

Words that you see on the screen (for example, in menus or dialog boxes) appear in
the same format.

A block of code is set as follows:

import seaborn as sns

titanic = sns.load_dataset('titanic')

titanic.head(10)

New terms and important words are shown like this:

"Data that is missing information or that contains outliers or noise is considered to be
messy data."

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

 validation_split=0.2, shuffle=False)

iv | Preface

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In
the following section, we shall see how to do that.

Installing Python on Windows and MacOS

Follow these steps to install Python 3.7 on Windows and macOS:

1.	 Visit https://www.python.org/downloads/release/python-376/ to download Python 3.7.

2.	 At the bottom of the page, locate the table under the heading Files:

For Windows, click on Windows x86-64 executable installer for
64-bit or Windows x86 executable installer for 32-bit.

For macOS, click on macOS 64-bit/32-bit installer for macOS 10.6
and later, or macOS 64-bit installer for macOS 10.9 and later.

3.	 Run the installer that you have downloaded.

Installing Python on Linux

1.	 Open your Terminal and type the following command:

sudo apt-get install python3.7

https://www.python.org/downloads/release/python-376/

About the Book | v

Installing pip

pip is included by default with the installation of Python 3.7. However, it may be
the case that it does not get installed. To check whether it was installed, execute the
following command in your Terminal or Command Prompt:

pip --version

You might need to use the pip3 command, due to previous versions of pip on your
computer that are already using the pip command.

If the pip command (or pip3) is not recognized by your machine, follow these steps
to install it:

1.	 To install pip, visit https://pip.pypa.io/en/stable/installing/ and download the
get-pip.py file.

2.	 Then, on the Terminal or Command Prompt, use the following command to
install it:

python get-pip.py

You might need to use the python3 get-pip.py command, due to previous
versions of Python on your machine that are already using the python command.

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install –r requirements.txt. You can find the requirements.txt file at
https://packt.live/2Ar1i3v.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries –
that is, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

https://pip.pypa.io/en/stable/installing/
https://packt.live/2Ar1i3v

vi | Preface

Opening a Jupyter Notebook

1.	 Open a Terminal/Command Prompt.

2.	 In the Terminal/Command Prompt, go to the directory location where you have
cloned the book's repository.

3.	 Open a Jupyter notebook by typing in the following command:

jupyter notebook

4.	 By executing the previous command, you will be able to use Jupyter notebooks
through the default browser of your machine.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/2wkiC8d. You
can also run many activities and exercises directly in your web browser by using the
interactive lab environment at https://packt.live/3cYbopv.

We've tried to support interactive versions of all activities and exercises, but we
recommend a local installation as well for instances where this support isn't available.

The high-quality color images used in this book can be found at
https://packt.live/3exaFfJ.

If you have any issues or questions about installation, please email us
at workshops@packt.com.

https://packt.live/2wkiC8d
https://packt.live/3cYbopv
https://packt.live/3exaFfJ
mailto:workshops@packt.com

Overview

This chapter introduces the two main topics of this book: machine learning
and scikit-learn. By reading this book, you will learn about the concept and
application of machine learning. You will also learn about the importance of
data in machine learning, as well as the key aspects of data preprocessing
to solve a variety of data problems. This chapter will also cover the basic
syntax of scikit-learn. By the end of this chapter, you will have a firm
understanding of scikit-learn's syntax so that you can solve simple data
problems, which will be the starting point for developing machine
learning solutions.

Introduction to Scikit-Learn

1

2 | Introduction to Scikit-Learn

Introduction
Machine learning (ML), without a doubt, is one of the most relevant technologies
nowadays as it aims to convert information (data) into knowledge that can be used
to make informed decisions. In this chapter, you will learn about the different
applications of ML in today's world, as well as the role that data plays. This will be the
starting point for introducing different data problems throughout this book that you
will be able to solve using scikit-learn.

Scikit-learn is a well-documented and easy-to-use library that facilitates the
application of ML algorithms by using simple methods, which ultimately enables
beginners to model data without the need for deep knowledge of the math behind
the algorithms. Additionally, thanks to the ease of use of this library, it allows the user
to implement different approximations (that is, create different models) for a data
problem. Moreover, by removing the task of coding the algorithm, scikit-learn allows
teams to focus their attention on analyzing the results of the model to arrive at
crucial conclusions.

Spotify, a world-leading company in the field of music streaming, uses scikit-learn
because it allows them to implement multiple models for a data problem, which
are then easily connected to their existing development. This process improves the
process of arriving at a useful model, while allowing the company to plug them into
their current app with little effort.

On the other hand, booking.com uses scikit-learn due to the wide variety of algorithms
that the library offers, which allows them to fulfill the different data analysis tasks
that the company relies on, such as building recommendation engines, detecting
fraudulent activities, and managing the customer service team.

Considering the preceding points, this chapter also explains scikit-learn and its main
uses and advantages, and then moves on to provide a brief explanation of the scikit-
learn Application Programming Interface (API) syntax and features. Additionally,
the process of representing, visualizing, and normalizing data will be shown. The
aforementioned information will help us to understand the different steps that need
to be taken to develop a ML model.

In the following chapters in this book, you will explore the main ML algorithms that
can be used to solve real-life data problems. You will also learn about different
techniques that you can use to measure the performance of your algorithms and how
to improve them accordingly. Finally, you will explore how to make use of a trained
model by saving it, loading it, and creating APIs.

http://booking.com

Introduction to Machine Learning | 3

Introduction to Machine Learning
Machine learning (ML) is a subset of Artificial Intelligence (AI) that consists of
a wide variety of algorithms capable of learning from the data that is being fed to
them, without being specifically programmed for a task. This ability to learn from
data allows the algorithms to create models that are capable of solving complex data
problems by finding patterns in historical data and improving them as new data is fed
to the models.

These different ML algorithms use different approximations to solve a task (such
as probability functions), but the key element is that they are able to consider a
countless number of variables for a particular data problem, making the final model
better at solving the task than humans are. The models that are created using ML
algorithms are created to find patterns in the input data so that those patterns can be
used to make informed predictions in the future.

Applications of ML

Some of the popular tasks that can be solved using ML algorithms are price/demand
predictions, product/service recommendation, and data filtering, among others. The
following is a list of real-life examples of such tasks:

•	 On-demand price prediction: Companies whose services vary in price
according to demand can use ML algorithms to predict future demand and
determine whether they will have the capability to meet it. For instance, in the
transportation industry, if future demand is low (low season), the price for flights
will drop. On the other hand, is demand is high (high season), flights are likely to
increase in price.

•	 Recommendations in entertainment: Using the music that you currently use,
as well as that of the people similar to you, ML algorithms can construct models
capable of suggesting new records that you may like. That is also the case of
video streaming applications, as well as online bookstores.

•	 Email filtering: ML has been used for a while now in the process of filtering
incoming emails in order to separate spam from your desired emails. Lately, it
also has the capability to sort unwanted emails into more categories, such as
social and promotions.

4 | Introduction to Scikit-Learn

Choosing the Right ML Algorithm

When it comes to developing ML solutions, it is important to highlight that, more
often than not, there is no one solution for a data problem, much like there is no
algorithm that fits all data problems. According to this and considering that there is
a large quantity of algorithms in the field of ML, choosing the right one for a certain
data problem is often the turning point that separates outstanding models from
mediocre ones.

The following steps can help narrow down the algorithms to just a few:

1.	 Understand your data: Considering that data is the key to being able to develop
any ML solutions, the first step should always be to understand it in order to be
able to filter out any algorithm that is unable to process such data.

For instance, considering the quantity of features and observations in your
dataset, it is possible to determine whether an algorithm capable of producing
outstanding results with a small dataset is required. The number of instances/
features to consider a dataset small depends on the data problem, the quantity
of the outputs, and so on. Moreover, by understanding the types of fields in
your dataset, you will also be able to determine whether you need an algorithm
capable of working with categorical data.

2.	 Categorize the data problem: As per the following diagram, in this step, you
should analyze your input data to determine if it contains a target feature (a
feature whose values you want to be modeled and predicted) or not. Datasets
with a target feature are also known as labeled data and are solved using
supervised learning (A) algorithms. On the other hand, datasets without a target
feature are known as unlabeled data and are solved using unsupervised learning
algorithms (B).

Introduction to Machine Learning | 5

Moreover, the output data (the form of output that you expect from the model)
also plays a key role in determining the algorithms to be used. If the output
from the model needs to be a continuous number, the task to be solved is a
regression problem (C). On the other hand, if the output is a discrete value (a
set of categories, for instance), the task at hand is a classification problem (D).
Finally, if the output is a subgroup of observations, the process to be performed
is a clustering task (E):

Figure 1.1: Demonstrating the division of tasks

This division of tasks will be explored in more detail in the Supervised and
Unsupervised Learning section of this chapter.

6 | Introduction to Scikit-Learn

3.	 Choose a set of algorithms: Once the preceding steps have been performed, it
is possible to filter out the algorithms that perform well over the input data and
that are able to arrive at the desired outcome. Depending on your resources and
time limitations, you should choose from this list of apt algorithms the ones that
you want to test out over your data problem, considering that it is always a good
practice to try more than one algorithm.

These steps will be explained in more detail in the next chapter using a real-life data
problem as an example.

Scikit-Learn
Created in 2007 by David Cournapeau as part of a Google Summer of Code project,
scikit-learn is an open source Python library made to facilitate the process of
building models based on built-in ML and statistical algorithms, without the need for
hardcoding. The main reasons for its popular use are its complete documentation, its
easy-to-use API, and the many collaborators who work every day to improve
the library.

Note

You can find the documentation for scikit-learn at http://scikit-learn.org.

Scikit-learn is mainly used to model data, and not as much to manipulate or
summarize data. It offers its users an easy-to-use, uniform API to apply different
models with little learning effort, and no real knowledge of the math behind it
is required.

Note

Some of the math topics that you need to know about to understand the
models are linear algebra, probability theory, and multivariate calculus. For
more information on these models, visit https://towardsdatascience.com/the-
mathematics-of-machine-learning-894f046c568.

The models that are available in the scikit-learn library fall into two categories, that
is, supervised and unsupervised, both of which will be explained in depth later in this
chapter. This form of category classification will help to determine which model to
use for a particular dataset to get the most information out of it.

http://scikit-learn.org
https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568

Scikit-Learn | 7

Besides its main use for predicting future behavior in supervised learning problems
and clustering data in unsupervised learning problems, scikit-learn is also used for
the following reasons:

•	 To carry out cross-validation and performance metrics analysis to understand
the results that have been obtained from the model, and thereby improve
its performance

•	 To obtain sample datasets to test algorithms on them

•	 To perform feature extraction to extract features from images or text data

Although scikit-learn is considered the preferred Python library for beginners in the
world of ML, there are several large companies around the world that use it because
it allows them to improve their products or services by applying the models to already
existing developments. It also permits them to quickly implement tests on new ideas.

Some of the leading companies that are using scikit-learn are as follows:

•	 Spotify: One of the most popular music streaming applications, Spotify makes
use of scikit-learn mainly due to the wide variety of algorithms that the
framework offers, as well as how easy it is to implement the new models into
their current developments. Scikit-learn has been used as part of its music
recommendation model.

•	 Booking.com: From developing recommendation systems to preventing
fraudulent activities, among many other solutions, this travel metasearch engine
has been able to use scikit-learn to explore a large number of algorithms that
allow the creation of state-of-the-art models.

•	 Evernote: This note-taking and management app uses scikit-learn to tackle
several of the steps required to train a classification model, from data
exploration to model evaluation.

•	 Change.org: Thanks to the framework's ease of use and variety of algorithms,
this non-profit organization has been able to create email marketing campaigns
that reach millions of readers around the world.

Note

You can visit http://scikit-learn.org/stable/testimonials/testimonials.html to
discover other companies that are using scikit-learn and see what they are
using it for.

http://scikit-learn.org/stable/testimonials/testimonials.html

8 | Introduction to Scikit-Learn

In conclusion, scikit-learn is an open source Python library that uses an API to apply
most ML tasks (both supervised and unsupervised) to data problems. Its main use
is for modeling data so that predictions can be made about unseen observations;
nevertheless, it should not be limited to that as the library also allows users to predict
outcomes based on the model being trained, as well as to analyze the performance of
the model, among other features.

Advantages of Scikit-Learn

The following is a list of the main advantages of using scikit-learn for ML purposes:

•	 Ease of use: Scikit-learn is characterized by a clean API, with a small learning
curve in comparison to other libraries, such as TensorFlow or Keras. The API is
popular for its uniformity and straightforward approach. Users of scikit-learn do
not necessarily need to understand the math behind the models.

•	 Uniformity: Its uniform API makes it very easy to switch from model to model as
the basic syntax that's required for one model is the same for others.

•	 Documentation/tutorials: The library is completely backed up by
documentation, which is effortlessly accessible and easy to understand.
Additionally, it also offers step-by-step tutorials that cover all of the topics
required to develop any ML project.

•	 Reliability and collaborations: As an open source library, scikit-learn benefits
from the input of multiple collaborators who work each day to improve its
performance. This participation from many experts from different contexts helps
to develop not only a more complete library but also a more reliable one.

•	 Coverage: As you scan the list of components that the library has, you will
discover that it covers most ML tasks, ranging from supervised models such as
performing a regression task to unsupervised models such as the ones used
to cluster data into subgroups. Moreover, due to its many collaborators, new
models tend to be added in relatively short amounts of time.

Scikit-Learn | 9

Disadvantages of Scikit-Learn

The following is a list of the main disadvantages of using scikit-learn for ML purposes:

•	 Inflexibility: Due to its ease of use, the library tends to be inflexible. This means
that users do not have much liberty in parameter tuning or model architecture,
such as with the Gradient Boost algorithm and neural networks. This becomes
an issue as beginners move to more complex projects.

•	 Not good for deep learning: The performance of the library falls short when
tackling complex ML projects. This is especially true for deep learning, as scikit-
learn does not support deep neural networks with the necessary architecture
or power.

Note

Deep learning is a part of ML and is based on the concept of artificial neural
networks. It uses a sequence of layers to extract valuable information
(features) from the input data. In subsequent sections of this book, you will
learn about neural networks, which is the starting point of being able to
develop deep learning solutions.

In general terms, scikit-learn is an excellent beginner's library as it requires little
effort to learn its use and has many complementary materials thought to facilitate its
application. Due to the contributions of several collaborators, the library stays up to
date and is applicable to most current data problems.

On the other hand, it is a simple library that's not fit for more complex data problems
such as deep learning. Likewise, it is not recommended for users who wish to take
their abilities to a higher level by playing with the different parameters that are
available in each model.

10 | Introduction to Scikit-Learn

Other Frameworks

Other popular ML frameworks are as follows:

•	 TensorFlow: Google's open source framework for ML, which to this day is still the
most popular among data scientists. It is typically integrated with Python and
is very good for developing deep learning solutions. Due to its popularity, the
information that's available on the internet about the framework makes it very
easy to develop different solutions, not to mention that it is backed by Google.

•	 PyTorch: This was primarily developed by Facebook's AI Research lab as an open
source deep learning framework. Although it is a fairly new framework (released
in 2017), it has grown in popularity due to its ease of use and Pythonic nature. It
allows easy code debugging thanks to the use of dynamic graph computations.

•	 Keras: This is an open source deep learning framework that's typically good for
those who are just starting out. Due to its simplicity, it is less flexible but ideal
for prototyping simple concepts. Similar to scikit-learn, it has its own
easy-to-use API.

Data Representation
The main objective of ML is to build models by interpreting data. To do so, it is highly
important to feed the data in a way that is readable by the computer. To feed data
into a scikit-learn model, it must be represented as a table or matrix of the required
dimensions, which we will discuss in the following section.

Tables of Data

Most tables that are fed into ML problems are two-dimensional, meaning that they
contain rows and columns. Conventionally, each row represents an observation (an
instance), whereas each column represents a characteristic (feature) of
each observation.

Data Representation | 11

The following table is a fragment of a sample dataset of scikit-learn. The purpose of
the dataset is to differentiate from among three types of iris plants based on their
characteristics. Hence, in the following table, each row embodies a plant and each
column denotes the value of that feature for every plant:

Figure 1.2: A table showing the first 10 instances of the iris dataset

From the preceding explanation, by reviewing the first row of the preceding table, it is
possible to determine that the observation corresponds to that of a plant with a sepal
length of 5.1, a sepal width of 3.5, a petal length of 1.4, and a petal width of 0.2.
The plant belongs to the setosa species.

Note

When feeding images to a model, the tables become three-dimensional,
where the rows and columns represent the dimensions of the image in
pixels, while the depth represents its color scheme. If you are interested,
feel free to find out more about convolutional neural networks.

12 | Introduction to Scikit-Learn

Data in tables are also known as structured data. Unstructured data, on the other
hand, refers to everything else that cannot be stored in a table-like database (that is,
in rows and columns). This includes images, audio, videos, and text (such as emails
or reviews). To be able to feed unstructured data into an ML algorithm, the first step
should be to transform it into a format that the algorithm can understand (tables of
data). For instance, images are converted into matrices of pixels, and text is encoded
into numeric values.

Features and Target Matrices

For many data problems, one of the features of your dataset will be used as a label.
This means that out of all the other features, this one is the target that the model
should generalize the data to. For example, in the preceding table, we might choose
the species as the target feature, so we would like the model to find patterns based
on the other features to determine whether a plant belongs to the setosa species.
Therefore, it is important to learn how to separate the target matrix from the
features matrix.

Features Matrix: The features matrix comprises data from each instance for all
features, except the target. It can be either created using a NumPy array or a Pandas
DataFrame, and its dimensions are [n_i, n_f], where n_i denotes the number
of instances (such as the universe of persons in the dataset) and n_f denotes the
number of features (such as the demographics of each person). Generally, the
features matrix is stored in a variable named X.

Note

Pandas is an open source library built for Python. It was created to tackle
different tasks related to data manipulation and analysis. Likewise, NumPy
an open source Python library and is used to manipulate large multi-
dimensional arrays. It was also created with a large set of mathematical
functions to operate over such arrays.

Target Matrix: Different to the features matrix, the target matrix is usually
one-dimensional since it only carries one feature for all instances, meaning that its
length is n_i (the number of instances). Nevertheless, there are some occasions
where multiple targets are required, so the dimensions of the matrix become [n_i,
n_t], where n_t is the number of targets to consider.

Data Representation | 13

Similar to the features matrix, the target matrix is usually created as a NumPy array
or a Pandas series. The values of the target array may be discrete or continuous.
Generally, the target matrix is stored in a variable named Y.

Exercise 1.01: Loading a Sample Dataset and Creating the Features and

Target Matrices

Note

All of the exercises and activities in this book will be primarily developed
in Jupyter Notebooks. It is recommended to keep a separate Notebook for
different assignments, unless advised otherwise. Also, to load a sample
dataset, the seaborn library will be used, as it displays the data as a
table. Other ways to load data will be explained in later sections.

In this exercise, we will be loading the tips dataset from the seaborn library
and creating features and target matrices using it. Follow these steps to complete
this exercise:

Note

For the exercises and activities within this chapter, ensure that you have
Python 3.7, Seaborn 0.9, Jupyter 6.0, Matplotlib 3.1, NumPy 1.18, and
Pandas 0.25 installed on your system.

1.	 Open a Jupyter Notebook to complete this exercise. In the Command Prompt or
Terminal, navigate to the desired path and use the following command:

jupyter notebook

2.	 Load the tips dataset using the seaborn library. To do so, you need to import
the seaborn library and then use the load_dataset() function, as shown in
the following code:

import seaborn as sns

tips = sns.load_dataset('tips')

14 | Introduction to Scikit-Learn

As we can see from the preceding code, after importing the library, a nickname is
given to facilitate its use with the script.

The load_dataset() function loads datasets from an online repository. The
data from the dataset is stored in a variable named tips.

3.	 Create a variable, X, to store the features. Use the drop() function to include all
of the features but the target, which in this case is named tip. Then, print out
the top 10 instances of the variable:

X = tips.drop('tip', axis=1)

X.head(10)

Note

The axis parameter in the preceding snippet denotes whether you want to
drop the label from rows (axis = 0) or columns (axis = 1).

The printed output should look as follows:

Figure 1.3: A table showing the first 10 instances of the features matrix

Data Representation | 15

4.	 Print the shape of your new variable using the X.shape command:

X.shape

The output is as follows:

(244, 6)

The first value indicates the number of instances in the dataset (244), while the
second value represents the number of features (6).

5.	 Create a variable, Y, that will store the target values. There is no need to use
a function for this. Use indexing to grab only the desired column. Indexing allows
you to access a section of a larger element. In this case, we want to grab the
column named tip. Then, we need to print out the top 10 values of the variable:

Y = tips['tip']

Y.head(10)

The printed output should look as follows:

Figure 1.4: A screenshot showing the first 10 instances of the target matrix

6.	 Print the shape of your new variable using the Y.shape command:

Y.shape

The output is as follows:

(244,)

16 | Introduction to Scikit-Learn

The shape should be one-dimensional with a length equal to the number of
instances (244).

Note

To access the source code for this specific section, please refer to
https://packt.live/2Y5dgZH.

You can also run this example online at https://packt.live/3d0Hsco.
You must execute the entire Notebook in order to get the desired result.

With that, you have successfully created the features and target matrices of a dataset.

Generally, the preferred way to represent data is by using two-dimensional tables,
where the rows represent the number of observations, also known as instances, and
the columns represent the characteristics of those instances, commonly known
as features.

For data problems that require target labels, the data table needs to be partitioned
into a features matrix and a target matrix. The features matrix will contain the values
of all features but the target, for each instance, making it a two-dimensional matrix.
On the other hand, the target matrix will only contain the value of the target feature
for all entries, making it a one-dimensional matrix.

Activity 1.01: Selecting a Target Feature and Creating a Target Matrix

You want to analyze the Titanic dataset to see the survival rate of the passengers
on different decks and see if you can prove a hypothesis stating that passengers on
the lower decks were less likely to survive. In this activity, we will attempt to load a
dataset and create the features and target matrices by choosing the appropriate
target feature for the objective at hand.

Note

To choose the target feature, remember that the target should be the
outcome that we want to interpret the data for. For instance, if we want to
know what features play a role in determining a plant's species, the species
should be the target value.

https://packt.live/2Y5dgZH
https://packt.live/3d0Hsco

Data Representation | 17

Follow these steps to complete this activity:

1.	 Load the titanic dataset using the seaborn library. The first couple of rows
should look like this:

Figure 1.5: A table showing the first 10 instances of the Titanic dataset

2.	 Select your preferred target feature for the goal of this activity.

3.	 Create both the features matrix and the target matrix. Make sure that you store
the data from the features matrix in a variable, X, and the data from the target
matrix in another variable, Y.

4.	 Print out the shape of each of the matrices, which should match the
following values:

Features matrix: (891, 14)

Target matrix: (891,)

Note

The solution for this activity can be found on page 210.

18 | Introduction to Scikit-Learn

Data Preprocessing
Data preprocessing is a very critical step for developing ML solutions as it helps make
sure that the model is not trained on biased data. It has the capability to improve
a model's performance, and it is often the reason why the same algorithm for the
same data problem works better for a programmer that has done an outstanding job
preprocessing the dataset.

For the computer to be able to understand the data proficiently, it is necessary to
not only feed the data in a standardized way but also make sure that the data does
not contain outliers or noisy data, or even missing entries. This is important because
failing to do so might result in the algorithm making assumptions that are not true to
the data. This will cause the model to train at a slower pace and to be less accurate
due to misleading interpretations of data.

Moreover, data preprocessing does not end there. Models do not work the same way,
and each one makes different assumptions. This means that we need to preprocess
the data in terms of the model that is going to be used. For example, some models
accept only numerical data, whereas others work with nominal and numerical data.

To achieve better results during data preprocessing, a good practice is to transform
(preprocess) the data in different ways and then test the different transformations in
different models. That way, you will be able to select the right transformation for the
right model. It is worth mentioning that data preprocessing is likely to help any data
problem and any ML algorithm, considering that just by standardizing the dataset, a
better training speed is achieved.

Messy Data

Data that is missing information or that contains outliers or noise is considered to be
messy data. Failing to perform any preprocessing to transform the data can lead to
poorly created models of the data, due to the introduction of bias and information
loss. Some of the issues with data that should be avoided will be explained here.

Data Preprocessing | 19

Missing Values

Both the features and instances of a dataset can have missing values. Features where
a few instances have values, as well as instances where there are no values for any
feature, are considered missing data:

Figure 1.6: Example of missing values

The preceding image displays an instance (Instance 8) with no values for any of the
features, which makes it useless, and a feature (Feature 8) with seven missing values
out of the 10 instances, which means that the feature cannot be used to find
patterns among the instances, considering that most of them don't have a value for
the feature.

Conventionally, a feature missing more than 5 to 10% of its values is considered to be
missing data (also known as a feature with high absence rate), and so it needs to be
dealt with. On the other hand, all instances that have missing values for all features
should be eliminated as they do not provide any information to the model and, on
the contrary, may end up introducing bias.

20 | Introduction to Scikit-Learn

When dealing with a feature with a high absence rate, it is recommended to either
eliminate it or fill it with values. The most popular ways to replace the missing values
are as follows:

•	 Mean imputation: Replacing missing values with the mean or median of the
features' available values

•	 Regression imputation: Replacing missing values with the predicted values that
have been obtained from a regression function

Note

A regression function refers to the statistical model that's used to estimate
a relationship between a dependent variable and one or more independent
variables. A regression function can be linear, logistic, polynomial,
and so on.

While mean imputation is a simpler approach to implement, it may introduce bias
as it evens out all the instances. On the other hand, even though the regression
approach matches the data to its predicted value, it may end up overfitting the model
(that is, creating models that learn the training data too well and are not fit to deal
with new unseen data) as all the values that are introduced follow a function.

Lastly, when the missing values are found in a text feature such as gender, the best
course of action would be to either eliminate them or replace them with a class
labeled as uncategorized or something similar. This is mainly because it is not possible
to apply either mean or regression imputation to text.

Labeling missing values with a new category (uncategorized) is mostly done when
eliminating them would remove an important part of the dataset, and hence would
not be an appropriate course of action. In this case, even though the new label may
have an effect on the model, depending on the rationale that's used to label the
missing values, leaving them empty would be an even worse alternative as it would
cause the model to make assumptions on its own.

Note

To learn more about how to detect and handle missing values, visit the
following page: https://towardsdatascience.com/how-to-handle-missing-data-
8646b18db0d4.

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4

Data Preprocessing | 21

Outliers

Outliers are values that are far from the mean. This means that if the values from a
feature follow a Gaussian distribution, the outliers are located at the tails.

Note

A Gaussian distribution (also known as a normal distribution) has a
bell-shaped curve, given that there is an equal number of values above
and below the mean.

Outliers can be global or local. The former group represents those values that are far
from the entire set of values for a feature. For example, when analyzing data from
all members of a neighborhood, a global outlier would be a person who is 180 years
old (as shown in the following diagram (A)). The latter, on the other hand, represents
values that are far from a subgroup of values of that feature. For the same example
that we saw previously, a local outlier would be a college student who is 70 years old
(B), which would normally differ from other college students in that neighborhood:

Figure 1.7: An image depicting global and local outliers in a dataset

22 | Introduction to Scikit-Learn

Considering both examples that have been given, outliers do not evaluate whether
the value is possible. While a person aged 180 years is not plausible, a 70-year-old
college student might be a possibility, yet both are categorized as outliers as they can
both affect the performance of the model.

A straightforward approach to detect outliers consists of visualizing the data to
determine whether it follows a Gaussian distribution, and if it does, classifying those
values that fall between three to six standard deviations away from the mean as
outliers. Nevertheless, there is not an exact rule to determine an outlier, and the
decision to select the number of standard deviations is subjective and will vary from
problem to problem.

For example, if the dataset is reduced by 40% by setting three standard deviations as
the parameter to rule out values, it would be appropriate to change the number of
standard deviations to four.

On the other hand, when dealing with text features, detecting outliers becomes
even trickier as there are no standard deviations to use. In this case, counting the
occurrences of each class value would help to determine whether a certain class is
indispensable or not. For instance, in clothing sizes, having a size XXS that represents
less than 5% of the entire dataset might not be necessary.

Once the outliers have been detected, there are three common ways to handle them:

•	 Delete the outlier: For outliers that are true values, it is best to completely
delete them to avoid skewing the analysis. This may also be a good idea for
outliers that are mistakes, that is, if the number of outliers is too large to
perform further analysis to assign a new value.

•	 Define a top: Defining a top may also be useful for true values. For instance, if
you realize that all values above a certain threshold behave the same way, you
can consider topping that value with a threshold.

•	 Assign a new value: If the outlier is clearly a mistake, you can assign a new
value using one of the techniques that we discussed for missing values (mean or
regression imputation).

Data Preprocessing | 23

The decision to use each of the preceding approaches depends on the outlier
type and number. Most of the time, if the number of outliers represents a small
proportion of the total size of the dataset, there is no point in treating the outlier in
any way other than deleting it.

Note

Noisy data corresponds to values that are not correct or possible. This
includes numerical (outliers that are mistakes) and nominal values (for
example, a person's gender misspelled as "fimale"). Like outliers, noisy data
can be treated by deleting the values completely or by assigning them a
new value.

Exercise 1.02: Dealing with Messy Data

In this exercise, we will be using the tips dataset from seaborn as an example
to demonstrate how to deal with messy data. Follow these steps to complete
this exercise:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Import all the required elements. Next, load the tips dataset and store it in a
variable called tips. Use the following code:

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

tips = sns.load_dataset('tips')

3.	 Next, create a variable called size to store the values of that feature from the
dataset. As this dataset does not contain any missing data, we will convert the
top 16 values of the size variable into missing values. Print out the top 20
values of the age variable:

size = tips["size"]

size.loc[:15] = np.nan

size.head(20)

24 | Introduction to Scikit-Learn

Note

A warning may appear at this point, saying A value is trying to be set on
a copy of a slice from a DataFrame. This occurs because size is a slice
of the tips dataset, and by making a change in the slice, the dataset is
also changed. This is okay as the purpose of this exercise is to modify the
dataset by modifying the different features that it contains.

The preceding code snippet creates the size variable as a slice of the dataset,
then coverts the top 16 values of the variable into Not a Number (NaN), which is
the representation of a missing value. Finally, it prints the top 20 values of
the variable.

The output will appear as follows:

Figure 1.8: A screenshot showing the first 20 instances of the age variable

Data Preprocessing | 25

As you can see, the feature contains the NaN values that we introduced.

4.	 Check the shape of the size variable:

size.shape

The output is as follows:

(244,)

5.	 Now, count the number of NaN values to determine how to handle them. Use
the isnull() function to find the NaN values, and use the sum() function to
sum them all:

size.isnull().sum()

The output is as follows:

16

The participation of the NaN values in the total size of the variable is 6.55%,
which can be calculated by dividing the number of missing values by the length
of the feature (16/244). Although this is not high enough to consider removing
the entire feature, there is a need to handle the missing values.

6.	 Let's choose the mean imputation methodology to replace the missing values.
To do so, compute the mean of the available values, as follows:

mean = size.mean()

mean = round(mean)

print(mean)

The mean comes out as 3.

Note

The mean value (2.55) was rounded to its nearest integer since the size
feature is a measure of the number of persons attending a restaurant.

26 | Introduction to Scikit-Learn

7.	 Replace all missing values with the mean. Use the fillna() function, which
takes every missing value and replaces it with the value that is defined inside
the parenthesis. To check that the values have been replaced, print the first 10
values again:

size.fillna(mean, inplace=True)

size.head(20)

Note

When inplace is set to True, the original DataFrame is modified. Failing
to set the parameter to True will leave the original dataset unmodified.
According to this, by setting inplace to True, it is possible to replace the
NaN values for the mean.

The printed output is as follows:

Figure 1.9: A screenshot depicting the first 20 instances of the age variable

Data Preprocessing | 27

As shown in the preceding screenshot, the value of the top instances has
changed from NaN to 3, which is the mean that was calculated previously.

8.	 Use Matplotlib to graph a histogram of the age variable. Use Matplotlib's
hist() function, as per the following code:

plt.hist(size)

plt.show()

The histogram should look as follows. As we can see, its distribution is
Gaussian-like:

Figure 1.10: A screenshot depicting the histogram of the size variable

9.	 Discover the outliers in the data. Let's use three standard deviations as the
measure to calculate the minimum and maximum values.

As we discussed previously, the min value is determined by calculating the mean
of all of the values and subtracting three standard deviations from it. Use the
following code to set the min value and store it in a variable named min_val:

min_val = size.mean() - (3 * size.std())

print(min_val)

28 | Introduction to Scikit-Learn

The min value is around -0.1974. According to the min value, there are no
outliers at the left tail of the Gaussian distribution. This makes sense, given that
the distribution is tilted slightly to the left.

Opposite to the min value, for the max value, the standard deviations are added
to the mean to calculate the higher threshold. Calculate the max value, as shown
in the following code, and store it in a variable named max_val:

max_val = size.mean() + (3 * size.std())

print(max_val)

The max value, which comes to around 5.3695, determines that instances with
a size above 5.36 represent outliers. As you can see in the preceding diagram,
this also makes sense as those instances are far away from the bell of the
Gaussian distribution.

10.	Count the number of instances that are above the maximum value to decide
how to handle them, as per the instructions given here.

Using indexing, obtain the values in size that are above the max threshold
and store them in a variable called outliers. Then, count the outliers using
count():

outliers = size[size > max_val]

outliers.count()

The output shows that there are 4 outliers.

11.	Print out the outliers and check that the correct values were stored, as follows:

print(outliers)

The output is as follows:

Figure 1.11: Printing the outliers

Data Preprocessing | 29

As the number of outliers is small, and they correspond to true outliers, they can
be deleted.

Note

For this exercise, we will be deleting the instances from the size variable
to understand the complete procedure of dealing with outliers. However,
later, the deletion of outliers will be handled while considering all of the
features so that we can delete the entire instance, not just the size values.

12.	Redefine the values stored in size by using indexing to include only values
below the max threshold. Then, print the shape of size:

age = size[size <= max_val]

age.shape

The output is as follows:

(240,)

As you can see, the shape of size (calculated in Step 4) has been reduced by
four, which was the number of outliers.

Note

To access the source code for this specific section, please refer to
https://packt.live/30Egk0o.

You can also run this example online at https://packt.live/3d321ow.
You must execute the entire Notebook in order to get the desired result.

You have successfully cleaned a Pandas series. This process serves as a guide for
cleaning a dataset later on.

To summarize, we have discussed the importance of preprocessing data, as failing to
do so may introduce bias in the model, which affects the training time of the model
and its performance. Some of the main forms of messy data are missing values,
outliers, and noise.

https://packt.live/30Egk0o
https://packt.live/3d321ow

30 | Introduction to Scikit-Learn

Missing values, as their name suggests, are those values that are left empty or null.
When dealing with many missing values, it is important to handle them by deleting
them or by assigning new values. Two ways to assign new values were also discussed:
mean imputation and regression imputation.

Outliers are values that fall far from the mean of all the values of a feature. One way
to detect outliers is by selecting all the values that fall outside the mean plus/minus
three/six standard deviations. Outliers may be mistakes (values that are not possible)
or true values, and they should be handled differently. While true outliers may be
deleted or topped, mistakes should be replaced with other values when possible.

Finally, noisy data corresponds to values that are, regardless of their proximity to
the mean, mistakes or typos in the data. They can be of numeric, ordinal, or
nominal types.

Note

Please remember that numeric data is always represented by numbers that
can be measured, nominal data refers to text data that does not follow a
rank, and ordinal data refers to text data that follows a rank or order.

Dealing with Categorical Features

Categorical features are features that comprise discrete values typically belonging
to a finite set of categories. Categorical data can be nominal or ordinal. Nominal
refers to categories that do not follow a specific order, such as music genre or city
names, whereas ordinal refers to categories with a sense of order, such as clothing
sizes or level of education.

Feature Engineering

Even though improvements in many ML algorithms have enabled the algorithms to
understand categorical data types such as text, the process of transforming them
into numeric values facilitates the training process of the model, which results in
faster running times and better performance. This is mainly due to the elimination
of semantics available in each category, as well as the fact that the conversion into
numeric values allows you to scale all of the features of the dataset equally, as will be
explained in subsequent sections of this chapter.

Data Preprocessing | 31

How does it work? Feature engineering generates a label encoding that assigns
a numeric value to each category; this value will then replace the category in the
dataset. For example, a variable called genre with the classes pop, rock, and
country can be converted as follows:

Figure 1.12: An image illustrating how feature engineering works

Exercise 1.03: Applying Feature Engineering to Text Data

In this exercise, we will be converting the text features of the tips dataset into
numerical data.

Note

Use the same Jupyter Notebook that you created for the previous exercise.

Follow these steps to complete this exercise:

1.	 Import scikit-learn's LabelEncoder() class, as well as the pandas library,
as follows:

from sklearn.preprocessing import LabelEncoder

import pandas as pd

32 | Introduction to Scikit-Learn

2.	 Convert each of the text features into numeric values using the class that was
imported previously (LabelEncoder):

enc = LabelEncoder()

tips["sex"] = enc.fit_transform(tips['sex'].astype('str'))

tips["smoker"] = enc.fit_transform(tips['smoker'].astype('str'))

tips["day"] = enc.fit_transform(tips['day'].astype('str'))

tips["time"] = enc.fit_transform(tips['time'].astype('str'))

As per the preceding code snippet, the first step is to instantiate the
LabelEncoder class by typing in the first line of code. Second, for each of the
categorical features, we use the built-in fit_transform() method from the
class, which will assign a numeric value to each category and output the result.

3.	 Print out the top values of the tips dataset:

tips.head()

The output is as follows:

Figure 1.13: A screenshot depicting the first five instances of the tips dataset

As you can see, the text categories of the categorical features have been
converted into numeric values.

Note

To access the source code for this specific section, please refer to
https://packt.live/30GWJgb.

You can also run this example online at https://packt.live/3e2oaVu.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/30GWJgb
https://packt.live/3e2oaVu

Data Preprocessing | 33

You have successfully converted text data into numeric values.

While improvements in ML have made dealing with text features easier for some
algorithms, it is best to convert them into numeric values. This is mainly important as
it eliminates the complexity of dealing with semantics, not to mention that it gives us
the flexibility to change from model to model, without any limitations.

Text data conversion is done via feature engineering, where every text category is
assigned a numeric value that replaces it. Furthermore, even though this can be done
manually, there are powerful built-in classes and methods that facilitate this process.
One example of this is the use of scikit-learn's LabelEncoder class.

Rescaling Data

Rescaling data is important because even though the data may be fed to a model
using different scales for each feature, the lack of homogeneity can cause the
algorithm to lose its ability to discover patterns from the data due to the assumptions
it has to make to understand it, thereby slowing down the training process and
negatively affecting the model's performance.

Data rescaling helps the model run faster, without any burden or responsibility to
learn from the invariance present in the dataset. Moreover, a model trained over
equally scaled data assigns the same weights (level of importance) to all parameters,
which allows the algorithm to generalize to all features and not just to those with
higher values, irrespective of their meaning.

An example of a dataset with different scales is one that contains different features,
one measured in kilograms, another measuring temperature, and another counting
the number of children. Even though the values of each attribute are true, the scale of
each one of them highly differs from that of the other. For example, while the values
in kilograms can go higher than 100, the children count will typically not go higher
than 10.

Two of the most popular ways to rescale data are data normalization and data
standardization. There is no rule on selecting the methodology to transform data to
scale it, as all datasets behave differently. The best practice is to transform the data
using two or three rescaling methodologies and test the algorithms in each one of
them in order to choose the one that best fits the data based on its performance.

Rescaling methodologies are to be used individually. When testing different rescaling
methodologies, the transformation of data should be done independently. Each
transformation can be tested over a model, and the best suited one should be chosen
for further steps.

34 | Introduction to Scikit-Learn

Normalization: Data normalization in ML consists of rescaling the values of all
features so that they lie in a range between 0 and 1 and have a maximum length
of one. This serves the purpose of equating attributes of different scales.

The following equation allows you to normalize the values of a feature:

Figure 1.14: The normalization equation

Here, zi corresponds to the ith normalized value and x represents all values.

Standardization: This is a rescaling technique that transforms the data into a
Gaussian distribution with a mean equal to 0 and a standard deviation equal to 1.

One simple way of standardizing a feature is shown in the following equation:

Figure 1.15: The standardization equation

Here, zi corresponds to the ith standardized value and x represents all values.

Exercise 1.04: Normalizing and Standardizing Data

This exercise covers the normalization and standardization of data, using the tips
dataset as an example.

Note

Use the same Jupyter Notebook that you created for the previous exercise.

Data Preprocessing | 35

Follow these steps to complete this exercise:

1.	 Using the tips variable, which contains the entire dataset, normalize the
data using the normalization formula and store it in a new variable called
tips_normalized. Print out the top 10 values:

tips_normalized = (tips - tips.min())/(tips.max()-tips.min())

tips_normalized.head(10)

The output is as follows:

Figure 1.16: A screenshot displaying the first 10 instances of the tips_normalized variable

As shown in the preceding screenshot, all of the values have been converted into
their equivalents in a range between 0 and 1. By performing normalization for all
of the features, the model will be trained on features of the same scale.

36 | Introduction to Scikit-Learn

2.	 Again, using the tips variable, standardize the data using the formula for
standardization and store it in a variable called tips_standardized. Print
out the top 10 values:

tips_standardized = (tips - tips.mean())/tips.std()

tips_standardized.head(10)

The output is as follows:

Figure 1.17: A screenshot displaying the first 10 instances of the tips_standardized variable

Compared to normalization, in standardization, the values distribute normally
around zero.

Note

To access the source code for this specific section, please refer to
https://packt.live/30FKsbD.

You can also run this example online at https://packt.live/3e3cW2O.
You must execute the entire Notebook in order to get the desired result.

You have successfully applied rescaling methods to your data.

https://packt.live/30FKsbD
https://packt.live/3e3cW2O

Data Preprocessing | 37

In conclusion, we have covered the final step in data preprocessing, which consists of
rescaling data. This process was done in a dataset with features of different scales,
with the objective of homogenizing the way data is represented to facilitate the
comprehension of the data by the model.

Failing to rescale data will cause the model to train at a slower pace and may
negatively affect the performance of the model.

Two methodologies for data rescaling were explained in this topic: normalization and
standardization. On one hand, normalization transforms the data to a length of one
(from 0 to 1). On the other hand, standardization converts the data into a Gaussian
distribution with a mean of 0 and a standard deviation of 1.

Given that there is no rule for selecting the appropriate rescaling methodology, the
recommended course of action is to transform the data using two or three rescaling
methodologies independently, and then train the model with each transformation to
evaluate the methodology that behaves the best.

Activity 1.02: Pre-processing an Entire Dataset

You are continuing to work for the safety department at a cruise company. As you did
great work selecting the ideal target feature to develop the study, the department has
decided to commission you for preprocessing the dataset as well. For this purpose,
you need to use all the techniques you learned about previously to preprocess the
dataset and get it ready for model training. The following steps serve to guide you in
that direction:

1.	 Import seaborn and the LabelEncoder class from scikit-learn. Next, load the
Titanic dataset and create the features matrix, including the following features:
sex, age, fare, class, embark_town, and alone.

Note

For this activity, the features matrix has been created using only six
features since some of the other features were redundant for this study.
For example, there is no need to keep both sex and gender.

2.	 Check for missing values and outliers in all the features of the features matrix
(X). Choose a methodology to handle them.

3.	 Convert all text features into their numeric representations.

38 | Introduction to Scikit-Learn

4.	 Rescale your data, either by normalizing or standardizing it.

Note

The solution for this activity can be found on page 211.

Expected Output: Results may vary, depending on the choices you make. However,
you must be left with a dataset with no missing values, outliers, or text features, and
with the data rescaled.

Scikit-Learn API
The objective of the scikit-learn API is to provide an efficient and unified syntax to
make ML accessible to non-ML experts, as well as to facilitate and popularize its use
among several industries.

How Does It Work?

Although it has many collaborators, the scikit-learn API was built and has been
updated by considering a set of principles that prevent framework code proliferation,
where different code performs similar functionalities. On the contrary, it promotes
simple conventions and consistency. Due to this, the scikit-learn API is consistent
among all models, and once the main functionalities have been learned, it can be
used widely.

The scikit-learn API is divided into three complementary interfaces that share a
common syntax and logic: the estimator, the predictor, and the transformer. The
estimator interface is used for creating models and fitting the data into them; the
predictor, as its name suggests, is used to make predictions based on the models that
were trained previously; and finally, the transformer is used for converting data.

Estimator

This is considered to be the core of the entire API, as it is the interface in charge of
fitting the models to the input data. It works by instantiating the model to be used
and then applies a fit() method, which triggers the learning process so that it
builds a model based on the data.

Scikit-Learn API | 39

The fit() method receives the training data as arguments in two separate
variables: the features matrix and the target matrix (conventionally called X_train
and Y_train). For unsupervised models, this method only takes in the first
argument (X_train).

This method creates the model trained to the input data, which can later be used
for predicting.

Some models take other arguments besides the training data, which are also called
hyperparameters. These hyperparameters are initially set to their default values but
can be tuned to improve the performance of the model, which will be discussed in
later sections.

The following is an example of a model being trained:

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X_train, Y_train)

First, it is required that you import the type of algorithm to be used from scikit-learn;
for example, a Gaussian NaÏve Bayes algorithm (which will be further explored in
Chapter 4, Supervised Learning Algorithms: Predicting Annual Income) for classification.
It is always good practice to import only the algorithm to be used, and not the entire
library, as this will ensure that your code runs faster.

Note

To find the syntax for importing a different model, use the documentation
of scikit-learn. Go to the following link, click the algorithm that you wish to
implement, and you will find the instructions there: http://scikit-learn.org/
stable/user_guide.html.

The second line of code oversees the instantiation of the model and stores it in a
variable. Lastly, the model is fitted to the input data.

http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/stable/user_guide.html

40 | Introduction to Scikit-Learn

In addition to this, the estimator also offers other complementary tasks, as follows:

•	 Feature extraction, which involves transforming input data into numerical
features that can be used for ML purposes.

•	 Feature selection, which selects the features in your data that contribute to the
prediction output of the model.

•	 Dimensionality reduction, which takes high-dimensional data and converts it into
a lower dimension.

Predictor

As explained previously, the predictor takes the model created by the estimator
and uses it to perform predictions on unseen data. In general terms, for supervised
models, it feeds the model a new set of data, usually called X_test, to get a
corresponding target or label based on the parameters that were learned while
training the model.

Moreover, some unsupervised models can also benefit from the predictor. While
this method does not output a specific target value, it can be useful to assign a new
instance to a cluster.

Following the preceding example, the implementation of the predictor can be seen
as follows:

Y_pred = model.predict(X_test)

We apply the predict() method to the previously trained model and input the new
data as an argument to the method.

In addition to predicting, the predictor can also implement methods that are in charge
of quantifying the confidence of the prediction (that is, a numeric value representative
of the level of performance of the model). These performance measures vary from
model to model, but their main objective is to determine how far the prediction is
from reality. This is done by taking an X_test with its corresponding Y_test and
comparing it to the predictions made with the same X_test.

Transformer

As we saw previously, data is usually transformed before being fed to a model.
Considering this, the API contains a transform() method that allows you to
perform some preprocessing techniques.

Scikit-Learn API | 41

It can be used both as a starting point to transform the input data of the model
(X_train), as well as further along to modify data that will be fed to the model for
predictions. This latter application is crucial to get accurate results as it ensures
that the new data follows the same distribution as the data that was used to train
the model.

The following is an example of a transformer that normalizes the values of the
training data:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

The StandardScaler class standardizes the data that it receives as arguments.
As you can see, after importing and instantiating the transformer (that is,
StandardScaler), it needs to be fit to the data to then effectively transform it:

X_test = scaler.transform(X_test)

The advantage of the transformer is that once it has been applied to the training
dataset, it stores the values used for transforming the training data; this can be
used to transform the test dataset to the same distribution, as seen in the
preceding snippet.

In conclusion, we discussed one of the main benefits of using scikit-learn, which is its
API. This API follows a consistent structure that makes it easy for non-experts to apply
ML algorithms.

To model an algorithm on scikit-learn, the first step is to instantiate the model's class
and fit it to the input data using an estimator, which is usually done by calling the
fit() method of the class. Finally, once the model has been trained, it is possible
to predict new values using the predictor by calling the predict() method of
the class.

Additionally, scikit-learn also has a transformer interface that allows you to transform
data as needed. This is useful for performing preprocessing methods over the
training data, which can then also be used to transform the testing data to follow the
same distribution.

42 | Introduction to Scikit-Learn

Supervised and Unsupervised Learning
ML is divided into two main categories: supervised and unsupervised learning.

Supervised Learning

Supervised learning consists of understanding the relationship between a given set
of features and a target value, also known as a label or class. For instance, it can be
used for modeling the relationship between a person's demographic information and
their ability to pay loans, as shown in the following table:

Figure 1.18: The relationship between a person's demographic information
and the ability to pay loans

Models trained to foresee these relationships can then be applied to predict labels
for new data. As we can see from the preceding example, a bank that builds such a
model can then input data from loan applicants to determine if they are likely to pay
back the loan.

These models can be further divided into classification and regression tasks, which
are explained as follows.

Classification tasks are used to build models out of data with discrete categories as
labels; for instance, a classification task can be used to predict whether a person will
pay a loan. You can have more than two discrete categories, such as predicting the
ranking of a horse in a race, but they must be a finite number.

Supervised and Unsupervised Learning | 43

Most classification tasks output the prediction as the probability of an instance to
belong to each output label. The assigned label is the one with the highest probability,
as can be seen in the following diagram:

Figure 1.19: An illustration of a classification algorithm

Some of the most common classification algorithms are as follows:

•	 Decision trees: This algorithm follows a tree-like architecture that simulates the
decision process following a series of decisions, considering one variable at
a time.

•	 Naïve Bayes classifier: This algorithm relies on a group of probabilistic
equations based on Bayes' theorem, which assumes independence among
features. It has the ability to consider several attributes.

•	 Artificial neural networks (ANNs): These replicate the structure and
performance of a biological neural network to perform pattern recognition tasks.
An ANN consists of interconnected neurons, laid out with a set architecture. They
pass information to one another until a result is achieved.

44 | Introduction to Scikit-Learn

Regression tasks, on the other hand, are used for data with continuous quantities
as labels; for example, a regression task can be used for predicting house prices.
This means that the value is represented by a quantity and not by a set of possible
outputs. Output labels can be of integer or float types:

•	 The most popular algorithm for regression tasks is linear regression. It consists
of only one independent feature (x) whose relationship with its dependent
feature (y) is linear. Due to its simplicity, it is often overlooked, even though it
performs very well for simple data problems.

•	 Other, more complex, regression algorithms include regression trees and
support vector regression, as well as ANNs once again.

Unsupervised Learning

Unsupervised learning consists of fitting the model to the data without any
relationship with an output label, also known as unlabeled data. This means that
algorithms in this category try to understand the data and find patterns in it. For
instance, unsupervised learning can be used to understand the profile of people
belonging to a neighborhood, as shown in the following diagram:

Figure 1.20: An illustration of how unsupervised algorithms can be used
to understand the profiles of people

Supervised and Unsupervised Learning | 45

When applying a predictor to these algorithms, no target label is given as output.
The prediction, which is only available for some models, consists of placing the new
instance into one of the subgroups of data that have been created. Unsupervised
learning is further divided into different tasks, but the most popular one is clustering,
which will be discussed next.

Clustering tasks involve creating groups of data (clusters) while complying with the
condition that instances from one group differ visibly from the instances within the
other groups. The output of any clustering algorithm is a label, which assigns the
instance to the cluster of that label:

Figure 1.21: A diagram representing clusters of multiple sizes

The preceding diagram shows a group of clusters, each of a different size, based on
the number of instances that belong to each cluster. Considering this, even though
clusters do not need to have the same number of instances, it is possible to set the
minimum number of instances per cluster to avoid overfitting the data into tiny
clusters of very specific data.

Some of the most popular clustering algorithms are as follows:

•	 k-means: This focuses on separating the instances into n clusters of equal
variance by minimizing the sum of the squared distances between two points.

•	 Mean-shift clustering: This creates clusters by using centroids. Each instance
becomes a candidate for centroid to be the mean of the points in that cluster.

•	 Density-Based Spatial Clustering of Applications with Noise (DBSCAN): This
determines clusters as areas with a high density of points, separated by areas
with low density.

46 | Introduction to Scikit-Learn

Summary
ML consists of constructing models that are able to convert data into knowledge
that can be used to make decisions, some of which are based on complicated
mathematical concepts to understand data. Scikit-learn is an open source Python
library that is meant to facilitate the process of applying these models to data
problems, without much complex math knowledge required.

This chapter explained the key steps of preprocessing your input data, from
separating the features from the target, to dealing with messy data and rescaling the
values of the data. All these steps should be performed before diving into training a
model as they help to improve the training times, as well as the performance of
the models.

Next, the different components of the scikit-learn API were explained: the estimator,
the predictor, and the transformer. Finally, this chapter covered the difference
between supervised and unsupervised learning, and the most popular algorithms of
each type of learning were introduced.

With all of this in mind, in the next chapter, we will focus on detailing the process of
implementing an unsupervised algorithm for a real-life dataset.

Overview

This chapter explains the concept of clustering in machine learning. It
explains three of the most common clustering algorithms, with a hands-on
approximation to solve a real-life data problem. By the end of this chapter,
you should have a firm understanding of how to create clusters out of a
dataset using the k-means, mean-shift, and DBSCAN algorithms, as well as
the ability to measure the accuracy of those clusters.

Unsupervised Learning –

Real-Life Applications

2

50 | Unsupervised Learning – Real-Life Applications

Introduction
In the previous chapter, we learned how to represent data in a tabular format,
created features and target matrices, pre-processed data, and learned how to
choose the algorithm that best suits the problem at hand. We also learned how the
scikit-learn API works and why it is easy to use, as well as the difference between
supervised and unsupervised learning.

This chapter focuses on the most important task in the field of unsupervised
learning: clustering. Consider a situation in which you are a store owner wanting
to make a targeted social media campaign to promote selected products to certain
customers. Using clustering algorithms, you would be able to create subgroups of
your customers, allowing you to profile those subgroups and target them accordingly.
The main objective of this chapter is to solve a case study, where you will implement
three different unsupervised learning solutions. These different applications serve
to demonstrate the uniformity of the scikit-learn API, as well as to explain the steps
taken to solve machine learning problems. By the end of this chapter, you will be
able to understand the use of unsupervised learning to comprehend data in order to
make informed decisions.

Clustering
Clustering is a type of unsupervised learning technique where the objective is to
arrive at conclusions based on the patterns found within unlabeled input data. This
technique is mainly used to segregate large data into subgroups in order to make
informed decisions.

For instance, from a large list of restaurants in a city, it would be useful to segregate
the data into subgroups (clusters) based on the type of food, quantity of clients, and
style of experience, in order to be able to offer each cluster a service that's been
configured to its specific needs.

Clustering algorithms divide the data points into n number of clusters so that the data
points in the same cluster have similar features, whereas they differ significantly from
the data points in other clusters.

Clustering | 51

Clustering Types

Clustering algorithms can classify data points using a methodology that is either hard
or soft. The former designates data points completely to a cluster, whereas the latter
method calculates the probability of each data point belonging to each cluster. For
example, for a dataset containing customer's past orders that are divided into eight
subgroups (clusters), hard clustering occurs when each customer is placed inside
one of the eight clusters. On the other hand, soft clustering assigns each customer a
probability of belonging to each of the eight clusters.

Considering that clusters are created based on the similarity between data points,
clustering algorithms can be further divided into several groups, depending on the set
of rules used to measure similarity. Four of the most commonly known sets of rules
are explained as follows:

•	 Connectivity-based models: This model's approach to similarity is based on
proximity in a data space. The creation of clusters can be done by assigning all
data points to a single cluster and then partitioning the data into smaller clusters
as the distance between data points increases. Likewise, the algorithm can also
start by assigning each data point an individual cluster, and then aggregating
data points that are close by. An example of a connectivity-based model is
hierarchical clustering.

•	 Density-based models: As the name suggests, these models define clusters by
their density in the data space. This means that areas with a high density of data
points will become clusters, which are typically separated from one another by
low-density areas. An example of this is the DBSCAN algorithm, which will be
covered later in this chapter.

•	 Distribution-based models: Models that fall into this category are based on the
probability that all the data points from a cluster follow the same distribution,
such as a Gaussian distribution. An example of such a model is the Gaussian
Mixture algorithm, which assumes that all data points come from a mixture of a
finite number of Gaussian distributions.

52 | Unsupervised Learning – Real-Life Applications

•	 Centroid-based models: These models are based on algorithms that define a
centroid for each cluster, which is updated constantly by an iterative process.
The data points are assigned to the cluster where their proximity to the centroid
is minimized. An example of such a model is the k-means algorithm, which will
be discussed later in this chapter.

In conclusion, data points are assigned to clusters based on their similarity to each
other and their difference from data points in other clusters. This classification into
clusters can be either absolute or variably distributed by determining the probability
of each data point belonging to each cluster.

Moreover, there is no fixed set of rules to determine similarity between data points,
which is why different clustering algorithms use different rules. Some of the most
commonly known sets of rules are connectivity-based, density-based, distribution-
based, and centroid-based.

Applications of Clustering

As with all machine learning algorithms, clustering has many applications in different
fields, some of which are as follows:

•	 Search engine results: Clustering can be used to generate search engine results
containing keywords that are approximate to the keywords searched by the user
and ordered as per the search result with greater similarity. Consider Google
as an example; it uses clustering not only for retrieving results but also for
suggesting new possible searches.

•	 Recommendation programs: It can also be used in recommendation programs
that cluster together, for instance, people that fall into a similar profile, and then
make recommendations based on the products that each member of the cluster
has bought. Consider Amazon, for example, which recommends more items
based on your purchase history and the purchases of similar users.

•	 Image recognition: This is where clusters are used to group images that are
considered to be similar. For instance, Facebook uses clustering to help suggest
who is present in a picture.

•	 Market segmentation: Clustering can also be used for market segmentation
to divide a list of prospects or clients into subgroups in order to provide a
customized experience or product. For example, Adobe uses clustering analysis
to segment customers in order to target them differently by recognizing those
who are more willing to spend money.

Exploring a Dataset – Wholesale Customers Dataset | 53

The preceding examples demonstrate that clustering algorithms can be used to
solve different data problems in different industries, with the primary purpose of
understanding large amounts of historical data that, in some cases, can be used to
classify new instances.

Exploring a Dataset – Wholesale Customers Dataset
As part of the process of learning the behavior and applications of clustering
algorithms, the following sections of this chapter will focus on solving a real-life data
problem using the Wholesale Customers dataset, which is available at the UC Irvine
Machine Learning Repository.

Note

Datasets in repositories may contain raw, partially pre-processed, or pre-
processed data. To use any of these datasets, ensure that you read the
specifications of the data that's available to understand the process that
needs to be followed to model the data effectively, or whether it is the right
dataset for your purpose.

For instance, the current dataset is an extract from a larger dataset, as per
the following citation:

The dataset originates from a larger database referred on: Abreu, N. (2011).
Analise do perfil do cliente Recheio e desenvolvimento de um sistema
promocional. Mestrado em Marketing, ISCTE-IUL, Lisbon.

In the following section, we will analyze the contents of the dataset, which will then
be used in Activity 2.01, Using Data Visualization to Aid the Pre-processing Process. To
download a dataset from the UC Irvine Machine Learning Repository, perform the
following steps:

1.	 Access the following link: http://archive.ics.uci.edu/ml/datasets/Wholesale+customers.

2.	 Below the dataset's title, find the download section and click on Data Folder.

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

54 | Unsupervised Learning – Real-Life Applications

3.	 Click on the Wholesale Customers data.csv file to trigger the download
and save the file in the same path as that of your current Jupyter Notebook.

Note

You can also access it by going to this book's GitHub repository:
https://packt.live/3c3hfKp

Understanding the Dataset

Each step will be explained generically and will then be followed by an explanation of
its application in the current case study (the Wholesale Customers dataset):

1.	 First of all, it is crucial to understand the way in which data is presented by the
person who's responsible for gathering and maintaining it.

Considering that the dataset of the case study was obtained from an online
repository, the format in which it is presented must be understood. The
Wholesale Customers dataset consists of a snippet of historical data of clients
from a wholesale distributor. It contains a total of 440 instances (each row) and
eight features (each column).

2.	 Next, it is important to determine the purpose of the study, which is dependent
on the data that's available. Even though this might seem like a redundant
statement, many data problems become problematic because the researcher
does not have a clear view of the purpose of the study, and hence the
pre-processing methodology, the model, and the performance metrics are
chosen incorrectly.

The purpose of using clustering algorithms on the Wholesale Customers dataset
is to understand the behavior of each customer. This will allow you to group
customers with similar behaviors into one cluster. The behavior of a customer
will be defined by how much they spent on each category of product, as well as
the channel and the region where they bought products.

3.	 Subsequently explore all the features that are available. This is mainly done for
two reasons: first, to rule out features that are considered to be of low relevance
based on the purpose of the study or that are considered to be redundant, and
second, to understand the way the values are presented to determine some of
the pre-processing techniques that may be needed.

https://packt.live/3c3hfKp

Data Visualization | 55

The current case study has eight features, each one of which is considered
to be relevant to the purpose of the study. Each feature is explained in the
following table:

Figure 2.1: A table explaining the features in the case study

In the preceding table, no features are to be dismissed, and nominal (categorical)
features have already been handled by the author of the dataset.

As a summary, the first thing to do when choosing a dataset or being handed one
is to understand the characteristics that are visible at first glance, which involves
recognizing the information available, then determining the purpose of the project,
and finally revising the features to select those that will be part of the study. After
this, the data can be visualized so that it can be understood before it's pre-processed.

Data Visualization
Once data has been revised to ensure that it can be used for the desired purpose,
it is time to load the dataset and use data visualization to further understand it.
Data visualization is not a requirement for developing a machine learning project,
especially when dealing with datasets with hundreds or thousands of features.
However, it has become an integral part of machine learning, mainly for visualizing
the following:

•	 Specific features that are causing trouble (for example, those that contain many
missing or outlier values) and how to deal with them.

56 | Unsupervised Learning – Real-Life Applications

•	 The results from the model, such as the clusters that have been created or the
number of predicted instances for each labeled category.

•	 The performance of the model, in order to see the behavior along
different iterations.

Data visualization's popularity in the aforementioned tasks can be explained by the
fact that the human brain processes information easily when it is presented as charts
or graphs, which allows us to have a general understanding of the data. It also helps
us to identify areas that require attention, such as outliers.

Loading the Dataset Using pandas

One way of storing a dataset to easily manage it is by using pandas DataFrames.
These work as two-dimensional size-mutable matrices with labeled axes.
They facilitate the use of different pandas functions to modify the dataset for
pre-processing purposes.

Most datasets found in online repositories or gathered by companies for data
analysis are in Comma-Separated Values (CSV) files. CSV files are text files that
display the data in the form of a table. Columns are separated by commas (,) and
rows are on separate lines:

Figure 2.2: A screenshot of a CSV file

Loading a dataset stored in a CSV file and placing it into a DataFrame is extremely
easy with the pandas read_csv() function. It receives the path to your file as
an argument.

Note

When datasets are stored in different forms of files, such as in Excel
or SQL databases, use the pandas read_xlsx() or read_sql()
function, respectively.

Data Visualization | 57

The following code shows how to load a dataset using pandas:

import pandas as pd

file_path = "datasets/test.csv"

data = pd.read_csv(file_path)

print(type(data))

First of all, pandas is imported. Next, the path to the file is defined in order to input
it into the read_csv() function. Finally, the type of the data variable is printed to
verify that a Pandas DataFrame has been created.

The output is as follows:

<class 'pandas.core.frame.DataFrame'>

As shown in the preceding snippet, the variable named data is of a
pandas DataFrame.

Visualization Tools

There are different open source visualization libraries available, from which seaborn
and matplotlib stand out. In the previous chapter, seaborn was used to load and
display data; however, from this section onward, matplotlib will be used as our
visualization library of choice. This is mainly because seaborn is built on top of
matplotlib with the sole purpose of introducing a couple of plot types and to improve
the format of the displays. Therefore, once you've learned about matplotlib, you will
also be able to import seaborn to improve the visual quality of your plots.

Note

For more information about the seaborn library, visit the following link:
https://seaborn.pydata.org/.

In general terms, matplotlib is an easy-to-use Python library that prints 2D quality
figures. For simple plotting, the pyplot model of the library will suffice.

https://seaborn.pydata.org/

58 | Unsupervised Learning – Real-Life Applications

Some of the most commonly used plot types are explained in the following table:

Figure 2.3: A table listing the commonly used plot types (*)

The functions in the third column can be used after importing matplotlib and its
pyplot model.

Data Visualization | 59

Note

Access matplotlib's documentation regarding the type of plot that you wish
to use at https://matplotlib.org/ so that you can play around with the different
arguments and functions that you can use to edit the result of your plot.

Exercise 2.01: Plotting a Histogram of One Feature from the Circles Dataset

In this exercise, we will be plotting a histogram of one feature from the circles
dataset. Perform the following steps to complete this exercise:

Note

Use the same Jupyter Notebook for all the exercises within this chapter.
The circles.csv file is available at https://packt.live/2xRg3ea.

For all the exercises and activities within this chapter, you will need to
have Python 3.7, matplotlib, NumPy, Jupyter, and pandas installed on
your system.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 First, import all of the libraries that you are going to be using by typing the
following code:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

The pandas library is used to save the dataset into a DataFrame, matplotlib
is used for visualization, and NumPy is used in later exercises of this chapter, but
since the same Notebook will be used, it has been imported here.

https://matplotlib.org/
https://packt.live/2xRg3ea

60 | Unsupervised Learning – Real-Life Applications

3.	 Load the circles dataset by using Pandas' read_csv function. Type in the
following code:

data = pd.read_csv("circles.csv")

plt.scatter(data.iloc[:,0], data.iloc[:,1])

plt.show()

A variable named data is created to store the circles dataset. Finally, a scatter
plot is drawn to display the data points in a data space, where the first element is
the first column of the dataset and the second element is the second column of
the dataset, creating a two-dimensional plot:

Note

The Matplotlib's show() function is used to trigger the display of the plot,
considering that the preceding lines only create it. When programming
in Jupyter Notebooks, using the show() function is not required, but it
is good practice to use it since, in other programming environments, it is
required to use the function to be able to display the plots. This will also
allow flexibility in the code. Also, in Jupyter Notebooks, this function results
in a much cleaner output.

Figure 2.4: A scatter plot of the circles dataset

Data Visualization | 61

The final output is a dataset with two features and 1,500 instances. Here, the dot
represents a data point (an observation), where the location is marked by the
values of each of the features of the dataset.

4.	 Create a histogram out of one of the two features. Use slicing to select the
feature that you wish to plot:

plt.hist(data.iloc[:,0])

plt.show()

The plot will look similar to the one shown in the following graph:

Figure 2.5: A screenshot showing the histogram obtained using data from the first feature

Note

To access the source code for this specific section, please refer to
 https://packt.live/2xRg3ea.

You can also run this example online at https://packt.live/2N0L0Rj.
You must execute the entire Notebook in order to get the desired result.

You have successfully created a scatter plot and a histogram using matplotlib.
Similarly, different plot types can be created using matplotlib.

https://packt.live/2xRg3ea
https://packt.live/2N0L0Rj

62 | Unsupervised Learning – Real-Life Applications

In conclusion, visualization tools help you better understand the data that's available
in a dataset, the results from a model, and the performance of the model. This
happens because the human brain is receptive to visual forms, instead of large
files of data.

Matplotlib has become one of the most commonly used libraries to perform data
visualization. Among the different plot types that the library supports, there are
histograms, bar charts, and scatter plots.

Activity 2.01: Using Data Visualization to Aid the Pre-processing Process

The marketing team of your company wants to know about the different profiles of
the clients so that it can focus its marketing effort on the individual needs of each
profile. To do so, it has provided your team with a list of 440 pieces of previous
sales data. Your first task is to pre-process the data. You will present your findings
using data visualization techniques in order to help your colleagues understand the
decisions you took in that process. You should load a CSV dataset using pandas and
use data visualization tools to help with the pre-processing process. The following
steps will guide you on how to do this:

1.	 Import all the required elements to load the dataset and pre-process it.

2.	 Load the previously downloaded dataset by using Pandas' read_csv()
function, given that the dataset is stored in a CSV file. Store the dataset in a
pandas DataFrame named data.

3.	 Check for missing values in your DataFrame. If present, handle the missing
values and support your decision with data visualization.

Note

Use data.isnull().sum() to check for missing values in the entire
dataset at once, as we learned in the previous chapter.

4.	 Check for outliers in your DataFrame. If present, handle the outliers and support
your decision with data visualization.

Note

Mark all the values that are three standard deviations away from the mean
as outliers.

Data Visualization | 63

5.	 Rescale the data using the formula for normalization or standardization.

Note

Standardization tends to work better for clustering purposes. Note that you
can find the solution to this activity on page 216.

Expected output: Upon checking the DataFrame, you should find no missing
values in the dataset and six features with outliers.

k-means Algorithm

The k-means algorithm is used to model data without a labeled class. It involves
dividing the data into K number of subgroups. The classification of data points into
each group is done based on similarity, as explained previously (refer to the Clustering
Types section), which, for this algorithm, is measured by the distance from the center
(centroid) of the cluster. The final output of the algorithm is each data point linked to
the cluster it belongs to and the centroid of that cluster, which can be used to label
new data in the same clusters.

The centroid of each cluster represents a collection of features that can be used to
define the nature of the data points that belong there.

Understanding the Algorithm

The k-means algorithm works through an iterative process that involves the
following steps:

1.	 Based on the number of clusters defined by the user, the centroids are
generated either by setting initial estimates or by randomly choosing them from
the data points. This step is known as initialization.

2.	 All the data points are assigned to the nearest cluster in the data space
by measuring their respective distances from the centroid, known as the
assignment step. The objective is to minimize the squared Euclidean distance,
which can be defined by the following formula:

min dist(c,x)2

Here, c represents a centroid, x refers to a data point, and dist() is the
Euclidean distance.

64 | Unsupervised Learning – Real-Life Applications

3.	 Centroids are calculated again by computing the mean of all the data points
belonging to a cluster. This step is known as the update step.

Steps 2 and 3 are repeated in an iterative process until a criterion is met. This criterion
can be as follows:

•	 The number of iterations defined.

•	 The data points do not change from cluster to cluster.

•	 The Euclidean distance is minimized.

The algorithm is set to always arrive at a result, even though this result may converge
to a local or a global optimum.

The k-means algorithm receives several parameters as inputs to run the model.
The most important ones to consider are the initialization method (init) and the
number of clusters (K).

Note

To check out the other parameters of the k-means algorithm in the scikit-
learn library, visit the following link: http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html.

Initialization Methods

An important input of the algorithm is the initialization method to be used to
generate the initial centroids. The initialization methods allowed by the scikit-learn
library are explained as follows:

•	 k-means++: This is the default option. Centroids are chosen randomly from
the set of data points, considering that centroids must be far away from one
another. To achieve this, the method assigns a higher probability of being a
centroid to those data points that are farther away from other centroids.

•	 random: This method chooses K observations randomly from the data points as
the initial centroids.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Data Visualization | 65

Choosing the Number of Clusters

As we discussed previously, the number of clusters that the data is to be
divided into is set by the user; hence, it is important to choose the number of
clusters appropriately.

One of the metrics that's used to measure the performance of the k-means algorithm
is the mean distance of the data points from the centroid of the cluster that they
belong to. However, this measure can be counterproductive as the higher the
number of clusters, the smaller the distance between the data points and its centroid,
which may result in the number of clusters (K) matching the number of data points,
thereby harming the purpose of clustering algorithms.

To avoid this, you can plot the average distance between the data points and the
cluster centroid against the number of clusters. The appropriate number of clusters
corresponds to the breaking point of the plot, where the rate of decrease drastically
changes. In the following diagram, the dotted circle represents the ideal number
of clusters:

Figure 2.6: A graph demonstrating how to estimate the breaking point

66 | Unsupervised Learning – Real-Life Applications

Exercise 2.02: Importing and Training the k-means Algorithm over a Dataset

The following exercise will be performed using the same dataset from the previous
exercise. Considering this, use the same Jupyter Notebook that you used to develop
the previous exercise. Perform the following steps to complete this exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise. Here, you
should have imported all the required libraries and stored the dataset in a
variable named data.

2.	 Import the k-means algorithm from scikit-learn as follows:

from sklearn.cluster import KMeans

3.	 To choose the value for K (that is, the ideal number of clusters), calculate the
average distance of data points from their cluster centroid in relation to the
number of clusters. Use 20 as the maximum number of clusters for this exercise.
The following is a snippet of the code for this:

ideal_k = []

for i in range(1,21):

 est_kmeans = KMeans(n_clusters=i, random_state=0)

 est_kmeans.fit(data)

 ideal_k.append([i,est_kmeans.inertia_])

Note

The random_state argument is used to ensure reproducibility of
results by making sure that the random initialization of the algorithm
remains constant.

First, create the variables that will store the values as an array and name it
ideal_k. Next, perform a for loop that starts at one cluster and goes as high
as desired (considering that the maximum number of clusters must not exceed
the total number of instances).

Data Visualization | 67

For the previous example, there was a limitation of a maximum of 20 clusters
to be created. As a consequence of this limitation, the for loop goes from 1 to
20 clusters.

Note

Remember that range() is an upper bound exclusive function, meaning
that the range will go as far as one value below the upper bound. When the
upper bound is 21, the range will go as far as 20.

Inside the for loop, instantiate the algorithm with the number of clusters
to be created, and then fit the data to the model. Next, append the pairs
of data (number of clusters, average distance to the centroid) to the list
named ideal_k.

The average distance to the centroid does not need to be calculated as the
model outputs it under the inertia_ attribute, which can be called out as
[model_name].inertia_.

4.	 Convert the ideal_k list into a NumPy array so that it can be plotted. Use the
following code snippet:

ideal_k = np.array(ideal_k)

5.	 Plot the relations that you calculated in the preceding steps to find the ideal K to
input to the final model:

plt.plot(ideal_k[:,0],ideal_k[:,1])

plt.show()

68 | Unsupervised Learning – Real-Life Applications

The output is as follows:

Figure 2.7: A screenshot showing the output of the plot function used

In the preceding plot, the x-axis represents the number of clusters, while the
y-axis refers to the calculated average distance of each point in a cluster from
their centroid.

The breaking point of the plot is around 5.

6.	 Train the model with K=5. Use the following code:

est_kmeans = KMeans(n_clusters=5, random_state=0)

est_kmeans.fit(data)

pred_kmeans = est_kmeans.predict(data)

The first line instantiates the model with 5 as the number of clusters. Then, the
data is fit to the model. Finally, the model is used to assign a cluster to each
data point.

7.	 Plot the results from the clustering of data points into clusters:

plt.scatter(data.iloc[:,0], data.iloc[:,1], c=pred_kmeans)

plt.show()

Data Visualization | 69

The output is as follows:

Figure 2.8: A screenshot showing the output of the plot function used

Since the dataset only contains two features, each feature is passed as input to
the scatter plot function, meaning that each feature is represented by an axis.
Additionally, the labels that were obtained from the clustering process are used
as the colors to display the data points. Thus, each data point is located in the
data space based on the values of both features, and the colors represent the
clusters that were formed.

Note

For datasets with over two features, the visual representation of clusters
is not as explicit as that shown in the preceding screenshot. This is mainly
because the location of each data point (observation) in the data space is
based on the collection of all of its features, and visually, it is only possible
to display up to three features.

70 | Unsupervised Learning – Real-Life Applications

You have successfully imported and trained the k-means algorithm.

Note

To access the source code for this exercise, please refer to
https://packt.live/30GXWE1.

You can also run this example online at https://packt.live/2B6N1c3.
You must execute the entire Notebook in order to get the desired result.

In conclusion, the k-means algorithm seeks to divide the data into K number of
clusters, K being a parameter set by the user. Data points are grouped together
based on their proximity to the centroid of a cluster, which is calculated by an
iterative process.

The initial centroids are set according to the initialization method that's been defined.
Then, all the data points are assigned to the clusters with the centroid closer to their
location in the data space, using the Euclidean distance as a measure. Once the data
points have been divided into clusters, the centroid of each cluster is recalculated as
the mean of all data points. This process is repeated several times until a stopping
criterion is met.

Activity 2.02: Applying the k-means Algorithm to a Dataset

Ensure that you have completed Activity 2.01, Using Data Visualization to Aid the
Pre-processing Process, before you proceed with this activity.

Continuing with the analysis of your company's past orders, you are now in charge of
applying the k-means algorithm to the dataset. Using the previously loaded Wholesale
Customers dataset, apply the k-means algorithm to the data and classify the data into
clusters. Perform the following steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you
should have imported all the required libraries and performed the necessary
steps to pre-process the dataset.

https://packt.live/30GXWE1
https://packt.live/2B6N1c3

Mean-Shift Algorithm | 71

2.	 Calculate the average distance of the data points from their cluster centroid in
relation to the number of clusters. Based on this distance, select the appropriate
number of clusters to train the model.

3.	 Train the model and assign a cluster to each data point in your dataset. Plot
the results.

Note

You can use the subplots() function from Matplotlib to plot two scatter
graphs at a time. To learn more about this function, visit Matplotlib's
documentation at the following link: https://matplotlib.org/api/_as_gen/
matplotlib.pyplot.subplots.html.

You can find the solution to this activity on page 220.

The visualization of clusters will differ based on the number of clusters (k) and
the features to be plotted.

Mean-Shift Algorithm
The mean-shift algorithm works by assigning each data point a cluster based on the
density of the data points in the data space, also known as the mode in a distribution
function. Contrary to the k-means algorithm, the mean-shift algorithm does not
require you to specify the number of clusters as a parameter.

The algorithm works by modeling the data points as a distribution function, where
high-density areas (high concentration of data points) represent high peaks. Then,
the general idea is to shift each data point until it reaches its nearest peak, which
becomes a cluster.

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html

72 | Unsupervised Learning – Real-Life Applications

Understanding the Algorithm

The first step of the mean-shift algorithm is to represent the data points as a
density distribution. To do so, the algorithm builds upon the idea of Kernel Density
Estimation (KDE), which is a method that's used to estimate the distribution of a set
of data:

Figure 2.9: An image depicting the idea behind Kernel Density Estimation

In the preceding diagram, the dots at the bottom of the shape represent the data
points that the user inputs, while the cone-shaped lines represent the estimated
distribution of the data points. The peaks (high-density areas) will be the clusters.
The process of assigning data points to each cluster is as follows:

1.	 A window of a specified size (bandwidth) is drawn around each data point.

2.	 The mean of the data inside the window is computed.

3.	 The center of the window is shifted to the mean.

Mean-Shift Algorithm | 73

Steps 2 and 3 are repeated until the data point reaches a peak, which will determine
the cluster that it belongs to.

The bandwidth value should be coherent with the distribution of the data points in
the dataset. For example, for a dataset normalized between 0 and 1, the bandwidth
value should be within that range, while for a dataset with all values between 1,000
and 2,000, it would make more sense to have a bandwidth between 100 and 500.

In the following diagram, the estimated distribution is represented by the lines, while
the data points are the dots. In each of the boxes, the data points shift to the nearest
peak. All the data points in a certain peak belong to that cluster:

Figure 2.10: A sequence of images illustrating the working of the mean-shift algorithm

The number of shifts that a data point has to make to reach a peak depends on its
bandwidth (the size of the window) and its distance from the peak.

Note

To explore all the parameters of the mean-shift algorithm in scikit-learn,
visit http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.
html.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html

74 | Unsupervised Learning – Real-Life Applications

Exercise 2.03: Importing and Training the Mean-Shift Algorithm over a Dataset

The following exercise will be performed using the same dataset that we loaded in
Exercise 2.01, Plotting a Histogram of One Feature from the Circles Dataset. Considering
this, use the same Jupyter Notebook that you used to develop the previous exercises.
Perform the following steps to complete this exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise.

2.	 Import the k-means algorithm class from scikit-learn as follows:

from sklearn.cluster import MeanShift

3.	 Train the model with a bandwidth of 0.5:

est_meanshift = MeanShift(0.5)

est_meanshift.fit(data)

pred_meanshift = est_meanshift.predict(data)

First, the model is instantiated with a bandwidth of 0.5. Next, the model is fit to
the data. Finally, the model is used to assign a cluster to each data point.

Considering that the dataset contains values ranging from −1 to 1, the bandwidth
value should not be above 1. The value of 0.5 was chosen after trying out other
values, such as 0.1 and 0.9.

Note

Take into account the fact that the bandwidth is a parameter of the
algorithm and that, as a parameter, it can be fine-tuned to arrive at the
best performance. This fine-tuning process will be covered in Chapter 3,
Supervised Learning – Key Steps.

4.	 Plot the results from clustering the data points into clusters:

plt.scatter(data.iloc[:,0], data.iloc[:,1], c=pred_meanshift)

plt.show()

Mean-Shift Algorithm | 75

The output is as follows:

Figure 2.11: The plot obtained using the preceding code

Again, as the dataset only contains two features, both are passed as inputs to
the scatter function, which become the values of the axes. Also, the labels that
were obtained from the clustering process are used as the colors to display the
data points.

The total number of clusters that have been created is four.

Note

To access the source code for this exercise, please refer to
https://packt.live/37vBOOk.

You can also run this example online at https://packt.live/3e6uqM2.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/37vBOOk
https://packt.live/3e6uqM2

76 | Unsupervised Learning – Real-Life Applications

You have successfully imported and trained the mean-shift algorithm.

In conclusion, the mean-shift algorithm starts by drawing the distribution function
that represents the set of data points. This process consists of creating peaks in high-
density areas, while leaving the areas with a low density flat.

Following this, the algorithm proceeds to classify the data points into clusters by
shifting each point slowly and iteratively until it reaches a peak, which becomes
its cluster.

Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset

In this activity, you will apply the mean-shift algorithm to the dataset to see which
algorithm fits the data better. Therefore, using the previously loaded Wholesale
Consumers dataset, apply the mean-shift algorithm to the data and classify the data
into clusters. Perform the following steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity.

Note

Considering that you are using the same Jupyter Notebook, be careful not
to overwrite any previous variables.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot
the results.

The visualization of clusters will differ based on the bandwidth and the features
that have been chosen to be plotted.

Note

The solution to this activity can be found on page 223.

DBSCAN Algorithm
The density-based spatial clustering of applications with noise (DBSCAN)
algorithm groups together points that are close to each other (with many neighbors)
and marks those points that are further away with no close neighbors as outliers.

DBSCAN Algorithm | 77

According to this, and as its name states, the algorithm classifies data points based on
the density of all data points in the data space.

Understanding the Algorithm

The DBSCAN algorithm requires two main parameters: epsilon and the minimum
number of observations.

Epsilon, also known as eps, is the maximum distance that defines the radius
within which the algorithm searches for neighbors. The minimum number of
observations, on the other hand, refers to the number of data points required to
form a high-density area (min_samples). However, the latter is optional in scikit-
learn as the default value is set to 5:

Figure 2.12: An illustration of how the DBSCAN algorithm classifies data into clusters

In the preceding diagram, the dots to the left are assigned to cluster A, while the dots
to the upper right are assigned to cluster B. Moreover, the dots at the bottom right
(C) are considered to be outliers, as well as any other data point in the data space, as
they do not meet the required parameters to belong to a high-density area (that is,
the minimum number of samples is not met, which, in this example, was set to 5).

Note

Similar to the bandwidth parameter, the epsilon value should be coherent
with the distribution of the data points in the dataset, considering that it
represents a radius around each data point.

78 | Unsupervised Learning – Real-Life Applications

According to this, each data point can be classified as follows:

•	 A core point: A point that has at least the minimum number of data points
within its eps radius.

•	 A border point: A point that is within the eps radius of a core point, but does not
have the required number of data points within its own radius.

•	 A noise point: All points that do not meet the preceding descriptions.

Note

To explore all the parameters of the DBSCAN algorithm in scikit-learn, visit
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.

Exercise 2.04: Importing and Training the DBSCAN Algorithm over a Dataset

This exercise discusses how to import and train the DBSCAN algorithm over a
dataset. We will be using the circles dataset from the previous exercises. Perform the
following steps to complete this exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise.

2.	 Import the DBSCAN algorithm class from scikit-learn as follows:

from sklearn.cluster import DBSCAN

3.	 Train the model with epsilon equal to 0.1:

est_dbscan = DBSCAN(eps=0.1)

pred_dbscan = est_dbscan.fit_predict(data)

First, the model is instantiated with eps of 0.1. Then, we use the fit_
predict() function to fit the model to the data and assign a cluster to each
data point. This bundled function, which includes both the fit and predict
methods, is used because the DBSCAN algorithm in scikit-learn does not contain
a predict() method alone.

Again, the value of 0.1 was chosen after trying out all other possible values.

4.	 Plot the results from the clustering process:

plt.scatter(data.iloc[:,0], data.iloc[:,1], c=pred_dbscan)

plt.show()

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

DBSCAN Algorithm | 79

The output is as follows:

Figure 2.13: The plot obtained with the preceding code

As before, both features are passed as inputs to the scatter function. Also, the
labels that were obtained from the clustering process are used as the colors to
display the data points.

The total number of clusters that have been created is two.

As you can see, the total number of clusters created by each algorithm is
different. This is because, as mentioned previously, each of these algorithms
defines similarity differently and, as a consequence, each interprets the
data differently.

Due to this, it is crucial to test different algorithms over the data to compare the
results and define which one generalizes better to the data. The following topic
will explore some methods that we can use to evaluate performance to help
choose an algorithm.

Note

To access the source code for this exercise, please refer to
https://packt.live/2Bcanxa.

You can also run this example online at https://packt.live/2UKHFdp.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2Bcanxa
https://packt.live/2UKHFdp

80 | Unsupervised Learning – Real-Life Applications

You have successfully imported and trained the DBSCAN algorithm.

In conclusion, the DBSCAN algorithm bases its clustering classification on the density
of data points in the data space. This means that clusters are formed by data points
with many neighbors. This is done by considering that core points are those that
contain a minimum number of neighbors within a set radius, border points are
those that are located inside the radius of a core point but do not have the minimum
number of neighbors within their own radius, and noise points are those that do not
meet any of the specifications.

Activity 2.04: Applying the DBSCAN Algorithm to the Dataset

You will apply the DBSCAN algorithm to the dataset as well. This is basically because it
is good practice to test out different algorithms when solving a data problem in order
to choose the one that best fits the data, considering that there is no one model
that performs well for all data problems. Using the previously loaded Wholesale
Consumers dataset, apply the DBSCAN algorithm to the data and classify the data
into clusters. Perform the following steps:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset.
Plot the results.

Note

The solution to this activity can be found on page 225.

The visualization of clusters will differ based on the epsilon and the features
chosen to be plotted.

Evaluating the Performance of Clusters
After applying a clustering algorithm, it is necessary to evaluate how well the
algorithm has performed. This is especially important when it is difficult to visually
evaluate the clusters; for example, when there are several features.

Usually, with supervised algorithms, it is easy to evaluate their performance by simply
comparing the prediction of each instance with its true value (class). On the other
hand, when dealing with unsupervised models (such as clustering algorithms), it is
necessary to pursue other strategies.

Evaluating the Performance of Clusters | 81

In the specific case of clustering algorithms, it is possible to evaluate performance by
measuring the similarity of the data points that belong to the same cluster.

Available Metrics in Scikit-Learn

Scikit-learn allows its users to use three different scores for evaluating the
performance of unsupervised clustering algorithms. The main idea behind these
scores is to measure how well-defined the cluster's edges are, instead of measuring
the dispersion within a cluster. Hence, it is worth mentioning that the scores do not
take into account the size of each cluster.

The two most commonly used scores for measuring unsupervised clustering tasks are
explained as follows:

•	 The Silhouette Coefficient Score calculates the mean distance between each
point and all the other points of a cluster (a), as well as the mean distance
between each point and all the other points of its nearest clusters (b). It relates
both of them according to the following equation:

s = (b - a) / max(a,b)

The result of the score is a value between -1 and 1. The lower the value, the
worse the performance of the algorithm. Values around 0 will imply overlapping
of clusters. It is also important to clarify that this score does not work very well
when using density-based algorithms such as DBSCAN.

•	 The Calinski–Harabasz Index was created to measure the relationship between
the variance of each cluster and the variance of all clusters. More specifically, the
variance of each cluster is the mean square error of each point with respect to
the centroid of that cluster. On the other hand, the variance of all clusters refers
to the overall inter-cluster variance.

The higher the value of the Calinski–Harabasz Index, the better the definition
and separation of the clusters. There is no acceptable cut-off value, so the
performance of the algorithms using this index is evaluated through comparison,
where the algorithm with the highest value is the one that performs best. As with
the Silhouette Coefficient, this score does not perform well on density-based
algorithms such as DBSCAN.

Unfortunately, the scikit-learn library does not contain other methods for effectively
measuring the performance of density-based clustering algorithms, and although the
methods mentioned here may work in some cases to measure the performance of
these algorithms, when they do not, there is no other way to measure this other than
via manual evaluation.

82 | Unsupervised Learning – Real-Life Applications

However, it is worth mentioning that there are additional performance measures
in scikit-learn for cases where a ground truth label is known, known as supervised
clustering; for instance, when performing clustering over a set of observations of
journalism students who have already signed up for a major or a specialization area.
If we were to use their demographic information as well as some student records
to categorize them into clusters that represent their choice of major, it would be
possible to compare the predicted classification with the actual classification.

Some of these measures are as follows:

•	 Homogeneity score: This score is based on the premise that a clustering task is
homogenous if all clusters only contain data points that belong to a single class
label. The output from the score is a number between 0 and 1, with 1 being a
perfectly homogeneous labeling. The score is part of scikit-learn's metrics
module, and it receives the list of ground truth clusters and the list of predicted
clusters as inputs, as follows:

from sklearn.metrics import homogeneity_score

score = homogeneity_score(true_labels, predicted_labels)

•	 Completeness score: Opposite to the homogeneity score, a clustering task
satisfies completeness if all data points that belong to a given class label belong
to the same cluster. Again, the output measure is a number between 0 and 1,
with 1 being the output for perfect completeness. This score is also part of scikit-
learn's metrics modules, and it also receives the ground truth labels and the
predicted ones as inputs, as follows:

from sklearn.metrics import completeness_score

score = completeness_score(true_labels, predicted_labels)

Note

To explore other measures that evaluate the performance of supervised
clustering tasks, visit the following URL, under the clustering section:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.

Evaluating the Performance of Clusters | 83

Exercise 2.05: Evaluating the Silhouette Coefficient Score and Calinski–

Harabasz Index

In this exercise, we will learn how to calculate the two scores we discussed in the
previous section that are available in scikit-learn. Perform the following steps to
complete this exercise:

1.	 Import the Silhouette Coefficient score and the Calinski-Harabasz Index from the
scikit-learn library:

from sklearn.metrics import silhouette_score

from sklearn.metrics import calinski_harabasz_score

2.	 Calculate the Silhouette Coefficient score for each of the algorithms we modeled
in all of the previous exercises. Use the Euclidean distance as the metric for
measuring the distance between points.

The input parameters of the silhouette_score() function are the data, the
predicted values of the model (the clusters assigned to each data point), and the
distance measure:

Note

The code snippet shown here uses a backslash (\) to split the logic
across multiple lines. When the code is executed, Python will ignore the
backslash, and treat the code on the next line as a direct continuation of the
current line.

kmeans_score = silhouette_score(data, pred_kmeans, \

 metric='euclidean')

meanshift_score = silhouette_score(data, pred_meanshift, \

 metric='euclidean')

dbscan_score = silhouette_score(data, pred_dbscan, \

 metric='euclidean')

print(kmeans_score, meanshift_score, dbscan_score)

84 | Unsupervised Learning – Real-Life Applications

The first three lines call the silhouette_score() function over each of the
models (the k-mean, the mean-shift, and the DBSCAN algorithms) by inputting
the data, the predictions, and the distance measure. The last line of code prints
out the score for each of the models.

The scores come to be around 0.359, 0.3705, and 0.1139 for the k-means,
mean-shift, and DBSCAN algorithms, respectively.

You can observe that both k-means and mean-shift algorithms have similar
scores, while the DBSCAN score is closer to zero. This can indicate that the
performance of the first two algorithms is much better, and hence, the DBSCAN
algorithm should not be considered to solve the data problem.

Nevertheless, it is important to remember that this type of score does not
perform well when evaluating the DBSCAN algorithm. This is basically because
as one cluster is surrounding the other one, the score can interpret that as an
overlap when, in reality, the clusters are very well-defined, as is the case of the
current dataset.

3.	 Calculate the Calinski-Harabasz index for each of the algorithms we modeled in
the previous exercises in this chapter. The input parameters of the calinski_
harabasz_score() function are the data and the predicted values of the
model (the clusters assigned to each data point):

kmeans_score = calinski_harabasz_score(data, pred_kmeans)

meanshift_score = calinski_harabasz_score(data, pred_meanshift)

dbscan_score = calinski_harabasz_score(data, pred_dbscan)

print(kmeans_score, meanshift_score, dbscan_score)

Again, the first three lines apply the calinski_harabasz_score() function
over the three models by passing the data and the prediction as inputs. The last
line prints out the results.

The values come to approximately 1379.7, 1305.14, and 0.0017 for the
k-means, mean-shift, and DBSCAN algorithms, respectively. Once again, the
results are similar to the ones we obtained using the Silhouette Coefficient score,
where both the k-means and mean-shift algorithms performed similarly well,
while the DBSCAN algorithm did not.

Evaluating the Performance of Clusters | 85

Moreover, it is worth mentioning that the scale of each method (the Silhouette
Coefficient score and the Calinski-Harabasz index) differs significantly, so they
are not easily comparable.

Note

To access the source code for this specific section, please refer to
https://packt.live/3e3YIif.

You can also run this example online at https://packt.live/2MXOQdZ.
You must execute the entire Notebook in order to get the desired result.

You have successfully measured the performance of three different
clustering algorithms.

In conclusion, the scores presented in this topic are a way of evaluating the
performance of clustering algorithms. However, it is important to consider that
the results from these scores are not definitive as their performance varies from
algorithm to algorithm.

Activity 2.05: Measuring and Comparing the Performance of the Algorithms

You might find yourself in a situation in which you are not sure about the
performance of the algorithms as it cannot be evaluated graphically. Therefore, you
will have to measure the performance of the algorithms using numerical metrics
that can be used to make comparisons. For the previously trained models, calculate
the Silhouette Coefficient score and the Calinski-Harabasz index to measure the
performance of the algorithms. The following steps provide hints regarding how you
can do this:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Calculate both the Silhouette Coefficient score and the Calinski-Harabasz index
for all of the models that you trained previously.

https://packt.live/3e3YIif
https://packt.live/2MXOQdZ

86 | Unsupervised Learning – Real-Life Applications

The results may differ based on the choices you made during the development
of the previous activities and how you initialized certain parameters in each
algorithm. Nevertheless, the following results can be expected for a k-means
algorithm set to divide the dataset into six clusters, a mean-shift algorithm with a
bandwidth equal to 0.4, and a DBSCAN algorithm with an epsilon score of 0.8:

Silhouette Coefficient

K-means = 0.3515

mean-shift = 0.0933

DBSCAN = 0.1685

Calinski-Harabasz Index

K-means = 145.73

mean-shift = 112.90

DBSCAN = 42.45

Note

The solution to this activity can be found on page 226.

Summary | 87

Summary
Data problems where the input data is unrelated to the labeled output are handled
using unsupervised learning models. The main objective of such data problems is to
understand the data by finding patterns that, in some cases, can be generalized to
new instances.

In this context, this chapter covered clustering algorithms, which work by aggregating
similar data points into clusters, while separating data points that differ significantly.

Three different clustering algorithms were applied to the dataset and their
performance was compared so that we can choose the one that best fits the data.
Two different metrics for performance evaluation, the Silhouette Coefficient metric
and the Calinski-Harabasz index, were also discussed in light of the inability to
represent all of the features in a plot, and thereby graphically evaluate performance
of the algorithms. However, it is important to understand that the result from the
metric's evaluation is not absolute as some metrics perform better (by default) for
some algorithms than for others.

In the next chapter, we will understand the steps involved in solving a data
problem using supervised machine learning algorithms and learn how to perform
error analysis.

Overview

In this chapter, you will learn about key concepts for solving a supervised
learning data problem. Starting from splitting the dataset to effectively
create unbiased models that perform well on unseen data, you will learn
how to measure the performance of the model in order to analyze it and
take the necessary actions to improve it. By the end of this chapter, you
will have a firm understanding of how to split a dataset, measure a model's
performance, and perform error analysis.

Supervised Learning – Key

Steps

3

90 | Supervised Learning – Key Steps

Introduction
In the preceding chapter, we saw how to solve data problems using unsupervised
learning algorithms and applied the concepts that we learned about to a real-life
dataset. We also learned how to compare the performance of various algorithms and
studied two different metrics for performance evaluation.

In this chapter, we will explore the main steps for working on a supervised machine
learning problem. First, this chapter explains the different sets in which data needs
to be split for training, validating, and testing your model. Next, the most common
evaluation metrics will be explained. It is important to highlight that, among all the
metrics available, only one should be selected as the evaluation metric of the study,
and its selection should be made by considering the purpose of the study. Finally,
we will learn how to perform error analysis, with the purpose of understanding what
measures to take to improve the results of a model.

The previous concepts apply to both classification and regression tasks, where the
former refers to problems where the output corresponds to a finite number of
labels, while the latter deals with a continuous output number. For instance, a model
that's created to determine whether a person will attend a meeting falls within the
classification tasks group. On the other hand, a model that predicts the price of a
product is solving a regression task.

Supervised Learning Tasks
Differing from unsupervised learning algorithms, supervised learning algorithms are
characterized by their ability to find relationships between a set of features and a
target value (be it discrete or continuous). Supervised learning can solve two types
of tasks:

•	 Classification: The objective of these tasks is to approximate a function that
maps a set of features to a discrete set of outcomes. These outcomes are
commonly known as class labels or categories. Each observation in the dataset
should have a class label associated with it to be able to train a model that is
capable of predicting such an outcome for future data.

An example of a classification task is one that uses demographical data to
determine someone's marital status.

•	 Regression: Although in regression tasks a function is also created to map a
relationship between some inputs and some targets, in regression tasks, the
outcome is continuous. This means that the outcome is a real value that can be
an integer or a float.

Model Validation and Testing | 91

An example of a regression task is using the different characteristics of a product
to predict its price.

Although many algorithms can be adapted to solve both of these tasks, it is important
to highlight that there are some algorithms that don't, which is why it is important to
know the task that we want to perform in order to choose the algorithm accordingly.

Next, we will explore several topics that are crucial for performing any supervised
learning task.

Model Validation and Testing
With all the information now available online, it is easy for almost anybody to start
working on a machine learning project. However, choosing the right algorithm for
your data is a challenge when there are many options available. Due to this, the
decision to use one algorithm over another is achieved through trial and error, where
different alternatives are tested.

Moreover, the decision process to arrive at a good model covers not only the
selection of the algorithm but also the tuning of its hyperparameters. To do this, a
conventional approach is to divide the data into three parts (training, validation, and
testing sets), which will be explained further in the next section.

Data Partitioning

Data partitioning is a process involving dividing a dataset into three subsets so
that each set can be used for a different purpose. This way, the development of a
model is not affected by the introduction of bias. The following is an explanation of
each subset:

•	 Training set: As the name suggests, this is the portion of the dataset that's used
for training the model. It consists of the input data (the observations) paired
with an outcome (the label class). This set can be used to train as many models
as desired, using different algorithms. However, performance evaluation is
not done on this set because, since this set was used to train the model, the
measure would be biased.

•	 Validation set: Also known as the dev set, this set is used to perform an
unbiased evaluation of each model while fine-tuning the hyperparameters.
Performance evaluation is frequently done on this set of data to test different
configurations of the hyperparameters.

92 | Supervised Learning – Key Steps

Although the model does not learn from this data (it learns from the training set
data), it is indirectly affected by the data in this set due to its participation in the
process of deciding the changes to the hyperparameters.

After running different configurations of hyperparameters based on the
performance of the model on the validation set, a winning model is selected for
each algorithm.

•	 Testing set: This is used to perform the final evaluation of the model's
performance (after training and validation) on unseen data. This helps measure
the performance of the model with real-life data for future predictions.

The testing set is also used to compare competing models. Considering that the
training set was used to train different models and the validation set was used to
fine-tune the hyperparameters of each model to select a winning configuration,
the purpose of the testing set is to perform an unbiased comparison of the
final models.

The following diagram shows the process of selecting the ideal model and using the
sets mentioned previously:

Figure 3.1: Dataset partition purposes

Model Validation and Testing | 93

The sections A–D shown in the preceding diagram are described as follows:

•	 Section A refers to the process of training the model for the desired algorithms
using the data contained in the training set.

•	 Section B represents the fine-tuning process of the hyperparameters of each
model. The selection of the best configuration of hyperparameters is based on
the performance of the model on the validation set.

•	 Section C shows the process of selecting the final model by comparing the final
configuration of each algorithm based on its performance on the testing set.

•	 Finally, section D represents the selected model that will be applied to real-life
data for prediction.

Initially, machine learning problems were solved by only partitioning data into two
sets: a training and a testing set. This approach consisted of using the training set
to train the model, which is the same as the approach with three sets. However, the
testing set was used for fine-tuning the hyperparameters as well as for determining
the ultimate performance of the algorithm.

Although this approach can also work, models that are created using this approach
do not always perform equally well on unseen real-life data. This is mainly because, as
mentioned previously, the use of the sets to fine-tune the hyperparameters indirectly
introduces bias into the model.

Considering this, there is one way to achieve a less biased model while dividing the
dataset into two sets, which is called a cross-validation split. We will explore this in
the Cross-Validation section of this chapter.

Split Ratio

Now that the purposes of the various sets are clear, it is important to clarify the
split ratio in which data needs to be divided. Although there is no exact science for
calculating the split ratio, there are a couple of things to consider when doing so:

•	 Size of the dataset: Previously, when data was not easily available, datasets
contained between 100 and 100,000 instances, and the conventionally
accepted split ratio was 60/20/20% for the training, validation, and testing
sets, respectively.

94 | Supervised Learning – Key Steps

With software and hardware improving every day, researchers can put together
datasets that contain over a million instances. This capacity to gather huge
amounts of data allows the split ratio to be 98/1/1%, respectively. This is mainly
because the larger the dataset, the more data can be used for training a model,
without compromising the amount of data left for the validation and testing sets.

•	 The algorithm: It is important to consider that some algorithms may require
higher amounts of data to train a model, as is the case with neural networks. In
this case, as with the preceding approaches, you should always opt for a larger
training set.

On the other hand, some algorithms do not require the validation and testing
sets to be split equally. For instance, a model with fewer hyperparameters can
be easily tuned, which allows the validation set to be smaller than the testing set.
However, if a model has many hyperparameters, you will need to have a larger
validation set.

Nevertheless, even though the preceding measures serve as a guide for splitting the
dataset, it is always important to consider the distribution of your dataset and the
purpose of the study. For instance, a model that is going to be used to predict an
outcome on data with a different distribution than the one used to train the model,
the real-life data, even if limited, must at least be a part of the testing set to make
sure that the model will work for the desired purpose.

The following diagram displays the proportional partition of the dataset into three
subsets. It is important to highlight that the training set must be larger than the other
two, as it is the one to be used for training the model. Additionally, it is possible to
observe that both the training and validation sets have an effect on the model, while
the testing set is mainly used to validate the actual performance of the model with
unseen data. Considering this, the training and validation sets must come from the
same distribution:

Figure 3.2: Visualization of the split ratio

Model Validation and Testing | 95

Exercise 3.01: Performing a Data Partition on a Sample Dataset

In this exercise, we will be performing a data partition on the wine dataset using the
split ratio method. The partition in this exercise will be done using the three-splits
approach. Follow these steps to complete this exercise:

Note

For the exercises and activities within this chapter, you will need to
have Python 3.7, NumPy, Jupyter, Pandas, and scikit-learn installed on
your system.

1.	 Open a Jupyter Notebook to implement this exercise. Import the
required elements, as well as the load_wine function from scikit-learn's
datasets package:

from sklearn.datasets import load_wine

import pandas as pd

from sklearn.model_selection import train_test_split

The first line imports the function that will be used to load the dataset from
scikit-learn. Next, pandas library is imported. Finally, the train_test_split
function is imported, which will be in charge of partitioning the dataset. The
function partitions the data into two subsets (a train and a test set). As the
objective of this exercise is to partition data into three subsets, the function will
be used twice to achieve the desired result.

2.	 Load the wine toy dataset and store it in a variable named data. Use the
following code snippet to do so:

data = load_wine()

The load_wine function loads the toy dataset provided by scikit-learn.

Note

To check the characteristics of the dataset, visit the following link: https://
scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html

96 | Supervised Learning – Key Steps

The output from the preceding function is a dictionary-like object, which
separates the features (callable as data) from the target (callable as target) into
two attributes.

3.	 Convert each attribute (data and target) into a Pandas DataFrame to facilitate
data manipulation. Print the shape of both DataFrames:

X = pd.DataFrame(data.data)

Y = pd.DataFrame(data.target)

print(X.shape,Y.shape)

The output from the print function should be as follows:

(178, 13) (178, 1)

Here, the values in the first parenthesis represent the shape of DataFrame X
(known as the features matrix), while the values in the second parenthesis refer
to the shape of DataFrame Y (known as the target matrix).

4.	 Perform your first split of the data using the train_test_split function. Use
the following code snippet to do so:

X, X_test, Y, Y_test = train_test_split(X, Y, test_size = 0.2)

The inputs of the train_test_split function are the two matrices (X,Y)
and the size of the test set, as a value between 0 and 1, which represents
the proportion.

Note

Considering that we are dealing with a small dataset, as per the explanation
in the Split Ratio section, we're using a split ratio of 60/20/20%. Remember
that for larger datasets, the split ratio usually changes to 98/1/1%.

The outputs of the preceding function are four matrices: X divided into two
subsets (train and test) and Y divided into two corresponding subsets:

print(X.shape, X_test.shape, Y.shape, Y_test.shape)

Model Validation and Testing | 97

By printing the shape of all four matrices, as per the preceding code snippet, it
is possible to confirm that the size of the test subset (both X and Y) is 20% of the
total size of the original dataset (150 * 0.2 = 35.6) rounded to an integer, while
the size of the train set is the remaining 80%:

(142, 13) (36, 13) (142, 1) (36, 1)

5.	 To create a validation set (dev set), we will use the train_test_split
function to divide the train sets we obtained in the previous step. However, to
obtain a dev set that's the same shape as the test set, it is necessary to calculate
the proportion of the size of the test set over the size of the train set before
creating a validation set. This value will be used as the test_size for the
next step:

dev_size = 36/142

print(dev_size)

Here, 36 is the size of the test set we created in the previous step, while 142 is
the size of the train set that will be further split. The result from this operation is
around 0.25, which can be verified using the print function.

6.	 Use the train_test_split function to divide the train set into two subsets
(train and dev sets). Use the result from the operation in the previous step as the
test_size:

X_train, X_dev, Y_train, Y_dev = train_test_split(X, Y, \

 test_size = dev_size)

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

The output of the print function is as follows:

(106, 13) (106, 1) (36, 13) (36, 1) (36, 13) (36, 1)

Note

To access the source code for this specific section, please refer to
https://packt.live/2AtXAWS.

You can also run this example online at https://packt.live/2YECtsG.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2AtXAWS
https://packt.live/2YECtsG

98 | Supervised Learning – Key Steps

You have successfully split the dataset into three subsets to develop efficient machine
learning projects. Feel free to test different split ratios.

In conclusion, the split ratio to partition data is not fixed and should be decided by
taking into account the amount of data available, the type of algorithm to be used,
and the distribution of the data.

Cross-Validation

Cross-validation is also a procedure that's used to partition data by resampling the
data that's used to train and validate the model. It consists of a parameter, K, that
represents the number of groups that the dataset will be divided into.

Due to this, the procedure is also referred to as K-fold cross-validation, where
K is usually replaced by a number of your choice. For instance, a model that's
created using a 10-fold cross-validation procedure signifies a model where data is
divided into 10 subgroups. The procedure of cross-validation is illustrated in the
following diagram:

Figure 3.3: Cross-validation procedure

The preceding diagram displays the general procedure that's followed during
cross-validation:

1.	 Data is shuffled randomly, considering that the cross-validation process
is repeated.

2.	 Data is split into K subgroups.

3.	 The validation/testing set is selected as one of the subgroups that were created.
The rest of the subgroups become the training set.

4.	 The model is trained on the training set, as usual. The model is evaluated using
the validation/testing set.

5.	 The result from that iteration is saved. The parameters are tuned based on the
results, and the process starts again by reshuffling the data. This process is
repeated K number of times.

Model Validation and Testing | 99

According to the preceding steps, the dataset is divided into K sets and the model is
trained K times. Each time, one set is selected as the validation set and the remaining
sets are used for the training process.

Cross-validation can be done using a three-split approach or a two-split one. For
the former, the dataset is initially divided into training and testing sets, after which
the training set is divided using cross-validation to create different configurations
of training and validation sets. The latter approach, on the other hand, uses cross-
validation on the entire dataset.

The popularity of cross-validation is due to its capacity to build "unbiased" models
as it allows us to measure the performance of the algorithm on different segments
of the dataset, which also provides us with an idea of its performance on unseen
data. It is also popular because it allows you to build highly effective models out of a
small dataset.

There is no exact science to choosing the value for K, but it is important to consider
that lower values for K tend to decrease variance and increase bias, while higher K
values result in the opposite behavior. Also, the lower K is, the less expensive the
processes, which results in faster running times.

Note

The concepts of variance and bias will be explained in the Bias, Variance,
and Data Mismatch section.

Exercise 3.02: Using Cross-Validation to Partition the Train Set into a Training

and a Validation Set

In this exercise, we will be performing a data partition on the wine dataset using the
cross-validation method. Follow these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import all the
required elements:

from sklearn.datasets import load_wine

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

100 | Supervised Learning – Key Steps

The last line in the preceding code imports the KFold class from scikit-learn,
which will be used to partition the dataset.

2.	 Load the wine dataset as per the previous exercise and create the Pandas
DataFrames containing the features and target matrices:

data = load_wine()

X = pd.DataFrame(data.data)

Y = pd.DataFrame(data.target)

3.	 Split the data into training and testing sets using the train_test_split
function, which you learned about in the previous exercise, using a test_size
of 0.10:

X, X_test, Y, Y_test = train_test_split(X, Y, \

 test_size = 0.10)

4.	 Instantiate the KFold class with a 10-fold configuration:

kf = KFold(n_splits = 10)

Note

Feel free to experiment with the values of K to see how the output shapes
of this exercise vary.

5.	 Apply the split method to the data in X. This method will output the index of
the instances to be used as training and validation sets. This method creates 10
different split configurations. Save the output in a variable named splits:

splits = kf.split(X)

Note that it is not necessary to run the split method on the data in Y, as the
method only saves the index numbers, which will be the same for X and Y. The
actual splitting is handled next.

Model Validation and Testing | 101

6.	 Perform a for loop that will go through the different split configurations. In
the loop body, create the variables that will hold the data for the training and
validation sets. Use the following code snippet to do so:

for train_index, test_index in splits:

 X_train, X_dev = X.iloc[train_index,:], \

 X.iloc[test_index,:]

 Y_train, Y_dev = Y.iloc[train_index,:], \

 Y.iloc[test_index,:]

The for loop goes through K number of configurations. In the body of the loop,
the data is split using the index numbers:

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

By printing the shape of all the subsets, as per the preceding snippet, the output
is as follows:

(144, 13) (144, 1) (16, 13) (16, 1) (18, 13) (18, 1)

Note

The code to train and evaluate the model should be written inside the loop
body, given that the objective of the cross-validation procedure is to train
and validate the model using the different split configurations.

You have successfully performed a cross-validation split on a sample dataset.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N0lPi0.

You can also run this example online at https://packt.live/2Y290tK.
You must execute the entire Notebook in order to get the desired result.

In conclusion, cross-validation is a procedure that's used to shuffle and split the data
into training and validation sets so that the process of training and validating is done
each time on a different set of data, thus achieving a model with low bias.

https://packt.live/2N0lPi0
https://packt.live/2Y290tK

102 | Supervised Learning – Key Steps

Activity 3.01: Data Partitioning on a Handwritten Digit Dataset

Your company specializes in recognizing handwritten characters. It wants to
improve the recognition of digits, which is why they have gathered a dataset of 1,797
handwritten digits from 0 to 9. The images have already been converted into their
numeric representation, and so they have provided you with the dataset to split it
into training/validation/testing sets. You can choose to either perform conventional
splitting or cross-validation. Follow these steps to complete this activity:

1.	 Import all the required elements to split a dataset, as well as the load_digits
function from scikit-learn to load the digits dataset.

2.	 Load the digits dataset and create Pandas DataFrames containing the
features and target matrices.

3.	 Take the conventional split approach, using a split ratio of 60/20/20%.

4.	 Using the same DataFrames, perform a 10-fold cross-validation split.

Note

The solution for this activity can be found on page 228. Feel free to try
different parameters to arrive at different results.

Evaluation Metrics
Model evaluation is indispensable for creating effective models that not only perform
well on the data that was used to train the model but also on unseen data. The task
of evaluating the model is especially easy when dealing with supervised learning
problems, where there is a ground truth that can be compared against the prediction
of the model.

Determining the accuracy percentage of the model is crucial for its application to
unseen data that does not have a label class to compare to. For example, a model
with an accuracy of 98% may allow the user to assume that the odds of having an
accurate prediction are high, and hence the model should be trusted.

The evaluation of performance, as mentioned previously, should be done on the
validation set (dev set) to fine-tune the model, and on the test set to determine the
expected performance of the selected model on unseen data.

Evaluation Metrics | 103

Evaluation Metrics for Classification Tasks

A classification task refers to a model where the class label is a discrete value, as
mentioned previously. Considering this, the most common measure to evaluate the
performance of such tasks is calculating the accuracy of the model, which involves
comparing the actual prediction to the real value. Even though this may be an
appropriate metric in many cases, there are several others to consider as well before
choosing one.

Now, we will take a look at the different performance metrics.

Confusion Matrix

The confusion matrix is a table that contains the performance of the model, and is
described as follows:

•	 The columns represent the instances that belong to a predicted class.

•	 The rows refer to the instances that actually belong to that class (ground truth).

The configuration that confusion matrices present allows the user to quickly spot the
areas in which the model is having greater difficulty. Consider the following table:

Figure 3.4: A confusion matrix of a classifier that predicts whether a woman is pregnant

The following can be observed from the preceding table:

•	 By summing up the values in the first row, it is possible to know that there are
600 observations of pregnant women. However, from those 600 observations,
the model predicted 556 as pregnant, and 44 as non-pregnant. Hence, the
model's ability to predict that a woman is pregnant has a correctness level
of 92.6%.

•	 Regarding the second row, there are also 600 observations of non-pregnant
women. Out of those 600, the model predicted that 123 of them were pregnant,
and 477 were non-pregnant. The model successfully predicted non-pregnant
women 79.5% of the time.

Based on these statements, it is possible to conclude that the model performs at its
worst when classifying observations that are not pregnant.

104 | Supervised Learning – Key Steps

Considering that the rows in a confusion matrix refer to the occurrence or
non-occurrence of an event, and the columns refer to the model's predictions, the
values in the confusion matrix can be explained as follows:

•	 True positives (TP): Refers to the instances that the model correctly classified
the event as positive—for example, the instances correctly classified as pregnant.

•	 False positives (FP): Refers to the instances that the model incorrectly classified
the event as positive—for example, the non-pregnant instances that were
incorrectly classified as pregnant.

•	 True negatives (TN): Represents the instances that the model correctly
classified the event as negative—for example, the instances correctly classified
as non-pregnant.

•	 False negatives (FN): Refers to the instances that the model incorrectly
classified the event as negative—for example, the pregnant instances that were
incorrectly predicted as non-pregnant.

The values in the confusion matrix can be demonstrated as follows:

Figure 3.5: A table showing confusion matrix values

Accuracy

Accuracy, as explained previously, measures the model's ability to correctly classify
all instances. Although this is considered to be one of the simplest ways of measuring
performance, it may not always be a useful metric when the objective of the study is
to minimize/maximize the occurrence of one class independently of its performance
on other classes.

The accuracy level of the confusion matrix from Figure 3.4 is measured as follows:

Figure 3.6: An equation showing the calculation for accuracy

Evaluation Metrics | 105

Here, m is the total number of instances.

The 86% accuracy refers to the overall performance of the model in classifying both
class labels.

Precision

This metric measures the model's ability to correctly classify positive labels (the
label that represents the occurrence of the event) by comparing it with the total
number of instances predicted as positive. This is represented by the ratio between
the true positives and the sum of the true positives and false positives, as shown in the
following equation:

Figure 3.7: An equation showing the calculation for precision

The precision metric is only applicable to binary classification tasks, where there are
only two class labels (for instance, true or false). It can also be applied to multiclass
tasks considering that the classes are converted into two (for instance, predicting
whether a handwritten number is a 6 or any other number), where one of the classes
refers to the instances that have a condition while the other refers to those that
do not.

For the example in Figure 3.4, the precision of the model is equal to 81.8%.

Recall

The recall metric measures the number of correctly predicted positive labels against
all positive labels. This is represented by the ratio between true positives and the sum
of true positives and false negatives:

Figure 3.8: An equation showing the calculation for recall

Again, this measure should be applied to two class labels. The value of recall for
the example in Figure 3.4 is 92.6%, which, when compared to the other two metrics,
represents the highest performance of the model. The decision to choose one metric
or the other will depend on the purpose of the study, which will be explained in more
detail later.

106 | Supervised Learning – Key Steps

Exercise 3.03: Calculating Different Evaluation Metrics on a Classification

Task

In this exercise, we will be using the breast cancer toy dataset to calculate the
evaluation metrics using the scikit-learn library. Follow these steps to complete
this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import all the
required elements:

from sklearn.datasets import load_breast_cancer

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import tree

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

The fourth line imports the tree module from scikit-learn, which will be used to
train a decision tree model on the training data in this exercise. The lines of code
below that will import the different evaluation metrics that will be calculated
during this exercise.

2.	 The breast cancer toy dataset contains the final diagnosis (malignant or benign)
of the analysis of masses found in the breasts of 569 women. Load the dataset
and create features and target Pandas DataFrames, as follows:

data = load_breast_cancer()

X = pd.DataFrame(data.data)

Y = pd.DataFrame(data.target)

3.	 Split the dataset using the conventional split approach:

X_train, X_test, \

Y_train, Y_test = train_test_split(X,Y, test_size = 0.1, \

 random_state = 0)

Evaluation Metrics | 107

Note that the dataset is divided into two subsets (train and test sets) because the
purpose of this exercise is to learn how to calculate the evaluation metrics using
the scikit-learn package.

Note

The random_state parameter is used to set a seed that will ensure the
same results every time you run the code. This guarantees that you will get
the same results as the ones reflected in this exercise. Different numbers
can be used as the seed; however, use the same number as suggested in
the exercises and activities of this chapter to get the same results as the
ones shown here.

4.	 First, instantiate the DecisionTreeClassifier class from scikit-learn's
tree module. Next, train a decision tree on the train set. Finally, use the model
to predict the class label on the test set. Use the following code to do this:

model = tree.DecisionTreeClassifier(random_state = 0)

model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

First, the model is instantiated using a random_state to set a seed. Then, the
fit method is used to train the model using the data from the train sets (both
X and Y). Finally, the predict method is used to trigger the predictions on the
data in the test set (only X). The data from Y_test will be used to compare the
predictions with the ground truth.

Note

The steps for training a supervised learning model will be explained further
in Chapter 4, Supervised Learning Algorithms: Predicting Annual Income and
Chapter 5, Artificial Neural Networks: Predicting Annual Income.

108 | Supervised Learning – Key Steps

5.	 Use scikit-learn to construct a confusion matrix, as follows:

confusion_matrix(Y_test, Y_pred)

The result is as follows, where the ground truth is measured against
the prediction:

array([[21, 1],

 [6, 29]])

6.	 Calculate the accuracy, precision, and recall of the model by comparing Y_test
and Y_pred:

accuracy = accuracy_score(Y_test, Y_pred)

print("accuracy:", accuracy)

precision = precision_score(Y_test, Y_pred)

print("precision:", precision)

recall = recall_score(Y_test, Y_pred)

print("recall:", recall)

The results are displayed as follows:

accuracy: 0.8771

precision: 0.9666

recall: 0.8285

Given that the positive labels are those where the mass is malignant, it can be
concluded that the instances that the model predicts as malignant have a high
probability (96.6%) of being malignant, but for the instances predicted as benign,
the model has a 17.15% (100%–82.85%) probability of being wrong.

Note

To access the source code for this specific section, please refer to
https://packt.live/2Yw0hiu.

You can also run this example online at https://packt.live/3e4rRtE.
You must execute the entire Notebook in order to get the desired result.

You have successfully calculated evaluation metrics on a classification task.

https://packt.live/2Yw0hiu
https://packt.live/3e4rRtE

Evaluation Metrics | 109

Choosing an Evaluation Metric

There are several metrics that can be used to measure the performance of a model
on classification tasks, and selecting the right one is key to building a model that
performs exceptionally well for the purpose of the study.

Previously, the importance of understanding the purpose of the study was mentioned
as a useful insight to determine the pre-processing techniques that need to be
performed on the dataset. Moreover, the purpose of the study is also useful to
determine the ideal metric for measuring the performance of the model.

Why is the purpose of the study important for selecting the evaluation metric?
Because by understanding the main goal of the study, it is possible to decide whether
it is important to focus our attention on the overall performance of the model or only
on one of the class labels.

For instance, a model that has been created to recognize when birds are present in a
picture does not need to perform well in recognizing which other animals are present
in the picture as long as it does not classify them as birds. This means that the model
needs to focus on improving the performance of correctly classifying birds only.

On the other hand, for a model that has been created to recognize handwritten
characters, where no one character is more important than another, the ideal metric
would be the one that measures the overall accuracy of the model.

What would happen if more than one metric was selected? It would become difficult
to arrive at the best performance of the model, considering that measuring two
metrics simultaneously can result in needing different approaches to improve results.

Evaluation Metrics for Regression Tasks

Considering that regression tasks are those where the final output is continuous,
without a fixed number of output labels, the comparison between the ground truth
and the prediction is based on the proximity of the values rather than on them having
exactly the same values. For instance, when predicting house prices, a model that
predicts a value of USD 299,846 for a house valued at USD 300,000 can be considered
to be a good model.

110 | Supervised Learning – Key Steps

The two metrics most commonly used for evaluating the accuracy of continuous
variables are the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE), which are explained here:

•	 Mean Absolute Error: This metric measures the average absolute difference
between a prediction and the ground truth, without taking into account the
direction of the error. The formula to calculate the MAE is as follows:

Figure 3.9: An equation showing the calculation of MAE

Here, m refers to the total number of instances, y is the ground truth, and ŷ is the
predicted value.

•	 Root Mean Squared Error: This is a quadratic metric that also measures the
average magnitude of error between the ground truth and the prediction. As
its name suggests, the RMSE is the square root of the average of the squared
differences, as shown in the following formula:

Figure 3.10: An equation showing the calculation of RMSE

Both these metrics express the average error, in a range from 0 to infinity, where
the lower the value, the better the performance of the model. The main difference
between these two metrics is that the MAE assigns the same weight of importance to
all errors, while the RMSE squares the error, assigning higher weights to larger errors.

Considering this, the RMSE metric is especially useful in cases where larger
errors should be penalized, meaning that outliers are taken into account in the
measurement of performance. For instance, the RMSE metric can be used when a
value that is off by 4 is more than twice as bad as being off by 2. The MAE, on the
other hand, is used when a value that is off by 4 is just twice as bad as a value off
by 2.

Evaluation Metrics | 111

Exercise 3.04: Calculating Evaluation Metrics on a Regression Task

In this exercise, we will be calculating evaluation metrics on a model that was trained
using linear regression. We will use the boston toy dataset for this purpose. Follow
these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import all the required
elements, as follows:

from sklearn.datasets import load_boston

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import linear_model

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

import numpy as np

The fourth line imports the linear_model module from scikit-learn, which
will be used to train a linear regression model on the training dataset. The lines
of code that follow import two performance metrics that will be evaluated in
this exercise.

2.	 For this exercise, the boston toy dataset will be used. This dataset contains data
about 506 house prices in Boston. Use the following code to load and split the
dataset, the same as we did for the previous exercises:

data = load_boston()

X = pd.DataFrame(data.data)

Y = pd.DataFrame(data.target)

X_train, X_test, Y_train, Y_test = train_test_split(X,Y, \

 test_size = 0.1, random_state = 0)

3.	 Train a linear regression model on the train set. Then, use the model to predict
the class label on the test set, as follows:

model = linear_model.LinearRegression()

model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

112 | Supervised Learning – Key Steps

As a general explanation, the LinearRegression class from scikit-learn's
linear_model module is instantiated first. Then, the fit method is used to
train the model using the data from the train sets (both X and Y). Finally, the
predict method is used to trigger the predictions on the data in the test set
(only X). The data from Y_test will be used to compare the predictions to the
ground truth.

4.	 Calculate both the MAE and RMSE metrics:

MAE = mean_absolute_error(Y_test, Y_pred)

print("MAE:", MAE)

RMSE = np.sqrt(mean_squared_error(Y_test, Y_pred))

print("RMSE:", RMSE)

The results are displayed as follows:

MAE: 3.9357

RMSE: 6.4594

Note

The scikit-learn library allows you to directly calculate the MSE.
To calculate the RMSE, the square root of the value obtained from the
mean_squared_error() function is calculated. By using the square
root, we ensure that the values from MAE and RMSE are comparable.

From the results, it is possible to conclude that the model performs well on the
test set, considering that both values are close to zero. Nevertheless, this also
means that the performance can still be improved.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YxVXiU.

You can also run this example online at https://packt.live/2N0Elqy.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2YxVXiU
https://packt.live/2N0Elqy

Evaluation Metrics | 113

You have now successfully calculated evaluation metrics on a regression task that
aimed to calculate the prices of houses based on their characteristics. In the next
activity, we will calculate the performance of a classification model that was created
to recognize handwritten characters.

Activity 3.02: Evaluating the Performance of the Model Trained on a

Handwritten Dataset

You continue to work on creating a model to recognize handwritten digits. The team
has built a model and they want you to evaluate the performance of the model. In
this activity, you will calculate different performance evaluation metrics on a trained
model. Follow these steps to complete this activity:

1.	 Import all the required elements to load and split a dataset in order to train a
model and evaluate the performance of the classification tasks.

2.	 Load the digits toy dataset from scikit-learn and create Pandas DataFrames
containing the features and target matrices.

3.	 Split the data into training and testing sets. Use 20% as the size of the testing set.

4.	 Train a decision tree on the train set. Then, use the model to predict the class
label on the test set.

Note

To train the decision tree, revisit Exercise 3.04, Calculating Different
Evaluation Metrics on a Classification Task.

5.	 Use scikit-learn to construct a confusion matrix.

6.	 Calculate the accuracy of the model.

7.	 Calculate the precision and recall. Considering that both the precision and
recall can only be calculated on binary classification problems, we'll assume
that we are only interested in classifying instances as the number 6 or any
other number.

114 | Supervised Learning – Key Steps

To be able to calculate the precision and recall, use the following code to convert
Y_test and Y_pred into a one-hot vector. A one-hot vector consists of a
vector that only contains zeros and ones. For this activity, the 0 represents the
number 6, while the 1 represents any other number. This converts the class
labels (Y_test and Y_pred) into binary data, meaning that there are only two
possible outcomes instead of 10 different ones.

Then, calculate the precision and recall using the new variables:

Y_test_2 = Y_test[:]

Y_test_2[Y_test_2 != 6] = 1

Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred

Y_pred_2[Y_pred_2 != 6] = 1

Y_pred_2[Y_pred_2 == 6] = 0

You should obtain the following values as the output:

Accuracy = 84.72%

Precision = 98.41%

Recall = 98.10%

Note

The solution for this activity can be found on page 230.

Error Analysis
Building an average model, as explained so far, is surprisingly easy through the use of
the scikit-learn library. The key aspects of building an exceptional model come from
the analysis and decision-making on the part of the researcher.

Error Analysis | 115

As we have seen so far, some of the most important tasks are choosing and
pre-processing the dataset, determining the purpose of the study, and selecting the
appropriate evaluation metric. After handling all of this and taking into account that
a model needs to be fine-tuned in order to reach the highest standards, most data
scientists recommend training a simple model, regardless of the hyperparameters, to
get the study started.

Error analysis is then introduced as a very useful methodology to turn an average
model into an exceptional one. As the name suggests, it consists of analyzing the
errors among the different subsets of the dataset in order to target the condition that
is affecting the model at a greater scale.

Bias, Variance, and Data Mismatch

To understand the different conditions that may affect a machine learning model, it is
important to understand what the Bayes error is. The Bayes error, also known as the
irreducible error, is the lowest possible error rate that can be achieved.

Before the improvements that were made in technology and artificial intelligence, the
Bayes error was considered to be the lowest possible error achievable by humans
(human error). For instance, for a process that most humans achieve with an error
rate of 0.1, but top experts achieve with an error rate of 0.05, the Bayes error would
be 0.05.

However, the Bayes error has now been redefined as being the lowest possible error
that machines can achieve, which is unknown considering that, as humans, we can
only understand as far as human error goes. Due to this, when using the Bayes error
to analyze errors, it is not possible to know the lowest limit once the model is below
the human error.

116 | Supervised Learning – Key Steps

The following diagram is useful for analyzing the error rates among the different
sets of data and determining the condition that is affecting the model in a greater
proportion. The purpose of this diagram is to find the errors that differ to a
greater extent from each other so that the model can be diagnosed and improved
accordingly. It is important to highlight that the value of the error for each set is
calculated by subtracting the evaluation metrics (for instance, the accuracy) of that set
from 100%:

Figure 3.11: Error analysis methodology

Error Analysis | 117

Considering the preceding diagram, the process to perform error analysis is
as follows:

1.	 The performance evaluation is calculated on all sets of data. This measure is
used to calculate the error for each set.

2.	 Starting from the bottom to the top, the difference is calculated as follows:

The dev set error (12%) is subtracted from the testing set error (12%). The
resulting value (0%) is saved.

The train-dev error (9%) is subtracted from the dev set error (12%). The resulting
value (3%) is saved.

The training set error (8%) is subtracted from the train-dev error (9%). The
resulting value (1%) is saved.

The Bayes error (2%) is subtracted from the training set error (8%). The resulting
value (6%) is saved.

3.	 The bigger difference determines the condition that is most seriously affecting
the model. In this case, the bigger difference occurs between the Bayes error
and the training set error, which, as shown in the preceding diagram, determines
that the model is suffering from high bias.

Note

The train/dev set is a combination of data in the training and the validation
(dev) sets. It is usually of the same shape as the dev set and contains the
same amount of data from both sets.

An explanation of each of the conditions is as follows, along with some techniques to
avoid/fix them:

•	 High Bias: Also known as underfitting, this occurs when the model is not
learning from the training set, which translates into the model performing poorly
for all three sets (training, validation, and testing sets), as well as for unseen data.

Underfitting is the easiest condition to detect and it usually requires changing to
a different algorithm that may be a better fit for the data available. With regard
to neural networks, it can typically be fixed by constructing a bigger network or
by training for longer periods of time.

118 | Supervised Learning – Key Steps

•	 High Variance: Also known as overfitting, this condition refers to the model's
inability to perform well on data that's different than that of the training set. This
basically means that the model has overfitted the training data by learning the
details and outliers of the data, without making any generalizations. A model
suffering from overfitting will not perform well on the dev or test sets, or on
unseen data.

Overfitting can be fixed by tuning the different hyperparameters of the
algorithm, often with the objective of simplifying the algorithm's approximation
of the data. For instance, for decision trees, this can be addressed by pruning
the tree to delete some of the details that were learned from the training
data. In neural networks, on the other hand, this can be addressed by adding
regularization techniques that seek to reduce some of the neuron's influence on
the overall result.

Additionally, adding more data to the training set can also help the model avoid
high variance, that is, increasing the dataset that's used for training the model.

•	 Data mismatch: This occurs when the training and validation sets do not follow
the same distribution. This affects the model as although it generalizes based
on the training data. This generalization does not describe the data that was
found in the validation set. For instance, a model that's created to describe
landscape photographs may suffer from a data mismatch if it is trained using
high-definition images, while the actual images that will be used once the model
has been built are unprofessional.

Logically, the best way to avoid data mismatch is to make sure that the sets
follow the same distribution. For example, you can do this by shuffling together
the images from both sources (professional and unprofessional images) and
then dividing them into the different sets.

Nevertheless, in cases where there is not enough data that follows the same
distribution of unseen data (data that will be used in the future), it is highly
recommended to create the dev and test sets entirely out of that data and add
the remaining data to the large training set. From the preceding example, the
unprofessional images should be used to create the dev and test sets, adding
the remaining ones to the training set, along with the professional images.
This helps to train a model with a set that contains enough images to make a
generalization, but it uses data with the same distribution as the unseen data to
fine-tune the model.

Finally, if the data from all sets comes from the same distribution, this condition
actually refers to a problem of high variance and should be handled as such.

Error Analysis | 119

•	 Overfitting to the dev set: Lastly, similar to the variance condition, this occurs
when the model is not generalizing but instead is fitting the dev set too well.

It should be addressed using the same approaches that were explained for
high variance.

In the next exercise, we will calculate the error rate of the model on the different sets
of data, which can be used to perform error analysis.

Exercise 3.05: Calculating the Error Rate on Different Sets of Data

In this exercise, we will calculate error rates for a model that has been trained using
a decision tree. We will use the breast cancer dataset for this purpose. Follow these
steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import all the required
elements to load and split the dataset. These will be used to train a model and
evaluate its recall:

from sklearn.datasets import load_breast_cancer

import pandas as pd

from sklearn.model_selection import train_test_split

import numpy as np

from sklearn import tree

from sklearn.metrics import recall_score

2.	 For this exercise, the breast cancer dataset will be used. Use the following
code to load the dataset and create the Pandas DataFrames containing the
features and target matrices:

breast_cancer = load_breast_cancer()

X = pd.DataFrame(breast_cancer.data)

Y = pd.DataFrame(breast_cancer.target)

3.	 Split the dataset into training, validation, and testing sets:

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, \

 test_size = 0.1, random_state = 101)

test_size = X_test.shape[0] / X_new.shape[0]

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size = test_size, \

 random_state = 101)

120 | Supervised Learning – Key Steps

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

The resulting shapes are as follows:

(455, 30) (455, 1) (57, 30) (57, 1) (57, 30) (57, 1)

4.	 Create a train/dev set that combines data from both the training and
validation sets:

np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 25)

indices_dev = np.random.randint(0, len(X_dev), 25)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], \

 X_dev.iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], \

 Y_dev.iloc[indices_dev,:]])

print(X_train_dev.shape, Y_train_dev.shape)

First, a random seed is set to ensure the reproducibility of the results. Next,
the NumPy random.randint() function is used to select random indices
from the X_train set. To do that, 28 random integers are generated in a
range between 0 and the total length of X_train. The same process is used to
generate the random indices of the dev set. Finally, a new variable is created to
store the selected values of X_train and X_dev, as well as a variable to store
the corresponding values from Y_train and Y_dev.

The variables that have been created contain 25 instances/labels from the train
set and 25 instances/labels from the dev set.

The resulting shapes of the sets are as follows:

(50, 30) (50, 1)

5.	 Train a decision tree on the train set, as follows:

model = tree.DecisionTreeClassifier(random_state = 101)

model = model.fit(X_train, Y_train)

Error Analysis | 121

6.	 Use the predict method to generate the predictions for all of your sets (train,
train/dev, dev, and test). Next, considering that the objective of the study is to
maximize the model's ability to predict all malignant cases, calculate the recall
scores for all predictions. Store all of the scores in a variable named scores:

sets = ["Training", "Train/dev", "Validation", "Testing"]

X_sets = [X_train, X_train_dev, X_dev, X_test]

Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = {}

for i in range(0, len(X_sets)):

 pred = model.predict(X_sets[i])

 score = recall_score(Y_sets[i], pred)

 scores[sets[i]] = score

print(scores)

The error rates for all of the sets of data are as follows:

{'Training': 1.0, 'Train/dev': 0.9705882352941176, 'Validation':
0.9333333333333333, 'Testing': 0.9714285714285714}

From the preceding values, the following table containing the error rates can
be created:

Figure 3.12: Error rates for all sets of data

Here, the Bayes error was assumed as 0, considering that the classification
between a malignant and a benign mass is done by taking a biopsy of the mass.

From the preceding table, it can be concluded that the model performs
exceptionally well for the purpose of the study, considering that all error rates
are close to 0, which is the lowest possible error.

122 | Supervised Learning – Key Steps

The highest difference in error rates is found between the train/dev set and the
dev set, which refers to data mismatch. However, taking into account that all the
datasets come from the same distribution, this condition is considered a high
variance issue, where adding more data to the training set should help reduce
the error rate.

Note

To access the source code for this specific section, please refer to
https://packt.live/3e4Toer.

You can also run this example online at https://packt.live/2UJzDkW.
You must execute the entire Notebook in order to get the desired result.

You have successfully calculated the error rate of all the subsets of data. In the next
activity, we will perform an error analysis to define the steps to be taken to improve
the performance of a model that was created to recognize handwritten digits.

Activity 3.03: Performing Error Analysis on a Model Trained to Recognize

Handwritten Digits

Based on the different metrics that you have provided to your team to measure
the performance of the model, they have selected accuracy as the ideal metric.
Considering this, your team has asked you to perform an error analysis to determine
how the model could be improved. In this activity, you will perform an error analysis
by comparing the error rate of the different sets in terms of the accuracy of the
model. Follow these steps to achieve this:

1.	 Import the required elements to load and split a dataset. We will do this to train
the model and measure its accuracy.

2.	 Load the digits toy dataset from scikit-learn and create Pandas DataFrames
containing the features and target matrices.

3.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the
test set, and an equivalent number to build a validation set of the same shape.

4.	 Create a train/dev set for both the features and target values that contains 90
instances/labels of the train set and 90 instances/labels of the dev set.

5.	 Train a decision tree on that training set data.

https://packt.live/3e4Toer
https://packt.live/2UJzDkW

Summary | 123

6.	 Calculate the error rate for all sets of data in terms of the accuracy of the model
and determine which condition is affecting the performance of the model.

By completing this activity, you should obtain the following error rates:

Figure 3.13: Expected error rates

Note

The solution for this activity can be found on page 233.

Summary
This chapter explained the different tasks that can be solved through supervised
learning algorithms: classification and regression. Although both of these tasks' goal
is to approximate a function that maps a set of features to an output, classification
tasks have a discrete number of outputs, while regression tasks can have infinite
continuous values as outputs.

When developing machine learning models to solve supervised learning problems,
one of the main goals is for the model to be capable of generalizing so that it will be
applicable to future unseen data, instead of just learning a set of instances very well
but performing poorly on new data. Accordingly, a methodology for validation and
testing was explained in this chapter, which involved splitting the data into three sets:
a training set, a dev set, and a test set. This approach eliminates the risk of bias.

After this, we covered how to evaluate the performance of a model for both
classification and regression problems. Finally, we covered how to analyze the
performance of a model and perform error analysis on each of the sets to detect the
condition affecting the model's performance.

In the next chapter, we will focus on applying different algorithms to a real-life
dataset, with the underlying objective of applying the steps we learned about here to
choose the best performing algorithm for the case study.

Overview

In this chapter, we will take a look at three different supervised learning
algorithms used for classification. We will also solve a supervised learning
classification problem using these algorithms and perform error analysis by
comparing the results of the three different algorithms.

By the end of this chapter, you will be able to identify the algorithm with the
best performance.

Supervised Learning

Algorithms: Predicting

Annual Income

4

126 | Supervised Learning Algorithms: Predicting Annual Income

Introduction
In the previous chapter, we covered the key steps involved in working with a
supervised learning data problem. Those steps aim to create high-performing
algorithms, as explained in the previous chapter.

This chapter focuses on applying different algorithms to a real-life dataset, with the
underlying objective of applying the steps that we learned previously to choose the
best-performing algorithm for the case study. Considering this, you will pre-process
and analyze a dataset, and then create three models using different algorithms.
These models will be compared to one another in order to measure
their performance.

The Census Income dataset that we'll be using contains demographical and financial
information, which can be used to try and predict the level of income of an individual.
By creating a model capable of predicting this outcome for new observations, it will
be possible to determine whether a person can be pre-approved to receive a loan.

Exploring the Dataset
Real-life applications are crucial for cementing knowledge. Therefore, this chapter
consists of a real-life case study involving a classification task, where the key steps
that you learned about in the previous chapter will be applied in order to select the
best performing model.

To accomplish this, the Census Income dataset will be used, which is available at the
UC Irvine Machine Learning Repository.

Note

The dataset that will be used in the following section, as well as in this
chapter's activities, can be found in this book's GitHub repository at
https://packt.live/2xUGShx.

Citation: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science.

https://packt.live/2xUGShx
http://archive.ics.uci.edu/ml

Exploring the Dataset | 127

You can download the dataset from this book's GitHub repository. Alternatively,
to download the dataset from the original source, follow these steps:

1.	 Visit the following link: http://archive.ics.uci.edu/ml/datasets/Census+Income.

2.	 First, click the Data Folder link.

3.	 For this chapter, the data available under adult.data will be used. Once you
click this link, the download will be triggered. Save it as a .csv file.

Note

Open the file and add header names over each column to make pre-
processing easier. For instance, the first column should have the header
Age, as per the features available in the dataset. These can be seen in the
preceding link, under Attribute Information.

Understanding the Dataset

To build a model that fits the data accurately, it is important to understand the
different details of the dataset, as mentioned in previous chapters.

First, the data that's available is revised to understand the size of the dataset and
the type of supervised learning task to be developed: classification or regression.
Next, the purpose of the study should be clearly defined, even if it is obvious. For
supervised learning, the purpose is closely linked to the class labels. Finally, each
feature is analyzed so that we can be aware of their types for
pre-processing purposes.

http://archive.ics.uci.edu/ml/datasets/Census+Income

128 | Supervised Learning Algorithms: Predicting Annual Income

The Census Income dataset is a collection of demographical data on adults, which is
an extract from the 1994 Census Database from the United States. For this chapter,
only the data available under the adult.data link will be used. The dataset consists
of 32,561 instances, 14 features, and 1 binary class label. Considering that the class
label is discrete, our task is to achieve the classification of the different observations.

Note

The following exploration of the dataset does not require coding of any
sort, but rather a simple evaluation by opening the dataset in Excel or a
similar program.

Through a quick evaluation of the data, it is possible to observe that some features
present missing values in the form of a question mark. This is common when dealing
with datasets that are available online and should be handled by replacing the symbol
with an empty value (not a space). Other common forms of missing values are the
NULL value and a dash.

To edit missing value symbols in Excel, use the Replace functionality, as follows:

•	 Find what: Input the symbol that is being used to signify a missing value (for
example, ?).

•	 Replace with: Leave it blank (do not enter a space).

This way, once we import the dataset into the code, NumPy will be able to find the
missing values so that it can handle them.

The prediction task for this dataset involves determining whether a person earns
over 50K dollars a year. According to this, the two possible outcome labels are >50K
(greater than 50K) or <=50K (less than, or equal to 50K).

Exploring the Dataset | 129

A brief explanation of each of the features in the dataset is shown in the
following table:

Figure 4.1: Dataset feature analysis

130 | Supervised Learning Algorithms: Predicting Annual Income

Note

*Publisher's Note: Gender and race would have impacted the earning
potential of an individual at the date this study was conducted. However, for
the purpose of this chapter, we have decided to exclude these categories
from our exercises and activities.

We recognize that due to biases and discriminatory practices, it is
impossible to separate issues such as gender, race, and educational and
vocational opportunities. The removal of certain features from our dataset
in the pre-processing stage of these exercises is not intended to ignore the
issues, nor the valuable work undertaken by organizations and individuals
working in the civil rights sphere.

We strongly recommend that you consider the sociopolitical impacts of
data and the way it is used, and also consider how past prejudices can be
perpetuated by using historical data to introduce bias into new algorithms.

From the preceding table, it is possible to conclude the following:

•	 Five features are not relevant to the study: fnlwgt, education,
relationship, race, and sex. These features must be deleted from the
dataset before we proceed with pre-processing and training the model.

•	 Out of the remaining features, four are presented as qualitative values.
Considering that many algorithms do not take qualitative features into account,
the values should be represented in numerical form.

Using the concepts that we learned about in the previous chapters, the preceding
statements, as well as the pre-processing process for handling outliers and missing
values, can be taken care of. The following steps explain the logic of this process:

1.	 You need to import the dataset and drop the features that are irrelevant to
the study.

2.	 You should check for missing values. Considering the feature with the most
missing values (occupation, with 1,843 missing values), there will be no need
to delete or replace the missing values as they represent only 5% or less of the
entire dataset.

3.	 You must convert the qualitative values into their numeric representations.

The Naïve Bayes Algorithm | 131

4.	 You should check for outliers. Upon using three standard deviations to detect
outliers, the feature with the maximum number of outliers is capital-loss,
which contains 1,470 outliers. Again, the outliers represent less than 5% of the
entire dataset, meaning they can be left untouched without impacting the result
of the model.

The preceding process will convert the original dataset into a new dataset with 32,561
instances (since no instances were deleted), but with 9 features and a class label. All
values should be in their numerical forms. Save the pre-processed dataset into a file
using pandas' to_csv function, as per the following code snippet:

preprocessed_data.to_csv("census_income_dataset_preprocessed.csv")

The preceding code snippet takes the pre-processed data stored in a Pandas
DataFrame and saves it into a CSV file.

Note

Make sure that you perform the preceding pre-processing steps, as this is
the dataset that will be used for training the models in the different activities
of this chapter.

To review these steps, visit the GitHub repository of this book, under
the folder named Chapter04, in the file named Census income
dataset preprocessing.

The Naïve Bayes Algorithm
Naïve Bayes is a classification algorithm based on Bayes' theorem that naïvely
assumes independence between features and assigns the same weight (degree of
importance) to all features. This means that the algorithm assumes that no single
feature correlates to or affects another. For example, although weight and height
are somehow correlated when predicting a person's age, the algorithm assumes that
each feature is independent. Additionally, the algorithm considers all features equally
important. For instance, even though an education degree may influence the earnings
of a person to a greater degree than the number of children the person has, the
algorithm still considers both features equally important.

132 | Supervised Learning Algorithms: Predicting Annual Income

Note

Bayes' theorem is a mathematical formula that calculates conditional
probabilities. To learn more about this theorem, visit the following URL:
https://plato.stanford.edu/entries/bayes-theorem/.

Although real-life datasets contain features that are not equally important, nor
independent, this algorithm is popular among scientists as it performs surprisingly
well on large datasets. Also, due to the simplistic approach of the algorithm, it
runs quickly, thus allowing it to be applied to problems that require predictions
in real-time. Moreover, it is frequently used for text classification as it commonly
outperforms more complex algorithms.

How Does the Naïve Bayes Algorithm Work?

The algorithm converts the input data into a summary of occurrences of each class
label against each feature, which is then used to calculate the likelihood of one event
(a class label), given a combination of features. Finally, this likelihood is normalized
against the likelihood of the other class labels. The result is the probability of an
instance belonging to each class label. The sum of the probabilities must be one, and
the class label with a higher probability is the one that the algorithm chooses as
the prediction.

Let's take, for example, the data presented in the following tables:

Figure 4.2: Table A - Input data and Table B - Occurrence count

https://plato.stanford.edu/entries/bayes-theorem/

The Naïve Bayes Algorithm | 133

Table A represents the data that is fed to the algorithm to build the model.
Table B refer to the occurrence count that the algorithm uses implicitly to calculate
the probabilities.

To calculate the likelihood of an event occurring when given a set of features, the
algorithm multiplies the probability of the event occurring, given each individual
feature, by the probability of the occurrence of the event, independent of the rest of
the features, as follows:

Likelihood [A1|E] = P[A1|E1] * P[A1|E2] * … * P[A1|En] * P[A1]

Here, A1 refers to an event (one of the class labels) and E represents the set of
features, where E1 is the first feature and En is the last feature in the dataset.

Note

The multiplication of these probabilities can only be made by assuming
independence between features.

The preceding equation is calculated for all possible outcomes (all class labels), and
then the normalized probability of each outcome is calculated as follows:

Figure 4.3: Formula to calculate normalized probability

For the example in Figure 4.2, given a new instance with weather equal to sunny and
temperature equal to cool, the calculation of probabilities is as follows:

Figure 4.4: Calculation of the likelihood and probabilities for the example dataset

134 | Supervised Learning Algorithms: Predicting Annual Income

By looking at the preceding equations, it is possible to conclude that the prediction
should be yes.

It is important to mention that for continuous features, the summary of occurrences
is done by creating ranges. For instance, for a feature of price, the algorithm may
count the number of instances with prices below 100K, as well as the instances with
prices above 100K.

Moreover, the algorithm may encounter some issues if one value of a feature is never
associated with one of the outcomes. This is an issue mainly because the probability
of the outcome given that feature will be zero, which influences the entire calculation.
In the preceding example, for predicting the outcome of an instance with weather
equal to mild and temperature equal to cool, the probability of no, given the set
of features will be equal to zero, considering that the probability of no, given mild
weather, computes to zero, since there are no occurrences of mild weather when the
outcome is no.

To avoid this, the Laplace estimator technique should be used. Here, the fractions
representing the probability of the occurrence of an event given a feature, P[A|E1],
are modified by adding 1 to the numerator while also adding the number of possible
values of that feature to the denominator.

For this example, to perform a prediction for a new instance with weather equal to
mild and temperature equal to cool using the Laplace estimator, this would be done
as follows:

Figure 4.5: Calculation of the likelihood and probability
using the Laplace estimator for the example dataset

The Naïve Bayes Algorithm | 135

Here, the fraction that calculates the occurrences of yes, given mild weather, goes
from 2/7 to 3/10, as a result of the addition of 1 to the numerator and 3 (for sunny,
mild, and rainy) to the denominator. The same goes for the other fractions that
calculate the probability of the event, given a feature. Note that the fraction that
calculates the probability of the event occurring independently of any feature is
left unaltered.

Nevertheless, as you have learned so far, the scikit-learn library allows you to train
models and then use them for predictions, without needing to hardcode the math.

Exercise 4.01: Applying the Naïve Bayes Algorithm

Now, let's apply the Naïve Bayes algorithm to a Fertility dataset, which aims to
determine whether the fertility level of an individual has been affected by their
demographics, their environmental conditions, and their previous medical conditions.
Follow these steps to complete this exercise:

Note

For the exercises and activities within this chapter, you will need to have
Python 3.7, NumPy, Jupyter, Pandas, and scikit-learn installed on
your system.

1.	 Download the Fertility dataset from http://archive.ics.uci.edu/ml/datasets/Fertility.
Go to the link and click on Data Folder. Click on fertility_Diagnosis.
txt, which will trigger the download. Save it as a .csv file.

Note

The dataset is also available in this book's GitHub repository at
https://packt.live/39SsSSN.

It was downloaded from the UC Irvine Machine Learning Repository:
David Gil, Jose Luis Girela, Joaquin De Juan, M. Jose Gomez-Torres, and
Magnus Johnsson. Predicting seminal quality with artificial intelligence
methods. Expert Systems with Applications.

http://archive.ics.uci.edu/ml/datasets/Fertility
https://packt.live/39SsSSN

136 | Supervised Learning Algorithms: Predicting Annual Income

2.	 Open a Jupyter Notebook to implement this exercise. Import pandas, as well as
the GaussianNB class from scikit-learn's naive_bayes module:

import pandas as pd

from sklearn.naive_bayes import GaussianNB

3.	 Read the .csv file that you downloaded in the first step. Make sure that you add
the header argument equal to None to the read_csv function, considering
that the dataset does not contain a header row:

data = pd.read_csv("fertility_Diagnosis.csv", header=None)

4.	 Split the data into X and Y, considering that the class label is found under the
column with an index equal to 9. Use the following code to do so:

X = data.iloc[:,:9]

Y = data.iloc[:,9]

5.	 Instantiate the GaussianNB class that we imported previously. Next, use the
fit method to train the model using X and Y:

model = GaussianNB()

model.fit(X, Y)

The output from running this script is as follows:

GaussianNB(priors=None, var_smoothing=1e-09)

This states that the instantiation of the class was successful. The information
inside the parentheses represents the values used for the arguments that the
class accepts, which are the hyperparameters.

For instance, for the GaussianNB class, it is possible to set the prior
probabilities to consider for each class label and a smoothing argument that
stabilizes variance. Nonetheless, the model was initialized without setting any
arguments, which means that it will use the default values for each
argument, which is None for the case of priors and 1e-09 for the
smoothing hyperparameter.

The Naïve Bayes Algorithm | 137

6.	 Finally, perform a prediction using the model that you trained before, for a new
instance with the following values for each feature: −0.33, 0.69, 0, 1, 1, 0,
0.8, 0, 0.88. Use the following code to do so:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])

print(pred)

Note that we feed the values inside of double square brackets, considering that
the predict function takes in the values for prediction as an array of arrays,
where the first set of arrays corresponds to the list of new instances to predict
and the second array refers to the list of features for each instance.

The output from the preceding code snippet is as follows:

['N']

The predicted class for that subject is equal to N, which means that the fertility of
the subject has not been affected.

Note

To access the source code for this specific section, please refer to
https://packt.live/2Y2wW0c.

You can also run this example online at https://packt.live/3e40LTt.
You must execute the entire Notebook in order to get the desired result.

You have successfully trained a Naïve Bayes model and performed prediction on a
new observation.

https://packt.live/2Y2wW0c
https://packt.live/3e40LTt

138 | Supervised Learning Algorithms: Predicting Annual Income

Activity 4.01: Training a Naïve Bayes Model for Our Census Income Dataset

To test different classification algorithms on a real-life dataset, consider the following
scenario: you work for a bank, and they have decided to implement a model that is
able to predict a person's annual income and use that information to decide whether
to approve a loan. You are given a dataset with 32,561 suitable observations, which
you have already pre-processed. Your job is to train three different models on the
dataset and determine which one best suits the case study. The first model to be built
is a Gaussian Naïve Bayes model. Use the following steps to complete this activity:

1.	 In a Jupyter Notebook, import all the required elements to load and split the
dataset, as well as to train a Naïve Bayes algorithm.

2.	 Load the pre-processed Census Income dataset. Next, separate the features
from the target by creating two variables, X and Y.

Note

The pre-processed Census Income dataset can be found in this book's
GitHub repository at https://packt.live/2JMhsFB. It consists of the transformed
Census Income dataset that was pre-processed at the beginning of
this chapter.

3.	 Divide the dataset into training, validation, and testing sets, using a split ratio
of 10%.

Note

When all three sets are created from the same dataset, it is not required
to create an additional train/dev set to measure data mismatch.
Moreover, note that it is OK to try a different split ratio, considering that
the percentages explained in the previous chapter are not set in stone.
Even though they tend to work well, it is important that you embrace
experimentation at different levels when building machine learning models.

https://packt.live/2JMhsFB

The Decision Tree Algorithm | 139

4.	 Use the fit method to train a Naïve Bayes model on the training sets (X_train
and Y_train).

5.	 Finally, perform a prediction using the model that you trained previously, for a
new instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0,
40, 38.

The prediction for the individual should be equal to zero, meaning that the
individual most likely has an income less than or equal to 50K.

Note

Use the same Jupyter Notebook for all the activities within this chapter so
that you can perform a comparison of different models on the same dataset.

The solution for this activity can be found on page 236.

The Decision Tree Algorithm
The decision tree algorithm performs classification based on a sequence that
resembles a tree-like structure. It works by dividing the dataset into small subsets
that serve as guides to develop the decision tree nodes. The nodes can be either
decision nodes or leaf nodes, where the former represent a question or decision,
and the latter represent the decisions made or the final outcome.

How Does the Decision Tree Algorithm Work?

Considering what we just mentioned, decision trees continually split the dataset
according to the parameters defined in the decision nodes. Decision nodes have
branches coming out of them, where each decision node can have two or more
branches. The branches represent the different possible answers that define the way
in which the data is split.

140 | Supervised Learning Algorithms: Predicting Annual Income

For instance, consider the following table, which shows whether a person has a
pending student loan based on their age, highest education, and current income:

Figure 4.6: Dataset for student loans

One possible configuration for a decision tree built based on the preceding data is
shown in the following diagram, where the light boxes represent the decision nodes,
the arrows are the branches representing each answer to the decision node, and the
dark boxes refer to the outcome for instances that follow the sequence:

Figure 4.7: Data represented in a decision tree

The Decision Tree Algorithm | 141

To perform the prediction, once the decision tree has been built, the model takes
each instance and follows the sequence that matches the instance's features until it
reaches a leaf, that is, the outcome. According to this, the classification process starts
at the root node (the one on top) and continues along the branch that describes the
instance. This process continues until a leaf node is reached, which represents the
prediction for that instance.

For instance, a person over 40 years old with an income below $150,000 and an
education level of bachelor is likely to not have a student loan; hence, the class label
assigned to it would be No.

Decision trees can handle both quantitative and qualitative features, considering that
continuous features will be handled in ranges. Additionally, leaf nodes can handle
categorical or continuous class labels; for categorical class labels, a classification is
made, while for continuous class labels, the task to be handled is regression.

Exercise 4.02: Applying the Decision Tree Algorithm

In this exercise, we will apply the decision tree algorithm to the Fertility Dataset, with
the objective of determining whether the fertility level of an individual is affected
by their demographics, their environmental conditions, and their previous medical
conditions. Follow these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import pandas, as well
as the DecisionTreeClassifier class from scikit-learn's tree module:

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

2.	 Load the fertility_Diagnosis dataset that you downloaded in Exercise
4.01, Applying the Naïve Bayes Algorithm. Make sure that you add the header
argument equal to None to the read_csv function, considering that the
dataset does not contain a header row:

data = pd.read_csv("fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the
column with the index equal to 9. Use the following code:

X = data.iloc[:,:9]

Y = data.iloc[:,9]

142 | Supervised Learning Algorithms: Predicting Annual Income

4.	 Instantiate the DecisionTreeClassifier class. Next, use the fit function
to train the model using X and Y:

model = DecisionTreeClassifier()

model.fit(X, Y)

Again, the output from running the preceding code snippet will appear. This
output summarizes the conditions that define your model by printing the values
that are used for every hyperparameter that the model uses, as follows:

DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,

 criterion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 presort='deprecated',

 random_state=None, splitter='best')

Since the model has been instantiated without setting any hyperparameters, the
summary will show the default values that were used for each.

5.	 Finally, perform a prediction by using the model that you trained before, for the
same instances that we used in Exercise 4.01, Applying the Naïve Bayes Algorithm:
−0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code to do so:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])

print(pred)

The output from the prediction is as follows:

['N']

Again, the model predicted that the fertility of the subject has not been affected.

Note

To access the source code for this specific section, please refer to
https://packt.live/3hDlvns.

You can also run this example online at https://packt.live/3fsVw07.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3hDlvns
https://packt.live/3fsVw07

The Support Vector Machine Algorithm | 143

You have successfully trained a decision tree model and performed a prediction on
new data.

Activity 4.02: Training a Decision Tree Model for Our Census Income Dataset

You continue to work on building a model that's able to predict a person's annual
income. Using the pre-processed Census Income dataset, you have chosen to build a
decision tree model:

1.	 Open the Jupyter Notebook that you used for the previous activity and import
the decision tree algorithm from scikit-learn.

2.	 Train the model using the fit method on the DecisionTreeClassifier
class from scikit-learn. To train the model, use the training set data from the
previous activity (X_train and Y_train).

3.	 Finally, perform a prediction by using the model that you trained for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0,
40, 38.

The prediction for the individual should be equal to zero, meaning that the
individual most likely has an income less than or equal to 50K.

Note

The solution for this activity can be found on page 237.

The Support Vector Machine Algorithm
The Support Vector Machine (SVM) algorithm is a classifier that finds the hyperplane
that effectively separates the observations into their class labels. It starts by
positioning each instance into a data space with n dimensions, where n represents
the number of features. Next, it traces an imaginary line that clearly separates the
instances belonging to a class label from the instances belonging to others.

A support vector refers to the coordinates of a given instance. According to this, the
support vector machine is the boundary that effectively segregates the different
support vectors in a data space.

For a two-dimensional data space, the hyperplane is a line that splits the data space
into two sections, each one representing a class label.

144 | Supervised Learning Algorithms: Predicting Annual Income

How Does the SVM Algorithm Work?

The following diagram shows a simple example of an SVM model. Both the triangles
and circular data points represent the instances from the input dataset, where the
shapes define the class label that each instance belongs to. The dashed line signifies
the hyperplane that clearly segregates the data points, which is defined based on the
data points' location in the data space. This line is used to classify unseen data, as
represented by the square. This way, new instances that are located to the left of the
line will be classified as triangles, while the ones to the right will be circles.

The larger the number of features, the more dimensions the data space will have,
which will make visually representing the model impossible:

Figure 4.8: Graphical example of an SVM model

The Support Vector Machine Algorithm | 145

Although the algorithm seems to be quite simple, its complexity is evident in the
algorithm's methodology for drawing the appropriate hyperplane. This is because the
model generalizes to hundreds of observations with multiple features.

To choose the right hyperplane, the algorithm follows the following rules, wherein
Rule 1 is more important than Rule 2:

•	 Rule 1: The hyperplane must maximize the correct classification of instances.
This basically means that the best line is the one that effectively separates data
points belonging to different class labels while keeping those that belong to the
same one together.

For instance, in the following diagram, although both lines are able to separate
most instances into their correct class labels, line A would be selected by the
model as the one that segregates the classes better than line B, which fails to
classify two data points:

Figure 4.9: Sample of hyperplanes that explain Rule 1

146 | Supervised Learning Algorithms: Predicting Annual Income

•	 Rule 2: The hyperplane must maximize its distance to the nearest data point of
either of the class labels, which is also known as the margin. This rule helps the
model become more robust, which means that the model is able to generalize
the input data so that it works efficiently on unseen data. This rule is especially
important in preventing new instances from being mislabeled.

For example, by looking at the following diagram, it is possible to conclude that
both hyperplanes comply with Rule 1. Nevertheless, line A is selected, since it
maximizes its distance to the nearest data points for both classes in comparison
to the distance of line B to its nearest data point:

Figure 4.10: Sample of hyperplanes that explain Rule 2

The Support Vector Machine Algorithm | 147

By default, the SVM algorithm uses a linear function to split the data points of the
input data. However, this configuration can be modified by changing the kernel type
of the algorithm. For example, consider the following diagram:

Note

For scikit-learn's SVM algorithm, the kernel refers to the mathematical
function to be used to split the data points, which can be linear, polynomial,
or sigmoidal, among others. To learn more about the parameters for this
algorithm, visit the following URL: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html#sklearn.svm.SVC.

Figure 4.11: Sample observations

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

148 | Supervised Learning Algorithms: Predicting Annual Income

To segregate these observations, the model would have to draw a circle or another
similar shape. The algorithm handles this by using kernels (mathematical functions)
that can introduce additional features to the dataset in order to modify the
distribution of data points into a form that allows a line to segregate them. There are
several kernels available for this, and the selection of one should be done by trial and
error so that you can find the one that best classifies the data that's available.

However, the default kernel for the SVM algorithm in scikit-learn is the Radial Basis
Function (RBF) kernel. This is mainly because, based on several studies, this kernel
has proved to work great for most data problems.

Exercise 4.03: Applying the SVM Algorithm

In this exercise, we will apply the SVM algorithm to the Fertility dataset. The idea,
which is the same as in previous exercises, is to determine whether the fertility level
of an individual is affected by their demographics, their environmental conditions,
and their previous medical conditions. Follow these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise. Import pandas as well as
the SVC class from scikit-learn's svm module:

import pandas as pd

from sklearn.svm import SVC

2.	 Load the fertility_Diagnosis dataset that you downloaded in Exercise
4.01, Applying the Naïve Bayes Algorithm. Make sure to add the header = None
argument to the read_csv function, considering that the dataset does not
contain a header row:

data = pd.read_csv("fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the
column with the index equal to 9. Use the following code to do so:

X = data.iloc[:,:9]

Y = data.iloc[:,9]

4.	 Instantiate scikit-learn's SVC class and use the fit function to train the model
using X and Y:

model = SVC()

model.fit(X, Y)

The Support Vector Machine Algorithm | 149

Again, the output from running this code represents the summary of the model,
along with its default hyperparameters, as follows:

SVC(C=1.0, break_ties=False, cache_size=200,

 class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3,

 gamma='scale', kernel='rbf', max_iter=-1,

 probability=False, random_state=None, shrinking=True,

 tol=0.001, verbose=False)

5.	 Finally, perform a prediction using the model that you trained previously, for the
same instances that we used in Exercise 4.01, Applying the Naïve Bayes Algorithm:
−0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code to do so:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])

print(pred)

The output is as follows:

['N']

Again, the model predicts the instance's class label as N, meaning that the
fertility of the subject has not been affected.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YyEMNX.

You can also run this example online at https://packt.live/2Y3nIR2.
You must execute the entire Notebook in order to get the desired result.

You have successfully trained an SVM model and performed a prediction.

https://packt.live/2YyEMNX
https://packt.live/2Y3nIR2

150 | Supervised Learning Algorithms: Predicting Annual Income

Activity 4.03: Training an SVM Model for Our Census Income Dataset

Continuing with your task of building a model that is capable of predicting a person's
annual income, the final algorithm that you want to train is the Support Vector
Machine. Follow these steps to implement this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity and import
the SVM algorithm from scikit-learn.

2.	 Train the model using the fit method on the SVC class from scikit-learn. To
train the model, use the training set data from the previous activity (X_train
and Y_train).

Note

The process of training the SVC class using the fit method may take
a while.

3.	 Finally, perform a prediction using the model that you trained previously, for a
new instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0,
40, 38.

The prediction for the individual should be equal to zero, that is, the individual
most likely has an income less than or equal to 50K.

Note

The solution for this activity can be found on page 238.

Error Analysis
In the previous chapter, we explained the importance of error analysis. In this section,
the different evaluation metrics will be calculated for all three models that were
created in the previous activities so that we can compare them.

For learning purposes, we will compare the models using accuracy, precision, and
recall metrics. This way, it will be possible to see that even though a model might be
better in terms of one metric, it could be worse when measuring a different metric,
which helps to emphasize the importance of choosing the right metric to measure
your model according to the goal you wish to achieve.

Error Analysis | 151

Accuracy, Precision, and Recall

As a quick reminder, in order to measure performance and perform error analysis, it
is required that you use the predict method for the different sets of data (training,
validation, and testing). The following code snippets present a clean way of measuring
all three metrics on our three sets at once:

Note

The following steps are to be performed after solving the activities of this
chapter. This is mainly because the steps in this section correspond to a
continuation of this chapter's activities.

1.	 First, the three metrics to be used are imported:

from sklearn.metrics import accuracy_score, \

precision_score, recall_score

2.	 Next, we create two lists containing the different sets of data that will be used
inside a for loop to perform the performance calculation on all sets of data for
all models:

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

3.	 A dictionary will be created, which will hold the value of each evaluation metric
for each set of data for each model:

metrics = {"NB":{"Acc":[],"Pre":[],"Rec":[]},

 "DT":{"Acc":[],"Pre":[],"Rec":[]},

 "SVM":{"Acc":[],"Pre":[],"Rec":[]}}

4.	 A for loop is used to go through the different sets of data:

for i in range(0,len(X_sets)):

 pred_NB = model_NB.predict(X_sets[i])

 metrics["NB"]["Acc"].append(accuracy_score(Y_sets[i], \

 pred_NB))

 metrics["NB"]["Pre"].append(precision_score(Y_sets[i], \

 pred_NB))

 metrics["NB"]["Rec"].append(recall_score(Y_sets[i], \

 pred_NB))

152 | Supervised Learning Algorithms: Predicting Annual Income

 pred_tree = model_tree.predict(X_sets[i])

 metrics["DT"]["Acc"].append(accuracy_score(Y_sets[i], \

 pred_tree))

 metrics["DT"]["Pre"].append(precision_score(Y_sets[i], \

 pred_tree))

 metrics["DT"]["Rec"].append(recall_score(Y_sets[i], \

 pred_tree))

 pred_svm = model_svm.predict(X_sets[i])

 metrics["SVM"]["Acc"].append(accuracy_score(Y_sets[i], \

 pred_svm))

 metrics["SVM"]["Pre"].append(precision_score(Y_sets[i], \

 pred_svm))

 metrics["SVM"]["Rec"].append(recall_score(Y_sets[i], \

 pred_svm))

5.	 Print the metrics, as follows:

print(metrics)

The output is as follows:

Figure 4.12: Printing the metrics

Inside the for loop, there are three blocks of code, one for each model
we created in the previous activities. Each block of code performs the
following actions.

First, a prediction is made. The prediction is achieved by calling the predict
method on the model and inputting a set of data. As this operation occurs inside
a for loop, the prediction will occur for all sets of data.

Error Analysis | 153

Next, the calculation of all three metrics is done by comparing the ground
truth data with the prediction that we calculated previously. The calculation is
appended to the dictionary that was created previously.

From the preceding snippets, the following results are obtained:

Figure 4.13: Performance results of all three models

Note

Review the code to arrive at these results, which can be found in this book's
GitHub repository, under the folder named Chapter04, by opening the file
named Error analysis.

Initially, the following inferences, in relation to selecting the best-fitted model, as well
as with regard to the conditions that each model suffers from, will be done while
considering only the values from the accuracy metric, assuming a Bayes error of close
to 0 (meaning that the model could reach a maximum success rate of close to 1):

•	 Upon comparing the three accuracy scores of the Naïve Bayes and the SVM
models, it is possible to conclude that the models behave almost the same way
for all three sets of data. This basically means that the models are generalizing
the data from the training set, which allows them to perform well on unseen
data. Nevertheless, the overall performance of the models is around 0.8, which
is far from the maximum success rate. This means that the models may be
suffering from high bias.

154 | Supervised Learning Algorithms: Predicting Annual Income

•	 Moreover, the performance of the decision tree model, in terms of the accuracy
of the training set, is closer to the maximum success rate. However, the model
is suffering from a case of overfitting, considering that the accuracy level of the
model on the validation set is much lower than its performance on the training
set. According to this, it would be possible to address the overfitting issue by
adding more data to the training set or by fine-tuning the hyperparameters of
the model, which would help to bring up the accuracy level of the validation and
testing sets. Pruning the tree can help an overfitted model.

Considering this, the researcher now has the required information to select a model
and work on improving the results to achieve the maximum possible performance of
the model.

Next, for learning purposes, let's compare the results of all the metrics for the
decision tree model. Although the values for all three metrics prove the existence of
overfitting, it is possible to observe that the degree of overfitting is much larger for
the precision and recall metrics. Also, it is possible to conclude that the performance
of the model on the training set measured by the recall metric is much lower, which
means that the model is not as good at classifying positive labels. This means that if
the purpose of the case study was to maximize the number of positive classifications,
regardless of the classification of negative labels, the model would also need to
improve its performance on the training set.

Note

The preceding comparison is done to show that the performance of the
same model can vary if measured with a different metric. According to this,
it is crucial to choose the metric of relevance for the case study.

Using the knowledge that you have gained from previous chapters, feel free to keep
exploring the results shown in the preceding table.

Summary | 155

Summary
Using the knowledge from previous chapters, we started this chapter by performing
an analysis of the Census Income dataset, with the objective of understanding
the data that's available and making decisions about the pre-processing process.
Three supervised learning classification algorithms—the Naïve Bayes algorithm,
the Decision Tree algorithm, and the SVM algorithm—were explained, and were
applied to the previously pre-processed dataset to create models that generalized
to the training data. Finally, we compared the performance of the three models on
the Census Income dataset by calculating the accuracy, precision, and recall on the
different sets of data (training, validation, and testing).

In the next chapter, we will look at Artificial Neural Networks (ANNs), their different
types, and their advantages and disadvantages. We will also use an ANN to solve
the same data problem that was discussed in this chapter, as well as to compare its
performance with that of the other supervised learning algorithms.

Overview

In this chapter, we will dive deep into the concept of neural networks and
describe the processes of forward and backpropagation. We will solve
a supervised learning classification problem using a neural network and
analyze the results of the neural network by performing error analysis.

By the end of this chapter, you will be able to train a network to solve a
classification problem and fine-tune some of the hyperparameters of the
network to improve its performance.

Supervised Learning – Key

Steps

5

158 | Supervised Learning – Key Steps

Introduction
In the preceding chapter, we explored three machine learning algorithms to solve
supervised learning tasks, either for classification or regression. In this chapter,
we will explore one of the most popular machine learning algorithms nowadays,
artificial neural networks, which belong to a subgroup of machine learning called
deep learning.

Artificial neural networks (ANNs), also known as Multilayer Perceptrons (MLPs),
have become increasingly popular mostly because they present a complex algorithm
that can approach almost any challenging data problem. Even though the theory
was developed decades back, during the 1940s, such networks are becoming
more popular now, thanks to all the improvements in technology that allow for
the gathering of large amounts of data, as well as the developments in computer
infrastructure that allow the training of complex algorithms with large amounts
of data.

Due to this, the following chapter will focus on introducing ANNs, their different types,
and the advantages and disadvantages that they present. Additionally, an ANN will
be used to predict the income of an individual based on demographic and financial
information from the individual, as per the previous chapter, in order to present
the differences in the performance of ANNs in comparison to the other supervised
learning algorithms.

Artificial Neural Networks
Although there are several machine learning algorithms available to solve data
problems, as we have already stated, ANNs have become increasingly popular among
data scientists, on account of their ability to find patterns in large and complex
datasets that cannot be interpreted by humans.

The neural part of the name refers to the resemblance of the architecture of the
model to the anatomy of the human brain. This part is meant to replicate a human
being's ability to learn from historical data by transferring bits of data from neuron to
neuron until an outcome is reached.

In the following diagram, a human neuron is displayed, where A represents the
dendrites that receive input information from other neurons, B refers to the nucleus
of the neuron that processes the information, and C represents the axon that
oversees the process of passing the processed information to the next neuron:

Artificial Neural Networks | 159

Figure 5.1: Visual representation of a human neuron

Moreover, the artificial part refers to the actual learning process of the model,
where the main objective is to minimize the error in the model. This is an artificial
learning process, considering that there is no real evidence regarding how human
neurons process the information that they receive, and hence the model relies on
mathematical functions that map an input to a desired output.

How Do ANNs Work?

Before we dive into the process that is followed by an ANN, let's start by looking at its
main components:

•	 Input layer: This layer is also known as X, as it contains all the data from the
dataset (each instance with its features).

•	 Hidden layers: This layer is in charge of processing the input data in order to
find patterns that are useful for making a prediction. The ANN can have as many
hidden layers as desired, each with as many neurons (units) as required. The first
layers are in charge of the simpler patterns, while the layers at the end search
for the more complex ones.

The hidden layers use a set of variables that represent weights and biases in
order to help train the network. The values for the weights and biases are used
as the variables that change in each iteration to approximate the prediction to
the ground truth. This will be explained later.

160 | Supervised Learning – Key Steps

•	 Output layer: Also known as Y_hat, this layer is the prediction made by the
model, based on the data received from the hidden layers. This prediction
is presented in the form of a probability, where the class label with a higher
probability is the one selected as the prediction.

The following diagram illustrates the architecture of the preceding three layers, where
the circles under 1 denote the neurons in the input layer, the ones under 2 represent
the neurons of 2 hidden layers (each layer represented by a column of circles), and
finally, the circles under 3 are the neurons of the output layer:

Figure 5.2: Basic architecture of an ANN

As an analogy, consider a manufacturing process for building car parts. Here, the
input layer consists of the raw materials, which, in this case, may be aluminum. The
initial steps of the process involve polishing and cleaning the material, which can be
seen as the first couple of hidden layers. Next, the material is bent to achieve the
shape of the car part, which is handled by the deeper hidden layers. Finally, the part
is delivered to the client, which can be considered to be the output layer.

Considering these steps, the main objective of the manufacturing process is to
achieve a final part that highly resembles the part that the process aimed to build,
meaning that the output, Y_hat, should maximize its similarity to Y (the ground
truth) for a model to be considered a good fit to the data.

The actual methodology to train an ANN is an iterative process comprised
of the following steps: forward propagation, calculation of the cost function,
backpropagation, and weights and biases updates. Once the weights and biases are
updated, the process starts again until the number of iterations is met.

Artificial Neural Networks | 161

Let's explore each of the steps of the iteration process in detail.

Forward Propagation

The input layer feeds the initial information to the ANN. The processing of the data
is done by propagating data bits through the depth (number of hidden layers) and
width (number of units in each layer) of the network. The information is processed by
each neuron in each layer using a linear function, coupled with an activation function
that aims to break the linearity, as follows:

Figure 5.3: The linear and activation functions used by an ANN

Here, W1 and b1 are a matrix and a vector containing the weights and biases,
respectively, and serve as the variables that can be updated through the iterations
to train the model. Z1 is the linear function for a given neuron, and A1 is the outcome
from the unit after applying an activation function (represented by the sigma symbol)
to the linear one.

The preceding two formulas are calculated for each neuron in each layer, where the
value of X for the hidden layers (other than the input layer) is replaced by the output
of the previous layer (An), as follows:

Figure 5.4: The values calculated for the second layer of the ANN

Finally, the output from the last hidden layer is fed to the output layer, where the
linear function is once again calculated, along with an activation function. The
outcome from this layer, after some processing as required, is the one that will be
compared against the ground truth in order to evaluate the performance of the
algorithm before moving on to the next iteration.

The values of the weights for the first iteration are randomly initialized between 0 and
1, while the values for the biases can be set to 0 initially. Once the first iteration is run,
the values will be updated, so that the process can start again.

162 | Supervised Learning – Key Steps

The activation function can be of different types. Some of the most common ones are
the Rectified Linear Unit (ReLU), the Hyperbolic tangent (tanh), and the Sigmoid
and Softmax functions, which will be explained in a subsequent section.

Cost Function

Considering that the final objective of the training process is to build a model based
on a given set of data that maps an expected output, it is particularly important to
measure the model's ability to estimate a relation between X and Y by comparing
the differences between the predicted value (Y_hat) and the ground truth (Y). This
is accomplished by calculating the cost function (also known as the loss function)
to determine how poor the model's predictions are. The cost function is calculated
for each iteration to measure the progress of the model along the iteration process,
with the objective of finding the values for the weights and biases that minimize the
cost function.

For classification tasks, the cost function most commonly used is the cross-entropy
cost function, where the higher the value of the cost function, the greater the
divergence between the predicted and actual values.

For a binary classification task, that is, tasks with only two class output labels, the
cross-entropy cost function is calculated as follows:

cost = -(y * log(yhat) + (1-y) *(1-yhat))

Here, y would be either 1 or 0 (either of the two class labels), yhat would be the
probability calculated by the model, and log would be the natural logarithm.

For a multiclass classification task, the formula is as follows:

Figure 5.5: The cost function for a multiclass classification task

Here, c represents a class label and M refers to the total number of class labels.

Once the cost function is calculated, the training process proceeds to perform the
backpropagation step, which will be explained in the following section.

Moreover, for regression tasks, the cost function would be the RMSE, which was
explained in Chapter 3, Supervised Learning – Key Steps.

Artificial Neural Networks | 163

Backpropagation

The backpropagation procedure was introduced as part of the training process of
ANNs to make learning faster. It basically involves calculating the partial derivatives
of the cost function with respect to the weights and biases along the network.
The objective of this is to minimize the cost function by changing the weights and
the biases.

Considering that the weights and biases are not directly contained in the cost
function, a chain rule is used to propagate the error from the cost function backward
until it reaches the first layers of the network. Next, a weighted average of the
derivatives is calculated, which is used as the value to update the weights and biases
before running a new iteration.

There are several algorithms that can be used to perform backpropagation, but
the most common one is gradient descent. Gradient descent is an optimization
algorithm that tries to find some local or global minimum of a function, which, in this
case, is the cost function. It does so by determining the direction in which the model
should move to reduce the error.

For instance, the following diagram displays an example of the training process of
an ANN through the different iterations, where the job of backpropagation is to
determine the direction in which the weights and biases should be updated, so that
the error can continue to be minimized until it reaches a minimum point:

Figure 5.6: Example of the iterative process of training an ANN

164 | Supervised Learning – Key Steps

It is important to highlight that backpropagation does not always find the global
minima, since it stops updating once it has reached the lowest point in a slope,
regardless of any other regions. For instance, consider the following diagram:

Figure 5.7: Examples of minimum points

Although all three points can be considered minimum points when compared to the
points to their left and right, only one of them is the global minima.

Updating the Weights and Biases

Taking the derivatives' average that was calculated during backpropagation, the final
step of an iteration is to update the values of the weights and biases. This process is
done using the following formula for updating weights and biases:

New weight = old weight – derivative rate * learning rate

New bias = old bias – derivative rate * learning rate

Here, the old values are those used to perform the forward propagation step, the
derivative rate is the value obtained from the backpropagation step, which is different
for the weights and the biases, and the learning rate is a constant that is used to
neutralize the effect of the derivative rate, so that the changes in the weights and
biases are small and smooth. This has been proven to help reach the lowest point
more quickly.

Once the weights and the biases have been updated, the entire process starts again.

Artificial Neural Networks | 165

Understanding the Hyperparameters

Hyperparameters, as you have seen so far, are parameters that can be fine-tuned
to improve the accuracy of a model. For neural networks, hyperparameters can be
classified into two main groups:

•	 Those that alter the structure of the network

•	 Those that modify the process to train it

An important part of building an ANN is the process of fine-tuning the
hyperparameters by performing error analysis and by playing around with the
hyperparameters that help to solve the condition that is affecting the network. As
a general reminder, networks suffering from high bias can usually be improved
by creating bigger networks or training for longer durations of time (that is, more
iterations), whereas networks suffering from high variance can benefit from the
addition of more training data or by introducing a regularization technique, which will
be explained in a subsequent section.

Considering that the number of hyperparameters that can be changed for
training an ANN is large, the most commonly used ones will be explained in the
following sections.

Number of Hidden Layers and Units

The number of hidden layers and the number of units in each layer can be set by the
researcher, as mentioned previously. Again, there is no exact science to select this
number, and, on the contrary, the selection of this number is part of the fine-tuning
process to test different approximations.

Nonetheless, when selecting the number of hidden layers, some data scientists lean
toward an approach wherein multiple networks are trained, each with an extra layer.
The model with the lowest error is the one with the correct number of hidden layers.
Unfortunately, this approach does not always work well, as more complex data
problems do not really show a difference in performance through simply changing
the number of hidden layers, regardless of the other hyperparameters.

166 | Supervised Learning – Key Steps

On the other hand, there are several techniques that you can use to choose the
number of units in a hidden layer. It is common for data scientists to choose the
initial values for both of these hyperparameters based on similar research papers
that are available online. This means that a good starting point would be copying
the architecture of networks that have been successfully used for projects in a
similar field, and then, through error analysis, fine-tuning the hyperparameters to
improve performance.

Nonetheless, it is important to consider the fact that based on research activity,
deeper networks (networks with many hidden layers) outperform wider networks
(networks with many units in each layer).

Activation Functions

As mentioned previously, the activation function is used to introduce non-linearity to
the model. The most commonly used activation functions are the following:

•	 ReLU: The output of this function is either 0 or the number derived from the
linear function, whichever is higher. This means that the output will be the raw
number it receives whenever this number is above 0, otherwise, the output
would be 0.

•	 Tanh: This function consists of the division of the hyperbolic sine by the
hyperbolic cosine of the input. The output is a number between -1 and 1.

•	 Sigmoid: The function has an S-shape. It takes the input and converts it into a
probability. The output from this function is between 0 and 1.

•	 Softmax: Similar to the sigmoid function, this calculates the probability of
the input, with the difference being that the Softmax function can be used for
multiclass classification tasks as it is capable of calculating the probability of a
class label in reference to the others.

The selection of an activation function should be done by considering that,
conventionally, both the ReLU and the Hyperbolic tangent (tanh) activation functions
are used for all of the hidden layers, with ReLU being the most popular one among
scientists due to its performance in relation to the majority of data problems.

Moreover, the Sigmoid and the Softmax activation functions should be used for the
output layer, as their outcome is in the form of a probability. The Sigmoid activation
function is used for binary classification problems, as it only outputs the probability
for two class labels, whereas the Softmax activation function can be used for either
binary or multiclass classification problems.

Artificial Neural Networks | 167

Regularization

Regularization is a technique used in machine learning to improve a model that is
suffering from overfitting, which means that this hyperparameter is mostly used
when it is strictly required, and its main objective is to increase the generalization
ability of the model.

There are different regularization techniques, but the most common ones are the
L1, L2, and dropout techniques. Although scikit-learn only supports L2 for its MLP
classifier, brief explanations of the three forms of regularization are as follows:

•	 The L1 and L2 techniques add a regularization term to the cost function as a way
of penalizing high weights that may be affecting the performance of the model.
The main difference between these approaches is that the regularization term
for L1 is the absolute value of the magnitude of the weights, while for L2, it is the
squared magnitude of the weights. For regular data problems, L2 has proven
to work better, while L1 is mainly popular for feature extraction tasks since it
creates sparse models.

•	 Dropout, on the other hand, refers to the model's ability to drop out some units
in order to ignore their output during a step in the iteration, which simplifies the
neural network. The dropout value is set between 0 and 1, and it represents the
percentage of units that will be ignored. The units that are ignored are different
in each iteration step.

Batch Size

Another hyperparameter to be tuned during the construction of an ANN is the batch
size. This refers to the number of instances to be fed to the neural network during an
iteration, which will be used to perform a forward and a backward pass through the
network. For the next iteration, a new set of instances will be used.

This technique also helps to improve the model's ability to generalize to the training
data because, in each iteration, it is fed with new combinations of instances, which is
useful when dealing with an overfitted model.

Note

As per the result of many years of research, a good practice is to set the
batch size to a value that is a multiple of 2. Some of the most common
values are 32, 64, 128, and 256.

168 | Supervised Learning – Key Steps

Learning Rate

The learning rate, as explained previously, is introduced to help determine the size
of the steps that the model will take to get to the local or global minima in each
iteration. The lower the learning rate, the slower the learning process of the network,
but this results in better models. On the other hand, the larger the learning rate,
the faster the learning process of the model; however, this may result in a model
not converging.

Note

The default learning rate value is usually set to 0.001.

Number of Iterations

A neural network is trained through an iterative process, as mentioned previously.
Therefore, it is necessary to set the number of iterations that the model will perform.
The best way to set up the ideal number of iterations is to start low, between 200 and
500, and increase it, in the event that the plot of the cost function over each iteration
shows a decreasing line. Needless to say, the larger the number of iterations, the
longer it takes to train a model.

Additionally, increasing the number of iterations is a technique known to address
underfitted networks. This is because it gives the network more time to find the right
weights and biases that generalize to the training data.

Applications of Neural Networks

In addition to the preceding architecture, a number of new architectures have
emerged over time, thanks to the popularity of neural networks. Some of the most
popular ones are convolutional neural networks, which can handle the processing
of images by using filters as layers, and recurrent neural networks, which are used
to process sequences of data such as text translations.

On account of this, the applications of neural networks extend to almost any data
problem, ranging from simple to complex. While a neural network is capable of
finding patterns in really large datasets (either for classification or regression
tasks), they are also known for effectively handling challenging problems, such as
the autonomous abilities of self-driving cars, the construction of chatbots, and the
recognition of faces.

Applying an Artificial Neural Network | 169

Limitations of Neural Networks

Some of the limitations of training neural networks are as follows:

•	 The training process takes time. Regardless of the hyperparameters used, they
generally take time to converge.

•	 They need very large datasets in order to work better. Neural networks are
meant for larger datasets, as their main advantage is their ability to find patterns
within millions of values.

•	 They are considered a black box as there is no actual knowledge of how the
network arrives at a result. Although the math behind the training process
is clear, it is not possible to know what assumptions the model makes while
being trained.

•	 The hardware requirements are large. Again, the greater the complexity of the
problem, the larger the hardware requirements.

Although ANNs can be applied to almost any data problem, due to their limitations,
it is always a good practice to test other algorithms when dealing with simpler data
problems. This is important because applying neural networks to data problems that
can be solved by simpler models makes the costs outweigh the benefits.

Applying an Artificial Neural Network
Now that you know the components of an ANN, as well as the different steps that it
follows to train a model and make predictions, let's train a simple network using the
scikit-learn library.

In this topic, scikit-learn's neural network module will be used to train a network
using the datasets used in the previous chapter's exercises and activities (that is,
the Fertility Dataset and the Processed Census Income Dataset). It is important to
mention that scikit-learn is not the most appropriate library for neural networks, as it
does not currently support many types of neural networks, and its performance over
deeper networks is not as good as other neural network specialized libraries, such as
TensorFlow and PyTorch.

The neural network module in scikit-learn currently supports an MLP for classification,
an MLP for regression, and a Restricted Boltzmann Machine architecture. Considering
that the case study consists of a classification task, the MLP for classifications will
be used.

170 | Supervised Learning – Key Steps

Scikit-Learn's Multilayer Perceptron

An MLP is a supervised learning algorithm that, as the name indicates, uses multiple
layers (hidden layers) to learn a non-linear function that translates the input values
into output, either for classification or regression. As we explained previously, the
job of each unit of a layer is to transform the data received from the previous layer
by calculating a linear function and then applying an activation function to break
the linearity.

It is important to mention the fact that an MLP has a non-convex loss function that, as
mentioned previously, signifies that there may be multiple local minima. This means
that different initializations of the weights and biases will result in different trained
models, which, in turn, indicates different accuracy levels.

The MLP classifier in scikit-learn has around 20 different hyperparameters associated
with the architecture or the learning process, which can be altered in order to modify
the training process of the network. Fortunately, all of these hyperparameters have
set default values, which allows us to run an initial model without much effort. The
results from this model can then be used to tune the hyperparameters as required.

To train an MLP classifier, it is required that you input two arrays: first, the X input of
dimensions (n_samples, n_features) containing the training data, and then the Y
input of dimensions (n_sample) that contains the label values for each sample.

Similar to the algorithms that we looked at in the previous chapter, the model is
trained using the fit method, and then predictions can be obtained by using the
predict method on the trained model.

Exercise 5.01: Applying the MLP Classifier Class

In this exercise, you will train a model using scikit-learn's MLP to solve a classification
task that consists of determining whether the fertility of the subjects has been
affected by their demographics, their environmental conditions, and their previous
medical conditions.

Note

For the exercises and activities within this chapter, you will need to
have Python 3.7, NumPy, Jupyter, pandas, and scikit-learn installed on
your system.

Applying an Artificial Neural Network | 171

1.	 Open a Jupyter Notebook to implement this exercise. Import all the necessary
elements to read the dataset and to calculate a model's accuracy, as well as
scikit-learn's MLPClassifier class:

import pandas as pd

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score

2.	 Using the Fertility Dataset from the previous chapter, read the .csv file. Make
sure that you add the header argument equal to None to the read_csv
function, considering that the dataset does not contain a header row:

data = pd.read_csv("fertility_Diagnosis.csv", header=None)

3.	 Split the dataset into X and Y sets in order to separate the features data from
the label values:

X = data.iloc[:,:9]

Y = data.iloc[:,9]

4.	 Instantiate the MLPClassifier class from the neural_network module
of scikit-learn and use the fit method to train a model. When instantiating the
model, leave all the hyperparameters at their default values, but add a random_
state argument equal to 101 to ensure that you get the same results as the
one shown in this exercise:

model = MLPClassifier(random_state=101)

model = model.fit(X, Y)

Address the warning that appears after running the fit method:

Figure 5.8: Warning message displayed after running the fit method

As you can see, the warning specifies that after running the default number of
iterations, which is 200, the model has not reached convergence.

5.	 To address this issue, try higher values for the iterations until the warning stops
appearing. To change the number of iterations, add the max_iter argument
inside the parentheses during the instantiation of the model:

model = MLPClassifier(random_state=101, max_iter =1200)

model = model.fit(X, Y)

172 | Supervised Learning – Key Steps

Furthermore, the output beneath the warning explains the values used for all of
the hyperparameters of the MLP.

6.	 Finally, perform a prediction by using the model that you trained previously, for
a new instance with the following values for each feature: −0.33, 0.69, 0, 1, 1,
0, 0.8, 0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])

print(pred)

The model's prediction is equal to N, that is, the model predicts the person with
the specified features to have a normal diagnosis.

7.	 Calculate the accuracy of your model, based on the predictions it achieves over
the X variable, as follows:

pred = model.predict(X)

score = accuracy_score(Y, pred)

print(score)

The accuracy of your model is equal to 98%.

Note

To access the source code for this specific section, please refer to
https://packt.live/2BaKHRe.

You can also run this example online at https://packt.live/37tTxpv.
You must execute the entire Notebook in order to get the desired result.

You have successfully trained and evaluated the performance of an MLP model.

Activity 5.01: Training an MLP for Our Census Income Dataset

With the objective of comparing the performance of the algorithms trained in the
previous chapter with the performance of a neural network, for this activity, we
will continue to work with the Preprocessed Census Income Dataset. Consider the
following scenario: your company is continually offering a course for employees to
improve their abilities, and you have recently learned about neural networks and
their power. You have decided to build a network to model the dataset that you were
given previously in order to test whether a neural network is better at predicting a
person's income based on their demographic data.

https://packt.live/2BaKHRe
https://packt.live/37tTxpv

Applying an Artificial Neural Network | 173

Note

Start this activity using the preprocessed dataset from the previous
chapter: census_income_dataset_preprocessed.csv. You
can also find the preprocessed dataset on this book's GitHub repository at
https://packt.live/2UQIthA.

Perform the following steps to complete this activity:

1.	 Import all the elements required to load and split a dataset, train an MLP, and to
measure accuracy.

2.	 Using the preprocessed Census Income Dataset, separate the features from the
target, creating the variables X and Y.

3.	 Divide the dataset into training, validation, and testing sets, using a split ratio
of 10%.

Note

Remember to continue using a random_state argument equal to 101
when performing the dataset split in order to set a seed to arrive at the
same results as the ones in this book.

4.	 Instantiate the MLPClassifier class from scikit-learn and train the model with
the training data.

Leave all the hyperparameters at their default values. Again, use a
random_state equal to 101.

Although a warning will appear specifying that, with the given iterations,
no convergence was reached, leave the warning unaddressed, since
hyperparameter fine-tuning will be explored in the following sections of
this chapter.

5.	 Calculate the accuracy of the model for all three sets (training, validation,
and testing).

Note

The solution to this activity can be found on page 240.

https://packt.live/2UQIthA

174 | Supervised Learning – Key Steps

The accuracy score for the three sets should be as follows:

Train sets = 0.8465

Dev sets = 0.8246

Test sets = 0.8415

Performance Analysis
In the following section, we will first perform error analysis using the accuracy metric
as a tool to determine the condition that is affecting (in greater proportion) the
performance of the algorithm. Once the model is diagnosed, the hyperparameters
can be tuned to improve the overall performance of the algorithm. The final model
will be compared to those that were created during the previous chapter in order to
determine whether a neural network outperforms the other models.

Error Analysis

Using the accuracy score calculated in Activity 5.01, Training an MLP for Our Census
Income Dataset, we can calculate the error rates for each of the sets and compare
them against one another to diagnose the condition that is affecting the model. To do
so, a Bayes error equal to 1% will be assumed, considering that other models in the
previous chapter were able to achieve an accuracy level of over 97%:

Figure 5.9: Accuracy score and error rate of the network

Note

Considering Figure 5.9, remember that in order to detect the condition that
is affecting the network, it is necessary to take an error rate and, from that,
subtract the value of the error rate above it. The biggest positive difference
is the one that we use to diagnose the model.

Performance Analysis | 175

According to the column of differences, it is evident that the biggest difference is
found between the error rate in the training set and the Bayes error. Based on this, it
is possible to conclude that the model is suffering from high bias, which, as explained
in previous chapters, can be handled by training a bigger network and/or training for
longer periods of time (a higher number of iterations).

Hyperparameter Fine-Tuning

Through error analysis, it was possible to determine that the network is suffering
from high bias. This is highly important as it indicates the actions that need to be
taken in order to improve the performance of the model in greater proportion.

Considering that both the number of iterations and the size of the network (number
of layers and units) should be changed using a trial-and-error approach, the following
experiments will be performed:

Figure 5.10: Suggested experiments to tune the hyperparameters

Note

Some experiments may take longer to run due to their complexity. For
instance, Experiment 3 will take longer than Experiment 2.

The idea behind these experiments is to be able to test different values for the
different hyperparameters in order to find out whether an improvement can be
achieved. If the improvements achieved through these experiments are significant,
further experiments should be considered.

176 | Supervised Learning – Key Steps

Similar to adding the random_state argument to the initialization of the MLP, the
change in the values of the number of iterations and the size of the network can be
achieved using the following code, which shows the values for Experiment 3:

from sklearn.neural_network import MLPClassifier

model = MLPClassifier(random_state=101, max_iter = 500, \

 hidden_layer_sizes=(100,100,100))

model = model.fit(X_train, Y_train)

Note

To find what term to use in order to change each hyperparameter, visit
scikit-learn's MLPClassifier page at http://scikit-learn.org/stable/
modules/generated/sklearn.neural_network.MLPClassifier.html.

As you can see in the preceding snippet, the max_iter argument is used to set
the number of iterations to run during the training of the network. The hidden_
layer_sizes argument is used to both set the number of hidden layers and set
the number of units in each. For instance, in the preceding example, by setting the
argument to (100,100,100), the architecture of the network is of 3 hidden layers,
each with 100 units. Of course, this architecture also includes the required input and
output layers.

Note

Using the example to train a network with the configurations of Experiment
3, you are encouraged to try to execute the training process for the
configurations of Experiment 1 and 2.

The accuracy scores from running the preceding experiments can be seen in the
following table:

Figure 5.11: Accuracy scores for all experiments

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Performance Analysis | 177

Note

Keep in mind that the main purpose behind tuning the hyperparameters is
to decrease the difference between the error rate of the training set and the
Bayes error, which is why most of the analysis is done by considering only
this value.

Through an analysis of the accuracy scores of the experiments, it can be concluded
that the best configuration of hyperparameters is the one used during Experiment
2. Additionally, it is possible to conclude that there is most likely no point in trying
other values for the number of iterations, considering that increasing the number of
iterations did not have a positive effect on the performance of the algorithm.

Nonetheless, in order to test the width of the hidden layers, the following
experiments will be considered, using the selected values for the number of iterations
and the number of hidden layers of Experiment 2, but varying the number of units in
each layer:

Figure 5.12: Suggested experiments to vary the width of the network

The accuracy score of the two experiments is shown, followed by an explanation of
the logic behind them:

Figure 5.13: Accuracy scores for the second round of experiments

178 | Supervised Learning – Key Steps

It can be seen that the accuracy for both experiments decreases for all sets of data, in
comparison to the initial model. By observing these values, it can be concluded that
the performance of Experiment 2 is the highest in terms of testing sets, which leaves
us with a network that iterates for 500 steps, with one input and output layer and two
hidden layers with 100 units each.

Note

There is no ideal way to test the different configurations of hyperparameters.
The only important thing to consider is that the focus is centered on those
hyperparameters that solve the condition that is affecting the network in a
greater proportion. Feel free to try more experiments if you wish.

Considering the accuracy scores of all three sets of Experiment 2 to calculate the
error rate, the biggest difference is still between the training set error and the Bayes
error. This means that the model may not be the best fit for the dataset, considering
that the training set error could not be brought closer to the minimum possible
error margin.

Note

To access the source code for this specific section, please refer to
https://packt.live/3e2O8bS.

This section does not currently have an online interactive example, and will
need to be run locally.

Model Comparison

When more than one model has been trained, the final step related to the process
of creating a model is a comparison between the models in order to choose the one
that best represents the training data in a generalized way, so that it works well over
unseen data.

The comparison, as mentioned previously, must be done by using only the metric
that was selected to measure the performance of the models for the data problem.
This is important, considering that one model can perform very differently for each
metric, so the model that maximizes the performance with the ideal metric should
be selected.

https://packt.live/3e2O8bS

Performance Analysis | 179

Although the metric is calculated on all three sets of data (training, validation, and
testing) in order to be able to perform error analysis, for most cases, comparison and
selection should be done by prioritizing the results obtained with the testing set. This
is mainly due to the purpose of the sets, considering that the training set is used to
create the model, the validation set is used to fine-tune the hyperparameters, and
finally, the testing set is used to measure the overall performance of the model on
unseen data.

Taking this into account, the model with a superior performance on the testing
set, after having improved all models to their fullest potential, will be the one that
performs best on unseen data.

Activity 5.02: Comparing Different Models to Choose the Best Fit for the Census

Income Data Problem

Consider the following scenario: after training four different models with the available
data, you have been asked to perform an analysis to choose the model that best suits
the case study.

Note

The following activity is mainly analytical. Use the results obtained
from the activities in the previous chapter, as well as the activity in the
current chapter.

Perform the following steps to compare the different models:

1.	 Open the Jupyter Notebooks that you used to train the models.

2.	 Compare the four models, based only on their accuracy scores. Fill in the details
in the following table:

Figure 5.14: Accuracy scores of all four models for the Census Income Dataset

180 | Supervised Learning – Key Steps

3.	 On the basis of the accuracy scores, identify the model with the
best performance.

Note

The solution to this activity can be found on page 242.

Summary
This chapter mainly focused on ANNs (the MLP, in particular), which have become
increasingly important in the field of machine learning due to their ability to tackle
highly complex data problems that usually use extremely large datasets with patterns
that are impossible to see with the human eye.

The main objective is to emulate the architecture of the human brain by using
mathematical functions to process data. The process that is used to train an
ANN consists of a forward propagation step, the calculation of a cost function, a
backpropagation step, and the updating of the different weights and biases that help
to map the input values to an output.

In addition to the variables of the weights and biases, ANNs have multiple
hyperparameters that can be tuned to improve the performance of the network,
which can be done by modifying the architecture or training process of the algorithm.
Some of the most popular hyperparameters are the size of the network (in terms of
hidden layers and units), the number of iterations, the regularization term, the batch
size, and the learning rate.

Once these concepts were covered, we created a simple network to tackle the
Census Income Dataset problem that was introduced in the previous chapter. Next,
by performing error analysis, we fine-tuned some of the hyperparameters of the
network to improve its performance.

In the next chapter, we will learn how to develop an end-to-end machine learning
solution, starting from the understanding of the data and training of the model, as
seen thus far, and ending with the process of saving a trained model in order to be
able to make future use of it.

Overview

In this chapter, we will present all the steps required to solve a problem
using machine learning. We will take a look at the key stages involved in
building a comprehensive program. We will save a model in order to get
the same results every time it is run and call a saved model to use it for
predictions on unseen data. By the end of this chapter, you will be able
to create an interactive version of your program so that anyone can use
it effectively.

Building Your Own Program

6

184 | Building Your Own Program

Introduction
In the previous chapters, we covered the main concepts of machine learning,
beginning with the distinction between the two main learning approaches (supervised
and unsupervised learning), and then moved on to the specifics of some of the most
popular algorithms in the data science community.

This chapter will talk about the importance of building complete machine learning
programs, rather than just training models. This will involve taking the models to the
next level, where they can be accessed and used easily.

We will do this by learning how to save a trained model. This will allow the best
performing model to be loaded in order to make predictions over unseen data. We
will also learn the importance of making a saved model available through platforms
where users can easily interact with it.

This is especially important when working in a team, either for a company or for
research purposes, as it allows all members of the team to use the model without
needing a full understanding of it.

Program Definition
The following section will cover the key stages required to construct a comprehensive
machine learning program that allows easy access to the trained model so that
we can perform predictions for all future data. These stages will be applied to the
construction of a program that allows a bank to determine the promotional strategy
for a financial product in its marketing campaign.

Building a Program – Key Stages

At this point, you should be able to pre-process a dataset, build different models
using training data, and compare those models in order to choose the one that best
fits the data at hand. These are some of the processes that are handled during the
first two stages of building a program, which ultimately allows the creation of the
model. Nonetheless, a program should also consider the process of saving the final
model, as well as the ability to perform quick predictions without the need for coding.

The processes that we just discussed are divided into three main stages and
will be explained in the following sections. These stages represent the foremost
requirements of any machine learning project.

Program Definition | 185

Preparation

Preparation consists of all the procedures that we have developed thus far, with the
objective of outlining the project in alignment with the available information and the
desired outcome. The following is a brief description of the three processes in this
stage (these have been discussed in detail in previous chapters):

1.	 Data Exploration: Once the objective of the study has been established, data
exploration is undertaken in order to understand the data that is available
and to obtain valuable insights. These insights will be used later to make
decisions regarding pre-processing and dividing the data and selecting models,
among other uses. The information that's most commonly obtained during
data exploration includes the size of the dataset (number of instances and
features), the irrelevant features, and whether missing values or evident outliers
are present.

2.	 Data Pre-processing: As we have already discussed, data pre-processing
primarily refers to the process of handling missing values, outliers, and noisy
data; converting qualitative features into their numeric forms; and normalizing
or standardizing these values. This process can be done manually in any data
editor, such as Excel, or by using libraries to code the procedure.

3.	 Data Splitting: The final process, data splitting, involves splitting the entire
dataset into two or three sets (depending on the approach) that will be used for
training, validating, and testing the overall performance of the model. Separating
the features and the class label is also handled during this stage.

Creation

This stage involves all of the steps that are required to create a model that fits the
data that is available. This can be done by selecting different algorithms, training and
tuning them, comparing the performance of each, and, finally, selecting the one that
generalizes best to the data (meaning that it achieves better overall performance).
The processes in this stage will be discussed briefly, as follows:

1.	 Algorithm Selection: Irrespective of whether you decide to choose one or
multiple algorithms, it is crucial to select an algorithm on the basis of the
available data and to take the advantages of each algorithm into consideration.
This is important since many data scientists make the mistake of choosing
neural networks for any data problem when, in reality, simpler problems can
be tackled using simpler models that run more quickly and perform better
with smaller datasets.

186 | Building Your Own Program

2.	 Training Process: This process involves training the model using the training
dataset. This means that the algorithm uses the features data (X) and the label
classes (Y) to determine relationship patterns that will help generalize to unseen
data and make predictions when the class label is not available.

3.	 Model Evaluation: This process is handled by measuring the performance
of the algorithm through the metric that's been selected for the study. As we
mentioned previously, it is important to choose the metric that best represents
the purpose of the study, considering that the same model can do very well in
terms of one metric and poorly in terms of another.

While evaluating the model on the validation set, hyperparameters are fine-
tuned to achieve the best possible performance. Once the hyperparameters
have been tuned, the evaluation is performed on the testing set to measure the
overall performance of the model on unseen data.

4.	 Model Comparison and Selection: When multiple models are created based
on different algorithms, a model comparison is performed to select the one that
outperforms the others. This comparison should be done by using the same
metric for all the models.

Interaction

The final stage in building a comprehensive machine learning program consists of
allowing the final user to easily interact with the model. This includes the process
of saving the model into a file, calling the file that holds the saved model, and
developing a channel through which users can interact with the model:

1.	 Storing the Final Model: This process is introduced during the development
of a machine learning program as it is crucial to enable the unaltered use of
the model for future predictions. The process of saving the model is highly
important, considering that most algorithms are randomly initialized each time
they are run, which makes the results different for each run. The process of
saving the model will be explained further later in this chapter.

2.	 Loading the Model: Once the model has been saved in a file, it can be accessed
by loading the file into any code. The model is then stored in a variable that can
be used to apply the predict method on unseen data. This process will also be
explained later in this chapter.

Program Definition | 187

3.	 Channel of Interaction: Finally, it is crucial to develop an interactive and easy
way to perform predictions using the saved model, especially because, on many
occasions, models are created by the technology team for other teams to use.
This means that an ideal program should allow non-experts to use the model
for predicting by simply typing in the input data. This idea will also be expanded
upon later in this chapter.

The following diagram illustrates the preceding stages:

Figure 6.1: Stages for building a machine learning program

The rest of this chapter will focus on the final stage of building a model
(the interaction), considering that all the previous steps were discussed in
previous chapters.

Understanding the Dataset

To learn how to implement the processes in the Interaction section, we will build a
program that's capable of predicting whether a person will be interested in investing
in a term deposit, which will help the bank target its promotion efforts. A term deposit
is money that is deposited into a banking institution that cannot be withdrawn for a
specific period of time.

188 | Building Your Own Program

The dataset that was used to build this program is available in the UC Irvine Machine
Learning Repository under the name Bank Marketing Dataset.

Note

To download this dataset, visit the following link:
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing.

The dataset is also available in this book's GitHub repository:
https://packt.live/2wnJyny.

Citation: [Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven
Approach to Predict the Success of Bank Telemarketing. Decision Support
Systems, Elsevier, 62:22-31, June 2014.

Once you have accessed the link of the UC Irvine Machine Learning repository, follow
these steps to download the dataset:

1.	 First, click on the Data Folder link.

2.	 Click the bank hyperlink to trigger the download

3.	 Open the .zip folder and extract the bank-full.csv file.

In this section, we will perform a quick exploration of the dataset in a Jupyter
Notebook. However, in Activity 6.01, Performing the Preparation and Creation
Stages for the Bank Marketing Dataset, you will be encouraged to perform a good
exploration and pre-process the dataset to arrive at a better mode.

4.	 Import the required libraries:

import pandas as pd

import numpy as np

5.	 As we have learned thus far, the dataset can be loaded into a Jupyter Notebook
using Pandas:

data = pd.read_csv("bank-full.csv")

data.head()

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://packt.live/2wnJyny

Program Definition | 189

The preceding code reads all the features for one instance in a single column,
since the read_csv function uses commas as the default delimiter for columns,
while the dataset uses semicolons as the delimiter, as can be seen by displaying
the head of the resulting DataFrame.

Note

The delimiter refers to the character that's used to split a string into
columns. For instance, a comma-delimited file is one that separates text
into columns on the appearances of commas.

The DataFrame will look as follows:

Figure 6.2: Screenshot of the data in the .csv file before splitting the data into columns

This can be fixed by adding the delimiter parameter to the read_csv
function and defining the semicolon as the delimiter, as shown in the following
code snippet:

data = pd.read_csv("bank-full.csv", delimiter = ";")

data.head()

After this step, the data should look as follows:

Figure 6.3: Screenshot of the data in the .csv file after splitting it into columns

As shown in the preceding screenshot, the file contains unknown values that
should be handled as missing values.

190 | Building Your Own Program

6.	 To aid the process of dealing with missing values, all unknown values will be
replaced by NaN using Pandas' replace function, as well as NumPy, as follows:

data = data.replace("unknown", np.NaN)

data.head()

By printing the head of the data variable, the output of the preceding code
snippet is as follows:

Figure 6.4: Screenshot of the data in the .csv file after replacing unknown values

This will allow us to easily handle missing values during the pre-processing of
the dataset.

7.	 Finally, the edited dataset is saved in a new .csv file so that it can be used for
the activities throughout this chapter. You can do this by using the to_csv
function, as follows:

data.to_csv("bank-full-dataset.csv")

Note

To access the source code for this specific section, please refer to
https://packt.live/2AAX2ym.

You can also run this example online at https://packt.live/3ftYXnf. You must
execute the entire Notebook in order to get the desired result.

The file should contain a total of 45,211 instances, each with 16 features and one
class label, which can be verified by printing the shape of the variable holding the
dataset. The class label is binary, of the yes or no type, and indicates whether the
client subscribes to a term deposit with the bank.

Each instance represents a client of the bank, while the features capture demographic
information, as well as data regarding the nature of the contact with the client during
the current (and previous) promotional campaign.

https://packt.live/2AAX2ym
https://packt.live/3ftYXnf

Program Definition | 191

The following table displays brief descriptions of all 16 features. This will help you
determine the relevance of each feature to the study, and will provide an idea of
some of the steps required to pre-process the data:

Figure 6.5: A table describing the features of the dataset

192 | Building Your Own Program

Note

You can find the preceding descriptions and more in this book's GitHub
repository, in the folder named Chapter06. The file for the preceding
example is named bank-names.txt and can be found in the .zip
folder called bank.zip.

Using the information we obtained while exploring the dataset, it is possible to
proceed with pre-processing the data and training the model, which will be the
purpose of the following activity.

Activity 6.01: Performing the Preparation and Creation Stages for the Bank

Marketing Dataset

The objective of this activity is to perform the processes in the preparation and
creation stages to build a comprehensive machine learning problem.

Note

For the exercises and activities within this chapter, you will need to
have Python 3.7, NumPy, Jupyter, Pandas, and scikit-learn installed on
your system.

Let's consider the following scenario: you work at the principal bank in your town,
and the marketing team has decided that they want to know in advance if a client is
likely to subscribe to a term deposit so that they can focus their efforts on targeting
those clients.

For this, you have been provided with a dataset containing the details of current and
previous marketing activities carried out by the team (the Bank Marketing Dataset
that you have downloaded and explored). You have been asked to pre-process the
dataset and compare two models so that you can select the best one.

Program Definition | 193

Follow these steps to achieve this:

Note

For a reminder of how to pre-process your dataset, revisit Chapter 1,
Introduction to Scikit-Learn. On the other hand, for a reminder of how
to train a supervised model, evaluate performance, and perform error
analysis, revisit Chapter 3, Supervised Learning – Key Steps, and Chapter 4,
Supervised Learning Algorithms: Predicting Annual Income.

1.	 Open a Jupyter Notebook to implement this activity and import all the
required elements.

2.	 Load the dataset into the notebook. Make sure that you load the one that was
edited previously, named bank-full-dataset.csv, which is also available
at https://packt.live/2wnJyny.

3.	 Select the metric that is the most appropriate for measuring the performance of
the model, considering that the purpose of the study is to detect clients who are
likely to subscribe to the term deposit.

4.	 Pre-process the dataset.

Note that one of the qualitative features is ordinal, which is why it must be
converted into a numeric form that follows the respective order. Use the
following code snippet to do so:

data["education"] = data["education"].fillna["unknown"]

encoder = ["unknown", "primary", "secondary", "tertiary"]

for i, word in enumerate(encoder):

 data["education"] = data["education"].\

 str.replace(word,str(i))

 data["education"] = data["education"].astype("int64")

5.	 Separate the features from the class label and split the dataset into three sets
(training, validation, and testing).

6.	 Use the decision tree algorithm on the dataset and train the model.

https://packt.live/2wnJyny

194 | Building Your Own Program

7.	 Use the multilayer perceptron algorithm on the dataset and train the model.

Note

You can also try this with the other classification algorithms we discussed in
this book. However, these two have been chosen so that you are also able
to compare the difference in training times.

8.	 Evaluate both models by using the metric that you selected previously.

9.	 Fine-tune some of the hyperparameters to fix the issues you detected while
evaluating the model by performing error analysis.

10.	Compare the final versions of your models and select the one that you believe
best fits the data.

Expected output:

Figure 6.6: Expected output

Note

You can find the solution for this activity on page 244.

Saving and Loading a Trained Model
Although the process of manipulating a dataset and training the right model is crucial
for developing a machine learning project, the work does not end there. Knowing how
to save a trained model is key as this will allow you to save the hyperparameters, as
well as the values for the weights and biases of your final model, so that it remains
unchanged when it is run again.

Moreover, after the model has been saved to a file, it is also important to know
how to load the saved model in order to use it to make predictions on new data. By
saving and loading a model, we allow for the model to be reused at any moment and
through many different means.

Saving and Loading a Trained Model | 195

Saving a Model

The process of saving a model is also called serialization, and it has become
increasingly important due to the popularity of neural networks that use many
parameters (weights and biases) that are randomly initialized every time the model is
trained, as well as due to the introduction of bigger and more complex datasets that
make the training process last for days, weeks, and sometimes months.

Considering this, the process of saving a model helps to optimize the use of machine
learning solutions by standardizing the results to the saved version of the model. It
also saves time as it allows you to directly apply the saved model to new data, without
the need for retraining.

There are two main ways to save a trained model, one of which will be explained in
this section. The pickle module is the standard way to serialize objects in Python,
and it works by implementing a powerful algorithm that serializes the model and then
saves it as a .pkl file.

Note

The other module that's available for saving a trained model is joblib,
which is part of the SciPy ecosystem.

However, take into account that models are only saved when they are meant to be
used in future projects or for future predictions. When a machine learning project is
developed to understand the current data, there is no need to save it as the analysis
will be performed after the model has been trained.

Exercise 6.01: Saving a Trained Model

For the following exercise, we will use the Fertility Dataset that we downloaded in
Chapter 5, Artificial Neural Networks: Predicting Annual Income. A neural network will
be trained over the training data, and then saved. Follow these steps to complete
this exercise:

Note

The dataset is also available in this book's GitHub repository:
https://packt.live/2zBW84e.

https://packt.live/2zBW84e

196 | Building Your Own Program

1.	 Open a Jupyter Notebook to implement this exercise and import all the
required elements to load a dataset, train a multilayer perceptron, and save a
trained model:

import pandas as pd

from sklearn.neural_network import MLPClassifier

import pickle

import os

The pickle module, as explained previously, will be used to save the trained
model. The os module is used to locate the current working directory of the
Jupyter Notebook in order to save the model in the same path.

2.	 Load the Fertility dataset and split the data into a features matrix, X, and a target
matrix, Y. Use the header = None argument, since the dataset does not have
a header row:

data = pd.read_csv("fertility_Diagnosis.csv", header=None)

X = data.iloc[:,:9]

Y = data.iloc[:,9]

3.	 Train a multilayer perceptron classifier over the data. Set the number of
iterations to 1200 to avoid getting a warning message indicating that the
default number of iterations is insufficient to achieve convergence:

model = MLPClassifier(max_iter = 1200)

model.fit(X,Y)

Note

As a reminder, the output from calling the fit method consists of the
model currently being trained with all the parameters that it takes in.

4.	 Serialize the model and save it in a file named model_exercise.pkl. Use the
following code to do so:

path = os.getcwd() + "/model_exercise.pkl"

file = open(path, "wb")

pickle.dump(model, file)

Saving and Loading a Trained Model | 197

In the preceding snippet, the path variable contains the path to the file that will
hold the serialized model, where the first element locates the current working
directory and the second element defines the name of the file to be saved. The
file variable is used to create a file that will be saved in the desired path and
has the file mode set to wb, which stands for write and binary (this is the way
the serialized model must be written). Finally, the dump method is applied over
the pickle module. It takes the model that was created previously, serializes it,
and then saves it.

Note

To access the source code for this specific section, please refer to
https://packt.live/3e18vWw.

You can also run this example online at https://packt.live/2B7NJpC.
You must execute the entire Notebook in order to get the desired result.

You have successfully saved a trained model. In the next section, we will be looking at
loading a saved model.

Loading a Model

The process of loading a model is also known as deserialization, and it consists
of taking the previously saved file, deserializing it, and then loading it into code or
Terminal so that you can use the model on new data. The pickle module is also
used to load the model.

It is worth mentioning that the model does not need to be loaded in the same code
file where it was trained and saved; on the contrary, it is meant to be loaded in any
other file. This is mainly because the load method of the pickle library will return
the model in a variable that will be used to apply the predict method.

When loading a model, it is important to not only import the pickle and os
modules like we did before, but also the class of the algorithm that is used to train
the model. For instance, to load a neural network model, it is necessary to import the
MLPClassifier class, from the neural_network module of scikit-learn.

https://packt.live/3e18vWw
https://packt.live/2B7NJpC

198 | Building Your Own Program

Exercise 6.02: Loading a Saved Model

In this exercise, using a different Jupyter Notebook, we will load the previously trained
model (Exercise 6.01, Saving a Trained Model) and perform a prediction. Follow these
steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Import the pickle and os modules. Also, import the MLPCLassifier class:

import pickle

import os

from sklearn.neural_network import MLPClassifier

The pickle module, as explained previously, will be used to load the trained
model. The os module is used to locate the current working directory of the
Jupyter Notebook in order to find the file containing the saved model.

3.	 Use pickle to load the saved model, as follows:

path = os.getcwd() + "/model_exercise.pkl"

file = open(path, "rb")

model = pickle.load(file)

Here, the path variable is used to store the path to the file containing the saved
model. Next, the file variable is used to open the file using the rb file mode,
which stands for read and binary. Finally, the load method is applied on the
pickle module to deserialize and load the model into the model variable.

4.	 Use the loaded model to make a prediction for an individual, with the following
values as the values for the features: -0.33, 0.67, 1, 1, 0, 0, 0.8,
-1, 0.5.

Store the output obtained by applying the predict method to the model
variable, in a variable named pred:

pred = model.predict([[-0.33,0.67,1,1,0,0,0.8,-1,0.5]])

print(pred)

Saving and Loading a Trained Model | 199

By printing the pred variable, we get the value of the prediction to be equal to O,
which means that the individual has an altered diagnosis, as shown here:

['O']

You have successfully loaded a saved model.

Note

To access the source code for this specific section, please refer to
https://packt.live/2MXyGS7.

You can also run this example online at https://packt.live/3dYgVxL.
You must execute the entire Notebook in order to get the desired result.

Activity 6.02: Saving and Loading the Final Model for the Bank Marketing

Dataset

Consider the following scenario: you have to save the model you created using the
Bank Marketing Dataset so that it can be used in the future without the need to
retrain the model and without the risk of getting different results each time. For
this purpose, you need to save and load the model that you created in Activity 6.01,
Performing the Preparation and Creation Stages for the Bank Marketing Dataset.

Note

The following activity will be divided into two parts.

The first part carries out the process of saving the model and will be
performed using the same Jupyter Notebook from Activity 6.01, Performing
the Preparation and Creation Stages for the Bank Marketing Dataset. The
second part consists of loading the saved model, which will be done using a
different Jupyter Notebook.

https://packt.live/2MXyGS7
https://packt.live/3dYgVxL

200 | Building Your Own Program

Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook from Activity 6.01, Performing the Preparation and
Creation Stages for the Bank Marketing Dataset.

2.	 For learning purposes, take the model that you selected as the best model,
remove the random_state argument, and run it a couple of times.

Make sure that you run the calculation of the precision metric every time you
run the model in order to see the difference in performance that's achieved with
every run. Feel free to stop when you think you have landed at a model with
good performance out of all the results you get from previous runs.

Note

The results obtained in this book use a random_state of 2.

3.	 Save the model that you choose as the best performing one in a file named
final_model.pkl.

Note

Make sure that you use the os module to save the model in the same path
as the current Jupyter Notebook.

4.	 Open a new Jupyter Notebook and import the required modules and class.

5.	 Load the model.

6.	 Perform a prediction for an individual by using the following values: 42, 2, 0, 0,
1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

Expected output:

[0]

Note

The solution for this activity can be found on page 253.

Interacting with a Trained Model | 201

Interacting with a Trained Model
Once the model has been created and saved, it is time for the last step of building a
comprehensive machine learning program: allowing easy interaction with the model.
This step not only allows the model to be reused, but also introduces efficiency
to the implementation of machine learning solutions by allowing you to perform
classifications using just input data.

There are several ways to interact with a model, and the decision that's made
between choosing one or the other depends on the nature of the user (the individuals
that will be making use of the model on a regular basis). Machine learning projects
can be accessed in different ways, some of which require the use of an API, an online
or offline program (application), or a website.

Moreover, once the channel is defined based on the preference or expertise of the
users, it is important to code the connection between the final user and the model,
which could be either a function or a class that deserializes the model and loads it,
then performs the classification, and ultimately returns an output that is displayed
again to the user.

The following diagram displays the relationship built between the channel and the
model, where the icon to the left represents the model, the one in the middle is the
function or class (the intermediary) performing the connection, and the icon to the
right is the channel. Here, as we explained previously, the channel feeds the input
data to the intermediary, which then feeds the information into the model to perform
a classification. The output from the classification is sent back to the intermediary,
which passes it along the channel in order to be displayed:

Figure 6.7: Illustration of the interaction between the user and the model

202 | Building Your Own Program

Exercise 6.03: Creating a Class and a Channel to Interact with a Trained Model

In this exercise, we will create a class in a text editor that takes the input data and
feeds it to the model that was trained in Exercise 6.01, Saving a Trained Model, with the
Fertility Diagnosis dataset. Additionally, we will create a form in a Jupyter
Notebook, where users can input the data and obtain a prediction.

To create a class in a text editor, follow these steps:

1.	 Open a text editor of preference, such as PyCharm.

2.	 Import pickle and os:

import pickle

import os

3.	 Create a class object and name it NN_Model:

Class NN_Model(object):

4.	 Inside of the class, create an initializer method that loads the file containing the
saved model (model_exercise.pkl) into the code:

def __init__(self):

 path = os.getcwd() + "/model_exercise.pkl"

 file = open(path, "rb")

 self.model = pickle.load(file)

Note

Remember to indent the method inside of the class object.

As a general rule, all the methods inside a class object must have the self
argument. On the other hand, when defining the variable of the model using the
self statement, it is possible to make use of the variable in any other method
of the same class.

Interacting with a Trained Model | 203

5.	 Inside the class named NN_Model, create a predict method. It should take in
the feature values and input them as arguments to the predict method of the
model so that it can feed them into the model and make a prediction:

def predict(self, season, age, childish, trauma, \

 surgical, fevers, alcohol, smoking, sitting):

 X = [[season, age, childish, trauma, surgical, \

 fevers, alcohol, smoking, sitting]]

 return self.model.predict(X)

Note

Remember to indent the method inside of the class object.

6.	 Save the code as a Python file (.py) and name it exerciseClass.py. The
name of this file will be used to load the class into the Jupyter Notebook for the
following steps.

Now, let's code the frontend solution of the program, which includes creating a
form where users can input data and obtain a prediction.

Note

For learning purposes, the form will be created in a Jupyter Notebook.
However, it is often the case that the frontend is in the form of a website,
an app, or something similar.

7.	 Open a Jupyter Notebook.

8.	 To import the model class that was saved as a Python file in Step 6, use the
following code snippet:

from exerciseClass import NN_Model

204 | Building Your Own Program

9.	 Initialize the NN_Model class and store it in a variable called model:

model = NN_Model()

By making a call to the class that was saved in the Python file, the initializer
method is automatically triggered, which loads the saved model into
the variable.

10.	Create a set of variables where the user can input the value for each feature,
which will then be fed to the model. Use the following values:

Note

The # symbol in the code snippet below denotes a code comment.
Comments are added into code to help explain specific bits of logic.

a = 1 # season in which the analysis was performed

b = 0.56 # age at the time of the analysis

c = 1 # childish disease

d = 1 # accident or serious trauma

e = 1 # surgical intervention

f = 0 # high fevers in the last year

g = 1 # frequency of alcohol consumption

h = -1 # smoking habit

i = 0.63 # number of hours spent sitting per day

11.	Perform a prediction by using the predict method over the model variable.
Input the feature values as arguments, taking into account that you must name
them in the same way that you did when creating the predict function in the
text editor:

pred = model.predict(season=a, age=b, childish=c, \

 trauma=d, surgical=e, fevers=f, \

 alcohol=g, smoking=h, sitting=i)

print(pred)

12.	By printing the prediction, we get the following output:

['N']

Interacting with a Trained Model | 205

This means that the individual has a normal diagnosis.

Note

To access the source code for this specific section, please refer to
https://packt.live/2MZPjg0.

You can also run this example online at https://packt.live/3e4tQOC.
You must execute the entire Notebook in order to get the desired result.

You have successfully created a function and a channel to interact with your model.

Activity 6.03: Allowing Interaction with the Bank Marketing Dataset Model

Consider the following scenario: after seeing the results that you presented in the
previous activity, your boss has asked you to build a very simple way for him to test
the model with data that he will receive over the course of the next month. If all the
tests work well, he will be asking you to launch the program in a more effective way.
Hence, you have decided to share a Jupyter Notebook with your boss, where he can
just input the information and get a prediction.

Note

The following activity will be developed in two parts. The first part will
involve building the class that connects the channel and the model, which
will be developed using a text editor. The second part will be the creation of
the channel, which will be done in a Jupyter Notebook.

Follow these steps to complete this activity:

1.	 In a text editor, create a class object that contains two main methods. One
should be an initializer that loads the saved model, while the other should be a
predict method, wherein the data is fed to the model to retrieve an output.

2.	 In a Jupyter Notebook, import and initialize the class that you created in the
previous step. Next, create the variables that will hold the values for all the
features of a new observation. Use the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5,
8, 380, 1, -1, 0.

3.	 Perform a prediction by applying the predict method.

https://packt.live/2MZPjg0
https://packt.live/3e4tQOC

206 | Building Your Own Program

Expected output: You will get 0 as the output when you complete this activity.

Note

The solution for this activity can be found on page 254.

Summary
This chapter wraps up all of the concepts and techniques that are required to
successfully train a machine learning model based on training data. In this chapter,
we introduced the idea of building a comprehensive machine learning program
that not only accounts for the stages involved in the preparation of the dataset and
creation of the ideal model, but also the stage related to making the model accessible
for future use, which is accomplished by carrying out three main processes: saving
the model, loading the model, and creating a channel that allows users to easily
interact with the model and obtain an outcome.

For saving and loading a model, the pickle module was introduced. This module
is capable of serializing the model to save it in a file, while also being capable of
deserializing it to make use of the model in the future.

Furthermore, to make the model accessible to users, the ideal channel (for example,
an API, an application, a website, or a form) needs to be selected according to the
type of user that will interact with the model. Then, an intermediary needs to be
programmed that can connect the channel with the model. This intermediary is
usually in the form of a function or a class.

The main objective of this book was to introduce scikit-learn's library as a way
to develop machine learning solutions in a simple manner. After discussing the
importance of and the different techniques involved in data exploration and
pre-processing, this book divided its knowledge into the two main areas of machine
learning, that is, supervised and unsupervised learning. The most common algorithms
were discussed.

Finally, we explained the importance of measuring the performance of models by
performing error analysis in order to improve the overall performance of the model
on unseen data, and, ultimately, choosing the model that best represents the data.
This final model should be saved so that you can use it in the future for visualizations
or to perform predictions.

Appendix

210 | Appendix

Chapter 01: Introduction to Scikit-Learn

Activity 1.01: Selecting a Target Feature and Creating a Target Matrix

Solution:

1.	 Load the titanic dataset using the seaborn library:

import seaborn as sns

titanic = sns.load_dataset('titanic')

titanic.head(10)

The first couple of rows should look as follows:

Figure 1.22: An image showing the first 10 instances of the Titanic dataset

2.	 Select your preferred target feature for the goal of this activity.

The preferred target feature could be either survived or alive. This is
mainly because both of them label whether a person survived the crash. For
the following steps, the variable that's been chosen is survived. However,
choosing alive will not affect the final shape of the variables.

3.	 Create both the features matrix and the target matrix. Make sure that you store
the data from the features matrix in a variable, X, and the data from the target
matrix in another variable, Y:

X = titanic.drop('survived',axis = 1)

Y = titanic['survived']

4.	 Print out the shape of X, as follows:

X.shape

Chapter 01: Introduction to Scikit-Learn | 211

The output is as follows:

(891, 14)

Do the same for Y:

Y.shape

The output is as follows:

(891,)

Note

To access the source code for this specific section, please refer to
https://packt.live/37BwgSv.

You can also run this example online at https://packt.live/2MXFtuP. You must
execute the entire Notebook in order to get the desired result.

You have successfully split the dataset into two subsets, which will be used later on to
train a model.

Activity 1.02: Pre-processing an Entire Dataset

Solution:

1.	 Import seaborn and the LabelEncoder class from scikit-learn. Next, load
the titanic dataset and create the features matrix, including the following
features: sex, age, fare, class, embark_town, and alone:

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

titanic = sns.load_dataset('titanic')

X = titanic[['sex','age','fare','class',\

 'embark_town','alone']].copy()

X.shape

The features matrix was created as copies of the dataset in order to avoid
getting a warning message every time the matrix was to be updated through the
preprocessing process.

The output is as follows:

(891, 6)

https://packt.live/37BwgSv
https://packt.live/2MXFtuP

212 | Appendix

2.	 Check for missing values in all the features. As we did previously, use isnull()
to determine whether a value is missing and use sum() to sum up the
occurrences of missing values along each feature:

print("Sex: " + str(X['sex'].isnull().sum()))

print("Age: " + str(X['age'].isnull().sum()))

print("Fare: " + str(X['fare'].isnull().sum()))

print("Class: " + str(X['class'].isnull().sum()))

print("Embark town: " + str(X['embark_town'].isnull().sum()))

print("Alone: " + str(X['alone'].isnull().sum()))

The output will look as follows:

Sex: 0

Age: 177

Fare: 0

Class: 0

Embark town: 2

Alone: 0

As you can see from the preceding output, only one feature contains a significant
amount of missing values: age. As it contains many missing values that account
for almost 20% of the total, the values should be replaced. The mean imputation
methodology will be applied, as shown in the following code:

mean = X['age'].mean()

mean =round(mean)

X['age'].fillna(mean,inplace = True)

Next, discover the outliers present in the numeric features. Let's use three
standard deviations as the measure to calculate the min and max threshold for
numeric features:

features = ["age", "fare"]

for feature in features:

 min_ = X[feature].mean() - (3 * X[feature].std())

 max_ = X[feature].mean() + (3 * X[feature].std())

 X = X[X[feature] <= max_]

 X = X[X[feature] >= min_]

 print(feature, ":", X.shape)

Chapter 01: Introduction to Scikit-Learn | 213

The output is as follows:

age: (884, 6)

fare: (864, 6)

The total count of outliers for the age and fare features is 7 and 20, respectively,
reducing the shape of the initial matrix by 27 instances.

Next, using a for loop, discover outliers present in text features. The
value_counts() function is used to count the occurrence of the classes in
each feature:

features = ["sex", "class", "embark_town", "alone"]

for feature in features:

 count_ = X[feature].value_counts()

 print(feature)

 print(count_, "\n")

The output is as follows:

Figure 1.23: Count of occurrence of the classes in each feature

None of the classes for any of the features are considered to be outliers as they
all represent over 5% of the entire dataset.

214 | Appendix

3.	 Convert all text features into their numeric representations. Use scikit-learn's
LabelEncoder class, as shown in the following code:

enc = LabelEncoder()

X["sex"] = enc.fit_transform(X['sex'].astype('str'))

X["class"] = enc.fit_transform(X['class'].astype('str'))

X["embark_town"] = enc.fit_transform(X['embark_town'].\

 astype('str'))

X["alone"] = enc.fit_transform(X['alone'].astype('str'))

Print out the top five instances of the features matrix to view the result of
the conversion:

X.head()

The output is as follows:

Figure 1.24: A screenshot displaying the first five instances of the features matrix

4.	 Rescale your data, either by normalizing or standardizing it.

As you can see from the following code, all features go through the
normalization process, but only those that don't meet the criteria of a
normalized variable are changed:

X = (X - X.min()) / (X.max() - X.min())

X.head(10)

Chapter 01: Introduction to Scikit-Learn | 215

The top 10 rows of the final output are shown in the following screenshot:

Figure 1.25: Displaying the first 10 instances of the normalized dataset

Note

To access the source code for this specific section, please refer to
https://packt.live/2MY1wld.

You can also run this example online at https://packt.live/3e2lyqt.
You must execute the entire Notebook in order to get the desired result.

You have successfully performed data preprocessing over a dataset, which can now
be used to train a ML algorithm.

https://packt.live/2MY1wld
https://packt.live/3e2lyqt

216 | Appendix

Chapter 02: Unsupervised Learning – Real-Life Applications

Activity 2.01: Using Data Visualization to Aid the Pre-processing Process

Solution:

1.	 Import all the required elements to load the dataset and pre-process it:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

2.	 Load the previously downloaded dataset by using pandas' read_csv()
function. Store the dataset in a pandas DataFrame named data:

data = pd.read_csv("wholesale_customers_data.csv")

3.	 Check for missing values in your DataFrame. Using the isnull() function plus
the sum() function, count the missing values of the entire dataset at once:

data.isnull().sum()

The output is as follows:

Channel 0

Region 0

Fresh 0

Milk 0

Grocery 0

Frozen 0

Detergents_Paper 0

Delicassen 0

dtype: int64

As you can see from the preceding screenshot, there are no missing values in
the dataset.

4.	 Check for outliers in your DataFrame. Mark as outliers all the values that are
three standard deviations away from the mean.

The following code snippet allows you to look for outliers in the entire set of
features at once. However, another valid method would be to check for outliers
one feature at a time:

outliers = {}

Chapter 02: Unsupervised Learning – Real-Life Applications | 217

for i in range(data.shape[1]):

 min_t = data[data.columns[i]].mean() \

 - (3 * data[data.columns[i]].std())

 max_t = data[data.columns[i]].mean() \

 + (3 * data[data.columns[i]].std())

 count = 0

 for j in data[data.columns[i]]:

 if j < min_t or j > max_t:

 count += 1

 outliers[data.columns[i]] = [count,data.shape[0]-count]

print(outliers)

The count of outliers for each of the features is as follows:

{'Channel': [0, 440], 'Region': [0, 440], 'Fresh': [7, 433], 'Milk':
[9, 431], 'Grocery': [7, 433], 'Frozen': [6, 434], 'Detergents_
Paper': [10, 430], 'Delicassen': [4, 436]}

As you can see from the preceding screenshot, some features do have outliers.
Considering that there are only a few outliers for each feature, there are two
possible ways to handle them.

First, you could decide to delete the outliers. This decision can be supported by
displaying a histogram for the features with outliers:

plt.hist(data["Fresh"])

plt.show()

The output is as follows:

Figure 2.14: An example histogram plot for the "Fresh" feature

218 | Appendix

In the preceding plot, the x-axis represents the values present in the dataset for
the selected feature, while the y-axis refers to the number of occurrences of
each value. It is worth mentioning that histograms built for continuous values
make ranges out of the values in order to be able to count their occurrences in
the dataset.

For instance, for the feature named Fresh, it can be seen through the
histogram that most instances are represented by values below 40,000. Hence,
deleting the instances above that value will not affect the performance of
the model.

On the other hand, the second approach would be to leave the outliers as they
are, considering that they do not represent a large portion of the dataset, which
can be supported with data visualization tools using a pie chart. Refer to the
code and the output that follows:

plt.figure(figsize=(8,8))

plt.pie(outliers["Detergents_Paper"],autopct="%.2f")

plt.show()

The output is as follows:

Figure 2.15: A pie chart showing the participation of outliers from the Detergents_papers
feature in the dataset

Chapter 02: Unsupervised Learning – Real-Life Applications | 219

The preceding diagram shows the participation of the outliers from the
Detergents_papers feature, which was the feature with the most outliers in
the dataset. Only 2.27% of the values are outliers, a value so low that it will not
affect the performance of the model either.

For the solution in this book, it was decided to keep the outliers since they are
not likely to affect the performance of the model.

5.	 Rescale the data.

For this solution, the formula for standardization has been used. Note that the
formula can be applied to the entire dataset at once, instead of being applied
individually to each feature:

data_standardized = (data - data.mean())/data.std()

data_standardized.head()

The output is as follows:

Figure 2.16: Rescaled data

Note

To access the source code for this specific section, please refer to
https://packt.live/2Y3ooGh.

You can also run this example online at https://packt.live/2B8vKPI.
You must execute the entire Notebook in order to get the desired result.

You have successfully pre-processed the Wholesale Customers dataset, which will
be used in subsequent activities to build a model that will classify these observations
into clusters.

https://packt.live/2Y3ooGh
https://packt.live/2B8vKPI

220 | Appendix

Activity 2.02: Applying the k-means Algorithm to a Dataset

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you
should have imported all the required libraries and performed the necessary
steps to pre-process the dataset.

The standardized data should look as follows:

Figure 2.17: A screenshot displaying the first five instances of the standardized dataset

2.	 Calculate the average distance of data points from its centroid in relation to the
number of clusters. Based on this distance, select the appropriate number of
clusters to train the model on.

First, import the algorithm class:

from sklearn.cluster import KMeans

Next, using the code in the following snippet, calculate the average distance of
data points from its centroid based on the number of clusters created:

ideal_k = []

for i in range(1,21):

 est_kmeans = KMeans(n_clusters=i, random_state=0)

 est_kmeans.fit(data_standardized)

 ideal_k.append([i,est_kmeans.inertia_])

ideal_k = np.array(ideal_k)

Finally, plot the relation to find the breaking point of the line and select the
number of clusters:

plt.plot(ideal_k[:,0],ideal_k[:,1])

plt.show()

Chapter 02: Unsupervised Learning – Real-Life Applications | 221

The output is as follows:

Figure 2.18: The output of the plot function used

Again, the x-axis represents the number of clusters, while the y-axis refers to the
calculated average distance of the data points in a cluster from their centroid.

3.	 Train the model and assign a cluster to each data point in your dataset. Plot
the results.

To train the model, use the following code:

est_kmeans = KMeans(n_clusters=6, random_state = 0)

est_kmeans.fit(data_standardized)

pred_kmeans = est_kmeans.predict(data_standardized)

The number of clusters selected is 6; however, since there is no exact breaking
point, values between 5 and 10 are also acceptable.

Finally, plot the results of the clustering process. Since the dataset contains
eight different features, choose two features to draw at once, as shown in the
following code:

plt.subplots(1, 2, sharex='col', \

 sharey='row', figsize=(16,8))

plt.scatter(data.iloc[:,5], data.iloc[:,3], \

 c=pred_kmeans, s=20)

222 | Appendix

plt.xlim([0, 20000])

plt.ylim([0, 20000])

plt.xlabel('Frozen')

plt.subplot(1, 2, 1)

plt.scatter(data.iloc[:,4], data.iloc[:,3], \

 c=pred_kmeans, s=20)

plt.xlim([0, 20000])

plt.ylim([0,20000])

plt.xlabel('Grocery')

plt.ylabel('Milk')

plt.show()

The output is as follows:

Figure 2.19: Two example plots obtained after the clustering process

Note

To access the source code for this activity, please refer to
https://packt.live/3fhgO0y.

You can also run this example online at https://packt.live/3eeEOB6.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3fhgO0y
https://packt.live/3eeEOB6

Chapter 02: Unsupervised Learning – Real-Life Applications | 223

The subplots() function from matplotlib has been used to plot two scatter
graphs at a time. For each graph, the axes represent the values for a selected feature
in relation to the values of another feature. As can be seen from the plots, there is no
obvious visual relation due to the fact that we are only able to use two of the eight
features present in the dataset. However, the final output of the model creates six
different clusters that represent six different profiles of clients.

Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset.
Plot the results.

First, import the algorithm class:

from sklearn.cluster import MeanShift

To train the model, use the following code:

est_meanshift = MeanShift(0.4)

est_meanshift.fit(data_standardized)

pred_meanshift = est_meanshift.predict(data_standardized)

The model was trained using a bandwidth of 0.4. However, feel free to test
other values to see how the result changes.

Finally, plot the results of the clustering process. As the dataset contains
eight different features, choose two features to draw at once, as shown in
the following snippet. Similar to the previous activity, the separation between
clusters is not seen visually due to the capability to only draw two out of the
eight features:

plt.subplots(1, 2, sharex='col', \

 sharey='row', figsize=(16,8))

plt.scatter(data.iloc[:,5], data.iloc[:,3], \

 c=pred_meanshift, s=20)

plt.xlim([0, 20000])

plt.ylim([0,20000])

224 | Appendix

plt.xlabel('Frozen')

plt.subplot(1, 2, 1)

plt.scatter(data.iloc[:,4], data.iloc[:,3], \

 c=pred_meanshift, s=20)

plt.xlim([0, 20000])

plt.ylim([0,20000])

plt.xlabel('Grocery')

plt.ylabel('Milk')

plt.show()

The output is as follows:

Figure 2.20: Example plots obtained at the end of the process

For each of the plots, the axes represent the values of a selected feature, against
the values of another feature.

Note

To access the source code for this activity, please refer to
https://packt.live/3fviVy1.

You can also run this example online at https://packt.live/2Y1aqEF.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3fviVy1
https://packt.live/2Y1aqEF

Chapter 02: Unsupervised Learning – Real-Life Applications | 225

You have successfully applied the mean-shift algorithm over the Wholesale
Customers dataset. Later on, you will be able to compare the results of the different
algorithms over the same dataset to choose the one that performs the best.

Activity 2.04: Applying the DBSCAN Algorithm to the Dataset

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot
the results.

First, import the algorithm class:

from sklearn.cluster import DBSCAN

To train the model, use the following code:

est_dbscan = DBSCAN(eps=0.8)

pred_dbscan = est_dbscan.fit_predict(data_standardized)

The model was trained using an epsilon value of 0.8. However, feel free to test
other values to see how the results change.

Finally, plot the results of the clustering process. As the dataset contains
eight different features, choose two features to draw at once, as shown in the
following code:

plt.subplots(1, 2, sharex='col', \

 sharey='row', figsize=(16,8))

plt.scatter(data.iloc[:,5], data.iloc[:,3], \

 c=pred_dbscan, s=20)

plt.xlim([0, 20000])

plt.ylim([0,20000])

plt.xlabel('Frozen')

plt.subplot(1, 2, 1)

plt.scatter(data.iloc[:,4], data.iloc[:,3], \

 c=pred_dbscan, s=20)

plt.xlim([0, 20000])

plt.ylim([0,20000])

plt.xlabel('Grocery')

plt.ylabel('Milk')

plt.show()

226 | Appendix

The output is as follows:

Figure 2.21: Example plots obtained at the end of the clustering process

Note

To access the source code for this activity, please refer to
https://packt.live/2YCFvh8.

You can also run this example online at https://packt.live/2MZgnvC. You must
execute the entire Notebook in order to get the desired result.

Similar to the previous activity, the separation between clusters is not seen
visually due to the capability to only draw two out of the eight features at once.

Activity 2.05: Measuring and Comparing the Performance of the Algorithms

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Calculate both the Silhouette Coefficient score and the Calinski–Harabasz index
for all the models that you trained previously.

First, import the metrics:

from sklearn.metrics import silhouette_score

from sklearn.metrics import calinski_harabasz_score

https://packt.live/2YCFvh8
https://packt.live/2MZgnvC

Chapter 02: Unsupervised Learning – Real-Life Applications | 227

Calculate the Silhouette Coefficient score for all the algorithms, as shown in the
following code:

kmeans_score = silhouette_score(data_standardized, \

 pred_kmeans, \

 metric='euclidean')

meanshift_score = silhouette_score(data_standardized, \

 pred_meanshift, \

 metric='euclidean')

dbscan_score = silhouette_score(data_standardized, \

 pred_dbscan, \

 metric='euclidean')

print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be around 0.3515, 0.0933, and 0.1685 for the k-means,
mean-shift, and DBSCAN algorithms, respectively.

Finally, calculate the Calinski–Harabasz index for all the algorithms. The following
is a snippet of the code for this:

kmeans_score = calinski_harabasz_score(data_standardized, \

 pred_kmeans)

meanshift_score = calinski_harabasz_score(data_standardized, \

 pred_meanshift)

dbscan_score = calinski_harabasz_score(data_standardized, \

 pred_dbscan)

print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be approximately 145.73, 112.90, and 42.45 for the
three algorithms in the order given in the preceding code snippet.

Note

To access the source code for this activity, please refer to
https://packt.live/2Y2xHWR.

You can also run this example online at https://packt.live/3hszegy.
You must execute the entire Notebook in order to get the desired result.

By quickly looking at the results we obtained for both metrics, it is possible to
conclude that the k-means algorithm outperforms the other models, and hence
should be the one that's selected to solve the data problem.

https://packt.live/2Y2xHWR
https://packt.live/3hszegy

228 | Appendix

Chapter 03: Supervised Learning – Key Steps

Activity 3.01: Data Partitioning on a Handwritten Digit Dataset

Solution:

1.	 Import all the required elements to split a dataset, as well as the load_digits
function from scikit-learn to load the digits dataset. Use the following code to
do so:

from sklearn.datasets import load_digits

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

2.	 Load the digits dataset and create Pandas DataFrames containing the
features and target matrices:

digits = load_digits()

X = pd.DataFrame(digits.data)

Y = pd.DataFrame(digits.target)

print(X.shape, Y.shape)

The shape of your features and target matrices should be as
follows, respectively:

(1797, 64) (1797, 1)

3.	 Perform the conventional split approach, using a split ratio of 60/20/20%.

Using the train_test_split function, split the data into an initial train set
and a test set:

X_new, X_test, \

Y_new, Y_test = train_test_split(X, Y, test_size=0.2)

print(X_new.shape, Y_new.shape, X_test.shape, Y_test.shape)

The shape of the sets that you created should be as follows:

(1437, 64) (1437, 1) (360, 64) (360, 1)

Next, calculate the value of test_size, which sets the size of the dev set equal
to the size of the test set that was created previously:

dev_size = X_test.shape[0]/X_new.shape[0]

print(dev_size)

Chapter 03: Supervised Learning – Key Steps | 229

The result of the preceding operation is 0.2505.

Finally, split X_new and Y_new into the final train and dev sets. Use the
following code to do so:

X_train, X_dev, \

Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size = dev_size)

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

The output from the preceding snippet is as follows:

(1077, 64) (1077, 1) (360, 64) (360, 1) (360, 64) (360, 1)

4.	 Using the same DataFrames, perform a 10-fold cross-validation split.

First, divide the datasets into initial training and testing sets:

X_new_2, X_test_2, \

Y_new_2, Y_test_2 = train_test_split(X, Y, test_size=0.1)

Using the KFold class, perform a 10-fold split:

kf = KFold(n_splits = 10)

splits = kf.split(X_new_2)

Remember that cross-validation performs a different configuration of splits,
shuffling data each time. Considering this, perform a for loop that will go
through all the split configurations:

for train_index, dev_index in splits:

 X_train_2, X_dev_2 = X_new_2.iloc[train_index,:], \

 X_new_2.iloc[dev_index,:]

 Y_train_2, Y_dev_2 = Y_new_2.iloc[train_index,:], \

 Y_new_2.iloc[dev_index,:]

The code in charge of training and evaluating the model should be inside
the body of the for loop in order to train and evaluate the model with each
configuration of splits:

print(X_train_2.shape, Y_train_2.shape, X_dev_2.shape, \

 Y_dev_2.shape, X_test_2.shape, Y_test_2.shape)

230 | Appendix

By printing the shape of all the subsets, as per the preceding snippet, the output
is as follows:

(1456, 64) (1456, 1) (161, 64) (161, 1) (180, 64) (180, 1)

Note

To access the source code for this specific section, please refer to
https://packt.live/37xatv3.

You can also run this example online at https://packt.live/2Y2nolS.
You must execute the entire Notebook in order to get the desired result.

You have successfully split a dataset using both the conventional split approach, as
well as the cross-validation one. These sets can now be used to train outstanding
models that perform well on unseen data.

Activity 3.02: Evaluating the Performance of the Model Trained on a

Handwritten Dataset

Solution:

1.	 Import all the required elements to load and split a dataset in order to train a
model and evaluate the performance of the classification tasks:

from sklearn.datasets import load_digits

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import tree

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

2.	 Load the digits toy dataset from scikit-learn and create Pandas DataFrames
containing the features and target matrices:

digits = load_digits()

X = pd.DataFrame(digits.data)

Y = pd.DataFrame(digits.target)

https://packt.live/37xatv3
https://packt.live/2Y2nolS

Chapter 03: Supervised Learning – Key Steps | 231

3.	 Split the data into training and testing sets. Use 20% as the size of the testing set:

X_train, X_test, \

Y_train, Y_test = train_test_split(X,Y, test_size = 0.2,\

 random_state = 0)

4.	 Train a decision tree on the train set. Then, use the model to predict the
class label on the test set (hint: to train the decision tree, revisit Exercise 3.04,
Calculating Different Evaluation Metrics on a Classification Task):

model = tree.DecisionTreeClassifier(random_state = 0)

model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

5.	 Use scikit-learn to construct a confusion matrix:

confusion_matrix(Y_test, Y_pred)

The output of the confusion matrix is as follows:

Figure 3.14: Output of the confusion matrix

6.	 Calculate the accuracy of the model:

accuracy = accuracy_score(Y_test, Y_pred)

print("accuracy:", accuracy)

The accuracy is equal to 84.72%.

232 | Appendix

7.	 Calculate the precision and recall. Considering that both the precision and recall
can only be calculated on binary data, we'll assume that we are only interested in
classifying instances as number 6 or any other number:

Y_test_2 = Y_test[:]

Y_test_2[Y_test_2 != 6] = 1

Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred

Y_pred_2[Y_pred_2 != 6] = 1

Y_pred_2[Y_pred_2 == 6] = 0

precision = precision_score(Y_test_2, Y_pred_2)

print("precision:", precision)

recall = recall_score(Y_test_2, Y_pred_2)

print("recall:", recall)

The output from the preceding code snippet is as follows:

precision: 0.9841269841269841

recall: 0.9810126582278481

According to this, the precision and recall scores should be equal to 98.41%
and 98.10%, respectively.

Note

To access the source code for this specific section, please refer to
https://packt.live/2UJMFPC.

You can also run this example online at https://packt.live/2zwqkgX.
You must execute the entire Notebook in order to get the desired result.

You have successfully measured the performance of classification tasks.

https://packt.live/2UJMFPC
https://packt.live/2zwqkgX

Chapter 03: Supervised Learning – Key Steps | 233

Activity 3.03: Performing Error Analysis on a Model Trained to Recognize

Handwritten Digits

Solution:

1.	 Import the required elements to load and split a dataset. We will do this to train
the model and measure its accuracy:

from sklearn.datasets import load_digits

import pandas as pd

from sklearn.model_selection import train_test_split

import numpy as np

from sklearn import tree

from sklearn.metrics import accuracy_score

2.	 Load the digits toy dataset from scikit-learn and create Pandas DataFrames
containing the features and target matrices:

digits = load_digits()

X = pd.DataFrame(digits.data)

Y = pd.DataFrame(digits.target)

3.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the
test set, and an equivalent number to build a validation set of the same shape:

X_new, X_test, \

Y_new, Y_test = train_test_split(X, Y, test_size = 0.1,\

 random_state = 101)

test_size = X_test.shape[0] / X_new.shape[0]

X_train, X_dev, \

Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size= test_size, \

 random_state = 101)

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

The resulting shapes are as follows:

(1437, 64) (1437, 1) (180, 64) (180, 1) (180, 64) (180, 1)

234 | Appendix

4.	 Create a train/dev set for both the features and the target values that contains
90 instances/labels of the train set and 90 instances/labels of the dev set:

np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 90)

indices_dev = np.random.randint(0, len(X_dev), 90)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], \

 X_dev.iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], \

 Y_dev.iloc[indices_dev,:]])

print(X_train_dev.shape, Y_train_dev.shape)

The resulting shapes are as follows:

(180, 64) (180, 1)

5.	 Train a decision tree on that training set data:

model = tree.DecisionTreeClassifier(random_state = 101)

model = model.fit(X_train, Y_train)

6.	 Calculate the error rate for all sets of data and determine which condition is
affecting the performance of the model:

sets = ["Training", "Train/dev", "Validation", "Testing"]

X_sets = [X_train, X_train_dev, X_dev, X_test]

Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = {}

for i in range(0, len(X_sets)):

 pred = model.predict(X_sets[i])

 score = accuracy_score(Y_sets[i], pred)

 scores[sets[i]] = score

print(scores)

The output is as follows:

{'Training': 1.0, 'Train/dev': 0.9444444444444444, 'Validation':
0.8833333333333333, 'Testing': 0.8833333333333333}

Chapter 03: Supervised Learning – Key Steps | 235

The error rates can be seen in the following table:

Figure 3.15: Error rates of the Handwritten Digits model

From the preceding results, it can be concluded that the model is equally
suffering from variance and data mismatch.

Note

To access the source code for this specific section, please refer to
https://packt.live/3d0c4uM.

You can also run this example online at https://packt.live/3eeFlTC.
You must execute the entire Notebook in order to get the desired result.

You have now successfully performed an error analysis to determine a course of
action to improve the model's performance.

https://packt.live/3d0c4uM
https://packt.live/3eeFlTC

236 | Appendix

Chapter 04: Supervised Learning Algorithms: Predicting
Annual Income

Activity 4.01: Training a Naïve Bayes Model for Our Census Income Dataset

Solution:

1.	 In a Jupyter Notebook, import all the required elements to load and split the
dataset, as well as to train a Naïve Bayes algorithm:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

2.	 Load the pre-processed Census Income dataset. Next, separate the features
from the target by creating two variables, X and Y:

data = pd.read_csv("census_income_dataset_preprocessed.csv")

X = data.drop("target", axis=1)

Y = data["target"]

Note that there are several ways to achieve the separation of X and Y. Use the
one that you feel most comfortable with. However, take into account that X
should contain the features of all instances, while Y should contain the class
labels of all instances.

3.	 Divide the dataset into training, validation, and testing sets, using a split ratio
of 10%:

X_new, X_test, \

Y_new, Y_test = train_test_split(X, Y, test_size=0.1, \

 random_state=101)

test_size = X_test.shape[0] / X_new.shape[0]

X_train, X_dev, \

Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size=test_size, \

 random_state=101)

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

Chapter 04: Supervised Learning Algorithms: Predicting Annual Income | 237

The final shape will look as follows:

(26047, 9) (26047,) (3257, 9) (3257,) (3257, 9) (3257,)

4.	 Use the fit method to train a Naïve Bayes model on the training sets (X_train
and Y_train):

model_NB = GaussianNB()

model_NB.fit(X_train,Y_train)

5.	 Finally, perform a prediction using the model that you trained previously for a
new instance with the following values for each feature – 39, 6, 13, 4, 0, 2174,
0, 40, 38:

pred_1 = model_NB.predict([[39,6,13,4,0,2174,0,40,38]])

print(pred_1)

The output from the prediction is as follows:

[0]

Note

To access the source code for this specific section, please refer to
https://packt.live/3ht1TCs.

You can also run this example online at https://packt.live/2zwqxkf.
You must execute the entire Notebook in order to get the desired result.

This means that the individual has an income less than or equal to 50K, considering
that 0 is the label for individuals with a salary less than or equal to 50K.

Activity 4.02: Training a Decision Tree Model for Our Census Income Dataset

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity and import
the decision tree algorithm from scikit-learn:

from sklearn.tree import DecisionTreeClassifier

https://packt.live/3ht1TCs
https://packt.live/2zwqxkf

238 | Appendix

2.	 Train the model using the fit method on the DecisionTreeClassifier
class from scikit-learn. To train the model, use the training set data from the
previous activity (X_train and Y_train):

model_tree = DecisionTreeClassifier(random_state=101)

model_tree.fit(X_train,Y_train)

3.	 Finally, perform a prediction using the model that you trained before for a new
instance with the following values for each feature – 39, 6, 13, 4, 0, 2174, 0,
40, 38:

pred_2 = model_tree.predict([[39,6,13,4,0,2174,0,40,38]])

print(pred_2)

The output from the preceding code snippet is as follows:

[0]

Note

To access the source code for this specific section, please refer to
https://packt.live/2zxQIqV.

You can also run this example online at https://packt.live/2AC7iWX.
You must execute the entire Notebook in order to get the desired result.

This means that the subject has an income lower than or equal to 50K.

Activity 4.03: Training an SVM Model for Our Census Income Dataset

Solution:

1.	 Open the Jupyter Notebook that you used for the previous activity and import
the SVM algorithm from scikit-learn:

from sklearn.svm import SVC

2.	 Train the model using the fit method on the SVC class from scikit-learn. To
train the model, use the training set data from the previous activity (X_train
and Y_train):

model_svm = SVC()

model_svm.fit(X_train, Y_train)

https://packt.live/2zxQIqV
https://packt.live/2AC7iWX

Chapter 04: Supervised Learning Algorithms: Predicting Annual Income | 239

3.	 Finally, perform a prediction using the model that you trained before for a new
instance with the following values for each feature – 39, 6, 13, 4, 0, 2174, 0,
40, 38:

pred_3 = model_svm.predict([[39,6,13,4,0,2174,0,40,38]])

print(pred_3)

The output is as follows:

[0]

The prediction for the individual is equal to zero, which means that the individual
has an income below or equal to 50K.

Note

To access the source code for this specific section, please refer to
https://packt.live/2Nb6J9z.

You can also run this example online at https://packt.live/3hbpCGm.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2Nb6J9z
https://packt.live/3hbpCGm

240 | Appendix

Chapter 05: Artificial Neural Networks: Predicting Annual Income

Activity 5.01: Training an MLP for Our Census Income Dataset

Solution:

1.	 Import all the elements required to load and split a dataset, to train an MLP, and
to measure accuracy:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score

2.	 Using the preprocessed Census Income Dataset, separate the features from the
target, creating the variables X and Y:

data = pd.read_csv("census_income_dataset_preprocessed.csv")

X = data.drop("target", axis=1)

Y = data["target"]

As explained previously, there are several ways to achieve the separation of X
and Y, and the main thing to consider is that X should contain the features for all
instances, while Y should contain the class label of all instances.

3.	 Divide the dataset into training, validation, and testing sets, using a split ratio
of 10%:

X_new, X_test, \

Y_new, Y_test = train_test_split(X, Y, test_size=0.1, \

 random_state=101)

test_size = X_test.shape[0] / X_new.shape[0]

X_train, X_dev, \

Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size=test_size, \

 random_state=101)

print(X_train.shape, X_dev.shape, X_test.shape, \

 Y_train.shape, Y_dev.shape, Y_test.shape)

Chapter 05: Artificial Neural Networks: Predicting Annual Income | 241

The shape of the sets created should be as follows:

(26047, 9) (3257, 9) (3257, 9) (26047,) (3257,) (3257,)

4.	 Instantiate the MLPClassifier class from scikit-learn and train the model with
the training data. Leave the hyperparameters to their default values. Again, use a
random_state equal to 101:

model = MLPClassifier(random_state=101)

model = model.fit(X_train, Y_train)

5.	 Calculate the accuracy of the model for all three sets (training, validation,
and testing):

sets = ["Training", "Validation", "Testing"]

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

accuracy = {}

for i in range(0,len(X_sets)):

 pred = model.predict(X_sets[i])

 score = accuracy_score(Y_sets[i], pred)

 accuracy[sets[i]] = score

print(accuracy)

The accuracy score for the three sets should be as follows:

{'Training': 0.8465909090909091, 'Validation': 0.8246314496314496,
'Testing': 0.8415719987718759}

Note

To access the source code for this specific section, please refer to
https://packt.live/3hneWFr.

This section does not currently have an online interactive example, and will
need to be run locally.

You have successfully trained an MLP model to solve a real-life data problem.

https://packt.live/3hneWFr

242 | Appendix

Activity 5.02: Comparing Different Models to Choose the Best Fit for the Census

Income Data Problem

Solution:

1.	 Open the Jupyter Notebooks that you used to train the models.

2.	 Compare the four models, based only on their accuracy scores.

By taking the accuracy scores of the models from the previous chapter, and the
accuracy of the model trained in this chapter, it is possible to perform a final
comparison to choose the model that best solves the data problem. To do so,
the following table displays the accuracy scores for all four models:

Figure 5.15: Accuracy scores of all four models for the Census Income Dataset

3.	 On the basis of the accuracy scores, identify the model that best solves the
data problem.

To identify the model that best solves the data problem, begin by comparing the
accuracy rates over the training sets. From this, it is possible to conclude that
the decision tree model is a better fit for the data problem. Nonetheless, the
performance over the validation and testing sets is lower than the one achieved
using the MLP, which is an indication of the presence of high variance in the
decision tree model.

Chapter 05: Artificial Neural Networks: Predicting Annual Income | 243

Hence, a good approach would be to address the high variance of the decision
tree model by simplifying the model. This can be achieved by adding a pruning
argument that "trims" the leaves of the tree to simplify it and ignore some of the
details of the tree in order to generalize the model to the data. Ideally, the model
should be able to reach a similar level of accuracy for all three sets, which would
make it the best model for the data problem.

However, if the model is not able to overcome the high variance, and assuming
that all the models have been fine-tuned to achieve the maximum performance
possible, the MLP should be the model that is selected, considering that it
performs best over the testing sets. This is mainly because the performance of
the model over the testing set is the one that defines its overall performance
over unseen data, which means that the one with higher testing-set performance
will be more useful in the long term.

244 | Appendix

Chapter 06: Building Your Own Program

Activity 6.01: Performing the Preparation and Creation Stages for the Bank

Marketing Dataset

Solution:

Note

To ensure the reproducibility of the results available at https://packt.
live/2RpIhn9, make sure that you use a random_state of 0 when splitting
the datasets and a random_state of 2 when training the models.

1.	 Open a Jupyter Notebook and import all the required elements:

import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import precision_score

2.	 Load the dataset into the notebook. Make sure that you load the one that was
edited previously, named bank-full-dataset.csv, which is also available
at https://packt.live/2wnJyny:

data = pd.read_csv("bank-full-dataset.csv")

data.head(10)

https://packt.live/2RpIhn9
https://packt.live/2RpIhn9
https://packt.live/2wnJyny

Chapter 06: Building Your Own Program | 245

The output is as follows:

Figure 6.8: A screenshot showing the first 10 instances of the dataset

The missing values are shown as NaN, as explained previously.

3.	 Select the metric that's the most appropriate for measuring the performance
of the model, considering that the purpose of the study is to detect clients who
would subscribe to the term deposit.

The metric to evaluate the performance of the model is the precision metric, as
it compares the correctly classified positive labels against the total number of
instances predicted as positive.

4.	 Pre-process the dataset.

The process of handling missing values is handled as per the concepts we
learned about in Chapter 1, Introduction to Scikit-Learn, and that have been
applied throughout this book. Use the following code to check for missing values:

data.isnull().sum()

Based on the results, you will observe that only four features contain
missing values: job (288), education (1,857), contact (13,020), and
poutcome (36,959).

246 | Appendix

The first two features can be left unhandled, considering that the missing
values represent less than 5% of the entire data. On the other hand, 28.8% of
the values are missing from the contact feature, and taking into account that
the feature refers to the mode of contact, which is considered to be irrelevant
for determining whether a person will subscribe to a new product, it is safe to
remove this feature from the study. Finally, the poutcome feature is missing
81.7% of its values, which is why this feature is also removed from the study.

Using the following code, the preceding two features are dropped:

data = data.drop(["contact", "poutcome"], axis=1)

As we explained in Chapter 1, Introduction to Scikit-Learn, and applied throughout
this book, the process of converting categorical features into their numeric form
is as follows.

For all nominal features, use the following code:

enc = LabelEncoder()

features_to_convert=["job","marital","default",\

 "housing","loan","month","y"]

for i in features_to_convert:

 data[i] = enc.fit_transform(data[i].astype('str'))

The preceding code, as explained in previous chapters, converts all the
qualitative features into their numeric forms.

Next, to handle the ordinal feature, we must use the following code, as
mentioned in Step 4:

data['education'] = data['education'].fillna('unknown')

encoder = ['unknown','primary','secondary','tertiary']

for i, word in enumerate(encoder):

 data['education'] = data['education'].astype('str').\

 str.replace(word, str(i))

data['education'] = data['education'].astype('int64')

data.head()

Chapter 06: Building Your Own Program | 247

Here, the first line converts NaN values into the word unknown, while the
second line sets the order of the values in the feature. Next, a for loop is used
to replace each word with a number that follows an order. For the preceding
example, 0 will be used to replace the word unknown, then 1 will be used
instead of primary, and so on. Finally, the whole column is converted into an
integer type since the replace function writes down the numbers as strings.

If we display the head of the resulting DataFrame, the output is as follows:

Figure 6.9: A screenshot showing the first five instances of the dataset after converting the
categorical features into numerical ones

We learned how to deal with the outliers in Chapter 1, Introduction to Scikit-Learn.
Use the following code to check for outliers:

outliers = {}

for i in range(data.shape[1]):

 min_t = data[data.columns[i]].mean() \

 - (3 * data[data.columns[i]].std())

 max_t = data[data.columns[i]].mean() \

 + (3 * data[data.columns[i]].std())

 count = 0

 for j in data[data.columns[i]]:

 if j < min_t or j > max_t:

 count += 1

 outliers[data.columns[i]] = [count, data.shape[0]]

print(outliers)

248 | Appendix

If we print the resulting dictionary, we get the following output:

{'age': [381, 45211], 'job': [0, 45211], 'marital': [0, 45211],
'education': [0, 45211], 'default': [815, 45211], 'balance': [745,
45211], 'housing': [0, 45211], 'loan': [0, 45211], 'day': [0, 45211],
'month': [0, 45211], 'duration': [963, 45211], 'campaign': [840,
45211], 'pdays': [1723, 45211], 'previous': [582, 45211], 'y': [0,
45211]}

As we can see, the outliers do not account for more than 5% of the total values in
each feature, which is why they can be left unhandled.

This can be verified by taking the feature with the most outliers (pdays) and
dividing the number of outliers by the total number of instances (1,723 divided
by 45,211). The result from that operation is 0.038, which is equivalent to 3.8%.
This means that the feature only has 3.8% of the outlier values.

5.	 Separate the features from the class label and split the dataset into three sets
(training, validation, and testing).

To separate the features from the target value, use the following code:

X = data.drop("y", axis = 1)

Y = data["y"]

Next, to perform a 60/20/20 split, use the following code:

X_new, X_test, \

Y_new, Y_test = train_test_split(X, Y, test_size=0.2,\

 random_state = 0)

test_size = X_test.shape[0] / X_new.shape[0]

X_train, X_dev, \

Y_train, Y_dev = train_test_split(X_new, Y_new, \

 test_size=test_size,\

 random_state = 0)

print(X_train.shape, Y_train.shape, X_dev.shape, \

 Y_dev.shape, X_test.shape, Y_test.shape)

If we print the shape of all the subsets, the output is as follows:

(27125, 14) (27125,) (9043, 14) (9043,) (9043, 14) (9043,)

6.	 Use the decision tree algorithm on the dataset and train the model:

model_tree = DecisionTreeClassifier(random_state = 2)

model_tree.fit(X_train, Y_train)

Chapter 06: Building Your Own Program | 249

Note

As a reminder, the output from calling the fit method consists of the
model currently being trained with all the parameters that it takes in.

7.	 Use the multilayer perceptron algorithm on the dataset and train the model. To
revisit this, go to Chapter 5, Artificial Neural Networks: Predicting Annual Income:

model_NN = MLPClassifier(random_state = 2)

model_NN.fit(X_train, Y_train)

8.	 Evaluate both models by using the metric that was selected previously.

Using the following code, it is possible to measure the precision score of the
decision tree model:

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

precision = []

for i in range(0, len(X_sets)):

 pred = model_tree.predict(X_sets[i])

 score = precision_score(Y_sets[i], pred)

 precision.append(score)

print(precision)

If we print the list containing the precision score for each of the sets for the
decision tree model, the output is as follows:

[1.0, 0.43909348441926344, 0.4208059981255858]

The same code can be modified to calculate the score for the
multilayer perceptron:

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

precision = []

250 | Appendix

for i in range(0, len(X_sets)):

 pred = model_NN.predict(X_sets[i])

 score = precision_score(Y_sets[i], pred)

 precision.append(score)

print(precision)

If we print the list containing the precision score for each of the sets for the
multilayer perceptron model, the output is as follows:

[0.35577647236029525, 0.35199283475145543, 0.3470483005366726]

The precision score for all subsets of data for both models is shown in the
following table:

Figure 6.10: Precision scores for both models

9.	 Fine-tune some of the hyperparameters to fix the issues that were detected
during the evaluation of the model by performing error analysis.

Although the precision of the decision tree on the training sets is perfect, on
comparing it against the results of the other two sets, it is possible to conclude
that the model suffers from high variance.

On the other hand, the multilayer perceptron has a similar performance on all
three sets, but the overall performance is low, which means that the model is
more likely to be suffering from high bias.

Considering this, for the decision tree model, both the minimum number of
samples required to be at a leaf node and the maximum depth of the tree are
changed in order to simplify the model. On the other hand, for the multilayer
perceptron, the number of iterations, the number of hidden layers, the number
of units in each layer, and the tolerance for optimization are changed.

Chapter 06: Building Your Own Program | 251

The following code shows the final values that were used for the
hyperparameters of the decision tree algorithm, considering that to arrive at
them it is required to try different values:

model_tree = DecisionTreeClassifier(random_state = 2, \

 min_samples_leaf=100, \

 max_depth=100)

model_tree.fit(X_train, Y_train)

The following snippet displays the final values used for the hyperparameters of
the multilayer perceptron algorithm:

model_NN = \

 MLPClassifier(random_state = 2, max_iter=1000,\

 hidden_layer_sizes = [100,100,50,25,25], \

 tol=1e-4)

model_NN.fit(X_train, Y_train)

Note

As a reminder, the output from calling the fit method consists of the
model currently being trained with all the parameters that it takes in.

10.	Compare the final versions of your models and select the one that you consider
best fits the data.

Using the same code as in previous steps, it is possible to calculate the precision
of the decision tree model over the different sets of data:

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

precision = []

for i in range(0, len(X_sets)):

 pred = model_tree.predict(X_sets[i])

 score = precision_score(Y_sets[i], pred)

 precision.append(score)

print(precision)

252 | Appendix

The output list should look as follows:

[0.6073670992046881, 0.5691158156911582, 0.5448113207547169]

To calculate the precision of the multilayer perceptron, the following code
snippet can be used:

X_sets = [X_train, X_dev, X_test]

Y_sets = [Y_train, Y_dev, Y_test]

precision = []

for i in range(0, len(X_sets)):

 pred = model_NN.predict(X_sets[i])

 score = precision_score(Y_sets[i], pred)

 precision.append(score)

print(precision)

The resulting list should look as follows:

[0.759941089837997, 0.5920398009950248, 0.5509259259259259]

By calculating the precision score for all three sets for the newly trained models,
we obtain the following values:

Figure 6.11: Precision scores for the newly trained models

Note

To access the source code for this specific section, please refer to
https://packt.live/2RpIhn9.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/2RpIhn9

Chapter 06: Building Your Own Program | 253

An improvement in performance for both models is achieved, and by comparing
the values, it is possible to conclude that the multilayer perceptron outperforms the
decision tree model. Based on this, the multilayer perceptron is selected as the better
model for solving the data problem.

Note

You are encouraged to continue to fine-tune the parameters to reach an
even higher precision score.

Activity 6.02: Saving and Loading the Final Model for the Bank

Marketing Dataset

Solution:

1.	 Open the Jupyter Notebook from Activity 6.01, Performing the Preparation and
Creation Stages for the Bank Marketing Dataset.

2.	 For learning purposes, take the model that you selected as the best model,
remove the random_state argument, and run it a couple of times.

3.	 Save the model that you choose as the best performing one into a file named
final_model.pkl.

Note

The model selected in this book is the multilayer perceptron, which uses
a random_state of 2, was trained for 1,000 iterations with five hidden
layers of size 100, 100, 50, 25 and 25, and a tolerance level of 1e-4.

The code for this is as follows:

path = os.getcwd() + "/final_model.pkl"

file = open(path, "wb")

pickle.dump(model_NN, file)

254 | Appendix

4.	 Open a new Jupyter Notebook and import the required modules and class:

from sklearn.neural_network import MLPClassifier

import pickle

import os

5.	 Load the saved model:

path = os.getcwd() + "/final_model.pkl"

file = open(path, "rb")

model = pickle.load(file)

6.	 Perform a prediction for an individual by using the following values: 42, 2, 0, 0,
1, 2, 1, 0, 5, 8, 380, 1, -1, 0:

pred = model.predict([[42,2,0,0,1,2,1,0,5,8,380,1,-1,0]])

print(pred)

Note

To access the source code for this specific section, please refer to
https://packt.live/2UIWFss.

This section does not currently have an online interactive example, and will
need to be run locally.

If we printing the pred variable, the output is 0, which is the numeric form of No.
This means that the individual is more likely to not subscribe to the new product.

Activity 6.03: Allowing Interaction with the Bank Marketing Dataset Model

Solution:

1.	 In a text editor, create a class object that contains two main functions. One
should be an initializer that loads the saved model, while the other should be a
predict method where the data is fed to the model to retrieve an output:

import pickle

import os

https://packt.live/2UIWFss

Chapter 06: Building Your Own Program | 255

As per the preceding snippet, the first step is to import all the required elements
to locate the saved model and deserialize it:

Class NN_Model(object):

 def __init__(self):

 path = os.getcwd() + "/model_exercise.pkl"

 file = open(path, "rb")

 self.model = pickle.load(file)

 def predict(self, age, job, marital, education, \

 default, balance, housing, loan, day, \

 month, duration, campaign, pdays, previous):

 X = [[age, job, marital, education, default, \

 balance, housing, loan, day, month, \

 duration, campaign, pdays, previous]]

 return self.model.predict(X)

Next, as per the preceding code snippet, the class that will connect the saved
model with the channel of interaction is programmed. It should have an
initializer method to deserialize and load the saved model, and a predict
method to feed the input data to the model to perform a prediction.

2.	 In a Jupyter Notebook, import and initialize the class that you created in the
previous step. Next, create the variables that will hold the values for the features
of a new observation and use the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5, 8,
380, 1, -1, 0:

from trainedModel import NN_Model

model = NN_Model()

age = 42

job = 2

marital = 0

education = 0

default = 1

256 | Appendix

balance = 2

housing = 1

loan = 0

day = 5

month = 8

duration = 380

campaign = 1

pdays = -1

previous = 0

Perform a prediction by applying the predict method:

pred = model.predict(age=age, job=job, marital=marital, \

 education=education, default=default, \

 balance=balance, housing=housing, \

 loan=loan, day=day, month=month, \

 duration=duration, campaign=campaign, \

 pdays=pdays, previous=previous)

print(pred)

By printing the variable, the prediction is equal to 0; that is, the individual with
the given features is not likely to subscribe to the product, as can be seen here:

[0]

Note

To access the source code for this specific section, please refer to
https://packt.live/2Y2yBCJ.

You can also run this example online at https://packt.live/3d6ku3E.
You must execute the entire Notebook in order to get the desired result.

Throughout the activities in this chapter, you have successfully learned how to
develop a complete machine learning solution, going from data pre-processing and
training the model to selecting the best performing model using error analysis and
saving the model to be able to make use of it effectively.

https://packt.live/2Y2yBCJ
https://packt.live/3d6ku3E

Index

A
accurate: 18, 41, 102
activation: 161-162,

166, 170
algorithms: 2-7, 30, 33,

39, 41, 43-46, 49-54,
65, 79-81, 83-85,
87, 90-91, 93-94,
107, 123, 125-126,
130, 132, 138, 155,
158, 163, 169-170,
172, 184-186,
193-194, 206

analysis: 2, 7, 12,
22, 52, 56, 70, 87,
89-90, 106, 114-117,
119, 122-123, 125,
129, 150-151,
153, 155, 157,
165-166, 174-175,
177, 179-180,
193-195, 204, 206

argument: 39-40,
56, 66, 136, 141,
148, 171, 173, 176,
196, 200, 202

available: 6, 9-10,
20, 25, 30, 45,
53-55, 57, 59, 62,
81, 83, 90-91, 93,
98, 117, 126-128,
135, 148, 155, 158,
166, 179, 184-186,
188, 193, 195

C
clarify: 81, 93
cluster: 8, 40, 45,

50-52, 54, 63-66,
68, 70-74, 76-78,
80-82, 84

components: 8,
46, 159, 169

converts: 37, 40,
113, 132, 166

create: 2-3, 7, 14-17,
23, 37, 49-50, 60-61,
66, 89, 97, 99-102,
106, 113, 118-120,
122, 126, 138, 151,
155, 179, 183, 185,
197, 202-205

D
dataframes: 56, 96,

100, 102, 106,
113, 119, 122

dbscan: 45, 49, 51,
76-78, 80-81,
83-84, 86

debugging: 10
decreasing: 168
delimiter: 189
descent: 163
determine: 3-4, 6,

11-12, 22, 25, 40,
42, 52, 54, 73, 90,
102, 109, 122,
126, 135, 138,
148, 162-163,
168, 174-175,
184, 186, 191

divide: 50, 52, 70, 86,
91, 97, 138, 173

dropout: 167

E
elsevier: 188
encoded: 12
epsilon: 77-78, 80, 86
errors: 110, 115-116
evaluating: 80-81,

83-85, 102, 110,
113, 186, 194

executed: 83
explaining: 55

F
formula: 35-36, 63,

110, 132-133,
162, 164

frameworks: 10
functions: 3, 12, 56,

58-59, 148, 159,
161-162, 166, 180

G
gaussian: 21-22, 28,

34, 37, 39, 51, 138

H
histogram: 27,

59, 61, 74
hyperbolic: 162, 166
hypothesis: 16

I
implement: 2, 7, 20,

23, 39-40, 50, 59,
95, 99, 106, 111,
119, 136, 138, 141,
148, 150, 171, 187,
193, 196, 198

import: 13, 23, 31, 37,
39, 41, 57, 59, 62,
66, 74, 78, 82-83,
95, 99, 102, 106,
111, 113, 119, 122,
128, 130, 136,
138, 141, 143,
148, 150-151, 171,
173, 176, 188,
193, 196-198, 200,
202-203, 205

improve: 2, 6-8, 18,
39, 46, 57, 89-90,
102, 109, 122, 154,
157, 165-167, 172,
174-175, 180, 206

inability: 87, 118
income: 39, 107,

125-128, 131,
138-141, 143,
150, 155, 158,
169, 172-174,
179-180, 193, 195

indexing: 15, 28-29
indices: 120
inertia: 66-67
initial: 63-64, 70,

160-161, 166,
170, 178

integers: 120
interpret: 16, 84
irrelevant: 130, 185
isnull: 25, 62

J
jupyter: 13, 23, 31,

34, 54, 59-60, 66,
70, 74, 76, 78, 80,
85, 95, 99, 106,
111, 119, 135-136,
138-139, 141, 143,
148, 150, 170-171,
179, 188, 192-193,
196, 198-200,
202-203, 205

K
kernels: 148
keywords: 52
k-fold: 98
k-means: 45, 49,

52, 63-66, 70-71,
74, 84, 86

L
libraries: 8, 57,

59, 62, 66, 70,
169, 185, 188

linear: 6, 20, 44,
111-112, 147,
161-162, 166, 170

M
matplotlib: 13, 23,

27, 57-62, 71
matrix: 10, 12-17, 37,

39, 96, 103-104,
106, 108, 113,
161, 196

maximizes: 146, 178
measured: 30, 33, 63,

85, 104, 108, 154
method: 32, 38-41,

51, 64, 70, 72, 78,
85, 95, 99-100,
107, 112, 121, 136,
139, 143, 150-152,
170-171, 186,
196-198, 202-205

models: 2-4, 6-8, 10,
18, 20, 38-40, 42,
45-46, 51-52, 80,
84-85, 87, 89, 91-93,
99, 102, 123, 126,
131, 135, 138-139,
150-151, 153, 155,
167-170, 174,
178-179, 184-187,
192, 194-195, 206

modules: 64, 73, 78,
82, 95, 147, 176,
197-198, 200

N
negatively: 33, 37
networks: 9, 11, 43,

94, 107, 117-118,
155, 157-158,
165-166, 168-169,
172, 185, 195

notebooks: 13, 60, 179
numbers: 30,

100-101, 107

O
object: 96,

202-203, 205
operation: 97, 152
outlier: 21-23, 55

P
package: 95, 107
parameters: 9, 33, 40,

64, 73, 77-78, 83-84,
86, 98, 102, 139,
147, 165, 195-196

patterns: 3, 12, 19, 33,
44, 50, 87, 158-159,
168-169, 180, 186

performed: 5-6, 46,
66, 70, 74, 80, 84,
101, 109, 137, 143,
149, 151, 175, 186,
195, 199, 204

persons: 12, 25
precision: 105-106,

108, 113-114,
150-152,
154-155, 200

preference: 201-202

pycharm: 202
pydata: 57
pyplot: 23, 57-59, 71
python: 6-8, 10,

12-13, 46, 57, 59,
83, 95, 135, 170,
192, 195, 203-204

pytorch: 10, 169

R
recall: 105-106, 108,

113-114, 119, 121,
150-152, 154-155

repository: 14, 53-54,
126-127, 131, 135,
138, 153, 173,
188, 192, 195

resampling: 98
rescale: 33, 37-38, 63
retrieve: 205

S
scatter: 60-62, 68-69,

71, 74-75, 78-79
seaborn: 13, 17,

23, 37, 57
separated: 45, 51, 56
several: 7, 9, 38, 43,

51, 64, 70, 80, 91,
103, 109, 148, 158,
163, 166, 201

sigmoid: 162, 166
skewing: 22
sklearn: 31, 39, 41,

64, 66, 73-74, 78,
82-83, 95, 99, 106,
111, 119, 136, 141,
147-148, 151, 171,

176, 196, 198

slicing: 61
softmax: 162, 166
supervised: 4-8, 39-40,

42, 46, 50, 74, 80,
82, 87, 89-91, 102,
107, 123, 125-127,
155, 157-158, 162,
170, 184, 193, 206

T
technique: 34, 50,

134, 165, 167-168
testing: 33, 41, 90-94,

98-100, 102, 113,
117, 119, 121-123,
138, 151, 154-155,
173, 178-179,
185-186, 193

topping: 22
training: 18, 20, 29-30,

33, 37, 39-41, 46,
66, 74, 78, 90-94,
98-102, 106-107,
111, 113, 115,
117-123, 130-131,
138-139, 143,
150-151, 153-155,
158, 162-163,
165, 167-170,
172-180, 184-186,
192-195, 206

trigger: 54, 60, 107,
112, 135, 188

V
validate: 94, 98, 101

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Scikit-Learn
	Introduction
	Introduction to Machine Learning
	Applications of ML
	Choosing the Right ML Algorithm

	Scikit-Learn
	Advantages of Scikit-Learn
	Disadvantages of Scikit-Learn
	Other Frameworks

	Data Representation
	Tables of Data
	Features and Target Matrices
	Exercise 1.01: Loading a Sample Dataset and Creating the Features and Target Matrices
	Activity 1.01: Selecting a Target Feature and Creating a Target Matrix

	Data Preprocessing
	Messy Data
	Missing Values
	Outliers

	Exercise 1.02: Dealing with Messy Data
	Dealing with Categorical Features
	Feature Engineering
	Exercise 1.03: Applying Feature Engineering to Text Data
	Rescaling Data
	Exercise 1.04: Normalizing and Standardizing Data
	Activity 1.02: Pre-processing an Entire Dataset

	Scikit-Learn API
	How Does It Work?
	Estimator
	Predictor
	Transformer

	Supervised and Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Summary

	Chapter 2: Unsupervised Learning – Real-Life Applications
	Introduction
	Clustering
	Clustering Types
	Applications of Clustering

	Exploring a Dataset – Wholesale Customers Dataset
	Understanding the Dataset

	Data Visualization
	Loading the Dataset Using pandas
	Visualization Tools
	Exercise 2.01: Plotting a Histogram of One Feature from the Circles Dataset
	Activity 2.01: Using Data Visualization to Aid the Pre-processing Process
	k-means Algorithm
	Understanding the Algorithm
	Initialization Methods
	Choosing the Number of Clusters

	Exercise 2.02: Importing and Training the k-means Algorithm over a Dataset
	Activity 2.02: Applying the k-means Algorithm to a Dataset

	Mean-Shift Algorithm
	Understanding the Algorithm
	Exercise 2.03: Importing and Training the Mean-Shift Algorithm over a Dataset
	Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset

	DBSCAN Algorithm
	Understanding the Algorithm
	Exercise 2.04: Importing and Training the DBSCAN Algorithm over a Dataset
	Activity 2.04: Applying the DBSCAN Algorithm to the Dataset

	Evaluating the Performance of Clusters
	Available Metrics in Scikit-Learn
	Exercise 2.05: Evaluating the Silhouette Coefficient Score and Calinski–Harabasz Index
	Activity 2.05: Measuring and Comparing the Performance of the Algorithms

	Summary

	Chapter 3: Supervised Learning – Key Steps
	Introduction
	Supervised Learning Tasks
	Model Validation and Testing
	Data Partitioning
	Split Ratio
	Exercise 3.01: Performing a Data Partition on a Sample Dataset
	Cross-Validation
	Exercise 3.02: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set
	Activity 3.01: Data Partitioning on a Handwritten Digit Dataset

	Evaluation Metrics
	Evaluation Metrics for Classification Tasks
	Confusion Matrix
	Accuracy
	Precision
	Recall

	Exercise 3.03: Calculating Different Evaluation Metrics on a Classification Task
	Choosing an Evaluation Metric
	Evaluation Metrics for Regression Tasks
	Exercise 3.04: Calculating Evaluation Metrics on a Regression Task
	Activity 3.02: Evaluating the Performance of the Model Trained on a Handwritten Dataset

	Error Analysis
	Bias, Variance, and Data Mismatch
	Exercise 3.05: Calculating the Error Rate on Different Sets of Data
	Activity 3.03: Performing Error Analysis on a Model Trained to Recognize Handwritten Digits

	Summary

	Chapter 4: Supervised Learning Algorithms: Predicting Annual Income
	Introduction
	Exploring the Dataset
	Understanding the Dataset

	The Naïve Bayes Algorithm
	How Does the Naïve Bayes Algorithm Work?
	Exercise 4.01: Applying the Naïve Bayes Algorithm
	Activity 4.01: Training a Naïve Bayes Model for Our Census Income Dataset

	The Decision Tree Algorithm
	How Does the Decision Tree Algorithm Work?
	Exercise 4.02: Applying the Decision Tree Algorithm
	Activity 4.02: Training a Decision Tree Model for Our Census Income Dataset

	The Support Vector Machine Algorithm
	How Does the SVM Algorithm Work?
	Exercise 4.03: Applying the SVM Algorithm
	Activity 4.03: Training an SVM Model for Our Census Income Dataset

	Error Analysis
	Accuracy, Precision, and Recall

	Summary

	Chapter 5: Supervised Learning – Key Steps
	Introduction
	Artificial Neural Networks
	How Do ANNs Work?
	Forward Propagation
	Cost Function
	Backpropagation
	Updating the Weights and Biases

	Understanding the Hyperparameters
	Number of Hidden Layers and Units
	Activation Functions
	Regularization
	Batch Size
	Learning Rate
	Number of Iterations

	Applications of Neural Networks
	Limitations of Neural Networks

	Applying an Artificial Neural Network
	Scikit-Learn's Multilayer Perceptron
	Exercise 5.01: Applying the MLP Classifier Class
	Activity 5.01: Training an MLP for Our Census Income Dataset

	Performance Analysis
	Error Analysis
	Hyperparameter Fine-Tuning
	Model Comparison
	Activity 5.02: Comparing Different Models to Choose the Best Fit for the Census Income Data Problem

	Summary

	Chapter 6: Building Your Own Program
	Introduction
	Program Definition
	Building a Program – Key Stages
	Preparation
	Creation
	Interaction

	Understanding the Dataset
	Activity 6.01: Performing the Preparation and Creation Stages for the Bank Marketing Dataset

	Saving and Loading a Trained Model
	Saving a Model
	Exercise 6.01: Saving a Trained Model
	Loading a Model
	Exercise 6.02: Loading a Saved Model
	Activity 6.02: Saving and Loading the Final Model for the Bank Marketing Dataset

	Interacting with a Trained Model
	Exercise 6.03: Creating a Class and a Channel to Interact with a Trained Model
	Activity 6.03: Allowing Interaction with the Bank Marketing Dataset Model

	Summary

	Appendix
	Index

