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Preface to the Third Edition

For the third edition, the Picture Book was extended in two ways. A CD-ROM
was included, and a chapter on grantile moton was added,

On the CD-ROM, all the figures in the book are available in full color.
Readers can ook at (or print) individual figures and also posters in which
related figures and their captions are grouped together. The material, if printed
on transparencics or in the form of large posters, cun also be used as a teaching
aid. The use of the CD-ROM is described on page xvii

With the quantile concept taken from mathematical statistics, it is possi-
ble to define trajectories and velocities not only for point particles but also
for probability distributions. In this way, for mstance, the velocity of a wave
packet undergoing & tunnel effect can be discussed,

The realization of the CD-ROM would not have been possible without the
ideas, the expertise, and the diligence of Dr. Erion Gjonaj and Mr. Tilo Strah.
The computer typesetting and the layout of the text were performed by
Mr. Stroh. Our warmest thanks go to both of them. We would also like to
thank Dr. Thomas von Foerster of Springer-Verlag New York. Inc., for his
continuing interest and for making this edition possible.

Siegen, Apnl 2000 Siegmund Brandt
Hans Dieter Dahmen



Preface to the Second Edition

In the secomd edition, aim and style of the Picture Book were left unchanged.
It is our aim to explain and exemplify the concepts und results of quantum
mechanics by visualization through computer graphics and, in parallel, by
the discussion of the relevant physical laws and mathematical formulae. The
scape of the book, however, was widened appreciably.

The most important extension is the chapter about spin and magretic rey-
anance. In three-dimensional quantum mechanics, the presentation of wave-
packer motion on elliptical and fivperbalic Kepler orbits should help 1o es-
tablish the correspondence and the differences between the classical and the
quantum-mechanical deseription of planctary motion.

Mayhbe the best-known quantum-mechanical concept is that of uncertainty
introduced by Heisenberg, who formulated the celebrated uncertainty relation
AxAp = hy2 for the product of the uncertainties of a particle in position
and in momenturn. Also, in ¢lassical mechanics position and moementum of
a particle may be known only up to some uncertainty so that a probability
density in phase space (spanned by position v and momentum p) is needed to
describe the purticle. For many physical siluations, we present and compare
the time development of this cfassical phase-space probability density with
the probubility density of guantum mechanics.

An additional tool we use is the analvzing amplitude introduced in Ap-
pendix C. It allows the definition of a directional distribution that 1s very
helpful in visualizing angular momentum and spin wave functions.

To generate the computer graphics of the first edition of the Piciure Book,
we developed an interactive program on quantum mechanics, A modernized
version, which we call INTERQUANTA (abbreviued IQ). wgether with an
accompanying text has been published by Springer-Verlag in various edi-
tions.! ™ It is a pleasure o acknowledge the generous help provided by 1BM
Germany in the development of 1Q. In particular, we want to thank Dr. U,
Groh for his competent help in the early phase of the work. At various stages
of the project. we were helped considerably by friends and students in Siegen,
We would particularly like to thank Tilo Stroh for his many valuable contri-
butions,



X Preface o the Second Edition

All computer-drawn figures in the present edition were produced using the
published version of 1Q or recent extensions realized with the help of Sergei
Boris, Anli Shundi, and Tile Stroh: The computer typesetting and the layoul
of the text were done by Ute Bender and Anli Shundi. We would like to thank
them for their excellent work.

Last but not least, we thank Drs. He-l. Daniel, T. von Foerster, and
H. 1. Killsch of Springer-Verlag for their constant interest and support.

Siegen, May 1994 Siegmund Brandt
Hans Dicter Dahmen
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Foreword

Students of classical mechanics can rely on a wealth of experience from ev-
eryday life to help them understand and apply mechanical concepts. Even
though a stone is not a mass point, the experience of throwing stones cer-
tainly helps them to understand and analyze the trajectory of a mass point in a
gravitational ficld. Moreover, students can solve many mechanical problems
on the hasis of Newton's laws and, in doing so, gain additional experience.
When studying wave optics, they find that their knowledge of water waves,
as well as experiments in a ripple tank, is very helpful in forming an intuition
about the typical wave phenomena of interference and diltraction.

In quantum mechanics, however, beginners are without any intuition. Be-
cause quantum-mechanical phenomena happen on an atomic or a subatomic
scale, we have no experience of them in daily life. The experiments in atomic
physics involve more or less complicated apparatus and are by no means sim-
ple to interpret. Even if students are able to take Schridinger’s equation for
granted, as many students do Newton's Taws. 1L is not easy for them to ac-
quire experience in quantum mechanics through the solution of problems.
Only very few problems can be treated without a computer. Moreover, when
solutions in closed form are known, their complicated structure and the special
mathematical functions, which students are usually encountering for the hrst
time, constitute severe obstacles to developing a heuristic comprehension. The
most difficult hurdle, however, 15 the formulation of a problem in quantum-
mechanical language, for the concepts are completely different from those of
classical mechanics. In fact, the concepts and equations of quantum mechan-
ics in Schridinger’s farmulation are much closer to those of optics than to
those of mechanics. Moreover, the quantities that we are interested in ~ such
as transition probabilities, cross sections, and so on — usually have nothing to
do with mechanical concepts such as the position, momentum, or trajectory
of a particle. Nevertheless, actual insight into a process is a prereguisite for
understanding its quantum-mechanical deseription and for interpreting basic
properties in quantum mechanics like position, lnear and angular momentun,
as well as cross sections, lifetimes, and so on.
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Actually, students must develop an intuition of how the concepts of clas-
sieal mechanics are altered and supplemented by the arguments ol aptics in
order to acquire a roughly correct picture of quantum mechanics. In partic-
ulir, the time evolution of microscopic physical systems has to be studied
to establish how it corresponds to classical mechanics, Here, computers and

compuiter graphics offer incredible help. for they produce a large number of

examples that are very detailed and that can be looked atin any phase of their
time development. For instance, the study of wave packets in motion. which
is practically impossible without the help of a computer, reveals the hmited
validity of intuition drawn from classical mechanics and gives us insight into
phenomena like the wonel effect and resonances, which, because of the im-
partance of interference, can be understood only through optical analogies.
A variety of systems in different situations can be simulated on the computer
and made aceessible by different types of computer graphics,

Some of the topics covered are

s scattering of wave packets and stationary waves in one dimension,
e the unnel effect,

s decay of metastable states,

e bound states in various potentials,

e vnerey bands,

o distinguishable and indistinguishable particles,

e ungular momentun,

o three-dimensional scattering,

8 crogs sections and scattering amplitudes,

o gigenstates in three-dimensional potentials, for example, in the hydro-
gen atom, partial waves, and resonances,

o mintion of wave packets in three dimensions,

e spin and magnelic resonance,
Conceptual tools that bridge the gap between classical and quantum concepls
include

o the phase-space probability density of statistical mechanics,

s the Wigner phase-space distribution,

s« the absolute square of the analyzing amplitude as prabability or proba-
bility density,

Forewnord &1

The graphical aids comprise
o time evolutions of wave functions for one-dimensional problems,
o parameter dependences for studying, for example, the scattering over u
range of cnergies,
o (hree-dimensional surface plots [or presenting two-particle wave fune-
tions or functions of two variables,

e polar (antenna) dingrams in two and three dimensions.

o plots of contour lines or contour surfaces, that is, constant function val-
ues, in two and three dimensions,

e ripple-tank pictures to illustrate three-dimensional scatlering.

Whenever possibile, how particles of a system would behave according 1o
classical mechanics has been indicated by their positions or trajectories, In
passing, the special functions typical for quantum mechanics, such as Legen-
dre, Hermite, and Laguerre palynomials, spherical harmonics, and sphencal
Bessel functions. are also shown in sets of pictures,

The text presents the principal ideas of wave mechanics. The introductory
Chapter | lays the groundwork by discussing the particle aspect of light, using
the fundamental experimental findings of the photoelectric and Complan cf-
fects and the wave aspeet of particles as 1t 15 demonstrated by the diffraction of
electrons. The theoretical ideas abstracted from these experiments are mnbro-
duced in Chapter 2 by studying the behavior of wave packets of light as they
propagate through space and as they are reflected or refracted by glass plates.
The photon is introduced as a wave packet of light containing a quantum of
energy.

To indicate how material particles are analogous to the photon, Chap-
ter 3 introduces them as wave packets of de Broglie waves. The ability of
de Broglie waves to describe the mechanics of a particle is explained through
a detailed discussion of group velocity, Heisenberg's uncertainty principle.
and Born's probability interpretation. The Schriddinger equation is found to
be the equation of motion,

Chapters 4 through 9 are devoted to the quantum-mechanical systems in
one dimension, Study of the scattering of a particle by a potential helps us
understand how it moves under the influence of a force and how the probabil-
ity interpretation operates o explain the simultaneous effects of transmission
and reflection. We study the tunnel eftect of a particle and the excitation and
decay of a metastable state. A careful transition to a stationary bound state is
carried out, Quasi-classical motion of wave packets confined to the potential
range is also examined.

The velocity of a particle experiencing the tunnel effect has been a subject
of controversial discussion in the literature. In Chapter 7, we introduce the
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concepts of quantile position and quantile velocity with which this problem
can be treated.

Chapters % and 9 cover two-particle systems. Coupled harmonic ascilla-
tors are used to illustrate the concept of indistinguishable particles. The strik-
ing differences between systems composed of different particles, systems of
identical bosons, and systems of identical fermions obeying the Pauli princi-
ple are demonstrated,

Three-dimensional quantum mechanics is the subject of Chapters 10
through 15. We begin with a detailed study of angular momentum and dis-
cuss methods of solving the Schrisdinger equation. The scattering of plane
waves 1% investipated by introducing partial-wave decomposition and the con-
cepts of differential cross sections, scattering amplitudes, and phase shifts.
Resonance scattering, which is the subject of many fields of physics research,
is studied in detail in Chapter 14. Bound states in three dimensions are dealt
with in Chapter 13. The hydrogen atom and the motion of wave packets un-
der the action of a harmonic force as well as the Kepler motion on clliptical
orbits are among the topics covered, Chapter 15 is devated to Coulomb scat-
tering in terms of stationary wave functions as well as wave-packet motion on
hyperbolic orbits.

Spin is treated in Chapter 16. After the introduction of spin states and

magnetic moment in a homogeneous magnetic field. The discussion of Rabi's
magnetic resonance concludes this chapter.

The last chapter is devoted to results abtained through experiments in
atomic, melecular, solid-state, nuclear, and particle physics, They can be qual-
itatively understood with the help of the pictures and the discussion in the
hody of the book. Thus, examples for

e typical scattering phenomena,
e spectra of bound states and their classifications with the help of models,

e resonance phenomena in total cross sections,

e phase-shift analyses of seattering and Regge classification of reso-
nances,

e radioactivity as decay of metastable states,

e magnetic resonance phenomena,

taken from the fields of atomie and subatomic physics, are presented. Compar-
ing these experimental results with the computer-drawn pictures of the book
and their interpretation gives the reader a glimpse of the vast fields of science
that can be understood only on the basis of quantum mechanics.

Foreword BV

In Appendix A, the simplest aspects of the structure of quantum mechan-
ics are discussed, and the matrix formulation in an infinite-dimensional vec-
tor space is juxtaposed to the more conventional formulation in terms of wave
functions and differential operators. Appendix B gives a short account of two-
level systems that is helpful for the discussion of spin. In Appendix C. we
introduce the analyzing amplitude using as examples the {ree particle and the
harmonic oscillator. Appendix D discusses Wigner's phase-space distribution.
Appendixes E through G give short accounts of the gamma, Bessel, and Airy
functions, as well as the Poisson distribution,

There are more than a hundred problems at the ends of the chaplers. Many
are designed to help students extract the physics from the pictures, Others
will give them practice in handling the theoretical concepts, On the endpapers
of the book are a list of frequently used symbols, a list of basic equations, a
short list of physical constants, and a briel table converting ST units to particle-
physics units. The constants and units will make numerical calculations easier.

We are particularly grateful 1o Professor Eugen Merzbacher for his kind
interest in our project and for many valuable suggestions he gave before the
publication of the first edition that helped 1o improve the book.

Sicgmund Brandt
Hans Dieter Duhmen
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1. Introduction

The basic fields of classical physics are mechanics and heat on the one hand
and electromagnetism and optics on the other, Mechanical and heat phenom-
ena involve the motion of particles as governed by Newton's equations. Elec-
tromagnetism and optics deal with fields and waves, which are described by
Maxwell's equations. In the classical desenption of particle motion, the posi-
tion of the particle 15 exactly determined at any given moment. Wave phenom-
ena, in contrast, are characterized by interference patterns which extend over
a certain region in space. The strict separation of particle and wave physics
loses its meaning in atomic and subatomic processes.

CQuantum mechanics goes back to Max Planck’s discovery in 1900 that the
energy of an oscillator of frequeney v is quantized. That is, the energy emitted
or absorbed by an oscillator can take only the values 0, fre, 2he, ... Only
multiples of Planck's quantion of energy

E=hv
are possible, Planck 's constant
h=6.262 % 107 Is

is a fundamental constant of nature, the central one of quantum physics. Often
it 15 preferable to use the angular frequency w = 2 v of the oscillator and to
write Planck’s quantum of energy in the form

E=fw

Here

.
2w

is simply Planck’s constant divided by 2. Planck’s constant is a very small
quantity. Therefore the quantization is not apparent in Macroscopic Syslems,
But in atomic and subatomic physics Planck's constant is of fundamental im-
portance. In order to make this statement more precise, we shall look at ex-
periments showing the following fundamental phenomena:
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= the photoelectric effect,

the Compton effect,

s the diffraction of electrons.

o the orientation of the mugnetic moment of electrons in u magnetic held,

1.1 The Photoelectric Effect

The photoelectric effect was discovered by Heinrich Hertz in 1887, It wais
studied in more detail by Wilhelm Hallwachs in 1888 and Philipp Lenard in
1902, We discuss here the guantitative experiment, which was first carried
out in 1916 by R. A, Millikan. His apparatus is shown schematically in Fig-
ure 1.1a. Monochromatic light of variable frequency falls onto o photocathode
in a vacuum tube. Opposite the photocathode there is an anode - we assume
cathode and anode to consist of the same metal — which is at a negative voltage
[/ with respect to the cathode. Thus the electric field exerts a repelling I'cm:f
on the electrons of charge —e that leave the cathode. Here e = 1.609 x 10"
Coulomb is the elementary charge. I the electrons reach the anode. they flow
back to the cathode through the external circuit, yielding o measurable current
[, The kinetic energy of the electrons can therefore be determined by vitrying
the voltage between anode and cathode. The experiment vields the following
findings.
I. The electron current sets in, independent of the voltage U, at a fre-
quency vy that is characteristic for the material of the cathode. There is
a current only for v = .

2. The voltage Uy at which the current stops flowing depends linearly on
the frequency of the light (Figure 1,1h). The kinetic energy Fyn of the
clectrans leaving the cathode then is equal to the potential energy ol the
electric field between cathode and anode.

Epin = el

If we call k¢ the proportionality factor between the frequency of the
light and the voltage,

I
L'r'\ = —(¥ —1m)
d
we find that light of frequency v transfers the kinetic energy elf, to the
electrons kicked out of the material of the cathode. When light has a
frequency less than v, no electrans leave the material, 1F we call
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[ @' Fig. 1.1, Photoelectric effect,
'( o {a} The apparatus to mensure
[ the effect consists of o vae-

wum tube containing two elec-
trovdes, Monochromatic light
of frequeney v shines on the
. pathode and  liberates  elec-
i trons which may reach the
anode and create o current
- ! in the external cirenit, The
- ) b flow of electrons in the viicuum
(__--‘"i Ll = d L= v tuhe is hindered by the exter-
nal voltage £, Tt stops onee the
viltage excecds the valoe £,
th} There is # linear depen-
tdence between the frequency
- and the voltage U,

My = el

the iomization energy of the material that is needed to free the electrons,
we must conclude that Bght of frequency v has energy
E=lv=hw
with
. ) h

m= a2 = —
2m
3, The number of electrons set free is proportional (o the intensity of the

light incident on the photocathode,

In 1905 Albert Emnstein explained the photoelectric effect by assuming
that Hght consists of quanta of energy fre which act in single elementary pro-
cesses. The lighr guanra are also called photons or p gquant The number of
guania in the light wave is proportional o its intensity.
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1.2 The Compton Effect

If the light quanta of energy E = hv = ferare particles, they should also have
momentum, The relativistic relation between the energy E and momentum p
of a particle of rest muss m is

Lo
p=—vE—mict |,
-

where ¢ is the speed of light in vacuum. Cuanta moving with the speed of
light must have restinass zero, 54 that we have

L {5 5 it

p= —L1,..'ﬂ"{:..l" =l T hk

[ L
where k = w/c is the wave number of the light. If the direction of the light
is k/k, we find the vectorial relation p = fik. To check this idea one has
to perform an experiment in which light is scattered on free electrons. The
conservation of cnergy and momentum in the scattering process requires that
the following relations be fulfilled:

E,+E = E,+E,
p+me = o +pe

where E,, py, and E}, p'; are the energies and the momenta of the incident
and the scattered photon, respectively. E., Pe. E!, and p'. are the correspond-
ing quantities of the electron, The relation between electron energy E. and
MOMenium pe is

Ee= £y [IE +m§r_‘?* ,

where i, is the rest mass of the electron. If the electron is initially at rest, we
havep. =0, £, = mect. Altogether, making use of these relations, we obtain

chlk +mec® = chik' -.t-r.lll,-"lpf:3+m;’;r: ;
ik = hk' +p,

as the set of equations determining the wavelength ' = 27/ " of the scuttered
photon as a function of the wavelength & = 27/ k of the initial photon and the
scattering angle # (Figure 1.2a). Solving for the difference Al — A of the two
wavelengths, we find

: i :
L=k = Tr“ —easd)
g
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| Fig. 1.2, The Compton effect.
(a) Kinematics of the process.
A photon of momentum p,
is scattered by a free elec-
| tron at resl, one with momen-
| tum p. = 0. After the scai-
tering process the (wo par-
ticles have the momenta p)
and pl, rvespectively. The di-
rection of the scattered pho-
| ton forms an angle ¢ with its
original dircction. From en-
ergy and momentum conser-
vation in the collision, the ab-
solute value g, of the momen-
tum of the scattered photon
and the corresponding wave-
length &' = A/p, can be
computed. (b Compton’s re-
sults, Compton wsed monn-
chromatic¢ X-rays from the £,
line of molyhdenmm to bom-
hard a graphite torget. The
wavelength spectrum of the
incident photons shows  the
rather sharp K, line at the top.
Ohservations of the photons
seattered at three different sn-
gles ¢ (457, 907, 1357) yielded
spectra showing that most of
them had drifted to the longer
| wavelength 3. There are also
many photons at the original
wavelength =, photons which
were nol scatlercd by single
electrons in the graphite. Frun
Al H. Ceanpleom, The Flivdca! Beview 22
1928} alf, cogumight £ 1923 by the
American Physical Society, reprinted by
PerTLEE] O,
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This means that the angular frequency @' = ok’ = 2me 73" of the light scat-
wred at an angle @ = (is smaller than the angular frequency o = ck =
2refh of the incident light.

Arthur Compton carried out an experiment in which light was scatlered
on electrons: he reported in 1923 that the scattered light had shilted to Tower

frequencies o’ (Figure 1.2b).

1.3 The Diffraction of Electrons

The photoelectne effect and the Compton scuttering experiment prove that
light must be considered to consist of particles which have rest mass Zero,
move at the speed of light, and have energy E = fiw and momentunm p = fik.
They behave according to the relativistic laws ol particle a_*n]luuc.ms;. _Thn;:
propagation of photons is governed by the wave equation _m]]uuf'mg_lrm_u
Maxwell's equations. The intensity of the light wave ub 4 given location is
a measure of the photon density at this point.

Onice we have arrived at this conclusion, we wonder whether classical
particles such as electrons behave in the same way. ln particular, we m_ighl
conjecture that the motion of electrons should be determined by waves. IF the
celation E = A between energy and angular frequency also holds for the
kinetic cnergy Eyin = p°/2m of a particle moving al m:m:'clu[ivih_1 ic x'l:locit;e,
that is, at a speed small compared o that of light, its angular frequency 1s
given by ; ‘

1 p= Bk

i . s

T ham 2m
provided that its wave number & and wavelength & are related 1o the momen-
tum 7 by
k=

==

F

Thus the mation of a particle of momentuin g is then characierized by o wave
with the de Broolie wavelength = h/p and an angular frequency w =
p* f(2mi). The comcept of matter waves wis pul lorward in 1923 by Louis de
Broglie.

If the mation of a particle is indeed characterized by waves. the propaga-
tion of electrons should show interference patterns when an electron beam
suffers diffraction. This was first demonstrated by Clinton Davisson and
Lester Germer in 1927, They observed interference patierns in an Experi-
ment in which a crystal was exposed Lo an electron beam. In their experi-
ment the regular lattice of atoms in a crystal acts like an optical gruling_lEvcn
simpler conceptually is diffraction from a sharp edge. Such an ex[fcnrpenl
was performed by Hans Boersch in 1943, He mounted a platinum foil with a

1.4 The Stern-Cierlach Expeniment T

Fig. I.3. (a) Interference pat-
tern caused by the scattering
of red light on o shorp edge,
The edge is the horder line of
un absorbing half-plane, the
position of which is indicated
at the top of the lipore. (b In-
terference pattern cavused by
the seattering of electrons on
f sharp edge. Sowres 1) From
RO Pabl, Ok end Ateepinaik,

A LT

uindh  edition, copyrighl
by Springes-Yerlag, Beelioy, Gomingen.,
Hci:]rlhcf\;_ rrr.‘mlf:l by pormisslon
s Priom H. Boeesch, Phosiealische
Seirschitiy, 44 (1470 202, coperighl

(G 193 by S-Hireel-Verlug. Leiprig

reprintecd by permissn.

sharp edge in the bewm af an clectron microscope and used the magnification
of the microscope to enlarge the interference patlern. Figure 1.3b shows his
result. For comparison it is juxtaposed to Figure |.3a indicating the pattern
praduced by visible light diffracted from a sharp edge. The wavelength deter-
mined in electron diffraction experiments 1s in agreement with the formula of
de Broglie,

1.4 The Stern-Gerlach Experiment

In 1922 Ouo Stern and Walther Gerlach published the result of an experiment
in which they measured the magnetic moment of silver atoms. By evaporating
silver in an oven with a small aperture they prodoced a beam of silver atoms
which was subjected to o magnetic induction field B. In the coordinate system
shown in Figure 1.4 together with the principal components of the experiment
the beam travels along the x axis. In the x, z plane the ficld B = (&, 8,, B.)
has only o z component B-. Caused by the form of the pole shoes the field
is inhomogeneous. The magnitude of 8. 15 larger near the upper pole shoe
which has the shape of o wedge. In the x, z plane the derivative of the field is
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Fig. 1.4, Stern-Gerlach ex-
periment.  Experimental
setup with oven Ch, mag-
net pole shoes N and 5, and
glass screen P o(a) Silver
deposit on sercen without
field (b) and with ficld (c)
as shown in Stern’s and
Gerlach’s ariginal publics-
tinn, The splitting is largest
in the middle and gets
smaller to the left and the
right of the picture because
the field inhomogencity is
largest in the o = plane
Nagree: (B and @) from W Ger-
lach and O, Stem, feisctngf e
Pienik 9 (1922} 349 (0 1922 by
Speinger-Verlag, Belin reprinied

by permissiun

JB  9B. 0B
= —g. i - U

H_z az: - dz

Hete €. is the unit veetor in z direction. In the field a silver atom with the
magRetic moment jt experiences the force

4B’ 08,
Fs(_u.-f)e_-=m-ﬂ:} .

L2

Since the scalar product of g and e. is
fL-e. = jLcosa

where @ is the angle between the direction of the magnetic moment and !!11:
- direction and js is the magnitude of the magnetic moment, the force has its
maximum strength in the 7 direction if g is parallel to e. and ils maximum
strength in the opposite direction if g is antiparallel o e.. For intermediale
orientations the force has intermediate values. In particular, the force vanishes
if i is perpendicular to e, i.e., if p is parallel to the x, ¥ plane,

Stern and Gerlach measured the deflection of the silver atoms by this foree
by placing a glass plate behind the magnet perpendicular to the x axis. In

Problems L)

those areas where atoms hit the glass a thin but visible layer of silver formed
after some time, Along the z axis they observed two distinet areas of silver
indicating that the magnetic moments g were oriented preferentially parallel
(e = 0) or antiparalle] (e = 7} to the field B, This finding is contrary to the
classical expectation that all orientations of @ are equally probable.

It remains to be said that the magnetic moment of a sibver atom is practi-
catly identical to the magnetic moment of a single free electron. A stlver atom
has 47 electrons but the contributions of 46 electrons to the total magnetic mo-
ment cancel. The contribution of the nucleus to the magnenc moment of the
atom 15 very small, The quantitative result of the Stern—Gerlach experiment is

1. The magnetic moment of the electron is

2. In the presence of a magnetic field the magnetic moment is found to be
oriented parallel or antiparallel to the field direction.

Problems

1.1, Thirty percent of the 100W power consumption of a sedium lamp goes
into the emission of photons with the wavelength & = 589 nm. How
many photons are emitted per second? How many hit the eye of an
ohbserver — the diameter of the pupil is 5 mm - stwtioned 10 km from the
lamp?

1.2, The minimum energy Ep = hug needed to set electrons free is called
the work function of the material, For cesium it is 3.2 = 107" 1. What
is the minimum frequency and the corresponding maximum wavelength
isf light that make the photoelectric effect possible” What is the kinetic
energy of an electron liberated from a cesium surface by a photon with
a wavelength of 400 nm?

1.3, The energy £ = hv of a light quantum of frequency v can also be inter-
preted in terms of Einstein's formula £ = Me?, where ¢ is the velocity
of light in a vacuum, (See also the introduction to Chapter 17.) What en-
ergy does a blue quantum (4 = 400 nm) lose by moving 10 m upward
in the earth’s gravitational field? How large is the shift in frequency and
wavelength!

1. 4. Many radioactive nuclei emit high-energy photons called ¥ rays. Com-
pute the recoil momentum and velocity of a nucleus possessing 100
times the proton mass and emitting a photon of | MeV energy.
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. Calculate the maximum change in wavelength experienced by pha-

ton in a Compton collision with an electron initially at rest, The initial
wavelength of the photon is A = 2x 14 12 . What is the kinetic energy
of the recoil electron?

. Write the equations for energy and momentum conservation in the

Compton scattering process when the clectron is not at rest before the
collision,

 Use the answer to problem 1.6 1o calculate the maximum change ol

enerizy and wavelength of a photon of red light (A = 8 x 10 T m) enl-
liding head on with an electron of energy £, = 20 GeV. {Collisions of
phm?snm from a laser with electrons from the Stanford linear accelerator
are in fact used to prepare monochromatic high-energy photan beams, |

. Electron microscopes are chosen for very fine resolution because the

de Broglie wavelength 2 = #/p can be made much shorter than the
wavelength of visible light. The resolution is roughly A. Use the rela-
Gvistic relation £2 = pPe? +m2e® to determine the energy of electrons
needed 1o resolve objects of the size 107" m (a virus), 107 m(a DNA
molecule), and 10~ m (a proton), Determine the voltage U needed to
accelerate the electrons to the necessary kinetic energy E — me”.

. What are the de Broglie frequency and wavelength of an electron mov-

ing with a kinetic energy of 20keV, which is typical for electrons in the
cathode-ray wbe of a color television set?

2. Light Waves, Photons

2.1 Harmonic Plane Waves, Phase Velocity

Many imporiant aspects and phenomena of quantum mechames can be visu-
alized by means of wave mechanics. which was set up in close analogy 1o
wave pptics. Here the simplest building block is the harmonic plane wave of
light in a vacuum describing a particularly simple configuration in space and
time of the efectric field B and the magnenic nduetion field B, If the © axis
of a reetangular coordinate system has been oriented parallel o the direction
af the wave propagation, the v axis can always be chosen w be parallel 10
the clectric field strength so that the z axis is parallel to the magnetic field
strength. With this choice the field strengths can be written as

E, = Epcoster —kx) 8. = Bpcosie —kx)

Ey: = Epsh By = B.=10
They are shown in Figures 2.1 and 2.2, The quantities Eq and By are the
maximum values reached by the electric and magnetic fields. respectively.
They are called amplinudes. The angulur frequency o is connected o the wave
smher & by the simple relation

i = ok
The points where the ficld strength is maximum, that is, has the value £y,

are given by the phase of the cosine function

8=t — kx=2ix

where ¢ takes the integer values ¢ = (1, £, £2, ... Therefore such a point
moves with the velocity
X e
r ok

Since this veloeity describes the speed of a point with a given phase, ¢ 15
called the phase velocity of the wave. For light waves in a vacuum, it is inde-
pendent of the wavelength, For positive, or negative, & the propagation is in
the direction of the positive, or negalive, x axis, respectively,
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Fig. 2.1, In a plane wave the electric and magnetic field strengths are p‘urnt.:udicluhlr
to the direction of propagation. Al any mament in time, the fields are constant within
planes perpendicular to the direction of motion. As time advances, these planes move
with constant velocity.

At a fixed paint in space, the field strengths E and B oscillate in time with
the angular frequency o (Figures 2.3a and ¢1. The period of the oscillation is

7=
(1]
For fixed time the field strengths exhibit a periodic pattern in space with a
spatial period, the wavelength
in
h=—

%}

The whole pastern moves with velocity ¢ along the 1 dhrection. Mig-
ures 2,3b and 2.3d present the propagation of waves by a set of curves show-
ine the feld strength at a number of conseeutive cruidistant maments m ume.
Earlier moments in time are drawn in the background of the picture. Later vmes
toward the foreground. We call such a representation u finte elevelopment.

For our purpose it is sufficient 1o study only the electric field of a light

WHVE,
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Fig. 2.2 For a given moment in time, the electric field strength E and the magnetic field
strength B are shown along a line parallel to the directive of motion of the harmonic
plane wave,

[, = E = Eycosiome — kx — o)

We have ineluded an additional phese o woallow For the fact that the maximum
of E need not be at v = 0 for ¢ = 0. To simplify many calculanons, we now
nutke wse of the lact that cosine and sine are cqual (o the real and imagimary
parts of an exponential,

cos f#+isinfd = e |

that is,

cos i = Ree' sin f# = Ime"
Tlie wave is then writlen as

E=ReE.

where £, 15 the comples field strength:

Boes L-“E—:Iu}.r--k.r B L.1u'L.—J-'ur‘:i-'~'.l
It fyctors intoe o complex amplitude

A= Eye"

and two exponentials containing the time and space dependences, respec-
lively. As mentioned carlier, the wave travels in the positive or negative x
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Fig. 2.3, {a) Time
dependence  of
the electric field
of # harmonic
wave al a lixed
point  in space
{In) Time develop-
ment of the elec-
tric field of a har-
mnie wave. The
field distribution
along the « di-
rection is shown
for several mn-
ments  in lime.
Early  moments
are in the back-
ground, later mio-
mients in the fore-
ground. (¢, db
Here the  wave
hus twice the ro-
quency. We ah-
serve that the pe-
rind T and the
wavelemgth & are
halved, bot that
the phase veloc-
ity stays the

same, The fime |

developments  in
parts b oand d
ure deawn for the
spme interval of
time.
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direction, depending on the sign of k. Such waves with different amplitudes
are

Fuy = A6 |r|lrE|:J..l. E. = R e (L8
s = - =

The tactorization into a time- and a space-dependent factor is particularly
convenient in solving Maxwell’s equations. It allows the separation ol time
and space coordinates in these equations. If we divide by expl{—iawt), we arrive
af the ime-independent expressions

Epp = Aet E. =Be ™

which we call srationary waves.
The energy density in an clectromagnetic wave is equal o a constant, gy,
times the square af the feld strength,
3
wix. 1) = &pk”
Because the plane wave has a cosine structure, the energy density varies twice
as fast as the field strength. It remains always a positive quantity; therefore
the variation oceurs around a nonzero average value, This average taken over
a period 7' of the wave can be wnitten in terms of the complex field strength
2 £ £
] 4 - [i] 2
n=_—EkE] = -,J—lEcl
Here £ stands for the complex conjugate,
L =ReE: —1ImE;
af the complex field strength,
E, = Re E. 4+ vIm:E;
For the average energy density in the plane wave, we obtain

Eil
3

£

W= —|A" = —_J'-E[.‘;

2.2 Light Wave Incident on a Glass Surface

The eftect of glass on light is to reduce the phase velocity by a factor o called
the refractive index,

1
Although the frequency e stays constant. wave number and wavelength are
changed according to

=

K =nk A
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The Maxwell equations, which govern all electromagnuetic phenomen,
demand the continuity of the electric field strength and its first derivative al
the boundarics of the regions with different refractive indices. We consider
a wave traveling in the v direction and encountering at position x = . the
surface of a glass block filling halt of space (Figure 2.4a). The surface is
oriented perpendicular to the direction of the light. The comples expression

Eiy = A e

describes the incident stationary wave to the left of the glass surface, that is,
for v = vy, where A is the known amplitude of the meident light wave. Al
the surface only & part of the light wave enters the glass hlock: the other part
will e reflected. Thus, in the region W the left of the glass block, & = vy, we
find in addition 1o the incident wave the reflected statlonary wave

Fio=Bye
propagating in the opposite direction. Within the pluss the transmitted wave

Fa= Ajett

propagates with the wave number
k= nak

altered by the refractive index it = 12 of the glass. The wives Epe o and
E5 are called incoming, reflecred, and fransmitted constiltent waves, respec-
tively, The continuity for the ficld strength E and 1ts derivative £ Vel e =
mieans that

e = Eiptypy+Eo{n) = Ealxd

anid
Eli[.x]l = 1k |_E] R S E]_(.r{]'l-] =itk By = EE{.TM

The two unkoown amplitudes, By of the refected wave, and Az of the
transmilted. can now be culeulated from these two cantinuity equations. The
electric field in the whale space is determinéd by twi expressions incorporal-
ing these amplitudes,

-"115 E,ii|.l.' = Bi E—I.Jn.'r for v < x|

£ = AL gliak

for v = x|

The electric field in the whole space is obtained as a superposition of constit-
uent waves physically existing in regions | and 2, By multiplication with the
time-dependent phase exp(—iwt), we obtain the complex field strength £
the real part of which is the physical electric field strength.

22 Light Wave Incedent on & Glass Surface
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Fig. 24, a1 To
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plane v = x|, 1
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tends with refeac-
tive index v = na:
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=1, (b Time
development  of
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ey Time devel-
opment of  the
incoming  wave
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development ol
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Figure 2.4b gives the time development of this electric field strength. [eis
casy 1o see that in the glass there is a harmonic wave moving 1o the right. The
picture in front of the glass is less clear, Figures 2.4¢ and d therefore show
separately the time developments of the incoming and the reflected waves
which add up 1o the total wave to the left of x, observed in Figure 2.b.

2.3 Light Wave Traveling through a Glass Plate

It is now easy o see what happens when light falls on u glass plate of finite
thickness. When the light wave penetrates the front surface at x = xj, again
reflection oceurs so that we have as before the superposition of two stationary
waves in the region x = X!

El — A[ei.tu.l. il HI C—EJ{M

The wave moving within the glass plate suffers reflection at the rear surface o
¥ = xa, so thal the second region, X < ¥ < 13, also contains i superposition
of two waves,

E‘j s A] ﬂlﬂ:;-': | B;‘- c—ﬁq.x .

which now have the refracted wave number
k;;_ ¥ i13k|

Only in the third region, x2 < x, do we observe a single stationary wiave
Es= Az E.’,”cl"'

with the original wave number k.

As it consequence of the reflection on both the front and the rear surlace
of the glass plate, the reflected wave in region | consists of two parts which
interfere with each other. The most prominent phenomenon observed under
appropriate cireumstances is the destructive interference between these twa
reflected waves. so that no reflection remuins in region 1. The light wave is
completely transmitted into region 3. This phenomenon is called a resonance
of transmission. 1L ¢an be illustrated by looking at the frequency dependence
of the stationary waves, The upper plot of Figure 2.5 shows the stationary
waves for different fixed values of the angular frequency e, with its magnitude
rising from the background to the foreground. A resonance of transmission is
recognized through a maximum in the amplitude of the transmitted wave, that
ig, in the wave 10 the right of the glass plate.

The signature of a resonance becomes even more prominent in the fre-
quency dependence of the average energy density in the wave. As discussed
in Section 2.1, in a vacuum the average energy density has the form

2.3 Light Wave Traveling through a Glass Plae I
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Fig. 2.5 Top: Frequency dependence of stutionary waves when a harmonic wave is
incident from the left on a glass plate, The two vertical lines indicaie the thickness of
the plate. Small values of the angular [requency @ are given in the background, large
values in the foreground of the picture, Bottom: Frequency dependence of the quantity
E.ET {which exeept for o Tuctor o4 is proportional to the average enerpy density) of o
harmaonic wave incident from the left on a plass plate, The parameters are the same as in
part 3. At a resonance of transmission, the averape energy density is constant in the lefl
region, indicating through the absence of interference wipgles that there is no reflection.
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£4) -
w=—FE
g T

In glass, where the refraclive index # hus to be taken into account, we have

EE|) ; +El
w=—=~E B =n"—
2 = i

EE:

where £ = n” is the dielectric constant of glass, Thus, although E. i continu-
ous at the glass surface, w is not. [t reflects the discontinuity of #°. Therefore
we prefer plotting the continuous quantity
7
;;F.; = E.E]
This plot. shown in the lower plot of Figure 2.5, indicates a resonance of
ransmission by the maximum in the average encrgy density of the wansmitted
wave. Moréuver, since there 15 no reflected wave #l lhe resonence of runsmis-
sion, the energy density is constant in region |
In the glass plate we ohserve the typicitl pattern of a resonunce,

(i} The amplitude of the average energy density 15 Maxmum.

(i) The energy density vanishes in a number of places called nedes because
for a resonance a multiple of hall 4 wavelength fits into the plass plate.
Therefore different resonances can be distinguished b the number of
nodes,

The ratio of the amplitudes of the transmitted and incident waves s called the
transmission coefficient of the glass plate,

P As
Ay

2.4 Free Wave Packet

The plane wave extends into all space, in contrast 1o any realistic physical sit-
wition in which the wave is localized in a finite domain of space. We therefore
introduce the concept of a wave packet. It can be understood as 2 superposi-
fian, that 15, a swm of plane waves uf different frequencies and amplitudes.
As 2 [irst step we concentrate the wave only in the x direction, 1t still extends
through all space in the y and the = direction. For simplicity we start with the
sum of two plane waves with equal amplitudes, Lo

E = Ey+ £1 = Epcosiegt — kix) + Epcostws? — kax)
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Fig. 2.6. Superposition of twe harmonic waves of slightly different angular frequencies
oy ol o ot @ fixed moment in time.

For i fixed time this sum represents a plane wave with two periodic struciores.,
The slowly varying structure is governed by a spatial period,
4
[z — kil

the rapidly varying structure by n wavelength,

s
k2 + ki |
The resulting wave can he described as the product of a “carmier wave”
with the short wavelength A4 and a factor modulating its amplitude with the
wavelength & _:

E =2Eycos(w_t = k_x)costond —kyx)

he = koL [/2 oy = thy
Figure 2.6 plots for a fixed moment in time the two wives £ and £, and
the resulting wave £, Obviously, the field strength is now concentrated for

the most part in certain regions of space. These regions of great field strength
propagate through space with the velocity
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Now we again use complex field strengths, The superposition 15 writien as

En: s EUE_““”] kixd i Ene—u’n.-;a Laxi

For the sake of simplicity, we have chosen in this example a superposition
of twa harmonic waves with equal amplitudes. By constructing a more com-
plicated “sum’ of plane waves. we can concenlrale the field in o single rg;imt
of space. To this end we superimpose a continuum of waves with different
frequencies o = ck und amplitudes:

o
Exlx. = Ey [ d-i:_f{k)c"“"'"'_“”

i

Such o configuration s called o wave packer. The spectral fumetion f (k)
specifies the amplitude of the harmanic wave with wave number & and circular
frequency e = ck. We now consider 4 particularly simple spectral function
which is significantly different from zero in the neighborhood of the waye
aumber k. We choose the Gaussian function

1 (ko — k;]_:I:

fikY = ———1uxp -
N 2y 2oy

It describes a bell-shaped spectral function which has ils maximum value
at & = ky: we assume the value of &y to be positive, kg = (. The width of
the region in which the function f{k) is different from zero is characterized
by the parameter . In short, one speaks of a Gaussian with widih ;.. The
Gaussian function f (k) is shown in Figure 2.7a. The lactors in front of the
exponential are chosen so that the area under the curve equals one, We illus-
trate the construction of a wave packet by replacing the integration over b by
a st over u finite number of terms.

Exle, 1

i
g

EtEy = E AR Gy ye~ et =Hat)

where
hn = ko +nak t, =tk
In Figure 2.7b the different terms of this sum are shown lor time ¢ = 0,

toeether with their sum. which is depicted in the foreground. The term with
the lowest wave number, that is, the longest wavelength, is in the buckground

2.4 Free Wave Packel 23
af the picture. The variation in the amplitudes of the different terms reflects
the Gaussian form of the spectral function (&), which has its maximum, for
ko= kp, at the center of the picture. On the different terms, the partial waves,
the point 1 = 0 is marked by a cirele. We observe that the sum over all lerms
is concentrated around a rather small region near x = (),

Figure 2.7¢ shows the same wave pucket, similarly made up of its partial
wirves, for later time 1y = (). The wave packet as well as all partial waves have
moved o the right by the distance o). The partial waves still carry marks at
the phases that were at v = O at time t = (0. The picture makes it clear that all
partial waves have the same velocity as the wave packet, which maintains the
same shape for all moments in time,

If we perform the integral explicitly, the wave packet takes the simple
form

Eudx.ty = Edct —x)

z
%

2

= Epexp | ——=(er —x)* [ exp[—itwot — kpx)]

that is,

., s A _
Flr,ty=Re £, = Eypexp —T"qn‘ — %) | coslept — &y

It represents a plane wave propagating in the positive x© direction, with a field
strength concentrated in a region of the spatial extension | /my around point
v = ¢, The time development of the field strength is shown in Figure 2.8h,
Obviously, the maximom of the field strength is located at x = cr; thus the
wave packet moves with the velocity ¢ of light. We call this configuration 4
Ganssian wave packer of spatial width

|
Ax = —
7
and of wave-number width
Ak =y

We ohserve that a spatial concentration of the wave in the region Ax nec-
essarily requires a spectrum of different wave numbers in the interval Ak so
that

Arak =1

This 15 tantamoun! to saying thal the sharper the localization of the wave
packet in x space, the wider is its spectrum in & space. The original harmonic
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wave o= Epcosler — kx) was perfectly sharp in & space (AL = ) and
therefare not localized in x space: The time development of the aversge en-
ergy densily w shown in Figure 2.8¢ appears even simpler than that of the field
strengthe 1L is merely o Gaussian tmveling with the velocity of light along the
x direction. The Guussiun Torm is ensily explained il we remember that

£l & L N, Sy S Y
iy = = Ec-El- — ?Rﬁc' Tolr—xh

We demonsteate the influence of the spectral function on the wave packel
by showing in Figure 2.8 spectral functions with twi different widths . For
bath we show the tme development of the leld strength and of the average
enerey density.

2.5 Wave Packet Incident on a Glass Surface

The wave packet, like the plune waves of which it is composed, undergoes
reflection and transmission i the glass surface. The upper plot of Figure 2.9
shows the ime development of the average energy density in a wave packel
moving in trom the left. As soon as it hits the glass surface, the already reflec-
ted part interferes with the incident wave packet, causing the wiggly structure
at the top of the packet, Part of the packel enters the glass, moving with a
velocity reduced by the refractive index. For this reason it is compressed
space. The remainder is reflected and moves to the left as o regularly shaped
wave packet as soon as it has left the region in front of the gluss where inter-
ferenee with the incident packel occurs,

We now demonstrate that the wiggly structure in the interference region
is caused by the fast spatial variation of the camer wave characterized by
its wavelength, To this end let us examine the time development of the field
strength in the packet, shown in the lower plot of Figure 2.9, Indeed, the spa-
tial varintion of the field strength has twice the wavelength of the average
energy density in the interference region,

Another way of studying the reflection and transmission of the packet is
to look separately at the average energy densities of the constituent waves,

Fig. 2.7, (a) Gaussian spectral function deseribing the amplitudes of harmonic waves of
different wave numbers k. (b Construction of 4 light wave packet as a sum of harmonic
waves of different wavelengths and amplitodes, For time 1 = (1 the different terms of
the sum are plotted, starting with the contribution of the longest wavelength in the
background. Points v = 0 are indicated o civeles on the partial waves. The resulling
wave packet is shown in the foregroomd. (o) The same as part b, bot Tor time o = 0, The
phases that were at x = 0 for 1 = U have moved o vy = of for all partial waves. The
wave packet has consequently moved by the same distance und retained its shape.
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Fip 2.8, {a, d) Spectral functions, (b, ¢) time developments of the field strength, and
ie, f) time developments of the average energy density for two different Gaussian wave
packets.

namely the incoming, transmitted. and reflected waves. We show these can-
<tituent waves in bath regions 1. a vacuum, and 2, the glass, although they
contribute physically only in either the one or the other. Figure 2,10 gives
their time developments. All three have a smooth hell-shaped form and no
wiggles, even in the interference region. The time developments of the field
strengths of the constituent waves are shown in Figure 2.11. The ohserved av-
erage energy density of Figure 2.9 corresponds to the absolute square of the
um of the incoming and reflected field strengths in the region in front of the
glass and, of course, not to the sum of the average energy densities of these
two constituent fields. Their interference puttern shows half the wavelength
of the carrier waves,

1.8 Wave Packet Incident on g Crlass Surface 27
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Fig. 2.9, Time developments of the quantity £ E7 {which except for a foctor n” is pro-
lll.lrdiiunul to the sverape enerpy density ) and of the Geld strength in o wave packet of light
falling onto a glass surface where it is partly reflected and partly transmitted through
the surface. The glass surfoce is indicated by the vertical line,
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Fig. 2,11, Time
developments  of
the  electric  field
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on 4 plass sure
Face: (a) incoming
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Fig. 2.12, Time development of the quantity £: £ (which exeept for a factor o is
proportional W the average energy density in o wave packet of light incident on a plass
plate.

2.6 Wave Packet Traveling through a Glass Plate

Let us study a wave packet thut is relatively narrow in space. that 1s, one
containing a wide range of frequencies. The time development of its average
energy density (Figure 2.12) shows that, as expected, at the front surface of
the glass plate part of the packet is reflected, Another part enters the plate,
where it is compressed and travels with reduced speed. At the rear surface this
packet is again partly reflected while anather part leaves the plate. traveling to
the right with the original width and speed. The small packe! traveling back
and forth in the glass suffers multiple reflections on the glass surfaces, gach
time losing part of its energy to packets leaving the glass.

2.7 The Photon

As we have seen in Chapter 1, there are quanta of electromagnetic energy
called photons, They can be described by normalized wave packets of the
mean angular frequency g and total energy fien. A finite energy content can

2.7 The Photon 3l

be attributed only 1o wave packets confined in all three dimensions. As the
photoeffect indicates. a photon acts as a particle at a single location. Therefore
i single photon cannot be understood as an object filling the space occupied
by the wave packel, Nor can the wave representing the wave packet be inter-
preted as deseribing the electric field strength point by point. The same holds
for the average energy density. Instead, one has to introduce the probability
interpretation of quantum mechanics,
In Section 2.4 the spectral function

fik) = ;EKF‘ - 4 __'l'q':i

Vtm 2oy
was introduced as the weight function specilying the wmplitnde of the har-
muonie wave with wave number £ and angular frequency o = e|k|. For the
description of a single photon, | £ (£)1* has to be interpreted as a measure for
the probahility density Pik) of the wave number of the photon. More explic-
itlv. o wave packet with spectral function f{k) and total energy fey, with
i = ¢|ky|, describes a photon. The probability interpretation of the spectral
function states the Tollowing. For a given small interval, & — %ﬂk. k- %d-‘:.
located symmietrically about wave number &, the product | [ (k)| Ak is propor-
tional to the probahility Pik)AL that the photon has a wave number within
this interval. Since the probability that the photon possesses an arbitrary wave
number equals one, the proportionality constant N is determined by the re-
quircment

o .
N [ |Fuk | dk = 1
o =

which yields
N =2/mea,

Thus
PlkAk = 2o | fUk)) Ak

is the probability of finding the photon in the wave number interval k — Ak,
k+ 5 Ak, and
Plk) = 2o | f (k1

is the prabability density,

Conversely, a wave packet containing an energy much larger than fiesn —
for example. a4 wave packel produced by a radio transmitter which was
switched on for a short time —contains a very large number of photons with a
lixed phase relation. When there are many coherent photans, the wave repre-
sents an electromagnetic held strength.

As an example. let us apply the probability interpretation to the wawe
packet incident on a glass surface; assuming that the wave packet contuns
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the energy fies, that is, only one guantum of light. The integral over the prob-
ability density corresponding 1o a single reflected or ransmitted wuve |:|g|:.}-:ct
is the probability that the incident photon will be reflected or transmitted.
More generally, the fraction of the energy contained ina .L:En.gh: Wive piufkl.ﬂ
is 1 measure indicating whether the photon is in the region of space ihabited
by the packel .

The Planck-Einstein relation between energy £ of the photon and its an-
pular frequency

E = i

necessitates 4 relation between the wave vector & of the photon and its mo-
mentum p, the Compton relation

p:f!k

This i . " particle ing with the
This is so since the energy and the momentum of a particle moving
velocity of light are related by

> = ¢|p|

The complex ficld strength E¢ of a plane I ght wave of angular frequency i
and wave vector k can now he expressed in terms of energy £ and momentum
p of the photon:

i
E. = Epexp|—iiwt — k-x}] = Epexp [—H[Er —p- x;]

Problems

t-a

. Estimate the refractive index n7 of the glass plate n Figure 2.4h.

23 Caleulate the encrey density for the plane eleciromagnetic wave de-
seribed by the complex ¢lectric ficld strength

F.= Epe et = |
=

and show that its average over a temporal period T s w = (en/ 21 Ec B

[
i

. Give the gualitative reason why the resenance phenomens in Figure 2.5
{top) oecurs for the wavelengths

il
A= e E = Bk e
PS £ 3 i
Use the continuity condition of the electric field strength and its deriva-
tive. Here # is the refractive index of the glass plate of thickness i,

r-a
i

)
i

i
=

Prohlems i3

. Caleulate the rutio of the frequencies of the two electric field strengths,

as they are plotted in Figure 2.6, from the heat in their superposition,

. The one-dimensional wave packet of light does nob show any disper-

sion, that s, spreading with time. What causes the dispersion of o wave
packet of light confined in all three spatial dimensions!

. Estimate the refractive index of the glass, using the chanee in width or

velocity of the light pulse m Figure 2.9 (top),

CWerify in Figure 202 that the stepwise reduction of the amplitude of
¥ g p ]

the pulse within the glass plate proceeds with approximately the same
reduction factor, thus following on the avernge an exponential decay
L,

- Caleulate energy £ and momentum p of o photon of blue (L = 450 =

107" my, green (A = 530 = 10" m), vellow (& = 580 = 107" m), and
red (& = 700 107" m) light. Use Einstein’s formula £ = Mot w
caleulate the relativistic mass of the photon. Give the results in ST units.



3. Probability Waves of Matter

3.1 de Broglie Waves

In Section 2.7 we leamned that through the probability interpretation phuu_mf.
can be deseribed by waves, We have made explicit use of the simph: relution
E = ¢|p| between energy and momentum of the Fhmc.m' whllch hu_ldls :ml.y
for particles moving with the velocity ¢ of light. For particles with a hmTel rest
mass m, which move with velocities v slow compared to the velocity of h g_ht.
the corresponding nontelativistic relation between energy and momentam s

_ 7

[r=nv
2m

Plane waves that are of the same Lype is those for photons, which were
discussed at the end of Chapter 2. but have the nonrelativistic relation jusl
given,

! i |
I;:'Ff.'l.',{} = rﬁm‘l—' EIP["H(EF_F.’.#}

L 2 fr— H)j|
{T}?M'-"J | o\ 2m ;' !

are called de Broglie waves of matter. The factor in front of the exponential is
chasen for convenience. The phase velocity of these de Broglie waves 1s

e lBl M
PTop 2m

and is thus differeat from the particle velacity v = pint.

3.2 Wave Packet, Dispersion

The harmonic de Broglie waves, like the harmonic electric waves, are nol
localized in space and therefore are not suited to describing o particle. To

3.2 Wave Packet, Dispersion 35

localize a particle in space, we again have to superimpose hurmonic waves
to form a wave packel, To keep things simple, we first restriet ourselves o
discussing a one-dimensional wave packet,

For the spectral function we again choose a Gaussian function,’

{p— po)

fim = v
g G’F

1
——— Exp
s |
{2yl [T

The corresponding de Broglie wave packet is then

i
e, 1) = f fipihply —xpat)dp
o
For the de Broglie wave packet, as for the light wave packet, we firsl approx-
imate the integral by a sum,

N

Frlx, 0= Y gl )
==

where the vy, (x, 1) are harmonic waves for different values py, = pg + nAp
multipticd by the spectral weight fip.)dp,

P lx. 1) = Flpe (e — xp. 1 Ap

Figure 3.1a shows the real parts Re (v, 1) of the harmonic waves
Wiy (x, 1) as well as their sum being equal to the real part Re iy, ¢) of the
wave function w (x, 1) for the wave packet at time ¢ = 1y = (. The point
r = 1y is marked on each harmonme wave: In Figure 3.1b the real parts
e iy, (x, 1) and their sum Rel{x. 1) are shown at later ome 1 = ). Because
of their different phase velocities, the partial waves have moved by different
distances Ax,, = 1, [t — tp) where v, = py /(2m) is the phase velocity of the
harmoenic wave af momentum p,. This effect broadens the extension of the
wuve packet,

The integration over p can be carned out so that the explicit expression
for the wave packet has the form

wix, 1) = M{x, et

Here the exponential function represents the carmier wave with a phase i vary-
ing rapidly in space and time, The bell-shaped amplitude function

"We have chosen this speetral function to correspond o the square oot of the spectral
function that was vsed in Section 2.4 o construct o wave packet of Hght, Since the ares under
the spectral function (&) of Section 2.4 was equal 1o one, the area under | f (] s mow
equal 1o one. This guarantees that the normalizaton condition of the wave funclion ¢ in the
next section will be fulfilled
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Fig. 3.1, Construction of 2 wave packet as a sum of harmonic waves v, of different

momenta and consequently of diflerent wavelengihs, Plotted are the real parts of the

wave functions. The terms of different momenta and different amplitudes begin with
the one of longest wavelength in the background. In the foreground is the wave packel
resulting frum the summution, (a1 The situation for time 1 = . All pariial waves are
marked by a circle at point © = . (b The same wave packet and its partinl wayes at
time 1 = 5. The partial waves have moved different distunces Ay, = v lh — i) because
af their different phuse velocities 1, a5 indicated by the cireolar marks which have kept
their phose with Tespect (o those in part a, Because of the different phase velocities, the
wave pucket has changed its form and width,

3.2 Wave Packet, Dispersion Lir)
| (xr —xy — upt )
11'“.'!.',]'] = —T_'-EKP B
(2 4 foy der?
travels v direction with the eroup velocine

]
Uy=—>
"

The group velocity is indeed the particle velocity and different from the phase
velocity. The localization in spuce 15 given by

- TR
1 - 1 -l-r';IJ 2
Oy =--3 o T

dar he e

This formula shows that the spatial extension @, of the wave packet in-
creases with time. This phenomenon is called dispersion. Figure 3.2 shows
the time developments of the real and imaginary parts of two wave packets
with different group velocities and widths. We easily observe the dispersion
of the wave packets in time. The fact that a wave packet comprises a whole
runge of mementa is the physical reason why it disperses. 118 components
move with ditferent velocities, thus spreading the packet in space,

The function ¢{x, 1) determines the phase of the currier wave. It has the
form

Hife s Al ( Py L i
i) == b+ ——x— xp— vpk) | e—ap —vgf) -+ ol — =
n | T iz, 2h 2
with )
2 fT];
ane = ——1
hom

For fixed time ¢ it represents the phase of a harmonic wave modulated in wave
number, The elfective wave number kqpis the factor in front of v — v — tal
and is ziven by

| "7:: nt

kiglr) = — Pot —Jqu—{l — Xp— )
h s 2o
At the value v = (v} corresponding o the maximum vilue of the bell-

shaped amplitude modulation M (v, £, that is, its positon average

f2% = xp + 1t
the effective wave number is simply equal 1o the wave number that corre-
sponds 1o the average momentum gy of the spectral function,
|

ky= —po= f_!””l”

I
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Fig. 3.2. (s, d) Spectral functions and time developments of (b, ¢} the real parts and {c,
f) the imaginary parts of the wave functions for two different wave packets. The two
packets have different group velpeities and different widths and spread differently with
time,

For values ¥ = &y —+ tof, that is, in front of the average position (x} of the
moving wave packet, the effective wave number increases,

borplx = xp+vat) = ko
sor that the local wavelength

a

[l }'i

Aegplr} =

decreases.

1.3 Probability Interpretation, Uncerainty Principle 39

For valoes v = xp 4+ vor, that is, behind the average position {x}, the
elfective wave number decreases,

k{rff"x-r < X -Hant) = ki

This decresse leads to negative values of fay of large absolute value, which,
far behind the average position, makes the wavelengths Zemix) short again.
This wave number modulution can easily be verified in Figures 3.1 and 3.2,
Far a wave packet at rest, that is, pg = 0, 19 = po/m = 0, the effective wave
numher

1T,
ker(x) = ——5 —(x —a)
'."__HJ

e

has the same absolute vilue 10 the left and to the right of the average pasition
ag. This implies a decrease of the effective wavelength thal 15 symmetric on
both sides of xq. Figure 3.4 corroborates this statement.

3.3 Probability Interpretation, Uncertainty Principle

Following Max Born (1926), we interpret the wave Tunction (v, £} as fol-
lows. Tts absalute square

oLy = |yrix, I‘Jlj = M:L.r. 3!

is identified with the probability density for observing the particle at position
x and time ¢, that is. the probability of ohserving the particle at a given time
fin the space region between x and v+ Ax is AP = pla. ) Ax. This is
plausible since p(x, 1) is positive everywhere. Furthermore, its integral over
all space 15 equal to one for every moment in tme so that the normalizarion
coniivion

+oc 4o
[ irf-'.r{.\'.llll‘-"iirzf e iz, ndy =1
e —_—

halds,

Motice, that there 15 a strong formal similarity between the average energy
density wix, 1) = sg|E (v, 1)17/2 of a light wave and the probability density
plr, 1), Because of the probability character, the wave function yriv. 1) s
not a field strength, since the effect of a field strength must be measurable
wherever the field is not zerp, A probability density, howeyer, determines the
probability that a particle, which can be point-like, will be observed at a given
position. This probability interpretation 1s, however, restricted to normalized
wave functions. Since the intezral over the absolule sguare of a harmonic
plane wave is
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and diverges, the ahsolute square [y, ¢ 1|2 of a harmonic plane wave cannot
be considered a probability density, We shall call the ahsolute square of o wive
function that cannot be normalized its fnrensity. Even though wave functions
that cannot he normalized have no immediate physical significance, they are
of great importance for the solution of problems. We have already seen that
normalizable wave puckets can be composed of these wave functions. This
ituation is similar to the one in classical electrodynamies in which the plane
electromagnetic wave is indispensable for the solution of many problems.
Nevertheless, a harmonic plane wave cannot exist physically, for it wonld
fill all of space and consequently have inlinite energy.

Figure 3.3 shows the time developments ol the probability densities of
the two Gaussian wave packets given in Figure 3.2, Underncath the two time
developments the motion of a classical particle with the same velocity is pre-
sented. We sce that the center of the Gaussian wave packet moves in the ex-
act same way as the classical particle. But whereas the classical particle at
every instant in time occupies a well-defined position i space, the quantum-
mechanical wave packet has a finite width a.. It is o measure (or the size of
the region in space surrounding the classical pasition in which the particle
will be found. The fact that the wave packet disperses in lime means thut the
location of the particle becomes more and more uncertiin with time.

The dispersion of a wave packet with zero group velogity is particularly
striking. Without changing position it becomes wider and wider as time gocs
hy (Figure 3.4a).

It is interesting ta study the hehavior of the real and imaginary parts of the
wave packet at rest, Their time developments are shown in Figures 3.4b and
3.4c. Starting from a wave packel that at initial time ¢ = 0 was chosen to hea
real Gaussian packet, waves travel in both positive and negative o dircetions.
Obviously. the harmonic waves with the highest phase velocities, those whose
wiggzles escape the mast quickly from the original position x = ), possess the
shortest wavelengths, The spreading of the wave packet can he explained in
another way, Because the original wave packet al @ = 1) contidins spectral
components with positive and negative momenta, it spreads in space us ume
clapses.

The probubility interpretation of the wave function now suggests that we
use standard concepts of probability caleulus, in particular the expectation

value and varance. The exprectation value or average velne of die position of

a particle described by a wave function v (x. 1) i

P

o i =
(] =j xpla, 1)y =j Wl el (e f ke
—0g = )
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l'jg.- 3.3, Time developments of the probability densitics Tor the (wo wave packets of
Figure 3.2, The twa puckets have different group velocities and different widths, Also
shown, by the small circles, is the position ol a classical particle moving with @ veloeity
equal to the group velocily of the packet. I
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Fig. 3.4. Time developments of the probabilily density for s wave packet at rest and of
the real part and the imaginary part of its wave funetion.
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whiclh, in general, remuins a lunction of tme. For o Gaussian wave packet the
integration indeed yvields
Il

W=== =
'

Wi =ant et

corresponding (o the trajectory of clussical unsceelerated motion, We shall
therefore wmterpret the Gaussian wave packet of de Broglie waves as a quan-
tuin-mechanical deseription of the unaceelerated morion of @ particle, that
is, 1 particle moving with constant velocity. Actually, the Gaussian Torm of
the spectral function FO8) allows the explicit caleulation of the wave packet,
With this paricular speetral function, the wave function W (. r) can be given
in closed form.

The varwnee of the position 1s the expectation value of the square of the
diflerence between the position and its expectation:

variy) = (:.r -:.rlll“")
g e
- f L B TR O S A A E e S 1Ry
g
Again, {or the Gavssian wave packet the integral cun be curned oot o give

. K[ don g2
vuri.r_l:n;:—.,(]+ e

4:1"5 b mf

which agrees with the formula quoted in Section 3.2,
Caleulation of the expectation value of the momentum of a wave packet

=0
Wil r) = f Sipinbply — xp, Hidp

-
is carried out with the direct help of the spectral Tuncton (), that 15,
e :
(p) = f pliomi-dp
&

For the spectral function f() of the Gaussian wave packet given at the be-
ginning of Section 3.2, we find

¥ f._x ,i—l exp (p— B0
(pl = P -
il ER‘UF szﬁ

We replace the factor p by the identity

dp

P=pptAd—

Since the exponential in the integral above is an even function in the variable
P = pn, the integral
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vanishes. for the contributions in the intervals —oo < p < po and py =
p = oo cancel. The remaimng term is the product of the constant fo andd the

-
[ irerap=

normalization fntegral,

50 that we find
Py =po

This result is not surprising, for the Gaussian spectral funetion gives the
largest weight to momentum and decreases symmetrically to the lefi and
right of this value. At the end of Section 3.2, we found vy = po/m as the
group velocity of the wave packet. Putting the two findings together, we
have discovered that the momentum expectation value of a free, unaccelerated
Gaussian wave packet is the same as the momentum of a free, unaccelerated
particle of muss #i and velocily vy in classical mechanics:

':.P} = pn = My

The expectation value of momentum can also he caleulated directly from
the wave function ¥ (x, 1), We have the simple relation

hoi bt ; h i { 1 i[Fi" \
0 b dx — xa, = ——d—cexp | —=(Et —px.
el G2 Tox Vi P Th P

= {H:.'fp['.t — X, 1)

This relation transkates the momentum variahle p into the niomentunt operator

i
s e
Vilx
The momentum operator allows us to caleulate the expectation value of mo-
mentum from the following formula:

i.ﬁ‘}=f Pl ) — i, 1) dx
a6 1dx
It is completely analogous to the formula for the expectation value of position
given earlier. We point ont that the operator appears hetween the functions
i, r)oand yr(x, 1), thus acting on the secand factor only, To verify this
formula, we replace the wave function yrix. 1) by its representation in lerms
of the spectral function:
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m - J = -
. . ) 8 :
{py = / A S 8 [ Flphirglx — xp, ) dpdx
w — A

toex o

s ol pta
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The inner integral

i
f Pl ey — xp, ) de

-0

s, | i
= bt ) ————— —— | Er — = '
j_m i iy T expl p |Es — plx xn?ll i

is by Founer's theorem the inverse of the representation

o ol
i) = / frHiphplx —xg. thdp

W) — G

1 T i
- W[ ff{!iﬂxrr'E[-’-‘-n’—P[.l' —.'l.'n]]]d,"-'

o

ol the complex conjugate of the wave packet o (v, 1), Thuos we have

oo
j Wt x, Drple = xput)de = fT(p)

—a0

Substituting this result for the mner integral of the expression for (p), we
rediscover the expectation value of momentum in the form

raa +o0
() =f f'[FJFJ'tFldP=f plfipitdp

= 8 b
This equation justifies the identification o momentum p with the operator
(h/ipa /) acting on the wave function, The variance of the momentun for
a wave packet is

var(p) = [ R h @ :
pr={{p—ipiy) = Wtz 1) o ;?.;) Yrix, 1)de
i

—{x3
For pur Gauvssian packet we have
2
I]I
again independent of time because momentum is conserved,
Ihe square root of the variance of the position,

varipl =a

Av = /varly) = o,

4&1er:11incs the width of the wave packet in the position variable x and there-
fore i1s o measure of the wncertainry about where the particle is located. By
the same token, the corresponding uncertainty about the momentum of the
particle 15

Ap = var(p) = g,
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For our Gaussian wave packet we (ound the relation

For time ¢ = 1 this relation reads
fi

Ty = 3

For Tater moments in time, the product becomes even larger so that, in
generil,
Ax= Ap=

| B

This relation expresses the fact that the product of uhcertainties in position
and momentum cannot be smaller than the fundamental Planck’s constant f
divided by 4.

We have just stated the uncertainty prineiple, which is valid for wave
packets of all forms, It was formuluted by Werner Heisenberg in 1927, This
relation says, in elfect, that a small uncertainty in localization can only he
achieved at the expense of a large uncertainty in momentum and viee versa.
Figure 3.5 illustrates this principle by comparing the ume development of
the probability density p(x, ¢} and the square of the spectral function f=(p).
The latter, in fact. is the probability density in momentum. Looking at the
spreading of the wave packets with time. we sce that the initially narrows wave
packet (Figure 3.3, top right) becomes quickly wide in space. whereas the ini-
tially wide wave packet (Figure 3.5, bottom right} spreads much more slowly.
Actually, this behavior 15 to be expected. The spatially narrow wave packet
requires a wide spectral function in momentum space. Thus it COMprises com-
ponents with a wide range of velocities. They. in turn. cause 4 guick dispersion
of the packet in space compared to the initially wider packet with o narrower
spectral function (Figares 3.3 bottom left and bottam right ).

At its initial time ¢ = 0 the Gaussian wave packet discussed at the
heginming of Section 3.2 has the smallest spread in space and momentum
because Hesenberg's uncertainty principle is fulfilled in the cguality form
@y -y = Ni/2 The wave function atr =0 tukes the simple form

i, ) = l— eAp [—“—_ 1’|i} exp |:-I—F[ﬂ.k : 1.'”,1]
' (2myVA e dai h
= Miv.Bexplidiy, O
The bell-shaped amplitude function M(x, 0) is centered arcund the position
v with the widih o, ¢ 15 the phase of the wave [unction at ¢+ = () and has the
stmple linear dependence

B
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Fig. 3.5, Hetsenberg's uncertainty principle. For three different Gaussian wave packels
the sgquare 7p) of the speetral funetion is shown on the lefi, the time development
of the probability density in space on the right. All three pockets have the same proup
velocity but different widths o, in moementum. At = O the widths o, in space and.rfl.. in
momentum fulfill the equality o7, = I/ L For later montents in fime the wave packets
spread in space so thal o, 0, = /L

|
iy, ) = = pilx —xp)
f

This phase ensures thut the wave packet at r = 0 stands for a particle with an
-'l‘r'ﬂl'ﬂg::' momentum pg. We shall use this observation when we have 1o prepare
wave functions for the initial state of a particle with the mmual conditions
{x}) = xq, {p} = pp at the initial moment of time ¢ = .
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3.4 The Schridinger Equation

Now that we have introduced the wave deseription of particle mechanics, we
look for a wave equation, the solutions of which are the de Braglie waves.
Starting from the harmonic wave

p*

2

| i .
[.!"p‘.l'. t) = ?}thhl cXp {—ELEI == P.‘CII] . E =

il

we compare the lwo expressions

LT .
1 Ii“'lf.fp[.li, i) = -ﬁlei-1~ Il
o

and o "
h= o P
—— (k1) = btk ) = Bl £}
2m i? pax 2T : ¥

Equating the two lefi-hand sides, we obtain the Sehrdidinger equation for
i free particle,

3 7
o, £ " g
ifi—ar(x, 1) = ——————=WWalxd

it 2miax2 "

It was formulated by Erwin Schridinger in 1926,

Since the solution 4, occurs linearly in this couation, an whbitrary linear
superposition of solutions, that is, any wave packet, 15 also a solution of Schrii-
dinger's equation, Thus this Schridinger equation is the equation of melion
for any free particle represented by an arhitrary wave packet o (v, £

143

il i
h—ir(y, 1) = ———f{x. )
at v ) 2nr iyt v

In the spirit of representing physical quantities by different ial operators, as we
did for momentum, we can now represent kinetic energy T', which is equal 1o
the total enerey of the free particle T = pr/(2m) by

I fhay [t at
e el Bt s e e
2 \ 0 dx i oy 2ur =
The eguation can be generalized to describe the motion of particle in a
force field represented by a potential energy Vix). This is done by replacing
the kinetic energy 7 with the total energy.
hY gt .
E=T+V = ——+¥x]
2mdhx=
With this substitution we obtain the Selrddinger equation far the motion of a
particle in a potentiaf Vix):
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el p=iny |
= Z

8 i
=l it) = ———wlx. 1)+ Vix b (x. 1)
i Qe iixs

We now denote the operator of total energy by the symbol

In analogy to the Hamilton function of clssical mechanics, operator H s
called the Hamilton operator or Hamiltoniarn. With its help the Schridinger
eguation for the motion of a particle under the influence of a potential takes
the form

il
i=—afr{x. ] = Hilx, 1)
i

At this stage we should point out that the Schriddinger equation, general-
ized 1o three spatial dimensions and many particles, is the fundamental law
of nature for all of nonrelativistic particle physics and chemistry. The rest of
this book will he dedicated to the picional study of the simple phenomena
described by the Schriddinger equation.

3.5 Bivariate Gaussian Probability Density

To favilitate the physics discussion in the next section we now introduce o
Craussian probability densioy of oo variahles vpoand 1o and demonstrate its
properties. The bivariate Gaussian probability density is defined by

1 {x; — tx))°

201 —¢% 'TI:

play.as) = Adexpyi—

5 = fx)) (2 — {az)) 7 (x2 — {x2))’

e

e e (¥}

Edp g

The normalization constunl
|
Imajmay ] — ot

ensures that the probability density is properly normalized:

+on g0
f [ plry ) dyydan =1
) (Ll

The hivariate Gaussian is completely described by five purameters. They are
the expectation values {x) and (xa}, the widths o) and a2, und the correlation
cogfficient ©. The marginal distributions defined by

A=
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o0
gy = f flxy, e das

T
L

milxa) = I plap xahdyy
o=

are for the hivariute Gaussian distribution sinply Ciaussians of a single vari-
able.

I (g — (1))
— ‘:’Lp —_——

NEETD

M ':.-.".E] - 1(‘[12

(sl (xs — {x2))’
Pl = ————BXP T =
2w ?_.n:}

Each marginal distribution depends on two parameters only, the expeeLition
value and the width of its variable.

Lines of constant probability density in vy, 12 e the lines of intersection
hetween the surface plxy, xa)and a plane p = a = consk.

One particular ellipse, for which

1
,nl_r|..t3|=f'tcx]'li—; .
.., the one for which the exponent in the hivariate Gaussian is simply equal to
—1/2, is called the covariance effipse. Points 1y, 12 on the eovariance ellipse
fulfill the equation

(S

| (xp — hﬂ o Ay ph 2 — {.1‘3}._] = txah)

— = 2

l 2 P 2
==L L oy 72 5]

=]

Projected on the 1y axis and the x axis, it yields lines of lengths 2o and 203,
respectively,

The plots in Figure 3.6 differ only by the value ¢ of the covarianee. The
covariance ellipses are shown as lines of constant probability on the surfaces
plxy, aa). For ¢ = Dihe prineipal axes of the covariance ellipse are parallel
10 the coordinate axes. [n this situalion variables x| and vz are uncerrelated,
that is, knowledge that vy = (v} holds true does not el uswhether it is more
probahle to observe x2 = {eah or 33 = (xq. For uncorrelated variahles the
relation hetween the joint probability density and the marginal distribution
is simple, plxy, v2) = prixg izl The situation is dilferent for correlated
variahles, that is, {or ¢ 3 O, For a posinve correlation, ¢ = (0, the major axis of
the ellipse lies along a direction between those of the x| axis and the 1a axis.
I we know that ¢y = (x1) 15 valid itis more probable to have x2 = fx2) than
to have xa = {ra). If, on the other hand, the correlation is negative, x = 0,
the major uxis has a direction between those of the xy axis and the negative

3.5 Bivarute Gagssian Probability Density k]|

Fig. 3.6, Bivarinte Gaossinn probability density pa. v drwn as a surface over the
ap, o plane and marginal distributions g G pand gofo: b The Latter are drzwn ns curyes
over i‘hr.- margins parallel to the v, axis and the o asis, respectively, Also shown s the
covariance ellipse corresponding to the distribution. The ret:nng]:-:irtumsrrihinu the
ellipse hus the sides 2o) and 2o:, respeetively. The pairs of plots in the three rows of the
figure differ only by the eorrelution coefficient o

X2 axis, In this situation, onee it is known that xp = (o) is valid, x2 < (e} s
more probable than 13 = {v2).

The amount of correlation is measured by the numerical value of ¢, which
can vary in the range —1 < ¢ < 1. In the limiting ease of total corelation,
B +1, the covariance ellipse degenerates to a line, the principal axis. The
Jaint thuhil[ty density is completely concentrated along this line. That is,
knowing the value x; of one variable, we also know the value x; of the other.
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Also shown in Figure 3.6 are the covariance ellipses directly drawn in the
¥y, ¥2 plane and the rectangles with sides parallel to the vy and the v axes.
The lengths of these sides are 20, and 29, respectively. 1F there is no corre-
lation (¢ = U} the principal axes of the ellipse are parallel to the coordinate
axes so that the principal semi-axes have lengths ay and a2, Far e 7= 0 the
principal axes form an angle o with the coordinate axes. The angle o is given
by

3.6 Comparison with a Classical Statistical Deseription

The interpretation of the wave-packet solution as a classical point paricle
catches only the most prominent and simplest classical features of particle
mation, To exploit our intuition of classical mechanics somewhat further, we
study a classical point particle with initial position and momentum Known
to some inaccuracy only, In principle, such a situation prevails in all clas-
sical mechanical systems because of the remaining inaccuracy af the initial
conditions due to errors inevitable even in all classical measurements, The
difference in principle compared to guantum physics is, however, that aceorid-
ing to the laws of classical physics the errors in location and momentum of a
particle both can be made arbitrarily small independent of each ather. From
Heisenberg's uncertainty principle we know that this is not possible in guan-
tum physics,

We now study the motion of a classical particle described at the initizal
lime ¢ = O by a joint probability density in location and momentum which
we choose to be a bivariale Crapssian about the average values and po
with the widths @, and a,. We assume that at the initial time ¢ = 0 there 15
no comelation hetween position and momentum. The initial joint prohability
density is then

o (x — xp)* | (p— po)
R i ' R ———eXpi—— 7
W ATaw 2o, J2ito, oy

For force-free motion the particle does not suffer a change in momentun
as time elapses, e.g., also at a later time ¢ = 0 the particle still moves with
its initial momentur, L.e., p = pi- Thus, the momentum distribution does not
change with time. The position of a particle of momentum p; &l time ¢ initially
having the position 1 is given by

e TN o= pijm

The probability density initially described by pflt.r;. i) can be expressed at
time ¢ by the positions x at time f by inserting

]
]

1.6 Companison with a Classical Sttistical Deseription

LH=x—pimit

viclding the classical phase-space probability density

cl &
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The cxponent is a quadratic polynomial in x and p which can be written as
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Comparing this expression with the exponent of the general expression for
a hvariate probability density o Seeton 3.5 we find that ,r:‘”[.r, pob) s 4
hivariate Gaussian with the expectation values

(xiryy=xp+ potfm (ple)y = o
the widths

1) = I." 2 e Fe)i :
oyt I'—.,v.rF,‘n—o—n'ﬁI-;m- n’l.,if]:r:.., .
and the correlation coetficient

apf apl

=
fJ-'|:1Jl nn

T ——
{2 253 4050
\ s i api=/m

In particular this means that the marginal distribution p';'li__x .11, 1.e., the spatiul
pm?:z_sh:iu}' density for the classical particle with initial uncertainties o in
position and o, momentum is

: 1 N P
Pl )= ———exp{- e 17 pol/sm])
W 2me () 2ot

| Ll_:i_u_s now study the classical probability density 2N, p, 1y of a particle
lllh ilmlml uncertainties o in position and o, in momentam which satisty
e minimal uncerfainty requirement of quantum mechanics:

oty = RJ2
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Fig. 3.7. Time development of the classical phase-space probahility density Pl e
for # free particle with uneertainty in position and mementum. Also shown are thie
muarginal distributions o¢'0, 01 in the back and ,rr:fipx 1 o the right-hand side of the
plots.

In that case the spatial width of the classical probability distribution is

i I|I -'lr]'rz_ 2
)= —. 1+ ——
E".r}"”'l,' h= m=

and thus identical tw the width of the corresponding quantum-mechanical
wive packet. Also the expectation values for v and p und the width in p
are identical for the classical and the guantum-mechanical case,

In Figure 3.7 we show the time development of the classical phase-spuce
probability density. At the initial time { = 1y = 0 there is no correlation be-
tween position and momentum, With increasing time the structure meves in
v direction and develops an increasing positive correlation between x and p.
The marginal distributicd ,.:J];'i p. 1) remains unchanged whereas the murginal
distribution pt*(x, 1) shows the mation in v direction and the dispuersion al-
reacly well known from Section 3.5, The same information is presented in
different form in Figure 3.8 which shows the covariance ellipse of A, po )
for several tmes, [ts center mioves with constant velocity vy = Pofm oona
straight line parullel o the v axis. The width m pstays constant. the width in
x increases, 1t ulso becomes clear from the figure that the comelation coelfi-
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I

Fig. 3.8, Maotion of the covariance ellipse in phase space which characterizes the classical
space probability density p“'tx, potd of o free particle. The ellipse s shown for six
moments of time corresponding to the six plots in Figure 3.7, The center of the ellipse
(indicated hy a smull circle) moves with constant velocily on a straight trajectory, The
rectanple cirewmseribing the covarinnee ellipse has sides of lengths Iooor and 2o,
respectively. While 7, stays constant, ¢, increases with time. For 1 = g = () there is no
correlation hetween position and momentun (ellipse on the G el bat with increasing
time u strong positive correlation develops.

cient, vanishing at 1 = 1y = (0, tends towards ¢ = | for ¢ — oo, since in that
limit the covariance ellipse degenerates towards o hine along the dingonal of
the clrcumscribing rectangle,

The lesson we have learned so far is that the force-free motion of a clas-
sical particle described by a Gaussian probability distnibution in phase space
of position and momentum yields the same time evolution of the local proba-
bility density os in quantum mechanics if the initial widths 0. o) in position
and momentwm [ulfill the relaton

T =

1| =

In the further development of the quantum-mechanical deseription of particles
we shall see that this finding does not remain true for particles under the acuon
of forces other than constant in space or linear in the coordinates.
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Problems

il

&5,

3.6

LB

Caleulate the de Broglic wavelengths and frequencies ol an electron
and a proton that have been accelerated by an electric field through o
potential difference of 100 V. What are the corresponding group and
phase velocites?

. Anelectran represented by a Gaussian wave packet with average cnergy

Ey = 1D0eV was initially prepared to have momentum width o, =
0.1 py andt position width e, = fi/(2ep). How much time elapses before
the wave packet has spread to twice the original spatial extension’!

_ Show that the normalization condition [ ;",:" wix, )7 dx = 1 holds

true for any time if y(v, 1) is a Gaussian wave packet with a nocmalized
spectral function f{pg).

Calculate the action of the commutator [pox] = py — ap, p =
(h/D (A7 dx) on o wave function yrix, 1), Show that it 15 equivalent to
the multiplication of ¥ {x, £) by /i so that we may write [p, 1] = f/i

Express the expectation vilue of the kinet ic energy of o Gaussian wave
packet in terms of the expectation value of the momentum and the widih
ey of the spectral function,

Given a Gaussian wave packet of energy expectation value (£} and mo-
mentum expectation value (p), write its normalized spectral function

Fip)

. A large virus may for purposes of this problem be approximated by a

cuhe whose sides measure one micron and which has the density of
water. Assuming as an upper estimate an uncertamty of one micron in
position, calculate the minimum uncertainty in velocity af the virus.

The radius of both the proton and the neutron is measured to be of the
order of 10777 m. A free neutron decays spontaneously into a proton, an
electron, and a neutrino, The momentum of the emitted electron is typ-
ically 1 MeV /e, IT the neutron were, as once thought, u bound system
consisting of a proton and an electron, how large would be the position
uncertainty of the electron and hence the size of the negtron’? Take as
the momentum uncertainty of the electron the value | MeV /e

 Show that the solutions of the Schridinger equation satisfy the continu-

Iy equittion
dofv.r)  djlxr)

- i ]
df il

310

311

3.13,

Problems 57
for the probability density
ol )=, e, )

and the probability current density
21

) h = i il
Jlx, )= =— | (x, t)—r(xo 1) — g, ) —r " (x, 1)
2 ix dx

To this end, multiply the Schridinger equation by " (e, £) and its com-
plex conjugare

il — e 1)y — Vi k" (r,
A am 32" {x, 1) (X (x, 1)

by o (e, 1), and add the two resulting equations,

Convince vourself with the help of the continuity equation that the nor-
malizalion integral

f vt e rndele rhdx

fan]

is independent of time if W (x, 7) is a normalized solution of the Schri-
dinger equation, To this end, integrate the continuity equation over all
o and use the vanishing of the wave function for large |x| 1o show the
vanishing of the integral over the probability current density.

Calculate the prohability current density for the free Gaussian wave
packet as given at the end of Section 3.2, Interpret the resull for ¢ =0
in terms of the probability density and the group velocity of the packet.

. Show that the one-dimensional Schrisdinger equation possesses spatial

reflection symmetry, that is, is invariant under the substitution v — —x
if the potential is an even function, that is, Vix) = Vi—x}

Show that the ansaiz for the Gaussian wave packet of Section 3.2 fulfills
the Schridinger equation for i free particle.



4. Solution of the Schridinger Equation
in One Dimension

4.1 Separation of Time and Space Coordinates,
Stationary Solutions

The simple structure of the Schrodinger equation allows a particular aasalz in
which the time and space dependences occur in separate factors;

i
WwElx.th=exp ( EEI) wEla)
As in the case of electromagnetic waves, we cill the Fuetor g e that 15 inde-
pendent of time a stationary sebaion. Inserting our ansarz into the Schradin-
per equation yields an equation for the stalionary wave,

h* :
— g () A Viogpix) = Bgplx)
2mdx=

which is often called the time-fndependent Scheddinger equation. 1t is char-
acterized by the parameter £, which is called an eigenvalue, The lefi-hand
sidde represents the sum of the kinetic and the potential energy, so that £ is
the total energy of the stationary solution. The solution wg(x) is called an
eigenfunetion ol the Hamilton operitor

R
H=—-———4¥(¥]
2= I'

since the nme-independent Schridinger equation can e put into the form
Hyepivi = Eggly)

We also say that the solution gg () describes an efvensiate ol the system
specilied by the Hamilton operastor. This eigenstale is characterized by the
eigenvalue E of the total energy. Often the stationary solution @ () is also
called a staiiomary state of the system,
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The time-independent Schridinger equation has a large manifold of solu-
tons. 1Lis supplemented by borudary corditions that have to be imposed on
a particular solution, These boundary conditions must be abstracted fram the
physical process that the solution should deseribe. The boundary conditions
an the selution for the elastic seattering in one dimension of a particle un-
der the action of a force will be discussed in the next section. Because of the
houndary conditions, solutions ¢ (x) exist for particular values of the energy
eigenvalues or for particular energy intervals only.

As a first cxample, we look at the de Broglic waves,

| i
Wolx —aput) = ———zexp | ——[Ft — px + pap)
il o P F[ il P !Hu]

The function rp(x —xq. t) factors into expl—(1/ ) Ev] and the stalionary wave

l i

It is a solution of the time-independent Schridinger equation with u van-
ishing potential for the energy eigenvalue £ = p”/2m. A superposition of
de Broglie waves fulfilling the normalization condition of Section 3.3 forms
a wave packet deseribing an unaccelerasted particle. Here xg is the position
expectation value of the wave packet at time 1 = (1,

Since the momentum p is a real parameter, the energy eigenvalue of a
de Broglie wave is always positive. Thus, for the case ol de Broglie waves,
we have (ound the restriction E = 0 for the energy elgenvalues,

The peneral solution of the time-dependent Schrisdinger equation is given
by a linear combination of waves of different energies, This is tantumount to
stating that the various components of different energy E superimposed in the
solution change independently of one another with time,

For inital tme ¢+ = 0 the functions ¢ and @ coincide. An initial con-
dition prescribed at 1 = (0 determines the coefficients in the linear combi-
nition of spectral components of different energies. Therefore the procedure
for solving the equation for u given initial condition has three steps. First, we
determine the stationary solutions @g(x) of the time-independent Schrédin-
ger equation. Second, we superimpose them with appropriate coefficients to
reproduce the initial condition v x, () at e = 0. Finally, we introduce into ev-
ery term of this linear combination the time-dependent factor exp[—{(1/ 1) Er]
corresponding to the energy of the stationary solution ¢e and sum them up to
give 1 (x, 1), the solution of the time-dependent Schridinger equation.

In the next section we study methods of obtaining the stationary solutions,
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4.2 Stationary Scattering Solutions:
Piecewise Constant Potential

As in classical mechanics, the scattering of a particle by a force is called
¢lastic if only its momentum is changed while its encry s conserved. A foree
is said to be of finite range if it is practically wero for distances from the center
of force larger than a finite distance o This distance o is called the range af
the foree, The elastic scattering of a particle through a force of finite range
consists of three stages subseguent in tme.

I. The incoming particle moves unaccelersted in a foree-free Tegion fo-
ward the range of the foree.
2. The particle moves under the influence of the force. The action of the

{orce changes the momentum of the particle.

3. After the scattering the outgoing particle moves away from the range of
the farce, 115 motion in the force-free region is again unaccelerated.

In Section 3.3 we have scen that the force-free motion of a particle of mass
m can be described by a wave packet of de Broglie waves,

| i
oty — ol = ——gxp | ——1E1 — px 4+ prog 3
W I [2."]'”]]": i [ i ? f [Jj|
.
L8
T Im

They can be lactored into the time-dependent factor exp —{ifhaEr] and the
stationary wave (2mh} 1 expl(i/fi)pix —xp)|. This stationary wave I i 50
lution of the tme-independent Schritdinger equation with u vanishing poten-
tial.

If the spectral function f(p) of the wave packet has values different from
zero in a range of positive p values. the wave packet

v o
iy i) = j Flpirate — ap iidp

— i

= Nowo l— 2Bt VVo—er | —opit = :
Jigg T “F( 5| R O TR S

moves along the v axis from left to right. that s, in the direction of increasing

rovolues.

4.2 Stanonary Scattering Solutions: Precewise Constant Potential t

Now we superimpose de Broglie waves of momentum — g,

| i
oy —apl) = ——————exp| —— £t 4+ px — px .
LB ] i ["|: n X — pan)
g B
2im
with the same speetral function f(p). A simple change of variables p* = —p
yields

i ; i 1 i
O B —p'yex ( —Er)—.-. —p'ly — ) [ dp!

s
l _frl—F"llt."fF{.‘l.' — X H1dp

S — e

We obtain a wave pucket with a spectral function f(—p) having its range of
values different from zero al negative values of p, The wave packet (v, 1)
moves along the v axis from right to left, that s, in the direction of de-
creasing « values. Thus we learn that for a given spectral function, wave
packets formed with f,(x — ag, 1) and Wl — g, £) move in nppersile
directions. This says that the sign of the exponent of the stationary wave
(2t~ expl i) pix — xg)] decides the direction of motion. For a spec-
tral Tunction [ p) ditferent from zero at positive values of momentum p. a
wive packel Tormed with the stitionury wave,

]
exp [h Py —.r,]}] = explikiy = xp)] k= pih

moves in the direction ol increasing x. A wave packet formed with the sta-
tionary wave

exp [_ipu xS -"-{I.:'] = exp|—tklx — xid]

maves in the direction ol decreasing x.
Let us consider a particle moving from the left in the direction of increas-
ing x. The torce

Fiah 4 Vix)
= —— E
chr ll

derived from the potential energy Vix) has finite range o This range is as-
sumed to he near the origin x = 0. The initial position xp of the wave packet is
assumed to be far to the left of the origin at large negative values of the coor-
dinate. As long as the particle is far o the left of the arigin, the particle moves
unaccelerated, In this region the solution s a wave packet of de Broglic waves
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Wrp(x — xp, 1), Thus the stationary solution @g (x) of the time-independent
Schrisdinger equation for the eigenvalue £ should contain a term approaching
the function exp|(i/#) plx — x| for negative v of lurge absolute value,
Through the scattering process in one dimension, the particle can only be
transmitted or reflected. The transmitted particle will mave foree free at large
positive x, Here it will be represented by a wave packet of de Hroglie waves of
the farm iy (x — xp, 1), Therefore the solution of the stationary Schridinger
equation must approach the function exp[(i/#) p'lx — xp)] for large positive
v, The value p' differs from p if the potential Vix) assumes different values
for large negative and large positive x. The reflected particle has momentum
—p and will leave the range of the potential to the left und thus retumn Lo
the region of large negative x. In this region it will be represented by o wave
packet of de Broglie waves ¥ (x — .y, 1), Therefore the solution of the time-
independent Schridinger equation must also contain a contrihution tending
taward a function exp[—(i/h1 plx — xp) for large negative x. The conditions
for large positive and negative v just derived constitute the boundary condition
Lthat the stationary solution gg(x), £ = p? 2 must fulfill if its superposi-
tions forming wave packets are to describe an elastic scattering process. We
summarize the boundary conditions for stationary scattering solutions ol the
time-independent Schridinger equation in the following statement:

exp [%p[x - .rm} + 8 exp |:— ;} ply— .1';,5}

for lurge negative v
wrlyl—

appaoaches

A exp |:;—] f?r[.t — _tq],'li|

for large positive ¥

Since there are no general methods for solving in closed form the Schri-
dinger equation for an arbitrary potential, we choose for our discussion par-
ticularly simple examples. We begin with a pefential step of height V. = Vi
at + = 0, The potential divides the space into two regions, In region L that 1s.
to the left of x = (0, the potential vanishes. To the right, region 1, it has the
constant vilue V = Vy (Figure 4.1

The time-independent Schridinger equation has the form

ht oo P
“smanl =ty
in both regions, with V; assuming different but constant values in the two
regions, Vj = 0, Vi1 = V. Thus the stationary solution for given encrgy £ of
the incoming wuve is
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| I
_______________ =
x=0
V(x)
V=\} =0
= X

Fig.4.1. Space is divided into
region 1, & = (0, and region [I,
& =tk There is a constant po-
tential in region 11, V' = 15,
x=0 whuereas in region | there is no
potential, V' =0,

i i
@ = exp [H;rtr - .1.'¢|]:| + Bpexp |:—I—:l,nt.r.' - .1:||1:l . o 1)
Iy
g = Apesp [j;. pix— xl]:j| z x =1

Obviously, this solution fulfills the boundary conditions we huve posed earlier
in this section,

In region 1 the momentum 15 p = V2mE, in region 11 it is p' =
V2m{E — V), Since the potential is discontinuous at x = 0, the second
dﬂri:.faLivu af @ has to reproduce the same discontinuity, reduced by the factor
—fi=/(2m}. Thus ¢ and di/dx are continuous at x = 0. These conditions de-
termine the complexs coefficients Bp and Ay which are as yel unknown, The
l.i-'nﬂﬁi[‘,ii.',ﬂl of the incoming wave has been chosen equal to one, thus fixing the
mcrlnmlng amplitude. The phase of the wave function depends on the initial
position parameter xp,

As for hight wavey (Sccton 2.2), we denote the three members on the
right-hand sides of the two expressions @ and @y as constiteent waves. That
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i%, we call

g = explliffiply —xn)]
the incoming constitient wive

g = Brespl={ifhipla — xo)l
the reflected constituent wave

g = Ajexp [[i;‘ﬁ:p'{.r — .l'l:J']
the transmitied constituent wave .

As 1 Arst example. we choose o repulsive step, Vi = (), and an incoming
wave of energy £ = Vg, so that in classical mechanics the particle would
be reflected by the potential step. The momentum of the transmitted wave in
region 11, -

g = J2m(E — Vo) =i/ 2m(Vy ~ E)

is now imaginary so that the transmitied wave
i ;
o = Anexp FPE= 1)
I —
= Ajexp|— & W2V — E e — xpd
1]

becomes a real exponential function which falls off with increasing v in region
I We obtain the full solution of the tme-dependent Schradinger equation for
4 wiven enerzy by multiplying the stationary wave hy the factar expl—if1 /).

The upper and middle plot of Figure 4.2 show the time developments of
the real and imaginary parts of the wave function with fixed cnergy £ The
real and imaginary parts behave in region 1 like standing waves, for they are
superpositions of an incoming and a reflected wave of equal [reguency and
equitl amplitude, We are casily convineed of this Tuct by looking at Figure 4.3,
in which the time developments of the incoming and reflected constituent
waves in region T are plotted separately. In Figure 4.2, region 11, hoth the real
and the imaginary parts are represented by exponentials osaillating in time,
The time development of the absolute sguare of the wave function, which we
shall call intensity (Figure 4.2, bottom), shows no variation at all in nme. In
region 1it is periodic in space, but in region 111t shows an exponential falloff.

We now cxamine an incoming wave of energy £ = V. Obviously, the
momentum p’ = +/2m{E — Vgl in region 1 for £ = Vi is real. Therefore the
stalionary solution in this region, as in region 1, is an oscillating function in
space.

Figure 4.4 (tap) shows the energy dependence of the real parts of the st
tionary solutions. It includes both crergies F o= Vi und energies E < V. Far

4.2 Stanonary Scavering Solunons: Piecewise Constomt Poteotial ]
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Fig.4.2. Time devel-
opments of the real
part., the imaginary
part. and the intensity
of a harmonic wave
of energy & < 1
[alling onto @ poten-
tial step of height 1.
The forme of the peten-
tial Viry is indicated
by the line made up
of long dushes, the en-
ergy af the wave by the
short-dosh  horizontal
line, which also serves
as zero line lor the
functions  plotted. To
the feft of the polen-
tial step is a stand-
ing-wave patlern, as
is apparent from the
tme-independent  po-
gition  of  the nodes
or feros of the fune-
fions  Redeia, 1) and
T v, 1. The abso-
Tute sgquare [ )7 b8
Lime independent.
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) } Fig. 4.4. Energy dependence of stationary solutions for waves incident on a potential ste
Fig. 4.3, Time developments of the real parts of (a} the incoming constituent wave and b i i ; 5 it r
(b} the reflected constituent wave making up the harmonic wave of Figure 4.2, OF beight Vo I::I fhf:::: are the real part of the wave function and the intensity. Small
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enervies £ = Vg the wavelength in region 1L is longer than that in rezion 1,
For energies £ < Vy the stationary wave function has the exponential falloft
just mentioned. The encrgy dependence of the intensity is given in Figure 4.4
(bottom). For E = Vo the intensity is constant in tegion 1, corresponding
to the outgoing wave in this region. The periodic structure ol the intensity in
region | results from the superposition of the incoming and reflected waves,

For ¥y =< U there is for all energics an oscillating ransmilted wave In
region 11. Figure 4.5 shows the encrzy dependence of the rewl part and of the
absolute square of the wave function. Since the potential is now attractive, the
wavelength of the transmitted wave is decreased in region 1L

Since for every enerzy £ = 0 there is a stationary solution of the time-
independent Schrodinger equation lor a potential step. we say that the phys-
icul system has 4 continnous energy spectrum. For some types of potential.
the Schrodinger equation has solutions only for certain particular values of
energy. They form a discrete energy specinan. The most oeneril physical sys-
tem has an energy spectrum composed of a diserete part and a conlinuous one
{see Section 4.4).

We now turn to the example of o potential barrier of height ¥ = V) be-
tween & = D and © = o, Outside this interval the potential vanishes. Here we
have to study three different regions where the solution is given hy

exp [%f!{.i‘ = _I.'lﬂ] + Hy 1_:1],‘![ -;]p{.l: = _{[ﬂ] ' x=A1k,

=
[ 1,
] = Apexp J:TF v —apl| A Byexp [_EF [ —.'m}] I EE - |
i
anp = A exp Hp{:r —Anh| d <
for a harmonic wave moving in from the left, that is, « < 0.
As belore, the momentum in region Il is p' = JEmE — Vo) and s

real for £ = Vi, imaginary for £ = Vy. The complex coefhicicnts A and
B are aguin determined hy continuity conditions for the wuve function and its
dierivative de/dr at the two boundaries of the barrier, x = Qamd x = d.

The energy dependence of the real part of the stationary solutions 15 jre-
sented in Figure 4.6 (top), Again transmission and reflection oceur. The most
striking feature, however, is the transmission of a wave into region I even for
cnergies below the barrier height. £ < Vi The transmission of the wave cor-
responds to the penetration of a particle through the barrier. This remarkable
quantum-mechunical phenomenon is called the tunned effect. Within region
11, of course, the wave daes not hive periodic structure since p' is imaginary,
giving rise to a real exponential function,

A potential that 15 constant and negative in region L that is, Vi 15 less than
sero far 0 = v = o, and that vanishes in regions Land 11 is called & sgueare-
well potential. Here the waves keep their oscillating form in all three reglons,

4.2 Stanonary Seattenng Solunons: Plecewise Constanl Potential o9
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Fip. 4.5, Energy dependence of the real part and of the intensity of stationary solutions
for hurmonic waves incident on a potential step of heipht vy = G,
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(¥
Fef

,& \/\/ NfTE = U

Fip 4.6, Enerpy dependence of stationary solutions for waves incident onto pu.-,'itz'\'u
potential barrier (top), Vi = (. and a negative potential barrier (bottom), Vi < U, which
is also called » squarc-well potential, The real part of the wave function is show.

4.3 Stationary Scattering Sohutions: Linear Potentials 71

Figure 4.6 (hattom) shows the energy dependence of the real part of the sta-
tipnary wave Tunction. The wavelength is now decreased within the well,
through the aceeleration caused by the attractive potential. This effect is less
pbyvious for the higher kinetic energies since the relative difference between
the wave number & outside and ky = 2m(E — Vo) /b = 2m(E + |V
decreases with growing kKinene energy .

4.3 Stationary Scattering Solutions: Linear Potentials

In Section 4.2 we have investizgated the stationary solutions of the Schridin-
ger equation for piecewise constant potentials, Shightly more complicated is
the linear potential

Vi
Viv) = —mpx + Vg = —mglyv - xq) Xnp = L
g

which, for example, governs the free fall of a body under the action of a con-
stant force & = my. The corresponding time-independent, stationary Schri-
dinger equation reads

R d*
(_EF — ey -+ \*h) wix) = Eplx)

or, in normal form,

o me 2
4 2 FX - {E =¥ {x) =10
[m—ﬂ ERAE ”]}P :

The position

E—W E
- g — + xp
ng g

T =

is the classical rurning point of a particle with the total energy E. Introducing
the dimensionless variable

I#3
; | , he
= —fx —FF) : tn= | =——
£n % . 2nr-g

scaling x in multiples of the length parameter £, we find a differential equa-

tion:
'LF'
— o y=0
cm

with
&) = witnl + ar)
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The differential equation in & no longer contains an energy parameter, A so-
lution of this equation is the Airy function Ai(g), ef. Appendix F, multiplied

with a normalization constant:
T
N=\ T2z
gl

The Airy functions Bilx) do not vield physical solutions since they diverge
low large positive arguments,
The main features of the solution

i X— X
pla) = N A (— : )
]

which is shown in Figure 4.7 ure casily understond. For x = xyp the wave
function oscillates with wavelengths A becoming shorter with growing v, This
reflects the increase of momentum p = /4 of the particle because ol the
acceleration in the pusitive v direction by the force £ = myg. In lact, for
i+ — oyt = fn the solution has the asymptotic behavior

) |4 /2
! 'II.(] ) : i Tl = Tl by
aibe) = "l.'(— — sin | = | ——— o
# |I A — X 3 iy 4

This shows that the wavelength & defined by

2 (.‘l’ + i — .'t-r) VT2 fx—uay ) 1 "r
] e i o - = T
3 f"(;; 3 En i

depends on the position ¢ and 1s approximately given by

e
PiE) = NAK=E)Y |

2l

a2l —ar)
This corresponds to the momentum
p=hih=my2e(x —xr) =my

where

) =/ Zelx — X}

15 the classical velocity of a particle at position x falling from the point vy
under the aceeleration g. For ¥ = w7 the wave function falls off very quickly
to zero. Since vy is the elassical turning point of the particle, this vanishing
of the wave function and thus the probability density 1o the left of xy is to be
expected, For v — o7 = Ouand [x — vy 2 (4 the asymptobc form ¢, of the
wave Tunetion 15 given by

4.3 Stationary Scattering Solufions: Linear Polentials T3
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Fig, 4.7. Stativnary-sobulion wave function 01 ) (top) and its absolute square (bottom)
in a linear petential for various values of the total enerpy 2. The potential is indicated
by the long-dash broken Hne, the total energy £ by the short-dash broken line, They
intersect at the classical turning point vy The short-dash broken line also serves as the
zern line for the functions o) and (el
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As to be expected there is no point 1o the lefi al which the wave function 1s
exactly zero. To the far left of the turning point, however, the probability of
finding the particle becomes very small.

4.4 Stationary Bound States

In classical mechanics the motion of a particle is also possible within the
square-well potential at anegative total cnergy £ = Eyin+ Vo, Exin = (). Since
the motion of the classical particle is restricted to region Il the quantum-
mechanical analog is deseribed by stationary wave functions that full off in
regions 1 and 11, Thus the stationary wave functions too are localized in
the vicinity of the square well, Solutions with this property are called bowund
states, The cxponential falloff in regions T and 11 guarantees the liniteness of
the integral

—+ B

f | unnormatized ':-’-'”2 dx = """IE

— G
in contrast to the stationary solutions of positive energy eigenvalues. Divid-
ing the unnormalized solution by N yields the normalized stationary wave
function @{x) fulfilling the normalization condition

0l "
f lpix)~dy =1
— O

which is analogous to the one for wave packets. The normalizability is a
general feature of all bound-state wave functions, For negative total energy
the Schrivdinger equation admits as solutions real exponentials of the type
expizipx/h) with p = iy 2m|E | in regions I and 111, In order to goaraniee
the falloff of the exponential, only the negative signis allowed in region 1 only
the positive sign in region I In region IT the solution 1s still oscillating since
r=2mE - Vit remains real. The continuity conditions at the houndaries
of the potential must now be fulfilled with only one real exponential function
in regions 1 and I11. This is possible only for particular discrete values of the
total energy. These values form the discrete part of the energy spectrim. The
corresponding solutions can be chosen 1o be real. They are distinguished by
the number of zeros or nedes that they possess in region 1.

The number of nodes increases as the energy of the bound states increases.
T'his can be understond in the following way. For the ground state the wave
function in region 11 is a cosine with half a wavelength slightly greater than

4.4 Statonary Bound States
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Fig. 4.8. Wave functions (top) and probability densities (hottom) of the bound states in a
square-well potential, On the left side of the picture an energy seale is shown with marks
for the bound-state energiesin = 1, 2, 31 The form of the potential Vi) is indicated hy
the long-dash line, the energy £, of the hound states by the horizontal short-dash lines.

The horizontal dashed lines also serve a5 2ero lings for the functions shown,
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the width of the square well. 1t is fitted into the square well in such a way thal
its slopes at the boundanes maich those of the exponentials in regions | and
11, The next bound state occurs al higher energy, As the energy increases,
the wavelength 4 = 27 A[2Zm(E — Vil =12 in region 11 shortens. The slopes
at the boundaries next match when approximately a full wavelength fits into
the well, making the wave function a sine and thus giving rise o one node.
As more and more wavelengths it approximately into the well, more nodes
appeur.

Figure 4.8 shows the wave functions of the discrete energy spectrum armd
the corresponding probability densitics. For o given width and depth ol the
square-well potential, there is only a finite number of bound states.

Problems

4.1. Solve the stationary Schriddinger equation for energy £ with o constant
potential Vo= V.

4.2, Discuss the behavior of the solutions for energies E = Vg, £ = W
Which solutions eorrespond to the particular energy £ = Vi 7 These
three cases play a role in the solution of the Schrisdinger equation for
stepwise constant potentials. Figures 4.4, 4.5, and 4.6 give examples.

- - [ T " ' i

4.3, Caleulute the intensities lyglad|® of the transmitted stationary wave
and of the superposition of the incoming and reflected statianary waves
pi(x)|° of Section 4.2,

4.4, Caleulate the probability current density

. fi 2 - . 8 g
Jx) = = it — () — iy — iy
2imn ix dx

for the soluton of the sttionary Schriidinger equation, Consider a po-
tential step of height Wy as shown in Figure 4.1, Show that the current
density is equal in the two spatial regions if the wave function and its
derivative fulfill the continuity conditions at the houndaries between the
different regions of the potential. Explain the result for £ = Vi

4.5, Show that the stationary hound-state wave functions can always be cho-
sen to fulfill one of the following two relations:
i —x) = wlx) o i —w) = —x)

for an even potential ¥ (—x) = Vix). The function @lx) is saud to have
positive parity — also called natural or even parity — in the first relation
and negative parity — unnatural or odd parity — in the second.

5. One-Dimensional Quantum Mechanics:
Scattering by a Potential

5.1 Sudden Acceleration and Deceleration of a Particle

We now study the motion ol & wave packet incident on a potential step. As
already discussed at the beginning of Scction 4.2, the effect of the potential is
the elastic scattering of the particle. In one-dimensional scattering the particle
will be transmitted or reflected by the potential.

If we superimpase the stationary solutions of Section 4.2 with the spec-
tral Function that was used for (he construction of the free wave packet m
Section 3.2,

_ ! (p — po)
(p)= —————exp | ——5—
P = Gy e der?

we obtain an initially Gaussian wave packet which is centered around & = xy
for the values of xp that are far to the left of the potentul step. Its time de-
velopment is obtained by including the time-dependent factor exp(—ifr /R,
E = p/2m, in the superposition.

First, we discuss a repulsive potential, that is, a positive step, Vy = L
and a wave packet with py = 2m V. Figure 5.1 presents the time develop-
ments of the real and imaginary parts of the wave function and of the proba-
bility density. Figure 5. ¢ also shows the position of a classical particle having
the same mamentum jry as the expectation value of the quantum-mechanical
wave packet. Of course, the classical particle moves lo the right in region |
with velocity v = py,/m. Entering region 11, it is instantaneously decelerated
to velacity v’ = pj/m = ,w.-" pi— 2m Vo /m. The most striking effect on the
behavior of the wave packet is thut it is partly reflected at the potental step.
For large times we ohserve o wave packel moving to the right in region 11
and in addition a wave packel which is reflected at the step and is moving
lo the left in region 1. The wiggly structure in the probability density that
occurs close to the step in region | stems from the interference of the incom-
ing and reflected wave packets. The wiggles are caused by the fast variation
of the de Broglie wave function. It is interesting 1o compare the hehavior of
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Fig. 5.1, Time de-
velopments of the
resl part, of the
imaginary part of
the wave function,
amid of the proba-
hility density for a
wave packet inci-
dent from the left
om a potential step
of height Vi =
The form of the
potential Vix) is
again  indicated
hy the long-dash
line, the expecta-
tion value of the
energy of the wave
pucket by the
short-dush  line,
which also serves
as zern line for
the functions plot-
ted, The expecta-
tion value of the
imitiz] momentum
The small circles
indicate the posi-
tinns of o classi-
eal particle of the
same initial mo-
prenbutm,
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Fig. 5.2, Time de-
velopments of the
real part, of the
imaginary part of

~ the wave lunction,

and of the prob-
ahility density for
i wave packet in-
cident from  the
left on a potential
step Vi = 0. The
initial momentum
expeciation value
of  the incident
wave packel s
o= 2m V. The
smull circles in-
dicate the posi-
tions of # classi-
cal particle of the
spme initial mo-

| mentum.
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Fig. 5.3, Time de-
velopments of the
real part, of the
imnpginary  part,
and of the proba-
bility density for a

wave packet inei- |-

dent Trom the feft
o a potential step
of height Vi, = .
The small vircles
in purt ¢ indi-
cate the pusitions
of a classical par-
ticle incident on
{he same potentinl
step.

4
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Fig. 54 A wave
parcket falls ontoe
u potential  step
of height vy < U,
as In Figure 53
The time develop-
ments of the real
pitrts ol {a) the

incident eonstilu-

ent wave, (b the
transmitied  con-

stituent wave, and

ey the reflected
constituent wave.
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our quantum-mechanical wave packet incident on a putential step with that
of the packet of light waves incident on a glass surface, whiclh we studied in
Section 2.5. The principal difference between the two phenomens is that the
optical wave packet shows no dispersion, for its components with different
wive numbers all move with the velocity of light.

We now use a wave packet with a lower initial momentum expectalion
value py so that the corresponding classical particle is reflected at the step.
that is, po < +/2mVy. The time developments of the wave function and the
probability density (Figure 5.2) show that part of the wave packet penetrales
for 4 short while, with an exponential falloff into region 1 that 1s forhidden for
the classical particle, Eventually, the wave packet is also completely reflected.
The penetration into region 11 is analogous to the reflection of hight off o metal
surfuce with finite conductivity,

For an attractive potential, that is. ¥y = 0, the mcture i sirmilar 1o Fig-
ure 5.1, The classical particle is now suddenly accelerated at the potential step
and so is the transmitted part of the wave packet. Part of the wave picket is
also reflected, however. The time developments of the wave function and the
probability density are shown in Figure 5.3. The reflection is not too evident
in Figure 5.3 but becomes apparent in Figure 5.4, Here the real parts of the
incoming, transmitted, and reflected constituent waves are plotted separately,
The constituent waves are shown in their mathematical form for the whole
range of ¥ values. The physical significance of and 1y s restncted o
region I, and that of ¥ to region IL Figure 5.4¢ shows that there 18 indeed 2
sizable reflected constituent wave moving to the left in region 1.

5.2 Sudden Deceleration of a
Classical Phase-Space Distribution

In Section 3.6 we discussed the time development of a classical phase-space
probability density describing a particle which at time r = {his characterized
by the position and momentum expectation vilues and uncertanties (rg, o)
and (@, Tl respectively. It was the bivarate Gaussian

E | [u — %0 + potfm]¥®

o pot) =

BAD § —-=
'E.TTJ.L-HEI'.” 2(] — 1.‘3]- r’:r_,rzi'f:l
(o — x4+ porfmip —m) | (p— pnfl2
—2¢- — -+ :
ﬂ'r“:l U'Jn al'_'
with ; - g
) 0y 8 i
alt) = Jai +odtim* | o= —1—
¥ L g B ay(tm

shown in Figure 3.7,
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We now study the reflection of the particle described by 2, por) by a
very high potential step at x = 0. It has the effect to reverse the momentum
of the particle the moment it hits the point x = (.

For defimteness we assume that vy = Oand |xg| 2 o, The phase-space
density is initially (for 1 = () concentrated around the point (xq. po) far away
from the step, i.¢., it is given by ot = pil and moves to the right just as in
Figure 3.7. For times 1 3 mi|xal/ po reflection has taken place. The phase-
space density moves towards the left and behaves just as if it would have
staried a1 ¢ = 0 with the expectation values {—xp, — p). Le.. 1tis described by

: l I (v — |—xp — rfml"j-
Ly 0= P0 1
ptx, pot) = ———ex l_—_I v
EAJT“.ﬂll"p P 201 — L'-II|: (;-.l-?{”
_gp¥ — |=xo — pat/ml) (p + po) A (p+ pa)*
i) Tp G.f%

It is now obvious that for all times we can describe the phase-space distri-
bution under the action of g reflecting lorce at v = 0 by the sum

ﬂ“][-t gell= pf!i.r. P+ ,rri'[.r. nor, 1o )
For positive x values we have, ol course,
P, pty=0 x>0
In Figure 5.5 we show the time development of aix, oty The initial situa-
tion is identical to that of Figure 3.7 for the force-free case.
The marginal distribution n o,
sl = p% (x4 pl o)
(x — [xp + Pu-’r’”fllll

202(1)

exp

VI2ma

| exp [-- be = [=xo S pat /)t }
15;{“

?E{TL. (il
is simply the sum of the marginal distributions of ,.u';' and p for x < O
and vanishes for v = 0, Tt is the classical spatial probability density and
also shown in Figure 5.5. For times long before or long after the reflec-
tion process it is identical to the guantum-mechanical probability density,
which for a similar case was shown in Figure 5.2, During the period of re-
flection, however, 1 = t|xy|/ po, the guantum-mechanical probability den-
sity plx, 1) = |1,.!r{3r__f]|:r shows the typical interference pattern, whereas the
classical density pf'(x. 1) is smooth. This striking difference is due to the
fact that in the quantum-mechanical caleulation the wave functions (v, 1}
and 1y _(x, £) are added and the absolute square of the sum is taken to form
plx. 1) whereas in the classical calculation the marginal densities pf!, (x, 1)
and p' (x, 1) of the constituent phase-space distributions are added directly.
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Fi, 5.5, Classical phase-space distribution o', g 0 reflected st o high potentinl wall
at v = 0 shown for viarous times. The marginal distribution .rat"i-'-, {1 s shown over
the margin in the background, the marginal distribution ,uj;'ip. 1y over the right-hand
margin of the individual plots.

5.3 Tunnel Effect

In Figure 5.2 we studicd the behavior of a wave packet that was reflected
at a potential step higher than the average energy of the wave packet. We
observed that, during the pracess of reflection, the wave packet penetriled
to a cerain extent into the region of high potential, It would be interesting
now ta see what happens if the region of high potential extends only over o
distance comparable 1o the depth of penetration. We therefore study 0 wave
pucket which is under the influence of u porential barrier. The potential is

3.4 Excitation and Decayof Metastable States ]

constant, ¥ = Vo, in a limited region of space. () < x = o, called region 1. It
vanishes elsewhere, thut s, inregion [ox < O, s in region 11 v = o)

Figure 5,64 shows the time development of the probability density for a
Gaussian wave packet incident in region [ on such o potential barrier. At the
upstep of the harrier at v = 0, we observe the expected pattern of a rellection.
At the downstep at © = o we see a wave packet emerge and travel to the right
in region 1. According to our probability interpretation, this means that there
is 1 nonvanishing probability that the particle described by the original Gaus-
sian wuve packet will pass the potential barrier, although it cannot do so under
the laws of clussical mechanics, Figure 5.6h shows that the probability of the
particle’s tunneling through the harrier increases when the harrier 15 narrower,
Finally, from Figures 3.6b and ¢, we see thal the probability of tunneling de-
creases as the barrier becomes higher These general features have 1o be taken
with caution, for in some potentials there are discrete energy ranges in which
the tunneling probability possesses maxima.

The tunnel effect just described 1s one of the most surprising in guantum
mechanics. [t is the basis for expluining a nomber of phenomena, including
the radicactive decay of atomic nuclel through the emission of an o particle.
The surface region of the nucleus represents a potential barrier which with
high prabability keeps the ¢ particle fraom leaving the nucleus. The o particle
has only a small probahility of penetrating the barries through tunneling.

5.4 Excitation and Decay of Metastable States

The scattering of & wuve packet on two repulsive barriers thal are far apart
compared 1o the spatial width of the wave packet is a very interesting phe-
nomenon, The widith of the two barriers s chosen so that the wnnel effect
allows a sizable fraction of the prabability 1o pass through the two barriers,
Figure 5.7 shows the time development of the packet entering from the lefl,

- We observe that although the major part of the probability is reflected at the

first barrier, another part enters the region between the barriers and retains its
bell shape at least while distant from the barriers, At a later moment in time
the injected packet hits the barrier on the right, and again there 15 partial re-
flection and transmission. Later on in the process the particle is with a certiin
probability confined between the two walls, continuously bouncing hack and
forth and each time losing part of the probability to the outside region. Ex-
cept for the continuous broudening of the particle wave packet, this siluation
is very similar to the analogous process in optics, namely a light wave packet
fulling onto a glass plate, which was shown in Figure 2,12,
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Fig. 5.6, Tunnel effect. (a) Time development of the probability density for a wave packet
incident from the lelt anto o potential barrier of height Vi, The small circles indieate the
positions of a classical particle incident onto the same poteatial barrier () Same as for
part a1, but for o barrier of half the width. () Same as for part b, but for a barrier of
douhle the heighL
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Fig. 5.7, Time development of the probability density for @ wave packet incident from the
lefi onte a double potential barrier The small cireles indicate the positions of a classical
particle incident onto the same barrier.

Of course, no such phenomenon exists in classical physics, since particles
transmitted at the left barrier will also pass the second barrier without being
reflected.

The situation in which u particle is partially confined to the region between
the twa barriers and the probability slowly leaks to the outside region is called
i merastable stare, The term was chosen to invoke the similarity of this stale
with the srable stare or bound state, which we have already discussed briefly
in Section 4.4 A particle in a bound state is permanently confined to a region
of space,

In order to study metastable states more systematically, we now consider
the situation in which the Gaussian wave packet is broad compared to the dis-
tance between the two barriers. Because of Heisenberg's uncertainty princi-
ple, the spatially wide Gaussian wave packet has & narrow momentm spread,
The energy spectrum between zero and the top of the barrier can therefore be
scanned in small intervals. For the two barriers of Figure 5.8, there are various
energy, and thus momentum, vilues for which a fraction of the probability en-
ters the region between the barriers and stays there for guite some time, even
though the wave packet has traveled rather Far away from the reflecting barrier.
Figure 5.8 shows the time developments of the probability densities for wave
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Fig. 5.8, Time developments of the probability densities for wiave packets of miean ener-
pies corresponding o (a) the frst, (h) the seeond, and () the third metasiable states in
u system of twa barriers, The wave packels, which are rather wide in space and thus
possess a small momentum width, are ineident from the lell onto the double poteniial
barrier. The small ¢ircles indicate the positions of o classicul particle incident on the
sune barrier.

3.4 Excitation and Decay.of Metastable States i)

Fig. 5.9. Time development of the probability density for a wave packet that has the
same mean energy a5 that of Figure 5.8c but is ten tmes as wide, Again, the wave packet
i5 incident onte a double potential barrier. The small civeles indicate the positions of o
classical particle incident onte the same harrier,

packets of the three avernge energics that correspond to the three lowest-lving
metastuhle states in this syvstem of two barmiers, The probability densities af
metastable states hetween the two walls are distinguishable by the number of
nodes they possess. This number increases as the energy of the state increases,
When the potential between the two barriers is not less than zero — in our case
iLis exactly zero — the lowest metastahle state has no node.

If the potential is sulficiently negative between the walls, the lowest-lving
metistable state, which, of course. has positive energy, may have one or maore
nodes. Then the states with a smaller number of nodes have negative energy.
Therefore no prabability can leave the region between the walls, for no par-
ticle with negative energy can exist outside the barmers. Thus these states

-re stable or hound, To complicate matters, the behavior of the wave pack-

ets discussed so far depends not only on their average ¢nergy but alse on their
spectrul function in momentum space, that 15, on their spatial form. In order o
rid ourselves of this complication. we shall study wave packets with a smaller
and smaller momentum spread. They are of course very wide in space,
Figure 5.9 shows the time development of the probability density For a
wave packet whose average encrgy is cqual o that of the third metastable
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state, It corresponds to Figure 5.8¢, except thal the wayve packet now has ten
times the spatial width; its width exceeds by lar the dimension of the figure. In
the rezion to the left of the barriers, we abserve the wiggly pattern typical for
ihe interference berween the incoming and the reflected wave packet. Between
the two barriers the probability density keeps increasing with time up to the
maximum amplitude, which is reached when the bulk of the wave packet has
been reflected and has moved to the left. From then on the metastable state
with two nodes decays slowly, in fact exponentially. The excitation of the
metastable state in Figure 5.9 15 much greater than the excitation of that in
Figure 5.8c¢. The greater width af the wave packet in Figure 5.9 implies a
narrower spectral function, which therefore contains more probability within
the energy range of the metastable state.

To study the lifetime of metastable states, we observe their excitation and
decay, as shown in Figure 5.9, over o longer period of time. In Figure .10
it is easy to see that the amplitude in the region between the two barriers
drops exponentially with time. We can measure the lifetime by determining
the time in which the amplitude decreases by a factor of two. This we call
the half-life of the state. Figure 5.10b shows the excitation and decay of the
metastuble stute with only ane node, corresponding 1o o lenwer eneray, in the
same time scile as the metastable state with two nodes, The hialf-life is now
considerably longer. Even longer is the lifetime of the metastable state with
no nodes. In Figure 5.10c, which is in the same time scale s Figures 5,100
and b, the amplitade has not decreased yet; the time interval of the figure is
still in the excitation phase,

5.5 Stationary States of Sharp Momentum

We have just discussed the one-dimensional scattering of wave packets of nar-
row momentum spread and large extension n space. By reducing the momen-
tumt spread further, we obtain as the limiting case a harmaonic wave Wex, 1)
of fixed energy and momentum. After separating off the energy-dependent
phase factor expl—i£1/h), we are lefl with a stationary state @g (), which
was discussed in Chapter 4. The intimate relation between wide wave packets
and stationary states allows a direct physical interpretation, in terms of parti-
cle mechanics, of the characteristic features of stationary states, A stationury
state can be thought of as # limiting description of a particle with sharp mo-
mentum.

We arc able to understand important details about metastable states through
the study of stationary states in our potential with two barriers. We recall that
within the barriers, that is, n regions 11 and 1V, the potentiul is constant and
positive, ¥ = Vg = 0. Outside the barriers, in regions I, 111, and V, it van-
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Fig. 510, ia} Time development of the process shown in Figure 5.9 but observed over a
Ionger period of time. Once the bulk of the wiave packet has been veflected, the metastable
state decays like an exponential function in time. Parts b and © are the same a5 part w
but for the two metastable states that lie higher in energy. Parts s, b, and ¢ of this ligure
corvespond to parts u, b, and ¢ of Figure 5.8, The wave packets, however, are much
broader, and the time interval shown is much longer
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Fig. 5.11, Energy dependence, over a small range of energics, of the intensity of a har-
maitie wave incident onto a double potential barrier. The middle lne corresponds (o a
TESOMANCE LHETEY,

ishes. V. = 0. Figure 5.11 shows the energy dependence of the stationary
state g (x) in the potential with two barriers. That is, the solution of the time-
independent Schrisdinger equation for this potential is energy dependent. The
quantity plotted in Figure 5.11 is the intensity, introduced in Section 4.2, of
this stationary solution. The range of energies shown in the ligure comprises
the energy of the metastable state with two nodes, which we discussed ear-
lier and showed in Figures 5.8¢. 5.9, and 3.10c. When the energy is lower
than that of the metastable state — in the background of the picture — only a
small fraction of the intensity is transmitted through the barriers info region
V. There is a prominent interference pattern in region | from the superposition
of the incoming and the reflected wave, As the energy approaches that ol the
metastable state, the reflection decreases to zero, the interference pattern van-
ishes. and the full intensity of the incoming wave is transmitted through both
barriers into region V. At the energy of the metasiable state, the intensity in
region [11, between the harriers, reaches its maximum and assumes the two-
node structure that is characteristic of the metastable state. This phenomenon
is called a resonance of the system. As the energy increases further, the in-
tensity in region 111 decreases as does the transmission into region ¥, The
interference pattern in region | reappears as reflection grows.

5.5 Stattonary Statesof Sharp Momentum O3

Resonance phenomena are well known in many branches of physics.
The best-known example from classical physics 15 the resonance of a pen-
dulum excited 10 forced oscillation of a particular frequency, Our example
of a quantum-mechanical resonance has a striking similarity to optical reso-
nances. In Section 2.3 we saw that light ar particular frequencies is transmit-
ted through a glass plate without reflection. In the terminology of guantum
mechanics. the words metastable state and resonance are often used synony-
mously,

As long as we are not interested in the details of the propagation and
deformation of a wave packet with definite initial shape, but only in the frac-
tion of probability with which reflection or transmission occurs, knowledge
of the complex amplitudes of the stationary waves in the far left and far night
regions — in our example regions | and V. in general regions Tand N -
enrirely sufficient, The stationary waves in these two regions are

: y
gl exp [?—? plx — .1'41]} + By exp |: ;; plx— .1.'1|]:| i

i
prix) = Axyexp |:Fp[_{ __1,-”]]
i

The fact that we are dealing with a particle that can anly be reflected or trans-
mitted obviously requires that

|Ax] + |Bil* =

This relation, which expresses the conservation of the total probability of
observing the particle, is called the wnirarity relation for the scallering am-
plitudes Ay and By For vanishing reflection, By = 0, the unitarity relation
allows a circle of radius | in the complex plane for Ay, Figure 5.12a shows
the energy dependence of the complex number Ay, again for the problem
with two potential barriers. The upper left part of the figure is an Argand di-
dgram. A plane is spanned by the axes Re Ay and Im Ay For o fixed energy
value the complex number Ay is given by the point Ay = {Re dAp, Im Axd
in the Argand diagram, The line in this fgure shows the vanation with energy
of Ay s a complex number. The auter cirele corresponds to [Ay| = 1. Ob-
viously, Ay always stays within this circle, indicating the energy dependence
of Im Ay and Re Ay, respectively, We follow the energy dependence from
E =0t E = 2V, where Vy is the height of both potential barriers. The
imaginary part of Ay stays near zero for almost all energies bielow the barmier
height Vi, slowly deviating from that value for larger energies. For resonance
regions of the energy, Im Ay rises guickly, then falls even more steeply Lo
negative values in order to rise quickly again to zero. The real part of Ay
displayed below the circle also shows for most energies lower than Vi very
little deviation from zera. With increasing cnergy it drops to negative values.
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Ly il For the resonance regions it has negative peaks which become wider with in-
b i - ereasing energies, Finally, the absolute square of Ay, shown in the lower right
= corner, again has peaks of increasing width in the resonance regions. |A Nl
v § has a tendency to approach one for energies far above the barrier height. For
1 J,‘ /"I| ' these energies lota] ransmission is expected.
wdehy ( i 77 Returning to the Argand dingram, we are now able to recognize the typical
/! EF l/ | Yath signatures of resonances. Outside the resonance region Ay varies very slowly
A iy with energy; for energies lower than the harrier height, it stays near the origin
R T of the complex plane. In the resonance region it passes quickly and counter-
— L clockwise through a circle and causes the lypical resonance patterns in the
I 5 W real and imaginary parts. For energies above the barrier height, the cireles no
& longer retum to the origin of the complex plane, for the transmission outside
I' II".I / 3 the resonance regions is sizable.
i Yet another sel of parameters is used to characterize the effect of the po-
| tential on the particle wives,
(|

Ay = ||2iT‘[' ,
H]’ = ZlT]{

- e

o
M

The transition-matrix elements Ty and T describe the deviation of the pa-
ramelers Ay and 8 from the sitwarion in which the wave travels without a
T potential being present, that is, the deviation from Ay = 1, B; = . The
factors 2 are introduced for convenience,

Inserting these expressions into the unitarity relation for the scaltering
amplitudes, | Ay |" + |B1]° = 1. we find the unitarity relation for the T-matrix

. i _JI |\_/'I clements:
o T o
._|_ ImFr=TT{ + 1wl
This equation can be rewritten in terms of real and imaginary parts ol Ty

| a
s = 5 ST :
a5 o 15 I {Re 771"+ (lm Pipee ;) =~-— Trly

4

Tyl For Tp 1y = 0 this relation describes complex numbers Tl on i circle of
4 - radius | /2 centered around the point i/2. Because ol [8;1% = |, we have
|

A Al

||-. ‘j \ A Fig 5.12, (a) Eoerpy dependence of the complex amplitude Ay of the part of a harmenic
Jrivt | weave that is transmitted through the system with a deuble potential barrier. The energy
0 i 1 runges Trom zero to @ value twice the barcier height. The energy dependence of Ay
! " Is shown s o line, startiog from the origin, in the complex plane at upper left. The
- cirele around the origin indicates the maximally allowed region for Ay, The energy
dependence of the real part, projection onto the real axis, s shown below, that of the
[ imaginary part, projection onto the imaginary axis, to the right. The lower right of the
figure shows the energy dependence of | Ay (7. (h) The parts of this fipure are the same
it those of part a, but they are for the transmission-matrix element Tr = Ay — /025
The line starts at point i/2 in the complex plane. The circle around point [/2 indicates

the maximally allowed region foe Ty,

m

Fig. 5.1

12
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[Te|* = 1/4 so that the right-hand side of the equation remains positive or
zero. For nonvanishing 7 the complex numbers Ty therefore full within the
circle. Figure 5.12b shows in the upper left the Argand diagram of Ty with
the eircle of radius | /2 centered around i/2 limiting its possible values. 1t also
contains the projections Im Ty E). Re T E) as well as T E)7. Because of
the simple relation between T and Ay, the features ol these diagrams are in
one-to-one correspondence with those of Figure 5,124

In elementary particle physics Argand diagrams of the type given in Fig-
ure 5.12 are used to study the complex scattering amplitude; This amplitude
deseribes the collision probability of two particles. Detection of charicteris-
tic circular features is equivalent to the discovery of metastable states, Such
states are considered to be elementary particles with very short lifetimes.

5.6 Free Fall of a Body

In Section 4.3 we dealt with a constant force, Le., a linear potential. The mo-
tion of a body of mass m under the action ol & constant force £ = mg 15
described by an initially Gaussian wave packet. The initial expectation values
are xp, po = iy, the initial spatial width is o, or equivalently in momentum
space, @y = i 2oy The time-dependent wave function of the wave packet
is given by

thiv. f) = —;ex]} B (.E_—M)z
41.11'1;'5 2. (1)
B i ; [(””n 'ﬂ + fmr*}) v = (x(t)}]+ feelt f:“
3 " 200 s .

Here

': Lid} T-'ﬁ ; a ] = l Eﬂlrl
ity = — gy sl -f =gt | — —arctan | —=f
) 7 g+ + guai” - 3.!3 3

is a time-dependent phase,
! = §.2
VN [lr]:l = X7 -+ pd -+ EI

is the position of a free-falling classical particle of iminal position xy and ve-
loeiny 1y, and

fpl)) = ot mgt
its momentum. The time-dependent width of the wave packet is as in the
force-{ree mation
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4 L
Fe
T 1 ul
mlr) = o, 4+ “'raf'
e

The quantity ¢(7) is given by

o 1
clf) = —~&

merg i)
The phase of the wave packet contains a term praportional 10 [x — (o)},

= A

| [ |
dlr) = [ammw{n = '%J [x — {xie)}] .

!
which can again be interpreted as a product of the coordinate and a time- and
position-dependent effective wave number:

ol 1 ( i [I].r—i.-.'[r]:' ]

el = — | B e ) ————0

el p \ PO SRS

It reveals the correlation between x and p = fkem. For fixed ¢ oand al x =
fxir)) the effective wave number is equal to

|
kepllalr)). 1} = Erf-?'l'.l |- mgt)

This is to say, at the classical position of the particle at time ¢ the momentum
has the classical value py + mgi- For positions x = {x(1)), the effective wave
number is larger than { po + mgr) /. For x < {x{6)) the apposite holds true,

In Figure 5.13 we show the tme development of the wave function and its
absolute square for a particle initially at rest, vy = U, and being pulled to the
right by the constant force F = mg. It illustrates the free fall of a particle as
described by quantwm mechanics,

In Figure 5.14 the situation is slightly more complicated. The particle has
an initial velocity vy = 0 and the constant force now pulls to the left, g = 0.
In classical mechanics the resulting motion is that of a stone being thrown
upwards against the direction of the gravitational force.

The mation of i classical particle described by a Gaussian probability dis-
tribution in phase space under the action of a constant force is cusily described
if one uses arguments analogous 1o thuse of Section 3.6. Also in this case
the classical phase-space probability density stays a hivariate Gaussian deter-
mined by the expectation values (x{2)) and {p(r)) of position and momentum,
the widths o, (1) and a, — the latter being constant — and the correlation coef-
ficient ¢(r). For all five parameters the classical and the quantum-mechanical
caleulations yield the sume result. Moreover, the widths and the correlation
coefficient are the same as in the case of the force-free particle.
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Fig.5.13 Time develop-
ment of the real part, the
imupinary part, and the ab-
solute squure of the wave
function for g wave packet
which is initially at rest
and which is pulled to the
right hy a constant foree.
The (linear) potential of the
force is indicated hy the
long-dash line, the expec-
tation value of the energy
of the wave pucket by the
short-dash line which also
serves as sery line for the
function plotted. The small
circles indicate the posi-
tinm of a classival particle
withinitial pusition and mo-
mentum equil 1o the cor
responding cxpectation val-
uis of the wave packel.

Seattering by u Potential

5.6 Free Fall of o Body gy

Fig. 5,04, As Figure 513 but
Tor an initial velocity v, = O
and for o constant force
pulling the particle to the
left.
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Fig. 5.15, Time development of the classical phase-space probahility density o lix, ol
corresponding to the quantum-mechanical situation of Figure 5.4, The Irajectory of
the point ((x(21}, (pied)) defined by the expectation values of position and momentum
between the time @ = i = O and the actual fime is shown for each plot. Alsa shown are
the marginal distributions ;r_f[_x 1 in position and ,.-..-;': pa ] in mementunm.

The time development of the classical phase-space probability density of
a particle with an initial velocity opposite to the direction of the constant foree
is shown in Figure 5.15. The point ({x()}. {p{r)}}, given by the expectation
values in position and momentum, moves on a parabaola in the x, p plane. The
initially uncorrelated distribution develops an increasing positive correlution
hetween position and momentum, While the momentum width stays constant
the spatial width increases, All these fedtures are also apparent in Figure 5.16
which shows the motion of the covariance ellipse in phase space.

Problems 10

_..'1.

— ¥

Fig. 5.16. Motion of the covariance ellipsoid of the tlassical phase-space prohability
density of Figure 5,15,

Problems

5.1, Figure 5.1¢ shows the probability density and the classical position of
a particle moving toward and heyond a potential step. Why is the wave
pucket narrower immediately after passing the positive potential step
than before passing 117 Predict the behavior of the wave packel al a
negative potential step and verify this in Figure 53.3¢.

5.2, Determine the ratios of the amplitudes of the metastable state at sucees-
sive equidistant moments in time, Use a ruler to measure the amplitudes
in Figure 5.9, For later moments in time, the ratios tend to i constant
value, indicating that the decay is hecoming exponential. Why is the
decay slower earlier in time!

5.3, Plat the amplitudes of the probability densities in the region between
the two potential barriers for the energies £; corresponding ta the thir-
teen situations shown in Figure 5.11. The energies are equidistant, that
is, £ 41 — £ = AE = constunt, Fit the result to a Brei—Wigner distri-
Brtion,
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' I-I:.-'l"l

FLEY= Aﬁ_.- “EV T4

For E,, use the energy of the maximum amphitude and give the width 7
of the distribution in wnits of AE,

Figure 5.12 shows the energies of the resonances in the double potential
barrier, Culculate the ratios of the energies of the three lowest resonance
peaks as they are given in Figure 5.12h. Compare the ratios to the corre-
sponding ones of the bound-state energies of Figure 4.8. Compare both
sets of ratios o Figure 6.1 and the formula for the deep square well
given al the beginning of Section 6.1

6. One-Dimensional Quantum Mechanics:
Motion within a Potential,
Stationary Bound States

Si far we have dealt with the motion of particles with 4 total energy E =
Epm + V that 15 positve at least in region |, the region of the incoming par-
ticle, OF course, ¢lassical motion inside a finite region where the potential is
negative is also possible for negative total energies, as long as Kinetic encrgy
Epin = £ — V is positive. We now study this system from the point of view
of quantum mechanics.

6.1 Spectrum of a Deep Square Well

As a particularly simple systerm, let us consider the force-free motion in 4
region of zero potential between two infimtely high potential walls at v =
—d /2 and x = d/2. Since the potential outside this region is infimie, the
solutions of the time-independent Schrisdinger equation vamsh there. Within
this region they have the simple forms

fai

ix) .'ll" ol il 1 =1,3, 5
wulx) =) —costhr=) . =3 Fes
! Vd d
or
2 X
alnl = —sminoT—=1 n=2:4.6...
¥a y o i

The energies of these bound stales are

E | (an : 123
= — — > Heom LBy
“T2m\ o :

as we easily verify by inserting ¢, into the time-independent Schridinger
cguation
nE d2
_ﬂﬁfﬁr = Euipn
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which is valid between the two walls. Figure 6.1 presents the wave [unction,
the probability density, and the energy spectrum. The lowest-lying state at £,
called the ground state, has a finite energy £ = 0, which implies a kinetic
energy En > 0 since the polential energy V' is zero by construction Adready
this situation differs from that in classical mechanics, where the state ol least
energy is of course the state of rest with £ = Eyp = . The higher states
inerease in energy proportionally to n®. The greantum mumber i is equal to one
plus the number of nodes of the wave function i the region —d /2 < & = &/2;
thatt is, the boundaries ¥ = %4 /2 are excluded. The wave function has even
or odd symmetry with respect to the point + = (). depending on whether n i
odd or even, respectively. Even wave functions, here the cosine functions, are
said to possess even or ratural parity. odd wave functions odd or annaniral
parity. Obyiously, wave functions with an even number of nodes have even
parity, those with an odd number odd parity, This property also holds for other
one-dimensional potentials that are mirror-symmetric.

6.2 Particle Motion in a Deep Square Well

In Section 6.1 we found the spectrum of eigenvalues E, and the wave func-
tions describing the corresponding eigenstates @, {x) Tor the deep square well,
The solutions of the time-dependent Schrivdinger equation are abtained by
multiplying g, () witha factor expl —1£,0 /h). Througls a suitable superposi-
tion of such time-dependent solutions, we form a moving wave packet which
af the initial time ¢ = O is bell shaped with a momentum average 1. lts wave
function 15

tn ] "
. b
wrlx,t) = E ol o, 2ol () exp [_ELHI]

=l

where the coefficients ay( po, xo) have been chosen 1o ensure 3 bell shape
around Tecation xpy for 1 = (0 and the momentum average po.

Figure 6.2 shows the time development of the probability density lyrix, 012
for such a wive packet, We observe that Tor 1 = 0 the wave packet is well lo-
calized about initial position 1y of the classical particle. It moves toward one
wall of the well, where it is reflected, Here it shows the pattern typical of in-
terference between incident and reflected waves, The pattern is very similar
to that caused by a free wave packet incident on a sharp polential step, shown
in Figure 5.2¢. It continues o bounce between the twa walls and is soon S0
wide that the packet touches both walls simultaneously, showing interference
patterns at both walls,

[t is interesting to see how the spatial probability density o, 1) de-
rived from a classical phase-space probability density behaves in time. This is

£.2 Particle Motion imra Deep Square Well 1065
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Fig. f.1. Bound states in an infinitely deep square well. The long-dash line indicates the
potentinl energy Vc). T vanishes for —d/2 = o = o /2 and is infinite elsewhere. Poings
¥ = =+ /2 are indicated as vertical walls, On the left side an energy seale is dravwn, and to
the right of it the enerpies £, of the lower-lying bound states ave indicated by horizantal
lines, These lines are repeated as short-dash lines on the left. They serve as zero lines for
the wave functions @+ ) and the probability densitics [l of the bound states,



1016 f. Motion within a Potential, Stationary Boumnd States
= = ,
|I| . I :'I
II.: i Lk
| N
| f‘”’f '
| II _Ff-'f\r\"f __,---*"’F-F
|I I'\_,_,.,—'-""'f- \.“-"""_Fﬂ_'-;’f_--\-\-\__'-_ u}
_,-o--"")l @ £ 4 _'-.f- -& ,_ﬂ H
_ e & ; // II&.{.’I M\l'u".lhiﬂf‘llll' B Py
L’ _,-F--'--FF- _,_,--""_Ff o - i r ___,_.-"l'
;_,.,-o-""-'""' ____,.,-o-""'"-'- --‘_c’_,._,.-"'__f- = [ L : -
e f_,_...rf _..--";'p"f'--?-'_ 3 _,_..,--"';F J

”"’Mﬁ@wﬂw‘“‘wf j:ﬂ"’
Il .I'wg,'l'.'.'i-"""@ ko u,r".’-"llnl"l'll'lli
‘ |'|| mﬁ“'lﬂuliﬁw_ m:ﬁ__:_-h W ;,'gﬂ'l"'f"'"m ﬂ".l'l.’ it
= YR = peli? i g
ll-lli W 'ru‘!l x P M\Iww oy iijl il'l%ﬂ-"ﬁ f '1‘ i"Iuri@}r!llllilll-IIII

P L i il

el

s p -
m 8

Fig. 6.2. ‘Top: Time development of @ wave packet moving in an infinitely deep square
well. AL 1 — 0, in the background, the smooth packet is well conventrated. Tts initial
momentum makes it bounce back and Forth between the two walls. The characteristic
interference pattern of the refleetion process, as well as the dispersion of the packet
with time, is apparent, The small eircle indicates the position of the corresponding
classical particle. The quantum-mechanical position expectation value is shown by o
small triangle. Bottom: Time development of the spatial probability density mmpu_ti!ri
from the classical phase-space distribution corresponding 1o the guantum-mechanical
wive pucket.
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shivwn in the bottom part of Figure 6.2, As long as the bulk of the probability
density is not close to the walls the quantum-mechanical density [ (x, H?
and the classical density o%'(x, 1) are very similar.

Mear the walls, however, the quantum-mechanical wave packet displays
the interference pattern typical for the soperposition of the two wave Tunc-
tions incident on and reflected by the wall. As the packet disperses the inter-
ference pattern fills the whole well. No interference is observed in the time
development of the classical phase-space density. It 15 obtained as the sum

i, = i (x — vut — 2nd)”
) = —m— eap | ——— —
ptx S () At F 20 2(t)

(x + vyt — {2n 4+ 1)d)? |
2a (1)

+ eéxp [—

with the time-dependent width of a free wave packet:

—

| il .
oy lt) = n_k.f-.y.'l + ( £ )

Teq i

by a simple generalization of the sum at the end of Section 3.2 from the re-
flection at one high potential wall to the repeated reflection hetween two high
walls.

We now want to study the guantum-mechanical wave packet in a deep
well over a much longer period of time. At the end of the time interval studied
in Figure 6.2 the quantum-mechanical probability density [frix, 1 )| accupies
the full width of the well and one might be inclined to think that it continues to
do so. It is easy to see, however, that the quantum-mechanical wave function
Yo, 1) must be periodic in time, the pericd being

g2
(k]

where @) is the frequency of the ground-state wave function

E fi pmnd
L} = ﬁ-] Zgir(g)

Since all energies £,.n = 2, 3, ..., are integer multiples of £y, the period
Ty of the ground state is also the period of the superposition ¥ (x, ¢} that
deseribes the wave packet. Because of this periodicity in time the original
wave packet must be restored after the tme 7 has elapsed. In Figure 6.3 we
show the time dependence of the same wave packet as in Figoure 6.2 over a
full period T and find our expectation verificd.
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Fig. 6.3, Time development of the same wive packet as in Figure 6.2 but observed of a
full vevival period 7). The time interval shown in Figure 6.2 is 1) /60,

The periodicity is called revival of the wave packel, As we shall see in
Section 13.5, the phenomenon is also encountered in the wave-packet motion
in the Coulomb potential, e.g., in the hydrogen atom as an approximate re-
vival, To a lurger or lesser degree it exists in all systems with diserele spectra
of reasonable spacing, In the case of the deep square well it is, however, an
exact revival.

In addition to the revival at r = T} we can also observe fractional revivals
at the times ¢ = (k/¢)77. Here & and ¢ arc integer numbers. Since in Figure 6.3
the time T} is divided into 16 equal intervals it is casy to observe the packet
at the times 1 = T1/2, T/4, T /8, and 74/ 16. For these times the [unction
|, £1])% consists of 1, 2, 4, and § well-sepurated “Gaussian™ humps.

6.3 Spectrum of the Harmonic-Oscillator Potential

The particle in a deep square well experiences a force only when hitting the
wall. A simple, continuously acting force F(x) can be thought of as the force.
of a spring, which lollows Hooke's law,

Fix)=—kx k=0

&5 Spectrum of the Harmonic-Oscillator Potential 1w

This force, also called a firmonic force, 1s proportional o the displucement
v from equilibrium position x = 0. A physical system m which & particle
moves under the influence of a harmonic force is called a harmonic oscillator,
The proportionality constant & gives the stiffness of the spring. The potential
energy stored in the spring is

Vil = -x°

[l | Pe=

A classical particle of mass m performs harmonic aseillations of angulur fre-

quency
w= ki

o that V(x) can be equivalently expressed by Vi(x) = (m/2)e”x". Introduc-
ing this expression into the time-independent Schridinger equation yields

nod? [
—E;d? = ?u:‘x' Qﬁ‘[f} = E#JET]

With the help of the dimensionless variable

s= X =)

iy

the equation above simplifies to the reduced form

1 :
E(—F+EE)¢[E}=f'¢i53 : @) = @lonk)
The dimensionless cigenvalue & = £/ fis measures the energy of the oscilla-
tor in multiples of Planck's quantum of energy fe,

The solutions of the Schrisdinger cquation for the harmonic osciliator can
be normalized (see Section 4.4} for the eigenvialues

I
g =Tt | =0l 200w

thus determining the energy eigenvalues of the harmonic oscillator,

|
Ey, =gl = [n+ ;’}hm

The state of lowest enerpy Fy = he/2 is the ground state. The energies I,

of the higher states differ from the ground-state energy by the energy of «

guanta, each having the energy fies of Planck’s quantum {see Chapter 1)
The eigenfunctions, normalized in £, can be represented in the form

D (E) = (ST H B L n=0,1,200

where the H, (&) wre the Hemmite polynomials, They are given by
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Fip. 6.4, Hermite polynomials /7,101 and efgenfunctions g, (5 of the harmonic pscillator
oo Do values of ».

Hotkr=1 Hi{§y=28 .
and for higher values of #n by the recurrence relation
Hagy=26H, |8y —2in— 1YH, _2(E) | =2 Bies

Figure 6.4 shows the Hermite polynomials H, (&) and the normalized eigen-
functions g, (£) for low values ol n.
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The eigenfunctions g, {1}, normahized in v, are

2
Palx) = (ou /720~ 2 1, (l) exp (_ X ) :
)

e
2y

They are plotted in Figure 6.5 together with the potentual energy Vix).
The dashed lines indicate the enerey eigenvalues in relation 1o the bottom
of the potemtial energy. They serve as zero lines for the corresponding g,
On the lefti-hand side the energy spectrum is shown, The exponential factor
exp(—E7/2) in the formula for @, ensures thal

gl — O for |x] —= o0

rendering these wave functions normalizable.

Figure 6.5 gives the probability densities |¢, (x)|2, showing that, even in
ragions where £ is smaller than V| there is a certain probability of abserving
the particle. The absofute square of the wave function of the ground stute
formulated in terms of the position variahle ¥ = apé has the form

gl )| 1 ex *
) [F e —-
o oy T\ 2a3/3

The exponent in this equation shows that the width of the probability density
of the harmonic oscillator’s ground stie is ag/ ﬁ

6.4 Harmonic Particle Motion

We now consider the guantum-mechanical description of a particle moving
under the influence of harmonie force. The particle at mial time ¢ = 0 is
at rest when placed in a position ¥ = xp # 0, which is not the equilibrium
position of the oscillator. In terms of a wave function, the initial state consists
of a Gavssian wave packet of widlh & with zero average momentum and an
_Expecm{iim value at position x = xp of the corresponding ¢lassical particle.
This wave packet can be decomposed into a sum over eigenfunctions g (x)
of the harmonic oscillator,

e
wix) = Z g ix} -
w=I}

The time-dependent solution of the Schridinger equation with () as initial
wave [unction at + = 0is then simply

wix, ) = Zﬂnﬁﬁuix} exp (—%Euf) v

n=0l

where £, = (n + 1)he.
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Fig. 6.5. Bound states in a harmonic-oscillutor potentinl. The potential is drawn as a
long-dash line, a parahola. The cigenvalue spectrum of bound states {in units of /o) is
indicated by the horizontal lines on the lefl side. Repeated on the right as short-dash
lines, they serve as zero lines for the wave funetions o) and the probability densities
l@ix)” of the hound states,
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The tnfimte sum can be added up explicitly. For brevity we give here only
the result For the ahsolute square of the wave function,

D | 2o 2a? : 2
iy, )" = X [~ (F — ) !
NG Jois? +dadc? ais? + dotcl

whete ¢ and 5 represent coseof and sinw!, respectively, and where o/ V2 is
the width af the probability distribution of the harmonic oscillator’s ground
skale, as introduced Tn Section 6.3, This equation represents a Gaussian dis-
tribution with oscillating expectation value xg(r) = xgcoswt and oscillating

width a (1) = \ o sin® wt + 4o cos” wt /(207), OF course, for the initial time
¢t = 0 the time-dependent width o (1) reduces to the initial width o.

Figure f.6a shows a time development of a wave packet in the harmonic
oscillator with initial width ¢ = ap/ V2. As expected, the time dependence
of the average position performs the same oscillation as the corresponding
classical particle. The width oseillates with twice the frequency of the oscil-
lator, starting with o and increasing for the lirst quarter petiod T/4 = m/2w
to its maximum vilue o {7 /4) = crﬂz;'{ﬂcr}. In Figure 6.6b the nitial width is
o = ay/~'2. Here the wave packet is wide initially and becomes narrower in
the first quarter period, decreasing to the minimum value o /(2 ), The case
e a{.;’u@ {Figure 6.6¢). in which the width of the packet remains constant
in time, represents the border line between the two situations, The particular
vitlue 4:rn,.-'\f"’1_J s exactly the width of the absolute square Ir,::lulJ of the ground-
state wave function (shown in Figure 6.5). The factor +/2 appears since og
was defined conventionally as the widih of the wave function gy itself. In all
three situaltions the behavior of the position expectation value is identical and
equal to that of the classical particle.

We now look at half a period of the oscillation in more detail. In Figure 6.7
(top), which depicts this tme interval. the ume development of the probability
density is plotted again for a wave packet with initial width smaller than the
ground-state width ag/ /2. The real and imaginary parts of the wave function
are shown in the lower plots of Figure 6.7. At the turning points, r = 0 and
t = T2, the wave function is purely Gaussian and either real or imaginary.
For other moments in time. the wiggly structure originates from the super-
position of the eigenfunctions of the harmonic oscillator, As is true of the

tigenfunctions themselves, the distunce between two nodes increases in the
Wiecinity of the trning points. For a free harmonic wave the distance between

two nodes is half the wavelength; a large wavelength signifies low momen-

Aum. We can therefore interpret the increasing distance between nodes in the

vicinity of the turning points as the slowing down of the particle.
Finally. we look at the particular situation of a particle “at rest” in the
center of the oscillator (Figure 6.8), Initially, the particle s sharply localized
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Fip oub, Time devel-
opment of o Craws-
sian wave packel, rep-
resenled by its proh-
ability density, under
the influence of a bar-
monie force, The cir-
eles show the mulion
of  the  corvespond-
ing classical particie.
The hroken lines ox-
tend betwern ils (urn-
ing points. The wave
packet s imitially al
rest at an off-center
position. (a) The ini-
tinl width of the wave
packet is smaller than
that of the oscillatur's
ground state. (b} The
inftial width of the
wave packel is greater.
(ch Both widths are
[CITHIN

.4 Hurmonic Particle Motion i3

Fig. 6.7, Time  devel-
apment of o Gaussian
wave packet unmder
the influence of a har-
monic force, observed
over  hall an  oscil-
lation period. Shown
are  the probability
density, the real part
ol the wave func-
tion, and the imagi-
nary parl of the wave
function.
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Fig. 6.8. Time devel-
ppment of 1 wave
packet at  rest in
the center of o har-
monic ascillator. The
packet is represenied
by its probability den-
sity, and by the real
part, and the imagi-
mary part of its wave
funection. Since its ini-
tial width is differcot
fronm that of the os-
cillator's ground state,
the widih of the packet
oscillates in time with
twice the oscillator
frequency, Except for
the initinl position, all
parsmeters are iden-
tical te those of Fig-

ure .7,

fi.4 Harmonie Particle Motion 11y

compared o the ground-state width, that is,. o < au/ /2. The expectation
value in space remains at v = 0, just as the classical particle does, The width
of the wave packet, however, oscillates with twice the oscillutor fregquency
between 1ts inttial value o and its maximum value rrnlg’ (2e ). Only for initial
witlth 7 = &g/ +'2 daes the absalute square ol the wive packet keep its posi-
tion as well as its shape.

The wave packet of Figure 6.6¢ is called a coherent state of the ascillator,
While oscillating the wave packet keeps its width equal o the ground-state
width of the vseillator, Avall times it is o minien-wancerasingy state, that is w
say, it fulfills Heisenherg's uncertainty principle as an equation Ax Ap = fi /2.

The ground state of the harmonic oscillator is a particular coherent state
because it 15 also an eigenstate of the Hamilton operator. The other coherent
states are not among the ergenstates but are particular superpositions of eigen-
states of the harmonic oscillator. Since the various eigenstates differ inenergy.,
a coherent state, except for the ground state, is a superposition of states with
different numbers of energy quanta fien. The weights pia), with which these
states of different numbers 7 oof energy quanta fe contribute to the coherent
state, follow a Poisson distribution, of. Appendix G,

n :|“

_E.—l:ﬂr}

i) =
t n!

Hete (1) is the expectation value of the number of quanta given by

({H} - é) her = {EY
where { £} is the energy expectation value of the coherent stute. 1t therefore
has a nonvanishing variance of the number of energy quanta and of the energy,
If an external force acts upon a harmonic escillator in its ground state, the os-
cillator responds with a transition into another coherent state, If the action of
the external force is terminated at some time #y, the state of the oscillator be-
haves as the ¢oherent stale of Fleure 6.6¢. It performs a harmonic oscillation
along o classical trajectory with the frequency o of the classical oscillutor,
Coherent states play an important role in quantum optics and quantam elec-
tromics.

The initial packels shown in Figures 6.6a and b are not coherent states.
Their initial widths are different from the ground-state width o/ V2. They are
called squeezed states. Squeezed states are not minimum-uncerainty states
at all moments of time. Four times during one period of oscillation, how-
ever, they develop into minimum-uncertainty states. As we have seen in Fig-
ures G.6a and b, wave packets representing squeezed states also oscillate so
that their expectation values follow the classical trajectories, Their widths,
however, vary with ume. They oscillate back and forth between a minimum
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and a maximum value, The distibution of the numbers of the energy quanti
contributing to & squeezed state deviates from a Poisson disiribution. Not be-
ing minimum-uncertainty states, squeezed states allow one observable quan-
tity of an oscillator to be less uncertain than it is in the ground state, at the cost
of the other observables occurmng in Heisenberg's uncertainty principle. For
this reason squeezed stales are of great interest in the theory of measurement
of weak signals.

6.5 Harmonic Motion of a
Classical Phase-Space Distribution

We will show later in this section that the classical phase-space distribution of
Section 3.6, i.e., o phase-space distribution which at the initial time ¢ = 0 ful-
fills the uncertainty relation e g, = /2, behaves in the harmonic-oscillator
potential in the very same way as i quantum-mechanical wave packet, Before
we do so we will present a qualitative argument showing that a classicul Gaus-
sian phase-space density indeed oscillates as does the gquantum-mechanical
probability density in Figure 6,7,

A classical particle described by a phase-spuce distribution of large initial
spatial width o, possesses i rather well-defined momentum, For a classical
particle initielly at rest at x = xp the period 7" of oscillution is independent
of 2. Thus, particles at rest at different initial positions vy all reach the point
r = (1 al the same time, f = T/4. Since the imtial momentum spread is
small but not zero the spatial distribution at t = 7 /4 will have a finite spread
g (T/4) < oo

For 4 small initial spatial width, on the other hand, the spatial definition
of the particle is rather well-defined, but the particle may start ut this position
with rather different momenta, Conseguently the distribution spreads in space
and. at ¢ = T /4, has u rather large width, o (7 /4) = o,

There is a particular intermediate initial width, which will turn out to be
dy = oy /2, for which the classical phase-space distribution keeps its shape
while oscillating as a whoele, This is the clussical analog of the coherent state
of quantum mechanics,

We mentioned that for constant Torces or for forces that depend hinearly
on the coordinates the temporal evolution of the Wigner distribution (cf. Ap-
pendix D) of a guantum-mechanical wave packet is identical to that of a clas-
sical phase-space density, The phase-space prohability density corresponding
to a Gaussian wave packet without correlation between momentum and posi-
tion at the initial time 1 = 018

.3 Harmonee Motion of & Classical Phase-Spoace Distribution 19

| — xg)® (o= oi)*
pf':.r;, Pil=c_—_———&pi—3 ' 3 e Poi
2T T o) = T

:
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Here g, pop are the imitial expectation values and o0, o4 are the initial
widths of position and momentum, respectively,

The covariance ellipse of the bivariate Ganssian is characterized by the
exponential being equal 1o —1/2,

. 12 2
{ay — X L — Pogd
¥ + a - |'
T n-lu[]
The classical motion of a particle in phase space under the action of a har-
maonic foree is simply
¥ o= xpoosdat + gy sined

f = —xsinent 4 g cos ol

Here we have introduced the variahles

plil i
P R A O 4
Ther e
A classical particle rotates with angular velocity w on a circle wround the
origin in the v, g plane. For a given time ¢ oand given values (), g (/) the
it conditions of a particle are then
I = XCOS{ — ¢ sinami

gi = xsinel 4+ g cosed
Introducing this result into the equation for the initial covariance ellipse,

(xi — xgi)? + Lefi _fmi ) -

T 0
which describes an ellipse with the center (vgi. i} and the semi-axes o,y and
Ty Which are parallel to the v axis and the ¢ axis. respectively, we gel

([x — xp] cos o — g — go) sinw)?

2
all

{|x — x| siner + [g — rﬂu]cosmﬂl -

5

i

This is again an equation of an ellipse with principal semi-axes of length 7,5

and o, They are, however, no longer parallel 1o the coordinate directions
but rotated by an angle @t with respect to these. The center of the cllipse is
the point (xg, o) to which the set of initial expectation values (xgi. qu) has
moved at the time r,
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Fig. 6.9, Motion of the covariance ellipse of a classical phase-space density umlﬂ: tllm
influence of @ harmonic foece, The large cirele is the trajectory of the :n-n_tl:rut'lhc v]_l:pm..'.
The ellipse is shown for equidistant moments in time, The n:tt:mgllu 1:|r4:u|n_.-u‘:rihmg it
hs sides oy, a3 Thesmall cireles indicate the centers of the ellipses, For the initial thme it

is drsywn as a full dot. The relation hetween the initial widths is (lefth o < o, (middle)

ayn = oy Bnd (right] . = g0

We summarize our discussion by the following simple statements:
1. A classical phase-space distribution described by a bivariate Guussian
keeps its Gaussian shape.

3. Tts center, which is the center of the covariance ellipse, moves on i
circle around the center of the x. ¢ plane with angular velocity o,

3. The covariance ellipse keeps its shape but rotates around its center with
the same angular velocity e

in Figure 6.9 we illustrate the motion ol the covariance ellipse for the three
CASES Tl < Gyl Taly = Ty Txn = Tgil. ) 2

Rotation of the covariance implies a time dependence of the widths e, (1)
and o, (1) in x and g as well as a nnnv;mthing i."i!]'!‘ﬂt_‘.llil:m cuefﬁcicnt. ol f1
which alse depends on time. We can rewrite the equation of the covariance
ellipse in the form known from Section 3.5,

| (x —xa)° "'fﬁr]{'t — xphlyg — qo) 4 — Go)” =1
=2 | el T g (ot )

with

-

{ il 2 win?
gt = x-"T.tu“:”‘ :r.lI—l—n'qnhm ol

f.6 Spectra of Square-Well Potentinls of Finite Depths [21

alt) = Jalsin? 2 cog?
i = T SINT Wl .0 5 COSS wf

) T
lergy — 0 g ) sin Zast

Pl I —
F o Ty F) 2ok e R
,Ir.-"rl-r:r,r”nr”” + gy — IT‘I'”] sin~ 2ot

The time dependence both of the position expectation value vo(e) and
of the width &, (¢) is exactly equal to what we have found in the gquantum-
mechanical calculation,

In the particulur cose

o) = gt
the covariance matrix is a circle, o, and T,y are imdependent of time, and the
correlation vanishes for all times. If we require the minimum-uncertainty re-
lation of quantum mechanics,

Te0T pis =

b =

tr be fulfilled for our classical phase-space probability density as we have
done in Section 3.6 we have
e

Ty = _—_—
¥ M 2R )

Together with the requirement o,y = g, we get

= 1 I.'IT o B |l|'_|ri|
Tl = 0 ek =y -
For this particular value of the initial width, the width stays constant. For
Gwn # a0/ V2 the spatial width of the classical phase-space density oscil-
lates exactly as the quantum-mechanical probability density does as shown in
Figure 6.6.

6.6 Spectra of Square-Well Potentials of Finite Depths

In Section 4.4 we studied the stationary bound states in u square-well poten-
tial, We found that these states exist omly for discrete negative energy eigen-
vilues, which form the discrete spectrum of bound-state energies. The prob-
bility densities of these states are concentrated for the most part in the square
well, We now discuss the bound-state spectra for different shapes of the square
well.

Figure 6.10 shows the wave functions and the cnergy spectra for several
square-well potentials of equal widths but different depths. For a well of finite
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Fig .10, Bonmd-state wave functions and energy spectra fur square-well potentials of
different finite depths but identival widths, The munber of bound states increases with
the depth of the potential.

depth, there is only a finite number of hound states. Their number increases
with deptiv. Tn contrast to the wave funetions ol an infinitely deep well, the
wave functions of a finite square well are different from zero outside the well
but drap there exponentially (o zero. The exponential fulloff is fastest for the
wround state, Figure 6.1 indicates that for a fixed depth the number of bound
states increases as the well becomes wider.

6.7 Periodic Potentinls, Band Spectra 123
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Fig. .11 Bound-state wave functions for square-well potentials of identical depth but
different widths. The number of hound states inereases with the width of the well.

6.7 Periodic Potentials, Band Spectra

Ak st step i discussing periodic potentials as they ocour in crvsfals, let us
look at two potential wells more or less distant from each other. Figure 6,12
shows such patentials as well is the spectra of eigenvalues and eigenfunctions.
When the two wells have some distance between them, we observe pairs of
energy eigenvalues group closely weether. OF the eigenfunctions belonging to
each pair, one 15 always symmetric, the other annsymimetric. Comparing the
eigenfunctions of two single wells with those of a single well, we observe that
in corresponding regions they strongly resemble one another. The symmetric
wave function of the double well is a smooth symmetric match with the two
wave functions of the two single wells, The antisymmetric wave function of
the double well is an antisvmmetric match. In the hmiting case when the
distance between the two wells becomes zero, that is, when the wall vanishes,
the eigenfunctions and the spectra become those of a single well of double
width,

We now need to study the structure of the pairs of wave functions in two
wells in more detail. The relation of their structure to that of the wave func-
tions in a single well is easily explained, using the same reasoning given in
Section 4.4, To this end we divide the x axis into five regions,
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Fig. .12 Bound-state wave functions and energy speetra for systems of two sguare wells.
1o one system the wells are very close together, in the other same distance apart.

6.7 Periodhie Potentials, Band Specira 125
I —ooc £ 3 = —dh . Vizy=0
1 —dy = x o= =y Vigy==WVy
[ -y = x < d Vizi=40
IV di = x < 5 Vixr= —Vy .
v dn <= x = B0 , ¥ixi=0 ,

where the potential has a constant value. Notice that the potential is com-
pletely symmetric with respect to the point ¢ = 0. That is, it does not change
if x is replaced by —x. In regions [ and V the wave function must show ex-
ponential falloff for large values of Lv|. In regions 11 and TV it oscitlates as 4
superposition of two complex exponentials.

The behavior of the wave function 1s determined in particular by its strue-
ture in region 11, which encompasses the origin, In this domain the wave
function is a linear combination of real exponentals which, because of the
symmetry of the problem, are either symmetric 5] or antisymmetric (a)

1 -
e = Ass (e +e75) = A, cosh(kx)

and

1 5 v
':P;l[]' = ‘433':03:31 — -.L,J} = Ail- Hlnhl:ifqll'}

The parameters iy, ko are given by

i
Rl

|

E\I —2mE,
i 1
M= E‘-’ —2mkb,

]

ka

where £, and £, aré the negative hound-stute energies of the symmetric and
antisymmetric solutions, respectively, The wave function in region 1T con-
nects the wave functions of regions 1l and IV, It therefore determines the
overall symmetry. The total wave function is symmetric if in region I it is
of the symmetric type. ), = A;coshixox). Since the antisymmetric solution
has the larger average curvature, 1t possesses the greater kinetic energy

+m r] dz
Egig = — f_x ﬁﬂfﬂﬁd?w[xhir

compared to the svmmetric solution. This expluins why the splitting of the
bwior energy eigenvalues of the bound states increases when the two wells ap-
proach cach other, When the separating wall in region 111 has disappeared, the
symmetric solution no longer has a dent in the middle.

It is now plausible that for a potential consisting of a periodic repetition
of N neighboring wells, each single-well eigenvalue reflects itsell in a set of
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N bound stites of the periodic system of square-well potentials, The spacing
ol the energy eigenvalues of these states may be very narrow. They are said
to form an enerey band. A erystal consists of a large number (N = 10°%)
of regularly spaced atoms. They form a periodic electric polential pattern in
three dimensions giving rise to analogous band structures.

Figure .13 shows how the band soucture, starting with the ground state
ol a single square well, takes form when two, three, four, and five potentiul
wells are placed at equal distances next (il and 1o one another. The number of
states forming the band is equal to the number of potential wells. Their spac-
ing in energy becomes narrower as the number of wells increases. Certainly,
for large numbers of potential wells forming a periadic structure; each indi-
vidual band contains a large number of states represented by periodic wave
functions. The wave [unctions of a single band can be linearly combined to
form wave packets describing localized particles, If the time dependence of
the eigensiates s included in the superposition (see Section 6.2), the wave
puckets describe particles moving freely in the periodic potential structure: In
this way the free motion of electrons in the conducton band of the lattice of
a metal or a semiconductor can be explained.

PProblems

f.1. Caleulate the integruls over the products of the cigenfunclions g, (o) as
aiven in Section 6.1 for the bound states of the deep square well,

dr2
f i {0 Juttyy (0 y by
=t}

6.2, What determines the frequency of the oscillation in the deep square well
shown in Figure 6.27 What determines the wavelength of the interfer-
ence wiggles in Figure 6,27

6.3, Show that for n = 0, | the functions ¢, (E), £ = /oy given in Sec-
tion 6.3, are solutions of the stationary Schridinger equation for the

harmonie oscillator

t

.4

In terms of the momentum operator § = (A/1)d/dx), the operator of
total energy of a harmonic oscillator 15

1 - M 4 =
H=—/ 4 —wx
2m P 2
In a baund state of the harmonic oscillator, the expectation vilues i)
and {x ) of momentum and position vanish, Thus the expectation values
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Problems 127

Fig. 6,13 Bound-state
waye functions and en-
ergy spectra for o po-
tentinl well and for po-
tentials consisting of
two, three, four, and
five neighboring wells,
The states have very
similar energies,
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6.6,

6.7,

0.8,
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pid 2 2 2
{r (Ap)y~ 4+ (p)"=(4p)
{.rz} = (Ax)+ l;.ll}1 = {Ax)?
are equal to the squares of the uncértainties of momentum and posi-

tion, Use the uncertainty principle. from Section 3.3 to caleulate the
minimum energy of a bound state in a harmonic-oscillator potential,

. Give an argument why the real and imaginury parts of the wave func-

tions of Figure 6.7 have long wavelengths to the left or right when they
are close to their left or right classical turming points, but not when the
wive packet is in the center of the oseillator potential.

Compare the ratio B = E=/E; of the energies E2, £ ol the two low-
est levels in the different parts of Figure 611 with the corresponding
ratio in the infinitely deep potential well; they are given in Section 6.1,
Explain your result,

A rough approximation of the wave functions of the multiple sguare-
well potentials in Figure 6013 15 given by

[T N

! f3a
wil) = 1,.;' %wnf.-r- fiy) Zw{-r — xgotl)

i=I

Here @y {x—axp, o) 15 the ground-state wave function of a single potential
well of width  and depth Vi symmetric around v = vy With By
the width of the whole arrangement of all A sguare-well potentials,
including their ¥ — | separating walls, ¢, (x, By is the eigenfunction
of quantum number i of the square-well potential with depth ¥y and
width By

Using Figure 6. 11 for ¢, (v, By) and Figure 6,13 (top) for g (o —x, d),
sketeh the wave Tunctions @pfx) fore = 1, 2., N and & =
2. 3. 4, 5, Compare their appearance with that of the wave functions
in Figure 6,13, Discuss their symmetry properties,

What is the parity of the ground state with respect ta reflection about the
symmetry point of the potential for all examples given in this chapter?
Explain the result, using the square well and the harmonic-oscillator
potential as examples.

7. Quantile Motion in One Dimension

In classical mechanics the position xi{¢) of a point particle and its velocity
wir) = dyir)/de are well defined. This is not the case in guantum mechan-
ics. For a free wave packet one can use the expectation value (v(f)} and its
time derivative d{x(t)}/d¢ 10 charactenze the position and the velocity of a
particle. But for a particle under the influence of a torce this description is
not adequate. In the case of the twnnel effect, tor instance, the expectation
vitlue {x{1}} may never pass through the barrier. In the following we shall see
that mathematical statistics allows us to define a guantile position xp(f) and
a quantile velocity dxpir) /s in all cases where we deal with a probability
distribution g{x, 1) and that this velocity can be related to experiment. (This
chapter and Section 10.2 are based on the following publication: 5. Brandt,
H.D. Dahmen, E. Gjonaj, T. Stroh, Physics Letters A 249, 265 (1998].)

7.1 Quantile Motion and Tunneling

For a probability density pix) the guantile x o associated with the prohability
(2 is delined by
Wl L1
U= j plxhdy

<3
For the time-dependent probability density ofx, 1) and time-independent
probability .0 = P = 1, we define the time-dependent quantile position

Aplt) by N
f gl fjde=F

kel
The function ¥ = xp(t) describes the guanrile trajectory (in the x, ¢ plane) of
a point moving along the v axis. Ns time derivative
dyp(t)
tpif) = —d;—
défines the quantile velociny vp ) of the point e ().
The upper plot of Figure 7.1 exhibits the time development of the scatter-
ing of an initally Gaussian wave packet by a repulsive barrier of height V.

1%
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Fig. 7.1, Quantile trajectories of the tonmel effect, The upper plol represents the time de-
veloprent of the seattering of an initially Gavssinn wave packet by o repulsive potential
barrier of height Vo, The expectation yalue of the kinetic energy is smaller than V. The
small circles indicate the position of the elassical particle. The shaded areas under the
curves correspond to the probability 2 = 0. in the interval 1piry = & < oo, The line
cutting throuph the plot from the upper e to the lower right is the guantile trajectory
for 7 = 4.4, The lower plot presents the guantile trajectories for the value P = 0. for
the top curve and in steps of 247 = 0.1 for the lower curves up to £ = (0% The thick
curve is the same quantile trajeetory as the one in the upper plot.

7.2 Probabality Current Contimunty Equation 131

The expectation value of the kinetic energy £ of the wave packet 1s smaller
than V). The wave packet s partly reflected by the burmer. The other part win-
nels through the barrier moving more or less like a force-free wave packet to
the right, The shaded arcas under the curves cover the probability # = 0.4,
The line cutting through the plot from the upper left w the lower right is the
quantile trajectory xp(r) corresponding to £ = .4, The lower plot of Figure
7.1 presents the quantile trajectories for P in the range between 0.1 and 0.9 1n
steps of AP = 0.1, In the region of the repulsive potential harrier the quantile
velocities are smaller than in regions far from the barrier.

In Figure 7.2 the guantile trajectories for the scattering of an initially
Gaussian wave packet by a double barrier are shown, The upper plot exhibits
the time development of the wave packet incident on the double barrier from
the left. We ohserve the partially reflected and transmitted parts of the wave
packet and the resonance behavior due to the oscillation of part of the proba-
bility between the two barriers, The resonance decay is due to the wnneling
through the left or right barner which occurs whenever the wave packet maoy-
ing between the two barriers interacts with one of them. This leads 1o repeated
reflected and transmitted pulses following the first one’s with some time de-
lay. The shaded areas under the curves representing the probability density
correspond 10 a probability of = 0.4, It has been chosen to he larger than
the probability contained in the carliest transmitted pulse. Therefore the quan-
tile trajectory does not leave the double-barrier region together with the first
transmitied pulse. In fact, for the probability # = 0.4 the quantile trajectory
oscillates once between the two barriers and leaves this region together with
the second transmitted pulse.

The lower part of Figure 7.2 exhibits the set of quantile trajectories starting
with the prohubility # = (L1 for the top curve passing through steps of AP =
0.1 ending with the value P = 0.9 for the bottom curve. The thick line is the
same quantile trajectory ds in the top picture. A fine-tuning of the probability
P 10 values slightly smuller than the one for the thick line would produce
quantile trajectories showing more and more oscillations between the barriers.
The quantile trajectary for the total transmission probability Pr never leaves
the region between the two burmiers. All trajectories for values £ = Py e
eventually reflected.

7.2 Probability Current, Continuity Equation

In Section 3.3 we discussed the probability interpretation of quantum mechan-
ics introduced by Max Born. Following his reasoning, the absolule square
Iz, )17 = plx, t) of the wave function represents a probability density in
the following sense: The probability d P of finding the particle in the interval
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Fig. 7.2, As Figure 7.1 but for » double barrien

7.2 Probahility Curcent, Continuity Equation 133

(rox +dx) is given by
dP = plx, 1) dy =[x 1) da

Since the probability is conserved the time variation of the probability

F|4_f dP= j glx, thdx

in one interval (1, x2) must result in a flow entering or leaving this imerval.
This flow can be described by a probability current density j(x, 1) defined by
the requirement

. d f= . T dplxt 1y |
) — jlan = — oy dy = — |
Jlxety — jlxn i, dil‘_]_;, gl rax j;l ( I ) x

1t states that the resulting flow at the borders 1y and x is equal to the rate of
decrease of the probability inside the interval,

For a very narraw interval (1, 1) we may approximate the integral on the
right-hand side by [—8p(x, 7)/8]Ax, Ax = x — xy. In the limit Ay — 0 we
obtain the expression

dflx, 1) A= i (J'{IJ‘FJ'IJ}—J":-HL”).&

x|y, Ax=el) Ax

for the lefi-hand side. Altogether we get the continuity equation

_HQI:,I. [ afix, t)
ar o dx

For current densities f(x. 7} vanishing for v — =00 we derive

d oo | {
——f g(.r.!}ch‘=f J—H-—}dx 4
T s

I

the conservation of the tatal probability. The explicit form of the current den-
sity can be derived by ohserving

doplx.t) o, dgle ) it )
= = (1, 1) o =hi T

The time derivatives of the wave functions o and * are determined by the
Schridinger equations for 1 and its complex conjugate 1",

-:h,ﬁr Kot 1,'.': :h,b* 2 Aty
ar ~3 3 s+ Vioy ~if —-§-+Vir}1ﬁ'

Inserting the expressions for dr/dr and di * /or, we obtain

yrix, 1)
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Fig. 7.3. Time development of the density gia. 0 and the probability current density
Jic, e of the force-free motion of 3 Gaussian wove packet. The graphs in the top row
refer to g moving wave pucket, the bottom row (o a wave packet at rest, (v ()] = const = L.
The small circles indicate the position expectation value (o)) of the wave packet. In the
bottom row the change with time of the wave packet is entirely duoe to its broadening
hecause of dispersion. The probability density remains even with respect to o« = (0, the
current density stays odd: thus, the integral over the current density vanishes.

o fi L T
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- 3

dr 2 it ¥ qxe

This can be turned into the form of the continuity equation with the expression

h T dle”
)y = — e —
g 2mi (I'& ix ¥ iy )

for the probability current density. In Figure 7.3 the time development of the
probahility density and the probuability cureent density is shown for s free
Ciaussian wave packet, The plots in the top row show g moving wave packet
with positive momentum expectatien value (p) = g, those in the bottom row
a wave packet at rest, Le., pp = 0, With growing time we observe a broaden-
ing of bath wave packels, due to dispersion. For the wave packet at rest the
dispersion is the only reason for the change in time of the plots. Probability
flows to the right for x = (Fand to the left for x < (. Thus, the current density
is positive for x = 0 and negative for v < 0. Its integral over the whole x axis
vianishes in agreement with pg =
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In an experiment the quantile trajectory can be determined on a statistical
basis by a series of time-af-light measurements: One prepares by the same
procedure N single-particle wave packets and sets a clock to zero at the time
mnstant it which the spatial expectation value of a wave packet leaves the
source. With a detector placed at position 1y one registers the arrival times £,
of particles form = 1.2, .., N and orders them such that < Hy2 = ... =<
f)x . Ome picks the time iy, which is the largest of the smallest times measured
and chooses 0/ N = P, The tdme ¢, is the arrival time of the quantile xp at
the position xj, Le., X plf, ) = 4. By repeating the experiment wilh u detector
at x one obtains fa,, ete, The points xplie) = 1,2, ., are discrete points
on the quantile trajectory xp(r). If 1y and vz mark the front and rear end of the
barrier, resp., then fa, — f1, 1% the quantile waversal time of the barrier. In the
quantum-electronic components of electrical circuits signals are propagated
by pulses of a certain number N of electrons. The time needed for a signal
to pass a quantum-clectronic component is the quantile traversal time defined
above,

7.3 Probability Current Densities of Simple Examples

We hive already found that Tor the free motion (Section 3.2, the motion under
a canstant force (Section 5,6), and the harmonic motion (Section 6.4). the
probability density of an initially Gavssian wave pucket has the form

[ (x — {.x‘fr]}‘lll

gk £
P Jazit)

alx.t)= —[
V2o, (t)
i.e., the shape of the packel stays Gaussian, However, its position expecta-
tion value {x(1}} as well as its width @ (/) changes with tume and that time
variation differs for the three examples as indicated in Tuble 7.1, which was
compiled from the sections quoted. The probability current density is

Tuble 7.1. Time dependence of the position expectation value and vanance for a
Gaussian wive packel

| Free Motion Constanl Force ”':11'1-‘J'|ﬂl'|iL‘ Oscillator
Vix) | 0 g ,!,_mruz.t:
() | xp4uvet | xg+ var o+ oget/2 () COS (f
4 a tp 32 2 Ty \2 4a* cos® wit + n:l"ﬁI sin” i
ai(t) | T+ (EI) | &4 ("—if} g




136 7. Duantife Motion m Ooe Dimension

B I M- (1 e
& | e R
l.!__."--" "_lll | [ 1 b o
L_.o-" _)'l < I'!_,_,-'J‘-:’ ) 4 L J'I = -
" “H:’\‘_ et -
e _,.--’/-r/._"""-—-—'- s _,--"—""'"f ”
6. = f:"'/n_, g T e f;,,,
e A b o e '
- e -'/_ﬂ— R L _;-""F-FF
e = gt o
Tl ol
b i L i
|_""-F'-FF_'__,.,-'-""" IIII._--"' - ] . I o ;_:_'_,_—-\\_\_/’iﬂ_,_ — . )
J o Ny ~ S |
Fﬂf--—j/\« 17— =) flrr_jﬁ-"
R & Fy | Rl e I
=] I| P a s .I' s e
§s =% ===
T £ T et T
e i

Fig. 7.4, Time development of the probability density g, 1) and the probability current
density 1, 01 of o Gavssian wave packet maving noder the action of o spatially constant
foree (lop row) and under the setion of a harmonic {oree (hottom row), The small
cireles indicate the position expectation valoes of the wave packets. The current density
possesses regions of positive or negative values, For the case of a constant force (top
riow) the wave packet moves to the right for carly times: aceordingly, the curcent density
is mainly positive. At the turning point (middle of the =even time instants) the current
density exhibits vegions of positive as well 05 of negative values. Since the velocity
expectation value vanishes at the torning point, the integral of the corrent density over
the whole 1 uxis vanishes, The wave packet in the harmonic oscillator is shown over
one time pertod. Since the initial position expectation value op is positive, the initial
velocity expectation value g/ m vanishes, The current density is mainly negative hefore
it reaches the turning point; therealler its values are mainly positive.

0= |+ —— 2 e | et
fla, b= {elr) + —— = {xit X,
’ T " k
where the velocity expectation value is ({0} = {(pl)/m = d{xie)y fdt,

In Figure 7.4 we show the time development of the probability density
and the probability current density for wave packets under the influence of a
constant and a harmonic force.
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7.4 Differential Equation of the Quantile Trajectory
By definition the quantile trajectory ¥ = xp(i) 15 obtained by solving the

equaton
e
f glx, thiy = F
Tl

for xp(s). Since P = const we have
a0, T 1 L o I
L d_ E2 s

dpit} e (h) H+[ dale'jt) o
TR S L R AT 7 de

[

The eontinwity equation derived in Section 7.2 for the probability density al-
lows us to replace idg/de by —ij/dx in the integral. The integration can then
be performed explicitly to yield
daplr)
di
as differential equation for the trajectory x pi(r). In werms of the velocity field
vix, 1) = fla, r)felx, o of the probability flow we have

alxplid, 1) = flap{t), )

dep(r) _ jlxplt), 1)
de plypln, o

=wu{xp(t), f)

The initial position xp{fn) = xy needed for solving this differential equation
15 the quantile position at the nitial tme 1.

7.5 Error Function

For later use we introduce the (complemenrary) errar function

5 5o .
effey = — / e " dit
e I

Since the function ¢~ is positive everywhere and the integration inter-
val shrinks with growing lower boundary, the error function erfcy 15 a
monolonously decreasing funetion of v For v — 20 the integrution inter-
val shrinks to zero, the value of the integrand tapers off 1 zero; thus,

lim erfcx =10
i O

Making use of the normalization of the Gaussian distribution (cf. Section 2.7),
we get

e T . | o o
lim erfexy = — e du =2 I e e dn' =2
rr— ﬁ —oo m S
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Fig. 7.5 Plot of the (complementary ) ervor function eric 1.

Since the integrand is an even Tunction, we have forx =0

2 % _a e
erfc{]l=——f e dn=-— e de =1
\E ¥ 2 \-"'I.-E- —oo

The graph of the error function erfe v 1s presented in Figure 7.5.

7.6 Quantile Trajectories for Simple Examples

Using the error function we have for any Gaussian prohability density with
mean (v} and variance a2 (1)

™ 1 xplt) — (x))
P= olx, Hdy = - erfe (—_..,.....)
Lpit 24 \'@U.LU]'

This equation determines vp(ry) foru given value of £ and for a given initial
time fg. For the three cxamples of Section 7.3 we then have for the guantile
pasition at time ¢

T, lt)

cplfl = {xlthr+
" ):II I‘f[“ﬂ.]

{xpitn) — {xltnhl)
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Fig. 7.6, Quantile trajectories of a foree-free Gaussian wave packet. The upper plot
presents the time development of the probability density. The small circles on the 1 axis
indicate the position expectation values, The hatched arcas correspond to the region
& = apiy for P = 1.3 The thick line is the corresponding gquuntile trajectory, The
lower plot exhibits the guantile trajectorics for this wave packet for dilTecent values of
£, The trajectories correspond to P = 0.1 (top ling) and # = (LY (bottom line} in steps
of AP =11, The thick line is the trajectory shown in the upper plot.

For the particular value of P for which the inital guantile position xp ()
is equal to the initial expectation value (x(fa)). the quantile trajectory xpif)
is identicil to the trajectory {x{s)) of the spatial expectation value in these
three examples. In this case the argument of the error function vanishes. Thus,
the fraction of probability associated o this particular quantile trajectory is
P = %EIEC{D} = ().5. For all other values of P the guantile trajectory differs
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4 e

Fig. 7.7. As Figure 7.6 but for the motion under the influence of o constant foree.

from the wajectory of the expectation value of position, In ull three examples
the trajectory of the position expectation value is the same as the classical
trajectory for the same initial values, Thus, in our examples the quantile tra-
jectory xpsir) ik the classical trajectory.

Inserting {v(7)} and m. (1) from Table 7.1 into the eyuution above we can
abtain explicitly the quantile trajectories v p (1) for our three examples of Sec-
tion 7.3, They are shown in Figures 7.6 to 7.8.

7.7 Relation to Bobim's Equation of Motion 41

o -

Fig, 7.8, As Figure 7.6 but for motion in a harmonic-oscillator poteatial, The line s p i)
for 2 = 0.5 is identical to the trajectory (o)) of the position expectation value. Only this
curve is a cosine function. For all other values P 5= 115 the quantile trajectories deviate
from the trigonometric functions, This deviation is due to the time dependence of the
width o, (1, L., due to the time-dependent broadening and shrinking of the squeezed
stale.

7.7 Relation to Bohm’s Equation of Motion

In this chapter we have introduced quantile rajectories which are strictly
hased on the probability concept and are therefore quite natural in the frame-
work of “conventional” guantum mechanics and its probability interpretation.

David Bohm in 1952 has given an “unconventional” Tormalism of quan-
tum mechanics in which particle trajectories are possible. One cun show that
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Bohm's trajectories are in fact identical to the quantile trajectones discussed
ahove. Here we only sketch the proof without going through all its steps,
W begin with the equation

dxpir) Flaple), 1)
de plxpln, )

from Section 7.4, Differentiating once more with respect to time and muli-
plving with the particle mass m we obtain

dxplr) d jlxpt ) 80Ut}

m = EEAREE Allietls
A dt plepli) i) i

la=geld)

We have written the right-hand side as the negative spiatial derivative of a po-
tential {/ (x, ) since the lefi-hand side is of the type mass times acceleration,
Then the whole equation has the form of Newton's equation of motion. The
potential O is determined by vsing the expressions for o and j in terms of
oand 1 and by making use ol the time-dependent Schrddinger equation Lo
climinate expressions of the type fyr /it and 8" /i, The result is

Uix, t) = Vix) + Volx, 1)

where V(1) is the potential energy appearing in the Schridinger equation and
Viala, 1) 1s the time-dependent guanion potential

e aZalx. 1) ! dply, 0\
Vigla 1) = ( e ( r )

_-11-nrg[.1:, '} ay?  Zopix.D) ix

introduced by David Bohm. For a unigue solution of Newton's equation two
initial conditions xpitg) = ay and dypdmd/di = vy are necessary. The solu-
tion of the differential equation for the quantile trajectory 1s uniquely deter-
mined by the initial condition x p (1) = ¥, for a given probability £ fixed by
the last equation of Section 7.4, The quantile trajectorics xp(r} are identical
to those solutions that satisfy the particular initial condition

dapiinl
AT

=ulipliph ful

The quantum potential of the free motion, the case of constant force, and
the harmenic oscillator has the explicit form

- x— (x())?
Volx.t) = —-— [wl _]j|

2m Zcr_,.lliﬂ 21713{:]
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Fig. 7% Time development of
the quartum potential Vi, 0
ol a force-frec Gaussian wave
packet, At any tinoe it is 4 repul-
sive, parabolic potential. The
force Fo = —iVy /i produces
the dispersion of the (faos-
sian wave packet in Bohm's de-
seription of guantum mechan-
its, At ¢ = (} the maximuom
at © o= i) of the poten-
tial Vigix 1) as well as its cur-
wature are largest; hoth values
decrease with incrensing time.
The decrease of the guantum
potential reflects the fact that
the quantile trajectories of the
force-iree Gavssian wive pack-
els are hyperbolas as functions
of time approaching straight
lines as asvmptotes for large
times.

It is u repulsive parabolic potential having ils maximum at the position {x {1}
of the expectation value and a curviture fixed in terms of the width e, (1) of the
wave packet. In the languaee of classical mechanics the quantum force Fg =
—i Vg /dx is the origin of the dispersion of the Gaussian wave packet. Figure
7.9 presents the tme development of the guantum potential Vg ix, ) for the
force-free motion of & Guussian wave packet. For 1 = 0 the potential has the
curvire —.ﬁ:'..-'t—'lmc::lﬁ}, its maximum value 1% ﬁ?,-"lfd-:u::?sﬂ]. With growing
time the absolute value of the potential at a given location and the curvature
decrease.

The price one pays W get o Newtonian equation of motion is to accepl the
existence of an additional time-dependent potential Vg and the fixing of the
initial condition for the velocity by the initially chosen wave function, which
15 by no means plausible. We would like to repeat and stress here that Bohm's
particle trajectories (which cannot be defined as solutions of Newton's equi-
tion without the guantum potential) are wdentical to the gquantile rajectories
(which are defined in conventional quantum mechanics ).
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Problems

7.1. Calculate the integral of the current density j(x, ¢) = &/ (Zmil[ye"inj/
dx — i /2] over the whole x axis. Express it in terms ol the ex-
pectation values of momentum or velocity.

7.2. Instead of the integral of the density g(x, 1) over the interval ¥ = 1’ =

oo we consider the interval © = & = xp, Show that

g I
j ol )iy’ = [ g, e
Eplth At

with #; determined by xp{t) = 1 leads 1o

dup(nd

clf

glapdf), 1) = fixplt), t)
Explatn the meaning of the last but one equation in terms of the quantile
condition,

7.3, Tn classical mechanics bodies of different mass fall with the same ve-
locity. s this statement true [or the gquantile trajectories of a Gaussian
wave packet under the action of a constant [oree?

7.4, Expluin the obviously non-harmonic features of the lowest quantile tra-
jectory of the lower plot of Figure 7.8. What is the condition 1o be sat-
isfied by xp(0) for the dent in the top quantile trajectory Lo appear?

8. Coupled Harmonic Oscillators:
Distinguishable Particles

So fur we have alwavs studied the motion of a single particle under the in-
fluence of an external potential. This potential is. however, often caused by
another particle. The hydrogen atom, for example, consists of a nucleus, the
proton, carrying a positive electric charge, and a negatively charged electron.
The electric force between proton and electron s described by the Coulomb
potential. The proton exerts a force on the electron, and — accarding to New-
ton’s third law — the electron exerts a force on the proton. The proton has a
mass about 2000 times the electron mass, Therefore the motion of the pro-
ton relative to the center of mass of the atom can usually be ignored. In this
approsimation the electron can be regarded as moving under the influence of
an extérnal potential, Generally, however, we have to deseribe the motion of
hoth particles in a two-particle system. For simplicity we shall consider one-
dimensional motion only; that is, both particles move only in the v direction.

8.1 The Two-Particle Wave Function

We have seen that the basic entity of quantum mechanics is the wave function
describing a system, and we have discussed its interpretation as a probability
amplitude. A system consisting of two particles is deseribed by a complex
wave function v = rixy. 12, ) depending on time ¢ and on two spatial co-
ordinates vy and x7. [ts absolute square [ (xy, a0, t1* is the joint probabil-
ity density for finding at time ¢ the two particles al locations xp and 1. o
course, the wave function is assumed to be normalized, since the probabil-
ity Jl'_"': i "f [Wrixy, x2, 1)1 oy dea of observing the particles anywhere in
space has to be one. If the two particles differ in kind, such as a proton and an
electron forming the hydrogen atom. they are said to be distinguishable, Two
particles of the same kind, having the same masses. charges, and so on, a8 wo
electrons do, arc sad to be indistinguishiable, For distinguishable particles the
absolute square |y (xy, x2, 1)|* dxy dx; deseribes the probability of finding at



146 5. Coupled Harmonie Oscillaors: Distinguishable Particles

.’F

T,
ENBecastome e
e
G e
e earsarITIs ey 2
S = EItITIaTety
s s
SraEaT
S
e
R T
Al e i
e e
R
e et
2 i
et =
m

: =i
e N
pl e h Ly
frr i e ‘ \

j
e e
\sz"’-"*"-. :ﬁ‘v"’q- = q_‘
A
e W
ey (ARSI e
| Tt T
. e e G
E: o o T )
--1-+ 25, S = e
RgETE ‘h 2 =
== i e e
L = =
= e

!
e
e
ey e B e Py P
i i e
e e

Ol wyxal I

£

e
e R, -ﬁ_#'- ! i
b ,ﬂ"‘j .. : i e

o
e e =
i m s
e e R e S
e e ; e e
s g&bﬂdtﬂﬁﬁ*ﬁﬂ% =
S AN, T
A e e e e
Q‘Qﬂ’ .,4-‘_:::zﬁ:ﬁg.-:..%-.;.-i:.:::ﬁ-‘:ﬂ:.}
e e e =
oo Ssesesenoses
2
e
.

Fig. 8.1, Juint probability density ppiog, oz} for o system of two particles. 1t forms
a surface over the ;. v plane. The marginal distributions g0 and ppede) are
plotted a5 curves over the marging parallel to the «; axis and the o axis, respectively. In
ench plot the classical position 1. v is indicated by a black dot in the 1, oo plane as
well us by its projections on the margins, Also shown is the covariance ellipse. The three
plots apply to the cases of (a) uncorrelated variahbles and (B) positive and {¢) negative
correlation between o and &,
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time ¢ particle | inan interval diy around position x; and simultaneously
particle 2 in an interyal dx; aroumid xo.
Figure 5. L tustrates the joint probability density
2
fplay, o 4= [ ey, wn, 17
for a fixed time . Here a Carlesian coordinate system is spanned by the po-
sition vartables oy, xa. and pp is plotted in the dircction perpendiculir to the
11, va plane. In this way the function ppixy. x2) appears as a surface. On two
margins of the coordinate plane, functions ol only one variable, 1y, or the
other, vz, are also shown. They are defined by

i
Poilx )= [ Oplag, A, fhdas
o —O0
and
P
fpalaz, 1) =_/ poixy, ra, ) dyy
-

These marginal distributions describe the probability of ohserving one parti-
cle at a certain location, irrespective of the position of the second particle.

The black dot under the hump over the .. 13 plane murks the expectation
values {x;) and (x2) of the positions of particles 1 and 2, respectively. From
the shape of the surface as well as from the marginal distributions, it is clear
that in our example particle 2 is localized more sharply than particle 1.

The function shown in the three parts of Figure 8.1 is a Gaussian distri-
hution of the two variables v, va. The mathematical form of such a bivariate
Gaussian probability density and of its marginal distributions was already dis-
cussed in Section 3.5,

8.2 Coupled Harmonic Oscillators

As a particularly simple and instructive dynamical system, let us investigate
the motion of two distinguishable particles of equal mass in external oscillatar
potentials, Both particles are coupled by another harmonic force. The external
potentials are assumed to have the same form,

k5 3
Vigx | )y ==27 Vi) =—=x5 k=10
2 2"
The potential energy of the coupling is
K
Velxg, 13) = ;{.h —.'L';l:l"" . =0

The Schridinger equation for the wave function (v, xz, ) is then

il
H—r(xy, k0, 8) = Haplxg, x0,0)
ar
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where H is the Hamilton operator of the form

HZ HZ 1 u42
H=—c——= + Vi) — o + V(x) + Velxy, £2)
2 ihxg 2m ix;

This equation is written, in analogy to the single-particle equation, so that
its right-hand side is the sum of the Kinetic und potential energies of the two
particles.

The Schridinger equation is solved with an imitial condition that places
the expectation values of the two particles into positions vy = {ximl) and
xap = Lratip)) ot time ¢ = fno We consider the particular situation in which
the expectation values of the initial momenta of the two particles are zero,
In quantum mechanics there is an infinite variety of wave functions with
the expectation values (vy(f)) = xi0. (i) = 0 and el = van,
{palin)) = Oat inital tme &y describing the particles. Even il we restrict our-
selves to the bell-shaped form of o Gaussian wave packet at 1y, we still have
to specify its widths and correlation. For later moments of time = #. the
time-dependent solution evolving out of the initial wave packet according to
the Schridinger equation for two coupled harmonic pscillators maimtains the
Gaussian form. Its parameters, however, become time dependent.

In Figure 8.2 the joint probability distribution gpixy, vz, 0) is shown
for several times + = fo, 4, ... (y together with its marginal distributions
gor (g, 00 and ppatan, £ We ohserve rather complex behavior, The hump
where the probability density is large moves in the v, 1z plane and at the
same time changes its form; that is. the widths o, o2 as well as the correla-
lion coefficient ¢ are time dependent. The motion ol the position expectation
values (vph, fxa) is shown as a teajectory in the vy, xo plane, ind the initial
positions vy, ¥ag it ¢+ = o are marked as o black dot at the beginning of the
trajectory. The last dot on the trajectory corresponds to the time for which the
probability density is plotted. A crude survey can be made by looking only at
the marginal distributions.

Figure 8.3a shows the time developments of the marginal distributions
of the system in Figure 8.2, The left-hand part contains the marginal distri-
bution gpi(vy, £, the Aght-hand part ppa(es. 1) The symbols on the ¥y und
x2 axes indicate position expectation values of the particles that are identi-
cal 1o the classical positions. The mnitial momenta were chosen so that the
particles arve, classically speaking, initially at rest. Particle 1 is mitially in an
off-center position, particle 2 in the center. 1t is obvious from Figure 8.3a that
the position expectation values have the well-known energy exchange patlen
of coupled oscillators. The oscillation amplitude of particle | decreases with
time, whereas that of particle 2 increases until it has reached the initial am-
plitude of particle 1. At this moment the two particles have interchanged their
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gl i) 1= B b syl ot o=t o+ A [

Fig. 8.2, Joint probability density ppyivy, 2. 1) and marginad distributions pp (o, 0,
amalaa, 01 for two distinguishable particles Torming o system of coupled harmoniec oseil-
lators, The different plots apply to various times £, = &, 1, ..., (. The classical position
of the two particles at the various moments in thne is marked by a dotio the v, o plane
and by two dots on the margins. The initial dot for 1, = & is black, The classical motion
between &y und §; 1s represented by the trajectory drawn in the ), r1 plane.
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5.2 Coupled Harmonic Oscillators 151

roles, and the energy is now transferred from particle 2 w particle 1. The time
developments of the widths in Figure 8.3a are much less clear,

For a systematic study of coupled hurmonic oscillutors, 1L is important to
note the fallowing.

1. The time dependence of the expectation values {x (1}, {x2(0)) is de-
termined by their initial values and it 1s identical o that of classical
particles, It is independent of the initial values oy, o2, and g of the
widths and of the correlation coefficient.

2, The time dependence of the widths oy (). o2(r) and of the correlation
coefficient of¢ ) is given by the initial vilues of these quantities, [L does
not depend oo the initial positions xip. £o0.

The classical system of two coupled harmonic oscillatars has two charac-
teristic nermal oscillations. They can be excited by choosing particular initial

. ‘conditions, For one of the normal oscillations the center of mass remains at
rest. This situation can be realized by choosing initial positions opposite (o
‘each other, x|y = —xay, so that the center of gravity is initially at the origin.

Since the sum of forces on the two masses in this position vanishes, the center

‘of mass stays at rest. The oscillation oceurs only in the relative coordinate
oF'= x1 — xp Its angular frequency is

e = k4 26 ) fm

The second normal oscillation is brought about by initial conditions that
‘make the force between the two masses vanish. That is, the two particles have
the same initial position vig = xag = Ko, which is therefore also the initial
position & of the center of mass. Since no force acts between the two particles,
they stay together at all times, x (1) = xa{r). Now, however, because the
sum of forces does not vanish, the center of mass moves under the influence

-i:;'_f a linear force. Thus it performs o harmonic oscillation with the angulur

frequency

iy = \.-"JEE

Fig. 83, Time development of the marginal disteibution ppyie, ) on the left and
marginal distribution oy (s, 01 on the right for a system of coupled oscillators, The
classical positions of the two distinguishable particles are plotted on the two axes as
tireles for particle 1 and particle 2. They coincide with the expectation values computed

] fﬂl_rh mrginal disteibutions, (u) The initial position expectation value of particle 2 is sero,
(b) The particles are excited in g normal oscillation in which the center of mass oscillates

and there is no relative motion. (¢) The particles are excited in a pormal escillation in
which there is relative motion and the center of mass is af the rest. In all three cases the

initial momentum expectation values of the two particles are zero,
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Oiscillations with arbitrary initial conditions can be described us superpo-
sitions of the two normal oscillations, causing such phenomena as the trans-
fer of energy from one mass 1o the other, Normal oscillations can also be
produced in the quantum-mechanical coupled oscillators by exactly the same
prescription. Examples are given in Figures 8.3b and ¢.

Figure 8.4a presents the oscillations of the expectation values (xy (1)},
{2061}, the widths oy (1), o2(1), and the correlation i} for a rather general
set of inifial conditions. Al these guantities have heats. We already know that
the beats in the time dependence of the expectation values come from super-
position of the two normal oscillations, '

As we know from the example of the single harmonic oscillator (See-
tion 6.4}, the width of the probatility distribution oscillates with twice the
frequency of the oscillator. We may therefore stipulate that the widths @ (1),
era(r) and the correlation coefficient () will show periadicity with twice the
normal frequencies if their initial values o9, aap, and oo are appropriately
chosen.

Figure 8.4b shows such a particular situation. Here the dependences of the
expectation values (x((r)}, (xz(+)) and of the widths and the correlation coef-
ficient are plotted. The initial position expectation values were chosen so that
the escillators have the normal frequency wge, The initial widths and correla-
tion coeflicient were selected so that the frequency of these quantities is Zew g
As stated earlier, the time dependence of ay, aq, and ¢ is totally independent
of the initial positions. In our example the positions were chosen L oscillate
with frequency wg to allow for a simple comparison between the frequency
v 0f the positions and 2ok of the widths.

Figure 8.4c gives the analogous plots for the other normal frequency ;..
It is interesting to note that preparing the normal modes in the widths requires
an initial condition oy = g, 4 relation which then holds for all moments in
time. The variation in time of o and o3 is actually u periodic oscillation of
frequency 2y or 2ei, added to a constant. Furthermore. it should be remarked
that the initial value ey of the correlation coefficient is different from zero in
hoth cases.

For one particular set of initial values oy, a2, und ¢, these quantities remin
comstant independent of time, as shown in Figure 8.5. In this situation the
correlation cocfficient is always positive, which 15 easily understood if we
remember the attractive force between the two oscillators. 1 the coordinate
of one particle is known, the other one is probably in its neighborhood rather
than elsewhere. This probahility constitutes the positive correlation between
the variables vy and 1.

In Section 6.5 we discussed the classical behavior of a bivariate Gaussian
phase-space distribution under the zetion of 4 harmonic force, We pointed out
that there is no difference between the temporal evolution of the uncorrelated
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Fig. B4, Time dependences of the
expectation values {x(21}, (o)),
thie widths oy i), e (0, and the cor-
relation o1 for a system of coupled
harmonic oscillators. (n) Hather
peneral initinl conditions were cho-
sen. (h) The pscilbation of the ex-
pectation values corresponds to an
oscillation of the center of mass
with fregueney g, The initial val-
ues o ik, datinh, amd clinl were
chosen so that the two widths and
the correlation oscillate with fre-
quency Zwg, (€) The oscillation of
the expectation yvalues corresponds
o an oscillation in the relative mo-
tion with Mrequency o, the widths
and the correlation oscillate with
frequency 2o, .
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Fig #.5. Coupled hurmonic oseillators. The initial conditions {1yt (it are the
same #s in Fipure 8.4e, eorresponding to an oscillation in the relative maotion, The
parameters oy i), o2y, and eifn), however, were chosen so that the widths and the
correlation coelficient remsin constant independent of time. Top: Time developments of
Ui nigrgingl distributions. Battom: Time dependences of the gpesntities (v (000 (G200
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classical phase-space distribution of initial spatial width 7.5 and momentum
width o, = A/(20,9) and of the Wigner distribution {cf. Appendix D) of
an uncorrelated Gaussian wave packet of initial spatial width @y A corre-
sponding statement holds true also for the case of coupled harmaonic ascilla-
tors of distinguishable particles. This is to say that the fipures of this section
are identical 1o the ones derived from the lemporal evolution of a Gaussian
classical phase-space distribution with the same nital position and momen-
o data and initially uncorrelated i position and momentum of cach parti-
cle with widths fulfilling Heisenberg's uncertainty equation ¢ op; = A/,
qearps = N2

8.3 Stationary States
The stationary wave functions e are solutions of the tume-independent
Schridinger equalion

Hipelr. xad = Egp(x, ) .

The Hamiltonian is that given at the beginming of Section 8.2, As in classical
mechanics, the Hamiltonian can be separated into two terms,

H==~Hp+H |

where 3
el i 1
Hp==———=+kR"
= T aMaRr?
governs the motion of the center of mass
= é{x. 4 x4}
and
G R dt Lk 2
=Tt T2\ )

determines the dynamics of the relative motion in the relative coordinate
F= Ay — 1

Here M = 2mt denotes the total mass, 0 = m /2 the reduced mass of the
systent.

The separation of the Hamiltonian permits a factored ansarz for the sta-
tionary wave functions,

w.’:_{-t]r-‘r'l] = U‘\'{R]ﬂ"{f'} 1

with the factors fullilling the equations
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I;Ffa.x:] N = D, n= 0 Oelaa®ad , N = 1, n =0

Fig. 8.6, Wave Tunction ¢ g (o, o) for stationary states of o system of two coupled har-
monic oseillators For low values of the guantum nembers & and o, Note that gz, x2)
is symmetric with respect to the permutation (1), 121 — (12, 5} for o even and antisym-
metric for g odid. The dashed cllipse in the o, o0 plane corresponds (o the energetically
allowed region for classical particles.

Hpliy(R) = (N+ Dhwgly(R)
Hrf’-‘nfrj = {ﬂ"i'%:l'.lrlﬂ.lrupfr']

for the center-of-mass and relative motions, respectively, The Tunctions [7y (R)
and oy, () are thus the eigenfunctions for harmonc oscillators of single parti-
cles, as discussed in Section 6.3, The total energy £ is simply the sum of the
center-of-mass and relative coeroies:

E = (N + Phog+ (n + Do,

The energy spectrum now has two independent quantum numbers, & for
center-nf-mass excitmtions, and » for relative excitations. Figure 8.6 shows
the stationary states wg (4. 2} for the lowest values of guantum numbers N
and .
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Problems

2.1

8.3

B4,

Determine the coordinate wransformation and thus the new coordi-
nates £, £2 that transform the exponent of the Gaussian function for
gn(xp, x2h, as given in Section 8:1, to normal form so that we have

A 1) o1

Aptxy, 2] = Aexp 5 ;
2L o L

. Give an argument why the shape of the wave packet ppiy), 2z, ) i

Figure 8.2 changes with time as it does. Il may help you to leck care-
fully at Figure 6.6 for the single harmonic ascillator,

Derive the relations given in Section 8.2 for the two normal frequencies
i, and wyy for a classical system of coupled harmonic oscillators.

Werify thut the Hamiltonian for a system of two coupled oscillators can
be decomposed into the Hamiltonian Hy for the center-of-mass motion
and the Hamiltaman A, for relative motion, as given at the beginning
of Section 8.3,

. In Secuon 8.2 the oscillators decouple for & = 0. The stationary Schri-

dinger equation can be solved by a product ansatz in the variables
X, X2,
wilen, x2) = e (e (X} E=E+E

Show that ¢g, (X)), @, (x2) are then solutions ol the statonary Schris-
dinger eqguation for the one-dimensional harmonic oscillator,



9. Coupled Harmonic Oscillators:
Indistinguishable Particles

9.1 The Two-Particle Wave Function
for Indistinguishable Particles

The probability density pplyy, ¥z, ) = [Wrixy, xa, t1]7 used in the last chap-
ter described the joint probubility of obserying particle 1 at position v and
particle 2 at x2. There is no difficulty with this notion as long as particle 1 can
be unambiguously attributed w position x; and particle 2 to xa, To so attribute
them, however, presupposes that particles | and 2 have different identities,
that they can be distinguished by properties other than being at different lo-
cations or having different momenta. They must have different intrinsic prop-
erties, for instance, different masses or different electric charges. A system
consisting of an electron and a proton is one in which the twa particles have
different intrinsic properties, A system consisting of two electrons 1s nat. For
such a system it is impossible in principle o distinguish the two particles if
they are close o cach other,

To be mare precise, we call two partieles close to cach other il their po-
sition expectation values {1y}, {xz) differ by no more (han the uncerainty o
which these positions are known. As usual, we denote the uneeranies in the
two positions by oy and o2, Then the two particles are close it

4y — tea))? < frf +<:Jr1l

For a system of two indistinguishable particles close to each other, the two
sibmtians:

1. Particle 115 at x5, particle 2 atxs
2. Particle 2 is ar xy, particle 1 al x;

cannot be distinguished. and we can only assert that one of the two particles
s al rp and the other at 1.

[

U1 The Two-Famicle Wave Function for Indistmguishable Particles 1549

Thus. in generul, the prabability density for such a situation does oot allow
us todifferentiate berween the two particles. We therefore have 1o require that
the prabability density |r{xy. xo; 11|* remain unaltered if the twa particles |
and 2 are interchanged. that is, il their coordinates vy and vaare permuted in
the argument ol o,

[Weix). xa, r]I'j' ==y lxn: I’]-iz

Nor can any of the measurable quantities distinguish the two particles, This
means that the potential energy of the two particles must be a symmetric func-
tion n the two position variables,

Vitxy. a0 = Vi x)

whiclh, in turn, implies that the Hamiltonian of the two particles is also sym-
metric not anty i the momenta gy = —ifid filey, pr= —108/dxv2 but alsein
the two position vanables vy, xa:

[ C N L ’ ;
e el 8 B
2m dxs

= Hipz. prl.x.x0)

Hiprpr.x1.x2) = ' =
PivE 2m [il_l.-]*

Therelore, together with the solution ¢'(xy, xa. 1) of the Schrodinger equation
oo 8 /
h— (. v f) = Hol' (g, a2, 1)
i
the function '(x2, xq, f) obtained by exchanging the arguments (xy, x2) is
also a solution of the Schridinger equation, Thus any superposition
Wiz, X, ty=a ey e, 8y B, L )
where ¢ and & are complex numbers, solves the Schrivdinger equation
vl
JHT g, ko, f) = Hifrlxg xa. 1)
i
The symmetry of the probability density [, vz, ¢ 1|* under the permutation
of v and ra puts constraints on the coefficients o and f, We have
Wi, xo, 0F = aald' (xr, a2, 0F + BBl (a2, x5 DI
4 a e (L 0, xg L )
+ Btar ™ x, a0t ]1,15“1.!]. X, 1)

Comparing this equation with the corresponding {ormula for [y (xa, 11, 0]
we conclude that the equutions for the coetlicients are

a’a =8k a'b=b"a
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With factoring into absolute value and phase factor,
a=|ale®™ b= |ble

we find
" i
|f3| — |h| : g = L‘_I'ﬁ

The periodicity of the exponential function fixes phase 2/ relative to 2o mod-
ulus 27 only. that is,

2p =2+ Ing oL o N st R

Thus only two values for the phase factor e remain,

Ei'H == I:i-{”+-"ﬂ'.| — el

and thereforne
#=xa

Faor the superposition we find
Wixy, xa.t) = el (g 2, 1) L 1]

The overall phase ¢ is arbitrary for any wave function, and the absolute value
balis fixed by the normalization condition for the wave function v (xy, 1, 0.
Putting evervthing together. we conclude that the wave function for two in-
distinguishable particles is cither symmetric

(g, xa 0 = ixa, .t

or antisymmetric
Yrixy, v, 8 = —fr v, 0, 1)

under permutation of the two coordinates v und 1o

The behavior of these two types of wave function is charactenstcally dif-
ferent, The particles having a symmetric two-particle wave funclion are called
Bose—Einstein particles or kosons, those with an antisymmelnic two-particle
wave funclion Fermi-Dirac particles or fermiions, The distinction between
bosons and fermions becomes clear it we look al the values of their wave
functions for the particular locations xy = xz. The symmetric wave {unction
is not restricted for these locations, whereas the antisymmetric solution must
vanish For them:

S S

Thus. in particular, the probahility density for two fermions at the same
position vamishes. Furthermore, if the two-particle wave function i {xy, xa. 1)

o2 Sralionary States 11

is a product of twir identical single-particle wave functions, the antisymmetric
twa-particle wave function vanishes:

Prixp, x2, 00 = @iy, Oplxa, 1) — glaz, Opix, =0

This result must be interpreted as saying that two lermions cannot popu-
Late the same state, or that fermions must always populate different states. This
phenomenon was discovered in 1925 by Wolfgang Pauli when he was trying
to explain the fact that N electrons always populate the N lowest-lying states
in atomic shells. The postulite of antsymmetric wave functions for fermions
i called the Paoli exclusion principle.

9.2 Stationary States

As afirst example, we look at the wave functions ¢ g (v, x1) for the stationary
states of two bosons or two fermions. They are obtained from sofutions of the
time-dependent Schradinger equation factored in time and space dependence
in the form

i
1,!5‘{.!:] LAz T = exp (_H E!) weli, xa)

For the stationary wave function the result of the last section requires symime-
try for bosons,
w}.‘f (X, &2) = [,EJP._-{I:. x1)

ar antisymmetry for fermions,
q.vEl:'.n..l:g] — —I,'JEI:.{'E. vyl

For the motion of two indistinguishable particles in a system of coupled
harmonic oscillators, we start with the solutions obtained in Section 8.3 for
distinguishable particles. The function u,(r). being a solution of the one-
particle Schradinger equation for harmonic motion in the relative coordinate,
is itself either symmetric, w,{—r) = uqlr) for even u, or antisymmetric,
Hyl—r) = —,(r) forodd n. Therefore the wave functions for two hosons
are simply

wﬁ{.n.x;‘-) = Ul Ruglry | neven

and correspondingly the wave functions for two fermions are
WEUI L= Ui Rualry noodd

The two sets of wave functions logether constitute the complete set that
we found for distinguishable particles. The symmetry or antisymmetry is ap-
parent in Figure 8.6, The spectrum of energy eigenvalues of coupled harmonic
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oscillators made up of distinguishable particles sphits in two, one describing
the bosons,

E=1(N+ IEJ.I'HJ.:-H = {n + —l Moy ieven
the other one the fermions,

E={(N+ %}ﬁmg 4 {h4 ﬁ:lnu:,. ; i odd

9.3 Motion of Wave Packets

In order o describe motions in our system of coupled harmonic oscilltors,
we have to selve the ime-dependent Schridinger equation
il

h— = Hal

it
If rixy, v, t) 15 a solution with the initial condition vy, xa. fa). then
Wrixa. vy, 11 s also aosolution corresponding to the initial condition r(x;,
vy i Thisis guaranteed by the symmetry of the Hamiltonian in coordinates
and momenta of indistinguishable particles, as discussed in Seetion 9.1,
Again, by symmetrization or anlisymmetrization. we obtain still other so-
lutioms of the tme-dependent Schrdinger equation, They are

aplrexy, X3, 00+ iy, a0

I T

Welxy, X2, ) el (s a0 — W, x4

and correspond. of course, to svmmetnic orantisymmetnc nital conditions.
The numerncal factors ag, ap ensure normalization of the comesponding wave
packets.

As o hrst example; lel us consider the motion of two bosons forming a
svstem of coupled harmonic oscillators. In Figure 900 the joint probability
density

iy, Xt = -lrnl.t;,.x'j.r]|1

and thee marginal distributions oo, 0 and gpodea, £ wre shown Tor several
times + =ty fpy ... fwe Except lor the symmetrization of the wive [umie-
tion. all parameters are the same as those for distinguishable particles, whose
metion was illustrated in Figure 8.2 In particular, the trajectory of the olassi-
cal particles 1 the xy, xo plane is identical in both figures. Since the position
expectation values vy, vao ol imtial time ¢ = 1y are farther apart than the
width of the unsymmetrized wave packet in Figure 8.2, we observe fort = fy
two well-separated humps corresponding to points vy = xjp, X2 = xa. and
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A = Xog, vz = A, respectively. The marginal distribution pgs (xg. fo), which
describes the probability that one particle of the two will be observed at xy,
irrespective of the position of the other one, also has two humps. The twe
humps again reflect the Tact that the two particles cannot be distinguished,
Then, of course, the marginal distribution ggaixs. 0) has to be identical to the
marginal disteibution ggy (. O In pursuitof their metion, the particles attain
a distance smaller than the width of the unsymmetrized wave packet. In this
situation the two humps are no longer separated but merge into one, Fora
later moment in time they are again separated, and so on.

Figure 9.2 shows the correspending maotion of two férmions, For @ = fy,
when the two particles are well separated, the situation looks qualitatively
similar, but it becomes strikingly different when the particles move close o
each other. The hump splits along the direction x; = x3, where the probability
density 1s exactly zero as a consequence of the Pauli exclusion principle. In
fact, Tor fermions the probability density vanishes for locations v = xp atall
moments in time. At no time can (wo fermions be at the same place,

Figures 9.3b and ¢ show the time developments of the marginal distri-
butioms op i, £) for two bosons and for two fermions forming a system of
coupled harmonie oscillators. The difference between the two is much less
strking than that between the corresponding probability distributions of Fig-
ures 9.1 and 9.2, But still a trace of the Pauli exclusion principle is visible in
the marginal distributions, Near the center of Figures 9.3b and ¢, where the
particles are close to each other. the two humps are farther apart for fermions
than for bosons, For purposes of comparison, the time developments of the
two marginal distributions for the corresponding system of two distnguish-
able particles are given in Figure 9.3a.

9.4 Indistinguishable Particles
from a Classical Point of View

The quantum-mechanical description of the motion of indistinguishable par-
ticles poses the question whether the classical concept of the trajectory of a
particle can still be upheld or whether it has to he given up. Looking at the
Jjoint probability distnibutions for indistinguishable particles in Figures 9.1 and
9.2, we observe two distinet humps as long as the classical positions are far
apart. The center of either of them moves along its classical wajectory with
the initial positions

L1 =X AT =X
or
r=xXm . X=X



164 9. Coupled Harmome Oscillators: ndistinguishable Particles
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Fig.9.1. Joint probability density and marginal distributions for twoe bosons forming
a system of coupled harmonic oseillators. The joint probability density pp(o, ve ) s
showm as a surface over the vy, v plane, the marginal disteibution gpd, 0 us a curve
over the margin parallel to the 1 axis, and the marginal distribution gy, 0 a8 8 curye
over the other margin. The distribulions are shown lfor various times ¢, = o, o0 Ty
The positions of the classical particles are indicated by dots in the plane and on the
murgins: their motion is represented by the trajectory in the x50 planc.
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Fig. 9.2, Joint probubility density and marginal distributions for two fermions, Al initial
conditions are the same a5 those for Figore 9.1,
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Fig. .3, {n) Timne developments of the two marginal distributions for two distinguishable
particles forming a system of coupled harmonie oseillators, Time developments of the
marginal distributions pg gl 1) for the corresponding systems of {h) two bosons antd
(¢} two ferminns.
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where 1y, v2g are the position expectation values of the probability distribu-
tion for distinguishable particles. This observation suggests that although the
particles are indistinguishable in their intnnsic properties, they can under the
given circumstances he distinguished by their position. Thus if we call the
piticle that al f = &y is in the neighborhood of xg particle | and the particle
that 15 close to xp particle 2, it is perfectly consistent to say that particle |
stays in the neighborhood of the trajectory (x(¢)) and particle 2 in that of
{xz(t1), 48 long as the two humps are well separated. Here, {xq(r}} is the ex-
pectation value of the coordinate x| for the wave packet of distnguishable
particles and also the classical position of particle 1 at time 1. As soon as the
particles come closer to each other than the widths of the humps, there 1s no
longer a clear correspondence between the classical trajectory and the struc-
ture of the probability density. Once the positions are separated again, a new
correspondence cun be established,

A look at the relevant formulae justifies this reasoning. The wave functions
Y, for bosons, and v, for fermions, were obtained from that for distinguish-
able particles, ¥+, by symmetrization and antisymmetrization,

v Xy, a2, 0) = apr (W lx X2, 1) Wi, x|
The probahility density is found by taking the absolute square,

PpElE, X2, 1) = v pla. g, HII1
|”B.]-‘|3 [aptay. v5. 0+ polaa, cpot) & 7l x|

Here
folx, w2 t) = |drixg. 22,007

is the jount probability disiribution for distinguishable particles with coordi-
nate vy corresponding to particle | and cotrdinate vz to particle 2. The density

dpdxa, xp, rh = [lelxa xy, H|:

describes the situation in which particles | and 2 are interchanged.
The term

Tlxg, Xa, ) = fxg xs e {ag, g 1) e " (g, (0, X2, 7)

is called the interference term. This term is practically zero unless the two
particles are closer to each other than the width of the single hump. To show
this, we consider the particular point x; = xyp, x2 = X3¢ in the top left-hand
comer of Figure 8.2, Clearly here v (x g, 420, 1) and its complex conjugate
haye large amplitudes, whereas ¢ Cezg, £, 71 and its complex conjugate prac-
tically vanish. Figure 9.5, which shows the interference term t(x), 12, ¢) for
various times f = fg, f1.... .y, verifies the nature of the interfercnce wim,
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| ) = 1y + At
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Fig. 9.4, Symmetrized probability density for two distinguishable particles [nrming a
system of coupled harmonic oscillators, All initial conditions are the same as those for

Fipure 9.1,

Fig. 9.5, The interference term for two indistingoishable particles (orming a sys-
tem of coupled harmonic sscillators, The distribotion is shown for varioos times
F=tn, £, 000ty Adl initial conditions are the same as those for Figure 9.1,
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The figure corresponds in all conditions o those of Figures 9.1 and 9.2, In
Faet, these figures were obtained using the complex formula for pp plyy, £2.7)
given earlier. In Figure 9.4 only the sum ol the lirst two terms — the interfer-
ence term is excluded — is platted, We see that the interference is comparable
to the sum of the other two only when these overlap, that 1s, when the particles
are close to each other.

The probability densities for bosons in Figure 9.1 and for fermions in Fig-
ure 9.2 are ohtained from the symmetrized probability density for distinguish-
able particles given in Figure 9.4 und the interference term given in Figure 9.3,
We summarize this discussion by emphasizing that the probability density for
indistinguishable particles is obtained by symmetrizing the probability den-
sity for distinguishable particles and adding or subtracting the interference
term, This term contributes only if the particles are sufficienty close 1o each
uther, Thus the concept of classical trajectaries can be maintained us long as
we are ahle Lo distinguish the particles by their initial positions and as long as
we refrain from localizing them individually in the overlap region.

Finally, Figure 9.6a gives the marginal distribution for the symmetrized
probability density for distnguishable particles, which, of course, is nothing
hut the sum of the two marginal distributions for distinguishable particles,
Figure 9,6h shows the marginal distribution for the interference term. Again,
the marginal distributions for hosons can be constructed by adding the distri-
butions of Figures 9.6a and b, those for fermions by subtracting the distribu-
ton of Figure %.6b from that of Figure Y.ba.

In Section 8.3 we pointed out that for distinguishuble particles there is no
difference between the classical tme evolution of o Gaussian phase-space dis-
tribution of two conpled harmonic pseillators and of the Wigner distribulion
(ef. Appendix 1) of a corresponding Gaussian wave packet, This correspon-
dence no longer holds true for indistinguishable particles becasse of the ap-
pearance of the interference terms. The classical description of indistinguish-
able particles in terms of o phase-space distnbution amounts 1o symmetrizing
Py, o, ) and is thus given by

pslag, xa ) = —[pply. va 0+ polep, 1, 1]

Pod | =

cf. Figure 9.4, for the initial data of the sihmtion under consideration,

Problems

9.1, Which eigenstates of the svstem of two coupled harmonic oscillators,
as plotted in Figure 8.6, can be oceupied by bosons, which by fermions”!
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Fig. .6, Time developments of (a) the marginal disteibution for the symmetrized prob-
ahility density for two distinguishable particles and (I} the murginal distribution foe
the interference teem for two indistinguishable particles, The particles form a system of
coupled harmpnic oseillators, Al indtial conditions are the same as those for Fipore 9.3,
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1.2, Show that the eigenfunctions for the coupled harmaonic oscillators must 10. Wave Packet in Three Dimensions
have the symmetry properties with respect to the permutation ol xy, x2
phserved in Figure 5.6,

9.3, Compare Figures 9.1 and 9.2 with Figures 9.4 and 9.5 and characterize
the role of the interference term in distinguishing bosons and fermions.

9.4. Electrons are fermions, They possess intrinsic angular momentum which
is called spin s and can assume the two projections £fi/2. The wave
function for an electron in a one-dimensional potential 15 follv charac-
terized by the spatial wave function @} and the spin projection. The
Pauli exclusion principle then allows two electrons o occupy the same
spatial state since they can assume two spin projections.

10.1 Momentum

The position ol the classical particle in three-dimensional space is described

A number N ol electrons is 10 be accommodated 10 a potential well :
hy the components x, v, 2 of the position vecior

of width o with infinitely high walls. What is the mimmum total en-
ergy of all electrons? For the minimum total energy, what is the highest
cnergy an electron assumes? Express itin terms of the ground-state en-
ergy! How does this compare to the situation in which the potential is
occupied by N bosons?

r=+{r;¥. )
Similarly, the three components of momentum form the somentun vector:

9.5, Solve the preceding problem for the harmonic-oscillator potential, P= e Pyo P2}

Following our one-dimensional deseription in Section 3.3, we now introduce
operators for all three components of momentum;

. _hd R . hd
P5Fm " P e ¢ T Ga

The three operators form the vector operator of momentam,

& = (BB B H(H il r'l) 'r’g
= TR T B — e e Pl B
PP R = T e By 2] T

which s the differential operator ¥, called nabla or def, multiplied by /1,
The three-dimensional statonary plane wave

| i | i
"I'rfptr} = 12]Tﬂ_j”1 cxXp (EP_...T) {j_l_rm-l_.-'_l exp (Eﬂv})
i i
< (57)

I i ;
BERPET (r;" )

with
P-T= PX + Pyl + P2
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is simply the product of three one-dimensional stationary waves of the mo-
mentm components p,, . and peo corresponding to the three directions .,
v, and 7 in space. The surfaces of constant phase & are given by

i
—h-F=48
hp 2

They are planes perpendicular to the weve vector

p
k==

h
The wave vector iy the three-dimensional generalization ol wave nomber &
in one dimension. as introduced in Section 2.1 1t determines the wavelength

through the relation
2

===
K|
The thiee-dimensional stilionary plane wave is a simullaneous solution -
also called a stmultancous eigenfunction — of the thrce equations

Pegplr) = pegple) . Prip(r) = pygplr) Prioplr) = p-gp(r)

The three numbers p,, p,, and p. forming the vector p are called the momen-
tum eigenvalues of the plane wave gpir),

The three-dimensional tme-dependent wave function, like the pne-dimen-
stonal, 15 obtained by multiplying the stationary eigenfunction gpir) by the
energy-dependent phase factor,

P P d yogp, s s
‘EKP(—HEF) 3 .2 ZE — E:Ii'-i‘;).l_ ™ 7, { If.l‘l.:l

that is.

I i L
bnlr 1) = — eX ——I:'r)‘-' —p-r
G L F( h L"P(ﬁp )
= l."fj.,_l{.l.,.r]l,n'Jl-_.,I'_'L'.Hl.-"f;.:ﬂi.'.r]

Here M is the mass of the particle. This time-dependent expression for the
three-dimensional harmonic wave also factors into exponentials correspond-
ing 1o the three dimensions.

The three-dimensional free, unaccelerated motion of a particle is again
deseribed by a superposition of these plane waves with a spectral function,

Apy = fHipadfipd Gip

| a — Bank”
— exp = 0. : a=x, v 2

futpad T — 5
(27) L \,-"I?T.' 441‘!-,“
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which is the product of three Gaussian spectral functions centered dround
the expectation values (P, Puo. Paa) = po with the widths o, o, 7, 85
mitroduced 1 Section 320 The superposition of the functiens Wp(r — o, 1)
with the spectral lunction f{p) 15 given by

Wl = ] Fiphyrplr —rp, 1) d'-‘]:l

It represents the moving wave packet that starts at ¢ = 0 around point ry
with the average momentum pp, Becanse of the product forms of ((p) and
Pplr — ry, 1), the equation can also be writlen in product torm,

wir £y = Mylx, 0™ DAy et Y Mz, e

where the meaning of the svmbols can easily be inferred from the one-dimen-
stonal witve packel of Section 3.2,

The set of the upper three plots of Figure 10,1 shows the probability dis-
tribution [ (x, v. 4, £)]7 in the x, v plane of the moving wave packet for the
inttial moment in time, rp = (0 and two later ones. The straight line in the
x, v plane marks the classical trajectory that has been chosen to lie in this
plane. The dots indicate the positions of the corresponding classical parti-
cle al the three moments in time. The probability distribution shown is a
two-dimensional Gaussian dispersing in time. The ellipse encircling the hell-
shaped bump comprises a certain fraction of the total probability. It is the
covariance ellipse, which was already discussed in Section 3.5, As the wave
pucket disperses, this ellipse grows in size. For a Gaussian wave packet this
ellipse completely characterizes the position and the degree of localization
of the particle in the x, v plane. The complete three-dimensional Gaussian
wave packet s then churacterized by a covariance ellipsoid. The lowest plot
of Figure 10,1 shows the ellipsoids that correspond to the three situations of
Figure 10,1,

10.2 Quantile Motion, Probability Transport

In Section 7.1 the quantile motion was introduced for one-dimensional prob-
lems. We consider two different probabilities Py = P2 with the two quan-
tile trajectories xp,(7), xp (1), Then, the difference P> — Py is the timie-
independent probability contained in the interval y (1) = x < A p (£, ie.,

41
[ otx, tidy = Pr— Py

o r

For three-dimensionul systems a corresponding statement holds true. We
denote by V) the image at time ¢ of the volume V,, at time 7y under the trans-
formation
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Fig. 10,1,

10,2 Quamtile Monon, Probability Transpon 177

=ril X}

of every point x in Vy, inlo r € V,. The transformation rir, x} is the solution
of the differential equation

drif. x)

—— = ¥, X))

i

with the initial condition rimg, x) = % Here the velocity field vir, 1) is the
quatient ¥(r, 1) = jir, !)/olr, 1) of the probubility current density j(r, ¢) and
the probability density o, ¢} of the guantum-mechanical system. With these
provisions the statement reads: The probability P contained in the volume Vy,
at time fy 15 contained in the volume V), at tme ¢,

[ pir,tid’r =P
JW

We consider the force-free Gaussian wave packet of the last section. If for
simplicity we choose all momentum widths equal, o, = g, =0, = a,. il
has the probability density

.\
P fr—l‘n—"uﬂ“)
HrLtl= —————eip| —————
£ (22 7 20200

with the ininal expectation values of position ry = (1, ¥o. 2o) and of velocity
¥y = (g, Vg, Vo) at ¢ = (. The square of its time-dependent width is
ai(t) = nﬁ- - {rrJ..I,-’Jn‘J:. where ap = /{2,

In Figure 10,2 we show quantile trajectories for this wave packet. They are
curved lines, even though the mation of the wave packet is force-free, This is
due to the fact that the dispersion of the Gaussian wave puacket follows the
width e (1), which is a non-linear function of time.

In fact, the quantile trajectories for the force-free Gaussian wave have the
form

it
eif, X} = rg+ vor + — {(x —1rq)
el

Fig. 10.1, A three-dimensional Guussion wave packet moves freely in space, I1s position
expeciation value moves on a straight line in the +, v plane, The first three illnstrations
show for three cguidistant moments in time the probability density in the o, v plane as
a bell-shaped surface, the expectation value as  dot on the plane, and the trajectory of
the corresponding classical particle as a straight line in the plane. The covariance ellipse
encircling the surface eomprises a fised Mraction of the total probability. It contains the
complete probability density information for the v, v plane. The complete information
[or the three-dimensional probability distribution is given by the probability cllipsoid.
It is centercd around the position expectation value and shown at the bottom for the
three moments in time that are depicted separately in the Mest three plots, The classical
trajectory in space is also shown,
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Fig. 10.2. The expectation value of a free three-dimensional sphevically symmetric Guus-
sian wave packel, whichinitially (af time s = 1) liesin the.. v phiane, moves in the positive
¢ direction. As Initial velume V,, comprising the probability [ o sphere around the ex-
prctation value is chosen. Quantile trajectories xp(7) of points which at ¢ = g lie on the
surface of 1, at later times lie on the surface of volumes which also comprise the same
probability £ In this simple example all volumes ¥, are spheres. The plot shows the
cuts - = (0 throngh three spheres ¥,V ¥, which are cireles and trajectories in the
v, v plane. All parmmneters are as in Figuee 1001

For u given probability P the imitial sphere V, with the radius Ry p consists
of all points x which satisfy the inequality [x — ry| = x < Ry p. Al times
¢ = 0 the points x are mapped into the points riz, x). The mapping ri/, )
satisfies the above differential cquation. Also images Vi of V, are spheres.
They contain all the points rir, X1 with % £ V.

The mtial radius Ry p ol the sphere is determined through the quantile
condition, L.e.,

Ry p | 2 1 iy 1 .,
[ [ f — P ———= | &7 drdeosttdg = P
S J_ido (Iwm !l'l'"'-.".f_'l1” 2y

which leads to the equation
i (RH.P) 2 Ry.p - Rip\

— 2rfe — I|_ ] _ =

V2 Via oo day

where erfey denotes the error function discussed in Section 7.5, The time-
dependent radius of the sphere is determined by

Tir
Rpl(th = ~fo.p
oy
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10.3 Angular Momentum, Spherical Harmonics

Three-dimensional motion 15 further characteneed by anglar momeniim, For
a classical purticle it is simply the vector product of the position vector and
the mOmMentum vector,

Li=r=p

1

ar in components,
Li =3 —apv . Ly=zpi—Xps = Lo =xp. —¥py

The guantum-mechanical analog is obtained by inserting the operilar of mo-
mentum p = (h/1}V into the classical expression for L. This yields the vector
pperatar of angular minngniim,

or in components,

.E. H( ot :'i') f .f‘r( H H'] .E. .?'.'( i .:i)
= y——— |y L=z —— | Ly = | yp— .
2 R = v i e Tr'J:_ b i dy  Toax

Whereas the components of momentum commute with each other, that
is, [pe. pol = pepy — pofie = 0, und 5o on, the components of angular
mamenium do not In fact, the commutation relations are

Eekl'=ikT; « Epld=idE » el =10,

Becanse the commuotators do not vanish, an eigenfunction of {.. cannot in
general be an eigenfunction of £, as well. 1f, in addition to the eigenvilue
equation
LY =i(.¥
the relation
A e

would also hold, we would in gencral have a contradiction o the commutator
relation [L,, L.] = ik L, when applied to the eigenfunction ¥:

A A 0 AN Y [ 00 G YO

This ohservation is tantamount 1o the statement that noncommuting operalors
do mar have simultaneous cigenfunctions, except for trivial ones,

There is, however, unother operator, the square of the vector operator of
angular momentum,
+L

L2=i2+L

b D

(]

w P
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which does commute with any of the companents:
2 E.0=0 . a=x w2

This relation 1s easily verified with the help of the commutation relations, for
example.

[Li+ L3+ L2 L)

= [L}.L:]+[L3. L]

= Dulle, Bl B LitEy B+ By BRIy
= a(—itLyy—hE Lot By 4ihL by =0

Thus, simultaneous eigenfunctions for L2 and any of the components, [or
example. L., can be found. For the following discussion it is convenient (o use
polar coordinates r, @, and ¢ rather than Curtesian coordinates r, v, and z.
In a polar coordinate system a point is given by its distance r from the origin,
its polar angle #, and its azimuth ¢. The relations between the coordinates of
the two syslems are

o= rsinfcosg
y o= rsindsing
z = roeost

In polar coordinates the operators of angular momentum are

L, = (stnq&:— + cot it Lus-:pd#}) '
L ih (L .:i:r cot & singi— 0
f — =1 05 =
! ot i sin 79
Z a8
L. = —ih— |
g
e (] i 1 8f
i = = ) ST R
P [smﬂ a1 (Mn H':.‘J') sin® # ﬁqﬁz]

We can write eigenvalue equations for the two operators L* and L.
£ P

LYo = 6+ D0 Yo
fvzyfru = "myﬂﬂl

Both operators have as cigenfunctions the spherical harmonics Yo (9, ).
which are discussed in the next paragraphs. The eigenvalues of the square of

13 Angular Momentum, Spherical Harmonics
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Fig. 1004, Graphs of the associnted Legendre funetions £ (il top, and of the absolute
squares of the spherical harmonics ¥y, 14, ), bottem. Except for n normalization fac-
tor, the absolute squares of the spherical harmonics are the squares of the wysocinted
Legendre functions.

10,3 Angular Momentum, Spherical Harmonics |43

angular momentum are £(¢ -+ 1A%, This guantim number of angular momen-
e £ can titke on only integer values £ =0, 1, 2, ... Thus, 1n conlrast tao
classical mechanics, the square of angular momentum can take only discrete
values that are integer multiples of #%, Correspondingly, the eigenvalues of the
zoeompronent Looof angolar merentuen are ki The quantum number m can
vary only in the range —f < m = £_ In fact, » takes on only integer numbers
in this range. For historical reasons quantum number m s sometimes called
m{.‘_gﬂ{.’ﬁ{' qﬂai”]‘dﬂI numbfr..

The spherical harmonics ¥y, (0, ¢b) have an explicit representation which
is commaonly hased on the Legendre polvnomialy

! dr 2 £
Pi(w) = 57 g [ = 1]

Figure 10,3 shows the plots of these polyvonomials for & =10, 1, 2, .00 9, and
the domuain —1 = = |.
The Legendre polynomials are special cases of the associated Legendre
fitnctions £, which are defined by
LiF]

3 1'-]
P,f"fu}:ﬂ—u-;"”-mmu} T [ O

The top part of Figure 10.4 gives their graphs for £ =0, |, 2, 3.
Finally, for m = 0, the spherical harmonics ¥, have the representation

204+ 1 (=)t _
P T 2Tt 2 1| fF L
Yemlth @) = (=1} ‘j ie {€+m]!ﬂp (cos e
For negativem = —1. —2. ..., —f the spherical harmonics are

YF.. —ﬂl{rﬁ' “:Ibil Lo I_J }m }r}'*m I:-.I‘.'::ll fi!'}

Whereas the Legendre polynomials Py () and the associated Legendre
functions £ (u) are real functions of the argument n, the spherical harmon-
ics Yy, are complex functions of their arguments. As an example, Figure 10.5
shows the real and imaginary parts as well as the absolute square of Fa (8, ),
As the definition and the plots indicate, | ¥, [ depends only on 3. In fact, ex-
cept for the normalization factor, it s equal to [ P (cos # }|2. Far comparison,
the bottom of Figure 10.4 plots Vg |* below B for & =0, 1, 2, 3.

Since the variables of the spherical harmonics are the polar angle # and
the azimuth & of a spherical coordinate system, it is advantageous to repre-
sent | ¥, ° in such a coordinate system. This is done in Figure 10,6 where
| ¥ (i, 3|7 is the length of the radius subtended under the angles @ and ¢
from the origin to the surface. In this way | ¥ool® = 1 Skt tiens ot to be a
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Fig. 10.5. The spherical harmanics ¥y, are complex functions of the polar angle ¢, ‘sphere, For all possible values ¢ and m the functions | ¥y, | are rotationally

= ¢ = 7, and the agimuth é, with () = ¢ < 27, They ean be visualized by showing their
real and imaginary parts and their absolute square oyer the &g plane, Such grophs are
shown here for ¢ = 3andm =0, 1, 2, 3,

symmetric around the = axis. They can vanish for certain values of . These.
‘are called @ nodes if they oceur For values of ¥ other than zero or o It should
be noted that [¥y¢|* does not have nodes, Whﬂl‘ﬂﬂ,s"lfgmlz possesses { — |m|
nodes,




180 [0, Wave Packet in Three Dimensions

Il

Fig. 10.6. Polar diagrams of the ubsolute squares of the spherical harmenies. The distance
from the arigin of the cosrdinate system to g point on the surface seen under the anpilhns
i and 4 15 e:iual b | ¥y 01, i})F2 Different scales are used for the individual purts of the

figure.
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The Legendre polynomials possess the following orthenormality proper-
fes:

| s
j:j Polu) P () dn = ma,-,ﬂ
Here 8¢ is the Kronecker svinbol
I i "u = E:r
3:4" = i il . ¢ '.F"L- E...l

(The expression erthonormality stems from the similanty of the integral with
a sealar product, of. Appendix A, so that Legendre polynomials with different
index can be considered orthogonal to each other.)

For the spherical harmonics the orthonormality relation reads

- a7
f [ Vi @) Yo () dcos 9 dp = Seedy -
e it =1 =i

Since the integral is extended over all possible angles ¢ and ¢ one can say
that imegration 1s performed over the tull selid anele £2 = 4 and one writes
the above ntegral in the somewhat abbreviated form

f Y;m (O ) Y (7, ) A2 = dpprdiyiny

10.4 Means and Variances of the Components
of Angular Momentum

In Seetion 10,3 we discussed the eigenvalue cquations for the spherical har-
momnics

-

L‘-YEur == nZE{E‘F“FEm +
LYo = fin Yy,

Application of the operatars L, and L, yields

fi
'L.'I. }r}'m == ;\fr’[}{f + l.:l —m ':.r” =+ ]}th'l"rl

h
= SVEEH D —mlm — DYy

a fi
L_-.'Flm - E 84 1y —mim —+ 1) Yt
H S— —
= v+ Dy —mim = DY
2i

showing that the ¥y, are not eigenfunctions of L £ f._,..
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With the help of the orthonormality relations of the sphencal harmonics
given at the end of Section 10.3 we culculate the expectation values of the
three components und of the square of anguliar moment,

L]

':L I.}J_l'” = _/ ¥ “?':r'l‘l]i'.l }rlr'rl’—"l1 "-,IF” dZz =0
Lylen = [ Fiul. 011 Vit 182 =0
(Laim = j }Ir*m”-;'i &h]f-: Yl pd2 =mh

{l.z:l“-” = f }T-‘mlf |E}r qﬂ:‘]ﬁlz .Ff_;,q‘.rlj. fﬁ] ds2 =£(€ 4 1”?:

Obviously, the expectation values of the three components { 0.0, m) cannat
be interpreted as the three components of i vector, since the modulus square
of such a vector is mi%, which is always smaller than the expectation value
(0 + 1h? of L2,
(LYo (LY + (Lcihy =m™h < 0E+ A

The reason {or this astonishing result becomes obvious if we calculate
the expectation values of the squares of the angular momenium components.
Since ¥i,, 15 an cigenfunction of L., we find

o

iLf}J'rH - f i {r?,-:i:].{iii""mtﬂ.u,."ﬂ A = h'm*

For the two ather components we mike use of the equations for LYy, and
LY miven above und get

T winl he 2l y]
LT )= f }’,‘-'j"h'j"f_a'ﬂilf,';.l_ﬁ.]r”,,{r‘i‘.f#)dﬂ = = [Eﬂ. L1y —in ]
The non-vanishing of these two expectation values {L]L..,:In.-r resolyves the
above difference.
'[L_:}-*rn + ':'Li':'l'ffl + {L_;:linl
h AL 2 12 i
= ) [-E'U“ + 1) — HI!"] - [t’[f: + 1) =m ] LR = £+ 1)

With the help of the results for the expectation values of the squares of the
components we calculate the variances of the angulir-Momentum componenis

(var(L )y = (L - qL:}-’} = (LY — P =0

i
¥
[f'l!.’ + 1} —m"] 4

[I-'{f R m""] .

[

=r

(vart Lo = (Lf—{L-,ﬁl) = (L )y =

rm

=
T ra |

(arLy)y = (L3 =1L, = 1L3hm =

L

|

tam

0.5 Interpretation of the Eigenfunciions ol=Angalar Momentum |84

The uncertainties
[ AL | B Jim = {var L'I a2 :I .:',!‘:;lr

of the three components of angular momentum for the eigenfunctions turn out
o be
| e Vi
(ALgyow = (AL =h—= [t + =] . (AL =0
; G L
This shows that the eigenfunction ¥y belonging to the eigenvalue m =
plays & particular role among the set —£ < wr = £

(i} For Yeet ) the value of the z component i = ¢ is closest to the
expectation value of the modulus E07 + 1.

(i) The uncertainties of the three angular-momentum components are small-
esl.

For these reasons we shall take the eigenfunction Yy (14, @) as the quantuwm-
mechanical state corresponding most closely to the classical vector

L= (L.}ye: = hte;

af ungular momentum. Here e- is o vector of unit length pointing in the 2
direction,

10.5 Interpretation of the Eigenfunctions
of Angular Momentum

In Section 10.3 we found the eigenfunctions af angular momentum to be com-
pletely specified by the cigenvalue £06 4 1347 of the square L? of the angular-
Momentum vector eperaior L= (L, Ly 1;_-1-} and by the cigenvalue mh of
L;, the z component ol L. The choice of this particular coordinate frame is of
no special significance, In order 1o distinguish this frame from others we shall
indicate the z direction e, = (0, 0. 1) explicitly in the corresponding spherical
harmonics by replacing the notation,

Yn'r.ll‘.r}1 qlh‘] - F.lm{ﬂ. l.'t'. E;_:'

We choose another direction denoted by the unit vector no= (#y, iy, 020 as
the z direction of another coordinate system. In this frame the polar angle is
denoted by @' and the azimuth by ¢'. The eigenfunctions of LY and L) =
n.L = u,_-f;,; + n_,.f_h + n:ﬂ: dre then Yig (87, ¢, n). We shall denote the
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polar and azimuthal angles of the direction nin the onginal coordinate system
b & and o,

n = (sin = cos &, sin & sind, cos A

In Section 104 we Found that the eigenfunction Yoo (1, ¢h ) is the quan-
tum-mechanical state which most closely resembles the classical angular-mao-
mentum vector

L={L}in=fin
W now analyvze the wave funetion Yo (0 ¢, e;) ol total angular momentum
¢f and = component mh by the wave function Yep(d, ¢, nj. Al this moment
the reader 15 encouraged 1o turn to the discussion i Appendix € about the
analysis of 4 wave function by another wave function. In the present case the
analyvzing amplitude is

id

Il

r2r el
Nf f Froh @ mi Vit o e ) deos @ de
S -

_ i :
= ND, /(@ ©.0)
These Tunciions and the notation D:: r' were introdoced by Bugene P Wigner
andd are known in the literature s Wigner functions. The normalization con-
stant N will be determined in the sequel.
We consider the absolute square of the analyzing amplitude
T

DN @, 0)

mi

!'“.52 - ftmih}- gy = |J"'*'F|2

i

e [d{”{r:)]]: .

Here, df:;{ =1 s also referred to s a Wigner function in the literature. 1t has

the explicit representation

i _ |'I (2£3] (‘ E F+m(1. E,f)n’ il
e () = "||u'I (€ 4+ m)l(L —m)! £ 3

These functions urc showrn in Figures 10.7 and 108, [n our discussion in Ap-
pendix C we found thit ] is u prnh_ahi]hy densily describing the result of
the measurement performed on a physical state described by one wave func-
tion with a detector characterized by anather wave function. In the partic-
ular case al hand the physical state is described by the spherical harmonic
Fiw it ah.e-). The detector with which we want to measure the direction n ol
angular mamentum is characterized by the spherical harmonic Yo (1%, ¢ nj,
By an appropriate choice of the normalization constant
M2 IME+ 1)

INF= """ " % for == 1,203
dmi

the gquantity

0.5 Tnerpretation of the Exgenfunctions of Angular Momentum [41

Em;.nt':' d(l.l_l N o E'mr LAY j:n..,_.|! B d!h.ul:y

Fig. 10.7. Polar diagrams of the Wigner functions 4.1, Lines 1 and 2 show the
functions for ¥ = 1. Zandm = ¢, { — 1. ..., —& Lines 3and 4 give them for & = 3 4
amd g = 0, £ — 1. AL The Tanctions are ndependent of &, They have large valoes
only in o resteicted region of <. Thal region is near = = ) for m = ¢ and decreases in
regular steps via & =g/ 2 form =0t @ =7 [orm = -4,
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;'1,'1[I3|¢} |: '|,[||:EI-:-h II |:q__1|: —::I'lin :|

Fig. 10.8. Polar diagrams of the directional disteibutions fo (8, @) for & = I

(28 4+ 13- 1) 2
LD )

is turned into a directional distriburion (ulfilling the normalization condition

frled, @) =

Ir el
(Mg = f f n(@, @) fi(@, ¢ deos @ dd =e. .
1 —1

The distribution fi (¢, @) defines the probubihty for the ebservation of a
direction within the sofid-angle elenent

de? = deos @ dP = sin GHde dg

positioned about the direction n characterized by the polar angle & and the
arimuth o, ;
P=——fiE, @)d2 .
i T i,faf _ i

We now introduce the “classical” angular-momentum vector with integer
length £

L@, &) =hin(@, @) . £=1,2,3...

Calculating its expectation value with the distribution fee (&, ) vields
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b = f Lo, ) ferlt, &) d2 = Ehe;

Mormalizing the functions fp,, (&, @) with the same constant |N2

(20 4+ 1E 4+ 1) [

TP
o d wz] .

mi

_flrnj{@- ¢'}| -
we find that
“H{._}Jm == fL!:{E-"Is fﬁ_]_ftm ':f-':ln ‘I“'_} di? = i"hE:_

Therefore, we can also interpret the functions fr, (¢, @) as a measure lor
angular-momentum prahability densities. The probability of detecting in the
state ¥y the angular-momentum vector Ly within the solid angle d52 posi-
tioned about the direction characterized by & and 4@ is

i
£ ]

The “classical” average values {Lyje, = mhbe; are the sume as the quantum-
mechanically calculated expectation values,

gp =

fim(E, P1d82

|:L:|'Fm = f Ff:ﬂi'ﬁ‘ 1?5. E;jf,«}’h"[ﬂ. lil!H E;_-_:l dir = H!L’IE‘- .

as obtained in components in Section 10,4, Also the expectation value
(L2 = U+ LR

of the square of the angular-momentum operidor L. is reproduced by the dis-
tribution [y, (&, @) of angular momentir,

f L‘E{H- ﬁjfa'.ur[,@1 i) di = 'F{E + 1}-ﬁ1 4

We may now ask what angle @ the angular-momentum vector Ly, forms
with the = axis in the state Y. As a lirst step we form the marginal distribu-
tion with respect to cos & of the distribution fi, (&, @),

i

f'l'm cose {08 &)= f{r}:fﬁq didd = 2??'_{;',,7 (=, 0
[}

We turn this into an angular distribution in @ by using the rransformation
deos &
de

Semal®) = frmessm(cos &)

‘ = 291 fim (), Q) sin &

Folar diagrams of these densities are shown in Figure 10.9,
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Flg L9, Palar dingrams of (he distribution (.00 for the polar angle & of the
direction of angular momentwme Lines 1 and 2 show the functions for © = 1,2 and
mi=1L f—=1,_.., —{.Lines 3 and 4 give them o & = 3 dand m =, 0 — L .- o
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T il B4 [ [ “1m |: uc]_-'n
& &
¢
0F .

LN

?-»—i—;}-n-. ni- R
-

nz r To=

i
=0t

07

3 I
| edgey i IL_
Fig, HL1D, Polar diagrams of the angolar distribution (005 The top left plot contains
all polar disgrams for ¢ = [, In addition each polar diagram contains a line from the
arigin b the point £ e (6= 1, whiere =, is the angle For which S hus it maximum,
The second plot from the left in the top row shows the semiclassical angolar-momentum
vﬁ:mml:ﬁm which have polar angles similar o &, Paics of plots of 00820 and LY
are also shown for ¢ = 2, 5. and 4.

The figures show clearly that the distribution () is concentrated

about a maximum value al &y,,, With the explicit form of the rfrff;_ () given

before, the angle ¢, can be calculated from the above formula in the form

of
_ "
cos Hyyy = T &
t+3
We compare this with the angles of the semiclassical vector model as in-
troduced by Arnold Sommerfeld before the advent of quantum mechanics to

account for the quantization of angular momentum. He postulated the angular-

momentum vector in atomic physics to be of length (0 + DA, and = com-
ponent mfi as shown in Figure 10010, The angles &% of the various semiclas-
sical vectors of z companent m/l are determined by

£ o "
Lm ,.'—”{E 717

which for ¢ 2 | approaches the above formula for &, if one neglects terms
of order (1/¢)? and higher in the denominator. Also for small values of ¢ = |

cos &
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fgalB,9] z

Fig. 10.11. Polar diagrams of the directional distribution {08, &) for £ = 1.2 .6

the angles ¢y, and (-ﬂ":‘-'rj: do not differ very much; for £ = [, m = [, we find
@5 = 45" as compared o Gy = 482

To conclude this section we turn back to the dircctional distribution
fim{E, @), In Figure 10,11 we show polar diagrams of fi@, &) lor in-
creasing values of £. The distributions become more and mare concenirated
around the z direction, In the classical limit ¢ — 20 the distribution is differ-

ent from zero only in the ¢ direction.

10.6 Schridinger Equation

Mg wie did for the onc-dimensional harmonic wave in Section 3,2, let us com-
pare tme and spatial derivatives of the three-dimensional harmenic wave
wp(r, 1), which was introduced in Section 10.1. They are

i
in;—:qﬁl,fr,rl = Eyplr )
i
h* . P’
S = ——ipir, 1)
EMV’ Urn(r, 1) BT, Wplr
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Here M is the mass of the particle.! The Laplace operator V7 is simply the
sum of the three second-order derivatives with respect to the coordinates:

i i

1 T S —

dat oyt oAzt

Making use of the relation E = p*/(2M) between encrgy £, momentum p,
and mass M ool a lree particle, we obtain the Schridinger equation for three-
dimensional unaccelerated motion,

i b
m-ﬂ;;a,,{r.n=—ﬁv Yrplr, £)

We may consider the operator on the right-hand side of this equation as
the operator of kinetic encrgy,

> B Ui sy
T'= sy =o't oyt
| . B2 it .
—— e | —ff* = — i — — K" _’)
I ( BaZ " PR P
R
T IM

Thus the Schridinger equation for three-dimensional free motion has the sim-
ple form

il
ih— B0y = Flgir. o]
”ar\'["p[ Vg

The equation can be extended to motion in a force field represented by a
potential energy Vir) by substituting for the operator of kinetic energy T the
Hamiltonian aperator of total energy,

H=T+V

The Schritdinger equation for motion under the influence of a force therelore
reads
.

i |
Ml—gir, t) = Hgir, 1= | ———=¥= 4 Vir) | dplr, 1)
ot Wl [ '.l!"p'[ 0T, ) Yp
With the ansar:

Pl 1) = exp [—%Er]m:rl
!

'From Chapter, 10 onward we denote the muss of o particle by the capital letter M. This
is done to aveid confusion with magnetic gquantum aumber e,
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which factors the wave function d(r. 1l it a time-dependent exponsntial
and the time-independent. stationary wave function @g(r}, we obtain the sti-
tionary Schriidinger equalion

pe: .
——— V4 V() |gelr) = Ege(r}
[ oYY :l[r‘.‘_ Wi

10.7 Solution of the Schridinger Equation of Free Motion

Besides the solutions g (r, 1) of the free Schriidinger equation, which repre-
sent harmonic plane waves with momentum p. there are equivalent solutions
which are determined by the quantum numbers ¢ and m of angular momen-
tum and energy £ To find these solutions, we express the Laplace operator in
polar coordinates v, 1F, und ¢

|
plr) — — - I Yl

2 l
Vol = - e

Since the operator L7 of the square of angular momentum, as discussed
in Section 1013, depends only on # and ¢, we now solve the Schridinger
COuULtion USING &0 (Gsars,

gemlr) = R{r ol o

which is a product of two functions. The first function R{r) depends only
on the radisl coordinate, The second function is the spherical harmonic
Vi (th ), which was recogmized in Section 10,3 s the eigenfunction for 12
We obtain
2 s 4 Pt j
‘.::wv Wil = _;E [:‘?i_rﬁ{. g £r+
= ER{) Y}, g

Rir 7'-'j| Y, db)

amd conclode that
W el £+ 1 N
I—." — + }j| RL!'[T] L"HE[U‘P
CAM |yt r?

15 the eigenvalue equation lor the radial wave function Kgir) for posilive
vitlues of r. Here we explicilly indicate the dependence ol the radial wave
function on energy £ amd wtal angular momentum £ We call geeir) =
R )Y (0, @) i parrtiad wove of angular momentum £ and = component mt.
The solutions of this “free radial Schrodinger equation” are discussed in some
detail i the next section,

i Spherical Bessel Functions 1949
10.8 Spherical Bessel Functions

Let us consider the solutions of the linear differential equation that depends
on the integer parameter ¢,

Ld* e+ ] #ta) =B
pdp?t T T =

For g = kro bk = (180 2MEL i s equivalent o the Tree radial Schradinger
equation.
The complex solutions of this Hinear difTerentie] cquation are the splierical
Hankel functions of the first {4+ and second (—) kind,
L
figip) =0 ——
f

where the complex coefficients C; are polynomials of o' of the form

lf+'-]'1 it ==
[ZFJ ZZ‘ T i:ltl,n]
=0

The first few of the Hankel functions are

4 b 5 [ Y ptie
W == ; hy (:F[ N ) ¥
e fE I

An eguivalent set of solutions are the spherical Bessel funciians, which
are simply the lineur combinations
3 | i+ =1
Jrlp) = 2 [Ja: (o) — g I[ﬂ]]

The spherical Newmann finciions

S ’
niip) = ;[h:' () + *I.pl]

are also solutions of the lincar differential equation. In terms of the spher-
ical Bessel and Neomann functions, the spherical Hankel functions can he
expressed as
+ ¥ ow
.l’ri o) = nelp) £ ()

The first few spherical Bessel and Neumann funetions are

, sin g _ s cosp
Jilpl = Nt = — —
i = F¥
CO% oS sin
”{I{ﬂ'} = 3 ”I{P] = p _p

” o o
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Fig. 10.12. Spherical Bessel functions () and spherical Neumann functions i (o) for
8= 0T et

Fip. 10,13, For purely imaginary arguments i, » real, the spherical Bessel functions ji.
the spherical Neumann functions 1, and the spherical Hankel functions 4, are either
purely real or purely imaginary. The functions shown, that is, (=) g (1), 177 ay (), and
i1 (), are purely real,
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The behavior of the spherical Bessel and Newmuann functions for small
values of the arcument s

oy =p' . np) = p
and for laree o,
- i ;
Tl == ;Hiﬂlﬂ—%iﬁ'b ’
nell) ot Jl caslg — il,-t.“!':l

Since the spherical Neumann functions ng(p) diverge at the origin, only
the sphericul Bessel functions ji(p) are physical solutions of the free ra-
dial Schridinger equation. The ny (o) as well as the sphenical Hankel Tune-
tions ."riJ‘:'ij. however, are needed for the discussion of the radizl Schradin-
ger equation for a square-well potential. Figure 10,12 plots the jp(p) and the
Helpyfor =0, ..., 4.

In connection with the wave functions Tor a square-well potential. we
encounier negative energies E; that make values of wave number £ =
v 2m E; (f imaginary. Therefore the functions jy, ny, and J::_' are needed for
imaginary arguments o = 1. Using the original definition, we can write

[}
3 = 1+ i
=i = (2 ! —— ()
' : ZI’I 2t — 3} : i

The fetingy and nplin) are again given by the linear combinutions of the

e (—hes : o
by i) and the i, i) The values of these functions for such arguments
are either real or purely imaginary. Figure |0013 presents the functions

it

[_i]r_,l'-||ii,” . illrilrh(j”] ]'i'+ll|uj:.+_l

tor & =0, 1, ..., 4. The powers of i in front of j(ig), nelig), and h:."qu,u]
ensure that the functions plotted in Figure 10,13 are real.
The hl“ "in) play 4 role in deseribing bound states outside the patential
well, Their asymptotic behavior for large i
Tt |

i (s ¢
iy ~ — 5 — 20
L)

10,9 Harmonic Plane Wave in
Angular-Momentum Representation

The spherical waves i (ke ) ¥y, OF, gb), like the harmonie plane waves, form a
complete setof functions which can also be used for constructing wave pack-
ets by superposition or for decomposing stutionary solutions inte spherical
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Fig: Hh14 The polar coordinate system wsed throoghout the ook for functions of the
type [ = fir, ) The admissible range of variables, (1 < ¢ < 20,00 = 0 = goeormesponds
to a half-plane. Here a half-cirele around the origing r = (0, is viewed perspectively lron
a point outside the hall-plane. The polar angle ¢ is measured against the @ axis, which
points to the lower right, Lines of constant o are straight lines beginning at the origin,
Lines of constint r are hall-civcles, Using the direction perpendiculiar to the hall-plane
to define an f coordinate, we can represent a function ({0 0) as a sarfaee inor, 0 F
space. Figures HUTS and 10016 show lines of constant r and constant o on this surface.

waves. In particular, we decompose the stationury harmonic plane wave into
pariial waves,

By
elk.r o UJR.' - cmr cos i _ Z[?—r + 1 ]iJ_,fj{kJ"_”".u {cos 1y
=l

where the 7 axis was chosen o be parallel to k amd oF is therefore the angle
hetween k and r. Since the lefi-hund side of this relation does not depend on
the azimuth ¢, only the spherical harmonic function Yeg = (20 + 1/ Py
oceurs in the sum,

Figures 10,15 and 10,16 illustrate this decompasition. The polar coordi-
nates + and % are used w plot functions over the r, @ half-plané. The po-
lur coordinate system used throughow the book lor functions of the type
f= fir, 2} is explained in Figure 1014,

[n the tap right comer of Figure 10,15, the function cos(bz) = Re fe'<) is
presented. The left column contains the functions

(26 4+ )i jythr) Peicos ) . t=0,72 .::,8
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Heli 2l ' iar 1P teost )] = f =Y NI T AT o vt i .

Fig. 10,15, Decomposition of o plane wave imto spherical waves. The real parl
Rele] = costkz) of a plane wave is shown in the top right eorner, The left column
containg the terms of the decomposition that are purely real. The right column containg
the sums af the frst two terms (A = 2, theee terms (N = 43, and so on, of the left
column.
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T Mmte g 0 e P feas 1T

Tl 21+ 490 10k IP [ cas )]

Fig. 10.16. Decomposition of a plane wave i=5 spherical waves. The imaginary pari
I 7} = sintkz) of a plane wave is shown o the top right corner. The left column
contains the terms of the decomposition that are purely imaginary. The right column
contains the swms of the st two terms (& = 30, three lerms (N = 5), and $o on, of the
Teft column.
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which are the first {few real terms i tis decomposition, The rght column
shows the sums of the first two terms. three terms, and so on. [n the neighbor-
hood of the origin, the plane wive is deseribed well by the first Tew werms of
the sum. Farther away Trom the arigin, more terms have to be added. Near the
arigin the first few terms are adequate because the Tunchions jelg) are sup-
pressed there for inereasing ¢ (see Figore 10125 A simedar ilustration for the
imaginary part of the plane wave is given in Figure 11116,

10.10 Free Wave Packet and Partial-Wave Decomposition

In Secton 1.1 we discussged a three-dimensional unaceelerated wave pucket
moving with group velocity vo = py/ M. The wave packel wis represented as
a superposition of plane waves that are eigenfunciions for the momentam op-
erator. The details of the superposition were determined by the spectral func-
ton fip) which specilies the contribution of the plane wave with wave vector
k = p/f. Analogously, the same wave packel can be understood as a superpa-
sition of the eizgenfunctions ¥y, (2, @) for angular momentum multiplied by
appropriately chosen weight functions g (. 0) tor the rudivs variable Fand
at ime ¢ = 0. In this kind of representation, the weight function regulates the
relutive weight contributed by the vanous angular momenta.
The representation of the wave packet al initial time has the form

= f
G0 =" 3 dlr, 0¥ (i, §)

Foald pp=—1

In an additional step we may decompose the radial functions oy (e, 0) into
purely wiave number, that is, encrgy-dependent, coelficients,

. L)
Btk f Sotkr et le e de
A}

g
Ay E-n [“ —

i -
[ ;}-IIJ.'EJ:-.JJI:{ ':.kr]i_d.{'. :

Ty

siv that the free wave packet at ¢ = (0 is now

b o x e
e ==3" 3" j By k) J0 (kP )Y (1, )R dk
T <l

V=l =1

In this decomposition of the [ree wave packet in terms of the eigenfunctions
nf the free Schriodinger equation for the eigenvalues E, ¢, and m. the lunctions
B () play the role ol spectral coethicients for angular momentum and spec-
tral functions for eneray £ = A7k /2M. In Section 10,1 the spectral function
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Fip) played a similar role in decomposition of the wave packet in terms of
eigenfuncions of the thive momentum components,

The moving wave packet 15 described by the tme-dependent wave Tunc-
tion g (r, 1) which is obtained from the initial wave function by tuking into
uccount the ime-dependent phase Tuctor expi—iEe /0, tha is,

n BE . i
thir, 1) = ; Z ZI -L By (k) exp |:—EI'.'!:’ j,{krb]/.-”.[;-'i.d:].i:znlk

t=0-n

The angular-momentum content of the free wave packet is given by the spec-
tral coefficients by (61 They are tme independent becaose angular momen-
tum 'I'\ L'l!l'l.\l.:l"n."r_'tl.,

I we ask for the contribution having angular-momentum gquantum number
{ and magnetic quantum number m irrespective of wave number k. we have

to integrate the probubilities b7 ()b, (k b di over all wave numbers;

i

7 g )
“.-”” = = [ by hr.}_l"u[.k 1= dik
i Jn

The probabilities W, fulfill the normalization condition

“n i
>3 W=

=l m=—i

As an example, we consider the wave packetl shown in Figore [0.17a,
[ts center moves with constant velocity in the negative x direction Keeping a
constant distance & from the x axis. That is, it behaves like a classical particle
with time-dependent position vector

r(r) = ixir) b, 1)
and constant momentum vector
pit) = (—p )
The angulir-momentum veetor of the clussical paricle,
L=rxp=i0bn |,

is independent of time and 1s orented along the 7 direction. The absolute value
of the angular momentum is

L = |L| = bp

We now consider a particle of constant momentuwm p which trovels along an
arbitrary straight line, The shortest distance of this line from the origin is
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=]
=
‘. — |
I_ —
=
jm—

- 7 =g,

Fig, 10017, {2) The probability elipsoid, here a sphere, of o free wave pachet moving in the
t. v plane antiparallel to the v axis, showa at two moments of time. The dispersion of the
wive packet is upparent through the growth of the sphere with time., (h) Decomposition
of the wave packet shown in part @ into angular-momentum states. The height of the
column drawn at point (0, o) is proportional to the probability Wy, that the particle,
which is described by the wave packet, has anpular-momentum guanium number @ and
quantum nuniber m for the component of angular momentum along the guantization
axis n. In this figure n was chosen to be the ¢ axis. Also shown, on the upper margin, are
the probabilities W, that the particle possesses quantum number © ircespective of the
vialue of m,

Tk 14 Free Wave Packet and Parial-Wave Decomposition a0y

called the frpact paramerer b, Obviously, for reasons of symmetry, the ahso-
lute value of sngular momentum for this particle s again L = bp,

Let us now study the probabilities W, for the wave packet of Fig-
wre 10,174, We quantize the angular mamentum in the = direction, that is,
we use the cigenfunctions of L2 and ﬂ: in decomposing the wave packet,
In Figure 10,17 the probabilities Wy, are plotted for varions values of £
and m. In the graphical representation each probability is proportional o the
height of the column sitting on top of point (£, m) in the coordinate grid.
Obviously, the probabilities can be different from zero only in points lying
within a sector between two straight lings, for which m = and m = —{. We
note that, in contrast to the clussical poant particle, various angular momernta
contribute to the wave packet. In fact, for the guuntization axis chosen, the
probabilities at points £ = m are by tar the largest for every £. This is not sur-
prising since the angular momentum of the comesponding particle has only
i z component. Nevertheless, values m = { also contribute. The contribu-
tions Wy form = ¢ — L, £ — 3, ... vanish. Because of the mirtor symmetry
of the wave packet with respeet to the x, v plane, functions Y, (1%, ¢} with
m o= £ — 1, § — 3, ... do not contribute. They are anusymmetric in  with
respect o point = 7 /2,

The probabilities that a certain quantum number £ will contribute imrespec-

tive of m are
i
W,- == E w! m
i

M=—

They are plotted on the upper margin of Figure 10.17h. As a function ol £, the
probabilities Wy have a bell-shaped envelope reminiscent ol 2 Gaussian, The
maximum of the marginal distribution corresponds to the angular momentam
of the classical particle.

We now study the dependence of the Wy, distribution on the quantization
axis, Instead of the o axis, we first choose an axis n that forms an angle of
/4 with the v axis in the z, v plane. Figure 10.18a shows that many more m
values now participate in the superposition of the wave packet. The marginal
distribution, however, remains unchanged, There are changes in the m distri-
bution becuuse the new quantization axis does not point in the direction of
the classical angular-momentum vector, The distribution Wi of the modulus
of angular momentum is independent of the quantization axis.

Finally. Figure 10.18b shows the probabilities: Wy, for the v axis as the
guantization direction of angular momentum, and Figure 10.18¢ shows them
for the x axis as the quantization direction, Since in bath figures the quantizi-
tion direction is perpendicular to the classical angular-momentum vecior, we
foresee that the expectation value of m will vanish. Indeed, the two distribu-
tions are symmetric around m = 0,
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Fip. 1018, All
three figures ap-
ply o the situ-
ation of  Figure
10,170, Like Fig-
ure 10L17h, they
show the decom-
position  of  the
whve packet in-
inangular-mo-
mentom  states.
The quantization
axes are  differ-
vnt, however.
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Problems

1.,

0.2

103

1044

[0.5.

106

10:7,

Assuming that the components of the mementum operitor in the three
spatial dimensions are given by
i fi i

N = ——
o= e

p=1(p. pa pa) .

shonw that the simultaneous stationary eigenfunction for the three mo-
mentum operators (i s the product of three one-dimensional momen-
tm eigenfunctions,

Caleolute the probability density pir, ¢} = @ "(r, (e, 1) of the three-
dimensional Gaussian wave packet of Section 0.1, using the explicit
form of Mix, 1) a5 given in Section 3.2, In which direction does the
wave packet move? What 15 the square of its velocity? What determines
i which direction the wave packet disperses fastest?

Werify the commutation relitions of the compaonents of angular momen-
tum as miven al the beginning of Section 103,

The spatial reflection is the transformation © — —r. How 15 this trians-
formation ecxpressed in spherical coordinates? How do the spheries| har-
monics ¥iqitf, @) behave under reflections?

Calculate the commutators of the angular-momentum-component oper-
ators Ly, Ly, L, and 1.2 with the coordinate aperators v, v, and 2 and
with the momentum-component operators po, f,, and f..

Calculate the commutators of L, Ly, L., and L* with the radial co-
ordinate r = /v7 + v2 + 22, and with p*. Use the results o compute
the commutators of angular momentum with @ Hamiltongan for a spher-
ically symmetric potential,
B
H=—4Vir
2M
Show that the three-dimensional free wave packel, as given by its spec-
triel representation in Section 11,

|I|r,r[r1 Iy = / ff[l]i"!ﬂ'p{r— i}, I:Idj'p

-

is-a solution of the Schradinger equation for three-dimensional free mo-
Lo,
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T0LH.

1419,

10,10,

1011,

10.12.

10013,

.14,

1}, Wive Packet in Thiee Dimensions

What is the difference between the classical and the guantum-mechan-
ical centrifugal term I.2/2Mr? in the Hamiltonian for a given angular
momentum?!

Verify that the explicit expressions of the spherical Bessel functians
Joley and ji(p) and the spherical Neumann Functions mpl o) and ny (o)
satisfy the free radial Schridinger equation given at the beginning of
Section 10.8.

The cxplicit form of the spherical Hankel functions J:f“rm I5 given al
the beginning of Section 10.8. Show that the asymptotic forms of the
spherical Bessel and Neumann funetions for p — O and p — o0 are as
given in this section.

Culeulate the expression Ligg(ri. Explain why the result does not imply
that @y(r) is a simultaneous eigenfunction of the angular-momentum
aperators Ly, Loy, L.

Calculate the expressions L j (kr) Yo (7, @) for £ = 0, 1. What dis-
tinguishes the two cases £ = Oand £ = 17

What is the expectation value of angular momentum of a Gavssian wave
packet as given in Section 10,17 Explain why the result is time indepen-
deni.

Why is the m distribution in Figure 10.18b wider than that in Fig-
ure 10.18c? To find the answer, consider the v and z components of
angnlar momentum for the classical assembly of particles imitating the
wave packet.

11. Solution of the Schrodinger Equation
in Three Dimensions

In Section 106 the ume-dependent Schriidinger equation for three-dimen-
sional motion under the influence ol a potential was separated with respect o
time and space coordinutes with the help of the ansarz

i
frir. ) = exp [— Eﬁf} weir)

The three-dimensional stationary Schridinger equation for the function ¢ g (r)
obtained at the end of that section 15
nl

—— V¥4 Vir) | geir) = Epg(r)
M E o

We now restrict ourselves to spherically symmetric systems, those in
which the potential V' (r) depends only on the radial coordinate r. Following
the same line of thought used in Section 1.7, we separate radial and angular
coordinates,

el = B{r1 i, (3, &)

and arrive at the radiul Schrédinger equation for the radial wave functions
Retk,ri:

M

i [l d—.,r He 1 b _ ﬂl"ir]] Rilk,ry = ERsk, r)
rodir= r= i~

Because the potential has spherical symmuetry. this equation does not de-
pend on quantum number m of the z component of angular momenturn. There-
fore the R, (k, r) do not depend on m. Besides the kinetic and potential ener-
gies, the terms on the left-hand side of this equation represent the centrifugal
potenticl
A L+ 1)

Ml :
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which is attributable to the angular momentum. This and the potential term
Viry are often combined to give the effective potenrial Tor a given angular
Imeanenium i,

B+ -
— 4 ViF)
M

The radial Schrodinger equation then reads

Vfl.r.[:' j =

K1l

2M rdir?

r VI | Rtk r) = ERplk, 1)

This cquation is a differentul cquation with one vamable, Tts solution for
potential functions that are simple in structure proceeds along the same lines
used 1o solve the one-dimensional Schridinger equation in Chapler 4. Since
the radius variahle r assumes positive values only, here we are looking lor
solutions Kelk, r) only on the positive hall-usis. At the origin the solution
Rk, r) must be finite, Again, we have to distinguish the two types of solu-
tions, those for scattering processes and those for bound stiles,

In contrast to the three-dimensional Schrodinger equation, which does not
refer te a particular angular momentum, the radial Schridinger equation de-
seribes a particle of a given angular-momentum guantium number ¢ The cen-
trifugal potential acts as a repulsive polential, also called a cenrifucal bareier,
and keeps the particle of momentm p sufficiently distant from the origin
of the polar coordinate svstem. This way the impact purameter b — see Fig-
are 11T — remmuns sofficiently large 1o guarantee that angular momentum
[ = by is conserved.,

11.1 Stationary Scattering Solutions

As i Section 4.2, we have to formulate the boundary conditions for the so-
lutions that describe elastic seattering of o particle on-a potential. In See-
bons LT and 108 we have seen that the solutions of the radial Schridin-
ger equation of free motion are the spherical Bessel and Neumann functions
Fotk, vy and mpetk. r) From Section 4.2 we learned that lor forces of finite
range the particles move foree free af distunces for from the mnge of the force,
Forelastio scattening on a potential of finie range o, the rudial wave luncoons
Rtk ey must therefore approach @ lincar combination of spherical Bessel and
Neumann functions for values of r large compared o range o

Ry(k, 1) = Apjplhkr) 4 Benplhry | =T

For some potentials the solution of the radial Schrisdinger equation can be
piven explicitly, As a purticularly instructive example, we consider o square-
well potential:
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Vi, D=r=d region [
Vies=4 Vo . i =r=<dgr . region 1

Vin=40 , da<r=2oc , regionlll

Since the potential vanishes in region I, we say that it has the finite range
d =dx-

Scattering solutions of the radial Schrodinger equation have energy £ =
{1. The solution o nner region 1 consists of jy (ke only. stnce nglfyr) s
singular for = {1, In regions [ and 111 the solution can be written as a
superposition ol i and n,

Rey = Apyje k)
Relkori=1 Rin = Acude thne) + Bpunge Uhr)
Rimt = Apnde tkry + Beppee V)

Here the wave numbers k; in regions i =1, [Lare
b o
ki = —-.,-'EM'{E—V;]
fi

In region 111

|
k= VIME
i

is the wave number of the incident particles.

For every value of (. four of the coeflicients Ayy and By are determined
in terms of the fifth by the continuily conditions for the wave function and its
derivative at r =} and r = da:

dfiig Ui
RL’JU\.M"[]=Eall':'rf-“rl.] . _ar (kodi)= e tkyedy)
and
di dR
Rtk dz) = Reuik, da) ::_Hik,tfj# = —%M‘.u’:]

The coefficient A,y can be chosen equal to umty, thus fixing a normalization
for the incident wiave, For this choice the four coefficients A A, Sens
and Heyyp caleuluted from the continuity conditions as functions of the mei-
dent wave number & are real coeliicients. Therefore the radial wave function
Ry(k, r) is real, Figare 11.la presents the solutions Ry(k, r) as functions of
r for u fixed-enerey value. that is, a fixed value of £y, and for a number of
angular-momentum values £,

Figure 11.1b shows for comparison the lunctions je(kr), which are in fact
the functions &:(k, ry for a vanishing potential, that is, for the undisturbed
plane waves. Because fe(kr) ~ (kr)* is strongly suppressed near the origin
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Fig. 11.1. fa) Solutions £ (4. ) of the radinl Schridinger equation for o potential that
is negative in reglon 1, V) < Uz is posttive and larger than the particle energy in region
I, Vi) = &3 and vanishes in region L, The shape of the potential Vir)is indicated by
the long-dash ling, the particle encrgy & by the short-dash Hoe, The shorl-dash lines
alsn serve a5 zero lines for the funclions & (5, ¢} The energy b5 kept constant. The
various curves correspond to dilfercit angular-momentum quantum sumbers £ ()
The situstion 45 the same as that in part & except that the potential 15 zero everywhere,
Virl = 0. Here the solutions Bk, ¢} are identical o the spherieal Bessel funetions
Jekr)k = W 2ME R,
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for high £, the wave function K for high enough £ §s approximated well by
the term A e (kr) sothat Bep is numerically small. Therelore the cases
with and without a potential do not differ substandally for high enough £
We obtain a rough idea of the size of the value of £ above which the radial
function & is only slightly changed by the potential.

The argument rests on the discussion in Section 10010, In Figure 10175
we showed the distribution of the angular-momentum components of a Gaus-
sian wave packet representing a classical particle moving with momentum
p = hk and impact parameter b, The classical angular momentum has the
vilue L = pb. We [ound that the spectral distribution of the angular momenta
of the wave packet peaks at this classical value L, If the impact parumeter b is
Jurger than the range o of the potential, & = o, that is, if the classical angular
momentum L 15 high enough,

/g f..u Lu = fkd

the trajectory of the classical particle will not be changed hy the potential. By
implication, the radiul wave functions R,(k,r} with angular momenta if =
L, that is, § = kd. are essentially unaffected by the potential. Comparing the
wave functions of Figures 11.1a and 11.1b shows that they are very similar
tor high values of €.

11.2 Stationary Bound States

The bound-state solutions occur for discrete values of negalive energies E,
Let us study the “spherical square-well” potential, the simplest situation:

Viry = Vi<l ., O=r=d region |
WA= Vu=0 , d=r=<=n , region 11

The wave number P
k, — 1.,-"'241'”-‘5 [ Vt :I.l'lln

is real in region | for £ = Vi and imaginary in region 11 for £ < (k

.‘.‘;[ = jKu K = va:-_:'.JWEI.-rﬂ

The wave function has to be proportional to jy (k) in region I, again
because m (k) is singular at r = 0. In region Il the solution has to he pro-
portional 1o .ir‘l.*'{ iy, for only this function converges toward zero for large
distances r;

Il

Relk, r) Appfe (k)

Rytk,r) = o
Renlk, ry = Ayglt, "liwgr)
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Fig. 11,2, Bound-stute solutions B, (¢ of the radial Schridinger equation for 2
syuare-well potential for two angular-momentum values, = i, ! = 1. The form of
the putential Vir is indicated by the long-dash line. On the lefi side an energy scale is
drawn, and to the right of it the enecgies £, of the bound states are indicated hy hori-
zonizl lines. These lines are repeated a5 short-dash lines on the right, They serve as zero
lines for the salutions 8, (0 For & = 1 the radial dependence of the “efTective potential™
Ve ) shiown as i shoet-dash curve indieates the influence of angular momenium {see
Section 13,15,
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The coelficicnt Ayy is determined in terms of A;p as a function of energy
by the two continuity conditions for the wave function and its derivative at
r = o, The continuity can be achieved only for certain discrete bound-state
energies. The constant Ay is fixed by the normalization of the wave function,

aat 3
f [Befk.rd rdr =1
L]

Because the wave function falls off exponentially in region 11, the particle
is cssentially confined to region I, the region of the potential. This confinement
is the typical signature of a bound state. Figure 11.2 shows for low angular
momenta the wave functions for the bound states in the square-well potential
described,

Problems

11.1. Explain by a wave-mechanical argument resting on the potential of the
centrifugal barrier why the radial wave functions Ry(k, r) for higher
vitlues of { do not penetrate into the potential region in Figure 11.1.

11.2. Shaw by direet calculation that the spherical wave ¢(r) = sin(krifris
a solution of the three-dimensional Schrivdinger equation

hﬁ ﬁz_;__'z

——V(r) = E¢lry E=
TR e M

[ ]

1.3, A hound-state solution of vanishing angular momentum in a sguare-
well potential of fimite depth Vi is given by

A [etfr aikr sinfkr)
[{J{rj = (— — ) =A4—

Zih o r F

L e
ko= SV2M(Vo— E)

Outside the well the r dependence of the wave function is given by
expl—ir)/row = [lfn]u“’E_M'E. Therefore the Function sin(&e) must
have negative or zero slope al the edge r = o of the well. Use this
information about the slope to find a minimum value for the potentiul
Vi, within the well so that there 15 at least one bound state. Explain why
there is always at least one bound state in a one-dimensional square
well,



12. Three-Dimensional Quantum Mechanics:
Scattering by a Potential

12.1 Diffraction of a Harmonic Plane Wave. Partial Waves

In Section 11,1 we found the solutions R, (&, ) of the radial stationary Schro-
dinger equation for spherical square-well potentials. Since the radial Schri-
dinger equation is lincar, its solutions are determined up to an arbitrary com-
plex normalization constant, which has to be inferred from the boundary con-
ditions of the three-dimensional problem we want to solve, As we have found
in Section 5.5, a harmonic plane wave is an appropriately chosen idealizution
af an incoming wave packet representing a particle with shurp momentum, We
want to apply this finding to the three-dimensional case, that is, the scattering
ardiffraction of a three-dimensional harmonic plane wave which represents a
particle of sharp momentum. Then the normalization of the radial wave [une-
tion has to be chosen in such a way e, for great distances from the region
of the potential, the three-dimensional wave function cansists of an incoming
plane wave exp(ik - r) and an outgoing wave.

In Section 1.1 the solutions 80k, ) ol the radial Schridinger eguation
for spherical well potentials were chosen to he real so that in particular the
coefticients Ay and B are real. To help us find the correct normalization,
we turn ta the physical interpretation ol the solution 8, (ko) in region 1L

Rtk ry = Agy fetkr) + Byjpng (k)

using the decomposition of the spherical Bessel functions j and ng into the
spherical Hunkel functions /) "ot Section 10,8,

1 ey
ditkry = o [Ir:"ih-] — ey Hi:r]]

=l

I . _
melkrl = ;[h: kry - .h: '{kﬂ]

The spherical Hankel functions have the asymptotic behavior ol complex
spherical waves,
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l
explikr)
K

-

W e ) —— L exp [i-_ifkr = Ei] =)
! FRSR00Y oy ' 2

In Section 4.2 we learncd that wave packets formed with a stationary wave
gxplikx) move in the direction of increasing x. whereas those with expl —1kx)
move in the direction of decreasing x values, For spherical waves this im-
plics that a stationary wave expl —iks ) describes a particle moving from large
values of r woward the origin # = 0, that is. an incoming particle. By the
same token expiikr) describes an outgoing particle. Thus, except for an r-
independent factor, the decomposition of Ry into spherical Hankel func-
rions

i : = ; +
[H. u— i B, '~ (A + 1Bohy I]

-

Ry =

. 8 v ¥ i +J o
describes an incoming. it} ', and an outgoing, k", part of the wave function,
W now divide the radial functions &y by A — 18y and abtain

¢ I
oL (s [ — Relk.ry
: Acn — B

which takes in region 111 the explicit form

| |
} = » TN A bl
Riiitkiry = _ﬁ_],h:. "hed + zimuh; '(kr)

Here §; (&) is the scatiering-matriy element of the £th partial wave

Avmr+ 18

Sr[-!-—] = =
Arr — 18 m

Now, finally, we have achieved the decomposition of R, “'1 into the £th com-
ponent J;(kr) of the plane wave and the cutgoing spherical wave .l’rE" Pkr),
This structure becomes obvious if we add to the first term and subtrict from
the second (1/2i1h, ™ (kr):

(e 1 i I - - .
REE = E[h: ke — ! 'm-r]+§:a, —n ey
= jilkr)+ Stk (her)

Here f; s the pariial scatrering amplitude
. L
felk) = _}—,[.54-[1(] ¥
=1

It determines the amplitude of the outgoing spherical wave in relation to the
fth component fe (ke of the incoming plane wave,
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12. Three-Iimensional Quantum Mechanics: Scattering by o Potential

The recipe for constructing the three-dimensional stationary wave func-
tion is indicated by the formula for decomposing the plane wive explik - r)
inte partial waves:

o
L. Z{ZE 4+ 13tk Pefeos gt cosdt = korfikrl

=0

Replacing the free radial wave function Jitkry by the solution R:ka, riool
the radial Schrivdinger equation for a potential Vir), we obtain

o

oy m =Y 20+ DR (kor) Preos B)
=il
Figure 12.1 gives the real and imaginary parts and the absolute sgquare

of q:rl[l'H for the scattering of a plane wave from a repulsive potential that is
constant within a sphere around the origin:

Vo =10, O=pr=d

Sy —
””_ln ; F>d

The energy E ol the wave is two-thirds of the height of the potential, that is,
£ = 2V;/3 The two upper plots of Figure 121 for the real and the imaginary
parts show that the plane wive coming in {rom the left is strongly suppressed
within the sphere nf the repulsive potential and that its pattern is maodified,
particularly in the forward direction, by interference with the outgpoing scil-
tered spherical wave. The patterns in these figures bear i certain resemblince
to those of water waves diffracted on a cylindrical obstacle in o ripple rar.
The real and imaginary parts of :p'l:” are dominated by the incident plane wave
cxplik-r). The pattern of the absolute square I:;:li' "7, however, stems entirely
fram the superposition of the incident and scattered waves, since the absolule
syuare of the unscattered incident wave |explik ri|> = | would produce a
flat sheet. In particular, the ripples to the left of center in the bottom plot uf
Figure 12.1 are caused by the interference of the incident wave and the scat-
tered wave in the backward direction. This interference puttern accordingly
exhibits @ wavelength halfl that of the incident wave. It tapers off with I/
becunse the outgoing spherical wave itsell falls off with 1/ r. There are no
such ripples in the forwurd direction hecause the exponentials in the scattered
spherical wave and the incident wave are identical,

12.2 Scattered Wave and Scattering Cross Section

If we insert into the right-hand side of the formula for ;;J;H[r] the function
Rt

it in terms of jp(kr) and the butgoing spherical wave J';j."", we abtain the

[ 2.2 Seattered Wave and Scablering Cross Section

r-a
(]
Lot

bz &

0

Im L™l gnle, 831 Loe &

; - D ¥
BodLgnir 00, L= 3

Fig, 12.1. Seattering of 2 plane wave tncident from the left, that is, along the - dircetion,
by o repulsive potential, The potential is confined to the region ¢ < o, indicated by
the small half-cirele marked off by o shori-dash line. The energy £ of the plane woave
is two-thirds the height of the potential in this region. Shown are the real part, the

Imaginary part, and the absolute square of the wave funetion q?LH.



324 12, Three-Dimensional Quantum Mechunics: Scattering by a Potential

sUperposition _
-w;[f'[r-l =& e

of the incoming plane wave and the scattered spherical wave

o
eir) = Zq,—_{r, i o

=i}

where 1, 15 the £th scatrered partial wave:
me = (26 + i [RE7 ) = jothod | Prteos )
In region 111 this scattered partial wave has the explicit form
e = (204 i fr by ™ (ke Prfeos b

which, for far-out distances, kr = 1, is dominated by the asymptotic term for
hy ke,
'_,'iﬁ.-r
ne = (2£:+ HIHHT Picos i)

In external region 111 the scattered spherical wave has the explicit representi-
lion '

.
() = 326 + D' il k) Prtcos )
=i
For far-out distances, &r =5 1, this expression hecomes

kY

o
i ()~ F0)——

where the scattering amplitide

l s
£y =2 3 @+ 1) felk) Pileos )
F=0

madulates the amplitude of the scattered spherical wave for the various polar
angles af,

Figure 12.2 plots the real and imaginary parts of the £th scattered partial
wave n; for values £ = 0, 1, 2. 3, 4, 5, This partial wave is the product of
ian r-depentent factor responsible for the variation along lines & = const and
a it-dependent factor responsible for the variation along lines ¢ = const, As
expected from the Legendre polynomials Py(cos @ ). there is no (7 variation
for i = 0, whereas the increasing complexity of the higher Py is sigritled
by their £ nodes in @, The pictures indicate a 1/r falloff for large values of

Fig, 12.2, Real and imaginary parts of the scattered partial waves o, resulting from the
seattering of o plane wave by o repulsive potential, as shown in Figure 121,
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r, as expecied from the asymptotic form of the 1,. As already mentioned in

Scetion 11,1, the deviations of the radial wave functions from the free radial
wave funetion f; are substantial only for ¢ = kd. Indeed, we observe that
15 is essentially zero, as are 7, 77, and so on. In our example kd equals 4.
We may wonder why the scattered partial waves gy for low ¢ have important
contributions within the potential sphere. They are expected to contribute,
however, for the superposition of the n; has o compensate for the harmonic
plane wave in this reglon since q:l;'H[r] wsosmall in the sphere of a repulsive
potential.

Figures 1234 and b give the real and imaginary parts of the scatiered
spherical wuve gy ir) obtained by summing the scattered partial waves for
U = £ = 5 The w, essentially vanish for £ = 5. Whereus the scattered par-
tial waves ¢ have the symmetry of the cormresponding Py, their superposition
i (r) shows a definite forward structure, indicating that the scattering occurs
for the most part in the forward direction. Obviously, gy (r) also falls off with
1 /¥ For large r,

Figure 12.3c gives the absolute square gy (r1|7, This function falls off
asymplatically with 1/ . The physical significance of |gg|” is the average
particle density for the seattered particles moving with velocity v = hk /M
radially away from the center. In experiments the scattered particles can be
detected only at distances that are large compared t the size of the scatter-
ing center. The average number An of scattered particles passing through the
sensttive area Ag of the detector during the time intervil Ar is the quantity
usually measured. For a given sensitive area Aa, this number is the product
of the current density [5y(r)|*1 of the particles and the arca Aa times At

An = i.'!:};;ir]|‘1dndl

The detector 13 located ar,

For fixed experimental conditions Aa, At, and v, the quantity In(ri|? is
directly proportional to the number of scattered particles ohserved. We as-
sume that many detectors are distributed evenly along a half-circle of radius r
around the scattering center. The direction of the incident particles forms the
diameter of the half-circle. Then we have only to compute ng(r)|” o predict
the counting rates in ull detectors, Figure 1 2.4 illusirates this sitwation. The
function [y (r)|” is plotted in a half-circle band in the region where the de-
tectors could be placed. To overcome the 1 /r° suppression in |1y |: the values
of this function have been blown up by a scaling factor. [t becomes obvious
from this figure that [n|° depends to a considerable extent on the scattering
angle ¢, that is, the angle between the incident and the scattered particle.

Actually, the asymptotic form of ny, that is, of g, which we found 1o be

ik

i gy SO —

12,2 Seattered Wave and Scattering Cross Section 227

L. = 5

Fig. 12.3. Real part, imaginary part, and absolute square of the scattered spherical wave
fik resulting from the scattering of 5 plane wave by o repolsive potential, as shown in
Figure 12.1.
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=L AANE
[Eigmbr 0

Fig. 124, (u) Imtensity of the seattered sphecical wave pesulting Feom the scatlering of
a plane wave by o repulsive patential, a5 shown in Figure 121, The intensity of a fived
rading far eutside the scattering region and for a given seattering angle & is indicated
Iy the beight of the band. The band corresponds to the outer rim of Figure 12 3¢, hlown
up by seale fctor (b Energy dependence of the differentiol scattering cross section
dir i )AL Tor the seattertng of @ plane wave by o repulsive potential, The differential
eross section is proportional to the intensity of the seattered wave, as we can see by
comparing the corve in the middle of part bowith the band in part o, Both correspond (o
the same energy.

12.2 Scattered Wave and Scattering Cross Scelion 224

shows that the quantity
=L

is dependent only on the seattering angle & Ns physical interpretation in terms
of the counting rite An becomes clear if we observe that Aa/r® = A2 is the
sensitive solid angle of the detector. Furthermore, the incident cunent density
is equitl to the incident average particle density times the average velocity,

|r;|:|||l'|.|[| FEN R

|kr| il =

f=|e

Thus the number of seattered particles An can be re-expressed in the form

CAa 5
An. = j—glrom| At
= jifiagar

which shows that | £(£)]° has the following physical meaning. It is the aver-
age number of particles from an meident particle current of density | scattered
per second at angle  per unit solid angla.

An

-LI} -_
5 ﬁﬂﬂr

In a classical expenment in which a particle beam is incident on a hard
sphere. the quantity on the right-hand side 15 the differeniial scattering cross
section, This notion is derved from the elastic scattering of a beam of pomt
particles with current density J incident on o rigud sphere ol radios o, As
Figure 12,5 indicates, the impact parameter f is related to the scattering angle
i by ,

1
b= cos 5

-

The number An of particles incident during Ar in the azimuthal sector Ag
with an impact parameter between b and b + Ab is

= jArbh Ab Ag

This number of particles is scattered into the solid angle A2 = A cos ¢ Ag
where A cos b corresponds 1o Ab through the relation

db did db 4|
deostt  deasd?  dcosid2

The number of particles scattered at angle 1 per unit solid angle and unit time

is then
An |

ARAr 4
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Fig. 12.5. The classical elastic scattering of a point partcele by o rigid sphere,

This rate of particles for a current density one is completely determined by
the praperties of the scattering center, here a rigid sphere. The rate per unit
current density is the differennial scattering crows section do /d82, For a rigid
sphere it is

de l

— = —"

dz 4

In general, the differential scattering cross section is not constant but de-

pends on the direction of the scattered particle. When the scattering center is
spherically symmetric, the differential seatlering cross section is a function
anly of the scattering ungle . Integration over the full sulid angle 4z yields
the tetal seartering cross section, When classical particles are scattered off a
hard sphere, it is obtained by multiplying 1d” by the full solid angle 4,

-
Ty = Tl

As expected, it is the geometrical cross section of the rigid sphere.
Coming hack to our quantum-mechanical discussion, we can identify the
differential scattering cross seclion is

L
a‘:{'z—|.f{f 1

’r
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The function () as calculated earlier has the Lo

el

|
[ = Ezm + 1) fi (k) Pyleas )

£=il

which shows that it ﬂl..]'H.,IIdH not only on the scattering angle but also on
the energy K = (fik)- 220 of the incident particles. It is customary to plot
do/di2 = | fid j|* as a function of cos ¢ rather than . In Figure 12.4h this
15 done for a range of energies and for the potential used in the carlier figures
of this chapter. For very low energy the differential cross section is constant
incos @, With increasing energy it acquires a more complicated angular de-
pendence. This dependence is easily explained by abserving that for very low
energy only the lowest partial wave, { = 0, contributes to the scattering ampli-
tude {71 theough the Legendre polynomial Puicos &, which is 4 constant.
With increasing energy more and more partial waves contribute, allowing a
richer structure in cos @,

The total cross section 15 obtained by an integration over the full solid
angle

9% 4o 2 [T 170 dcos
T = f ﬁ T /_| |.#|:il “ cos

For the fallowing we need the orthogonality of different Legendre polynomi-
als.

+1 3
f fcos ) Ppleos ) deos = S
I 2641

which can be inferred from the orthonormality of the spherical harmonics Yoy
and their relition o the £, as discussed in Scction 105, 1 we insert the senes
for f{#) into the integral for a,,. we obtain

it = krf' Y 2+ D fetky = Zr}',

=0 =i

The terms in this sum are called pariial cross sections,

o = ())*

Figure 12.6 shows the various partial cross sections as functions ol energy.
We notice that the partinl cross section for £ = 0 starts ut zero for £ = 0,
Furthermore, the contribution of the cross sections for increasing ¢ sets in
with increasing energy so that for a given energy the sum over the partial cross
sections can he truncated at lpay = &d, the maximum value of the classical
angular momentum at which scattering takes place. The total cross section
obtained by the summation is plotted as the topmost diagram of Figure 12.6.
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Fig. 12,6, The partial cross | 7
sections ol By o d =0, 1, | @
oo 5, and the total cross
section a0 £, which is ap- —
proximated by the sum over |
the fhest five partial eross sec-
tions for the scattering of a
plane wave by a repulsive
potential. &

12.3 Scattering Phase and Amplitude, Unitarity,
Argand Diagrams

In Section 12,1 we obtained us a representation for the radial wave function
R} itk ) the Torm:

Ry, ) =3 [ tery = sf:km',*'mn]

b |

We interpreted this solution as the superposition of the incoming spherical
wive fi 'r_' and the outgoing spherical wave o ;'H. which is multiplied by the
S-matrix element 8. Potential seatlering conserves particle number, angu-
lar momentum, and energy £ = (Ak)° /2M so that the magmitude of velocity
fik / M remains unaliered, Therefore the current density of the incoming spher-
ical wave has the same size as the current density of the outgoing spherical

12,3 Beattering Phase and Ampliude, Unitarity, Argand Diggrams 23

wave. As o consequence, the particle densities in the incoming and outgoing
spherical waves in region [11 have to be the sume. Since particle densities are
determined by the ahsolute squares of amplitudes, the scattering-matiis ele-
ment 5. representing the relative factor between the incoming and oulgoing
spherical waves must have absolute value one.

In fact. the representation for 5;. found in Section 12,1,

Apm + 180

5= "
Apn = i8¢
satisfies this requirement,

_ A —iBem Aen +1Bon
Avm +i8em Avm —180m

S¢ 8 I .
which is called the wnitericy velation for the S-matric elements, Thus 8y can
be represented as o complex phase factor
Sy = Avin 4+ 18 — Qi (k)
' A — it
The scattering phase & determining S; can be caleulated directly from
Ay and By gy il we observe that
sig A= iBem
g =
e 2
VAT Brg

allows the wentification
A R B
Uiy :5; = ' sin 'L'h = Ill—‘-.—"_
¥ T o el
\/Afm + B yAim + Brw
These relations can be used o show that 8, is a phase shift produced by
the patential. To this end we use the asymplotic representations, kr 3 1, for
Jetkry and ngikr), as given in Secuon 108, In fact, the solution &y of the
stationary Schridinger equation presented at the beginning of Section 12.1
has the form

Rf’ m = -'|||' AEI” + HS“] [ﬂus&f _H:'kr]' + Sil‘l l5.f "r ‘kr]’[ £

which asymptotically becomes

/ ] : s
Ry V"!"-FT_T" + By o [cméa sin (kr - LE)

kol

+ sin &y cos (icr - t%)] ;s
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Fig. 12.7. Definition of the scattering phase shift 4. The solution & of the radial Schri-
dinger equation for a given , bere © = 1, s shown for the scattering of o wave of cnergy
£ by 5 repolsive potential {top) and for vanishing potential (hottom ). Asymplodicilly,
that is, fir outside the potential region, both solutions ditfer only by o plase shift 4.
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Figure 12.7 plots &y, together with j;, 1J1u {th partial wave of the harmonic
plane wave, The scattering phase shift §; is easily recognized as the phase
difference berween the two in the asymptotic region. In Figure 12,8 the energy
dependence of the various phase shifts & is shown for the repulsive square-
well potential used as our example. We have chosen the phases 4 so that
they are equal 10 () for £ = (0. For the potential of our example. they fall off
smoothly with increasing energy,

In terms of the scatlering phase J¢ (k) the partial scattering aunplltude can
be represented as

L S O R
ﬂ{k} _ l_{5|'[k1]_ E|=__:,c215: = |:|=ET“III [__tflﬁ"—f ]d;b}
: 2 2

== I-}ir b'I:T] I:I:If
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5 apCE) G EY o B3l E) Tor
il — £ scattering by @ repolsive

potential, There is an ambi-
guity in the definition of 5,
which is resolved by choos-
ing G4t = (L All phase
shifts vary slowly with en-
erpy for seattering by a

repulsive potential.

The relation expressing that 5, has absolote value ane, reflects iselfl in the
eguivalent unitarity relation for the partial scatiering amplitude ;.

Im f (k) = [ fitk®

As a complex number, the partial scattering amplitude can be plotted in an
Argand diagram similar o the one in Section 5.5. Here, however, f; stuys on
the circumference of the circle with radius 1,2 centered at i/2 in the complex
plane becavse the unitarity relaton can be written as

.
(Re fi)" + (im_r, - %) =Ll1 .

This relation is the equation for a cirele of radius 1/2 centered at i/2 in the
complex plane. 1t is shown in Figure 12.%a.

As the wave number & = (1/H)+2ME of the incident wave changes,
[y moves on the circle. The scattering phase 4y is the angle between the ar-
row representing the complex number f;, and the real axis. The energy de-
pendence of the complex scattering amplitude (4 is shown in detail in Fig-
ure |12.9b. The real and imaginary parts ol fp as a function of the energy are
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Fig. 12.9. (a] Unitarity circle, (b1 Through the unitarity relation i ¢ = 1 i the elustic

partial-wave amplitude is confined (o g cirele in an Argand disgram. The angle between
the vector f; im the complex plane and the real axis is the plase shift &, As the energy £
increases the point {1 &) moves on the cirele starting st ((h = (. Points equidistant in
energy are murked off by sl circles (top left). Projections onto a vertical and horizontal
axis yield graphs of Im /(5 (top right) and Re (080 (hottom left), respectively. The
fumetion & () is also shown (bottom right).
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then obtaned by projecting the Argand diagram onto the real and imaginary
axes. Finally, for completeness, we also show the energy dependence of the
seattering phase shifl §,.

There s an interestng relationship between the function f (2 in the for-
ward direction and the 1otal cross section, We have

A7 e
4 . 1
Fios = FE”‘ + Dlfrtk ]

Using the unitarity relation for the partial scattering amplitude,
|fitkal? =tm fitky
and the particular value of P (cos 23 in the forvard direction (7 = ).
Pe(ly=1

we obliin

4] — :
o= (28 ++ 1)1m fe k) Pe(l)
F=Ii

4
Mpl. = Tlm_ﬂm .

if we use the purtial-wave representation of f(#) for ¢ = (.

This equation is called the oprival theorem. 11 states that the 1atal cross
seetion 15 directly siven by the imaginary part of the forwurd scattering am-
plitude. The optical theorem reflects the conservation of the particle current in
the scattering process. In fact, the total current contuined in the scattered wave
his 10 be supplied by the incident current. That is done through the interfer-
ence between the incident and the scattered waves in the forward direction,

Problems

12.1. Why is the wave function ;ﬂi“{r} i Figure 12,1 suppressed beyond
the potential region indicated by the dashed circle close 1o the center?
Which elleet mukes it recover along the positive = axis? Use Huygens'
principle to draw an analogy to the scattering of light by a black disk,

12,2, Why must the scattered spherical wave ngi(r) as shown in Figure 12,3
be unequal to zero in the region of the repulsive potential and have a
wave puttern there? What can be said about its wavelength within the
potential region?
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12.3. In Section 12.2 the classical elastic scattering of point particles by 2
rigid sphere of radius o was discussed. Replace the point particles by
spheres of radius ¢ Show that the results for the differential and tatal
cross sections stay valid i o is replaced by o +a.

124, Venfy the unitarity relation for the partial scattering amplitude £,
Im fi = feff
using the unitarity relation for the seattering-matrix element 2
S8 =1

as derived in Section 12.3. Put the unitarity relation for f; inlo the form
of an equation for the unitarity circle as given in Section 12.3:

13. Three-Dimensional Quantum Mechanics:
Bound States

13.1 Bound States in a Spherical Square-Well Potential

Figure 11.2 has already shown the radial wave [unction of bound states in a
three-dimensional square-well potential. Now in Figure 13.1 we plot the radial
wave function K, together with its square Rﬁ, and the function rJREr- for the
low angular-momentum quantuim nombers ¢ = 0, 1, 2. The reason for show-
ing rlﬁ'gr is that r* Ri- {r} dr represents the probability that a particle is within
a spherical shell of radivus r and thickness dr. Also shown in Figure 13.] is
the energy spectrum of the eigenvalues. We observe that the number of bound
states iy finite, The spacing between the different cigenvalues increases with
increasing energy. For a given © value the lowest-lying stute has no node in
r, the next one has one node, and so on. We can enumerate the eigenvalues
Egionm=1.2.... foragiven € by the number # — | of nodes they possess.
In Figure 13.1 the square-well potential Vir) is drawn as a long-dash ling,
the effective potential as a short-dash line. The effective potential, as we have
learned, is made up of the centrifugal potential and the square-well potental,

R
ﬁT + Vir)

The repulsive nature of the centrifugal potential suppresses the radial wave
function,

Vil =

Ruolr) = Apjilhr) — ALy ke, @=L, @6,
(28 4+ 1y
for small values of r and ¢ = (). It is also responsible for the increase i energy
Eyp for given n and tnereasing £ This suppression of the wave function for
£ = I near the origin is casily verfied in Figure 13.1. For £ = () the wave
functions stare with values larger than zero at the origin. For £ = | the wave
function is zero at the origing however, it increases linearly close o =0,
For £ = 2 the growth of the wave function from zero at the origin is only
that of a parabola. The slopes close to the origin become steeper with higher

s =lel
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quantum numbers # il fixed £ Thus for fixed £ the particle comes closer ta the
grigin for higher vilues of n. Higher values of o correspond to higher values
of the energy and of the momentum p. For a given angulur momentum £ the
classical relation L. = bp shows that larger momenta p correspond to smaller
impact parameters b, In this respect the quantum-mechanical behavior of the
particle corresponds to classical mechanics.

The plotof rZHf{ (%, r1 allows o particularly simple discussion. Let us starl
with the value § = 0, The radial wave functions within the potential region
po=d are

sin kg
- ki r ’
ki = 2m(Eqq— Vo) .

Ranled Apfplkiry =4y

5o that the function i

A
L2 — i
FRolr) = 5 sin kil
i
L]
behaves in a simple sine-squared manner. For the higher angular momenta we
recall the asympiotic relation

I = i
Jetkr) — ﬂsm (.fcr— FE) i 1

so that for ¢ 2 |k the behavior is again sine-squared,

a

Ar b o
Ty 2 I ol )
FRr) — k—]zn i (.LI,,r — t—z) z

i

kint 22 |

Aguin, looking al Figure 13,10 we recognize the approach of the gquantity
rR>, toward this behavior, In region 1 ¢lose to the edge of the polential af
r o= ¢, the centrifugal barrier is low for low values of 12 it can therefore be
neglected in a coarse approximation. Thus, close to the outer rim of the poten-
tal, the wave functions for different £, but equal 1 should look almest alike

and behave in a sine-squared manner, This is casily verified in Figure 13,1,

Fig. 13.1. The rudial eigenfunctions &, 1 of bound states in o square-well potential
for three gngular-momentum values, © = 0 1 2 are shown as continuous lines in the
left column, The form Vied of the pofential is indicated by the long-dash line. Also
shown for 1 = (s the effective potential V"' () which contains the influence of angular
momentum. On the left is an energy seale and to the dpht of it the energy eipenvaloes
E, are indicated by horizontal lines. These lines are repested as short-dash lines on
the right. They serve as zero fines for the plotted functions. In the middle colnmn the
SIUARES Rsl,ir] of the radial eigenfonctions are shown, Along a fixed divection !, @ nway
from the origin, this guantity is proportional to the probability that the particle will be
ohserved within 4 unil volume element around poing o, 0, @, In the right column are
the functions +* #7, (r ). Their values are 2 measure for the probability of observing the
particle anywhere within a spherical shell of radius - and unit thickness,
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Fig, 13.2, Dependence of the eigenvalue spectrum of a square-well potential on {top) the
width and (Bottom} the depth of the well, The function shown is » &7, (7] for the fixed
angular-momentum quanium number £ = 2,

Figure 13.2 shows the dependence of the eigenvalue spectrum on the
width and depth of the potential. The number of eigenvalues grows as the
potential widens and deepens.

The full threc-dimensional wave function is obtained hy multiplying the
radial wave function B, (r) by the spherical harmonic Y, (9. ¢,

i (T = Barlr] th‘ i, )

Since the absolute square g, (r, #) of this wave function is independent
of

P TTL G i [t o

2 2B LA — |m] [ L] 2
= i :f.:usri'}}
rll‘l:r} Az {0+ |lm)! f
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paaalr. it gaahr. it gy flr, B |

Fig. 13,3, Abhsolute squares oy, 08, &) = Jigeq i #oga|” of the full three-dimensional
cipenfunction of o square-well potential. Here oy 0 000 AV represents the probability
of ubserving the particle in the volume ¢lement Y at loeation (e @ ). I s a lunetion
anly of the distance » from the erigin and of the palar angle o, {a} In this figure, which
applics o zero angular-momentum guantum number 0, the function gie) depends only
on . For values i — 1, 2,3 of the principal guantum nomber it hasw — 1 =10, 1. 2
nodes in ¢ indicated by the dashed half-cireles. Each plot gives the probability density
[or alserving the particle at any point in o hall-plaoe containing the ¢ axis. Here and in
Figore 13.4 all plots have the same scale in ¢ and 0. They do, however, have different
seabe Tactors in o, (I The Tunctions g, i, @) os givendn (o) but for = L andm = 0. 1.
The & dependence is given by the Legendre functions Frl"'!tms i1 which have © — |m|
nodes in &, indicated by the dashed lines # = const,

itean be shown fnan e, @ plot In Figures 13,3 and 13.4 this function is plotted
a5 o surface over a half-cirele (0 = 5 = B;0 = & = a)in the x, z plane. Ttis
the prohability density for ohserving a particle at location (r, @, ¢); that is to
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is the probability of finding the particle in the volume element dV = ridr
dcos @ de at (r, (7, ). In Figures 13.3 and 13.4 we recognize the nodes inr
as half-circles in the plane at which the probability density vanishes. They are
attributable to the nodes inthe radial wave [unction B (e). Inaddition, there
are £ — |m| nodes in 1 along rays ¢ = const in the plane originating from
zeros of P cos ).
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13.2 Bound States of the Spherically Symmetric
Harmonic Oscillator

For many model caleulations in nuclear physics, a harmaonie-oscillator poten-
tial has proved to be useful. The potential energy of a spherically symmetric
harmonic oscillator s

"

1S
2 =3 a: .3
Vir)=Sr = Z W+ )

The stationary Schridinger equation for a purticle of mass M moving in this
potential has the Form

o kg
(——‘i’- + —r7 pir) = Egir). .

Instead of the separation of variables in polar coordinates, as discussed
in Section 117, we may just as well carry out the separation in Cartesian
coordinates, for the potential is o sum of terms, each of which depends on
only one of these coordinates. We start with the Tactonzed ansatz

@irl = @l eataabeadas)

and arrive at three Schridinger equations for one-dimensional harmonic os-
cillators in the coordinates x, x2, and vs, which are identcal 1w the equation
discussed in Secuon 6.3 For the coordinate v,

Bodt Mo _
_mﬁ""?m'-ff)ﬁm-m = Ejgily) . = e e
Mde? 2

w = AW -
From Section 6.3 we know that the energy eigenvalues are
1
E,:E{rr,i::u,-l—;}ﬂm , =0 1.2.. ,

with independent inteper quantum numbers #; for the theee oscillators. The
total energy £ depends on the three quantum numbers iy, o and s,

Einy, thaonz) = Elny) + E(nad + Elns)

Ll

= [fiy 12 fua A4 =l

-

The eigenfunctions g, (x;) are normalized products of Hermite polynomials
and Gaussians, They were shown in Figures 6.4 and 6.5,
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The eigenfunctions of the three-dimensional harmonic oscillutor are
‘,'5':;..1;,-.“"1“'] L¥2, X3 = {‘r'JJ"Pn:':-‘fEJﬁF‘nJ{-Tﬂ

with the eigenvalue E(ny, n2, nz). Figure 13.5 shows, as an example, the
cigenfunction

a1, Yo, 00 = gl i (az)gn(xs)

Since it 1s a function of the independent coordinates xp. 1z and i, we
represent it by plotting it for various plianes x3 = COnst in vy, x3, X3 space.
Since the vy dependence is given by the simple Gaussiun [actor

sz ! 5 fi
winlxz) = const - ex S i oy = ——
tt;l} i ?_r}'t‘.l-! I i

the function is symmetric in vy and s damped away as 3 increases in magni-
tude (see Section 6,3); 1L is also symmetric in xy, and antisymmetrie in xo.

Obviously, all the different quantum-number triplets # . n7, a3 having the
same sum correspond to different eigenfunctions g, ...« that is, to different
physical states of the system. All these physical states, however, have the same
energy eigenvalue. They are therefore called degenerate stutes.

The usual separation of the three-dimensional Schrisdinger equation in
podar coordinates yields the radial Schriddinger equation

ht ol it _
_EFEQ‘EI_'_ .llr"r- {r'.l Rui“"]: EanfI:.i}

with the effective potential

A7 et

-5 Er:
Mot . i

Vfﬁl:lf:l ==

The solutions of this equation are

P 4 5 =
e re copai] T
Balry= Nur | = exp | === e ==
T 2y 2o
where the functions .’:* 12 are the Laguerre polynontials,
¢+1/2 3 i [t Py =0,1,2
i {.t}=Zt— ) et e=0,1,2,...

F=i
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Fig. 135, Eigenfunction 5,0, xa, 00 = @ateg ey (22 dgnlx3) of the three-dimensional
harmonic oscillator expressed in Cartesian coordinates o, v, vy and written as a prod.
uct of three one-dimensional haormonic-oscillator cigenfunctions. For this Gpare the
width parnmeter 7y = | was chosen. The function is plotted for three planes vy =1, 1, 2.
Because gy va) is symmetric, the plots remain unchanged if the substitution 13 — —1;
is performed. This figure should be compared with Figure 6.4,
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Fig. 136, Laguerre polynomials of hall-integer upper index. The lpwer Index is equal
to the degree of the polynomial and to the number of s zeros. All zeros are al pusitive
vitlues of the argument «.

The normalization constants are

{ my 1202

Nt = | ==
' \/[Etf + )+ 1o

ThE Eﬂ:lpuy Eij-_!ﬁl'l‘r’ﬂ]'l.lt.‘.‘i- are E-WBH h‘:r'
- -I' .J
k= 4 = fin
N i.” 2

with

n=2n+4
Before studying the radial solutions Ry, we first present the Laguerre poly-
nomials in Figure 13:6. The degree of the palynomial is cgual o its lower
index and o the number of zeros on the positive ¥ axis.

The radial solutions R, are shown in Figure 13.7. Their zeros are deter-
mined by the zeros of the eorresponding Laguerre polynomial. Because ol the
relation between the integer quantum numbers 1, 1, and £, quantum number
iotkes the values ¢, 8+ 2, 644, . .

In Figure 13.8 the functions . Rﬁr- and Fzﬂsr are shown together with
the potential V (¢}, the effective potential V;'fr[r}. and the eigenvalue spectri
for the lowest eigenstates of the harmonic oscillator and the lowest wngular-
momentum quantum numbers £ =0, 1, 2. With increasing energy the Illmc:—
tions reach oul farther in » since the potentiul increases with ¢, The functions
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Fig, 13.7. Radial eigentunctions &, 0,0 = 2o, =i for the three-dimensional harmonic
oscilltor Their geros are the (0 — 172 geros of the Lagoerre polynomial L:r:_tjr:"l,‘-.m: .
The arguinent o is the distance r from the ovigin divided by the width o of the groumd
state of the oscillutor. Graphs incthe same column belong o the same valoe of o, Grophs
in the sume row belong to the same value of £,

are again suppressed near ¢ = 0 for £ 2= 0 by the centrifugal barrier. The sup-
pression 15 strongest for low energy £ but lugh angolar-momentum quantum
numbers ¢,

The three-dimensional stationary wave functions are

W (0] = By (e e (03, b

Their absolute squares |y I, which are independent ol the wzimuth ¢, wre
plotted in Figures 139 and 1310 for low values of poand ¢ = (), 1. 2, Since
the energy eigenvalues £, depend on one quantum number only, there are

again degenerate eigenfunctions. From the properties of the spherical har-

monics. we know that for every ¢ there are 2¢ + | states of different quantum
number s, Moreover, for a glven energy eigenvalue £, there are eigenstites
with different angular momenta £, Because of the relation 1 = 2, + ( the
number n of uanta of energy fer above the energy 3Am of the ground state
is even or odd, depending on whether ¢ is even or odd. Actually there are
(i 4= T3in + 2)/2 degenerate eigenfunctions to a given encrey cigenvilue &,
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Fig. 13.8. Radial eigenfunctions F, (v 1, their squares £Z,(r), and the functions FHRgr)
for the lowesi eigenstates of the harmenic oscillator and the lowest nngu'lar-mnmenmm
quantum numbers ( =0, 1, 2. 0n the left side are the eigenvalue spectra. ['hn:ilhlmul'ﬂlﬁ
harmanic-oscillator potential V (r) is indicated by a long-dash line, and, for ¢ & O, U_lﬂl
uf the effective potential V() by a short-dash line. The eigenvalues have equidistan

spacing. The vigenvalue spectra are degenerate for all even | values and all odd £ values,

except that the minimum value of the principal quantui number is n = L.
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Bnzalt 0 Pt Rogr, )

Fig. 13.9. The absolute squares g, o (r 0 = |y, il F @[5, = (0 — 1,2 of the full
three-dimensionul cipenfunctions for the harmonie oscillutor, The ahsolute squores are
fumetions only of » and . There are r, radial nodes, and ¢ — e polar nodes, indicated
by dashed half-cireles and rays, respectively. Each fipure pives the probability density
for observing the partiele at any point in a half-plane containing the © axis. All pictures
have the same seale in - and 7. They do, however, have different scale factors in g, In
this figure the g, pp are shown for ¢ = 0 (left) and ¢ = | {right).

How are the two different sets of solutions 'ﬂrﬂ..n;,m and ¢ related?
Obvionsly, we have 1o be able to describe the same physical states by either
Set, In fact, we are able to do so because most of the states are degenerate;

that is, a large number of states have the same eigenvalue. Obviously too,
‘@ linear superposition of degenerate eigenstates is again an eigenstate of the
-same energy. Thus it is possible to express the eigenstates of o given energy

in one set by a linear superposition of the eigenstates of the same energy in
the other set. The only nondegenerate cigenstate is the ground state
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Fig. 13,140, As Figure 13.9 but for @ = 2,
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-4 . -32 =
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which has the ground-state energy By = %hm. This eigenstale is the sume in
both sets. All ather states are degenerate: As an example of a superposiion of
Curtesian eigenstates ¢, .. which forms an angular-momentum eigenstate
Waenr, W lookat p = 2.4 = 2. and m = 0. We have
1 i { .’ ] o l: ] + |IIE‘P.' ‘.r}
aapl Tl = ——=@ayl P — —=Fgmir s A1
2! \.-"E il \"’E ‘|'| 3
Figure 13,11 demonstrates this particular superposition. Figures [3.11 4,

b, and ¢ give the three termis of this superposition in the vy, x3 plane. In Flg—
ure 13.11d the sum gaso(r) is shown, In Figuse 13,1 be ats absolute square 15
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Fig. 1311 An eigenstate g, (0, 9 a0 of the harmonic escillator cun be writteén as a
linear superposition of the degenerate eigenfunctions w:r|rr_-n-| [y, va, aa ) having the same
energy eigenvalue (o, b, o The three eipenfunctions for o = 2 in the oo plane each
multiplicd by the appropriote factor; (d) the sum: (e) its square; (7 the fanction Jpoy
in s, ¢ representation as known from Figoee 13000, Parts ¢ and [ace identical except that
part ¢ has Cartesian coordinates, part [ polar coordinates.

plotied in the 1y, x; half-plane to facilitate companison with the r, 2 plat of
this sume function |gsag (0|7, which is given in Figure 13111,

13.3 Harmonic Particle Motion in Three Dimensions

In Section 6.4 we described the motion of 4 Gaussian wave packel in a
one-dimensional harmonic-oscillator potential, We obtained for the absohute
siquare of the time-dependent wave functions o Gaussian disiribution with an
expectation value oscillating like the classical point particle. Its width os-
cillates with twice the oscillator frequency. We therefore anticipate that n
the three-dimensional oscillator the expectation value of a three-dimensional
Gaussian wave packel moves on an elliptical trajectory as o classical poin
particle does. The shape of the three-dimensional wave packet is completely
described by its covariance ellipsoid, which we inteoduced in Section 1001,
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Fig. 15,12, A three-dimensionnl Gaussian wave packet, represented by its probabil-
ity ellipsoid, moves under the influence of an attractive force: deseribed by a hae-
monic-nscillator potential. Its expectation value, that is, the center ol the ellipsoid,
describes an elliptical trajectory. The initial conditions were chosen so that the ellipsoid
does not tumble, that is, its principal axes keep constant arientations, The magnitudes of
the principal axes oscillate with twice the oscillator frequency, Two examples are shown.
Top: The ellipsaid stays rotationally symmetric with respect (o the - axis. Bottom: All
three principal axes of the ellipsoid are difTferent.

The shape of the covariance ellipsoid itself oscillates, that 15, it changes pri-
odically with time, tis frequency being twice the oscillator frequency.

Figure 13.12 shows two examples for such a motion. The classical tra-
jectory is chosen to be identical for hoth. For simplicity the covariance el-
lipsoid has two of its principal axes in the plane of motion. Moreover. the
initial conditions were chosen so that the directions of 1ts principal axes do
nut change while the ellipsoid is moving. Because the harmonie oscillator is
spherically symmetric, the oseillation in magnitude of all three principal axes
has the same frequency but may have different phases. In Figure 13.132 (top)
the covariance ellipsoid stays rotationally symmetric with respect to the axis
perpendicular to the plane of motion. The size of the ellipsoid changes dra-

Jt
Ly
Ln

| 1.4The Hydrogen Atom

matically with time. So does its shape: it oscillates between prolate and oblate.
In Figure 1312 (bottom) all three principal axes of the ellipsoid are in general
different: the ellipseid does not have rotational symmetry.

13.4 The Hydrogen Atom

The most lundamental application of quantum mechanics is atomic physics.
The simplest atom is thal of Avdrogen; i1 consists of a simple nucleus, the
proton, and one electron bound by the electric force acting between them,
Since the mass of the proton is nearly 2000 times that of the electron, M. the
center of mass of the wom, for our purposes, coincides with the position ol
the proton. We choose it to be the origin of our polar coordimate system. The
potential energy of the electron, which carries the charge —e in the electne
field of the prown of charge ¢, is given by the Conlomb poteptial of the

proton,
¢ ]
ir= —-—
dirEp P

multiplicd by the charpe of the electron:

.
e

dsren e

Epor = Vir) = -

Here the gg = 8.854188 x 107 (&, is the electric field constant also called
the permittivity of free space. The constant e /{47 ) has the dimension of
action times velacity, Tt can therefore be expressed by a multiple of two fun-
damental constants of nature, namely Planck’s constant fi and the speed of
light ¢. Inserting numbers, we obtain

ot |
=whr . Bl

'—1.7TE|5 137

The dimensionless proportionality constant o is called the fine-serncture con-
stet, [owas introduced by Armold Sommerfeld in 1916,

The stationary Schridinger equation for the hydrogen atom then has the
form

2

—m?:—ht't: w{r]:f'.'[,-'.-{t‘}

with M the electron mass. We solve this cquation with the separation arsaiz
in polar coordinates,
plr) = Rir) ¥ (3, )

which yields the radial Schritdinger cquation for the hydrogen atom,
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It is un eigenvalue equation for the radial eigenfunctions By with the energey
cigenvalues £, The effective potential is the sum of the centrifugal potential
and the Coulomb potential;

K E(E+ 1) o

'r"l."'"[r] = —— — fe-
2M rs r

The encroy cigenvalues E, depend on the principal quantum pinber n only.
We have
B
1 L0”

E,=—--Mc"— | a=1, 2.
! 2 -

They form an infinite set of discrete energies. The coefficient in this equation

has the value Mcle® /2 = 13.61eV.

The normalized radial wave functions R, have the form

Ay = Ty

= —rinny 2+l *

Rue = N ( _) b I'”'JL”I_E_| (_) .
tit Hel

= e 23 =l D=
with the normalization factor

———
I 2 n—e—=13

Jil"'r.l.ll = =0 I
atiacy o (n A+ 4
Here the parameter
h =
i=— —0.5292 = 10" " m
e M

is the B rading of the innermost orbit. In the model of the hydrogen atom
thaat was put forward by Niels Bohr in [913, the electron can turn around the
nueleus in circular orbits. These arbits can have only certain discrete radii
o= ;r"'.F.l,fﬁm"ﬁfr:J. The innermaost orbit Torn = 1 1s 1) = .

The function I.if;‘*c' ((a) i @ particular Laguerre el viemiid,
i p 4k o
e =Y ( 25

p=1}

with the integer upper index & = 2 + 1. Some of these polynomials with
low values of p and k are shown in Figure 13,13, We note that the number
of zeros equals p, and that all zeros occur for positive vilues of the argument

F34The Hydrogen Aoni 257

= T 1
T H f 5 |
G b
— . I__/ i I":n )
. . ' 1 s 1 '|II N
' g ' \ / -
_ . — - T o : _.""-'.-"'"':l\ :
] . 1 ! \
_ - P . : ! 1
i 3 u \ ; 1
B N A/ e
W __u_- n : B‘K\___‘ I g _| - X | = l! '
L B |\
T — T
_N:l L3 IIIl' 3 i l,-"r -.III
T - 1 - \‘x_b ...'._l__\_—'rlf:_ iy Il'-j 'l|||
2 __ 3 1 |
\‘\ L |

Fig, 13,13, Laguerre polynomials of inteper opper indes. The lower index is equal to the
degree of the polynomial and to the number of its zeros. All zeros are al positive values
af the argument «, The graphs look rather similar to those of Figure 1306, which shows
the Lagoerre polyoomials of hall-integer upper index, That they are in faet different
can be seen, for example. from the positions ol the reros,

x. In Section 13.2 we found that the radial wave functions of the spherically
symmetric harmonie pscillator contain the Laguerre polynomials E.,";mi'.r}
of half-integer upper index. They were plotted in Figure 13.6 for a few val-
ues of the indices. A comparison of Figures 13013 and 3.6 reveals a slrong
similarity between the two sets of polynomials,

The rudial wave functions 8, lor the electron in the hydrogen atom are
shown in Figure 13,14, Their behavior for large values of ¢ s dominated by
the exponential exp|—¢/(ma)]. Near r = 0 it is determined by the power
12r /(e |'. Their zeros are those of the corresponding Laguerre polynomial,
that is, the radial wave lunchions Ky (r) possess n — { — 1 zeros.

Let us compare the radial wave funcuions of the hydrogen atom with those
of the harmonic oscillator. We realize that with increasing energy eigenvalue
the wave functions of the hydrogen atom spread much faster 1o larger radii
than do those of the harmonic oscillator, Ohviously, the reason is that the Cou-
lomb potential becomes wide with total energy much more quickly than the
harmomc-ascillator potential does. This difference manifests itself in the ana-
lytic form of the wave funetions of the two syvstems, The radial wave functions
of the harmonic ascillator, as presented in Section 13.2, contain the factor
exp|—r? /(20,7 1], which varies litde for #2/(207} < | and approaches zero
very quickly for values r*; {Exf;;r = |. The radial wave functions of the hy-
drogen atom contain the factor expl—r/ (naj], which varies more strongly for
ritna) < 1 and falls off o zero moch more stowly in the region e/ () = L
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Fig. 1314, Rudial eigenfunctions R, () for the electron in the hydrogen stom. Their
goros are the n — ¢ 1 zeros of the Lagoerme pﬂlynumiulﬁ_.i.f_"}'_ (2o at Here the
argument of the Laguerre polynomial is Zp/n with » being the principal quantum
number and = r/a the distance between electron and nucleus divided by the Bohr
radius .

The spectrum of energy cigenvalues is highly degenerate becuuse. for a
aiven quantum number n, the angular-momentum quanium rumber { can take
any one of the values 0 < ¢ < n— 1, and, far a given ¢, quantum number m of
the = component £ of angular momentum runs between —L = = £ Thus
for  given n there are 3 (2¢ + 1) = n® different states. all having the same
eipenvalue £,

In Figure 13,15 the radial wave functions Ry, (r} are shown together with
the Coulomb potential V(r} und the effective potential VT for the lowest
values of the principal guantum number, n = 1,..., 5, and for the lorwest
values of the angular-momentum quastum number, £ = 0. 1, 2. Figure 13.15
also contiins the plots for &2, (r} and rRE ().

It is interesting to compare the radial wave functions and the energy spec-
tra for the three types of potentials discussed in this chapter, namely the
syuare-well potential (Figure 13.1), the harmonic-oscillator patential (Fig-
ure 13.8). and the Coulomb potential (Figure 13.15), For the square-well
potential, which vanishes in the external region, the wave functions fall off
like an exponential function in this region. The Coulomb potential approaches
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Fig, 13.15. Radial eigenfunctions B, (r), their squares Riz{”- and the functions rlRE, [ri
for the lowest eigenstates of the electron in the hydrogen atom and the lowest angu-
lar-momentum quantum numbers { = 0, 1. 2. Also shown are the energy cipenvalues
a5 horizontal dashed lines, the form of the Coulomb potential V¢, and, for ¢ ;& 1, the
forms of the effective potential V' (r), The cigenvalue speetra are degenerate for all {
vulues, except that the minimum value of the principal quantum number s n = £ 4 1,
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zero with increasing r. The wave functions are products of polynomials and an
exponential [unction, so that they taper off for large r Tike a power ol v times
the expanential function. Finally, for the quadratically increasing potent ial of
the harmonic oseillator, the falloff of the wave functions is more pronounced.
They behave like " ecxi'J[—rJ ,.F?.rrnlb for large r. This behavior reflects the in-
tuitive expectation that an ever-increasing potential confines the particle hest
and that attractive potentials that approach zero better confine the particle the
faster they reach zero.

Now, looking at the energy specira, we observe that the spacing hetween
levels increases with energy for the square-well potenual, is equidistant for
the hurmonic oscillator, and decrcases for the Conlomb potentral.

Finally. we tarn 1o the three-dimensional wave Tunctions for the clectron
in the hydrogen atom,

Wm0 = R (r) Fpnti? g
The probability density
ALY = P drs |I'I'J = |‘|l'l'rarm{r- 1-I'I'| ﬁl;”::

contains the complete infarmution about the probability for the electron in 4
particular eigenstate (n, £ nr) of the hydrogen atom to be ata given posilion r
in space. Then, of course, the graphs of pir, ) in Figure 13.16 again contain
the full information. The graphs can be understood as surfaces in x, 7, p space
depicting the function p(x, 2) as a surface over the x. = plane (more exactly a
half-plane bounded by the = axis). Since the funcuion is rotationally symmetric
with respect to the 7 axis. the surface looks the same over any other plane
which containg the £ axis, ¢.g., the v, = plane.

Hawever, the surfaces shown in Figure 131 6are still i somewhal abstract
representation of the probability density o, since they are constructed in
%, 2. ¢ space and not in the three-dimensional position space. Le., in ¥, ¥. 2
space. We will therefore construct plots which give a direct impression of the
probability density in space although they cannot contuin the full information
about puie- We start with the different states for n = 2.

The left-hand column of Figure 13,17 again shows the surfaces represent-
ing g, over the v, 2 plane, {Note that the scale in p s different for the three
plots, such that the maximum of p appears at the same height in cach plot,)
Culs through these surfuces by planes p = const (i.e., planes parallel o the
¥, = plane) yield lines p = const. Such lines in the x. = plane are shown for
o = 0,02 in the right-hand column. (The units used for the spatial probability
density is @, @ being the Bohr rudius.) The interpretation of these comtanr
plots is simple. If we compare the two plots in the top row of Figure 13,17 we
see that pagg = 0.02 inside the inner circle in the contour plot and in the ring
hetween the two outer circles, Similarly, g2y = 0,02 inside the two contours
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Fig, 13,16, The absolute squares o, . (r 71 = lEpgin #i17 of the Tull three-dimen-
sional wave functions for the electron in the hydrogen atom, They are functions enly
of ¢ oand . All eipenstates having the same principal guantum nomber have the
same cnergy efgenvalue £, The possible angular-momentum quanium numbers are
£=10,1,..,,1 =1, The wave functions have 1 — ¢ — | nodes in e and © — el nodes o b,
indivated by dashed half-cireles and ravs, respectively. Faeh figure gives the probability
density Tor observing the electeon ol any point in g half-plane containing the - axis, All
Piclum-: have the same seale in - amd ¢ They do, however, have different seale factors
in g,
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& 900

R,

Fig 13.17. Left: Spatial probubility deasity oz¢q, for an electron in the hydrogen atom
shown pver 2 half-plane bounded by the - axis. Dilferent seales in paiy nn:_uﬂnd in the
three plots, Right: Contour lines pop, = 02 in the 1, 2 plane. Numbers are in units of

the Bohr radivs.
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Fig. 13.18. Surfaces of constant probability density gog, = 0.02 40 full v, v, 2 space
iright) and in the half-space © = 0 (left).



264 13, Three-Timensional Quantum Mechanics: Bound States

8 H.lllﬂ-t r l{‘l )

A

iy
L
!

TN
2
] 15.!; -%g’j-}.} }".'
L

Fig. 13.19. Spatial probability density s, for an clectran in the hydeogen atom shown
over a half-plane hounded by the - axis. Different scales in gy, are used.
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Fig 13,23 Contour lines oy, = DAKRKD o the o, - plane, Numbers are in units of the
Bohr radivs.
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Fig, 13.24, Surfaces of constant probability density ., = 000002 in 0 v, 2 space.

above and below the v axis which are symmetrically traversed by the 1 axis.
and pay; = 0,02 inside the two contours situated symmetrically with respect
to each other to the left and to the right of the = axis,

The generalization of contour lines in the x, = plane to surfaces of con-
stant probubility density in three-dimensional x. v, z space is now simple.
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The surfaces are created by rotation of the contour lines around the axis.
The surfaces of constant probability are shown in Figure 13.18. I the right-
hand column they are shown in all of space, in the left-hand columm only in
the hulf-space x = 0, 1.c., they are cul open to reveal a possible inner structure.
Obviously, the lines generated by the cutare the contour lines of Figure 13.17.
Regions of high probability density (p = 0.02) are enclosed by the surfaces,
Owiside the surfaces the probability density is small (p < 0.02). The region
ol high probability density is a kind af torus for g3y, it consists of two lobes
symmetrical o each other with respect to the v, v plane for g2, and of o
sphere around the origin and a spherical shell further putside for paon. In the
cases where regions ol high probability density consist af separate volumes
in space they are separated by node surfuces on which the probability density
vanishes. These are surfaces # = const (spheres) or ## = const (cones about
the = axis and, for # = /2, the x, y plane).

In summary we can say that surfaces of constant prohability density in
¥, v,z space allow a rather direct visualization of the probability density al-
though, in contrast o other plots, they do not contain the full information
about that guantity.

We conclude this chapter hy showing plots of the probability density
Prem T} for the principal guantum numbers n = 3 and i = 4, Figures 13,19
through 13.22 apply to # = 3 and contain the probability density in the 1, =
plane or — equivalently — r, @ plane, the contour lines page = 0.0002 in the
x, = plane and the corresponding surfaces in x, v,z space. For n = 4 we
omly show the contour lines pyim = (L0002 and the contour surfaces in Fig-
ures 13.23 and 13.24, respectively.

13.5 Kepler Motion in Quantum Mechanics

In classical mechanies motion under the action of a central force is greatly
simplified by the conservation of angular momentum in acdition to energy.
Also in quantum mechanics time-independent central Torces conserve energy
and angular momentum. We decompaose the inital Gaussian wave packet

=

1 r—rp)”
el 0 = T g2 exp {—L—J‘-U :rn} +iky-r
inter a linear superposition of eigenfunctions of the hydrogen atom. We choose
the initial position ry, the initial momentum py = fiky, and the spatial width
a such thut the initial wave packet i (r, 1)) can to a sufficient approximation
be superimposed by bound-state eigenfunctions g (1

n—| [

=
irir, U = ZZ Z BrigmstEiem T
i

n=1{{=llm=—L
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The gy () are eigenfunctions of the Hamiltonian containing the Coulomb
potential to the cigenvalue (of. Section 13.4)

£

£y = 5
n*s

=T Famas

Here
—_
s ;M:"wl = 136leV

15 the modulus of the ground-state energy,

The time-dependent wave packet can be obtained from i (r, ) by mul-
tiplying the members of the sum with the time-dependent phase luctors
expl—iry, ¢ ) with the angular frequencies

EJT

oy = —

fi
The wave packet at time ¢ is given by

o =1 {

I'& (r )= Z Z z 'i"]-'fr--"”:_ln.l'llr‘.{".l:-r_.ln{r:l
f

=1 F=kl m=—

A discussed in Section 1010 the angular-momentum content of a Gaussian
wave packet is descnbed by the probability Wy, for the total angular momen-
tum ¢ and the z component m in the direction of classical angular momentum
Lg = ry % po. In terms of the coefficients by the probabilitics Wi, of
angular momentum are given by the sum Wy, = Yoy Brea |

In Figure 13.25 the plot of the probability Wy, for the Gaussian wave
packet chosen is shown. As ulready remarked in Section 10010 for fixed ¢ the
probabilities Wy, are at maximum if the gquantization axis n is chosen in the
direction of classical angular momentum, The marginal distribution W has
its maximum close o the value £ = La/fi given by the classical angular
mgHnen .

The distribution of the principal quantum number » and total angular mo-
mentuin £ iy given hy the probabilities

I
P.r.‘r = Z |'r':'r|."r|r|1
m= —i

Additional summation over ¢ yields the marginal distribution

n—I
e Z Fat
=l
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Fig. 13.25. Distributions of the probabilities W, of the guantum number of total an-
pular momentum [ and its - eomponent m for the wave packet shown in Figeres 13,27
through 13,30, The quantitics ave defined for integer vialues of £ e only. Their grap hicul
representations are connected by straight lines. Also shown is the marginal distribution
W, The inloy is & magnification of the central part of the figure.

of the energy eigenvalues, while by summing over n we obtain the marginal

distribution Wy,
o
wl = Z PHL'
n=t+1
Figure 13.26 exhibits the distribution of P, {or the same wave pucket together
with the two marginal distributions £, and We. The maximum of B, 15 close

1o the value :
. lr:l;:l
o e
E)
given by the classical energy

5o B0 ke
L M i

in terms of the initial expectation values pg and ry = [ry| of momentum vl
position of the Gaussian wave packet.
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I !
il
ST -
S, oo -
- S
= = £

Fip 13.26. Probability distribution 7, of the principal quantum oumber # and the
angular-momentum quantum nomber © of the wave pucket shown in Figores 13,27
throuph 13.30 together with the marginal distributions W, and #. The probability is
set euesd to wero il By = 1Y 2]

Figure 13.27 presents the first revolution of the wave packet al the time
instants + = . %Ik. %T}L. and Ty, where Ty is the elassioal Kepler period.
The solid line represents the classical elliptical Kepler orbit for the initial
conditions rg, py. The dot on the ellipse marks at tme ¢ the position of the
classical particle with the initial conditions ro. py, The function shown is the
spatial probability density

plr, 1) = [pir, 01°

over the plane r = (x, y. () of the classical orbit.

We compare the behavior of the quantum-mechanical wave packet with
the time development of a classical phuse-space distribution which has atr =
(b the form
1 (r—rp)?  (p—po)
BEPR e

] Bl 4
4 Zer 2er s

il
g pl = ———=
E?.:T_r"rr-j'f'er;.L'J ;-
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Fig, 13.27. Plots in the lefi column show the fime evolution of an initially Gaussian wave
packet in the plane = = {, f.e,, the plane of the classical Kepler orbit indicated by the
cllipse, The full dot represents the corresponding position of the classienl particle. The
temporal instants shown are the thivds of the first Kepler period Ty, Plots in the vight
column show the time evolution of the spatial probability density of the corresponding
classical phase-space distribution.
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of the produet of two Gaussian distributions in space and momentum. The
momentum width o, is chosen according to Heisenberg's uncertainty relution
for o Guussian wave pucket,

ap =hf(2o)

The time evelution a7(r, p. ¢} of the phase-space distribution is caleulated
with Newton's laws. The classical probability distribution in space is the
marginil distribution

plr, 1) = fp"'{r. p,yd'p

ohtained by integration over all values of the momentum.

The time development of the classical spatial probability distribution is
shown also in Figure 13.27. For computational reasons the plots are not
smonth but Took as composed of columns. They are called histograms. The
height of each column is proportional to the prohability per rectangular region
in x and v. The histogram shows only columns which correspond at least to
a certain minimum probability. The main features of the classical probability
distribution are very similar to the quantum-mechanical distribution.

The deformation of the Gaussian wave packet showing at 1 = T /3 for
the first time is thus seen to be a purely classical effect. It is in particular due
1o the distribution of momentum in classical phase space initially of Gaussian
shape about the point py. For example, the distribution at any given point r in
the x, v plane als contains momenta po -+ pr. where py is pointing toward
the center of force. The time of revolution for a particle with this momentum
is shorter than for ane with py. Therefore the spatial distribution will have a
forerunning part inside the classical ellipse. Analogous arguments show that
momenta po—pj are responsible for a delayed tail located outside the classical
orbit. These features catch the eye at first glance in the plots of Figure 13.27.

As time elapses the distributions widen and finally wind around the orbit.
As soon as the bow of the guantum-mechanical wave function overlaps with
its stern we expect and observe interference phenpmena, Figure 13.28. An
earlier example of this phenomenon we have met in Section 6.2 of a wave
pucket in a deep square well. There, the inerference leads to u revival of the
wave packet at the revival time 1 = Ty, and to fractional revivals at times t =
‘:—fT,m-, k, ¢ integer. The same phenomenon of the revival of the wave packet
exists for the wave packet on a Kepler orbit with the revival time given by

Ty = %#I' Tk
where ny = Eq/fE; 15 the classical value of the principal quantum num-
ber. The existence of a revival time in the quantum-mechanical Kepler prob-
lem was pointed out by Parker and Stwoud (Physical Review Letters 56,
716 (1986)), Figure 13,29 exhibils the distribution p(x, v, 0, 1) at the 1mes
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Fip. 13.28. Quantum-mechanical probability density in the Kepler plane for various
multiples of the Kepler period. The wave packet witens [rom period to peciod. Onee
heth ends of the wave packet overlap, interference sets in.

Fig. 13.29. Re-
vival of the
wave  packet
for the times
P = T —
TH-."IEF Toaen Trow
+ Tk (2.

135 Kepler Metion in Quantun Mechanics

27
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Fig. 1330 Fractional revivals of the wave packet.

= (ny/3— %!'T[{'. e T3 ng /3 4+ %}?‘K. It is surprising that there is o time
difference between the positions of the revived wave packet and the classi-
cal particle. A more detailed discussion of the origin of the gquasiperiodicity
in the gquantum-mechanical hydrogen atom as carried out by Averbukh and
Perelman in Physics Letters A 139, 449 (1989) reveals the reason,

Figure 13.30 exhibits the fractional revivals of the wave packel. At Teen /2
we have two. mt Trwy/3 three wave packets, etc., on the Kepler orbit. They
iwre equidistant in time as a consequence of the second Kepler law, ie., of
angular-momentum conservatiorn.

As expected, the classical spatial distribution o¢! shows no such revivals.

Problems 279

Problems

3.1

156

137

13.8:

13.9.

Calculate the energies £, of the states of angular mementum zero for an
infinitely deep potential well in three dimensions, Compare this spec-
rum with the one in Figure 13,1, Explain the deviations,

. Why are the energies of the sume quantum numbers i for £ = 1, 2n

Figure 13.1 lurger than those for £ = 07

. Why does the energy of the lowest (in general, the nth) state decrease

with increasing width of the spherical square-well potential of the same
depth (Figure 13.2)7

. Why does the difference £, — V) of the state of lowest cnergy for a

given angular momentum ¢ increase as the potential well deepens?

5. Explain the structure of the product function @5, (x), ¥z, xa), as plot-

ted in Figure 13.5, in terms of the structures of the harmanic-oscillutor
functions in one dimension, ws plotted in Figure 6.4,

Why does the average probability density in a spherical shell of unit
volume, given hy r* E‘f‘,riri us plotled in Figure 138, increase toward
the hurmonic-oscillator wall?

What do you expect the harmonic-oscillator probability densities for
nmo=75 ¢ =10 1,2 3toroughly look like? Describe their nodes in ¢
and t in analogy to those in Figures 13.9 and 13.10.

Verify by explicit calculation that the angulir-momentum eigenstate
@asplr) of the harmonic oscillator can be decomposed as was done in
Figure 13.11.

Let us consider time-dependent motion in a rotationally symmetric
harmonic oscillator. The wave function of the imtal state (e, () al
¢t = {0 is given explicitly in terms of a decomposition into eigenfunc-
LODS {fy, s (X1 0 X2, X3),

i, () = Z fi'.lr:ﬂ;-rl:"f";..lnln;i-tl vl s

Az, ny

corresponding 1o the eigenvalues £, = (n+ Ihen, n = ny+na+nsz, of
the harmonic oscillator as deseribed in Section 13.2. The gy, .0, are the
spectral coefficients of the nitial state in the harmonic-oscillator base

©nynany- Show that the time-dependent wave function (n = 1y +n2+n3)
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1310,

13001,

1312
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y it ! g e
1|||:r1.r~ = Z = Bt ﬂr]lﬂ:ilﬂpn”::-'r_l{"' 1. X2, X3)

fj s
is 1 solution of the time-dependent Schridinger equition
2

i e o Kom
i e, ek
:ﬁmlﬁ’il‘.n ( M 2r i

and fulfills the initial condition.

Analyze the behavior of the three-dimensional wave packet under the
influence of a harmonic foree, as plotted in Figure 1312, in terms ol the
hehavior of three independent one-dimensional oscillators, as plotted in
Figures 6.6 and 6.8. Describe the initial conditions of these independent
oscillators in terms of classical mechanics.

Show that the general solution y(r,¢) for the motion m a harmonic
oscillator,

i , _
eir, 1) = Z exp |:— E E"rj| ﬂnw:n:.,ﬁf?m_u_.,j,‘.':-f]. T KT

CIRC RIS

with the enerey of the state ‘P':..n-,.r:_-,-

En=ua-|—%}lhw z w=n|+nstan .

possesses the following periodicity property:
2 .
i rJ+mﬂ = "Ti(r. 1, b= 12 B e
i
The pertodicity property implies that

Ta |2 -
{1l (r.r—:—mﬂ)‘ = |yfrir, £H°
| w

This result can be read off Figure 13.12.

Culeulate the mintmum of the eflective potential, V’zf':fmn. for # = 2of
the hydrogen atom,

TL k6 I o

===
A 2M = r
Find the differences between the cigenvalues £, of the electron in the
hydrogen atom and this minimum, £, — :FI'L o Explain why only states
with # = 3 exist for angular momentum ¢ = 2 in the hydrogen atom.

13.13.

13.14.

13.15:

1316,
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Show that the Bohr radivs e as given in Section 134 s at the position
of the maximum of £ R7,(r), that is, show that, at r = a,

g IrBpiryl =1
ara= [ r =
ir o

The energy of the pround state of a two-particle system bound by a
Coulomb loree s

I s A |
El=—i_1£(fr i

where = MM/ (M) 4+ M) is the reduced mass of the system of
two particles of masses M| and Mz, For M| <« M., p tends toward
M. Using this formula, caleutate the pround-stae energy £ for the
hiydrogen atam and for a positranium., which is a system of an electron
andd a pasitron, that 1, an electron of positive charge.

Muons are particles similar to the electron but possessing a miass
¥
iy = 1036 MeV fe®

The Bohr radius. that of the innermost orbit, of a system made up of a
positive and negative charpe 18
h

0= —

T oaue

where g 15 the reduced maoss of the system, as given in the preceding
problem, Caleulute the Bohr rudii for o hydrogen atom: for o muonic
hydrogen atom. whose electron has been replaced by o muon; and for
posiironium, @ hyvdrozen-like sy<tem in which the proton has been re-
placed by o positron,

The Bohr rudins g ol the innermast orbar of a nucleus with atomic num-

ber £ is
fi
= — =
PATHITS
where ¢ is the reduced mass of the system. For the uramum nucleus,
Z = 92 the reduced mass cun safely be taken as he mass of the panticle
in the innermast orbit, Caleulate the Bohr radius for a muonic uranium
wlom and compare the result with the radius of the uranium nucleos,
o =6 % 10~ ¥ m.
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Resonance Scattering

14.1 Scattering by Attractive Potentials

We now return 1o the discussion of scattering in three dimensions, In Chap-
ter 12 we looked only ot scatlering hy repulsive potentials. Now we shall study
the effects of an attractive potential,

In Figure 141 the wave function pf;ﬂirj is shown in terms of its real part,
imaginary part, and absolute square. The figure 15 analogous o Figure 12.1,
except for the sign of the square-well potential in region 1. In comparing Fig-
ures 12.1 and 14.1, we observe no striking differences except that in region |
where the polential 1s nonzero the probability density |<‘|.:a£~H'fI':I|:I is apprecia-
bly larger for the attractive potential. This larger probability density was to be
expected since for the repulsive potential the particle can enter region T only
by the tinnel effect.

Frgure 14.2 presents the scattered spherical wave pg(r) as defined in Sec-
tion 12.2, Again we observe that the plot of |q'.I:i+]f r)}* has ripple structure
whereas the plot of |J]‘|[[I‘]|j does not. As discussed at the end of Section 12,1,
the ripples of |‘F’II:_I'{ﬂ|3 are caused by the interference of the incident wave
expiik-r) and the scattered spherical wave my (r), The absolute square of g (1)
shows no such ripples, and Tor larger ¢ there 15 only a | f(#)% ) r* falloff,

Comparing the two sets of pictures for the attractive and repulsive poten-
tials {Figures 14.1 and 12.1), we realize that the forward scattering, the scat-
tering inte angles @ close to zero, is for the repulsive petential enly shadow
scattering. In other words, immediately beyvond the repulsive square well there
is very little probability of finding the particle, whereas there is considerable
prabability that the particle has traversed the attractive square-well region,

-

4 | Seattering by Adtractive Potentials 2R3

Fie. 14.1.  Scattering
al o plane wave in-
cident Trom the lefi
wlong the © direction
by am attractive po-
tential. The potentinl
is confined (o region
ro= o indicated by
the amall hall-circle
Shown are the real
part, the imaginury
part, anmil  the abso-
Iute souare of the wave
function 4, ' The fig-
nre 1'urn'5i|}ulldﬁ EX=
petly to the sitation of
Fipure 12,1, except for
the change Vi = —1
in the seattering po-

| lential.
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Fig. 142, Real part,
imaginary part, and
ahbsolute  sguare  of
the seattered spheri-
cul wave g resulting
fromm the seattering of
a plane wave hy an
atiractive potential, us
showirin Figure 14,1,

He

ey |, L

F

o

;1‘;.[.‘_{]}|: ) =
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14.2 Resonance Scattering

It the preceding example the enerey of the incoming wave was chosen
pandom. Let us now consider the scattering of a plane wive at a particular
energy £ by the attrctive potential used in Figures 14 and 1420 A sys-
rematic wiy lor determining the parncular energy E., will be presented in
Section 14,3,

Real and imaginary parls ol the wave function e,uaﬂ{r:l with particular cn-
ergy K., are plotted n Figure 14.3 together with |1||'}L+}|‘?, Linhike the situation
in Figure 14,1, there 15 now u rather symmetric structure in the region of the
attractive polential. This symmetry is also apparent in the plots of the scattered
spherical wave ge(r) in Figure 144

To clunly the origin of the dominating symmetric structure, we inspect the
seattered partial waves 1y, as introcfuced 1n Section 12.2. Their real and imag-
inary parts are plotted m Figure [4.5, revealing the dominant contribution of
the scauered partial wave for angolur momentum § = 3, Since scalleraed pur-
il warves are significantly different from zero only for low vilues of £ —in
our example for & =6, 1, 2, 3 - clearly close to the potential region wave i3
dominates the wave [unction rp;L‘H as well as the scattered sphencal wave ny.

14.3 Phase-Shift Analysis

In this section we investigate the energy dependence of the partial cross sec-
tions e (£), the phase shifts §,(E), and the partial scattering amplitudes
fet £ for scattering by an attractive potential. The parameters of the potential
are the same as those already used in Figures 14,3 through 1415,

In Figure 14.6 the partial cross sections are shown as o function of energy
for ¢ = 0, |,....5 The striking feature of this figure is the rather pro-
nounced maximum in the enerey dependence of @5, This maxumum produces
i peak in the total cross section ay,. shown in the top plot of Figure 14.6. The
energy vitlue of this maximum is very near the cnergy £q. at which we ab-
served the striking structure in gair) in Figure LA Tt was this structure that
dominated the functions :.-'.I;-Hfr-l and n(e). To investigate this phencmenon
further, we study the behavior of the phase shifis &, (£ in Figure 14.7. Except
for ¢ = 3, the phase shifts show a ruther smooth energy dependence. The
phase shift 85, however, rises sharply in the neighborhood of £ crossing the
vilue 37 /2 at E.. From the phase shifts §, we now construct the complex
partial scattering amplitudes [, as described in Section 12,3,

Figure 14.8 shows the corresponding Argand diagrums Tor the complex
functions f50£). The Argand diagmn for f0F) shows a swill counterelock-
wise mation of point {3 in the complex plane as the energy passes through
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Fig. 143 Real part,
imaginary part, ood
ahsolute sguate of the
wave function u,:{ﬂ for
the scattering of a
plane wave by un at-
tractive  potentiol  as

given in Figure 141,

bt for @ resonanee e
trey E = Eps of the
WivE,

He {e™elfnfr.an
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le i Lt | L

Fig. 144, Heal part,
imaginary part, and
alwolute  square  of
the scattered spher-
ical wove g, result-
ing from the scativre-
ing of a pline wave
of resonance energy
I = Euy by the sume
- attractive potentinl as
in Figure 1435
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Fig. 14.5. Real nnd
imaginary  purts of
the scattered par-
tinl wives g result-
ing from the seatler-
ing of a4 plane wave
of resonance energy
E = . by the at-
tractive potential as
in Figures 143 and
A, The resonance

is b the partial wave

fori =3

Re

lin wglr i

1=
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Fig, 14,6, The partial
cross  seclions ol &)
amd the totnl eross sec-
tHon | £ appros-
imoted by the swum
over the first few par-
tial cross sections for
the scattering of @
plane  wave of  en-
ergy E hy the aitrae-
tive potentinl used in
Figures 14,1 through
14.5. For resonant en-
ergy F = F there is
i sharp maximum in
ay which is refected
in oy approximated
by the sum over the
first six partiol cross
sections and shown in
the top dingram of the

| figure,

the energy L As we have learned from the examples of one-dimensional
scatiering (Section 5.5, this is the signature for a resonance-scatlening pro-
cess, As the phase ascends through 7 /2, the real part passes through zero in a
sharp decresse, whereas the imaginary part reaches its maximum, Im fy = 1.
Figure 14.8 indicates that none of the scattering amplitudes fy, fi. and [7 has

a4 Fesonance,

OF particular nterest is the differential scattering cross section

der .
an = | £
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il = f
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Fig. 14.7. The phase X o e ——— —
shifts a5 ) for the sit-
wation of Figure 14.6, | -1
For £ = ) we pul 5,
Apiy = (. All phase .
T
shifts except &y vary o —— o
only slowly with en- | 0 T ——— -
ergy. Near & = Ep |
the phase shift 4508 :
rises sharply, passing N
through §10F = Eob | VT
= m/2, see also the | L —— & i
hottom right dingram
in Figure 14,8, M=t ]
with

T
Fih= l_Z[EE" + Dy felk ) Py leos 3y

k (=l
The differential crass section is used to measure the ungular momentum of
resonances. [f near the resonance energy the absolute values of all partial scat-
tering amplitudes f; except the resonant one are small. the differential cross
section is determined by the square of the Legendre polynemial corresponding
o the ungular momentum ol the resonance. This is the case for our example.
At the resonance encray we expeet the differential cross section to be approxi-
mately proportional to [ Pytcos #)]%. Figure 14,90 shows the differential cross
section as @ function of cos @ far various enereies. For the resonance cnergy
toas indeed very similar to {#7, as we can see hy comparing this figure with
Figure 10.3. In Figure 14.90 the intensity of the scatered wave at the reso-

4.3 Phuse-5hift Analysis 24

Fig, 144, Argand  dia-
prams, thal is, dingrams of
the energy dependence of
the complex partial seatter-
ing amplitudes 1081, for
the scattering of o plane
wave of energy £ hy the
attractive potential nsed fn
Figures 141 through 147
for e =10, 1, 2, 3. The am-
plitude {1 maves on & gir-
ele in the complex plane,
Smuall eireles ure placed on
the circle al points equidis-
tnt in o encrgy. For  the
nomresonant partinl waves,
{ = 1.2, only the Ar-
gandd dingram isell and iy
projection on the lm §, &
plane are shown, The Tune-
tiom lm fei k) is closely re-
luted to the partial eross
section oy £, For resonant
wave | = 3 hoth Im ()
anel  Re 1F) projections
and the phase shift 450 5)
are shown, Nedar resonance
energy & = f, the partial
scattering amplitode 5080
performs @ swilt counter-
clockwise motion through
point (1. 1) in the eomplex
plane, giving rise lo (1)
the pronounced maximuon
in Im. fyl sk (20 the steep
ieop of Ee 500 through
Ee faiFa b = (o and (3) the
sharp rise of S0 ) through
i Ep)=mfZ
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Fig. 14.9, (a} Intensity of the seattercd spherienl wave resulting from the seattering of 4
plane wave incident in the - direction onte an attractive potential restricted to o small
vegion r < o, indicated by the small dashed half-circle. The intensity far l;:l.il‘iidl: the
potential region is a function of the seattering angle @, The energy of the incident wave
is the resonanee energy £ = £ (b Energy dependence of the differentinl m:a!!eﬂn‘g
crogs section do /402 shown over o linear seale in cos #, The differential eross section is
constant in cos &, indicating fsotropic scattering, for £ = 0 {background), At resonance
energy £ = £ (oot line from the buek) itis given approximately by the squire afl
the Legendre polynomial Fiicos ), since the partial seattering amplitude [ dominates
the cross section.

[4.4 Bound Sfares and Resonances 293

nance energy is plotled over a hall-circle in a plane contuining the - axis. The
detectors messuring the Hux of scanered particles could be sitwated on this
half-cirele.

Often the background from nonresonant amplitudes is not small. By care-
Tul anidysis of the angular distribution, iois eften possible to separate resonant
and nonresonant partial-wave contributions in the differential cross section
and thus o measure the angular momentum of a resonance that has already
been seen in the towal cross section,

So far in this section we have studied the phase shifts 8, and the quantities
derived from them that describe the scattering globally, We now twrn to the
detailed features of the radial wave functions Rk r). Here &£ = \,fm;'ﬁ
1s the wave number for o vamshing potential, as inrroduced in Section 11.1.
In Figuee 1410 the eperzy dependence of these Tunctions is shown for
f =10, 1,2 3 We pbserve that Ry, &, and &> do not chiange appreciably
with enerey except for the decrease in the wivelength that is clearly visible
in the region outside the potential. The wave function K3, however, changes
its shape rapidly as the enerpy varies. Al the resonance cnergy it has a pro-
nounced maximum within the atractive square-well patential. 1 is this max-
imum thal characterized the wave functlon ‘n""llal "r) and the scaltering wave
function me(r), which were shown in Figures 14.3 and 14.4 1o introduce the
resonance phenomena.

14.4 Bound States and Resonances

The pronounced maximum of the radial wave function Ralki, r), ke =
VIME .. /f, in the range of the attractive square-well potential significs that
the particle in o resonant state has o rather large probability of being in the po-
tentil range. This situation resembles to some extent that of a particle bound
within a square-well potential. The relation between bound states and reso-
nances is indeed intimate, and we shall try to indicate their connection. We
start with Figure 14.11d. Tl shows the attractive square-well potential used
throughout this chapter, the effective potential for ¢ = 3, the energy of the
resonance, and the radial wave function R;;lk,l-,_!:. ri. This plot reveals the rea-
son why the resonance phenomenon oceurs. We remember from the introduc-
tion 1 Chapter 11 that the effective potential is the sum of the potential Vir)
and centrifugal potential h=¢0¢ + 1)/ (2Mr=). Thus the effective potential has
a wall just outside the square well, that is, a region where V7 is larger than
Ees. This wall keeps the particle from leaving the potential region except by
the tunnel effect, The wall is of finite thickness, however, so that the particle,
unlike the particle in the bound stade, can also populate the outside region,
For this depth of the potential there is no bound stute for £ = 3. We now
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Fig. 1410, Energy
dependence of the
radial wave func-
tion Kk ey for
seattering by an
attractive sguure-
will potential. The
form of the poten-
tiul is indicated by
the long-dush line,
the wiave energy
by the short-dash
line, which also
SErVEs @ Iero
line for the wave
function. Whereas
By, Ry, and Ry
change very little
withinn the poten-
tinl  Tegion, near
the  encrgy  Fo,
the wave function
R oof the reso-
nunt partial wave
develops 8 very
prooouneced  mgEx-
immum. Outside the
potential - region
all wave functions
show trivial short-
ening of the wave-
length with grow-
ing energy.
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Fig. 14.11. Bound states and resonances of an attraetive sqoace-well potential for angu-
lar-momentom guantum number ( = 3. The potential wells have constant fixed widths
but different depths, The potential Y (01 is shown as o long-dosh line. The effective po-
tential is also shown. (4} For @ rather deep potential well there are two hound states with
nepative enerpies indicated by the horizontal shoet-dash lines, The lower bowned state
has no radial nodes; the second hus one node, (b A somewhat shollower well has only
one bound state bt it does have @ resonanee. The resominee energy correspomds o the
horizomtal line of positive enerey, The cadial wave funetion #5 |A','.;“?. ¢ 1 has one node in
the potential region, just s the second boond state in part a has. (€] This potential well
has only one hound state: (o) Thi Towad state in part © now reappesrs as 8 resonanee. 1S

wave function is A+(kL | ri The resonance is the same as that in Figures 143 through
14,118,

increase the depth of the potential well. There is a4 continuous decrease of
the resonance energy Ep. as the potential increases in depth, and eventually
the resonant stite wms into a hound state with negative energy and with the
radial wave function 8, This situation is shown in Figure 140 1c I we
increwse the potential depth even further (Figure 14.11b), a new resonance
with the wave function H;f_.ﬂaﬁf_.f L r) appears possessing one node within the
potential region, just as the second hound state would have. When the depth
is increased even further (Figure 14,1 La), this resonance too becomes a bound

state with the wave functiom Kaq(r ).
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14.5 Resonance Scattering by a Repulsive Shell

We have found that resonances vceur when there is a repulsive wall in the
effective potential. In our example of an attractive square-well potential, this
witll omainmated from the cenmfugal foree. We can also siudy resonance scat-
tering on 4 repulsive shell potential:

i, O =r =d
Viry=1¢ Vo. dy =5 <
i, dy =r <o

i
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-_-"“"“-q.__ ,-"f T ure 14,14, The energy
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Here Vi, is pasitive and denotes the height of the potential within the shell.
The shell potential provides u spherical potential wall of height Vi, of inner
radius o, and of outer radios &> around the origim. We can expect that this
wall will produce resonances quite independent of a centrifugal lorce.

Figure 1412 shows the total cross sechion g and the partial cross sec-
tions oy, and Figure 14,13 shows the phase shifts &, for & = 0. 1000005
The resonunces are clearly visible as peaks in o, and as jumps in & For
¢ =1, 1,2, 3 there are two resonunces at two different energies, We shall
refer to them us first and second resonances. For ¢ = 4, 5 only the first res-
onance is visible in the encrgy range of the figure, The second resonance is
much wider i energy than the first. The width of both resonances increases
with angular momentum £, There is also a striking regularity between the an-
gular momentum and the energy of the first resonance, In a plane spanned
by energy £ and angular momentum £, the first resonances fall on a corved,
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Fig. 114, Arvgand  di-
agrams for the com-
plex  partial  scatters
ing umnglitodes 05
and  fa(E) for seat-
tering by o repul-
sive shell. As in Fie-
ures. 1412 and 14,13,
the energy runges from
E =01 £ = V.
The resonunces have
noswilt  counterclock-
wise  motion of
throrgh the point i), |
in the complex plane,
and the charucleristic
resonanee  patierns  in
lm fi )y Be 0B and
drl £y already familiar
From Figure 4.8 (hot-
tomj. [fecanse of the
shell structure ol the
putentinl, there ore now
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Fig, 14.16. Wave lunc-
tinns qu' " for the seat-
tering of a plane wave
incident along the -
direction by a repul-
sive shell, The energy
iz that of the first
resomance in o partisl
wave | = . The two
hall-cireles near  the
center indicate the in-
ner amd outer bound-
aries ol the spherical
potentinl shell.
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Fig. 1417, The scat-

tered spherical wave
e resuliing from the
seattering of @ plane
wave incident along
the : dircction by a ve-
pulsive shell, The en-
erpy is that of the first
- | resonance ino partial
wavet = L.
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Fig, 14.18. Scattered partial waves i, £ = 0 1. 2, resulting Trom the seattering of a
plane wave incident along the = direction by a repulsive shell. The partial wave o has
its first resomance af this particalar energy of the jncident plane wave,

smoath ling ealled o Regpe frajectory. There 1 a similar trjectory for the
second resonunces. '

In the total cross section, also shown in Fieure 12, the various reso-
nunces o different partial waves appear as peaks, When they are sufficiently
narrow, they can easily be separated from the smeoth background.

Figure 1414 gives the Argand diagrams for the partial-wave amplitudes
§1 and > I shows the resonance strocture known from the battom par of
Figure 4.8, 1n both amplitudes there are now bwo resonances indicated by

L 4 S

|
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Fig. 14.19.  Wave
function g, "', for
the first resonance
in = 1 produced
hy the seatlering of
a plane wave inci-
dent along the - di-
rection by a repul-
sive potential shell.
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Fig, 14.20. Scat-
tered  spherical
wave . for the
first respnunce
in = & pro-
duced by the
seattering ol @
plane wave in-
cident along the
o odirection by a
repulsive poten-
tizal shell.
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Fig. I4.21. Scattered partinl waves », for the first resanance ing =10 produced by the
seattering of a plane wave incident along the - direetion by o repulsive potential shell.

the swilt counterclockwise motion of f, through the top of the unitarity circle.
that is, point Re fy =0 lm f; = |,

In Figure [4.15 the energy dependence of the radial wave functions
Rotk, vy and Rk, r) is shown in energy intervals around the first and see-
ond resonances. The radial wave functions have the typical enhancement at.
resomimee energies. Since the potential vanishes inside the shell, the wave
funetion hos no node in r for the first resonance and one node for the second
resommee.

We conclude this section by showing for some resonances the full sta-

tionary wave function gu:tH[rL the seattered spheneal wave geieh. and the
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scattered partial waves py(r) for £ = 1. 2. 3. In cach ligure lhe size of the
spherical potential shell is indicated by the two half-circles near the origin,
They correspond to the inner and outer boundaries of the shell. The fiest res-
onance with angular momentum = | is illustrated in Figures 14.16 through
L4, 18, In Figure 14,18 we observe that only the partial scattered wave for
¢ = 1. that g; shows a resonance structure, 1t has no node in r. indicating
the first resonance, There is one node in the polar angle # at ¢ = 7/2. It
is caused by the Legendre polynomial £(cos i) = cos @ which determimes
the + dependence of 1 us discussed al the beginning of Section 12,2, The
seattered spherical wive nilr) in Figure 1417 is obtuined hy summing up the
partial scattered waves 5y (r). Since the dominating term in this sum s e,
it is not surprising that the stuctare of grir) in the central region is that of
giir), displaving no node in ¢ but one node in . Even the full stationary
wave function .p,[f'rr:, which is shown in Figure 14,16 and is a superposition
ul the incoming harmonic plane wive and the scattered sphetical wave gglr),
retains much of this structure.

Finally, we tum to the resonance of angular momentum zero, Figures
14.19, [4.20, und 14.21 show the functions qaL"'{rj. e, and g for the
first resonance. The resonating partial wave s now ng. It has no node in ¢
since the Legendre polynomial Py does not depend on #. As g first resonunce
it also lus no node in e These simple features of gg are very clearly retained
i the seattered spherical wave iy (r). Figure 14.20, and in the stationary wave
function ¢, (r). Figure 1414,

Problems

|4.]. What is the relation hetween the wavelengths nside and outside the
potential region of Figure 1417

14,2, Explain the features of the plots of Figure 14,1 with the help of the plots
af Fizure 14 2 in terms of the mtial plane wave, the scattered spherical
wave, and their interference patiern.

14.3. Find the features in the r and o dependence ol the resonant partial wave
i3 in Figure 14.5 that are characteristic for angular momentum ¢ = 3.

14.4. Given the form of the resonant partial wave %5 in Figure 14.5, is there
for £ = 3 a hound state or resonance with lower energy than the one
plistted?

14.5. Relate the appearunce of the backward peak in the differential scatter-
ing cross section al resonance energy in Figure 14.9 to the purtial-wave

14.6.

14.7.

14.8.

- Froblems g

decompasition of the seattered wave in Fizure 14.5 and to |pgl” in Fig-
ure 14.4. '

Deseribe the hehavior, for large values of », of the bound-state wave
funetion of the first exeited state m Figure 101 L and of the resonance
wave function in Figuee 1400 D

Compare the criteria for a resonance. as found in Figure 148, with the
resonanees ndicated ioothe Argand disgroms 1 Figuee 14014 Which
peiks correspond o resonance phenomena and why'!

Are the energies of the resonances in Figure 14,15 higher or Jower than
the encrgies of hound states inan infinitely deep potential welt”



15. Coulomb Scattering

15.1 Stationary Solutions

In Section 13.4 we discussed the stationary bound states in the atiractive
Coulomb potential, The hound-state wave functions were characterized by
three gquantum numbers, the principal quantum pumber . total angolar-
momentum guantum number £, and the quantum number m of the = compo-
gent of angular momentum. The energies of the bound states are all negitive,
E, = —Mc e /(2r”). The set of the bound states in the hydrogen atom is not
complete. Since the Conlomb potentinl vantshes at infinity there exists also a
set of continuum scattering stutes for all positive energy eigenvalues £.
As in Section 13,4 the radial Schriddinger equation reads

Pid o o
_E_Mr:;'-i + Ve | Retk, vy = ERvE 1)

with the continuous energy cigenvalue

! #p2
Ei= t—;'
M

parametrized in terms of the wave number k.

The cffective potential for angular mementum £,

ol B+ 1)

B =g Zhe -

i r r
again consists of the repulsive centrifugal term und the Coulomb term. In
contrast to the corresponding formula in Section 13.4 here we have nearpo-
rated the charge number Z of the nucleus off which the electron is seattered.
If the charge number Z is negative the Coulomb potential is repulsive and
the Schriidinger equation describes repulsive Coulomb seattering. OF course,
in this case no bound states exist, For instance, the charge number Z = —I
would deseribe the charge of an antiproton with a negalive elementary charge.
Of course, repulsive scattering also takes place 1f the seattering center carties

151 Stanonary Solutions R

pusitive charge. Le., inan ordinary nucleus, provided the mcoming particle is
also pasitively charged. I eould Tor mstance be a positron, another nucleus,
ar a positively charged meson,
We divide the Schriddinger equation by (—£71/(2M) and introduce the
function
we =rRelk,r)

the dimensionless varable

E=kr
anid the dimenswonless parameter
Z
N=——
bl
whicre
fi
(= —
aMe

is the Bohr radius, cf. Section 13,4, In terms of these quanuities we get the
differential equation of second order:

(d" (0L 4 1) 1”+|) o "
BT gE el

I the case of a potential of finite range Ry like a square-well potential
vamishing for all r = Ry or of o polential falling off faster than | /7 for
large r = Ry the leading potential for v = Ry is the centrifugal term. The
leading term in the solution 1wy for large r s then a linear combination of two
exponentials of the form exp(Eikr} as we saw in Chapter 12,

For Coulamb scattering for large distances ¢ the lewlding potential is the
|/ term, The leading term of the solution for large r is now a linear combyi-
nation of two exponentinls of the form exp{Lildr — nln2&ri)

We introduce the dimensionless vanahle

7= —0kr = =20t E=kr

and luctonze the function ey,

1
:) bl 2

53| -

|
el ¢l =¢ 27 (

to vet Laplace v differential equation
r

d- . d
:.d + (2¢ + 2 -:}E——H + L4in) [vetni 2y =0
d-

=
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Fig. 15.1 Handlianl seut-
tering waove lunction

Rtk e inoan attrae-

tive Coulomb poten-
tiol. Io each of the
fomr plols the total en-
ergy E s varied but
the  unpular-momen-
L gusntnm number
1 s kept fixed. The lat-

ter is varied from plot

Lo o,

151 Statomary Solutions 3l

Fig.15.2. As Figure
15.1 but for a repul-
stve Couloml poten-
tal.
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This is a particular case ol the equation

- |
(z—dd_—: +(_.’;—:J£—_ —-‘J-) Flalblzy =0 .

- “

lts solution. regular at = = 0, is the confluent pergeamerric fimction given
by the series

az  ala+1) = Lahy 2

hlzi=| AT
Flaih|z) +h]|+b[.l_'.:+]‘.lﬂ[ | +lb}u”1

with
(e =alg+ 1) oeta+n—11 .

The series is convergent for all complex z. The parameter a in this equation
should not be confuscd with the Bobr radius. For our particular case we have

a=1i+1+in . =2 +1
so that the solution vy (n, 2) is given by
Uplg, 2) = FUE+ 14206 + Thz)

The selution By (k, £1 of the radial Schridinger equation thus reads
. - i TIPS I R fim e
Rutk.r)= p e ket PR L il 248+ B =2k

The normalization is given by

"Jf
A s { .
= {"i—i-l'I’E (£ 4 |+ i)l

Here {z) is Euler’s gammu (unction, of, Appendix E.
With this choice the usympiotic behavior for large kr 5 | is ohtained:

1 |
R[‘UE, fl]r—_x:} 'r ﬁiﬂ[kr — 1 In2kr — ;E:‘T + rﬁf}

The Coulomb scattering phase 8y 1s given by

2 I+ 1 +in) ﬁ_l F{E+1+H,i".l
' T+ l—ip ! -‘“{E+i—u?i

The asvmprotic form of K (&, 1) differs from the corresponding formulue of
Section 12.3 by the additional phase 1 In 2k which diverges for kr — o
This is a particular feature of the Coulomb interaction.

151 Stationary Solutinns 313

Fig. 15.3. Radial scattering wyve function &, (&, r | inanattractive (lophand ina repulsive
[Bottom) Coulomb potential for different values ¢ of the angular-momentom gquantum
rnmber bot for fixed energy.
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Fig. 15.4. Stationary wave function gie) for the scatlering of an incoming Conlomb wave .
by an attractive Coulomb potential. Shown are the real part, the imaginary part, and Fig. 155, As Figure 154 but for o repulsive Conlomle potential.
the abisolute syuunre of ¢
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The solution v (r) of the three-dimensional Schrédinger gquation with
Coulomb potential can be recanstructed with the help af the purtial-wave de-
compasition

g
elr) =y (2 + Lyite™™ Rk, r) Pricos 8)

=L

It is culled a Coulomb wave function. The asymptotically leading term for
large |r — z| — oc has the form
W (1) — L,:l.l.-: oy bk (r—z )
This asymptotic Coulamb wave differs from a plane wave becanse of the ap-
pearance of the logarithm in the exponent. This effect is doe to the long range
of the Coulomb potential fice/r. It is said to have infinite range. Only po-
tentials falling off faster than r ' for luege r possess finite range. Seattering
solutions in these potentials approach a plane wave explikz} asymptotically,
The total stationary scuttering solution is the product of Ky(k, r] and the
spherical harmonies Yol i, 4o

i (k. ry= -r{l[k- "l i.I-*'H:L'-'}l ':J:'.J

In Figure 15.1 we show the radial wave function &gk, i for different to-
tul energies und for various fixed values of the angular-momentum quantum
qumber £. For large r the wave function is an escillating funclion of r which
can be qualitatively deseribed by an r-dependent wavelength, As we would
expect the wavelength is large for large distances from the ongin, where the
kinetic energy is small, and decreases towards the origin, Besides ¢ the wive-
length depends on & and therefore on the total energy E. It decreases with
increasing energy. Near the origin the wave function is suppressed by the
centrifugal barrier, This effect becomes particularly evident in Figure 153 in
which the wave function R (k,r) is shown at a fixed energy. Le., atu fixed &
value, for different angular-momentum quantum numbers £,

In Figures 15.4 and 15,5 the real and imaginary part and absolute square
of the Coulomb wive function g@{r) are shown. It is the solution of the
three-dimensional stationary Schridinger equation for an inconnng Coulomb
wave scattered by 4 Coulomb potential, The summation over partial waves
@im k. Y is carricd out up 1o angular momentum § = 25, For the range shown
wn ¢ this zuarantees sufficient accurucy.

In Figure 15.4 the case of the attractive Coulomb potential is presented. In
the region of the singularity of the potential energy the wave function acquires
1 shorter wavelength due 10 the increase of the momentum of the particle.

Figure 15.5 exhihits the case of 4 repulsive Coulomb patential. In the cen-
ter of the plots the wave function is suppressed since here the repulsive po-
rentia] dominates over the kinetic energy. Towatds the center of repulsion the

& ¥ Himarbalis Bin 2 !
5.2 Hyperbolic Kepler Metion: Scauerning of a Gaussian Wave Packet M7

w.in'eh.‘.nglh increases indicating the loss of momentum of the particle as it
climbs the repulsive wall,

15.2 Hyperbolic Kepler Motion:

Scattering of a Gaussian Wave Packet
by a Coulomb Potential

We consider a Gaussian wave packet as described in Section 13,5 as initial
wave function of an electron with expectation values of position ry and mo-
!mtmum Po. The spatial width is o, The guantties rg, pp and & are chosen
in such i way that the wave packet contains negligible contributions from
L'Imumlj states. Thus it can be represented by a superposition of scattering wave
functions @y (4, r)only, As quantization axis for angular momentum, i.c.. as
£ axis of the coordinate frame, we choose the direction of classical angular
momentum Lip = fry = K, .
The decomposition reads

e . o
Z Z f b;-m[.& :qujrm{k_ r”l_z Ak
7" Ik

=l m=—

drir. ) =

H | b2

The coeflicients fy,, (4] are probability amplitudes, their absolute squares
IJFM ‘.k = ”7! n (k) |1

represent probabilinies for angular momentum £, m at given & and prishability
densities in & for given &, m, if we choose as integration measure (277042 dk.
The tunction
i

Wk = )" (buntk)?
Ai==1
15 shown in Figure 15.6 lor attractive (top) and repulsive (hottem) Coulomb
scattering for the same initial wave packet, lis marginal distributions

o
Plky =Y Prik)
fml)
and
g s -
Wi = —j PL(A? dk
T Ji
are also exhibited. The peaks of the distribulions are close to the classical
values of
. 2M P

T it TN el T
0= e 0=gy T
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Fig. 15.6. Probability distributions £ (4] and marginal distributions Wy and Pc.‘h I'-:.hr
the wave packet used in attractive (top) and repulsive (hottom) Coulomh scattering in
Figure 157 and 15.8, respectively.

[ 5.2 Hyperbolic Kepler Motion: Scattering of o Gaussian Wave Paclet A

Depending on the sign of £ we deal with attractive scatlering (7 positive) or
repulsive scattering (7 negative), As to be expected for repulsive scattering
thee peak of the & distnbution 1s located at higher & values,

Figure 15,7 presents the plots of the tme evelution of an initially Gaussin
wirve packet with an impact parnmeter equal o s spatial width under the ac-
tiom ab an attractive potentil. The solid line indicates the tagectoey of the clas-
sical particle with initial conditions ry and pp = fiky, The black dot marks its
position at time ¢. The eircular density distribution with the scattereras center
indicates the scattered spherical wave, Also shown in Figure 15.7 is the time
evolution of the corresponding spatial density derived Trom a classical phase-
space distribution which initially is identical to the ane of the Gaussian wave
packet. The main features are the same as in the gquantum-mechanical distri-
bution, In particoabor, we realize that o both cases the position of the classical
particle does not coincide with the maximum of the probahility distribution.
This 15 due iy the fact that the angle of deflection of the trajectory of o par-
ticle with smaller impact parameter is much larger than for a larger impac
parameter, cf. Figure 15.9 {top) below.

Analogously, Fipure 158 presents the corresponding plots Tor o repulsive
Caulemb potential. The large deflection of a particle at very small impact
parameters causes the gap in the probahility density in forwand direction, ¢f.
Fioure 15,9 (hottom) below.

[n the case of the elliptical arbils the most striking feature of the quantum-
miechanical praobability density in contrast to the classical distribution is the
revival of the wave packet at the time ¢ = Tw = (ng/3) Tk, Tt 15 a con-
sequence of the interference of the widening wave packel with itsell” on the
closed arhil,

Figure 15.9 (top) shows classical trajectories in an attractive Coulomb
ficld for a series of mitial conditions which differ only in the impact pa-
rameter. The trajectories intersect in a region situated behind the scatter-
ing center as seen from the inital position. We expect this region o be
the one where quantum-mechanical interference 1s important. The quantum-
mechanical probability density shown for this region in Figure 1510 (top)
verifies this expectation, For Figure 15,10 the initial spatial width of the wave
packet was creased and consequently. the nitial width in momentum was
decreased. In this way the spread in de Broglie wavelength is reduced for the
wave packet and the interference pattern characterized by half the de Broglie
Wu\-’utcnglh ]'.IL‘I..‘i'III'I.'IE.'L monre HPPUTEHL

Finally, we lpok for interference in repulsive scattering. An mspection
of classical trajectories with different impuet parameters, Figure 159 (hat-
tom), shows that they imteract behind and sideways of the scattering center
us seen from the initial position, In Figure 15,10 which shows the quantum-
mechanical probahility density we indeed observe interference just there.
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Fig. 15.7. Left: Time development of the spatial probability density of an initially Gans-
sian wave packet undergoing attractive Coulomb seattering. The trajectory of the cor-
responding classical particle is a hyperbola and indicated by the solidl line. The density N ) . o )
i shown in the plane of the elassical trajectory for four moments in time, The position is Fig. 15.8. As Figure 15.7 but for repulsive scattering,
marked by a dot. Right: The corresponding time development for the spatind probability

density in o classical phase-space distribution.
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Fig. 15.9. Classical trajectories in an attractive Coulomb potential itop) and ina repulsive
Coulomb potential (bottom), The individual trajectories beginning on the far left and
contuining marks corresponding o enqual time intervals differ only by their impact

parameter.

Fig, 15.10. Scattering of o wove packet by an atiractive potential (top) and by a repul-
sive potential (hottom ), All physics parameters of the wave packel aee the same as in
Figure 15.7 und Figure 15.8, respectively, except for the initial spatial width which is 2.5
times higher, and the momentum widih which is 2.5 times lower



16. Spin

16.1 Spin States, Operators and Eigenvalues

In Chapter 10 we introduced orbital angular momentum
L=rxp

in terms of the position operator ¥ = (v, v. 2} and momentum operator
f = (h/nd ., 8fdv, 3/dz) of a particle moving in space. In 4 magnetic
field electrons on atomic orbits with orhital angular momentum A exhibit

magnelic moments
2

ﬁ i
with —e being the charge and M the mass of the electron. The Stern Cierlach
experiment shows, however, that in addition clectrons possess wn infriesic
magnetic moment jio. This led George Uhlenbeck und Samuel Croudsmit o
postulate an nlrinsic angelar momentm o spin of the electron, The intrinsic
magnetic moment is then related to the spin quantum number 5 hy

ft=

1

&
fty = --,q_.,z—wﬁ:.
The cocfficient g, is called gyromagnetic facror. s value for the electron is
(nearly exactly) 2.

It can be shown that the spin states cannot he represented as wave func-
tions of the spuce coordinates v, v, 2. We use the coneepls ntroduced in
Appendix B concerming the quantum mechanics in a two-level system and
describe the spin state of # particle in i two-dimensional space with the lrase

w=() - = ()

For later use we already introduce here the otation

VLIS

a5 =L pl, =101}

ad
£
L]

6. Spin States, Operators and Eigenvalues

for the adjoint vecturs. The three Pauli matrices 7y, 72, @3 together with the
unit matrix oy form a basis for all Hermitean 2 < 2 mairices in this space, We
mtroduce the matrices

i ok o

51 = El."f[ " .5_1- = EU] i _‘j: — q-n'_q

The commutation relations for the components §,. 5. 5. and for the sum
§T = 8; + 5, +.857
al their sguares are the same as for the components L-’ and the square L? of
the orbital angular-momentum operator L= (L, Ly L) te.,
[ S, So] = RS, [ 5y, 8:] =1k5, [8: 8] = if5,
[8%,.5:1=0
Therefore, we mterpret the components of the vectar
S =18z 8y 52)

as the aperator of the spin of the electron. Because of the non-commutativity
of these components there are no common eigenstates of the three compo-
nents. As for orbital angular momentum, we choose the third component 5.
and the square S for the definition of a base of common eigenvector cquations

a=x,V,Z

1 q T o f -
5, = :I-h"r;, ; S, = ;rhr}, 5 r=1,—=1
The cigenvalues of S, are mgh, m, = £1/2, the one of 82 is s(s + DH* =
(3007 with 5 = 172 corresponding to the situation for orbital angular mo-
mentum L.

We conclude the electron possesses half-integer intinsic angular momen-
i, & = L4 In analogy to the integer quantum numbers £ and sr of orbital
angular mamentum (m = £, £ — 1, ..., —=£) we introduce the spin quantum
aunthers 5 = E_, and m, = %, - %

The uxpeciaﬂon values of the operators 5., §,. 8- for the states gy, 5
are

} r
By S =

a

WS =10 WS =
The three equalions are equivalent to one vectorial equation:

S =78y = —fre: . r=1;=1

[R5 e

Since the two states qq, 7 are ¢igenstates of §. the variance of 5. vanishes,
2 &l 4 2
(A8 = ;j;"Lj,: — S =

For the two other components we gel

. a I 4
(A5 = [ﬂlS-,_:lh = .r._l.“-
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16.2 Directional Distribution of Spin

The general spin state is a linear superposition of the twa basic states 7 und
H—1.

X = xim+ X=11-1

iy 2

=

ipsl -
TSN —9 -
5 q

=
[+ cuﬁ7n|—|—e

The expectation value for the spin vector of the state x is
fi
(8), = x (0, P)Sy(E. ) = ~n(6), )

Here n(@, @) is the umt vector in the direction given by the polar angle &
and the azimuthal angle ¢ in the x, ¥, 2 coordinale system

nie, @) =e sin cos + e s sind + e cos &

aml
= gl et
@ @
= ¢ oy Trﬁ" +e " 5in T”il

The general spin stale x (&, @) is an eigenstate ol the n component n - 8
of the spin vector S,

fi
(m-8jx (. $)= ;x{t’:l. &

The twao basic stutes g and #_; may also be considered as eigenstales toe. -8
and —e. - 8, respectively,

In Section 1015 we have used the angular-momentum state Yy (9. ¢, n) 1o
analyze another angular-momentum state Yo, (2, ¢, ). Likewise we now 115
the state ¥ (&), &) to analvze our basic stales 7y and g_. The scalar product

H@u@) o= D7 (@.0.00 0 r=1-1

15 the probability amplitude Tor detecting the spin angular momentum Snin
the state g, Here

in i = {r_":]
D\ e 000 = e PP o

. P
D”f-'z_:. P 801 = e®2 sin 3

are the Wigner functions for spin 1/2.
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£

/7 : (142)
1z b Hd d Gt

| ok L

Fig. 16.1. Polar diggrams of the Wigner functions d“"zf,g{f#‘}a

y

The ahsolute square of this amphiude 15

a 3 . I
|x+[@‘¢1-nr“=[dﬁj’.gﬂﬁw;] . or=1=1

where the functions
{=]

(] o g

d) 2yl = cos 3
{172} I
d—lﬂ. |_;1'~U] = smE

are also called Wigner functions for spin 1/2. In order to abtain & direc-
tional distribution we normalize like in Section 10,5 by a factor (2y 4 13(s +
Ly/(4ms)=3/2n),

- =

f].-'l..'rl,i.@f";'} = i [d;”':jl--r{@]]_ it ny =
2.4 Sl U

Figure 16,1 shows the Wigner function, and Figure 16.2 the dircetional distri-

bution for spin £1/2. For f,2 1,2 the probability is largest for the direction

= = (), In contrast to the distributions fi for integer values of £, cf. Fig-

ure 1011, the distribution for the electron spin is not sharply peaked in the
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/245408, 8) ffxz.—1.f?EE'.‘|’}

Fig 16.2.  Polar dingrams of the directional distributions 5206, &1 and
S —ap2l@, ),

direction & = 0, The distribution of 5 — 2 is the mirror image of {1090
under a reflection & — 7 — &

In complete analogy tw our discussion in Section 1015 we can also con-
struct angular distributions

.}rl,."ﬂ. r.lr.,ﬂl::&]l:' = I?rfl,f'l. my (€2, 00 sin (=

or, explicitly,

= &
fiz @) = 3n:1:rs3?smi T
. . .68
Nzapel@) = 351n3~5mx5

They are shown in Figure 16.3. These functions have their maxima at the
angles given hy
|

= ct‘rs@ug_-”g=—i i

k2] —

Cos By g =

T 60°, By, o2 = 120°,
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- 4
Z f 1,-f'?,1.-"E,E'I‘ l'-"'jl i { 1;.&_1;**_-—['5']
8

3 3 T

2 ke .

1 | B

-1k - -1

= - =

-3 | -3
0 15 3

Fig. 16.3. Polar dingrams of the angular distributions (10 2 008} and iz el

For the corresponding semiclussical angular-momentum vectors L’ﬁ;z_ i

of length T720172 + 1A = (+/3/23 and z component £(1/2)f the angles
are given by

. 1 o |
ms{rﬂumﬂzﬁ . COs B |2 =—;II—,E 1
i.e.,
Sy, 2 =555 Giga, 12 7= 1257

[n Figure 16,4 we show the angular distributions f12 41,2, « (&), the di-
rection given by the most probable angles @2, (/2 and compare them with
the semiclassical angular-momentum vectors L%, .

The spin state x (G, @) for a polar angle &g and the azimuth @ is

ecigenstale 1o the spin projection ny - 5,
-~
(no - Shx(Eh, @o) = 5 x (G, Po)

onto the direction ny characterized by &y and &),

The directional distribution describing - after dividing by 3 — the proba-
bility to find in x (g, ®p) the spin s = & in the dircction n{&, @) is given
by E
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Fig. 6.4, The left-hand plot contains polar diagrams of the angular distributions
St @ty Toe my, = £1/2, Also shown are lines Trom the origin 1o the points
(1ot m, = G0 ) where = Bs Uhe angle for which £y 6 o has its moximum,
The right-hand dagream shows the semicksssical angulor-momentum veetors LY,

: 3/ n(@, @)+ niEh, ¢y
S, dy Sy dy) = 1_( ( = u)
. = .
3
= — (1l +n(&, &y niey, Mol
dm

Plots of this distribution are shown in Figure 16.5, They exhibit the same
apple-shaped form as these in Figure 16.2 but now with ny as the symmetry
axis rather than the = axis.

16.3 Motion of Magnetic Moments in a Magnetic Field.
Pauli Equation

With the help of the spin operator § the magnetic-montent operator of the
electron can now be expressed as the negative product ul the gyromagnetic
rario

163 Moton of Magoetic Moments oo Magnetic Field, Pauli Eguation 351

Fig, 16.5. Polur disgrams of the distribution 52050 <, 1) for the divection of the spin
of an electron precessing around the - axis which is the direction of 4 homogeneous
ficld of magnetic induction. The tip of the vector of the spin expectation value moves
with anpular frequency 2 on o eirele around the @ axis. The plots show the divectional
distribation for ¢ = O, 7/4, 7237 /0 with T = 27 /02 being the precession period.

and the spin vector S:
p=—yS

The potential energy of the static magnetic moment g in a held of mag-
netic induction B is given by

H=—p-B=yB:S=yphB-

a3

The factor (o front of the Pauli matrices can be expressed by a precession
Sfreguency
Q=y8

We choose the = axis of o coordinate frame in the direction of the B field:
B = Re-

The Hamiltonian now Likes the Torm

fi fi
H= H.-H::ﬂi.":-ﬂ = ;.mn-j
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A homogencous field of magnetic induction exerts no force on the clectron
but it does exert a torque on its magnetic moment. In analogy to the Schradin-
ger equation we may write down the Padi equation for the temporal evolution
of the spin state g (1) of the electron,

., d . 2
lﬂinr] =Hxit)=1" Tm:{{!‘r
L da

lis salution s
2 oo 8
Xty = | cos ?! — 1F4 51N ;n’ X

where xg is the initial spin state at ime £ = 0. For the two base states q1. 41
tiken as initial states we find in particular

£ oo iR il2,
X41i7) = [cos —F Fism ?I fi] =7 T g

As a particular case we study the motion of the magnetic moment initially
described by a state

iy = L
X0 = x (&, du) = exp —i—- [ cos — M T expii—- SN —=1 -1

in a homogeneous field of magnetic induction along the = direction.
The time-dependent state is given by

¥l =gitthp + x iy
with the complex coelticients

B2t 4+ ] =}
———— }eos —

L4y . B
xilt)y =exp i —i—s = sin — -

. }f—ll'f]='f‘-xF['T 3

For the expectation values of the components of the spin vector we find
. o I 5
18), = x"(N8xi) = = [e, sin iy cos{ 21 4 o)
L ]
+ ey sin iy sin{£2r - Pt 4 e, cos t’"}”] = ;nm

We differentiate the expectation value {8}, with respect 1o time.

dﬂ-?,' _.ftr.{n _ ok

PR IS W ;ﬂ | —e, sin @l (820 4+ )
P 2 2

+ e, sin Fg cos(£27 + ‘Pr:l]']

Using £2 = y B we recognize the right-hand side as the vector produet of
the mugnetic-induction ficld B = B e. with the expectation value of the spin
vector {8}
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h
vB x (8), = -,ii?[{': < nir)]

Thus, the expectation value (8}, of the spin-vector operator abeys the equa-
tian of motion 4
—{Sy, = yB x (S)
|5 1
dr i
Introducing g = —3 S we obtain for the expectation value () of the magnetic
menent

dn‘:‘l— B = {p
— P B iy -
d:";' }

These results correspond to a rotation of the vector {8} ,q) of expectation
values about the e, axis with angular frequency 2 = g, 5 B. The expectation
vitlue of the spin vector and therefore of the magnetic moment exhibit Larmaor
precession about the - axis. The time dependence of the expectation value
is identical to the result obtained in classical physics for the motion of the
magnetic moment ina homogeneous magnetic field.

(M course, the expectation values and their motion present only part of the
guantum-mechanical information contained in the time-dependent state y ().
The probability for finding the spin 'j in the direction n{&, <) is given by

| 1 - 3
— i@ @) = —|x @ dxinl
Fes 2
| i i 2
= 3 ‘xnuﬂ‘.';"t@.&m] Frnp e, 0.0
1| o 3
= O (l'll: ()
2 33

where &1, 15 the palar angle relating to the time-dependent direction

st = cos( 821 -+ @l
nit) = sin =y sinl 20 4 dhy)
cos =y

In Figure 16.5 plots of _f'l (e @, 1) for the time instants ¢ = 0, _II-T,

AT, ;}T of one period T = 2x/82 are shown. The initial distribution
f1 (8 @, 0) is centered about the initial axis

S0 iy
il = [
cOs (“.Jn

For later times it moves as a rigid strocture with @ time-dependent axis nir)
rotating with constant angular frequency £2 on a cone about the z axis with an
opening angle &,
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16.4 Magnetic Resonance, Rabi’s Formula

We study the motion of the spin of a particle under the influence ol time-
independent magnetic-induction field By = Bpe. in 2 direction and o time-
dependent ficld perpendicular to the z direction,

Bty = Bylcoswd e, + Simoo e, )
rotating with angular frequency w aboult the £ axis. In the otal feld
Bizi =B +Bi)

the muagnetic moment
=8
moves under the action of forces described by the time-dependent potential
enerey
e
Hi)=—p B =—<Bir) .o
We introduce the two lreguencies,

I
g y==tg
f..“ A .Hu 4 1 h |

refated o the components By and By of the msgnetic-induction field. This
leads tooa relormulation of the Hamiltonian

h s
Hit)== [ 20y + 52 Loy cosaof +oasinwt )]

of e matrix form

B 2 et )
Jr'lf“:l B ( QI{::I!-.I --f.?,“ )

The Pauli equation Tor this situation determines the motion ol the spin state
X

paa] ==

i
hi—axith = Hithx(r)
ar X
The decomposition of the spin stite x (1) o the basic spanors. iy, 71,
¥ity=xttim + ¢ tiin_y

feadds 1o the two coupled equations

Ay £ 21
= T;r,lm e e 1)
dy_ 2 2

1LI— = TI‘L"JJ“?.'HII] T”;{_['”:I

di 2

6.4 Magnene Resonance. Rabi's Formula A35

far the nme-dependent coefficients 7 4¢), x (/). The explicit time depen-
dence of the coefficients can casily be removed by the introduction of 4 ro-
tating coordinate frome described by the time-dependent spin states 3, (1),
gkt

it

— e -
H:=EKP[i;,"'TI|1_H i |='=‘-.‘ip|—1--j-r]:;| L8]

i.c, Tor the components
JEEY A
xilt) = u_\:p|—1::|;{1qu , Fo1lf) = exp ‘J-lrl ¥l
This leads 1o the decomposition
X0 = A+ F oy i)

of the spin state y () and o the differential equations

d AL @i
= kf) = —=iFi] — it )
ar” 5o 3 4

. £« s

Il:.ifx iy = Z—XHHTEK_IUJ

with A = (o — 8200, In terms of the initial stale

i ¥i [Fjme W=
xo= 2000 = 2"+ 2= 2o+ 2T

and its companents y i) = :r.:”'.

components in the rotating frame

=i = mef we find as solution for the

y £2 ) . .
Filny = _;r_lmq:_[:s o |tr.¢|;;'“|' = {rJ_zxf”' ) sin Er
i

¢

X

o .ﬂ T || “”H] i
Fogtik 1Cl::.1r7r — Lty ) @3x_ ) hEin—

Here we used the following notation:

o o 2 Pl a
==t ) = — . oy = —

: 2 ?
We choose the coordinate frame in such a way that the initial state coincides
with the basic spinor

i (1
Xo=1M#r . LB X = % I__[]

L

Then, we get ds the solution for the components relative 1o the time-independ-
ent coordinate frame gy, 57—,
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R . 52 A 2
iy = exp[—-rirl(ms-jr-k_lﬁ.\:mir) .
2 A o2
x=lr) = -—|Ecxp[|;}-r|sm?:

Also the time-dependent spinor
X ()= gatthp + x-1tehn—
has length one,
x T = L OF + o =1
For the {requency e of the time-dependent component of the external
magnetic-induction field B equal 1o the precession frequency {2 = Wiy

of the time-independent field component By the difference frequency A =
-'z{m — £2p) vanishes. In this case the motion of the spin state ums out o he

particularly simple:

o 2 _ L [,r:u I“' EI
Xl =exp —|Er|um?r ' Foilr) = —1exp 151 sin 5
The expectation values of the spin vector § = ’_lr.r wre given by
i , 214 .
(Selyin = > (E sin ef sin f2r1 -+ Q—EEUHHJI cos §24
214 )
— —— CD5 Wl
o
ft 52y ; L7 B2 L :
(Sulpin = 3 ( E cos i sin 21 - EE sinewf cos 27
214 )
+ — — sinad :
&2 ;
mfaAl | @
| S st e
I:S,'_."xl.l':l = b L‘?z + ﬂ‘} cos L2y

Figure 16.6 exhibits the orbit of the tip of the vector (8) ;i on the sphere of
racdius fi /2 for the first period
I'=2in/02

for different values of the ratio w/ §2y of the frequency o of the rotating mag-
netic field By(7) and the Larmor frequency £2; of the ome-independent field
By = Bye. vertical to the plane of rotation of the field vector By(r), Atr = i
the vector (S} starts from the = dircetion spiraling about the z axis up o
maximal opening angle &y, given by

cos iy = ﬁ-"_J'IE - ﬂ?]‘ﬂ?l

I6.4 Magnetic Resonance, Rabi™s Formula

e
el
=]

udg=loh, Gl =005, hi=T wd W= 07, R =045, di=] wiPgs 0, B Re=003, Nisd
x ]

Fig. Lo, Magnetic resonanee, Trajectory of the tip of the expectation value ol the spin
vector within one perind . The value of o is varied feom plot to plot whereas §2) and 82
are kept constant, The plot in the middle of the figure corresponds fo exaet resonance
frequency w = 12y,

Thus its z component oscillates with the ungular frequency £ within the range
h A% — J?i-' h
2 0! =
If the frequency o of the dme-dependent magnetic-field component £ comn-
cites with the Larmor frequency 2 comesponding to the time-independent 2

component B, e, 4 = 0, £2) = £2, one observes the phenomenon of mag-
netie resonance, The expectation value of the spin veetor § becomes simply

(Sl =

[B5 10

(e sineot sin $21 — e, cos o sin £2¢ + e cos £21)

= 5 (¢ sin 21 cos{an — T) 4 ey sin 2¢ sinfer — 5) + e cos £27) .
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Fig. 16,7, As Figure 166 but for o fixed to the resomance frequeney o = £ aml Tor
various values of 17, Inall plots the trajectory is shown for one half of @ peciod T,

The tip of the veetor (8], moves an the surface of a sphere with rucius fi /2 pe-
rindically from the = direction to the negative 7 direction. Polar and azimuthal
angle fullow the time dependence
E T
&= =& wir) = (ot - ?] z

The z component of the spin-vectar expectation value exhausts the full range

= {S:)x

|
15
b | &P

Figure 16.7 presents a set of graphs of the orbits during half a periad

T/2 = 7 /82 for different values of the ratio £2y /£2y = By /Ay of the Larmor

frequencies £25, 2y or, cquivalently, the field strengths of the rotating fiedd
B and the constant field By, For values §2) < 12y the orhit lorms a sparal
with dense winding on the sphere. The distance of the windings grows with
growing ratio £29 /2,

The directional distribution Far the spin direction 15, of course, of the same
form

4

- 3 (1424 4 il
Frm ] i e 7= |f4r| m |_"‘.'{Til.l.' '
=T e
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R e S o
i i [
A h = 4

# ﬂ
] o

; |
OB alll
Do il

|'

)7 — -l

) e |
I 05 1 +5 75 3

Fig. 168, Amplitude A a5 9 function of o lor a fixed valoe of 22/, For smaller vabues of
§27 the resomanee becomes sharper. For larger valoes it heenmes broader.

Ffound in Section 16,3 and Figure 16,5, But o, 15 now the polar angle with re-
spect 1o the expectation value of the spin vector, so that the whole distribution
moves along with that vector

In experiments with atomic ar molecular beams Isidor Rabi used magnetic
resonanee for the measurement of the magnetic moments of protons and nu-
clei. These can be directly determined from the resanance frequency o = Oy,
since the Larmor frequency 2y = pefy s directly proportional to the mag-
netic moment fi.

Finally, we quote the Rabi formula from Isidor Rabi’s celebrated paper
“space quantization in a gyrating magnetic field” published in 1937, Starting
initially (r = 0) from the state 7y, it gives the probability P, (1) of finding
time ¢ the stiute y_y if the tnioal state was 77, _

A

+ A 7 Q| 5 42
Pll:i}zlfjltx[_r]l =|x_J“]|_:E:'1 smn” T!

The prohability £ (41 1s at maximum for odd multiples of the time

= ———— A= {w— I
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At these instants the probability has the maximum value

-

T 2F 27
A=F = = L= — —_
2 - 5?|'+{fd—ﬂn:|'

(£21/820)°
(Q[,’"ﬁn]z + 11 - t:J,‘rﬂu}:

It reaches the value one for the resonance frequency o = 2. A plot of 4 as
a function of the ratio /2y for fixed value £21/ 12 is shown in Figure 16.8.
It is of the typical resonance form.

16.5 Magnetic Resonance in a Rotating Frame of Reference

At the end of Section 16.3 we obtained the equation of motion
d
de

for the expectation value (8} of the spin vector in u constant induction field

B = He.. The equanon described the precession of the vector (8) around the

direction of B with the angular velocity £2 = y 8.

For the time-dependent ficld used in magnetic-resonance experments.

(S§) = yB x (8]

Bir) = By + B {r) = B coslwi e, + B sinfawre, + Bye-

both vectors on the right-hand side of the equation of motion become time
dependent.

The discussion simplifics if one considers a rorating reference frame
¢, ¢, el = e, the 2" axis of which always coincides with the direction of
the rotating field Byir),

B = B, (t) = By cos(wr)e, + By sinlwt e,
This implies
e} = e cosmt +egsinwr
et} = —egsinwt + e, coswi
The rotation of the field Byi1) and of the veetors €} (r). €, (1) 15 described by

the veclor
e = b

of angular velocity. The time derivatives of an arbitrary vectar {8} in the lab-
oratory frame and in the rotating frame are connected by
disy (8
de e

+4 o (8)
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We rewrite the relation in the form

S diS) ;
= —— —wx 18)

dr de

anc introduce the equation of motion and ohtan

&S : .
dr (¥B — ) x {8} = yBey = (§)

with the gffective field

W
¥

w ww i
Byj=B——= (le— —) . + Bie, .
':I.‘

which is, of course, constant in the rowting frame. The equation of motion
describes the precession of the vector (8) about the direction of the field By
in the rotating frame. The frequency of precession is

§2 = y Buy =/ (y Bo — 0V + y B} = [ (829 — w)? + 27

Since experiments are always performed for By < By, the effective field is
practically parallel or antiparallel to the = uxis except for frequencies w near
the Larmor frequency £2q in the static field By,

o= Iy =1 8n

If initially the vector (8) is parallel to the o axis then for @ appreciably
different from the resonance fregquency it will deviate only very litle from
the z direction since it precesses around the direction of Beg which is nearly
parallel (or antiparallel) to the z axis. At resonance, however, (8} precesscs
about the v axis since at resonance Byy = By = Hye| and the polar angle
of {8} with the = axis changes periodically between O and mowith the angular
frequency. £2) = p B1.

The situation is ilusteated in Figure 16.9. This figure corresponds in all
parameters to Figure 16,6 but it shows the trajectory of the tip of {8) in the ro-
tating reference frame ¢, e/, e. rather than in the laboratory frame e, ¢y, €;,

It is interesting to note that in most experiments the tme-dependent ficld
B, is not realized as a rotating field but as a field oscillating in the x direction,

B'IHPI = T B casmie;

[t can, however, be interpreted as o sum

B = B (1) +By_(1)
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Fig. 16.9. As Figure 166 hut presented in the rotating frame of reference, The arrow
showninthe ', =" plane is the diveeton of the effeetive fichd 1. The tip of the expectation

value of the spin vector moves on a circle around thut direction, Tts initial position is on
the o axis.

with the two fields

Bio = B cosiei e, £ By sinfor e,

rotating in opposite directions. The vector of angular velocity of these fields is
e and —ese_, respectively. o the fruome rotating with By resoiance oCccurs
sinct in the effective field the = component Bg—e/y vanishes for w = v By. In
this frame ol reference By _ varies very rapidly with time so that its influence
on (S} averages out and can be neglected. In a frame rotating with B - the 2
component of the effective feld is By + oy and no cancellation takes place.
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Problems

16.1. Show that the expectation values of the spuntvector § = (5. 8, 5. for
the twio hasis spinors i, g are given by

- i
(Sla =y Sn, = <he

i a=1,—I
5
16.2. Show that the expectation vilue of the spin vector § = (5., 5., 5;} for
o coherent spin state
y(6@, ) =e P cos(@ 20y + P sin(e 2
is "
Sy =x e DISx(E, &) = -nlB), @)
16.3. Calculate the expectation vilue of the Hamiltonian #f = —p - B, g =

2,¢8/12m ) for the coherent state x (&, &) given in problem 6.2,

By Taylor expunsion of the exponential function show the validity of
the identity

2 2
exp{—if2(n- o)t} =cos -t — in.asin—i

16.5. Verify that the exponential function of problem [6.4 solves the Pauli
cyuation
oyl . )
.nﬁ exp|—i2{n-ai] = Hexp|{-if2in a}}
4
with

H=%.ﬁﬂ{n~r_r}



17. Examples from Experiment

So far we have investigated mechanical systems using the description and
tools of quantum mechanics, In this final chapter we look at actual systems as
they occur in nature. We shall discuss scattering phenomena, bound systems,
and metastable states us they play a role in rather different fields of science,
Refore discussing the results of actual experiments, we need 10 spend a
little time on the wnits in which the data are given. The velocities of several of
the particles studied are not much slower than the speed of light. To describe
them we therefore have to use Einstein's theory of relativity. It states that, if
£ is the total enerey and p the magnitude of the momentum of a particle, the
quantity
i ¥ E? - Pt = met
has the same value in any frame of reference in which £ and p are measured.
Here ¢ = 3 = 108 m/s is the speed of light in vacuun. In the particular frame
of reference in which the particle is at rest, p = 0, we have

E =me®

Therefore the constunt i is called the rest mnasy of the purticle. The quan-
tity me2 is the rest energy of the particle, In a frame of reference in which the
particle is not at rest, p # 0, the tolal energy is larger:

Ei= 1\,-"'-’!!:1""‘ +pti=m c* + Ejin

The additional term is called the kinetic energy of the purticle.

In the experiments discussed in this section, the particles are character-
ized by their momentum p. their total energy f-, or their kinetic energy Exin-
The energies are measured in electron volis (eV). A particle that carries the

elementary charpe
. i, |
e = 1.602 10717 C

and that has raversed an accelerating potential difference of 1V has gained
the kinetic energy

eV = 1.602 % 1079 Ws = 1.602 x 10771
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A convenient notation for higher energies is 1keV = 10%eV, I MeV =
] 1] 44 4 s

109eV, | GeV = 10" eV, Since me= is an energy, masses can be measured

in glectron valls per e

eV Le02x 10~

Rl Sl NG T P By T [vomeld
e (3 x 10832 £ =

The rest mass of the electron 15
4
me = 511 RKeW oo
The rest masses of the proton and the neutron are nearly 2000 times larger,

mp = 938.3MeV /c” n, = 939,6 MeV /¢’

It is important to remember that 4 proton with kinetic energy of Ey, =
[0MeV has a total energy of &£ = mpe® 4 Epp = 9483 MeV. Often the
momentum p is casiest o measure. Since the product pe is an energy, the
momentum is measured in electron volts per e

1 eV 1602 = Lo~ s 2 g

— = I s =20 X kn m/s

i G 10 2 B

Once the momentumn p and the rest mass m of a particle are known, its total
cnergy £ and its kinetic encrgy Ey, are easily computed,

17.1 Scattering of Atoms, Electrons, Neutrons, and Pions

In Chapters 12, 14, and 15 we have discussed the scattering of a particle in-
cident on a spherically symmetne potential, which wus assumed (o be lixed
in space, In actual experiments projectile particles scatler on farget particles.
In “calliding beam™ experiments the projectile and target particles both move
in opposite directions within a storage ring and scatter on each other in a
head-on collision, An example for such an arrangement is given at the end of
Section 17.4, where the production of the clementary particles J/r and T
in colliding beams of electrons and positrons is discussed. In “fixed target”
experiments the targel particles are at rest before the scattering process; how-
ever, they mave after the callision. As in classical mechanics, this two-hody
process can be reduced 1o a one-body problem if the coordinute rin the wave
function is taken to be the distance vector between the two particles, and the
mass appearing in the ane-body Schriddinger equation is tuken tw be the re-
duced mass M = wrpma /ey wa) ol the two bodies. It is customary 1o
present results of scattering experiments as differential cross sections de /i ™



346 I 7. Examples from Experiment

with respect to the scattering angle 7% in the center-of-mass system (TN,
In this reference frame target and projectile have initially equal and ppposite
momenta (Figure 17 1a),

Figures 17.1b through e show results obtained i scattering CXPCIIMEnLs
in entirely different fields of physics using completely different experimental
technigues. Figure 17.1h shows the differential cross section for the scatter-
ing of sodium atoms by mercury wtoms. The kinetic energy in the luboratory
frame is anly a fraction of an electron volt. The momentum 15 of the order
of 100 keV /e corresponding 1o a de Broglie wavelength of about 10 Wy
which is one order of magnitude below the awmic radius, Scattering experi-
ments such as this ane provide information about the electric patential acting
between atoms, Such investigations are helpful in studying problems of chem-
ical bomnds.

Nuclear forces can be investigated by using newtrons, which carry no
electric charge, as projectiles incident on nuclei, The differential cross see-
tion for the scattering of neutrons on lead nucler is given in Figure | 7. 1c for
twa enerzies LL‘I‘: = 7MeV and 14.5 MeV. The corresponding momenta are
plb = 110MeV /e and 160 MeV /e, They in um correspond to de Broglie
wavelengths of roughly 11 % 107" mand 7.6 % 107 "% m. These wavelengths
are of the sume order of magnitude as the radius of the lead nucleus, which is
roughly 7 = 10719 m. As expected, there are more minima in the diflerennal
cross sections for the higher energy, that is, for the shorter wavelength, of the
incoming particles (see Figure 14.9h)

To investigate the electric potential of nuclel, we choose electrons as pro-
jectiles because they are not affected by the nuclear torces of the nucleus,
Figure 17.1d shows the differential cross section of electrons with a labo-

Fig. 17.1. {a) Scattering of a projectile particle 1on a target particle 2, In the laboratory
the target particle is initinlly at rest, p; = 0. Tn the center-of-mass system (CMS) the
particles have injtially equal and oppesite momenta, py = - p3, For dlastic scattering,
cansidered here, the mamenta are also equal and opposite sfter the scattering process,
Py = —p.'?", i) Sodium stoms seattered on mercury atoms, () neutrons on lead nueled,
id} clectrons on oxygen noclel, and (e} 7 mesons on protons. The differential cross
seetion do /007 For the elastic scattering of two particles is given as a funetion of the NS
seattering angle *. The laboratory kinetie encrgy iy of the prajectile is given on ench
figure. For part b the ordinate is a linear seale given In arbitrary anits, For parts ¢ d,
and ¢ it is o logarithmic seale given in square centimeters per steradian. Seace ) From
U Bk wmd UL Pauly, Zeirscheiff fir Matrforsefiriz 23a 1) 968) 475; copyright @ 1965 by Verlag der Zeitschrif
it Matrforschung, Tabingen, reprineed by permissin, tel From F Perey und B Back, Nieleae flosics 32 {1962
352, copynght (@ 1962 by Norrhenfand Publishing Compeiy, Annstetdion, reprinted by permission, () From R
Hofsdien, Mocter amt SMucleon Seatiering of Tlectrons ot High Energles, seproduced with peitissin. (oo 1he

Areinead Evtee of Wi amd Packicte Selence, Notmme 7, copeeight @ 1957 By Al Reviess Ing. () Fram a
punferente contribmeien by J, Orear el aloas reparted by G Belleting tareemediate und Hich Epergy Collasions, i
Prowepdinges o te F40 Steraerioral Confessies o High Eneeg v Phesics al Ve (8 Prentk ol ) Sigjnherger,

euhitorsd, copynght i el by CERN, Genevy, sepritied by pernussion
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ratory enerey of 420 MeV scattered by oxygen nuelel. Because the electron
s is very light, the electron momentum is 420 MeV /e, its corresponding
wavelength about 3 = 117 15 11, Fram such experiments the electrical charge
distribution of the oxygen nuclens was found 1o have 4 charnctenstic radius
of about 3 = 10 7 m.

The nuclei are compased of protons and neutrons, aften referred to by the
collective term mucleons. 1f we want o study the internal structure of protons
ar HeULrons, we can perform scatering experiments using gither electrns or
particles with nuclear interaction s projectiles. Results of an experiment us-
ing particles with nuelear interaction as projectiles are shown n Figure T e,
Here the projectiles are m mesons. These particles exert nuclear lorces and
have 2 mass of abaut 140 MeV/e”. The experiment was performed with Lith-
oratory energies of 10 GeV, that is, a momentum of [OGeY /e corresponding
to o wavelength of (L1 = 107" m, which is one order of magnitude below the
proton radivs.

The results given i Figure 171 bear a guaditative resemblance (o the
differential scuttering eross sections shown n Figures 12.4b and |4 Ob, Mo
uantitative comparison is justiied. for the forces acting in the collisions in
Figure 17,1 cannot be described by simpie syuare-well potentials. Moreover,
effects atributable to the spin of the target and the projectiles were not Laken
intes account in the caleulations of Chapters 12 and 4.

17.2 Spectra of Bound States in Atoms, Nuclei, and Crystals

The first striking suecess of quantum mechanics was the explimation of the fiy-
drogen spectrnn, Sulficiently heated atomic hydrogen emits light with a char-
acteristic wavelength spectrum consisting of discrele wavelengths. In Sec-
tion 134 we found that the energy levels of the clectron hound in this hydrogen
atom are

o

| 1
E,r:—:ﬂfr"'—_l ) = [0

2 n-

Here M is the clectron mass. ¢ is the speed of light, and & = /137 is the
fine-structure constant. A transition from one level 10 another is effected hy
the emission or ahsorption of the energy difference

I 51 T I |.
AE=F, —Ep=—Mco | 5 ——
W = 2 ‘ 1y rl‘%

in the form of a light quantum of frequency ¢ corresponding w

AE =4hw

[ 7.2 Spectra of Bound Stutes in Atoms, Nocled, and Crystals 34y

or o the wavelengih
¢ fie

o AE

A sel of transitions Tor a fixed value of n) but varable ra is called a gpec-
frad series (see Figure 172400, In particalar, the ane with ) = Zand ny = 2
is called the Bafmer series. s wavelengths are in the region of visible light
and can be easily measured with a prism spectrograph. The spectral lines of
the Balmer senes are observed in the light emitted by electric discharges in
hydrogen gas but also i the light emitted by some stars. proving that there
is hot hydrogen in the atmospheres of such stars. Outside the region of some
stars that emit light, the hydrogen gas is cold, Then we observe dark lines
in the spectrograph tor the wavelengths of the Balmer series, indicating that
hydrogen atoms of the cold gas have absarbed Tight, Siellar spectra show-
ing the Balmer series in emission and absorption are given i Figure 17.2h.
The enersy spectrum shown in Figure 17.2a has already been obtained in
Section 3.4, 11 s characteristic af the Coulomb potential acting hetween the
nucleus of the hvdrogen atom and its electron. 1t possesses an infinite number
of levels accumulating at the upper end of the spectrum, £ = (). The spectra
of mare complicated atoms which contain mare electrons in the atomic shell
become more involved bot retain these general features.

Transitions between different energy levels effected by the absorption of
emission of photons are also ohserved inatomic nucled, A typical energy scale
for these phatons is 1 MeV, compared 1o 1 ¢V in atoms, Nuclear spectrs are
complex because the nucleus vsually consists of a large number of protons
and neutrons bound together by nuclear forces. Some of the low-lying levels
of nuclei can be explained by the following model. Every nucleon moves in
the nuclesr potential vwing to the presence of all the ather nucleons in the
nucleus. Since nueleons are fermions and obey the Pauli exclusion princi-
ple. they fill up the fowest states in a common nuclear potential, forming the
ground state of the nucleus. The simplest states of higher encrgy are those in
which a single nucleon occupics a higher state. Figure 17.2c shows the en-
ergy spectrunm of the low-lying states of the carbon nucleus 12C. The nucleus
contains six pratons and six neutrons., that is, twelve nucleons. Since the car-
bon nuclens is a twelve-particle system, its spectrum, as might be expeeted, is
rather different from the eneray spectrum of the hydrogen aton,

In Section A.7 we saw that the energy levels of periedic potentials form
bands. Because a erystal is a regular lattice of atoms and therefore has spatial
periadicity, the enerey levels of the clectrons in a erystal form such bands.
Figure 6.13 indicates that the number of levels inside each band is equal 1o
the number of single potentials, that is, to the number of atorms in the crystal.
Since this is a very large number indeed, we do not expect to resolve the sin-
gle energy levels within a bund. Experimentally, the band hypothesis can be



. Examples from Ex

perimenl

E[e¥]

e = n=m
- — T — e
i m ] ek
i"-lﬁ'l} ] Hy M Ny H=Z

St

I ) =
5 a £ - <
-i0 d E g T
. 8 & & &
1oger L e
e B S SRR U
[ e e
E E E ¥
E [MeV] Be
[
20+ = =
ey e
54100 =
T2
101964
1766 —
5'_-::._1.3
0-Lo

Fig 17.2.

17.3 Shell-Maodel Classification of Atems and Nocle 151

verified using the photoelectric effect, Maoncengrgetic photans of high ener-
gies, that is, monochromatic X-rays, are directed onto a crystal surfuce. The
energy of the electrons liberated from the crystal by the photoelectne effect
can be measured using the principle illustrated in Figure 1.1 or more refined
technigues.

In Figure 17.34 the energy spectrum of electrons abtained by directing
menochromatic X-rays on silver 15 shown. The bulk of photoelectrons appears
i the low=energy range between Wy and W, which has a width of about Jev.
A small fraction is emitted with an energy range between W and Wy, which
has a width of about eV, This result is taken as evidence that there are wo
different energy bands in the silver crystal. They are shown schematically
in Figure 17.3h. These bands are the conduction band with edges E¢y, Ec2
and the valence barid with edges Evy. Evz: The valence band is completely
filled with electrons, The conduction band is only partly filled: the electrons
with maximum enerey in this band have Ferni energy £f. It is therefore clear
that the minimum energy needed to free an clectron is equal to the Fermi
energy: a photoelectron with energy Wy, originates {rom the Fermi edge in
the conduction hand, We now identify photoelectrons with energies W and
Wi, as ongmating from the upper, Eva, and lower, Ev edges of the valence
band, The number of electrons freed from the valence band is much larger
than the number freed from the conduction band because the valence band
contains many more electrons,

17.3 Shell-Model Classification of Atoms and Nuclei

The only atom we have studicd in some detail is the hydrogen atom, which
consists of a proton of charge +¢ as nucleus and an electron of charge —¢.

Fig. 17.2. (u} The energy levels that the electron of the hydrogen atem can Lake are
indicuted by horizontal lines and enumerated by the principal quantum number n.
Verticn! lines indicate the enerpies at which transitions between different energy levels
take place, Transitions to or from the same lower energy level form a series, For example,
transitions io or from energy level n = | make up the Lyman series. Those 1o or from
energy level o = 2 make up the Balmer series. Transitions o a lower level consist of the
emission of a light quantum corresponding to the transition energy. Those to o higher
level eomsist of the absorption of o light quantum. (b) Wavelength spectea of light from
different stars show the Balmer series in emission (top) and abserption (bottom), The
stars are o Cossiopeiae and 8 Cygni. From W Pl clpnil et Atomghesel, ninth edition, sopgeighl
T 1954 hy Springer-Yerlue. Berhn, Giningen, Heidelhery, reprinted by pesbssaon. 1€) The différent energy
levels of the carbon nuelens '2C. The ground state ol the nucleus has been chosen Lo
be the zers point of the enerpy seale. Some of the observed (ransitions between energy
levels are indieated, These transitions, like those for the hydrogen atom in part a, consist
of the emission or absorption of a photon,
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that is, W = I — | Erlk m——— J

The heavier atoms have Z protons and additional uncharged neutrons in their
nuelews, and Z electrons in their hull, This # number representing the positive
charge of the nuclens of the wtom of an elemen is its aromic punher. The
potential enerey of a single electron in the electric held of the nuclens of i
heavier atom is I

Vo) = —f.u.ﬁlt}-

[ 7 3 Shell-Model O Lssiication of Atoms and Mucle 353

Conscequently, the energy levels are

Here the forces acting between the electrons have been neglected. In See-
tion 9.1 we learned that fermions abey the Pauli exclusion principle, which
says that two identical fermions cannot populite the same state. Let us now
count the number of different states for aogiven value » of the principal guun-
o oumiber. The angulor-momentuny quantam number { can take the val-
ues & =0, 1,....n — 1. Fora given § there are 26 + | states of different
quantum number m, which measures the = component ol angular momentum,

o= —{, — 1o, 1L Thus the total number of states fora given 8 5
n—|
Y @t =27
=l

This number still has 10 be multiplied by 2 since the electron possesses spin,
An electron with given “orbitul™ guantum numbers 1, ¢, and s can therelore
still exist in the two different spin stites, characterized by the quantum number
fy = jl — 1 cothat the total number of states for a given » is equal 1o 20’

In our simpliticd deseription, all electrans in an atom that have the same
principal quantum number n have the same energy, They are suid to be in
the samie shefl. There can be two electrons in the innermost shell which has
iu = |, eight electrons i the next shell with n = 2. and so on. In this way the
Perfodic Table of elements 15 casily explained,

For hvdrogen (# = 1) and heliam (Z = 2) the electrons have principal
quintum numbers p = 1. For lithium (Z = 3) both states with n = | are
filled; therefore the third electron has 1o be instate # = 2and ina second shell.
When ull the states with n = 2 are filled. the element is the noble gas neon
(Z = 100 =2 % 12 +2 % 27). The element sodium (Z = 11) has an additional
clectron with 1 = 3, which goes in the third shell, and s0 on. The electrons
in shells that are filled up are chemically inactive. which is seen from the
chemical inertia of the noble gases helium and neon. Elerments with the same
number of electrons o an unfilled shell possess similar chemical properties,
for example, lithium, sodium, and so on. The consecutive filling of then =3

shell continues only until the ¢ = 0and ¢ = 1 states are all oceupied. The
clement is wrgon (4 = 18), which again hus the chemical properties ol a

noble gas. After arpon the shell with o = 4 and ¢ = 0 begins filling. forming
potassium {(Z = 19) and calcium (£ = 20}, Only then are the so-far vacant
states with i = 3and ¢ = 2 filled. The reason for this irregulurity is that the
states with it = 4, { = ) are situated wt lower energy than the stales n = 3,
£ = 2. This situation i in contrast 1o our simple scheme, in which we have
totally neglected the forces between the electrons in un atom,
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Because of the forces acting between electrons, the energy levels of atome
with mare than one electron are not simply the energy levels of a hydrop,
like atom with £ protons in its nucleus and with its lowest states filled with
electrons, In fact, the actual calculation of the levels of many-electron atom,
complicated and can be carried out only with simplifying approximations,
levels least influenced by interactions between the electrons are the inne
levels for n = 1 and n = 2. Their 2 dependence is given by the formula

The difference between the energy of the state with the principal quanty

number sy and that of the ground state with 1y = | for an wtom with aton
number £ is then

l 1 | 2
AE = —-M%® | = —= |2 =M1 - -l; Z¢ 3
2 n% ny 2 5

This difference can be measured in an experiment in which electrons a
ated tosome 10 keV knock an electron out of the ground state of an ato
atomic numhber Z_ The unoccupied state (ny = 1) can be filled by an el
Jumping from state 0> = 2, n2 = 3, and o on in the atom to the ground sta

The energy difference between the two states 1s radited off as an
auantum of freguency I

=-AF
h

With this formula for AE, we find a linear relation between the
number Z and the square root of the frequency, /v, of the emitted X:

172

V= v Me2 /(2 [ 1 — i., Z
n3

Henrv G I Mme?ev first measured these tmns:tmns in 1913 His l't‘-'-S

atomic number # is the numhf_.r ol positive charges on the I‘Illﬂi‘-‘l'-uﬂ Lt
atom, since the datg take the expected line in & Z, \,.f_ plot. Aamﬂ]l}'. I:h_,
of the data does not follow our formula exactly. The deviation is ¢ '
the screening — even though small for the inner atomic shells — of the 1
Coulomb field by other inner electrons. _
Another test for the viability of the shell model of the atomic hull i
cated by the formula
zE

|
E{Z&,n) =—=M¢ et —
2 n”
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Fig. 17.4. (1) Muoseley's plot showing the square root of the X-ray {requency versus the
atomie number # for &, radintion, 2 = 2 jupper line), and for &y radiation, ny = 3
(lower line), From H O3 Moseley, The Plilossiical Mapazine 27 (0914) 703, copynight @& 1984 by Tayho
A Fruncys, Lub, London, reprinied by peroisston (1) Tonization l!ﬂl.’l'“ﬁ,'il.‘.ﬂ for utems s u funetion
of the atomic number 2. The maxima for noble gases, which have closed shells with
# = Z. electrons — 2. = 2 for heliom, 7. = 10 for neon, and 50 on - are pronounced,
and the drop from £ = Z. to £ = &, + 1 = that is, from heliom to ithium, from neon fo
solinm, and so on— is sharp.
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for the energy of the outermast electran with prineipal yuantum purmher i
the hull of an atom with nuelear charge Z. This energy is called jonization
enerzy. The expression for E(Z, n) 15 actually snly @ rough estimate of the
nization energy., sinee it does not take into account the mutual interaction
af the electrons in the atomic hull. Nevertheless, for atoms with low iomic
number it suffices o demonstrate how the values of the onization encrgies
imdicate the closure of atomic shells,

In the process of “constructing” the chemical elements by filling the levels
with electrons, the fonization energy E{Z, i) rises with Z as long us levels are
filled with the same principal guantum number - The highest value L2
within each shell is reached in the element that has o closed shell with womic
pumber Z., that is, 1 noble gas. For the element wath the next alomic number,
a4 new shell with the principul guantum number w4+ | begins to be oceupied.
Even though 2 increases in this step from Z to 2 + 1, the increase from
notoor 4+ 1 means a definite decrease inonization energy EiZ: 4 Lo+ 1)
for the first element in the new shell compared to the value E(Z. n) for the
noble pas. Because there are many states belonging Lo cach principal quantum
numiher a1, for each ¢lectron the principal guantum number is smaldler than £,
The ratio of the two ionization energies is

E(Ze+ lin+1) (Zo+ 177w

f',lf?:__-.h"l' T |'|:I ZE_

Al =

because Z. is farger than n. For the jump from helivm o hthium. neon o
sodivrm, and areon o potassiom, we lnd these values:

lithium /helium ri2y = 056
sodium/neon elly = .54
potassiumfargan r(18) = 0.03

In contrast, the ratio of the ionization energy of an clement closing a shell to
the energy of the preceding element in the Periodic Tihle is
- o
7 EiZ.n) Fby 1 I
Fllie) = —— = - T — =
O Tz — ) =12 (1= 1/Z )

For the corresponding closures of the atomic shells, we find

hehum/hydrogen 7(2) = 4,
necn/uering Py = 123
areon /chlonine /(1K) = .12

thitt is, values larger than one. The peak bebavior expected by these arguments
can be immediately veritied by looking ut the mensured ionization energies

7.3 Shedl-Model Clissification ol Adoms and Nuclei 357

plotted in Figure | 74b, even though the experimental values for the ratios »
and ¢ are different frenm the ones we have given.

[n the classiheation of nucler, the meclear shell model has been success-
ful i explaining observed regularities. For the electrons o light element,
it wis regsonnble o describe ther moton i the Coulomb potential of the
nuclens, neglecting the repulsion between electrons, Far the protons and new-
trons forming the nucleus, no analogous center of Toree exists. Nevertheless,
it has proved uselul in deseribing the motion of asingle nucleon in the nuclear
potential created by all remaining nucleons. Such a potential has, as does the
auclear force of g single nucleon, shot range. For our simple discussion we
assume that the potential is that of @ harmonic osciflutor, The lowest states in
this potential are filled hy the nucleons, Since protons and neutrons have spin
! uecording to Pauli's exclusion principle, every state characterized hy n. {
and m can be occupied by two protons and two neutrons, The lowest state in
the hurmnic oscillator (see Section 13.2)has gquantum numbers n = 000 =
therefore it can accommodate wt mest two protons and two neuirons, This is
the case tor the nucleus of the element helivm, This nuclews, alsa called the
o prerticle, is the most stable nucleos known: for its disintegration the largest
amount of energy is needed. The helium nucleus has a closed proton shell and
a closed neutron shell.

For the nuclei of the next heavier clements; the n = 1, = | shell of the
oscilliator potential is successively Alled. It effers 2 =« (20 + 1) = 6 states for
pratons s well as six states for newtrons, so that the next closure of the proton
shell. as well as of the neutron shell, is reached for Z = 8and & = 8 Here Z,
as before, gives the number of protons in the nucleus and N gives the number
of newtrons, The meleon munber A = Z + N tagether with the chemical
symbol which itsell contains the information about Z 35 commonly used (o
characterize the nucleus, The shells 7 = 8 und N = 8 are those of the oxy
gen nucleus, 0. As we know from Section 13,2, in the harmonic-oscillator
potential the states with principal quantum number n = 2 are degencrate for
= 0and { = 2. The nuclear shell with = 2comains2 x 1 4+ 2 x35=1[2
states [or protons and for neutrons. Thus the next closed shell is reached for
7 = N = 20, the nucleus of the element cudmium, *'Ca. As was true ol the
atomic hull, this simple constructive scheme for finding the closed nuclear
shells works for the highter nuclei only,

[t was the achievement of Muria Goeppert-Mayer and of Ouo Haxel. Hans
Jensen, and Hans Suess 1o discover the physical reason for the structure of
the higher closed shells. They are reached at the higher magic numbers 18,
50, 82, 126, which cannot be obtained from the oscillator potentinl, In fuct,
these numbers are “magic” because they denote a large spin-orbit interaction,
that is. a0 large interaction between spin s and angular momentum € of the
nucleans. This coupling gives rise 1o an additonal potential energy term in the
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Schridinger equation. Evidenee for nuclear shells comes from experiments in
nuclear Spectroscopy. We do not present them here, for their interpretation
would require discussing additional details of nuclear physics.

17.4 Resonance Scattering off Molecules, Atoms, Nuclei,
and Particles

In Chapter 14 we studied resonanice phenomena in some detail. We have seen,
in particular, that the total cross section for elastic scattering ol o particle by
a spherically symmetric potential may have pronounced mixin, as i func-
tion of the energy of the particle (see Figures 4.6 and 14.12). Such resonance
phenomena are not restricted to simple potential scattering. They are observed
in a variety of physical situations, In o more general situation, the cillision of
two particles, the total cross section is i measure of the probabilicy that they
will react. One or both particles may even he compound systems. The total
cross section then is a measure of the prabability for a reaction between these
systems. In fact. we have seen evidence for such res wiions earlier in this chap-
ter when looking at the ahsorption spectrum of hydrogen {see Section 17.2 =
Figure 17.2b). The process is actually o collision between a photon and the
hydrogen atom, which excites the eleciran in the mom into a higher encrgy
level, The phatograph of the spectium shows that the absorption probability,
that is, the total cross section, has pronounced maxima at particular photon
energies. These energies correspond to the differences between the bound-
state energles of the hydrogen atom. 1t turns oul that in this process the higher
hound states of the hydrogen atom are not absolutely stable. After excitation
by absorbing a phaton, a higher bound state, through photon emission, decays
with & certain average lifetime into 4 stale of lower energy and finally into the
eround state, In our original caleulations of the hydrogen atom [Section 13.4),
only the Caulomb interaction between electron and proton was taken into ac-
count, Now we are also considering the interaction of photons and electrons.
The total process of absorption and emission of @ photon is nothing but the
resananee scattering of a photon by the mtom. We expect the process 1o show
the qualitative features of resonance scattering discussed in Sectinn 54 and
Chapter 14

Of course, similar resonance structures in total cross sections can be ob-
served in more complicated atoms and even in molecules. Figure 17.54 shows
the absorption spectra of infrared light by different paraffin miedeeules,

n-pentune CH3; — CHz — CHy — CHa — CHa,
n-hexane CHi; —CH; — CH: — CH: — CHz — CHay,
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Fig. 17.5. Total cross sections for various veactions as a lunetion of the kinetic encrgy of
theincident particle in the laboratory friame. (1) The absorption eocfficient A for infrared
light pussing through a layer of paruffio 0,02 mm thick, The abscissa is the wave number
41 = vy (buttem), which is proportional to the energy £ = fov of the light quanta (toph
A hiigh rate of ahsorption corresponds to o large tolal cross section. Thus the praphs can
b interpreted as measurements of the weal cross sections as a function of enerpy. Two
characteristic resonpnees near & = (.17 eV, which ure associated with the vibrations
ol neighboring CHy groups, are present in all paraffing considered, From Lanbel-fimaeen,
Zaideaiere il Funkoiomen, ststh edition, Velums |, pon 2 1A, Buckes sl 32 0. Hellwege, editors), Fipore 33,
P 364, Copveln @1051 by Springer-Verkyy, Berlin, Gitingen, HeideTbene, reprinted by peonission {hi Total
cross seetion for neutrons seattered off lend nuelel, There are many resonances at low
energies corresponding to the formation of various metastable states of lead iotopes,
{e) Total ¢ross section for positive pions scattered on protons, The wide resonanee near
Ei = 0.2 GeY eorresponds to the excitation of the metastable state A HH1232).
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There is @ strong similarity in the ahsorption spectr, indicating the excita-
tion of very similar resonunces in the different molecules: They correspond
10 vibrations between neighboring CHa groups, which are common o all the
paraffin molecules.

Figure 17.5b presents an example from nuclewr physics. the total cross
sectinn of newtrons scattered off lead nuclel. The many resonances indicate
that the nuclei can exist in & variety of metastable states, covering a rather
wide range of encrgices.

We have seen that resonunce scattering reveals the presence of excited
states in molecules, ntoms, and nuclel, Single nucleons, for example, protons,
can also be investigated by scattening different projectiles on them. We choose
here positive pions, also called % mesons. These particles are hghter than
protons hut heavier than electrons, They play an important role in explain-
ing nuclewr forces. In Figure 17.5¢ the total cross section for the seattering of
positive pions on protons is shown as o function of the pion energy. The pro-
nounced resonince at the left side of the picture we interpret as & metastable
state. Actually, it corresponds o a short-lived particle called the A baryon,
The sequence of its production in a pion-proton collision and i1s subsequent
decay mto g pion and o proton s wWiten as

atp = AT = aTp

Flectrims and positrons can be accelerated 1o very high encrey, more than
S0 GeY; they can be sccumulated in @ storage ring anid be brought 1o head-on
collisions. The total cross section as a function of the center-ol-mass energy
of the ¢ e~ system has characteristic resonances: Figure | 7.0 shows two se-
ries of resonances which are located near 3 and 10 GeV. They wre evidence
lor short-lived particles called the J /4 family and the T fumily. The lirstane
found is the J /v particle with a mass of 3.1 GeV. s production and subse-
quent decay into electron and pasitran is a resanance scattering ol the form

eteT = Jfi = ete”

Besides this elastic process, the inelastic one,
¢y — J0f — hadrons

is also observed, Hadrons arc particles that interact strongly in the nucleus, in
particular pions, protans, and neutrons, All hadrons are assumed 10 be com-
posed of anly o few constituent particles called guarks g and antiquarks .
The Jf /4 particle 15 composed of the very heavy charnr quark ¢ and ifs un-
tiparticle ©, sothat the reaction above reads

¢ — o) — hadrons
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Vig. 1 7.6, Total cross section observed for the reaction in which an electron (¢ ) and a
positron (¢ ) annibilate eaeh other to form o oumber of strongly interacting particles,
stielas 7 mesons, The crpss seetion shows very sharp resamances near (i) Epyy = 3 GeV
mmd (h1 Fiag = W0GeV, Here Eosy 5 the total energy in the center-ol-mass system,
the system in which o7 and ¢ have equal and opposite momenta, The unexpectedly
shaep resonanees wre interpreted as evidenee that metastable states consisting of a
guark-antiguark pair huve formed. The /0 family of states is composed of a “charm”
quark and its antiparticle, The T Family of stutes 35 o bound system of o “Teauty™ guark
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where (cc) svmbolizes the metastable state S/ of ¢ and ¢. The next res-
onance, & at 3.7 GeV, is another resonance of the of syslem that can be
regarded as an exited state of the J /A particle. In fact, these and the other
observed (cc) states can be explained as bound states in o potential describing
the interaction of ¢ and ¥ The discovery of these states has led tooa much bet-
ter understanding of quark bound states and to deeper insight into the structure
of matter.

Asimilar seres of resonances i electron—positron scattering 15 ohserved
at 9.46 GeV and bevond, The Tamily of ¥ particles are understood to be bound
states of the even heavier beauty quark b and its antiguark b,

It is interesting o note that the quantum-mechanical phenomena studied in
this section span an energy range of cleven orders of magnitude, from infrared
radiation at .2 eV to high-energy electron storage rings at [0 GeV.

17.5 Phase-Shift Analysis in Nuclear and Particle Physics

In the preceding section we identified a resonance in the totul cross section
as evidence for the existence of a metastable stte, Fioure 146 showed that a
maximum in the tatal cross section is usually an indication for a resonance in
a single partial wave, The quantum numbers of the resonant purtal wave are
therefore those of the metastable state which, in elementary particle physics,
we have also called a particle. To determing the quantum numbers of such a
particle, we use the method of phase-shilt analysis outlined in Section 14,3,
We decompose the measured differential cross section into partial waves, ob-
taining the complex partial-wave amplitudes £, us o function of the eneray,
or equivillently, the momentuom of the incident particle. From the different

Fig. 17.7. Phase-shiflt analysis, (a) The differential cross section for the elastic scattering
of positive ;7 mesons on protons, shown for various kKinetic encrgies of the meson, has
a simple parabolic form at By, = 200 MeV, indicating o resonanee ot this energy
with angular momentum ¢ = 1. (h) The Arpand diaggram of the corresponding partial
scattering amplitude, reconstroctied Teom measored data, AL the features of o resonance
il Fpy = 200 MeY are evident. The phase shift passes swiftly through %0 degrees, while
the imaginary port goes through a maximum and the ceal poart vanishes, (c) A resonance
al muoch lower energies. Varions phose shitts Tor the elastic seattering of an o particle
on i helinm nuclews, that is, another ¢ particle, are plotted as a function of the kinetic
entergy of the incoming particle. The resonance in G indicates thad both particles form
# resonance with angular momentum ( = 2. Souree (43 From Bobent © Cence, Pian-Wuleom
Kenlterny, cupyrght i€ 1968 by Prncednin Unversty Press, Figere 5.2, p 62, reprinted by permmission of Princeion
Limiversity Press, (b Adapled from G Fibiler o Landoli-Banseein, Mamesdvat Doy, New Series, volume Yh (H
Schopper, eduoe ), Figure 2,306, p, 85, copynght 21987 by Sprmger Yerlag, Berlin, Hedelbesg, New Yook, reprinted
by permission. (| From T, A Tombrello and L. 5. Seahouse, T Plivsical Beview P29 019671 2252, copenipht ©

1963 by Amsercan Physawal Sociere, reprtest by permissin
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partial-wave amplitudes Argand diagrams analogous 1o those in Fieare 1414
can be constructed.

Figure 1774 shows the differential cross section for the elastic scattering
of positive pions on protons forvarious pion encrgies £, Near fo = 200 MeV
the cross seetion has a simple parabolic form, indicating the dominance of the
Legenidre palynomial Fylcos thy = cos i in the expression

der

= | f{#)* ~ | Pitcos :||2
4 L
far the differential scattering cross section. This purabela indicates a reso-
munce with angular momentwm ¢ = 1. The proton has an intrinsic angulir
momentum. that is, a spin of -_En Tt turns out that the metastable state has
tiptitl wingular momentum +h, Figure 17.7b gives the Argand dingram for the
corresponding ]mni:LI-w:w_u amplitude, As in Figure 1414, the partial scatter-
ing amplitude is recognized 10 move, as a function of energy, on the unitarity
circle in the complex plane. The deviation of the experimental points from
the unitarity circle designate an melastic process. Not only elaslic scattering
but also the production of one or more additional pions 15 possible at these
enetgies, The real and imaginary parts of the partial-wave amplitude have the
characteristic features of a resonance at a center-af-mass energy of 1.232 GeV
in the pion-proton system. By this phase-shift analysis the intrinsic angular
momentum of the A1 hadron, which we first observed in the total cross
section (Frgure 17.5¢), 15 Tound 1o be ih.

The method of phase-shilt anul},'.r\irh'_ which has proveed very successful in
particle physics. had already been used earlier in nuclear physics, The elastic
scattering of e particles on helium nuclei is an meresting example. In Fig-
ure 17.7c the phase shifts 85, 82, and 8; are given directly as funclions of the
energy ol the incident particle. The phase shifl 82 shows a typicul resonance, a
quick rise through the value 7 /2. The resonance corresponds to o metastable
stite of angular momentum 2 of the beryllium nuclens, "He. which is formed
by two *He nuelei colliding.

17.6 Classification of Resonances on Regge Trajectories

Figure 14.12 indicated that there is a striking regularity belween the energies
ol the lowest-lving resonances of a system and their angular monenta. In &
plane spanned by energy £ and angular momentum £, the resonances lie o a
curve in such u way that energy £ of the resonance increases monotonically
with angulur momentum . The correlation between the energies of a fam-
iy of resonances and their angular momenta in potential septtering has been
derived by Tullio Regge. In elementary particle physics fumilies of particles
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Fig. 17.8. Reppe trajectory of the A particles, which can be understood as resonances
formed by o proton and o 7 oo The square of the résomance sy M s plotted
apainst the angular momentum o of the resonance. For the three lowest-lying resonances
ibliack points) both 4 oand J have been experimentally determined. For the st two (open
circlesy only the muoss has been messared so fur

lying on the same Regee rajectory are observed, As an example, Figure 17.8
shows the Repge trajectory containing the A" hadron, already discossed in
Sections | 7.4 and 17.5. We now call it mare specifically A(1232) by indicat-
ing in hrackets its mass in MeV, On the same trjectory four more resonanees
are shown, In this diagram, in which the square of the resonance mass 15 plot-
ted on the ahscissa und its spin on the ordinate, the trajectory is u straight
line. From resonance to resonunce. the spin is increased by two units, that js,
it takes the vilues %Ir, %h, and soon, This complication is attributable o the
hall-integer spin of these resonances.
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17.7 Radioactive Nuclei as Metastable States

The disintegration of a radicactive nucleus by the emission of an @ particle
can be considered us the decay of a metastable stite. George Gamow has
given a quantum-mechanical analysis of how the o particle hehaves in the
potential of the other protons and neutrons in the nucleus. The effect of the
short-range nuelear forces can be approximated by a sidare-well potential, In
addition, the & particle, which carries the electric charge +2e, experiences the
repulsive long-range Coulomb force of the other protons. The total potential
ol both nuclear and Coulomb forces is attractive Tor small radii but repulsive
for greater distances. as indicated in Figure 7%, Such a potentinl can can-
tuin hound states of negative energies that are stable as well as metastable
states of positive energies that have a finile lifetime. In particular, melastable
states with energies lower than the height of the repulsive wall are expeciod
to have long lifetimes. An o particle in such o metastable stale can leave the
nucleus only by wnneling through the potential barrier. For an o particle m
o metastable state, only the repulsive barrier ts important. The repulsive shell
studied in detail in Chapter 14 can therefore serve as a model for the potential.
Figure 14.15 shows the radial wave functions of several metastable states in
this potential. Figures 14,12, 14,13, and 14.14 contain the totl cross seclions
and Argand diagrams, They indicate that resonance widths inerease with res-
onance energy. The repulsive shell of Chapter 14 has its one-dimensional ana-
log in the two-potential barriers of Scetion 5.4, The widths of the metastable
states confined between (wo potential harriers also grow with energy, #s in-
dicated in Figure 5.12. Figures 3.9 and 5.10 examined the time dependence
of the decay of metastable states and revealed that the lifetime decreases with
increasing energy, that is, with increasing width. Indeed, the probability [or
the penetration of the barrier grows with the energy of the particle, which
is tantamonnt 1o saying that the lifetime decreases with the energy of the «
particle.

Fig. 17.9, @ decay, (a) Potential energy Vie) of an o particle in @ muclens, Although
the total enerpy £ (dashed line) of an o particle may be positive, the particle can leave
the nucleus only by tunnefing through the potential barvier created by the Coulomb
attraction between necleus and ¢ particle: Therefore melastable states of posilive energy
can exist, (b) Cloud chamber photograph of tracks of o particles from the decay of the
polonium nucleus, ~'*Po. All particles except one have approximately the same range
in the chomber pas, indicating that they possess cgual energies. The single, long-range
track was caused by the decay of an exited state of *'*Po possessing a higher energy. From
B Pladlli, Metrvdrsenschoen 14019261 1200, copyright (£ 1526 Yerkig vin Julius Springer. Hedin, eepringed by
permisnien. (€) Geiger—Nuttall diagram shewing the relation hetween the halt-lite Ty and
the energy of the emitted o purticles for the lowest-lying states of radinactive nuclei, The
dingrum indicates that the lifetime decreases very rapidly with energy.

7.7 Badieactive Nuclel as Metastable States IGT

Fig, 17.9.

This phenomenan is observed experimentally. The energy of e particles
is easily measured by their range in air. Figure 17.9h shows a cloud chamber
photograph displaying the tacks of ¢ particles emitted by radicuctive polo-
nium, M Po. All tracks except one have very similar ranges, indicating the
energy of the lowest-lying metastable state, A single track in the photograph
has a considerably greater length. bts energy is that of a higher metastable



A6d 7. Examples o Experiment

state, which is already much depopulated becuuse of its shorter liletme, A
systematic study of the relation between energy and the hietime of o decays
af nuclei was first carried out by Hans Geiger and John Mitchell Nutall. Fig-
ure 17.9¢ shows this correlation for many radivactive elements.

17.8 Magnetic-Resonance Experiments

Units and Orders of Magnitude

The operator e of the magnetic moment of an electron and its spin operator 5
are simply proportional o each other,

j=—y8
The quantity y, the gyvromagnetic ratiivof the elecinon, 15 given as
¥ = Rope/h

The constant .
fp = —h = 9274078 A nr
20

is called the Bohr magneton, Here M denotes the clectron nass. The gyr-
magnetic fuctor of the free eleciron gy can be computed in the framework of
qeanion electrodvnamics (QED). Precision measurements of oy are therefore
important tests of the validity of QED. Current experimental and theoretical
values are

1

g™ = 2002319304 386 420 % 10

o™ = 2002319304822+ 332 % 107

The astonishing accuracy of the experimental value is due fo magnetic reso-
nance cxperiments performed with a single electron by Hans Dehmelt and his
group.

Because of the negative charge of the electron the vectors p and S are
antiparallel, For particles with positive charge, in particular for atomie nuclei,
they are parallel, Since one wants p to be positive also Tor nuclei one has 1o
wrile

t=}5
We shall use this relation for both electrons and nuclel. Our formulae will
correspond to those given in the literature specific to the field of electron spin
resoitance {ESK) ATy is reploced by —yp,

In order to get g factors of the order of one also for slomic nuclei with a
miagnelic moment one writes Lor nuclen

I 78 Magnetic-Resonance BExperiments 6y

o= gnptpih

Here )
iy = #n — 1836pm = 5051 % 1072 Am’
“iMp
is the neclear mageton und My, = 1836M the proton mass. Measurements
of the gyromagnetic 1actor gppay 0f the proton wield

Hprotm — 5.54

This value cannet be computed m the framework of GED. s assumed that
the magnetic moment of the proton results from the intnnsic magnetic mo-
ments of ity constituents, the quarks, and from magnetic moments of orhital
motion of the quarks within the proton. The determination of the magnetic
moment of the proton, the neutron, and in general of wtomic nucled s an im-
portant feld of nuclear physics.

In Sccnon o4 we have discussed the phenomenon ol magnelic resa-
nance. Ina homogeneous magnetc induction ficld By = Bye- the expectilion
vilue (g of @ magnetic moment precesses around the lield direction with the
Larmor frequency £25 = y Bp- The polar angle & of () with respect 10 By
stavs constant, 1f m addition o the constant ficld By there 15 a Aeld By(r)
perpendicular 1o By and usell rotating with a frequency o equal 1o the Lar-
mor frequency §2; then the angle o changes by v within the time 7 /2 where
T = m/82. 8 = » 8. This way the direction of {g) which may originally
have heen parallel 1o By is chunged o be antparallel 1o By,

The dilference in potential energy between the two spin states in which the
spin {and therefore the magnetic moment} s oriented parallel or antiparallel
to the tme-mdependent magnetic-induction teld By s

A= “t Hul

Al resonance the Irequency w ol the rotating field By 15 equal 1o the Larmor
frequency &2y = jt By, 50 that

AE =2y = fiw = | By

The transition rom (he stale of lower energy to the stale ol higher energy 13
made possible through the ebsorption of o gquuntum fe of energy from the
rotating field. The transition from the higher to the energetically lower level
is accompanied by the emission of a quantum of electromugnetic energy fie.
In the presence of the rotating external field the transition s accelerated due
o stimulated cmission.

For a typical field By of 1'T =1V sm ~ and a magnetic moment of 1y,
(1 nuclear magneton) the frequency of the oscillating field has to be
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b= w)2m = jipBo/ it = 0.762 % 10787

Such u frequency is easily produced with radio frequency (RF) technology.
which is therefore used in prclear magnetic resonance (NRM) experimeants,

For By = |17 and a magnetic moment of Tpg (1 Bohr magneton) the
frequency is

. ' "y -1
v =2 = ppByih =14« 107 s

Microwave techniques are required to generate fields which oscillate in this
frequency range. Consequently, experiments measuring the elecrion spin
resonance (ESR), sometimes also called glectron paramagnetic resonance
(EPR), use the microwave technology,

Experimentis with Atomic and Molecular Beams

We can now discuss the magnetic resonsnee method with atomic and mobec-
ular beams pioneercd by [sidor Rabi and collaborators. A beam of neutral
atoms or molecules passes through three consecutive magnetic fields denoted
A, C, and B in Figure 17.10. The fields A and B are inhomogencous fields of
the Stern—Gerlach type, ¢f. Section 1.4 They are identical except for the fact
that the hield gradient of A is directed downwards in the plane of Figure 17.10
and that of B is directed upwards, In region C there 15 a constant homogeneous
field By dirccted upwards and an oscillating field B The later is produced by
the current from a radio-lrequency generator which is run through a wire in
the plane of Figure 17,10 parallel to the beam somewhat above the beam and
returns through a parallel wire below the beam. Due to the Torce exerted by
the inhomogeneous helds on the magnetic moment the trajectories in regions
Acand B are parabolae. Particles with magnetic moments pointing upwards in
region A and having i certain limited range innitial direction and moementim
will pass a shit in front of region C. If the orientation of the magnetic moment
is not changed in C the particles puss through reglon B on & trajectory sym-
metrical 1o the one in region A and are registered by u detector bevond region
B. If, however, the orientation ol the magnetic moment is turned downwards
in region C by magnetic resonance, i.e., if the oscillating frequency « of the
field By is equal to the Larmor frequency £y = @By /h of the magnetic mo-
ment in the field By and if the time the particle needs 1o traverse region C
is about T/2 = h/(juB)). then the particle will be deflected downwards in
region B rather than upwards and the intensity registered in the detector will
decrease drastically. Figure 17.11 shows the first resonance curve reported by
Rabi et al. for a beam of LiCl molecules which is due to the magnetic moment
of the "Li nucleus. The strength of the field By rather than the RF frequency
o was varied in their experiment,
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Fig. 17.10. Kabi apparatus, The magnetic-induction ficld B points upwards {(in the -
direetinom ] in the three magnets A, By and O In A and B the field is inhomogeneous, the
field geadicnt d A, /d: being negative in A and positive in B, The field in C is homogeneous,
For molecules with mapgnetic moment in - direction and with momentom within g certain
range the trajectory from the source O through the slit 5 fo the detector 1is drawn as
w solid line. I the direction of the magoetic-moment expectation value is changed o
the —: direction due to magnetic resenance in the additional oscillating field in C the
trajectory changes to the broken line and the molecoles no longer reach the detector

The method of atomic und molecular beams was and is very successiully
used to measure magnetic moments of nuclei and to study the interaction be-
tween the noclear magnenic moments and the electrons in the atomic shell
which gives rise to the fivperfine stracture ol atomic spectra, The distance
between atoms or molecules within the beam is very large, Therefore the ex-
periments are essentially performed with free atoms or melecules

Magnetic Resonance in Bulk Matter

Apparatus. In bulk matter (sohd, liquid, or gaseous) a large number of parti-
cles are present per unit volume and the collective effect of their magnetic mo-
ments can be recorded by magnetic-resonance methods. Nuclear magnetic-
resonanee {ANMR ) experiments of this type were first developed by the re-
search groups of Edward Purcell and of Felix Bloch in 1945, Electron mag-
metic (or spin) resonance (ESR) wus discovered also in 1943 by E. Zavoisky.

The principal components of an apparatus for NMRE experiments are
shown in Figure 17120 A large homogencous field By = Bpe- 1s provided
by an electromagnet, A field By = 2B cost{awi e, oscilliting in x direction is
senerated by o conl oriented in o direction and connected (o a radio-requency
generator, The sample of bulk matter is placed inside the eoil, (In ESR ex-
periments instead of the coil one has o microwave resonator excited by o mi-
crowave transmitler.) The complex resistance of the eoil is measured with
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Fig. 17.11. Magnetic-resonance enrve abtained for LiCH meoleeules, The signial Sp, in the
deteetor (in pereent of the maximum signal) is showa as o function af the curcent in
the exeiting coil of the C magnet and thus the field #; while keeping the frequency o of
the oscillating Held constant, From | L Babio 3R achudes, S0ilman and B Kb, M Beso
S| ERARE IS TE 10IR by American Physical Soceiy reprmcd by premission

high precision with a radio-frequency version of @ Wheatstione bridge. We
will show forther down that near the resonunce frequency of the magnetic
momenis of the sample this resistance changes dramatically. Al resonance en-
cruy is absorbed from the RE field. Thus the resonance manifests itself as a
maximim in the real part of the complex resistance of the coil. But al reso-
nisice energy is also emitted by the sumple which is excited by the RF field.
The emission of energy can be detected as an indoced current in a pick-up
coil the axis of which is orlented along the v direction in Figure 17.12. In the
{ollowing we discuss magnetic resonance in bulk matter in 4 little more detail,

Magnetization. In a homogenenus induction field By the expectat i yilue
(g of the magnetic moment of an isolated particle precesses around the field
direction. The energy expectation value — () - By stays constant. [n the pres-
ence of muny ather particles, Le., in bulk matter, energy exchange with other
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Fig, 17,12, NAH apparatus. An clectromagne! (with pole Foces M, 5) provides o strong
homogenvows field &) in the - direction. A cofl eriented along the o direction eontsins
the sumple, 1t is excited by o radio-lrequency generator BE of frequency . The complex
cesistance of the coil s measured inoa bridge circait B oand registervd while cither & or
roare varied, In addition there may be a coil oriented along the  direction which can
pick up magnetic-induction sipnals Goome e sample; The sipnals aee amplifted by the
amplifier A and also registered as a fonction of S or e,

particles oceurs and a statistical distribution of the potential energies — e - By
is established which depends on the wmperaturee T of the sample. To give an
itlen for the order of magnitude of this effect we note that the ratio of the num-
ber &y of particles with the highest potential energy () antiparallel 1o By
e the number & with the Towest energy ({0 parallel w Bys

a"i"|_ |||'!H||| i,llﬂlll
e e — e B b,
N kT kT
where £ = | 381« 10 TK " is Boltzmam s constan. AUraom temperature

(7 = 300K one has &7 = 414 =« 107701 which is very large compared o
By = 5,05 % 1077 ] where we have set 1 = fip and Hy = 1T, Therefore,
NN s of the order of | — 107" T we Form the statistical average over the
expectation values {u} of the magnetic moments of all particles in the saumple
in thermal equilibrium,



174 17, Exumples from Experiment

= {pl
we find a vector parallel to By, However, the magnitude of i vector s by o

factor of the order of 107" smaller than the magnitude of (g}
The mawietization of a sample is the magnetic moment per unit volume.

M= np

with i being the number of particles per unit volume which carry the mognetic
moment of interest,

The Bloch Equations. Since the magnetization M is i sum over magnetic-
moment expectation values () which in turn are proportional to spin—vcc[_nr
expectation values (8}, the equation of motion for M is identical to that for
{8} discussed at the end of Section 16,4 and the beginmng of Section 16,3,

1%
(5’ ) — M x B
dr I

The index L indicates that this equation describes a Larmor precession of M
ahout the direction of B. The equation holds as long as the magnelization is
influenced only by the field B. We have to extend it in order to take into ac-
count in a global way the relavation effects that tuke place in the swmple, The
magnelization is the sum over all magnetic moments (pt;) g unit volume,
The {jr;) are nat only influenced by the external field but also by the fields
orginating from the components of the sample. As u result of such interac-
tion within the sample the magnetization tends in an irreversible way towards
an equilibrivm magnetization,
As before we consider a field of the form

Biry=DBy =B

with
By = Hpe-

und
Bl = By coster e, -+ By sinfoed je,

If initially (af time ¢ = 0) there is a nonvanishing transverse magnetization
?"l = 'q"r'lf.'l - Me,

then it will decrease cxponentially,

dM My
(d.r ).'_-_ g
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&

This effect is called spin—spin refaxation. It is characlenzed by the spin—spin
relaction time 1.

Spin=spin relaxation does not change the z component {g; ) - of the indi-
vidual moments and therefore it does not change the magnetic energy densiry

wy = —M. By = —-‘U:H”

It the sample was for o long tme 10 the constant field By then M will be the
vector of equilibrium maenetization

My = .'w“i.‘:
Adenginudinal mapnetization
l‘l"]-" = ﬂ-‘f_-_l_*_

different from the equilibrium magnetization My will develop towards the
equilibrinm i un exponential way,

(um.l) My — M
T (SR I

In this process energy is transferred between the magnetic moments and their
surrounding atoms. Smee these atoms in many cases form a regular lattice
the process is called spin-latice reluxarion, Because in contrast (o spin—spin
refaxation eneroy tansfer is invalved the spin-faitice relavation tme Ty i
ustilly much longer than the spin-spin relaxation time 7,

N»hH

The model sketched above was developed by Felix Bloch in 1946, It has
proved to be very successful for the understanding of magnetic resonance in
bulk matter although it needs o be refined in particular situations, In sum-
mary, it yields

(ihY | M| My — M.

—— —yM = B — + ——8;

di T T
as coguation ol motion for the vector of mignetization, Wnting this cquation
In components we abtain the Bloch equations,

dM M
—= = -,-:mflxm.—’_f—_‘ :
L 2
am, "
L = p(MxB), - “T‘
t 2
M- Mo — &
S o (M By MR
dr T
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Complex Susceptibility, In the following we recall some resulis from classi-
cal electrodynamics. The relation hetween the magnetic field H. the indouction
field B, and the magnetization M is
|
H=—B M

Jti
with jeg = 47 % 1077 Vs A~ m~! being the permeability of free space. For
i sample with relative permeability! e the field strength is

H =B/ 1.e., ppgH =08 = B — g

For all types of samples of interest in magnetic-resonunce experiments one

has ¢ = L und, therefore,

[
M= LIp -1B=—xB |,
Ji6 Hiy

where x = ji — L is the meagnefic suscepeihiline of the sample,
We now consider the time dependence of the vector B inthe . v plane,

B, = B cosiu)e, + 8 sindf s ey,

— Re |,=_;LL-'“”|R¢ e} — lm |.fi_ci"”] Im (&)

Re

I uie..lrccl = Re | B e}

with
B =8 — iy
We call
B, = Bpe"™ = B cosnf 4 i80S
the complex magnetic induction in the transverse planc.
Correspondingly, we have

M, = Re (M. e

heswever, with the representation

M. = M et

pl——at 1

The angle & allows for a phase shift between M., and B . It describes the
fact that while rotating the vectors B, and M | need not have the same diree-
tion at a given time 1. This 1s consequence of i complex susceptility

OF cotrse, the symbuobs o and p1osed inthis context must notbe canlused with magnetic

T TLENES
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gy 1 | L e
F=lple " =3 —ix
with real and imaginary part being equal 1o
= |x|coss a = lx|sind

W orelates the complex magnetization My and the comples magnetic induc-
tion f. by
I
M. = _KH;: |
i

Atter cancellation of the factar expiio | an hoth sides of this equation we hind

A . a l ¥ ¥ I o
Mpe™ =M éosd —iMisind= — "B —1—»"H,
i i
yiclding
M coss i M sind

"= y— ¥ = i —
A H) I £ i B,

The quantoes p"and ™ wre called disperstve part and alsorprive pare of the
susceptibility. respectively. In the rotating frame of reference of Section 16.3
onéhas #) = ) = B und M| cosd = M. M| sind = M- so tha

.K'I = upM, ..'"H| ; ¥ = I.’J.l:..l\']r,-'l.-"ﬁ|

NMER Spectra Obtained by Slow Passapge throngh Resonance Conditions,
In arder 1o detect @ resonance the external field conditions hive to be changed
with time so that a paysage througeh the resonanee region

= £y = y iy

i achieved. The reaction of the sample depends on the speed of passage. We
diseuss here only the case of slow passage,

[n the romting reference Trame the effective field vector Bay, of. Sec-
tin 16,5, moves in the v, 27 plane. This motion can be made so slow thal
the magnetization s atany moment in cguilibrion, so that the time derivative
of M ocin be neglected, In the ratiting friome Bloch™s eguations thus read in
COmpanents

das, M, M,
b= ? = }.'{Hc”- . ‘ﬂ]'f ?;J — ”_.' B“ - '""-:"'1""’-'.' - -;r-:_
dM, A M
0= T = B My = =L = (58 = @M =5 B = =%
elt i ' Iz
dM. My — M. My — M-
U=—7"=pBig xM— ———— = —p BM — —————=
dr Yl = - T ¥y T
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Fig. 17.13. Frequency dependence of the real part ¢ (thin line) and the imaginary part
3" ithick linep of the complex susceptibiliry,

Salution of this set of equations for the compoenents of M and muluplication
by po/ By = po/ By yields

' M, vy By — w) T3 My
= [yp—— = —ln A e R
. "8 | 4 (y By —w)=T5 + p= By
M Py
xSy =

= =
Fig j[]l -|-{]!Hf|—{1J13T§+}J'T'B|'F|Tj

For small values of By, i.c., V:BfT| T o< |, one gets for the frequency de-
pendence of " and ¥ the relations

" yh
A = Ho . 4
| () fy — r.l)}"T—-__'
_}:' = —{y8y EU}T:I,XH

They are shown graphically in Figure 17.13.
The imaginary part x" of the complex susceptibility gives rise to a real
part in the complex resistance

7 =il = iwpg(l + ¥ — ix"INZajt
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Fip. 17.14. NMR spectrum due to the protons in benzylacetate {first three peaks from
the lefth in the presence of tetramethylsilane a5 o relerence substance {peak on the far
right ). O the scale at the bottom of the figere the relative ditference of the resonance
frequency to the reference peak is given in parts per million (ppm). Adapued fom B Gilnter,
NAR-Speimakoge, TO03 T by Georg Thieme Vering, Stitgan, reprinted by pennissim:

of the cotl (N windings, length ¢, ¢ross section a, inductivity [ = ,rt(:.fn'\"lﬂ,-"i.'}
which generates the time-dependent leld and thus to an energy absorption hy
the sanple. The function ¥ “(w) has its maximum for o = 3 8 1L drops to
bl the mimum value at the frequencies

I

Ao = —
2

M=y =7 E(] 4+ Am

The quantity A 15 & measure for the width of the peak in x "(w). Therefore
two peaks at positions cp and o can be sepurated 17 [mr — oy | = Ae,

In Figure |7.14 we present a spectrum obtained for a sample of benzylac-
etate CyH 100 for By = 1.4 T and frequencies v = w2 around 60 MHz.
These are resonance conditions for the proton. Rather than to observe ane ab-
sorption line at the exact resonance frequency ap of the free proton we see
three lines which are shifted 10 slightly different frequencies ), w3, w3 It
1% customary to express these shifls in dimensionless units, i.e. to define the
ratios
£y — ek

o)

b =
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ln practice not the {ree proton resonance |Tequency is used as reference fre-
quency wq but the frequency of o sharp absorption line produced by i refer-
ence substance (... tetramethylsilane Si{CH5)4) which is simply added 1o
the sumple substance, The relative shifts & are of the order of a few times
107" {or a few purts per million (ppmjl.

The reason for the cfiemicad slift in resonance frequency is due 1o the
presence of electrons i the molecule. Let us suppose tor the moment thar the
sample was simply atomic hydrogen, Then the time-dependent external held
would induce an orbital magnetic moment m the ground state of the electron,
This moment would give rise 10 an additional magnetie field al the pusition
of the protan and thus shift the resonance [requency. In complex molecules
these frequency shifts are different for protons in dilferent positions within the
molecule. In the example of Figore 17,14 the three lines are charucteristic for
the environment experienced by a proton within g benzol ring (eft), ina CHa
group (middle), and in o CHy group (right). This interpretation is verified by
the fact that the integrals over the three peaks are in the ratio 5:2:3 just as the
numbers of protons in the three groups are. [ is obvious from this very simple
example that NMRE measurements are an important ool used to determine the
structure of orgunic molecules.

Spin Echo. Measurement of Relaxation Times. Information about the sur-
roundings of a nucleus with a magnetic moment is not only contained in the
exact resonance frequency o (for a given external field Bq) but also in the
spin—spin relaxation time T2 and in the spin-lattice relaxation tme Ty Mea-
sturements of Tj and T require good tme resolution and cannot, of course, be
done using the methad of slow passuge described helore,

We begin by discussing the sudden apphcation of resonunce conditions
to the sample and the observation of the time dependence of the chunge of
magnetization brought about by it 11a sample with equilibrium iaenetizalion
M = Mue. is exposed suddenly to resonance conditions, e.g.. by switching
on the field By at resonance frequency o a time which is short compared o
the reluxation times T and 73 and if the system is studied for i time which is
alsa short compared w 1) and 75, then the erms contuning 1y and 73 can be
neglected in Bloch's equations. The magnetization M, originally parallel 1o
the = axis, precesses around the v axis in the rotating [rame. [T the resonance
condition is applied exactly for the time 7'/4 = 7 /i2p 8} then M is rotated
by exactly 90" {we speak of the application of a Y07 pulse) und falls anto
the negative v axis. Inthe laboratory system it then rotates n the x, y plane
with the resonance Trequency. After the time /4 the field By s switched off,
the vector M keeps rotating in the v, v plane and radiates off electromagnetic
waves of freguency o, These can be detected lor instance by the signal they
imduce (the free tnduetion signal) in the additional coil shown in Figure |7.12

1
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i also in the exeiting el sinee the exciting radio freguency 18 now switched
oft.

The signal detected indeed falls rapidly as expected from the decay of the
transyverse maznctization i Bloch's equations. The time constant 7> of this
decay is, however, considerably shorter than the spin-spin relaxation time T,
The reason for this elleer s that, in addition o the fereversible decrease of
the transverse magnetization (described by 75 in Bloch's equations) there is
reversible decrease, The latter can for instunce be due 1o a small inhomogene-
ity of the statie field By The vectors M, of local magnetization at different
locations ¢ within the sample which are in phase directly after the 907 pulse
then totate 1 the o, v plane with slightly different angular velocities. With
time they develop larger and larger relative phase differences so that the mag-
netizution being the average over the My goes to zero. Since the time constant
15 ol this process is smaller than 7> the latter cannot e measured from the
decay of the free induction signal.

This difficulty is pvercome by the spin-echa lechmgue mwvented by Erwin
Hithn, O the muany clever schemes in use now we mention bul two:

Measurenent of To witha pudse sequence W00 1807, Figure 17,13 displays
several vectors M, of local magnetization at various times during the exper-
iment. Initially all M; are along the o direetion. By the 907 pulse (of length
7'/4) they are rotated and fall onto the negative v axis. In the &, v plane the
vectors spreid out hecause they rotate with shightly different angular veloc-
ities i the laboratory system, Le.. they are not all exactly stationary in the
rotating frame. Al the same time the magnitude of the M; decreases with the
time constant T oaccording o Bloch™s equations, AL the tme T/ 4000 2 T
a 1807 pulse (o length ¥/2) is applied, Le., all M; are rotated by 180" about
the a" axis. During the time from ¢ = 37 /447 ot = 37 /44 21 they gel back
into phase again along the v direction, since the M, with the highest relative
angular velocity which have got furthest away from the — v’ direction in the
spread-out period have the largest angle to the v direction at the beginning of
the rephasing periodd. The resultis that at r = 37 /44 27 = 27 another induc-
tion signal, the spin eclie, is detecied, Bs amplitude, however, has decreased
by the factor expl—2z/ 75 ). By repeating the measurement for various values
of © signals similar to the curves shown in Figure 17.16 are obtained and the
spin-spin rebisation tme 77 can be easily extracted,

Measwrement of T) with a pulse sequence J80°=90° If atr = Oa 1807
pulse is applicd the magnetization is tumed from equilibium M = Me.
iy M = —Mpe-. According (o Bloch’s cquations it develops back towards
equilibrium, the = component being

M-(r) = —Mup(2expl—t/ T = 1)
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Fig. 17.15. Spin echo with 90°—180° pulse sequence shown in the rotating frame of
reference. Top row: Application of 507 pulse; local magnetization yectors M;, initinlly
paraliel to each other and to the = direction, are rotated onty the — " direction, Second
row: Thie M, get out of phase and spread out in the o/, v plane, Third row: Application
of [R0° pulse; vach M, is rotnted by 1807 about the o axis. Boltom row: The &, back
into phuse. Beeause of spin-spin relaxation the magnitudes M of all local magnetization
vectors decrease with time,
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Fie. 17.16. Free induoction signal {near 1 = (1) and spin-ccho signal at ¢ = 2r for varions
values of the time r between the applications of the 907 pulse and the 1807 pulse,

An induction signal proportional 1o Mo(r) is detected if o 907 pulse 15 ap-
plied ut the nme 1. Again, by varying 1, the spin-lattice relaxation time can be
extructed from the measurements.



A. Simple Aspects of the Structure
of Quantum Mechanics

In Chapters 2 to 15 we have used the formulation of quantum mechanics in
terms of wuve Tunctions and differential operators. This 1s but one of many
equivalent representations of quantum mechanics. In this appendix we shall
briefly review that representation and develop an allecenative representation in
which state vectors correspond to the wave functions and matrices w the op-
eralors, To keep things simple we shall restrict ourselves to systems with dis-
crete energy spectra cxemplified on the one-dimensional harmonic oscillator,

A.l Wave Mechanics

In Section 6.3 the starionary Schridinger equetion

hod? i A
————=+ —waT gy = Bl
( Pl 2
of the harmonic escillator has been solved, The eipervalues £ were found 1o
e
Ey=n + E].I’i'm

together with the corresponding edgenfncrions

| x X2 ,-'I_.ﬁ
= Hy ( 7 ) et i R . )= 1|||-' T
a

[ o2yl 1 25 i

welx) =

Chite generally, we can wrile the stationary Schrivdinger equation as an eigen-
el eqiatio
H';-'rl = E.'| Iy '

where the Hamiltonian 8 — as in classical mechanics — 15 the sum
H=T+V

of the kinetie energy

L
o
o

Al Wave Mechanics

fr
2ni
and the potential energy
, Mo
V ="—@ "
a

The difference to classical mechanics consists in the momentum being given
i one-dimensional quantum mechanics by the differential operator
f i
==
[RE,

sty that the kinetic energy takes the form

Two eigenlunctions gy (b gy om 3= n belonging o different eigenvalues
I, & 12, are arthoeonal, e

+ i
[ g L e ) dy =0
of - —

Conventionally, Tor m = 5 the eigenfunctions are pormalized 1o one, el

L ¥
/ Wyl g (vidy =1

>
so thisl we may summarize
i
/ i b R L ey = gy
. 2
where we have used the Kmmecker svrhol

5 | m=rn
mEl o ne=

The infinite set of mutally orthogonal and normalized cigenfuncriions
gl nn =00 02,0000 forms a commplete orthorernial dasis of all complex-
valued functons f1a) whieh are square integrable. i.e.,

- :
j Frayfiode = N N < oo
.
N s called the wonm of the function £ix). Functions with norm N can be
normalized woone,

MThe fumitions g, () are real fanctions: We sdd an asterisk (ndicating the comples con-
Jugate 1o the funetion g e) s the mtegral, sinee in other coses one often has o deal with
complex funciions,
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+0C
f piloplnide =1
o

by dividing them by the normulization factor &,

|
H{y) = — fiix)
i) Nf{x

The completeness of the set g, o), n =00 1, 200, allows the expansion

flx) = Z Suog (o)

n=I1

Because of the orthonormiality of the eigenfunctions the complex coetlicients
f are simply

e
fu= [ et f ) dy

.

W also pét

+x =4
N :f s =Y e

Ha =1l

The superposition of two normalizable functions
i o]
-'II{"'}I = ZJ}J‘}'—"&TLIJ eyl = Z.'-Trl'!'-ll:'t-\']
n=ll el

with complex coefficients ¢, f may be expressed by

5
wf () + Bla) =D (afy + fgn)wal) .

=11
Their seedar product 1s defined as

fl . giix) flndy = Zg,‘.ﬁ.

=L}

A.2 Matrix Mechanics in an Infinite Vector Space

The normalizable functions f(x) form a linear vector space of infinite di-
sensiorality, i.e., cach function {1} cun be represented by a vector I'in that
space,

i) — T
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With the base vectors

| 0 (]
i l i
=10 . “1r=1n o= | ‘ ;

a peneral vector £ rakes the form

Jo
30 jl

= Z In@y = f.J,_ -
n=l .

The axioms of the infinite space of complex column vectors are the natural
extension of the ones for fintle complex vectors,

(1} Linearsuperposition (e, £ complex numbers):
afi + fgo

e f1 -+ B
ol +fg = efa 4 Bea

(il Sealar produce:

fo )

L o S =N

g r=1lgy. 8782, i :Zgﬂ"r” 7
: =M

Here the adjoint g of the vector g has heen invoduced, g7 = (g, g 23.
...}, a5 the line vector of the complex conjugates g, g7, g3. ... of the com-
ponents of the column vector

R0

Because of the infinity of the set of natural numbers an additional axiom has
to be added:
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(111) The s [F] of the vectors Tis hmte,

A
I =1+ -f = }:_,r'_,;f,. =N N = o

n=il

i, the infinite sum has to converge, Becmise ol Sefovarszs ineguality
!0 = (gl
all sealar products of vectors £, g of the space are finite,
Asin the ordinary finite-dimensional vector spaces we call o fnear trans-

Sormartenr A of o function £ inte o function gx ),

fivi=Aflx)

the finear operaior A, Examples of lincar transformations are

o he momentun operator p= —ifid/dx,
o ohdf
pr= D da (x)
e the Hamiilionan H = --[Frzfﬂarriili,."tl.r: + Vi
B AR ()
Hif=————"—— 4+ Vixlfiz)
J 2moodat HPE L)

o the position operator 1 = ¥,

Pf=xflx)

Linear operators cun be represented by marcices. We show this by the

following argument. The function g is represented by the coelfficients g,

' i
By = Z Bt (X} Mo = [ qp:ﬂ Ll dy

xS
=1l

The image function ool f1s miven hy

b (s ]
gr=Afto=a()" _J'],:,ﬁ,,[,r]) I Eﬂwﬂi.r},ﬁ.

Al =L}

Le. by o linear combination of the images Aw, of the elements g, of the
orthonormual basis. The Ay, themselves can be represented by a linear com-

banatien of the basis vectors
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ad
Agy = Z X ¥y

=il
with the coefficients
{ S
A= [ iy L) Age, () da
Wl =

Inserting this into the expression for gl ) we obtain

a6 o
glx) = Z Z e LX) A pin

ek =]

Comparing with the representation for gia) we find for the coefficients g, the

expression
=t

K = Z Ay }ru

=)
We arrange the coeflicients Ay, like matrix elements inoan infinite matrix

scheme
Agn Ay Aoz
A Ay Ap
A=1 4x An An

and recover an infinite dimensional extension of the meatrix mudtipdication

v = Al
in the form
£ Apo. Aol Apz oo i e At S
g [ u]
e A An Az fi | _E&_:UAJJ,;’,,
- A Az Ax h N ,|=r1"1'1r1_.|rr|

&2

It should be noted that the two descriptions by wave functions and opera-
tors or by vectors and matrices are equivalent, The cortespondence relations

iy
e i
f,G'['l,] = Z"-'!J?ﬁr"ﬂ{-t:' = Fig
=l i
with
o
. :f o g LI BRI
=0




i A Simple Aspects of the Structure of Quantum Mechanies

tor wave functions and vectors work in hath directons. For a given wave func-
ton g v ) we can uniguely determine the vector @ relative to-the hasis g, (0,
=10, 1, 2, ... Conversely, fora given vector ¢ relative 1o the basis g, (a0
we can reconstruct the wave fupction @) as the above superposition of the
ing (1 ), The descriptions in terms of ¢ (1) and ¢ contain the same information
ahout the state the system is in.

Thus, generally one does not distnguish the two descriptions and says the
system is in the state . often denated by the ker (@) as introduced by Paul A,
M. Dirac,

The wave function () or the vector ¢ are considered merely a5 1wo
represerntations out of which many can be invented. The some slatements
hold true (or the representation of operaters in terms of differential operators
or matrices. Also these are only representations ol one and the sane linear
transtormation called linear operator. The states o like the wave functions or
vectors ¢ form i linear vector space with scalar product. This general space
i« called Hithert space. The lingar operators transform o state ol the Hilben
space into another state.

A3 Matrix Representation of the Harmonic Oscillator

Since the g, (x) are normalized cigenfuncoons of the Hamilwonan, we find
For ity by clements

+70
Hun = [ e () H e (v h

e
+oo
= (n+ 'i;l."r:uf W L Jigg Cx ke = (11 o i}fhu."i,r.f.
5

Thus, the matrix represeadation of the Hamiltoman of the harmonie oscillator
in its eigenfunction basis is diagonal:

1 o it
B R
H=ho| n g 2

The representation of the eigenfunctions g, (o) in their own hasis are given by
the standard columns

| ( 1]

() 1 0
@i=1 p ' @1=1 0 . !2= 1 1 ;

AL Manrix Representation of the Harmonic Oscillator 301

Of course, the eigenvector equation is recovered also in matrix representation,
Hp, = (0 + L1fiogp,

With the help of the recurrence relations for Hermite polvaonials,

dfH, X
iy
Healx) = 2xH8 —InH._x)

= 2nf_(x)

wee tind the matnx representations [or the position operator £ and the momen-
tur operator @ in harmonic-oscillator representation,

" L £l1] ) 1 il L A
gy o= Ngyly) = 'q\T;gl;i"”!]J:'E [H H” 1Lx) -+ EH"' ||..l':|}|.-.'pp Edl';!
an .
B —E{;_.-"'E.:Iu,,_|{_n+ x.-"u+lw”_|.|f,1"l-}
e

The coelficients v, are given by
o T —~
Anhy = I‘ rr:;':-’t I.'I.ﬂlf:'.'ri-"- Y= _ﬁ (\l"llﬂ ‘E.ln{n"“ + 4+ 1 IEr-fl’-l'.!---1l) ¥
o —og L

and the matrix representation of the position aperator is

0 1 0 0
1 0 V2 0
p=2310 2 19 3
2o o0 3 0

For the momentum operator we oblain in asimilar way the matrix represen-

fatien
[ 1 [l L

—i 0 ivz o0

pat| B B 6 B e
A . e ;
Vol o 0 i3 o0

Omne castly verntfies the commutation relation

fi

2] = pxr —xp=

also for the infinite matrix representations ol v and p. Both matrices for v and
pare Hermirean, ie.,

]
& LT -t-'TIH i .I“m_lg = F.'rm
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A.4 Time-Dependent Schridinger Equation

The time dependence of wave functions is determined by the tine -dependent
Schriidinger equation

o
il —rlx, ) = Harlx, 1)
o

The eigenstates g, () of the Hamiltonian are the space-dependent factors in
an ansols

I =
i la. 1) = exp [ —FL,,! I T o
1
and the eigenvalues £, determine the time dependence of the phase factor,

In the matrix representation of the hurmonie oscillator the time-dependent
Schridinger equation simply Teads

i
fi—fr(ry = Hyrit)
ils

where ¢ i) is a vector in Hilbert space,

"l

yrilf)
'Iﬁ'”:': r|||||___:|“|

Because of the linearity of the Schridinger equation any linear combina-

tiom
b o

. i
x4 = Z-:r,, Walk, P} = Lfr_.,cxp { —j—: Eqi I @ lx]

n=dl =}
also solves the Schrivdinger equation. In vectomial representation we have

T

1 | - - |
= i eXPp§—=Eat b @y £y = (0 A+ 5w
W L I I [ e I @ H ;

=i}

The initial condition at ¢ = 0 for the time-dependent Schridinger equation is
the initial wave function
B

i, ) = flx) = Z W e LX)

=L

In veclor notation this is an initial state vector . Ns decomposition into
CLESTIVECIOTS @,

A Tine-Dependent Sehrodinger Eguation 93

it ey
i ™ i)
o 2= o
. =k =

threctly provides the identification of the expansion coelficients «a, with the
components ¥, of the mital vector i,
e = Wi

This way the time-dependent Schrodinger equation is solved by the ex-
pression

o0 i

1
W= E 'I-rgr =] __E.-'r i
yﬁr T l!lzl IL‘&F[ ﬂ I lw

tor the tminal condition
Wil =y

The time-dependent vector ¥, (7 ) corresponding oo, (e, 1) 15

i i
i) = exp [ hE,,.* | @, = eip [—HH: ] iy

where £, is the enerey cigenvalue corresponding 1o the eigenvector ¢, Le..
£y = in + Yiheo for the harmonic oscillator. The last equality is meamngful
il wie defing the exponential of a watei by its Tavlor serics
- 5 '
I 1 i fl
enp ——Hi =Z—- ——
fi il i
=}
For the case of the dingonal matrix A the nth power is trivial,
Al
ES 00
i a & 0
H=1 0 o g .. :

i

and the explicit muatis foom s
gxp | - E;Er_ﬁ] tl il

i i txl]l—%f::j.fl ]
expy——4#r} =
f 0 {1 exp | ,']I:.'grl
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Lising the operator representation of

Yoy, 1) =exp

i i
—EE,.rI @y = exp i - jHHI] i

as derived above we may rewrite ¥ (1) into the form

(3.0

i
Wity = z 1.'r"J_rl CxXp ‘_ h En ] L
=il
i o
= Eﬁpl—ﬁhrfl Zillr.r-i“l,ﬂ"

=1
= epo—F:Hr];ﬁrfD}
= Lty

The operator .
Liggtr) =exp { —;? Hi |

s called the remporal-evolition apentor,

A.5 Probability Interpretation

The eigenfunctions ¢, (1), equivalently the eizenvectors @, describe a state
ol the physical system with the energy eigenvalue £, Thus, o precise mea-
surement of the energy of this system in the state g, should be devised to
produce as a result the value £, In order to preserve the repraducibility of
the measurement it should not change the eigenstite g, of the system during
the measurement, Le., immediately after the enerey measurement the state of
the system should stll he g,,.

The yuestion arises what result will be found in the same energy measure-
ment carried out at a system in a stute g described by the wave function @la),
or equivalently, by the vector ¢ being a superposition of eigenfunctions g, (o)

OF CEEZEIVEClons @,

= Z iy i

S H

2
3
Z [eag|m =1

n=ih

with norm one, 1.6,

A3 Probahility Interpretaton 3us

‘The single measurement of the energy will result in one of the energy eigen-
values which we call £,,. Reproducibility of the measurement then requires
thit the system is in the state gy, alter the measurement.

The absolute squire li,|* of the coefficients a,, in the superposition of
thie iy, delining @ is the probability with which the energy gigenvalue £, will
be determined in the single measurement.

Let us assume that we prepare a large assembly of W identical systems,
all in the same state @ 1f we carry out single measurements on these var-
ous identical systems we shall measire the energy eigenvalue Ky, with the
abundance |ag, |j M.

Performing 1 weighted average over the results of all measurements yvields
the expectation valiwe of the energ

I :"“ Z”C

ey 4 B
Fl=— " NEy= ||:’!_.7|_I51
I: ; N _u=|b| % ’ n=l} ’

Using the stale-vector representation of g,

£y

iy
.= {n

we tind that the enerey expectation vilue is simply

Ey 00 0O ., Ly
|5 L R, | —— i
e He = lajajiai N g0 Ey o (i
3, £
=Y diEiay =1E)
=t

Equivalently, in wave-function formulation, we have

Lo e &0
f e Helv)dy = j ¢a":.rrZE,.u,.wﬂl1]

i B =il

+o

N
= ZE,,;JH[ i L g v ) iy

fr=A] s

oe .
= Z f‘._,:rﬂ.-.ﬂ: = {£4

n=l}



B. Two-Level System

In Appendix A& the equivalence of wave-function and matrix representation of
guantun mechanics wis shown, The simplest mateiy structure 35 the one in
two dimensions. i.e., in aspace with bwo base siores

a-() - =()

The Tinear space consists of all linear combinuations

X=xih + 51— = ( & )
&=

o the huse states with complex coefficients y and x 1. The twa stutes o and
1o form an arthonormal basis of this space, i.e.,

{ F =1
o) H- =

Hi=mi=1 i =gt =0

For the linear combination x to be normalized wo one we have
+ L . I z
XTrx=xpntxlpxae=lol +lxalt =1

This suggests o representition of the absolute values |y, |, r = 1, — |, of the
complex coefficients by tngonometric funetions;
i =)

|x||=L'II].N.':=' l:g|’_'||=h."|1]7

The use of the half-angle & /2 s o convention, the usefulness of which will
become abvious in the sequel. The complex coefficients themselves ure ob-
Lined by multiplication of the moduli |, | with arbitrary phase factors:

=

; )
iy 2 Y B
= g s =

¥ =1 0% . ¥

X ¢ 3 £—| 3
Since o common phase Fuctor i amelevant the general form can be restricted
Ly

¥ Twno-level System L)

& &
ek oy A N e L
n=e cos — . A | =E sin —

with
=Py — P )/ 2

The general linear combination is therelore

- L L |
(e, 40 = St E +('mIjrrg 1] Ei]l | = ; o3
XA =8 L Y
2 2 et s 5

The aperators corresponding o physical quantities are Hermitean matri
4 = Al A=
' A_pr A-i-]
The Hermitewn conjugate ol A 18 defined as

P AL ATy i et —iAt
2 _( AV o AL ) I s S

[ ]

The condition of Hermiteity.
A =4, | e Agp = App
requires

I Al =410
-"Il'l_|=-‘1l 1 s -‘r_|__|=-"jl—|—1

Thus, the diagonal elements A . Ay g are real quantities, the ofl-diagonal
elements Ay 1. A_ are complex conjugates of cach other, Hermiticity of
the uperator A ensures that the expecrasion value of A fora given general stute
is e,

rUAYy = Z Z'r"'ll'.'.'x.;
et =

iAo AL x5 AL e e AL

All Hermitean matrices can be linearly combined as the superpositions
A =gy A r) a4 dam

{with real coclficients way, . . ., a3 of e unit matrx

2=(o 1)
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and the Pawli mateices

n=(14) - e=(Y9)  ==(s1)

since the four matrices g, ... oy are Hermitean, One directly verifies the

relations
2 i
DI._ = O . [ = U’, I 2. -1 -
and
aym =imy Ty =y T3] = 03
These vield the conmmration relationy
la). @] = ayo2 — @) = Qi

and cyelic permuiations,
The three Pauli mstrices can be grouped into g vector in three dimensions,

o = (. 2, or1)

with the square
1 “ " a ]
ot =ay +my + oy =30y
The buse states g, g are cigenstates of the Pauli matrix o and of the sum

of their squares o,
F3ily =T o'y = doan, = 3, . r=1,—-1 .

since s and ap are diagonal matrices,
According to Section A the time-dependent Sehridinger equartion reads

u
fi—E{r)y = HE
s

where the Hamiltonian s a Hermitean 2 = 2 matiix,
H Hy o
- ( 1L = ) 1
H_ 1 H_
with real diagonal matrix elements f) . & and with off-diggonal ele-
ments My = H . Il cun be represented by a superposition of the o

mialrices,
H = hpaap + lams 0y m) 4+ D

where

1 I
.F?n.::rh".lr|_|-i-:i'-l"_i,—lfI . h_‘-::iHr.l - Ho - .

BsTwo-Level System 394
and
|
1] = ;kff]l_[+f'f_j_j?=T{L‘Ht_I
[
fix = T)EHJ' |—H_|I|:|:—!1'I1H|I_L

Introducing the /7, ( = (1 1. 2. 3) into the matrix A we obtain

- fyp sl — il )
TN i hn—a

Introducing the actarization

Ea-ir1=exp’—%ﬁ}:]x, ; p="1,=1

into the time-dependent phasc lactor and the stationary state x . we obtain the
stationary Schrildinger equarion
Hye=E:2r F=1~=1

for the efgenstate x, belonging to the energy eigenvalue E, . For the cigenval-
ves we find
Eyi=hyg= {hi h| = 1|r."lhal_r + h% -+ .lI!:1I

Since there are only two eigenvalues our system s called a nwe-level svstem,
The cigenstates are

B I I +T5 e 2
A sz( VI =Ty e
I —JT[=h3 e ¥

2T ( VLRSI ] '

with the phase factor determined by

X

iy .Ir]| + HJ]

Tk —ih:
Introducing the angle & hy
@ [Ih| + h; @ [|h—hs
o8 — = | — . gin — = |l———
2V 2k 2N 2h

we may write the eigenstates in the [brm
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PP i~ Pt

¥ = eI os E'J“+L‘|;"Hm?ﬂ‘_1 ,
i i =

X = =g '”-“un—aj||+r_'w'm.u?n_|

They wre normilized and orthogonal tweach other,
The eigenstates xi. x 1 of the two-level system exhibit o time depen-
dence which is given by a phase factor anly,

[
E,.(U::_:MJ[—HE,IIxr ; r=1,-1

I imtially the system is not in an eigenstate the state oscillates, We assume
that the imitil state s
@l =1

Decomposition into the eigenstates vields

W =8x +H4-1x-i

with
£y = 3.'|i =& "™ 5in ‘;
o N R :u""'b'rluu:r%)
The time-dependent state is obtained as
@ity = DE )+ E 1) _
= e " f;_l' :"?"'xt +e 7P pag r_f e Haq

with the angular frequencics
wy = E 408 r=1.-1
The prabahility to find the system (eoiginally in the state o) in the state gy

15 given by

[hi

-k s
P =sin~ sin® —1
i
wnd. of course, thie probability o find it in the state 5o s

Poj=t=1— P

C. Analyzing Amplitude

C.1 Classical Considerations: Phase-Space Analysis

We consider i detector which is capable of measuring position and momen-
tum ol g particle simultaneously with certain accuracies, If the result of a
measurement 15 the pair xp. ppoof values we may assume that the true vitl-
ues v, pool the guantities 10 be measured are described by the uncorrelated
hivariate Gaussion (el. Secton 3.5 probability density

1] ix —.LDII:' (p— P[}J:
Sl At Sl = —

= il
2o nmpn 2 2

Mo Tan
That 15 10 say, the probability for the true values v, p ool the particle to be the
intervals between v and x + dy and between poand po-- dp is

P = ppla, prdydp

The particle to be measured by the detector possesses position and mo-
mientum values « and p. The particle may have been produced by a source
which does not define exactly the vidues of 1 and p but according to a proba-
bility densay

l

ey, pogy, Pyl = ——EXp
2T ST

X —.15:;]j ; (7 —__p_qjl

Ty s

b ]

This is an uneorrelated Biviriate Ginsssian pr abability density with the expec-
tation values vy and pg and the variances r]' . ‘amlﬂyb

We now deseribe how much |r||nnn.1tmn citn at best be pblained about the
probability density ps{x, p) using the above detector. The probability (ST
particle prepared by the source to be detected within the intervals (vp, o o+
dep) and (pp. pp + dpp) is given by

dP = w (xn, po. v ps)dap dpp
with the probahbility density in phase space

Ay
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&l
WA P sy sl

+o — T :
f [ ﬁ[‘}f[-.r. FLRRSE pulpg'i.r, proxs. pebda g
TR e
|

]

1| (ap — x50 (pp— ps)?
—exp e D T.L_l_ EU .__I_FS']
Irocop o e o

- 1 2 - - s
Here the vanances o and o are obtained by summing up the variances of
the detector and source distrbunon,

-+

o

7z 7 2
T Fin & . T

£ )
P = = D+ﬂ-,f-'5 =

The guantity wl(n. Poas, sl s the result of analyzing the phase-spoce
probability density of the source psix, p, x5, ps) with the help of the phase-
space probubility density pp(x, p. xp. pob The function w (i, pp. s, ps)
is itself a phase-space probability density and obtained through a process we
shall call phase-ipace amalvsis,

This distribution can be measured in principle il the source consecutively
produces o large number of particles which are observed 1o the detector. For
a detector of arbitrarily high precision,

an—=0 Tpn —= 1)

the distribution w® approaches the source distribution ps(xv = wp, p =
Po. X5, Psh

We have seen that with a detector ol high precision and with a sulficiently
high number of measurements the source distribution ¢an be measured with
arbitrary high accuracy, We now assume that the minimum-uncertaingy rela-

LIS,
h
. OxsTps = 5

hold for the widths characterizing the detector and the source. Besides this
restriction we stay within the framework ol clussical physics. Now il is no
longer possible 1o measure the source distribution :xﬂctiy.' However, we may
still measure the distribution in position alone or the distribution in momen-
tum alone with arbitrary accuracy. To show this we construct the marginal
distributions of w! in the variables xp — xg, and o — s, respectively,

nh‘[}ﬂ-‘rrl} =

bt | =

! (v r-h——l ex —]——HD_IS}E
R Tme. T 2 WP

and

Pwie could, lowever, compute the source distribution ps by unfelding it from whl,

C_ 1 Classical Consideritions: Phase-Space Anulysis 13

- 0s=0707

W=l =0 .'_IlE::I W :-,'::' |j.‘—-:_l

Fig. C.1. Phase-spuce distributions og (topl, gp (middlel, and their product osop (hot-
tom ) together with the marginal distributions of j5 and o The two columns differ only
in the spatinl mean o of oo, Units are osed ioowhich i = 1.

4
.ol 3 _,..:—1—‘_:3{ _EEE{U_—M
wylpp, Ps) = r"wl‘-TfTF P 3 ”j;'l

The first distribution approaches the corresponding marginal position distri-
bution of the source;

s [ 1ix — _r_5:|3
Mgy, xg) = j felx, p,xg, psl dp = ——exp e T

et o L o

in the case of o,p — 0. However, beciause of the minimum uncertainty rela-
tions, a,p as well as o, approach infinity, Therefore, the second distribution
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Fig. C.2. The phase-space disteibotion g5 opd, the distribution o, fora particulur point
Cvpy, ot ol mean vialues (middle), and convolution of o with g for all possible mean
values (hotton . Also shown are e margingd distributions. The two columns differ in
e widths of g5, Units & = 1 are used.

:n:,'?] becomes so wide — and actually approaches zero — that no information
about the mementum distrbuton can be obiuned from i1,

CL‘JJW::rx‘L‘:l:,', for Tl — i} the momentum distribution of the source can be
meastred accurately. However, then the information about the position distri-
bution is losl,

We illustrate the concepts of this section in Figores C.1 and C.2, We hegin
with the discussion of the result ol o single measurement, vielding the pair
A fpof measured vitlues, In the two columns of Figure C.1 we show (from
top Lo bottom ) the probability density psi, p) characterizing the particle as

.2 Analyeing Amplitode: Free Particle A3

produced by the source, the density praix. p) characterizing the detector for
the case vy = U, pp = U, and the peoduct function gsix, plapiy, ph The
integral over the produet function is the probability density w'l, It is essen-
nally different from zero only if there 15 a region, the overlup region, in which
both o and pp are different from zero, In the lefi-hand column of Figure C. ]
g amd o owere chosen to be identical, so that we is large, In the right-hand
column the overlap is smaller.

By very many repeated measurements, each yielding a different result xp.
pry we obtain the probability density w (xp. pp). In the two columns of Fig-
ure .2 we show (From top to bottom) the probability density pgla, p char-
scterizing the particle, the density ppix, p) characterizing the deteetor for the
particular set measured values 1 = W pp = 0, and the probability den-
sity . pp ) for measuring the pair of values xp. pp. Also shown are the
marginal distribution pg o), gpy (o), and H'_':I{.Tp) in position, and g5, 20,
Mgl ), and rf-;'t Pt in momentum. Comparing in the lefi-hand column the
diwgram of gy with the diagram of w* we see that the latter distribution is ap-
preciably broader than the former in both vanables. In the right-hand column.
however, the spatial width of the detector distribution e, is very small at the
expense of the momentum width o,p = f/(2g,.n). which is very large. The
distribution w*! is practically identical to pg what concerns its spatial varia-
tion, The width i momentum of w* is, however, very much larger than that
ol g,

C.2 Analyzing Amplitude: Free Particle

Quantum-mechanically we describe a particle by the minimum-uncertainty
wave packel
:
. r —agh 1

Psix) = @slx. by ps) = ————5 exp ST + EPR“ —x8)

2m) e 5
We consider this wave packet as having been prepared by some physical ap-
paratus, the source. The guestion now arises how the phase-space analysis
of the particle as discussed in the last section can be deseribed in guantum

mechancs.
If, in a particle detector with position-measurenient uncertainty a.p and
momentm-measurement uncertainty oppn = f/(2on). the vilues xp Po

are measured, we want to interpret the result as in Section C.1. The same
probability density

I tx—ap)® | {p— )
. PoXn, ol = e eXp Y T3 5 ' 5
LT FR0O pld = on ﬂpl‘-l



H C.oAanalveing Amplitude

deseribes the probability density of position x and momentum p of the parti-
cle. Quantum-mechanically this probability density is the phase-space distri-
bution introduced by Eugene P Wigner in 1932 of the wave packet

1 (x —ap)’
S AP — ———— + —pply —Ap)

gl xp. fin)l = ———=
by li2 4ot
(2w ) e 55 fi

Therefore, jnlc. p, xp. o) s also called Wigner distetbution of gn (el Ap-

pendix D

Let us construct the analvzing anplitnde

| ol b
aiXp. Po.T5s Pyl = — ] iy (. Yo podesiy, xs, pgldy
V";J 2

representing the everfap between the particle™ wave lunction s and the de-
recting wave function gn. [ trms oot 1o be

{ | I lip — .ll.HJ: L — .Ir-"S_]:I
Al PoiXs PRl = —/————0ap 3 — B !
\_.l".-?ﬂ fr_,.-f.:fé., _I_r]'l:l 'J'GI,_;.
ot R,
=% a2 | o—XEl

T

whire, like in Section .1,

1

4

7 2 1 k)
Ty = in 1T s Ty = Tppy i 7 s

The absolute square ol the analyeing amphiade

’ .
a2 | L) fep —xg)™ (pp— py)®
e = — X - = +

2raso, P 2 1 T:' rT.I'-:

= rf'I:II:.H_}. foexs, gl

is identical to the probability density ' (xp, po. 1. ps) of Section C. 1.

Wi conclude that the probability amplitude analyeing the values v and
pp of position and momentum of a particle as a result of the interaction of a
particle with o detector 35 given by

I i .
4aixn. fip, 5. Pl = — f @hla. ap. poles(a, vg, ps)dy
\."'.lrl —

Here, @y is the wave function of the particle and g@p the amalvzing wave fince-
fiem. The probubility o abserve o position in the interval between pp and
ok dpp s

df = |atxn. po,ors. ;agjl‘tr.l.'t'ljm dpp

C.2 Analyzing Amplitude: Free Particle U7

In oanalogy o the classical case we may now ask whether we can still
recover the original guantum-mechanical spatial probability density
3
El ] it —xs)=
-'I'I:‘!n{.'l.":' — ||:*.q[_t’:ll = 1Tﬂ'.\p _T'_I — 5 —
2T R
from |« |, Information about the position of the particle only is obtained by
integrating |a|= over all values of pp. i.e., by forming the marginal distribution
witlh respect W .

o

I:;IE = [ Irrlld;:n = |:';"i_x|_h_r53
af —0

The resull is the same as in the classical case, Again in the mit o — U we

fined that the function |a| approsches the guantum-mechanical probability

density pgir) which i equal to the classical distribution pg, (x 1.

In Figures C.3 and C4 we demonstrate the construction of the analye-
ing amplitude using particular numerical examples. Each column of three
plots in the two fAgures is one example. AL the op of the column the parti-
cle wave function is shown as two curves depicting Regs () and Imgs i)
ngether with the numerical values of the parameters xs, ps, .5 which de-
line iy ). Likewise, the middle plot shows the detcetor wave function, given
iy Re i) and Imgpte). The bottom plot contains the real and imaginary
parts il the product function

1I,IJE}I:.I.' lipg LX)

which after integration and abselute squaring yields the probability density

4

L 1|t
le]” = = U ol igs i dy
It S

of detection. Also given in the bottom plot is the numerical value of lai®,
Four dilferent situations are shown in the two figures. In each case the sane
detector function gp is used. Only the particle wive function ys changes from
Case Wy case.

ity In the left-hund column of Figure C.3 s and @p are identical. For
that case we know that the overlap integral is explicitly real and that
I+: weps dx = 1, 5o that la|* = |/ f = 1/27 inthe units ff = 1 used.

(iiy In the right-hand column of Figure C.3 the particle wave packet is
moved w a position expectation value vy # vp. but we stll have
s = P, 0.5 = a,n. By construction, the overlap function is different
from zero in that x region where both @ and gp oare sizably differen
from zero. As expected, the value of le|* is considerably smaller than
in case (i)
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Fig. C.3. Wave function gy (fop) and g imiddle) and the product funetion g (hot-
tom ). Real parts are drawn as thick lines, imaginary parts as thin lines, The two colomns
differ in the mean value v of g Units & = | are osed.

{iii) In the lefi-hand column of Figure C.4 the position expectation values
and the widths of particle and detector wave function are identical, x5 =
T, g = yp. but the momentumn expectation values differ, ps # pn-
As in ease (i) the product function ¢@es 1s different from zero i the
region & == .y but due to the dilferent momentum expectation values
it oscillmtes, Therefore. the value of lal” is much smaller thun in case
(i) since positive and negative regions of the product function nearly
cancel when the integration is performed.

ok
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lal==l ."_l"' dgeln il
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lal'=1s 'l':|+| wlipgladdni™s R=0 005
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i Ee el
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Fig, O, As Figure C.3 bot for different functions ¢, The b columns differ only in the
vatlie of =, 4.

tivy In the nghi-hand column of Figure C4 the particle wave packet hus @
lurger width 5 = o, All other parameters are as in case (i), The
product function is similar o that Tor case (i1} and 1s concentrated in
thes regiom vp — & = 4 = ap + ap where both wave functions are
appreciably different from zero. However, the amplitude of the product
function is smaller than in case (i) smce the amplitude of wyly) is
smialler in the overlap region. Therefore, the value ol |u| % is also smaller.
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C.3 Analyzing Amplitude: General Case

The lesson learned in the Tast section can be generalized to the analysis of an
arhitrary normalized wave function @l ) describing a single particle in terms
of an arbitrary complete or overcomplete set of normalized wive funclions
@lx) or gix, gy, ... cgx). The functions g, (x) can in particular be eigen-

functions of a Hermitcan operator, e.g., the energy. Bxamples for o set of

overcomplete funclons @iy, o, .. - . gn) iare
s free wave packets gplr. xp. ppl as in the last section,

o coherent states of the harmonic oscillator @ (v, v, o) as we shall stody
in detal in the next section, and

» minimum-unceriainty states of a set of noncommuting operators like
the operatars L, L, L. of angular momentum or 5, 8., 5. of spin as
investigated in Sections 1005 and 16.2.

The analyzing amplitude for the different cases is ziven by
J v
a=— / i ) dy
N J e
oar

J L e ¥
”=-‘.,_’ / @t g cga gl da

—3C
O eourse. a mutual analysis of two sets of analveing functions is also of
interest, e.g.,

| R RS

n=—
Ny S e

@il g ga)dr
The normalization constants huve 10 be individually determined Tor every type
ol analyring amplitude,

C.4 Analyzing Amplitude: Harmonic Oscillator

For the harmonic oscillator of frequency o we have discussed i Sections 6.3
and 6.4 two Sets of states in particular:
(1) The eigenstives o, cormespionding 1o the energy eigenvalues E, = (n+

K
5 1,

R 147 X x-
walx) = (V22 nlaa) T H, (— ) Bx[ H—— i
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with the ground-state width
[
= |
' V 2w

Plots of the ¢, are shown in Figure 6.5,

ap = 'V'IIE!?_._ f L)

{111 The cohierent stales,

0 .
| S
I_."a Ly, foxp. ) = Z . Poligg(xlexp i _E Eyt | :

m=il

where the complex coefficients a,, are given by

! 2

= |
i (Xa, po) = —L"‘F{ :':l ,on=0,1,2...
The variable = is complex und a dimensionless linear combination of
the initial expectation values vy of position and py of momentum,
xy o.M h
i _rl‘
s 8 la, 2y

Plots of the coherent states y (x, 1) are shown in Figure 6.6c.

The set of energy gigenfunctions g, (1) is complete, the set of coherent states
is overcomplete. We can farm four kinds of analyzing amplitudes.

Figenstate — Eigenstate Analyzing Amplitude

We analyze the energy eigenfunctions using energy cigenfunctions as analyz-
ing wave functions. Thus, we obtain as analyzing amplitude

o i
Hoypn = / Gt g ()l = Ay
¥ =4
which yiclds as probability
1 3
o = Sunn
This result, based on the orthonormality of the eigenfunctions gy, (1), is illus-
P : : S RPN R
trated in Figure C.5 which shows the funclions @y, Whereas g, 1s non-
- . ) P - A= 4 0

negative everywhere so that the integral over ¢, cannot vanish it is qualita-
tively clear fram the figure that the integral aver ¢y @n vanishes for m £ n.

The analysis of an cigenstite g, (1) with all clgenstates ¢, (1) thus yields
with probabifity uf,n = | the answer that the onginal wave function was
indeed ¢, and with probability gy, = 0 the resuli that the orginal wave
function was ¢, with s 5= n. Such an analysis can also be considered as an
energy determination which with certainty yields the energy eigenvalue Fy.
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Fig. C.5, Product ¢, {4 )y, (1) of the wave functions of the harmonic oscillator for Ao = 1,
The long-dash curve indicates the potential energy Via), the short-dash lines show the
energy eigenvalue £, of the functions . These lines also serve as zero lines for the
product funetions,

Eigenstate — Coherent-State Analyzing Amplitude

The function to be analyzed is the time-dependent wave function 3 (x, £, xp.
i) of the coherent state. The analyzing function is the energy cigenfunction
in (2}, As analyzing amplitude we obtain

b
aln, xg, pp) = f e (Wl 1, xp, o) d
-
2 4 iE f
= exXpy—cIZpexpy—— £
The corresponding probability is given by
Ian 2 2
- 2 _ U2l g 2_ o i
aln, xp, pol|” = ——e . | M=t
| 0. ol - z| 107 T 307

The probabilities |a(n, xo. po) |* for fixed xq, p are distributed in the integer n
according to a Poisson disuibution, cf. Appendix G. Its physical interpretation
can be understood if we express [z]7 in terms of the expectation value of the
total energy of an oscillator with initial values xg and py,
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" Pﬁ i b
=0 = = s 4 1 S Y
&o 2 i R
We find
izI” = Eo/flfw) = ny
.., 12| equals the number ng of energy quanta fie making up the energy £y
of the classical oscillator. This number, of course, need not be an integer. For
the ahsolute square of the analyzing amplitude we thus find
i
”_ﬂ

o
il

s Cen, pod|™ =
It is the probahility of a Poisson distribution for the number of energy quanta
i found when analyzing a coherent wave function with the eigenfunctions ¢,
[t has the expectation value
{my =y
and the variance
varinl=ng -

Coherent-State — Eigenstate Analyzing Amplitude

Analyzing the eigenstate wave functions ¢, (x) with the coherent state wave
functions for @ = 4,

e B}
wplx, Xn; po) = ZH”[-TD- folgglx)
n=il
with the coefficients
ot i i . PD
: e K S, o= —— F j—
dplxp, Pl = v’ﬁmpl :-n-n i 20, 35,
we find as the analyveing amplitude
1. [
alixp, pr.n) = —_I iﬁf_,i_.‘t‘_.l'l’}- Dol o) dy
ﬁ,"llh —r
I zh { Y |
=i ——==—=/05] ——:l]:L'I P
At 2

and for its absolute square

.
[ {xp. fo, )l

1 1 .-.'E, przj . ‘Do, b
V=T33 Sy T
E:r{ﬁn'.t 11\.@5‘,_; n! \de: 4(:');; 4o 4-4'1'5
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Fig. C.6.  Absolute squore |alrp, pponi® of the smplitude analyzing the har
monic-oscilliator cipenstate ¢ L) with & caherent state of position und momentum ex-
pectation value o and .

For a given quantum number i of the eigenstate, |a|? is a probability density
in the xp, pp phase space of the analyzing coherent state which 15 shown
in Figure C.6 for a few values of w. It has the form of a Ang wall with the
maximum probability at

2 "
y i X Pho

|\‘ | il + L

4#‘.!'1- 4

I terms of the energy

FLT H 4 4
Ep = == + —ar'xq
2n 4

of & classical particle of mass m with position xp and momenturm pp in a
harmonic oscillator of angular frequency o, we have

a 2
2 o, Ph

|zp|™ = +
da? 4'11::

=H[

where npy is the average number of energy quanta fieo in the analyzing wave
function @iy, 2p, o). We lind

——
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i
| "B
i n!

ladem, o, HH'! =

For a given eigenstate ¢, (V) of the harmonic oscillator the probability density
i the vy, pp phase space of coherent states depends only on the average
number #p of quanta in the analyzing coherent state.

The expectation value of np s given by

+-a g =
() = [ [ nplelan, o, m)|"depdpn =0k
of =00 =T

lis variance has the swne value;

varinpl =n + 1

Coherent-State — Coherent-State Analyzing Amplitode

Using as analyzing wave functions the coherent states gnix, A1y, pol. the an-
alyzing amplitude for the tme-dependent coherent states W (x, £, 20, po) turns
ol o be

AT e X o )

NRES

wpdX, Xp, poldle, £, xg, poddx

! I . i
= ‘J—,chp [ "3 {:.n:.” + 2520 + 2 H}::r]]ll exp [ —Em.rl
o — i T il . M
E’.Ifr]=.‘_t: N = — [ e
LT 2oy
The abselute square yields
let{xp, o, Xo, po. 1)]°
I 1| (xp — xpli)? |t = i)
= ——  _  —enpy—=| —————F—— 5
I (w30, ) v 20 p) 2 2ery 2oy,
with
B
Iplt) = Ay cosa T JI-'|—:=,1mur
Tl
plt) = — M SN e -y COSf

representing the expectation values of position and momentum of the coherent
state 1 (x, £, Xg. po) at time ¢ 1L is a bivariate Gaussian in the space of ap
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and pp centered about the classical positions xolt), pole) of the oscillator,
The probability density |a(xvp, fogto. o, 11 shows the same behavior as

that of o classical particle, The expectation values of the position xp and of

momentum pp are simply given by the classical values
{xp) = xplt) {pol = polt)

The vanances of yp and pp are

2
var{zp) = 2of
A
var(ppl = 2o,

This 15 twice the values of the ones of the coherent state itself, a conseguence
of the broadening caused by the analyzing wave packet wpia) having itself
the variances nf and rrl,"f.

The classical Gaussian phase-space probability density corresponding to
Wlx, ron, o) is of the same form as |a(xp. o, So. o, H|2. It possesses,
however, the widths o, and o, and has the explicit form

I{JLI][I. P, o)

I It —xlt))?  (p = palt))?
= E—Lxrj 5t e 5 b=
T Oy = o Tn

By the same token the classical phase-space density corresponding to the de-
lecting wave packel is

E'i-t. Petng Pnld

l 1| ix—xpi? T — 42
— r——— EXF I—; [ ..l_n . l::f 'f[}._ }
2nm e, 2 az o3

I

The functions o' and ,r:-F,] are equal o the Wigner distributions (ef. Ap-
pendix 1) of @ and gn. respectively, The analyzing probability density |a|*
can azain be writlen as

)
latxp. po, xo. pa.id°

e pboo " "
= f / Aot poxp. podet(x poxg. po fhdep dpn

aC  » —OC

which onee more shows the reason for the broadening of la|* relative to p.

D. Wigner Distribution

The quantum-mechanical analog to a classical phase-space probability den-
sity is a distribution introduced by Eugene P. Wigner in 1932. In the sim-
ple case of a one-dimensional system described by a wave function (x) the
Wigner distribution is defined by

L : (x — Z)g(x + 2)dy
] — : —pyrply — —hp (x4 =)dy
Wix, p) P [ exp h_.”} el ) ¥ A

"

For an uncorrelated Gaussian wave packet with the wave function

. o
! (x—x)® . po
TRy = ————pXp ————— + I—(x —xp)
oo = gt o |- )
it has the lorm of 2 bivariate normalized Goussian:
an J | . | x—x0)®  (p— po)®
1 sV =" . g 3 1
X, P X0 P Tne,o, 5 & =

where o, and o, fuliill the minimum-uncertainty relation
aedy = /2
The expression obtained for Wix, p, vy, po) coincides with the classical

phase-space probability density for a single particle introduced in Section 3.6,
The marginal distributions in x or p of the Wigner distribution are

+ro
Woix) = [ Wix, pidp = ¢"(x)pix) = plx)
af —

and
N
Wl{p;—_-f Wix, prdx =@ (m@lp) = pplp)

—

where @l p) is the Fourier transform

A1
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=2 Eil= i .
wip) = [ Bxp — P el de

2h o

af the wave function @ (1), 1.e,, @ p) is the wave funclion in momentum space,
Far the cose of the Gaussian wave packet we find for the marginal distri-
butions

W) 1 E‘LJ[ lH—.i[:.i"}
sl L) = — = ,
| Tma ) 2 o2
| | - -
Weipl = ——expy—= L i_””]
V2t 2 Ay

Anallernative representation Tor the Wigner distribution can be abtained
by introducing the wave function in momentum space into the expression
defining Wix, piowith the help of

(x) ] FI Pt
Ly = B - ¥ i
(r Tt ) exp Lnk il dg

We hind
_ Y e i - /S ¢
Wix.p) = E—/'\_ é?{p{—E:{qlgm (;1— E)¢ (p+ E) dy

A note of caution should be added: For a general wave function ¢(x) the
Wigner distnibution is not 4 positive function everywhere, Thus, in general it
cannol be interpreted as a phase-space probability density. It s, howewver, a
real function

Woix, p) = Wix, p)

As un example we indicate the Wigner distribution Wix, p. ) for the
eigenfunction g, {1} of the harmonic oscillator,

{—13" .l'l J‘] I .'L: j'l
Wix, gl = — L8 | = ;_ expy—= | =+ L,
whi a; o 2\ af &5

Here, the widths o, o, are given by
R
oy = o {2y ap =N/ (2ep)

and L:i'{.i".n 15 the Laguerre palynomial with upper index & = (1is discussed in
Section 13,4

Figure 13,1 shows the Wigner distributions for the lowest Tour eigenstales
ol the harmonic escillator v = (1, 1, 2, 3 plotted over the plane of the scaled
vartables x foy . pfog Accordingly; the plots are retationally symmetric about
the z axis of the coordinagte frame, The nonpositive regions of Wix, pon)
can be clearly seen. The corresponding plots for the absoluie sguare of the
analyving amplitude are shown in Figure C.6.

O Wigner Distribution 414

Fig. 1.1, Wigner distributions Wi, g0 of the harmonic-oscillator eigenstates g, 1,
=2

The relation 1o the analyzing amplitude can casily be inferred from the
following observation. For an arbitrary analyzing wave function @p(x) we
form the Wigner distribution

j U ol i ] .."..' 3 i .I." i
Wialv, pl = 3 j . exp ‘ EF}' ¢ (-"- ~3 )‘Fn (-'l + 5 dy

Then, the integral over x and p of the product of Wiy and W yiclds

T o o I. L
/ f Walx, Wiy, prdydp = T ‘f wnlapla) dy

— A . o

a

= |a?

This is to say, analyzing the Wigner distribution W ix, p) of a wave function
i) with the Wigner distribution Wi, p) of an (arbitrary) analyzing wave
function gpix) vields exactly the absolute square of the analyzing amplitude

| +0C
f = \f;f el da
frdf—nc

imtrodueed in Appendix C.
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The temporal evolution of a Wigner distribution

LR ;

1 N — ¥ 3
Wix,p.th= H/‘—'x: eh T (4 5 fhi e — E,J‘Jd_}-‘
corresponding (o a tme-dependent solution o (x, ¢) of the Schridinger equa-
tion with the Hamiltonian H = p:,’lm + Vixy p = (A1) d/dx, 15 gov-
erned by the Wigner—Movyal equation, [t is the quantum-mechanical analog
of the Liouville equation for a classical phase-space distribution. For poten-
tials ¥ {x) which are constant, linear, or quadratic in the coordinate x or linear
combinations of these powers the two equations of Wigner and Moyal, and
of Liouville are identical. For these types quantum-mechanical and classical
phase-space distributions that coincide at one instant 1 in time, say the initial
one, coincide at all the times,

E. Gamma Function

The gamma function {2} introduced by Leonhard Euler is a generalization
of the factorial function for integers n,

Al=1+2F =000 fl=H=1 |,

to noninteger and eventually complex numbers z. [t is defined by Euler's in-
tegral

s u]
I'z) = f ol e Re{z) =10
Ju

By partial integration of
b T
f e tdr = (14 z2)
]

we find the recurrence formula

K
Fil+2)=—rfe | +z [ (= he dr =zl (z)
Ju

valid for complex z.
From Euler’s integral we obtain

Fi{lh=1
and, thus, with the help of the recurrence relation for non-negative integer n,
il +n)=n!

Euler's integral can also be computed in closed form forz = 1/2,

I i
j-(i) — \."lr.-"l"

s that — again through the recurrence relation — it is easy to find the gamma
function for positive hall-integer arguments.
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R

Fig. E.l Real part (top) and imaginary part (hottom } of 42 ) over the eomplex - plane.

E, Gamma Function 423

For nonpositive integer arguments the gamma function has poles as can
b read off the rellectnon formula
T I
'l=z= — =
Fizysinfwz) il + z)sindrz)

In Figure E.| we show graphs of the real and the imaginary part of I7(z)
as surfaces over the complex ¢ plane, The most striking features are the poles
for nunpositive real integer vulues of z. For real arguments z = x the gamma
function is real, i.e.. Jm {fx)) = 0. In Figure E.2 we show T and 17170x).
The latter function is simpler since it has no poles, The gamma function for
purely imaginary arguments = = iy, v real, is shown in Figure E.3.

Far complex argument 2 = ¥ +1v an explicit decompaosition into real and
imitginary part can be given,

|j+ x|

o
Fix +iy) = (cost +isinfyM{x)] e ——— N
l_[ VS e

J=M
where the angle # s determinad by

-
¥ ¥

H=_1.'u'.r:_r]+2[_' — arctan — :| .
! Fr=x J T

Here i (x) 15 the digannna function

d PR
1) = == (InI[; = —
Yria) 1:L.._[m [l Fixl

For integer n the following formula follows from the recurrence formula:
Fin+z}y = Fil+r—142)
= n—=l+zin—2%z1 - 0 (Ezhal ()
For purely imaginary £ = iy we find
Fin4ivy=mn—1+iyin =241y -0t Fiyhiply)

The gamma function of a purely imaginary argument can be obtained by spe-
ciglization of the argument x + iv to v = Oin I(x +1v) to yield

-
[(iy) = (sin# — icost) e
Y vsinhy
with N
# = e Z [l ArCrim E}
s j j

=1
where Ewler's constant p is given by
=l
= = 1 ', = ¥ 1 2 5 - a
¥ Wil) nl_t{rjc E*’ Inn 0,577 2156649
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Fig. E.2. The funetions 7 (v)and L7 (00 for real arpuments x, Fig. F.3. Real and imaginary parts of the gamma function for purely Imaginary argu-
' ments.



F. Bessel Functions and Airy Functions

Bessel"s dilferential equation

xJJZ-.' L{zu-'} .
X5 LL:-:E” Bl drtl_ Ll — =0

is solved by the Bessel functions of the first kind J(x), of the second kind
{also called Newmann functions) N, (x1, and of the third kind (also called Han-
kel functions) Hy Uiy and H(r ) which are complex lingar combinations of
the former two, The Bessel functions of the first Kind are

2N e ES g v ;
flxy= (= | = |
i) (_) (e ke 1) ( 4)
where ['(z) is Buler’s gamma function,

The Bessel functions ol the secand Kind are

1
Nolx) = ——[Jelx) cosvr — Jo(x)]
sin v

Forinteger v = # one has
J_x) =1l ¥ Jg ()

The madified Bessel funetions are defined as

o s | v &
‘r"ulz(g) Ek!f*n'+k-l-“(?)

The Hankel functions are defined by
HIM )y = () 4+ 1N, (x)
HII.EIL"I-.I Jut.".‘]‘ — il'l'l'lut.[.}

The following relations hold for the connections of the functions just lis-
cussed und the spherical Bessel, Neumann, and Hankel functions, cf. Sec-
tion 10.8. The spherical Bessel funetions of the first kind are
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—

i o
‘|'-'I ﬂ.ﬂlr'_”:!.'l'l

The spherical Bessel functions of the second kind (also called spherical Ne-
mcnn ftinetions)are given by

Jilvr =

—

|
V2x
and the spherical Bessel functions of the third kind (also called spherical Han-
kel funetions of the first and second kind) are

aplx) =— Myl = (=1 jop_tlx)

E3

hi“ixi = nelx) +ijely =i[felx) —ineix)} = ':‘l."ﬂH:-.]_]n'ﬂ-‘fJ
.H} Yil = mlx) =iy ==l jrlay Finglx)] = —rﬁ.l.'EHf.ij”:ErJ

In Figures F.1 and F.2 we show the functions J.(x) and £, (x) for v =
~1, =2/3, —1/3, ..., 11/3. The features of these functions are simple to
describe for v = 0. The Functions Jf, (&) oscillate around zero with an am-
plitude that decreases with increasing x, whereas the functions [, (1) increase
monotonously with 1. Atx = (0 we find S, (0) = 1,(0) = 0 for v = 0. Only
for v = O we have Jy((h = fy(0) = 1. For v > | there is u region near x = ()
in which the functions essentially vanish. The size of this region increases
with increasing index v. For negative values of the index v the functions may
become very large near x = 0

Clasely related to the Bessel functions are the Airy finctions Al and

Bi{x ). They are solutions of the differential equation
1

d_
— — 4] flx} =0
da=

and are given by

| 2 ¥l 2. 1.
:ﬁl:’-m(-j'.r"") —F],a:«(j.t"""), ; x =0
3 o3

Alfx) = | ” 4 . i
TV [J L3 gm-‘-’l) 13 (§|.r|3-"'~')} S %
and
.',?l (2 iz A
[ N '-',1""')+1r|.-'l.( iy . X =0
3 a1 b
migaye] V2 -
o

ol ey — g 2 G <
A1 13 q:.ll — 1I|.‘L| 5 ¥ o<

Graphs of these functions are shown in Figure F3. Both functions oscillate
for x = 0. The wavelength of the oscillation decreases with decreasing x. For
v = {1 the function Ai{x) drops fast o zero whereas Bifx) diverges.



428

F. Bessel Functions and Airy Functions

— L X
i} T T T ! T T T 1 T T
Lalwd J?.c;l[.?f’ dgpanl
1 L L 1 I I
s W o\ A wooW
— — ¥
T 1 T 1 1 T
Jw:ftx}
2 X % o =
e} I L '
' 2
h TR |- T | » %5 .-
1 |

1
I _gpafmd

Fig. F.1, Bessel functions J, (x).
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G. Poisson Distribution

In Section 3.3 we first introduced the probability density pia), which is nor-

malized to one,
; oo
f ployde =1

e W]
We also introduced the concepts of the expectation valie of x,

+oo
xy = f splobdy
—i%d

and of the varianee of x,
var(y) = a] = ({x.— {I}F)

We now replace the conrtnuons va riable x by the discrere variafile k which
can assume only certain diserete values. e.g., £ = 0, 1. 2, ... . In a stafistical
process the variable & is assumed with the probabilite P (k). The tatal proba-
bility is normalized to one,

Y P =1
k

where the summation is performed over all possible values of k.
The average valuwe, mean valie, or expectation valne ol k s

k)= kP
=

and the variance of kis
var(k} = o2(k) = (tk . uc-ni) =3tk — (kP
fl

The simplest case is that of an alternarive, The variable only takes the
values
=01

FE 1
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The process yields with probability p = P(1) the result ¥ = 1 and with
probability P(0} = 1 — p the result ¢ = 0. Therefore, the expectation value
of & 15

=0 (1=py+1-p=p

Wi now consider a process which 1s a sequence of n imdependent alterna-
tives each yielding the result &, = 0, 1, ¢ = 1,2, ... . n. We characterize the
result of the process by the variable

k:Zk,: .

which has the range
e (RPPAPUY

A given process yields the result & if x; = 1 for & of the n alternatives and
i; = 0 for (n — k) alternatives. The probability for the sequence
k‘|=ff'.h:.“_-=.l{&=] 5 "-Jri|='---':h..lr=”

is p*(1 — p)"*. But this is only one particular sequence leading 1o the result
k. In total there are
o nl
(f: Tkl — k!

Al =128 =1"=1

such sequences where

Therelore, the probability that our process yields the result k is

Pk) = (;)Fkﬂ —pyt

This is the binomial probability distribution. The expectation value can be
computed by introducing P (k) into the definition of (£} or, even simpler, from

ki =Y (&) =np
i=1

In Figure G.1 we show the probabilities P (k) for various values of i but
for a fised value of the praduct & = np. The distribution changes drastically
for small values of n but seems to approach a limiting distribution for very
large n, lndeed, we can write

l ! 1_-£u
Plk) = = (l) {—”}k

Klon— k)t \n (1—2)
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np = 3.000
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Fig. G.1. Binomial distributions for various values of n but fixed product np = 3.
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I the limit n == oo every term in brackets in the last factor approaches one,

and since
;‘. A :
lim (I - —) =g
H—+ 00 n

R

we have

This is the Paisson probability distribution. It is shown for various values of
the parameter A in Figure G.2. The expectation value of & is

[ 2]

oo, ok
A ATy
(k) = Zkﬁﬂ"‘:Zﬂk—!L
k=il (=1
o0

?'“j"k_l ~X = Al —A "
Z{k—-l}|ﬂ :JLZ_E- = A

k=1

Il
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Fig. (.2, Poisson distributions for various values of the parameter &,

In a similar way one finds
k) = ha + 1)

and therelore, alse the varance of £ is equal to &,

viar{dd

([k _ m:ﬂ} < (E kRN {J.:}l)
2y — 24k + (k) = (&%) — (kY
i+ =A =2

The Poisson distribution is markedly asymmetric for small values of A, For
farge &, however, it becomes symmetric about ils mean value A and in that
case its bell shape resembles that of the Gaussian distribution.
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Physical Constants

Planck’s constant o= 41361077 eV . s = 6,626+ *9““1‘5'
ho= h/2x) = 6.582.10 "ev.s
= 1.055: 107 )us
speed of light ¢ =2998 10%ms !
elementary charge o= 1602 107"C
) ) @ |
fine-struclure constant

= 4 ephic = 137.036

electron mass me =0.5110MeV/e? = 9.110- 10 kg

proton mass my = 938 IMeV /et = 167310 kg

neutron mass iy =939.6MeV/c® = 1.675-10 kg
Conversion Factors

mass lkg = 5.609. 107 v/t . leV/c? =1.783- 10 kg
energy 151=6.241-10%ey , eV = 1.602. 10791

momentum 1 kg-ms™' = 1L.871-107eV/e, leVie=5345-10 kg ms~"




he aim of this book is to explain the basic concepts and phenomena of quantum
mechanics by means of visualization. Computer-generated illustrations are used

extensively throughout the text, helping to establish the relation between quantum
mechanics—wave functions, interference, atomic structure, and so forth—and classical
physics—point mechanics, statistical mechanics, and wave optics. Even more important,
by studying the pictures in parallel with the text, readers develop an intuition for such
notoriously abstract phenomena as

the tunnel effect

excitation and decay of metastable states

wave packet motion within a well

systems of distinguishable and indistinguishable particles
» free wave packets and scattering in three dimensions

-

angular momentum decomposition
stationary bound states in various three-dimensional potentials
« Kepler motion of wave packets in the Coulomb field

spin and magnetic resonance

Hlustrations from experiments in a variety of fields, including chemistry, and molecular,
atomic, nuclear, and particle physics, underline the basic as well as the practical impor-
tance of quantum mechanics.

This third edition includes a CD-ROM with all illustrations from the book in full color,
suitable for direct display or for printing out as posters or teaching aids. It also includes a
new chapter on quantile motion and tunneling time, as well as some additional phe-
nomena and examples.

From reviews of earlier editions:

Most serious students of physics and all of their teachers will want to consider having this
orderly and graphic outline of introductory quantum theory at their fingertips.
—American Journal of Physics

I'he book is of high quality and well written.... [It] helps the student of quantum
mechanics get a better intuition of the subject.
—International Journal of Quantum Chemistry

I'his is a unique book.
—Nature
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