

The Mata Book
A Book for Serious Programmers and Those Who Want to Be

William W. Gould STATACORP LLC

®

A Stata Press Publication StataCorp LLC College Station, Texas

®

Copyright © 2018 StataCorp LLC
All rights reserved. First edition 2018

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

Typeset in L 2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Print ISBN-10: 1-59718-263-X

Print ISBN-13: 978-1-59718-263-8

ePub ISBN-10: 1-59718-264-8

ePub ISBN-13: 978-1-59718-264-5

Mobi ISBN-10: 1-59718-265-6

Mobi ISBN-13: 978-1-59718-265-2

Library of Congress Control Number: 2018933411

No part of this book may be reproduced, stored in a retrieval system, or
transcribed, in any form or by any means—electronic, mechanical, photocopy,

AT XE

2

recording, or otherwise—without the prior written permission of StataCorp LLC.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of
StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property
Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

L 2 is a trademark of the American Mathematical Society.AT XE

3

Contents

Acknowledgment

1 Introduction
 1.1 Is this book for me?
 1.2 What is Mata?
 1.3 What is covered in this book
 1.4 How to download the files for this book
2 The mechanics of using Mata
 2.1 Introduction
 2.2 Mata code appearing in do-files
 2.3 Mata code appearing in ado-files
 2.4 Mata code to be exposed publicly
3 A programmer’s tour of Mata
 3.1 Preliminaries
 3.1.1 Results of expressions are displayed when not stored
 3.1.2 Assignment
 3.1.3 Multiple assignment
 3.2 Real, complex, and string values
 3.2.1 Real values
 3.2.2 Complex values
 3.2.3 String values (ASCII, Unicode, and binary)
 3.3 Scalars, vectors, and matrices
 3.3.1 Functions rows(), cols(), and length()
 3.3.2 Function I()
 3.3.3 Function J()
 3.3.4 Row-join and column-join operators
 3.3.5 Null vectors and null matrices
 3.4 Mata’s advanced features
 3.4.1 Variable types
 3.4.2 Structures
 3.4.3 Classes
 3.4.4 Pointers
 3.5 Notes for programmers
 3.5.1 How programmers use Mata’s interactive mode

4

 3.5.2 What happens when code has errors
 3.5.3 The _error() abort function
4 Mata’s programming statements
 4.1 The structure of Mata programs
 4.2 The program body
 4.2.1 Expressions
 4.2.2 Conditional execution statement
 4.2.3 Looping statements
 4.2.3.1 while
 4.2.3.2 for
 4.2.3.3 do while
 4.2.3.4 continue and break
 4.2.4 goto
 4.2.5 return
 4.2.5.1 Functions returning values
 4.2.5.2 Functions returning void
5 Mata’s expressions
 5.1 More surprises
 5.2 Numeric and string literals
 5.2.1 Numeric literals
 5.2.1.1 Base-10 notation
 5.2.1.2 Base-2 notation
 5.2.2 Complex literals
 5.2.3 String literals
 5.3 Assignment operator
 5.4 Operator precedence
 5.5 Arithmetic operators
 5.6 Increment and decrement operators
 5.7 Logical operators
 5.8 (Understand this ? skip : read) Ternary conditional operator
 5.9 Matrix row and column join and range operators
 5.9.1 Row and column join
 5.9.2 Comma operator is overloaded
 5.9.3 Row and column count vectors
 5.10 Colon operators for vectors and matrices
 5.11 Vector and matrix subscripting
 5.11.1 Element subscripting
 5.11.2 List subscripting
 5.11.3 Permutation vectors

5

 5.11.3.1 Use to sort data
 5.11.3.2 Use in advanced mathematical programming
 5.11.4 Submatrix subscripting
 5.12 Pointer and address operators
 5.13 Cast-to-void operator
6 Mata’s variable types
 6.1 Overview
 6.2 The forty variable types
 6.2.1 Default initialization
 6.2.2 Default eltype, orgtype, and therefore, variable type
 6.2.3 Partial types
 6.2.4 A forty-first type for returned values from functions
 6.3 Appropriate use of transmorphic
 6.3.1 Use transmorphic for arguments of overloaded functions
 6.3.2 Use transmorphic for output arguments
 6.3.2.1 Use transmorphic for passthru variables
 6.3.3 You must declare structures and classes if not passthru
 6.3.4 How to declare pointers
7 Mata’s strict option and Mata’s pragmas
 7.1 Overview
 7.2 Turning matastrict on and off
 7.3 The messages that matastrict produces, and suppressing them
8 Mata’s function arguments
 8.1 Introduction
 8.2 Functions can change the contents of the caller’s arguments
 8.2.1 How to document arguments that are changed
 8.2.2 How to write functions that do not unnecessarily change arguments
 8.3 How to write functions that allow a varying number of arguments
 8.4 How to write functions that have multiple syntaxes
9 Programming example: n_choose_k() three ways
 9.1 Overview
 9.2 Developing n_choose_k()
 9.3 n_choose_k() packaged as a do-file
 9.3.1 How I packaged the code: n_choose_k.do
 9.3.2 How I could have packaged the code
 9.3.2.1 n_choose_k.mata
 9.3.2.2 test_n_choose_k.do

6

 9.3.3 Certification files
 9.4 n_choose_k() packaged as an ado-file
 9.4.1 Writing Stata code to call Mata functions
 9.4.2 nchooseki.ado
 9.4.3 test_nchooseki.do
 9.4.4 Mata code inside of ado-files is private
 9.5 n_choose_k() packaged as a Mata library routine
 9.5.1 Your approved source directory
 9.5.1.1 make_lmatabook.do
 9.5.1.2 test.do
 9.5.1.3 hello.mata
 9.5.1.4 n_choose_k.mata
 9.5.1.5 test_n_choose_k.do
 9.5.2 Building and rebuilding libraries
 9.5.3 Deleting libraries
10 Mata’s structures
 10.1 Overview
 10.2 You must define structures before using them
 10.3 Structure jargon
 10.4 Adding variables to structures
 10.5 Structures containing other structures
 10.6 Surprising things you can do with structures
 10.7 Do not omit the word scalar in structure declarations
 10.8 Structure vectors and matrices and use of the constructor function
 10.9 Use of transmorphic with structures
 10.10 Structure pointers
11 Programming example: Linear regression
 11.1 Introduction
 11.2 Self-threading code
 11.3 Linear-regression system lr*() version 1
 11.3.1 lr*() in action
 11.3.2 The calculations to be programmed
 11.3.3 lr*() version-1 code listing
 11.3.4 Discussion of the lr*() version-1 code
 11.3.4.1 Getting started
 11.3.4.2 Assume subroutines
 11.3.4.3 Learn about Mata’s built-in subroutines
 11.3.4.4 Use of built-in subroutine cross()

7

 11.3.4.5 Use more subroutines
 11.4 Linear-regression system lr*() version 2
 11.4.1 The deviation from mean formulas
 11.4.2 The lr*() version-2 code
 11.4.3 lr*() version-2 code listing
 11.4.4 Other improvements you could make
 11.5 Closeout of lr*() version 2
 11.5.1 Certification
 11.5.2 Adding lr*() to the lmatabook.mlib library
12 Mata’s classes
 12.1 Overview
 12.1.1 Classes contain member variables
 12.1.2 Classes contain member functions
 12.1.3 Member functions occult external functions
 12.1.4 Members—variables and functions—can be private
 12.1.5 Classes can inherit from other classes
 12.1.5.1 Privacy versus protection
 12.1.5.2 Subclass functions occult superclass functions
 12.1.5.3 Multiple inheritance
 12.1.5.4 And more
 12.2 Class creation and deletion
 12.3 The this prefix
 12.4 Should all member variables be private?
 12.5 Classes with no member variables
 12.6 Inheritance
 12.6.1 Virtual functions
 12.6.2 Final functions
 12.6.3 Polymorphisms
 12.6.4 When to use inheritance
 12.7 Pointers to class instances
13 Programming example: Linear regression 2
 13.1 Introduction
 13.2 LinReg in use
 13.3 LinReg version-1 code
 13.4 Adding OPG and robust variance estimates to LinReg
 13.4.1 Aside on numerical accuracy: Order of addition
 13.4.2 Aside on numerical accuracy: Symmetric matrices
 13.4.3 Finishing the code
 13.5 LinReg version-2 code

8

 13.6 Certifying LinReg version 2
 13.7 Adding LinReg version 2 to the lmatabook.mlib library
14 Better variable types
 14.1 Overview
 14.2 Stata’s macros
 14.3 Using macros to create new types
 14.4 Macroed types you might use
 14.4.1 The boolean type
 14.4.2 The Code type
 14.4.3 Filehandle
 14.4.4 Idiosyncratic types, such as Filenames
 14.4.5 Macroed types for structures
 14.4.6 Macroed types for classes
 14.4.7 Macroed types to avoid name conflicts
15 Programming constants
 15.1 Problem and solution
 15.2 How to define constants
 15.3 How to use constants
 15.4 Where to place constant definitions
16 Mata’s associative arrays
 16.1 Introduction
 16.2 Using class AssociativeArray
 16.3 Finding out more about AssociativeArray
17 Programming example: Sparse matrices
 17.1 Introduction
 17.2 The idea
 17.3 Design
 17.3.1 Producing a design from an idea
 17.3.2 The design goes bad
 17.3.3 Fixing the design
 17.3.3.1 Sketches of R_*x*() and S_*x*() subroutines
 17.3.3.2 Sketches of class’s multiplication functions
 17.3.4 Design summary
 17.3.5 Design shortcomings
 17.4 Code
 17.5 Certification script

9

18 Programming example: Sparse matrices, continued
 18.1 Introduction
 18.2 Making overall timings
 18.2.1 Timing T1, Mata R=RR
 18.2.2 Timing T2, SpMat R=RR
 18.2.3 Timing T3, SpMat R=SR
 18.2.4 Timing T4, SpMat R=RS
 18.2.5 Timing T5, SpMat R=SS
 18.2.6 Call a function once before timing
 18.2.7 Summary
 18.3 Making detailed timings
 18.3.1 Mata’s timer() function
 18.3.2 Make a copy of the code to be timed
 18.3.3 Make a do-file to run the example to be timed
 18.3.4 Add calls to timer_on() and timer_off() to the code
 18.3.5 Analyze timing results
 18.4 Developing better algorithms
 18.4.1 Developing a new idea
 18.4.2 Aside
 18.4.2.1 Features of associative arrays
 18.4.2.2 Advanced use of pointers
 18.5 Converting the new idea into code sketches
 18.5.0.3 Converting the idea into a sketch of R_SxS()
 18.5.0.4 Sketching subroutine cols_of_row()
 18.5.1 Converting sketches into completed code
 18.5.1.1 Double-bang comments and messages
 18.5.1.2 // NotReached comments
 18.5.1.3 Back to converting sketches
 18.5.2 Measuring performance
 18.6 Cleaning up
 18.6.1 Finishing R_SxS() and cols_of_row()
 18.6.2 Running certification
 18.7 Continuing development
19 The Mata Reference Manual

A Writing Mata code to add new commands to Stata
 A.1 Overview
 A.2 Ways to structure code
 A.3 Accessing Stata’s data from Mata

10

 A.4 Handling errors
 A.5 Making the calculation and displaying results
 A.6 Returning results
 A.7 The Stata interface functions
 A.7.1 Accessing Stata’s data
 A.7.2 Modifying Stata’s data
 A.7.3 Accessing and modifying Stata’s metadata
 A.7.4 Changing Stata’s dataset
 A.7.5 Accessing and modifying Stata macros, scalars, matrices
 A.7.6 Executing Stata commands from Mata
 A.7.7 Other Stata interface functions
B Mata’s storage type for complex numbers
 B.1 Complex values
 B.2 Complex values and literals
 B.3 Complex scalars, vectors, and matrices
 B.4 Real, complex, and numeric eltypes
 B.5 Functions Re(), Im(), and C()
 B.6 Function eltype()
C How Mata differs from C and C++
 C.1 Introduction
 C.2 Treatment of semicolons
 C.3 Nested comments
 C.4 Argument passing
 C.5 Strings are not arrays of characters
 C.6 Pointers
 C.6.1 Pointers to existing objects
 C.6.2 Pointers to new objects, allocation of memory
 C.6.3 The size and even type of the object may change
 C.6.4 Pointers to new objects, freeing of memory
 C.6.5 Pointers to subscripted values
 C.6.6 Pointer arithmetic is not allowed
 C.7 Lack of switch/case statements
 C.8 Mata code aborts with error when C would crash
D Three-dimensional arrays (advanced use of pointers)
 D.1 Introduction
 D.2 Creating three-dimensional arrays
References

11

Author index

Subject index

12

Acknowledgment

I thank Nicholas J. Cox for suffering through an earlier draft of this book
and identifying the places where I was pedantic, abstruse, or off on a
tangent. I thought I was done but Nick convinced me otherwise. This book
is better because of him. Remaining inelegancies and errors are mine.

13

Chapter 1
Introduction

14

1.1 Is this book for me?

This book is for you if you have tried to learn Mata by reading the Mata
Reference Manual and failed. You are not alone. Though the manual
describes the parts of Mata, it never gets around to telling you what Mata
is, what is special about Mata, what you might do with Mata, or even how
Mata’s parts fit together. This book does that.

This is an applied book. It will teach you the modern way to write
programs, which is to say, it will teach you about structures, classes, and
pointers. And the book will show you some programming techniques that
may be new to you. In short, in this book, we are going to use Mata to
write programs that are good enough that StataCorp could distribute them.

This book is for “serious programmers and those who want to be”. Fifteen
years ago, the subtitle would have referenced professional rather than
serious programmers, and yet I would have written the same book. These
days, the distinction is evaporating. I meet researchers who do not program
for a living but are most certainly serious. And I meet the other kind, too.

A serious programmer is someone who has a serious interest in sharpening
their programming skills and broadening their knowledge of programming
tools. There is an easy test to determine whether you are serious. If I tell
you that I know of a new technique for programming interrelated
equations and your response is “Tell me about it,” then you are serious.

Being serious is a matter of attitude, not current skill level or knowledge.

Still, I made assumptions in writing this book. I assumed that you have
some experience with at least one programming language, be it Stata’s
ado, Python, Java, C++, Fortran, or any other language you care to
mention. I also assumed that you already know that programs contain
conditional statements and loops. If you need a first introduction to
programming, you could look at the introductory section of the Mata
manual or at the Mata chapters in Baum’s friendly text An Introduction to
Stata Programming (2016).

The examples in this book are statistical and mathematical. Formulas are
provided, but the formulas are of secondary importance. They just provide
the examples of something for us to program.

15

In this book, I will show you a language aimed at programming statistical
and data management applications that has all the usual features and some
unique ones, too. And I will show you programming techniques that might
be new to you.

As I said, being serious is a matter of attitude. New techniques and
languages are continually being developed, and you need to learn them,
just as I still learn them. I have been programming for 45 years as a
professional. I have a lot of experience and knowledge, but I have not
stopped learning new techniques. I may be a professional programmer, but
more importantly, I am a serious one.

16

1.2 What is Mata?

Many Stata users would describe Mata as a matrix language. StataCorp
itself markets Mata that way. Mata would be more accurately described,
however, as an across-platform portable-code compiled programming
language that happens to have matrix capabilities. Just as important as its
matrix capabilities are Mata’s structures, classes, and pointers.

We at StataCorp designed and wrote Mata to be the development language
that we would use. Nowadays, we write most new features of Stata in
Mata. Before Mata existed, we used C. Compared with C, Mata code is
easier to write, less error prone, easier to debug, and easier to maintain.

It is important that Mata is compiled. Being compiled means that programs
run fast. Stata’s other programming language, ado, is interpreted.
Interpreted languages are slow in comparison with compiled languages.
Mata code runs 10–40 times faster than ado.

Mata looks a lot like C and C++. In The C Programming Language,
Kernighan and Ritchie (1978) introduced what has become perhaps the
most famous first program:

To convert the program to Mata, we need to add void in front of main():

Most Mata users would not bother typing the semicolon at the end of
printf("hello, world\n"). Semicolons are optional in Mata. There are
other differences between the languages, too. Those differences are
covered in appendix C.

17

1.3 What is covered in this book

The programs we will write in this book are

The first serious program we will write is n_choose_k(). It will have just
47 lines including comments and white space.

We will then work our way to a nearly complete implementation of linear
regression, starting with lr1.mata and ending with linreg2.mata. There
will be only 388 lines in the final code in linreg2.mata! We will use
structures for the first two implementations and use classes after that.

The earthdistance.mata program merely illustrates a point about class
programming.

Finally, we will undertake a large project, namely, the implementation of
sparse matrices. Sparse matrices are matrices in which most elements
are 0. The project will concern storing the matrices efficiently—there is no
reason to store all those 0s—and writing code to add and multiply them
just as if they were regular matrices. File spmat3.mata will contain 937
lines.

We will do all that, but we will not start until chapter 9. There is a lot to
tell you first.

18

Chapter 2 covers the mechanics of using Mata. You may know that Mata
can be used interactively, but that is not how we will be using it except
when we want to experiment before committing an idea to code.

Chapter 3 takes you on a tour of Mata. It will show you ordinary features,
such as assignment; surprising features, such as matrices and
and vectors; and advanced features, such as structures, classes, and
pointers. Pointers, by the way, are not nearly as difficult to understand as
you might fear. Later, we will use pointers when we write lr1.mata, our
first implementation of linear regression, and we will use them in an
advanced way when we write spmat3.mata to implement sparse matrices.

Chapter 4 explains Mata’s programming statements, all nine of them.
There may be only nine, but they fit together in remarkable ways.

Chapter 5 provides details about Mata’s expressions, such as y = sqrt(2).
Expressions are one of the nine programming statements, but that
understates their importance because they comprise the bulk of programs.
Just calling a subroutine is an expression. Chapter 5 also discusses
programming for numerical accuracy. Do not skip section 5.2.1.2 even
though its title is Base-2 notation.

Chapter 6 describes Mata’s 40 variable types. One of them is
transmorphic, and the chapter enumerates its proper and improper uses.

Chapter 7 is about Mata’s strict option. strict tells Mata to flag
questionable constructs in programs. Bugs hide inside questionable
constructs.

Chapter 8 is about function arguments. Mata passes arguments by
reference, but you may not yet know what that means. The chapter also
shows how to write functions that allow a varying number of arguments.

In chapter 9, we finally turn to programming. The chapter is entitled
n_choose_k() three ways. We will write the new function n_choose_k()
and use it in three ways. We will use the function in an analysis do-file, as
the computational engine inside an ado-file, and as a function to be added
to a Mata library so that it can be used anywhere and anyplace.

We will start programming in chapter 9, and we will not stop. A few
chapters after 9 will explain Mata features that we will need for the

19

programs we will write. Chapters 10 and 11 deeply explain structures.
Chapters 12 and 13 do the same for classes. Chapter 14 shows how to
create new variable types so you can declare a variable to be boolean
instead of real or an SpMat instead of a class SpMat scalar. Chapter 15
shows a better way to deal with constants that appear in code. Chapter 16
explains Mata’s associative arrays.

The chapters of this book are about Mata, not Stata. All but one example is
about writing Mata programs to be called from other Mata programs. And
yet, the purpose of Mata is to add new features to Stata. In appendix A, we
will finally discuss programming for Stata. Because you will have read the
chapters, we will be able to discuss the subject as one serious and
knowledgeable programmer with another. There will be three issues for us
to discuss.

The first issue is how code should be structured. Stata’s ado language is
how new commands are added to Stata, and Mata does not change that.
The question is whether you should write one line of ado-code calling
Mata so that the entire program is written in Mata, or you should parse in
Stata and then call Mata, or you should leave the ado-code in charge and
use Mata to provide the occasional subroutine for the ado-code to call.

The second issue is how to access Stata objects such as variables,
observations, macros, and the like. Mata provides functions to do this.

The third issue is how to handle errors caused by mistakes by the users of
our code. By default, Mata aborts with error and issues a traceback log.
That is acceptable behavior when we write subroutines for use by other
serious programmers, but it is not acceptable when writing code for direct
use by Stata users. Mata has functions that will issue informative error
messages and stop execution with a nonzero return code so that we can
write code that handles errors as gracefully as Stata users expect.

The book covers more, too. A thorough treatment of programming requires
discussion about workflow. Workflow is jargon for how to organize your
work from the time you write the first line of code to the time the program
is ready to ship or be put in use. Workflow is also about how you will later
fix the program’s first reported bug, and its second, and the substantive
expansion of capabilities that you will make two years from now.

The workflow discussion begins in chapter 2, becomes more detailed in

20

chapter 9, and continues in every programming example thereafter. Earlier,
I mentioned the programs we will be writing: hello.mata,
n_choose_k.mata, lr1.mata, and so on. When we write lr1.mata, we will
also write file test_lr1.do, a Stata do-file to certify that the code in
lr1.mata produces correct results. We will store the certified code and its
test file in our Approved Source Directory. We will develop an automated
procedure for creating and updating Mata libraries that recompiles all the
code in all the *.mata files, runs all the test_*.do files, and rebuilds
libraries from scratch.

In this book, we will produce not only programs, such as hello.mata,
n_choose_k.mata, lr1.mata, and others, but also their workflow files.
Here is the full set of files we will produce:

21

1.4 How to download the files for this book

Point your browser to

I recommend that you download the files to a new, empty folder named
~/matabook/. Then, if you want to look at hello.mata, you can type

Note for Windows users: Type the above just as shown. Stata for
Windows understands that / means \ and that ~ means your home
directory.

You can download the files using Stata by typing

22

Chapter 2
The mechanics of using Mata

23

2.1 Introduction

I showed the Mata function for hello() in the last chapter. Here it is
again, although this time I have changed the function’s name from main()
to hello() and I execute it:

Just the act of entering the program caused Mata to compile it. Mata
compiled hello(), discarded the original source code, and left the
compiled code in memory. That is why I can execute the function by
typing hello().

This interactive approach can be useful in teaching, but it is useless for
serious applications. There are three ways Mata code is used more
seriously.

Mata code can be placed in do-files. The functions you define there can be
used interactively and by other do-files.

Mata code can be placed in ado-files. The functions you define there can
be used inside the ado-file.

Mata code can be compiled and placed in libraries. The functions you
place in them may be used anytime, anywhere. They can be used
interactively, in do-files, in ado-files, and in other functions that appear in
the same or different libraries.

24

2.2 Mata code appearing in do-files

I do not recommend putting Mata code straight into analysis do-files,
although I have done that when the code was simple enough. Complicated
code will need debugging, and debugging is easier when the code can be
worked on in isolation. That argues for putting the code in its own do-file.
Doing that also makes it easier to use the Mata code in other analyses.

I recommend that you place the code in its own do-file with the file
extension .mata, such as

Additional functions can appear in the same file:

Functions in the same file should be related. hello() and goodbye() are
related; in the unlikely event you want to use one of them, you will
probably need the other. Related use is a fine reason for functions to
appear in the same file. Usually, however, the functions are even more
related in that they call one another.

To use the functions in your analysis do-file, code do filename.mata in the

25

do-file before using them:

The line do hello.mata appears in boldface only for emphasis. When the
analysis.do do-file executes the line, the hello.mata do-file will be
executed, which will define the functions hello() and goodbye(). You
could execute analysis.do by typing

File analysis.do begins with the line version 15. Version control is a
hallmark of Stata. Every Stata do-file and ado-file since Stata 1 (in 1985)
still works even though Stata’s programming language looks nothing like
it did originally. I included version 15 in this file so that it will continue
to work in the future.

In this book, we will use .mata for files containing Mata code. Those files
should start with a version number, too. Look back and you will see that
version 15 appears at the top of file hello.mata. Version control serves
the same purpose in .mata files that it does in do-files and ado-files. If
some Mata language feature should change in the future, that feature will
be backdated to have its old meaning. The version number does not
preclude the use of features added later; it merely handles backdating for
changes in syntax.

If there seems to be a profusion of version 15 statements in these two
files, imagine that it is now two-and-a-half years later and you are using
Stata 16. I also need you to imagine that analysis.do is a real analysis do-
file and that hello() and goodbye() do something useful. Typing do

26

analysis will obviously reproduce the original results, but that is not what
you want to do. You want to add a second analysis using a new Stata 16
feature. You create file analysis2.do and it starts, naturally enough, with
version 16. You also want to use hello() and goodbye() in the new file,
so you include do hello.mata in new file analysis2.do. The version 15
in mata.do will assure that the code in hello() and goodbye() is given the
Stata 15 interpretation when the functions are compiled. Thus, even in this
new Stata 16 do-file, old functions hello() and goodbye() will work as
originally intended.

27

2.3 Mata code appearing in ado-files

Mata code can appear in ado-files along with the usual ado-language code.
The Mata code appears at the bottom of the file:

Mata code that appears in ado-files is treated specially. Rather than
creating functions that anyone can use, the functions are made private. The
ado-file can use them, but outside of the file, the functions do not even
exist. You can name the functions as you please, even if those names are
being used elsewhere.

There are three version numbers in the ado-file:

28

The first is merely a comment. It is how we at StataCorp track ado-file
revisions. You should do something similar.

The second is the version to be used to interpret the ado-language code. It
appears inside program hello. The version will take effect when the lines
are executed. Ado-language lines are interpreted as they are executed.

The third version number is the version to be used to compile the Mata
code. The version number could be different from the version number
inside program hello (although it will usually be the same because the
ado-code and its Mata subroutines will have been written at same time).

So much for version numbers. Ado-files can be difficult to debug because
they have their subroutines. That means that you cannot interactively try
functions hello() and goodbye() to test whether they are working as they
should. If you need to debug hello.ado, the solution is to treat the ado-file
as if it were a do-file by typing do filename. You type

Typing do hello.ado causes hello.ado to be run just as any do-file
would be run, and that means all the programs and functions defined in the
file will be public. That also means you can interactively use hello() and
goodbye() to verify that they are working properly:

29

I usually create a do-file to accompany my ado-files while I am developing
them.

File hello.do makes testing hello.ado easier. I can even place lines to
test the code in the do-file. Notice that in the above file, I directly tested
Mata functions hello() and goodbye(). Those functions would have been
unreachable had I let the ado-file load itself.

30

2.4 Mata code to be exposed publicly

In the two sections above, we created functions hello() and goodbye()
for our private use. In the first case, we created the functions for use in do-
files in which we would include the line do hello.mata before we used
them. In the second case, we included the functions inside an ado-file for
the ado-file’s exclusive use.

Mata also has public functions. Mata’s built-in sqrt() function for
calculating square roots is public. It can be used in any program that we
write. We do not have to load it first, and the function is not just for the
use of this program or that. You can create public functions. Functions
hello() and goodbye() could be public. Functions are public in Mata
when their compiled code is stored in a Mata library.

You develop the code for public functions just as you would for functions
to be used in a do-file, which is by storing their code in a .mata file. We
previously created file hello.mata containing the code for hello() and
goodbye():

All we need to do to make functions hello() and goodbye() public is
compile the code and save it in a library. To compile the code, we just
need to type do hello because, when Mata reads code, it compiles it and
stores the result in memory.

To save the compiled code in a library, we use the lmbuild libraryname
command. Library names must begin with the letter l (that is, a lowercase
L) and end in .mlib. Here are a few valid library names:

31

Names that do not start with the letter l are invalid library names. We
could not name a library matabook.mlib, but we could name it
lmatabook.mlib. That is exactly what we are going to name our library.
We are going to store all the functions we develop in this book in library
lmatabook.mlib, starting with the functions hello() and goodbye(). The
functions are stored in file hello.mata. To compile the functions and build
library lmatabook.mlib containing them, we type

The clear all command cleared Mata. The do hello.mata command
compiled the functions. The lmbuild lmatabook.mlib command stored
the compiled code (or all functions stored in memory) in lmatabook.mlib.
The result is that hello() and goodbye() are now part of Mata. If you
typed clear all or if you exited Stata and restarted it, you would discover
that the functions still work:

If you modify the source code in hello.mata, you must rebuild the library:

You will reduce mistakes if you create a do-file to create the library:

32

Now to create or re-create the library, you can type

You can add additional do name.mata lines to make_lmatabook.do as you
write them. Libraries can hold 1,024 functions, although you can increase
that to 2,048 by specifying option size(2048) at the end of lmbuild.

33

Chapter 3
A programmer’s tour of Mata

34

3.1 Preliminaries

Before we start in earnest, let me show you around. As with all tours, I am
going to show you some things you will not understand, or perhaps you
will not understand why they are important. Just walk on by. We will
return to the topics in later chapters.

Mata has the usual features you would expect, and it has some unexpected
ones. It is hardly surprising that Mata can assign values to variables, such
as

Perhaps surprisingly, Mata also allows you to assign values to multiple
variables at the same time:

Mata even allows

The above line sets b equal to c and sets a equal to b+1.

It is also not surprising that Mata has vectors and matrices, but it may be
surprising that they can have zero rows, zero columns, or both.

We will use Mata’s interactive mode during the tour. You have already
seen it in use:

That Mata even has an interactive mode is likely to be a surprise because

35

most compilers do not. Entering a program interactively, even one as
simple as hello(), is not something we will be doing in later chapters.
Interactive mode is nonetheless useful for experimenting with functions
and features before using them in code, and experimenting is exactly what
we will be doing during the tour.

The tour is meant to be light, breezy, and reassuring. As I said, if I show
you something that seems opaque or confusing, pass it by. Everything we
see during the tour will be thoroughly covered in later chapters.

3.1.1 Results of expressions are displayed when not stored

If you type an expression but do not store the result, the result is displayed:

Display of results when they are not stored happens in programs, too. The
program hello() could have read

You may think of expressions as consisting of operators, functions, and the
like—such as 2+2, sqrt(2), and "Mary" + "lamb"—but simple things like
2, x, and "hello, world" are expressions, too. When I typed x by itself in
the output above, x was an expression, and the result of the expression was
displayed because Mata displays unstored expressions. In the same way,
the modified hello() program will display “hello, world” minus the
quotes.

You will not often use naked expressions in programs because functions
like printf() offer more control over how the results are shown. Naked
expressions are useful in debugging, however. Say you have written the
following program:

36

I know we have not yet discussed Mata’s programming language, but you
need not understand the code to understand the point I want to make. To
debug the program, you might temporarily modify the program to read

The lines I added appear in boldface, but on my terminal, they would
appear the same as the rest of the lines. I boldface lines to make the
additions easier for you to spot. I boldface lines in programs to call your
attention to them.

Having modified the program, now when I execute it, I will see

37

3.1.2 Assignment

x = 2+2 stores the result of the expression in x. Variables can hold
nonnumeric results, too:

The equals sign is Mata’s assignment operator.

The entire phrase x = 2+2 is considered an expression. There are two
operators in it, = (assignment) and + (addition).

A single equals sign means assignment in Mata. In some languages, the
equals sign is also used for testing equality, such as an if statement asking
whether x equals 2 or greeting equals "hello, world". In Mata, equality
tests are indicated by double equals signs:

3.1.3 Multiple assignment

You can store the result of an expression in multiple variables
simultaneously:

In programming contexts, x = y = is convenient for initializing
variables at the outset of a loop:

38

The for statement starts a loop in Mata. Understanding for’s syntax is not
important for this tour; nonetheless, for (i=1; i<=n; i++) means to
loop, starting with i=1, continuing while i<=n, and incrementing i by 1 at
the end of the loop. The loop begins at the open curly brace and ends at the
close curly brace.

In another program, you might need to store results of calculations and
then take different actions depending on the results. In Mata, you can code

Did you follow that? What is coded above is equivalent to coding

I do not often code lines as dense as the one above because they are too
difficult to read. I would, however, code

I find the above two lines perfectly readable.

39

3.2 Real, complex, and string values

3.2.1 Real values

Obviously, Mata provides real values. We have been using them.

Mata’s real values correspond to Stata’s double. The values are the
computer’s double-precision representation of mathematically real
numbers over the range of roughly 8.988e–307 to 8.988e+307. The
number closest to 0 without being 0 is approximately 1e–323.

The smallest and largest integers that can be stored in a real without
rounding are 9,007,199,254,740,992.

Real values can also contain missing values, which are ., .a, .b, …, .z,
where

3.2.2 Complex values

Mata has complex values:

Most programmers do not use Mata’s complex-number capabilities. If you
are an exception, see appendix B.

3.2.3 String values (ASCII, Unicode, and binary)

40

Mata has strings:

Mata’s strings can be ASCII, Unicode, or binary. Strings may be 0 to 2
billion bytes long.

There is no special missing value for strings, although programmers
sometimes use "", which is a string of length 0.

Mata has all the usual functions for processing ASCII strings, including
substr(), strupper(), strlower(), etc. The functions listed extract
substrings and convert strings to upper- and lowercase.

Mata also has Unicode string functions: usubstr(), ustrupper(),
ustrlower(), etc.

And Mata has other string functions, such as functions for formatting
output or performing file I/O.

In programming languages such as C and C++, processing binary data
requires special programming techniques. In Mata, no special treatment is
needed. Binary data can be stored in strings and manipulated with the
standard string functions. For instance, substr() can extract a substring
from a binary string just as it can from an ASCII string.

Mata’s ability to handle binary strings in the same way as ordinary text
strings is so surprising that it is worth demonstrating. Below, I
interactively read the first 200 bytes from binary file auto.dta and display
them.

41

The C programmers among you will be surprised by all the instances of
\u0 appearing in the result. \u0 is how Mata displays binary 0. In C,
binary 0 ends strings. In C, had we displayed this 200-byte string, the first
binary 0 would have prematurely ended it. We would have seen

We did not see this because, to Mata, \u0 is just another character, no
different from the character “a” or “b”. In fact—and this will truly shock
the C programmers—even strlen(s) knows that s is 200 bytes long:

All of which is to say that Mata does not use binary 0 to mark the end of
strings. That feature plus strings being allowed to be 2 billion bytes long
plus strlen() knowing the length plus Mata’s bufio() functions makes
writing programs to process binary files easier.

Strings, whether ASCII, Unicode, or binary, may be added or multiplied:

42

3.3 Scalars, vectors, and matrices

We have used scalar values in the examples so far. Mata also allows
vectors and matrices. Vectors and matrices are entered using commas to
separate the elements within rows and backslashes to separate the rows:

Vectors and matrices can have up to 281 trillion rows and columns if your
computer has sufficient memory. The memory requirement for real vectors
and matrices is eight bytes per element.

3.3.1 Functions rows(), cols(), and length()

Functions rows() and cols() return the number of rows and columns of a
vector or matrix:

43

These functions can be used with scalars, too. In a sense, all variables are
matrices in Mata. Scalars are matrices, and vectors are and

 matrices.

Functions rows() and cols() can be used to obtain the length of vectors,
but it is better to use length():

It is better to use length() because it is too easy to code rows() when you
mean cols() or cols() when you mean rows(). You are thinking that v is
a row vector, and the next thing you know, you have typed while
(i<=rows(v)) in a program when you should have typed while
(i<=cols(v)). You will avoid the problem altogether if you use length()
and type while (i<=length(v)).

length() can be used with matrices, but it seldom is. It returns the total
number of elements. You can obtain the memory consumed by real matrix
X by coding 8*length(X).

3.3.2 Function I()

Function I() returns the identity matrix:

3.3.3 Function J()

Function J(, ,) returns an matrix with elements equal to
.

44

The third argument, , need not be a scalar. It can be a vector or a
matrix:

The third argument can be of any type, so J(, ,) can also be used
to create complex, string, and other types of matrices.

3.3.4 Row-join and column-join operators

We have seen that commas and backslashes are used for entering matrices,
such as,

Commas separate elements in a row, and backslashes separate the rows.

Comma and backslash are in fact operators in the same way that + and *
are operators.

The comma operator is called column join.

45

The backslash operator is called row join.

If I typed a+b*c, you know that means a+(b*c). In mathematical jargon, *
takes precedence over +. In computer jargon, * binds more tightly than +.
However you say it, a+b*c means a+(b*c).

Comma takes precedence over backslash in the same way. The expression
a\b,c means a\(b,c).

What does a\(b,c) mean? It means that a forms the first row or rows of
the result and (b,c) are the remaining row or rows. For that to work out, a
must have the same number of columns as (b,c). If not, the expression
has a conformability error.

Consider a simpler expression, such as

The outside parentheses are optional. I typed them because I think they
make the expression more readable, but Mata does not require them.
Because comma takes precedence over backslash, Mata executes the
expression (86, 13 13, 22) like this:

1. Join 86 and 13 to form the row vector (86, 13).

2. Join 13 and 22 to form the row vector (13, 22).

3. Stack the two row vectors to form a matrix.

Here are some other ways you might use the comma and backslash
operators. You can column-join row vectors:

46

You can row-join row vectors:

You can column-join matrices:

You can row-join matrices:

You can row-and-column-join matrices:

47

3.3.5 Null vectors and null matrices

A row vector is .

A column vector is .

A matrix is .

In Mata, and can be 0!

A matrix can be , or , or ; a column vector can be ; a
row vector can be . When or is 0, the vector or matrix is called a
null vector or matrix.

Mata’s J(, ,) function can be used to create null vectors and
matrices. Specify as 0, as 0, or both as 0. Because null vectors and
matrices have no elements, J() does not use the value specified, but it
does use the value’s type. The value’s type determines the type of the
result:

J(0, 0, .) creates a real null matrix, as does J(0, 0, 3).

J(0, 0, C(.)) creates a complex null matrix, as does J(0, 0, 1+2i).

J(0, 0, "") creates a string null matrix, as does J(0, 0, "text").

Rather usefully, J(0, 0, x) creates a null matrix of the same type as x.

Null matrices of different types are not equal to each other:

Operator == tests equality. It returns 1 or 0, meaning true or false. x and s

48

are not equal to each other because x is real and s is string.

Null vectors and matrices can be useful in programs to handle extreme
cases. Let’s consider linear regression. The logic for linear regression is as
follows:

Assume that y = X*b, approximately, which is to say, y = X*b + ,
where is the error in the approximation.

X is an matrix containing observations on the variables.

y is an vector containing the corresponding observations of
the dependent variable.

Then the value of b that minimizes the sum of the squared error is
invsym(X’X)*X’y.

Thus, the line b = invsym(X’X)*X’y might appear in a program we write.
We might run the program on a particular matrix X and y and the program
report b. We have not discussed how to program Mata yet, but we can
imagine a program that contains the line. In fact, we can do better than
imagine it. We can type the line interactively to see it work. We could type

If we filled in values for X and y, when we type the last line, we might see

and that would mean .

If we were really writing a program to calculate invsym(X’X)*X’y, we
would need to ensure that our program behaved gracefully when given
extreme problems, such as data with no observations or a model with no
variables. In most programming languages, we would have to include extra
code in the program to deal with those cases. We do not in Mata.

49

Let’s first make the calculation when there are zero observations, meaning
that X is and y is :

The above result says , which is an acceptable result
for this extreme case. Thus, we will not have to write extra code to skip the
calculation when rows(X) is 0.

Now let’s consider the other special case of no variables:

You cannot see it, but b is . Mata displays null vectors and matrices
by displaying nothing. To convince yourself that Mata displayed nothing
because the calculation produced a null result, you could type

The above is one feature of null vectors and matrices. We can ignore
limiting cases, and usually, they will handle themselves adequately.

Null vectors are also useful when storing results accumulated in a loop. To
show you this, I need to show you some Mata code, but the details of the
code are unimportant. Say we have a loop that calculates a sequence , ,
… that we need to store for later use. Assume that we do not know at the
outset the number of terms we will need to store. We will accumulate
terms until they are small enough. The code might read

50

zvals starts as a vector. The first time through the loop, the code
column-joins zvals () with z () to produce a result. zvals
changes from being null to being . As the loop continues, zvals
becomes , , and so on. When the loop concludes, zvals will be

. We will have length(zvals) values stored.

51

3.4 Mata’s advanced features

Structures, classes, and pointers are Mata’s advanced features. Calling the
features “advanced” suggests they are unnecessary, yet many of the
problems I write code for would be unprogrammable without them. I
predict that you will become as dependent on these features as I am.

Before I can tell you about them, however, I need to explain Mata’s
variable types.

3.4.1 Variable types

A few of Mata’s variable types are

real scalar

string vector

complex matrix

Variable types are composed of an element type and an organizational
type, also known as eltype and orgtype. Any combination of eltypes and
orgtypes is allowed, so the three examples above could just as well have
been

string scalar

complex vector

real matrix

You will declare the variable types of arguments, variables, and returned
results in the programs you write.

52

real colvector, real matrix, and real scalar in the diagram above are
declarations. When working interactively, declarations are not allowed.

When variable types are not explicitly declared, variables are given the
default type, which is called

transmorphic matrix

transmorphic means the eltype can change:

The matrix part of transmorphic matrix means the dimension can
change, too:

The overall variable type is any eltype and orgtype combination.

The eight eltypes are

53

The five orgtypes are

Orgtypes are less different from each other than eltypes. Eltype real is
substantively different from eltype string. Meanwhile, there is just one
substantive orgtype, matrix. The other orgtypes are restrictions. For
instance, a variable declared as a real matrix can pass as a vector or a
scalar if the matrix happens to be .

3.4.2 Structures

Structures are variables that themselves contain other variables. Structures
are defined by the programmer, such as struct coord in

54

The definition creates a new eltype. This one creates a struct coord.
Once defined, you can use the new eltype in programs you write:

c is a struct coord scalar because we declared it that way. The
declaration is required. Most structure variables are declared to be scalars,
but vector and matrix are allowed.

Once c is declared, c.x and c.y are how you refer to c’s member
variables. The .x and .y parts of the names are from the structure
definition.

c.x and c.y are real scalars because they were declared that way in
coord’s definition. You can use c.x and c.y just as you would use any real
scalar variable. You can assign values to them:

You can use them in expressions. You can pass them to arguments to
functions:

Just as c.x and c.y are variables, c itself is a variable. You can pass c in
its entirety to functions:

For this to work, the function must be expecting a struct coord scalar.
The function’s definition might be

55

Something quite remarkable happened here—let’s pause a moment to
appreciate it. We passed c to a function, and the function received the
entire c. c has two member variables, but it could have had scores or
hundreds of members. The function can use any or all of them.

Just as remarkably, you can also write functions to return an entire coord:

Being able to pass and return entire structures is why you will want to use
them in programs. Let’s consider another structure that contains more
variables:

We can pass the entire set of regression_results to subroutines we
write, and we can obtain the entire set of regression_results from other
subroutines.

Have you ever heard the advice that well-written code contains lots of
short subroutines? One problem in following that advice is passing
variables to subroutines when you have lots of them. Instead of following
the advice, you settle for a single, long program. Structures are the way

56

around the argument-passing problem. If variable r is struct
regression_results scalar, you can pass r, and the subroutine will have
access to all of r’s variables.

We will discuss structures in chapters 10 and 11.

3.4.3 Classes

Classes are generalizations of structures. For those who already know what
they are, Mata’s classes allow public and private members, inheritance,
shadowing, virtual functions, and polymorphisms.

For the rest of us, in addition to having member variables, classes can have
member functions, too.

This class contains member variables b, VCE, …, RSS, and it contains
member functions calc(), XX(), and Xy(). Some members are public.

Public member variables are referred to in the same way as structure’s
member variables. You code c.b, c.VCE, …, c.s2, where variable c is a
class regression scalar. You use the same c. prefix to refer to public
member functions. To call calc(), you code c.calc().

Private member variables and functions, on the other hand, can only be
accessed by member functions. This means that calc(), XX(), and Xy()

57

are the only functions allowed to access MSS and RSS, and they are the only
functions allowed to call XX() and Xy(). The goal of privacy is to make the
code that provides b, VCE, …, s2, and calc() safely modifiable in the
future. Because users of the class cannot use or call the private members,
you can subsequently modify the code of the entire class—up to and
including deleting and adding new private member functions—with the
certain knowledge that no user of the class will be affected as long as the
public members continue to fulfill their advertised purpose. Computer
scientists call this encapsulation.

Classes also allow inheritance, but we will ignore that for now.

Defining a class requires declaring it and writing the code for its functions:

58

Notice that member function calc() uses members b, RSS, s2, XX(), and
Xy() without a c. prefix. Inside class functions, members are directly
exposed.

Outside of member functions, you must use the varname.membername
way of specifying variables, just as you would with a structure:

59

We will discuss classes in chapters 12 and 13. By the way, the linear-
regression calculation formula I have been using, invsym(X’X)*X’y, has
remarkably poor numerical properties. We will discuss that later, too.

3.4.4 Pointers

Pointers are scary. Ask anybody. The truth of the matter, however, is that
pointers seem complicated because they are invariably used in complicated
programs, and those programs are complicated for reasons having nothing
to do with their use of pointers. Pointers themselves are neither scary nor
complicated. Pointers themselves are easy to understand, and they solve
problems that can be solved no other way.

Assume that you were writing a linear-regression routine using the linear-
regression class described above. If you completed development of the
class, you would quickly discover that it would be convenient to put a
copy of the X matrix in the class, but you would hesitate to do that because
of its potential size. If X contains 100,000 observations on 100 variables,
its memory footprint would be 380 megabytes. Can you afford burning
380 megabytes just to make a copy for your convenience? Pointers provide
you with a better alternative. With pointers, you can create a synonym for
X and put that in the class. The synonym will be every bit as convenient as
a copy and, being a pointer, will require an insignificant 8 extra bytes of
memory.

That one example should be enough motivation to learn about pointers,
and as I said, pointers are easy to understand anyway.

60

A pointer is a variable containing the memory address of another variable.
If you code,

then p will be a pointer containing the address of a. The & prefix in front of
a is Mata’s address-of operator. Here is an example:

The ugly 0xf80a8b8 is the hexadecimal address where a is stored. We do
not care that the address is 0xf80a8b8, but we do care that p contains &a.

&a means the address of a.

*p means the contents of the address stored in p. The * prefix is Mata’s
pointer-dereferencing operator. Yes, that is the same asterisk as Mata’s
multiplication operator, but if Mata can understand the difference between
a*a and *p, so can you.

*p means the contents of the address stored in p or, put another way, the
contents of a:

Yes, indeed, *p is 2, just as a is 2, and they are equal because p == &a,
meaning that they are the same 2.

To complete the demonstration that *p is a synonym for a, let’s change the
contents of *p and check that a simultaneously changes:

You are almost an expert on pointers. There is only one more thing to
know.

Pointers that do not point to anything contain NULL. That NULL is different
from the null of null vectors and matrices. Capital NULL is the null memory
address.

61

Right now, p still points to a, but I am about to change that:

Now you are an expert on pointers.

Allow me to offer some guidelines about pointer jargon. Pointers contain a
memory address. You may say, “p contains the address of a” or “p points
to a”. You may even say star-p in conversation. *p is a. Meanwhile, the &
operator is called the address-of operator, not the and or ampersand
operator.

I will show you how to use pointers to conserve memory in section 10.10,
and I will show you how to use them to create a matrix with a ragged right
edge in section 18.4.2.2.

62

3.5 Notes for programmers

3.5.1 How programmers use Mata’s interactive mode

I said at the start of the tour that Mata’s interactive mode is of no use in
formal programming. It is, however, of great use to Mata programmers.
Programmers use interactive mode to experiment with features and
functions before using them in programs. It is one thing to read a
description in a manual and another to see it for yourself. Experimenting
reduces the chance that you will write code based on a misconception.

You enter Mata by typing mata: or mata. The colon changes how Mata
behaves if you subsequently make a mistake. Enter by typing mata:, and
Mata will complain and exit back to Stata if you make an error. Enter by
typing mata without the colon, and Mata will complain but not exit.

For experimenting, enter Mata by typing mata without the colon.

When you are done, type end to return to Stata. I am not going to do that
right now because I want to use interactive mode to show you something.
We used Mata’s invsym() function earlier in this chapter to obtain
regression coefficients:

You can read about invsym() by typing help mata invsym(). invsym(
), says the manual, returns a generalized inverse of real, symmetric,
positive-semidefinite matrix .

Let’s try inverting a full-rank matrix:

63

invsym() will work with singular matrices, too. You should try it.

The manual says that the function is for use with symmetric matrices. You
should wonder what would happen if you attempted to invert a
nonsymmetric matrix. Will the program stop? Will Mata crash? Will Mata
issue a warning and proceed? The way to find out is to run an experiment.
Make a nonsymmetric matrix and invert it.

invsym() does not stop, and it does not issue a warning. It produces a
wrong answer!

You have learned an important lesson. If A might not be symmetric, your
program needs to check before using invsym(). Mata has an
issymmetric() function, so it is easy to check.

64

There is a general lesson to be learned, too. Mata, unlike Stata, does not
burn computer time protecting you from yourself. If you need to check
assumptions, it is your responsibility to check them. invsym()’s incorrect
answer is an example of that attitude.

This does not mean that you should mindlessly write code to check every
assumption. If you need to calculate invsym(X’X), you know that X’X is
necessarily symmetric. You include code to verify assumptions only when
they might not be true.

3.5.2 What happens when code has errors

You just saw one possible outcome when you call functions incorrectly.
They can return incorrect results. If you wrote code and used invsym() to
invert a nonsymmetric matrix, your code would have gone on to produce
its own incorrect result. The correct view of this case is that your code has
an error, not invsym(). Your code used invsym() incorrectly.

Incorrect results are one possibility. Mata issuing an error message and
aborting execution is the other. Here is an example of that:

I used invsym() to invert a rectangular (not square) matrix, which
invsym() cannot do. The result was an error message.

You might be surprised that we did not see yet another incorrect result
from invsym(). Why is that mistake handled differently from the previous
one? The answer is that Mata’s built-in functions do not go out of their
way to produce incorrect results. They go out of their way to run quickly.
Checking whether the matrix is symmetric is computationally expensive,
and it is usually unnecessary because the matrices are known to be
symmetric. Thus, it is the responsibility of the caller to check that the
matrix issymmetric() in cases where it might not be. Checking
dimensionality, meanwhile, is computationally cheap. invsym() and all of
Mata’s other functions check dimensionality as a matter of course.

The error output is called a traceback log. On the first line, the log shows

65

where the error occurred and what it was:

The second line shows why Mata was executing the function:

In this case, invsym() was executed because of the interactive statement I
typed. If the error had occurred in a program, the traceback log might have
been

This is the same error except that this time my_regression() called
calc_b() and calc_b() called invsym(). Where is the error? Because
invsym() is a Mata built-in function, the error is unlikely to be there. The
offending code is more likely in calc_b() or my_regression().

3.5.3 The _error() abort function

_error() is the Mata function that produces traceback logs and stops
execution, a process known as abort with error.

In the previous section, we saw invsym() abort with error when the matrix
to be inverted was not square. We will soon be writing our own functions
and will have occasion to use _error() ourselves. We will use it by
coding

We do not need to call _error() in most irretrievable situations because
Mata aborts execution automatically. If we write a function that requires
two arguments and the user specifies three, Mata aborts the function with
error. If matrices A and B need to be conformable under addition and we
write code that just proceeds to calculate A+B, Mata aborts if they are not
conformable.

We need to call _error() when the function would not otherwise abort. If
n simply has to be positive and we worry that the caller might specify a
negative value, we code

66

_error() has three syntaxes:

The first syntax displays the message associated with standard error code
#, which is also known as a return code. Using this syntax requires finding
the appropriate code and message. They are listed in help m2 errors.

The second syntax produces the custom message string that you specify.
Code 3498 is displayed with the message.

The third syntax displays both the code and the message that you specify.

You can experiment with _error() interactively just as you can
experiment with any function. Below, I experiment with variations for the
argument being out of range:

67

Chapter 4
Mata’s programming statements

68

4.1 The structure of Mata programs

Individual programs are formally called functions in Mata, but that will not
stop us from calling them programs, routines, or subroutines. A program is
a chunk of code. Here are some examples.

Function speed_of_light() takes no arguments and returns a value. It
would be useful if you were an astrophysicist.

Function show() takes arguments but returns nothing. Functions returning
nothing are common when displaying results or writing results to a file.

Function n_choose_k() and its subroutine
nfactorial_over_kfactorial() really are functions in the mathematical
sense because they accept arguments and return results.

69

I want you to focus on the physical structure of the programs. That
structure is

All Mata functions have this structure.

Most functions require arguments and return something. returnedtype
specifies what is returned, such as a real scalar or complex matrix.

Functions that return nothing are said to return void.

You can omit the declarations of the variables used in the body of the
program, but we will not omit them in this book. Omitting the declarations
increases the chances of mistakes, and programs without declarations
sometimes run slower. They run slower when the compiler—not knowing
the type—needs to produce more general code that can handle all the
possibilities.

70

4.2 The program body

There are nine statements that can be used in the program body. They are
as follows:

Conditional execution statements:

Looping statements:

Go-to statements (useful when translating Fortran programs):

Exit and exit-and-return-value statements:

Assignment, subroutine calls, and the like:

expr is an abbreviation for expressions.

4.2.1 Expressions

We will discuss expressions deeply in the next chapter, and anyway, you
already know what expressions are. Examples of expressions include

This last example may not look like an expression to you, but it is. It is an
expression that returns void.

71

There is a lot I could tell you about expressions, but as I said, you mostly
know what they are. I do need to tell you about three surprising features of
expressions, however.

The first surprising feature is that mathematical expressions such as

and logical expressions such as

are, despite appearances, both numerical expressions. They are numerical
because they both return numerical results. Logical expressions return 1 or
0, where 1 means true and 0 means false. Mathematical and logical
expressions may differ in the operators used, but they do not differ in the
type of results they produce. Because they do not differ, mathematical and
logical operators can be combined in surprising and useful ways.

For instance, say you have three numerical variables, a, b, and c. How
many are negative? Answer: (a<0) + (b<0) + (c<0) are negative.

Arithmetic expressions can substitute for logical expressions, too. A
condition is deemed to be true if the expression evaluates to any value
except 0 because 0 means false. This means you can code

and what follows the if will be executed when (-b + sqrt(b^2 -
4*a*c)) / (2*a) is not 0.

The equivalency of numeric and logical expressions is Mata’s first
surprising feature. The second is that = means assignment and == means
equality. Do not code

when you mean

The first is not an error; it is a bug. Mata will not complain when you code
if (x=2), but the code will not do what you expect. The code will treat
x=2 as assignment, meaning x will be changed to be 2. If that is not bad

72

enough, assignment leaves behind the value, so the expression will be
treated as true.

Coding x==2 is how you ask whether x is equal to 2.

Coding x!=2 is how you ask whether x is not equal to 2.

Finally, I need to tell you about Mata’s ++ and -- operators. Coding i++
increments i by 1. You can think of it as a shorthand for i = i + 1. By
the same token, coding i-- decrements i by 1.

Later in this chapter, I will show you examples of i++, such as

I could just as well present the example as

Most programmers type i++ instead of i = i + 1.

You can code the ++ operator after the variable name or before it: i++ or
++i. When coded as a standalone statement, which you code makes no
difference. Coded in the midst of an expression, there is a distinction.
Look at the following two statements:

v[i++] means obtain v[i] and then increment i.

v[++i] means increment i and then obtain v[i].

For instance, if i were 2 before the statements were executed, then

v[i++] accesses v[2], whereas

v[++i] accesses v[3],

and either way, i is incremented to be 3.

i-- and --i work the same way.

4.2.2 Conditional execution statement

73

The syntax of if (expr) … else … is

 if (expr) stmt1

and

 if (expr) stmt1

 else stmt2

stmt1 is executed if expr evaluates to true (nonzero).

When else is coded, stmt2 is executed if expr evaluates to false (zero).

You can code

and you can code

To specify multiple statements following the if or else, enclose them in
braces:

You can use braces even when there is only one statement. Rather
surprisingly, braces can even contain no statements:

74

The code would be more readable, however, if you simply coded

Mata users often code

instead of coding

because expressions are considered true when not 0. Omitting the !=0 is
considered good style.

4.2.3 Looping statements

Mata has three looping constructs: for, while, and do while.

for and while are the most commonly used. They check the condition for
repetition of the loop at the outset, meaning the loop may not be executed
at all. This is usually an advantage because it handles extreme cases
elegantly.

do while checks the condition for repetition at the end of the loop and
is for those situations where you need to make a trip through the loop at
least once.

4.2.3.1 while

The syntax of while is

 while (expr) stmt

where stmt is one statement or is multiple statements enclosed in
braces, just as with if.

while works like this:

75

1. Execute expr. If expr is false (0), go to step 4.

2. Execute stmt.

3. Go to step 1.

4. ….

Here is an example of while:

Iterative approximations are often programmed using while. This example
uses the Newton–Raphson method to find the value of x that makes
f(x)==0. As coded, the loop continues as long as , so the
value of x found will not literally make f(x)==0, but it will make f(x) be
close to it.

The line x = x + f(x)/fprime(x) is the body of the loop. The line calls
two functions, f(x) and fprime(x). f(x) returns f() at the current value
of x, the function we are seeking to make 0. fprime(x) returns its
derivative.

The above loop could be used to solve for the numerical value of the
square root of 2. f(x) would be x^2-2 and fprime(x) would be 2*x. This
problem is so simple that we can dispense with the functions and simply
substitute the expressions into the code:

We can even try this interactively:

Most programmers needing the square root of 2 would simply code
sqrt(2). I merely wanted to illustrate the while loop in an interesting

76

way. while (expr) stmt repeatedly executes stmt as long as expr is
nonzero.

When there is only one stmt following the while (expr), you can type it
in braces or omit them. I showed both ways above. When stmt includes
multiple statements, you must enclose them in braces.

It can happen that you will have no lines at all in the body of the loop.
Consider the following example:

Imagine that one_NR_step(x) updates x by taking a Newton–Raphson step
and returns abs(x^2-2) evaluated at the updated x. Then the above code
would also solve the square-root-of-2 problem. As coded, however, it will
not work, because when the loop has no body, you must make that explicit.
You can do that in either of two ways. One way is to explicitly include an
empty body in braces:

The other is to explicitly state “and the statement ends here” by coding a
semicolon at the end of the while statement:

Mata does not require semicolons at the end of statements, but you can
code them when you wish, or when they are needed.

You must use one of these two approaches when the body of the loop is
empty. If you do not, results can be surprising. A piece of your code might
read

As written, Mata will interpret the code as if it read

That is, Mata will take next_programming_statement as being the body of

77

the loop. To avoid that, code

or code

When you need to code an endless loop, code 1 for the expression:

No programmer wants to create truly endless loops, of course, but
programmers code seemingly endless loops when the body contains the
code that will cause the code to exit. Here is an example:

There are three exits from this loop. The first and last are return()
statements and cause the code to exit not just the loop, but the function as
well. The middle exit is break, which exits just the loop, and which we
will discuss later in this chapter.

4.2.3.2 for

The syntax of for is

 for (expr1; expr2; expr3) stmt

where stmt is one statement or is multiple statements enclosed in
braces.

78

expr1 and expr3 may be empty, but expr2 may not.

If stmt is empty, code empty braces or semicolon.

Consider the code

Here is how you read the for statement aloud:

For i equal to 1, while i is less than or equal to length(v), execute
sum = sum + v[i] and then increment i.

The role of each of the syntactical elements is

expr1, which is i=1, specifies something to be done before the loop
begins.

expr2, which is i<=length(v), specifies when the loop concludes but
states the condition positively, as “the loop continues as long as expr2
is true”.

The loop’s body, which is sum = sum + v[i], appears at the end. It
can be one statement or it can be multiple statements enclosed in
braces.

expr3, which is i++, specifies something to be done at the conclusion
of the body. In this case, that “something” is to increment i.

for is often used to iterate through a vector or matrix, as in

If there is more than one statement in the body, it must be enclosed in
braces:

79

Note that the condition statement is executed at the top of the loop, and
that means the body of the loop might not be executed at all. In this
example, the body would not be executed if length(v)==0, which would
happen if v were or . In that case, the final result is that sum and
sum2 will be 0 just as they should be. This is an example of what I meant
when I said that checking conditions at the top of loops handles extreme
cases.

We previously used the Newton–Raphson method to iteratively solve for
the square root of 2 using the while statement. We coded

This logic could just as easily be coded using for. Here are three ways we
could do that:

Of the three alternatives, I like the first one the best because I am not fond
of loops with empty bodies. When the body has only one statement, as the
first solution has, I sometimes code the entire loop in one line as shown
above, and other times, I code it with braces, spreading the logic over three
lines:

My preferences aside, any of the styles is a valid and readable way to
program the loop.

In the first solution, there is no expr3.

In the second solution, there is no body. What was the body was moved to
expr3.

80

The third solution is the same as the second one except that the omitted
body is indicated with a semicolon rather than with empty braces.

Whichever style you use, for produces the same results as while:

I showed you four examples of Mata programs at the beginning of this
chapter. One of them used a for loop:

The for loop in this example is interesting because the loop counts down,
not up. The for loop reads

for’s third expression is --i, which decrements i. If the loop had counted
up, the third argument would have been i++. It makes no difference
whether you code i++ or ++i in loops that increment and, in loops that
decrement, whether you code i-- or --i. I code i++ and --i. I code --i to
emphasize that the loop counts down.

4.2.3.3 do while

The syntax of do while is

 do {

 stmt

81

 } while (expr)

do while is a while loop with the checking of the continuation
condition moved to the end of the loop. One trip is made through the loop,
and thereafter, additional trips are made as long as expr is true.

Unlike while and for, the braces are required even if they enclose only a
single statement.

You use do while when an outcome from a trip through the loop
determines whether the loop is to be repeated. Here is an example:

Subroutine get_and_execute() fills in variable line, and the condition
for repetition is that line is not equal to exit. This loop executes at least
once.

In scientific programming, one often continues a loop until the error is
small enough:

Here is another example where I instead continue until the error is not 0!
The following code determines a computer’s precision by iterating a
calculation until numerical error arises:

You could try the code interactively. On my computer, eps is 2.22045e–16
when the loop concludes. It will be that on your computer, too, because
these days all computers use the same IEEE 754 standard. Back in the

82

seventies, when the first version of this program was written, however,
different computers used different standards, and it was sometimes
important to write code that adapted itself to the computer’s precision.
This clever algorithm was in the original EISPACK (Garbow 1974) and
written in Fortran. I translated the code to Mata.

4.2.3.4 continue and break

continue and break are used inside the bodies of while, for, and do
while loops. Their syntaxes are

 continue

 break

continue specifies that the rest of the body of the loop is to be skipped,
but the loop is to continue. Here is an example:

Vector X contains observations on related people. If the ith person’s
mother is not found in X, the loop proceeds to the next person because of
the continue statement. Otherwise, the code does something useful
regarding the child (i) and the mother (j).

break jumps out of the loop. The following code searches for the first i
such that v[i]==2:

83

4.2.4 goto

Mata has a goto statement for one reason: so that you can translate old
Fortran programs. Other than that, using goto is a recipe for producing bad
code.

The syntax of goto is

 goto stmtname

 .

 .

 .

 stmtname: stmt

where stmtname is the name of the go-to point, which can be in the
code above or below the goto statement.

The go-to point is indicated by coding the stmtname followed by a
colon.

The following Fortran code can be translated to Mata:

84

Making the translation is trivial. We translate the Fortran statement
number 10 to Mata statement name s10, change Fortran’s GOTO to Mata’s
goto, and make the other changes required because of the minor syntax
differences between Fortran and Mata. The translation is

I showed you this code earlier in section 4.2.3.3, but you may not
recognize it because I translated it more thoroughly:

Code is easier to read if it is written in the modern style, yet I recommend
that you do not make such translations because you can only introduce
mistakes. Mata has a goto statement so that you do not have to translate to
modern style.

4.2.5 return

The syntax of return is

 return(expr)

or

 return

Use return(expr) for functions that return a value.

Use return for functions that return nothing, that is, return void.

85

4.2.5.1 Functions returning values

Functions that return values must include at least one return() statement,
such as

Functions can include multiple return() statements:

return() stops execution of the function and returns the value specified to
the caller.

4.2.5.2 Functions returning void

Functions that return nothing are said to return void. Here is an example:

The return statement in this function could be omitted because Mata
assumes that void functions are to return at the end of the code. Omitting

86

the end-of-function return statement is considered good style:

The jargon for functions like the above is that they “fall off the end” of the
routine.

Regardless of whether you code return at the end of the code, you can
include other return statements to exit early:

87

Chapter 5
Mata’s expressions

88

5.1 More surprises

Most lines in programs are expressions or at least contain them.
Expressions can appear as statements by themselves, such as

and expressions appear in five of Mata’s eight programming statements:

All the above are straightforward and unsurprising examples.

I previewed a few surprising examples of expressions in the last chapter.
Here they are again:

Got it? Here is what each does:

1. fraction = (++i)/n is equivalent to

2. a = (b = sqrt(x^2+y^2)) / sqrt(X^2+Y^2) is equivalent to

3. ratio = (numer=s1+s2) / (denom=n1+n2) is equivalent to

89

4. pos = (a>0) + (b>0) + (c>0) stores in pos the number of variables
a, b, and c that are positive (or missing).

5. if (i) ... is equivalent to

It performs the body of the if only if i is not 0. For instance, the loop
would be performed if i were , 0.5, 7, or missing value.

6. while (abs(err=x^2-2)>1e-12) ... is equivalent to

Here are some other expressions that might surprise you simply because
they use unfamiliar characters. For instance, everyone knows that + means
plus, but did you know that ! means not?

Explanations:

1. if (!(a==b & c==d)) ... executes the body of the if only if it is
not true that (a==b) & (c==d), which is to say, if (a!=b) | (c!=d).
! is Mata’s logical negation (not) operator.

2. if (!(sum(A:==0))) ... executes the body of the if only if matrix
A contains all nonzero elements. A:==0 produces a matrix of 0s and
1s, where 1 denotes A[i,j]==0 and 0 denotes A[i,j]!=0. sum() sums
all the elements of the matrix, producing a scalar, which in this case
equals the number of elements of A that are equal to 0. !(...) returns
1 only if (...)==0.

3. max = (a>b ? a : b) sets max equal to the maximum of a and b. If

90

the logical expression before the ? is true, then the first alternative is
returned; otherwise, the second is returned.

4. divline = 55 * "-" sets divline to 55 dashes.

5. vec = 1..4 stores in vec the row vector (1, 2, 3, 4). (vec = 1::4
would store a column vector in vec.)

6. B = A’ stores the transpose of A in B.

7. X = A’A stores A’ multiplied by A in X. A’A has the same meaning as
typing A’*A.

8. Z = A#B stores in Z the Kronecker product of matrices A and B.

91

5.2 Numeric and string literals

The word literal is computer jargon for values that appear in expressions,
such as the 55 and the "-" in

55 is a numeric literal and "-" is a string literal. In Mata, 55*"-" produces
55 dashes. 55 is a literal because the symbols literally mean 55. "-" is a
literal because the symbols literally mean a dash. Meanwhile, x in x+1 is
not a literal because x means the value stored in x.

5.2.1 Numeric literals

5.2.1.1 Base-10 notation

Here are some unsurprising examples of numeric literals:

2

3.14159

7.2

2.213e+32

2.213E+32

1e–8

2.213d+32

2.213D+32

1d–8

The last six examples are written in E notation even though some of them
are written using D rather than E. 2.213e+32 means . You can
code the E in upper- or lowercase. 1e–8 means . D and d mean the
same as E. D dates back to the Fortran days of computing when D meant
double precision and E meant single precision. In Mata, both mean double

92

precision.

Numeric literals can also be any of Stata’s missing values:

All nonmissing values are less than the missing values. The statement
 is true, for instance. For the missing values, .

The following are valid statements:

Note that b>=. asks whether b equals any missing value. b==. asks only
whether b equals . in particular. b<. asks whether b is not missing.

5.2.1.2 Base-2 notation

Stata has a base-2 notation. I know this sounds arcane and like something
you could safely skip. However, I am about to show you an easy way to
calculate more-accurate results. Rather than code

I am going to suggest that you code

You do not yet know what 1.0x-1a means, but certainly you can agree
with me that substituting 1.0x-1a for 1.0e-8 is easy to do. If you make
that substitution, you will halve the numerical round-off error for

93

reasonable values of x. For “unreasonable” values—say, x equal to 16
million—coding 1.0x-1a will reduce the round-off error to 0.0000007 of
the round-off error that using 1.0e-8 would produce. Said differently, if
you use 1.0e-8, you will have at most one digit of accuracy in the
calculation; if you use 1.0x-1a, you will have eight.

In what follows, I explain and justify the claims I just made.

Stata and Mata provide a base-2 notation called X notation. Many
programmers, needing a small value, will code one of the following
literals:

1e–8

1e–12

1e–14

For instance, they might code

or

The problem with 1e–8, 1e–12, and 1e–14 is that they cannot be
represented precisely on a binary computer. The numbers stored are not

, , and ; they are approximately ,
, and . Those small

differences from the intended value can cause substantial numerical
imprecision.

The issue with the decimal values 1e–8, 1e–12, and 1e–14 is that they have
no exact representation in base 2. In base 2, they are repeating binaries in
the same way that 1/7 is a repeating decimal. 1/7 in base 10 is
0.142857142857….

Numerical inaccuracy occurs because computers sometimes ignore the
rightmost digits when performing addition and subtraction. You might do
the same if I asked you to add 5.17 and . You might
calculate

94

If you were a base-10 computer with a five-digit accumulator, the above is
precisely what you would do. You would ignore the digits I displayed in
square brackets. Let me show how much subsequent numerical inaccuracy
this can produce. Let’s consider the calculation of
when the function is . Mathematically, the calculation
produces the value 1 for all values of and :

Let’s calculate for and
using five digits of accuracy. The result is

The correct answer is 1 and we just calculated 0.7027. How is it that we
produced a result with not even its first digit correct when we performed
the calculation with five digits of precision? We produced the result
because we chose a poor value for . Yes, is just five digits—it is
precisely —but those digits are all nonzero, and when we
added , we lost some of them. Meanwhile, we divided using all five
of ’s digits.

Had we chosen , we would have obtained the correct
answer of 1. We would have obtained the correct answer because when we
added and ignored ’s rightmost digits, those ignored digits would
have been 0.

This leads to a rule that every scientific programmer should know:

When choosing small values for use in numerical approximations,
choose values with lots of trailing zeros.

95

If you are using a base-10 computer, choose values . No
one uses a base-10 computer, however.

If you are using a base-2 computer, choose values .

The next time you are tempted to use numbers like , ,
and , you would be better off using , , and

, because those numbers are close to intended values and have a
one-digit binary representation.

The X notation was added to Stata and Mata in Stata 6 (1999) for
StataCorp internal use and was first documented in the Stata
documentation in Stata 8 (2003). Mata was added to Stata in Stata 9
(2005). X notation is the equivalent of E notation but for base 2. X
notation is actually a base-16 notation, but base 16 is equivalent to base 2
and numbers are shorter when written in base 16.

You can write numbers in X format, and you can display them in X
format, too:

I displayed 1e–13 using Stata, but I could just as well have displayed it
from Mata:

You do not need to be accustomed to working with numbers like
1.c25c268497682X–02c. I am not. On the other hand, I can tell at a glance
that the closest one-digit binary number to 1.c25c268497682X–02c is

96

1.0x–2b. I will show you how to do this in a moment. The point I wish to
make is this: if I were tempted to use 1e–13 in a program I was writing, I
would instead use 1.0x–2b. I would do that for the same reason that I
would use if I were programming a base-10 computer with a
five-digit accumulator, because I hope to obtain more-precise numerical
results. They might even be whoppingly more precise, and even if they are
not, they will be no less precise.

I will show you a real example, but first, let me show you how to find the
closest one-digit binary to 1e–13:

1. Start with 1e–13 and display the result in %21x format. You will learn
that 1e–13 is 1.c25c268497682X–02c.

2. Recall the meaning of 1.c25c268497682X–02c. It is

The base-16 digits are 0, 1, 2, …, 9, a, b, c, d, e, and f. The period in
1.c25c268497682 is the base-16 point. In base 16, is one-
half.

3. Thus, 1.c25c268497682 rounds to 2 because the part to the right of
the base-16 point is greater than one-half. In base 16, .

4. And thus, the closest one-digit number to is
.

5. In X notation, is written as 1.0x–2b.

I said that you could do this at a glance, and you can once you strip away
the explanation. The closest one-digit binary number to
1.c25c268497682X–02c is either 1.0x–2c or 1.0x–2b, depending on
whether you round down or round up. Because
(base 16), you round up. The closest is 1.0x–2b.

I suggest the following translations for 1e–8, 1e–12, and 1e–14:

97

I did not round the decimal values to better values as I prescribed because I
know something about the intent of these decimal numbers. The popular
small number 1e–8, for instance, is intended to represent the closest round
decimal to half of double-precision accuracy. Half accuracy is precisely
1.0x–1a. 1.0e–14 is the closest round decimal that leaves two decimal
digits of accuracy behind. 1.0x–2e does that. I have no idea what 1e–12
was originally intended to reproduce, so I rounded it in the same way we
rounded 1e–13.

Using one-digit binary values improves accuracy in some cases and does
not in others, but using them will never reduce accuracy. One case where
using them improves accuracy is in calculating approximations to
derivatives using

There are four sources of numerical round-off error in the above
calculation.

1. There is error in the numerical calculation in x+h that we have been
discussing. It will vary from 0 to a gargantuan 0.5, or even more, as I
will show you.

2. There is error in calculating f(). Until we specify the function, we
can only speculate about the error in its calculation. Without
explanation, it usually varies from 1e–16 to 1e–12.

3. There is error in calculating the difference between f(x+h) and f(x).
If h is chosen optimally, it will be 1e–8.

4. There is error in dividing by , though it will be trivial. It will be 0 or
1e–16 in the worst case.

I am not going to present an analysis of all four sources of error here, but if

98

you add up all the errors assuming the error from source 1 is 0, then deriv
can be calculated to roughly eight digits of accuracy (worst case), meaning
with a relative error of 1e–8. If you use decimal numbers like 1e–8 or 1e–
12 for h, however, all bets are off.

Let me show you. In the table below, I set the error from sources 2–4 to 0,
something that cannot be done in real code, so that we can focus on the
error from source 1. The table reports a comparison of results with truth
for h equal to 1.0e–8 and h equal to 1.0x–1a. 1.0x–1a is the binary-rounded
value of 1e–8. The results are as follows:

The first thing to learn from this table is that relative errors are greater for
h equal to 1.0e–8 than they are for h equal to 1.0x–1a. The relative error
from using 1.0x–1a is 0 right up to the point that the calculation falls apart,
which happens when x is so large that x==x+h.

99

Meanwhile, the relative error from using 1.0e–8 is 8.27e–08 when x is 8, a
relative error equal to 8 times the total error we ought to see from real
code! At 64, the error from using 1.0e–8 is 63 times the error we could
achieve. At 1,024, it is 1,060 times. And so on. By 16,777,216, the relative
error is 0.118, and we have crossed the line separating results that have
round-off error from results that are simply wrong.

The lesson is that if you use small values such as 1.0e–8—values with no
one-digit binary representation—no matter how much numerical analysis
you know, no matter how many numerical techniques you use, and no
matter how well you write the code, you will have undermined the
calculation from the outset. It is true that there are formulas where using
1.0e–8 instead of 1.0x–1a makes no difference, but there is not a single
formula in which using 1.0e–8 will produce a more accurate result on a
binary computer than using 1.0x–1a will produce.

Do not use 1e–8, 1e–12, and 1e–16. Use 1.0x–1a, 1.0x–28, and 1.0x–2e.

It is beyond the scope of this book, but to achieve a guaranteed 1e–8 or
smaller total error, h needs to be set optimally. The optimal value is the
value such that and have roughly half their digits equal—
their most significant ones—and differ in the remaining digits (Nash 1979,
sec. 18.2).

5.2.2 Complex literals

Type i after a real numeric literal to make the literal imaginary:

You add or subtract real and imaginary literals to form complex literals:

100

Missing values are allowed. Complex numbers contain a single missing
value for the entire number, not one missing value for the real part and
another for the imaginary part. The expression z>. returns true when z
contains missing for both real and complex z.

When assigning real values to variables that are stored as complex, use
Mata’s make-complex C() function:

You need to do this because, in some cases, simply assigning a real value
to x can result in x being recast to storage type real, and many of Mata’s
built-in operators and library functions return different results when given
real or complex values. The square root of , for instance, is missing,
whereas the same calculation on yields the appropriate imaginary
result:

5.2.3 String literals

String literals are enclosed in quotes. "text" specifies a string literal equal
to text.

Mata has two sets of quoting characters, called double quote and
compound double quote. The standard double-quote character may be used
to start and stop text when the text itself does not contain double quotes, as
in

You can use the double quotes to enclose strings, or compound double
quotes:

101

Open and close compound double quotes are each two characters:

Compound quotes may be used anywhere double quotes may be used.
They must be used to specify strings that themselves contain double quotes
or contain matched pairs of compound double quotes:

If you need to create a string containing unbalanced compound double
quotes, first create variables containing them:

Then use the variables to construct the desired string, such as

Regardless of the style of quotes you use to specify string literals, literals
may specify an empty string:

An empty string is truly empty. If you set

then s=="" would still be true.

102

5.3 Assignment operator

The equals sign is Mata’s assignment operator:

Mata allows multiple assignments in expressions:

The last expression is equivalent to coding

Do not confuse assignment (=) with logical equality (==).

x = 2 assigns 2 to x.

x==2 asks whether x is 2 and returns 1 or 0.

103

5.4 Operator precedence

It is operator precedence that allows you to type a+b*c instead of a+(b*c).
Multiplication has higher precedence than addition.

It is operator precedence that allows you to type r = a/b instead of r =
(a/b). Division has higher precedence than assignment.

It is operator precedence that allows you to type a>2+3 instead of a>(2+3).
Arithmetic operators have higher precedence than logical operators.

So how is *p[3]*2 interpreted? Look at the table above. Subscripting
operators have the highest precedence, so *p[3]*2 means *(p[3])*2,
meaning that p is a vector. Pointer operators have the next highest

104

precedence, so *(p[3])*2 means (*(p[3]))*2. And there you have it. The
expression means to take the third element of vector p, treat it as a pointer,
obtain what p[3] is pointing to, and then multiply that value by 2.

Do not code *p[3]*2 if you mean (*p)[3]*2, which would mean to treat p
as a pointer scalar, take what it is pointing to, which must be a vector, take
that vector’s third element, and multiply that by 2.

Use parentheses when you are unsure about operator precedence. Even if
you are sure, people who read your code might not be. Adding parentheses
does no harm.

105

5.5 Arithmetic operators

Capitalization in the table above and in tables to follow indicates where
vectors and matrices are allowed. For instance, multiplication allows
scalar, vector, or matrix operands because the operands are shown in
uppercase: * . The power operator, on the other hand, is limited to
scalars because the operands are shown in lowercase: ^ .

The usual matrix conformability rules apply when vectors and matrices are
allowed. You cannot, for instance, add a matrix and scalar:

The arithmetic operators can be used with real or complex values. Be
aware that operators use the real interpretation when operands are real and
use the complex interpretation when they are complex. With real operands,
the square root of is missing; with complex operands, it is 1i:

106

107

5.6 Increment and decrement operators

++ and -- are operators that increment and decrement variables.

i++ means i = i + 1; i is to be incremented.

i-- means i = i - 1; i is to be decremented.

i++ can be used on a line by itself:

In this case, i++ is equivalent to i = i + 1.

If you want to make the loop count down instead of up, you can code i--
or --i:

i++, ++i, i--, and --i can be used on lines by themselves, and they can be
used inside expressions, such as

108

i++ means that i is to be incremented after it is used, so a[i++] means that
the value a[i] is returned and then i is incremented.

a[++i] increments first and obtains the value of a[i] afterward. The loop
above could be coded

a[i--] and a[--i] work the same way.

109

5.7 Logical operators

The logical operators return 1 or 0, meaning true or false.

The equality and inequality operators may be applied to mismatched types
and return that they are not equal; the operators will not produce error
messages.

When the equality and inequality operators are used to compare a real with
a complex, the result is based on whether the two values are in fact equal,

110

and not on how they are stored:

In addition to allowing mismatched types, the equality and inequality
operators can be applied to nonconformable vectors and matrices:

Greater than, greater than or equal to, less than, and less than or equal to
may not be used to compare across types:

Greater-than and less-than operators may be applied to real, complex, and
string scalars. When applied to complex, the complex absolute values—the
lengths of the complex vectors—are compared.

When greater-than and less-than operators are applied to strings, they are
compared byte by byte. If the strings are of unequal length but otherwise
equal, the shorter string is less than the longer string.

Mata deals with Unicode in the same way that Stata does. Mata has
Unicode functions. If you are not familiar with them, see help unicode.

111

5.8 (Understand this ? skip : read) Ternary conditional
operator

I hope you are reading this if the title confused you, because I can only be
sure that those who understood the title have already moved on.

The ternary conditional operator is

An example is

If the expression in front of the question mark is true (nonzero), then the
first expression after the question mark is returned. Otherwise, the second
expression is returned. The colon separates the alternative expressions.

Only one of the alternative expressions is executed. In the following
example, i is incremented only if i<N:

Here are examples of ways that the ternary conditional operator is used:

112

5.9 Matrix row and column join and range operators

We discuss row and column fill after discussing row and column join.

5.9.1 Row and column join

Row and column join are used to build vectors and matrices.

Column join can be used to form row vectors:

Notice that rv3 will be .

Row join can be used to form column vectors:

Row join can form matrices by row-joining row vectors. If we row join
 vectors rv1 and rv2, we form a matrix:

Column join can similarly form matrices by column-joining column
vectors. If we column join vectors cv1 and cv2, we form a
matrix:

113

We can use both operators to form matrices directly:

Note that comma has higher precedence than backslash, so the above is
equivalent to

In the examples above, the outside parentheses around the vectors and
matrices are unnecessary. Nonetheless, it is better to type them because
they sometimes are necessary and they always make code more readable.

5.9.2 Comma operator is overloaded

Comma has two meanings in Stata.

First, comma means the column-join operator that we have been
discussing.

Second, comma is used to separate arguments in functions.

Assume that function myeval() takes two arguments, a matrix and a
scalar. You might use the function by coding

In this case, comma separates the arguments. Assume you want to call
myeval() with matrix . You could code

In this case, different commas mean different things. The commas inside
the inner parentheses mean column join, while the comma outside means
argument separation.

If you omitted the inner parentheses,

the statement would be an error because it would appear to Mata that
myeval() was being called with four arguments, namely, 1, 7\-4, 2, and 2.

114

Added spaces will help you see the line as Mata sees it:

The code clearly states to send four arguments to myeval(), which is not
the intent.

The parentheses around the matrix formation are necessary. There are
other cases where the parentheses are necessary, too, so my
recommendation is that you make it a habit of coding them in all cases.

5.9.3 Row and column count vectors

.. and :: are the row-fill and column-fill operators. They produce count
vectors.

1..4 produces row vector (1, 2, 3, 4). 4..1 produces (4, 3, 2, 1).

1::4 and 4::1 produce the same results but as column vectors.

115

5.10 Colon operators for vectors and matrices

Colon operators perform the underlying operator element by element
under relaxed conformability requirements.

Consider the colon-add (:+) operator:

1. If you colon-add a scalar to a matrix, the scalar is added to each
element of the matrix.

2. If you colon-add a row vector to a matrix, the vector is added to each
row of the matrix.

3. If you colon-add a column vector to a matrix, the vector is added to
each column of the matrix.

4. If you colon-add a matrix and a matrix, the matrices are added
element by element, which is the same result of simply adding the
matrices.

The colon-multiply operator works the same way as colon-add. Operations

116

are performed element by element, which means that when you colon-
multiply two matrices, the result is not equivalent to matrix multiplication.

The logical colon operators can be surprisingly useful. How many
elements of are equal to 0? Answer: sum(:==0) are equal to 0.

117

5.11 Vector and matrix subscripting

The subscripting operators allow you to access elements of a matrix.

A[1,2] is how you access the () element of matrix A.

V[2] is how you access the second element of vector V. You can also
access the second element using V[1,2] if V is a row vector or using
V[2,1] if it is a column vector.

You can even subscript scalars. Specifying a[1,1] or a[1] is equivalent to
specifying a by itself. That is important because in a calculation producing
matrix A, A could be a matrix.

Subscripting is an operator in Mata, meaning that if invsym(X’X)*X’y
produces a vector, then you can code (invsym(X’X)*X’y)[1] to access the

118

first element of the vector.

Subscripted expressions may be used on the left or the right of assignment:

Mata provides three ways of subscripting: element, list, and submatrix.

5.11.1 Element subscripting

You can access single elements of matrix A by coding A[b,c] or, if A is a
vector, A[b], where b and c are scalars. Note that vectors can be
subscripted using one or two subscripts. If A is a row vector, you can code
A[1,2] to access the second element, or code A[2].

Element subscripting is misnamed in that it can also produce entire rows or
columns of a matrix when one of the subscripts is specified as missing
value:

You can even access the entire matrix by coding A[.,.] although, with
one important exception, you want to avoid doing that. More on the
exception in a bit. Here is why you should avoid it. If you coded

119

the result would be the same as coding

The result will be the same, but the first statement will take longer to
execute and will temporarily use more memory. Hence, B = A*C is
preferred.

Subscripted matrices can appear on the left of assignment, too, as in

Coding the above might be the same as coding

but coding B[.,.] = A*C might also be an error.

When you code B[.,.] = A*C, you are specifying that the elements of
existing matrix B be replaced with the elements of A*C. Copying elements
not only takes longer than replacing the entire matrix, but if B does not
have the same number of rows and columns as A*C, then Mata will stop
executing your code and issue an error message.

When you code B = A*C, you are specifying that B in its entirety is to be
replaced with A*C. It does not matter if B is and A*C is . After
the assignment, B will be .

Even so, there is one case (the exception I mentioned above) where coding
B[.,.] on the left of assignment is absolutely necessary. That is when B is
a view onto Stata’s data. View matrices are created by the st_view()
function:

The above code results in A being an matrix containing all the
observations of variables 1 and 2 in Stata’s memory. Or at least A will
appear that way. Matrix A will actually be a view onto Stata’s data and not
a copy of what Stata has stored. There is another way that you could obtain
a copy instead of a view, but views have advantages. Views consume less
memory than copies, and changes to views change Stata’s data. View
matrices are one way that Mata programmers change the contents of

120

Stata’s data.

Let’s imagine that the programmer wants to replace the values of the first
two variables with new values stored in matrix B. This is a case when the
programmer must code

If the programmer coded A = B, then matrix A itself would be replaced by
a new matrix. The values of the Stata variables would not be updated, and
A itself would no longer be a view matrix. This is the one case when it is
important that it is the elements of existing matrix A that are changed, and
the programmer accomplishes that by coding A[.,.] = B. You can learn
more about views in appendix A.

A[.,.] has only one use, but constructs such as A[i,.] and A[.,j] can be
genuinely useful in all contexts. On the right side of assignments, they
extract row i or column j. On the left, they provide an easy and fast way
to update an entire row or column of an existing matrix.

Element subscripting is the fastest of Mata’s subscripting methods.

5.11.2 List subscripting

List subscripting is like element subscripting except that the indices
themselves are allowed to be vectors. For instance,

121

The i and j vectors used above are row vectors, but they could have been
column vectors. Aesthetically, i should be a column vector and j should
be a row vector, but Mata does not require that.

The index vectors can be defined inside the subscripts:

Remember to place parentheses around the index vectors. A[1,4, 2,3]
would not be understood by Mata.

Missing value can be used to select all the rows or columns:

122

List subscripts can be used to index vectors, too:

List subscripts can be used to duplicate rows or columns. I duplicate row 1
below:

Finally, list subscripts can be used as the targets of an assignment:

123

5.11.3 Permutation vectors

Permutation vectors are a programming technique used with list subscripts.
They serve two purposes. They provide an efficient way to access data
when the data are stored in a matrix, and they provide a more efficient way
to implement permutation matrices in advanced mathematical
programming.

5.11.3.1 Use to sort data

Consider a matrix containing rows and columns corresponding to
observations and variables:

Column 1 is the first variable, column 2 is the second, and column 3 is the
third. The observations are in a random order. It would be easy enough to
put these data in order of increasing values of variables 1 and 2, by which I
mean that observations are placed in ascending order of variable 1 and,
within equal values of variable 1, placed in ascending order of variable 2.
Mata has a function that will do that:

sort(), however, is not the topic of this section. (Although, you can learn
more about it by typing help mata sort().)

The topic of this section is permutation vectors. Permutation vectors are
another way the observations could be reordered. A permutation vector is
any vector that is a permutation on (1, 2, 3, 4, 5). For instance, consider
this permutation:

124

Vector p can be used with list subscripts to reorder the rows of Data. It
would be more aesthetically pleasing if I had made p a column vector, but
whether p is a row or column vector is of no importance to list subscripts,
and so I opted to save paper.

In any case, we could reorder Data by typing

Data[p,.] permuted the rows of Data. Had I instead typed, say, Data[.,
(2,1,3)], I would have permuted its columns. Had I typed Data[p,
(2,1,3)], I would have permuted both its rows and its columns.

In textbooks on probability, permutations are often random. This
permutation of Data, however, is anything but random. Look carefully,
and you will see that Data[p,.] put the data in ascending values of its first
two columns. I obtained the p to do this by having previously typed

order() is a Mata function similar to sort() that, instead of returning the
reordered matrix, returns the permutation vector that would reorder the
matrix. You can learn more about order() by typing help mata order().

If I wanted to replace matrix Data with its permuted version, I could type

If all I wanted was sorted data, it would have been easier to type Data =
sort(Data, (1,2)). However, I have another string matrix containing the

125

names that go with Data:

Names are no longer in the same order as Data because I reordered the rows
of Data. I can reorder the rows of Names to match the reordered Data by
using p to permute them:

I could not have done that had I used sort().

Reordering multiple matrices in the same way is one use of permutation
vectors. The other is that they can be used to reestablish the original order
because

Below, I restore both Data and Names to their original order:

126

There is another way I could have restored the original order:

invorder() is the Mata function that calculates the inverse of a
permutation vector; see help mata invorder().

5.11.3.2 Use in advanced mathematical programming

Permutation vectors are sometimes used in mathematical programming.
They are the computer programmers’ equivalent of mathematicians’
permutation matrices. Permutation matrices are row or column
permutations of the identity matrix. If is a permutation matrix, then
permutes the rows of and permutes the columns.

There is a one-to-one correspondence between programmers’ permutation
vectors and mathematicians’ permutation matrices, and that is important
for two reasons. Permutation vectors consume less memory than
permutation matrices. A row-permutation matrix, for instance, is .
The corresponding permutation vector has just elements. In addition,

127

reordering a matrix using a permutation matrix requires performing matrix
multiplication, which requires substantially more computer time than
reordering the matrix using list subscripts.

If you are programming a mathematical formula that uses permutation
matrices, program it using permutation vectors.

Row-permutation matrices are formed by permuting I(). The equivalent
permutation vector is formed by performing the same permutation on 1::
or 1.. . Either will work because Mata does not care whether permutation
vectors are columns or rows. Column-permutation matrices are formed by
permuting I(). The equivalent permutation vector is formed by
performing the same permutation on 1.. or 1:: .

5.11.4 Submatrix subscripting

Submatrix subscripts are called range subscripts in the Mata
documentation. Whatever you call them, they provide a fast way to extract
a submatrix or to change a submatrix within a matrix.

A[| , \ , |] specifies the submatrix from top-left corner to
bottom-right corner :

128

The argument specified inside [| and |] is a matrix. Comma and
backslash are the ordinary column- and row-join operators. The subscript
matrix can be stored separately:

Vectors can be subscripted using matrices in the same way, but it is
easier to specify a column vector:

Vector v is a row vector in the example. v[|2\4|] extracted v’s second,
third, and fourth elements. The same command expression, v[|2\4|],

129

would have worked if v had been a column vector; in that case, a column
vector would have been returned.

Submatrix subscripting can be used on the left of an assignment:

Submatrix subscripting can be performed using list subscripts. For
instance, the last example could be accomplished by typing

Submatrix subscripting executes more quickly than list subscripting.

130

5.12 Pointer and address operators

Pointers were introduced in section 3.4.4. I said there that pointers were
scary and then went on to convince you otherwise. This section, sadly,
runs the risk of convincing you that you were right in the first place. There
is a table below that is more friendly and will prove useful, especially
later, after you have had some experience using pointers. Before I can
present the table, however, we have i’s to dot and t’s to cross.

Pointer variables contain NULL or a valid address.

* is the pointer dereferencing operator for obtaining the contents once an
address other than NULL is stored in the variable. -> is an alternative, more
convenient way to dereference pointers that point to structures and classes.

& is the address-of operator that is used to obtain the addresses that are
stored in pointer variables. & can be used to obtain the address of any Mata
object, be it a variable, a function, or the result of running a function or
evaluating an expression. There is an exception. You cannot obtain the
address of a class member function, such as cl.foo(). You can obtain the
addresses of class instances and of class instance member variables, but
not of class member functions.

131

Use of the pointer operators is summarized below. Each statement includes
the minimum number of parentheses required. Many users include extra
parentheses for readability. Such a user might code, for instance, *(Q[3])
instead of *Q[3].

132

133

5.13 Cast-to-void operator

Coding

calls somefunction() and discards the returned value if there is one. When
functions return a value and it is not assigned to a variable, Mata displays
what is returned. Placing (void) in front of the call prevents that.

134

Chapter 6
Mata’s variable types

135

6.1 Overview

Variable types appear in three places in programs, as indicated in the
diagram below:

For example,

Variable types are optional. The function could have been coded

Serious programmers do not omit variable types. I admit that I sometimes
omit them in do-files when I am writing short programs that I intend to use
once and throw away, but I never omit them in serious work. Let me show
you why.

Here is a program to determine whether a*x^2 + b*x + c has real roots:

There is no error in the program if it is used the way I intended, which is
for real values of a, b, and c. For instance, the program reports that

 has real roots:

136

The program reports that does not:

The problem with the program is that it returns incorrect results when a, b,
or c is complex, and worse, the problem arises even when the imaginary
parts are 0. The example above reports that hasrealroots(1, 3, 4) is 0,
meaning that the corresponding quadratic has no real roots. If we specify
3+0i instead of 3, however, hasrealroots() reports 1:

Both answers cannot be correct. (For your information, the first answer is
the correct one.) We previously encountered calculations that produce
different answers depending on how arguments are specified. In the
previous chapter, I mentioned that sqrt(-1) evaluates to missing, which is
the desired result on the real-number line, and that sqrt(-1+0i) evaluates
to 1i, the desired result for the square root of on the complex plane.
You might wonder how Mata managed that when, mathematically,

. Mata managed it because typing -1 produces a number
stored as real, whereas typing -1+0i produces the same number but stored
as complex, and Mata makes calculations based on storage types.

Mata’s based-on-storage-type logic produces a feature in the case of
sqrt(). That same logic produces a bug in hasrealroots(). I did not
notice the bug when I wrote the program because I intended to use the
function with real values and tested it only with real values.

Let’s trace how the wrong answer came about. If argument b is storage
type complex, the entire calculation is performed on the complex plane.
b^2 - 4*a*c was correctly calculated to be -7+0i. Then that result was
compared with 0 by using the greater-than operator. The greater-than
operator on the complex plane, however, is not the operator that you are
familiar with. On the complex plane, the operator compares the “lengths”
of the complex vectors. -7+0i has length 7, which is greater than the
length of 0+0i, which is 0. Thus, hasrealroots() returned true.

And so it is that hasrealroots() has an arcane bug. The program was

137

nonetheless fine for my use in a do-file. There is a difference, however, in
writing programs for quick-and-dirty use by yourself and writing programs
for use by others. Let’s see what might happen if I made hasrealroots()
available to other users. Assume that I give hasrealroots() to you, and I
even warn that it is for use with real values only. Assume that you have
values stored in Mata variables mya, myb, and myc. Taking my warning to
heart, you examine the values to make sure they are real:

Satisfied, you use hasrealroots() to determine if there is a real-root
solution:

There is a real-root solution, says the program, but the program is wrong.
What you failed to notice was the omitted “+0i” on the end of myb. I
suppose you cannot be blamed for that, because Mata did not show it to
you. Variable myb is nonetheless complex in the storage-type sense of the
word. Allow me to show you:

Now what would be your response were I to claim that the mistaken
answer was your fault? Your response should be that the program I wrote
is sloppy, and its sloppiness could result in real damage. Now put yourself
in my shoes. What did I do wrong? Who would have guessed that is
greater than 0 on the complex plane? And in my defense, I did test the
program thoroughly with real values.

What I did wrong was not restricting the program to run only with values
that I knew it worked with. Restricting the program to run only with real
values would have been easy. I just needed to declare the argument types:

138

Had I declared the types, the result of you typing hasrealroots(mya,
myb, myc) would have been

Serious programmers use variable types to prevent programs from working
in situations in which the programs are not intended to work or not known
to work.

Another reason that serious programmers specify variable types is that the
code will be more understandable if they come back to it later.

Yet another reason that serious programmers include variable types is that
the compiler might tell them about errors in their code that they otherwise
would not notice. In fact, serious programmers tell the compiler to require
that variable types be specified. Here is an example:

In the above output, Mata reports that variable pl is undeclared. The bug,
it turns out, is not that I forgot to declare pl, despite that being what the
error message says. The bug is that I coded pl (the letter p and the letter l)
when I meant to code p1 (the letter p and the number 1).

Let’s imagine that I had not instructed Mata to require variable types by
setting matastrict on, and so the program compiles without mention of
pl. It is easy to imagine scenarios like the following: Variable pl was used
late in the code where p1 needed to be reinitialized to 1. Because p1 was

139

not reinitialized, a loop was skipped. Skipping the loop produced incorrect
results, but only in certain rare cases.

Without the warning message, I doubt I would have noticed my
typographical error that was buried somewhere in 200 lines of code.

There are two things you must do if you want Mata to spot such problems
in your programs. First, you must use explicit declarations. That is the
topic of this chapter. Second, you must set matastrict on, which among
other things, does away with allowing declarations to be omitted. I will tell
you more about matastrict in the next chapter.

There is yet another reason to specify variable types, although it is the least
important of the reasons. Specifying variable types allows Mata to produce
more-efficient code in some cases.

140

6.2 The forty variable types

Mata has 40 variable types, which you construct by choosing one entry
from column A and another from column B:

Some examples are transmorphic matrix, real scalar, complex
matrix, numeric vector, string colvector, pointer vector, struct
mystruct scalar, and class myclass scalar.

The term from column A specifies the type of the element, which is also
known as the eltype.

The term from column B specifies how the element is organized, which is
also known as the orgtype.

The five orgtypes are

141

All the orgtypes except matrix are special cases of other orgtypes. scalar,
for instance, is a special case of colvector, rowvector, and vector, which
are in turn each a special case of matrix. If a matrix is , it can pass
for a scalar. If a function requires a scalar argument, you could pass a

 matrix to it. By the same token, if a function requires a matrix
argument, you could pass a scalar to it. The orgtypes are restrictions, and
you specify the restriction that most narrowly describes the variable.

The eltypes are

The first six eltypes are mutually exclusive. A real and a string are
obviously different from each other. Less obvious is that a real is different
from a complex—and vice versa—even if both contain the same
mathematically real value. That means you cannot pass a real to a
function requiring a complex. If X is a real and you want to pass it to a
function that requires a complex, you must specify C(X). C() is Mata’s
function to promote values to complex if they are not already complex.

The last two eltypes are more relaxed restrictions.

Eltype numeric means real or complex. A function requiring a numeric
argument X will accept X whether it is real or complex. In this case, callers
do not have to code C(X). Instead, the programmer who writes the function
allowing numeric arguments must use C(X) where appropriate in the code.

Eltype transmorphic amounts to no restriction at all. Any eltype will do.
A variable declared transmorphic could be real at one point in the code,
complex later, and string even later. Doing that in code is not the intent of
transmorphic, however. Such use would only increase the chances of

142

bugs. We will see appropriate use of transmorphic later in this chapter
and then again in chapter 8.

6.2.1 Default initialization

Consider the following function:

This function has a bug: variable retval is uninitialized. If you were to
run foo(), you would discover that it returns missing value (.). Declared
variables are pre-initialized by Mata with default values.

Mata initializes scalars to contain the appropriate type of missing value,
which is missing (.) in the case of real and complex, "" in the case of
string, and NULL in the case of pointer.

Vector and matrix variables—vector, rowvector, colvector, and matrix
—are initialized to be null, meaning they are dimensioned , , or

.

143

Despite the initialization outlined in the above table, we will use the word
uninitialized to describe variables that programs do not explicitly initialize.
The table above would be better called the uninitialized-value table,
because Mata does not initialize variables to help you; it initializes them to
protect itself from you. Consider a truly uninitialized string scalar
pointer s. In C, if you copied a string into s, your program would crash.
Do the same in Mata and you get a traceback log:

The traceback log is the Mata equivalent of C code crashing. The only
reason that Mata did not crash is because it pre-initialized the pointer to
contain NULL.

6.2.2 Default eltype, orgtype, and therefore, variable type

Eltype defaults to transmorphic when not specified.

Orgtype defaults to matrix when not specified.

Therefore, variables default to transmorphic matrix when not explicitly
declared.

6.2.3 Partial types

Because eltype defaults to transmorphic and orgtype defaults to matrix,
specifying just an eltype and letting orgtype default to matrix or
specifying just an orgtype and letting eltype default to transmorphic is
allowed. As a result, the following are valid explicit declarations:

144

Not declaring variables is bad style. Is declaring variables by specifying
just the eltype or just the orgtype good style?

The intent of good style is to reduce the chances of problems in your code.
Implicit declaration is bad because there can be unintentional
consequences. In section 6.1, hasrealroots() produced a wrong answer
because it did not explicitly declare the eltype. That result argues that
eltypes should be explicitly specified.

How about omitting the orgtype? I could show you programs that produce
incorrect results when fed the unexpected vector or matrix, but such
examples are rare. Even so, I do not recommend omitting it.

I do, however, think that transmorphic by itself is acceptable style.
transmorphic specifies that no restriction be placed on the eltype and thus
correctly suggests that no restriction is being placed on the orgtype either.

6.2.4 A forty-first type for returned values from functions

Variable types are also used to specify the type of value that functions
return:

A function can return any of the 40 variable types, including
transmorphic matrix. Functions that return transmorphic do not have to
return a variable that is declared transmorphic. They might return real
scalars in some cases or string vectors in others.

Functions can also return void.

void specifies that the function returns nothing. printf() is Mata’s
function to display formatted text:

145

Function printf() is void.

fclose() is Mata’s function to close an open file. It too is void.

Mata can return values in the caller’s arguments, a topic we will discuss in
detail in section 8.2. Functions that do this often return void. svd(A, U,
s, Vt) is Mata’s function to calculate the singular-value decomposition of
matrix A. It returns its results in U, s, and Vt. svd() is itself void.

transmorphic includes void, so transmorphic functions can return void
in some cases and a result in others:

Functions that do this are usually considered bad style, but there are
exceptions. Mata’s st_local() function deals with Stata macros. When
two arguments are specified, the function returns nothing and sets the
contents of the Stata macro:

When one argument is specified, the function returns the contents of the
Stata macro:

It is an elegant design in that the number of arguments determines whether
the function returns anything, and so it is obvious to the caller when the
function will return something and when it will return nothing. You could
write your own functions following this design. To handle the return value,
declare the function transmorphic; in the body of the function, code
return where you want to return void and code return(…) everywhere
else. We will discuss how to write functions with a varying number of
arguments in section 8.3.

146

A function always returns nothing when it is declared void:

It is not, however, an error if the caller of the function codes

x will be set to a real matrix.

147

6.3 Appropriate use of transmorphic

When you do not explicitly specify function and variable types, they are
assumed to be transmorphic. You can also explicitly declare them to be
transmorphic. There are four valid reasons to declare them
transmorphic:

1. Functions are declared transmorphic when they sometimes return
one thing and other times return another. In the previous section,
function st_local() returned the contents of a macro when one
argument was specified, and set the macro and returned void when
two arguments were specified.

2. Arguments of functions are declared transmorphic when they are
allowed to be of one type or another. Such functions are said to be
overloaded.

3. Arguments of functions are declared transmorphic when the
arguments are used only for returning calculated results.

4. Arguments of functions are declared transmorphic when the
variables contain values that will merely be passed along to other
subroutines. Such variables are called passthru variables.

We discussed reason 1 in the section above. Now we will discuss
reasons 2, 3, and 4.

6.3.1 Use transmorphic for arguments of overloaded functions

You want to implement a function such as foo(x):

Notice that the function returns a real scalar regardless of how x is
specified. x itself can be of different types, in this case, a real vector or a
string scalar.

To code foo(), you begin by declaring argument x to be transmorphic:

148

In the body of foo(), you write code to verify that x is as it is supposed to
be, a real vector or a string scalar, and then you call separate
subroutines to handle each case. We will write such a function in
section 8.4.

6.3.2 Use transmorphic for output arguments

Sometimes functions need to return more than one thing. Mata’s built-in
function eigensystem(A, X, L) is an example. eigensystem() calculates
the eigenvectors and eigenvalues of matrix A. Arguments X and L are
provided to receive the calculated vectors and values. Whatever values X
and L currently contain, if anything, are irrelevant. When eigensystem()
returns, X will contain the eigenvectors and L will contain the eigenvalues.

The author of the function declared the output arguments to be
transmorphic:

It was important for the author to do that. The author was perhaps tempted
to declare X and L using explicit types:

It would be logical to declare X and L in this way because X will be a
numeric matrix and L will be a numeric rowvector when the function
returns. The problem is that the declared types of arguments are a
specification about what they contain at the time the function is called, not
a statement about what they will contain when the function returns. It
might well happen that X and L do not meet the restrictions at the time the
function is called, and if so, that would result in an unnecessary error:

The error is unnecessary because the function will redefine X and L.

149

Output-only arguments should be declared transmorphic.

6.3.2.1 Use transmorphic for passthru variables

The final valid use of transmorphic is for declaring passthru variables, or
variables that pass through a routine but that the routine never examines or
modifies. db in the following example is a passthru variable:

db is passthru in getdata() because getdata() never looks at db’s
contents or modifies them. In the above code, db is declared inside
getdata(). db would also be passthru if it had been an argument to the
function:

Declaring db as transmorphic instead of what it really is has advantages.
First and foremost, declaring it transmorphic ensures that you do not have
to recompile getdata() if the db functions are updated and even if the
update changes db itself. db might be a structure or a class, and the author
might add, delete, or rearrange members. That does not matter because,
when you compiled getdata(), Mata did not even know that db was a
structure or a class.

150

Declaring db transmorphic also ensures that your programs do not
accidentally modify db’s contents. You cannot modify them because if you
referred to db.mbr, Mata would issue an error when you attempted to
compile the routines.

If you are the author of functions that provide passthru variables, you
should document them as transmorphic and keep to yourself their actual
types. This benefits you and your users. You can fix bugs and even add
features, and users of your code will not need to recompile their functions
unless they want to exploit the new features you added.

6.3.3 You must declare structures and classes if not passthru

I showed you examples of structures and classes in sections 3.4.2 and 3.4.3
during the tour. We will discuss them more in chapters 10 and 12. Right
now, I want to clarify something I said in the previous section. I said that if
you do not explicitly declare variables containing structures or classes as
structures or classes, then you cannot access their members. It therefore
follows that if you need to access the members, you must declare them as
what they really are.

Which is to say, declarations may be optional in Mata, but they are not
optional where structures and classes are concerned. If you do not
explicitly declare them as structures or classes, they will be assumed to be
transmorphic, meaning that you will not be able to access their members
in your program.

6.3.4 How to declare pointers

We first discussed pointers in section 3.4.4 during the tour. Pointer is an
eltype and can be combined with any orgtype, just as all other eltypes can
be, so p can be declared as any of

The declarations above are incomplete but allowed. They are incomplete
because they do not specify what p points to. It will help if you think of p
and *p as if they were separate variables. The above declarations are fully

151

explicit as to p, but what is *p? You can specify the type of *p
parenthetically:

The above declaration states that *p is a real matrix. Pointers can point to
other pointers, although that rarely occurs. If you have such a case, you
can nest the parenthetical phrases:

If you have a pointer to a pointer ... to a real matrix, you can continue
nesting. I have never had occasion to use anything more than three-deep
pointers:

When you omit the parenthetical phrase,

Mata assumes that *p is a transmorphic matrix, just as Mata assumes for
all variables with omitted declarations. I recommend specifying full
declarations, although it is not necessary that you do so as long as *p is
real, complex, string, or pointer.

It is necessary that you specify full declarations if *p is a structure or a
class. More correctly, it is necessary unless *p is a passthru variable. Said
differently, you will not be able to use the construct p->mbr unless you
declare p to be

or

152

Chapter 7
Mata’s strict option and Mata’s pragmas

153

7.1 Overview

Mata has a strict setting to require that variables be explicitly declared.
The setting also flags questionable constructs that might be mistakes. The
strict setting is off by default.

Variable p2 is undeclared in the following program, but even so, Mata
compiles the code:

Had the strict setting been on, the program would not have compiled:

Mata’s strict setting flags questionable constructs, too. In the following
code, variables X and L are used before they are initialized:

154

Having uninitialized variables is usually a mistake, but not in this case.
eigensystem() is a Mata library function that returns its results in X and L.
You can tell the compiler that X and L are intentionally unset by using
pragma unset varname:

A pragma is an instruction to the compiler. In this case, pragma unset X
and pragma unset L instruct the compiler that X and L were intentionally
left uninitialized.

When Mata produces warning messages such as “variable X may be used
before set”, you either fix the code or use pragmas to suppress the
message. When the code does not need fixing, you suppress the message
so that later, when the code is recompiled, you do not wonder all over
again whether there is a mistake.

You place the pragmas directly above the questionable constructs, not at
the top of the program. This way, if you later modify the code and use the
uninitialized variable before the pragma appears, that will be flagged; this
time, it might really be a mistake.

155

7.2 Turning matastrict on and off

Mata’s strict setting is called matastrict, and it is off by default. You set
matastrict using Stata’s set command.

You can also set matastrict from inside Mata. Prefix the set command
with mata:

You do not need to turn matastrict off when compiling code in do- or
ado-files because Stata automatically restores matastrict to its default
setting.

156

7.3 The messages that matastrict produces, and suppressing
them

matastrict produces the following messages:

The first message is an error, and the remaining messages are warnings.

Even though the example I showed in the introduction was a false positive,
warnings usually flag real problems, such as in the following routine:

In this case, the warning messages appear because I forgot to code the line

I have forgotten to code lines, or have accidentally deleted them, more
often than I care to admit.

Mata reports “variable

unused” when variables are declared but unused. Here is an example:

157

Either the declaration of variable k needs to be deleted or there is a
substantive error in the body of the program. Perhaps, just as I did, you
forgot to code a line.

The possibilities are the same with the “variable

set but not used” message. In the following program, k is declared, it is set
to 0, but after that it is never referred to again:

Either use k or delete it.

The message “argument

unused” is a variation of “variable

158

unused”. Mata distinguishes between arguments and variables because
sometimes there are good reasons to have unused arguments. In the
following code, argument m is unused:

Although the obvious solution is to delete m, there might be good reasons
for keeping it. The variable might have to do with a feature you are
planning to add. In that case, you might retain the argument so that callers
are forced to pass it in preparation for that happy event. Nevertheless, until
the feature is added, you should add code to verify that m has the
appropriate value given what weights() currently returns:

The warning message no longer appears because m is now used by the line
of code verifying that it equals 1. Today, weights() returns type m==1
matrices. Perhaps someday it will also return type m==2 matrices, matrices
calculated using a different formula.

The above is a better solution than using a pragma to suppress the warning
message, such as

159

Here the warning message no longer appears because we coded pragma
unused m.

In this case, it is dangerous to use a pragma because today’s users might
specify m incorrectly given what you intend for the future, yet they would
have no way of detecting their mistake. Nonetheless, I have been known to
use this approach: Imagine that weights() has another argument, Z, a
matrix that might be symmetric. The formulas implemented today are the
nonsymmetric formulas, which work when Z is symmetric, too. Someday,
I plan to add code to weights() that will calculate W more quickly when Z
is symmetric. Thus, I suggest that users specify m indicating whether Z is
symmetric, and, someday, calculations with symmetric Z matrices might
run more quickly.

160

Chapter 8
Mata’s function arguments

161

8.1 Introduction

This chapter concerns function arguments.

First, Mata functions can change the values stored in the arguments they
receive from callers. Changing them changes the values stored in the
caller’s variables, so you must exercise caution not to change the values
unintentionally. Intentionally changing them, however, can be useful. It is
a way of returning multiple results.

Second, Mata functions can have a varying number of arguments. There is
no downside here and it is easy to program.

Third, Mata functions can have multiple syntaxes. This involves
combining a varying number of arguments with the transmorphic variable
type.

162

8.2 Functions can change the contents of the caller’s
arguments

Consider a function such as

and a caller of foo() who codes

Mata is a call-by-reference language, meaning that mat1 and mat2 are
literally the A and B that foo() receives. If foo() changes A, then mat1 is
changed because A and mat1 are the same variable. The same applies to B
and mat2.

Here is a demonstration of this with a one-argument function:

From the caller’s perspective, X had 1 in it, and after calling goo(), X was
changed to be a 2 x 2 identity matrix.

Most official functions in Mata do not change what is stored in the caller’s
variables. That is by intent, of course, and the programmers who wrote the
functions had to be careful not to change the arguments by accident.

Other Mata functions do change the caller’s variables. Mata’s
eigensystem() function calculates the eigenvectors and eigenvalues of a
matrix A. The function needs to return both the vectors (a matrix) and the
values (a vector). eigensystem() returns the two results in arguments that

163

the caller provides. To obtain results for matrix A, the caller calls
eigensystem(A, X, L). The eigenvectors are returned in X, and the
eigenvalues are returned in L. Meanwhile, the function itself returns void.

There is no deep programming issue that needs explaining, although it is
perhaps worth repeating that arguments X and L should be declared as
transmorphic. The code is

X and L should be declared transmorphic because eigensystem() does
not care about the type of result currently stored in them. In the assignment
to them, eigensystem() will store the appropriate real or complex result,
as explained in section 6.3.2.

8.2.1 How to document arguments that are changed

Communicating to callers when functions change arguments is obviously
important. Less obviously, it is important that you communicate it to
yourself, and do so before writing the code. I include a comment above
routines that I write showing which arguments are inputs and which are
outputs. I put bars over outputs and lines under inputs. Mata’s sqrt()
function looks like this:

The diagram says the sqrt()’s argument remains unchanged.

Most functions look like sqrt(). The diagram for Mata’s eigensystem()
function, however, is

164

This diagram says that A is unchanged and X and L are changed, and it says
something else. It says that the function does not care what was stored in X
and L. That information is ignored.

Mata’s invsym() function has a diagram identical to that of sqrt():

There is another version of invsym(), however, that has a rather surprising
diagram:

Can you interpret it? A is underlined, which means that the contents of A
are used by the function; A has a line above it, which means that the
contents of A are changed by the function; and so there is only one
possibility: _invsym(A) replaces the input matrix with its inverse. Having
arguments that are both inputs and outputs is usually best avoided, but in
this case it is justified by the memory that is conserved.

So let’s consider function syntaxes. Mata’s library routines follow
reasonably good style.

 Most work like this:

 No arguments used to return values:

 Others work like this:

 Return values in arguments in rightmost or leftmost positions:

165

 Still others work like this:

 Return values in arguments plus a returned value indicating success or
failure:

 A few work like this:

 Input changed to output:

 None work like this:

 Return values randomly interspersed with input values

What makes good style is predictability and adjacency. It should be
predictable when the function will change the contents’ arguments, and the
changed arguments should be adjacent.

In code you write, even if it is just for yourself, do not change the contents
of arguments without good reason. When there is good reason, make it
clear which arguments are modified. Make it clear both in your code and
in any documentation that you write.

8.2.2 How to write functions that do not unnecessarily change
arguments

If you do not intend to change the caller’s variables, make sure that you do

166

not change them. For instance, assume that you are writing

As you write the code, you realize that it would be convenient if you
added 1 to i. Doing that, however, would change the caller’s variable. The
right way to code such cases is to make a copy of the caller’s variable and
increment it.

167

8.3 How to write functions that allow a varying number of
arguments

Mata functions have a fixed number of arguments by default, but you can
write functions that allow the number to vary. Consider a function
matrixmanip(), in which we want to make the second argument optional:

We plan to make the default tolerance 1.0x–1a, which is roughly 1.0e–8
as explained in section 5.2.1.2. Here is how we make matrixmanip() do
that:

The vertical bar in front of the comma separates required arguments from
optional ones. Arguments to the right of the bar are optional. The line

is how we set tolerance if the second argument is not specified. Built-in
function args() returns the number of arguments the caller specified.

Regardless of whether the caller specifies one or two arguments, Mata
makes the situation look as if two arguments were specified. Mata itself
provides the second argument if necessary and sets the argument to
missing value in the case of tolerance because it was declared to be a
scalar. If tolerance had been declared to be a vector or a matrix, Mata
would have made it , , or .

Thus, either the user specified the second argument or Mata did. Mata
function args() returns the number of arguments that the user specified.
Because matrixmanip() allows one or two arguments, we know args()
must be 1 or 2. If args()==2, then the caller specified the tolerance. If
args()==1, then matrixmanip() executes code to set tolerance to the

168

default:

I previously warned against changing values stored in arguments
unnecessarily, but filling in tolerance when Mata specifies it is okay.
Mata does not care if we change it, and in fact, Mata expects us to change
it.

The code for handling multiple required and optional arguments is similar
to the above code. In the following code, the first three arguments are
required and the last two are optional. That means the user could specify
three, four, or five arguments.

Note the cuteness of the code that sets the defaults. tol1 is set if one, two,
or three arguments were specified. tol2 is set if one, two, three, or four
arguments were specified.

169

8.4 How to write functions that have multiple syntaxes

Say you wish to write a function that does different things with different
types of arguments. For example, you wish to write with two syntaxes:

This example might seem absurd, but it is not. Perhaps foo() calculates a
kind of check sum. Whatever it is that foo() does, the solution is to use
transmorphic for the argument, diagnose whether the argument is real or
string, and call an appropriate subroutine:

Function foo() calls foo1() or foo2(), and those functions include the
appropriate declaration.

Functions with multiple syntaxes sometimes allow different numbers of
arguments, too. Perhaps foo() needs two arguments when a real vector is
specified. Imagine that the syntax we need to implement is

The code could read

170

I used _error(3001) to produce the standard Mata error message for the
incorrect number of arguments specified; see help m2 errors.

171

Chapter 9
Programming example: n_choose_k() three
ways

172

9.1 Overview

We are now ready to use Mata as a serious programmer would use it, or
more correctly, as three different serious programmers would use it. We
are going to write a Mata routine and package it three ways.

We will package it as a do-file that can be used from other do-files.

We will package it as an ado-file, creating a new Stata command.

We will package it as a Mata library routine so that it can be used in other
Mata and Stata code just as if it were originally a part of Mata.

We first need to develop a routine worthy of this effort.

173

9.2 Developing n_choose_k()

We are going to write a routine to calculate the number of combinations of
 things chosen at a time. The formula for the number of combinations is

I am sure you can imagine writing code to calculate . Here is an obvious
routine using Mata’s built-in factorial function:

The code is clear, concise, and produces accurate results, and yet the code
would be unacceptable if turned in by a StataCorp programmer. The
problem is that choose(1000, 1) returns missing value when it should
have returned 1,000. How many ways can you choose 1 thing from 1,000?
You could choose the first thing, the second, …, or the thousandth. There
are 1,000 ways.

The code produced missing value because it attempted to calculate 1,000
factorial. That result is too large to be calculated on a digital computer,
being approximately . The largest number that the
computer can store is approximately . A better routine would
perform the calculation in the logs by using Mata’s lnfactorial()
function:

According to this routine, there are 1000.000000000994532 ways to
choose 1 thing from 1,000. Relative to the true answer, the error is only

174

9.945e–13, so I view the result as acceptable. We could nevertheless
improve the accuracy if we rounded the calculated result to the nearest
integer by using Mata’s round() function:

With this change, choose3() reports that there are exactly 1,000 ways to
choose 1 thing from 1,000.

This function is still not perfect. It calculates the correct result for 1 thing
chosen from 10,000,000, but not for 1 thing chosen from 100,000,000. It
produces 99,999,978, which is off by 22, a relative error of 2.20e–7.

Can we write a routine that does better? Let’s reconsider the mathematical
formula

Computers can calculate formulas like the one above with near-perfect
accuracy because they can multiply and divide without loss of precision,
by which I mean that if a computer calculates a=b/c, then it will be true
that a*c==b. Lots of people think computers are accurate, and they are
right when the operators are multiplication and division. Other people,
knowing computers perform finite-precision arithmetic, think computer
inaccuracy is equally shared across all operators. It is not. Round-off error
arises because of addition and subtraction, not multiplication and division.
Thus, I can tell at a glance that

175

can be calculated on a computer more accurately than

I can tell at a glance because the first equation involves multiplication and
division, while the second involves subtraction. Both equations share
whatever error might be introduced by the calculation of , and
because and are integers, that is no error at all as long as , , and

 are in the range 9,007,199,254,740,992.

My complaint when we implemented code for the factorial formula was
that the code produced missing values due to overflow in cases where the
result was a reasonable number. I focused on the example and

, but there are many other examples I could have mentioned. It turns
out there is way we could have avoided the calculation that caused the
overflow. If I asked you to calculate by hand for and ,
you would proceed like this:

You would first write out the factorial calculation, and then cancel the 999
in the numerator with the 999 in the denominator, cancel the 998s, cancel
the 997s, and so on. You would have written

Working problems by hand and then writing code that mimics what you
did is an excellent way to develop computer routines. Here you just
calculated by using

176

The above formula saves time for and , but if I had asked
you to calculate for and , you would have canceled
numbers in the numerator with numbers due to in the
denominator instead of .

The solution written in Mata code is

We will need to write the nfactorial_over_kfactorial() subroutine, but
that is a detail. Our insight—cancellation of like terms in the numerator
and the denominator—is codified in n_choose_k().

For no good reason, I am going to rewrite n_choose_k() because I would
like to substitute calls to nfactorial_over_kfactorial() for calls to
factorial():

Calling nfactorial_over_kfactorial(, 1) is another way to calculate
, and it appealed to me to use our subroutine instead of factorial(). As

I said, I did this for no good reason. Here is our subroutine:

177

I have just one comment about this code, and it concerns the lines

The two lines return missing value when n or k is less than 0, or is greater
than 1.0x+35, or is not an integer. Function trunc() returns the largest
integer less than or equal to . As for the 1.0x+35, it is a shorter way of
writing 9,007,199,254,740,992. I mentioned above that integers in the
range 1.0x+35 are not subject to rounding, although when I originally
said it, I used the ungainly base-10 number.

You might suspect that I should have added a third line, namely,

Adding the line is unnecessary because missing value is greater than all
nonmissing values, and the first two lines already return missing value
when or is greater than 1.0x+35.

n_choose_k() and its subroutine nfactorial_over_kfactorial() are the
routines we are going to package as a do-file, as an ado-file, and as a Mata
library routine.

178

9.3 n_choose_k() packaged as a do-file

Do-files tend to be written in ways peculiar to the problem at hand, and
that means there is no best single template to show you. I will show you
the do-file I wrote back when I was writing chapter 4, where
n_choose_k() made a brief appearance. I did not want to risk showing you
code that did not work, so I wrote a do-file containing the code and
verifying that it produced the correct answers.

As I said, do-files are peculiar to the problem at hand, and I had my own
particular problem. I will show you my do-file, and then I will show you a
more general approach.

9.3.1 How I packaged the code: n_choose_k.do

The do-file I originally wrote had one goal: to prove that n_choose_k()
produced correct results. I put the code and tests of the code into one file,
which I named n_choose_k.do.

179

180

Note the comments in the file. When I write code, I include comments. It
has been only a few weeks since I wrote the do-file, and I am already glad
that I have comments. They reminded me how the code works and made it
easier for me to write this chapter. If I ever need to modify the code, the
comments will help then, too.

With or without comments, the do-file solved my problem. To verify that
n_choose_k() worked, all I had to do was type do n_choose_k:

181

Because the do-file ran without error, I know that n_choose_k() produces
correct answers for the particular problems that I ran. I do not need to look
at the output, because I wrote the tests using Mata’s built-in assert()
function. One of the lines in the file is

assert(expr) does nothing if expr is true. If it is not true, however,
assert() aborts with error. If n_choose_k() had a bug and
n_choose_k(1000, 1) did not equal 1,000, here is what would have
happened:

The do-file would have stopped at the first unexpected result, and that is
difficult to ignore. You can read more about assert() by typing help
mata assert(). You can even see assert()’s source code by typing
viewsource assert.mata.

Some programmers would have written the certification part of my do-file
to display the results instead of using assert(). That is, instead of lines
such as

they would have coded the lines

182

The output from their do-file would certainly have been more entertaining:

Are the answers right? Determining that would require looking at and
thinking about the results presented. Would you notice if
n_choose_k(1000,2) produced 498,500 instead of 499,500? I ran 250 tests
in my do-file. If one or two produced incorrect results, would you have
spotted them? How long would you need to review the output? It took me
about 15 minutes to code the asserted results.

My tests produced no output, but I have no objections to tests that do.
Notice that in one part of the do-file, there is a commented-out printf()
line:

The first draft of n_choose_k() had a bug, and I needed output to find it. I
later commented out the printf() statement, but there is no requirement
or rule that I do that.

9.3.2 How I could have packaged the code

My do-file served my purposes in writing this book. If I had wanted to
package n_choose_k() for use by other do-files, however, I would have
written the do-file differently. I would have created two do-files:

183

File n_choose_k.mata would have defined the functions.

File test_n_choose_k.do would have loaded the functions and tested
them.

Developing the code and tests would have been just as easy with two files
as with one. File test_n_choose_k.do would have started with only a few
lines and no tests at all:

As I wrote the code in n_choose_k.mata, I would have typed

to see whether the code in the file I was writing had compile-time errors or
warning messages. Once the code compiled without errors, I would have
set about adding tests to test_n_choose_k.do, such as

184

I would run the file,

and then add another test:

And so I would continue.

When I am done, and the code is written and works to my satisfaction, I do
not throw away test_n_choose_k.do. It is my completed certification file,
which I can use to test n_choose_k() and its subroutines in the future.
Why would I want to do that? Because a year from now, a reader might
report a bug in n_choose_k(), and I have been known to fix one bug just
to introduce another. Typing do test_n_choose_k will provide evidence
that my fix has not made things worse. Setting myself up for the next bug,
I will add code to test_n_choose_k.do that shows I fixed this bug.

In the meantime, I can use n_choose_k.mata in my analysis do-files:

185

9.3.2.1 n_choose_k.mata

We at StataCorp use file extension .mata for files that contain Mata
functions, structures, and class definitions. If a do-file ends in .mata, we
know that it defines new Mata functions and the like, but it does not clear
all or otherwise disturb Stata’s or Mata’s environment.

The template for .mata files is

The two lines at the top of the file are important.

The first line states the Stata version at the time the code was written. It
ensures that the code will be compiled with newer versions of Stata just as
it was originally compiled.

The second line tells Mata to impose strict standards when compiling the
code. Why we want strict standards was explained in chapter 7.

Here is the n_choose_k.mata do-file:

186

9.3.2.2 test_n_choose_k.do

187

Files named test_name.do test that the code in name.mata works.

The template for test_name.do is

So many do-files start with a version statement that we at StataCorp
include a comment when we intentionally omit it. In this case, we omit it
because once the functions are compiled, they should work with the
current and future versions of Stata.

Here is file test_n_choose_k.do:

188

Seeing these files in their final form is misleading. In earlier drafts,
n_choose_k.mata was not error free, and neither was
test_n_choose_k.do. Let me tell you a little about the process that

189

produced the two files.

You know that I did not use this two-file setup when I originally wrote the
code, but I am going to tell you the story as if I did. The story varies from
the truth in only a few, unimportant details.

I debugged n_choose_k.mata as I wrote test_n_choose_k.do. File
test_n_choose_k.do started out like this:

I ran test_n_choose_k.do to discover that n_choose_k.mata had errors so
severe that the code would not even compile. I fixed the mistakes, and
once the code did compile, I added the first test to test_n_choose_k.do:

assert() reported that the assertion was false, of course. I found and fixed
the bug (two of them) in n_choose_k.mata and ran test_n_choose_k.do
again. It worked. Then I added another test:

That worked too. Feeling braver, I added more tests between runs. All
went well for a while, but then assert() squawked. This happened in one
of the more complicated tests where the test itself was executing a loop,

190

and the error was not in the code but in the test itself! Both code and tests
have to be debugged.

Debugging is something we all must do. Would you believe me if I told
you that debugging sometimes takes less time if you do it while writing a
test file? That really does happen. It happens when you fix one bug but the
fix itself introduces a new one. After you fix a bug, you rerun the test file,
and sometimes an earlier test fails because of a new bug you just
introduced. If you were testing the code interactively, you would not rerun
the tests you previously typed. It would be too tedious, and anyway, you
would not even remember them.

It is just a little more work to type tests into a file than to type them
interactively. You have to debug the code, so why not write a test file
simultaneously?

9.3.3 Certification files

Let’s review. I started with one do-file that contained code and tests, and I
converted it into two do-files. Did I introduce errors doing that? It would
have been easy to do. Whenever you pass a file through a text editor, you
can accidentally make changes to it. Characters get added or deleted; entire
lines can be deleted. You name it, and it has happened to me too. File
test_n_choose_k.do has a wonderful feature. To verify that all is well, all
I need to do is run it.

We at StataCorp call files like test_n_choose_k.do certification files or,
equivalently, certification scripts. Some people might call them validation
files. Validation is computer science jargon for providing evidence that
software works. Our view is that validation is a process of which
certification is a part.

Do certification files really validate results? The first test in
test_n_choose_k.do asserts that n_choose_k() results are equal to

, as calculated by Mata’s factorial() function. Under the
assumption that Mata’s factorial() function is validated, and under the
assumption that I used the function correctly, I suppose n_choose_k() is
validated for the value tested. It is validated if you assume that I am right
in claiming that is the correct formula for calculating

191

choose . Perhaps you would like to know more about me before jumping
to that conclusion.

At StataCorp, one part of validation is the process that produces
certification files. We obtain valid answers from varied sources. We obtain
them by working problems by hand, from textbooks, from other software,
and via simulation.

You have just seen the first of what I hope will be many certification files.
They are not difficult to write. The one rule is that they stop with error if
results are not as expected. We have over 9,000 certification files at
StataCorp comprising 1.8 million lines of code. Running them produces 22
million lines of output. It is important to us that certification stop if there is
an unexpected result. Flipping through 22 million lines to spot errors
would be impossible. Even so, there is another part of validation at
StataCorp that involves comparing those 22 million lines with official
logs.

There are some rules we do not have at StataCorp: We do not require that
certification files be well organized, that they be pretty, or that they be
efficient. Our attitude is that the more tests they contain, the better.

192

9.4 n_choose_k() packaged as an ado-file

Now put out of your mind the do-files we just wrote. We have a different
plan for n_choose_k() and its subroutines, which is to write an ado-file to
create a new command in Stata. The new command will have the syntax

 nchooseki # #

When users type nchooseki 5 2, for instance, displayed will be the
number of ways to choose two things from five:

nchooseki will also store the result in r(comb):

We will store the code for this calculator-like command in file
nchooseki.ado, as Stata requires. Rather than writing code entirely in
Stata, however, the Stata code we write will parse what the user typed to
identify the two numbers and call n_choose_k() to make the calculation,
and we will put the Mata code for n_choose_k() and its subroutines right
in the ado-file with the Stata code.

9.4.1 Writing Stata code to call Mata functions

Here is Stata ado-code that implements nchooseki:

193

The Mata code will appear at the bottom of the ado-file, but right now let’s
focus on the Stata code and how Stata and Mata communicate with each
other. I direct your attention to the highlighted line:

In Stata, when you code mata: …, Stata invokes Mata to run what follows
the colon. If you coded,

Stata would invoke Mata, and Mata would execute N = n_choose_k(‘n’,
‘k’). Stata handles the macro expansion before passing the line to Mata,
so if ‘n’ were 10 and ‘k’ were 5, Stata would tell Mata to execute the line

Mata executes the line just as if you had typed it interactively, and the
result is the creation of a global Mata variable named N containing 252.
Creating a global Mata variable will not help us. We need to get the result
back to Stata in the ado-file that we are writing.

Mata provides functions we can use to send results back to Stata:

194

The list above is just a subset of what is available. Mata even provides
functions to save results in Stata’s data. The full set of them is discussed in
appendix A. The function we need is st_numscalar(). We can use it to
save the result of calling n_choose_k() by coding

The above saves the result in a Stata scalar named N, which would solve
our problem, but scalar N would be global, and ado-programs should not
create globals. We could solve the global issue by coding

I, however, am going to use a different solution. Stata commands return
results in r(). Mata can return results in r(), too, and st_numscalar()
will do that if we code "r(name)" as st_numscalar()’s first argument.
We can and will store the result in r(result) by coding

That is just what I did. The final lines of the ado-program read

9.4.2 nchooseki.ado

All we have left to do is add the Mata code to the ado-file nchooseki.ado.
The template for ado-files that contain Mata code is

195

Notes:

1. There are three version statements. This first one is a comment
and can be omitted. It is how you track the version of the ado-
file. It could be anything you want, such as

2. The second version statement specifies the version of the ado-
code interpreter that is to execute the ado portion of the code.

3. The third version statement specifies the version of the Mata
compiler that is to be used to compile the Mata functions,
structures, and class definitions. Even if this version number is
the same as in the second version statement, this version
statement must be specified. The version number is not required
to be the same as in the second statement, but it usually is.

4. set matastrict on is optional but is recommended, even
though it will be ignored when the ado-file is automatically
loaded. It is recommended because you can do ado-files and then
matastrict will be switched on.

The nchooseki ado-file is

196

197

At the top of the Mata code, I included the recommended Stata commands

set matastrict on is ignored when the ado-file is automatically loaded.
Mata’s strict setting is for your use when you develop the code. Once you
release a program into the wild, Mata does not second guess you. If you
decide to leave a warning message, so be it. Users will not see it.

So why include the line that Stata and Mata will ignore? You include it
because programmers can cause the line not to be ignored. If you were to
type do nchooseki.ado, Stata would treat the ado-file as if it were a do-

198

file, meaning that set matastrict on will not be ignored. This means you
can debug ado-files in the same way you debug do-files. The proper
procedure for running ado-files with do is

When you type do nchooseki.ado, the lines of the file will be displayed
in the Results window just as they are usually displayed with do-files, and
set matastrict on will be executed. Mata will apply the stricter
standards as it compiles the code, and you will see any errors or warnings.

I prefer to look at the output in an editor rather than scrolling through the
Results window, so I usually type

However you proceed, you should look for warning messages and fix your
code so that Mata no longer complains. Treating ado-files as if they are do-
files has other advantages as well. Say you are writing xyz.ado. I suggest
you create a second do-file named t.do that contains

You can add tests to t.do as you write xyz.ado. The tests that I include in
t.do often test subroutines. When I write ado-code, I open three windows.
One is the editor in which I am writing the ado-file, another is the editor in
which I am adding tests to t.do, and the third is Stata. I can jump from one

199

window to the other, and I can type do t whenever I wish.

As development proceeds and more of the code is certified, the tests are
deleted or modified to become tests of xyz itself. At the end of the
development process, the tests in t.do become my final certification
script. At that point, I delete the line “do xyz.ado” and rename the t.do
file.

9.4.3 test_nchooseki.do

Assume that file nchooseki.ado has now been written, and the code even
appears to work:

That answer is correct. We need to demonstrate that the code produces
other correct answers. Now that we have written nchooseki.ado, it should
not surprise you that I am going to recommend we write
test_nchooseki.do to verify that it works.

I created such a file by translating the tests in test_n_choose_k.do (from
section 9.3.2.2) from Mata to Stata. Mata assert() calls became Stata
assert commands. Here is the file:

200

201

202

Test 4 at the bottom of the file is new. It verifies that nchooseki responds
appropriately when too few or too many arguments are specified. Stata’s
rcof command is a variation on Stata’s assert command. rcof verifies
that the return code from running the quoted command is as stated. To
learn more, type help rcof.

All I need to do to test nchooseki.ado is type

9.4.4 Mata code inside of ado-files is private

The Mata code that appears inside ado-files is private to the ado-file.
nchooseki.ado contains Mata functions n_choose_k() and
nfactorial_over_kfactorial(). These functions can be used only by
code that is inside the ado-file. Outside of the file, the functions simply do
not exist.

There is an advantage and a disadvantage to privacy. The advantage is that
you can name functions as you please. The disadvantage is that testing is
more difficult. Because n_choose_k() does not exist outside the ado-file,
you cannot test it directly. I worked around the inability to test
n_choose_k() by thoroughly testing nchooseki.

You might be tempted to use the tricks I have shown you to test
n_choose_k() directly. I appreciate the temptation, but as a general rule,
certification files should not exploit insider information on how the
command is written. You might need to update the program one day, and it
is useful if old test scripts can be used to test updated code. Notice that the
certification script in the previous section did not include the line

test_nchooseki.do lets the ado-file load automatically. Final testing

203

should be done in the environment in which users will be running your
code.

During the development process, however, it is useful to reach inside and
test subroutines, or at least try them interactively, and it is useful to do that
whether the subroutines are written in ado or Mata. It is useful to treat the
ado-file as a do-file:

Type the above, and all the routines inside it are publicly exposed and
directly accessible.

204

9.5 n_choose_k() packaged as a Mata library routine

A Mata library is a file containing Mata functions, structures, and classes.
The file does not contain the original source code; it contains the ready-to-
execute compiled code. Once a function, structure, or class is stored in a
library, it becomes part of Mata. If n_choose_k() were in a library, we
could use the function in any context, be it interactively, in do-files, in
ado-files, or in writing other Mata functions.

Libraries are easily shared because each is a single file.

To put Mata code in a library, first develop the code packaged as a do-file.
We created two do-files when we did that in section 9.3:

These files are just what we need. We discussed the creation of libraries in
section 2.4. We put the code from file hello.mata into a library by
running a do-file, make_lmatabook.do, which was

All we do is add the line “do n_choose_k.mata” to make_lmatabook.do:

Then we type

I have more to say, but before we continue with this, let’s stop to consider

205

where we should put the files make_lmatabook.do, n_choose_k.mata, and
test_n_choose_k.do.

9.5.1 Your approved source directory

You need to create a directory where you will keep the files related to the
functions you place in libraries. Where you locate it and how you name it
is up to you. We will just call it your Approved Source Directory, or ASD
for short. You will need to treat the directory’s contents with caution.

You will not, for instance, develop code in your ASD. You will copy code
into your ASD from wherever it was that you developed it, and you will
copy it only after you are reasonably convinced that the code is perfect.
You will be wrong about that sometimes, which brings me to my second
point.

You will keep backups of your ASD. This way, if you make a mistake, you
can restore the directory to how it was previously. The danger is not
copying a new file to the directory—after all, you could just erase the file.
The danger is when you replace existing files in your ASD because they
need updating.

Let’s imagine your ASD already exists and has important files in it, among
them being n_choose_k.mata and test_n_choose_k.do. You decide to
make an improvement to n_choose_k.mata. The right way to proceed is to
copy the n_choose_k.mata and test_n_choose_k.do somewhere else to
work on them. When you are reasonably convinced that you have made
them better, then you copy the files back. It may happen that you later
realize the new files are seriously inferior to what you previously had. If
you have backed up the directory, you can restore the original files.

lmatabook.mlib will be the library where we will put the compiled code
developed in this book. You can use it for your own code, too, or you can
create other libraries. Either way, you will use the same ASD. To add a
second library, you create another make_lname.do file. All your .mata
files go in your ASD regardless of which library contains the compiled
code.

Your ASD will comprise the files listed in table 9.1:

206

Table 9.1: Your approved source directory (ASD)

Whether you have one library or many, you can put .mata files in your
ASD that appear in no library, too. Your ASD is a good place to store all
final code. This way, if you ever need to find a particular .mata file, you
will not need to wonder where the file is.

Your test_name.do files are also placed in your ASD. File test.do will
run all the test_name.do files. You store the certification files together
and you run them together because the files get better at detecting bugs the
more files there are. They get better because code is interdependent.
Imagine that you wrote a function called allperms() that calls
n_choose_k(). You therefore add files allperms.mata and
test_allperms.do to your ASD. File test_allperms.do may be intended
to test allperms(), but it indirectly tests n_choose_k(), too. Years from
now, you might modify n_choose_k(), and test_allperms.do might
reveal a new error in n_choose_k() that test_n_choose_k.do does not.

207

Below, I describe each of the files stored in the ASD.

9.5.1.1 make_lmatabook.do

File make_lmatabook.do creates or re-creates the Mata library
lmatabook.mlib. The template is

As this book proceeds, we will be adding additional .mata files to our ASD
and adding do name.mata lines to make_lmatabook.do.

You can create other make_lname.do files to create other libraries. If you
want to store some of your code in library lsmith.mlib, then create do-file
make_lsmith.do:

Remember that Mata library names must start with the letter l (a
lowercase L).

9.5.1.2 test.do

The template for test.do is

208

As the book proceeds, we will add other do test_name lines to the list.

As you write your own code, you add additional test_name.do files to
your ASD and additional do test_name lines to test.do regardless of the
library in which the compiled code will be stored or if it is even stored in a
library at all.

9.5.1.3 hello.mata

File hello.mata is from chapter 2. It is

9.5.1.4 n_choose_k.mata

File n_choose_k.mata is from section 9.3.2.1. It looks like this:

209

The entire file can be found in section 9.3.2.1.

9.5.1.5 test_n_choose_k.do

File test_n_choose_k.do is from section 9.3.2.2. It looks like this:

The entire file can be found in section 9.3.2.2.

9.5.2 Building and rebuilding libraries

To build or rebuild the lmatabook.mlib library, in Stata, type

210

If you wanted to rebuild lsmith.mlib, you would substitute do
make_lsmith for do make_lmatabook.

Notice that test.do is run twice, once before building the library and then
again afterward. That is important. It is the second run that tests
interdependencies. You run test.do the first time to ensure that there are
no apparent problems. After rebuilding the library, you run it again to
prove that there are no problems. Imagine that you typed the above
because you updated n_choose_k.mata. The first run of test.do
establishes that the code in n_choose_k.mata passes the tests in
test_n_choose_k.do. The other certification files continue to use the
original n_choose_k() function stored in the library. The second run of
test.do differs from the first because the library has been updated. All the
certification files are now using the updated n_choose_k() function, and if
the functions they test call n_choose_k(), they might detect a bug in it.

9.5.3 Deleting libraries

Deleting a library is safe to do because, if you delete it mistakenly, you
just have to type do make_libname to re-create it.

To delete lmatabook.mlib, type

The last line causes Mata to rebuild its library index.

211

Chapter 10
Mata’s structures

212

10.1 Overview

Structures are programming constructs that make it easier to deal with lots
of variables. I will show you an example of programming with structures
in the next chapter. In this chapter, I define structures and tell you about
them.

Saying that structures make it easier to deal with lots of variables
understates their importance. Structures allow you to avoid writing code
that looks like this:

Function obtainb() has too many arguments. There may be too many, but
there is no getting rid of them because each serves a purpose. Structures
get around this problem by providing variables that themselves contain
other variables. The structure variable might be named lr, and the
variables it contains might be lr.X, lr.y, and all the other variables listed
above. Using structures, function obtainb() might have just one
argument:

Inside the body of the function, the program would now refer to lr.X,
lr.y, lr.include_intercept, and so on.

I am imagining that function obtainb() is intended to calculate linear
regression coefficients. In its original form, the first 3 arguments—X, y,

213

and include_intercept—were the inputs, and the remaining 10 were for
receiving the results that the function calculates.

The one-argument form of obtainb is better, but it would be better still if
we divided the 13 arguments into inputs and outputs. We could create
structure variable inputs to contain inputs.X, inputs.y, and
inputs.include_intercept, and we could create structure variable
results to contain the 10 outputs. The function would then be

At this point, it would be even more elegant to have the function simply
return results instead of specifying results as an argument, which we
can do by coding

We have come a long way from a function with 13 arguments. The one-
argument code might look like this:

214

The result is more readable code. The code for calling obtainb() will be
equally readable:

215

10.2 You must define structures before using them

Before you can use variables like inputs and results, you must define
the variables that they are to contain. You do that with structure
definitions. Here are the definitions of LrInputs and LrOutputs:

You define LrInputs and LrOutputs outside the functions that use them
just as you define subroutines outside the functions that call them. Once
LrInputs and LrOutputs are defined, you can declare struct LrInputs
and struct LrOutputs variables just as you can declare real, string, and
other types of variables:

216

10.3 Structure jargon

If we were discussing integers and not structures, I would start by telling
you the definition of integers. They are whole numbers. Then I would offer
some examples and tell you that instances of integers include 1, 2, 3, and
so on.

So it is with structures. The definition of LrOutputs is

If we declare

we made r an instance of structure LrOutputs.

In the computer science literature, the word structure is invariably
followed by the word definition or instance as if you might confuse one
with the other if it were omitted. If r equals

I somehow feel obligated to write that r is an instance of structure
LrOutputs even though, if I were just talking to you, I would probably just
say that r is an LrOutputs, just as I would say that 5 is an integer when I
should say that 5 is an instance of an integer.

I mention this because I do not want you to puzzle over the deep meaning
of “instance” as I did when I first learned about structures. Just as there is
one definition for integers and many instances of them, in a program, there

217

is one definition of a structure and (perhaps) many instances. Just as I can
have three different real scalar variables by declaring

I can have three different LrOutputs variables by declaring

218

10.4 Adding variables to structures

Use of structures make code easier to modify. Months after writing
obtainb(), you might need to add the calculation of statistics to the
code. If so, all you need to do is add real colvector t to the definition of
LrOutputs and add code for calculating results.t to obtainb().

Without structures, you would have needed to add a fourteenth argument
to obtainb(), and users would have to modify and recompile their code
even if they had no use for the new statistics. With structures, they need
only recompile, and if you put the new variable at the bottom of the
structure, they do not even have to do that.

219

10.5 Structures containing other structures

Structures can contain other structures, such as

This structure has either 3 members or 16 depending on whether you count
the members’ members. Let variable ps be an LrProblemAndSolution.
Obviously, ps at least has members ps.problem_name, ps.inputs, and
ps.results.

ps.inputs and ps.results are themselves structures, however, and you
can access their members by coding ps.inputs.X, ps.inputs.y,
ps.inputs.include_intercept, and so on.

A program that uses LrProblemAndSolution might read

220

10.6 Surprising things you can do with structures

Structure variables are variables, and therefore you can pass and return
them just like you can pass and return other variables. You can also assign
values from one structure to another and test whether two structures are
equal. When you code

the contents of s1 are copied to s2. That includes s2’s members, s2’s
members’ members, and so on. You can test whether structures are equal
by coding

You can test whether they are not equal by coding

Two structures are equal if 1) they are both structures, 2) they are of the
same type (say, LrProblemAndSolution), and 3) their members are equal,
as well as their members’ members, and their members’ members’
members, and so on. If you coded

the condition would be false. It is not an error.

221

10.7 Do not omit the word scalar in structure declarations

The most common error that even experienced programmers make is to
omit the word scalar in structure declarations, as I will now do in the
declaration of variable in:

The first warning of the problem will come when you compile the code,
but only if you have matastrict set on. Mata will report “note: variable in
may be used before set”. The message is admittedly not clear about what
the problem might be. If you execute the code anyway, Mata will abort
execution of the code and issue an error:

This message, too, is not clear about what the problem is, so let me
disentangle it for you. The error message is referring to the line

The message is saying that in is not a structure. How can that be? The
earlier declaration states emphatically that in is indeed a structure:

The problem is that I omitted orgtype scalar from the declaration, which
resulted in Mata compiling the code as if I had specified the default
orgtype, matrix:

This resulted in variable in being initialized as a matrix of

222

structures, as explained in section 6.2.1. After declaration, matrices are
. Thus, variable in is , and so in the assignment in.X = …,

there is no in.X to fill in. in itself barely exists. Had I coded orgtype
scalar, in would have been and then there would have been an
in.X to which a value could be assigned. But I did not do that. I omitted
the word scalar, so matrix was assumed, and variable in has no
member in.X.

The fix in this case is to go back to the declaration and insert the word
scalar.

At least, that is the solution unless you really wanted to create a matrix of
structures. How you do that is the topic of the next section.

223

10.8 Structure vectors and matrices and use of the
constructor function

You may create vectors and matrices of structures. Assume you need to
store red-green-blue color values corresponding to objects that you will
display. A good way to store the colors would be in a structure, such as

In this case, you might indeed want a vector of colors, or even a matrix of
them. In the following code, after c is declared to be a Color vector, c will
be .

Before you can use c, you must initialize it to contain the desired number
of structures.

When you declare a structure, Mata automatically creates a function of the
same name that creates structure instances. For example, the declaration of
structure Color automatically created function Color(). Function Color()
is called Color’s constructor function.

Color() allows zero, one, or two arguments.

Color() without arguments returns a instance of struct Color. In
the preceding section, where variable in was declared to be an LrInputs
matrix because I forgot to specify scalar, the code would have worked if
I had coded in = LrInputs() before assigning a value to in.X. Before the
assignment, in was . After the assignment, it would have been .

Color() returns new instances of struct Color arranged as a
vector.

224

Color(,) returns new instances of struct Color arranged as an
 matrix.

The following code returns a color matrix of the same dimension as
object and sets the color to white:

The following function does the same thing, but more elegantly:

Notice how members of structures are accessed when dealing with a
matrix of structures. c[i,j].red is how you refer to the structure’s
red value. You do not refer to it as c.red[i,j]. That would refer to a
scalar structure’s value of red[i,j], meaning that red would be the
matrix, not c.

225

10.9 Use of transmorphic with structures

Section 6.3.2.1 discussed the use of transmorphic for declaring passthru
variables. A variable is passthru when the function does not directly access
its contents. Variable db is passthru in the following example:

Variable db contains the information that the database functions need to
access the data. Structure DbStatus might be defined as

The database functions that getinfo() called would look like this:

226

Nonetheless, declaring db as a structure was unnecessary in getinfo()
because that function never looked inside db. getinfo() obtained db from
open_database() and passed db to the other database functions. Even
though db is in fact a struct DbStatus, it would have been better to
declare it transmorphic:

Declaring db as transmorphic is the same as declaring it as transmorphic
matrix. That means db starts out as being , but that is okay because
db is reassigned by the line

227

Declaring db as transmorphic ensures that getinfo() cannot access db’s
member variables, which means that getinfo() will not need to be
recompiled if the structure definition is updated.

228

10.10 Structure pointers

Pointers can be used with structures. Let s be a struct S scalar with
members a and b, and assume p = &s. Then *p is a synonym for s just as it
would be if s were not a structure. I mentioned in previous chapters that
you can type *p any place you can type s, but that is not true with structure
pointers. If you want to type the synonyms for s.a and s.b, you have to
type (*p).a and (*p).b. You have to include the parentheses because the
dot separator has higher precedence than the * operator. If you typed *p.a,
that would be interpreted as *(p.a), which means something entirely
different. It means the contents of the pointer p.a, meaning that p would be
a structure and a would be a pointer.

If you find this confusing, you are not alone. Because of that, an
alternative syntax is provided for dealing with pointers to structures. When
p = &s, synonyms for s.a and s.b can be written as p->a and p->b, which
are read aloud as “p pointing to a” and “p pointing to b”. Using the ->
operator makes code more readable.

Consider the following structure definition:

This structure is just like the one I described with members a and b, and
with two extra members, c and q. Member c is itself another structure, S2,
and member q is a pointer to yet another structure, S3.

If p = &s, then

229

Pointers to structures are not used as often in Mata as they are in C, C++,
and some other languages, because some problems that require their use in
those languages do not require their use in Mata. For instance, consider the
following Mata code:

When function example() calls setup(t), it will result in t.a and t.b
being set to 0.

In some languages other than Mata, calling setup(t) would not result in
t.a and t.b being changed, because those languages pass copies of
arguments. Mata does not work that way. In the other languages, you
would write setup() differently, using pointers. Programmers of the other
languages would write the routines like this:

230

In Mata, setup() and setup2() each work equally well. You should code
in the way you find most natural. If you find neither natural yet, then code
in the style of setup(). As far as Mata is concerned, setup2() introduces
needless complication.

Pointers nonetheless have their uses. One is to conserve memory. At the
top of this chapter, we had the structure LrInputs. It was

We were discussing a linear-regression subroutine named obtainb(). A
problem with the obtainb() code that I did not mention is that it wastes
memory. The waste arises because callers of obtainb() will already have
an X matrix and a y vector, and I required callers to put a copy of X and y in
the structure before they could call obtainb(). To remind you, callers of
obtainb() were required to write code that looked like this:

What I required is an elegant design for functions with lots of input and
output variables, but it was wasteful of memory. We can keep the elegant
design and eliminate the waste if we change LrInputs to use pointers:

231

The advantage of using pointers is that inputs.X and inputs.y will each
require only eight bytes of memory because that is how much memory it
takes to record the address of an object regardless of the object’s size.

Using this new LrInputs, we will now require callers of obtainb() to set
inputs.X and inputs.y using the address-of operator:

The pointer method for holding onto objects while conserving memory
appears over and over in programs. It can be used whenever inputs might
be large, as vectors, matrices, and even structures can be.

232

Chapter 11
Programming example: Linear regression

233

11.1 Introduction

We are going to use structures in this chapter to implement code to
perform linear regression. I am not thinking about a textbookish,
oversimplified example. I am thinking about a routine that mimics Stata’s
regress command, a routine so good that it could become an official part
of Mata. Achieving that goal would take the rest of this book, so we will
not go the full distance, but we will go farther than you might expect, and
it will be obvious how you could finish what we have started.

Linear regression concerns the solving of formulas such as for .
As Stata users know, there is more to linear regression than just solving for
. Should the model include an intercept? Do you want to know the

variance matrix associated with ? Do you want the predicted values of
based on ? The residuals? I could continue.

An obvious way to arrange the code would be to define a structure with
variables to be filled in with 0s or 1s, in which users could specify answers
to each of the above questions. It might look like this:

We might define another structure where calculated results could be
stored:

234

With these two structures, the code could look something like this:

Users would code calls to regress() like this:

The above is the obvious design, and it mirrors the design of Stata’s
regress command, but it is not the design we will be using. We are
instead going to write code in a style known as self-threading code. I will
show you what the code will look like, but the details of the code will
make no sense to you yet. All that you need to notice is the proliferation of
subroutines, such as lrset(), lr_b(), lr_V(), lr_yhat(), and
lr_resids().

235

The lr_*() subroutines take the place of struct R_options in the
previous code. Users of the system—programmers like us—will call the
subroutines lr_b(), lr_V(), …, lr_yhat(), and lr_resids(), or not call
them, depending on whether they want the particular calculated result.

You write programs for use by Mata users differently from how you would
write them for use by Stata users. If you were writing for Stata users, you
might indeed write a regress() function with all of its options. When you
write code in Mata, however, you are writing for other Mata users, and
they want tools for building other programs. These tools, if they are well
written, would make it easy to write a regress command. It would be easy
to implement

236

The regress() function would be easy to write, but I doubt any Mata user
would bother to write it or even use it if it were written for them because
the lr_*() functions themselves are so easy to use.

This system of subroutines has another advantage, too. Because it has one
subroutine for each calculated result, the code will be easier to maintain
and extend in the future. If we want to change a result, we modify its
subroutine. If we want to add a new result, we add a new subroutine.

It is not possible to exaggerate the importance of writing modifiable and
extensible code. All the good design in the world will not circumvent the
need to modify the code and even extend its design later. As an example,
there are few statistical calculations more settled than that of linear
regression, yet we at StataCorp have had to modify Stata’s regression
command many times. Here is an abbreviated history:

1. regress was implemented.

2. regress was modified to include instrumental variables.

3. regress was modified to be more accurate with larger datasets
because desktop computers became more powerful and had more
memory.

4. regress was modified to include robust standard errors.

5. regress was modified to include population weights.

237

6. regress was modified to include clustering.

7. regress was modified to be more accurate yet again because desktop
computers became even more powerful and the datasets analyzed
grew all the more.

8. regress was modified to support parallel computing.

9. regress was modified to better support parallel computing as chips
used improved designs to speed communication between processors.

10. regress was modified to support factor-variable notation, which
required a complete change in how regress handled
multicollinearity.

Most of the modifications could not have been predicted. Serious
programmers write code in a style that can be easily modified, and the
ultimate in modifiability is self-threading code.

238

11.2 Self-threading code

Self-threading code is easiest understood by looking at an example.
Consider the following interrelated calculations:

 For given values of and , the values of , , and are given by

These formulas are stand-ins for the more complicated formulas we will be
programming later. These formulas have the virtue of being simple while
still preserving the complication that some calculated results depend on
other calculated results. Whether you care about or not, you must
calculate it before or can be calculated, and you also must calculate
before can be calculated.

Self-threading code can calculate, for any number of related formulas, all
or any subset of them, make only the minimum number of calculations
required, and do that without knowing which calculations will be
requested, the order in which they will be requested, or even the number
that will be requested. Later in this chapter, we will use self-threading code
to implement the 15 formulas for calculating linear regression, but first,
let’s understand how self-threading code works with our 3-formula
example.

Variables and in the example are called the input variables.

Variables , , and are called the derived variables.

First, we define a structure to contain the input and derived variables:

239

Next, we write separate functions to calculate each derived variable. I will
name the functions c_x(), c_y(), and c_z(). Here is c_x(), the routine for
calculating :

The code is deceptively simple. If has been previously calculated, then
c_x() returns it. Otherwise, c_x() calculates and stores the value in r.x
so that it can be returned now and again in the future if the need should
arise.

Notice that in making the calculation for , c_x() needs . c_x() obtains
by calling c_z(). c_z() will be written in the same style as c_x(). If has
already been calculated, then the value is returned. If it has not yet been
calculated, then the value is calculated, stored, and returned.

How does the code determine whether values have already been
calculated? In Mata, the easy solution is to initialize each derived variable
with a special value and code the corresponding calculation routine to
check for that value. In the code below, I will use the value .m, one of
Mata’s missing-value codes. The final code for c_x() is then

240

c_x() uses .m and not the ordinary missing value (.) so that it can
distinguish calculated results that happen to be missing from results that
have not yet been calculated.

Here is the entire code for calculating , , and from and :

241

Users begin by calling cset() to specify the values of the inputs:

cset() also sets the derived variables to .m to mark them as not yet
calculated.

Users can then call the c_*() functions. They can call them in any order,
omit some, and even call others repeatedly:

The c_*() routines are exceedingly smart. They never make an
unnecessary calculation, and they never make any calculation twice. They
never waste time, and users do not have to tell them what is wanted ahead
of time or run the routines in a specified order.

We will use this approach for writing linear regression. Some users may
want just the coefficients; others, the coefficients and variance matrix; and
still others, everything. All will be satisfied. Users will even be able to
specify a regression model and obtain just the -squared if that is their
desire. And the -squared will be calculated as efficiently as possible.

There are variations on how self-threading code is written for special
cases. Related values can be grouped and calculated together if that is
convenient. If derived variables , , and are nearly always used
together, or if they are easier to calculate jointly, you can write code that
calculates all three when any one is requested:

242

Another variation deals with lightweight calculations. If some formulas are
quick to calculate, you can write their code to make their calculation
repeatedly rather than storing the result:

You might even use this style when a calculation is time consuming but
rarely called, especially if storing the result consumes lots of memory.

A third variation deals with different formulas for making the same
generic calculation. Stata’s regress command, for instance, provides
traditional variance estimates and robust variance estimates. Other
formulas depend on the variance estimates. Some can use either, while
others must use one or the other. In this case, you create three calculation
functions:

Function c_V() returns whichever variance estimate the caller has
previously set as the default.

Function c_V_td() returns the traditional estimates.

243

Function c_V_robust() returns the robust estimates.

Functions of other statistics call c_V(), c_V_td(), or c_V_robust() as
appropriate.

The code for the variance functions is

Putting the above aside, there is only one more thing you need to know,
and that concerns the storing of input variables. I oversimplified the issue.
The structure definition I showed was

What I showed was fine for dealing with scalars. Had the inputs been
vectors, matrices, or structures, however, it would have been better to save
pointers to them instead of copies, as was explained in section 10.10.
Doing that saves memory. If inputs a and b were matrices instead of
scalars, it would be better if the code read

244

The original version of the c_z() function read

Because r.a and r.b are now pointers, the updated version would read

245

11.3 Linear-regression system lr*() version 1

We are about to write a linear-regression system using self-threading code,
which means that we will have lots of subroutines. To prevent them from
being confused with subroutines of other systems, I decided that we would
use subroutine names starting with the letters lr. They would have names
such as lr_b(), lr_V(), and so on. As I wrote the code, I found myself
thinking of the routines as the lr_*() routines. I decided to call the system
the lr*() functions, pronounced “el are star”.

The lr*() functions will fit models of the form

Users of lr*() will first call lrset() to specify , , and whether to
include an intercept. They will then call other lr*() functions to obtain
whichever results they desire.

Obviously, I have already written lr*(), but before I show you the code,
let me show you lr*() in action. I think you will be impressed, especially
when I tell you that the entire system consists of only 125 lines of code,
excluding comments and blank lines.

11.3.1 lr*() in action

Users of lr*() call lrset() to specify their regression problem:

lrset() takes three arguments: a column vector containing the values of
the dependent variable, a matrix containing the values of the independent
variables, and 1 or 0 specifying whether the model is to include an
intercept.

lrset() returns r, which happens to be a structure. I say happens to be
because I do not intend that users access the structure’s members. This
makes r a passthru variable (see section 6.3.2.1), and I might not even tell
lr*() users that r is a structure. I could document that r is transmorphic.

246

Users start by specifying the regression problem with r = lrset(), and
after that, they can obtain coefficients by coding

or variance estimates by coding

or fitted values by coding

and so on. Let me show you. I have already defined a y vector and X
matrix in Mata:

To fit the model and obtain b, the fitted values of ,
and the variance matrix of V, I will type

247

I do that below and display the contents of b and V:

lr*() is certainly easy to use.

In what I ran, however, I violated the spirit of self-threading code by
storing lr_b()’s and lr_V()’s returned values in b and V. Storing them
was wasteful of memory and unnecessary because self-threading systems
are designed so that their functions can be called repeatedly with no
performance penalty. If I wanted to show the values, I should have just
coded

In my defense, the lr*() functions are not intended for interactive use.
Mata itself is not intended for interactive use, or at least not intended for
interactive uses except for programmers to experiment and authors to
present demonstrations. Let’s look at how a programmer might use lr_b()
and lr_V(). The program below obtains and displays regression results:

248

displayresults() repeatedly calls lr_b() and lr_V(). One place the
functions appear is in the printf() statement inside the for loop. The
statement is

The code prints lines such as

The numeric values shown correspond to lr_b(r)[i] and sqrt(lr_V(r)
[i,i]).

The [i] and [i,i] are subscripts. They are the same subscripts that might
be used to subscript variables such as b[i] or V[i,i]. Results returned by
functions can be subscripted just as variables can be subscripted. lr_b(r)
returns a vector, and thus lr_b(r)[i] is the ith element of the lr_b(r)
vector.

This usage might bother you because it seems inefficient. Are we really
going to fetch the entire lr_b(r) vector just to obtain one element from it,
and then next time through the loop, do it all over again? Yes, that is
precisely what we are going to do, and no, it is not inefficient. It is not

249

even inefficient that the for loop itself obtains rows(lr_b(r)) repeatedly
merely to determine whether the loop should continue:

Function calls consume barely more time than variable references if we
ignore the time spent executing the function. Self-threading functions
execute in nearly zero time when they have previously calculated the
result. The above is how you are supposed to use self-threading functions.

I have not shown you all of lr*()’s capabilities. I included a handful of
other functions to calculate other results, and still more need to be added.
Available are

250

The lr*() functions can be called in any order.

Consider the programmer who needs only the fitted values. That
programmer could code

lr*() is truly programmer friendly.

11.3.2 The calculations to be programmed

Before you write code, you must know what the code needs to do. In
statistical applications, this means identifying the formulas.

I do not want you to get lost in the formulas required to implement linear
regression. This book is first and foremost a programming book, albeit for
programmers interested in adding features to Stata. Even so, I will discuss
the formulas a little because I know some readers will be interested.

What every reader needs to understand is that the formulas need to be
written down before you write a line of code. At StataCorp, we write them
on formula sheets which, despite the officious name, are just pieces of
paper. They are, however, important pieces of paper.

I wrote a formula sheet for lr*(). Some of the formulas I wrote have
lousy numerical properties. We will substitute better formulas for them
later. It will not be difficult to do, because self-threading code is so easily
modified. I did not, however, write lousy formulas just so I could show
you how to modify them later. I write lousy formulas and substitute better
ones later even when I am not writing code. I like to make systems work
first and substitute better formulas later, because better formulas are
usually just one more thing to go wrong and debug.

If you really do try to follow the formulas listed below, watch out for k and
K. Lowercase k is the total number of independent variables excluding the
constant even if there is one. Capital K includes the constant and so equals
k or k+1.

Finally, most researchers use the words constant and intercept
interchangeably. I sometimes do that myself. Nonetheless, the intercept is
a coefficient, and the constant is the vector of 1s appended to the outside

251

of X so that the intercept can be fit.

The formulas are

Model to be fit:

where

Define

Thus,

The linear-regression formulas are

252

11.3.3 lr*() version-1 code listing

Before I talk you through the code, you need to see it for yourself. I want
you to appreciate just how readable self-threading code is. The main
routines are

Find those routines and use them as anchors. I doubt you will get lost.
There are only 125 lines, omitting comments and blanks.

By the way, I used .z instead of .m to mark not-yet-calculated results.
Either value works equally well.

You can see the full listing of the lr*() code by typing in Stata

If you have not yet downloaded the files associated with this book, see
section 1.4. It is so important that you look at the entire code, however,
that I list it below. I told you about the order in which I wrote the routines.
Yet the routines listed below are in a different order! Of course they are. I
reorganized the files.

253

254

255

256

257

11.3.4 Discussion of the lr*() version-1 code

Even if you looked at the code carefully, I bet it escaped your attention
that it handles models with no independent variables and models fit on
zero observations. I am nearly certain you did not notice because there was
nothing to notice. Mata itself handled the problem because it allows null
matrices. If the model has no independent variables, then the matrix
(*r.X in the code) is . If there are no observations, then *r.X is

.

258

The code does not handle missing values, however. If *r.y or *r.X
contain missing values, the code does not crash, but it does produce
incorrect results. This is acceptable as long as callers are warned, just as it
was acceptable for Mata’s invsym() function to produce incorrect results
with nonsymmetric matrices. Both routines are intended for use by
programmers. The user of lr*() can verify that (*r.y) and (*r.X) do not
contain missing values easily enough:

Even so, lr*() would have handled missing values if I had written it for
my day job. I did not handle them because it would have made the code
more confusing, and I did not want you to become immersed in a detail.
Here is how you could fix the problem. Although I said the code does not
handle missing values, it mostly handles them. Most routines use cross()
for forming matrix cross products, and cross() handles missing values
automatically. cross() was not used, however, in coding lr_ee() (lines
112–118 of lr1.mata). It needs to be rewritten. The only other problem is
in lr_N() (line 74). Its code needs to be modified to return the number of
complete observations.

Let me talk you through parts of the code.

11.3.4.1 Getting started

The set-up routine is named lrset() and reads

r.cons is set equal to cons!=0 instead of cons to ensure that r.cons will
be 0 or 1. Remember that Mata allows logical variables to be zero or not
zero. The user might have specified cons equal to three. I intend to use

259

r.cons not only in if statements but also in formulas such as K = k +
r.cons where it is important that r.cons be 0 or 1.

I next wrote three short functions:

Did you know that you can omit the braces around the body of functions
that consist of just one statement?

11.3.4.2 Assume subroutines

The first substantive program I wrote was lr_b(), the routine for obtaining
the regression coefficients. It is

The line

is a direct translation of the formula . I decided that
lr_XXinv() would return and that lr_Xy() would return .

I write systems from the top down. As I write code, I assume the existence
of subroutines that return what I need in the form that I need it. I assume
solutions even though I have yet to write them. When I later write the
subroutines, I will do the same again if that is convenient, resulting in yet
more subroutines to write later. In this way, details are pushed down until
it is convenient for me to deal with them.

I want you to appreciate how many details are being hidden by the line

How will lr_XXinv() obtain ? Presumably by taking the

260

invsym() of . invsym() is capable of handling collinearity when the
matrix is not full rank. How will be calculated? I do not know. What
about models with and without an intercept? I do not know. How will the
system obtain for invsym() to invert when does not contain a
column of 1s and needs to contain them? I do not know.

Well, I do know, but it would not bother me if I did not. I will handle the
problems when I come to them.

In fact, I postponed the details of how to calculate yet again
when I wrote the routine to make the variance calculation, lr_V(). It is

The code for lr_V(), like the code for lr_b(), is right from the formula
sheet and, just as I did when writing lr_b(), I assumed subroutines for its
ingredients. lr_s2() is yet another function I will have to write later.
Meantime, the assuming of subroutines is already beginning to pay off.
This is the second time we have used lr_XXinv().

I may as well write lr_XXinv() now.

Mata’s built-in invsym() function handles collinearity, but notice I still
have not dealt with how will be obtained when there is a constant. I
postponed that problem by coding lr_XX(r), but I have made an
assumption. lr_XX() will return when the model includes an
intercept.

I next coded lr_s2():

261

Are you keeping track of what I have yet to write? I am not. I just look
back at what I have written and pick an unwritten function. If I forget to
write a function, Mata will remind me when I try to compile and execute
the code.

11.3.4.3 Learn about Mata’s built-in subroutines

I decided to write lr_K_adj() next. lr_K_adj() is an interesting function.
It is the number of independent variables excluding variables dropped
because of collinearity. Variables were dropped because of collinearity by
lr_Xinv() when it used invsym() to invert the matrix. Somehow, we are
going to have to determine how many variables it dropped, if any.

We have three ’s floating around in the code: lr_k(), lr_K(), and
lr_K_adj().

lr_k() is the total number of independent variables. It was one of the one-
line functions that I wrote earlier (line 75):

lr_K() is the number of independent variables including the constant if
there is one. It was another of the one-line functions (line 76):

lr_K_adj() will be lr_K() minus the number of variables dropped
because of collinearity. I need to count the number of dropped variables.

As I said, the variables were dropped by lr_XXinv() when it used
invsym() to invert the matrix. The way invsym() works, if variable was
dropped, then lr_XXinv()[,] was set to the specified 0. The total
number of dropped variables is thus the number of 0s along the diagonal of
lr_XXinv(). Equivalently, the number of included variables is the number
of nonzero values along the diagonal. Here is code to calculate that:

262

The key part of the calculation is

Mata’s diagonal() function extracts the diagonal of a matrix into a
column vector. The colon-operator :!= in

compares each element of the vector with 0 and returns a column vector
of 0s and 1s, meaning not equal or equal to 0. Mata’s colsum() function
sums that vector, directly yielding the number of nonzero elements.

I am obviously adept in the use of Mata’s built-in functions. I do not
expect you to be as adept with them yet. You do, however, need to become
familiar with them. I recommend you type help mata, click on [M-4]
Categorical guide to Mata functions, and begin exploring the online
documentation. Otherwise, you will end up writing code that looks like
this:

It would not be horrible if you wrote code like the above. It would execute
more slowly than my code, but I doubt anyone would notice, and the code
is certainly clear about what it does. Nevertheless, it was easier for me to
write

263

There are certain Mata functions that I want to emphasize to you.
invsym() is one because you obviously do not want to write your own
matrix inverter.

cross() is another, which we will discuss in the next section.

11.3.4.4 Use of built-in subroutine cross()

Calculations such as X’X, X’W*X, and X’diag(w)*X often arise in statistical
calculations. You can program them just as I have written them, or you can
use Mata’s cross() function. Using cross() has advantages. cross()
uses less memory, it is sometimes faster, and it handles missing values.

I used cross() to program the calculations of , , and in
lr_XX(), lr_Xy(), and lr_yy(). If you look back at the code listing (lines
146, 154, and 162), the calls those functions make to cross() are

cross(,) calculates . Thus,

calculates (*r.y)’(*r.y). cross() uses less memory to make the
calculation.

I could have used cross(*r.X, *r.X) to calculate X’X. If you look back to
the formula sheet, however, you will see the line,

If you do not know what “augmented with 1s” means, I apologize. You
write formula sheets so that you—the programmer writing the code—can
understand them, and I knew exactly what I meant by “augmented with
1s”. What the formula sheet was saying is that the XX is

264

Wanting to augment a matrix with 1s occurs so often that cross() has a
special syntax for it. cross() has two syntaxes, one with two arguments
and another with four arguments:

Thus, to calculate r.XX, I used

To calculate r.Xy, I used

Here are the routines:

You will be seeing cross() again later in this chapter. cross() comes in
four flavors:

265

11.3.4.5 Use more subroutines

lr_yhat() is worthy of comment because of the subroutines I wrote to
make the calculation easier to program. Predictions are easy to calculate.
Quoting from the formula sheet, they are

First, I guess I should apologize again. (X,1) is a shorthand way to write
“augmented with 1s”. It is a shorthand that humans understand, but Mata
does not. Second, note that b has an extra element—the intercept—if
r.cons==1. I decided to create subroutines so that, whether r.cons was 0
or 1, I could write the predicted values as

lr_b_X() would be X*b ignoring the intercept in all cases, and lr_b_c()
would be the intercept or 0. Function lr_yhat() thus became

lr_b_X() would return the first lr_k() elements of lr_b(). lr_b_c()
would return either lr_b()[lr_K()] or 0.

Function lr_b_c() was easy enough to code:

For lr_b_X(), I coded

266

267

11.4 Linear-regression system lr*() version 2

I warned you that I used formulas in lr*() version 1 that have lousy
numerics. We are going to fix that. Before we do, however, let me explain
how I write code. I use second-rate formulas or methods in my first drafts
because that makes the initial programming task easier. I splice in better
routines once the system is working.

Below is a table summarizing where we are and where we are going. There
is a long note at the foot of the table. The note is longer than it is
important. The table reports digits of accuracy, and the note states how that
accuracy is measured. The table is

Where we are is 5.8 digits of accuracy. Where we are going is 13.1, a
highly respectable neighborhood. The theoretical maximum accuracy is
15.7 digits, and that is unachievable.

We will make two changes to lr*() to get from 5.8 to 13.1. We will
change every call of cross() to quadcross(), the version of cross() that
performs its calculation in quad precision. That by itself will take us to 7.2
digits of accuracy.

We will also substitute better formulas for fitting linear regressions. That

268

will be more work, but it will take us to 11.8 digits of accuracy all by
itself.

The two changes together will take us all the way to 13.1 digits.

11.4.1 The deviation from mean formulas

The inaccuracy of results in the current code arises because of numerical
problems in calculating . The problems are not so
much with the formula itself as they are with its ingredients, and
. Calculating them requires performing lots of multiplications and
additions.

Computers perform multiplication and division accurately—you can
depend on 15.7 digits of accuracy. The same is not true of addition and
subtraction. Calculated results can vary from 15.7 to 0 digits of accuracy.
As a general rule, the farther apart the values being added or subtracted,
the worse will be the accuracy.

One job of numerical analysts is to find transforms that move values to be
added and subtracted closer to each other. Not any transform will do. The
idea is to transform the input values, make the calculations on the
transformed values (sometimes the formulas are modified, too), and finally
reverse-transform the calculated results. Transforms that can be undone at
the last step do not always exist.

Transforms exist for linear regression, but only for models that include an
intercept. and can be rescaled to have mean 0 which will make values
closer to each other. Working with deviations from the means requires
modifying a formula here and there, but there is not much that changes.

Here is the updated formula sheet:

Assume

269

Then

Note: This formula sheet uses the same notation as the one in
section 11.3.2.

11.4.2 The lr*() version-2 code

Modifying the code to use the above formulas resulted in six functions
being unchanged, six functions being changed, and six new functions
being added. Unchanged are

270

Changed are

And finally, the new routines are

The routines that change do not change much. For instance, lr_K_adj()
was previously

and now is

271

In the version-2 code, we must use lr_SSinv() in place of lr_XXinv() for
models with intercepts.

lr_b() changed the most because it must use new formulas for models
with intercepts. lr_b() was previously

It now is this:

The new routines, meanwhile, calculate the new ingredients that we need.
Quoting from formula sheet 2, we need

Those formulas, just as they are stated, could be substituted into code. But
we are not going to do that. We are going to rewrite them using cross()
instead. We used cross() in the version-1 code for three reasons: 1) it

272

uses less memory, 2) it is sometimes faster, and 3) it handles missing
values. There was a fourth reason we used cross() that I did not tell you
about. cross() comes in three other flavors. quadcross() is equivalent to
cross() but performs its calculation in quad precision. crossdev() is
equivalent to cross() but performs its calculation in deviation form.
quadcrossdev() is equivalent to crossdev() but performs its calculation
in quad precision.

When I wrote the version-1 code, I knew I was using second-rate formulas,
and I knew that I would want to substitute deviation-form calculations. I
knew I would want to substitute crossdev(). And I knew I would want to
perform that calculation in quad precision. I knew I would want to use
quadcrossdev().

The calculations we need to code,

can instead be coded

Here is why. First, remember that the cross() equivalent to A’B is
cross(A, 0, B, 0). Therefore, the cross() equivalent of

is

The crossdev() equivalent is like cross() except it has two more
arguments that specify the values to be subtracted:

The above is superior to the former because crossdev() uses less
memory. Finally, to perform the entire calculation in quad precision, we
substitute quadcrossdev() for crossdev():

273

If you are getting the hang of this, you might wonder why we do not
substitute quadmean() for mean(). We do not because there is no
quadmean() function. Mata’s mean() function already works in quad
precision. See help mata mean().

The new lr_SS() and lr_St() routines are

Rather than using mean(*r.X) and mean(*r.y) in the calls to
quadcrossdev(), I used new functions lr_mean_X() and lr_mean_y()
because we will need the means to implement other formulas, too. The
functions follow the self-threading outline of returning the previously
stored value or calculating and storing it:

11.4.3 lr*() version-2 code listing

You can see the full listing of lr*() version-2 code by typing in Stata

274

If you have not yet downloaded the files associated with this book, see
section 1.4.

11.4.4 Other improvements you could make

Version 2 is much improved over version 1. At 13.1 digits of accuracy, we
are obtaining 83% of the theoretically unobtainable 15.7 digits. I must
admit, however, that the 13.1-digit claim is overly optimistic.

Addition and subtraction produce lots of numerical error when the values
being added or subtracted are far from each other. Demeaning the
variables made the values closer and resulted in improved accuracy.

If we also normalized the variables by their standard deviations, that would
make their values even more alike. The accuracy results that I showed you
earlier did not reveal that because I set the standard deviations of the
independent variables to 1 in the simulations that I ran. Let’s find out how
much my deception mattered. I reran the simulations, varying the standard
deviations. The new results are as follows:

These results are pretty good. It is a rare real-world regression in which the
maximum of the ratios of the standard deviations is more than 10,000,
which is why I ran the table out to 100,000. The version-2 code is
acceptable even at 100,000 in my view, because 9.4 digits of accuracy is a
lot of digits. That said, the standards for judging linear-regression routines

275

are remarkably stringent these days. If you claim to produce professional
software and do not get linear regression right, it suggests that you do not
get other things right as well.

Normalizing by standard deviations is not difficult. Where the lr*() code
subtracts the mean, it could divide by each variable’s standard deviation,
and later in the code, those same standard deviations can be used to undo
the adjustment’s effect on the calculated coefficients and variance matrix.

There is another improvement we could also make. Rather than obtaining
coefficients by calculating , we could solve for .
Solvers yield more accurate results. I recommend a solver based on LU
decomposition. You could code b = lusolve(S’S, S’t); see help mata
lusolve(). Some experts will tell you to use a more robust solver such as
QR decomposition—Mata’s qrsolve()—but that is not necessary here in
my experience.

And of course, we need to add more returned results, meaning more
subroutines. Callers will want the statistic, -squared, and more. They
would be trivial to add.

If any of these projects tempt you, wait. We will re-implement lr*() using
classes in chapter 13, and the code will become even more elegant and
even easier to modify.

276

11.5 Closeout of lr*() version 2

As it stands, lr*() version 2 is excellent code, so we will add it to our
lmatabook.mlib library.

First, however, the code requires certifying.

11.5.1 Certification

You can see the full listing of lr*() version-2 certification script by
typing in Stata

Certification is so important that I want to make some comments on what
is written in test_lr2.do. Here is the file in printed form. Just skim it to
begin.

277

278

279

280

Ignoring the line with the comment “yuck!” at the end, this is a lovely
certification script. It is more organized and readable than my certification
scripts usually are. More importantly, the script tests reasonable cases and
extreme ones. Notice that I tested lr*() with no covariates (independent
variables), no intercept, no covariates or intercept, and no observations,
and I should have tested it with one and two observations as well.

One reason test_lr2.do is so lovely is that I wrote a Mata function
virtuallyequal() so that I could write single lines such as

In my first draft, the test was more wordy:

There is something to be said for both approaches. The more wordy
version displayed results, and those results helped me to debug code when
results were wrong. The extra information also allowed me to choose the
proper tolerances for the assert() statement.

When I was done, all the tolerances except two were 1e–15. The two
exceptions were both 1e–13 (lines 62 and 137 of test_lr2.do), and both

281

involved predicted values for models without intercept. I was not bothered
by that because I know that Stata’s regress command calculates predicted
values in quad precision, something I had not bothered to do in the Mata
code. Even if that had not been the explanation, a tolerance of 1e–13
would not have concerned me. It is rare when I can write test scripts
containing tolerances of 1e–15. Tolerances of 1e–12 and 1e–13 are quite
respectable.

I should explain about using tolerances like 1e–13 and 1e–15 instead of
1.0c–2c and 1.0x–32. I did, after all, lecture you in section 5.2.1.2 on the
benefits of small values with exact and simple binary representations. My
best defense, if only it were true, would be that I knew it did not matter in
this case. Well, I do know it does not matter, but that was why I used 1e–
13 and 1e–15. For the record, when all you want to do is verify that
differences are small enough, it does not matter how you specify the
tolerance.

My second best defense, if it were true, would be that I did not want to
confuse you with statements like

It is true that I do not want to confuse you, but I am perfectly willing to
confuse you if it is for your own good. The truth is that I am sloppier when
I write test scripts than when I write code, and I think in base 10 just like
you do.

I seldom polish my test scripts, but I polished this one so that you would
not have to struggle through the twists and turns that I introduced as I
debugged lr*(). There are places in the original where, before an
assert() statement that was failing, I displayed lr_XXinv() and even
invsym(lr_XXinv()) as I was backing through the steps to understand
where the calculation went wrong. There would have been nothing wrong
with leaving in the twists and turns. Test scripts need to test various cases
and assert that results are accurate enough, but if they do more than that, it
does not matter.

Finally, there is the story behind the “yuck!” in the line

When there are zero observations—when X is —lr_V(r) returns the

282

inelegant result

Notice the odd mix of 0s and missing values. Yuck.

This result is, I suppose, acceptable, but it would be better if lr_V(r)
returned a matrix of all 0s, and it would be easy to fix the code. The
problem traces back to the lr*() routine calc_SSinv_cons() where I add
a row and column to r.SSinv to handle the inclusion of an intercept. If
lr_N(r)==0, I need to append 0s instead. I could have fixed the code in
less time than I have already spent telling you about it. I left the inelegance
in the code for two reasons.

First, I want to tell you about extreme cases such as zero observations and
zero variables. When I write code, I ignore the existence of such cases. I
then include extreme cases in the certification script. I test the cases, and I
usually observe satisfactory results just because of how Mata handles null
matrices. Sometimes I observe an inelegant result as I do here, and then I
decide whether the result is acceptable or I need to go back and fix it. I
would have fixed this result. I did not because you might not have fixed it,
and I wanted to discuss that with you, too.

Let’s imagine that you wrote lr*(), discovered the embarrassing result,
but decided it was acceptable. Because you are embarrassed about the
result, you will be tempted to omit certifying it. Rather than assert that
lr_V(r) is (J(3,3,0), J(3,1,.) \ J(1,4,.)), you will omit the line
altogether. Someday, you think to yourself, you will go back and improve
this. “I really should not include results that are not perfect in my script,”
you tell yourself.

If you are too embarrassed to include the line

then you should fix the code. Whether you fix it or not, there are good

283

reasons for including the assert(), whatever the values are. One purpose
of certification scripts is to detect future changes in the behavior of your
code. Code can change behavior even when it has not been modified.
Results can change because of a change in an external routine that your
code is calling. When results do change, that might be because the new
result is better, or there has been a change in how the routine is to be used,
or the routine has a newly introduced bug. The purpose of certification is
to detect changes and stop. It is your job to determine why results changed
and take the appropriate action.

11.5.2 Adding lr*() to the lmatabook.mlib library

Copy the following files to your approved source directory:

Change to your approved source directory. Add the line “do test_lr2” to
test.do:

Run it by typing do test.

Add the line “do lr2.mata” to make_lmatabook.do:

Run it by typing do make_lmatabook.

Rerun test.do.

You are done.

284

Chapter 12
Mata’s classes

285

12.1 Overview

In this chapter, we cover classes as a programming concept. In the next
chapter, we will reimplement lr*() as a class.

Classes are like structures, but with added features. You declare them in
the same way that you declare structures, substituting the word class for
struct:

12.1.1 Classes contain member variables

Classes, like structures, can contain member variables:

This class is just like its corresponding structure would be. You refer to the
class’s member variables just as you would refer to them were Foo a
structure. If you have declared

then r is an instance of class Foo, and you refer to its members as r.y, r.X,
r.XX, and r.Xy. Variable r shares all the features of a structure variable.
You can pass r as an argument to functions, you can write functions that
return r, you can copy r to other variables via assignment, and you can test
whether r equals x or does not equal x regardless of the kind of variable x
is.

12.1.2 Classes contain member functions

Classes diverge from structures in that they can also contain member
functions. The following class contains functions setup(), calc(), and

286

b() along with the member variables y, X, etc.

Member functions are defined in the same way as regular functions, but
with added syntax to indicate their class membership. You add Foo:: in
front of the function’s name:

There are two types of programmers where classes are concerned. There
are insiders, who write the class’s definition and its member programs, and
outsiders, who use class’s member variables and functions in the other
programs they write. These two types of programmers could be the same
person, but it is important which hat he or she is wearing because each
type uses different notation to refer to the class’s members.

Outsiders use the same notation as they would with structures. r.y and
r.b() is how they refer to member variable y and member function b():

287

Insiders omit the r prefix inside the bodies of member functions:

Insiders code y, X, and calc(). They do not code r.y, r.X, or r.calc().

12.1.3 Member functions occult external functions

Insiders can choose whatever names they wish for members, even if that
name is already being used by Mata in some other context. For instance,
Mata provides a built-in function named invsym(), but that does not
prevent classes from providing their own function with the same name:

288

Including invsym() in the class definition changes the meaning of
invsym() in Foo::b()’s code, which was and still is

Previously, b() called Mata’s built-in invsym() function that inverted
symmetric matrices. Now b() calls the class’s invsym() function. If b()
still needed to call Mata’s invsym(), the code would need to be changed to
read

::invsym() specifies that the external invsym() is to be called, not the
class’s. Even when there is no class-provided function, programmers can
code double colons in front of a function name if they want to emphasize
that the function being called is defined outside of the class, but few
programmers do that.

I added invsym() to the class just so that I could explain what would
happen in the case of name conflicts. In the examples that follow, pretend I
never added it.

12.1.4 Members—variables and functions—can be private

Another feature unique to classes is that members can be private. In class
Foo,

289

all members are public, which is the default. A better version of Foo would
make only some of the members public and make the rest private:

Public members are just what you would imagine them to be. They are
members that anyone may call or use. Public members can be called and
used by insiders when they write setup(), calc(), and b(), and they can
be called and used by outsiders who define a class Foo scalar in their
programs.

Private members cannot be called or used by outsiders. It is not really
programmers who are insiders or outsiders as I have claimed; it is the
functions they write that are inside or outside of the class definition. Only
inside functions—other class functions—may access private members.
Outsiders—programmers who define class Foo scalar r in their
programs—will be prohibited from coding r.y, r.X, r.XX, r.Xy, and
r.calc() in the programs they write. They may code r.setup() and
r.b(), but if they call or access any of the other members of the class,
Mata will issue an error:

290

It might be better if the error message read, “X is private in class Foo and
therefore you cannot use it”, but as far as Mata is concerned, r.X simply
does not exist when compiling an outside function. Outside functions
cannot access r.X, and neither can they access the private functions:

Making members private is useful. Think of the lr*() system that we
wrote in the previous chapter. We could not block lr*()’s users from
accessing the structure’s internal variables; we just hoped they did not. We
hoped they would call lr_b(r) instead of accessing r.b. It would have
been better if we could have blocked them from accessing r.b altogether.
With classes, we can.

In the class Foo definition that I showed you, I specified the privacy setting
member by member. You can instead specify the setting for groups of
members, and the result is far more readable:

12.1.5 Classes can inherit from other classes

291

Class aficionados will tell you that inheritance is the best feature of
classes. It would be difficult for me to agree with that because most class
programs that I write do not use inheritance. Yet I agree with the
sentiment. Inheritance is spectacular when you need it.

Let’s continue with class Foo, which, in case you could not discern it from
the names of its members, concerns the calculation of solutions to linear
regressions. Let’s pretend that Foo has been fleshed out with more features
and is up, running, and debugged. It is a wonderful linear-regression
engine. It is so good that it is no longer named Foo. It has been renamed
LinReg.

ANOVA, another statistical estimator, is a special case of linear regression
in that we need to make many of the same calculations, while other
calculations need to be made differently or are unique to ANOVA itself.
One way of programming ANOVA would be to inherit the parts in common
from LinReg. Another way of saying the same thing is that we could
extend the linear-regression class. We could do that by coding

292

The short phrase “Anova extends LinReg” causes Anova to inherit the
features of LinReg. In writing Anova, we can use some of LinReg’s
features, override others, and add new ones. Meanwhile, users of Anova
will remain unaware that we built it from LinReg. We might tell them
about the relationship if LinReg had a great reputation for accuracy and
robustness, but other than for marketing purposes, our use of LinReg
would be of no importance to them. Anova is a class, and to users, it is
merely an implementation detail that it was built on top of LinReg.

One effect of Anova extends LinReg is that the functions and variables of
LinReg become part of Anova. Think of it like this:

Here is a more detailed view:

Notice that function setup() appears twice in class ANOVA. We will get to
that later in section 12.1.5.2. In the meantime, note that Rsquared() is in
LinReg’s contribution to Anova and effects() is in the additions. That
will make no difference to users who have declared

293

They will be able to call A.Rsquared() just as they can call A.effects(),
yet all we will have to write is Anova::effects()! Even better, when we
write effects(), we can even use LinReg’s private functions should that
be convenient.

12.1.5.1 Privacy versus protection

Privacy comes in two forms where inheritance is concerned: private and
protected. When I wrote that class members can be public or private, I
should have written that they can be public, protected, or private.

private is super private. Only the declaring class can access the private
members. Everyone else is blocked, and that includes inheritors.

When I wrote that A.effects() can use LinReg’s private functions, that
was true only if you paid attention to typeface. I should have written that
A.effects() can use LinReg’s protected functions and variables.
protected members can be accessed by inheritors.

The usual terminology for the bequestor and the inheritor is superclass and
subclass. In this terminology, LinReg is the superclass and Anova is the
subclass. Another popular terminology refers to LinReg as the parent and
Anova as the child.

Whatever we call LinReg—superclass, parent, or rich-in-features uncle—
we will need to modify the class to expose its private members to
inheritors:

In a more fleshed out example, LinReg would have more members, and we

294

would consider which should be private and which should be protected.

12.1.5.2 Subclass functions occult superclass functions

In the story I am telling, we are splicing Anova onto LinReg after the fact,
but that is not how the situation usually unfolds. Programmers writing
superclasses usually know that they are writing for inheritors. Sometimes
they are writing the class for two audiences, as in the LinReg example. The
class by itself is useful for solving linear-regression problems, and the
class is also useful to programmers who wish to write other systems by
extending it. Other times, the superclass is written only to be a superclass,
and subclass extensions are necessary to make the combined object do
something useful.

In the example I have shown you, function A.Rsquared() is provided by
the superclass, and A.effects() is provided by the subclass. Functions
can also be defined by both classes.

Let’s imagine a function Gstat() that is defined by both LinReg and
Anova. If a user of Anova calls A.Gstat(), it will be Anova’s function that
is invoked. The jargon I like for this is that Anova::Gstat() occults
LinReg::Gstat(), but the jargon used is that LinReg::Gstat() is
shadowed by Anova::Gstat(). Whatever we call the behavior, it is useful
for dealing with situations that must be handled differently. Let’s assume
that Gstat() calculates G statistics, whatever they might be. If G statistics
are calculated one way for linear regression and another way for ANOVA,
the programmer of Anova simply defines a new Anova::Gstat() function
that effectively replaces LinReg’s Gstat() function.

Anova::Gstat() can even call LinReg::Gstat() if necessary. Perhaps
ANOVA’s G statistic is linear regression’s G statistic multiplied by

. In that case, the code for Anova::Gstat() could read

Another example of a function provided by both LinReg and Anova is
setup(). Both classes already declare the function. Users of either class
will call setup() to specify the linear-regression or ANOVA problem to be
fit. Anova’s setup() function might be

295

The super prefix may be used with functions or variables.

12.1.5.3 Multiple inheritance

Once Anova is written, we could write another class that inherits from it!
One-way ANOVA is a special case of ANOVA. We could write class OneWay
extends Anova.

OneWay will doubtlessly have its own setup() function. If OneWay’s
setup() needs to call Anova’s setup() function, it would call
super.setup(). If it needs to call LinReg’s setup(), it would call
super.super.setup(). OneWay’s setup() is unlikely to need to do that,
however, because Anova’s setup() should handle the issue of initializing
LinReg.

12.1.5.4 And more

We will discuss Mata’s other inheritance features in section 12.6. Mata
provides virtual and final functions and supports polymorphisms.

296

12.2 Class creation and deletion

The creation and deletion of class instances is automatic in Mata. The
situation here is the same as it was for structures; we mentioned this in
passing in section 10.8.

First, variables are automatically filled in with class instances if you
remember to declare them as scalars. If you forget, the variable will default
to being a matrix, which means it will be initially.

Second, just as with structures, Mata automatically creates a corresponding
constructor function when you define a class. If the class is named Foo, its
constructor function is Foo(). Foo() without arguments returns a new

 class instance. Foo() returns new instances in a vector.
Foo(,) returns new instances in an matrix. If you declare

then vf starts as . If vf needs to contain four class instances, you can
subsequently code

If you were to declare

and p needed to point to a new class instance, you can subsequently code

Classes have two other related features. If you have class functions named
new() and destroy(), they will be run automatically at the appropriate
times.

When member function Foo::new() exists, it is run whenever a new
instance of Foo is created. Foo::new() is run when you use the Foo()
function, and it is run when you declare Foo variables to be scalars. The
running of Foo::new() becomes part of Mata’s instance-creation process
for Foo. You might define a new() that reads

297

If you did, every new instance of Foo will have a and b set to .z and name
set to "default".

At the opposite end of the process is destroy(). If Foo::destroy() exists,
it will be run when instances of Foo are deleted. Just as with new(), you do
not call destroy(). The running of Foo::destroy() becomes part of
Mata’s instance-deletion process for Foo. You might define a destroy()
that reads

This destroy() function would ensure that a file would be closed when
member variable filehandle had been filled in with a nonmissing value.

There are situations in which new() and destroy() are useful, but they do
not arise as often as in other languages because memory management in
Mata is automatic. C and C++ users: It is not your responsibility to
allocate memory for class instances, nor is it your responsibility to free it.

destroy() is needed only for special cases, such as closing an open file.

new() is sometimes useful, but it is often unnecessary because Mata’s
automatic preinitialization is sufficient. In most code that I write, I am
forced by the nature of the problem to include a setup function that users
must call anyway. Remember the lrset() function of the previous
chapter? Users had to call it to specify the model to be fit. When you have
such a function, it is easier to place any initialization code in that function
than to put the code in a separately defined new() function that is
automatically called. The result will be the same either way.

Although memory management in Mata is automatic, you can hurry the
process. Say you have a class Foo scalar foo that, late in your
program, is no longer needed even though the program still has a few more
things to do. You can reduce foo’s memory footprint by coding

298

If you have a class vector fv, code

If you have a class matrix fm, code

If you have a pointer p to an instance or instances of Foo, code

None of this is necessary. The memory of class instances is freed when the
function declaring them exits or returns, the exception being any class
instances returned by the function. Those instances then become the
property of the caller, and the caller frees them when it returns unless it
returns them, and so on.

299

12.3 The this prefix

When writing member functions, you may refer to member variables and
functions directly. If y, X, and init() are members of Foo, you may refer
to them in just that way when writing member functions:

You can emphasize that y, X, and init() are members of the class by
prefixing them with this if you wish:

You need not be consistent. You could prefix y but not X, or prefix X but
not init().

Use of this is sometimes required, as in

References to y and X in the above code are references to the arguments.
You code this.y and this.X to specify Foo’s member variables.
Specifying this.y and this.X would also have been required if you
declared y or X to be variables inside the function.

Whether you use this or not, member functions always occult external
functions. It makes no difference whether you code init() or
this.init(). If you later want to call external function init()—init()

outside of the class—you must code ::init().

300

12.4 Should all member variables be private?

Some would argue—me among them—that all member variables should
be private. If users of the class need to access them, that should be done
using access functions. That is, rather than define

you should define

There are two advantages to the variable-plus-function approach. The first
is that users cannot change the contents of X. The second is that you, the
programmer of the class, now have the ultimate freedom to modify the
code. Today you are storing X, but someday you may be storing Xdev, X as
deviations from the means. Should that day arrive, you can keep old code
working by modifying the function X() to read

If you planned all along that users set X, provide a function to do that, too:

301

Now that you have a setX() function, you can add code to it to verify that
the matrix that users specify is as you expect it to be:

I often combine the two functions into one:

If your response is that you do not need to do any of this, then X should
have been private from the outset. If you make variables public, you must
assume that someone, someday will access them and even change their
contents.

302

12.5 Classes with no member variables

Classes are not required to contain variables, and classes that contain only
functions can be surprisingly useful. Here is one that provides just one
member function:

I will eventually show you the code. The one function that this class
provides returns the distance in miles between two positions on the Earth
expressed in degrees of latitude and longitude. I can use the function
interactively,

or in a program,

You must be asking yourself why anybody would create a class to provide
just one function. There are two reasons. First, if the calculation is

303

complicated and requires subroutines, classes provide a way to encapsulate
the related code and so keep the subroutines private. Second, you can give
the functions and subroutines better names because they have a context.

Naming a function distance() will not do. The name is too general.
Distance between what? I have written lots of distance functions, including
one that calculated the distance between matrices. Even putting that
argument aside, there are reasons we should not name the function
distance(). Standalone functions share a common name space. That
name space is shared by you, me, everybody else, and, oh yes, StataCorp.
Is somebody else using the name distance()? Probably. Even if we do
not care about that, we need to worry that StataCorp might someday take
the name. If they do, their function will occult ours, and that will
inconvenience us.

Classes circumvent these problems. It is the class’s name that needs to be
unique, not the function’s name within the class. We could choose a name
even more ungainly than EarthDistance and we would not care much
because we only have to specify the class’s name on the declaration
statement. Look at the previous example. We used the word
EarthDistance once, in the declaration of the class scalar, and after that
we got to use the nice name e.distance() in the code.

Here is the code for EarthDistance. You can see that I defined three
private subroutines—radians(), hav(), and invhav()—which made it
easier for me to write the one public function distance().

304

305

Note: The formulas above calculate the distance in miles between points on a
sphere. The Earth is not a sphere. To produce distances in kilometers, change
radius = 3961 to radius = 6375.

Once you start writing function-only classes, you sometimes find reasons
to add member variables to them later. The code above produces distance
in miles. We could modify distance() to produce results in miles or
kilometers by adding a setting. We could do that by moving variable
radius out of distance() and into the class (making it private, of course)
and adding a public setup() routine:

We might now decide to also allow custom radiuses so that users could
calculate distances on other planets. If we did that, we should also change
the name of the class EarthDistance to PlanetaryDistance.

306

12.6 Inheritance

This section continues where section 12.1.5 left off. We were discussing
inheritance and stopped before discussing inheritance’s advanced features,
namely, virtual, final, and polymorphisms. Before continuing that
discussion, however, we need to consider another advanced topic. When
should you use inheritance, and what are the alternatives to it? We left off
with an example of the class Anova extends LinReg:

In the example we are discussing, class LinReg provided function
Rsquared() that users of the class Anova could use, yet we did not have to
write it. The situation was as if LinReg::Rsquared() had been custom
written for ANOVA problems. There is, however, another way we could
have organized the code. We could have put class LinReg inside class
Anova:

If we had written the code this way, Anova users could not have called
LinReg’s Rsquared(), but put that aside for a moment. If the other reason
we wanted Anova to extend LinReg was merely so that we could call
LinReg functions in the new Anova code we would write, then the class-in-
a-class solution would have been a better way to organize our code than
the inheritance solution would have been. Class-in-a-class is simpler and
easier to understand.

I previously offered the example Anova::setup() when Anova extended
LinReg. It was

307

If LinReg was instead put inside Anova, only one line of the above code
would need to change. Instead of calling super.setup(), we would call
lr.setup():

This example suggests that the Anova code would be no more difficult to
write, but in fact, the code would be even easier to write using the class-in-
a-class style because we would not have to write our new code to fit into
the framework and style established by LinReg. We would just use its
functions as we needed them. Yes, if we wanted to provide Anova’s users
with an Rsquared() function, we would have had to write it, but it would
not have been difficult. The code for the entire function fits on one line:

If this makes it seem as if inheritance is a gratuitous complication instead
of a useful programming tool, it is not. When I said that the class-in-a-
class code would be easier to write because our new code would need to fit
into the framework established by LinReg, that disadvantage can turn into
an advantage and our new code would be easier to write if LinReg is well
designed and ANOVA really is a conceptual extension of linear regression.
You have to make a judgment. For instance, in no sense is Anova a
conceptual extension of string utility functions that chop text strings, put
them together again, and the like. That does not mean that string utilities
might not be useful in implementing Anova; it just means that if you

308

wanted to use a class StringUtilities that provided those functions, you
would include the class inside of Anova and not inherit from it.

When inheritance is justified—when the new code you are writing really is
a conceptual extension of an existing class—using the advanced features
we are about to discuss will allow you to do things that would take pages
and pages of complicated code if done another way.

12.6.1 Virtual functions

Assume that we want to create two different classes, one for fitting linear
regression and another for fitting logistic regression. These two estimators
are examples of something called linear models in statistics, and we intend
to implement other linear models later. A good way to write that code
would be to write a linear-model class. In this case, I know I want to use
inheritance because linear-model statistics are conceptually related to the
statistics of the individual linear models. For this example, however, I am
going to focus on something more mundane, namely, the displaying of
results after fitting a linear model. The linear-model class looks like this:

Class LinearModel does not by itself do anything useful. We will write
LinearModel solely to provide useful subroutines, such as
displayresults(), which will display the estimation results.

We will write the two individual estimation classes using inheritance.
Subroutines for formulas in common will appear in the superclass
LinearModel, and formulas that vary model by model will appear in the
subclasses. Rsquared() is an example of the latter:

309

The Rsquared() functions return a scalar value related to how well the
models fit on a scale of 0 to 1. How you calculate the value differs
depending on which model was fit, which means that the Rsquared()
function is defined in the subclasses. The function will be called by
various routines in the overall system, but I want to focus on it being
called by LinearModel::displayresults(), the routine that displays the
results. I imagine the system being used like this by someone fitting a
linear regression:

If the user needed to fit a logistic regression, m would be a class
LogisticRegression scalar, but nothing else would change:

In both cases, users code m.displayresults() to see the final results:

Callers will code m.displayresults() but
LinearModel::displayresults(). I previously described how to think
about inherited classes. I drew the figures like this:

310

The way inheritance works, subclass functions can call superclass
functions but not vice versa because, while the subclass knows about the
superclass, the superclass knows nothing about the subclass. Inheritance is
a one-way street heading north.

That will be a problem for the system I described because we need the
superclass’s displayresults() function to call Rsquared(), but
Rsquared() is defined by the subclass. The solution is to add a virtual
placeholder function named Rsquared() to the superclass:

The virtual placeholder specifies that if LinearModel::Rsquared() is
called, then LinearModel is to execute the function named Rsquared() in
the subclass. You are not required to define the code for
LinearModel::Rsquared() because LinearModel’s function will be called
only if the subclass does not provide an Rsquared() function or if there is
no subclass. LinearModel::Rsquared() is for emergency use only. I tend
to define the function anyway and code

It is easy to understand virtual when there are only two classes, one
superclass and one subclass. Let me show you how it works when there are
more subclasses. Consider the case where D extends C extends B extends A,
which is figuratively

311

Now assume a function in class A calls f(), which is declared to be virtual
in A. Which f() is called if more than one class defines it? Answer: The
first f() not marked virtual or, if all are marked virtual, the bottommost
f() defined. You search from top to bottom and skip any classes that do
not define f().

Functions may be virtual, but virtual variables are not allowed.

12.6.2 Final functions

final is like virtual in that it too is set by the superclass:

Final means the opposite of virtual. Virtual means that the superclass calls
the subclass’s function. Final means that the subclass calls the superclass’s
function. A final function is the final word as far as inheritors are
concerned.

Final member variables are allowed, too. If the superclass defined
basecalc() and N_of_obs as final, then inheritors may not themselves
define basecalc() or N_of_obs. All inheritors will use the superclass’s
function and variable.

Classes allow three kinds of members:

312

When you declare a function to be final, you are making an
announcement: “Whatever it is that this function does, it is the final word
on how to do it. Subclasses, if any, may not override this function. They
may not occult this function. They may not even define a function of the
same name lest anyone be misled.”

Why would you want to do this? I showed an example above where
ingredient1() was declared final in LinearModel. Let’s imagine that
ingredient1() makes a calculation of that, if it is calculated, must be
calculated when the model is fit. is required for doing postestimation
hypothesis testing, which will be performed by other functions that can be
called after the model has been fit. Those functions combine with other
calculations they make, but those calculations will only be mathematically
valid if is calculated in the way they expect, which is how
ingredient1() calculated it. By declaring ingredient1() to be final, the
programmer of the superclass is ensuring that the calculation is made in
the way that the postestimation functions expect.

If a class extending LinearModel attempted to define its own
ingredient1() function, Mata would refuse to compile the code:

313

12.6.3 Polymorphisms

Assume that class B extends A and that variable b is declared to be a class B
scalar. Obviously, b could be passed to functions expecting to receive a
class B scalar. Surprisingly, b can also be passed to functions expecting to
receive a class A scalar. b is a polymorph. It is both a class B and a class A
scalar.

How can b be both? Let a be a class A scalar and b be a class B scalar. I
drew pictures of inheritance, and you need to take them literally:

Variable b not only contains a class A object, the top part of b is a class A
object.

Consider a program expecting a class A scalar, such as

Because of polymorphism, myprogram() is allowed to receive a class B
scalar. Now imagine that myprogram() calls a.draw():

314

If myprogram() received a class B scalar, and if A::draw() is virtual, then
myprogram()’s call to a.draw() will in fact execute B::draw()! This
aspect of polymorphism can be put to good use. Imagine the following set
of classes:

The purpose of all these classes is to draw shapes on your monitor. Here is
how they fit together to achieve that:

Class Object provides the lowest-level screen-drawing functions.

Class Circle draws circles by calling Object’s screen-drawing functions.

Class LineSegment draws lines by calling Object’s screen-drawing
functions.

Class Triangle draws triangles by calling LineSegment to draw each of
the legs.

Class Rectangle draws rectangles by calling LineSegment to draw each of
the sides.

Here is a program for drawing a collection of objects:

315

The vector o that drawobjects() receives is not really a collection of pure
class Objects. It is a collection of classes Circles, LineSegments,
Triangles, and Rectangles. Indeed, o[1] might be one thing and o[2]
another. That is allowed because the classes are polymorphisms of class
Object.

The function will draw all the objects in the vector because draw() is
virtual. Each class defines its own draw() function, and thus the call to
a.draw() will sink to the bottommost draw() for each object.

12.6.4 When to use inheritance

Now you know why I said that inheritance can be spectacular when you
need it. Yes, inheritance adds complication, but that complication turns
into features in some cases. In cases where it does not, the complication is
just added complication.

The reasons to use inheritance are as follows:

1. The subclass needs to export to its callers one or more of the public
functions provided by the superclass.

2. The subclass needs to supply virtual functions for use by the
superclass.

3. There will be multiple subclasses that exploit polymorphisms as I did
in the drawobjects() routine above.

4. The subclass needs to call protected functions of the superclass.

316

12.7 Pointers to class instances

Pointers to class instances work just like pointers to structure instances,
which we discussed in section 10.10.

Pointers to class member functions are not allowed. You may not code

You may, however, code

and subsequently call the function by coding

317

Chapter 13
Programming example: Linear regression 2

318

13.1 Introduction

We wrote a first-rate linear-regression system using structures in
chapter 11. We could have written it as a class, and that is exactly what we
are going to do in this chapter. I will translate lr*() version 2 and produce
the equivalent class LinReg code, and then I will tell you about it. For
instance, function lr_b() for obtaining the linear-regression coefficients
looked like this:

In the new code, it will look like this:

The new code looks simpler because there is less superfluous ink. The
class provides a context, so what was r.b[lr_K(r)] becomes b[K()]. The
same is true of all the other member functions, so a line that previously
read

will now read

319

I will call the translated code LinReg version 1.

Then, because I want to show you how easy it is to add new features to
class-based, self-threading code, we will modify the system to include two
new standard-error calculations, the OPG-based variance matrix and the
robust (sandwich) variance matrix. The new code, LinReg version 2, will
be good enough to save in the lmatabook.mlib library, and we will do
that.

Before we start, let me show how callers will use LinReg.

320

13.2 LinReg in use

LinReg works just like lr*() except for the differences in syntax because
LinReg is a class, and those differences are all for the better. Whereas
callers of lr*() coded

callers of LinReg will code

Just as when I demonstrated the lr*() system, I have already defined y
and X in Mata:

321

Here is LinReg used interactively:

322

323

13.3 LinReg version-1 code

You can see a full listing of the LinReg version-1 code by typing in Stata

If you have not yet downloaded the files associated with this book, see
section 1.4.

The new code needs no explanation other than it is a line-by-line
translation of the original structure-based code. Notice that member
variables are now private, meaning that users of LinReg cannot access
them directly, and that LinReg’s internal subroutines are now private, too.

324

13.4 Adding OPG and robust variance estimates to LinReg

To show you how easy it is to add new features to self-threading code, I
will now add two of them:

These two new features are alternatives to the existing likelihood-variance
estimates provided when users call r.V().

I could have perhaps made my point by adding something easier, such as
r.Rsquared(). I chose to add r.Vopg() and r.Vrobust() specifically
because they would be difficult. Splicing alternative variance estimates
into existing code would ordinarily involve more work than we will need
to do.

The formulas for the new variance estimates are

where

and where

the almost-mathematical notation diag(e:^2) specifies the
 matrix with the squared elements of e along its diagonal

and

X is augmented with a column of 1s if the model includes an
intercept

In models with an intercept, V_robust can be calculated using the
mean-deviated formula

325

where

This formula yields better precision. P could also be calculated using
a mean-deviated formula, but we will not bother to do that.

Matrix P is commonly known as the outer-product of the gradients.

Note: This formula sheet uses the same notation as the one in
section 11.4.1.

Programming formulas such as

and

would be daunting if we were starting from scratch. However, we have an
up-and-running linear-regression system, and most of the ingredients are
already at our fingertips. To implement Vopg() and Vrobust(), we will
need

We just need to implement two new subroutines for use by

326

LinReg::Vopg() and LinReg::Vrobust(), namely,

e is the vector of residuals, the difference between the observed and
predicted outcomes. The new routine for calculating them is

I discovered that the existing code already had the calculation for e buried
in LinReg::ee():

I changed the boldfaced line to call the new function:

I did not have to change LinReg::ee(). But I did change it, because
someday I might need to modify how e is calculated and forget that the
same formula needs updating elsewhere.

The other new calculation we need is P. Calculating it is straightforward
using quadcross():

We now have the ingredients we need, and it will be easy to write the code
for Vopg() and Vrobust():

327

I would say that we are done, but when I later tested the code, I discovered
that Vrobust() did not return a symmetric matrix when it should have.
The returned matrix differed trivially from its symmetric counterpart. The
elements on either side of the diagonal differed from each other by less
than 1e–15, and they differed from the right answer by less than 1e–15,
too.

I almost did not notice the problem, and when I did, I thought about
ignoring it because the problem does not arise often, and even when it does
arise, it would not matter if you ignored it. Relative errors of 1e–15 are
machine precision, and in general, you should expect round-off errors
larger than this. We nonetheless should discuss the problem, because there
are important numeric accuracy issues that you should know about, and
anyway, it is just plain sloppy to return a nonsymmetric matrix when it
should be symmetric.

I will first modify the Vrobust() code, and I will then explain. When a
matrix is almost-but-not-quite symmetric and you know that it is due to
round-off error, you use Mata’s _makesymmetric() function to make it
symmetric. The improved code for Vrobust() is

328

_makesymmetric() makes symmetric by copying the values from
elements below the diagonal to the corresponding elements above the
diagonal. Doing this makes the matrix symmetric, but it does not make it
any more accurate. Below the diagonal, there was round-off error; above
the diagonal, there was round-off error. There is no reason to believe that
the error is less on one side or the other. We are replacing the round-off
error on one side with the round-off error from the other. Total error is
expected to remain the same.

13.4.1 Aside on numerical accuracy: Order of addition

The calculation SSinv()*P()*SSinv() does not produce a symmetric
matrix when it mathematically should. If we call the resulting matrix C,
then C[,] is not exactly equal to C[,], although they are almost equal.
The maximum relative absolute difference across all and is
approximately 1e–15. The difference occurs because the order in which
terms are summed when calculating C[,] differs from the order when
calculating C[,].

Addition and subtraction of nonintegers performed by computers are
commutative but not associative. That is, + always equals + ,
numerically speaking, but (+)+ is not necessarily equal to +(+).
This means that whenever computers add three or more values, the order
in which it adds them matters. Think back to section 5.2.1.2 when I had
you pretend that you were a base-10 computer with a five-digit
accumulator and asked you to sum 5.17 and 0.00014231. You obtained
5.1701. You lost the least significant digits from the second number, and
the number of digits you lost depended on the magnitude of the first
number. You would have obtained the result 5.1701 even if you had

329

summed the values in the reverse order. Numerical addition is
commutative.

If I asked you to sum three numbers, however, the order in which you sum
them will affect the result. Sum 5.17, 0.00014231, and 0.00085769. If you
sum them in the order specified, and truncate all along the way to five
digits, you will obtain 5.1709. Sum the smaller two values first and then
add 5.17, however, and you will obtain 5.18, which happens to be the
mathematically correct answer.

You can in general minimize the round-off error in any calculated sum by
placing the numbers to be summed in ascending order of their absolute
values. Programmers rarely do this because real computers work with the
equivalent of 16 decimal digits (approximately), and the extra effort
seldom results in a meaningful reduction of total round-off error. I say
seldom because there are cases in which the extra effort is justified.

13.4.2 Aside on numerical accuracy: Symmetric matrices

Most formulas mathematically guaranteed to produce symmetric matrices
involve matrix multiplication, which itself involves summing terms
obtained by (scalar) multiplication.

Imagine that produces a mathematically symmetric result. When
the numbers being summed to produce and are different but with
the mathematical requirement that their respective sums are equal, then
R=A*B can produce an asymmetric result because summing different
numbers produces different round-off errors. In other cases, the elements
being summed on either side of the diagonal are the same, but the order in
which they are summed is different, and that difference can lead to
different numerical results.

At this point, you may suspect that computers seldom produce numerically
symmetric matrices. If you mean seldom in the sense of across all
formulas that mathematically produce symmetric matrices, you are right. If
you mean seldom in the code that you write, you are probably wrong.
Most of the symmetric matrices that statistical programmers code are of
the form X’X and X’D*X where D is a diagonal matrix. These two formulas
have the property that the elements being summed on the two sides of the
diagonal are not only the same but also in the same order. Calculations of

330

X’X and X’D*X always produce numerically symmetric results.

The formula that Vrobust() implements is of the form S’P*S, where all
three matrices are symmetric. Mathematically, results will be symmetric.
Numerically, they are not guaranteed to be, because P is not a diagonal
matrix.

Whenever you code a matrix formula other than X’X or X’D*X intended to
produce a symmetric matrix, you need to consider the possibility that the
result R will not be symmetric. Here is how you do that. First, code the
formula, and then check the result with issymmetric(R) or R==R’. If R is
not symmetric, check whether it is nearly symmetric by calculating
mreldif(R’, R). Depending on how much calculation has gone into
producing R, that maximum relative difference will be 1e–15 or as large as
1e–13. It might even be 1e–12. At this point, you are determining whether
R is being calculated correctly and the asymmetry could reasonably be
caused by round-off error. If it is, use _makesymmetric(R).

I want to explain about 1e–12. Writing a system of equations and having
total round-off error of 1e–12 would usually be acceptable. Most
consumers of computer calculations (users) think calculated results are
more accurate than they are. For instance, in many statistical models other
than linear regression, if you succeed in calculating a variance matrix to 12
digits of accuracy compared with truth, you have done an outstanding job.
If numeric derivatives are involved, you will be lucky if you have 8 digits
of accuracy and, in some cases, even 4 is acceptable.

I suggest 1e–12 for checking symmetry because we are not comparing
with truth. We are checking the inaccuracy introduced by one matrix
formula. Yes, the ingredient matrices include round-off error, but in
checking the calculated result for symmetry, we are treating the
ingredients as if they were fully accurate and merely asking how much
round-off error the single calculation introduced. A loss of four decimal
digits would be concerning, although not overly concerning. If you have
round-off error problems, you need to learn about matrix balancing.
Balancing reduces the norm of matrices in hopes of improving the
accuracy of calculations.

In Mata, it is not necessary to make matrices symmetric that might not be
symmetric because of round-off error if you are going to take invsym() of
them. Do you remember when I showed you that invsym() produces

331

wrong answers when given nonsymmetric matrices? It does that so that it
can produce correct answers when matrices are nonsymmetric because of
round-off error. invsym() uses only the elements stored on-and-below the
diagonal in making its calculations. If invsym() needs to access x[i,j]
above the diagonal, it accesses x[j,i] instead. Thus, the matrix is treated
as if it were symmetric, and programmers can ignore the lack-of-symmetry
problem in this case. All of Mata’s functions that end in *sym() have this
property.

13.4.3 Finishing the code

We have written new routines LinReg::e(), LinReg::P(),
LinReg::Vopg(), and LinReg::Vrobust(). All that remains is to satisfy
the class’s bureaucratic requirements. We must declare the new functions
along with their member variables in the class definition. Only Vopg() and
Vrobust() stored their results, so the additions we need to make are

We also need to add code to set the member variables Vopg and Vrobust to
.z in LinReg::clear(),

332

We will call LinReg with these additions LinReg version 2.

333

13.5 LinReg version-2 code

You can see a complete listing of the LinReg version-2 code by typing in
Stata

If you have not yet downloaded the files associated with this book, see
section 1.4.

334

13.6 Certifying LinReg version 2

I did not mention it when I presented the code for LinReg version 1 earlier
in this chapter, but I created a certification script for it. Because LinReg
version 1 was nothing more than a class translation of the structure-based
lr*() version-2 code, I also translated its certification script to create
test_linreg1.do. You can see the file by typing

I did that before writing LinReg version 2 because I did not want to waste
my time adding Vrobust() and Vopg() to code that did not already work.

Then, because I did not want to show you code for Vrobust() and Vopg()
that did not work, I added tests to the bottom of test_linreg1.do and
saved the result as test_linreg2.do. You can see the resulting
test_linreg2.do by typing

335

13.7 Adding LinReg version 2 to the lmatabook.mlib library

Copy the following files to your approved source directory:

Change to your approved source directory. Add the line “do
test_linreg2” to test.do:

Run it by typing do test.

Add the line “do linreg2.mata” to make_lmatabook.do:

Run it by typing do make_lmatabook.

Rerun test.do.

You are done.

336

Chapter 14
Better variable types

337

14.1 Overview

In Mata, you declare variables in terms of how they are stored, such as

Code can be more readable if you declared them in terms of how they are
used, such as

Consider the EarthDistance::distance() function discussed in
section 12.5. The function was described in terms of how the variables
were stored:

The function could have been described by how the variables were used:

Mata does not itself have features for defining variable types based on use,
but Stata has macros that we can use to create the new types.

338

14.2 Stata’s macros

Stata’s macros serve as variables in Stata’s ado programming language,
and many users who do not program use Stata’s macros as shorthands to
save typing. Let’s review how they work.

If you type in Stata

then ‘x’—left quote, x, right quote—becomes a synonym for 10. Were
you now to type

Stata would see it as

Stata sees this because Stata’s input processor finds the quoted macros in
the input and substitutes their definitions before Stata sees the line. Macros
can contain anything and can be used anyplace. For instance, you could
define

and type

Stata would see and execute generate b = a + 10.

339

14.3 Using macros to create new types

Macros defined in Stata can be used in Mata, and just as with Stata, the
macros will be found and substituted before Mata sees the input. Consider
a Mata function to convert degrees to radians:

If you defined in Stata

you could code radians() as

Because the word real is substituted before Mata sees the input, the
updated version of the function is indistinguishable from the original from
Mata’s perspective.

‘Radians’ and ‘Degrees’ are called macroed types or derived types.

You can create macroed types that include the organizational type as well:

Then you could code

I sometimes do this. I use suffix S for scalar, V for vector, RV for rowvector,
CV for colvector, and M for matrix.

A .mata file containing radians() with macroed types could read

340

The macroed types are defined in the do-file along with the Mata code.
They are defined before entering Mata.

341

14.4 Macroed types you might use

When and how to use macroed types is a personal decision. You use them
to increase the readability of code and thereby reduce the chances of
errors. You use them so that later, when you return to the code, you will be
able to understand it more easily. The flip side is that if the code is already
readable using Mata’s standard types, there is no reason to complicate it
with macroed types.

You might decide that radians() was already readable in its original
form. Yet, if radians() was just one of a set of routines in which some
use radians and others use degrees, you might change your mind.

I do not bother with macroed types for naturally numeric variables. For
instance, I am fine with declaring subscripts such as i and j as real scalars
when writing matrix functions. I could define a ‘Subscript’ type, but
why bother? I think of i and j as numbers anyway, and unnecessarily
adding new terms does not improve readability.

That said, let me show a matrix example where I would use macroed types
for subscripts. In the example below, I am working with a matrix X in
which the rows are observations and the columns are variables of a dataset.
In this case, I might indeed declare subscripts such as ‘Obs’ and ‘Var’ just
so that I could keep them straight. I would certainly do that if I also had to
use a subset of the variables (columns) of X specified in vector v. v might
be (1, 32, 41, 89), meaning that the routine is not to use all the columns of
X; it is to use just the columns 1, 32, 41, and 89. I could code

342

What is important in the above code is the declaration of v. Had it been
declared as a real vector, it would appear to be just a vector. Well, it is a
vector, but it is a vector of subscripts, and row subscripts at that. I jumped
all the way to what the row subscripts mean and called the type Var.
Perhaps I went too far. An equally good solution would have been

There is no right answer, but in this case there might be a wrong answer,
which would have been to declare all the variables as real.

I told you about the capital letter suffixes S, V, RV, CV, and M that I
sometimes use. Had I used them, the program would have read as follows:

343

When I use macroed types, I usually define shorter names for Mata’s
standard types. I define ‘RS’ for real scalars, ‘RV’ for real vectors, and so
on:

If I need strings, I do the same for the string types that I need:

Just using ‘RS’, ‘RV’, and ‘SS’ can make code more readable.

The code for myprogram() would now read

344

I have no hard and fast rules. Sometimes I use Mata’s types directly.
Sometimes I use macroed types. When I do use macroed types, sometimes
I use them one way and sometimes another. My goal is to increase the
readability of the code.

I do have a few favorite macroed types that I can recommend to you,
however.

14.4.1 The boolean type

The macroed type I use most often is ‘boolean’, and I also define the
values True and False to go along with it.

To see why I like this type, I ask you what the following code does.

345

Now look at the same code after I substitute ‘boolean’, ‘False’, and
‘True’ for real, 0, and 1:

You now see right away that the function returns ‘True’ or ‘False’. It
returns whether a symmetric matrix is of full rank.

14.4.2 The Code type

Another macroed type I use frequently is

I use ‘Code’ for variables containing numeric codes, as in

346

When I use ‘Code’, I usually define macros for the code’s values, too:

Then my program can read

I sometimes write programs that have more than one set of codes, and in
that case, I distinguish between them by giving them different types:

347

Code to me means a cardinal code—codes that have no ordering. The
codes above are cardinal. TypeCode is coded 1 and 2, but it could just as
well be coded 2 and 1. Codes where order matters are called ordinal, and I
use the suffixes Ordinal or Ocode for them. In what follows, I am writing
code to maximize a user-specified function, and I want to record whether
the user also supplied the functions to calculate the first and second
derivatives:

If variable f is an ‘Fdef_Ordinal’, it would be reasonable to ask whether
f>‘F0’.

14.4.3 Filehandle

File handles are the codes that Mata’s file I/O functions use to track files.
They are stored as real scalars, but I define

so that I can write code like this:

14.4.4 Idiosyncratic types, such as Filenames

Idiosyncratic types means peculiar to the particular program I am writing.

348

Variables containing filenames is a good example. To me, a filename is
just a string scalar if I have just one or two of them. If I am writing
routines to manipulate or manage hundreds of filenames, however, I would
define

I would define ‘Filename’ so that I could quickly distinguish the
‘Filename’s in the code from the other string variables.

14.4.5 Macroed types for structures

I invariably assign macroed types to structures. Consider the following
structure:

The function path() uses struct Earth_Position variables:

The function declaration is difficult to read because there is too much ink
dedicated to the structures. Beyond that, I object to the presence of the
word struct because it magnifies what to me is a detail. To me, an
Earth_Position is a type just as much as real, string, and ‘boolean’
are types. Earth_Position is not a lesser type for having been
implemented as a structure. The situation can be much improved if we
define

The program then would read

349

It is now obvious what path() does. It returns a path from here to there
avoiding obstacles.

14.4.6 Macroed types for classes

I object to including the word class in declarations just as much as I
object to including struct. It is a detail of implementation, and one that I
am not likely to forget, so it does not need emphasis. If ‘Position’ was a
class instead of a structure, I still would have coded

The only difference would be the macroed type definitions:

Many classes are inherently scalars, such as LinReg in the previous
chapter. As a user of LinReg, I would define ‘LinReg’ to be a class LinReg
scalar:

Then I would use it like this:

14.4.7 Macroed types to avoid name conflicts

With the exception of Mata objects declared in ado-files, the names we
give to Mata functions, classes, and structures are public, and that means

350

we must choose names that others have not chosen. We could not name a
function distance(), for instance. Someone else is bound to have used
that name, and even if no one has yet, StataCorp might someday create a
distance() function.

In section 12.5, we discussed the use of function-only classes as a way of
giving functions more meaningful names while still avoiding name
conflicts. We created a distance() function in class EarthDistance, a
slightly inelegant name that we chose to avoid name conflicts. Users can
declare EarthDistance variables and so access the distance() function:

Problem solved. If some argued that EarthDistance is likely to result in
name conflicts, we could choose an even longer, more ungainly name,
such as

 Goulds_Earth_Distance_Functions

and users would not be much inconvenienced. The above code would now
read

If users found themselves wanting to use
Goulds_Earth_Distance_Functions in lots of routines, they could create
a macroed type for it to escape typing the long declaration:

351

Then their code could read

We at StataCorp use the ungainly name method for classes and structures
that we do not wish to make public but which we do need to use as
subroutines in code that is made public. We might create a class named
GPS_GO_Graph_output. That might be the class’s name, but we would not
use it in code. We would create a macroed type:

We would use ‘Gout’ in our code.

In fact, we use the macroed-name approach even with code that is intended
to be made public. In the previous chapter, we developed LinReg. We
would never have done that at StataCorp even if we believed that the final
name would be LinReg. We would have created
LinReg_development_project or some other long name. Despite that, the
.mata files would have looked nearly the same as the ones I showed you.
File linreg2.mata would have read

352

Even the certification do-file would have used macroed types:

Later, we would have had a meeting where we would decide on the final
name for the class. If LinReg was to be the final name, the macro
definitions in linreg2.mata and test_linreg2.do would change to be

If LinearRegression was to be the final name, the line would change to

Names are too important to be chosen as you write the first lines of code.
You need to think about them. You should write code so that you can
easily change names right up until the day you release. After that, you are
stuck with them.

353

Chapter 15
Programming constants

354

15.1 Problem and solution

Constants are numbers that appear in programs that specify physical
values, tolerances, limits, and the like. Constants cause three problems.

First, they can make code difficult to read. Consider the following
calculation:

Is it obvious to you that ly is a light year?

Second, constants are sometimes not constant. The limit of 100 that makes
sense today may need to be larger tomorrow.

Third, constants in code are difficult to track down when you need to
change them. Consider the 100 limit that you want to increase. You will
discover that the 100s you need to change look just like every other 100
that appears in the code.

The solution to all of these problems is to store constants in Stata macros
and reference the macros. Mata can understand the line

if you have previously defined

If you have a limit of 100, you can define

and refer to ‘max_values’ in the code.

If you have a blocking factor of 100, you can define

and refer to ‘blocking_factor’ in the code. The fact that
‘blocking_factor’ and ‘max_values’ happen to both be 100 is
irrelevant. If you need to increase one but not the other, change the macro

355

definition and recompile.

356

15.2 How to define constants

Define constants using

where definition is a numeric or string literal or expression. Examples
include

The parentheses can be omitted in the case of numeric literals, but do not
do that. If you become accustomed to seeing definitions like

you might omit the parentheses in the other cases when the consequences
would be dire. Consider secs_per_year defined without the parentheses
and having subsequent code that reads

The expanded line would then read

Only the 365.25 would be squared! When the macro is defined with the
parentheses, the result will be as desired:

357

15.3 How to use constants

You use the macros in code in the standard way—open single quote,
macro name, close single quote—such as ‘secs_per_year’. You can code

358

15.4 Where to place constant definitions

You place constant definitions at the top of .mata files, either before or
after any macroed types you create:

You place them later in ado-files, but still just above the Mata code:

359

360

Chapter 16
Mata’s associative arrays

361

16.1 Introduction

Array is computer jargon for vectors, matrices, and super matrices.

A one-dimensional array is a vector with elements .

A two-dimensional array is a matrix with elements .

A three-dimensional array is a super matrix with elements . And
so on.

An associative array is an array in which the indices are not necessarily
integers. Most commonly, the indices are strings, so you can have

, , or . The
indices do not have to be strings. Another associative array might have
elements , , or .

Mata has a class named AssociativeArray that implements these features.
I want to tell you about it because it is such a useful programming tool. I
also want to emphasize that it was written in Mata. It is not an internal
feature coded in C. It is a feature that we added to Mata in the same way as
I describe in this book. We at StataCorp wrote code in .mata files. We
wrote certification do-files. We compiled the code and certified it. We
finally placed it in a Mata library so that others could use it.

We wrote the code before Mata had classes. We implemented associative
arrays using structures and functions with related names. The function
names all began with the prefix asarray, just as in chapter 11, the lr*()
functions all started with the letters lr. Later, we created a class. We did
not reimplement the code. We instead wrote a class that used the existing
asarray*() functions.

I will tell you where you can learn more about the implementation, but
first, I want to tell you how to use AssociativeArray.

362

16.2 Using class AssociativeArray

Associative arrays are created when you code

or, if working interactively,

Either way, A is now an associative array. It is created as a one-
dimensional array with string keys (indices) by default. You can change
that. If you wanted a two-dimensional array with real-numbered keys, you
would use A.reinit() to change the style. You would code

The "real" you specify is not the type of A’s elements. It is the type of A’s
keys. You can store whatever types you want in A’s elements, and you can
store different types in different elements. Not even Mata’s transmorphic
matrices allow that. Transmorphic matrices can be of any type and they
can change their type as the code executes, but at any instant, the elements
stored in the matrix are all of the same type. A is different. One element
could be a real scalar, another a real matrix, another a string scalar, and so
on. An element could even be a class LinReg scalar or even another
AssociativeArray!

The statement A.reinit("real", 2) makes A two-dimensional with type
real indices. A is like a matrix in that we can store elements and

, which we can do by using A.put():

Note that the indices are specified inside an extra set of parentheses. That
is, we typed

and not

363

A.put() is a function that takes two arguments, the index and the value to
be stored. A.put() expects the first argument to be a vector because
we reinitialized A to be two-dimensional. In the jargon of associative
arrays, () and () are called keys.

Although associative arrays allow elements to be of different types, such
usage is rare. Let’s start over and store all numeric values.

Oops, I made a mistake. I meant to set the () element to instead of
2. I can fix that:

Stored values can be retrieved using the A.get() function. If we typed

then x would equal 5 and y would equal . It may seem as if A is a
regular matrix, but it is not. It is not a regular matrix because and

 simply do not exist. If we fetched the value of by typing

z would equal J(0,0,.), which is to say, a real matrix. This is
AssociativeArray’s way of saying that is undefined. Returning
J(0,0,.) is the default, just as the keys being one-dimensional strings was
a default. We can change what is returned using the A.notfound()
function. We could make the not-found value be 0:

Now A.get((1,1)) will return 0. We are on our way to creating sparse
matrices! Sparse matrices are matrices in which most of the values are 0.
Matrix A has two nonzero values. I do not know whether the matrix is

 or because is 0 for all () not equal to () or
(). If we wanted to treat A as a sparse matrix, we would need to keep
track of the overall dimension separately.

364

A’s sparseness is not just superficial. If we defined

then the A “matrix” would be at least . Yet, because it is an
associative array, only three elements are stored! A regular Mata

 matrix would consume 7.8 megabytes of memory.

Storing sparse matrices is just one use of associative arrays. Most
applications of associative arrays use one-dimensional string keys, which
is why that is the default. The classic example is a dictionary.

The words in the dictionary are the keys, and their definitions are the
elements. Here is an example:

When I created this dictionary, I stored each definition as a string column
vector. I put the first definition in the first row, the second definition in the
second (if there was one), and so on. Here is exactly what I typed to enter
the two definitions for aback:

I have a list of 25,592 words on my computer used by my spelling checker.
The great feature of associative arrays is that I could enter definitions for
all of them, and still Dictionary.get() could find the definition for any of
them almost as quickly as it found aback when it was the only word
stored. Nor does performance depend on entering words in a particular
order, such as alphabetically.

365

16.3 Finding out more about AssociativeArray

You can learn more by typing help mata AssociativeArray. The source
code is available, too. Scroll to the bottom of the file, and you will see

You can click on the filenames listed to see the source.

366

Chapter 17
Programming example: Sparse matrices

367

17.1 Introduction

I am about to show you the entire development process from start to finish,
and I will show it to you not in the sterilized form that would usually make
it into books. I will show it to you with all the bad ideas, mistakes, and
errors that usually occur during development. I do this not to tax your
patience, but because bad ideas, mistakes, and errors are inevitable. I want
to show you how to solve them or, in some cases, just work your way
around them. I want to show you how to write code in the certain
knowledge that problems will arise and code that is amenable to being
fixed.

We are going to consider a project so large that it needs a formal design.
This project is also simple enough that it might deceive you into thinking
that a formal design is unnecessary. In my experience, most projects start
with deceptively simple ideas, and it is easy to confuse ideas with designs.

It will take us two chapters to work our way though the development
process. Sometimes it will seem as if we are slogging through a mire of
details. Programming is about details. If details do not interest you, you
need to find another line of work. Nonetheless, the particular details of the
programming project I have selected may not interest you. If so, just read
through. Pay attention to the gestalt of what I am doing. Successful
programming is about not losing sight of the goal. You will learn that
successful programming is also about writing programs in a style that
hides details. If details change, programs change, but the overall approach
survives the changes.

In this chapter, I will tell you about the idea, then we will turn it into a
design, and finally, we will write initial code.

368

17.2 The idea

I mentioned in the previous chapter that class AssociativeArray could be
used to implement sparse matrices. A sparse matrix is a matrix in which
most of the elements are 0. Sparse matrices can have hundreds or
thousands of rows and columns, meaning they have millions of elements,
but only a fraction of them are nonzero. If you could store the nonzero
elements only, the memory savings would be considerable. Associative
arrays can do that. The challenge is to package the solution so that the
matrices are just as convenient to use as regular matrices.

I outlined in the previous chapter how class AssociativeArray could be
used to implement the storage of sparse matrices:

If A is a class AssociativeArray scalar, then begin by making it a
matrix with real subscripts (keys) and setting the not-found value to 0:

Now think of A as a sparse matrix . You can insert values into the
matrix by coding as follows:

You can retrieve the stored values:

369

If you retrieve undefined elements such as , returned will be 0:

z will be 0.

The above is the idea.

From this idea, we are going to design a class that allows creation of
sparse matrices, storing and retrieving values, and more, including matrix
multiplication and addition.

370

17.3 Design

The code you write is called a system when there is more than one related
function that users will call. Having 2 functions does not really qualify as a
system except in a formal sense, but if there are 10 or more functions, it
certainly qualifies. The class we will be writing will have a lot more than
10 functions. Issues arise in writing systems beyond the choice of
algorithms. The primary issue is how the functions fit together.

We have already programmed one system, namely, linear regression. And
we programmed it twice, first using structures and then again using
classes. The design was the same in both implementations, and that design
could be summarized in one short phrase: self-threading code.
Organization of the code—how the functions fit together—was determined
by that choice.

Self-threading code is not the solution to all programming problems.

17.3.1 Producing a design from an idea

The idea outlined above is a design of sorts. There are unspecified details,
but even so, you could start writing code based on the idea and refine the
design as you go. That approach works well enough when writing small
systems. We have all had the experience of writing a routine and realizing
that there is an issue that we had not considered. We deleted and rewrote a
half-dozen lines. When writing larger systems, that same experience can
involve rewriting much more than a half-dozen lines of code. It can make
irrelevant everything you have written. The purpose of a design is to
identify and resolve those issues before writing the code.

Think of design as being a dry run. Rather than writing completed code,
you write incomplete sketches of it. Writing sketches forces you to think
about the issues, or at least the big issues. Sketches will not prevent you
from going down blind alleys, but they will make it less costly when you
do. Modifying or even discarding sketches is a minor cost compared with
modifying or discarding code. And when you have completed the process,
the sketches make it easier to produce the final code.

You start by pretending that the system already exists and imagine

371

yourself using it. The systems we are discussing in this book are systems
written in Mata for use by other Mata programmers, so you imagine using
the as-yet-unwritten Mata functions. When you are satisfied with them as a
user, you ask yourself, could I write code to implement them? You make
sketches of code to convince yourself that you could. These sketches will
fix ideas. As you do this, you will eventually wander down a mistaken
path. It cannot be avoided. You will have ignored something important or
assumed something that is not true. There is no predicting when you will
discover the problem, but you will, and you will backtrack.

Backtracking is easier because you have not invested as much in the
details. You will not be so attached to what you have done that you forge
ahead anyway. This results in arriving at a better outcome with a better
design in hand.

We already have a vague design for a sparse-matrix system. Class SpMat
will contain a class AssociativeArray, and SpMat will provide functions
to manipulate that array. SpMat will set the associative array to use real

 vectors as keys. Those vectors will be the row-and-column indices.
SpMat will store the nonzero values in the array and set the array to
return 0 when an element is undefined. Meantime, the user of SpMat will
have no idea that AssociativeArray is involved in the solution. The user
will see a clean, straightforward implementation of sparse matrices.

Let’s imagine SpMat in use. If we used it to create a matrix
named S, I imagine that we start like this:

At this point, each element of S will “contain” 0, which I put in quotes
because S will really contain nothing. In our code, we will have told
AssociativeArray to return 0 when an element is undefined.

One issue, a minor one, is that the class will need to track the total number
of rows and columns in the matrix. S.setup() will set the number of rows
and columns. Already, we have the start of a partial sketch that defines the
class SpMat:

372

The vertical ellipses in the sketch would appear in your notes just as they
appear in mine. You do not yet know what other functions or variables the
class will contain.

We can make a sketch of S.setup():

The above is a sketch, not completed code. I did not bother to specify the
variable types of the arguments because it is obvious to me that they are
real scalars. We are writing the sketch for ourselves, not the computer.

I write more sketches at the beginning of a design than I will write later
because, once I know that I am on track to thinking clearly, sketches
become less necessary.

To set , we might now imagine that the user of the system will
type

To obtain the value of , we imagine the user will type

So far, so good. Let’s sketch S.put() and S.get():

373

I sketched the above and then realized that the code for S.put() was
inadequate. The user of S.put() might call it with a value of 0, and we are
not to store the 0s in the associative array. I fixed my sketch of
SpMat::put(), and I left SpMat::get() unchanged below it:

The improved sketch stores v only if v is not 0. I did that, and then I
realized that I had solved one problem only to create another. Imagine that
the user executes S.put(1,5, 2) and later executes S.put(1,5, 0). As
the code is now written, typing S.put(1,5, 0) will do nothing. To solve
the problem, I thought about changing the sketch of S.put() to be

AA.remove() is the AssociativeArray function to delete an element. I
checked the documentation on associative arrays and verified that it is
allowed to remove an element even if the element does not exist.

Anyway, I thought about doing the above and then I rejected it.
SpMat::put() will be used to define sparse matrices, and I can easily
envision the put() function being called with lots of 0 values. That would
work, but how much time would the function waste removing elements
that did not exist? I could have done timings to find out, but I did not. I
decided there would be another function, replace(), for changing already
stored values. I changed my sketch yet again, this time to read as follows:

374

Perhaps you would have resolved the issue differently. That is
unimportant. You think about the issues and resolve them.

The system now includes the following functions:

As I imagined myself using this system, I thought it would be convenient
to be able to define an entire row or column of the matrix from an existing
vector. I momentarily considered modifying S.put() so that the user could
code

and

I did not sketch any code. I decided against using put() in this way
because I wanted to keep put() fast, and that meant keeping it simple. I
decided instead to create yet another function named S.Put() to
accompany S.put(). S.Put() would have the following syntaxes:

375

When I first wrote this table for myself, it included only the middle two
syntaxes; I added the other two later along with a note to write the code for
them only if convenient. The extra syntaxes are not necessary because
putting a scalar can be done with S.put(), and as for putting an entire
matrix, if users are willing to create a regular matrix containing the sparse
values, why are they using SpMat in the first place? Nonetheless, I thought,
having S.Put(i, j, scalar) be consistent with S.put() would be a nice
touch and having S.Put(., ., matrix) would be useful for testing the
code later.

I also realized that I would want capital-letter variants of S.replace() and
S.get(), so I added to my design:

I finally realized that users would want to get, put, and replace
submatrices, too. Does that mean yet another set of functions? No, I
decided, I will add yet more features to S.Put(), S.Replace(), and
S.Get(). I reasoned that sometimes users would want to work with
individual elements. The lowercase functions S.put(), S.replace(), and
S.get() would allow that, and they would run as quickly as feasible.
Other times, users would want to work with a group of elements, and in
those cases, I could afford the bit of computer time to diagnose what
needed to be done. Thus, the syntax for S.Put() would be

376

The last line is new, and in this case, S.Put() will have five arguments
instead of the usual three. I also decided at this point that implementing the
first and fourth syntaxes was no longer optional.

My final specifications for S.Replace() and S.Get() were similarly
modified:

I did not bother to sketch the code for S.Put(), S.Replace(), or S.Get()
because I know I could write it. Had I been uncertain, I would have
sketched the code for them.

There will be other routines we will want, but they can be easily written as
we write the code. For instance, we will want routines to return the rows

377

and columns of a matrix, S.rows() and S.cols(). The code would be

17.3.2 The design goes bad

I then began thinking about matrix multiplication, and as I did, I went
down a mistaken path.

A user of SpMat will want to multiply sparse matrices, sparse and regular
matrices, and regular and sparse matrices. In each case, they will want to
be able to store the result as a regular or a sparse matrix. I made a table:

I decided that each capability would be provided by a separate function. I
then realized that users sometimes need to multiply transposed matrices.
Users will sometimes want to calculate, for instance,

One solution would be for them to code

I rejected that because I expect that most sparse matrices will be large. The
main reason we are implementing SpMat, after all, is to deal with large

378

matrices efficiently. One implication is that users should not need to create
additional matrices, even temporarily. If transposition is needed, the code
for multiplication can interchange row and column subscripts. Handling
transposition in the code brings its own problems, however. The single
case

becomes four cases:

This one-case-becomes-four situation applies equally to the other six
cases, too, which means 28 functions to write.

And then I thought about matrix addition and realized that the same issues
would arise. Implementation using separate functions would mean that I
would have to write 56 functions in all! At this point, I started looking for
a different solution.

Before I explain that different solution, I want to emphasize the benefit of
designing the system before writing it. Let’s imagine what would have
happened had I skipped the design and proceeded directly to writing final
code. I am a highly experienced programmer, and I am perfectly capable
of writing SpMat from just the original idea. And I can make it work.

So let us imagine that SpMat is written up to the point of multiplication,
and I am just starting to write the multiplication routines. Oh, I would say
to myself, I need to multiply a sparse by a sparse. And I would write that
routine. I do not know which I would have written first, R = S1*S2 or S =
S1*S2, but I would have written one, realized that I needed the other,
block copied the first routine, and quickly modified it to return the other
kind of matrix.

Then I would realize that I needed S1*R2. I would have block copied the
two written routines and modified them to produce the desired results, R =
S1*R2 and S = S1*R2. Oops, I need R1*S2, too. Well, this is getting
tedious, but I can block copy and modify the two S1*R2 routines. And so I
would have continued until I had all 28 functions written.

379

Then I would discover I had a bug, and, mumbling in irritation, I would
have fixed each of the 28 functions. That done, I would have block copied
the 28 multiplication routines to create another 28 functions, which I
would modify to handle addition. I would have realized along the way that
there must be a better design, but I would have argued with myself that I
was close enough to being finished that I might as well continue.

Then I would have tested them and I would have discovered how
miserable 56 functions are to use. I would realize this as I wrote test cases
and tried to multiply or add the matrices using the wrong function. In my
less experienced days, I would have persevered and so have inflicted the
bad design on my users. That would not happen these days because I care
about usability. These days, I would have thrown the whole mess away
and started all over again.

All of that would have happened because I had too much invested in a bad
design, and the path to the end appeared to be shorter if I just continued
what I was doing.

The advantage of designing the code first is that abandoning an approach
is so cheap. If you do the design first, you will think to yourself, “There is
no way I am going to write fifty-six functions,” instead of thinking, “I
have so much invested, I may as well continue.”

One never becomes so experienced that one can skip the design phase.

17.3.3 Fixing the design

When designs turn bad, go back and imagine yourself as a user of the
system. How would you want the function to work? To multiply A and B, I
would want to call a function that worked something like this:

R_multiply() would return a regular matrix. I would also want another
function that returned a sparse matrix but with the same syntax:

380

These two functions would be the only functions SpMat users would need
to multiply matrices. As a user, I could type

to calculate A*B, or type

to calculate A’B, or type

to calculate A*B’, or type

to calculate A’*B’. Regardless of which I typed, A could be a regular or
sparse matrix, and so could B. If I wanted a sparse-matrix result, I would
type S_multiply() instead of R_multiply().

So I pursued the idea. Could I write the code for the two functions? Notice
that R_multiply() and S_multiply() are not class functions. That is not a
problem, but I admit that it bothered me enough for aesthetic reasons that I
thought about recasting the functions as member functions. I imagined R =
A.R_multiply(B, tA, tB) and that seemed okay, although it bothered me
that argument tA was nearer to B than A, so I imagined R =
A.R_multiply(tA, B, tB) instead. That seemed a little better. Then I
realized that A.R_multiply() would work only when A was sparse. When
A was a regular matrix and B was sparse, to multiply A*B I would need
another function such as R = B.R_premultiply(tB, A, tA). And what if
A and B were both regular matrices? I gave up. This solution was just not
as elegant as the simple R_multiply() function that put A and B on equal
footing.

I then turned to sketching the code for R = R_multiply(A, tA, B, tB). I
wanted to allow for A and B to be regular or sparse matrices, so I made the
arguments transmorphic:

381

Declaring A and B transmorphic allows them in the door regardless of their
types, but what next? Next I will use eltype() to determine their types so
that R_multiply() can take the appropriate action. You remember
eltype(). eltype(M) returns the element type of M. It returns "real" or
"string" or whatever M is. It returns "class" when M is a class. Mata
provides yet another function, classname(M), that returns the name of the
class, such as "SpMat", when eltype(M)=="class". classname(M)

returns "" when eltype(M) is not "class". My sketch of R_multiply()
was thus

Just as we have done previously, I assumed the existence of functions I
would need. R_multiply() is nothing more than a switch that turns the
problem over to R_SxS(), R_SxR(), R_RxS(), or R_RxR() as appropriate. In
the names, R stands for regular and S stands for sparse. R_RxS() is the
subroutine that returns a regular matrix equal to a regular matrix multiplied
by a sparse one.

382

Meanwhile, is_sparse() is a utility routine that I would need to write. I
assumed that is_sparse(M) will return true when M is sparse, will return
false when M is regular, and will not return at all when M is neither. Here
is a sketch of it:

We now have sketches of R_multiply() and its utility is_sparse(). And
we have a sketch of S_multiply() if we change the names of the R_*x*()
subroutines to be S_*x*() and specify that they return a sparse matrix:

And with that, we have eight subroutines left to sketch:

383

17.3.3.1 Sketches of R_*x*() and S_*x*() subroutines

Let’s sketch the R_*x*() subroutines first. I have something as simple as
this in mind for them:

In the sketch, I assume the existence of class functions that we will write
later:

384

I am imagining that the R_*x*() functions are responsible for transposing
regular matrices, if that is called for, and the class functions will be
responsible for performing the multiplication and dealing with the possible
transposition of the sparse matrices. I do not imagine that the class
functions will physically transpose the matrices. I imagine that they will be
written to interchange row and column subscripts when necessary, but that
is a problem for later.

I am still focusing right now on the sketches of R_*x*() and S_*x*(), and
I realized that a simple modification to their code could potentially
conserve lots of memory. In the preliminary sketches above, transposition
is performed using Mata’s in-line transpose operator. For instance, the
code for R_SxR() reads

It is the B’ in the code that I want to focus on. B’ returns the transposition
of B. If B is , then B’ is . That is
unfortunate because the new matrix consumes 762 megabytes of memory
just as B itself does. Mata provides a function named _transpose() that
does not require the extra memory, because coding _transpose(B)
replaces the contents of B with B’. _transpose() does not even require
that B be symmetric, which is remarkable. Thus, I considered changing the
code to use _transpose() even though that would mean using the function
twice. When B is changed to contain B’s transpose, it will need to be
changed back to its original contents before R_SxR() returns.

Thus, I faced the classic conundrum known as the space–time trade-off:
consume more space to save time or save the space and consume more
time? The only way to decide is to measure the costs and benefits. How
much space for how much time? If I had not already known the answer, I
would have taken a break from code design and measured the extra time

385

that using _transpose() would cause. We will discuss how to time code
in the next chapter. I did know the answer, however. The time cost of
_transpose() is small, even when used twice, and I expected the system I
was designing would be used by programmers with large matrices. It was
an easy decision to make. I changed the sketch of R_SxR() to be

I changed the sketches of all the R_*x*() functions:

386

Still left to sketch are the S_*x*() functions. These functions will be
nearly identical to their R_*x*() counterparts. They will call subroutines
beginning with S_ instead of R_, and the functions that they call will return
SpMat scalars instead of real matrices.

387

And with that, all we have left are seven member functions to sketch:

388

17.3.3.2 Sketches of class’s multiplication functions

When I wrote the linear-regression routines in chapter 11, I used less-
accurate but easier-to-program calculation formulas in the first draft. I
made the entire system work with the less-accurate functions and later
modified the code to be more accurate. That was not pedagogy. I usually
focus on building the frame and getting the system working before
bothering with better, more complicated algorithms.

I am going to follow the same two-step approach in this project.

The complicating issue in SpMat is efficiently calculating matrix products
of sparse matrices. We could start thinking deeply about the issue now, but
I suspect that doing so would be counterproductive. First, we have enough
design issues to worry about already. Second, second-best routines are
easier to program because they are simpler, and we might get lucky and
discover that the simple routines work well enough. Third, even if we do
not get lucky, we will at least have a working system with certification do-
files proving that it works. That means we will be able to easily test the
system as we substitute better routines.

We have seven code sketches to write:

389

I am naming the sketches differently from their class functions because I
am not going to bother to sketch the full functions. I am just going to
sketch, for instance, R=SS, meaning how to multiply a sparse by a sparse to
return a real, and R=SR, meaning how to multiply a sparse by a real, and so
on. These routines will be easy to turn into full class functions later.

Not on the list is R=RR, but that is where I am going to start. I want to
remind myself, and you, of the general formula for multiplying matrices. It
is

This formula says that if we were writing a routine to multiply regular
matrices and store the result as regular matrix, then the corresponding code
to calculate R = A*B would be

Modifying sketch R=RR for cases where A is sparse or B is sparse would be
easy:

390

With these substitutions, we could write code to produce sketches R=SR,
R=RS, and R=SS. I thought about doing that. I thought about modifying
R=RR to handle A being sparse. I even wrote out the code and stared at it. I
am pretty good with matrices and matrix algebra, and something jumped
out to me. I will tell you what it is, but your response might be, “How did
he ever notice that?” followed by “And the solution just occurred to him?”
When the day comes that you are programming a big system, however, it
will concern a subject with which you are familiar, and yes, you will
notice things (although perhaps not right ones) and solutions will occur to
you (although perhaps not the best ones). We will later discover that I did
not notice the right things and neither did the best solutions occur to me,
but so it goes. You do your best.

What jumped out to me was that elements of A were accessed multiple
times and, in fact, that each row of A would be accessed cols(B)*cols(A)
times. I realized that even though I believe A.get(i,j) will return
elements reasonably quickly, it will not return them nearly as quickly as
Mata would when accessing a regular matrix using its subscript operator,
A[i,j]. Performance of the routine would be miserable.

What occurred to me is that the equation for multiplication could be
rearranged to access each row once, and then I could get each row once
using A.Get(). So I first rewrote the formula in the
“obvious” way:

where and are th rows of and . Code to implement this

391

solution with sparse matrix A is

Would this solution run fast enough that I would not have to do further
work later? I did not know. All I knew for certain was that the R=SR that I
just sketched has to run faster than a direct translation of R=RR modified to
work with A being sparse.

I was on a roll. I did not even think about alternative approaches. I solved
the problem R=SR by rewriting the formula in row form. I would solve the
problem of R=RS by rewriting the formula in column form. In column
form, the formula for matrix multiplication is

where and are the th columns of and . Code to implement
this solution with sparse matrix B is

Finally, if A and B are both sparse, yet another way to write the formula for
matrix multiplication is

where is the th row of , and is the th column of . The
corresponding code is

392

In this code, sadly, each column of B will be accessed A.rows() times, so I
was fearful that the performance of R=SS will be worse than that of R=SR
and R=RS.

The sketches for R=SR, R=RS, and R=SS can easily be converted into
sketches for S=SR, S=RS, and S=SS. Each is a line-by-line translation of the
corresponding R=… routine. For instance, to produce the sketch of S=SR, I
started with R=SR,

and I translated it to produce

The first line creates matrix R (S) to be
containing 0s. Built-in function J() does that in R=SR. Function S.setup()
does the same in S=SR.

The second line is the same in both R=SR and S=SR.

The third line puts A.Get(i,.)*B in the ith row of R (S). Here are the two
lines listed one after the other:

I translated the other S=… routines the same way. Here are all but one of
them:

393

We set out to write sketches for seven functions and have written six:

The sketch for S=RR could be as simple as two lines of code, namely,

394

Because the caller is requesting the result be stored as sparse, it would
perhaps be better to calculate the result row by row and so reduce the
amount of memory used:

None of the above sketches handle arguments tA and tB. Those arguments,
I remind you, are instructions to treat A and B as if they were transposed.
That is a detail we can add when we write the final code. If a sketch
requires A.Get(i, .), for instance, then when tA is true, what is needed is
A.Get(., i)’.

17.3.4 Design summary

We have completed the design.

“That is a design?” I can almost hear you thinking. I admit that there are
still lots of problems left unsolved, but I believe that solving them will be
no more difficult than the usual problems we encounter when we write
code. The purpose of a design is to provide the solutions to the big
problems and to convince ourselves that we could solve whatever
problems remain. There are many issues that we have ignored in the
design. Handling tA and tB in our code sketches are two issues that we
happen to know about, but we will discover others. We hope those issues
do not invalidate our design, but I cannot guarantee that.

When you do your own design for a project, you will write notes similar to
those I have written above. Your own design notes will not include the
lengthy explanations that I included. I included them to explain my
thinking to you. Real design notes are notes to yourself and include only
the explanations you need so that your future self can understand them.

Your notes will share the same stream-of-consciousness flavor of the notes
I have shown you. You have seen me sketch a function and resketch it
after further consideration. You will have such repeated sketches in your
own notes. I do not recommend amending or editing them. I do not edit

395

mine because I sometimes need to fall back to a previous thought or idea.

Anyway, you just decide at some point that you have done enough design
and that it is time to start writing code. But before you do that, you should
make a Design Summary from your notes. My Design Summaries are
often just a list of functions to be implemented, but that can vary. A list of
functions will be sufficient in this case. Table 17.1 below is my Design
Summary just as I wrote it for myself. The summary table has three
columns: Function name, Exposure, and Returns.

The Exposure column is filled in with the terms public, private, or DND (do
not document). DND functions are functions that I wish could be private
but cannot be. I would have preferred that the A.R_*x*() and A.S_*x*()
functions be private, but they cannot be because they are called by the
subroutines of the outside-the-class functions R_multiply() and
S_multiply().

The Returns column is what the function returns. Regular and Sparse mean
regular and sparse matrix, meaning real matrix and class SpMat scalar.

The Design Summary is short, but you know how much work went into it,
and even more work went into it than I told you about. I renamed the
functions before you ever saw them. The names in the table are the names
we have been using throughout this chapter, but they are not the names
that were in my original notes to myself. I seldom get function names right
at the outset, and getting them right is important. Function names should
describe what the function does.

Table 17.1: Design Summary

396

After you have put the functions in the summary table in logical order, it is
an excellent time to rename them. I recommended earlier that you not edit
your notes, but do edit them when you change function names. I do. In my
original notes, the functions that you know as A.R_RxS() and A.R_SxR()
started life as A.S_premultiply_R() and A.R_postmultiply_S(). After
constructing the table, I changed them to A.R__R_x_this() and
A.R__this_x_R(), but I did not much like those names either. I finally
stumbled on the names that you know, A.R_RxS() and A.R_SxR().

I also did more design work than I told you about. I designed functions for
matrix addition, too. You will be able to understand the design just from
the function names in table 17.2:

397

Table 17.2: Design Summary, continued

17.3.5 Design shortcomings

You now have two documents: Design Notes and Design Summary. The
third document you should prepare is Design Shortcomings. This is your
last chance to stop and reconsider before writing code. The purpose of
Design Shortcomings is to force you to think about said shortcomings and
whether you really are ready to move to writing code.

Here is my original Design Shortcomings document:

Right now, the system handles sparse matrices. For performance
reasons, I suspect that we should include special cases such as
symmetric-and-sparse, diagonal, and banded. If necessary, they can
be added later. Right now, I will make sure that all sparse-matrix
access is handled by just a few functions. Thus, if I need to add other
storage formats, I can modify them to make things work, although I
suspect I will want to write custom multipliers and adders to achieve
better performance.

I have not thought deeply about matrix multiplication. What I have

398

sketched will work but may have performance issues.

I have not thought deeply about matrix addition. What I have
sketched will work but may have performance issues.

What about matrix subtraction? What about matrix transposition?
What about matrix inversion and solvers?

Subtraction: Will work like addition but will need two extra functions
because subtraction is not commutative. The extra functions will be
A.R_RmS() and A.S_RmS().

Transposition: We need S.transpose() to return a transposed matrix.
It should be easy to write.

Inversion: There is a partitioned inverse formula. I suspect we can use
it. If the matrix is really big, the code may need to recurse on itself.
Adding inversion is, I suspect, a moderately difficult problem.

Nothing in my shortcomings document makes me think we should not
proceed.

399

17.4 Code

The code starts the way all .mata files start, with the opening lines

Next in the file, I define macros, the derived types, that I will use

‘Sp’ stands for SpMat, which is the development name I will use for the
class. We discussed naming issues in sections 14.4.7 and 12.5. If I decide
to continue this work to produce an official StataCorp class for release to
users, I will change ‘Sp’ to stand for SparseMatrix. At StataCorp, we
have decided that official StataCorp-provided class names will be fully
spelled out with words, each starting with a capital letter. I recommend
that you give your classes abbreviated names, such as SpMat—although
because I just took that name, you should find another one.

‘RS’, …, ‘RM’ mean the usual thing.

I created ‘Sparse’ and ‘Regular’ to designate sparse and regular
matrices. The terms appear throughout my design document, and I decided
to preserve that in the code.

‘AA’ stands for class AssociativeArray scalar, the StataCorp-provided
class described in chapter 16. StataCorp may use long names, but I do not

400

like typing them.

I created type ‘boolean’ to contain ‘True’ and ‘False’. I often call this
type ‘booleanS’—the S on the end to emphasize that it is a scalar. I may
regret not having called the type ‘booleanS’ in this project if I later need a
boolean vector, but I do prefer the shorter name.

The next line enters Mata:

I will not exit Mata until the last line of the file, some hundreds of lines
away.

Inside the mata:…end block, I first define the class:

401

I want to underscore how neatly formatted and easy to read the class
definition is. Notice that I use comments to explain my function naming
convention.

Those of you from a scientific research background may be used to less
neatly formatted files. The contents of do-files that record scientific
research are, in fact, usually a mess. Nonetheless, the files serve their
purpose. They can be rerun to re-create scientific results, and that is what

402

is important. That the files are messy merely means that you or anyone
else needing to understand the code will have to work harder. The intent of
the research is usually laid out in professional papers, so even with a
messy file, it is possible to verify that the code matches its published
intent.

There will be no professional paper backing up this code. If this code is
successful, meaning distributed and used by others, it is a near certainty
that the code will need to be modified someday. It will save everyone time
if the code is neatly formatted and cleanly arranged. Neatly formatting
your code will save even your time in the future.

I next defined the opening functions described in the design:

The above functions are exactly as I outlined them in the design document.

I next wrote Get(), one of the overloaded, capital-letter functions with so
many features. “Overloaded” in this case simply means that the function
does different things depending on the number of arguments specified. Just
because the function is overloaded does not mean the code has to be. The

403

purpose of Get() is simply to route control to the appropriate subroutine.

If Get() is called with two arguments, control is transferred to Get2(). If
there are four arguments, control is transferred to Get4().

Notice that I named the arguments one, two, three, and four. At this
point, I am not thinking substantively about what Get() does; I am
thinking merely that it has a two-argument form and a four-argument form,
and I am dealing with that. I let all four arguments default to transmorphic.
The required types will be declared and checked later, by Get2() or
Get4().

Functions Get2() and Get4() appear later in the file. Before defining
them, I went ahead and defined the other two overloaded, capital-letter
functions:

I then wrote Get2() and Get4(), which means I turned to thinking
substantively. Get2() handles the syntaxes

404

Get4() handles the syntax

In the following code, first notice that the arguments are now declared
with explicit types. Next notice that Get2() calls get() or Get4() with the
appropriate arguments.

Put3(), Put5(), Replace3(), and Replace5() are written in the same style

405

as Get2() and Get4().

I have written functions in the order specified in the Design Summary so
far. The summary says that outside-the-class functions R_multiply() and
S_multiply() are to be written next, but I decided I would write the class
multiplication subroutines that those two functions will call.

I started with R_SxR():

406

The above code corresponds to the sketch

The code appears to differ from the sketch more than it really does. It
looks so different because the final code handles details such as tA that the
sketch did not. It also looks different because of the syntax of class
programs. I wrote the sketch as if I were writing an outside-the-class
routine. Thus, the sketch refers to A.rows() and A.cols(), which become
simply rows and cols in the code. The code could have referred to
this.rows and this.cols had I wanted to emphasize that they are class
member variables. Meanwhile, the sketch uses cols(B), and that became
::cols(B) in the code because the class itself defines a cols() function.

I also made a substantive change. Compare the loop in the final code with
the loop in the sketch.

Final code:

407

Sketch (translated to class style):

In the code, I wrote a private class function named set_row() to perform
the actions of Get() that I used in the sketch. I did this in part to handle the
transposition issue. The syntax of set_row() is

The function returns in A_i the ith row of the matrix if tA is 0, or it returns
the ith column of the matrix, transposed. Function set_row() appears
later in spmat1.mata, but let me show it to you now:

And with that, I have nothing more to say about the code except to
recommend that you go through it. You can see the full listing of the SpMat
version-1 code by typing in Stata

If you have not yet downloaded the files associated with this book, see
section 1.4.

408

17.5 Certification script

Of course I wrote a certification script. I always write a certification script.
And this certification script, just like all certification scripts, begins with
the lines

If you have downloaded the files associated with this book as described in
section 1.4, you can see the final version of the certification script by
typing in Stata

Read my comments here first, however.

I wrote the code and test script simultaneously, in fact. I printed the Design
Notes and Design Summary and put them next to me. Meanwhile, I
opened three windows on my computer’s screen. I edited spmat1.mata, the
source code, in one. In another, I edited test_spmat1.do, the test script. In
the third, I opened Stata. Thus, I could write code, add to the test script,
and run the test script just by tabbing through windows.

The original test_spmat1.do file contained the line do spmat1.mata
rather than run spmat1.mata so that I could see the output from compiling
the code. If there was an error—and there were lots of them—I could tab
over to the spmat1.mata file, fix it, tab back to Stata, and run
test_spmat1.do again. I do not move from writing one routine to the next
until the compile-time bugs are removed.

I test routines as I go when that is possible. The tests are not thorough, but
I test enough to verify that the routine works in at least one case. Once I
finish writing the code, I add more tests to the end of the script. If you look
carefully at test_spmat1.do—but wait to do that—you will see that I
tested every combination of sparse and regular matrices.

409

I also recommend testing code on nonsquare matrices whenever that is
possible. When writing code, it is easy to code rows when you mean cols
and vice versa. If you test with square matrices, you will never uncover
those mistakes.

Now look at the certification script test_spmat1.do.

The spmat1.mata code passes certification, but I did not add spmat1.mata
to the lmatabook.mlib library because we are not yet done with
development. We know that the current code has second-rate
multiplication routines. The routines produce correct results—the
certification script establishes that—but we still need to measure how
quickly the routines run. If performance is not adequate, we will need to
develop better routines. That is the topic of the next chapter.

410

Chapter 18
Programming example: Sparse matrices,
continued

411

18.1 Introduction

We are partway through the development process. We set about producing
a class to provide efficient handling of sparse matrices in the previous
chapter. We designed the system and produced three documents: Design
Notes, Design Summary, and Design Shortcomings. Our design was
incomplete—all designs are—but we judged it to be complete enough that
we could proceed to write code. We have written code and a certification
do-file. We now have a known-to-be-working system.

Now we need to evaluate it. We implemented second-rate algorithms for
matrix multiplication, and those algorithms may not run quickly enough.
This is much like the situation we found ourselves in back in chapter 11
when we developed the linear-regression system. Back then, we used
second-rate numerical algorithms and needed to evaluate the system on the
basis of accuracy. Even if we had started with first-rate algorithms, we
would have needed to evaluate the system just to prove that we had been
successful.

We evaluated the previous system on the basis of accuracy. We will
evaluate this system on the basis of run times. We will do timings to
evaluate the performance of SpMat. Here is what we will discover:

Timing T1 reveals that Mata itself multiplies regular matrices
in 0.0081 seconds. I made T1 for use as a benchmark.

412

Timing T2 reveals that the R_multiply() function we wrote multiplies
regular matrices just as quickly as Mata does. I was pleased but not
surprised. R_multiply() uses Mata to multiply regular matrices.

Timings T3 and T4 show that R_multiply() takes longer to multiply
sparse and regular matrices, but that was to be expected. R_multiply()
needs 2.873 seconds or 3.339 seconds depending on whether we multiply
sparse times regular or regular times sparse. The timings are disappointing
but performance is perhaps tolerable.

Meanwhile, timing T5 reveals that R_multiply() needed 1,266.68 seconds
(21 minutes!) to multiply sparse with sparse matrices. Twenty-one minutes
is unacceptable.

We obviously need to develop a faster algorithm for R=SS, and perhaps
faster algorithms for R=SR and R=RS, too.

Before we do that, I will show you how I obtained these timings. I also
will show you how to make detailed timings, meaning timings of parts of
the code, where the parts can be loops or even individual lines of code.
You perform detailed timings in hopes of finding performance bottlenecks
that you can fix. Bottlenecks come in all sizes, but they seldom exceed
50%. It might be reasonable for us to have such hopes for R=SR and
R=RS, but even a 50% improvement would not be reasonable to save
R=SS.

And finally, we will develop new algorithms to make the system run
faster.

We begin by making the overall timings previewed in the above table.

413

18.2 Making overall timings

To perform overall timings, you set Stata’s rmsg on and run examples.
You set rmsg on by typing set rmsg on in Stata, not Mata.

With rmsg on, Stata reports the time it takes to run the commands you
type, such as

The t=0.06 in the return message means that regress ran in 0.06 seconds.
The timing is measured from the instant I pressed Enter until the command
completed. I typed quietly in front of regress not just to save paper but
also so that the timing would not be contaminated by the time it takes to
display the output on the screen. The r; line also reports the current time
of day. I ran the timing at 14:07 (2:07 p.m.). I will delete the time of day
from subsequent output.

Setting rmsg on causes Stata but not Mata to show timings. Even so, we
can obtain timings for Mata code by running it from the Stata prompt
using Stata’s mata: prefix command. We could time multiplication of
regular matrices by typing

R = A*B runs in 0.01 seconds. When I ran this example, matrices A and B
were each banded matrices with 1s along the diagonal and
0.5s on either side of it. I defined A and B and then ran the command I
wanted to time. I wrote makemat() to create the matrices:

414

I will show you the makemat() code in a moment.

Notice that mata: R = A*B took 0.02 seconds instead of 0.01 this time.
Variation in run times is common. Timings vary randomly from one run to
the next for lots of reasons. If the computer is being shared with others,
that can cause timings to vary, although my computer is private. My
computer is connected to the Internet, however, and that causes timings to
vary as messages fly by and demand a little of the computer’s time.
Computers, yours and mine, also run background tasks just to maintain the
environment. Those tasks continually awake, perform their duties, and fall
back to sleep.

This makes short timings suspect. When a function runs too quickly, you
can obtain more-accurate results by running the function repeatedly and
calculating the average time. For instance, I could run R = A*B 100 times
by typing

The more-accurate measurement is 0.81/100 = 0.0081 seconds for
multiplying A and B. The measurement is a slight overestimate because it
includes the time to run the for loop, but the loop runs so quickly that we
can ignore it. I separately timed the for loop and discovered that it runs in
roughly 0.000007 seconds on my computer.

We will use rmsg with looping to perform five timings:

The matrices will all be the same size and contain the same values. Each
will be and have 1s along the diagonal and 0.5s on either side
of it. A and B will be stored as regular matrices, and SA and SB will be

415

stored as SpMats. I made a do-file to construct the matrices:

18.2.1 Timing T1, Mata R=RR

I produced timing T1 by typing do timingsetup followed by

Thus, seconds.

18.2.2 Timing T2, SpMat R=RR

I produced timing T2 by typing

416

Thus, seconds.

I expected that T1 would equal T2. To remind you, R_multiply() calls
R_RxR(), and R_RxR() is

18.2.3 Timing T3, SpMat R=SR

I produced timing T3 by typing

Well, that did not work, although I waited almost a minute before pressing
Break. Then I tried again but performed the command only 10 times:

Thus, seconds.

It is disappointing that R=SR runs times slower than
R=RR. We will later do detailed timings to find out why.

18.2.4 Timing T4, SpMat R=RS

I expected timing T4 to equal timing T3. T3 timed a sparse times a regular,
whereas T4 reverses the order. Given the experience with timing T3, I ran
timing T4 only 10 times:

417

Thus, seconds.

The 3.339 seconds surprised me because T3 ran in just 2.873 seconds. I
was so surprised by the 16% difference that I ran T3 and T4 a few more
times. Results were unchanged, so that is one more thing we will need to
look into later.

18.2.5 Timing T5, SpMat R=SS

Timing T5 is the time to multiply two sparse matrices. I tried running it 10
times but got tired of waiting. Then I ran it just once:

The 1,266.68 seconds is over 21 minutes!

I felt obligated to wait all 21 minutes so that I could show you the exact
result, but I went back and made the exact timing later. When I ran T5 for
the first time, I pressed Break after waiting about a minute, and then I ran
timings on smaller matrices and used those results to predict the time for
multiplying matrices. My prediction was roughly 20 minutes.

18.2.6 Call a function once before timing

When you run your own timings, you should usually execute the function
once, ignore the timing, and then make the timing. You should do that
because Mata may need to load the function or its subroutines from Mata
libraries the first time you run it.

In the timings I made, the code being timed was in spmat1.mata, and that
file was loaded when I typed do timingsetup. Thus, only the odd Mata
library function might have needed to be found and loaded, and I ignored
the issue.

18.2.7 Summary

You have already seen the table, but to remind you, here it is again:

418

As I said, the performance of R=SS is obviously unacceptable, the
performance of R=SR and R=RS is disappointing, and the difference in run
times between R=SR and R=RS is unexpected.

Compared with the run time for R=SS, the other timings pale in importance.
If the 21 minutes R=SS needed cannot be reduced, it will call into question
the entire SpMat project. So when I was developing this example for use in
this book, I first went about fixing R=SS.

We, however, are going to start by making detailed timings of R=RS and
R=SR. While we are on the subject of timings, I want to show you how to
time code within Mata functions. You time code within functions after
making overall timings and discovering a performance problem. You do
this in the hope of finding the performance problem and fixing it. The
timings for R=SR and R=RS leave room for hope that we might find
something, but it will turn out to be in vain. Do not judge the value of
performing detailed timings by this one negative result. Detailed timings
are often the key to solving performance problems.

419

18.3 Making detailed timings

Mata provides its own facility for making timings of loops, blocks of code,
and even single lines within Mata functions. Those detailed timings can be
used to find performance bottlenecks.

Every programmer I know, including me, has been seduced into trying to
improve performance by examining the code, finding inefficiencies or
inelegancies, and fixing them. The result is that we spend our time
improving code where hardly any time was being spent in the first place.
The improvements we make are intellectually satisfying but move us no
closer to solving performance problems.

The right approach is to find the parts of the code where considerable time
is being spent and improve those parts where possible. To make code run
faster, you need to make improvements where improvements make a
difference.

We will start with R_SxR() and measure, almost line by line, where it is
spending its time.

18.3.1 Mata’s timer() function

Mata has a suite of timer functions. They are

You sprinkle calls to timer_on(#) and timer_off(#) around sections of

420

the code. Then, interactively or in do-files, you execute timer_clear(),
run the function to be timed—running it repeatedly if it runs too quickly—
and finally use timer() to obtain the report.

18.3.2 Make a copy of the code to be timed

To obtain detailed timings, you must modify the source code of the
functions to be timed. Do not modify the code in your original file. Copy
the original to a new file and make the changes there. The source code for
SpMat is in file spmat1.mata. I copied spmat1.mata to a new file that I
named code.do:

18.3.3 Make a do-file to run the example to be timed

We want to make detailed timings of R_multiply() when multiplying
regular with sparse matrices. We will do that by executing

where A, B, SA, and SB are the same banded matrices I used in
making the overall timings.

File timeit.do will run the timing:

File timingsetup2.do is a copy of timingsetup.do with the top lines
clear all and run spmat1.mata removed.

We can run timeit.do before we make any changes to the SpMat code,
and we will do that to verify that the timing do-file contains no errors:

421

18.3.4 Add calls to timer_on() and timer_off() to the code

To time code, we add calls to timer_on(#) and timer_off(#) at the
appropriate places in the source code. Where are those appropriate places?
We are going to time

I looked at R_multiply() in code.do. It goes through various
machinations and calls R_RxS() when given regular and sparse matrices.
Let’s guess that R_RxS() is the culprit and time it. If we are wrong, we will
find out. We have an overall timing of 3.339 seconds. If R_RxS() does not
come close to consuming all 3.339 seconds, we can back up and time the
other parts of R_multiply().

We will begin by adding calls to timer_on(1) and timer_off(1) at the
top and bottom of R_RxS(). Here is the modified R_RxS() routine:

422

Here is the result from running timeit.do:

Look at the timer report produced by timer().

423

The 1. on the left of the line is the timer number. 33.5 is the total time that
timer 1 was on. The 10 before the equals sign reports that the timer was
turned on-and-off 10 times. The 3.3471 is the average length of time that
the timer ran when it was on.

The report reveals that R_RxS() executes in 3.3471 seconds, which closely
matches the overall 3.339 seconds we obtained using rmsg earlier. It is in
fact longer than 3.339 seconds, which would be impossible were it not the
randomness of the timings that we previously discussed. The timings we
are producing are accurate to about one-tenth of a second, which we will
be accurate enough for our purposes. If we needed more accuracy, we
could modify timeit.do and run R_multiply() 50 times, or 100.

In any case, we have confirmed that R = R_multiply(A,0, SB,0) is
spending its time in R_RxS(), so next we add more timers to the code for
R_RxS(). In the modified code below, timer 1 continues to time the entire
routine, timer 2 times the routine up to the for loop, and timer 3 times the
for loop itself. Meanwhile, timers 4 and 5 will time the two statements in
the body of the loop.

424

The results of running timeit.do are now

425

18.3.5 Analyze timing results

We ran R_multiply() 10 times. The last column of the report reports
timers normalized by the number of times each was turned on-and-off.
Timers 1, 2, and 3 are normalized by 10 and timers 4 and 5, by 10,000.
Timers 4 and 5 are inside a for loop of the code being timed, and
evidently that for loop ran 1,000 times each time we called R_multiply().

Timings will be easier to interpret if we normalize them all by 10 and thus
produce averaged results for running r_multiply() once. Those results
are

Can you interpret the table? The first part of the story is that R_RxS() runs
in about 3.4019 seconds and spends nearly all of its time—3.4000 seconds

426

—in the for loop. Timers 2 and 3 reveal that.

Thus, we can conclude that whatever the performance bottleneck is, it is
inside the loop. The for loop is

The first line of the loop sets variable B_j equal to the jth column of B.
The second line sets the jth row of R equal to the inner product of A and
B_j. Timers 4 and 5, which time each of the statements, tell the rest of the
story:

1.4743 seconds—43% of the total—is spent in set_col().
1.9251 seconds—57% of the total—is spent in R[., j] = A * B_j.

I was relieved and disappointed by these results. I was relieved because I
feared that 90 or even 99% of the time might be spent in executing
set_col(), and that would have been embarrassing to me. It would have
meant that I had written a whoppingly inefficient routine. On the other
hand, had that been the result, we would have had hope of speeding up the
code. We could have planted timers inside set_col() and so have
discovered set_col()’s inefficiency. Instead, we find that set_col()
executes in about the same time as R[.,j]=A*B_j executes, and I know
that statement is efficient because it uses Mata’s internal operators. The
results are ultimately disappointing, however, because I see no way that
we can speed up this code without using a new algorithm to multiply
sparse matrices.

We will discuss developing new algorithms later. On the timing front,
there is still the 16% execution-time difference between R_RxS() and
R_SxR() that perhaps can be eliminated. If I had been smarter, I would
have ignored the anomaly and moved on to developing the new
algorithms. Even if we find and eliminate the 16% difference—a mere 0.5
seconds—that will still not make R_SxR() run fast enough. But instead, I
vainly hoped that understanding the anomaly might provide insight I could
use to improve the performance of both routines.

So I planted the same timers in R_SxR() that we planted in R_RxS(). I
discovered that the entire 16%, 0.5-second difference was due to the

427

second line of the respective for loops, namely,

R[., j] = A * B_j in R_RxS()
R[i, .] = A_i * B in R_SxR()

Remember, this is a 0.5-second difference when each statement is
executed 1,000 times. It is a 0.0005-second difference when each
statement is executed once.

There is no hope that we can rewrite these lines to execute more quickly.
Nonetheless, I was surprised enough that the difference could be traced
back to Mata’s internal code that I turned the problem over to StataCorp’s
technical group. You could have done the same by writing to Stata’s
technical support. They repeated my timings and discovered that on some
computers, the first line ran faster; on other computers, the second line ran
faster; and on yet other computers, the two lines ran at the same speed.
“The difference has to do with cache and other technical features of the
chip,” they told me.

I put them to needless work. It was doubly needless. Even if they had
found a way to eliminate the difference, it would not have solved my
problem.

We need new algorithms for R_RxS() and R_SxR(), and we need a new
algorithm for R_SxS(), which has a far more serious performance problem.
R_SxS() took 21 minutes to execute, not a mere 3.4 seconds. So let’s
develop better algorithms. It will turn out that the method underlying the
better algorithm for R_SxS() can also be applied to R_RxS() and R_SxR().

428

18.4 Developing better algorithms

We need new algorithms for sparse matrix multiplication. One way to
proceed would be to research what others have done. I did not do that
because for some problems, there is no literature, and I wanted to show
you how to proceed in those cases.

18.4.1 Developing a new idea

We need a new way to multiply sparse matrices. We need an idea. How
does one develop ideas? It is a serious question. The obvious answer is to
be smart, but I have never found such advice useful. I do not know how to
be smarter than I usually am, so what I do instead is get out pencil and
paper and work problems by hand.

I multiplied a few sparse matrices. You should try it. If you do, you will
discover that you do not blindly follow the formula

The first couple of times you multiply matrices by hand, you will follow
the formula. Given the matrices

429

you will follow the formula and calculate

Later, you will skip terms when one or both elements are 0 and calculate

You will get amazingly efficient at this. One way to multiply matrices by
hand is to write and like this:

You can now fill in the empty space with the product . The
arrangement of and makes it easy to see how each element of the
result is calculated. Each row of and column of points right at the
product’s element. For instance, the element is produced by
matching the first row of with the first column of to produce

430

What you will quickly discover is that you can omit the terms where or
 is 0. And then you will discover that you can scan across the rows of

for the nonzero elements and immediately determine which elements even
need to be calculated. The result will be

The elements left blank are 0. Something remarkable just happened. You
calculated the product of these matrices in just 6 operations instead
of the usual 112! At least, that is what happened to me.

I then thought about the banded matrix that we used in
timing the multiplication routines. Multiplying such matrices usually
requires just short of two billion calculations. Specifically, it requires

 calculations. Given the
sparsity of the matrices, however, only 4,996 of the operations—a mere
0.0002% of two billion—produce a nonzero result. Could I reproduce in
code the process I used to multiply matrices by hand?

I wrote in a pseudo mathematical/programming notation the approximate
process I was following. It is

431

That is the new idea that I propose we use to rewrite R_SxS().

The question is whether we can write efficient code based on it. The
pseudocode contains two “for each nonzero value”, but I did not for-each
when I multiplied matrices by hand. I scanned for the nonzero values. I
scanned across a row for the first for-each and down a column for the
second. We humans can scan really quickly. Computers cannot mimic that
behavior. Computers access and compare elements one at a time.
Computers for-each.

In this case, however, SpMat has stored the nonzero elements in an
associative array, and the array has at its metaphorical fingertips the
subscripts of the nonzero elements. Our code will not need to scan or for-
each. Our code can just get the indices corresponding to the nonzero
elements from SpMat.

18.4.2 Aside

To translate the above idea into code, we will need to use programming
tools that may be new to you. It will be better if we discuss them now so
that you will be familiar with them later.

To multiply and , we are now planning to work with just the nonzero
elements of the matrices. We will obviously need the subscripts such
that . The first aside below shows you how to obtain them from
AssociativeArray.

To work with just the nonzero elements of , we will need the values
 such that . The problem has some tricky aspects. You

need to first understand what is. Consider a matrix in which the
nonzero elements in row are in columns 4 and 9; for row , in
columns 8, 9, and 20; and for row , well, there are no nonzero
values. One way to summarize this information is in a table:

432

Building is a programming problem that we will discuss later.
Writing the program is not difficult given what AssociativeArray can
provide to us. What we need to discuss now is how we are going to store

. The natural approach would be to store it as a table just as I
presented it above. It is an odd sort of table, however, because each row
contains a different number of columns. A better way to store tables like
this is to make a pointer vector such that

This will be the subject of the second aside.

18.4.2.1 Features of associative arrays

Consider the following sparse matrix, which is to say, class SpMat scalar A:

A has four nonzero elements, namely, , , , and . A
stores those nonzero elements in member variable AA, a class
AssociativeArray scalar. We can think of A.AA as storing

433

We can speak about the nonzero elements of A or speak about the values
stored in A.AA. Either way, we are speaking about the same elements.

That is important because AA provides functions to tell us about the values
it has stored. For instance, function A.AA.N() returns the number of stored
values in sparse matrix A. That is an easy and quick way to learn that A has
four nonzero values. Even if A were , A.AA.N() would report
the number of its nonzero elements just as quickly as it would report 4 for
the matrix above. A.AA.keys() does not count the number of nonzero
values in A; it merely reports the number of keys it has stored in A.AA.

Function AA.keys() will return the keys. A.AA.keys() returns the number
of keys in A.

The four keys listed above are the subscripts of the nonzero values of A.
The order in which they are presented— , , , and —is
different from how I presented them, but they are the same subscripts.
A.AA stores the keys in a random order, but if we needed them in a
particular order, we could use Mata’s sort() function. If we needed the
keys in row-and-column order, we could code

434

If we needed them in column-and-row order, we could code

An important feature of AA.keys() is that it is just as fast as AA.N()
because we are asking for information that AA has already recorded. In
developing the new idea for multiplying sparse matrices, I scanned the
matrices for their nonzero values. A.AA.keys() provides the same
information for matrix A, and it does not even have to scan.

AA provides another, related feature. Rather than fetching the entire matrix
of subscripts, AA provides functions AA.firstval() and AA.nextval() to
step through them one at a time:

A.AA.firstval() and A.AA.nextval() return the first and next nonzero
value of A. When there are no remaining values, the functions return
A.AA’s not-found value, which SpMat set to 0. Hence, to loop over the
nonzero elements, we can code

435

Meanwhile, function AA.key() will return the key corresponding to the
value just returned by AA.firstval() or AA.nextval(). Those keys are
the matrix’s subscripts. For matrix A, those keys are

A.AA.firstval() and A.AA.nextval() step through the values in the
order A.AA has them stored, which is best thought of as being random. If
order matters, we cannot use the firstval() and nextval() functions.
We must instead obtain the subscripts from A.AA.keys(), sort them into
the desired order, and step through them:

You can learn more by typing help mata AssociativeArray.

18.4.2.2 Advanced use of pointers

I am going to show you how to store a table like

By store, I mean store in such a way that we can quickly access its
elements. We want to store the table so that

436

Tables like arise more often in programming than you might guess.
They arise when, for each object , you have a corresponding list of
subobjects . could be a bookstore’s customer number, and

 could be the books they have purchased in the last year. We will
use and later in this chapter to be a row of a sparse matrix and
the columns in the row containing nonzero values. For instance, we might
have a matrix for which

That would mean

in row 1, column 1 is nonzero
in row 2, column 3 is nonzero
in row 3, columns 1 and 3 are nonzero
in row 4, there are no nonzero columns

With in hand, we will be able to loop across the nonzero elements
of sparse matrix B by coding

437

There is no standard word for what is, although we might call it a
matrix with a ragged right edge:

We could say that the matrix is .

I would be more tempted to call a list of lists because I think of its
contents—(1), (3), (1,3), and ()—as lists of column values. Whatever we
call this strange object, we can create it using pointers.

Until now, we have used pointers as synonyms for existing variables. For
instance, you are already familiar with constructs such as

The first statement puts an address in p (the address of variable myscalar),
and the second statement stores 2 at that address.

Here is another construct that results in *p==2, but p will not contain the
address of myscalar or of any existing variable:

The (2) in the above could just as well be any parenthesized expression,
such as

Either of these statements results in the expression inside the parentheses
being evaluated to produce 2. The & in front of the parentheses extracts the
address of where the 2 is stored, and that address is put in p.

438

All three of the above examples result in *p==2. The last two examples,
however, are different in that the address stored in p corresponds to no
existing variable.

We can use this approach to create . We can create a pointer
vector jofh by typing

At this point, jofh is a column vector with each element set to NULL. We
can reset each of its elements to the address of a vector containing the
appropriate values:

If we were using jofh in a program, its declaration would be

Here is how we could access the values stored in *jofh:

For instance, code for looping across the nonzero values of SpMat matrix B
could read

439

In describing jofh, I have imagined that *jofh[h] is a vector when
there are no j values. Instead of filling in empty elements with the address
of null vectors, we could instead simply leave the NULL pointer value in
place.

If we did that, we would need to add an if statement to the code for
looping across the nonzero elements of B:

In the above code, the for loop will be executed only when jvalues is not
equal to NULL. As far as conditional statements are concerned, pointers
equal to NULL are treated just like real values equal to 0. Both are treated as
false.

In appendix D, I show another advanced, nonsynonym use of pointers. I
use pointers to create three-dimensional arrays.

440

18.5 Converting the new idea into code sketches

We are about to convert the idea we have sketched for multiplying sparse
matrices into code sketches. Before we do that, I want to emphasize the
three new tricks we just learned in the previous section.

Trick 1. We can loop through all the nonzero elements of SpMat matrix A,
albeit in random order, by coding

In the above code, i and j are the subscripts of each nonzero element, and
a is its value.

Trick 2. When order matters, we can loop through in row-column order by
coding

Trick 3. Unrelatedly, we can create a pointer object jofh such that
*jofh[h] is a vector. The vectors can be of different lengths.

We will need all three tricks to translate the idea into code.

18.5.0.3 Converting the idea into a sketch of R_SxS()

The idea we need to translate is

441

The translated idea will be the sketch of the new R_SxS() function.
Translating the first line—set for all , —is easy enough. As we
fill in the code, the translated lines will appear as typewriter text, while
the untranslated lines will continue to appear in normal typeface:

The next line to translate is

For each nonzero value of

We can translate the line using trick 1 because the order in which we step
through the elements of A does not matter:

442

The remaining for-each statement to be translated is an instruction to loop
over the nonzero elements of row of B.

For each nonzero value of

firstval() and nextval() cannot do that, so let’s assume a trick-3 object
jofh such that *jofh[h] is the vector of j values such that is
nonzero. Then we merely need to loop over the values of *jofh[h]. (We
now use square brackets and not parentheses because jofh is a vector, not
a function.)

Let’s rename jofh to have a more meaningful name, cols_of_row.
cols_of_row will be pointer(real vector) vector.

Let’s also assume the existence of a function B.cols_of_row(), which we
can call to fill in the variable cols_of_row(). In Mata, functions and
variables can have the same names, so do not confuse them in the
translated code, which is

443

We have just one line left to translate:

Update .

The line almost translates itself:

444

We now have a sketch of a new R_SxS().

18.5.0.4 Sketching subroutine cols_of_row()

The new R_SxS() function calls new subroutine B.cols_of_row().
B.cols_of_row() returns a pointer(real vector) vector. That is a
mouthful, but the idea is simple enough. For each row i of B,
*cols_of_row[i] will be a vector containing the values of j such that
is not equal to 0.

I say matrix B because that is what we called it when we used
cols_of_row() in the sketch of R_SxS(). I am going to call the matrix A
now that we are sketching the cols_of_row() function. The sketch begins

445

Note that I am calling the value to be returned p. To understand what we
need to put into p, let’s consider an example. Here is a sparse matrix:

For this matrix, p will have four elements because the matrix has four
rows. The contents of p will be

We will derive the contents of p from the sorted subscripts of A’s nonzero
elements:

The first row of this matrix says that is nonzero; the second row, that
 is nonzero; and so on. We can read the results to be stored in p[]

directly from it:

Here is a sketch of the code to create p:

446

I have highlighted the comments and a little of the code in lieu of
providing a detailed explanation. The outer i loop loops across the sorted
table of subscripts. Inside the loop, the code finds i1 such that subscripts i
to i1-1 all refer to row r. The code creates and fills in *p[r] and then
starts again with i=i1.

18.5.1 Converting sketches into completed code

We now have completed sketches of R_SxS() and cols_of_row(). The
plan is to produce final code from them and measure the performance of
the new code. If it is fast enough, we can then apply the same idea to
improve the performance of R_SxR() and R_RxS().

File spmat1.mata contains the current, certified SpMat code. I copied it to

447

new file spmat2.mata,

and I modified its header to state that this file contains version 2.0.0 code:

I added the declaration of cols_of_row() to the class declaration and
added new macroed type ‘RV’, meaning real vector:

The sketch we made of R_SxS() is almost completed code. It lacked
certain details, such as code to ensure that the matrices to be multiplied are
conformable, and it lacked a few declarations. I completed the code and
put it in spmat2.mata. Starting at the line that reads “// ------ multiply
---”, the code matches the sketch except that I added q=p[h] because I
thought using q instead of p[h] in the remaining code made it more
readable.

448

449

When I did all the above, I was in a rush to obtain the new timings. As a
result, I decided to omit adding code to handle R_SxS()’s arguments tA
and tB. Those arguments specify that the matrices be treated as if they
were transposed. Instead of writing code to do that, I wrote

This code aborts execution if tA or tB is true. There are two things to
explain about this code: the use of !! and the use of // NotReached.

18.5.1.1 Double-bang comments and messages

When I write code that has shortcomings that I must fix before it can be
considered complete, I include comments or error messages, and I prefix
the text of the comments and messages with !!. When I am in the midst of
development, code literally can be sprinkled with double-bang comments
and error messages, such as,

When something occurs to me that I need to do later, I write a double-bang
comment or error. I put them in files containing Mata code, files
containing certification scripts, files containing documentation, and even
files containing design documents. No file is immune.

When I am in the mood to clean up details, or a deadline looms, I search
my files for !! and fix them, or fix some of them and leave others for later.
There is no rush, but no file is complete and no project is finished until all
double-bangs are found, dealt with, and removed.

I use double-bangs as reminders for little things and big things. Double-
bangs are my to-do lists. When writing serious code, the excuse “I forgot”
is unacceptable.

18.5.1.2 // NotReached comments

450

In the code snippet I just showed you,

the // NotReached is just a comment. I include this comment when it is
not otherwise visually obvious that flow of control has already ended. For
instance, function _error() displays the message and aborts execution.
The // NotReached makes it explicit that _error() returned or aborted.

Had the line read

or

I would usually not bother with a // NotReached comment. The
statements themselves make it clear that execution does not proceed
beyond this point. On the other hand, it is sometimes worth emphasizing
with a // NotReached when the statements are unexpected. However, I
will not put // NotReached comments even on surprising statements when
there would be too many of them in a small space, or if they would
interfere with readability of the code. The purpose of // NotReached is
emphasis to improve readability of the code, not to diminish it.

18.5.1.3 Back to converting sketches

We have one more routine to convert from sketch to final code before we
can evaluate the performance of R_SxS(), namely, cols_of_row(). The
final code is nearly identical to the sketch. The biggest difference is the
unexpected inclusion of an extra argument tA. When I placed the double-
banged not-yet-implemented message in R_SxS(), I realized that
cols_of_row() would also need a virtual transposition capability, so I
added the argument and another double-banged not-yet-implemented
message.

The final-but-for-double-bangs code is

451

18.5.2 Measuring performance

I reran the timing of R_SxS(), the timing we called T5 back at the
beginning of this chapter. Here is what I found:

452

You might take a moment to appreciate this result. One does not often see
speed improvements of four million percent. We need to do more with
different sparse matrices to confirm these results, but I am confident that
this timing is not a fluke because the run time of the new logic is a
function of the number of nonzero elements stored in the matrices instead
of the number of rows and columns. The more sparse the matrix, the faster
R_SxS() will run.

The SpMat project is now back on track.

Sometimes algorithms matter.

453

18.6 Cleaning up

Cleaning up means doing what is necessary so that code can pass
certification. Before running the timing reported above, I did a little bit
that I did not tell you about to verify that the new code produces correct
answers. I verified that it produced correct results when multiplying the

 banded matrices used in the timing.

I had not yet run the certification script because I could not run it. R_SxS()
and cols_of_row() do not yet handle virtual transposition. We need to
substitute code for double-bangs in R_SxS() and cols_of_row().

The current, double-banged code is in spmat2.mata. I copied spmat2.mata
to new file spmat3.mata,

and modified the new file to have an even newer internal version number:

The plan now is to modify the code in spmat3.mata to handle virtual
transposition, and if something goes wrong, we will still have the
spmat2.mata code so that we can start again.

18.6.1 Finishing R_SxS() and cols_of_row()

I added the code to R_SxS() and cols_of_row() to handle virtual
transposition. The additions were not obvious, yet you could have made
them. The updated code is

454

455

456

457

After I had modified cols_of_row() to add transposition, I realized that
cols_of_row() with transposition amounted to performing rows-of-
column. I decided to add a rows_of_col() function in case I, or some
other programmer, needed it later:

Functions cols_of_row() and rows_of_col() are now complicated
enough that I wanted to see for myself that they returned correct results for
some simple examples. I was pretty sure that cols_of_row() with
would work. I really wanted to see it work with . So I temporarily
modified the code to make the functions public, and they did work. I
realized that I might someday need to modify the functions. Perhaps I
would need to make them run faster. If so, it would save me time if I
included the tests that I performed interactively in the certification script.
So I left the functions as public. The declaration of SpMat now read

I marked the functions as DND to remind myself that these functions need
not be documented.

458

You can see a complete listing of spmat3.mata by typing in Stata

If you have not yet downloaded the files associated with this book, see
section 1.4.

18.6.2 Running certification

I ran certification. I copied test_spmat1.do to new file test_spmat3.do,

I modified the new file to load the code from spmat3.mata:

The do-file ran without error. I then added the direct tests of
cols_of_row() and rows_of_col() to the end of the file and ran the do-
file again. Finally, I added a few more tests of multiplying SpMat matrices.
This time, I created matrices that were not sparse but had been stored as
SpMats anyway. That is, I created

and then made SpMat matrices SA and SB from them. Sparse or not,
multiplying SA*SB should produce the same result as A*B:

The code failed the test! I wondered how different the matrices were. I

459

temporarily modified the test script to show how similar R and A*B were
and reran it:

Mata function mreldif(R, A*B) returns the maximum relative difference
of the elements of R and A*B. A maximum relative difference of
means that when comparing the two results, the largest difference was in
the sixteenth digit. The first fifteen digits always match. Fifteen digits of
accuracy is right at the limit of double precision. Matrices R and A*B may
not be exactly equal, but they are equal.

Matrix multiplication involves lots of additions and, as we discussed in
section 13.4.1, just changing the order in which the additions are
performed can change numerical results. The order is different in this case
because of how R_SxS() performs matrix multiplication. It steps across the
nonzero elements using the firstval() and nextval() functions. The
order in which firstval() and nextval() return those nonzero values
determines the order in which the additions are performed.

I changed the certification script code to read

spmat3.mata passed certification.

You can see the full listing of test_spmat3.do by typing in Stata

460

461

18.7 Continuing development

We can now continue development, although I hope you will excuse me if
I drop out. You may want to join me. The purpose of this and the previous
chapter has been to show you how to approach a large development project
and how to drive it to completion. I think we have accomplished that. In
fact, I would judge that we are halfway to completing the project.

I am sure that interesting issues would arise if we continued. Some of the
issues might even require that we be smarter and cleverer than we usually
are. In those cases, we would get out pencil and paper and work examples
by hand in hopes that the exercise leads to inspiration. It usually does, in
my experience.

I will give you a list of what remains to be done, not because I expect you
to complete this project, but as part of the training for how to drive large
projects to completion. The next step is to make precisely that list. Here it
is.

1. Make R_SxR() and R_RxS() efficient using the approach we used
together to make R_SxS() efficient. Check performance and certify
code.

2. Make S_*x*() efficient. This is a moderate-sized project. I would
first work on S_SxS(), update certification, and then work on the
remaining routines. You will be able to borrow ideas used in R_*x*
(), but details will need to vary if code is to run quickly. You do not
want to code statements in the innermost multiplication loop such as

I say that, but I would still try it. It might work well enough. I have
shown you two second-rate approaches in this book and neither
worked out. They were not random choices. I wanted to show you
how easy it is to switch algorithms in well-written code, and to show
you that developing code is easier using second-rate algorithms. What
I have not shown you is that sometimes the second-rate algorithms
work well enough. This might be one of those cases.

If you find that the second-rate algorithms do not perform adequately,

462

the fix is to code

and to R.put(sum, i, j) after the summation is complete. To do
this, you will need to reorder the for loops to loop first through i,
then through j, and finally through h.

3. Make the S_*p*() matrix-addition functions efficient. You will need
to develop an idea along the lines of the idea we developed for sparse
matrix multiplication. The idea for addition will be simpler than the
idea was for multiplication, but the resulting code will be
approximately as complicated to implement. I recommend that you
use AA.keys() to get the nonzero elements of both matrices and then
form lists of those elements that can be copied from A into the result,
those that can be copied from B, and those that require addition of the
corresponding nonzero elements of A and B.

There are three more items on the list, but they will each be quick and
easy:

1. Write S_*m*() functions to subtract matrices. Start with the S_*p*()
routines and modify them.

2. Add a transposition function Aprime = A.transpose().

3. Add a negation function Aneg = A.negate().

As I said, we are already halfway done.

463

Chapter 19
The Mata Reference Manual

Type help mata in Stata or Mata, and you will see

You are looking at the online version of the Mata Reference Manual. I
started this book by making harsh comments about the manual. I compared
it with a parts manual for a car. Now that you have seen how those parts
can be fit together, I suggest you give Mata’s parts manual another chance.
The manual is comprehensive if concise. This book was the opposite.

Type help mata and click on [M-1], [M-2], and [M-3].

Read sections [M-1] through [M-3] in their entirety. They are not only a
good review of what we covered but they also include details that the book
ignored or glossed over. For instance, [M-1] includes a discussion of
absolute and relative tolerances, a topic that this book ignored, and the
manual has a more thorough discussion of permutation vectors. If pointers
still confuse you, read the discussion and examples in [M-2]. And we did
not even discuss in this book the material in [M-3]. That material is not of
great importance to serious programmers, but there is one feature that I use
daily: mata which. I will leave it to you to learn about it.

Click on [M-4] for the built-in functions part of Mata’s parts manual.
Every built-in function is categorized and described. When you click on
[M-4], the categories are presented:

464

You can click on any of the words on the left, from matrix to
programming, to learn what is provided in the category. The functions
will be listed in logical order with brief descriptions. Click on a function,
and you will be taken to its documentation. For instance, if you clicked on
programming and then on timer(), you can learn all about the function
that we used in the previous chapter to measure the performance of SpMat.
Or click on AssociativeArray() to learn about the functions we used to
implement SpMat.

If you just wanted to learn more about timer() or AssociativeArray(),
the quickest way would be to type help mata timer() or help mata
AssociativeArray(). The point of clicking on [M-4] and then on
programming is to find out what else is available. Mata provides
functions that return the version set by the caller, return whether you
should favor speed or memory in the code you write, perform advanced
string parsing, work with external (global) variables, intercept the Break
key, calculate hashes, make assertions, obtain the number of bytes
consumed by an object, swap the contents of variables, and determine the
byte order used by this computer. And there still remain 11 more
categories to learn about!

One of them is stata. Mata provides over 60 functions for interacting with

465

Stata, including functions for creating new Stata variables, dropping
existing ones, and accessing and modifying their content. You will even
find a function named stata() that executes Stata commands! Because
Mata is part of Stata, I feel a special obligation to help you through these
functions, so also see appendix A of this book. I will not cover all of them,
but the manual will.

Clicking on [M-4] is the best way to learn, in an organized way, about
what exists. If you already know the name of a function, however, typing
help mata functionname() is the quickest way to get to its documentation.
What if you do not know the name but are sure a function must exist to do
what you need? In that case, click on [M-5]. The name of every function is
displayed along with a brief description of what it does. The short
descriptions are searchable. I use [M-5] at least once a day when I am
writing code.

The Mata Reference Manual was written for people who already
understand Mata, know how to program in it, and now need to find a part.
It was written for you. Learn your way around it and use it.

And with that final advice, we are done. I hope you found this book
helpful. As I wrote it, I tried to imagine you reading my explanations, and
when you scowled at me, I doubled back and tried again. I hope that the
real you did not find yourself scowling nearly as often as I imagined.

466

Appendix A
Writing Mata code to add new commands to
Stata

467

A.1 Overview

Mata exists for adding new features to Stata. Now that you are an expert
on Mata, we can discuss how to do that. We reviewed the mechanical
aspects of adding features in chapter 9 when we created new Stata
command nchooseki by writing nchooseki.ado. To review, you add
features to Stata by writing ado-files, and the existence of Mata does not
change that. You can call Mata functions from ado-code using ado’s
mata: command, and you put the code for those functions at the bottom of
the ado-file or in Mata libraries. Do the former, and the functions will be
private to the ado-file. Do the latter, and the functions will be available to
other ado- and do-files. You can put some functions in the ado-file and
others in libraries. If we wanted to add command xyz to Stata, file xyz.ado
might look like this:

Subroutine xyzsubr() is private; its code appears in xyz.ado. Meanwhile,
the code for generalsubr() is not in the file. The jargon for this is that
generalsubr() is external. External code is stored in Mata libraries such
as lmatabook.mlib.

So much for review. The subjects we are going to discuss in this appendix
are

1. How should we structure the code for xyz? We can imagine one

468

extreme where program xyz contains just one line
—mata: xyzsubr("‘0’")—and the entire logic for the problem
appears in function xyzsubr(). The Mata function proceeds from
receiving a single argument—a string scalar containing what the user
typed—and produces all the results and output.

At the other end of the spectrum, we can imagine an ado program xyz
that itself handles the problem from start to finish and calls Mata
subroutines only occasionally.

And we can imagine cases in between.

2. How do we write Mata subroutines that access Stata’s data, macros,
scalars, and so on? If the subroutines are going to do anything useful,
they will need to do that.

3. How do we write Mata subroutines that modify Stata’s data, macros,
and so on? For that matter, how do we write Mata subroutines that
merely return a result to Stata?

4. How do we write Mata subroutines that deal elegantly with errors
caused by users’ mistaken requests? In this book, we have dealt high-
handedly with errors. We have mostly ignored them, and we have
done that even when our code might produce incorrect results, such as
those caused by matrices that are not symmetric when they should be.
We have let Mata automatically abort with error in other cases, such
as those caused by matrices that ought to be square but are not. In a
few cases, we forced Mata to abort with error by explicitly calling
Mata’s _error() function. We justified our actions by arguing that
the routines we wrote would be called by routines written by
programmers like ourselves, and those programmers should deal with
the issues before calling our routines.

We are now those programmers, and it is our responsibility to look
for the causes of such problems and issue error messages designed to
help the user. Mata’s default traceback logs will not do because they
make it appear as if the error is in our code instead of in what the user
typed.

469

A.2 Ways to structure code

Stata does some things better than Mata and vice versa. Stata can merge
datasets. You would have to write code to do that in Mata. Stata can run
linear regressions. We wrote Mata code to do that in chapters 11 and 13.
Stata does a lot of things well, but it falls short when solutions involve
looping, complicated programming logic, and matrix operations. Such
code is better written in Mata. Mata code will be easier to write and
quicker to debug, and the results run faster.

The way I structure code depends on the proportion of it I envision writing
in Stata and in Mata. If xyz involves solving a problem more easily coded
in Stata, then I will write xyz to be the main routine—the routine in control
that threads its way through the subroutines to produce the final result—
and I will write each subroutine in Stata or Mata according to whichever is
more natural.

If the problem is instead a natural for Mata, then I turn the design around.
Stata program xyz will still be the main routine—there is no choice about
that—but I will write xyz so that it quickly turns the problem over to its
Mata subroutine, and it is the subroutine that will thread its way to the
solution. It too will call subroutines and, just as with ado-code, those
subroutines will be written in Stata or Mata.

I say that I will write xyz to quickly call its Mata subroutine, but even in
programs that are more naturally written in Mata, I let the ado-code handle
the parsing. Stata is outstanding at parsing Stata syntax and, once parsed,
at identifying the relevant sample of observations. Stata commands syntax
and marksample make doing that easy. Here is an xyz.ado for a problem
that I intend to write almost entirely in Mata:

470

xyz has the syntax

varlist is required and must contain two or more variables.
alternate(varlist) is optional. The variables in both varlists are required
to be numeric. Meanwhile, xyz allows the usual if expr and in range
modifiers to restrict the observations used. In this example, xyz calculates
and reports a statistic based on varlist and, optionally, varlist .

The first substantive line of the ado-program parses the above syntax:

The above two lines comprise one logical line. The forward slashes in
quick succession is how you specify that physical lines are to be joined.
syntax is a remarkable command. You specify the syntactical components
that you wish to require or allow in nearly the form of the original syntax
diagram, and syntax then stores what the user typed broken into its
syntactical pieces. Those pieces are stored in Stata macros. The macros in
this case will be named varlist, if, in, and alternate. syntax does that,
or if what the user typed does not match what is allowed or does not

471

provide all that is required, syntax itself issues the appropriate error
messages and stops the ado-file.

The next two lines of xyz identify the sample of observations to be used,
and although it is not explicit in their syntax, they do that in part by
accessing the information left behind by syntax. The two lines are

marksample touse creates a temporary variable in the Stata dataset that
marks the observations to be used. It starts by storing the name of the
temporary variable in touse. In Stata speak, ‘touse’ is the new variable.
The new variable contains 0s and 1s, with the 1s marking the observations
that xyz will need to use. marksample set values to 1 in observations that
were not excluded by any if expr or in range, and then only if varlist
contains no missing values. Because xyz also needs to exclude
observations with missing values in varlist , I coded a second command
—markout ‘touse’ ‘alternate’. That command reset values in ‘touse’
to 0 in observations for which varlist contains missing values, if it was
specified.

Thus, in just three programming commands, I accomplished what Stata
makes so easy: I parsed the input. I issued error messages if the user made
a mistake. If not, I obtained lists of the relevant variables and identified the
sample over which the statistic should be calculated. The result is that
what xyz needs to do is now completely defined by ‘varlist’,
‘alternate’, and ‘touse’. What xyz needs to do is going to be performed
by Mata subroutine xyzsubr(), so I next called xyzsubr() and passed it
the contents of the three macros:

Let me parse this important line for you. The mata: prefix says that what
follows is to be executed by Mata, not Stata, and it says that if an error
occurs in executing the Mata portion of the code, execution of the ado-file
is to stop. I passed three arguments to xyzsubr(): "‘varlist’",
"‘alternate’", and "‘touse’". Understand that "‘varlist’",
"‘alternate’", and "‘touse’" are just strings of characters enclosed in
double quotes. If the user typed

472

then the macros will be "‘varlist’" "mpg weight"
 "‘touse’" "__000009" "‘alternate’" ""

The odd-looking __000009 is a Stata-generated temporary variable name.
The variable __000009 is what contains the 0s and 1s that specify the
sample. In any case, after macro expansion, the line coded in the ado-file,
which is

is interpreted as if it read

That is the line that Stata will pass to Mata for execution. The Mata code
that receives the call reads

Thus, the Mata string scalar variables varlist, altvarlist, and touse
will contain

xyzsubr() will take those three string values and produce the desired
result. We are going to fill in the code for xyzsubr() in the sections that
follow. Here is a preview:

1. We will make matrices D and possibly A. Matrix D will contain the
relevant observations on the variables in varlist. A will contain the
relevant observations on altvarlist if altvarlist!="". In the
example, D will be . It will have rows and two columns, one
each for mpg and weight. The observations will be those for which
Stata variable __000009!=0. Meanwhile, A will be because
Mata variable altvarlist=="".

2. The purpose of xyz is to calculate a statistic. We will calculate the
statistic based on D and A. It happens that the statistic can be

473

meaningfully calculated only when there are no repeated variables in
D. This means that if the user typed xyz mpg weight mpg, then xyz
will need to issue an error message and stop.

3. If the user did not repeat a variable, we will calculate and display the
statistic’s value and store it in r(statistic).

We are not going to get lost in math. The statistic that we will calculate is

That line will be the stand-in for a more complicated calculation involving
D and, if it is specified, A. To help you see where we are going, here is how
I envision our not-yet-written command will look in action:

474

A.3 Accessing Stata’s data from Mata

Mata provides six functions for accessing the data that Stata has stored in
memory. They are

We will ignore the last two functions because I have never found a use for
them. You can type help mata _st_data() to learn more about them if
you are curious.

The other four functions are enormously useful. They are how Mata
programmers access Stata’s data. Notice that the four functions occur in
two pairs, one for accessing Stata’s numeric variables, such as mpg and
weight, and another for accessing string variables. Mata does not allow
mixed-type matrices, so you cannot put numeric and string variables in the
same matrix. You instead put them in separate matrices if you have both
types, and Mata provides separate functions for doing that. st_data() and
st_sdata() copy numeric and string data from Stata into Mata. Their base
syntax is

Arguments i and j specify the observations and variables to be returned.
There are lots of variations on how they can be specified. Both st_data()
and st_sdata() work the same way. What is said about st_data() below
applies equally to st_sdata().

475

1. i and j can be specified as integers. st_data(2,3) returns the value
of the second observation of the third variable in the Stata dataset.
Perhaps 17 would be returned. Nobody uses st_data() in this way,
but they could.

2. j can be specified as a variable name. st_data(2,"mpg") returns the
second observation on mpg. Returned might be the same value that
was returned when we specified j as 3. Nobody uses st_data() in
this way either.

3. i can be missing value. This is useful. st_data(., "mpg") returns an
 column vector of all the observations on mpg.

4. j can be a vector. This is even more useful. st_data(., ("mpg",
"weight")) returns an matrix containing all the observations
on mpg and weight.

i and j can be specified in other ways, too. You can learn all the ways by
typing help mata st_data(). I am going to show you how functions are
mostly used and, even in syntax diagrams, not burden you with all their
syntaxes and features. I am also not going to mention this again, so do not
assume that a feature is absent just because I do not tell you about it.

Concerning the code for xyzsubr() that we need to write, st_data() takes
us halfway to producing the D matrix that we need. We could code

I say halfway because D produced in this way would contain all the
observations in the dataset, and we want all the observations for which
variable __000009!=0. I will show you how we can fix that, but first I need
to explain why the line reads

and not

Variable varlist, you will recall, is a string scalar in the Mata function
that we are writing. It contains a space-separated list of variable names,
such as "mpg weight". st_data(i,j) requires that j be a vector when
more than one variable is being specified. st_data() does not want to see

476

"mpg weight", it wants to see , a vector. Mata’s
tokens() function converts space-separated lists into such vectors.

I said that we are halfway to the D matrix we need, but we also need to
restrict the observations to the subset for which __000009!=0. st_data()
and st_sdata() provide a syntax for that. The variable name containing
the nonzero values that specify the observations to be selected can be
specified as a third argument:

With three arguments, the functions return all observations on variables j
such that the Stata variable name recorded in the third argument is not
equal to 0. That is exactly what we need. Variable touse in xyzsubr(), I
remind you, is the string scalar containing the variable name __000009.
We could code

Before we use the above solution, however, there is another we should
consider. The problem with st_data() and st_sdata() is that they copy
data from Stata into Mata, and copies consume memory. The memory is
not an issue for small datasets, but it can be important with larger ones.
st_view() and st_sview() are variations on st_data() and st_sdata()
that solve the memory problem. They do just what st_data() and
st_sdata() do, but the matrices they construct are views onto the Stata
data instead of being a copy. Their syntax is somewhat different, too.
Instead of typing

you type

That is, what previously appeared on the left side of assignment now
appears as the lead argument of the view function. Other than that, the
syntax of the view functions mimics that of the data functions:

477

Views are different from copies, but after construction, view matrices
work as if they were ordinary matrices. The memory the views consume,
however, is trivial compared with the copies produced by st_data() and
st_sdata(). Views have a corresponding disadvantage. The time it takes
to access the elements of views is a little greater. If matrix R is created by
st_data() and matrix V, by st_view(), but they are otherwise the same
matrix, it takes longer to access elements of V than it does to access
elements of R. Do not make too much of this, because in most cases, you
will not notice it. If, however, you were to calculate R*b or V*b millions of
times for a column vector b, you will notice the difference.

Which should you use? Mata has a setting about whether it should favor
memory or speed of execution. Mata’s built-in function favorspeed()
returns the setting. In the case of the xyzsubr() example, we could code

Most programmers do not bother to do this because most users never set
whether they prefer speed or space; thus, favorspeed() is always false,
which is the default Stata ships with. In cases where we at StataCorp have
been uncertain about whether to use st_data() or st_view(), we have
written out code in just the way shown and we have done timings both
ways. Then we chose once and for all whether to substitute st_data() or
st_view() for the two lines. I know of only a few instances in which we
finally settled on st_data() because of the speed penalty of st_view(),
and those instances involved massive amounts of calculation.

To summarize, when writing an ado-file that uses Mata, the usual and best
approach is to

1. Use syntax in the ado-portion of the code to parse what the user

478

types.

2. Use marksample and perhaps markout in the ado-portion of the code
to create a ‘touse’ variable.

3. Pass "‘touse’" to the Mata function. Declare the argument that
receives the variable name as string scalar touse.

4. Construct matrices and vectors using st_view(name, ., j, touse)
or name = st_data(., j, touse) It is generally better to use
st_view().

I told you that view matrices work just like regular matrices, but there are
a few exceptions where they do not work at all. There are Mata functions
and operators that, given a view matrix, issue the error “view found where
array required”, r(3103). Mata issues the error if you attempt to obtain the
Kronecker product and one of the matrices is a view. Mata also issues the
error if you attempt to use function _transpose() on a view. The writeups
in the Mata Reference Manual mention when views are not allowed.

Just because Mata says “view found where array required” does not mean
you cannot use views. You can code around the problem, and that is
sometimes a better solution. In these cases, I suggest you still consider
whether a view might not be the better solution because you can usually
work around the problem. In spmat3.mata, discussed in chapter 18, we
had code that used _transpose(). It read

This code will not work when B is a view and tB is not equal to 0. That is a
considerable shortcoming because the user of the sparse matrix system
might have good reason to want to specify a view. If we complicated its
logic, the code could be made to work with views without sacrificing the
advantages of using _transpose() when B is not a view. The following
draft uses Mata’s isview() function to determine whether B is a view:

479

In any case, there is no issue caused by using views in the code for
xyz.ado, and so we are going to use it. The updated draft reads

Sharp-eyed readers will notice the two pragmas in the code. They are there

480

because Mata would otherwise complain, if we set matastrict on, that D
and A may be set before they are used. matastrict does not understand
that the two st_view() statements set D and A because they do not appear
on the left of an assignment statement.

481

A.4 Handling errors

Mata does not handle errors gracefully. As far as Mata is concerned, errors
should not happen in well-written code, and if they do, Mata aborts
execution and presents a traceback log that will help the competent
programmer find his or her error.

Stata has an entirely different attitude. Users make mistakes, and when
they do, not only does execution need to stop (Mata and Stata agree on
that), but a tolerant, helpful error message should be presented that in
effect invites the user to try again.

Your job as a programmer of Mata subroutines for ado-files is to write
code to present these tolerant and helpful error messages and to cancel
further execution without the presentation of a traceback log. The key to
doing the last part is Mata’s exit(rc) function. Before you do that, you
use Mata’s errprintf() function to display the error message.
errprintf() is like printf(), except that errprintf() marks the output
as error output so that it is displayed in Stata’s error style, which usually
means that it appears in red.

We are going to do just that in xyzsubr(). You may remember that there
can be no repeated variable names in varlist if the statistic we will
calculate is to be meaningful. We need to determine if repeated variables
are specified, and if so, issue the error message and exit. To remind you,
the draft of function xyzsubr() at this point is

We will present the error message and exit only if there are repeated
variable names. I will show you how we will do that and then explain:

482

In the code, cv is the same as varlist, except the names are stored in a
column vector instead of a scalar containing names separated by spaces.
The if statement asks whether the number of unique names in cv equals
the number of names in cv. Mata built-in function uniqrows() returns,
well, the unique rows of . It returns with duplicate rows removed. All
that is left to do is add the error message and exit() with the appropriate
return code:

The updated version of xyz.ado is

483

Now when users type duplicated variable names, they will see

484

A.5 Making the calculation and displaying results

Recall how xyz is to work when the user does not make an error:

We have structured the code so that ado-program xyz parses the input,
identifies the sample, and calls Mata function xyzsubr(). Mata function
xyzsubr() is to calculate the statistic, display its value, and return the
value xyz. We have a partial draft of xyzsubr() that handles the setup for
doing this. It reads

Now we need to add the code to make the calculation and display the
result. We have already agreed to use the formula

Of course, the true statistic is not really 2. The formula is a stand-in for the
code that will produce the true value based on the matrices D and A. This
stand-in is no different from how we have written code throughout this
book. We start with second-rate formulas and code better formulas later. I
admit that this formula does not even make an attempt to calculate the

485

statistic correctly, but so what? You could call it a third-rate formula if it
would make you feel better.

Now we need to display the result stored in statistic. printf() is how
you display output in Mata. After the calculation statistic = 2, we will
add the lines

You can learn more about printf() by typing help mata printf().

The updated xyzsubr() now reads

486

A.6 Returning results

The final step in writing xyz.ado is to add the code to xyzsubr() to return
the value of statistic to its caller, xyz, so that xyz can return
r(statistic) to its users. There are seven commonly used ways to return
results from Mata to Stata.

To return a Mata string scalar: (1) store it as a named Stata local
macro that the ado-file can access (2) store it as a named Stata string
scalar that the ado-file can access (3) store it as a Stata r() macro that
the ado-file can access

To return a Mata real scalar: (4) store it as a named Stata numeric
scalar that the ado-file can access (5) store it as a Stata r() scalar that
the ado-file can access

To return a Mata real vector or matrix: (6) store it as a named Stata
matrix that the ado-file can access (7) store it as a Stata r() matrix
that the ado-file can access

I recommend returning results in r() in all cases. When ado-files call other
ado-files, results are returned in r(). Why should Mata subroutines behave
differently? Here is how to store in r() from Mata:

To return Mata string scalar , call st_global("r(name)",)

To return Mata real scalar , call st_numscalar("r(name)",)

To return Mata vector or matrix , call st_matrix("r(name)",)

Because we need to return a Mata real scalar, we will use
st_numscalar():

xyzsubr() will now read

487

Note that I stored the statistic in r(result) even though the ultimate goal
is to return r(statistic). I could have stored it in r(statistic), but I
stored it in r(result) to emphasize to you that r(result) is the value that
xyzsubr() is returning to its caller, ado-program xyz, and not the result
that xyz will return to its caller, the user of the command. This is the same
situation as with all ado-files. Think about an ado-file simple.ado that
does not even use Mata. Assume that simple is r-class, and someplace
along the way, it uses Stata’s summarize command to calculate a mean. It
wants to return that value to its users as r(y_mean). The code would read

summarize leaves behind r(mean) and other r() results for its caller’s use.
In the code, simple adds the value stored in r(mean) to its returned results
as r(y_mean) using the return command. Had simple wanted to call its
returned result r(mean), it would still have had to add it using the return

488

command. The command would have been

Program xyz works the same way. Program xyz called a subroutine that
happened to be written in Mata, but that makes no difference. The Mata
subroutine leaves behind r() results that its caller can use (or ignore) as it
pleases. In the code below, xyz stores r(result) in its return value
r(statistic). Had xyzsubr() returned r(statistic), xyz would still
need to add r(statistic) to its returned results.

Ado-program xyz is now

We are done with the xyz file, but I was sloppy when I added the line
“return scalar result = statistic” in xyzsubr(). I should have
added the line “st_rclear()” above it. I often forget and it seldom
matters. st_rclear() clears r(). Mata does not clear r() automatically
like Stata does. Because it is not automatic, had the caller of xyzsubr()
used summarize just before calling xyzsubr(), then later, after xyzsubr()
returned, r() would have contained summarize’s returned results as well
as xyzsubr()’s r(result). The extra results do not matter as long as the
caller does not use return add to add all values currently stored in r() to
the r() that it will return. If it did, there would be more stored in r() (and
thus returned) than intended.

Here is the final version of xyz.ado, including the st_rclear() that I
previously omitted:

489

I have labeled the above code as final, but it is not final. We still have to
substitute the correct calculation for the line “statistic = 2”. I ought to
put a double-bang (!!) next to the line so that I do not forget, because we
are not going to do that here.

490

A.7 The Stata interface functions

We have discussed only a handful of the Stata interface functions that
Mata provides. I will tell you about the rest of them, but not in great detail.
If it is detail you seek, see the Mata Reference Manual. As you read about
the functions, type help mata functionname() for any that interest you.

A.7.1 Accessing Stata’s data

We covered the functions for accessing Stata’s data. They are

We covered the functions, but I have a warning for those of you who use
st_view() or st_sview(). It is your responsibility to reestablish views if
you drop variables, rearrange their order, or drop observations. Consider
the following example:

After st_dropvar(), the view V may need to be reestablished. It needs to
be reestablished if the order of the variables in the dataset is a, b, and c
because then, after dropping variable b, the second column of V will
become whatever variable comes after c, presumably d, but perhaps
nothing. Views base the variables they view on variable numbers. When
you established the view by coding

491

Mata recorded that V is a view onto variables 1 and 3 of the Stata dataset.
After you dropped b, variable c became variable 2, but the view does not
know that. V is still a view onto variables 1 and 3. For V to be a view onto a
and c, you need to reestablish it, which you do by repeating the command
that originally created it:

The same issue arises with dropped observations.

A.7.2 Modifying Stata’s data

The functions for modifying the values recorded in Stata’s data mirror
those for accessing the values. They are

These modify functions mimic the syntaxes of their corresponding access
functions.

Notice that st_view() and st_sview() are both access and modify
functions. They modify values when the matrix they create appears on the
left of assignments. Be sure to specify subscripts explicitly in such cases.
The following code changes each value of mpg in Stata’s data to be its
reciprocal, gallons per mile:

If you omitted the subscripts and typed v = 1:/v, v changes from being a
view to being a regular matrix. The Stata data would be unchanged,
although the new, regular matrix v would contain gallons per mile. This is
explained in section 5.11.1.

492

A.7.3 Accessing and modifying Stata’s metadata

Metadata refers to data associated with Stata’s data, such as %fmts and
variable labels. Even the variable names are metadata, as are the number of
observations and number of variables.

Stata’s metadata are

For the data as a whole:

of variables

of observations

dataset characteristics

date and time last written

filename if any

whether changed since last saved

For each variable of the data:

variable name

storage type (byte, int, …)

display format (%fmt)

value-label name

variable label

variable characteristics

For each value-label name:

numeric values

mapped value

493

The following functions make all the above accessible and allow
modification of formats, labels, and characteristics:

Function c() appears twice in the above table, and the st_global()
function that appears will appear in other tables. There is no mistake.
Mata’s functions are sometimes overloaded, and the arguments you
specify determine what is returned or changed.

You may someday need the name of every Stata variable in Stata’s data,
and you will search without success for the function that does that.
st_varname() will return the full list if you code

A.7.4 Changing Stata’s dataset

Stata’s dataset is Stata’s data and metadata, taken together. Some things
cross the line between being data and metadata, such as the number of
observations, the number of variables, and the variable names. Renaming
variables and adding or dropping variables or observations are considered
changes to Stata’s dataset.

494

The functions for changing Stata’s dataset are

A.7.5 Accessing and modifying Stata macros, scalars, matrices

Stata provides macros, scalars, and its own concept of matrices separate
from that of Mata, and these things are separate from Stata’s dataset. They
provide the variables for Stata’s ado-programming.

You can access and change the contents of Stata’s macros, scalars, and
matrices using the following functions:

495

A.7.6 Executing Stata commands from Mata

We have discussed how Stata can call Mata functions using Stata’s
mata: command. The reverse capability is also provided. Mata can execute
Stata commands using either the stata() or _stata() function:

These functions differ only in how they treat errors that occur while the
Stata command is being executed. stata() aborts with error, meaning it
stops execution and presents a traceback log. _stata() returns a real scalar
equal to the return code. Return codes equal 0 when no errors occurred.
Understand that even when errors do occur, the Mata code still regains

496

control, and it is up to that code to determine how to deal with the
problem.

_stata() is the command you want to use in serious code. stata() is
useful in do-files and the like for private use. Both commands allow one to
three arguments. We will discuss _stata(). Its syntax is

cmd is a string scalar containing the line that Stata is to execute. The other
arguments are real scalars, with 0 meaning false and nonzero meaning
true. The return value rc is a real scalar.

If you coded

then Stata would execute the regression command and show the output.
Presumably, _stata() would return 0. If you coded

then Stata would execute the regression command but show no output. Not
even error messages will be displayed.

The third argument works the same way but affects whether Stata’s usual
macro expansion is to be performed. In rare instances, suppressing macro
expansion can be useful, but the third argument is mostly specified for
speed execution time. Even so, few programmers specify it because macro
expansion is so fast.

Here is a Mata function that runs a linear regression using Stata and
returns the coefficient vector:

497

I have a more useful example. You may have noticed that in the
presentation of Stata’s metadata above, I omitted mentioning Stata’s
dataset label. I omitted it because there is not an st_*() function to return
it because of an oversight by StataCorp. Stata can get the dataset label,
however, so we could redress the omission. We could write a new Mata
function using _stata() to execute the appropriate Stata commands. That
function could be

I should mention that st_tempname() is a Stata interface function that I
have not told you about. It returns a temporary name, the same as by
Stata’s tempname command.

A.7.7 Other Stata interface functions

There are lots of Stata interface functions besides st_tempname() that I
have not told you about. To find out about all of them, type help mata,
click on [M-4], and click on stata. Do that, and you will be looking at all
the functions.

498

Appendix B
Mata’s storage type for complex numbers

499

B.1 Complex values

In chapter 3, we discussed Mata’s storage types but only touched on
complex numbers. Complex values were slighted because most Mata
programmers do not use them. The following example should reassure you
that Mata can perform calculations on the complex plane. 1i is how you
write in Mata.

500

501

B.2 Complex values and literals

In Mata, you write complex numbers (literals, in computer speak) as

For instance,

If a number is purely imaginary, you can omit the real part:

You write 1i to mean the square root of

If you want specify a real number and have it be treated as complex, you
must either specify its zero imaginary part by adding 0i to it or use Mata’s
cast-to-complex C() function:

When calculating complex results, it is important that any mathematically
real values be specified or stored as complex. Mata treats the literal -1 as
real, and thus the square root of -1 is missing. The square root of -1+0i,
however, is 1i.

502

Complex values are stored as a pair of real values. You can express the
real and imaginary parts in any of the ways you can express real values,
such as

The real and imaginary parts of complex values can range over the allowed
values of reals, namely, 8.988e–307 to 8.988e+307. The number closest
to 0 without being 0 is roughly 1e–323.

Complex variables can contain missing values such as ., .a, .b, …, .z.
You cannot set the real and imaginary parts to missing separately. Either
the entire complex number equals a single missing value or it contains
nonmissing real and imaginary parts. A complex value cannot be 1+.i and
.+2i, although 1+.i and .+2i are valid expressions. They are valid
expressions that are evaluated and, just as 1+. and .+2 evaluate to missing
value (.), so do 1+.i and .+2i.

503

B.3 Complex scalars, vectors, and matrices

You can create scalars, vectors, and matrices containing complex values,
such as

Mata’s transpose operator becomes the conjugate transpose when scalars,
vectors, and matrices are complex:

Matrix Z’ is Z transposed and the elements replaced with their complex
conjugate. The complex conjugate of is .

A real matrix is symmetric if . A complex matrix is
correspondingly Hermitian if , where transpose means conjugate
transpose. Hermitian matrices are the complex analog of real symmetric
matrices. If is real, then is symmetric. Correspondingly, if is
complex, then is Hermitian:

504

Mata noted that H is Hermitian when it displayed the matrix, and it did not
print the element because it is equal to the conjugate of the
element.

Pure symmetry plays no role with complex matrices. If you make a purely
symmetric complex matrix, however, Mata will label it symmetriconly:

We use the terms pure symmetry and symmetriconly because complex
analysts sometimes refer to Hermitian matrices as complex symmetric
matrices and then will even drop the word complex. Mata’s
issymmetric() function follows this habit. If matrix Z is complex,
issymmetric(Z) returns 1 if the matrix is Hermitian and 0 otherwise. It
does this so that programmers can write code that will work with both real
and complex matrices. They can ask issymmetric(A) whether A is real or
complex and expect the mathematically appropriate response.

505

B.4 Real, complex, and numeric eltypes

You need to distinguish between the mathematical meanings and computer
storage-type meanings of the words real and complex. We will distinguish
between them in this chapter by writing real and complex for their
computer storage-type meanings and reserve “real” and “complex” in
ordinary typeface for their mathematical meanings.

A real matrix contains real values.

A complex matrix contains real values, complex values, or a mix.

Numeric variables in Mata are either real or complex. Mata allows
variables to be declared numeric, meaning that the variable is not
restricted to be one or the other.

Let’s imagine three related functions:

Function foo1() requires a real matrix and returns a real matrix. If you
attempted to pass foo1() a complex matrix, foo1() would abort with
error, the error being that a complex matrix was found where a real matrix
was expected. Mata has a number of built-in functions that work like
foo1(). Mata’s invsym() function for obtaining the inverse of real
symmetric matrices is an example.

Function foo2() requires a complex matrix and returns a complex matrix.
If you attempted to pass foo2() a real matrix, foo2() would abort with
error. In this case, the error would be that a real matrix was found where a
complex matrix was expected. Mata probably has a built-in or library
function or two like foo2(), but I cannot find them. Such functions rarely
arise because, if the calculation is valid for complex matrices, it is valid for
real ones, too.

Function foo3() is an example of a function valid for real and complex
matrices. foo3() allows a real or complex matrix and returns a real or
complex result. Most of Mata’s built-in and library functions are numeric.

506

You might expect that foo3() returns a real when passed a real and
returns a complex when passed a complex. This is a reasonable
expectation, but not because it is mathematically required. It is reasonable
because Mata’s built-in functions work that way. Mata’s sqrt() function,
for instance, returns missing value when passed a -1 stored as a real, but
returns 1i when passed the same value stored as a complex. We at
StataCorp could have written sqrt() to work differently. It could have
returned complex values when called with negative values. We did not
write it that way because programmers working with real values stored as
real do not want to be bothered with complex results. We recommend you
write your own complex functions following the same style. To achieve
the “real if real, complex if complex” result, foo3() can be written like
this:

We recommend that all complex functions except those for personal use be
written in this style, where foo1() calculates a real result from a real
argument and foo2() calculates a complex result from a complex
argument.

Here is how you should use Mata’s built-in and library functions. foo3()
stands in for whatever is the true function.

1. If you have real A containing real values and you are fine with the
calculation not being generalized, code

2. If you have real A containing real values but you want the
generalized complex result, code

3. If you have complex A containing real values and want the
ungeneralized result, code

507

4. If you have complex A containing complex values and want the
generalized result, code

508

B.5 Functions Re(), Im(), and C()

Mata functions Re(A), Im(A), and C(A) run on numeric matrices, which is
to say, the argument can be real or complex.

Re(A) returns the real part of A. If A is complex, Re(A) constructs a real
result containing the real part of A. If A is real, Re(A) simply returns A, and
thus there is no time or memory cost to using the function.

Im(A) returns the imaginary part of A. If A is complex, Im(A) constructs a
real result containing the imaginary part of A. If A is real, Im(A) returns a
zero result, appropriately dimensioned.

C(A) returns a complex matrix equal to A. If A is complex, A is returned, so
there is no time or memory cost to using the function. If A is real, a new
complex result is created. Function C(A) is the fastest way of promoting A
to complex.

509

B.6 Function eltype()

eltype(A) returns the element type of A. For instance, eltype(A) returns
"string" when A is string, "real" when A is real, and so on. The
function was first introduced in chapter 3 and more seriously discussed in
chapter 6.

In the case of real, complex, and numeric, eltype(A) returns "real" or
"complex". It never returns "numeric". numeric is an eltype but not a
storage type. Variables declared to be numeric are allowed to switch
between being real and complex, but at any instant, they are one or the
other. eltype() reports the storage type at the instant it is run.

510

Appendix C
How Mata differs from C and C++

511

C.1 Introduction

The term C is used to refer to the C and C++ languages in what follows.

Mata and C look a lot alike, but they are different languages. Each has
unique features. They have shared features. And they have features that
appear to be shared but are different in subtle ways.

This third category is the main subject of this appendix.

512

C.2 Treatment of semicolons

C requires that statements end in semicolons, whereas semicolons are
optional in Mata. Mata’s semicolon rules are

1. You must place semicolons between statements that appear on the
same line.

2. You may omit semicolons when statements fit on one line.

3. When coding multiple-line statements, you may break the statement
between lines only in places where it will be obvious to Mata that the
statement is incomplete. You may break statements in places where

a. not all parentheses have yet been closed,

b. not all quotes have yet been closed,

c. the line ends in a dyadic operator, such as +, or

d. the line ends in a comma.

You may alternatively break the statement anywhere, just as in C, if
you place Stata’s and Mata’s line-continuation marker, which is three
forward slashes. Thus, you can code

513

C.3 Nested comments

Mata provides both // comments and /* comments */.

/* comments */ may be nested in Mata.

514

C.4 Argument passing

In C, arguments are passed by value. Consider function foo() to which a
is passed. In C, a new object containing the contents of a is created, and it
is the new object that is passed to foo(). Thus, if foo() changes the
contents of the argument, the contents of a nonetheless remain unchanged.

In Mata, arguments are passed by address (reference). In Mata, if a is
passed to foo(), it is a itself that is passed. If foo() changes the contents,
a is changed.

See section 8.2.

515

C.5 Strings are not arrays of characters

Strings are single objects in Mata, not an array of characters. Strings may
contain zero or more characters, and the length of the strings can change
over the life of a variable:

You “subscript” Mata’s strings using Mata’s substr() function.

Strings do not end in \0 in Mata. Mata’s strings may contain \0, but if they
do, it is a character just like any other character.

516

C.6 Pointers

C.6.1 Pointers to existing objects

p = &o works the same way in Mata and C.

C.6.2 Pointers to new objects, allocation of memory

1. Mata programmers do not explicitly allocate memory for the new
objects. If foo() returns an object, Mata programmers can code

This single statement allocates the memory to contain the new object,
copies the object returned by foo() into it, and returns the address of
the newly allocated memory.

The line above is equivalent to the C code

2. In cases where you want to create new real, complex, string, or
pointer objects, Mata’s J() function is often used:

For structures and classes, the structure or class creator function is
typically used. For struct st and class cl,

517

J() combined with st() and cl() can instead be used to construct
new structure or class objects if you find that convenient:

In addition, if o is any object, J() can be used to create a new object
duplicating o’s type and size:

3. Any function returning the desired object can be used in place of J(),
st(), and cl(). If you want to create a new object containing a
identity matrix, for instance, you can code

4. Any expression returning the desired object can be used in place of
J(), st(), and cl(). If you want to create a new object containing a
column vector of regression coefficients, for instance, you can code

518

C.6.3 The size and even type of the object may change

Once you have created a new object, its size and even type can change. For
instance, say you created a new matrix and stored its address in p:

You can later change *p to contain a different matrix, such as

You could even change *p to contain values of a different type:

C.6.4 Pointers to new objects, freeing of memory

1. New objects are automatically freed. New objects continue to exist as
long as a pointer or pointers contain their addresses. They cease to
exist (are freed) when no pointers containing their addresses remain.

2. Objects can be freed earlier than they otherwise would be by setting
the pointer or pointers pointing to the object to NULL or to the
addresses of other objects.

C.6.5 Pointers to subscripted values

Mata’s subscripts are operators. C’s subscripts are language elements.

One implication of this is that you can apply subscripts to the results of
functions. Just as

stores in b the second element of the vector v,

stores in b the second element of the vector returned by foo(...).

C programmers expect that

519

will place the address of v[2] in p, meaning that *p and v[2] will be
synonyms. Changing one value changes the other.

In Mata, the statement results in the creation of a new object *p containing
v[2]. *p equals v[2] just as C programmers would expect, but changing
the value stored in one does not change the other.

C.6.6 Pointer arithmetic is not allowed

If p is a pointer, Mata does not allow calculation of, for instance, p+2.
Mata treats the expression as a compile-time error. If p points to a vector
or matrix, you cannot use pointer arithmetic to step across the elements.

520

C.7 Lack of switch/case statements

Mata does not currently provide the switch and case constructs that C
provides. It is widely recognized around StataCorp that this is a
shortcoming that ought to be addressed.

The issue is not the inconvenience of using if and else if in place of
switch and case, it is the remarkable speed of execution that switch and
case provide. Thus, there are two workarounds.

The first is simply to use if and else if when there are only a few dozen
cases.

When there are lots of cases, the alternative is to create a vector of
function addresses, such as

and then call subroutine (*v[caseno])(...).

521

C.8 Mata code aborts with error when C would crash

Mata aborts with error and presents a traceback log in situations where C
code would crash.

522

Appendix D
Three-dimensional arrays (advanced use of
pointers)

523

D.1 Introduction

In section 18.4.2.2, we discussed how to create pointers that are not
synonyms to existing variables, namely,

We used this approach to create a matrix with a ragged right edge.

You can also use this approach to create three-dimensional arrays.

524

D.2 Creating three-dimensional arrays

To create an array containing 0, create an pointer vector
p and fill in each of its members with the address of a matrix
containing 0. The code is

Thereafter, the matrix’s elements are (*p[])[,].

525

References

 Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed.
College Station, TX: Stata Press.

 Garbow, B. S. 1974. EISPACK—A package of matrix eigensystem
routines. Computer Physics Communications 7: 179–184.

 Kernighan, B. H., and D. M. Ritchie. 1978. The C Programming
Language. Upper Saddle River, NJ: Prentice–Hall.

 Nash, J. C. 1979. Compact Numerical Methods for Computers: Linear
Algebra and Function Minimization. New York: Adam Hilger.

526

Author index

B

Baum, C. F., 1.1

G
Garbow, B. S., 4.2.3.3

K
Kernighan, B. H., 1.2

N
Nash, J. C., 5.2.1.2

R
Ritchie, D. M., 1.2

527

Subject index

!! (sic), 18.5.1.1 , 18.5.1.1
/* */ comments, C.3 , C.3
// NotReached, 18.5.1.2 , 18.5.1.2

A
abort with error, 3.5.3 , 3.5.3
 equivalent to C crashing, C.8 , C.8
accuracy, 7.1 , 7.3 , 9.2 , 9.2
.ado file, 2.3
ado-files, writing Mata code for, 9.4.1 , 9.4.1 , A.1 , A.7.7
 accessing Stata’s data, A.3 , A.3 , A.7.1 , A.7.1
 changing Stata’s dataset, A.7.4 , A.7.4
 displaying results, A.5 , A.5
 executing Stata commands, A.7.6 , A.7.6
 handling errors, A.4 , A.4
 modifying Stata’s data, A.7.2 , A.7.2
 obtaining all variable names, A.7.3 , A.7.3
 parsing, A.2 , A.2
 placement of Mata function, 9.4 , 9.4.4 , A.1 , A.1
 private Mata function, 9.4 , 9.4.4 , A.1 , A.1
 returning results, A.6 , A.6
 Stata interface functions, A.7 , A.7.7
 structuring of code, A.2 , A.2
 working with Stata macros, scalars, matrices, A.7.5 , A.7.5
 working with Stata’s metadata, A.7.3 , A.7.3
 working with views, A.7.1 , A.7.1 , A.7.2 , A.7.2
approved source directory, 9.5.1 , 9.5.1 , 11.5.2 , 11.5.2 , 13.7 , 13.7
args() function, 8.3 , 8.3
argument, see function argument
arithmetic operators, 5.5 , 5.5
ASD, see approved source directory
assert() function, 9.3.1 , 9.3.1
assert Stata command, 9.4.3 , 9.4.3
assigment operator, 5.3 , 5.3
associative array, 16.1 , 16.3 , 18.4.2.1 , 18.4.2.1 , 18.5 , 18.5
 firstval(), 18.4.2.1 , 18.4.2.1 , 18.5 , 18.5

528

 key(), 18.4.2.1 , 18.4.2.1 , 18.5 , 18.5
 keys(), 18.4.2.1 , 18.4.2.1 , 18.5 , 18.5
 nextval(), 18.4.2.1 , 18.4.2.1 , 18.5 , 18.5

B
boolean type, see macroed type, boolean

C
C and C++, difference from Mata, C.1 , C.8
C() function, 5.2.2 , 6.2 , 6.2 , B.5 , B.5
certification file, 9.3.1 , 9.3.1 , 9.3.2 , 9.3.2 , 9.3.2.2 , 9.3.2.2 , 9.3.3 , 9.3.3
, 11.5.1 , 11.5.1 , 13.6 , 13.6 , 17.5 , 17.5 , 18.6 , 18.6 , 18.6.2 , 18.6.2
 comparison with validation, 9.3.3 , 9.3.3
 for ado, 9.4.3 , 9.4.3
class, 3.4.3 , 3.4.3 , 6.3.3 , 6.3.3 , 6.3.4 , 6.3.4 , 12 , 12.7 , 13 , 13.7 , 17.3.3
, 17.3.3 , 17.4 , 17.4
 :: prefix to call external function, 12.1.3 , 12.1.3 , 12.3 , 12.3
 calling external function, 12.1.3 , 12.1.3
 constructor function, 12.2 , 12.2
 creation, 12.2 , 12.2
 deletion, 12.2 , 12.2
 destroy() user-written function, 12.2 , 12.2
 do not document (DND) member, 17.3.4 , 17.3.4 , 18.6.1 , 18.6.1
 freeing of memory, 12.2 , 12.2
 function shadowing, 12.1.3 , 12.1.3
 inheritance, 12.1.5 , 12.1.5.4 , 12.6 , 12.6.4
 final member, 12.6.2 , 12.6.2
 function shadowing, 12.1.5.2 , 12.1.5.2
 polymorphism, 12.6.3 , 12.6.3
 virtual function, 12.6.1 , 12.6.1 , 12.6.2 , 12.6.2
 when to use, 12.6 , 12.6 , 12.6.4 , 12.6.4
 instance definition, see structure, instance definition
 macroed type, 14.4.6 , 14.4.6 , 14.4.7 , 14.4.7
 new() user-written function, 12.2 , 12.2
 no member variable, 12.5 , 12.5
 pointer, 12.7 , 12.7
 private and public members, 12.1.4 , 12.1.4 , 12.4 , 12.4
 protected members, 12.1.5 , 12.1.5.1
 setup() user-written function, 12.1.5.2 , 12.1.5.3
 super prefix, 12.1.5.2 , 12.1.5.3

529

 this prefix, 12.3 , 12.3
class -> operator, 5.12 , 5.12
class eltype, 6.2 , 6.2
classname() function, 17.3.3 , 17.3.3
Code numeric type, see macroed type, Code
code, self-threading, see self-threading code
colon operators, 5.10 , 5.10
cols() function, 3.3.1 , 3.3.1
column-join operator, 3.3.4 , 3.3.4 , 5.9 , 5.9 , 5.9.1 , 5.9.1 , 5.9.2 , 5.9.2
colvector orgtype, 6.2 , 6.2
comment, nested, C.3 , C.3
complex eltype, 6.2 , 6.2 , B.1 , B.6
complex value, 3.2.2 , 3.2.2 , 5.2.2 , 5.2.2 , 5.7 , 5.7 , B.1 , B.6
compound quote character, 5.2.3 , 5.2.3
conj() function, B.1 , B.1 , B.3 , B.3
constant, 15.1 , 15.4
constructor function, see J() function; structure; class
cross() function, 11.3.4.4 , 11.3.4.4 , 11.4.2 , 11.4.2
crossdev() function, 11.4.2 , 11.4.2

D
decrement operator, 5.6 , 5.6
derived type, see macroed type
design document
 formula sheet, 11.3.2 , 11.3.2 , 11.4.1 , 11.4.1
 notes, 17.3.4 , 17.3.4
 shortcomings, 17.3.5 , 17.3.5
 summary, 17.3.4 , 17.3.4
development process, 17.1 , 17.5 , 18.1 , 18.7
 idea, 18.4.1 , 18.4.1
DND, see class, do not document (DND) member
do-file
 containing Mata code, 9.3 , 9.3.2.2
 for scientific research, 17.4 , 17.4
double-bang comment, 18.5.1.1 , 18.5.1.1

E
element types, see variable type
eltype, 6.2 , 6.2
eltype() function, 17.3.3 , 17.3.3 , B.6 , B.6

530

_error() function, 3.5.3 , 3.5.3
expr, see expression
expression, 4.2.1 , 4.2.1 , 5.1 , 5.13 , see also constant
 assignment, 5.3 , 5.3
 E notation, 5.2.1.1 , 5.2.1.1
 literal, 5.2 , 5.2.1.2
 base 2, 5.2.1.2 , 5.2.1.2 , 5.2.2 , 5.2.2 , 11.5.1 , 11.5.1
 base 10, 5.2.1.1 , 5.2.1.1 , 5.2.2 , 5.2.2
 complex, 5.2.2 , 5.2.2 , B.2 , B.2
 missing value, 5.2.1.1 , 5.2.1.1
 missing values with complex, B.2 , B.2
 numeric, 5.2.1.1 , 5.2.1.1 , 5.2.1.2 , 5.2.1.2 , 11.5.1 , 11.5.1
 string, 5.2.3 , 5.2.3
 operator precedence, 5.4 , 5.4
 operators, 3.1.1 , 3.1.3
 (void) cast, 5.13 , 5.13
 = assignment, 3.1.1 , 3.1.3 , 5.3 , 5.3
 - negation, 5.5 , 5.5
 + addition, 5.5 , 5.5
 - subtraction, 5.5 , 5.5
 * multiplication, 5.5 , 5.5
 / division, 5.5 , 5.5
 ^ power, 5.5 , 5.5
 ++ increment, 5.6 , 5.6
 -- decrement, 5.6 , 5.6
 == equality, 5.7 , 5.7 , 10.6 , 10.6
 != inequality, 5.7 , 5.7 , 10.6 , 10.6
 < less than, 5.7 , 5.7
 <= less than or equal to, 5.7 , 5.7
 > greater than, 5.7 , 5.7
 >= greater than or equal to, 5.7 , 5.7
 & logical and, 5.7 , 5.7
 | logical or, 5.7 , 5.7
 ! logical negation, 5.7 , 5.7
 ? : conditional (ternary), 5.8 , 5.8
 [] element-and-list subscripts, 5.11 , 5.11 , 5.11.1 , 5.11.1 , 5.11.2 ,
5.11.2 , 5.11.3 , 5.11.3.2
 [||] range (submatrix) subscripts, 5.11 , 5.11 , 5.11.4 , 5.11.4
 ’ matrix transpose, 5.5 , 5.5 , B.3 , B.3
 \ row join, 3.3.4 , 3.3.4 , 5.9 , 5.9 , 5.9.1 , 5.9.1

531

 , column join, 3.3.4 , 3.3.4 , 5.9 , 5.9 , 5.9.1 , 5.9.1 , 5.9.2 , 5.9.2
 :+ elementwise addition, 5.10 , 5.10
 :- elementwise subtraction, 5.10 , 5.10
 :* elementwise multiplication, 5.10 , 5.10
 :/ elementwise division, 5.10 , 5.10
 :^ elementwise power, 5.10 , 5.10
 :== elementwise equality, 5.10 , 5.10
 :!= elementwise inequality, 5.10 , 5.10
 :< elementwise less than, 5.10 , 5.10
 :<= elementwise less than or equal to, 5.10 , 5.10
 :> elementwise greater than, 5.10 , 5.10
 :>= elementwise greater than or equal to, 5.10 , 5.10
 :& elementwise logical and, 5.10 , 5.10
 :| elementwise logical or, 5.10 , 5.10
 .. row count vector, 5.9 , 5.9 , 5.9.3 , 5.9.3
 :: column count vector, 5.9 , 5.9 , 5.9.3 , 5.9.3
 & address (pointer) of, 3.4.4 , 3.4.4 , 5.12 , 5.12 , 10.10 , 10.10
 * pointer dereference, 3.4.4 , 3.4.4 , 5.12 , 5.12 , 10.10 , 10.10
 -> structure dereference, 5.12 , 5.12
 -> class dereference, 5.12 , 5.12

F
factorial() function, 9.2 , 9.2
Filehandle type, see macroed type, Filehandle
final member, see class, inheritance
formula sheet, 11.3.2 , 11.3.2 , 11.4.1 , 11.4.1 , 13.4 , 13.4
Fortran, 4.2 , 4.2.3.3 , 4.2.4 , 4.2.4
free() C and C++ function, C.6.4 , C.6.4
function
 argument, 5.9.2 , 5.9.2 , 8 , 8.4 , C.4 , C.4
 difference in treatment between Mata C and C++, C.4 , C.4
 output, 6.3.2 , 6.3.2 , 8.2.1 , 8.2.1
 overloaded, 6.3.1 , 6.3.1 , 8.4 , 8.4 , 17.3.3 , 17.3.3 , 17.4 , 17.4
 passthru, 6.3.2.1 , 6.3.2.1 , 10.9 , 10.9
 varying number, 8.3 , 8.4
 arguments, 4.1
 body, 4.2 , 4.2
 break statement, 4.2.3.4 , 4.2.3.4
 continue statement, 4.2.3.4 , 4.2.3.4
 do statement, 4.2.3 , 4.2.3

532

 do while statement, 4.2.3 , 4.2.3 , 4.2.3.3 , 4.2.3.3
 expression, see expression
 for statement, 4.2.3.2 , 4.2.3.2
 function statement, 6.1 , 6.1
 goto statement, 4.2.4 , 4.2.4
 if statement, 4.2.2 , 4.2.2
 looping construct, see function, do statement; function, while statement;
function, do while statement
 program body, 4.1
 return statement, 4.2.5 , 4.2.5.2
 returnedtype, 4.1
 returning void, 6.2.4 , 6.2.4
 structure of, 4.1
 syntax, 8.4 , 8.4
 virtual, see class, inheritance
 while statement, 4.2.3 , 4.2.3 , 4.2.3.1 , 4.2.3.1

H
hello, world, 2

I
I() function, 3.3.2 , 3.3.2
if statement, see function, if statement
Im() function, B.1 , B.1 , B.5 , B.5
increment operator, 5.6 , 5.6
inheritance, see class, inheritance
initialization of variables, default, 6.2.1
instance, definition, 10.3 , 10.3
integer value, 9.2 , 9.2
interactive mode, 3.5.1 , 3.5.1
invorder() function, 5.11.3.1 , 5.11.3.1
invsym() function, 3.5.1 , 3.5.1 , 13.4.2 , 13.4.2
issymmetric() function, B.3 , B.3

J
J() function, 3.3.3 , 3.3.3

K
key, see associative array

L

533

length() function, 3.3.1 , 3.3.1
library, see Mata library
linear-regression example, 11 , 11.5.2 , 13 , 13.7
list subscript, 5.11 , 5.11.1 , 5.11.1 , 5.11.2 , 5.11.2 , 5.11.3 , 5.11.3.2
lmbuild command, 2.4 , 2.4
lnfactorial() function, 9.2 , 9.2
logical operators, 5.7 , 5.7
lr*() function, 11.3 , 11.4.3
luinv() function, B.1 , B.1

M
macroed type, 14.1 , 14.4.7
 boolean, 14.4.1 , 14.4.1
 Code, 14.4.2 , 14.4.2
 Filehandle, 14.4.3 , 14.4.3
 for classes, 14.4.6 , 14.4.6 , 14.4.7 , 14.4.7
 for structures, 14.4.5 , 14.4.5 , 14.4.7 , 14.4.7
 idiosyncratic, 14.4.4 , 14.4.4
 Ocode, 14.4.2 , 14.4.2
 Ordinal, 14.4.2 , 14.4.2
malloc() C and C++ function, C.6.2 , C.6.2
Mata
 comparison with C and C++ programming languages, 1.2 , 1.2
 description, 1.2 , 1.2
 difference from C and C++, C.1 , C.8
 library, 2.4 , 2.4
 building, 9.5 , 9.5.3 , 11.5.2 , 11.5.2 , 13.7 , 13.7
.mata file, 2.2 , 9.3.2 , 9.3.2 , 9.3.2.1 , 9.3.2.1 , 9.5 , 9.5 , 9.5.1.4 , 9.5.1.4
Mata Reference Manual, 1.1
matastrict, 7.1 , 7.3 , 9.4.2 , 9.4.2 , 10.7 , 10.7
matrix orgtype, 6.2 , 6.2
matrix, view, 5.11.1 , 5.11.1
mean() function, 11.4.2 , 11.4.2
member function, see class
member variable, see class; structure
missing value, 5.2.1.1 , 5.2.1.1
.mlib file, 2.4 , 2.4
 erasing, 9.5.3 , 9.5.3
mreldif() function, 13.4.2 , 13.4.2 , 18.6.2

534

N
name conflict, 12.5 , 12.5 , 14.4.7 , 14.4.7 , 17.4 , 17.4
n_choose_k() function, 9.2 , 9.2
 example, 9 , 9.5.3
 packaged as ado-file, 9.4 , 9.4.4
 packaged as do-file, 9.3.1 , 9.3.3
 packaged as Mata library routine, 9.5 , 9.5.3
NotReached, 18.5.1.2 , 18.5.1.2
not-reached comment, 18.5.1.2 , 18.5.1.2
null vector and matrix, 3.3.5 , 3.3.5
numeric eltype, 6.2 , 6.2 , B.4 , B.4
numerical accuracy, 5.2.1.2 , 5.2.1.2 , 9.2 , 9.2 , 11.4 , 11.4.1 , 11.4.4 ,
11.4.4 , 13.4 , 13.4.2 , 18.6.2 , 18.6.2
 matrix balancing, 13.4.2 , 13.4.2

O
operators, see expression operators
order() function, 5.11.3.1 , 5.11.3.1
Ordinal numeric code type, see macroed type, Ordinal
organizational types, see variable type
orgtype, 6.2 , 6.2
overloaded function, see function argument, overloaded

P
passthru variable, 6.3.2.1 , 6.3.2.1 , 10.9 , 10.9
permutation matrix, 5.11.3.2 , 5.11.3.2
permutation vector, 5.11.3 , 5.11.3.2
pointer eltype, 6.2 , 6.2
pointers, 3.4.4 , 3.4.4 , 6.3.4 , 6.3.4 , 12.7 , 12.7 , 18.4.2.2 , 18.4.2.2 , 18.5 ,
18.5 , D.1 , D.2
 advanced use, 18.4.2.2 , 18.4.2.2 , 18.5 , 18.5 , D.1 , D.2
 arithmetic is not allowed, C.6.6 , C.6.6
 conserving memory, 10.10 , 10.10 , 11.2 , 11.2
 declaration, 6.3.4 , 6.3.4
 differences from C and C++, C.6 , C.6.6
 element of vector or matrix, C.6.5 , C.6.5
 to create 3-dimensional arrays, D.1 , D.2
 to function, 5.12 , 5.12
 value, 5.12 , 5.12 , 10.10 , 10.10
polymorphism, see class, inheritance

535

pragma, 7.1 , 7.3
program, see function
programmer, serious, 1.1 , 1.1
programming, semicolon line end character, C.2 , C.2
project to-do list, see double-bang comment

Q
quadcross() function, 11.4 , 11.4 , 11.4.2 , 11.4.2
quadcrossdev() function, 11.4.2 , 11.4.2
quote character, 5.2.3 , 5.2.3

R
range subscript, 5.11 , 5.11 , 5.11.4 , 5.11.4
rcof Stata command, 9.4.3 , 9.4.3
Re() function, B.1 , B.1 , B.5 , B.5
real eltype, 6.2 , 6.2 , B.4 , B.4
real value, 3.2.1 , 3.2.1 , 5.2.1.1 , 5.2.1.1 , 5.2.1.2 , 5.2.1.2
 closest to zero, 3.2.1 , 3.2.1
 missing values, 3.2.1
 range, 3.2.1 , 3.2.1
 range of precise integer, 9.2 , 9.2
 range of precise integers, 3.2.1 , 3.2.1
round() function, 9.2 , 9.2
row-join operator, 3.3.4 , 3.3.4 , 5.9 , 5.9 , 5.9.1 , 5.9.1
rows() function, 3.3.1 , 3.3.1
rowvector orgtype, 6.2 , 6.2

S
scalar orgtype, 6.2 , 6.2
self-threading code, 11.2 , 11.2 , 13.3 , 13.3
semicolon, use to indicate end of line, C.2 , C.2
set matastrict, see matastrict
set rmsg, 18.2 , 18.2.7 , 18.5.2 , 18.5.2
sort() function, 5.11.3.1 , 5.11.3.1
sorting data matrices, 5.11.3.1 , 5.11.3.1
source directory, see approved source directory
sparse-matrix example, 17.1 , 17.5 , 18.1 , 18.7
 use with views, A.3 , A.3
Stata, see ado-files, writing Mata code for
storage type, see variable type

536

strict setting, see matastrict
string eltype, 6.2 , 6.2
string value, 3.2.3 , 5.2.3 , 5.2.3 , 5.7 , 5.7
string, differences from C and C++, C.5 , C.5
struct, see structure
struct eltype, 6.2 , 6.2
structure, 3.4.2 , 3.4.2 , 6.3.3 , 6.3.3 , 6.3.4 , 6.3.4 , 10 , 10.10 , 11 , 11.5.2
 & operator, 10.10 , 10.10
 * operator, 10.10 , 10.10
 accessing member, 10.1 , 10.1
 adding member variable, 10.4 , 10.4
 assignment, 10.6 , 10.6
 common error, 10.7 , 10.7
 constructor function, 10.8 , 10.8
 containing other structure, 10.5 , 10.5
 defining, 10.2 , 10.2
 instance definition, 10.3 , 10.3
 macroed type, 14.4.5 , 14.4.5 , 14.4.7 , 14.4.7
 pointer, 10.10 , 10.10
 returning, 10.1 , 10.1
 scalar, 10.7 , 10.7
 subscripting, 10.8 , 10.8
 testing equality, 10.6 , 10.6
 use of transmorphic, 10.9 , 10.9
 vector and matrix, 10.8 , 10.8
structure -> operator, 5.12 , 5.12
submatrix subscript, 5.11 , 5.11 , 5.11.4 , 5.11.4
subscript, 5.11 , 5.11.4
switch and case C functions, C.7 , C.7
symmetric matrix, 13.4 , 13.4.2
 how to code, 13.4.2 , 13.4.2

T
ternary conditional operator, 5.8 , 5.8
test_*.do file, 9.3.2 , 9.3.2 , 9.3.2.2 , 9.3.2.2 , 9.3.3 , 9.3.3 , 9.5.1.5 , 9.5.2
timer() function, 18.3 , 18.3.5
timing code
 detailed, 18.3 , 18.3.5
 overall, 18.2 , 18.2.7 , 18.5.2 , 18.5.2
to-do list for project, see double-bang comment

537

tolerance, 5.2.1.2 , 5.2.1.2 , 11.5.1 , 11.5.1
traceback log, 3.5.2 , 3.5.2 , 3.5.3 , 3.5.3 , 6.2.1
transmorphic, 6.3 , 6.3 , 6.3.1 , 6.3.1 , 6.3.2 , 6.3.2 , 6.3.2.1 , 6.3.2.1 , 10.9 ,
10.9
 use with classes, 17.3.3 , 17.3.3
transmorphic eltype, 6.2 , 6.2
_transpose() function, 17.3.3.1 , 17.3.3.1
trunc() function, 9.2 , 9.2
type, see variable type

U
uninitialized
 value table, 6.2.1
 variable, 6.2.1

V
validation, 9.3.3 , 9.3.3
variable
 initialization, default, 6.2.1
 instance, definition, 10.3 , 10.3
 passthru, 6.3.2.1 , 6.3.2.1 , 10.9 , 10.9
 type, 3.4.1 , 3.4.1 , 6 , 6.3.4 , B.1 , B.6 , see also macroed type; eltype;
orgtype
 complex, B.1 , B.6
 omitted, 6.1 , 6.1
 partial, 6.2.3 , 6.2.3
 real, 3.2.1 , 3.2.1
 string, 3.2.3 , 3.2.3
vector orgtype, 6.2 , 6.2
vector, permutation, see permutation vector
version statement and number, 2.2 , 2.3 , 2.3
view matrices, see matrix, view
virtual function, see class, inheritance
void and void casting, 5.13 , 5.13 , 6.2.4 , 6.2.4

X
X notation, 5.2.1.2 , 5.2.1.2 , 11.5.1 , 11.5.1

538

目录

Acknowledgment 13
1 Introduction 14

1.1 Is this book for me? 15
1.2 What is Mata? 17
1.3 What is covered in this book 18
1.4 How to download the files for this book 22

2 The mechanics of using Mata 23
2.1 Introduction 24
2.2 Mata code appearing in do-files 25
2.3 Mata code appearing in ado-files 28
2.4 Mata code to be exposed publicly 31

3 A programmer’s tour of Mata 34
3.1 Preliminaries 35

3.1.1 Results of expressions are displayed when not stored 36
3.1.2 Assignment 38
3.1.3 Multiple assignment 38

3.2 Real, complex, and string values 40
3.2.1 Real values 40
3.2.2 Complex values 40
3.2.3 String values (ASCII, Unicode, and binary) 40

3.3 Scalars, vectors, and matrices 43
3.3.1 Functions rows(), cols(), and length() 43
3.3.2 Function I() 44
3.3.3 Function J() 44
3.3.4 Row-join and column-join operators 45
3.3.5 Null vectors and null matrices 48

3.4 Mata’s advanced features 52
3.4.1 Variable types 52
3.4.2 Structures 54
3.4.3 Classes 57
3.4.4 Pointers 60

539

3.5 Notes for programmers 63
3.5.1 How programmers use Mata’s interactive mode 63
3.5.2 What happens when code has errors 65
3.5.3 The _error() abort function 66

4 Mata’s programming statements 68
4.1 The structure of Mata programs 69
4.2 The program body 71

4.2.1 Expressions 71
4.2.2 Conditional execution statement 73
4.2.3 Looping statements 75

4.2.3.1 while 75
4.2.3.2 for 78
4.2.3.3 do while 81
4.2.3.4 continue and break 83

4.2.4 goto 84
4.2.5 return 85

4.2.5.1 Functions returning values 86
4.2.5.2 Functions returning void 86

5 Mata’s expressions 88
5.1 More surprises 89
5.2 Numeric and string literals 92

5.2.1 Numeric literals 92
5.2.1.1 Base-10 notation 92
5.2.1.2 Base-2 notation 93

5.2.2 Complex literals 100
5.2.3 String literals 101

5.3 Assignment operator 103
5.4 Operator precedence 104
5.5 Arithmetic operators 106
5.6 Increment and decrement operators 108
5.7 Logical operators 110
5.8 (Understand this ? skip : read) Ternary conditional operator 112
5.9 Matrix row and column join and range operators 113

5.9.1 Row and column join 113

540

5.9.2 Comma operator is overloaded 114
5.9.3 Row and column count vectors 115

5.10 Colon operators for vectors and matrices 116
5.11 Vector and matrix subscripting 118

5.11.1 Element subscripting 119
5.11.2 List subscripting 121
5.11.3 Permutation vectors 124

5.11.3.1 Use to sort data 124
5.11.3.2 Use in advanced mathematical programming 127

5.11.4 Submatrix subscripting 128
5.12 Pointer and address operators 131
5.13 Cast-to-void operator 134

6 Mata’s variable types 135
6.1 Overview 136
6.2 The forty variable types 141

6.2.1 Default initialization 143
6.2.2 Default eltype, orgtype, and therefore, variable type 144
6.2.3 Partial types 144
6.2.4 A forty-first type for returned values from functions 145

6.3 Appropriate use of transmorphic 148
6.3.1 Use transmorphic for arguments of overloaded
functions 148

6.3.2 Use transmorphic for output arguments 149
6.3.2.1 Use transmorphic for passthru variables 150

6.3.3 You must declare structures and classes if not passthru 151
6.3.4 How to declare pointers 151

7 Mata’s strict option and Mata’s pragmas 153
7.1 Overview 154
7.2 Turning matastrict on and off 156
7.3 The messages that matastrict produces, and suppressing them 157

8 Mata’s function arguments 161
8.1 Introduction 162
8.2 Functions can change the contents of the caller’s arguments 163

8.2.1 How to document arguments that are changed 164

541

8.2.2 How to write functions that do not unnecessarily change
arguments

166

8.3 How to write functions that allow a varying number of
arguments 168

8.4 How to write functions that have multiple syntaxes 170
9 Programming example: n_choose_k() three ways 172

9.1 Overview 173
9.2 Developing n_choose_k() 174
9.3 n_choose_k() packaged as a do-file 179

9.3.1 How I packaged the code: n_choose_k.do 179
9.3.2 How I could have packaged the code 183

9.3.2.1 n_choose_k.mata 186
9.3.2.2 test_n_choose_k.do 187

9.3.3 Certification files 191
9.4 n_choose_k() packaged as an ado-file 193

9.4.1 Writing Stata code to call Mata functions 193
9.4.2 nchooseki.ado 195
9.4.3 test_nchooseki.do 200
9.4.4 Mata code inside of ado-files is private 203

9.5 n_choose_k() packaged as a Mata library routine 205
9.5.1 Your approved source directory 206

9.5.1.1 make_lmatabook.do 208
9.5.1.2 test.do 208
9.5.1.3 hello.mata 209
9.5.1.4 n_choose_k.mata 209
9.5.1.5 test_n_choose_k.do 210

9.5.2 Building and rebuilding libraries 210
9.5.3 Deleting libraries 211

10 Mata’s structures 212
10.1 Overview 213
10.2 You must define structures before using them 216
10.3 Structure jargon 217
10.4 Adding variables to structures 219
10.5 Structures containing other structures 220

542

10.6 Surprising things you can do with structures 221
10.7 Do not omit the word scalar in structure declarations 222
10.8 Structure vectors and matrices and use of the constructor
function 224

10.9 Use of transmorphic with structures 226
10.10 Structure pointers 229

11 Programming example: Linear regression 233
11.1 Introduction 234
11.2 Self-threading code 239
11.3 Linear-regression system lr*() version 1 246

11.3.1 lr*() in action 246
11.3.2 The calculations to be programmed 251
11.3.3 lr*() version-1 code listing 253
11.3.4 Discussion of the lr*() version-1 code 258

11.3.4.1 Getting started 259
11.3.4.2 Assume subroutines 260
11.3.4.3 Learn about Mata’s built-in subroutines 262
11.3.4.4 Use of built-in subroutine cross() 264
11.3.4.5 Use more subroutines 266

11.4 Linear-regression system lr*() version 2 268
11.4.1 The deviation from mean formulas 269
11.4.2 The lr*() version-2 code 270
11.4.3 lr*() version-2 code listing 274
11.4.4 Other improvements you could make 275

11.5 Closeout of lr*() version 2 277
11.5.1 Certification 277
11.5.2 Adding lr*() to the lmatabook.mlib library 284

12 Mata’s classes 285
12.1 Overview 286

12.1.1 Classes contain member variables 286
12.1.2 Classes contain member functions 286
12.1.3 Member functions occult external functions 288
12.1.4 Members—variables and functions—can be private 289
12.1.5 Classes can inherit from other classes 291

543

12.1.5.1 Privacy versus protection 294
12.1.5.2 Subclass functions occult superclass functions 295
12.1.5.3 Multiple inheritance 296
12.1.5.4 And more 296

12.2 Class creation and deletion 297
12.3 The this prefix 300
12.4 Should all member variables be private? 301
12.5 Classes with no member variables 303
12.6 Inheritance 307

12.6.1 Virtual functions 309
12.6.2 Final functions 312
12.6.3 Polymorphisms 314
12.6.4 When to use inheritance 316

12.7 Pointers to class instances 317
13 Programming example: Linear regression 2 318

13.1 Introduction 319
13.2 LinReg in use 321
13.3 LinReg version-1 code 324
13.4 Adding OPG and robust variance estimates to LinReg 325

13.4.1 Aside on numerical accuracy: Order of addition 329
13.4.2 Aside on numerical accuracy: Symmetric matrices 330
13.4.3 Finishing the code 332

13.5 LinReg version-2 code 334
13.6 Certifying LinReg version 2 335
13.7 Adding LinReg version 2 to the lmatabook.mlib library 336

14 Better variable types 337
14.1 Overview 338
14.2 Stata’s macros 339
14.3 Using macros to create new types 340
14.4 Macroed types you might use 342

14.4.1 The boolean type 345
14.4.2 The Code type 346
14.4.3 Filehandle 348
14.4.4 Idiosyncratic types, such as Filenames 348

544

14.4.5 Macroed types for structures 349
14.4.6 Macroed types for classes 350
14.4.7 Macroed types to avoid name conflicts 350

15 Programming constants 354
15.1 Problem and solution 355
15.2 How to define constants 357
15.3 How to use constants 358
15.4 Where to place constant definitions 359

16 Mata’s associative arrays 361
16.1 Introduction 362
16.2 Using class AssociativeArray 363
16.3 Finding out more about AssociativeArray 366

17 Programming example: Sparse matrices 367
17.1 Introduction 368
17.2 The idea 369
17.3 Design 371

17.3.1 Producing a design from an idea 371
17.3.2 The design goes bad 378
17.3.3 Fixing the design 380

17.3.3.1 Sketches of R_*x*() and S_*x*() subroutines 384
17.3.3.2 Sketches of class’s multiplication functions 389

17.3.4 Design summary 395
17.3.5 Design shortcomings 398

17.4 Code 400
17.5 Certification script 409

18 Programming example: Sparse matrices, continued 411
18.1 Introduction 412
18.2 Making overall timings 414

18.2.1 Timing T1, Mata R=RR 416
18.2.2 Timing T2, SpMat R=RR 416
18.2.3 Timing T3, SpMat R=SR 417
18.2.4 Timing T4, SpMat R=RS 417
18.2.5 Timing T5, SpMat R=SS 418

545

18.2.6 Call a function once before timing 418
18.2.7 Summary 418

18.3 Making detailed timings 420
18.3.1 Mata’s timer() function 420
18.3.2 Make a copy of the code to be timed 421
18.3.3 Make a do-file to run the example to be timed 421
18.3.4 Add calls to timer_on() and timer_off() to the code 422
18.3.5 Analyze timing results 426

18.4 Developing better algorithms 429
18.4.1 Developing a new idea 429
18.4.2 Aside 432

18.4.2.1 Features of associative arrays 433
18.4.2.2 Advanced use of pointers 436

18.5 Converting the new idea into code sketches 441
18.5.0.3 Converting the idea into a sketch of R_SxS() 441
18.5.0.4 Sketching subroutine cols_of_row() 445
18.5.1 Converting sketches into completed code 447

18.5.1.1 Double-bang comments and messages 450
18.5.1.2 // NotReached comments 450
18.5.1.3 Back to converting sketches 451

18.5.2 Measuring performance 452
18.6 Cleaning up 454

18.6.1 Finishing R_SxS() and cols_of_row() 454
18.6.2 Running certification 459

18.7 Continuing development 462
19 The Mata Reference Manual 464
A Writing Mata code to add new commands to Stata 467

A.1 Overview 468
A.2 Ways to structure code 470
A.3 Accessing Stata’s data from Mata 475
A.4 Handling errors 482
A.5 Making the calculation and displaying results 485
A.6 Returning results 487
A.7 The Stata interface functions 491

546

A.7.1 Accessing Stata’s data 491
A.7.2 Modifying Stata’s data 492
A.7.3 Accessing and modifying Stata’s metadata 493
A.7.4 Changing Stata’s dataset 494
A.7.5 Accessing and modifying Stata macros, scalars,
matrices 495

A.7.6 Executing Stata commands from Mata 496
A.7.7 Other Stata interface functions 498

B Mata’s storage type for complex numbers 499
B.1 Complex values 500
B.2 Complex values and literals 502
B.3 Complex scalars, vectors, and matrices 504
B.4 Real, complex, and numeric eltypes 506
B.5 Functions Re(), Im(), and C() 509
B.6 Function eltype() 510

C How Mata differs from C and C++ 511
C.1 Introduction 512
C.2 Treatment of semicolons 513
C.3 Nested comments 514
C.4 Argument passing 515
C.5 Strings are not arrays of characters 516
C.6 Pointers 517

C.6.1 Pointers to existing objects 517
C.6.2 Pointers to new objects, allocation of memory 517
C.6.3 The size and even type of the object may change 519
C.6.4 Pointers to new objects, freeing of memory 519
C.6.5 Pointers to subscripted values 519
C.6.6 Pointer arithmetic is not allowed 520

C.7 Lack of switch/case statements 521
C.8 Mata code aborts with error when C would crash 522

D Three-dimensional arrays (advanced use of pointers) 523
D.1 Introduction 524
D.2 Creating three-dimensional arrays 525

References 526

547

Author index 527
Subject index 528

548

	Acknowledgment
	1 Introduction
	1.1 Is this book for me?
	1.2 What is Mata?
	1.3 What is covered in this book
	1.4 How to download the files for this book

	2 The mechanics of using Mata
	2.1 Introduction
	2.2 Mata code appearing in do-files
	2.3 Mata code appearing in ado-files
	2.4 Mata code to be exposed publicly

	3 A programmer’s tour of Mata
	3.1 Preliminaries
	3.1.1 Results of expressions are displayed when not stored
	3.1.2 Assignment
	3.1.3 Multiple assignment

	3.2 Real, complex, and string values
	3.2.1 Real values
	3.2.2 Complex values
	3.2.3 String values (ASCII, Unicode, and binary)

	3.3 Scalars, vectors, and matrices
	3.3.1 Functions rows(), cols(), and length()
	3.3.2 Function I()
	3.3.3 Function J()
	3.3.4 Row-join and column-join operators
	3.3.5 Null vectors and null matrices

	3.4 Mata’s advanced features
	3.4.1 Variable types
	3.4.2 Structures
	3.4.3 Classes
	3.4.4 Pointers

	3.5 Notes for programmers
	3.5.1 How programmers use Mata’s interactive mode
	3.5.2 What happens when code has errors
	3.5.3 The _error() abort function

	4 Mata’s programming statements
	4.1 The structure of Mata programs
	4.2 The program body
	4.2.1 Expressions
	4.2.2 Conditional execution statement
	4.2.3 Looping statements
	4.2.3.1 while
	4.2.3.2 for
	4.2.3.3 do while
	4.2.3.4 continue and break

	4.2.4 goto
	4.2.5 return
	4.2.5.1 Functions returning values
	4.2.5.2 Functions returning void

	5 Mata’s expressions
	5.1 More surprises
	5.2 Numeric and string literals
	5.2.1 Numeric literals
	5.2.1.1 Base-10 notation
	5.2.1.2 Base-2 notation

	5.2.2 Complex literals
	5.2.3 String literals

	5.3 Assignment operator
	5.4 Operator precedence
	5.5 Arithmetic operators
	5.6 Increment and decrement operators
	5.7 Logical operators
	5.8 (Understand this ? skip : read) Ternary conditional operator
	5.9 Matrix row and column join and range operators
	5.9.1 Row and column join
	5.9.2 Comma operator is overloaded
	5.9.3 Row and column count vectors

	5.10 Colon operators for vectors and matrices
	5.11 Vector and matrix subscripting
	5.11.1 Element subscripting
	5.11.2 List subscripting
	5.11.3 Permutation vectors
	5.11.3.1 Use to sort data
	5.11.3.2 Use in advanced mathematical programming

	5.11.4 Submatrix subscripting

	5.12 Pointer and address operators
	5.13 Cast-to-void operator

	6 Mata’s variable types
	6.1 Overview
	6.2 The forty variable types
	6.2.1 Default initialization
	6.2.2 Default eltype, orgtype, and therefore, variable type
	6.2.3 Partial types
	6.2.4 A forty-first type for returned values from functions

	6.3 Appropriate use of transmorphic
	6.3.1 Use transmorphic for arguments of overloaded functions
	6.3.2 Use transmorphic for output arguments
	6.3.2.1 Use transmorphic for passthru variables

	6.3.3 You must declare structures and classes if not passthru
	6.3.4 How to declare pointers

	7 Mata’s strict option and Mata’s pragmas
	7.1 Overview
	7.2 Turning matastrict on and off
	7.3 The messages that matastrict produces, and suppressing them

	8 Mata’s function arguments
	8.1 Introduction
	8.2 Functions can change the contents of the caller’s arguments
	8.2.1 How to document arguments that are changed
	8.2.2 How to write functions that do not unnecessarily change arguments

	8.3 How to write functions that allow a varying number of arguments
	8.4 How to write functions that have multiple syntaxes

	9 Programming example: n_choose_k() three ways
	9.1 Overview
	9.2 Developing n_choose_k()
	9.3 n_choose_k() packaged as a do-file
	9.3.1 How I packaged the code: n_choose_k.do
	9.3.2 How I could have packaged the code
	9.3.2.1 n_choose_k.mata
	9.3.2.2 test_n_choose_k.do

	9.3.3 Certification files

	9.4 n_choose_k() packaged as an ado-file
	9.4.1 Writing Stata code to call Mata functions
	9.4.2 nchooseki.ado
	9.4.3 test_nchooseki.do
	9.4.4 Mata code inside of ado-files is private

	9.5 n_choose_k() packaged as a Mata library routine
	9.5.1 Your approved source directory
	9.5.1.1 make_lmatabook.do
	9.5.1.2 test.do
	9.5.1.3 hello.mata
	9.5.1.4 n_choose_k.mata
	9.5.1.5 test_n_choose_k.do

	9.5.2 Building and rebuilding libraries
	9.5.3 Deleting libraries

	10 Mata’s structures
	10.1 Overview
	10.2 You must define structures before using them
	10.3 Structure jargon
	10.4 Adding variables to structures
	10.5 Structures containing other structures
	10.6 Surprising things you can do with structures
	10.7 Do not omit the word scalar in structure declarations
	10.8 Structure vectors and matrices and use of the constructor function
	10.9 Use of transmorphic with structures
	10.10 Structure pointers

	11 Programming example: Linear regression
	11.1 Introduction
	11.2 Self-threading code
	11.3 Linear-regression system lr*() version 1
	11.3.1 lr*() in action
	11.3.2 The calculations to be programmed
	11.3.3 lr*() version-1 code listing
	11.3.4 Discussion of the lr*() version-1 code
	11.3.4.1 Getting started
	11.3.4.2 Assume subroutines
	11.3.4.3 Learn about Mata’s built-in subroutines
	11.3.4.4 Use of built-in subroutine cross()
	11.3.4.5 Use more subroutines

	11.4 Linear-regression system lr*() version 2
	11.4.1 The deviation from mean formulas
	11.4.2 The lr*() version-2 code
	11.4.3 lr*() version-2 code listing
	11.4.4 Other improvements you could make

	11.5 Closeout of lr*() version 2
	11.5.1 Certification
	11.5.2 Adding lr*() to the lmatabook.mlib library

	12 Mata’s classes
	12.1 Overview
	12.1.1 Classes contain member variables
	12.1.2 Classes contain member functions
	12.1.3 Member functions occult external functions
	12.1.4 Members—variables and functions—can be private
	12.1.5 Classes can inherit from other classes
	12.1.5.1 Privacy versus protection
	12.1.5.2 Subclass functions occult superclass functions
	12.1.5.3 Multiple inheritance
	12.1.5.4 And more

	12.2 Class creation and deletion
	12.3 The this prefix
	12.4 Should all member variables be private?
	12.5 Classes with no member variables
	12.6 Inheritance
	12.6.1 Virtual functions
	12.6.2 Final functions
	12.6.3 Polymorphisms
	12.6.4 When to use inheritance

	12.7 Pointers to class instances

	13 Programming example: Linear regression 2
	13.1 Introduction
	13.2 LinReg in use
	13.3 LinReg version-1 code
	13.4 Adding OPG and robust variance estimates to LinReg
	13.4.1 Aside on numerical accuracy: Order of addition
	13.4.2 Aside on numerical accuracy: Symmetric matrices
	13.4.3 Finishing the code

	13.5 LinReg version-2 code
	13.6 Certifying LinReg version 2
	13.7 Adding LinReg version 2 to the lmatabook.mlib library

	14 Better variable types
	14.1 Overview
	14.2 Stata’s macros
	14.3 Using macros to create new types
	14.4 Macroed types you might use
	14.4.1 The boolean type
	14.4.2 The Code type
	14.4.3 Filehandle
	14.4.4 Idiosyncratic types, such as Filenames
	14.4.5 Macroed types for structures
	14.4.6 Macroed types for classes
	14.4.7 Macroed types to avoid name conflicts

	15 Programming constants
	15.1 Problem and solution
	15.2 How to define constants
	15.3 How to use constants
	15.4 Where to place constant definitions

	16 Mata’s associative arrays
	16.1 Introduction
	16.2 Using class AssociativeArray
	16.3 Finding out more about AssociativeArray

	17 Programming example: Sparse matrices
	17.1 Introduction
	17.2 The idea
	17.3 Design
	17.3.1 Producing a design from an idea
	17.3.2 The design goes bad
	17.3.3 Fixing the design
	17.3.3.1 Sketches of R_*x*() and S_*x*() subroutines
	17.3.3.2 Sketches of class’s multiplication functions

	17.3.4 Design summary
	17.3.5 Design shortcomings

	17.4 Code
	17.5 Certification script

	18 Programming example: Sparse matrices, continued
	18.1 Introduction
	18.2 Making overall timings
	18.2.1 Timing T1, Mata R=RR
	18.2.2 Timing T2, SpMat R=RR
	18.2.3 Timing T3, SpMat R=SR
	18.2.4 Timing T4, SpMat R=RS
	18.2.5 Timing T5, SpMat R=SS
	18.2.6 Call a function once before timing
	18.2.7 Summary

	18.3 Making detailed timings
	18.3.1 Mata’s timer() function
	18.3.2 Make a copy of the code to be timed
	18.3.3 Make a do-file to run the example to be timed
	18.3.4 Add calls to timer_on() and timer_off() to the code
	18.3.5 Analyze timing results

	18.4 Developing better algorithms
	18.4.1 Developing a new idea
	18.4.2 Aside
	18.4.2.1 Features of associative arrays
	18.4.2.2 Advanced use of pointers

	18.5 Converting the new idea into code sketches
	18.5.0.3 Converting the idea into a sketch of R_SxS()
	18.5.0.4 Sketching subroutine cols_of_row()
	18.5.1 Converting sketches into completed code
	18.5.1.1 Double-bang comments and messages
	18.5.1.2 // NotReached comments
	18.5.1.3 Back to converting sketches

	18.5.2 Measuring performance

	18.6 Cleaning up
	18.6.1 Finishing R_SxS() and cols_of_row()
	18.6.2 Running certification

	18.7 Continuing development

	19 The Mata Reference Manual
	A Writing Mata code to add new commands to Stata
	A.1 Overview
	A.2 Ways to structure code
	A.3 Accessing Stata’s data from Mata
	A.4 Handling errors
	A.5 Making the calculation and displaying results
	A.6 Returning results
	A.7 The Stata interface functions
	A.7.1 Accessing Stata’s data
	A.7.2 Modifying Stata’s data
	A.7.3 Accessing and modifying Stata’s metadata
	A.7.4 Changing Stata’s dataset
	A.7.5 Accessing and modifying Stata macros, scalars, matrices
	A.7.6 Executing Stata commands from Mata
	A.7.7 Other Stata interface functions

	B Mata’s storage type for complex numbers
	B.1 Complex values
	B.2 Complex values and literals
	B.3 Complex scalars, vectors, and matrices
	B.4 Real, complex, and numeric eltypes
	B.5 Functions Re(), Im(), and C()
	B.6 Function eltype()

	C How Mata differs from C and C++
	C.1 Introduction
	C.2 Treatment of semicolons
	C.3 Nested comments
	C.4 Argument passing
	C.5 Strings are not arrays of characters
	C.6 Pointers
	C.6.1 Pointers to existing objects
	C.6.2 Pointers to new objects, allocation of memory
	C.6.3 The size and even type of the object may change
	C.6.4 Pointers to new objects, freeing of memory
	C.6.5 Pointers to subscripted values
	C.6.6 Pointer arithmetic is not allowed

	C.7 Lack of switch/case statements
	C.8 Mata code aborts with error when C would crash

	D Three-dimensional arrays (advanced use of pointers)
	D.1 Introduction
	D.2 Creating three-dimensional arrays

	References
	Author index
	Subject index

