Marinko Spasojevi¢

Vladimir Pecanac

ULTIMATE ASP.NET
CORE 3 WEB API

From Complete Noob To
Six-Figure Backend Developer

Made with @ by: '.
$

CodeMaze

http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

(‘ Ultimate ASP.NET Core 3 Web API

:‘ Ultimate ASP.NET Core 3 Web API

TABLE OF CONTENTS

1. PROJECT CONFIGURATION.....cccccuvmrunmsnnmnnmsnnmsnnssnnsnnnsnnsnnnsnnnnnns 11

1.1 Creating @ New Projectccciiiiiii i masmssnsssnssssasssansnansnansnnnsnnnsnnnns 11
1.2 launchSettings.json File Configurationcccvcciieciisiiesrie v v v snassnanes 13
1.3 Program.cs and Startup.cs Explanationsccuicivimisnnsnr s ssvssnassnanes 14
1.4 Extension Methods and CORS Configuration......ccccccvicmicricsnnssrsransnanses 16
1.5 IIS Configurationccciiciiiiccre i rre v v v s s s s s r s rn e 17
1.6 Additional Code in the Startup Classcccvcctieiiirie i s v s rre s e s s rra n e 19
1.7 Environment-Based Settingscccciiiiiiiiimicinicsncsnnsnrsnr s rr s rr s r s r i n e 20
2. CONFIGURING A LOGGING SERVICE......cccttsummsmmsnnsssssnnsssssnnnnnns 23
2.1 Creating the Required Projectsccccvimmmiemieririe i snesmessessessasnassassansnnsas 23
2.2 Creating the ILoggerManager Interface and Installing NLog 24
2.3 Implementing the Interface and Nlog.Config File......cccciveiirververrarrannannas 26
2.4 Configuring Logger Service for Logging Messagesccvarverrerrerrerrarrannanss 27
2.5 DI, IoC, and Logger Service Testing ..cccvcevemrmmimrimmimieriersessessasressnssansannnns 29
3. DATABASE MODEL AND REPOSITORY PATTERN.......cccsvveeemrnnnes 31
3.1 Creating Modelscciiiiiiiiriiir i s s s sy 31
3.2 Context Class and the Database Connection............ccvcvivrriririnvmsssm e, 33
3.3 Migration and Initial Data Seed..........cccvimiiimiiriis i s 35
3.4 Repository Pattern LOgiC ..cuiciiiiirmrmrmrmra s sssmsss s s s s snnsnnsnnsnnsnnnnnnnnns 38

:‘ Ultimate ASP.NET Core 3 Web API

3.5 Repository User Interfaces and Classescuccviiminininrssnsssasssansnanns 40

3.6 Creating a Repository Managerc.ccicveriererimrasiesasimmassesassesassasassasasnnsannns 42

4. HANDLING GET REQUESTS........cicmvmmmmssn s s s s s s snn s 46

4.1 Controllers and Routing in WEB API.........ccciimiiimimrimsmsnmse s snnsasnnsnsnnnnsns 46
4.2 Naming OUr RESOUICES .. uuuuiumimrmseransmsansessnsnssnsessnsnsansassnsassnsnssnsnsnnsnnsnnnnnns 48
4.3 Getting All Companies From the Databaseccciviiiinnsin v s snnnse 49
4.4 Testing the Result with Postman.........c.ccuiiiiiiiinisnis i i i s e e v snm e 52
4.5 DTO Classes vs. Entity Model Classesccccvummimrimrimsimsin i s s snnsnnsnnssnnnnss 54
4.6 Using AutoMapper in ASP.NET COre.....ccccuummammmmamssmssnssnssnsunssnssnssnsnnsnnnsns 57
5. GLOBAL ERROR HANDLING......ccccttttmrmnnnnmmmmmmssssnnnssssssssssnnnnnnnnns 60
5.1 Handling Errors Globally with the Built-In Middleware...........cccvcrveiienunss 60
5.2 Startup Class Modification.........ccciiiiiiiiinnnnsri s n e n s nmsnannnns 61
5.3 Testingthe Result.........ciiciiiiiiiii i srssrr s s v e 62

6. GETTING ADDITIONAL RESOURCES.........ccvvmmmmnmsnnmsnesnnsnnnn . 64

6.1 Getting a Single Resource From the Database.......cccivirinrmnnnannnnsnanss 64
6.2 Parent/Child Relationships in Web API........ccccviiimsimsimrne i s s ssnssnssannnns 66
6.3 Getting a Single Employee for COMPaNyccccveevimrimsimssmssnssessnssnssssnssnnsnns 69

7. CONTENT NEGOTIATION......cccvvemvmrmnmnns s ssnssns s snnssnnsnnnsnnnnnnsn 7 2

7.1 What Do We Get Out of the BoX?.....c.ccuvemvemmnmmmmimmsmsse i s s s ssnssnsnnssannnns 72
7.2 Changing the Default Configuration of Our Projectccvcvveiiiiiennennans 73
7.3 Testing Content Negotiation.........ccvciviiiinnnnsssrs i s r e nn s 74

:‘ Ultimate ASP.NET Core 3 Web API

7.4 Restricting Media TyPes -.iciiiirimrrrmrmr s s s s srnsrasnnsnnsnnnnnnnnnnnns 74
7.5 More About Formattersccciiiiiiiii i s v s s s s s 75
7.6 Implementing a Custom Formatterc.ciiiiiiiiiiiciiincsisns s s e 76
8. METHOD SAFETY AND METHOD IDEMPOTENCYcocccrvmmssannsnss 79
9. CREATING RESOURCEScctttemrmummmsnnsssansssnnsssnsssnnsssnnsssnnsnnnnnnns 81
9.1 Handling POST ReqUEStSc.ccuimiimrimmieminmmmsmsnm s s snn s s snnsnnsnnsnnnnnnnnns 81
9.2 Code EXplanationcicciiiiririsisiss s ssssssassasssssansan s s snnsnnssnssnnsnnnnnnns 83
9.3 Creating a Child RESOUICEec.icrimrimrimrimrimmsansansamssnsansan s s s sansanssnsnnnnnnnns 85
9.4 Creating Children Resources Together with a Parentcccvcviiieiienes 88
9.5 Creating a Collection of RESOUIrCEeSciumrumrumrimrierie i i i s s ssasrassassansanns 90
9.6 Model Binding in API.......ccuvciierierimsiessassassassansansanssnsansansansansansnnssnnnnnnnnnnns 93
10. WORKING WITH DELETE REQUESTScccccmrmvummmmmsnnnmsssannnnnnnsns 97
10.1 Deleting a Parent Resource with its Childrencccicciieimiesriecrve v snanses 98
11. WORKING WITH PUT REQUESTS.....ccccttvmmmrnsnnmmsssnnnssnsnnnnsnas 101
11.1 Updating EMPIOYEecciieririemiemianiamsamsasssmsan s sansnnsanssnssnssnssnssnssnnsnnsnnnnns 101

11.1.1 About the Update Method from the RepositoryBase Classccevvens 104
11.2 Inserting Resources while Updating Onec.ccvviiiiemimiene s nnnnannnss 105
12. WORKING WITH PATCH REQUESTScccocmrmmnnmmsssnnnnsssnnnnnnns 107
12.1 Applying PATCH to the Employee Entityccovciiiieiirimine v nesansannnss 108
13. VALIDATION......ccccmrmiummmnnsnnnnsssnnsssssannnssssnnnsssnnnnsssnnnnsnsnnnnnnns 114

:‘ Ultimate ASP.NET Core 3 Web API

13.1 Validation while Creating ReSOUICe........cccrimimrimierimierinsesimse i snnsnsnnnnsas 115

13.1.1 Validating INt Ty PE cuuiriiiii it a e e a e e anea e aneanens 119
13.2 Validation for PUT ReqUestS....ccccrmrummummimmsmmierse s s s ssassnssnssnssassnnsnnnnns 121
13.3 Validation for PATCH Requests......cccocvimmimmimmiri i i s s s s ssnssassassnnnnns 123

14. ASYNCHRONOUS CODE........ccsvmmnmsmnmmnnsnnmssnsssssnnsssnssnnsnnnnnnsss 127

14.1 What is Asynchronous Programming?....c.ccccvcrimmerimmerimsessmsessnsasnnsnsnnnnsas 127

14.2 Async, Await Keywords, and Return Types......ccvcrverimrimrimrimssnssnssansnnsnns 128
14.2.1 The IRepositoryBase Interface and the RepositoryBase Class Explanation 130

14.3 Modifying the ICompanyRepository Interface and the

CompanyRepository Class .i.iviiiiiiiia i rasrassras s srassmasssasssanssnnssanssanssnnsnnnns 130
14.4 IRepositoryManager and RepositoryManager Changesccovcvvernnennnes 131
14.5 Controller Modification.......cccuviciiiiiis i s v s s v e e 132
15. ACTION FILTERS....cciiieiciiciiinsissnsss s snnnssssnnsssssssnssnnnnnnnnsnsnnnns 136
15.1 Action Filters Implementation........c.ccicciiiiriis i i i s s ranna s 136
15.2 The Scope of Action Filters......cccccvmrmrimnmiri i i nesnesnesnesressassassansnnnans 137
15.3 Order of INVOCAtiONcicieiimirier i i s i s s v v v r s s nmnannnnas 138
15.4 Improving the Code with Action Filtersccicierieriariernere v srmrssansannans 140
15.5 Validation with Action Filtersc..cccviiiiis i e e e 140
15.6 Dependency Injection in Action Filters.......ccocioiciicie v v sr v v snnsnannans 144
16. PAGING ...cccviiieeiiiiiiiissss s snnsssssss s nnasannn s s nnnanannnnnnnsnnnnnns 150
16.1 What is Paging?cccciiimierimierimsm s i i i ssssassnsnsansnsansnsansnsnnsnsnnnnsns 150
16.2 Paging Implementation........c.cciciiiiiiiiiis i 151

:‘ Ultimate ASP.NET Core 3 Web API

16.3 Concrete QUEIY .cuiciiiirieriesiessassassassas st s sansansansansansansansanssnssnsnnnsnnnnns 153

16.4 Improving the Solutionccciiiiiic i s s s e e 156

17. FILTERING........ccvvrvmrnmrnmsnmsnsssssssss s s s s s ssnsnnssnsnnsnnsnnsnnsns 160

17.1 What is Filtering?cccuiiiimiiii i i i i s s n s s s s s s mnnnns 160
17.2 How is Filtering Different from Searching?.........ccociciiiciiiciiiciiesnness 161
17.3 How to Implement Filtering in ASP.NET Core Web APIcccvvvemuees 162
17.4 Sending and Testing @ QUEerY...c.ccimramramssmssmssmssnsunssnssnssnssnssnssnssnssnnsnnnnns 164

18. SEARCHINGccvvrimrimrnmsimsnsssss s s s s s s snnsnnsnnsnnsnnsnnsnnsns 167

18.1 What is Searching?........ccciciiiiminmnmmnss s s s s s s s s s s nannnnnnns 167
18.2 Implementing Searching in Our Application........ccccvcriririin v nansannass 167
18.3 Testing Our Implementationcciciiiiiiisis i v v e s 169

19.1 What is SOrting?...ccuiciiiiiiiirasnsa s s s s s s s s s snnsnnsnnnnnnnnns 172
19.2 How to Implement Sorting in ASP.NET Core Web APIcccecvvemumnunns 174
19.3 Implementation — Step by Step.....ccvciiiiiiisisis s 176
19.4 Testing Our Implementationcccciiiiiiiiis e s 178
19.5 Improving the Sorting Functionalityc.cciiiiiiiiiisis i i s s s s s snnss 179

20. DATA SHAPING.....cccrvemmmsnnssse s snnssss s s ssnssnnnsnnssnnsnnnsnnnnnns 182

20.1 What is Data Shaping? ...cccvciiririemmemmammansamsanssnssnssnssessnssnssnssnssnssnssnnsannas 182
20.2 How to Implement Data Shapingcccccvemmimiri s i i s s s s ssasnansas 183
20.3 Step-by-Step Implementation........ccvoviiiriinisris i 185

:‘ Ultimate ASP.NET Core 3 Web API

20.4 Resolving XML Serialization Problems.......c.ccvciiiiirmirmismi s s s 189

21. SUPPORTING HATEOASc.ccrvmimmnmsnmsnmssssssssssssssssssnssnsnnsnnss 192

21.1 What is HATEOAS and Why is it so Important?........ccccciciiicvv v vannes 192
21.1.1 Typical Response with HATEOAS Implemented.........c.coviiiiiiiiiiiinnnnens 193
21.1.2 What is @ LiNK? .o s 193
21.1.3 Pros/Cons of Implementing HATEOASciiiiiiiiiiiiis s 194

21.2 Adding Links in the Projectciciiiiiiiiiiiiirie i s s sn s s s nn e 194

21.3 Additional Project Changesc.ccuvemiemiummmssmssmssm s s s s s s s snnsnnsnnnnns 197

21.4 Adding Custom Media TyPeS....ccuvuriurmmmummmsamssnssnssnssnsunssnsansanssnssnssnsnnnnns 198
21.4.1 Registering Custom Media TYPES .cuiiiiiiiiiiii i i i i 199
21.4.2 Implementing a Media Type Validation Filterc.ccoiiiiiiiiiiiiiiiniiin e, 200

21.5 Implementing HATEOAS......ccoiciiimimnn s s s ssa s ssasssasssansnansnnnnns 201

22. WORKING WITH OPTIONS AND HEAD REQUESTScctvvuueers 207

22.1 OPTIONS HTTP ReqUEeStccuicrimiimmiemianmansamsanssnssnsnn s sanssnssnsnnsnnsnnsnnnnnnnns 207

22.2 OPTIONS Implementation ...ccccvcvermrrmsmsmssi i s sne s s ssasrasrassansnnsas 207

22.3 Head HTTP Request.....cciiciimminsnsnnssnre s s s s ns s nsasnnnssnansnnnsnnnnns 209

22.4 HEAD Implementation. . cciccvcierramrmmanmasmsnsssssassasssssassassassnssnsssssansnnsansas 209

23. ROOT DOCUMENTcciiiiiinncccesmmnsssssnssssssnsssssnnnnsssssnssnnnnnnnnnns 211

23.1 Root Document Implementationc.ccvecvimimirie i rne i sre s sresresra s sranns 211

24. VERSIONING APIS.....cccciiicicrsnsssssss s ssnnsssssn s nnnnnnnnnnnnnnns 216

24.1 Required Package Installation and Configurationccccviieiieiiennnnes 216

24.2 Versioning EXamplesc.ccuvciirimimimmammammamsssssnssssssssessnssnssassnssnssnssnnsnnnas 218
24.2.1 USIiNg QUENY SEING uiiiiiiiiiii i i as e s e e e rae s 219

:‘ Ultimate ASP.NET Core 3 Web API

24.2.2 USING URL VerSiONING ..ouuiueitiiitiiiiiniisese st sesesasssassaasnasnassassnnns 220
24.2.3 HTTP Header Versioningccouie i e e e e e e e neeeaenes 221
24.2.4 Deprecating VEIrSIONS ..iuiieiiiiiiiiiiiiiiiaiie st ss s saasaasaaanaens 222
D A S U 1= o T I @00] 0 1Y = o | o o 1= 223

25.1 About CacChing ...c.ciciiiermirasierasisasi s s ssasansasannasansasansnss 224
A I R O Yo o T IV o 1= PSPPI 224
25.1.2 Response Cache Attribute.....c.cvieiiiiii 225

25.2 Adding Cache Headers........ccvcuverimmiemnnmmamsmssmssmssnssnssnsnnssnssnsunsnnsnnsnnnnnnnns 225

25.3 Adding Cache-Store.....cciiiiiiimiiimicimismssrrsrrsrr s s s s s s s s s ssassnansnannns 227

25.4 Expiration Modelccciiiiiiiiiiinncinrs s s s s n 229

25.5 Validation Model.........cciciiiiiiriiiiriirs s s 231

25.6 Supporting Validation......ccviciiicinicinicinnssnnssnrsssssssssssssssasssasssasssassnannns 233
25.6.1 CoNfIgUIAatioN ..iii i 234

25.7 Using ETag and Validation......ccccvcvmrmrmmnmmimsmine s sme s ssassassassassansansas 236

26. RATE LIMITING AND THROTTLINGccciiiineccm s nnnnnnnnnnnnnnns 240

26.1 Implementing Rate Limiting....ccoocmiciicimncinncsnscsrr s srr s rr s rs s sre s nse s nmnnas 240

27. JWT AND IDENTITY .cciiiiiinnccccmcmmnnsssnnsssssssnsssnnnnssssssnnnnnnnnnnnnns 244

27.1 Implementing Identity in ASP.NET Core Project......ccccvrverververrarnannansas 244

27.2 Creating Tables and Inserting Roles.........cciiiirmiirmirnsiarnssass s s 246

27.3 User Creationcicciciiirsiriirsissi s s s s s s s s s s s snmsannmsansnsannss 248

27.4 Big PictUre ...ciciiciiiiirissire i n s n s s s n s n s s 251

.y T N » T L1 T 252

:‘ Ultimate ASP.NET Core 3 Web API

27.6 JWT Configuration....ccicieiirimirasisassesassesassesassesassasassesassasansasansasansnsansnss 254
27.7 Protecting ENdpoints.......cccviiiiiiiiiriarie s sass s s s ssa s s snmsannss 256
27.8 Implementing Authenticationccciciiiiiiiiiiirniiers s e 257
27.9 Role-Based Authorization.........ccciciiiiiiiiiiiersie i s s s s nn s 263

28. DOCUMENTING API WITH SWAGGER.......cccccvvniernnsnnesnnnnnn:: 266

28.1 AbOUt SWaQgQger....covrierimrimrimrie st s s s s s sassansansansansansansansansnnsnnssnnnnnnns 266
28.2 Swagger Integration Into Our Project.....cccicvimmiemmiemssenssnssanssnnssnnsnnnsns 267
28.3 Adding Authorization SUPpPOrtcccciiviiirirr i e nas 271
28.4 Extending Swagger Configurationcicvermirmirmirass s s sansasansass 274
29. DEPLOYMENT TO IIS....cccccutmmnmmmmmsnnsmmsnnnsssssnnsssssnnnnnnsnnnnnnnnnnns 278
29.1 Creating Publish FileS......cvcuiiiiimiisnsnssss s s s s s s s s s s nnnnnas 278
29.2 Windows Server Hosting Bundlecccciiiiimisi i i i s s s s snnsnnsnns 280
29.3 INnStalling IIS......cciiiimrimrumrumsnmssessessassansansansansansansansansunsansnnsnnsnnsnnsnnnnnnnns 280
29.4 Configuring Environment File......c.ccciiiiiiiisiisi i i i s s s s s snmsnasans 283
29.5 Testing Deployed Applicationcccvevmrmmimiri i s ne s s s srasrassansanns 285

10

:‘ Ultimate ASP.NET Core 3 Web API

1 PROJECT CONFIGURATION

Configuration in .NET Core is very different from what we’re used to in
.NET Framework projects. We don’t use the web.config file anymore, but
instead use a built-in Configuration framework that comes out-of-the-box
in .NET Core.

To be able to develop good applications, we need to understand how to
configure our application and its services first.

In this section, we’ll learn about configuration methods in the Startup
class and set up our application. We will also learn how to register
different services and how to use extension methods to achieve this.

Of course, the first thing we need to do is to create a new project, so,
let’s dive right into it.

11 Creating a New Project
Let's open Visual Studio and create a new ASP.NET Core Web Application:

Create a new project web x| lamguage - Patom - Projsrype -

Recent prOJeCt templates @ ASP.NET Core Web Application
o)

Project templates for creating ASP.NET Core applications for Windows, Linux and

Console App (NET Framework) =g mac0S using .NET Care or NET Framework. Create Razor Pages, MVC, Web APl and
Single Page (SPA) Applications.
*D ASP.NET Core Web Application c#
‘Windows Linux mac0s ‘Web
E Conscle App (.NET Core) %

ASP.NET Web Application (NET Framework)

Project templates for creating ASP.NET applications. You can create ASP.NET Web
Forms, MVC, or Web AP applications and add many other features in ASP.NET.

&

Windows Web

11

»‘0 Ultimate ASP.NET Core 3 Web API

Now let's choose a name and location for our project:

Configure your new project

ASP.NET Core Web Application ¢ windows Unux mac0s Weo

Project name

CompanyEmployees

Location

E\CodeMaze\CompanyEmployees -

Selution name (7

CompanyEmployees

I:‘ Place solution and project in the same directory

Next we want to choose a .NET Core and ASP.NET Core 3.1 from the
dropdown lists respectively. Now we can proceed by clicking the Create

button and the project will start initializing:

Create a new ASP.NET Core web application

‘.NET Core = | | ASP.MET Core 3.1 e
- . .
1 Empty Authentication
N
An empty project template for creating an ASP.MET Core application. This template does not have any content in it. Mo Authentication
Change
A project template for creating an ASP.NET Care application with an example Contraller for a RESTful HTTP service.
This template can also be used for ASP.NET Core MVC Views and Controllers,
Advanced
@ Web Application Configure for HTTPS
A project ternplate for creating an ASP.MET Core application with example ASP.MET Razor Pages content, I:l Enable Docker Support

. - - (Requires Docker Desktop)
@ Web Application (Model-View-Controller)

A project template for creating an ASP.NET Core application with example ASP.NET Caore MYC Views and Linus -
Controllers, This template can also be used for RESTful HTTP services,
g Angular
A project ternplate for creating an ASP.MET Core application with Angular
@) React.js
Author: Microsoft
A project terplate for creating an ASP.MET Core application with Reactjs - Source: .NET Core 2.1.0

Get additional project templates
Back Create

12

(‘ Ultimate ASP.NET Core 3 Web API

1.2 launchSettings.json File Configuration

After the project has been created, we are going to modify the
launchSettings.json file, which can be found in the Properties section of

the Solution Explorer window.

This configuration determines the launch behavior of the ASP.NET Core
applications. As we can see, it contains both configurations to launch
settings for IIS and self-hosted applications (Kestrel).

For now, let’s change the launchBrowser property to false to prevent

the web browser from launching on application start.

{

"$schema": "http://json.schemastore.org/launchsettings.json",
"iisSettings": {
"windowsAuthentication": false,
"anonymousAuthentication": true,
"iisExpress": {
"applicationUrl": "http://localhost:58753",
"sslPort": 44370

}
¥
"profiles": {
"IIS Express": {
"commandName": "IISExpress",
"launchBrowser": false,
"launchuUrl”: "weatherforecast"
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
s
"CompanyEmployees™: {
"commandName": "Project",
"launchBrowser": false,
"launchUrl": "weatherforecast”,
"applicationUrl": "https://localhost:5001;http://localhost:5000",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"

}
¥
}
¥

13

:‘ Ultimate ASP.NET Core 3 Web API

This is convenient, since we are developing a Web API project and we
don't really need a browser to check our API out. We will use Postman
(described later) for this purpose.

If you've checked Configure for HTTPS checkbox earlier in the setup
phase, you will end up with two URLs in the applicationUrl section — one
for HTTP, and one for HTTPS.

You’ll also notice the ss1Port property which indicates that our
application, when running in IISExpress, will be configured for HTTPS
(port 44370), too.

Additional info: Take note that this HTTPS configuration is only valid in
the local environment. You will have to configure a valid certificate and

HTTPS redirection once you deploy the application.

There is one more useful property for developing applications locally and
that’s the 1launchUrl property. This property determines which URL will
the application navigate to initially. In order for launchUrl property to
work, we need to set the launchBrowser property to true. So, for
example, if we set the 1launchUrl property to weatherforecast, we will
be redirected to https://localhost:5001/weatherforecast when we

launch our application.

1.3 Program.cs and Startup.cs Explanations

Program.cs is the entry point to our application and it looks like this:

public class Program

{

public static void Main(string[] args)

{
}

CreateHostBuilder(args).Build().Run();

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureWebHostDefaults(webBuilder =>

14

:‘ Ultimate ASP.NET Core 3 Web API

{
webBuilder.UseStartup<Startup>();
s
}

If you are familiar with how things work in .NET Core 1.0, you will find
this code considerably smaller than it used to be.

You might wonder why some parts are missing like the UseKestrel() or
the UseIISIntegration(). The CreateDefaultBuilder(args)
method encapsulates all that stuff and makes this code more readable,
but it keeps all the magic present. You can still fine grain the

configuration if you want to.

The CreateDefaultBuilder(args) method sets the default files and
variables for the project and logger configuration. The fact that the logger
is configured earlier in the bootstrapping process means we can log issues
that happen during bootstrapping as well, which was a bit harder in

previous versions.

After that, we can call webBuilder.UseStartup<Startup>() to
initialize the Startup class too. The Startup class is mandatory in
ASP.NET Core Web API projects. In the Startup class, we configure the

embedded or custom services that our application needs.

When we open the Startup class, we can find the constructor and the two
methods which we’ll extend quite a few times during our application

development.

As the method name indicates, the ConfigureServices method is used
to do exactly that: configure our services. A service is a reusable part of

the code that adds some functionality to our application.

In the Configure method, we are going to add different middleware

components to the application’s request pipeline.

15

:‘ Ultimate ASP.NET Core 3 Web API

Since larger applications could potentially contain a lot of different
services, we can end up with a lot of clutter and unreadable code in the
ConfigureServices method. To make it more readable for the next
person and for ourselves, we can structure the code into logical blocks

and separate those blocks into extension methods.

1.4 Extension Methods and CORS Configuration

An extension method is inherently a static method. What makes it
different from other static methods is that it accepts this as the first
parameter, and this represents the data type of the object which will be

using that extension method. We'll see what that means in a moment.

An extension method must be defined inside a static class. This kind of
method extends the behavior of a type in .NET. Once we define an
extension method, it can be chained multiple times on the same type of

object.
So, let’s start writing some code to see how it all adds up.

We are going to create a new folder Extensions in the project and create
a new class inside that folder named ServiceExtensions. The

ServiceExtensions class should be static.

public static class ServiceExtensions

{
¥

Let’s start by implementing something we need for our project

immediately so we can see how extensions work.

The first thing we are going to do is to configure CORS in our application.
CORS (Cross-Origin Resource Sharing) is a mechanism to give or restrict

access rights to applications from different domains.

16

:‘ Ultimate ASP.NET Core 3 Web API

If we want to send requests from a different domain to our application,
configuring CORS is mandatory. So, to start off, we’ll add a code that

allows all requests from all origins to be sent to our API:

public static void ConfigureCors(this IServiceCollection services) =>
services.AddCors(options =>

{
options.AddPolicy("CorsPolicy", builder =>

builder.AllowAnyOrigin()
.AllowAnyMethod()
.AllowAnyHeader());

s

We are using basic CORS policy settings because allowing any origin,
method, and header is okay for now. But we should be more
restrictive with those settings in the production environment. More

precisely, as restrictive as possible.

Instead of the AllowAnyOrigin() method which allows requests from any
source, we can use the WithOrigins("https://example.com™) which will
allow requests from only from that concrete source. Also, instead of
AllowAnyMethod() that allows all HTTP methods, we can use
WithMethods ("POST", "GET") that will allow only specific HTTP methods.
Furthermore, you can make the same changes for the AllowAnyHeader()
method by using, for example, the WithHeaders("accept"”, "content-

type") method to allow only specific headers.

1.5 IS Configuration

ASP.NET Core applications are by default self hosted, and if we want to
host our application on IIS, we need to configure an IIS integration which
will eventually help us with the deployment to IIS. To do that, we need to

add the following code to the ServiceExtensions class:

public static void ConfigureIISIntegration(this IServiceCollection services) =>
services.Configure<IISOptions>(options =>

{

17

:‘ Ultimate ASP.NET Core 3 Web API

s

We do not initialize any of the properties inside the options because we
are fine with the default values for now. But if you need to fine tune the

configuration right away, you might want to take a look at the possible

options:
Option Default Setting
AutomaticAuthentication true If true ,the authentication middleware sets the HttpContext.User and responds to generic
challenges. If false | the authentication middleware only provides an identity (

HttpContext.User | and responds to challenges when explicitly requested by the
AuthenticationScheme . Windows Authantication must be enabled in 1S for
AutomaticAuthentication to function.

AuthenticationDisplayName null Sets the display name shown to users on login pages.

ForwardClientCertificate true If true andthe MS-ASPNETCORE-CLIENTCERT request headeris prasent, the

HttpContext.Connection.ClientCertificate is populated.

Now, we mentioned extension methods are great for organizing your code
and extending functionalities. Let’s go back to our Startup class and
modify the ConfigureServices and the Configure methods to support
CORS and IIS integration now that we've written extension methods for

those functionalities:

public void ConfigureServices(IServiceCollection services)

{
services.ConfigureCors();
services.ConfigureIISIntegration();
services.AddControllers();

}

And let's add a few mandatory methods to our Configure method:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{
if (env.IsDevelopment())

{
}

app.UseDeveloperkExceptionPage();

18

:‘ Ultimate ASP.NET Core 3 Web API

else

app.UseHsts();

app.UseHttpsRedirection();
app.UseStaticFiles();

app.UseCors("CorsPolicy");
app.UseForwardedHeaders (new ForwardedHeadersOptions

ForwardedHeaders = ForwardedHeaders.All

3

app.UseRouting();
app.UseAuthorization();
app.UseEndpoints(endpoints =>

{
endpoints.MapControllers();
1

}
We've added CORS and IIS configuration to the ConfigureServices

method. Furthermore, CORS configuration has been added to the
application’s pipeline inside the Configuration method. But as you can
see, there are some additional methods unrelated to IIS configuration.
Let’s go through those and learn what they do.
e app.UseForwardedHeaders () will forward proxy headers to the
current request. This will help us during application deployment.
e app.UseStaticFiles() enables using static files for the request. If
we don't set a path to the static files directory, it will use a wwwroot

folder in our project by default.

1.6 Additional Code in the Startup Class

Configuration in .NET Core 3.1 is a bit different than it was in 2.2, so we
have to make some changes in the Startup class. First, in the
ConfigureServices method, instead of AddMvc () as used in 2.2, now

we have AddControllers (). This method registers only the controllers

19

:‘ Ultimate ASP.NET Core 3 Web API

in IServiceCollection and not Views or Pages because they are not

required in the Web API project which we are building.

In the Configure method, we have UseRouting() and
UseAuthorization() methods. They add routing and authorization

features to our application, respectively.

Finally, we have the UseEndpoints() method with the
MapControllers() method, which adds an endpoint for the controller’s

action to the routing without specifying any routes.

Microsoft advises that the order of adding different middlewares to the
application builder is very important. So the UseRouting() method
should be called before the UseAuthorization() method and
UseCors() or UseStaticFiles() have to be called before the

UseRouting() method.

1.7 Environment-Based Settings

While we develop our application, we use the “development”
environment. But as soon as we publish our application, it goes to the
“production” environment. Development and production environments
should have different URLs, ports, connection strings, passwords, and

other sensitive information.

Therefore, we need to have a separate configuration for each
environment and that’s easy to accomplish by using .NET Core-provided

mechanisms.

As soon as we create a project, we are going to see the
appsettings.json file in the root, which is our main settings file, and
when we expand it we are going to see the

appsetings.Development. json file by default. These files are separate

20

:‘ Ultimate ASP.NET Core 3 Web API

on the file system, but Visual Studio makes it obvious that they are

connected somehow.

4 [T appsettings.json

IT appsettings.Development.json
The apsettings.{EnvironmentSuffix}.json files are used to override the
main appsettings.json file. When we use a key-value pair from the
original file, we override it. We can also define environment-specific

values too.

For the production environment, we should add another

file: appsettings.Production. json:

4 [T appsettings.json
IT appsettings.Development.json
LT appsettings.Production.json

The appsettings.Production. json file should contain the

configuration for the production environment.

To set which environment our application runs on, we need to set up the
ASPNETCORE_ENVIRONMENT environment variable. For example, to run
the application in a production, we need to set it to the Production value

on the machine we do the deployment to.

We can set the variable through the command prompt by typing set
ASPNETCORE_ENVIRONMENT=Production in Windows or export
ASPNET_CORE_ENVIRONMENT=Production in Linux.

ASP.NET Core applications use the value of that environment variable to
decide which appsettings file to use accordingly. In this case, that will be

appsettings.Production. json.

21

:‘ Ultimate ASP.NET Core 3 Web API

If we take a look at our launchSettings.json file, we are going to see

that this variable is currently set to Development.

In the next chapter, we'll learn how to configure a Logger service because
it's really important to have it configured as early in the project as

possible.

22

:‘ Ultimate ASP.NET Core 3 Web API

2 CONFIGURING A LOGGING SERVICE

Why does logging messages matter so much during application
development? While our application is in the development stage, it's easy
to debug the code and find out what happened. But debugging in a

production environment is not that easy.

That's why log messages are a great way to find out what went wrong
and why and where the exceptions have been thrown in our code in the
production environment. Logging also helps us more easily follow the flow

of our application when we don't have access to the debugger.

.NET Core has its own implementation of the logging mechanism, but in
all our projects we prefer to create our custom logger service with the

external logger library NLog.

That is exactly what we are going to do in this chapter.

2.1 Creatingthe Required Projects

Let’s create two new projects. In the first one named Contracts, we are
going to keep our interfaces. We will use this project later on too, to
define our contracts for the whole application. The second one,

LoggerService, we are going to use to write our logger logic in.

To create a new project, right-click on the solution window, choose Add

and then NewProject. Choose the Class Library (.NET Core) project:

23

(‘ Ultimate ASP.NET Core 3 Web API

Add a new project | class library .net core X~ Language ~ Platform ~ Project type ~

Recent project templates Et,ii Class Library (NET Core)

A project for creating a class library that targets .NET Core.

B Class Library (.NET Core) e
c# Windows Linux macOs Likzrary
D ASP.NET Core Web Application c#
VB (|ass Library [.NET Core)
n!! ss Library)
Conscle App (NET Framework) c* B A project for creating a class library that targets .NET Core.

Visual Basic Windows Linux macOSs Likrary

F# . ET Caral
ni Class Library (.NET Core)
<

A project for creating a class library that targets .NET Core.

F# Linux mac0s Windows Likzrary

Finally, name it Contracts. Do the same thing for the second project and
name it LoggerService. Now that we have these projects in place, we

need to reference them from our main project.

To do that, navigate to the solution explorer. Then in the LoggerService
project, right click on Dependencies and choose the AddReference

option. Under Projects, click Solution and check the Contracts project.

Now, in the main project right click on Dependencies and then click on
Add Reference. Check the LoggerService checkbox to import it. Since
we have referenced the Contracts project through the LoggerService,

it will be available in the main project too.

2.2 Creating the ILoggerManager Interface and Installing NLog

Our logger service will contain four methods for logging our messages:

e Info messages
e Debug messages
e Warning messages

e Error messages

To achieve this, we are going to create an interface
named ILoggerManager inside the Contracts project containing those

four method definitions.

24

(‘ Ultimate ASP.NET Core 3 Web API

So, let’s do that first:

public interface ILoggerManager

{
void LogInfo(string message);
void LogWarn(string message);
void LogDebug(string message);
void LogError(string message);

Before we implement this interface inside the LoggerService project, we
need to install the NLog library in our LoggerService project. NLog is a

logging platform for .NET which will help us create and log our messages.

We are going to show two different ways of adding the NLog library to our
project.
1. In the LoggerService project, right click on the Dependencies and

choose Manage NuGet Packages. After the NuGet Package Manager
window appears, just follow these steps:

onﬂa"ed Updates NuGet Package Manager: LoggerService
Nlog.Extensions.Logging e R V] D Include prerelease Package source: | nugetorg ~ &}
(] NLog.Extensions.Logging & nugetorg
m NLog.Extensions.Logging by Microsoft Julian Verdurmen, 5,19M downloads v1.5.1
NLog provider for Microsoft. Extensions.Logging for usage in .NET Standard libraries and console
applicaties. Version: | Latest stable 1.5.1 "I Install I
'e Alyio.NLog.Extensions.Logging by Roy, 3.99K downloads V230
NLog provider for Microsoft's in ASP.NET Core “_" Options
.e VkNet.NLog.Extensions.Logging by inyutin_maxim, 636 downloads v1.3.3 Description
VkMet adaptive package NLog provider for Microsoft.Extensions.Logging for usage in JNET Standard NLeg provider for Micresoft.Extensions.Logging for usage
libraries and console applicaties. in .NET Standard libraries and censele applicaties.
: For ASP.NET Core, use MLog. Web.AspMetCore: https://
() Saritasa.Tools.NLog4 by Saritasa, 2.9K downloads AR wuwugetorg/packeges/HiLog Web.AspNetCore
NLogd implementation for Microsoft commeon logging infrastructure.
. Version: 131
Owneris):
Ea;(l;ap;ecskagais\icansed to you by its owner. MuGet is not responsible for, nor does it grant any licenses to, third-party Author(s): Micrasoft Julian Verdurmen
License: View License

D Do not show this again
Date published: Wednesday, June 5, 2019 (6/5/2019)

2. From the View menu, choose Other Windows and then click on the
Package Manager Console. After the console appears, type:

Install-Package NLog.Extensions.Logging -Version 1.5.1

After a couple of seconds, NLog is up and running in our application.

25

:‘ Ultimate ASP.NET Core 3 Web API

2.3 Implementing the Interface and Nlog.Config File
In the LoggerService project, we are going to create a new
class: LoggerManager. Now let’s have it implement the ILoggerManager

interface we previously defined:

public class LoggerManager : ILoggerManager

{
private static ILogger logger = LogManager.GetCurrentClassLogger();
public LoggerManager()
{
}
public void LogDebug(string message)
{
logger.Debug(message);
}
public void LogError(string message)
{
logger.Error(message);
}
public void LogInfo(string message)
{
logger.Info(message);
}
public void LogWarn(string message)
{
logger.Warn(message);
}
}

As you can see, our methods are just wrappers around NLog’s methods.
Both ILogger and LogManager are part of the NLog namespace. Now,
we need to configure it and inject it into the Startup class in

the ConfigureServices method.

NLog needs to have information about where to put log files on the file
system, what the name of these files will be, and what is the minimum

level of logging that we want.

26

:‘ Ultimate ASP.NET Core 3 Web API

We are going to define all these constants in a text file in the main project
and name it nlog.config. You'll need to change the path of

the internal log and filename parameters to your own paths.

<?xml version="1.0" encoding="utf-8" ?>

<nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
autoReload="true"
internallLoglLevel="Trace"

internalLogFile="d:\Projects\CompanyEmployees\Project\internal_logs\internallog.txt">

<targets>
<target name="logfile" xsi:type="File"

fileName="d:\Projects\CompanyEmployees/Project\logs\${shortdate} logfile.txt"
layout="¢{longdate} ${level:uppercase=true} ${message}"/>
</targets>
<rules>
<logger name="*" minlevel="Debug" writeTo="logfile" />

</rules>
</nlog>

2.4 Configuring Logger Service for Logging Messages

Setting up the configuration for a logger service is quite easy. First, we

need to update the constructor of the Startup class:

public Startup(IConfiguration configuration)

{

LogManager.LoadConfiguration(string.Concat(Directory.GetCurrentDirectory(),
"/nlog.config"));
Configuration = configuration;

}

Basically, we are using NLog’s LogManager static class with the

LoadConfiguration method to provide a path to the configuration file.

The next thing we need to do is to add the logger service inside the .NET

Core’s IOC container. There are three ways to do that:

o By calling the services.AddSingleton method, we can create a
service the first time we request it and then every subsequent
request will call the same instance of the service. This means that all

27

:‘ Ultimate ASP.NET Core 3 Web API

components share the same service every time they need it and the
same instance will be used for every method call.

o By calling the services.AddScoped method, we can create
a service once per request. That means whenever we send an HTTP
request to the application, a new instance of the service will be
created.

o By calling the services.AddTransient method, we can create a
service each time the application requests it. This means that if
multiple components need the service, it will be created again for
every single component request.

So, let’s add a new method in the ServiceExtensions class:

public static void ConfigurelLoggerService(this IServiceCollection services) =>
services.AddScoped<ILoggerManager, LoggerManager>();

And after that, we need to modify the ConfigureServices method to

include our newly created extension method:

public void ConfigureServices(IServiceCollection services
services.ConfigureCors();
services.ConfigurelISIntegration();
services.ConfigurelLoggerService();

services.AddControllers();

Every time we want to use a logger service, all we need to do is to inject
it into the constructor of the class that needs it. .NET Core will resolve

that service and the logging features will be available.

This type of injecting a class is called Dependency Injection and it is built
into .NET Core.

Let’s learn a bit more about it.

28

:‘ Ultimate ASP.NET Core 3 Web API

2.5 DI, loC, and Logger Service Testing
What is Dependency Injection (DI) exactly and what is IoC (Inversion of

Control)?

Dependency injection is a technique we use to achieve the decoupling of
objects and their dependencies. It means that rather than instantiating an
object explicitly in a class every time we need it, we can instantiate it

once and then send it to the class.

This is often done through a constructor. The specific approach we

utilize is also known as the Constructor Injection.

In a system that is designed around DI, you may find many classes
requesting their dependencies via their constructors. In this case, it is
helpful to have a class that manages and provides dependencies to

classes through the constructor.

These classes are referred to as containers or more specifically, Inversion
of Control containers. An IoC container is essentially a factory that is
responsible for providing instances of the types that are requested from
it.

To test our logger service, we are going to use the default
WeatherForecastController. You can find it in the main project in the

Controllers folder. It comes with the ASP.NET Core Web API template.

In the Solution Explorer, we are going to open the Controllers folder and

locate the WeatherForecastController class. Let’'s modify it:

[Route("[controller]™)]
[ApiController]
public class WeatherForecastController : ControllerBase

{

private ILoggerManager _logger;

public WeatherForecastController(ILoggerManager logger)

{
}

_logger = logger;

29

(‘ Ultimate ASP.NET Core 3 Web API

[HttpGet]
public IEnumerable<string> Get()
{

_logger.LogInfo("Here is info message from our values controller.");
_logger.LogDebug("Here is debug message from our values controller.");
_logger.LogWarn("Here is warn message from our values controller.");
_logger.LogError("Here is an error message from our values controller.");

return new string[] { "valuel", "value2" };

}

Now let’s start the application and browse to
https://localhost:5001/weatherforecast.

Tip: If you are using Windows 8 and having trouble starting this
application on https://localhost:5001..., you have to add a

parameter to the appsetings.Development.json file:

"Kestrel": {
"EndpointDefaults": {
"Protocols": "Httpl"

¥
}

As a result, you will see an array of two strings. Now go to the folder that
you have specified in the nlog.config file, and check out the result. You
should see two folders: the internal_logs folder and the logs folder.

Inside the logs folder, you should find a file with the following logs:

2019-05-27 11:52:01.7316 INFC Info message from our controller.
2015%-05-27 11:3532:01.7756 DEBUG Debug message from our controller.
2015-05-27 11:52:01.77%6¢ WAEBN Warn message from our controller.
2015-05-27 11:52:01.75%62 ERRCR Error message from our controller.

That’s all we need to do to configure our logger for now. We'll add some

messages to our code along with the new features.

30

:‘ Ultimate ASP.NET Core 3 Web API

3 DATABASE MODEL AND REPOSITORY PATTERN

In this chapter, we are going to create a database model and transfer it to
the MSSQL database by using the code first approach. So, we are going to
learn how to create entities (model classes), how to work with the
DbContext class, and how to use migrations to transfer our created
database model to the real database. Of course, it is not enough to just
create a database model and transfer it to the database. We need to use
it as well, and for that, we will create a Repository pattern as a data

access layer.

With the Repository pattern, we create an abstraction layer between the
data access and the business logic layer of an application. By using it, we
are promoting a more loosely coupled approach to access our data in the

database.

Also, our code becomes cleaner, easier to maintain, and reusable. Data
access logic is stored in a separate class, or sets of classes called a
repository, with the responsibility of persisting the application’s business

model.

So, let’s start with the model classes first.

3.1 Creating Models
Using the example from the second chapter of this book, we are going to

extract a new Class Library (.NET Core) project named Entities.

Don't forget to add the reference from the main project to the Entities

project.

Inside it, we are going to create a folder named Models, which will
contain all the model classes (entities). Entities represent classes that

Entity Framework Core uses to map our database model with the tables

31

:‘ Ultimate ASP.NET Core 3 Web API

from the database. The properties from entity classes will be mapped to

the database columns.

So, in the Models folder we are going to create two classes and modify

them:

public class Company

{
[Column("CompanyId")]
public Guid Id { get; set; }
[Required(ErrorMessage = "Company name is a required field.")]
[MaxLength(60, ErrorMessage = "Maximum length for the Name is 60 characters.")]
public string Name { get; set; }
[Required(ErrorMessage = "Company address is a required field.")]
[MaxLength(60, ErrorMessage = "Maximum length for rhe Address is 60 characte")]
public string Address { get; set; }
public string Country { get; set; }
public ICollection<Employee> Employees { get; set; }
}

public class Employee

{
[Column("EmployeeId")]

public Guid Id { get; set; }

[Required(ErrorMessage = "Employee name is a required field.")]

[MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
public string Name { get; set; }

[Required(ErrorMessage = "Age is a required field.")]
public int Age { get; set; }

[Required(ErrorMessage = "Position is a required field.")]

[MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]

public string Position { get; set; }

[ForeignKey(nameof (Company))]

public Guid CompanyId { get; set; }
public Company Company { get; set; }

We have created two classes: Company and Employee. Those classes
contain the properties which Entity Framework Core is going to map to
the columns in our tables in the database. But not all the properties will
be mapped as columns. The last property of the Company class

(Employees) and the last property of the Employee class (Company) are

32

:‘ Ultimate ASP.NET Core 3 Web API

navigational properties; these properties serve the purpose of defining the

relationship between our models.

We can see several attributes in our entities. The [Column] attribute will
specify that the Id property is going to be mapped with a different name
in the database. The [Required] and [MaxLength] properties are here

for validation purposes. The first one declares the property as mandatory

and the second one defines its maximum length.

Once we transfer our database model to the real database, we are going
to see how all these validation attributes and navigational properties

affect the column definitions.

3.2 Context Class and the Database Connection

Now, let's create the context class, which will be a middleware component
for communication with the database. It must inherit from the Entity
Framework Core’s DbContext class and it consists of DbSet properties,
which EF Core is going to use for the communication with the database.
Because we are working with the DBContext class, we need to install the

Microsoft.EntityFrameworkCore package in the Entities project.

So, let’s navigate to the root of the Entities project and create the

RepositoryContext class:

public class RepositoryContext : DbContext

{
public RepositoryContext(DbContextOptions options)

: base(options)
{
}
public DbSet<Company> Companies { get; set; }

public DbSet<Employee> Employees { get; set; }
¥

After the class modification, let’s open the appsettings.json file and

add the connection string named sqlconnection:

33

(‘ Ultimate ASP.NET Core 3 Web API

{
"Logging": {
"LogLevel": {
"Default"”: "Warning"
}
3
"ConnectionStrings": {
"sglConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
}s
"AllowedHosts": "*"
}

It is quite important to have the JSON object with the
ConnectionStrings name in our appsettings.json file, and soon you

will see why.

We have one more step to finish the database model configuration. We
need to register the RepositoryContext class in the application’s
dependency injection container as we did with the LoggerManager class

in the previous chapter.

So, let’s open the ServiceExtensions class and add the additional

method:

public static void ConfigureSqlContext(this IServiceCollection services,
IConfiguration configuration) =>
services.AddDbContext<RepositoryContext>(opts =>
opts.UseSqglServer(configuration.GetConnectionString("sqlConnection™)));

With the help of the IConfiguration configuration parameter, we
can use the GetConnectionString method to access the connection
string from the appsettings.json file. Moreover, to be able to use the
UseSqlServer method, we need to install the
Microsoft.EntityFrameworkCore.SqlServer package. If we navigate
to the GetConnectionString method definition, we will see that it is an
extension method that uses the ConnectionStrings name from the
appsettings.json file to fetch the connection string by the provided

key:

34

(‘ Ultimate ASP.NET Core 3 Web API

J/ Summary;
Iy Shorthand for GetSecticn{"CcnnecticnSt’ings")[nawe].|

.'l. .'Il

// Parameters:
// configuration:
I The configuration.

.'l. .'ll

'y name :
i The connection string key.
public static string GetConnectionString(this IConfiguration configuration, string name);

Afterward, in the Startup class in the ConfigureServices method, we
are going to add the context service to the IOC right above the

services.AddControllers() line:

services.ConfigureSqlContext(Configuration);

3.3 Migration and Initial Data Seed

Migration is a standard process of creating and updating the database
from our application. Since we are finished with the database model
creation, we can transfer that model to the real database. But we need to

modify our ConfigureSqlContext method first:

public static void ConfigureSqlContext(this IServiceCollection services,
IConfiguration configuration) =>
services.AddDbContext<RepositoryContext>(opts =>
opts.UseSqglServer(configuration.GetConnectionString("sqlConnection™), b =>

b.MigrationsAssembly("CompanyEmployees™)));
We have to make this change because migration assembly is not in our
main project, but in the Entities project. So, we just change the project

for the migration assembly.

Before we execute our migration commands, we have to install an

additional ef core library: Microsoft.EntityFrameworkCore.Tools

Now, let’s open the Package Manager Console window and create our first

migration: pM> Add-Migration DatabaseCreation

With this command, we are creating migration files and we can find them

in the Migrations folder in our main project:

35

(‘ Ultimate ASP.NET Core 3 Web API

4 =] CompanyEmployees
& Connected Services
P o@ Dependencies
b Properties
B Controllers
P Extensions
P c* SeviceBxtensions.cs

P Migrations
4 c#F 20190927181200_DataBaseCreation.cs
oo 20190927181200_DataBaseCreation.Designer.cs
B *z DataBaseCreation

With those files in place, we can apply migration: pM> Update-Database

Excellent. We can inspect our database now:

=@
= Tables

Systern Tables

FileTables

EE dbo._EFMigrationsHistory

EH dbo.Companies I

= Columns
ma Companyld (PK, uniqueidentifier, not null}
E Mame (nvarchar(&0), not null)
B Address (nvarchar(60), not null)
E Country (nvarchar{maz], null)

H =

m =

Keys
Constraints
Triggers
Indexes
Statistics

| = EH dbo.Employees
= . Ceolumns

ma Ernplyeeld (PK, uniqueidentifier, not null)
B Marme (nvarchar(30), not null)
E Age (int, not null)
H Peosition (nvarchar(20), not null)
I @2 Companyld (FKE, uniqueidentifier, not null) I

Once we have the database and tables created, we should populate them
with some initial data. To do that, we are going to create another folder
called Configuration in the Entities project and add the

CompanyConfiguration class:

public class CompanyConfiguration : IEntityTypeConfiguration<Company>

{
public void Configure(EntityTypeBuilder<Company> builder)

36

(‘ Ultimate ASP.NET Core 3 Web API

builder.HasData

(

)8

new

{

¥

new

Company

Id = new Guid("c9d4c@53-49b6-410c-bc78-2d5429991870"),
Name = "IT Solutions Ltd",

Address = "583 Wall Dr. Gwynn Oak, MD 21207",
Country = "USA
Company

Id = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3"),
Name = "Admin_Solutions Ltd",

Address = "312 Forest Avenue, BF 923",

Country = "USA

Let’s do the same thing for the EmployeeConfiguration class:

public class EmployeeConfiguration : IEntityTypeConfiguration<Employee>

{

public void Configure(EntityTypeBuilder<Employee> builder)

{

builder.
(
new
{

)&

¥

new

¥

new

HasData
Employee

Id = new Guid("80@abbca8-664d-4b20-b5de-024705497d4a"),

Name = "Sam Raiden",

Age = 26,

Position = "Software developer",

CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")

Employee

Id = new Guid("86dba8c0-d178-41e7-938c-ed49778fb52a"),

Name = "Jana McLeaf",

Age = 30,

Position = "Software developer",

CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")

Employee

Id = new Guid("©21lca3cl-0deb-4afd-ae94-2159a8479811"),

Name = "Kane Miller",

Age = 35,

Position = "Administrator",

CompanyId = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3")

37

:‘ Ultimate ASP.NET Core 3 Web API

To invoke this configuration, we have to change the RepositoryContext

class:

public class RepositoryContext: DbContext
{

public RepositoryContext(DbContextOptions options)

: base(options)

{

}

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
modelBuilder.ApplyConfiguration(new CompanyConfiguration());

modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
}

public DbSet<Company> Companies { get; set; }
public DbSet<Employee> Employees { get; set; }
}

Now, we can create and apply another migration to seed these data to the

database:

PM> Add-Migration InitialData

PM> Update-Database

This will transfer all the data from our configuration files to the respective

tables.

3.4 Repository Pattern Logic

After establishing a connection to the database and creating one, it's time
to create a generic repository that will provide us with the CRUD methods.
As a result, all the methods can be called upon any repository class in our

project.

Furthermore, creating the generic repository and repository classes that
use that generic repository is not going to be the final step. We will go
a step further and create a wrapper class around repository classes and

inject it as a service in a dependency injection container.

38

:‘ Ultimate ASP.NET Core 3 Web API

Consequently, we will be able to instantiate this class once and then call
any repository class we need inside any of our controllers.
The advantages of this approach will become clearer once we use it in the

project.

That said, let’s start by creating an interface for the repository inside the

Contracts project:

public interface IRepositoryBase<T>

{
IQueryable<T> FindAll(bool trackChanges);

IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
bool trackChanges);

void Create(T entity);

void Update(T entity);

void Delete(T entity);

}

Right after the interface creation, we are going to create a new Class
Library (.NET Core) project with the name Repository and add

the reference to the Contracts and Entities class libraries. Inside
the Repository project, we are going to create an abstract class
RepositoryBase — which is going to implement the IRepositoryBase

interface.
We need to reference this project from the main project as well.

Additional info: We are going to use EF Core functionalities in the
Repository project. Therefore, we need to install it inside the Repository

project.
Let’s add the following code to the RepositoryBase class:

public abstract class RepositoryBase<T> : IRepositoryBase<T> where T : class
{

protected RepositoryContext RepositoryContext;

public RepositoryBase(RepositoryContext repositoryContext)

{
¥

public IQueryable<T> FindAll(bool trackChanges) =>

RepositoryContext = repositoryContext;

39

:‘ Ultimate ASP.NET Core 3 Web API

ItrackChanges ?
RepositoryContext.Set<T>()
.AsNoTracking() :
RepositoryContext.Set<T>();
public IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
bool trackChanges) =>
ItrackChanges ?
RepositoryContext.Set<T>()
.Where(expression)
.AsNoTracking() :
RepositoryContext.Set<T>()
.Where(expression);
public void Create(T entity) => RepositoryContext.Set<T>().Add(entity);
public void Update(T entity) => RepositoryContext.Set<T>().Update(entity);

public void Delete(T entity) => RepositoryContext.Set<T>().Remove(entity);
}

This abstract class as well as the IRepositoryBase interface works with
the generic type T. This type T gives even more reusability to the
RepositoryBase class. That means we don’t have to specify the exact
model (class) right now for the RepositoryBase to work with. We can do

that later on.

Moreover, we can see the trackChanges parameter. We are going to use
it to improve our read-only query performance. When it's set to false, we
attach the AsNoTracking method to our query to inform EF Core that it
doesn’t need to track changes for the required entities. This greatly

improves the speed of a query.

3.5 Repository User Interfaces and Classes
Now that we have the RepositoryBase class, let’s create the user

classes that will inherit this abstract class.

By inheriting from the RepositoryBase class, they will have access to all
the methods from it. Furthermore, every user class will have its own

interface for additional model-specific methods.

40

:‘ Ultimate ASP.NET Core 3 Web API

This way, we are separating the logic that is common for all our

repository user classes and also specific for every user class itself.

Let’s create the interfaces in the Contracts project for the Company and

Employee classes.

namespace Contracts

{
public interface ICompanyRepository
{
}

b

namespace Contracts

{
public interface IEmployeeRepository
{
}

}

After this, we can create repository user classes in the Repository

project.

The first thing we are going to do is to create the CompanyRepository

class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository

{
public CompanyRepository(RepositoryContext repositoryContext)

: base(repositoryContext)

{
}

And then, the EmployeeRepository class:

public class EmployeeRepository : RepositoryBase<Employee>, IEmployeeRepository

{

public EmployeeRepository(RepositoryContext repositoryContext)
: base(repositoryContext)
{

¥
¥

After these steps, we are finished creating the repository and repository

user classes. But there are still more things to do.

41

:‘ Ultimate ASP.NET Core 3 Web API

3.6 Creating a Repository Manager

It is quite common for the API to return a response that consists of data
from multiple resources; for example, all the companies and just some
employees older than 30. In such a case, we would have to instantiate

both of our repository classes and fetch data from their own resources.

Maybe it’s not a problem when we have only two classes, but what if we
need the combined logic of five or even more different classes? It would

just be too complicated to pull that off.

With that in mind, we are going to create a repository manager class,
which will create instances of repository user classes for us and then
register it inside the dependency injection container. After that, we can
inject it inside our controllers (or inside a business layer class, if we have
a bigger app) with constructor injection (supported by ASP.NET Core).
With the repository manager class in place, we may call any repository

user class we need.

But we are also missing one important part. We have the Create,
Update, and Delete methods in the RepositoryBase class, but they
won't make any change in the database until we call the SaveChanges

method. Our repository manager class will handle that as well.

That said, let’s get to it and create a new interface in

the Contract project:

public interface IRepositoryManager

{
ICompanyRepository Company { get; }
IEmployeeRepository Employee { get; }
void Save();

}
And add a new class to the Repository project:

public class RepositoryManager : IRepositoryManager

{

private RepositoryContext _repositoryContext;

42

:‘ Ultimate ASP.NET Core 3 Web API

private ICompanyRepository _companyRepository;
private IEmployeeRepository _employeeRepository;

public RepositoryManager(RepositoryContext repositoryContext)

¢ _repositoryContext = repositoryContext;
}
public ICompanyRepository Company
{
get
{
if(_companyRepository == null)
_companyRepository = new CompanyRepository(_repositoryContext);
return _companyRepository;
}
}
public IEmployeeRepository Employee
{
get
{
if(_employeeRepository == null)
_employeeRepository = new EmployeeRepository(_repositoryContext);
return _employeeRepository;
}
}

public void Save() => _repositoryContext.SaveChanges();

}

As you can see, we are creating properties that will expose the concrete
repositories and also we have the Save() method to be used after all the
modifications are finished on a certain object. This is a good practice
because now we can, for example, add two companies, modify two
employees, and delete one company — all in one action — and then just
call the Save method once. All the changes will be applied or if something

fails, all the changes will be reverted:

_repository.Company.Create(company);
_repository.Company.Create(anotherCompany);
_repository.Employee.Update(employee);
_repository.Employee.Update(anotherEmployee);
_repository.Company.Delete(oldCompany);

_repository.Save();

43

:‘ Ultimate ASP.NET Core 3 Web API

After these changes, we need to register our manager class and add a
reference from the Repository to our main project if not already done so.

So, let’s first modify the ServiceExtensions class by adding this code:

public static void ConfigureRepositoryManager(this IServiceCollection services) =>
services.AddScoped<IRepositoryManager, RepositoryManager>();

And in the Startup class inside the ConfigureServices method, above

the services.AddController() line, we have to add this code:
services.ConfigureRepositoryManager();

Excellent.

As soon as we add some methods to the specific repository classes, we
are going to be able to test this logic, but we can just take a peek at how

we can inject and use this repository manager.

All we have to do is to inject the RepositoryManager service inside the
controller and we are going to see the Company and Employee properties

that will provide us access to the specific repository methods:

[Route("[controller]™)]
[ApiController]
public class WeatherForecastController : ControllerBase

{

private readonly IRepositoryManager _repository;

public WeatherForecastController(IRepositoryManager repository)

{
}

[HttpGet]
public ActionResult<IEnumerable<string>> Get()

{

_repository = repository;

_repository.Company.AnyMethodFromCompanyRepository();
_repository.Employee.AnyMethodFromEmployeeRepository();

return new string[] { "valuel", "value2" };

}

We did an excellent job here. The repository layer is prepared and ready

to be used to fetch data from the database.

44

:‘ Ultimate ASP.NET Core 3 Web API

As you can see, we have injected our repository inside the controller; this
is a good practice for an application of this size. But for larger-scale
applications, we would create an additional business layer between our
controllers and repository logic and our RepositoryManager service would

be injected inside that Business layer — thus freeing the controller from
repository logic.

Now, we can continue towards handling Get requests in our application.

45

:‘ Ultimate ASP.NET Core 3 Web API

4 HANDLING GET REQUESTS

We're all set to add some business logic to our application. But before
that, let’s talk a bit about controller classes and routing because they play

an important part while working with HTTP requests.

4.1 Controllers and Routingin WEB API

Controllers should only be responsible for handling requests, model
validation, and returning responses to the frontend or some HTTP client.
Keeping business logic away from controllers is a good way to keep them

lightweight, and our code more readable and maintainable.

To create the controller, right click on the Controllers folder inside the
main project and then Add=>Controller. Then from the menu, choose API

Controller Class and name it CompaniesController.cs.

Add Scaffold
4 |nstalled

P Common

B AFI Controller - Empty
‘E: MVC Contraoller - Empty by Microsoft

v1.0.0.0

‘E: MVC Controller with read/write actions An empty AP controller.

,I;j MVC Controller with views, using Entity Framework Id: ApiControllerEmptyScaffolder

‘E: AFI Controller - Empty

‘E: API Controller with read/write actions

‘[: API Controller with actions, using Entity Framework

Click here to go online and find more scaffelding extensions,

| Add || Cancel

Our controller should be generated with the default code inside:

namespace CompanyEmployees.Controllers

{
[Route("api/[controller]")]

[ApiController]

46

:‘ Ultimate ASP.NET Core 3 Web API

public class CompaniesController : ControllerBase

{

¥
}

Every web API controller class inherits from
the ControllerBase abstract class, which provides all necessary

behavior for the derived class.

Also, above the controller class we can see this part of the code:
[Route("api/[controller]")]

This attribute represents routing and we are going to talk more about
routing inside Web APIs.

Web API routing routes incoming HTTP requests to the particular action
method inside the Web API controller. As soon as we send our HTTP
request, the MVC framework parses that request and tries to match it to

an action in the controller.

There are two ways to implement routing in the project:

e Convention based routing and

e Attribute routing

Convention based routing is called such because it establishes a
convention for the URL paths. The first part creates the mapping for
the controller name, the second part creates the mapping for the action
method, and the third part is used for the optional parameter. We can
configure this type of routing in the Startup class in the Configure

method:

47

:‘ Ultimate ASP.NET Core 3 Web API

app.UseEndpoints (endpoints =»
{ Third Part
endpoints.MapControllerRoute(
name: “default™,
pattern: "{controller=Home}/{action=Index}/{id?}"};

¥

FirstPart Second Part

Attribute routing uses the attributes to map the routes directly to the
action methods inside the controller. Usually, we place the base route
above the controller class, as you can see in our Web API controller class.
Similarly, for the specific action methods, we create their routes right

above them.

While working with the Web API project, the ASP.NET Core team suggests
that we shouldn’t use Convention-based Routing, but Attribute routing

instead.

Different actions can be executed on the resource with the same URI, but
with different HTTP Methods. In the same manner for different actions, we
can use the same HTTP Method, but different URIs. Let’s explain this
quickly.

For Get request, Post, or Delete, we use the same URI /api/companies
but we use different HTTP Methods like GET, POST or DELETE. But if we
send a request for all companies or just one company, we are going to
use the same GET method but different URIs (/api/companies for all

companies and /api/companies/{companyId} for a single company).

We are going to understand this even more once we start implementing

different actions in our controller.

4.2 Naming Our Resources
The resource name in the URI should always be a houn and not an action.

That means if we want to create a route to get all companies, we should

48

:‘ Ultimate ASP.NET Core 3 Web API

create this route: api/companies and not this one:

/api/getCompanies.

The noun used in URI represents the resource and helps the consumer to
understand what type of resource we are working with. So, we shouldn’t
choose the noun products or orders when we work with the companies
resource; the noun should always be companies. Therefore, by following
this convention if our resource is employees (and we are going to work

with this type of resource), the noun should be employees.

Another important part we need to pay attention to is the hierarchy
between our resources. In our example, we have a Company as a
principal entity and an Employee as a dependent entity. When we create
a route for a dependent entity, we should follow a slightly different
convention:

/api/principalResource/{principalld}/dependentResource.

Because our employees can’t exist without a company, the route for the
employee's resource should be:

/api/companies/{companyId}/employees.

With all of this in mind, we can start with the Get requests.

4.3 Getting All Companies From the Database

So let’s start.

The first thing we are going to do is to change the base route

from [Route("api/[controller]™)] to [Route("api/companies™)].
Even though the first route will work just fine, with the second example
we are more specific to show that this routing should point to the

CompaniesController class.

49

:‘ Ultimate ASP.NET Core 3 Web API

Now it is time to create the first action method to return all the companies
from the database. Let’s create a definition for the GetAllCompanies

method in the ICompanyRepository interface:

public interface ICompanyRepository

{
}

IEnumerable<Company> GetAllCompanies(bool trackChanges);

For this to work, we need to add a reference from the Entities project
to the Contracts project. But we are going to stop here for a moment to

draw your attention to one important thing.

In our main project, we are referencing the LoggerService, Repository,
and Entities projects. Since both the LoggerService and Repository
projects have a reference for the Contracts project (which has a reference
to the Entities project; we just added it) this means that the main project
has a reference for the Entities project as well through the LoggerService
or Repository projects. That said, we can remove the Entities reference
from the main project:

4 [T Projects
|d | LnggerSewicel
F E Contracts
> [Entities
&5 Microsoft.EntityFramework(
b Microsoft NETCorefApp (2.2
b @ MNLog.Exdensions.Logging (1.5.1

o5 Microsoft.EntityFrameworkCore
b Microsoft. METCore bpp (2.2.0)

b [Repository

Now, we can continue with the interface implementation in the

CompanyRepository class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
public CompanyRepository(RepositoryContext repositoryContext)
: base(repositoryContext)

{
}

50

:‘ Ultimate ASP.NET Core 3 Web API

public IEnumerable<Company> GetAllCompanies(bool trackChanges) =>
FindAll(trackChanges)
.OrderBy(c => c.Name)
.ToList();

}
Finally, we have to return companies by using the GetAllCompanies

method inside the Web API controller.

The purpose of the action methods inside the Web API controllers is not
only to return results. It is the main purpose, but not the only one. We
need to pay attention to the status codes of our Web API responses as
well. Additionally, we are going to decorate our actions with the HTTP

attributes which will mark the type of the HTTP request to that action.

So, let’'s modify the CompaniesController:

[Route("api/companies™)]

[ApiController]

public class CompaniesController : ControllerBase

{
private readonly IRepositoryManager _repository;
private readonly ILoggerManager _logger;

public CompaniesController(IRepositoryManager repository, ILoggerManager logger)

{
_repository = repository;
_logger = logger;

}
[HttpGet]
public IActionResult GetCompanies()
{
try
{
var companies = _repository.Company.GetAllCompanies(trackChanges: false);

return Ok(companies);

}

catch (Exception ex)

{

_logger.LogError($"Something went wrong in the {nameof(GetCompanies)}
action {ex}");
return StatusCode(500, "Internal server error");
}

}

Let’s explain this code a bit.

51

:‘ Ultimate ASP.NET Core 3 Web API

First of all, we inject the logger and repository services inside the
constructor. Then by decorating the GetCompanies action with

the [HttpGet] attribute, we are mapping this action to the GET request.
Then, we use both injected services to log the messages and to get the

data from the repository class.

The IActionResult interface supports using a variety of methods, which
return not only the result but also the status codes. In this situation,

the OK method returns all the companies and also the status code 200 —
which stands for OK. If an exception occurs, we are going to return the

internal server error with the status code 500.

Because there is no route attribute right above the action, the route for
the GetCompanies action will be api/companies which is the route

placed on top of our controller.

4.4 Testing the Result with Postman

To check the result, we are going to use a great tool named Postman,
which helps a lot with sending requests and displaying responses. If you
download our exercise files, you will find the file Bonus 2-
CompanyEmployeesRequests.postman_collection.json, which
contains a request collection divided for each chapter of this book. You
can import them in Postman to save yourself the time of manually typing

them:

52

:‘ Ultimate ASP.NET Core 3 Web API

- []j Runner Import D. Builder

No Environment

GET Click this bution to import Params Send v
request collechon file.

Authorization

Please note that some GUID values will be different for your project, so

you have to change them according to your values.

So let’s start the application by pressing the F5 button and check that it is

now listening on the https:localhost:5001 address:

tent _roo path: D:\
istening on: https

Now [1stening on: htt
Application started.

If this is not the case, you probably ran it in the IIS mode; so turn the

application off and start it again, but in the CompanyEmployees mode:

Extensions Window Help Search Visual Studie (Ctrl+ Q) e

CompanyEmployees - |p CompanyEmployees - | - 5

Now, we can use Postman to test the result:

https://localhost:5001/api/companies

53

(‘ Ultimate ASP.NET Core 3 Web API

=
NEW []j Runner Import D. Builder x @ ‘ hl
No Environment
https:fflocalhost5001
» https://localhost:5001\apitcompanies Examples (0) +

GET hups:/flocalhost:5001 \api'companies e Params Save

Authorization e Code
Type No Auth

Frerry JSON = Save Response

a72-94ce-4015-9494-5245288c2ce2”,
in_Solutions Ltd",
Forest Avenue, BF 923",

"_l Response

i
32 i
1@ "ig": "c9d4c@53-49b6-418c-bc7B-24548993187a",
11 "na : "IT_Soclutions Ltd™,
12 "ad s": "583 Wall Dr. Gwynn Osk, MD 21287",
15 “count HE
14 employees™: null
15
15 |1

Excellent, everything is working as planned. But we are missing
something. We are using the Company entity to map our requests to the
database and then returning it as a result to the client, and this is not a
good practice. So, in the next part, we are going to learn how to improve

our code with DTO classes.

4.5 DTO Classes vs. Entity Model Classes
Data transfer object (DTO) is an object that we use to transport data

between the client and server applications.

So, as we said in a previous section of this book, it is not a good practice
to return entities in the Web API response; we should instead use data

transfer objects. But why is that?

Well, EF Core uses model classes to map them to the tables in the
database and that is the main purpose of a model class. But as we saw,

our models have navigational properties and sometimes we don’t want to

54

:‘ Ultimate ASP.NET Core 3 Web API

map them in an API response. So, we can use DTO to remove any

property or concatenate properties into a single property.

Moreover, there are situations where we want to map all the properties
from a model class to the result — but still, we want to use DTO instead.
The reason is if we change the database, we also have to change the
properties in a model — but that doesn’t mean our clients want the result
changed. So, by using DTO, the result will stay as it was before the model

changes.

As we can see, keeping these objects separate (the DTO and model

classes) leads to a more robust and maintainable code in our application.

Now, when we know why should we separate DTO from a model class in
our code, let’s create the folder DataTransferObjects in the Entities

project with the CompanyDto class inside:

public class CompanyDto

{

public Guid Id { get; set; }

public string Name { get; set; }

public string FullAddress { get; set; }
}

We have removed the Employees property and we are going to use the
FullAddress property to concatenate the Address and Country
properties from the Company class. Furthermore, we are not using
validation attributes in this class, because we are going to use this class
only to return a response to the client. Therefore, validation attributes are

not required.

So, let’s open and modify the GetCompanies action:

[HttpGet]
public IActionResult GetCompanies()

{
try

{

var companies = _repository.Company.GetAllCompanies(trackChanges: false);

55

(‘ Ultimate ASP.NET Core 3 Web API

var companiesDto = companies.Select(c => new CompanyDto

{

Id = c.Id,

Name = c.Name,

FullAddress = string.Join(' ', c.Address, c.Country)
}).ToList();

return Ok(companiesDto);

}
catch (Exception ex)
{
_logger.LogError($"Something went wrong in the {nameof(GetCompanies)} action
{ex}");
return StatusCode(500, "Internal server error");
}

}

Let’s start our application and test it with the same request from

Postman:

https://localhost:5001/api/companies
NEW uj Runner Import D Builder ﬂ, @ ‘ ~

- Mo Environment
hups:/flocalhostS001 @

GET httpsi//localhost:5001 /api/companies Params Save

Authorization
vpe No Auth

Body (4 Status: 200 OK Time: 72 ms

Pretty JSON =

¢ "2d420e7e-94ce-4015-9494-5245280c2ced”,
a "name": "Admin_Solutions Ltd",

"fullAddress™: "312 Forest Avenue, BF 923 Usa"
7 i
i "CPd4ce53-4906-418c-boVE-2053489991878",
9 “name”: "IT_Sclutions Ltd",
1e “fullAddress™: "583 Wall Dr. Gwynn Oak, MD 21287 UsA™
11 ¥

This time we get our CompanyDto result, which is a more preferred way.
But this can be improved as well. If we take a look at our mapping code in
the GetCompanies action, we can see that we manually map all the
properties. Sure, it is okay for few fields — but what if we have a lot
more? There is a better and cleaner way to map our classes and that is by
using the Automapper.

56

:‘ Ultimate ASP.NET Core 3 Web API

4.6 Using AutoMapper in ASP.NET Core

AutoMapper is a library that helps us with mapping objects in our
applications. By using this library, we are going to remove the code for

manual mapping — thus making the action readable and maintainable.

So, to install AutoMapper, let’s open a Package Manager Console window

and run the following command:

PM> Install-Package AutoMapper.Extensions.Microsoft.DependencyInjection

After installation, we are going to register this library in the

ConfigureServices method:
services.AddAutoMapper(typeof(Startup));

As soon as our library is registered, we are going to create a profile class

where we specify the source and destination objects for mapping:

public class MappingProfile : Profile

{

public MappingProfile()

{

CreateMap<Company, CompanyDto>()
.ForMember(c => c.FullAddress,
opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

}

}

The MappingProfile class must inherit from the AutoMapper’s Profile
class. In the constructor, we are using the CreateMap method where we
specify the source object and the destination object to map to. Because
we have the FullAddress property in our DTO class, which contains both
the Address and the Country from the model class, we have to specify

additional mapping rules with the ForMember method.

Now, we can use AutoMapper in our controller like any other service

registered in IoC:

[Route("api/companies™)]
[ApiController]
public class CompaniesController : ControllerBase

57

:‘ Ultimate ASP.NET Core 3 Web API

private readonly IRepositoryManager _repository;
private readonly ILoggerManager _logger;
private readonly IMapper _mapper;

public CompaniesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)

{
_repository = repository;
_logger = logger;
_mapper = mapper;
}
[HttpGet]
public IActionResult GetCompanies()
{
try
{
var companies = _repository.Company.GetAllCompanies(trackChanges: false);
var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);
return Ok(companiesDto);
}
catch (Exception ex)
{

_logger.LogError($"Something went wrong in the {nameof(GetCompanies)}
action {ex}");

return StatusCode(500, "Internal server error");

Excellent.

Let’s use Postman again to send the request to test our app:

58

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies
» https:/flocalhost:5001/api/companies

GET httpsi/flocalhost:3001 fapifcompanies

Authorization

Type No Auth
Body (4)

Prety JSON =
1~ [
2= i
3 B578-94ce-4d15-9494-5245280c2ca3",
4 min_Solutions Ltd",
5 "fullAddress™: "312 Forest Avenue, BF 923 UsaA™
6 Y,

T i
8 "ig": "c2d4c@53-4905-418c-bcTE-245489991878",
z) "name”: "IT_Scluticns Ltd",

1@ "fullAddress™: "583 Wall Dr. Gwynn Oak, MD 21287 UsA"
11

12 1

We can see that everything is working as it supposed to,

much better code.

Params

Status: 200 0K Time: 89 ms

but now with

59

:‘ Ultimate ASP.NET Core 3 Web API

S GLOBAL ERRORHANDLING

Exception handling helps us deal with the unexpected behavior of our
system. To handle exceptions, we use the try-catch block in our code

as well as the finally keyword to clean up our resources afterwards.

Even though there is nothing wrong with the try-catch blocks in our
Actions in the Web API project, we can extract all the exception handling
logic into a single centralized place. By doing that, we make our actions
cleaner, more readable, and the error handling process more

maintainable.

In this chapter, we are going to refactor our code to use the built-in
middleware and our custom middleware for global error handling to

demonstrate the benefits of this approach.

S.1 Handling Errors Globally with the Built-In Middleware
The UseExceptionHandler middleware is a built-in middleware that we
can use to handle exceptions. So, let’s dive into the code to see this

middleware in action.

We are going to create a new ErrorModel folder in the Entities

project, and add the new class ErrorDetails in that folder:

public class ErrorDetails

{
public int StatusCode { get; set; }

public string Message { get; set; }

public override string ToString() => JsonConvert.SerializeObject(this);

}

We are going to use this class for the details of our error message.

To continue, in the Extensions folder in the main project, we are going

to add a new static class: ExceptionMiddlewareExtensions.cs.

60

:‘ Ultimate ASP.NET Core 3 Web API

Now, we need to modify it:

public static class ExceptionMiddlewareExtensions

{
public static void ConfigureExceptionHandler(this IApplicationBuilder app,

ILoggerManager logger)
{

app.UseExceptionHandler (appError =>

{

appError.Run(async context =>

{

context.Response.StatusCode = (int)HttpStatusCode.InternalServerError;
context.Response.ContentType = "application/json";

var contextFeature = context.Features.Get<IExceptionHandlerFeature>();
if (contextFeature != null)

{
logger.LogError($"Something went wrong: {contextFeature.Error}");
await context.Response.WriteAsync(new ErrorDetails()

{

StatusCode = context.Response.StatusCode,
Message = "Internal Server Error."
}.ToString());

s
s

}

In the code above, we’ve created an extension method in which we've
registered the UseExceptionHandler middleware. Then, we've
populated the status code and the content type of our response, logged
the error message, and finally returned the response with the custom

created object.

5.2 Startup Class Modification
To be able to use this extension method, let’s modify the Configure

method inside the Startup class:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
ILoggerManager logger)

{
if (env.IsDevelopment())

{
¥

else

{

app.UseDeveloperExceptionPage();

61

:‘ Ultimate ASP.NET Core 3 Web API

app.UseHsts();

app.ConfigureExceptionHandler(logger);
app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseCors("CorsPolicy");

app.UseForwardedHeaders(new ForwardedHeadersOptions

ForwardedHeaders = ForwardedHeaders.All

1
app.UseRouting();
app.UseAuthorization();

app.UseEndpoints(endpoints =>

{
s

endpoints.MapControllers();

}

Finally, let’s remove the try-catch block from our code:

[HttpGet]
public IActionResult GetCompanies()

{
var companies = _repository.Company.GetAllCompanies(trackChanges: false);
var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

return Ok(companiesDto);

}

And there we go. Our action method is much cleaner now. More
importantly, we can reuse this functionality to write more readable

actions in the future.

9.3 Testing the Result
To inspect this functionality, let’s add the following line to the

GetCompanies action, just to simulate an error:
throw new Exception("Exception");

And send a request from Postman:

62

<0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies

NEW [lj Runner Import D. Builder f‘:' @ ‘
o Your team updated to Postman v7.0. To access your team workspaces and collections, you must also update to v7.0. See what's new

Neo Environment
https://localhost5001

» https://localhost:5001/api/companies

GET https:/flocalhost:5001/api/companies Params Save

Authorization

Code

Type No Auth

Body @ Status: 500 Internal Server Emror Time: 459 ms
Pretty JSON 5 Save Response
1F &
2 "StatusCode™: 588,
3 "Message": "Internal Server Error.”
4L

We can check our log messages to make sure that logging is working as
well.

63

:‘ Ultimate ASP.NET Core 3 Web API

6 GETTING ADDITIONAL RESOURCES

As of nhow, we can continue with GET requests by adding additional
actions to our controller. Moreover, we are going to create one more
controller for the Employee resource and implement an additional action

in it.

6.1 Getting a Single Resource From the Database
Let’s start by modifying the ICompanyRepository interface:

public interface ICompanyRepository

{
IEnumerable<Company> GetAllCompanies(bool trackChanges);

Company GetCompany(Guid companyId, bool trackChanges);
}

Then, we are going to implement this interface in the

CompanyRepository.cs file:

public Company GetCompany(Guid companyId, bool trackChanges) =>
FindByCondition(c => c.Id.Equals(companyId), trackChanges)
.SingleOrDefault();

Finally, let’s change the CompanyController class:

[HttpGet("{id}")]
public IActionResult GetCompany(Guid id)
{

var company = _repository.Company.GetCompany(id, trackChanges: false);
if(company == null)

_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();

}

else

{
var companyDto = _mapper.Map<CompanyDto>(company);
return Ok(companyDto);

}

The route for this action is /api/companies/id and that’s because the

/api/companies part applies from the root route (on top of the

64

(‘ Ultimate ASP.NET Core 3 Web API

controller) and the id part is applied from the action attribute
[HttpGet(“{id}*)].

So, our action returns IActionResult, like the previous one, and we
fetch a single company from the database. If it doesn’t exist, we use the
NotFound method to return a 404 status code. From this example, we
can see that ASP.NET Core provides us with a variety of semantical
methods that state what we can use them for, just by reading their
names. The Ok method is for the good result (status code 200) and the

NotFound method is for the NotFound result (status code 404).

If a company exists in the database, we just map it to the CompanyDto

type and return it to the client.

Let’s use Postman to send valid and invalid requests towards our API:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

Ne Environment
https:#flocalhost-5001

» https:ﬁlocalhost:SOOUapifcompanie543d490a?0-94ce-4d15-9494—5248280:2ce3 Examples (0) =

GET https:/flocalhost:5001/apifcompanies/3d430a70-G4ce-4d15-0494-5248280c2ce3 Params Send b Save

Authaorization

Pretty JS0M 5 Save Response

"id": "30498370-94ce-4415-9494-5248280c2ce3",
3 "pame": “"Admin_Solutions Ltd",
4 "fullAddress": "312 Forest Avenue, BF 023 UsA"
50 H

Invalid request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce2

65

:‘ Ultimate ASP.NET Core 3 Web API

No Environment
https://localhost:5001

» https://localhost:5001/apifcompanies/3d490a70-94ce-4d15-9494-5248280c2ce2 Examples (0) «
GET I':tl:s:-'.-'lc:calhc:st:5!2'31.-"a|:i.-‘:0m|:a|'ie5.-Fc4§l:a?c'-§ice-ic15-9'—'94-52%280-:2@2 Params Save
Authorization Code

Type No Auth

Body (4 89 ms
Pretty JSOM 5 Save Response
2 "type": "hitps:/ifools ietf.org/html/rfc72318section-6.5.4",
3 | "title": "Not Found”, |

YsTatus": 484,
T TBHLUOAZNEEMES: deapaael”

6.2 Parent/Child Relationships in Web API

Up until now, we have been working only with the company, which is a
parent (principal) entity in our API. But for each company, we have a
related employee (dependent entity). Every employee must be related to

a certain company and we are going to create our URIs in that manner.

That said, let's create a new controller and name it

EmployeesController:

[Route("api/companies/{companyId}/employees")]
[ApiController]
public class EmployeesController : ControllerBase
{
private readonly IRepositoryManager _repository;
private readonly ILoggerManager _logger;
private readonly IMapper _mapper;

public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)

{
_repository = repository;
_logger = logger;
_mapper = mapper;

}

}

We are familiar with this code, but our main route is a bit different. As we

said, a single employee can’t exist without a company entity and this is

66

:‘ Ultimate ASP.NET Core 3 Web API

exactly what are we exposing through this URI. To get an employee or
employees from the database, we have to specify the companyId
parameter, and that is something all actions will have in common. For

that reason, we have specified this route as our root route.

Before we create an action to fetch all the employees per company, we

have to modify the TEmployeeRepository interface:

public interface IEmployeeRepository

{
}

IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);

After interface modification, we are going to modify the

EmployeeRepository class:

public IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges) =>
FindByCondition(e => e.CompanyId.Equals(companyld), trackChanges)
.OrderBy(e => e.Name);

Finally, let’'s modify the Employees controller:

[HttpGet]

public IActionResult GetEmployeesForCompany(Guid companyId)

{
var company = _repository.Company.GetCompany(companyId, trackChanges: false);
if(company == null)
{

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();
}

var employeesFromDb = _repository.Employee.GetEmployees(companyld,
trackChanges: false);

return Ok(employeesFromDb);
}

This code is pretty straightforward — nothing we haven’t seen so far —
but we need to explain just one thing. As you can see, we have the

companyId parameter in our action and this parameter will be mapped
from the main route. For that reason, we didn’t place it in the [HttpGet]

attribute as we did with the GetCompany action.

67

:‘ Ultimate ASP.NET Core 3 Web API

But, we know that something is wrong here because we are using a
model in our response and not a data transfer object. To fix that, let’s add

another class in the DataTransferObjects folder:

public class EmployeeDto

{
public Guid Id { get; set; }
public string Name { get; set; }
public int Age { get; set; }
public string Position { get; set; }
}

After that, let’s create another mapping rule:

public MappingProfile()

{
CreateMap<Company, CompanyDto>()
.ForMember(c => c.FullAddress,
opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));
CreateMap<Employee, EmployeeDto>();
}

Finally, let’'s modify our action:

[HttpGet]

public IActionResult GetEmployeesForCompany(Guid companyId)

{
var company = _repository.Company.GetCompany(companyId, trackChanges: false);
if(company == null)
{

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();
}

var employeesFromDb = _repository.Employee.GetEmployees(companyld,
trackChanges: false);
var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

return Ok(employeesDto);
}

That done, we can send a request with a valid companyId:

68

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees
» Employees per Company Examples (0) =

GET https:/flocalhost:53001 /api/fcompanies/c9d4c053-49b6-410c-bc78-2d54a9991870/emplo... Params Save
Authorization Code
Type No Auth
Body (4 Status: 2000 Time: 67 m
Pretty JSOM 5 Save Response
1+
2.
3 "id": "B6dbaBc@-d178-41e7-938c-ed49778fb52a",
4 "name": "Jana Mcleaf",
5 "age": 3@,
6 "position": “Software developer”
7
g~
9 "ig": "B@abbcad-664d-4b2@-b5de-8247@5497d4:",
1@ "name": "Sam Raiden”,
11 "age": 26,
12 "position": “Software developer"
13
14 1
And with an invalid companyld:
https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991873/employees
GET httpsi/flocalhost:5001 fapi/companies/c0d4c053-40b6-410c-bc78-2d5459991873/emplo... Params Send e Save
Authorization Code
Type No Auth
Body (4) Status: 404 Not Found Time: 102 ms
Pretty JSON 5 Save Response
1-f
2 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.4",
3 "title": "Not Found”,
4 “status": 404,
5 "traceld": "@HLOBEGHIUVON:oeageae3™
6 1

Excellent. Let’s continue by fetching a single employee.

6.3 Getting a Single Employee for Company

So, as we did in previous sections, let’s start with an interface

modification:

69

:‘ Ultimate ASP.NET Core 3 Web API

public interface IEmployeeRepository

{
IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);

Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
}

Now, let’s implement this method in the EmployeeRepository class:

public Employee GetEmployee(Guid companyId, Guid id, bool trackChanges) =>
FindByCondition(e => e.CompanyId.Equals(companyId) && e.Id.Equals(id),
trackChanges)
.SingleOrDefault();

Finally, let’'s modify the EmployeeController class:

[HttpGet ("{id}")]
public IActionResult GetEmployeeForCompany(Guid companyId, Guid id)
{

var company = _repository.Company.GetCompany(companyId, trackChanges: false);
if(company == null)

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();
}

var employeeDb = _repository.Employee.GetEmployee(companyId, id, trackChanges:
false);
if(employeeDb == null)

{
_logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");

return NotFound();

}

var employee = _mapper.Map<EmployeeDto>(employeeDb);

return Ok(employee);
¥

Excellent.
We can test this action by using already created requests from the Bonus

2-CompanyEmployeesRequests.postman_collection.json file placed

in the folder with the exercise files:

70

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52a

> Employee For Company Examples (0) »

GET https://localhost:3001/apifcompanies/c9d4c053-49b6-410c-bc78-2d5459991870/emplo... Params Save

Authorization

Ve Mo Auth
Body (4) Status: 2000K Time: 74 ms
Pretty 150N = Save Response
A

"id": "86dba8c@-d178-41e7-938c-ed49778Fb52a",
" *: "Jana MclLeaf",

tien": "Software developer”

When we send the request with an invalid company or employee id:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52c

GET https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d5429991870/emplo... Params Save

Authorization Code

Vpe Mo Auth
Body (4) Status: 404 Not Found Time: 142 ms
Pretty JSOM 5 Save Response
il

FLNH: @2aepagl"”

Our results are pretty self explanatory.

Until now, we have received only JSON formatted responses from our API.
But what if we want to support some other format, like XML for example?

Well, in the next chapter we are going to learn more about Content
Negotiation and enabling different formats for our responses.

/1

:‘ Ultimate ASP.NET Core 3 Web API

7 CONTENT NEGOTIATION

Content negotiation is one of the quality-of-life improvements we can add
to our REST API to make it more user friendly and flexible. And when we

design an API, isn’t that what we want to achieve in the first place?

Content negotiation is an HTTP feature that has been around for a while,

but for one reason or another, it is often a bit underused.

In short, content negotiation lets you choose or rather “negotiate” the

content you want in to get in response to the REST API request.

7.1 What Do We Get Out of the Box?
By default, ASP.NET Core Web API returns a JSON formatted result.

We can confirm that by looking at the response from the GetCompanies

action:

https://localhost:5001/api/companies

GET https://localhost:3001/api/companies Params Save

Headers (1)
Key Value Description Bulk Edit Presets ¥
Accept text/xml
Body \ 4) \ Status: 2000K Time: 35 ms
Pretty JSON =
= I
i
"id": "3d499a7@-94ce-4d15-9494-5248288c2ce3",
4 "name": "Admin_Solutions Ltd",
5 "fullAddress™: "312 Forest Avenue, BF 923 Usa"
Is
{

"id": "c9d4ce53-49b6-418c-bc7E-2d5489991870",
"name": "IT_Soluticns Ltd",
"fullAddress": "583 Wall Dr. Gwynn Oak, MD 21287 USA"

2]

We can clearly see that the default result when calling GET on

/api/companies returns the JSON result. We have also used

72

:‘ Ultimate ASP.NET Core 3 Web API

the Accept header (as you can see in the picture above) to try forcing

the server to return other media types like plain text and XML.
But that doesn’t work. Why?

Because we need to configure server formatters to format a response the

way we want it.

Let’s see how to do that.

7.2 Changing the Default Configuration of Our Project

A server does not explicitly specify where it formats a response to JSON.
But you can override it by changing configuration options through

the AddControllers method.

We can add the following options to enable the server to format the XML

response when the client tries negotiating for it:

public void ConfigureServices(IServiceCollection services)

{

services.ConfigureCors();
services.ConfigureIISIntegration();
services.ConfigureLoggerService();
services.ConfigureSqlContext(Configuration);
services.ConfigureRepositoryManager();
services.AddAutoMapper(typeof(Startup));

services.AddControllers(config =>

{
config.RespectBrowserAcceptHeader = true;
}) .AddXmlDataContractSerializerFormatters();

}
First things first, we must tell a server to respect the Accept header. After

that, we just add the AddXmlDataContractSerializerFormatters

method to support XML formatters.

Now that we have our server configured, let’s test the content negotiation

once more.

73

:‘ Ultimate ASP.NET Core 3 Web API

7.3 Testing Content Negotiation
Let's see what happens now if we fire the same request through Postman:

https://localhost:5001/api/companies

» Companies (xml format)

GET https://localhost:5001/apifcompanies Params Save

Headers (1) Code
Key Value Description Bulk Edit Presets ¥
| Accept text/xml
Bod (4] atus: 200 O me: 124 m
Prety XML 5 Save Response
1~ KArrayOfCompanyDto xmlns:i="http:// .wW3.0rg/2081/XMLSchema-instance” xmlns="http://schemas.datacontract.org/2004/07/Entities.DataTransferdbjects">

2 <CompanyDto>
3 <FullAddress>312 Forest Avenue, BF 923 USA</FullAddress>
4 <I10>3d492a72-94ce-4d15-9494-5243250c2ce3 </ Id>
5 <Mame>Admin_Solutions Ltd</Name>
</CompanyDto>
T <CompanyDto>
8 <FullAddress>583 Wall Dr. Guynn Oak, MD 21227 USA</Fulldddressy
2 <I1d»c9d4c@53-49b6-410c-bC78-205459991870</ Id>
1@ <Mame>IT_Solutions Ltd</Name>
</CompanyDto>
2 LJArrayOfCompanyDtoy

There is our XML response.

Now by changing the Accept header from text/xml to text/json, we

can get differently formatted responses — and that is quite awesome,

wouldn’t you agree?
Okay, that was nice and easy.

But what if despite all this flexibility a client requests a media type that a

server doesn’t know how to format?

7.4 Restricting Media Types
Currently, it — the server - will default to a JSON type.

But we can restrict this behavior by adding one line to the configuration:

services.AddControllers(config =>

{
config.RespectBrowserAcceptHeader = true;
config.ReturnHttpNotAcceptable = true;

}) .AddXmlDataContractSerializerFormatters();

74

(‘ Ultimate ASP.NET Core 3 Web API

We added the ReturnHttpNotAcceptable = true option, which tells
the server that if the client tries to negotiate for the media type the
server doesn’t support, it should return the 466 Not Acceptable status

code.

This will make our application more restrictive and force the API
consumer to request only the types the server supports. The 406 status

code is created for this purpose.
Now, let’s try fetching the text/css media type using Postman to see
what happens:

https://localhost:5001/api/companies
» Companies (invalid format) Examples (0) «

GET https://localhost:53001 fapifcompanies Params Save

Headers (1) Code

Accept text/css

Jl
o
=l
o

Pretty ext

And as expected, there is no response body and all we get is a nice 406

Not Acceptable status code.

So far so good.

7.5 More About Formatters

If we want our API to support content negotiation for a type that is not “in
the box,” we need to have a mechanism to do this.

So, how can we do that?

/75

:‘ Ultimate ASP.NET Core 3 Web API

ASP.NET Core supports the creation of custom formatters. Their
purpose is to give us the flexibility to create our own formatter for any
media types we need to support.

We can make the custom formatter by using the following method:

o Create an output formatter class that inherits the
TextOutputFormatter class.

« Create an input formatter class that inherits the
TextInputformatter class.

e Add input and output classes to the InputFormatters and
OutputFormatters collections the same way we did for the XML
formatter.

Now let's have some fun and implement a custom CSV formatter for our
example.

7.6 Implementing a Custom Formatter
Since we are only interested in formatting responses, we need to
implement only an output formatter. We would need an input formatter

only if a request body contained a corresponding type.

The idea is to format a response to return the list of companies in a CSV

format.

Let’'s add a CsvOutputFormatter class to our main project:

public class CsvOutputFormatter : TextOutputFormatter

{
public CsvOutputFormatter()
{
SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/csv"));
SupportedEncodings.Add(Encoding.UTF8);
SupportedEncodings.Add(Encoding.Unicode);
}

protected override bool CanWriteType(Type type)
{

76

:‘ Ultimate ASP.NET Core 3 Web API

if (typeof(CompanyDto).IsAssignableFrom(type) ||
typeof (IEnumerable<CompanyDto>).IsAssignableFrom(type))

return base.CanWriteType(type);
}

return false;

}

public override async Task WriteResponseBodyAsync(OutputFormatterWriteContext
context, Encoding selectedEncoding)

{

var response = context.HttpContext.Response;
var buffer = new StringBuilder();

if (context.Object is IEnumerable<CompanyDto>)

foreach (var company in (IEnumerable<CompanyDto>)context.Object)

{
¥

FormatCsv(buffer, company);

}
else

{
}

await response.WriteAsync(buffer.ToString());

FormatCsv(buffer, (CompanyDto)context.Object);

private static void FormatCsv(StringBuilder buffer, CompanyDto company)

{
¥

buffer.AppendLine($"{company.Id},\"{company.Name},\"{company.FullAddress}\"");

}
There are a few things to note here:

e In the constructor, we define which media type this formatter should
parse as well as encodings.

« The CanWriteType method is overridden, and it indicates whether
or not the CompanyDto type can be written by this serializer.

e The WriteResponseBodyAsync method constructs the response.

« And finally, we have the FormatCsv method that formats a response
the way we want it.

77

(‘ Ultimate ASP.NET Core 3 Web API

The class is pretty straightforward to implement, and the main thing that
you should focus on is the FormatCsvmethod logic.

Now we just need to add the newly made formatter to the list
of OutputFormatters in the ServicesExtensions class:

public static IMvcBuilder AddCustomCSVFormatter(this IMvcBuilder builder) =>
builder.AddMvcOptions(config => config.OutputFormatters.Add(new
CsvOutputFormatter()));

And to call it in the AddControllers:

services.AddControllers(config =>

{
config.RespectBrowserAcceptHeader = true;
config.ReturnHttpNotAcceptable = true;
}) .AddXmlDataContractSerializerFormatters()
.AddCustomCSVFormatter();

Let’s run this and see if it actually works. This time we will put

text/csv as the value for the Accept header:

https://localhost:5001/api/companies

» Companies (csv format) Examples (0) »
GET https:/{localhest:3001/apifcompanies Params Send hd Save
Headers (1) Code
Key Value Description Bulk Edit Presetz *
Accept text/esv
Body () Status: 2000K Time: 1709 ms
Pretty Text = Save Response

3d49@a7@-94ce-4415-9494-5248280c2ce3,™ Admin_Selutiens Ltd," 312 Forest Avenue, BF 923 USA"
7 c9d4c@53-49bR-418c-bc78-245439991878," IT_Solutions Ltd," 583 Wall Dr. Gwynn Oak, MD 21287 Usp"

Well, what do you know, it works!

In this chapter, we finished working with GET requests in our project and
we are ready to move on to the POST PUT and DELETE requests. We have

a lot more ground to cover, so let’s get down to business.

78

(‘ Ultimate ASP.NET Core 3 Web API

8 METHOD SAFETY AND METHOD IDEMPOTENCY

Before we start with the Create, Update, and Delete actions, we should
explain two important principles in the HTTP standard. Those standards

are Method Safety and Method Idempotency.

We can consider a method a safe one if it doesn’t change the resource
representation. So, in other words, the resource shouldnt be changed

after our method is executed.

If we can call a method multiple times with the same result, we can
consider that method idempotent. So in other words, the side effects of

calling it once are the same as calling it multiple times.

Let’s see how this applies to HTTP methods:

HTTP Method Is it Safe? Is it Idempotent?

GET ~ Yes Yes
OPTIONS Yes Yes
HEAD Yes Yes
POST No No
DELETE No Yes
PUT No Yes
PATCH No No

As you can see, the GET, OPTIONS, and HEAD methods are both safe and
idempotent, because when we call those methods they will hot change the
resource representation. Furthermore, we can call these methods multiple

times, but they will return the same result every time.

The POST method is neither safe nor idempotent. It causes changes in the
resource representation because it creates them. Also, if we call the POST

method multiple times, it will create a new resource every time.

79

:‘ Ultimate ASP.NET Core 3 Web API

The DELETE method is not safe because it removes the resource, but it is
idempotent because if we delete the same resource multiple times, we

will get the same result as if we have deleted it only once.

PUT is not safe either. When we update our resource, it changes. But it is
idempotent because no matter how many times we update the same
resource with the same request it will have the same representation as if

we have updated it only once.
Finally, the PATCH method is neither safe nor idempotent.

Now that we’ve learned about these principles, we can continue with our
application by implementing the rest of the HTTP methods (we have
already implemented GET). We can always use this table to decide which

method to use for which use case.

80

:‘ Ultimate ASP.NET Core 3 Web API

9 CREATING RESOURCES

In this section, we are going to show you how to use the POST HTTP

method to create resources in the database.

So, let’s start.

9.1 Handling POST Requests
Firstly, let’s modify the decoration attribute for the GetCompany action in

the Companies controller:
[HttpGet("{id}", Name = "CompanyById")]

With this modification, we are setting the name for the action. This name

will come in handy in the action method for creating a new company.

We have a DTO class for the output (the GET methods), but right now we
need the one for the input as well. So, let’s create a new class in the

Entities/DataTransferObjects folder:

public class CompanyForCreationDto

{
public string Name { get; set; }
public string Address { get; set; }
public string Country { get; set; }

}

We can see that this DTO class is almost the same as the Company class,
but without the Id property. We don’t need that property when we create

an entity.

We should pay attention to one more thing. In some projects, the input
and output DTO classes are the same, but we still recommend separating
them for easier maintenance and refactoring of our code. Furthermore,
when we start talking about validation, we don’t want to validate the

output objects — but we definitely want to validate the input ones.

81

:‘ Ultimate ASP.NET Core 3 Web API

With all of that said and done, let’s continue by modifying the

ICompanyRepository interface:

public interface ICompanyRepository

{
IEnumerable<Company> GetAllCompanies(bool trackChanges);
Company GetCompany(Guid companyId, bool trackChanges);
void CreateCompany(Company company);

}

After the interface modification, we are going to implement that interface:

public void CreateCompany(Company company) => Create(company);

We don’t explicitly generate a new Id for our company; this would be

done by EF Core. All we do is to set the state of the company to Added.

Before we add a new action in our Companies controller, we have to
create another mapping rule for the Company and
CompanyForCreationDto objects. Let’s do this in the MappingProfile

class:

public MappingProfile()

{
CreateMap<Company, CompanyDto>()
.ForMember(c => c.FullAddress,
opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));
CreateMap<Employee, EmployeeDto>();
CreateMap<CompanyForCreationDto, Company>();
}

Our POST action will accept a parameter of the type
CompanyForCreationDto, but we need the Company object for creation.

Therefore, we have to create this mapping rule.

Last, let’s modify the controller:

[HttpPost]
public IActionResult CreateCompany([FromBody]CompanyForCreationDto company)

{
if(company == null)

_logger.LogError("CompanyForCreationDto object sent from client is null.");

82

(‘ Ultimate ASP.NET Core 3 Web API

}

return BadRequest("CompanyForCreationDto object is null");

var companyEntity = _mapper.Map<Company>(company);

_repository.Company.CreateCompany(companyEntity);
_repository.Save();

var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
companyToReturn);

}

Let’s use Postman to send the request and examine the result:

https://localhost:5001/api/companies
» POST Company

POST https:/¥lecalhost:3001 /apifcompanies Params Send b
(1) Body ®
form-data xwaw-form-urlencoded ® raw binary JSON (application/json)
1-
2 “pame": "Marketing Sclutions Ltd"”,
3 "address": "242 Sunny Avenus, K 334",
4 "country": "USA"
5 %
Body (&) Status: 201 Created
Pretry JSON =
1- {
2 "id": "53812378-Jed3-4452-bIFB-537bb1856a33", 1________________‘_‘_‘_
3 "name": "Marketing Solutions Ltd",
4 "fullAddress™: "242 Sunny Avenue, K 334 USA"
5 3

9.2 Code Explanation

Let’s talk a little bit about this code. The interface and the repository parts

are pretty clear, so we won't talk about that. But the code in the

controller contains several things worth mentioning.

83

:‘ Ultimate ASP.NET Core 3 Web API

If you take a look at the request URI, you'll see that we use the same one
as for the GetCompanies action: api/companies — but this time we are

using the POST request.

The CreateCompany method has its own [HttpPost] decoration
attribute, which restricts it to POST requests. Furthermore, notice the
company parameter which comes from the client. We are not collecting it
from the URI, but from the request body. Thus the usage of

the [FromBody] attribute. Also, the company object is a complex type;

therefore, we have to use [FromBody] .

If we wanted to, we could explicitly mark the action to take this
parameter from the URI by decorating it with the [FromUri] attribute,
though we wouldn’t recommend that at all because of security reasons

and the complexity of the request.

Because the company parameter comes from the client, it could happen
that it can’t be deserialized. As a result, we would need to validate it

against the reference type’s default value, which is null.

After validation, we map the company for creation to the company entity,
call the repository method for creation, and call the Save() method to
save the entity to the database. After the save action, we map the

company entity to the company DTO object to return it to the client.

The last thing to mention is this part of the code:

CreatedAtRoute("CompanyById", new { id = companyToReturn.Id }, companyToReturn);

CreatedAtRoute will return a status code 201, which stands for
Created. Also, it will populate the body of the response with the new
company object as well as the Location attribute within the

response header with the address to retrieve that company. We need to

provide the name of the action, where we can retrieve the created entity.

84

:‘ Ultimate ASP.NET Core 3 Web API

If we take a look at the headers part of our response, we are going to see

a link to retrieve the created company:

Headers (8]

access-control-allow-origin — ~

content-type — application/json; charset=utf-8

date — Thu, 03 Oct 2019 08:32:36 GMT

location — [httpsi/YocalhostE=5001 fapifcompanies/53al1237a-2ed3-4462-bof0-5a7bb 1056232
server — Kestre

transfer-encoding — chunked

Finally, from the previous example, we can confirm that the POST method
is neither safe nor idempotent. We saw that when we send the POST
request, it is going to create a new resource in the database — thus
changing the resource representation. Furthermore, if we try to send this
request a couple of times, we will get a new object for every request (it

will have a different Id for sure).

Let’s continue with child resources creation.

9.3 Creating a Child Resource
While creating our company, we created the DTO object required for the
CreateCompany action. So, for employee creation, we are going to do the

same thing:

public class EmployeeForCreationDto

{
public string Name { get; set; }
public int Age { get; set; }
public string Position { get; set; }
}

We don’t have the Id property because, we are going to create that Id on

the server side. But additionaly, we don’t have the CompanyId because

85

:‘ Ultimate ASP.NET Core 3 Web API

we accept that parameter through the route:

[Route("api/companies/{companyId}/employees")]
The next step is to modify the IEmployeeRepository interface:

public interface IEmployeeRepository

{
IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
void CreateEmployeeForCompany(Guid companyId, Employee employee);

}

Of course, we have to implement this interface:

public void CreateEmployeeForCompany(Guid companyId, Employee employee)

{
employee.CompanyId = companyld;
Create(employee);

Because we are going to accept the employee DTO object in our action,
but we also have to send an employee object to this repository method,
we have to create an additional mapping rule in the MappingProfile

class:
CreateMap<EmployeeForCreationDto, Employee>();

Now, we can add a new action in the EmployeesController:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)

{
if(employee == null)

_logger.LogError("EmployeeForCreationDto object sent from client is null.");

return BadRequest("EmployeeForCreationDto object is null");

}

var company = _repository.Company.GetCompany(companyId, trackChanges: false);
if(company == null)

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();
}
var employeeEntity = _mapper.Map<Employee>(employee);

_repository.Employee.CreateEmployeeForCompany(companyId, employeeEntity);
_repository.Save();

86

(‘ Ultimate ASP.NET Core 3 Web API

var employeeToReturn = _mapper.Map<EmployeeDto>(employeeEntity);
return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =

employeeToReturn.Id }, employeeToReturn);
}

There are some differences in this code compared to the CreateCompany
action. The first is that we have to check whether that company exists in
the database because there is no point in creating an employee for a

company that does not exist.

The second difference is the return statement, which now has two

parameters for the anonymous object.

For this to work, we have to modify the HTTP attribute above the

GetEmployeeForCompany action:
[HttpGet("{id}", Name = "GetEmployeeForCompany")]
Let’s give this a try:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees
» POST Employee for Company

POST https:/flocalhost:3001 /api/companies/53a1237a-3ed3-4462-b8f0-5a7bb 1056a33/emplo... Params

(1) Body @
form-data x-www-form-urlencoded ® raw binary OM (applica n
2 "pame": "Martin Geil",
3 " _,
4 'y "Marketing expert”
5 F
Body (€) Status: 201 Created
Pretry JSON =
"id": "9ad32bdc-6d18-481a-bc35-f4999a312893",

"Martin Geil",

= RV, B R PV U)

i "Marketing expert”

Excellent. A new employee was created.

87

:‘ Ultimate ASP.NET Core 3 Web API

If we take a look at the Headers tab, we'll see a link to fetch our newly
created employee. If you copy that link and send another request with it,

you will get this employee for sure:

GET | httpsi/flocalhost3001 /api/companies/53a1237a-3ed3-4462-b30-5a7bb 1056a33/employees/9ad82bd c-6d15-481a-bc35-f45995312803
Autharization
Type No Auth
Body 4
Pretty JSON =
- :
2 "id": "%ad82bdc-6d18-4815-bc35-F49995312893",
3 "rams": "Martin Geil",
4 zze: 29,
5 "position": "Marketing expert"”

9.4 Creating Children Resources Together with a Parent
There are situations where we want to create a parent resource with its
children. Rather than using multiple requests for every single child, we

want to do this in the same request with the parent resource.
We are going to show you how to do this.

The first thing we are going to do is extend the CompanyForCreationDto

class:

public class CompanyForCreationDto

{

public string Name { get; set; }

public string Address { get; set; }

public string Country { get; set; }

public IEnumerable<EmployeeForCreationDto> Employees { get; set; }
}

We are not going to change the action logic inside the controller nor the

repository logic; everything is great there. That's all. Let’s test it:

88

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies
» POST Company with Employees

POST https:/flocalhost:5001 fapifcompanies Params

(1) Body @

form-data x-www-form-urlencoded ® raw binary

I

JSOM (application/json)
2 ectronics Scluticons Ltd™,
3 “312 Deliver Street, F 234",
a "country™: "USA",
S "employees™: [
7 "name™: "Joan Dane"™,
8 “ags": 29,
=} "position": “"Manager”
18 Ts
11 - {
12 "name™: "Martin Geil™,
13 “age": 2%,
14 "position": "Administrative!
15 3
16 1
17}
Body ()
Pretty 150N e] 5
1- K
2 1-ff51-414d-afdl-34187e4d7557",
3 ronics Solutions Ltd",
4 "312 Deliver Streest, F 234 Usa™
5 1

You can see that this company was created successfully.

Now we can copy the location link from the Headers tab, paste it in

another Postman tab, and just add the /employees part:

GET |http5:.-'.-"|c:ca|hc:5t:58[:1 fapifcompanies/0ad5b371-ff51-414d-af01-241 87407557 'employees

Authorization

Type Mo Auth
Body (4)
Pretoy 150N =
1~
2 - £
3 "id": "52e9c6e@d-94d2-4521-9562-918aa515aal11",
4 "name": "Joan Dane",
S "age": 29,
6 "position™: "Manager"™
Fi ¥
8- f
= id"™: defg20@3-accI-4F9¥-9d82-8a74+54594c1",
18 namea" Martin Geil™,
11 "age": 29,
12 "position™: "Administratiwve™
13
14]

We have confirmed that the employees were created as well.

89

:‘ Ultimate ASP.NET Core 3 Web API

9.5 Creating a Collection of Resources

Until now, we have been creating a single resource whether it was
Company or Employee. But it is quite normal to create a collection of
resources, and in this section that is something we are going to work
with.

If we take a look at the CreateCompany action, for example, we can see
that the return part points to the CompanyById route (the GetCompany
action). That said, we don’t have the GET action for the collection creating
action to point to. So, before we start with the POST collection action, we
are going to create the GetCompanyCollection action in the Companies

controller.

But first, let's modify the ICompanyRepository interface:
IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
Then we have to change the CompanyRepository class:

public IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges) =>
FindByCondition(x => ids.Contains(x.Id), trackChanges)
.ToList();

After that, we can add a new action in the controller:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]
public IActionResult GetCompanyCollection(IEnumerable<Guid> ids)

{
if(ids == null)

{

_logger.LogError("Parameter ids is null");
return BadRequest("Parameter ids is null");

}

var companyEntities = _repository.Company.GetByIds(ids, trackChanges: false);
if(ids.Count() != companyEntities.Count())

_logger.LogError("Some ids are not valid in a collection");
return NotFound();

}

var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
return Ok(companiesToReturn);

90

:‘ Ultimate ASP.NET Core 3 Web API

And that's it. These actions are pretty straightforward, so let's continue

towards POST implementation:

[HttpPost("collection")]
public IActionResult CreateCompanyCollection([FromBody]
IEnumerable<CompanyForCreationDto> companyCollection)

{

if(companyCollection == null)

{
_logger.LogError("Company collection sent from client is null.");
return BadRequest("Company collection is null");

}

var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);

foreach (var company in companyEntities)

{
_repository.Company.CreateCompany(company);

}

_repository.Save();

var companyCollectionToReturn =
_mapper.Map<IEnumerable<CompanyDto>>(companyEntities);

var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

return CreatedAtRoute("CompanyCollection", new { ids },
companyCollectionToReturn);

}

So, we check if our collection is null and if it is, we return a bad request.
If it isn’t, then we map that collection and save all the collection elements
to the database. Finally, we take all the ids as a comma-separated string

and navigate to the GET action for fetching our created companies.

Now you may ask, why are we sending a comma-separated string when

we expect a collection of ids in the GetCompanyCollection action?

Well, we can't just pass a list of ids in the CreatedAtRoute method
because there is no support for the Header Location creation with the list.

You may try it, but we're pretty sure you would get the location like this:

91

10 Ultimate ASP.NET Core 3 Web API

access-control-allow-origin —+ *
content-type — application/json; charset=utf-8

date — Fri, 04 Oct 2019 08:44:58 GMT

—

location — https://localhost:5001/api/companies/collection

ystem.Ling.Enumerable¥2B5electListiterator 36602 %58 Entities, DataTransferObjects.CompanyDto, System.Guid%5D0)

server — Kestrel

We can test our create action now:

https://localhost:5001/api/companies/collection

POST Company collac

» POST Company collection

POST httpsi/flocalhost:3001/apifcompanies/collection
(1) Body @
form-data w-www-form-urlencoded ® raw binary |SON (application/json)
1~
2~ {
3 "name”: "Sales all over the world Ltd™,
4 "address": "355 Open Strest, B 784",
5 "country": "UsA"
6 Ts
7~ {
8 "name": "Branding Ltd",
9 "address": "235 Main strest, K 334",
1@ "country": "USA"
11 ¥
12 1]
Body (3]
Pretty JSON e
1-[
1= {
3 "igh: "O4333F42-1b39-4935-bF9b-betb2588238C",
4 "name”: "Ssles gll over the world Ltd",
5 "fullAddress™: "3535 Open Street, B 734 UsSA"
5 1, -
B {
8 "igh: "G20037@b-Fled-465c-a55d-bdbcca3arson”,
5 "name": "Branding Ltd",
1@ "fullAddress™: "255 Main street, ¥ 334 UsA”
11 ¥
12 1

Excellent. Let’s check the header tab:

Mo Environment

Pararrs

Status: 2071 Created

92

(‘ Ultimate ASP.NET Core 3 Web API

access-control-allow-origin - *

content-type — application/json; charset=utf-8

date — Fri, 04 Oct 2019 09:50:23 GMT

location — https://localhost:5001/api/companies/collection/(94833f42- 1b89-49a5-bf0b-beOb25802e8c 6200370b-f1e8-465c-a55d -bdbecadar39k)
server — Kestrel

transfer-encoding — chunked

We can see a valid location link. So, we can copy it and try to fetch our

newly created companies:

GET https://localhost:3001/api/companies/collection/(94833f42- 1b89-49a5-bf9b-beOb2580228¢,62003... Params

Authorization

Type No Auth
Body (4 Status: 415 Unsupported Media Type
Pretty JSON >
1~
2 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.13",
3 "title": "Unsupported Media Type",
4 "status": 415, —we——
5 “traceld": | 2af2fLlf6-47c82chafletbbfd,”
6 1

But we are getting the 415 Unsupported Media Type message. This is
because our API can’t bind the string type parameter to the

IEnumerable<Guid> argument.

Well, we can solve this with a custom model binding.

9.6 Model Binding in API
Let’s create the new folder ModelBinders in the main project and inside

the new class ArrayModelBinder:

public class ArrayModelBinder : IModelBinder

{
public Task BindModelAsync(ModelBindingContext bindingContext)

{

93

:‘ Ultimate ASP.NET Core 3 Web API

if(!bindingContext.ModelMetadata.IsEnumerableType)

{
bindingContext.Result = ModelBindingResult.Failed();

return Task.CompletedTask;
}

var providedValue = bindingContext.ValueProvider
.GetValue(bindingContext.ModelName)

.ToString();

if(string.IsNullOrEmpty(providedvalue))

{
bindingContext.Result = ModelBindingResult.Success(null);
return Task.CompletedTask;

}

var genericType =
bindingContext.ModelType.GetTypeInfo().GenericTypeArguments[0];
var converter = TypeDescriptor.GetConverter(genericType);

var objectArray = providedvalue.Split(new[] { "," },
StringSplitOptions.RemoveEmptyEntries)
.Select(x => converter.ConvertFromString(x.Trim()))
.ToArray();
var guidArray = Array.Createlnstance(genericType, objectArray.Length);
objectArray.CopyTo(guidArray, 0);
bindingContext.Model = guidArray;

bindingContext.Result = ModelBindingResult.Success(bindingContext.Model);
return Task.CompletedTask;

}

At first glance, this code might be hard to comprehend, but once we

explain it, it will be easier to understand.

We are creating a model binder for the IEnumerable type. Therefore, we

have to check if our parameter is the same type.

Next, we extract the value (a comma-separated string of GUIDs) with the
ValueProvider.GetValue() expression. Because it is type string, we
just check whether it is null or empty. If it is, we return null as a result
because we have a null check in our action in the controller. If it is not,

we move on.

In the genericType variable, with the reflection help, we store the type
the IEnumerable consists of. In our case, it is GUID. With the

converter variable, we create a converter to a GUID type. As you can

94

(‘ Ultimate ASP.NET Core 3 Web API

see, we didn’t just force the GUID type in this model binder; instead, we
inspected what is the nested type of the IEnumerable parameter and
then created a converter for that exact type, thus making this binder

generic.

After that, we create an array of type object (objectArray) that consist
of all the GUID values we sent to the API and then create an array of
GUID types (guidArray), copy all the values from the objectArray to
the guidArray, and assign it to the bindingContext.

And that is it. Now, we have just to make a slight modification in the

GetCompanyCollection action:

public IActionResult GetCompanyCollection([ModelBinder(BinderType =
typeof (ArrayModelBinder))]IEnumerable<Guid> ids)

Excellent.

Our ArrayModelBinder will be triggered before an action executes. It
will convert the sent string parameter to the IEnumerable<Guid> type,

and then the action will be executed:

GET httpsi/flocalhost:3001/api/fcompanies/collection/{94833f42-1b89-4955-0f9b-be... Params Send ad

Authorization

Type No Auth
Bod) 5 00K
Pretty JSON =
& [
© 1
"1 "G28@378b-fle8-465c-a55d-bdbcca3arson”,
4 "name": "Branding Ltd",
"fullAddress": "253 Main street, K 334 USA"
Ts
_ [
"id": "O4833F42-1b39-4035-bf9b-beSb25E8228C",
2 “"name": "S5ales 211 over the world Ltd",
18 "fullAddress": "355 Open Street, B 784 UsSA"

95

(‘ Ultimate ASP.NET Core 3 Web API

Well done.

We are ready to continue towards DELETE actions.

96

:‘ Ultimate ASP.NET Core 3 Web API

10 WORKING WITH DELETE REQUESTS

Let’s start this section by deleting a child resource first.

So, let’s modify the IEmployeeRepository interface:

public interface IEmployeeRepository

{
IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
void CreateEmployeeForCompany(Guid companyId, Employee employee);
void DeleteEmployee(Employee employee);
}

The next step for us is to modify the EmployeeRepository class:

public void DeleteEmployee(Employee employee)
{

}
Finally, we can add a delete action to the controller class:

Delete(employee);

[HttpDelete("{id}")]
public IActionResult DeleteEmployeeForCompany(Guid companyId, Guid id)
{

var company = _repository.Company.GetCompany(companyId, trackChanges: false);
if(company == null)
{

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();

}

var employeeForCompany = _repository.Employee.GetEmployee(companyld, id,
trackChanges: false);
if(employeeForCompany == null)

{
_logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");

return NotFound();

}

_repository.Employee.DeleteEmployee(employeeForCompany);
_repository.Save();

return NoContent();

}
There is nothing new with this action. We collect the companyld from the
root route and the employee’s id from the passed argument. We have to

check if the company exists. Then, we check for the employee entity.

97

(‘ Ultimate ASP.NET Core 3 Web API

Finally, we delete our employee and return the NoContent () method,

which returns the status code 204 No Content.

Let’s test this:

https://localhost:5001/api/companies/0AD5B971-FF51-414D-AF01-34187E407557/employees/DE662003-ACC3-
4F9F-9D82-0A74F64594C1
» DELETE Employee for company

DELETE https:/flocalhost:5001/api/companies/0ADSB971-FF51-4140-AF01-34187E407557 /employees/DE662003-ACC3-4FOF-0D82-0A74F64594C1 Params

Headers (1)
Key Valua Description Bulk E

Content-Type application/json

Excellent. It works great.

You can try to get that employee from the database, but you will get 404
for sure:

https://localhost:5001/api/companies/@AD5B971-FF51-414D-AF01-34187E407557/employees/DE662003-ACC3-
4F9F-9D82-0A74F64594C1

https://localhost:5001/api/companies/0ADSBI71-FF31-414D-AF01-341 87E407557 /employees/DE662003-ACC3-4F9F-9D82-0ATAFG4594C1 Params

GET

Authorization

We can see that the DELETE request isn’t safe because it deletes the
resource, thus changing the resource representation. But if we try to send
this delete request one or even more times, we would get the same 404
result because the resource doesn’t exist anymore. That's what makes the

DELETE request idempotent.

10.1 Deleting a Parent Resource with its Children

With Entity Framework Core, this action is pretty simple. With the basic
configuration, cascade deleting is enabled, which means deleting a parent
resource will automatically delete all of its children. We can confirm that

from the migration file:

98

(‘ Ultimate ASP.NET Core 3 Web API

mndelBuilder.Entity(IEntities.HDdElS.Ewplnyeeq, b =2

1
b.HasOne("Entities.Models.Company™, "Company™)
MWithMany {"Employees™)
HasForeignkey(" CompanyId™)
|.DnDEletE(EELE:EBEhauic’.Cascadejl
IsHequired();
1

So, all we have to do is to create a logic for deleting the parent resource.

Well, let’s do that following the same steps as in a previous example:

public interface ICompanyRepository

{
IEnumerable<Company> GetAllCompanies(bool trackChanges);
Company GetCompany(Guid companyId, bool trackChanges);
void CreateCompany(Company company);
IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
void DeleteCompany(Company company);
}

Then let’s modify the repository class:

public void DeleteCompany(Company company)
{

}

Delete(company);

Finally, let’s modify our controller:

[HttpDelete("{id}")]
public IActionResult DeleteCompany(Guid id)
{

var company = _repository.Company.GetCompany(id, trackChanges: false);
if(company == null)

{
_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");

return NotFound();

}

_repository.Company.DeleteCompany(company);
_repository.Save();

return NoContent();

}

And let’s test our action:

99

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/@AD5B971-FF51-414D-AF01-34187E407557
» Delete Company

DELETE https:y/localhost:53001 fapifcompanies/0ADSEOT1-FF51-4140-AF01-341 87E407557 Params

Headers (1)
Key Value Description Bulk E

Content-Type application/jscn

Eody (3] Status: 204 No Content

It works.

You can check in your database that this company alongside its children

doesn’t exist anymore.

There we go. We have finished working with DELETE requests and we are

ready to continue to the PUT requests.

For the PUT requests, we are going to inspect our console window for the
SQL generated commands. If you can’t see those, then just add this code
in the appsettings.json file:

"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Information",
"Microsoft.EntityFrameworkCore": "Information"

¥

100

:‘ Ultimate ASP.NET Core 3 Web API

11 WORKING WITH PUT REQUESTS

In this section, we are going to show you how to update a resource using
the PUT request. We are going to update a child resource first and then
we are going to show you how to execute insert while updating a parent

resource.

111 Updating Employee
In the previous sections, we first changed our interface, then the
repository class, and finally the controller. But for the update, this doesn’t

have to be the case.
Let’s go step by step.

The first thing we are going to do is to create another DTO class for

update purposes:

public class EmployeeForUpdateDto

{
public string Name { get; set; }
public int Age { get; set; }
public string Position { get; set; }
}

We do not require the Id property because it will be accepted through the
URI, like with the DELETE requests. Additionally, this DTO contains the
same properties as the DTO for creation, but there is a conceptual
difference between those two DTO classes. One is for updating and the
other is for creating. Furthermore, once we get to the validation part, we

will understand the additional difference between those two.

Because we have additional DTO class, we require an additional mapping

rule:
CreateMap<EmployeeForUpdateDto, Employee>();

Now, when we have all of these, let’'s modify the EmployeesController:

101

:‘ Ultimate ASP.NET Core 3 Web API

[HttpPut("{id}")]
public IActionResult UpdateEmployeeForCompany(Guid companyId, Guid id, [FromBody]
EmployeeForUpdateDto employee)

{

if(employee == null)

{
_logger.LogError("EmployeeForUpdateDto object sent from client is null.");
return BadRequest("EmployeeForUpdateDto object is null");

}

var company = _repository.Company.GetCompany(companyId, trackChanges: false);

if(company == null)

{

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();
}

var employeeEntity = _repository.Employee.GetEmployee(companyId, id, trackChanges:
true);
if(employeeEntity == null)

_logger.LogInfo($"Employee with id: {id} doesn't exist in the database.™);
return NotFound();

}

_mapper.Map(employee, employeeEntity);
_repository.Save();

return NoContent();

}

We are using the PUT attribute with the id parameter to annotate this
action. That means that our route for this action is going to be:

api/companies/{companyId}/employees/{id}.

As you can see, we have three checks in our code and they are familiar to
us. But we have one difference. Pay attention to the way we fetch the
company and the way we fetch the employeeEntity. Do you see the

difference?

The trackChanges parameter is set to true for the employeeEntity.
That's because we want EF Core to track changes on this entity. This
means that as soon as we change any property in this entity, EF Core will
set the state of that entity to Modified.

102

:‘ Ultimate ASP.NET Core 3 Web API

As you can see, we are mapping from the employee object (we will
change just the age property in a request) to the employeeEntity —
thus changing the state of the employeeEntity object to Modified.

Because our entity has a modified state, it is enough to call the Save
method without any additional update actions. As soon as we call the

Save method, our entity is going to be updated in the database.
Finally, we return the 204 NoContent status.

We can test our action:

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

» UPDATE Employee for company

PUT httpsyflocalhost:3001 fapifcompanies/CO04C053-49B6-4 0C-BC75-2D54A99918700... Params

(1) Body @
form-data w-www-form-urlencoded raw binary
“name": "Sam Rgldsn",
3 "age": 25, i Age changed from 26 to 25
4 "pesition”: "Software developsr”
5 T
Body (3) Status: 204 No Content

And it works; we get the 204 No Content status.

We can check our executed query through EF Core to confirm that only

the Age column is updated:

SET NOCOUNT ON:
UPDATE [Employees]

WHERE [EmployeeId]
SELECT @@AROWCOUNT;

Excellent.

103

:‘ Ultimate ASP.NET Core 3 Web API

You can send the same request with the invalid company id or employee
id. In both cases, you should get a 404 response, which is a valid

response for this kind of situation.

Additional note: As you can see, we have changed only the Age
property, but we have sent all the other properties with unchanged values
as well. Therefore, Age is only updated in the database. But if we send
the object with just the Age property, without the other properties, those
other properties will be set to their default values and the whole object
will be updated — not just the Age column. That’s because the PUT is a

request for a full update. This is very important to know.

11.1.1 About the Update Method from the RepositoryBase
Class

Right now, you might be asking: "Why do we have the Update method in

the RepositoryBase class if we are not using it?”

The update action we just executed is a connected update (an update
where we use the same context object to fetch the entity and to update
it). But sometimes we can work with disconnected updates. This kind of
update action uses different context objects to execute fetch and update
actions or sometimes we can receive an object from a client with the Id
property set as well, so we don’t have to fetch it from the database. In
that situation, all we have to do is to inform EF Core to track changes on
that entity and to set its state to modified. We can do both actions with
the Update method from our RepositoryBase class. So, you see, having

that method is crucial as well.

One note, though. If we use the Update method from our repository,
even if we change just the Age property, all properties will be updated in

the database.

104

:‘ Ultimate ASP.NET Core 3 Web API

11.2 Inserting Resources while Updating One
While updating a parent resource, we can create child resources as well
without too much effort. EF Core helps us a lot with that process. Let’s

see how.

The first thing we are going to do is to create a DTO class for update:

public class CompanyForUpdateDto

{

public string Name { get; set; }

public string Address { get; set; }

public string Country { get; set; }

public IEnumerable<EmployeeForCreationDto> Employees { get; set; }
}

After this, let’s create a new mapping rule:
CreateMap<CompanyForUpdateDto, Company>();

Right now, we can modify our controller:
[HttpPut("{id}")]

public IActionResult UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto company)

{
if(company == null)

{
_logger.LogError("CompanyForUpdateDto object sent from client is null.");
return BadRequest("CompanyForUpdateDto object is null");

}

var companyEntity = _repository.Company.GetCompany(id, trackChanges: true);

if(companyEntity == null)

{
_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();

}

_mapper.Map(company, companyEntity);
_repository.Save();

return NoContent();

}

That’s it. You can see that this action is almost the same as the employee
update action.

Let’s test this now:

105

:‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3
» UPDATE Company with employees

PUT https:fflocalhost:5001 /apifcompanies/3d430a70-4ce-4d15-9494-5248280c2ce3 Params

Body @

e "Admin_Solutions _t-:l',
& : "312 Forest Avenue, BF 923",
: MUSA",
L

"Zeil Metain”,
“zge": 13,
"pesition™: "Admin'

We modify the name of the company and attach an employee as well. As
a result, we can see 204, which means that the entity has been updated.

But what about that new employee?

Let’s inspect our query:

SET NOCOU
UPDATE [Compa
WHERE [Compa

pl="?" (DbType = Int32), @2="7?" (DbType = Guid),
ommandTimeout="30"]

You can see that we have created the employee entity in the database.
So, EF Core does that job for us because we track the company entity. As
soon as mapping occurs, EF Core sets the state for the company entity to
modified and for all the employees to added. After we call the Save
method, the Name property is going to be modified and the employee

entity is going to be created in the database.

We are finished with the PUT requests, so let’s continue with PATCH.

106

:‘ Ultimate ASP.NET Core 3 Web API

12 WORKING WITH PATCH REQUESTS

In the previous chapter, we worked with the PUT request to fully update
our resource. But if we want to update our resource only partially, we
should use PATCH.

The partial update isn’t the only difference between PATCH and PUT. The
request body is different as well. For the Company PATCH request, for
example, we should use [FromBody]JsonPatchDocument<Company>

and not [FromBody]Company as we did with the PUT requests.

Additionally, for the PUT request’s media type, we have used
application/json — but for the PATCH request’s media type, we
should use application/json-patch+json. Even though the first one
would be accepted in ASP.NET Core for the PATCH request, the

recommendation by REST standards is to use the second one.

Let's see what the PATCH request body looks like:

"op": "replace",
"path": "/name",
"value": "new name"

"op": "remove",
"path": "/name"

The square brackets represent an array of operations. Every operation is
placed between curly brackets. So, in this specific example, we have two
operations: Replace and Remove represented by the op property. The
path property represents the object’s property that we want to modify

and the value property represents a new value.

107

(0 Ultimate ASP.NET Core 3 Web API

In this specific example, for the first operation, we replace the value of
the name property to a new name. In the second example, we remove the

name property, thus setting its value to default.

There are six different operations for a PATCH request:

OPERATION REQUEST BODY EXPLANATION
{
"op": "add", . '
Add "path": "/name", Assigns a new value to a required
"value": "new value" G o
}
{
"op": "remove", Sets a default value to a required
Remove "path”: "/name" property.
}
{
"op": "replace”, .
" o m Replaces a value of a required
Replace "path ﬁname >, . property to a new value.
value": "new value
}
{
"op": "copy", Copies the value from a property in
Copy "from": "/name", the “from” part to the property in
"path": "/title" the “path” part.
}
{
"op": "move", Moves the value from a property in
Move "from": "/name", the “from” part to a property in
"path": "/title" the “path” part.
}
{
"op": "test", . s
Test "path": "/name", Igiﬁz if a property has a specified
"value": "new value")
}

After all this theory, we are ready to dive into the coding part.

12.1 Applying PATCH to the Employee Entity
Before we start with the controller modification, we have to install two

required libraries:

® The Microsoft.AspNetCore.JsonPatch library to support the usage

of JsonPatchDocument in our controller and

108

:‘ Ultimate ASP.NET Core 3 Web API

® The Microsoft.AspNetCore.Mvc.NewtonsoftJson library to support
request body conversion to a PatchDocument once we send our

request.

Once the installation is completed, we have to add the NewtonsoftJson

configuration to IServiceCollection:

services.AddControllers(config =>

{

config.RespectBrowserAcceptHeader = true;
config.ReturnHttpNotAcceptable = true;
}) .AddNewtonsoftJson()
.AddXmlDataContractSerializerFormatters()
.AddCustomCSVFormatter();

Add it before the Xml and CSV formatters. Now we can continue.

We will require a mapping from the Employee type to the
EmployeeForUpdateDto type. Therefore, we have to create a mapping

rule for that.

If we take a look at the MappingProfile class, we will see that we have

a mapping from the EmployeeForUpdateDto to the Employee type:
CreateMap<EmployeeForUpdateDto, Employee>();

But we need it another way. To do so, we are not going to create an
additional rule; we can just use the ReverseMap method to help us in the

process.
CreateMap<EmployeeForUpdateDto, Employee>().ReverseMap();

The ReverseMap method is also going to configure this rule to execute

reverse mapping if we ask for it.

Now, we can modify our controller:

[HttpPatch("{id}")]
public IActionResult PartiallyUpdateEmployeeForCompany(Guid companyId, Guid id,
[FromBody] JsonPatchDocument<EmployeeForUpdateDto> patchDoc)

{
if(patchDoc == null)

{

109

:‘ Ultimate ASP.NET Core 3 Web API

_logger.LogError("patchDoc object sent from client is null.");
return BadRequest("patchDoc object is null");
}

var company
if (company

_repository.Company.GetCompany(companyId, trackChanges: false);
= null)

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();

}

var employeeEntity = _repository.Employee.GetEmployee(companyId, id, trackChanges:
true);
if (employeeEntity == null)
_logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
return NotFound();

}

var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);
patchDoc.ApplyTo(employeeToPatch);

_mapper.Map(employeeToPatch, employeeEntity);

_repository.Save();

return NoContent();

}

You can see that our action signature is different from the PUT actions.
We are accepting the JsonPatchDocument from the request body. After
that, we have a familiar code where we check the patchbDoc for null value
and if the company and employee exist in the database. Then, we map
from the Employee type to the EmployeeForUpdateDto type; it is
important for us to do that because the patchDoc variable can apply only
to the EmployeeForUpdateDto type. After apply is executed, we map
again to the Employee type (from employeeToPatch to

employeeEntity) and save changes in the database.

Now, we can send a couple of requests to test this code:

Let’s first send the replace operation:

110

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

» PATCH Employee for company

PATCH

form-data

wd B LA fa L RS

Body

https:/flecalhoest:3001 fapi/companies/C9D4C053-43B6-410C-BC73-2D54A9949.. Params

(2) Body @

w-www-form-urlencoded ® raw binary axt

"op": "replace”,
"path": "/age",

Value: 125" f— From 25 to 28

3 Status: 204 Mo Content

It works; we get the 204 No Content message. Let’s check the same

employee:

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

Accept

GET

Key

Body

Pretty

DL L R e

4
-

—

httpsi//localhost:5001 /api/companies/C9D4C0053-49B6-410C-BC7 8-2D54A5990. . Params

Headers (1)

Value Description Bulk Edin

application/json

() Status: 200 OK

JSON =

"id": "8@sbbcal-664d-4b20-b5ds-024705407d4a",

: "Zam Raiden”,
"age: 28, H
"position™: "Software developer”

And we see that the Age property has been changed.

Let's send a remove operation in a request:

111

<0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

» PATCH Employee for company (remove)

PATCH https:/flocalhost:3001 fapifcompanies/CA04C053... Params

(2} Body @
form-data wwrww-form-urlencoded ® raw binary Text
1 [
2 i
3 "op": "remove",
4 [E] : BEE
5 H
6 1]
Body (3 Status: 204 No Content

This works as well. Now, if we check our employee, its age is going to be

set to 0 (the default value for the int type):

1~ i

2 "id": "Z0ebbcai-f5dd-402@-bSde-024705497d4a",
3 "name": "Sam Raiden”,

= "gge": @,

5 "position™: “"Software developer™

& T

Finally, let’s return a value of 28 for the Age property:

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

2 form-dats wwnwnw-form-urlencoded *® raw binary Text
1 [
2 1
= "op”: "add”,
a "path": "/age",
5 "yalus"s "28" P
5
7 1
Eady) Status: 204 No Content

112

(‘ Ultimate ASP.NET Core 3 Web API

Let’s check the employee now:

i
-~k

2 "id": "S@sbbcaf-6add-402@-b5de-924785497d48",
3 "nams": "Sam Reiden”,
4 “age": 23,
= "position”: "Software developsr”
& 7
Excellent.

Everything is working well.

113

:‘ Ultimate ASP.NET Core 3 Web API

13 VALIDATION

While writing API actions, we have a set of rules that we need to check. If
we take a look at the Company class, we can see different data annotation

attributes above our properties:

public class Company

{

[Column("CompanyId™)]

public Guid Id { get; set; }

[Required(ErrorMessage = "Company name is a required field.™)]
[MaxLength(e@, ErrorMessage = "Maximum length for the Name is 68 characters.™)]

public string Name { get; set; }

[Required(ErrorMessage = "Company address is a required field.™)}]
[MaxLength(e@, ErrorMessage = "Maximum length for the Address is 68 characters.™)

public string Address { get; set; }
public string Country { get; set; }

public ICcllecticn<Employee> Employees { get; set; }

Those attributes serve the purpose to validate our model object while
creating or updating resources in the database. But we are not making

use of them yet.

In this chapter, we are going to show you how to validate our model
objects and how to return an appropriate response to the client if the
model is not valid. So, we need to validate the input and not the output of
our controller actions. This means that we are going to apply this
validation to the POST, PUT, and PATCH requests, but not for the GET

request.

To validate against validation rules applied by Data Annotation attributes,
we are going to use the concept of ModelState. It is a dictionary

containing the state of the model and model binding validation.

Once we send our request, the rules defined by Data Annotation

attributes are checked. If one of the rules doesn’t check out, the

114

(‘ Ultimate ASP.NET Core 3 Web API

appropriate error message will be returned. We are going to use the

ModelState.IsValid expression to check for those validation rules.

Finally, the response status code, when validation fails, should be 422
Unprocessable Entity. That means that the server understood the
content type of the request and the syntax of the request entity is
correct, but it was unable to process validation rules applied on the entity

inside the request body.

So, with all this in mind, we are ready to implement model validation in

our code.

13.1 Validation while Creating Resource
Let's send another request for the CreateEmployee action, but this time

with the invalid request body:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

» POST Employee for Company (null values)

POST httpswflocalhost:5001 fapifcompanies/53a... Params

(1} Body &

form-data w-wnwnwe-form-urlencoded ® raw binary SOM {application/json)

7]

"mams": null,
"age": 29,
"position™: null

WA da L p

Jl

Pretiy JSON

"StatusCode™: 588,
"Message™: “"Internal Server Error.”

fa Ll B

¥

And we get the 500 Internal Server Error, which is a generic
message when something unhandled happens in our code. But this is not

good. This means that the server made an error, which is not the case. In

115

(‘ Ultimate ASP.NET Core 3 Web API

this case, we, as a consumer, sent a wrong model to the API — thus the

error message should be different.

In order to fix this, let’'s modify our EmployeeForCreationDto class

because that’'s what we deserialize the request body to:

public class EmployeeForCreationDto

{
[Required(ErrorMessage = "Employee name is a required field.")]
[MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
public string Name { get; set; }

[Required(ErrorMessage = "Age is a required field.")]
public int Age { get; set; }

[Required(ErrorMessage = "Position is a required field.")]
[MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
public string Position { get; set; }
}

Once we have the rules applied, we can send the same request again:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Body (5) Status: 400 Bad Request]
Pretty J50M =
1~ {
2~ "errors”: {
3= "Mame": [
4 "Employes name iz & required fisld.”
5 1s
G- "Position": [
7 "Position iz & required field.”
8]
g s
1@ "type": “https://tools.ietf.org/html/rfc?231#section-6.5.1",
11 "title™: "One or more velidstion errors occurred.”,
12 "status": 406,
13 "traceld": "|57558533e-4F457ebbd4fT107.,"
1

F
—

You can see that our validation rules have been applied and verified as
well. ASP.NET Core validates the model object as soon as the request

gets to the action.

116

:‘ Ultimate ASP.NET Core 3 Web API

But the status code for this response is 400 Bad Request. That is
acceptable, but as we said, there is a status code that better fits this kind

of situation. It is 422 Unprocessable Entity.

To return 422 instead of 400, the first thing we have to do is to suppress
the BadRequest error when the ModelState is invalid. We are going to
do that by adding this code into the Startup class in the

ConfigureServices method:

services.Configure<ApiBehaviorOptions>(options =>

{
options.SuppressModelStateInvalidFilter = true;
3

Then, we have to modify our action:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)

{
if(employee == null)

_logger.LogError("EmployeeForCreationDto object sent from client is null.");
return BadRequest("EmployeeForCreationDto object is null");

}

if(!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the EmployeeForCreationDto object");
return UnprocessableEntity(ModelState);

}

.. the rest of the code ..

return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id }, employeeToReturn);
}

And that is all.

Let’s send our request one more time:

117

10 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

» POST Employee for Company (null values) Examples (0) v
POST https://localhost:5001/api/companies/53a1237a-3ed3-4462-bOf0-5a7bb1056a... Params Save
(2} Body @ Code
form-data ®-www-form-urlencoded % raw binary JSON (application/jsen)
1~ |{
2 "name": null,
3 "age": 29,
4 "position™: null
=
Baody () Status: 422 Unprocessable Entity Time: 78 ms
Pretry JSOM = Save Response
iF 1
2 “"Name": [
3 "Employes name is a reguired field.™
4 El
= "Position": [
(= "Position iz 3 reguired Field."
7 1
-] 2

Let’s send an additional request to test the max length rule:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

POST https://localhost:5001/apifcompanies/53a1237a-3ed3-4462-b9f0-5a7bb 10564... Params

(2) Body @
form-data w-wrww-form-urlencoded ® raw binary JSON (application/json)
1~ {
7 "pame": "Michasl Patel"”,
3 "sge": 29,
4 "position": "Some position with invalid length
5
Baody (5) Status: 422 Unprocessable Entity
Pretty JSON =
1~ {
2~ "Position™: [
3 "Maximum length for the Position is 28 characters.™
4 1
5

Excellent. It is working as expected.

118

(‘ Ultimate ASP.NET Core 3 Web API

The same actions can be applied for the CreateCompany action and
CompanyForCreationDto class — and if you check the source code for

this chapter, you will find it implemented.

13.1.1 Validating Int Type
Let’s create one more request with the request body without the age

property:
https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees
» POST Employee for Company (without age) Examples (0) «
POST https:/flocalhost:5001/apifcompanies/53al237a-3e... Params Send b Save
(2] Body @ Code
form-data w-wwew-form-urlencoded ® raw binary ON (application/json
1-{
2 "name": null,
3 "position™: "Some position with invalid length®
4 |1
Body (5) Status: 422 Unprocessable Entity Time: 140 ms
Pretty JSON 5 Save Response
1~ [
2= "Mame": [
3 "Employes name iz a3 reguired field.”
.J_]J
5 "Position™: [
6 "Maximum length for the Position iz 2@ characters.”
7 1

—

We can clearly see that the age property hasn’t been sent, but in the
response body, we don’t see the error message for the age property next
to other error messages. That is because the age is of type int and if we

don’t send that property, it would be set to a default value, which is O.

So, on the server side, validation for the Age property will pass, because

it is not null.

119

(‘ Ultimate ASP.NET Core 3 Web API

In order to prevent this type of behavior, we have to modify the data
annotation attribute on top of the Age property in the

EmployeeForCreationDto class:

[Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]

public int Age { get; set; }
Now, let’s try to send the same request one more time:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

» POST Employee for Company (without age) Examples (0) «
POST https:/flocalhost:3001 /apifcompanies/53al1237a-3e... Params Send hd Save
(2) Body @ Code

form-data xwww-form-urlencoded ® raw binary |SOM {application/json)

1-f

2 "nams": null,

= "position™: "Some position with invalid length™

4 H

Body (51 Status: 422 Unprocessable Entity Time: 1170 ms

Pretry JSON E:- Save Response
1~ K
2 - Age [
= "fge iz reguired and it can't be lower than 18"
4 1
5 "Name": [
6 "Employes name 1s 3 regulired field.”
7 1,
g - "Position™: [
4 “Maximum length for the Position iz 26 characters.”
@]

[y
F
-

Now, we have the Age error message in our response.

If we want, we can add the custom error messages in our action:

ModelState.AddModelError(string key, string errorMessage)

With this expression, the additional error message will be included with all

the other messages.

120

:‘ Ultimate ASP.NET Core 3 Web API

13.2 Validation for PUT Requests
The validation for PUT requests shouldn’t be different from POST requests
(except in some cases), but there are still things we have to do to at least

optimize our code.
But let’s go step by step.

First, let’s add Data Annotation Attributes to the EmployeeForUpdateDto

class:

public class EmployeeForUpdateDto

{
[Required(ErrorMessage = "Employee name is a required field.")]
[MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
public string Name { get; set; }
[Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]
public int Age { get; set; }
[Required(ErrorMessage = "Position is a required field.")]
[MaxLength(20, ErrorMessage = "Maximum length for the Position is 20 characters.")]
public string Position { get; set; }
}

Once we have done this, we realize we have a small problem. If we
compare this class with the DTO class for creation, we are going to see
that they are the same. Of course, we don’t want to repeat ourselves,

thus we are going to add some modifications.

Let’s create a new class in the DataTransferObjects folder:

public abstract class EmployeeForManipulationDto

{
[Required(ErrorMessage = "Employee name is a required field.")]
[MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
public string Name { get; set; }
[Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower
than 18")]

public int Age { get; set; }

[Required(ErrorMessage = "Position is a required field.")]
[MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
public string Position { get; set; }
}

121

(‘ Ultimate ASP.NET Core 3 Web API

We create this class as an abstract class because we want our creation

and update DTO classes to inherit from it:

public class EmployeeForUpdateDto : EmployeeForManipulationDto

{
¥

public class EmployeeForCreationDto : EmployeeForManipulationDto

{
¥

Now, we can modify the UpdateEmployeeForCompany action by adding

the model validation right after the null check:

if(employee == null)

{
_logger.LogError("EmployeeForUpdateDto object sent from client is null.");
return BadRequest("EmployeeForUpdateDto object is null");

}

if (!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the EmployeeForUpdateDto object");
return UnprocessableEntity(ModelState);

}

The same process can be applied to the Company DTO classes and create

action. You can find it implemented in the source code for this chapter.

Let’s test this:

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

122

(‘ Ultimate ASP.NET Core 3 Web API

» PUT Employee for Company (null values) Examples (0) =
PUT https:flocalhost:5001 fapifcompanies/53a1237a-3e... Params Send hd Save
(2) Body @ Code
form-data x-www-form-urlencoded ® raw binary ON (application/json
1- [
2 "name": null,
3 “zge": 29,
4 "position™: null
=1
Bady 5] Status: 422 Unprocessable Entity Time: 201 ms

Pretty J50ON 5 Save Response
1~k
2~ "Name": [
c] "Employes name is a reguired field.”
4]J
5w "Position™: [
& "Position is a reguired field.™
F 1
8 1

Great.

Everything works well.

13.3 Validation for PATCH Requests
The validation for PATCH requests is a bit different from the previous
ones. We are using the ModelState concept again, but this time we have

to place it in the ApplyTo method first:
patchDoc.ApplyTo(employeeToPatch, ModelState);
Right below, we can add our familiar validation logic:

patchDoc.ApplyTo(employeeToPatch, ModelState);

if(!ModelState.IsValid)
{

_logger.LogError("Invalid model state for the patch document");
return UnprocessableEntity(ModelState);

123

10 Ultimate ASP.NET Core 3 Web API

_mapper.Map(employeeToPatch, employeeEntity);

Let’s test this now:

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

» PATCH Employee for company invalid (remove)

PATCH https://localhost:3001 fapifcompanies/C9D4C053... Params

() Body @
form-data w-wnwnn-form-urlencoded ¥ raw binary Text
1 [
2 {
3 “op™: "remowve",
4 "path": "/agecesees”
5 ¥
6 1
Body (5) Status: 422 Unprocessable Entity
Pretry JSON =
1~
2~ "EmploveeForUpdateDto™: [
3 "The target location specifisd by path ssgment "agesessese’ wes not found."
4 3
5001

You can see that it works as it supposed to.

But, we have a small problem now. What if we try to send a remove

operation, but for the valid path:

124

:‘ Ultimate ASP.NET Core 3 Web API

||Cp|l Lo r"EITIC"l.-'E“,
"pa:h" : ",‘rEgE"

B LA s L P e

Body (3 Status: 204 Mo Content

W

We can see it passes, but this is not good. If you can remember, we said
that the remove operation will set the value for the included property to
its default value, which is 0. But in the EmployeeForUpdateDto class, we
have a Range attribute which doesn’t allow that value to be below 18. So,

where is the problem?

Let’s illustrate this for you:

var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);

patchDoc@Tc(employeeToPatch, ModelState);

if(IModelState. IsValid) -ffffes
1

_logger.LogError("Invalid model state for the patch document™);
return UnprocessableEntity(ModelState);

| We validate patchDoc

}

_mapper.Map(employeeToPatch, employeeEntity); h | We save employeeEntity to the db |

repository.save(); 4'—

As you can see, we are validating the patchDoc which is completely valid
at this moment, but we save employeeEntity to the database. So, we
need some additional validation to prevent an invalid employeeEntity

from being saved to the database:

var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);
patchDoc.ApplyTo(employeeToPatch, ModelState);
TryValidateModel (employeeToPatch);

if(!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the patch document™);
return UnprocessableEntity(ModelState);

125

(0 Ultimate ASP.NET Core 3 Web API

}

We can use the TryValidateModel method to validate the already
patched employeeToPatch instance. This will trigger a validation and
every error will make ModelState invalid. After that, we execute a familiar

validation check.

Now, we can test this again:

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

» PATCH Employee for company (remove)

PATCH https://localhost:5001//apifcompanies/CA04C053... Params

(2} Body @
form-data w-www-form-urlencoded ¥ raw binary Text
I
2 i
3 "op": "remove"”,
a "oath”: "/sge’
5 T
& 1
Body (5) Status: 422 Unprocessable Entity
Pretty JSON -
1~
2 “hge'" [
3 "Age 15 reguired and it cen't be lower than 18"
a 1
5%

And we get 422, which is the expected status code.

126

:‘ Ultimate ASP.NET Core 3 Web API

14 ASYNCHRONOUS CODE

In this chapter, we are going to convert synchronous code to
asynchronous inside ASP.NET Core. First, we are going to learn a bit
about asynchronous programming and why should we write async code.
Then we are going to use our code from the previous chapters and rewrite

it in an async manner.

We are going to modify the code, step by step, to show you how easy is
to convert synchronous code to asynchronous code. Hopefully, this will
help you understand how asynchronous code works and how to write it
from scratch in your applications.

14.1 What is Asynchronous Programming?

Async programming is a parallel programming technique which allows the
working process to run separately from the main application thread. As
soon as the work completes, it informs the main thread about the result

whether it was successful or not.

By using async programming, we can avoid performance bottlenecks and

enhance the responsiveness of our application.
How so?

Because we are not sending requests to the main thread and blocking it
while waiting for the responses anymore (as long as it takes). Now, when
we send a request to the main thread, it delegates a job to a background
thread — thus freeing itself for another request. Eventually, a background
thread finishes its job and returns it to the main thread. Then the main

thread returns the result to the requester.

It is very important to understand that if we send a request to an

endpoint and it takes the application three or more seconds to process

127

:‘ Ultimate ASP.NET Core 3 Web API

that request, we probably won’t be able to execute this request any faster
in async mode. It is going to take the same amount of time as the sync

request.

The only advantage is that in async mode the main thread won't be
blocked three or more seconds; thus, it will be able to process other

requests.

Here is a visual representation of asynchronous workflow:

Async Background
Request) Thread
Async . » | Background
E Request | [« Thread ¢ Th;gead =
@
Async o N Background ‘s
Request Thread
Await

Now that we've cleared that out, we can learn how to implement

asynchronous code in .NET Core.

14.2 Async, Await Keywords, and Return Types

The async and await keywords play a crucial part in asynchronous
programming. By using those keywords, we can easily write
asynchronous methods without too much effort.

For example, if we want to create a method in an asynchronous manner,

we need to add the async keyword next to the method’s return type:

async Task<IEnumerable<Company>> GetAllCompaniesAsync()

128

:‘ Ultimate ASP.NET Core 3 Web API

By using the async keyword, we are enabling the await keyword and
modifying how method results are handled (from synchronous to

asynchronous):

await FindAllAsync();

In asynchronous programming, we have three return types:

o Task<TResult>, for an async method that returns a value.
o Task, for an async method that does not return a value.
« void, which we can use for an event handler.

What does this mean?

Well, we can look at this through synchronous programming glasses. If
our sync method returns an int, then in the async mode it should
return Task<int> — or if the sync method

returns IEnumerable<string>, then the async method should

return Task<IEnumerable<string>>.

But if our sync method returns no value (has a void for the return type),
then our async method should return Task. This means that we can use

the await keyword inside that method, but without the return keyword.

You may wonder now, why not return Task all the time? Well, we should
use void only for the asynchronous event handlers which require

a void return type. Other than that, we should always return a Task.

From C# 7.0 onward, we can specify any other return type if that type

includes a GetAwaiter method.

Now, when we have all the information, let’s do some refactoring in our
I I

completely synchronous code.

129

:‘ Ultimate ASP.NET Core 3 Web API

14.2.1 The IRepositoryBase Interface and the
RepositoryBase Class Explanation

We won't be changing the mentioned interface and class. That’s because
we want to leave a possibility for the repository user classes to have
either sync or async method execution. Sometimes, the async code could
become slower than the sync one because EF Core’s async commands
take slightly longer to execute (due to extra code for handling the

threading), so leaving this option is always a good choice.

It is general advice to use async code wherever it is possible, but if we
notice that our async code runes slower, we should switch back to the

sync one.

14.3 Modifying the ICompanyRepository Interface and the
CompanyRepository Class

In the Contracts project, we can
find the ICompanyRepository interface with all the synchronous method

signatures which we should change.

So, let’s do that:

public interface ICompanyRepository

{
Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges);

Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges);

void CreateCompany(Company company);

Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges);

void DeleteCompany(Company company);

}

The Create and Delete method signatures are left synchronous. That's
because in these methods, we are not making any changes in the
database. All we're doing is changing the state of the entity to Added and
Deleted.

130

:‘ Ultimate ASP.NET Core 3 Web API

So, in accordance with the interface changes, let's modify our
CompanyRepository.cs class, which we can find in

the Repository project:

public async Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges) =>
await FindAll(trackChanges)
.OrderBy(c => c.Name)
.ToListAsync();

public async Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges) =>
await FindByCondition(c => c.Id.Equals(companyId), trackChanges)
.SingleOrDefaultAsync();

public async Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool

trackChanges) =>

await FindByCondition(x => ids.Contains(x.Id), trackChanges)
.ToListAsync();

We only have to change these methods in our repository class.

14.4 IRepositoryManager and RepositoryManager Changes
If we inspect the mentioned interface and the class, we will see the Save
method, which just calls the EF Core’s SaveChanges method. We have to

change that as well:

public interface IRepositoryManager

{
ICompanyRepository Company { get; }
IEmployeeRepository Employee { get; }
Task SaveAsync();

}

And class modification:
public Task SaveAsync() => _repositoryContext.SaveChangesAsync();

Because the SaveAsync(), ToListAsync()... methods are awaitable,
we may use the await keyword; thus, our methods need to have

the async keyword and Task as a return type.

Using the await keyword is not mandatory, though. Of course, if we don't
use it, our SaveAsync () method will execute synchronously — and that is

not our goal here.

131

:‘ Ultimate ASP.NET Core 3 Web API

14.5 Controller Modification
Finally, we need to modify all of our actions in

the CompaniesController to work asynchronously.

So, let’s first start with the GetCompanies method:

[HttpGet]
public async Task<IActionResult> GetCompanies()

{
var companies = await _repository.Company.GetAllCompaniesAsync(trackChanges:
false);

var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

return Ok(companiesDto);

}

We haven’t changed much in this action. We’ve just changed the return
type and added the async keyword to the method signature. In the
method body, we can now await the GetAllCompaniesAsync() method.
And that is pretty much what we should do in all the actions in our

controller.
So, let’s modify all the other actions.

GetCompany:

[HttpGet("{id}", Name = "CompanyById")]
public async Task<IActionResult> GetCompany(Guid id)

{
var company = await _repository.Company.GetCompanyAsync(id, trackChanges: false);
if (company == null)
{
_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();
}
else
{
var companyDto = _mapper.Map<CompanyDto>(company);
return Ok(companyDto);
}
}

GetCompanyCollection:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]

132

:‘ Ultimate ASP.NET Core 3 Web API

public async Task<IActionResult> GetCompanyCollection([ModelBinder(BinderType =
typeof (ArrayModelBinder))]JIEnumerable<Guid> ids)

if(ids == null)
{

_logger.LogError("Parameter ids is null");
return BadRequest("Parameter ids is null");

}

var companyEntities = await _repository.Company.GetByIdsAsync(ids, trackChanges:
false);

if(ids.Count() != companyEntities.Count())

_logger.LogError("Some ids are not valid in a collection");
return NotFound();

}
var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
return Ok(companiesToReturn);

}

CreateCompany:

[HttpPost]

public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)

if(company == null)

{
_logger.LogError("CompanyForCreationDto object sent from client is null.");
return BadRequest("CompanyForCreationDto object is null");

}

if (!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the CompanyForCreationDto object");
return UnprocessableEntity(ModelState);

}

var companyEntity = _mapper.Map<Company>(company);

_repository.Company.CreateCompany(companyEntity);
await _repository.SaveAsync();

var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
companyToReturn);

}

CreateCompanyCollection:

[HttpPost("collection")]
public async Task<IActionResult> CreateCompanyCollection([FromBody]
IEnumerable<CompanyForCreationDto> companyCollection)

133

:‘ Ultimate ASP.NET Core 3 Web API

if(companyCollection == null)

_logger.LogError("Company collection sent from client is null.");
return BadRequest("Company collection is null");

}

var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);
foreach (var company in companyEntities)

{
}

_repository.Company.CreateCompany(company);

await _repository.SaveAsync();

var companyCollectionToReturn =
_mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

return CreatedAtRoute("CompanyCollection", new { ids },
companyCollectionToReturn);

}
DeleteCompany:

[HttpDelete("{id}")]
public async Task<IActionResult> DeleteCompany(Guid id)
{

var company = await _repository.Company.GetCompanyAsync(id, trackChanges: false);
if(company == null)

_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();

}

_repository.Company.DeleteCompany(company);
await _repository.SaveAsync();

return NoContent();

UpdateCompany:

[HttpPut("{id}")]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto

company)
{
if(company == null)
{
_logger.LogError("CompanyForUpdateDto object sent from client is null.");
return BadRequest("CompanyForUpdateDto object is null");
}
if(!ModelState.IsValid)
{

_logger.LogError("Invalid model state for the CompanyForUpdateDto object");

134

:‘ Ultimate ASP.NET Core 3 Web API

return UnprocessableEntity(ModelState);
}

var companyEntity = await _repository.Company.GetCompanyAsync(id, trackChanges:
true);
if(companyEntity == null)

_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();

}

_mapper.Map(company, companyEntity);
await _repository.SaveAsync();

return NoContent();

}

Excellent. Now we are talking async.

Of course, we have the Employee entity as well and all of these steps
have to be implemented for the EmployeeRepository class,

IEmployeeRepository interface, and EmployeesController.

You can always refer to the source code for this chapter if you have any

trouble implementing async code for the Employee entity.

After the async implementation in the Employee classes, you can try to
send different requests (from any chapter) to test your async actions. All
of them should work as before, without errors, but this time in an

asynchronous manner.

135

:‘ Ultimate ASP.NET Core 3 Web API

15 ACTION FILTERS

Filters in .NET offer a great way to hook into the MVC action invocation
pipeline. Therefore, we can use filters to extract code which can be reused
and make our actions cleaner and maintainable. Some filters are already
provided by .NET like the authorization filter, and there are the custom
ones that we can create ourselves.

There are different filter types:

o Authorization filters - They run first to determine whether a user
is authorized for the current request.

 Resource filters — They run right after the authorization filters and
are very useful for caching and performance.

« Action filters - They run right before and after action method
execution.

« Exception filters - They are used to handle exceptions before the
response body is populated.

« Result filters - They run before and after the execution of the
action methods result.

In this chapter, we are going to talk about Action filters and how to use
them to create cleaner and reusable code in our Web API.

15.1 Action Filters Implementation

To create an Action filter, we need to create a class that inherits either
from the IActionFilter interface, the IAsyncActionFilter interface,
or the ActionFilterAttribute class — which is the implementation of
IActionFilter, IAsyncActionFilter, and a few different interfaces as

well:

136

:‘ Ultimate ASP.NET Core 3 Web API

public abstract class ActionFilterAttribute : Attribute, IActionFilter,

IFilterMetadata, IAsyncActionFilter, IResultFilter, IAsyncResultFilter, IOrderedFilter

To implement the synchronous Action filter that runs before and after
action method execution, we need to implement the OnActionExecuting

and OnActionExecuted methods:

namespace ActionFilters.Filters

{
public class ActionFilterExample : IActionFilter
{
public void OnActionExecuting(ActionExecutingContext context)
{
// our code before action executes
}
public void OnActionExecuted(ActionExecutedContext context)
{
// our code after action executes
}
}
}

We can do the same thing with an asynchronous filter by inheriting
from IAsyncActionFilter, but we only have one method to implement

— the OnActionExecutionAsync:

namespace ActionFilters.Filters

{
public class AsyncActionFilterExample : IAsyncActionFilter
{
public async Task OnActionExecutionAsync(ActionExecutingContext context,
ActionExecutionDelegate next)
{
// execute any code before the action executes
var result = await next();
// execute any code after the action executes
}
}
}

15.2 The Scope of Action Filters
Like the other types of filters, the action filter can be added to different

scope levels: Global, Action, and Controller.

137

:‘ Ultimate ASP.NET Core 3 Web API

If we want to use our filter globally, we need to register it inside

the AddControllers() method in the ConfigureServices method:

services.AddControllers(config =>

{
config.Filters.Add(new GlobalFilterExample());
1

But if we want to use our filter as a service type on the Action or
Controller level, we need to register it in the

same ConfigureServices method, but as a service in the IoC container:

services.AddScoped<ActionFilterExample>();
services.AddScoped<ControllerFilterExample>();

Finally, to use a filter registered on the Action or Controller level, we need

to place it on top of the Controller or Action as a ServiceType:

namespace AspNetCore.Controllers

{
[ServiceFilter(typeof(ControllerFilterExample))]
[Route("api/[controller]")]
[ApiController]
public class TestController : ControllerBase
{
[HttpGet]
[ServiceFilter(typeof(ActionFilterExample))]
public IEnumerable<string> Get()
{
return new string[] { "example", "data" };
¥
¥
¥

15.30rder of Invocation

The order in which our filters are executed is as follows:

138

(‘ Ultimate ASP.NET Core 3 Web API

OnActionExecuting from the Global filter

OnActionExecuting from the Controller filter

‘ OnActionExecuting from the Action filter

— Action method execution _—

v

OnActionExecuted from the Action filter ‘

OnActionExecuted from the Controller filter

OnActionExecuted from the Global filter

Of course, we can change the order of invocation by adding the

Order property to the invocation statement:

namespace AspNetCore.Controllers

{
[ServiceFilter(typeof(ControllerFilterExample), Order = 2)]
[Route("api/[controller]")]

[ApiController]

public class TestController : ControllerBase

{
[HttpGet]
[ServiceFilter(typeof(ActionFilterExample), Order = 1)]
public IEnumerable<string> Get()
{

return new string[] { "example", "data" };

}

}

}

Or something like this on top of the same action:

139

:‘ Ultimate ASP.NET Core 3 Web API

[HttpGet]

[ServiceFilter(typeof(ActionFilterExample), Order = 2)]
[ServiceFilter(typeof(ActionFilterExample2), Order = 1)]
public IEnumerable<string> Get()

{
¥

return new string[] { "example", "data" };

15.4 Improving the Code with Action Filters
Our actions are clean and readable without try-catch blocks due to

global exception handling, but we can improve them even further.

So, let’s start with the validation code from the POST and PUT actions.

15.5 Validation with Action Filters
If we take a look at our POST and PUT actions, we can notice the

repeated code in which we validate our Company model:

if(company == null)

{
_logger.LogError("CompanyForCreationDto object sent from client is null.");
return BadRequest("CompanyForCreationDto object is null");

}

if (!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the CompanyForCreationDto object");
return UnprocessableEntity(ModelState);

}

We can extract that code into a custom Action Filter class, thus making

this code reusable and the action cleaner.
So, let’s do that.

Let’s create a new folder in our solution explorer, and name
it ActionFilters. Then inside that folder, we are going to create a new

class ValidationFilterAttribute:

public class ValidationFilterAttribute : IActionFilter

{
private readonly IlLoggerManager _logger;
public ValidationFilterAttribute(ILoggerManager logger)

{

140

:‘ Ultimate ASP.NET Core 3 Web API

_logger = logger;
}

public void OnActionExecuting(ActionExecutingContext context) { }

public void OnActionExecuted(ActionExecutedContext context){}

}

Now we are going to modify the OnActionExecuting method:

public void OnActionExecuting(ActionExecutingContext context)
{

var action = context.RouteData.Values["action"];

var controller = context.RouteData.Values["controller"];

var param = context.ActionArguments
.SingleOrDefault(x => x.Value.ToString().Contains("Dto")).Value;
if (param == null)
{
_logger.LogError($"Object sent from client is null. Controller: {controller},
action: {action}");
context.Result = new BadRequestObjectResult($"Object is null. Controller:
{controller}, action: {action}");

return;
}
if (!context.ModelState.IsValid)
{

_logger.LogError($"Invalid model state for the object. Controller:
{controller}, action: {action}");
context.Result = new UnprocessableEntityObjectResult(context.ModelState);

}

Next, let’s register this action filter in the ConfigureServices method:

services.AddScoped<ValidationFilterAttribute>();

Finally, let’s remove that validation code from our actions and call this

action filter as a service:

[HttpPost]

[ServiceFilter(typeof(ValidationFilterAttribute))]

public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)

var companyEntity = _mapper.Map<Company>(company);

_repository.Company.CreateCompany (companyEntity);
await _repository.SaveAsync();

var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
companyToReturn);

141

:‘ Ultimate ASP.NET Core 3 Web API

[HttpPut("{id}")]

[ServiceFilter(typeof(ValidationFilterAttribute))]

public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)

{

var companyEntity = await _repository.Company.GetCompanyAsync(id, trackChanges:
true);
if(companyEntity == null)

{
_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");

return NotFound();

}

_mapper.Map(company, companyEntity);
await _repository.SaveAsync();

return NoContent();

}
Excellent.
This code is much cleaner and more readable now without the validation

part. Furthermore, the validation part is now reusable for the POST and

PUT actions for both the Company and Employee DTO objects.

If we send a POST request, for example, with the invalid model we will

get the required response:

142

10 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies
¥ POST Company (invalid)

POST httpsi/{localhost5001 fapifcompanies
(2) Body ®
form-data w-wwew-form-urlencoded '® raw binary
1~ {
2 "name": "Marketing Solutions Ltd",
3 "address": null,
- "country™: "UsA™
5 0F
Body (3)
Pretry JSON =
1+
2~ "Address": [
3 "Company address is g required fisld.™
4 1
5 |

JSOMN (application/json)

Status: 422 Unprocessable Entity

We can apply this action filter to the POST and PUT actions in the

EmployeesController the same way we did in the

CompaniesController and test it as well:

143

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/53al237a-3ed3-4462-b9f0-5a7bb1056a33/employees

» POST Employee for Company (invalid)

POST https:/{localhost:5001 fapifcompanies/53a1237a-... Params

(2] Body ®
form-data wwwaw-form-urlencoded ® raw binary JSON (application/json)
1+ [
Z "name": “"Martin Geil",
3 “age": @,
4 "position™: “"Marketing expert”
5 1
Body (5) Status: 422 Unprocessable Entity
Pretty JSON =
1~-|K
2 "hge"y [
3 "Age iz reguired and it can't be lower than 18"
4 1
5 |3

15.6 Dependency Injection in Action Filters
If we take a look at our DeleteCompany and UpdateCompany actions, we

are going to see the code where we fetch the company by id from the

database and check if it exists:

if (company == null)
{

_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
return NotFound();

}

That’s something we can extract to the Action Filter class as well, thus

making it reusable in all the actions.

144

:‘ Ultimate ASP.NET Core 3 Web API

Of course, we need to inject our repository into a new ActionFilter class

by using dependency injection.

Having said that, let’s create another Action Filter

class: ValidateCompanyExistsAttribute in the ActionFilters folder

and modify it:

public class ValidateCompanyExistsAttribute : IAsyncActionFilter

{

private readonly IRepositoryManager _repository;

private readonly IlLoggerManager _logger;

public ValidateCompanyExistsAttribute(IRepositoryManager repository,
ILoggerManager logger)

{

_repository = repository;
_logger = logger;
}

public async Task OnActionExecutionAsync(ActionExecutingContext context,
ActionExecutionDelegate next)

{
var trackChanges = context.HttpContext.Request.Method.Equals("PUT");

var id = (Guid)context.ActionArguments["id"];
var company = await _repository.Company.GetCompanyAsync(id, trackChanges);
if (company == null)

_logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
context.Result = new NotFoundResult();

}

else

{
context.HttpContext.Items.Add("company", company);

await next();

}

We are using the async version of the action filter because we fetch our
entity in an async manner. Two things to notice here. The first is that we
check a type of request and only if it is a PUT request we set the
trackChanges to true. The second thing is if we find the entity in the
database, we store it in HttpContext because we need that entity in our
action methods and we don’t want to query the database two times (we

would lose more than we gain if we double that action).

Now, let’s register this filter:

145

:‘ Ultimate ASP.NET Core 3 Web API

services.AddScoped<ValidateCompanyExistsAttribute>();
And let’'s modify our actions:

[HttpDelete("{id}")]
[ServiceFilter(typeof(ValidateCompanyExistsAttribute))]
public async Task<IActionResult> DeleteCompany(Guid id)

{
var company = HttpContext.Items["company"] as Company;
_repository.Company.DeleteCompany(company);
await _repository.SaveAsync();
return NoContent();
}

[HttpPut("{id}")]

[ServiceFilter(typeof(ValidationFilterAttribute))]
[ServiceFilter(typeof(ValidateCompanyExistsAttribute))]

public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)

{
var companyEntity = HttpContext.Items["company"] as Company;

_mapper.Map(company, companyEntity);
await _repository.SaveAsync();

return NoContent();

Now our actions look great without code repetition.

You can test these actions with the prepared (Delete and Put) requests in
Postman. Of course, the implementation for the EmployeesController

is almost the same (except some differences in a filter implementation).

So, let’'s see how to do that:

public class ValidateEmployeeForCompanyExistsAttribute : IAsyncActionFilter
{

private readonly IRepositoryManager _repository;

private readonly ILoggerManager _logger;

public ValidateEmployeeForCompanyExistsAttribute (IRepositoryManager repository,
ILoggerManager logger)
{
_repository = repository;
_logger = logger;
}

public async Task OnActionExecutionAsync(ActionExecutingContext context,
ActionExecutionDelegate next)

{

146

:‘ Ultimate ASP.NET Core 3 Web API

var method = context.HttpContext.Request.Method;

var trackChanges = (method.Equals("PUT") || method.Equals("PATCH")) ? true :

false;

var companyId = (Guid)context.ActionArguments["companyId"];
var company = await _repository.Company.GetCompanyAsync(companyId, false);

if (company == null)

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");

context.Result = new NotFoundResult();

return;

}

var id = (Guid)context.ActionArguments["id"];

var employee = await _repository.Employee.GetEmployeeAsync(companyId, id,
trackChanges);

if(employee == null)

{
_logger.LogInfo($"Employee with id: {id} doesn't exist in the database.
context.Result = new NotFoundResult();
}
else
{
context.HttpContext.Items.Add("employee"”, employee);
await next();
}

Then the registration part:
services.AddScoped<ValidateEmployeeForCompanyExistsAttribute>();

And finally, the controller modification.

Delete:

[HttpDelete("{id}")]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]

public async Task<IActionResult> DeleteEmployeeForCompany(Guid companyId, Guid id)
{

var employeeForCompany = HttpContext.Items["employee"] as Employee;

_repository.Employee.DeleteEmployee(employeeForCompany);
await _repository.SaveAsync();

return NoContent();

Update:

[HttpPut ("{id}")]

");

147

:‘ Ultimate ASP.NET Core 3 Web API

[ServiceFilter(typeof(ValidationFilterAttribute))]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]

public async Task<IActionResult> UpdateEmployeeForCompany(Guid companyId, Guid id,
[FromBody] EmployeeForUpdateDto employee)

{
var employeeEntity = HttpContext.Items["employee"] as Employee;
_mapper.Map(employee, employeeEntity);
await _repository.SaveAsync();
return NoContent();
}
And Patch:

[HttpPatch("{id}")]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]

public async Task<IActionResult> PartiallyUpdateEmployeeForCompany(Guid companyId,
Guid id, [FromBody] JsonPatchDocument<EmployeeForUpdateDto> patchDoc)

{
if(patchDoc == null)

{

_logger.LogError("patchDoc object sent from client is null.");
return BadRequest("patchDoc object is null");

}

var employeeEntity = HttpContext.Items["employee"] as Employee;

var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);
patchDoc.ApplyTo(employeeToPatch, ModelState);

TryValidateModel (employeeToPatch);

if(!ModelState.IsValid)

{
_logger.LogError("Invalid model state for the patch document™);

return UnprocessableEntity(ModelState);
¥

_mapper.Map(employeeToPatch, employeeEntity);
await _repository.SaveAsync();

return NoContent();

These changes can be tested as well with prepared requests in our

Postman document.
One last thing.

If we take a look at the Employees and the Companies controller, we will

find the GetEmployeeForCompany action and the GetCompany action. For

148

:‘ Ultimate ASP.NET Core 3 Web API

both actions, we can implement these “ExistsAttribute” filters, but then
those actions must be synchronous. That's because there will be no async

code left. It is up to you whether you want to implement them or not.

149

:‘ Ultimate ASP.NET Core 3 Web API

16 PAGING

We have covered a lot of interesting features while creating our Web API

project, but there are still things to do.

So, in this chapter, we're going to learn how to implement paging in
ASP.NET Core Web API. It is one of the most important concepts in
building RESTful APIs.

If we inspect the GetEmployeesForCompany action in the
EmployeesController, we can see that we return all the employees for

the single company.

But we don’t want to return a collection of all resources when querying
our API. That can cause performance issues and it’s in no way optimized
for public or private APIs. It can cause massive slowdowns and even

application crashes in severe cases.

Of course, we should learn a little more about Paging before we dive into
code implementation.

16.1 What is Paging?
Paging refers to getting partial results from an API. Imagine having
millions of results in the database and having your application try to

return all of them at once.

Not only would that be an extremely ineffective way of returning the
results, but it could also possibly have devastating effects on the
application itself or the hardware it runs on. Moreover, every client
has limited memory resources and it needs to restrict the number of

shown results.

Thus, we need a way to return a set number of results to the client in

order to avoid these consequences. Let’s see how we can do that.

150

(‘ Ultimate ASP.NET Core 3 Web API

16.2 Paging Implementation
Mind you, we don’t want to change the base repository logic or implement

any business logic in the controller.

What we want to achieve is something like this:
https://localhost:5001/api/companies/companyId/employees?pa
geNumber=2&pageSize=2. This should return the second set of two

employees we have in our database.

We also want to constrain our API not to return all the employees even if
someone calls

https://localhost:5001/api/companies/companyId/employees.

Let's start with the controller modification by modifying the

GetEmployeesForCompany action:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)
{

var company = await _repository.Company.GetCompanyAsync(companyId, trackChanges:
false);

if (company == null)

_logger.LogInfo($"Company with id: {companyId} doesn't exist in the

database.");
return NotFound();

}

var employeesFromDb = await _repository.Employee.GetEmployeesAsync(companyld,
employeeParameters, trackChanges: false);

var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

return Ok(employeesDto);
b

A few things to take note of here:
e We're calling the GetEmployeesForCompany method from

the EmployeeRepository, which doesn’t exist yet, but we'll

implement it soon.

151

:‘ Ultimate ASP.NET Core 3 Web API

e We're using [FromQuery] to point out that we’ll be using query
parameters to define which page and how many employees we are
requesting.

e The EmployeeParameters class is the container for the actual

parameters for the Employee entity.

We also need to actually create the EmployeeParameters class. So, let’s
first create a RequestFeatures folder in the Entities project and then

inside, create the required classes:

public abstract class RequestParameters

{
const int maxPageSize = 50;
public int PageNumber { get; set; } = 1;
private int _pageSize = 10;
public int PageSize
{
get
{
return _pageSize;
}
set
{
_pageSize = (value > maxPageSize) ? maxPageSize : value;
}
}
}
public class EmployeeParameters : RequestParameters
{
}

As you can see, we create an abstract class to hold the common
properties for all the entities in our project, and a single
EmployeeParameters class that will hold the specific parameters. It is

empty now, but soon it won't be.

In the abstract class, we are using the maxPageSize constant to restrict
our API to a maximum of 50 rows per page. We have two public
properties — PageNumber and PageSize. If not set by the caller,

PageNumber will be set to 1, and PageSize to 10.

152

:‘ Ultimate ASP.NET Core 3 Web API

Now we can return to the controller and import a using directive for the

EmployeeParameters class:
using Entities.RequestFeatures;

After that change, let’s implement the most important part — the
repository logic. We need to modify the GetEmployeesAsync method in
the IEmployeeRepository interface and

the EmployeeRepository class.

So, first the interface modification:

public interface IEmployeeRepository

{

Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParameters
employeeParameters, bool trackChanges);

Task<Employee> GetEmployeeAsync(Guid companyId, Guid id, bool trackChanges);

void CreateEmployeeForCompany(Guid companyId, Employee employee);

void DeleteEmployee(Employee employee);

}

And the repository logic:

public async Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyld,
EmployeeParameters employeeParameters, bool trackChanges) =>
await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
.OrderBy(e => e.Name)
.Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
.Take(employeeParameters.PageSize)
.ToListAsync();

Okay, the easiest way to explain this is by example.

Say we need to get the results for the third page of our website, counting
20 as the number of results we want. That would mean we want to skip
the first ((3 - 1) * 20) = 40 results, then take the next 20 and return

them to the caller.

Does that make sense?

16.3 Concrete Query
Before we continue, we should create additional employees for the
company with the id: C9D4C053-49B6-410C-BC78-2D54A9991870. We

153

(‘ Ultimate ASP.NET Core 3 Web API

are doing this because we have only a small number of employees per

company and we need more of them for our example. You can use a

predefined request in Part16 in Postman, and just change the request

body with the following objects:

{ { {

"name": "Mihael Worth", "name": "John Spike", "name": "Nina Hawk",

"age": 30, "age": 30, "age": 26,

"position": "Marketing expert" "position": "Marketing expert "position": "Marketing expert
¥ " 1"

¥ b

{ { {

"name": "Mihael Fins", "name": "Martha Grown", "name": "Kirk Metha",

"age": 30, "age": 35, "age": 30,

"position": "Marketing expert" "position": "Marketing expert "position": "Marketing expert"
¥ " b

Now we should have eight employees for this company, and we can try a

request like this:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-
BC78-2D54A9991870/employees?pageNumber=28&pageSize=2

So, we request page two with two employees:

154

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2
https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-

2D54A9991870/employees ?pageNumber=2&pageSize=2
» GET Employees per company (page 2 size 2)

application/json

GET
Headers (1)
Key Value
Accept
Eody (4 Test Results
Prety JSON =
1~ [
2~ 4
3 "ig"s "efR2E712-BedF-4818-8b74-26%0:20s
4 "name": "Kirk Metha",
=} "age": 30,
6 "position”: “Marketing sxpert”
¥ I
8~ i
] "id": "cel24614-1584-4296-bB48-2e1531823ec5",
18 "name": "Martha Grown",
11 "age": 35,
1 ["position”: "Marketing sxpert II"
13 H
14 1]

httpsiflocalhost:5001 fapifcompanies/C904C053-459B6- M 0C-BC7B-2D 5449901,

If that’s what you got, you’re on the right track.

We can check our result in the database:

Params

Bulk Ed

Description

Status: 200 OK

e

Emplyeeld Mame Age Postion Companyld
1 86DBASCO-D173-41E7-938C-ED4S778FE524 Jana Mclesf 30 Softwars developer COD4C053-49B6-410C-BC78-2D54459991870 o
2 GESCEEOD-94D2-4AE1-3562-910AA6158411 Joan Dane 29 Manager 0ADSBST1-FF51-414D-AFD1-34187E407557
3 B4ECSSES-B4F5-4B14-B781-92839D2971D5 John Spke 32 Marketing sxpert || CIDAC053-49B6-410C-BC78-2D5449551870
4 D21CAICI-DDEB-4AFD-AES4-215943479811 Kane Miler 35 Administrator 3D430AT0-94CE-4D 15-3494-5248280C2CE3
5 EF628712-DASF-4A18-8B74-2630E29E1450 [Fark Metha 30 Marketing spett | CODAC053-49B6410C-BC 78 2054A5991870
6 CE124614-1504-4A36-BIM0-2E1A318E3ECS || Martha Grown | 35 Marketing expert | C3DAC053-49B6-410C-BC78-2D54A9591870
7 DEBE2003ACCI-4FSF-SDB2-DATAFEAGS4CT Martin Gel 25 Administrative 0AD5BS71-FF51-4140-AFD1-34187E407557
2 SADS2BDC-ED18-431A-BC3I5-F4985A312892 Martin Gel 29 Marketing sxpert 53A1237A-3ED3-4462 BSFO-5ATEB1056433
9 B43EE51D-E30A467E-9600-2DBEEBCAAIDD Mihael Fins 30 Marketing expert || CSDAC053-49B6-410C-BC78-2D5449551870
10 2E2DE091-5EES-49A4-AZEC-IAABAABEEDTE Mhael Woth 30 Marketing sxpert CSDA4C053-45B6-410C-BC78-2D5449991870
11 2557BS7E-38IA4E79-BECC-A514S577DBSEF Ning Hawk 26 Marketing sspert | CSDAC053-49B6-410C-BC78-2D5445991870
12 BOABBCASEG64D-4B20-BSDE-024705457D44 Sam Raiden 26 Software developer CHDAC053-49B6-410C-BC78-2D5445991870

And we can see that we have a correct data returned.

Now, what can we do to improve this solution?

155

:‘ Ultimate ASP.NET Core 3 Web API

16.4 Improving the Solution
Since we're returning just a subset of results to the caller, we might as

well have a PagedList instead of List.

PagedList will inherit from the List class and will add some more to it.
We can also move the skip/take logic to the PagedList since it makes

more sense.

So, let’s first create a new MetaData class in the

Entities/RequestFeatures folder:

public class MetaData

{
public int CurrentPage { get; set; }
public int TotalPages { get; set; }
public int PageSize { get; set; }
public int TotalCount { get; set; }

public bool HasPrevious => CurrentPage > 1;
public bool HasNext => CurrentPage < TotalPages;

}

Then, we are going to implement the PagedList class in the same

folder:

public class PagedlList<T> : List<T>

{
public MetaData MetaData { get; set; }

public PagedlList(List<T> items, int count, int pageNumber, int pageSize)
{
MetaData = new MetaData
{
TotalCount = count,
PageSize = pageSize,
CurrentPage = pageNumber,
TotalPages = (int)Math.Ceiling(count / (double)pageSize)

};

AddRange(items);
¥

public static PagedList<T> ToPagedList(IEnumerable<T> source, int pageNumber, int
pageSize)

var count = source.Count();

var items = source
.Skip((pageNumber - 1) * pageSize)
.Take(pageSize).TolList();

156

:‘ Ultimate ASP.NET Core 3 Web API

return new PagedList<T>(items, count, pageNumber, pageSize);

}

As you can see, we've transferred the skip/take logic to the static method
inside of the PagedList class. And in the MetaData class, we've added a
few more properties that will come in handy as metadata for our

response.

HasPrevious is true if the CurrentPage is larger than 1, and HasNext is
calculated if the CurrentPage is smaller than the number of total pages.
TotalPages is calculated by dividing the number of items by the page

size and then rounding it to the larger number, since a page needs to

exist even if there is only one item on it.

Now that we've cleared that up, let’s change our EmployeeRepository

and EmployeesController accordingly.

Let’s start with the interface modification:

Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParameters
employeeParameters, bool trackChanges);

Then, let’s change the repository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)

{
var employees = await FindByCondition(e => e.CompanyId.Equals(companyld),
trackChanges)
.OrderBy(e => e.Name)
.ToListAsync();

return PagedList<Employee>
.ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);

}
And finally, let’'s modify the controller:

public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)

{

var company = await _repository.Company.GetCompanyAsync(companyId, trackChanges:
false);

if (company == null)

157

:‘ Ultimate ASP.NET Core 3 Web API

{
_logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
return NotFound();

}

var employeesFromDb = await _repository.Employee.GetEmployeesAsync(companyId,
employeeParameters, trackChanges: false);

Response.Headers.Add("X-Pagination",
JsonConvert.SerializeObject(employeesFromDb.MetaData));

var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

return Ok(employeesDto);
}

Now, if we send the same request we did earlier, we are going to get the
same result:

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=2&pageSize=2

Body =]
Pretiy J50M s |
1 L
2 ~ L
3 "ig": "efB28712-889F-48l8-8b74-262029=21458",
4 "name™: "Kirk Mstha™,
- "age": 3@,
5 "position™: "Marketing expert”
7 ',
8 - 1
2, "id": "cel2d4614-1584-4596-b24d-2ela3lEe3ecs”,
1a "name": "Martha Grown",
11 "age": 35,
12 "position™: "Marketing expert II™
13
14]

But now we have some additional useful information in the X-Pagination
response header:

Header=s (5)

content-length — 216

content-type — application/json; charset=utf-3

date — Mon, 14 Oct 2019 17:02:50 GMT

server — Kestrel

wx-pagination — {"CurrentPage":2 "TotalPages":4, "PageSize™:2,"TotalCount”:8,"Has Previous"true, "HasMext"true}

158

:‘ Ultimate ASP.NET Core 3 Web API

As you can see, all of our metadata is here. We can use this information
when building any kind of frontend pagination to our benefit. You can play

around with different requests to see how it works in other scenarios.

We could also use this data to generate links to the previous and next
pagination page on the backend, but that is part of the HATEOAS and is
out of the scope of this chapter.

159

:‘ Ultimate ASP.NET Core 3 Web API

17 FILTERING

In this chapter, we are going to cover filtering in ASP.NET Core Web API.
We'll learn what filtering is, how it’s different from searching, and how to

implement it in a real-world project.

While not critical as paging, filtering is still an important part of a flexible
REST API, so we need to know how to implement it in our API projects.
Filtering helps us get the exact result set we want instead of all the

results without any criteria.

17.1 What is Filtering?
Filtering is a mechanism to retrieve results by providing some kind of
criterion. We can write many kinds of filters to get results by type of

class property, value range, date range, or anything else.

When implementing filtering, you are always restricted by the predefined
set of options you can set in your request. For example, you can send a

date value to request an employee, but you won’t have much success.

On the front end, filtering is usually implemented as checkboxes, radio
buttons, or dropdowns. This kind of implementation limits you to only

those options that are available to create a valid filter.

Take for example a car-selling website. When filtering the cars you want,

you would ideally want to select:

e Car manufacturer as a category from a list or a dropdown
e Car model from a list or a dropdown

e Is it new or used with radio buttons

e The city where the seller is as a dropdown

e The price of the car is an input field (numeric)

160

(‘ Ultimate ASP.NET Core 3 Web API

You get the point. So, the request would look something like this:

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&

state=used&city=washington&price_from=300008&price_to=50000
Or even like this:

https://bestcarswebsite.com/sale/filter?data[manufacturer]=ford&[mod
el]=expedition&[state]=used&[city]=washington&[price_from]=30000&[pr
ice_to]=50000

Now that we know what filtering is, let’s see how it’s different from

searching.

17.2 How is Filtering Different from Searching?
When searching for results, we usually have only one input and that’s the

one you use to search for anything within a website.

So in other words, you send a string to the API and the API is responsible

for using that string to find any results that match it.

On our car website, we would use the search field to find the “Ford
Expedition” car model and we would get all the results that match the car
name “Ford Expedition.” Thus, this search would return every “Ford

Expedition” car available.

We can also improve the search by implementing search terms like
Google does, for example. If the user enters the Ford Expedition without
quotes in the search field, we would return both what’s relevant to Ford
and Expedition. But if the user puts quotes around it, we would search the

entire term “Ford Expedition” in our database.
It makes a better user experience.
Example:

https://bestcarswebsite.com/sale/search?name=ford focus

161

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000

(‘ Ultimate ASP.NET Core 3 Web API

Using search doesn’t mean we can’t use filters with it. It makes perfect
sense to use filtering and searching together, so we need to take that into

account when writing our source code.
But enough theory.

Let's implement some filters.

17.3 How to Implement Filtering in ASP.NET Core Web API

We have the Age property in our Employee class. Let’s say we want to
find out which employees are between the ages of 26 and 29. We also
want to be able to enter just the starting age — and not the ending one —

and vice versa.
We would need a query like this one:

https://localhost:5001/api/companies/companyId/employees?mi
nAge=26&maxAge=29

But, we want to be able to do this too:

https://localhost:5001/api/companies/companyId/employees?mi
nAge=26

Or like this:

https://localhost:5001/api/companies/companyId/employees?ma
xAge=29

Okay, we have a specification. Let’s see how to implement it.

We've already implemented paging in our controller, so we have the
necessary infrastructure to extend it with the filtering functionality. We've
used the EmployeeParameters class, which inherits from the
RequestParameters class, to define the query parameters for our paging

request.

162

:‘ Ultimate ASP.NET Core 3 Web API

Let's extend the EmployeeParameters class:

public class EmployeeParameters : RequestParameters

{
public uint MinAge { get; set; }
public uint MaxAge { get; set; } = int.MaxValue;
public bool ValidAgeRange => MaxAge > MinAge;

}

We've added two unsigned int properties (to avoid negative year values):

MinAge and MaxAge.

Since the default uint value is 0, we don't need to explicitly define it; O is
okay in this case. For MaxAge, we want to set it to the max int value. If
we don’t get it through the query params, we have something to work
with. It doesn’t matter if someone sets the age to 300 through the

params; it won't affect the results.

We've also added a simple validation property — ValidAgeRange. Its
purpose is to tell us if the max-age is indeed greater then min-age. If it's
not, we want to let the API user know that he/she is doing something

wrong.

Okay, now that we have our parameters ready, we can modify the
GetEmployeesForCompany action by adding validation check as a first

statement:

public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)

if(!employeeParameters.ValidAgeRange)
return BadRequest("Max age can't be less than min age.");

...the rest of the code...

}

As you can see, there’s not much to it. We've added our validation check
and a BadRequest response with a short message to the API user.

That should do it for the controller.

163

(‘ Ultimate ASP.NET Core 3 Web API

Let’s get to the implementation in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)

{
var employees = await FindByCondition(e => e.CompanyId.Equals(companyId) && (e.Age
>= employeeParameters.MinAge && e.Age <= employeeParameters.MaxAge), trackChanges)
.OrderBy(e => e.Name)
.ToListAsync();
return PagedList<Employee>

.ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);

}

Actually, at this point, the implementation is rather simple too.

We are using the FindByCondition method to find all the employees

with an Age between the MaxAge and the MinAge.
Let’s try it out.

17.4 Sending and Testing a Query

Let’s send a first request with only a MinAge parameter:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?minAge=32

GET https://localhest:53001/api/companies/C9D4C053-43B6-41 DC-BC78-2D54A9901870/employees?minAge=32
Pretry JSON -

1~ [

Ao 1

3 "id": "E4ec59e9-94F5-4b14-b781-92899d2971d5",
4 "name": "John Spike",

5 "age": 32,

6 "position": "Marketing expert II"

7 Is

g- 1

9 "id": "cel24pl4-1584-4396-bB4A-2e1a31823ec5",
1@ "name": “"Martha Grown",|

11 "age": 35,

i "position"™: "Marketing expert II"

14]

Next, let’s send one with only a MaxAge parameter:

164

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-2D54A9991870/employees?maxAge=26

GET httpsi/flocalhost:5001 /api/fcompanies/C904C053-49B6-41 0C-BCY 8-2D54A49991 870/employees?maxAge=26
Body (5]
Pretty JSON =
i [
e i
3 "id": "2557bB7e-388a-4679-h6cc-a514977db5es",
4 "namz": "Mina Hawk",
5 "age": 26,
6 "position": "Marketing expert II"
¥ s
&~ i
9 "id": "EGabbcad-cedd-4b28-b5de-024785457d4a8",
16 "name": "Sam Raiden”,
11 “aga": 26,
12 "position": “Software developer"
13 }
14]

After that, we can combine those two:

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-
2D54A9991870/employees ?minAge=26&maxAge=30

GET httpsi//localhost:5001 fapifcompanies/CODAC053-49E6-41 0C-BC7 8-2D 54400301 870/employees?minfAge=26&maxiAge=30
Pretty JSON -
1~ [
2~ i
3 "id": "B6dbaBc@-dl75-41e7-938c-e 52a",
4 "name™: "Jana MclLeaf",
5 "age": 30,
[“"position™: "Software developer™
7 Is
8~ i
2 "id": "ef528712-0a9F-4818-8b74-269022921458",
i@ "name™: "Kirk Metha®,
11 "age": 308,
12 "position™: "Marketing expert”
13 ¥
14 ~ i
15 a-2dbeebcaaddd”,
16
17
18 "position™: "Marketing expert II"
139 I
28 ~ i
21 =id"e "2e2d6891—5e69—49&4—a2ec—3aaﬁaabee0?8",|
22 "name™: "Mihas=l Worth",
23 "age": 38,
74 "position™: "Marketing sxpert”
25 I
26 ~ i
27 "id": "2557b87e-388a-4672-b6cc-a514377db5ef",
28 “name”: “"Nina Hzwk",
29 "age": 26,
3@ "position™: "Marketing expert II"
31 Ts
32~ i
33 "id": "B@abbcad-564d-4b29-b5de-B24785497d4:8",
34 "name™: "Sam Raiden”,
35 "age": 26,
36 "position™: "Software developer"
37
EE- |

And finally, we can test the filter with the paging:

165

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=1&pageSize=4&minAge=32&maxAge=35

GET

Body

Pretty

[P RR R R TR

=
=)

[y
FR TR W

44

hupsi/lecalhost:5001/apifcompanies/C904C053-4966-41 0C-BCY 8-2D 54455991 870/employees?pageMumber=1&pageSize=4&minAge=32&maxAge=35

JSOM =

"642c5020-94F5-4b14-b731-92359d2971d5",
"John Spike",

ame

"age": 32,

"position": "Marketing expert II"

"ig": "cel24614-1584-4896-bB48-2e18318232c5",
"name”: "Martha Grown",

"age": 35,

"position": "Marketing expert II"

Excellent. The filter is implemented and we can move on to the searching

part.

166

:‘ Ultimate ASP.NET Core 3 Web API

18 SEARCHING

In this chapter, we're going to tackle the topic of searching in ASP.NET
Core Web API. Searching is one of those functionalities that can make or
break your API, and the level of difficulty when implementing it can vary

greatly depending on your specifications.

If you need to implement a basic searching feature where you are just
trying to search one field in the database, you can easily implement it. On
the other hand, if it's a multi-column, multi-term search, you would
probably be better off with some of the great search libraries out there

like Lucene.NET which are already optimized and proven.

18.1 What is Searching?
There is no doubt in our minds that you've seen a search field on almost
every website on the internet. It's easy to find something when we are

familiar with the website structure or when a website is not that large.

But if we want to find the most relevant topic for us, we don’t know what
we're going to find, or maybe we're first-time visitors to a large website,

we're probably going to use a search field.

In our simple project, one use case of a search would be to find an

employee by name.

Let’'s see how we can achieve that.

18.2 Implementing Searching in Our Application

Since we're going to implement the most basic search in our project, the
implementation won’t be complex at all. We have all we need
infrastructure-wise since we already covered paging and filtering. We'll

just extend our implementation a bit.

167

https://lucenenet.apache.org/?fbclid=IwAR2rCcmIrI3SUa-j9oHVgCICfhg2k2NdVcVyvJd1Grd-9laU4QYHIyJuKX8

:‘ Ultimate ASP.NET Core 3 Web API

What we want to achieve is something like this:

https://localhost:5001/api/companies/companyId/employees?se

archTerm=Mihael Fins

This should return just one result: Mihael Fins. Of course, the search
needs to work together with filtering and paging, so that’s one of the

things we'll need to keep in mind too.

Like we did with filtering, we're going to extend our
EmployeeParameters class first since we're going to send our search

query as a query parameter:

public class EmployeeParameters : RequestParameters

{
public uint MinAge { get; set; }
public uint MaxAge { get; set; } = int.MaxValue;
public bool ValidAgeRange => MaxAge > MinAge;
public string SearchTerm { get; set; }

}

Simple as that.
Now we can write queries with searchTerm="name” in them.

The next thing we need to do is actually implement the search

functionality in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
var employees = await FindByCondition(e => e.CompanyId.Equals(companyld),
trackChanges)
.FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)
.Search(employeeParameters.SearchTerm)
.OrderBy(e => e.Name)
.ToListAsync();

return PagedList<Employee>
.ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);

}

168

https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael
https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael

:‘ Ultimate ASP.NET Core 3 Web API

As you can see, we have made two changes here. The first is modifying
the filter logic and the second is adding the Search method for the
searching functionality. But these methods (FilterEmployees and Search)

are not created yet, so let’s create them.

In the Repository project, we are going to create the new folder
Extensions and inside of that folder the new class

RepositoryEmployeeExtensions:

public static class RepositoryEmployeeExtensions
{
public static IQueryable<Employee> FilterEmployees(this IQueryable<Employee>
employees, uint minAge, uint maxAge) =>
employees.Where(e => (e.Age >= minAge && e.Age <= maxAge));

public static IQueryable<Employee> Search(this IQueryable<Employee> employees,
string searchTerm)

{
if (string.IsNullOrWhiteSpace(searchTerm))
return employees;
var lowerCaseTerm = searchTerm.Trim().ToLower();
return employees.Where(e => e.Name.ToLower().Contains(lowerCaseTerm));
}

}

So, we are just creating our extension methods to update our query until
it is executed in the repository. Now, all we have to do is add a using

directive to the EmployeeRepository class:

using Repository.Extensions;

That's it for our implementation. As you can see, it isn’t that hard since it

is the most basic search and we already had an infrastructure set.

18.3 Testing Our Implementation

Let’s send a first request with the value Mihael Fins for the search term:

169

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=Mihael
Fins

GET Employees per cc

GET https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d5459991870/employees?searchTerm=Mihael Fins
Pretry JSON =
1~
2= {
3 "id": "5436e51d-698a-467e-9688-2dbeeboaaddd”,
4 "name"”: "Mihzel Fins",
5 "age": 30,
["position™: “Marketing expert II"
7 ¥
g 1|

This is working great.

Now, let’s find all employees that contain the letters “ae”:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=ae

GET https:i/flocalhost:3001/api/companies/c9d4c053-49b6-410c-bc 78-2d 53459991 570/employeesfsearchTerm=ae
Pretty JSON =

1+ [

i {

3 "id": "5436e51d-69@a-467e-9608-2dbechcaaldd”,

4 "name": "MiHggL Fins",

5 "age": 38,

6 "position": "Marketing sxpert II"
7 I

8~ {

9 "ig"y "2eZdedsl-Se80-49ad-alsc-IaatzabesdTE",
10 "name”: "MiffigEl worth",|

11 "age": 38,

1 ["position”: "Marketing sxpert”
13 T

14]

Great. One more request with the paging and filtering:

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=1&pageSize=4&minAge=32&maxAge=35&searchTerm=MA

GET https://localhost:500 fapifcompanies/C9D4C053-49B6-410C-BC78-2D54A0991870/employees?pageNumber=1&pageSize=4& minAge=32&maxAge=35&search Term=MA
Prety JSON =
1-|[
2~ {
3 ": "cell4614-1584-4a36-bd4d-2ela3dlBelecs”,
4 : "Martha Grown",
3 "age": N
["position™: "Marketing expert II"

170

:‘ Ultimate ASP.NET Core 3 Web API

And this works as well.

That'’s it! We've successfully implemented and tested our search
functionality.

If we check the Headers tab for each request, we will find valid x-

pagination as well.

171

:‘ Ultimate ASP.NET Core 3 Web API

19 SORTING

In this chapter, we're going to talk about sorting in ASP.NET Core Web
API. Sorting is a commonly used mechanism that every API should
implement. Implementing it in ASP.NET Core is not difficult due to the
flexibility of LINQ and good integration with EF Core.

So, let’s talk a bit about sorting.

19.1 What is Sorting?

Sorting, in this case, refers to ordering our results in a preferred way
using our query string parameters. We are not talking about sorting
algorithms nor are we going into the how’s of implementing a sorting

algorithm.

What we're interested in, however, is how do we make our API sort our

results the way we want it to.

Let's say we want our API to sort employees by their name in ascending

order, and then by their age.
To do that, our API call needs to look something like this:

https://localhost:5001/api/companies/companyId/employees?or

derBy=name,age desc

Our API needs to take all the parameters into consideration and sort our
results accordingly. In our case, this means sorting results by their name;
then, if there are employees with the same name, sorting them by the

age property.

So, these are our employees for the IT_Solutions Ltd company:

172

(‘ Ultimate ASP.NET Core 3 Web API

Emplyeeld MName Age Position Companyld
1 B0ABBCAB-664D-4B20-B5DE-024705457D44 Sam Raiden 26 Software developer C3D4C053-495B6-410C-BCT8-2D54A9551870
2 EFE28712-0A5F-4418-8B74-2650E25E 1450 Kirk Metha 30 Marketing expert C5D4C053-45B6-410C-BCT8-2D54A5551870
3 B436E51D-650A-467E-5600-2DBEEBCAADDD Mihael Fins 30 Marketing expert [| - CSD4C053-45B6-410C-BCT8-2D54A5551870
4 CE124614-1504-4456-B040-2E1A318E3ECE Martha Grown 35 Marketing expert | C3D4C053-49B6-410C-BC78-2D54A5551870
b 2E2DE0591-5ERT-459A4-A2FC-3AARAMBEEDYE Marketing expert C5D4C053-45B6-410C-BCT8-2D54A5551870
& GAECHSES-54F5-4B14-B781-5285502571D5 John Spike 32 Marketing expert || CSD4C053-45B6-410C-BC78-2D54A5591870
7 2557BBTE-388A-4673-BECC-AS14577DBSEF Mina Hawk 26 Marketing expert | C35D4C053-49B6-410C-BCT8-2D54A9551870
g 86DBABCO-D178-41E7-938C-ED4S77EFE524 Jana Mcleaf 30 Software developer CS5D4C053-49B6-410C-BC78-2D54A9551870

For the sake of demonstrating this example (sorting by name and then by
age), we are going to add one more Jana MclLeaf to our database with the

age of 27. You can add whatever you want to test the results:

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-2D54A9991870/employees

POST https://localhost:5001 fapifcompanies/C904C053-49B6-41 0C-BC78-2D54A9991 87 0/employees
form-data w-www-form-urlencoded ¥ raw binary SOM (application/jsen)

1~ [f

2 "name": "Jlana MclLeaf",

3 "age": 27,

4 “position™: “Marketing expert II"

5 T

Body (6)
Pretty JSON >

"id": "3b9@221f-0cal-44@8e-bele-63678aFae2%",

"mame": "Jlana MclLeaf",
"age™: 27,
"positicn™: “"Marketing expert II"

[= RN 5 B A WU % B)

Great, now we have the required data to test our functionality properly.

And of course, like with all other functionalities we have implemented so
far (paging, filtering, and searching), we need to implement this to work
well with everything else. We should be able to get the paginated,

filtered, and sorted data, for example.

173

:‘ Ultimate ASP.NET Core 3 Web API

Let's see one way to go around implementing this.

19.2 How to Implement Sortingin ASP.NET Core Web API

As with everything else so far, first, we need to extend our
RequestParameters class to be able to send requests with the orderBy

clause in them:

public class RequestParameters

{
const int maxPageSize = 50;
public int PageNumber { get; set; } = 1;
private int _pageSize = 10;
public int PageSize
{
get
{
return _pageSize;
}
set
{
_pageSize = (value > maxPageSize) ? maxPageSize : value;
}
}
public string OrderBy { get; set; }
}

As you can see, the only thing we’ve added is the OrderBy property and
we added it to the RequestParameters class because we can reuse it for
other entities. We want to sort our results by name, even if it hasn’t been

stated explicitly in the request.

That said, let’s modify the EmployeeParameters class to enable the

default sorting condition for Employee if none was stated:

public class EmployeeParameters : RequestParameters

{
public EmployeeParameters()
{
OrderBy = "name";
}

public uint MinAge { get; set; }
public uint MaxAge { get; set; } = int.MaxValue;

public bool ValidAgeRange => MaxAge > MinAge;

174

:‘ Ultimate ASP.NET Core 3 Web API

public string SearchTerm { get; set; }
}

Next, we're going to dive right into the implementation of our sorting

mechanism, or rather, our ordering mechanism.

One thing to note is that we'll be using the System.Linqg.Dynamic.Core
NuGet package to dynamically create our OrderBy query on the fly. So,
feel free to install it in the Repository project and add a using directive

in the RepositoryEmployeeExtensions class:
using System.Linqg.Dynamic.Core;

Now, we can add the new extension method Sort in our

RepositoryEmployeeExtensions class:

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)
{
if (string.IsNullOrWhiteSpace(orderByQueryString))
return employees.OrderBy(e => e.Name);

var orderParams = orderByQueryString.Trim().Split("',");

var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |
BindingFlags.Instance);

var orderQueryBuilder = new StringBuilder();

foreach (var param in orderParams)

{
if (string.IsNullOrWhiteSpace(param))

continue;
var propertyFromQueryName = param.Split(" ")[0];
var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

if (objectProperty == null)
continue;

var direction = param.EndsWith(" desc") ? "descending" : "ascending";
orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction},

)5
}

var orderQuery = orderQueryBuilder.ToString().TrimEnd(',"', ' ');

if (string.IsNullOrWhiteSpace(orderQuery))
return employees.OrderBy(e => e.Name);

return employees.OrderBy(orderQuery);

175

:‘ Ultimate ASP.NET Core 3 Web API

}

Okay, there are a lot of things going on here, so let’s take it step by step

and see what exactly we've done.

19.3 Implementation - Step by Step

First, let start with the method definition. It has two arguments — one for
the list of employees as IQueryable<Employee> and the other for the
ordering query. If we send a request like this one:
https://localhost:5001/api/companies/companyId/employees?or
derBy=name,age desc, our orderByQueryString will be name, age

desc.

We begin by executing some basic check against the orderByQueryString.

If it is null or empty, we just return the same collection ordered by name.

if (string.IsNullOrWhiteSpace(orderByQueryString))
return employees.OrderBy(e => e.Name);

Next, we are splitting our query string to get the individual fields:

var orderParams = orderByQueryString.Trim().Split("',");

We're also using a bit of reflection to prepare the list of PropertyInfo
objects that represent the properties of our Employee class. We need
them to be able to check if the field received through the query string
really exists in the Employee class:

var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |
BindingFlags.Instance);

That prepared, we can actually run through all the parameters and check

for their existence:

if (string.IsNullOrWhiteSpace(param))
continue;

var propertyFromQueryName = param.Split(" ")[0];
var objectProperty = propertyInfos.FirstOrDefault(pi =>

pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

176

:‘ Ultimate ASP.NET Core 3 Web API

If we don't find such a property, we skip the step in the foreach loop and

go to the next parameter in the list:

if (objectProperty == null)
continue;

If we do find the property, we return it and additionally check if our
parameter contains “desc” at the end of the string. We use that to decide

how we should order our property:

var direction = param.EndsWith(" desc") ? "descending" : "ascending";

We use the StringBuilder to build our query with each loop:
orderQueryBuilder.Append($“{objectProperty.Name.ToString()} {direction}, ");

Now that we’ve looped through all the fields, we are just removing excess
commas and doing one last check to see if our query indeed has

something in it:

var orderQuery = orderQueryBuilder.ToString().TrimEnd(',"', ' ');

if (string.IsNullOrWhiteSpace(orderQuery))
return employees.OrderBy(e => e.Name);

Finally, we can order our query:

return employees.OrderBy(orderQuery);

At this point, the orderQuery variable should contain the “Name
ascending, DateOfBirth descending” string. That means it will order
our results first by Name in ascending order, and then by DateOfBirth in

descending order.
The standard LINQ query for this would be:
employees.OrderBy(e => e.Name).ThenByDescending(o => o.Age);

This is a neat little trick to form a query when you don’t know in advance

how you should sort.

177

(‘ Ultimate ASP.NET Core 3 Web API

Once we have done this, all we have to do is to modify the

GetEmployeesAsync method:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)

{
var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
.FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)
.Search(employeeParameters.SearchTerm)
.Sort(employeeParameters.OrderBy)
.ToListAsync();

return PagedList<Employee>
.ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);

}

And that’s it! We can test this functionality now.

19.4 Testing Our Implementation

First, let’s try out the query we’ve been using as an example:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-
BC78-2D54A9991870/employees?orderBy=name,age desc

And this is the result:

178

:‘ Ultimate ASP.NET Core 3 Web API

[

{
"id": "B6dbabc@-d178-4127-938c-2dd977EFR52a",
“"name”: "Jana McLeat",
"age": 3@,
"position": "Software developer”

s

{
"id"y "Ip9@221F-9caZ-44@e-bc3e-aIAT0aTas2%8",
"name": "Jana Mcleat",
"age": 27,
"position™: "Marketing expert II"

Fa

{
"id"y "Adec5929-94F5-4b14-0TE1-928994297145",
"name": “"John Spiks™,
"age": 32,
"position”: "Marketing expert II™

s

{
"ig"y "efR2ET1I-089F-48l8-8074-265022021458",
"name": “Kirk Mestha",
"age'": 318,
"position™: "Marketing expert”

Fa

{
"id"y "cel24el4-1504-4596-h040-2212318=23205",
"name": "Martha Grown",
"age": 35,
"position”: "Marketing expert II™

s

{
"id": "5438e51d-69@a-467e-9689-2dbecbcaaddd"”,
"name": “Mihszel Fins",
"age'": 318,

"position™: "Marketing expert II"

As you can see, the list is sorted by Name ascending. Since we have two

Jana’s, they were sorted by Age descending.

We have prepared additional requests which you can use to test this

functionality with Postman. So, feel free to do it.

19.5 Improving the Sorting Functionality

Right now, sorting only works with the Employee entity, but what about
the Company? It is obvious that we have to change something in our
implementation if we don’t want to repeat our code while implementing

sorting for the Company entity.

That said, let’'s modify the Sort extension method:

179

:‘ Ultimate ASP.NET Core 3 Web API

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)

{
if (string.IsNullOrWhiteSpace(orderByQueryString))

return employees.OrderBy(e => e.Name);
var orderQuery = OrderQueryBuilder.CreateOrderQuery<Employee>(orderByQueryString);

if (string.IsNullOrWhiteSpace(orderQuery))
return employees.OrderBy(e => e.Name);

return employees.OrderBy(orderQuery);

So, we are extracting a logic that can be reused in the

CreateOrderQuery<T> method. But of course, we have to create that

method.

Let’s create a Utility folder in the Extensions folder with the new

class OrderQueryBuilder:

4 i[c#] Repository
P o@ Dependencies
4 5L.| Extensions
4 Utility
P +c# OrderQueryBuilder.cs

Now, let’s modify that class:

public static class OrderQueryBuilder

{
public static string CreateOrderQuery<T>(string orderByQueryString)

{

var orderParams = orderByQueryString.Trim().Split(',");

var propertyInfos = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);

var orderQueryBuilder = new StringBuilder();

foreach (var param in orderParams)

{
if (string.IsNullOrWhiteSpace(param))

continue;
var propertyFromQueryName = param.Split(" ")[0];

var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

if (objectProperty == null)
continue;

var direction = param.EndsWith(" desc") ? "descending" : "ascending";

180

(‘ Ultimate ASP.NET Core 3 Web API

orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction},

")s
}
var orderQuery = orderQueryBuilder.ToString().TrimEnd(',"', ' ");
return orderQuery;
}
}

And there we go. Not too many changes, but we did a great job here. You
can test this solution with the prepared requests in Postman and you'll get

the same result for sure:

v M 19-5orting in ASP.MET Core Web API wee
DT Ermoloves for o - S .
GET GET Employees by company (sort name, age desc)
GET GET Er ees mp ame desc, age
GET GETE ees mp a
GET GETEr ees mp o o

But now, this functionality is reusable.

181

:‘ Ultimate ASP.NET Core 3 Web API

20 DATA SHAPING

In this chapter, we are going to talk about a neat concept called data
shaping and how to implement it in ASP.NET Core Web API. To achieve
that, we are going to use similar tools to the previous section. Data
shaping is not something that every API needs, but it can be very useful

in some cases.

Let’s start by learning what data shaping is exactly.

20.1 What is Data Shaping?

Data shaping is a great way to reduce the amount of traffic sent from the
API to the client. It enables the consumer of the API to select
(shape) the data by choosing the fields through the query string.

What this means is something like:

https://localhost:5001/api/companies/companyId/employees?fi

elds=name, age

By giving the consumer a way to select just the fields it needs, we can
potentially reduce the stress on the API. On the other hand, this is
not something every API needs, so we need to think carefully and
decide whether we should implement its implementation because it has a

bit of reflection in it.

And we know for a fact that reflection takes its toll and slows our

application down.

Finally, as always, data shaping should work well together with the

concepts we've covered so far — paging, filtering, searching, and sorting.

182

https://localhost:5001/api/companies/companyId/employees?fields=name,age
https://localhost:5001/api/companies/companyId/employees?fields=name,age

:‘ Ultimate ASP.NET Core 3 Web API

First, we are going to implement an employee-specific solution to data
shaping. Then we are going to make it more generic, so it can be used by

any entity or any API.

Let’s get to work.

20.2 How to Implement Data Shaping
First things first, we need to extend our RequestParameters class since
we are going to add a new feature to our query string and we want it to

be available for any entity:
public string Fields { get; set; }

We've added the Fields property and now we can use fields as a query

string parameter.

Let’s continue by creating a new interface in the Contracts project:

public interface IDataShaper<T>
{
IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string

fieldsString);
ExpandoObject ShapeData(T entity, string fieldsString);
}

The IDataShaper defines two methods that should be implemented —
one for the single entity and one for the collection of entities. Both are

named ShapeData, but they have different signatures.

Notice how we use the ExpandoObject as a return type. We need to do

that in order to shape our data the way we want it.

To implement this interface, we are going to create the new folder

DataShaping in the Repository project and the new class DataShaper:

public class DataShaper<T> : IDataShaper<T> where T : class

{
public PropertyInfo[] Properties { get; set; }

public DataShaper()
{

183

:‘ Ultimate ASP.NET Core 3 Web API

Properties = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);

}

public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)

{

var requiredProperties = GetRequiredProperties(fieldsString);

return FetchData(entities, requiredProperties);

}

public ExpandoObject ShapeData(T entity, string fieldsString)
{

var requiredProperties = GetRequiredProperties(fieldsString);

return FetchDataForEntity(entity, requiredProperties);

}

private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)

{

var requiredProperties = new List<PropertyInfo>();

if (!string.IsNullOrWhiteSpace(fieldsString))

{
var fields = fieldsString.Split(',"’,
StringSplitOptions.RemoveEmptyEntries);

foreach (var field in fields)

{
var property = Properties
.FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCultureIgnoreCase));

if (property == null)
continue;

requiredProperties.Add(property);

}
b
else
{
requiredProperties = Properties.TolList();
}

return requiredProperties;

}

private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)

{

var shapedData = new List<ExpandoObject>();

foreach (var entity in entities)

{
var shapedObject = FetchDataForEntity(entity, requiredProperties);

shapedData.Add(shapedObject);

184

:‘ Ultimate ASP.NET Core 3 Web API

return shapedData;

}

private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)

{
var shapedObject = new ExpandoObject();
foreach (var property in requiredProperties)
{
var objectPropertyValue = property.GetValue(entity);
shapedObject.TryAdd(property.Name, objectPropertyValue);
}
return shapedObject;
}

}

There is quite a lot of code here, so let’s break it down.

20.3 Step-by-Step Implementation
We have one public property in this class - Properties. It's an array of
PropertyInfo’s that we’re going to pull out of the input type, whatever it is

— Company or Employee in our case:

public PropertyInfo[] Properties { get; set; }

public DataShaper()
{

}

Properties = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance);

So, here it is. In the constructor, we get all the properties of an input

class.

Next, we have the implementation of our two public ShapeData methods:

public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)

{

var requiredProperties = GetRequiredProperties(fieldsString);

return FetchData(entities, requiredProperties);

}

public ExpandoObject ShapeData(T entity, string fieldsString)
{

var requiredProperties = GetRequiredProperties(fieldsString);

185

:‘ Ultimate ASP.NET Core 3 Web API

return FetchDataForEntity(entity, requiredProperties);

}

Both methods rely on the GetRequiredProperties method to parse the

input string that contains the fields we want to fetch.

The GetRequiredProperties method does the magic. It parses the

input string and returns just the properties we need to return to the

controller:

private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)

{

var requiredProperties = new List<PropertyInfo>();

if (!string.IsNullOrWhiteSpace(fieldsString))

{
var fields = fieldsString.Split(',', StringSplitOptions.RemoveEmptyEntries);

foreach (var field in fields)

{
var property = Properties
.FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCulturelIgnoreCase));

if (property == null)
continue;

requiredProperties.Add(property);

}
}
else
{
requiredProperties = Properties.TolList();
}

return requiredProperties;

As you can see, there’s nothing special about it. If the fieldsString is
not empty, we split it and check if the fields match the properties in our
entity. If they do, we add them to the list of required properties.

On the other hand, if the fieldsString is empty, all properties are
required.

Now, FetchData and FetchDataForEntity are the private methods to
extract the values from these required properties we've prepared.

186

:‘ Ultimate ASP.NET Core 3 Web API

The FetchDataForEntity method does it for a single entity:

private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)

{
var shapedObject = new ExpandoObject();
foreach (var property in requiredProperties)

{
var objectPropertyValue = property.GetValue(entity);

shapedObject.TryAdd(property.Name, objectPropertyValue);
}

return shapedObject;

}
As you can see, we loop through the requiredProperties. Then, using

a bit of reflection, we extract the values and add them to our
ExpandoObject. ExpandoObject implements
IDictionary<string,object>, so we can use the TryAdd method to
add our property using its name as a key and the value as a value for the

dictionary.

This way, we dynamically add just the properties we need to our dynamic

object.

The FetchData method is just an implementation for multiple objects. It

utilizes the FetchDataForEntity method we've just implemented:

private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)

{
var shapedData = new List<ExpandoObject>();
foreach (var entity in entities)
{
var shapedObject = FetchDataForEntity(entity, requiredProperties);
shapedData.Add(shapedObject);
}
return shapedData;
}

To continue, let’s register the DataShaper class in the

IServiceCollection in the ConfigureServices method:

187

:‘ Ultimate ASP.NET Core 3 Web API

services.AddScoped <IDataShaper<EmployeeDto>, DataShaper<EmployeeDto>>();

As you can see, during the registration, we provide the type to work with.

Finally, we can modify the EmployeesController by modifying the

constructor:

private readonly IDataShaper<EmployeeDto> _dataShaper;

public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper, IDataShaper<EmployeeDto> dataShaper)

_repository = repository;
_logger = logger;
_mapper = mapper;

_dataShaper = dataShaper;
}

We are injecting it inside the controller because we don't have a service
layer in this app. We could have created it, but it would be an overhead
for the app this size. But for bigger apps, we recommend creating a
service layer and transferring all the mappings and data shaping logic
inside it.

And the return statement of the GetEmployeesForCompany actions:

return Ok(_dataShaper.ShapeData(employeesDto, employeeParameters.Fields));

Now, we can test our solution:

188

»‘0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/C9D4C0O53-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

GET - httpsyflocalhost:5001 fapifcompanies/CODAC053-49B6-41 0C-BCT8-2D...
Body Cookies Headers (14) Test Resulrs Status: 200 0K Time: 166ms
Pretoy R.a Prewvie sualize BETA JISON - ==
1 L
2 1
3 “Mame™: "Sam Raiden™,
a ThAge'": Z8
5 ¥
& 1
7 "Mame™: "Nina Hawk"™,
8 Thge'": Zo
S Fa
1@ g
11 "Mame™: "Mihael Worth"™,
12 Thage'T: 3@
13 Fa
14 g
15 "Mame™: "Mihasl Fins",
15 Thage'T: 3@
17 ¥
18 1

Excellent. Everything is working like a charm.

20.4 Resolving XML Serialization Problems
Let's send the same request one more time, but this time with the

different accept header (text/xml):

1 ¥ CArrayOfArrayOfKeyValueOfstringanyType xmlns:is"http://wwe.nw3.0rg/2021/XMLSchena-instance” xalns="http://s

2~ <ArrayOfKeyValueOfstringanyType>
3~ <KeyValueOfstringanyType>
4 <Key>Name</Key>
5 <Value xmlns:cdpl="nttp://www.n3.0rg/2001/XMLSchena" 1:type="gdpl:string”>Sam Raiden</Value)
6 </KeyValueOfstringanyType>
v <KeyValueOfstringanyType>
8 <KeyrAge</Key>
9 <Value xmlns:d4ple"http://waw.n3.org/2001/XMLSchema™ i:types“ddpl:int™>26</Value>
10 </KeyWalueOfstringanyType>
11 </ArrayOfkeyValueOfstringanyTyped>
12~ <ArrayOfKeyValueOfstringanyTyped
13+~ <KeyValueOfstringanyType>
4 <Key>Name</Key>
15 <Value xmlns:cdpls"http://wnww.n3.0rg/2001/XMLSchena” i:type="ddpl:string">Nina Hawk</Value>
16 </KeyValueOfstringanyType>
17~ <KeyValueQfstringanyType>
18 <Key>Age</Key>
19 <Value xmlns:cdpl="http://ww.w3.0rg/2001/X0MLSchema” i:type="ddpl:int">26</Value>
28 </KeyValueOfstringanyType>
21 </ArrayOfKeyValueOfstringanyType>

189

(‘ Ultimate ASP.NET Core 3 Web API

As you can see, it works — but it looks pretty ugly and unreadable. But
that’s how the XmlDataContractSerializerOutputFormatter

serializes our ExpandoObject by default.

We can fix that, but the logic is out of the scope of this book. Of course,
we have implemented the solution in our source code. So, if you want,

you can use it in your project.

All you have to do is to create the Entity class and copy the content

from our Entity class that resides in the Entities/Models folder.

After that, just modify the IDataShaper interface and the DataShaper
class by using the Entity type instead of the ExpandoObject type.

Again, you can check our implementation if you have any problems.

After all those changes, once we send the same request, we are going to

see a much better result:

https://localhost:5001/api/companies/C9D4CO53-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=1&pageSize=4&minAge=26&maxAge=328&searchTerm=A&orderBy=name
desc&fields=name, age

“hge 254/ Age>
< Entity >

GET - https:flocalhost:5001 fapifcompanies/COD4C053-49B6-410C-BC7 5~
Pretty AT XML - —

1 <ArrayOFfEntity xmlns:i="http:/ waw.w3.orgs/ 2081/ ¥MLSchema-instance™

2 <Entity>

3 <Mame>Sam Ralden</MName:

4 <Age 2B/ Age

5 <SEntity>

[<Entity>

7 <Mame>Nina Hawk</Name:>

k=

18 <Entity>

11 <Mame>Mihael Worth</MName:>

12 LAge>38L Age>

13 < Entitys

14 <Entity>

15 <Mame>Mihael Fins</Name:>

1s “hAge >384/ Age>

7 < Entity >

18 <SArrayOFEntity >

190

:‘ Ultimate ASP.NET Core 3 Web API

If XML serialization is not important to you, you can keep using
ExpandoObject — but if you want a nicely formatted XML response, this

is the way to go.

As you can see, data shaping is an exciting and neat little feature that can
really make our APIs flexible and reduce our network traffic. If we have a

high-volume traffic API, data shaping should work just fine. On the other

hand, it’s not a feature that we should use lightly because it utilizes

reflection and dynamic typing to get things done.

As with all other functionalities, we need to be careful when and if we
should implement data shaping. Performance tests might come in handy

even if we do implement it.

191

:‘ Ultimate ASP.NET Core 3 Web API

21 SUPPORTING HATEOAS

In this section, we are going to talk about one of the most important
concepts in building RESTful APIs — HATEOAS and learn how to
implement HATEOAS in ASP.NET Core Web API. This part relies heavily on
the concepts we've implemented so far in paging, filtering, searching,
sorting, and especially data shaping and builds upon the foundations

we've put down in these parts.

21.1 What is HATEOAS and Why is it so Important?

HATEOAS (Hypermedia as the Engine of Application State) is a very
important REST constraint. Without it, a REST API cannot be considered
RESTful and many of the benefits we get by implementing a REST

architecture are unavailable.

Hypermedia refers to any kind of content that contains links to media

types such as documents, images, videos, etc.

REST architecture allows us to generate hypermedia links in our
responses dynamically and thus make navigation much easier. To put this
into perspective, think about a website that uses hyperlinks to help you
navigate to different parts of it. You can achieve the same effect with
HATEOAS in your REST API.

Imagine a website that has a home page and you land on it, but there are
no links anywhere. You need to scrape the website or find some other
way to navigate it to get to the content you want. We're not saying that

the website is the same as a REST API, but you get the point.

The power of being able to explore an API on your own can be very

useful.

Let's see how that works.

192

:‘ Ultimate ASP.NET Core 3 Web API

21.1.1 Typical Response with HATEOAS Implemented
Once we implement HATEOAS in our API, we are going to have this type

of response:

"value": [
"Name": "Sam Raiden"”,
"Age": 26,
"Links": [
{
"hr: i/companies/c9d4c@53-49b6-410c-bc78-2d54a9991878/employees/88abbcad- 664d-4b20-b5de-024705497d4afields=name,age",
're
method
I
{
"href": “https://localhost:5881/api/companies/c9d4c@53-49b6-418c-bc78-2d54a9991878/employees /80abbcas- 664d-4b20-b5de-024705497d4a" ,
"re "delete_employee”,
ethod": "DELETE"
{
"hr ¢ "https://localhost:5801/apl/companies/c9d4c@53-49b6-418c-bc78-2d54a9991870,/employees /B8abbcad- 664d-4b28-b5de-824765497d4a" ,
"re "update_employee”,
"me "PUT"
{
"href": "https://localhost:5881/api/companies/c9d4c853-49b6-418c-bc78-2d54a9991870/employees /B8abbcat- 664d-4b20-b5de-224785497d4a",
"re "partially_update_employee”,
"method™: "PATCH"
1
oo

As you can see, we got the list of our employees and for each employee

all the actions we can perform on them. And so on...
So, it's a nice way to make an API self-discoverable and evolvable.

21.1.2 What is a Link?
According to RFC5988, a link is "a typed connection between two

resources that are identified by Internationalised Resource Identifiers

(IRIs)". Simply put, we use links to traverse the internet or rather the

resources on the internet.

Our responses contain an array of links, which consist of a few properties

according to the RFC:

e href - represents a target URI.

e rel - represents a link relation type, which means it describes how
the current context is related to the target resource.

e method - we need an HTTP method to know how to distinguish the

same target URIs.

193

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

:‘ Ultimate ASP.NET Core 3 Web API

21.1.3 Pros/Cons of Implementing HATEOAS
So, what are all the benefits we can expect when implementing
HATEOAS?

HATEOAS is not trivial to implement, but the rewards we reap are worth
it. Here are the things we can expect to get when we implement
HATEOAS:

e API becomes self-discoverable and explorable.

e A client can use the links to implement its logic, it becomes much
easier, and any changes that happen in the API structure are
directly reflected onto the client.

e The server drives the application state and URL structure and not
vice versa.

e The link relations can be used to point to developer documentation.

e \Versioning through hyperlinks becomes easier.

e Reduced invalid state transaction calls.

e API is evolvable without breaking all the clients.

We can do so much with HATEOAS. But since it's not easy to implement
all these features, we should keep in mind the scope of our API and if we
need all this. There is a great difference between a high volume public API
and some internal API that is needed to communicate between parts of

the same system.

That is more than enough theory for now. Let's get to work and see what

the concrete implementation of HATEOAS looks like.

2l.2 AddingLinksin the Project
Let’s begin with the concept we know so far, and that’s the link. In the
Entities project, we are going to create the LinkModels folder and

inside a new Link class:

194

:‘ Ultimate ASP.NET Core 3 Web API

public class Link

{
public string Href { get; set; }
public string Rel { get; set; }
public string Method { get; set; }
public Link()
{1}
public Link(string href, string rel, string method)
{
Href = href;
Rel = rel;
Method = method;
}
}

Note that we have an empty constructor, too. We'll need that for XML

serialization purposes, so keep it that way.

Next, we need to create a class that will contain all of our links —

LinkResourceBase:

public class LinkResourceBase

{

public LinkResourceBase()

{}

public List<Link> Links { get; set; } = new List<Link>();
}

And finally, since our response needs to describe the root of the

controller, we need a wrapper for our links:

public class LinkCollectionWrapper<T> : LinkResourceBase

{
public List<T> Value { get; set; } = new List<T>();

public LinkCollectionWrapper()
{}

public LinkCollectionWrapper(List<T> value)
{

}

Value = value;

195

:‘ Ultimate ASP.NET Core 3 Web API

This class might not make too much sense right now, but stay with us and
it will become clear later down the road. For now, let's just assume we

wrapped our links in another class for response representation purposes.

Since our response will contain links too, we need to extend the XML
serialization rules so that our XML response returns the properly
formatted links. Without this, we would get something like:
<Links>System.Collections.Generic.List 1[Entites.Models.Lin
k]l<Links>. So, in the Entities/Models/Entity class, we need to

extend the WriteLinksToXml method to support links:

private void WriteLinksToXml(string key, object value, XmlWriter writer)
{

writer.WriteStartElement(key);

if (value.GetType() == typeof(List<Link>))

foreach (var val in value as List<Link>)

{
writer.WriteStartElement(nameof(Link));
WriteLinksToXml(nameof(val.Href), val.Href, writer);
WriteLinksToXml(nameof(val.Method), val.Method, writer);
WriteLinksToXml(nameof(val.Rel), val.Rel, writer);
writer.WriteEndElement();
}
}
else
{
writer.WriteString(value.ToString());
}
writer.WriteEndElement();

}

So, we check if the type is List<Link>. If it is, we iterate through all the
links and call the method recursively for each of the properties: href,
method, and rel.

That's all we need for now. We have a solid foundation to implement
HATEOAS in our controllers.

196

:‘ Ultimate ASP.NET Core 3 Web API

21.3 Additional Project Changes

When we generate links, HATEOAS strongly relies on having the ids
available to construct the links for the response. Data shaping, on the
other hand, enables us to return only the fields we want. So, if we want
only the name and age fields, the id field won't be added. To solve that,

we have to apply some changes.

The first thing we are going to do is to add a ShapedEntity class in the
Entities/Models folder:

public class ShapedEntity

{

public ShapedEntity()

{

Entity = new Entity();

}

public Guid Id { get; set; }

public Entity Entity { get; set; }
}

With this class, we expose the Entity and the Id property as well.

Now, we have to modify the IDataShaper interface and the DataShaper

class by replacing all Entity usage with ShapedEntity.

In addition to that, we need to extend the FetchDataForEntity method

in the DataShaper class to get the id separately:

private ShapedEntity FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)

{
var shapedObject = new ShapedEntity();

foreach (var property in requiredProperties)

{
var objectPropertyValue = property.GetValue(entity);

shapedObject.Entity.TryAdd(property.Name, objectPropertyValue);
}

var objectProperty = entity.GetType().GetProperty("Id");
shapedObject.Id = (Guid)objectProperty.GetValue(entity);

return shapedObject;

197

:‘ Ultimate ASP.NET Core 3 Web API

Finally, let’s add the LinkResponse class in the LinkModels folder; that
will help us with the response once we start with the HATEOAS

implementation:

public class LinkResponse

{
public bool HasLinks { get; set; }

public List<Entity> ShapedEntities { get; set; }
public LinkCollectionWrapper<Entity> LinkedEntities { get; set; }
public LinkResponse()

{

LinkedEntities
ShapedEntities

new LinkCollectionWrapper<Entity>();
new List<Entity>();

}
}

With this class, we are going to know whether our response has links. If it
does, we are going to use the LinkedEntities property. Otherwise, we

are going to use the ShapedEntities property.

21.4 Adding Custom Media Types

What we want to do is to enable links in our response only if it is explicitly

asked for. To do that, we are going to introduce custom media types.

Before we start, let’'s see how we can create a custom media type. A
custom media type should look something like this:
application/vnd.codemaze.hateoas+json. To compare it to the

typical json media type which we use by default: application/json.
So let’s break down the different parts of a custom media type:

e vnd - vendor prefix; it's always there.
e codemaze - vendor identifier; we've chosen codemaze, because
why not?

e hateoas - media type name.

198

:‘ Ultimate ASP.NET Core 3 Web API

e json - suffix; we can use it to describe if we want json or an XML

response, for example.
Now, let’s implement that in our application.

21.4.1 Registering Custom Media Types
First, we want to register our new custom media types in the middleware.

Otherwise, we'll just get a 466 Not Acceptable message.

Let’s add a new extension method to our ServiceExtensions:

public static void AddCustomMediaTypes(this IServiceCollection services)

{

services.Configure<MvcOptions>(config =>

{

var newtonsoftJsonOutputFormatter = config.OutputFormatters
.OfType<NewtonsoftJIsonOutputFormatter>()?.FirstOrDefault();

if (newtonsoftJsonOutputFormatter != null)

{

newtonsoftJsonOutputFormatter
.SupportedMediaTypes
.Add("application/vnd.codemaze.hateoas+json");

}

var xmlOutputFormatter = config.OutputFormatters
.OfType<XmlDataContractSerializerOutputFormatter>()?.FirstOrDefault();

if (xmlOutputFormatter != null)

{
xmlOutputFormatter
.SupportedMediaTypes
.Add("application/vnd.codemaze.hateoas+xml");
}

s
}

We are registering two new custom media types for the JSON and XML
output formatters. This ensures we don’t get a 406 Not Acceptable

response.

Add that to the Startup.cs class in the ConfigureServices method,

just after the AddControllers method:
services.AddCustomMediaTypes();

Excellent. The registration process is done.

199

:‘ Ultimate ASP.NET Core 3 Web API

21.4.2 Implementing a Media Type Validation Filter
Now, since we've implemented custom media types, we want our Accept
header to be present in our requests so we can detect when the user

requested the HATEOAS-enriched response.

To do that, we'll implement an ActionFilter which will validate our Accept

header and media types:

public class ValidateMediaTypeAttribute : IActionFilter
{

public void OnActionExecuting(ActionExecutingContext context)

{
var acceptHeaderPresent =
context.HttpContext.Request.Headers.ContainsKey("Accept");

if (lacceptHeaderPresent)

{

context.Result = new BadRequestObjectResult($"Accept header is missing.");
return;

}

var mediaType =
context.HttpContext.Request.Headers["Accept"].FirstOrDefault();

if (!MediaTypeHeaderValue.TryParse(mediaType, out MediaTypeHeaderValue
outMediaType))
{

context.Result = new BadRequestObjectResult($"Media type not present.
Please add Accept header with the required media type.");

return;
}
context.HttpContext.Items.Add("AcceptHeaderMediaType", outMediaType);
}
public void OnActionExecuted(ActionExecutedContext context)
{
}

}

We check for the existence of the Accept header first. If it's not present,
we return BadRequest. If it is, we parse the media type — and if there is

no valid media type present, we return BadRequest.

Once we've passed the validation checks, we pass the parsed media type

to the HttpContext of the controller.

Now, we have to register the filter in the ConfigureServices method:

200

:‘ Ultimate ASP.NET Core 3 Web API

services.AddScoped<ValidateMediaTypeAttribute>();
And to decorate the GetEmployeesForCompany action:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)
Great job.

Finally, we can work on the HATEOAS implementation.

21.5 Implementing HATEOAS
We are going to start by creating a new Utility folder in the main
project and the EmployeelLinks class in it. Let’s start by adding the

required dependencies inside the class:

public class Employeelinks

{
private readonly LinkGenerator _linkGenerator;
private readonly IDataShaper<EmployeeDto> _dataShaper;
public EmployeelLinks(LinkGenerator linkGenerator, IDataShaper<EmployeeDto>
dataShaper)
{
_linkGenerator = linkGenerator;
_dataShaper = dataShaper;
}
}

We are going to use LinkGenerator to generate links for our responses
and IDataShaper to shape our data. As you can see, the shaping logic is

now extracted from the controller.

After dependencies, we are going to add the first method:

public LinkResponse TryGeneratelLinks(IEnumerable<EmployeeDto> employeesDto, string
fields, Guid companyId, HttpContext httpContext)

{
var shapedEmployees = ShapeData(employeesDto, fields);

if (ShouldGenerateLinks(httpContext))
return ReturnLinkdedEmployees(employeesDto, fields, companyId, httpContext,
shapedEmployees);

201

:‘ Ultimate ASP.NET Core 3 Web API

return ReturnShapedEmployees(shapedEmployees);
}

So, our method accepts four parameters. The employeeDto collection,
the fields that are going to be used to shape the previous collection,
companyId because routes to the employee resources contain the Id from
the company, and httpContext which holds information about media

types.

The first thing we do is shape our collection. Then if the httpContext
contains the required media type, we add links to the response. On the

other hand, we just return our shaped data.

Of course, we have to add those not implemented methods:

private List<Entity> ShapeData(IEnumerable<EmployeeDto> employeesDto, string fields)
=>
_dataShaper.ShapeData(employeesDto, fields)
.Select(e => e.Entity)
.ToList();

The ShapeData method executes data shaping and extracts only the

entity part without the Id property.

Let’s add two additional methods:

private bool ShouldGeneratelLinks(HttpContext httpContext)
{
var mediaType = (MediaTypeHeaderValue)httpContext.Items["AcceptHeaderMediaType"];

return mediaType.SubTypeWithoutSuffix.EndsWith("hateoas",
StringComparison.InvariantCultureIgnoreCase);

}

private LinkResponse ReturnShapedEmployees(List<Entity> shapedEmployees) => new

LinkResponse { ShapedEntities = shapedEmployees };

In the ShouldGeneratelLinks method, we extract the media type from
the httpContext. If that media type ends with hateoas, the method

returns true; otherwise, it returns false. ReturnShapedEmployees just

202

:‘ Ultimate ASP.NET Core 3 Web API

returns a new LinkResponse with the ShapedEntities property

populated. By default, the HasLinks property is false.

After these methods, we have to add the ReturnLinkedEmployees

method as well:

private LinkResponse ReturnLinkdedEmployees(IEnumerable<EmployeeDto> employeesDto,
string fields, Guid companyId, HttpContext httpContext, List<Entity> shapedEmployees)
{

var employeeDtolList = employeesDto.ToList();

for (var index = @; index < employeeDtolList.Count(); index++)
{
var employeelLinks = CreatelLinksForEmployee(httpContext, companyld,
employeeDtoList[index].Id, fields);
shapedEmployees[index].Add("Links", employeelLinks);
}

var employeeCollection = new LinkCollectionWrapper<Entity>(shapedEmployees);
var linkedEmployees = CreateLinksForEmployees(httpContext, employeeCollection);

return new LinkResponse { HasLinks = true, LinkedEntities = linkedEmployees };

}

As you can see, we iterate through each employee and create links for it
by calling the CreateLinksForEmployee method. Then, we just add it to
the shapedEmployees collection. After that, we wrap the collection and
create links that are important for the entire collection by calling the

CreateLinksForEmployees method.

Finally, we have to add those two new methods that create links:

private List<Link> CreatelLinksForEmployee(HttpContext httpContext, Guid companyId,
Guid id, string fields = "")
{
var links = new List<Link>
{
new Link(_linkGenerator.GetUriByAction(httpContext, "GetEmployeeForCompany",
values: new { companyId, id, fields }),
"self",
"GET"),
new Link(_linkGenerator.GetUriByAction(httpContext,
"DeleteEmployeeForCompany", values: new { companyId, id }),
"delete_employee",
"DELETE"),
new Link(_linkGenerator.GetUriByAction(httpContext,
"UpdateEmployeeForCompany", values: new { companyld, id }),
"update_employee",
"PUT"),

203

:‘ Ultimate ASP.NET Core 3 Web API

new Link(_linkGenerator.GetUriByAction(httpContext,
"PartiallyUpdateEmployeeForCompany", values: new { companyId, id }),
"partially update_employee",
"PATCH")
¥

return links;

}

private LinkCollectionWrapper<Entity> CreatelLinksForEmployees(HttpContext httpContext,
LinkCollectionWrapper<Entity> employeesWrapper)

{
employeesWrapper.Links.Add(new Link(_linkGenerator.GetUriByAction(httpContext,

"GetEmployeesForCompany", values: new { }),
"self",
"GET"));

return employeesWrapper;

}

There are a few things to note here.

We need to consider the fields while creating the links, since we might be
using it in our requests. We are creating the links by using the
LinkGenerator's GetUriByAction method — which accepts
HttpContext, the name of the action, and the values that need to be
used to make the URL valid. In the case of the EmployeesController, we

send the company id, employee id, and fields.
And that is it regarding this class.

Now, we have to register this class in the ConfigureServices method:
services.AddScoped<EmployeelLinks>();
Once registered, we can inject it in the EmployeesController:

private readonly IRepositoryManager _repository;
private readonly IlLoggerManager _logger;

private readonly IMapper _mapper;

private readonly Employeelinks _employeelinks;

public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper, EmployeelLinks employeelinks)
{

_repository = repository;

_logger = logger;

_mapper = mapper;

_employeelLinks = employeelinks;

204

(‘ Ultimate ASP.NET Core 3 Web API

As you can see, we don't have th

e DataShaper injected anymore.

All we have left to do is to slightly modify the GetEmployeesForCompany

action:

[HttpGet]

[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)

{

//The first part of the action omitted for the clarity

var employeesDto

var links

_mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb) ;

_employeelinks.TryGenerateLinks(employeesDto,

employeeParameters.Fields, companyId, HttpContext);

return links.HasLinks ? Ok(links.LinkedEntities) : Ok(links.ShapedEntities);

Excellent. We can test this now:

https://localhost:5001/api/companies/C9D4C0O53-

49B6-410C-BC78-

2D54A9991870/employees ?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name

desc&fields=name,age

» GET Employees by company combination (hateoas)

GET

pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A

https:/flocalhost:5001/apifcompanies/C8D4C053-4986-410C-BC78-2D54

49901870/employess?
&orderBy=name desc&fields=name,age

L] Headers (8] Cookies
+ Headers (1)
KEY VALUE s B Pr
Accept application/vnd.codemaze hateoas+jsan
» Temporary Headers (5) @
Body 5 Size: 332KB Save Respons
Premy BETA 50N v o []
1 i
2 "value™: [
E {
4 Mame": “Sam Ralden",
5 26,
6 "Links": [
7 {
8 "hr ://localhost:5081/api/companies/c9d4c@53-49b6-410¢ -bc78- 205439991878 /employees /BAabbcad- 664d-4b2@-b5de-824705497d45 3 fields=name ,age" ,
a9 "rel": .
18 “method™: "GET"
1 Iy
12 {
13 "href": "htips://localhost:58@1/api/companies/c9d4c@53-49b6-418c-bc78-2d54a9991870/employees/BBabbcad- 664d-4b28-b5de-824705497d4a",
14 g ete_employee”,
15 "method™: "DELETE"
16 s
17 {
18 "hr ://localhost:5@81/api/companies/c9d4c@53-49b6-410¢ -bc78- 205429991878 /employees /BBabbcal- 664d-4b2@-b5de-824705497d45" ,
19 "rel”: employee”,
20 “method":
21 Ty
22 {
23 “href": companies/c9d4c®53-49h6-418c -bc 78- 2d54a9991878/employees/8@abbcas-664d-4b2@-b5de-924705497d4a" ,
24 "rel"; "
25 "method™: "PATCH"
26 }
27]
28 i

205

:‘ Ultimate ASP.NET Core 3 Web API

You can test this with the xml media type as well (we have prepared the

request in Postman for you).

206

:‘ Ultimate ASP.NET Core 3 Web API

22 WORKING WITH OPTIONS AND HEAD REQUESTS

In one of the previous chapters (Method Safety and Method
Idempotency), we talked about different HTTP requests. Until now, we
have been working with all request types except OPTIONS and HEAD. So,

let’'s cover them as well.

22.1 OPTIONS HTTP Request

The Options request can be used to request information on the
communication options available upon a certain URI. It allows consumers
to determine the options or different requirements associated with a
resource. Additionally, it allows us to check the capabilities of a server

without forcing action to retrieve a resource.

Basically, Options should inform us whether we can Get a resource or
execute any other action (POST, PUT, or DELETE). All of the options
should be returned in the Allow header of the response as a comma-

separated list of methods.

Let's see how we can implement the Options request in our example.

22.2 OPTIONS Implementation

We are going to implement this request in the CompaniesController —

so, let’s open it and add an additional action:

[HttpOptions]
public IActionResult GetCompaniesOptions()
{
Response.Headers.Add("Allow", "GET, OPTIONS, POST");

return Ok();
}

We have to decorate our action with the HttpOptions attribute. As we
said, the available options should be returned in the A1low response

header, and that is exactly what we are doing here. The URI for this

207

(‘ Ultimate ASP.NET Core 3 Web API

action is /api/companies, so we state which actions can be executed for
that certain URI. Finally, the Options request should return the 200 OK
status code. We have to understand that the response, if it is empty,
must include the content-length field with the value of zero. We don’t

have to add it by ourselves because ASP.NET Core takes care of that for

us.

Let’s try this:

https://localhost:5001/api/companies
» OPTIOMS Companies

OPTIONS httpsi/flocalhost:5001/api/fcompanies Params

Authorization

vpe No Auth

Body (5)

Pretoy ext - 5

As you can see, we are getting a 200 OK response. Let’s inspect the

Headers tab:

Headers (5]

access-control-allow-origin —

|al|uw — GET, OPTIOMS, POST |
Icnntent-length - 0 I

date — Mon, 21 Oct 2019 16:34:08 GMT
server — Kestre

Everything works as expected.

Let’'s move on.

208

:‘ Ultimate ASP.NET Core 3 Web API

22.3 Head HTTP Request
Head is identical to Get, but without a response body. This type of request
could be used to obtain information about validity, accessibility, and

recent modifications of the resource.

22.4 HEAD Implementation

Let's open the EmployeesController, because that's where we are
going to implement this type of request. As we said, the Head request
must return exactly the same response as the Get request — just without
the response body. That means it should include the paging information in

the response as well.

Now, you may think that we have to write a completely new action and
also repeat all the code inside, but that is not the case. All we have to do
is add the HttpHead attribute below HttpGet:

[HttpGet]
[HttpHead]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)

We can test this now:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees ?pageNumber=2&pageSize=2
» HEAD Employees for company

HEAD httpsi//localhost:3001/api/companies/C9D4C053-49B6-410C-BCT8-2D54A9901870/employees?pageNumber=2&pageSize=2 Params Send b

Autharization

Body (3)

Jl

Pretty XML

]

As you can see, we receive a 200 OK status code with the empty body.

Let’s check the Headers part:

209

(‘ Ultimate ASP.NET Core 3 Web API

Headers (3)

content-length — 214

date — Fr, 08 Mowv 2019 07:38:00 GMT
server — Kestrel

x-pagination — {"CurrentPage":2 "TotalPages

=

[¥}
J

unt":9 "HasPrevious"true, "HasMext":true]

ol

=]
i
=]
4
r
=]
=1
[
=]

You can see the x-pagination link included in the Headers part of the
response. Additionally, all the parts of the x-pagination link are populated
— which means that our code was successfully executed, but the

response body hasn’t been included.

Excellent.

We now have support for the Http OPTIONS and HEAD requests.

210

:‘ Ultimate ASP.NET Core 3 Web API

23 ROOTDOCUMENT

In this section, we are going to create a starting point for the consumers
of our API. This starting point is also known as the Root Document. The
Root Document is the place where consumers can learn how to interact
with the rest of the API.

23.1 Root Document Implementation

This document should be created at the api root, so let’s start by creating
a new controller:

[Route("api")]
[ApiController]
public class RootController : ControllerBase

{
¥

We are going to generate links towards the API actions. Therefore, we
have to inject LinkGenerator:

[Route("api")]
[ApiController]
public class RootController : ControllerBase

{

private readonly LinkGenerator _linkGenerator;

public RootController(LinkGenerator linkGenerator)

{
}

_linkGenerator = linkGenerator;

}
In this controller, we only need a single action, GetRoot, which will be

executed with the GET request on the /api URI.

There are several links that we are going to create in this action. The link
to the document itself and links to actions available on the URIs at the
root level (actions from the Companies controller). We are not creating
links to employees, because they are children of the company — and in
our API if we want to fetch employees, we have to fetch the company

first.

211

:‘ Ultimate ASP.NET Core 3 Web API

If we inspect our CompaniesController, we can see that GetCompanies
and CreateCompany are the only actions on the root URI level

(api/companies). Therefore, we are going to create links only to them.

Before we start with the GetRoot action, let’s add a name for the
CreateCompany and GetCompanies actions in the

CompaniesController:

[HttpGet (Name = "GetCompanies")]
public async Task<IActionResult> GetCompanies()

[HttpPost(Name = "CreateCompany")]
[ServiceFilter(typeof(ValidationFilterAttribute))]

public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)

We are going to use the Link class to generate links:

public class Link

{
public string Href { get; set; }
public string Rel { get; set; }
public string Method { get; set; }
}

This class contains all the required properties to describe our actions while
creating links in the GetRoot action. The Href property defines the URI
to the action, the Rel property defines the identification of the action
type, and the Method property defines which HTTP method should be

used for that action.

Now, we can create the GetRoot action:

[HttpGet (Name = "GetRoot")]
public IActionResult GetRoot([FromHeader(Name = "Accept")] string mediaType)
{

if(mediaType.Contains("application/vnd.codemaze.apiroot"))

{
var list = new List<Link>
{
new Link
{
Href = _linkGenerator.GetUriByName(HttpContext, nameof(GetRoot), new
{H,

Rel = "self",
Method = "GET"

212

:‘ Ultimate ASP.NET Core 3 Web API

s
new Link
{
Href = _linkGenerator.GetUriByName(HttpContext, "GetCompanies", new
i,
Rel = "companies",
Method = "GET"
1
new Link
{
Href = _linkGenerator.GetUriByName(HttpContext, "CreateCompany", new
i,
Rel = "create_company",
Method = "POST"
}
s
return Ok(list);
}

return NoContent();

}
As you can see, we generate links only if a custom media type is provided
from the Accept header. Otherwise, we return NoContent (). To generate

links, we use the GetUriByName method from the LinkGenerator class.

That said, we have to register our custom media types for the json and
xml formats. To do that, we are going to extend the

AddCustomMediaTypes extension method:

public static void AddCustomMediaTypes(this IServiceCollection services)

{

services.Configure<MvcOptions>(config =>

{

var newtonsoftJsonOutputFormatter = config.OutputFormatters
.OfType<NewtonsoftJIsonOutputFormatter>()?.FirstOrDefault();

if (newtonsoftJsonOutputFormatter != null)

{
newtonsoftJsonOutputFormatter
.SupportedMediaTypes.Add("application/vnd.codemaze.hateoas+json");
newtonsoftJsonOutputFormatter
.SupportedMediaTypes.Add("application/vnd.codemaze.apiroot+json");
}

var xmlOutputFormatter = config.OutputFormatters
.OfType<XmlDataContractSerializerOutputFormatter>()?.FirstOrDefault();

if (xmlOutputFormatter != null)

{
xmlOutputFormatter

.SupportedMediaTypes.Add("application/vnd.codemaze.hateoas+xml");

213

(0 Ultimate ASP.NET Core 3 Web API

xmlOutputFormatter

.SupportedMediaTypes.Add("application/vnd.codemaze.apiroot+xml");

}
s
}

We can now inspect our result:

https://localhost:5001/api

GET Document Root (]

» GET Document Root (json)

GET https:/¥localhost:5001 fapi

Headers (1)

Key Value

| Accept

application/vnd.codemaze.apircot+json

Body (4)
Pretty JSOM =
1-[
2- i
£ "href": "https://localhost:5@81/api”,
4 "rel™: "self",
5 "method™: "GET"
6 Ta
7= <
a "href": "https:/ 5881/api/companies”,
g "rel™: "companies™,
18 "method™: "GET"
11 .
12 - {
13 "href™: "https://localhost:5@81/api/companies™,
14 "rel™: "create_company™,
15 "method™: "POST"
16 ¥
17 1

This works great.

Mo Environment

Bulk Ed

Params

Description

200 0K

L
el

e

Let’s test what is going to happen if we don’t provide the custom media

type:

https://localhost:5001/api

» GET Document Root (without custom media type)
GET httpsi/flocalhost:5001/api

Headers (1)

Key Value

Accept

Body (2)

application/json

Bulk Ed

Description

Status: 204 Mo Content

214

(0 Ultimate ASP.NET Core 3 Web API

Well, we get the 204 No Content message as expected.

Of course, you can test the xml request as well:

https://localhost:5001/api
» GET Document Root (xml)

GET v https:/flocalhost:50

Params

Query Params

KEY

3

B, v
Body

Pretty

01/api

VALUE

BETA XML -

DESCRIPTION

1 <ArrayOfLlink xmlns:i="http://wuw.w3.org/2001/XMLSchema-1instance” xmlns="http://schemas.datacontract.org/2064/87/

Entities.LinkModels"]>

<Hrefrhttps://localhost:5881/api/companies</Href:

<Hrefrhttps://localhost:5881/api/companies</Href:

2 <Link>

3 ¢Hrefrhttps://localhost:5881/api</Href>
4 <Method>GET</Method>

5 <Rel»self</Rels

[</Link>

7 <Link>

3

9 <Method>GET< Method>
1@ ¢Relrcompanies</Rel>
11 </Link>
12 <Link>
13
14 <Method>POST</Method>
15 <Rel>create_company</Rel>
16 </Link>
17 <FArrayOfLink >

215

:‘ Ultimate ASP.NET Core 3 Web API

24 VERSIONING APIs

As our project grows, so does our knowledge; therefore, we have a better
understanding of how to improve our system. Moreover, requirements

change over time — thus, our API has to change as well.

When we implement some breaking changes, we want to ensure that we
don’t do anything that will cause our API consumers to change their code.

Those breaking changes could be:

e Renaming fields, properties, or resource URIs.
e Changes in the payload structure.
e Modifying response codes or HTTP Verbs.

e Redesigning our API endpoints.

If we have to implement some of these changes in the already working
API, the best way is to apply versioning to prevent breaking our API for

the existing API consumers.

There are different ways to achieve API versioning and there is no
guidance that favors one way over another. So, we are going to show you
different ways to version an API, and you can choose which one suits you
best.

24.1 Required Package Installation and Configuration
In order to start, we have to install the

Microsoft.AspNetCore.Mvc.Versioning library in the main project:

216

(‘ Ultimate ASP.NET Core 3 Web API

NuGet: CompanyEmployees -+ > [

Browse Installed Updates

Microsoft. AspMetCore Mwvc. Wersioning |~ |:| Include prerelease

iad Microsoft.AspNetCore.Mvc.Versioning @ by Microsoft, 8.31M downloads
A service APl versioning library for Microsoft A5P.MET Core.

This library is going to help us a lot in versioning our API.

After the installation, we have to add the versioning service in the service
collection and to configure it. So, let’s create a new extension method in

the ServiceExtensions class:

public static void ConfigureVersioning(this IServiceCollection services)

{

services.AddApiVersioning(opt =>

{
opt.ReportApiVersions = true;
opt.AssumeDefaultVersionWhenUnspecified = true;
opt.DefaultApiVersion = new ApiVersion(1l, 0);
1

}

With the AddApiVersioning method, we are adding service API
versioning to the service collection. We are also using a couple of

properties to initially configure versioning:

e ReportApiVersions adds the API version to the response header.
e AssumeDefaultVersionWhenUnspecified does exactly that. It
specifies the default API version if the client doesn’t send one.

e DefaultApiVersion sets the default version count.

After that, we are going to use this extension in the ConfigureServices

method:
services.ConfigureVersioning();

API versioning is installed and configured, and we can move on.

217

:‘ Ultimate ASP.NET Core 3 Web API

24.2 Versioning Examples
Before we continue, let’s create another controller:
CompaniesV2Controller (for example’s sake), which will represent a

new version of our existing one. It is going to have just one Get action:

[ApiVersion("2.0")]

[Route("api/companies")]

[ApiController]

public class CompaniesV2Controller : ControllerBase

{

private readonly IRepositoryManager _repository;

public CompaniesV2Controller(IRepositoryManager repository)

{
_repository = repository;
}
[HttpGet]
public async Task<IActionResult> GetCompanies()
{
var companies = await _repository.Company.GetAllCompaniesAsync(trackChanges:
false);
return Ok(companies);
}

}

By using the [ApiVersion("2.0")] attribute, we are stating that this
controller is version 2.0. In the Get action, we are not returning a DTO to
the client, but we return the entity itself. Let’s version our original

controller as well:

[ApiVersion("1.0")]

[Route("api/companies™)]

[ApiController]

public class CompaniesController : ControllerBase

If you remember, we configured versioning to use 1.0 as a default API
version (opt.AssumeDefaultVer‘sionWhenUnspecified = true;). Therefore, if a client

doesn’t state the required version, our API will use this one:

218

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies

GET Get without version > -+ -

GET - https:flocalhost:5001 fapifcompanies

Pretoy = 150 - E
1 L
2 i
3 id"™: 3d498aV7e-9d4ce-4d15-9494 -5245288cZce 3",
4 “name”; "Admin_Solutions Ltd Upd",
5 fullAaddress™: "312 Forest Avenue, BF 923 Us5A™

Ta

You can see that we have the fullAddress property in a result, which
means that our original controller was called even though we didn’t

provide an API version in a request.
Now, let’s see how we can provide a version inside the request.

24.2.1 Using Query String
We can provide a version within the request by using a query string in the

URI. Let’s test this with an example:

https://localhost:5001/api/companies?api-version=2.0

219

(‘ Ultimate ASP.NET Core 3 Web API

» Get with version (query string) = |

S

GET v https:fflocalhost:5001 fapifcompaniedlapi-version=2.0

Farams @ &)

Query Params

KEY VALUE DESCRIPTION
api-version 20
Jody 5) Status: 200 0K Time: 23ms
Pretty Eam JSON - 5
1 [
2 1
3 "ig": "3d498a70-94ce-4d15-9494-5248238c2ce3",
4 "name”: "Admin_Solutions Ltd Upd”,
5 "address": "312 Forest Avenue, BF 923",
["country": "USAY,
7 "employees": null
3

¥

As you can see, the Company entity is returned as a response body and

not CompanyDto. Therefore, we are sure that version 2.0 was called.

Additionally, we can inspect the response headers to make sure that
version 2.0 is used:

Headers (3) Status: 200 0K Time: 93ms

KEY VALUE
Dats Fri, 08 Now 2019 17:16:47 GMT

Content-Type application/json; charset=utf-2

Server Kestrel
Content-Length 1044
api-supported-versions 2.0

24.2.2 Using URL Versioning

For URL versioning to work, we have to modify the route in our controller:

220

(‘ Ultimate ASP.NET Core 3 Web API

[ApiVersion("2.0")]
[Route("api/{v:apiversion}/companies")]
[ApiController]

public class CompaniesV2Controller : ControllerBase

Now, we can test it:

https://localhost:5001/api/2.0/companies

GET Get with version {uri) X s L

GET L https://localhost:5001/apif2.0/companies

Pretty RERA S50N - =
17 "id": "@ad5b971-ff51-414d-af@1l-34187e487557",
18 'name”: "Electronics Solutions Ltd",

1% '‘address": "312 Deliver Street, F 234",

2e ‘country " "USA™,

21 "employees™: null

22 ',

One thing to mention, we can’t use the query string pattern to call the

companies v2 controller anymore. We can use it for version 1.0, though.

24.2.3 HTTP Header Versioning
If we don’t want to change the URI of the API, we can send the version in

the HTTP Header. To enable this, we have to modify our configuration:

public static void ConfigureVersioning(this IServiceCollection services)
{
services.AddApiVersioning(opt =>
{
opt.ReportApiVersions = true;
opt.AssumeDefaultVersionWhenUnspecified = true;
opt.DefaultApiVersion = new ApiVersion(1, 9);
opt.ApiVersionReader = new HeaderApiVersionReader("api-version");
1
}

And to revert the Route change in our controller:

[ApiVersion("2.0")]
[Route("api/companies™)]

Let’s test these changes:

221

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies

Headers (7)
+ Headers (2)
KEY VALUE
Accept application/json
api-version 2.0
¥ Temporary Headers (5) @
Body 5] Status: 200 OK

Pretty BETA. ISON 5

1 [

2)

3 “id": "3d498a70-94ce-4d15-9494-5248288c2ce3",

4 “name”: "Admin_Solutions Ltd Upd™,

= "address": "312 Forest Awvenue, BF 923",

6 "country™: "USA"™,

K "employess™: null

8

If we want to support query string versioning, we should use a new

QueryApiVersionReader class instead.

24.2.4 Deprecating Versions
If we want to deprecate version of an API, but don't want to remove it

completely, we can use the Deprecated property for that purpose:

[ApiVersion("2.0", Deprecated = true)]

We will be able to work with that API, but we will be notified that this
version is deprecated:

Headers (5] Status: 200 OK Time: 1895ms
KEY VALUE

Date Fri, 08 Nov 2019 18:01:16 GMT
Content-Type applicationfjson; charset=utf-8
Server Kestrel

Content-Length 1044

api-deprecated-versions 2.0

222

:‘ Ultimate ASP.NET Core 3 Web API

24.2.5 Using Conventions
If we have a lot of versions of a single controller, we can assign these

versions in the configuration instead:

opt.Conventions.Controller<CompaniesController>().HasApiVersion(new ApiVersion(1, 0));
opt.Conventions.Controller<CompaniesV2Controller>().HasDeprecatedApiVersion(new
ApiVersion(2, 0));

Now, we can remove the [ApiVersion] attribute from the controllers.

Of course, there are a lot more features that the installed library provides
for us — but with the mentioned ones, we have covered quite enough to

version our APIs.

223

:‘ Ultimate ASP.NET Core 3 Web API

25 CACHING

In this section, we are going to learn about caching resources. Caching
can improve the quality and performance of our app a lot, but again, it is
something first we need to look at as soon as some bug appears. To cover
resource caching, we are going to work with HTTP Cache. Additionally, we
are going to talk about cache expiration, validation, and cache-control

headers.

25.1 About Caching

We want to use cache in our app because it can significantly improve
performance. Otherwise, it would be useless. The main goal of caching is
to eliminate the need to send requests towards the API in many cases and

also to send full responses in other cases.

To reduce the number of sent requests, caching uses the expiration
mechanism, which helps reduce network round trips. Furthermore, to
eliminate the need to send full responses, the cache uses the validation
mechanism, which reduces network bandwidth. We can now see why

these two are so important when caching resources.

The cache is a separate component that accepts requests from the API’s
consumer. It also accepts the response from the API and stores that
response if they are cacheable. Once the response is stored, if a
consumer requests the same response again, the response from the

cache should be served.
But the cache behaves differently depending on what cache type is used.

25.1.1 Cache Types
There are three types of caches: Client Cache, Gateway Cache, and Proxy
Cache.

224

:‘ Ultimate ASP.NET Core 3 Web API

The client cache lives on the client (browser); thus, it is a private cache.
It is private because it is related to a single client. So every client

consuming our API has a private cache.

The gateway cache lives on the server and is a shared cache. This cache
is shared because the resources it caches are shared over different

clients.

The proxy cache is also a shared cache, but it doesn’t live on the server

nor in the client side. It lives on the network.

With the private cache, if five clients request the same response for the
first time, every response will be served from the API and not from the
cache. But if they request the same response again, that response should
come from the cache (if it’s not expired). This is not the case with the
shared cache. The response from the first client is going to be cached,
and then the other four clients will receive the cached response if they

request it.

25.1.2 Response Cache Attribute

So, to cache some resources, we have to know whether or not it’s
cacheable. The response header helps us with that. The one that is used
most often is Cache-Control: Cache-Control: max-age=180. This states
that the response should be cached for 180 seconds. For that, we use the
ResponseCache attribute. But of course, this is just a header. If we want
to cache something, we need a cache-store. For our example, we are

going to use Response caching middleware provided by ASP.NET Core.

25.2 Adding Cache Headers

Before we start, let’'s open Postman and modify the settings to support

caching:

225

(‘ Ultimate ASP.NET Core 3 Web API

ment

In the General tab under Headers, we are going to turn off the Send no-

cache header:

HEADERS

Send no-cache header

Great. We can move on.

Let’s assume we want to cache the result from the GetCompany action:

[HttpGet("{id}", Name = "CompanyById")]
[ResponseCache()]

°| ResponseCacheAttribute(Properties: [CacheProfileName = string], [Duration = int], [Location = ResponseCachel acation], [NoStare = baal], [Order = int], [VaryByHeader = string], [VaryByQueryKeys = string[]])
E CacheProfileName: Gets or sets the value of the cache profile name.

As you can see, we can work with different properties in the
ResponseCache attribute — but for now, we are going to use Duration

only:

[HttpGet("{id}", Name = "CompanyById")]
[ResponseCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)

And that is it. We can inspect our result now:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET v htpst//localhost:5001/api/companies/3d490a70-94ce-4d15-0494-5248280c2ce3
KEY VALUE
Date Sat, 09 Nov 2019 0%:23:02 GMT
Content-Type application/json; charset=utf-8
Server Kestrel
Content-Length 124
Cache-Control public,max-age=60
api-supported-versions 1.0

226

:‘ Ultimate ASP.NET Core 3 Web API

You can see that the Cache-Control header was created with a public
cache and a duration of 60 seconds. But as we said, this is just a header;

we need a cache-store to cache the response. So, let’s add one.

25.3 Adding Cache-Store

The first thing we are going to do is add an extension method in the

ServiceExtensions class:

public static void ConfigureResponseCaching(this IServiceCollection services) =>

services.AddResponseCaching();

We register response caching in the IOC container, and now we have to

call this method in the ConfigureServices method:
services.ConfigureResponseCaching();

Additionally, we have to add caching to the application middleware in the

Configure method right above UseRouting():

app.UseResponseCaching();

app.UseRouting();

Now, we can start our application and send the same GetCompany
request. It will generate the Cache-Control header. After that, before 60

seconds pass, we are going to send the same request and inspect the

headers:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET v https:/flocalhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

Cache-Contral public,max-age=50

Age up——— 1

227

:‘ Ultimate ASP.NET Core 3 Web API

You can see the additional Age header that indicates the number of
seconds the object has been stored in the cache. Basically, it means that
we received our second response from the cache-store. We can confirm

that from the console as well:

: Microsoft.AspNetCore.Routing.EndpointMiddleware

s .CompaniesController.GetCompany (CompanyEmployees)”’
E i i Y Y Y
ponseCachingMiddleware[26]

[2]

ication/json; charset=utf-8

"Tocalhost:5001, ompanie d490a70-%4ce-4d15-9494-5248280c2ce3
ponseCachingW ew

calh 500 mpa 3d490a70-94ce-4d15-9494-5248280c2ce3
ponseCachingm en

cs[2]

945ms 200 application/json; charset=utf-8

If we send several requests within the 60 seconds, the Age property will
increment. After the expiration period passes, the response will be sent

from the API, cached again, and the Age header will not be generated.

Additionally, we can use cache profiles to apply the same rules to
different resources. If you look at the picture that shows all the properties
we can use with ResponseCacheAttribute, you can see that there are a
lot of properties. Configuring all of them on top of the action or controller
could lead to less readable code. Therefore, we can use CacheProfiles

to extract that configuration.

To do that, we are going to modify AddControllers in the

ConfigureServices method:

services.AddControllers(config =>

{

config.RespectBrowserAcceptHeader = true;
config.ReturnHttpNotAcceptable = true;
config.CacheProfiles.Add("120SecondsDuration"”, new CacheProfile { Duration = 120
1)
-

We set up only Duration, but you can add additional properties as well.

Now, let’s implement this profile on top of the Companies controller:

[Route("api/companies™)]

228

:‘ Ultimate ASP.NET Core 3 Web API

[ApiController]
[ResponseCache(CacheProfileName = "120SecondsDuration")]

We have to mention that this cache rule will apply to all the actions inside
the controller except the ones that already have the ResponseCache

atribute applied.

That said, once we send the request to GetCompany, we will still have the

maximum age of 60. But once we send the request to GetCompanies:

https://localhost:5001/api/companies

GET v https://localhost:5001/api/fcompanies

There you go. Now, let’s talk some more about the Expiration and

Validation models.

25.4 Expiration Model

The expiration model allows the server to recognize whether or not the
response has expired. As long as the response is fresh, it will be served
from the cache. To achieve that, the Cache-Control header is used. We

have seen this in the previous example.

Let’s look at the diagram to see how caching works:

229

(0 Ultimate ASP.NET Core 3 Web API

o~
S|

GET api/companies

v

GET api/companies

200 Ok
200 Ok Cache-Control: max-age: 600

Cache-Control: max-age: 600

)
<

So, the client sends a request to get companies. There is no cached
version of that response; therefore, the request is forwarded to the API.
The API returns the response with the Cache-Control header with a 10-
minute expiration period; it is being stored in the cache and forwarded to

the client.

e,

If after two minutes, the same response has been requested:
*':')

3
A / QI

GET api/companies

Y

200 Ok
Age: 120
Cache-Control: max-age: 600

-
-

We can see that the cached response was served with an additional Age
header with 120 seconds or two minutes. If this is a private cache, that is
where it stops. That's because the private cache is stored in the browser

and another client will hit the API for the same response. But if this is a

230

(‘ Ultimate ASP.NET Core 3 Web API

shared cache and another client requests the same response after an

additional two minutes:

Q ‘
> # WP

GET api/companies

Y

200 Ok
Age: 240
Cache-Control: max-age: 600

-
-

The response is served from the cache with an additional two minutes
added to the Age header.

We saw how the Expiration model works, now let’s inspect the Validation

model.

25.5 Validation Model

The validation model is used to validate the freshness of the response. So
it checks if the response is cached and still usable. Let's assume we have
a shared cached GetCompany response for 30 minutes. If someone
updates that company after five minutes, without validation the client
would receive the wrong response for another 25 minutes — not the

updated one.

To prevent that, we use validators. The HTTP standard advises using Last-

Modified and ETag validators in combination if possible.

Let’s see how validation works:

231

(0 Ultimate ASP.NET Core 3 Web API

S,

N =
_
"\)

GET api/companies

L

GET api/companies

200 Ok
ETag: "12348565"
200 Ok Last-Modified: Mon, 15 Oct 2019
ETag: "12348565" 11:20:33 GMT
Last-Modified: Mon, 15 Oct 2019 <
11:20:33 GMT

F 3

So again, the client sends a request, it is not cached, and so it is
forwarded to the API. Our API returns the response that contains the Etag
and Last-Modified headers. That response is cached and forwarded to the

client.

After two minutes, the client sends the same request:

< S\
|_Client |

GET api/companies

GET api/companies
If-None-Match: "12348565"
If-Modified-Since: Mon, 15 Oct
2019 11:20:33 GMT

Y

200 Ok
ETag: "123485865"
Last-Modified: Mon, 15 Oct 2019
11:20:33 GMT

304 Not Modified

A

So, the same request is sent, but we don’t know if the response is valid.
Therefore, the cache forwards that request to the API with the additional

headers If-None-Match — which is set to the Etag value — and If-

232

:‘ Ultimate ASP.NET Core 3 Web API

Modified-Since — which is set to the Last-Modified value. If this request
checks out against the validators, our API doesn’t have to recreate the
same response; it just sends a 304 Not Modified status. After that, the
regular response is served from the cache. Of course, if this doesn’t check

out, the new response must be generated.

That brings us to the conclusion that for the shared cache if the response

hasn’t been modified, that response has to be generated only once.

Let’s see all of these in an example.

25.6 Supporting Validation

We have to install the Marvin.Cache.Headers (we use 4.1.0! version)
library in the main project. This library supports HTTP cache headers like
Cache-Control, Expires, Etag, and Last-Modified and also implements

validation and expiration models:

Browse Installed Updates

Marvin.Cache.Headers X~ & I:‘ Include prerelease

.B Marvin.Cache.Headers by Marvin.Cache.Headers, 49.6K downloads
ASP.MET Core middleware that adds HttpCache headers to responses (Cache-Control, Expires, ETag, Last-Modified), and implements cache expiration & validation models.

Now, let’'s modify the ServiceExtensions class:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>

services.AddHttpCacheHeaders();
We are going to add additional configuration later.
Then, let’'s modify the ConfigureServices method:

services.ConfigureResponseCaching();
services.ConfigureHttpCacheHeaders();

1 with a newer version of Marvin.Cache.Headers library, you have to call the
services.AddHttpContextAccessor() method in the ConfigureServices method.

233

(‘ Ultimate ASP.NET Core 3 Web API

And finally, let’s modify the Configure method:

app.UseResponseCaching();
app.UseHttpCacheHeaders();

To test this, we have to remove or comment out ResponseCache
attributes in the CompaniesController. The installed library will provide

that for us.

Now, let’s send the GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET v hups:/flocalhost:5001/api/companies/3d490a70-94ce-4d15-0404-5243280c2ce3
Headers (10

KEY VALUE
Date Sat, 09 Nov 2019 12
Content-Type application/json; charset=utf-2
Server Kestrel
Content-Length 124
Cache-Control public max-age=60
Expires Sat, 09 Nov 2019 12:51:59 GMT
Last-Madified Sat, 09 Nov 2019 12:30:59 GMT
ETag "FOFB50FE7FCBCOCS
Vary Accept, Accept-La
api-supported-versions 1.0

As you can see, we have all the required headers generated. The default
expiration is set to 60 seconds and if we send this request one more time,

we are going to get an additional Age header.

25.6.1 Configuration
We can globally configure our expiration and validation headers. To do

that, let’'s modify the ConfigureHttpCacheHeaders method:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>
services.AddHttpCacheHeaders(
(expirationOpt) =>

{
expirationOpt.MaxAge = 65;
expirationOpt.Cachelocation = Cachelocation.Private;
¥
(validationOpt) =>
{

validationOpt.MustRevalidate = true;

234

:‘ Ultimate ASP.NET Core 3 Web API

1
After that, we are going to send the same request for the single company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET v https:f/localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3
Heade
KEY VALUE
Date 20
Content-Type <on: ch
Server Kestre
Conte ength 24
Cache-Contro
Expire
Last-Modified
ETag
ar
pi-supported-version 0

You can see that the changes are implemented. Now, this is a private
cache with an age of 65 seconds. Because it is a private cache, our API

won't cache it:

vin.Cache.Headers.HttpCacheHeadersMiddleware[0]
v header generated: Accept, Accept-Langu , Accept- Encud1ﬂq
Microsoft.AspNetCore.ResponseCaching.ResponseCachingMiddlewar&[27]

The response could not be cached for thif_[thECt

Microsof t.AspNetlore.HoOSt1Ng.Diagnostics [2] _ N
Request finished in 2211.6803ms 200 application/json; charset=utf-8

Other then global configuration, we can apply it on the resource level (on
action or controller). The overriding rules are the same. Configuration on
the action level will override the configuration on the controller or global
level. Also, the configuration on the controller level will override the global

level configuration.

To apply a resource level configuration, we have to use the

HttpCacheExpiration and HttpCacheValidation attributes:

[HttpGet("{id}", Name = "CompanyById")]
[HttpCacheExpiration(CacheLocation = CachelLocation.Public, MaxAge = 60)]
[HttpCachevalidation(MustRevalidate = false)]

public async Task<IActionResult> GetCompany(Guid id)

235

(‘ Ultimate ASP.NET Core 3 Web API

Once we send the GetCompanies request, we are going to see global

values:

Cache-Contro private, max-age=03,must-revalidate
But if we send the GetCompany request:
Cache-Contro public,max-age=60

You can see that it is public and you can inspect the console to see the

cached response.

25.7 Using ETag and Validation

First, we have to mention that the ResponseCaching library doesn’t
correctly implement the validation model. Also, using the authorization
header is a problem. We are going to show you alternatives later. But for

now, we can simulate how validation with Etag should work.

So, let’s restart our app to have a fresh application, and send a
GetCompany request one more time. In a header, we are going to get our

ETag. Let’s copy the Etag’s value and use another GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET v hrtpsi/flocalhost:5001 /api/companies/3d490a70-04ce-4d15-0494-5248280c2ce3

eaders (2)

We send the If-None-Match tag with the value of our Etag. And we can

see as a result we get 304 Not Modified.

But this is not a valid situation. As we said, the client should send a valid

request and it is up to the Cache to add an If-None-Match tag. In our

236

(‘ Ultimate ASP.NET Core 3 Web API

example, which we sent from Postman, we simulated that. Then, it is up
to the server to return a 304 message to the cache and then the cache

should return the same response.
But anyhow, we have managed to show you how validation works.

If we update that company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

PUT v https:fflocalhost:5001 fapifcompanies/3d490a70-94ce-4d15-9494-5248280c2ce3
none form-data x-wwww-form-urlencoded ® raw binary GraphQL BETA
2 "id": "3d499a7@-94ce-4d15-9494-52482808C2ce3",
3 "name”: "Admin_Solutions Ltd Upd2!,
- "address": "312 Forest Avenue, BF 923",
5 "country™: "USA"
6 %
Body a] Status: 204 Mo Content | Time

And then send the same request with the same If-None-Match value:

237

(‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

GET - https://localhost:5001/api/companies/3d490a70-34ce-4d15-0404-5248280c2ce3 “

» Headers (2)

KEY VALUE sss Bulk Edit
Accept application/json
If-Mone-Match "FAFB5S0FE7CECOCBD5AADGBO6EB70691FC

» Temporary Headers (5) @

Headers (10) Time: 118ms Size: 505B Save |
KEY VALUE
Dare Sar, 09 Mowv 2019 14:05:35 GMT
Content-Type application/json; charset=utf-8
Server Kestrel
Content-Length 125
Cache-Contro public max-age=60
Expires Sar, 09 Nov 2019 14:06:35 GMT
Last-Modified Sat, 09 Mov 2019 14:05:35 GMT
ETag "1B78AA02D128E563D385E3F655E6AFEL"
Vary Accept, Accept-Language, Accept-Encoding
api-supported-versions 1.0

You can see that we get 200 OK, and that ETag is different because the

resource changed.

So, we saw how validation works and also concluded that the
ResponseCaching library is not that good for validation — it is much

better for just expiration.
But then, what are the alternatives?
There are a lot of alternatives, such as:

e Varnish - https://varnish-cache.org/

e Apache Traffic Server - https://trafficserver.apache.org/

e Squid - http://www.squid-cache.org/

238

https://varnish-cache.org/
https://trafficserver.apache.org/
http://www.squid-cache.org/

:‘ Ultimate ASP.NET Core 3 Web API

They implement caching correctly. And if you want to have expiration and
validation, you should combine them with the Marvin library and you are

good to go. But those servers are not that trivial to implement.

There is another option: CDN (Content Delivery Network). CDN uses HTTP
caching and is used by various sites on the internet. The good thing with
CDN is we don’t need to set up a cache server by ourselves, but
unfortunately we have to pay for it. The previous cache servers we

presented are free to use. So, it's up to you to decide what suits you best.

239

:‘ Ultimate ASP.NET Core 3 Web API

26 RATE LIMITING AND THROTTLING

Rate Limiting allows us to protect our API against too many requests that
can deteriorate our API’'s performance. API is going to reject requests that
exceed the limit. Throttling queues exceeded requests for possible later

processing. The API will eventually reject the request if processing cannot

occur after a certain number of attempts.

For example, we can configure our API to create a limitation of 100
requests/hour per client. Or additionally, we can limit a client to the
maximum 1,000 requests/day per IP and 100 requests/hour. We can
even limit the number of requests for a specific resource in our API; for

example, 50 requests to api/companies.

To provide information about rate limiting, we use the response headers.
They are separated between Allowed requests, which all start with the X-

Rate-Limit and Disallowed requests.
The Allowed requests header contains the following information :

e X-Rate-Limit-Limit - rate limit period.
e X-Rate-Limit-Remaining — number of remaining requests.
e X-Rate-Limit-Reset — date/time information about resetting the

request limit.

For the disallowed requests, we use a 429 status code; that stands for too
many requests. This header may include the Retry-After response header

and should explain details in the response body.
26.1 Implementing Rate Limiting
To start, we have to install the AspNetCoreRatelLimit library:

.B AspMetCoreRateLimit by Stefan Prodan, Cristi Pufu, 469K downloads
ASP.MET Core rate liriting middleware

240

:‘ Ultimate ASP.NET Core 3 Web API

Then, we have to add it to the service collection. This library uses a
memory cache to store its counters and rules. Therefore, we have to add

the MemoryCache to the service collection as well.

That said, let’s add the MemoryCache:

services.AddMemoryCache();

After that, we are going to create another extension method in the

ServiceExtensions class:

public static void ConfigureRateLimitingOptions(this IServiceCollection services)

{

var rateLimitRules = new List<RatelLimitRule>

{

new RateLimitRule

{
Endpoint = "*",
Limit= 3,
Period = "5m"

i%;

services.Configure<IpRateLimitOptions>(opt =>

{
s

opt.GeneralRules = rateLimitRules;

services.AddSingleton<IRateLimitCounterStore, MemoryCacheRateLimitCounterStore>();
services.AddSingleton<IIpPolicyStore, MemoryCacheIpPolicyStore>();
services.AddSingleton<IRateLimitConfiguration, RateLimitConfiguration>();

}

We create a rate limit rules first, for now just one, stating that three
requests are allowed in a five-minute period for any endpoint in our API.
Then, we configure IpRateLimitOptions to add the created rule. Finally, we
have to register rate limit stores and configuration as singleton. They
serve the purpose of storing rate limit counters and policies as well as

adding configuration.

Now, we have to modify the ConfigureServices method:

services.AddMemoryCache();

services.ConfigureRateLimitingOptions();
services.AddHttpContextAccessor();

241

(0 Ultimate ASP.NET Core 3 Web API

Finally, we have to add it to the request pipeline in the Configure

method:

app.UseIpRateLimiting();

app.UseRouting();

And that is it. We can test this now:

https://localhost:5001/api/companies

GET

v https:/flocalhost:5001/apifcompanies

» Temporary Headers (5) @

Headers (13)

KEY

Date
Content-Type
Server
Content-Length
Cache-Control
Expires
Last-Modified
ETag

Vary

api-supported-versions

Status: 200 OK Time: 171ms Size: 1.34 KB
VALUE
Sun, 10 Nov 2019 10:30:25 GMT
application/json; charset=utf-8
Kestrel
270
private,max-age=65,must-revalidate
Sun, 10 Nov 2019 10:31:31 GMT
Sun, 10 Nov 2019 10:30:26 GMT
"FBEEB02252AC2BEFS5BSF1 FFOECBT006™
Accept, Accept-Language, Accept-Encoding

1.0

K-Rate-Limit-Limit
¥-Rate-Limit-Remaining

X-Rate-Limit-Reset

am

-
£

2019-11-10T10:35:26.4850490Z

So, we can see that we have two requests remaining and the time to

reset the rule. If we send an additional three requests in the five-minute

period of time, we are going to get a different response:

242

(0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies

GET - httpsi/flocalhost:2001/apifcompanies

» Temporary Headers (5) @

Headers (10] Siatus: 429 Too Many Requesis |Time: 67ms Size: 439 B
KEY VALUE
Darte Sun, 10 Nov 2019 10:32:52 GMT
Content-Type text/plain
Server Kestrel

Cache-Contro
Transfer-Encoding
Expires

Last-Modified

private,max-age=65,must-revalidate
chunked
Sun, 10 Nov 2019 10:33:58 GMT

Sumn, 10 Nowv 2019 10:32:53 GMT

ETag "24C950511EABDASFZ1 84E24608ED4D11"
Retry-After 153
Vary Acceprt, Accept-Language, Accept-Encoding

The status code is 429 Too Many Requests and we have the Retry-After

header.

We can inspect the body as well:

https://localhost:5001/api/companies

GET L https://localhost:3001/apifcorn panies

» Temporary Headers (3) @

Body (10)
Pretty A Text ¥ 5
1 API calls guota exceeded! maximum admitted 3 psr Sm.

So, our rate limiting works.

Status: 429 Too Many Requesis

There are a lot of options that can be configured with Rate Limiting and

you can read more about them on the AspNetCoreRateLimit GitHub page.

243

:‘ Ultimate ASP.NET Core 3 Web API

27 JWT AND IDENTITY

User authentication is an important part of any application. It refers to the
process of confirming the identity of an application’s users. Implementing
it properly could be a hard job if you are not familiar with the process.
Also, it could take a lot of time that could be spent on different features of

an application.

So, in this section, we are going to learn about authentication and
authorization in ASP.NET Core by using Identity and JWT (Json Web
Token). We are going to explain step by step how to integrate Identity in
the existing project and then how to implement JWT for the

authentication and authorization actions.

ASP.NET Core provides us with both functionalities, making

implementation even easier.

So, let’s start with Identity integration.

27.1 Implementing Identity in ASP.NET Core Project

Asp.NET Core Identity is the membership system for web applications that
includes membership, login, and user data. It provides a rich set of
services that help us with creating users, hashing their passwords,

creating a database model, and the authentication overall.
That said, let’s start with the integration process.

The first thing we have to do is to install the
Microsoft.AspNetCore.Identity.EntityFrameworkCore library in

the Entities project:

I3d Microsoft. AspNetCore.ldentity.EntityFrameworkCore & by Microsoft, 24.5M downloads
ASP.MET Core |dentity provider that uses Entity Framework Core.

244

:‘ Ultimate ASP.NET Core 3 Web API

After the installation, we are going to create a new User class in the
Entities/Models folder:

public class User : IdentityUser

{
public string FirstName { get; set; }

public string LastName { get; set; }
}

Our class inherits from the IdentityUser class that has been provided
by the ASP.NET Core Identity. It contains different properties and we can

extend it with our own as well.

After that, we have to modify the RepositoryContext class:

public class RepositoryContext : IdentityDbContext<User>
{

public RepositoryContext(DbContextOptions options)
: base(options)
{
}
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);

modelBuilder.ApplyConfiguration(new CompanyConfiguration());
modelBuilder.ApplyConfiguration(new EmployeeConfiguration());

}

public DbSet<Company> Companies { get; set; }
public DbSet<Employee> Employees { get; set; }
}

So, our class now inherits from the IdentityDbContext class and not
DbContext because we want to integrate our context with Identity.
Additionally, we call the OnModelCreating method from the base class.

This is required for migration to work properly.
Now, we have to move on to the configuration part.

To do that, let’s create a new extension method in the

ServiceExtensions class:

public static void Configureldentity(this IServiceCollection services)

{

245

:‘ Ultimate ASP.NET Core 3 Web API

var builder = services.AddIdentityCore<User>(o =>
{

.Password.RequireDigit = true;
.Password.RequirelLowercase = false;
.Password.RequireUppercase = false;
.Password.RequireNonAlphanumeric = false;
.Password.RequiredLength = 10;
.User.RequireUniqueEmail = true;

O O O0OO0OO0OOo

s

builder = new IdentityBuilder(builder.UserType, typeof(IdentityRole),
builder.Services);
builder.AddEntityFrameworkStores<RepositoryContext>()
.AddDefaultTokenProviders();

}

With the AddIdentityCore method, we are adding and configuring
Identity for the specific type; in this case, the User type. As you can see,
we use different configuration parameters that are pretty self-explanatory
on their own. Identity provides us with even more features to configure,

but these are sufficient for our example.

Then, we create an Identity builder and add EntityFrameworkStores

implementation with the default token providers.

Now, let’s modify the ConfigureServices method:

services.AddAuthentication();
services.Configureldentity();

And, let’'s modify the Configure method:

app.UseAuthentication();
app.UseAuthorization();

That’s it. We have prepared everything we need.

27.2 Creating Tables and Inserting Roles
Creating tables is quite an easy process. All we have to do is to create

and apply migration. So, let’s create a migration:
PM> Add-Migration CreatingIdentityTables

And then apply it:

246

(‘ Ultimate ASP.NET Core 3 Web API

PM> Update-Database
If we check our database now, we are going to see additional tables:

= | CompanyEmployee
[Database Diagrams
= 3 Tables
[Systern Tables
[FileTables
=1 dbo._ EFMigrationsHistory
— dbo.AspNetRoleClaims
=1 dbo.AspMetRoles
= dbo.AspMetUserClaims
=1 dbo.AspMetUserLogins
=1 dbo.AsphetUzerRoles
=l dbo.AspMetUsers
= dbo.AspMNetUserTokens
= dbo.Companies
=1 dbo.Employees

HEENEEHBE

For our project, the AspNetRoles, AspNetUserRoles, and AspNetUsers
tables will be quite enough. If you open the AspNetUsers table, you will

see additional FirstName and LastName columns.

Now, let’s insert several roles in the AspNetRoles table, again by using
migrations. The first thing we are going to do is to create the

RoleConfiguration class in the Entities/Configuration folder:

public class RoleConfiguration : IEntityTypeConfiguration<IdentityRole>
{
public void Configure(EntityTypeBuilder<IdentityRole> builder)
{
builder.HasData(
new IdentityRole
{
Name = "Manager",
NormalizedName = "MANAGER"
}s
new IdentityRole
{
Name = "Administrator",
NormalizedName = "ADMINISTRATOR"

)5

247

:‘ Ultimate ASP.NET Core 3 Web API

And let’s modify the OnModelCreating method in the

RepositoryContext class:

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
base.OnModelCreating(modelBuilder);

modelBuilder.ApplyConfiguration(new CompanyConfiguration());
modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
modelBuilder.ApplyConfiguration(new RoleConfiguration());

}
Finally, let’s create and apply migration:

PM> Add-Migration AddedRolesToDb

PM> Update-Database

If you check the AspNetRoles table, you will find two new roles created.

27.3 User Creation

For this, we have to create a new controller:

[Route("api/authentication™)]
[ApiController]
public class AuthenticationController: ControllerBase
{
private readonly IlLoggerManager _logger;
private readonly IMapper _mapper;
private readonly UserManager<User> _userManager;
public AuthenticationController (ILoggerManager logger, IMapper mapper,
UserManager<User> userManager)

{
_logger = logger;
_mapper = mapper;
_userManager = userManager;
}

}

So, this is a familiar code except for the UserManager<TUser> part. That
service is provided by Identity and it provides APIs for managing users.
We don’t have to inject our repository here because UserManager

provides us all we need for this example.

The next thing we have to do is to create a UserForRegistrationDto

class in the DataTransferObjects folder:

248

:‘ Ultimate ASP.NET Core 3 Web API

public class UserForRegistrationDto

{
public string FirstName { get; set; }
public string LastName { get; set; }
[Required(ErrorMessage "Username is required")]
public string UserName { get; set; }
[Required(ErrorMessage "Password is required")]
public string Password { get; set; }
public string Email { get; set; }
public string PhoneNumber { get; set; }
public ICollection<string> Roles { get; set; }

I~

}

Then, let’s create a mapping rule in the MappingProfile class:
CreateMap<UserForRegistrationDto, User>();
Finally, it is time to create the RegisterUser action:

[HttpPost]

[ServiceFilter(typeof(ValidationFilterAttribute))]

public async Task<IActionResult> RegisterUser([FromBody] UserForRegistrationDto
userForRegistration)

{

var user = _mapper.Map<User>(userForRegistration);

var result = await _userManager.CreateAsync(user, userForRegistration.Password);
if(!result.Succeeded)

{
foreach (var error in result.Errors)
{
ModelState.TryAddModelError(error.Code, error.Description);
}
return BadRequest(ModelState);
}

await _userManager.AddToRolesAsync(user, userForRegistration.Roles);

return StatusCode(201);
}

We are implementing our existing action filter for the entity and model
validation on top of our action. After that, we map the DTO object to the
User object and call the CreateAsync method to create that specific user
in the database. The CreateAsync method will save the user to the
database if the action succeeds or it will return error messages. If it

returns error messages, we add them to the model state.

249

(‘ Ultimate ASP.NET Core 3 Web API

Finally, if a user is created, we connect it to its roles — the default one or

the ones sent from the client side — and return 201 created.

If you want, before calling AddToRoleAsync or AddToRolesAsync, you
can check if roles exist in the database. But for that, you have to inject
RoleManager<TRole> and use the RoleExistsAsync method. Now, we

can test this.

Before we continue, we should increase a rate limit from 3 to 30
(ServiceExtensions class, ConfigureRateLimitingOptions method)
just to not stand in our way while we’re testing the different features of

our application.

Let’s send a valid request first:

https://localhost:5001/api/authentication

POST v https:/flocalhost:5001 /apifauthentication
3) Body @
none form-data x-www-form-urlencoded ® raw binary (
2 "firstname": "Jonh",
3 "lastname": "Doe"™,
< "username”: "J1Doe",
5 "password”: "Passwordleoe”,
6 "email™: "johndoe@mail.com™,
7 "phonenumber”™: "580-554",
8- "rales™: [
z "Manager"
1@ 1
11}
Body 12] Status: 201 Created

And we get 201, which means that the user has been created and added
to the role. We can send additional invalid requests to test our Action and

Identity features.

If the model is invalid:

250

:‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/authentication

"UserMame":

'Username is reguired”

If the password is invalid:

https://localhost:5001/api/authentication

if
"PasswordTooshort™: [
'Passwords must be at least 18 characters.”
1,
"PasswordReguiresDigit™: [
'Passwords must have at least one digit ('@"-"9')."
|
[

Finally, if we want to create a user with the same user name and email:

https://localhost:5001/api/authentication

i
"DuplicateEmail™: [
'Email 'fohndoegmail.com' is already taken.'
1,
"Duplicatelsertame": [
'User name '10os' iz already taken.”
|
k

Excellent. Everything is working as planned. We can move on to the JWT

implementation.

27.4 Big Picture

Before we get into the implementation of authentication and
authorization, let’s have a quick look at the big picture. There is an
application that has a login form. A user enters its username and
password and presses the login button. After pressing the login button, a
client (e.g., web browser) sends the user’s data to the server’s API
endpoint:

251

(‘ Ultimate ASP.NET Core 3 Web API

api/login

JSON web token

When the server validates the user’s credentials and confirms that the
user is valid, it's going to send an encoded JWT to the client. A JSON web
token is a JavaScript object that can contain some attributes of the
logged-in user. It can contain a username, user subject, user roles, or

some other useful information.

27.5 About JWT

JSON web tokens enable a secure way to transmit data between two
parties in the form of a JSON object. It's an open standard and it's a
popular mechanism for web authentication. In our case, we are going to
use JSON web tokens to securely transfer a user’s data between the client

and the server.

JSON web tokens consist of three basic parts: the header, the payload,

and the signature.

One real example of a JISON web token:

eyJhbGci0iJIUZITNiIsINR5cCI6TkpXVCJII . ey
zdWIi0iIxMjMONTY30DkwIiwibmFtZSI6IkpvaGa
gRGI1IiwiaWFOIjoxNTE2MjM5MDIyFQ. XbPFbIHM
T6arZ3Y922BhjWgQzWXcXNrz8ogtVhfEd2o

Every part of all three parts is shown in a different color. The first part of
JWT is the header, which is a JSON object encoded in the base64 format.

The header is a standard part of JWT and we don’t have to worry about it.

252

:‘ Ultimate ASP.NET Core 3 Web API

It contains information like the type of token and the name of the

algorithm:

{
"alg": "HS256",

"typ": "IWT"
}

After the header, we have a payload which is also a JavaScript object
encoded in the base64 format. The payload contains some attributes
about the logged-in user. For example, it can contain the user id, the user
subject, and information about whether a user is an admin user or not.
JSON web tokens are not encrypted and can be decoded with any
base64 decoder, so please never include sensitive information in the
Payload:

{
"sub": "1234567890",

“"name": "John Doe",
"iat": 1516239022

}

Finally, we have the signature part. Usually, the server uses the signature
part to verify whether the token contains valid information, the
information which the server is issuing. It is a digital signature that gets
generated by combining the header and the payload. Moreover, it's based

on a secret key that only the server knows:

#|secret base6d4 encoded

So, if malicious users try to modify the values in the payload, they have
to recreate the signature; for that purpose, they need the secret key only

known to the server. At the server side, we can easily verify if the values

253

:‘ Ultimate ASP.NET Core 3 Web API

are original or not by comparing the original signature with a new

signature computed from the values coming from the client.

So, we can easily verify the integrity of our data just by comparing the

digital signatures. This is the reason why we use JWT.

27.6 JWT Configuration
Let’s start by modifying the appsettings.json file:

{
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Information"
}
s
"ConnectionStrings": {
"sglConnection”: "server=.; database=CompanyEmployee; Integrated Security=true"
s
"JwtSettings": {
"validIssuer": "CodeMazeAPI",
"validAudience": "https://localhost:5001"
b
"AllowedHosts": "*"
b

We just store the issuer and audience information in the appsettings.json
file. We are going to talk more about that in a minute. As you probably
remember, we require a secret key on the server side. So, we are going
to create one and store it in the environment variable because this is

much safer than storing it inside the project.

To create an environment variable, we have to open the cmd window as

an administrator and type the following command:
setx SECRET "CodeMazeSecretKey" /M

This is going to create a system environment variable with the name
SECRET and the value CodeMazeSecretKey. By using /M we specify that

we want a system variable and not local.

Great.

254

:‘ Ultimate ASP.NET Core 3 Web API

We can now modify the ServiceExtensions class:

public static void ConfigureldWT(this IServiceCollection services, IConfiguration
configuration)

{

var jwtSettings = configuration.GetSection("JwtSettings");
var secretKey = Environment.GetEnvironmentVariable("SECRET");

services.AddAuthentication(opt => {
opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

1}

.AddJwtBearer(options =>

{

options.TokenValidationParameters = new TokenValidationParameters

{

ValidateIssuer = true,

ValidateAudience = true,

ValidateLifetime = true,

ValidateIssuerSigningKey = true,

ValidIssuer = jwtSettings.GetSection("validIssuer").Value,

ValidAudience = jwtSettings.GetSection("validAudience").Value,

IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(secretKey))

s

1
}
First, we extract the JwtSettings from the appsettings.json file and
extract our environment variable (If you keep getting null for the secret

key, try restarting the Visual Studio or even your computer).

Then, we register the JWT authentication middleware by calling the
method AddAuthentication on the IServiceCollection interface.
Next, we specify the authentication scheme
JwtBearerDefaults.AuthenticationScheme as well as
ChallengeScheme. We also provide some parameters that will be used
while validating JWT. For this to work, we have to install the

Microsoft.AspNetCore.Authentication.JwtBearer library.
Excellent.
We've successfully configured the JWT authentication.

According to the configuration, the token is going to be valid if:

255

:‘ Ultimate ASP.NET Core 3 Web API

e The issuer is the actual server that created the token
(Validatelssuer=true)

e The receiver of the token is a valid recipient
(ValidateAudience=true)

e The token has not expired (ValidateLifetime=true)

e The signing key is valid and is trusted by the server

(ValidatelssuerSigningKey=true)

Additionally, we are providing values for the issuer, the audience, and the

secret key that the server uses to generate the signature for JWT.

All we have to do is to call this method in the ConfigureServices method:

services.Configureldentity();
services.ConfigureJWT(Configuration);

And that is it. We can now protect our endpoints.

27.7 Protecting Endpoints
Let’s open the CompaniesController and add an additional attribute

above the GetCompanies action:

[HttpGet (Name = "GetCompanies"), Authorize]
public async Task<IActionResult> GetCompanies()

To test this, let’s send a request to get all companies:

https://localhost:5001/api/companies

GET v https:fflocalhost:5001/apifcompanies

b Temporary Headers (5) @

Siat

Body 12 Status: 401 Unautho

11}

We see the protection works. We get a 401 Unauthorized message, which

is expected because an unauthorized user tried to access the protected

256

:‘ Ultimate ASP.NET Core 3 Web API

endpoint. So, what we need is our user to be authenticated and to have a

valid token.

27.8 Implementing Authentication

Let’s begin with the UserForAuthenticationDto class:

public class UserForAuthenticationDto

{
[Required(ErrorMessage = "User name is required")]
public string UserName { get; set; }
[Required(ErrorMessage = "Password name is required")]
public string Password { get; set; }
}

We are going to have some complex logic for the authentication and the
token generation actions; therefore, it is best to extract these actions in

another service.

That said, let’s create a new TAuthenticationManager interface in the

Contracts project:

public interface IAuthenticationManager

{

Task<bool> ValidateUser(UserForAuthenticationDto userForAuth);
Task<string> CreateToken();

}

Next, let’s create the AuthenticationManager class and implement this

interface:

public class AuthenticationManager : IAuthenticationManager

{

private readonly UserManager<User> _userManager;
private readonly IConfiguration _configuration;

private User _user;

public AuthenticationManager(UserManager<User> userManager, IConfiguration
configuration)

{

_userManager = userManager;
_configuration = configuration;

}

public async Task<bool> ValidateUser(UserForAuthenticationDto userForAuth)

{

257

:‘ Ultimate ASP.NET Core 3 Web API

_user = await _userManager.FindByNameAsync(userForAuth.UserName);

return (_user != null && await _userManager.CheckPasswordAsync(_user,
userForAuth.Password));
}
public async Task<string> CreateToken()
{
var signingCredentials = GetSigningCredentials();
var claims = await GetClaims();
var tokenOptions = GenerateTokenOptions(signingCredentials, claims);
return new JwtSecurityTokenHandler().WriteToken(tokenOptions);
}

private SigningCredentials GetSigningCredentials()
{

var key =
Encoding.UTF8.GetBytes(Environment.GetEnvironmentVariable("SECRET"));
var secret = new SymmetricSecurityKey(key);

return new SigningCredentials(secret, SecurityAlgorithms.HmacSha256);

}
private async Task<List<Claim>> GetClaims()
{
var claims = new List<Claim>
{
new Claim(ClaimTypes.Name, _user.UserName)
s
var roles = await _userManager.GetRolesAsync(_user);
foreach (var role in roles)
{
claims.Add(new Claim(ClaimTypes.Role, role));
}
return claims;
}

private JwtSecurityToken GenerateTokenOptions(SigningCredentials
signingCredentials, List<Claim> claims)
{

var jwtSettings = _configuration.GetSection("JwtSettings");

var tokenOptions = new JwtSecurityToken
(
issuer: jwtSettings.GetSection("validIssuer").Value,
audience: jwtSettings.GetSection("validAudience").Value,
claims: claims,
expires:
DateTime.Now.AddMinutes(Convert.ToDouble(jwtSettings.GetSection("expires™).Value)),
signingCredentials: signingCredentials
)

return tokenOptions;

258

:‘ Ultimate ASP.NET Core 3 Web API

In the ValidateUser method, we check whether the user exists in the
database and if the password matches. The UserManager<TUser> class
provides the FindByNameAsync method to find the user by user name
and the CheckPasswordAsync to verify the user’s password against the

hashed password from the database.

The CreateToken method does exactly that — it creates a token. It does
that by collecting information from the private methods and serializing

token options with the WriteToken method.

We have three private methods as well. The GetSignInCredentials
method returns our secret key as a byte array with the security
algorithm. The GetClaims method creates a list of claims with the user
name inside and all the roles the user belongs to. The last method,
GenerateTokenOptions, creates an object of the JwtSecurityToken type
with all of the required options. We can see the expires parameter as one
of the token options. We would extract it from the appsettings.json file as

well, but we don't have it there. So, we have to add it:

"JwtSettings": {
"validIssuer": "CodeMazeAPI",
"validAudience": "https://localhost:5001",
"expires": 5

}
After that, we want to register this class in the IServiceCollection:
services.AddScoped<IAuthenticationManager, AuthenticationManager>();
Finally, we have to modify the AuthenticationController:

[Route("api/authentication")]
[ApiController]
public class AuthenticationController : ControllerBase
{
private readonly IlLoggerManager _logger;
private readonly IMapper _mapper;
private readonly UserManager<User> _userManager;
private readonly IAuthenticationManager _authManager;
public AuthenticationController(ILoggerManager logger, IMapper mapper,
UserManager<User> userManager, IAuthenticationManager authManager)

259

:‘ Ultimate ASP.NET Core 3 Web API

{
_logger = logger;
_mapper = mapper;
_userManager = userManager;
_authManager = authManager;
}

//Previous action

[HttpPost("login")]

[ServiceFilter(typeof(ValidationFilterAttribute))]

public async Task<IActionResult> Authenticate([FromBody] UserForAuthenticationDto
user)

{

if (lawait _authManager.ValidateUser(user))

{
_logger.LogWarn($"{nameof(Authenticate)}: Authentication failed. Wrong
user name or password.");

return Unauthorized();

}

return Ok(new { Token = await _authManager.CreateToken() });

}

There is really nothing special in this controller. If validation fails, we
return the 401 Unauthorized response; otherwise, we return our created
token:

260

<0 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/authentication/login

» POST Authenticate (valid) E Comments (0) Examples (D)
POST v | https:/flocalhost:5001 /apifauthentication/login m Save
(8] Body @ Cookies C
none form-data x-www-form-urlencoded ® raw binary GraphQL Sl JSON Beauti
1k
2 "username”: "JDoe",
3 "password™: "Passwordlega”
4
Bady (13) Status: 200 0K Time: 6.34s Size: 570 B Save Response
Pretry BETA jsON v = m <
1 i
2 "token™:

"eyIhbGci0ilIUzIAINITI=InRScCIGTkpXWC]9 . ey JodHRWO18v c2NoZW1hcy S4bllxz b2 Fulmoy Zy 93 cyByMDATL zAL L 21k TS
BaXRSL2Ns YW1t youYW11T joiSkRvZSIsImh@dHAGLYSzY 2h1bWFzLmlpY 31ve 29md C5§b2 6vd 3MvM i AwDC BN 9pZGWudG1 o
e59jbGF pbXMvemIsZSI6Ik1hbmFnZXI1LCT LeHALOFEINZMINT gyOTIsImlzcyI6IKNvZELhemVBUEKILCIhdWQi0iJodHRwe
zowL2xvY¥2FsaG9zdDolMDAXING . EpC1K51v26vfmalbwdcul J¥NgcokHyusKemy@dfD-Ba"

3 b

Excellent. We can see our token generated.

Now, let’s send invalid credentials:

https://localhost:5001/api/authentication/login

261

(‘ Ultimate ASP.NET Core 3 Web API

» POST Authenticate (invalid) B comments (0

POST ¥ | hupsiiflocalhost:5001/apifauthentication/login
8] Body @
none form-data wwww-form-urlencoded ® raw binary GraphQL HETE JSON -
2 "username”: "IlDoe",
3 "password”: "Passwordlegall
4 I
Jody 13 Status: 401 Unauthorized Time: 343ms Size: 650 B
Pretty BETA JSON =
1 r
2 "type"”: "https://tools.ietf.org/html/rfc7235#section-3.1",
3 "title": "Unauthorized”,
4 "status"™: 481,
5 "traceld": "|d25fabd4-431711f6e9@58f0d. "
& ki

And we get a 401 Unauthorized message.

Right now if we send a request to the GetCompanies action, we are still
going to get the 401 Unauthorized response even though we have
successful authentication. That's because we didn’t provide our token in a
request header and our API has nothing to authorize against. To solve
that, we are going to create another GET request, and in the
Authorization header choose the header type and paste the token from

the previous request:

262

10 Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies

Authorization @ (1) Talt

Cookies Code

TYPE 0 Heads up! These parameters hold sensitive data. To keep this dat e while working in a collaborative *

environment, we recommend using variables, Learn m

Bearer Token v

The authorization header will be
automatically generated when you send Token ey]hbGeiCi)lUzl1 NilsInR5cCl6lkpXVC]9.eyJodHRwOiBvc2ZNoZW1hcy34bWxz

ar b2Fwlm9yZy93cyB8yMDAT LzA1L2IkZW50aXRILZNsYWitcySuYW1illjoiSkRvZS
Islmh0dHASLy9zY2hIBWFzLm 1pY3)vc29mdC5jb20vd3IMvMjAwWO CBwNIGpZ
GVudGl0eS9jbGFpbXMvem9sZ516lk 1 hbmPnZXIiLC)leHAIOETNzM1 NTgyOTI
slmlzcyl6lkNvZE1hemVBUEKILC)hdWQiOilodHRwczowl 2xvY2FsaGOzdDo 1M
DAxIn0.EpC1 K5 h28vfrmOlbwlouljYNgecoKHyuBKEmVOdfD-BO

Now, we can send the request again:

https://localhost:5001/api/authentication/login

GET v | https://localhost:5001/apifauthentication/login m

[] Headers (7)
» Headers (1)
KEY VALUE e Bulk

Accept application/json

v Temporary Headers (6) @

KEY VALUE

Body (13) Status: 200 OK | Time: 487ms Size: 1.34 KB

Pretry BETA JSON)
1 [
2 i
3 “id": "3d498a7@-94ce-4d15-9494-5248280c2ce3", /
4 "name”: "Admin_Solutions Ltd Upd2",
5 "fullAddress™: "312 Forest Avenue, BF 923 USA"
6 e

Excellent. It works like a charm.

27.9 Role-Based Authorization
Right now, even though authentication and authorization are working as

expected, every single authenticated user can access the GetCompanies

263

(‘ Ultimate ASP.NET Core 3 Web API

action. What if we don’t want that type of behavior? For example, we
want to allow only managers to access it. To do that, we have to make

one simple change:

[HttpGet(Name = "GetCompanies™), Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And that is it. To test this, let’s create another user with the Administrator

role (the second role from the database):

POST ¥ |https:/localhost:5001 fapifauthentication
8 Body @
none form-data x-wwnw-form-urlencoded ®» raw binary GraphQL HEXE JSON -

2 "firstname": "Jane”,

3 "lastname": "Doe",

4 "username": "JaneDoe",

"password”: "Passwordleee”,

B "emgil”: "janedoe@mail.com”,

7 "phonenumber™: "583-653",

8- "roles™: [

1 "Administrator

18]

11 3
Bady 12 Status: 201 Crealec
We get 201.

After we send an authentication request for Jane Doe, we are going to get
a new token. Let’s use that token to send the request towards the

GetCompanies action:

264

:‘ Ultimate ASP.NET Core 3 Web API

https://localhost:5001/api/companies
» GET Companies (with token)

GET A https:/flocalhost:5001/apifcompanies

B none form-data x-www-form-urlencoded raw binary GraphQL BETA

ody 14 | Status -'ZEF:u:u:u:a'l

As you can see, we get a 403 Forbidden message because this user is not
allowed to access the required endpoint. If we login with John Doe and
use his token, we are going to get a successful response for sure. Of
course, we don’t have to place an Authorize attribute only on top of the
action; we can place it on the controller level as well. For example, we
can place just [Authorize] on the controller level to allow only authorized
users to access all the actions in that controller; also, we can place the
[Authorize (Role=...)] on top of any action in that controller to state that

only a user with that specific role has access to that action.

One more thing. Our token expires after five minutes from the creation
point. So, if we try to send another request after that period, we are

going to get the 401 Unauthorized status for sure. Feel free to try.

265

:‘ Ultimate ASP.NET Core 3 Web API

28 DOCUMENTING APl WITH SWAGGER

Developers who consume our API might be trying to solve important
business problems with it. Hence, it is very important for them to
understand how to use our API effectively. This is where API

documentation comes into the picture.

API documentation is the process of giving instructions on how to
effectively use and integrate an API. Hence, it can be thought of as a
concise reference manual containing all the information required to work
with the API, with details about functions, classes, return types,

arguments, and more, supported by tutorials and examples.

So, having the proper documentation for our API enables consumers to
integrate our APIs as quickly as possible and move forward with their
development. Furthermore, this also helps them understand the value and
usage of our API, improves the chances for our API’'s adoption, and makes

our APIs easier to maintain and support.

28.1 About Swagger

Swagger is a language-agnostic specification for describing REST APIs.
Swagger is also referred to as OpenAPI. It allows us to understand the
capabilities of a service without looking at the actual implementation

code.

Swagger minimizes the amount of work needed while integrating an API.
Similarly, it also helps API developers document their APIs quickly and

accurately.

Swagger Specification is an important part of the Swagger flow. By

default, a document named swagger.json is generated by the Swagger

266

:‘ Ultimate ASP.NET Core 3 Web API

tool which is based on our API. It describes the capabilities of our API and

how to access it via HTTP.

28.2 Swagger Integration Into Our Project

We can use the Swashbuckle package to easily integrate Swagger into our
.NET Core Web API project. It will generate the Swagger specification for
the project as well. Additionally, the Swagger Ul is also contained within

Swashbuckle.
There are three main components in the Swashbuckle package:

e Swashbuckle.AspNetCore.Swagger: This contains the Swagger
object model and the middleware to expose SwaggerDocument
objects as JSON.

e Swashbuckle.AspNetCore.SwaggerGen: A Swagger generator
that builds SwaggerDocument objects directly from our routes,
controllers, and models.

e Swashbuckle.AspNetCore.SwaggerUI: An embedded version of
the Swagger UI tool. It interprets Swagger JSON to build a rich,

customizable experience for describing web API functionality.

So, the first thing we are going to do is to install the required library. Let's
open the Package Manager Console window and type the following

command:

PM> Install-Package Swashbuckle.AspNetCore -version 5.0.0

After a couple of seconds, the package will be installed. Now, we have to
configure the Swagger Middleware. To do that, we are going to add a new

method in the ServiceExtensions class:

public static void ConfigureSwagger(this IServiceCollection services)

{

services.AddSwaggerGen(s =>

{

267

:‘ Ultimate ASP.NET Core 3 Web API

s.SwaggerDoc("v1", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
1
s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
1
1
}

We are creating two versions of SwaggerDoc because if you remember,
we have two versions for the Companies controller and we want to

separate them in our documentation.

The next step is to call this method in the ConfigureServices method:
services.ConfigureSwagger();

And finally, in the Configure method, we are going to add it to the

application’s execution pipeline together with the UI feature:

app.UseSwagger();
app.UseSwaggerUI(s =>

{
s.SwaggerkEndpoint (" /swagger/vl/swagger.json", "Code Maze API vi");

s.SwaggerkEndpoint (" /swagger/v2/swagger.json", "Code Maze API v2");
1

Finally, let’s sligthly modify the Companies and CompaniesV2 controllers:

[Route("api/companies™)]

[ApiController]

[ApiExplorerSettings(GroupName = "v1")]

public class CompaniesController : ControllerBase

[Route("api/companies™)]

[ApiController]

[ApiExplorerSettings(GroupName = "v2")]

public class CompaniesV2Controller : ControllerBase

With this change, we state that the CompaniesController belongs to group
vl and the CompaniesV2Controller belongs to group v2. All the other
controllers will be included in both groups because they are not versioned.

Which is what we want.
And that is all. We have prepared the basic configuration.

Now, we can start our app, open the browser, and navigate to

https://localhost:5001/swagger/v1l/swagger.json. Once the page

268

(‘ Ultimate ASP.NET Core 3 Web API

iS up, you are going to see a json document containing all the controllers
and actions without the v2 companies controller. Of course, if you change
vl to v2 in the URL, you are going to see all the controllers — including

v2 companies, but without vl companies.

Additionally, let’s navigate to
https://localhost:5001/swagger/index.html:

@ swagger selecta cemnton

SMANTEEAR

| To change versions

Code Maze API®

i
Authentication \ >
Companies b
Employees >
Root >
WeatherForecast b
Schemas >

If we click on a specific controller to expand its details, we are going to

see all the actions inside:

269

‘0 Ultimate ASP.NET Core 3 Web API

Companies

GET /api/companies

POST [api/companies

/apifcompanies

GET /api/companies/{id}

B S /api/companies/{id}

PUT /api/companies/{id}

‘ GET J/api/companies/collection/({ids})

POST /api/companies/collection

Once we click on an action method, we can see detailed information like

parameters, response, and example values. There is also an option to try

out each of those action methods by clicking the Try it out button.

So, let’s try it with the /api/companies action:

GET JSapi/companies

Parameters

No parameters

Cancel

Clear |

Once we click the Execute button, we are going to see that we get our

response:

270

(‘ Ultimate ASP.NET Core 3 Web API

Responses

Curl

curl -X GET "https://localhost:5081/api/companies™ -H "accept: */*"

Request URL

https://localhost: 5081 /apl/companies

Server response

Code Details

401 Error: Unauthorized

And this is an expected response. We are not authorized. To enable

authorization, we have to add some modifications.

28.3 Adding Authorization Support
To add authorization support, we need to modify the ConfigureSwagger

method:

public static void ConfigureSwagger(this IServiceCollection services)

{

services.AddSwaggerGen(s =>

{
s.SwaggerDoc("v1l", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
1
s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
1
s.AddSecurityDefinition("Bearer", new OpenApiSecurityScheme
{
In = ParameterLocation.Header,
Description = "Place to add JWT with Bearer",
Name = "Authorization",
Type = SecuritySchemeType.ApiKey,
Scheme = "Bearer"
1

s.AddSecurityRequirement(new OpenApiSecurityRequirement()

{

271

:‘ Ultimate ASP.NET Core 3 Web API

new OpenApiSecurityScheme

{

Reference = new OpenApiReference

{

Type = ReferenceType.SecurityScheme,
Id = "Bearer"

¥

Name = "Bearer",

¥

new List<string>()

}
1
s
}

With this modification, we are adding the security definition in our
swagger configuration. Now, we can start our app again and navigate to
the index.html page.

The first thing we are going to notice is the Authorize options for

requests:
Authentication v
fapifauthentication/login
Companies N
/api/companies
/api/companies

We are going to use that in a moment. But let’s get our token first. For
that, let’s open the api/authentication/login action, click try it out, add

credentials, and copy the received token:

272

<0 Ultimate ASP.NET Core 3 Web API

Authentication b
POST J/apifauthentication/login a8
Parametars

No parameters

Request body application/json-patch+json]
{
"userName": "JDoe",
"password”: "Passwordl@ee"
¥

Responses

Curl

curl -X POST "https://localhost:5881fapi/fauthentication” -H "accept: */*" -H "Content-Type:
application/json-patch+json™ -d "{\“userName\™:\"JDoel",\ "password\" " Password186e\ =}

Reqguest URL

hittps://localhost:5801/apifauthentication

Server response

Code Details

200 Response body

"token™ :
" eyIThbGci0iITUzTINITsInRScCI6TkpXVCI 9. eyJodHRwD I Bvc2NoZW 1 hcy 54bhxz b2 FwlmOyZy9 3IcyByMDALL
ZA1L 21k 7WS58aXR5 L 2NsYWL toyIu YW1 joiSkRvZ STs ImhBdHAGLY 9ZY 2h 1 bWF z LmlpY 3Jvwc2 9md C5 b2 8wd 3MvM

FAWDCBWNI 9pZ7 GVudG18e59 b6 FpbXMycmIs 756 Tk1hbmFnZ XTiLCI1eHATOFEINZMINTOyvOT gsImlz cyI6 TkiNvE
E1hemVBUEKiL CIhdWQi0ilodHRwWCzovl 2xvY2 FsaGlzdDolMDAXTNS . UTHE 2wTEVLCHGHWG 11 Fuvdu___ SqHWNCx2 37

3FLFGCTIwO™ Download
¥

Once we have copied the token, we are going to click on the authorization
button for the /api/companies request, paste it with the Bearer in front of

it, and click Authorize:

273

(0 Ultimate ASP.NET Core 3 Web API

Available authorizations X

Bearer (apiKey)

Flace to add JWT with Bearer
Name: Authorization
In: header

Value:

Bearer eyJnbGciOWIUZITNIls /
* Authorize I Close

After authorization, we are going to click on the Close button and try our

request:

Request URL

https:/f/localhost: 5881 /api/companies

Server response

Code Details

200

Response body

[
{
"id": "3d498a7@-94ce-4d15-9494-52482808c2ce3",

"name”: "Admin_Solutions Ltd Upd2™,
"fullAddress™: "312 Forest Avenue, BF 923 USA™
Ts

And we get our response. Excellent job.

28.4 Extending Swagger Configuration
Swagger provides options for extending the documentation and

customizing the UI. Let’s explore some of those.

First, let’s see how we can specify the API info and description. The

configuration action passed to the AddSwaggerGen() method adds

274

:‘ Ultimate ASP.NET Core 3 Web API

information such as Contact, License, and Description. Let’s provide some

values for those:

s.SwaggerDoc("v1l", new OpenApiInfo

{
Title = "Code Maze API",

Version = "v1",

Description = "CompanyEmployees API by CodeMaze",
TermsOfService = new Uri("https://example.com/terms"),
Contact = new OpenApiContact

{

Name = "John Doe",
Email = "John.Doe@gmail.com",
Url = new Uri("https://twitter.com/johndoe"),

}s

License = new OpenApilicense

{

Name = "CompanyEmployees API LICX",
Url = new Uri("https://example.com/license"),

}
s

We have implemented this just for the first version, but you get the point.

Now, let’s run the application once again and explore the Swagger UI:

Code Maze AP|®

sWagger.json

CompanyEmployees APl by CodeMaze

For enabling XML comments, we need to do the following steps:

e In the Build tab of the main project properties, check the box
labeled XML documentation file. Let’s keep the auto-generated file
path.

e Suppress warning 1591, which will now give warnings about any

method, class, or field that doesn’t have triple-slash comments.

275

(‘ Ultimate ASP.NET Core 3 Web API

CompanyEmployees 8 > [SGINTERTERIEGT) (]S EmployeesController.cs CompaniesController.cs Startup.cs
Application) . - -
Configuration: | Active (Debug) W Platform: | Active (Any CPU)]
Build
Build Events Errors and warnings
Package
Warning level: 4 W
Debug
Signing Suppress warnings: 1701;1702;1591
Code Analysis Treat warnings as errors
TypeScript Build (") Mone
Resources Al
(®) Specific warnings: MNUT605
Output
Output path: Browse...
XML documentation file: D:\Projectshcodemnaze-books\Source Code\Part2 T\ Compan

Now, let’'s modify our configuration:

s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2" });

var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
s.IncludeXmlComments(xmlPath);

Next, adding triple-slash comments to the action method enhances the

Swagger UI by adding a description to the section header:

/// <summary>

/// Gets the list of all companies

/// </summary>

/// <returns>The companies list</returns>

[HttpGet(Name = "GetCompanies"), Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And this is the result:

Companies v

GET fapi/companies |Get5 the list of all cnmpaniesl a

The developers who consume our APIs are usually more interested in
what it returns — specifically the response types and error codes. Hence,
it is very important to describe our response types. These are denoted

using XML comments and data annotations.

276

(0 Ultimate ASP.NET Core 3 Web API

Let’s enhance the response types a little bit:

/// <summary>

/// Creates a newly created company

/// </summary>

/// <param name="company"></param>

/// <returns>A newly created company</returns>

/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>

/// <response code="422">If the model is invalid</response>
[HttpPost(Name = "CreateCompany")]
[ProducesResponseType(201)]

[ProducesResponseType(400)]

[ProducesResponseType(422)]

Code Description Links

201 Mo links
Returns the newly created item

400 Mo links
ITf the item is null

Media type
[text/plain ~]

Example Value Schema

“type”: "string™,
"title" "string™.,
"status": @,
~detail™: "string™,
"instance™: "string™.

~extensions™: {
~additionalPropl™:
"additionalProp2™:
"additionalProp3™:
¥
¥

422 Mo links
If the model is invalid

277

:‘ Ultimate ASP.NET Core 3 Web API

29 DEPLOYMENTTOIIS

Before we start the deployment process, we would like to point out one
important thing. We should always try to deploy an application on at least
a local machine to somehow simulate the production environment as soon
as we start with development. That way, we are able to observe how the
application behaves in a production environment from the beginning of

the development process.

That leads us to the conclusion that the deployment process should not be
the last step of the application’s lifecycle. We should deploy our

application to the staging environment as soon as we start building it.

That said, let’s start with the deployment process.

29.1 Creating Publish Files

Before we create publish files, we have to do one thing in our project. In
the previous section, we integrated Swagger in our application and it is
using an xml file for the xml documentation. What we have to do is to
enable that file to be published with all the other published files from our

application.

To do that, let’s find the CompanyEmployees.xml file in the main project,
right-click on it, and choose Properties. In the next window, for the
Copy to Output Directory option, we are going to choose Copy

always.
That's it. We can move on.

Let’s create a folder on the local machine with the name Publish. Inside
that folder, we want to place all of our files for the deployment. After the
folder creation, let’s right-click on the main project in the Solution

Explorer window and click publish option:

278

(‘ Ultimate ASP.NET Core 3 Web API

3] Solution 'CompanyEmployees' (5 of 5 projects)

4 q -
@e &4 Build
B Rebuild
P & Clean
b & View k
b oa
b s Analyze and Code Cleanup r
b & Pack
b an{| € Publish..
b8 Overview
b A

In the “Pick a publish target” window, we are going to choose the Folder

option and point to the location of the Publish folder we just created:

Pick a publish target

lad App Service Folder or File Share
Publish your app to a folder or file share
Eﬂ App Service Linux
Azure Virtual Machines Choose a folder
|D:\Projects\codemaze—bonks\Source Code\Part28\Publish Browse...
[s, FTP, ete
|i Eolder Advanced...
Import Profile... Publish | = Cancel

Visual Studio is going to do its job and publish the required files in the

specified folder.

279

:‘ Ultimate ASP.NET Core 3 Web API

29.2 Windows Server Hosting Bundle

Prior to any further action, let’s install the .NET Core Windows Server
Hosting bundle on our system to install .NET Core Runtime. Furthermore,
with this bundle, we are installing the .NET Core Library and the ASP.NET

Core Module. This installation will create a reverse proxy between IIS and

the Kestrel server, which is crucial for the deployment process.

If you have a problem with missing SDK after installing the Hosting

Bundle, follow this solution suggested by Microsoft:

Installing the .NET Core Hosting Bundle modifies the PATH when it installs
the .NET Core runtime to point to the 32-bit (x86) version of .NET Core
(C:\Program Files (x86)\dotnet\). This can result in missing SDKs when
the 32-bit (x86) .NET Core dotnet command is used (No .NET Core SDKs
were detected). To resolve this problem, move C:\Program Files\dotnet\
to a position before C:\Program Files (x86)\dotnet\ on the PATH

environment variable.

After the installation, we are going to locate the Windows hosts file on
C:\Windows\System32\drivers\etc and add the following record at the
end of the file:

127.0.0.1 www.companyemployees.codemaze

After that, we are going to save the file.

29.3 Installing 1S

If you don’t have IIS installed on your machine, you need to install it by

opening ControlPanel and then Programs and Features:

280

https://dotnet.microsoft.com/download/thank-you/dotnet-runtime-3.0.0-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/thank-you/dotnet-runtime-3.0.0-windows-hosting-bundle-installer

<0 Ultimate ASP.NET Core 3 Web API

T r Control Panel » All Control Panel lterns » Programs and FeaturesH
Control Panel Home) - -
“ﬁ__—b Windows Features -

View installed updates .
Turn Windows features on or off (7]

'@' Turn Windows features on or

off To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

[=] || .MET Framework 3.5 {includes .MET 2.0 and 3.0) ~
o [=] |, .MET Framework 4.5 Advanced Services
[] !, Active Directory Lightweight Dirl
11, Hyper-v
Click thiz menu o open Ll Comlmrcr 11 e
Windows features = . i
[w] || Internet Information Services
77 Tnternet Information senvices Hostable Web Caore
|:| . Legacy Components
. Media Features
[] | Microsoft Message Queue (MSMQ) Server
[, Metwork Projection
= [m] Print and Document Services

O—>o ||

Checkthis one |

After the IIS installation finishes, let’'s open the Run window (windows key

+ R) and type: inetmgr to open the IIS manager:

= Typethe name of a program, folder, document, or Internet
—_ rescurce, and Windows will open it for you.

Open: [TEEED »

QK Cancel Browse...

Now, we can create a new website:

281

(‘ Ultimate ASP.NET Core 3 Web API

File Wiew Help

Connections

Qél MA

a {Hj PAASINABREEEEH (MASINA Fi
— ilter:
----- é:? Application Pocls R
>{ @ | Sites FTP

|g~ Add Website... |

k&3 Refresh

& AddFTP Site...

2 Switch to Content View

kN
(M
Authentic...

In the next window, we need to add a name to our site and a path to the
published files:

/ Add Website c
Site name:

CodeMaze Web AP CodelMaze Web API Select...
Content Directony

Physical path:

D:Projectshcodemaze-books\Source Code’\Part28\Publi

Pass-through authentication

Connect as... Test Settings... \

Binding
Type: IP address: Port:
http w | |All Unassigned w | B0

Heost name:

www.companyemployees.codemaze

Example: www.contoso.com arketing.contoso.com

Start Website immediately *

After this step, we are going to have our site inside the “sites” folder in

the IIS Manager. Additionally, we need to set up some basic settings for
our application pool:

282

:‘ Ultimate ASP.NET Core 3 Web API

+ Qé‘ Application Pools

495 MASINABREEEEH [MASIMNAI

15 — This page lets you view and manage the list of application pools on the server, Application
1o Application Pools pools are associated with worker processes, contain one or more applications, and provide

= Application Pool Tasks
> -[@] Sites isolation among different applications.
Filter: - Go - \gqShow All | Group by: _ B sio
MName : Status .MET CLR Version Managed Pipel... il
£} CodeMaze Web API Started vd0 Integrated
R — Started Mo Managed Code Integrated
m=m] Started Mo Managed Code Integrated

After we click on the Basic Settings
pool:
Edit Application Pool
CodeMaze Web API
MET CLR wersion:
Mo Managed Code v

Managed pipeline mode:

Integrated Ly

Start application pool immediately

QK Cancel

link, let’s

configure our application

ASP.NET Core runs in a separate process and manages the runtime. It
doesn't rely on loading the desktop CLR (.NET CLR). The Core Common

Language Runtime for .NET Core is booted to host the app in the worker

process. Setting the .NET CLR version to No Managed Code is optional but

recommended.

Our website and the application pool should be started automatically.

29.4 Configuring Environment File

In the section where we configured JWT, we had to use a secret key that

we placed in the environment file. Now, we have to provide to IIS the

name of that key and the value as well.

283

https://asp.net/?fbclid=IwAR1rWdEZTzG1t5oyipFi4pTECXhmG1ufeZQEYAjTOvr_sMP3ERJlR_BU33I

10 Ultimate ASP.NET Core 3 Web API

The first step is to click on our site in IIS and open Configuration

Editor:

Connections

#
Pl 'H_=-_| MASINABREEEEH (MASIMA
[} Application Pools
a-[@ Sites
‘ mEm - L}

= J
. 48 CodeMaze Web AP

O CodeMaze Web APl Home

Filter: - W Go - l5 Show All

Group by: Area

2 9 e

Authentic... Compressicn Default Directory
Document Browsing

€ 8§ = A

HTTP Legging MIME Types Modules

Respon...

55L Settings

Management

Configurat...

Editor

Then, in the section box, we are going to choose

system.webServer/aspNetcore:

0 Configuration Editor

Section: | system.webServer/aspMetCore

= From: CodeMaze Web APl Wel

2 Deg 3 system.ftpServer * PPHOST/CodeMaze Web API
- system.net
argu . cmpanyEmployees.dll
A - system.transactions
disal : e
| B3 system.web
st [0 system.webServer | punt=T1)
forw -3 security pe
han -3 tracing punt=0]
host - £ wdeploy jrocess
prod -3 webdaw
prog o e ,'? application|nitializati tnet
rapiq | .. J g
ol (-4 urt=0
requ | b caching 02:00

From the “From” combo box, we are going to choose

ApplicationHost.config:

Al

Error Pages

F
Cutput
Caching

Handler
Mappings
=
o=
Request
Filtering

284

(0 Ultimate ASP.NET Core 3 Web API

0 Configuration Editor

Section: system.webServer/aspMetCore - |FrDm:||C|:|deMazeWe|:| AP| Web.confi

CodeMaze Web APl Web.config
4 Deepest Fath: MACHINE/WEBROOT/APFH O S e e e e e e

arguments ACompanyEmployees.dll Configuration

-

After that, we are going to select environment variables:

4 Deepest Path: MACHINEAWEBROOT/APPHOST/CodeMaze Web API \ ﬁ

arguments

disableStartUpErrorPage False
envircnmentVariables (Count=0])
forwardWindowsAuthToken True

Click Add and type the name and the value of our variable:

Collection Editor - system.webServer/aspMNetCore/environmentVariables/ °
Items: Actions:
name value Entry Path Collection =]
environmentVariable SECRET CodeMazeSecretKey Add

Clear All

EnvironmentVariable Properties =

< > Lock [tem
X Remove
Properties: =
® Help
name # SECRET g
Online Help
value ® CodeMazeSecretl(egre

As soon as we click the close button, we should click apply in the next

window, restart our application in IIS, and we are good to go.

29.5 Testing Deployed Application
Let’'s open Postman and send a request for the Root document:

285

(0 Ultimate ASP.NET Core 3 Web API

http://www.companyemployees.codemaze/api

GET

v Headers (1)

KEY

http:/fwwow.companyemployees.codemaze/api h m

Headers (8)

VALUE Ll L

Accept

application/vnd.codemaze.apiroot+json

» Temporary Headers (5) @

Status: 200 OK | Time: 154ms Size: 07

Body (13)
Pretty BETA ISON =
1
2 {
3 "href": "http://wuw.companyemployees.codemaze/api”,
4 "rel": "self",
5 "method": "GET"
& ba
7 1
8 "href": "http://www.companyemployees.codemaze/api/ companies™,
= "rel”: “"companies",
1@ "method": "GET"
11 Ia
12 {
13 "href": "http://www.companyemployees.codemaze/api/companies™,
14 "rel": "create_company™,
15 "method": "POST"
& ¥
17

We can see that our API is working as expected. If it's not, and you have

a problem related to web.config in IIS, try reinstalling the Server Hosting

Bundle package.

But we still have one more thing to do. We have to add a login to the SQL

Server for IIS APPPOOL\CodeMaze Web Api and grant permissions to

the database. So, let’s open the SQL Server Management Studio and add

a new login:

286

(‘ Ultimate ASP.NET Core 3 Web API

3 Databases
= 4 Security K

= Co [E2F™

[Sen
C3 Cre Filter 3
5 i
- ENI_Er Start PowerShell
[Replica
[Manag Reports 3
Refresh

In the next window, we are going to add our user:

% Server Roles
f User Mapping
%4 Securables
[Status

Connection

Server:

Connection:
MASINABREEEEH Mare

&{ View connection properties

Progress
Ready

Login - New

ﬁ Script - m Help

Login name:
(®) Windows authentication
() 50L Server authentication

o
o
o
() Mapped to cedificate
() Mapped to asymmetric key
[] Map to Credential
Mapped Credentials

Default database:

Default language:

= (|
1S APPPOOLVCodeMaze Web API Search...
Credential Provider
CompanyEmployees w
zdefault= b
— Cance

After that, we are going to expand the Logins folder, right-click on our

user, and choose Properties. There, under UserMappings, we have to

select the CompanyEmployee database and grant the dbwriter and

dbreader roles.

287

10 Ultimate ASP.NET Core 3 Web API

Now, we can try to send the Authentication request:

http://www.companyemployees.codemaze/api/authentication

POST d hrtp:/fwww.companyemployees.codemaze/api/authentication m Save ¥

Eaody (13) Status: 200 0K Time: 423ms Size: 3818 Save Response
Pretty BETA joon v mQ
1 it I

2 "token™:

"eyIhbGci0ilIUzIINIIsINRScCIEIkpXVCIS. ey JodHRwWO18y c2NoZWlhey S4blixz b2 FulmOyZy 93 cyByMDALLZALL 21k ZWS@aXRSLINs YW1t
YIUYWL1IjoiSkRvEZSTs ImhBdHAGLYy S zY2h 1 bWFzLmlpY3Jvec 29mdC 5] b2@vd 3MvMj AwdCBwNiIpZ GVudG1ae59jbGFpbXMycmIs ISI6Ik1hbmFn
ZXTiLCI1eHAIOFEINZM3IMIMyMzUsImlzcy I6IkMy ZELhemVBUEKILCI hdWQi01JodHRwe zovL 2xvY2FsaG9zdDolMDAXING .
OcsvnbIi2pBctIVnlgPihETgXkb1l7ipBLV7kRSoUIKA"

Excellent; we have our token. Now, we can send the request to the

GetCompanies action with the generated token:

http://www.companyemployees.codemaze/api/companies

GET v http:/fwww.companyemployees.codemaze/api/fcompanies m Save ~

TYPE -
Token eyJhbGaOilUzI1 NilsinR5cCl6lkpXVC]9.eyJodHRWOiBuc2NoZW1 h...
Bearer Token hd
The authorization header will be
automatically generated when you
send the request. Learn more about
autharization
Preview Request
Body (13) Status: 200 OK Time: 328ms Size: 1.35KB Save Response
Pretty BETA jcoN v mQ
10 u
2 1
3 "id": "3d490a7@-94ce-4d15-9494-5248258c2ce3",
4 “name™: "Admin_Sclutions Ltd Upd2",
5 “fullAddress": "312 Forest Avenue, BF 923 USA"
& iz

And there we go. Our API is published and working as expected.

288

	TABLE OF CONTENTS
	1 Project Configuration
	1.1 Creating a New Project
	1.2 launchSettings.json File Configuration
	1.3 Program.cs and Startup.cs Explanations
	1.4 Extension Methods and CORS Configuration
	1.5 IIS Configuration
	1.6 Additional Code in the Startup Class
	1.7 Environment-Based Settings

	2 Configuring a Logging Service
	2.1 Creating the Required Projects
	2.2 Creating the ILoggerManager Interface and Installing NLog
	2.3 Implementing the Interface and Nlog.Config File
	2.4 Configuring Logger Service for Logging Messages
	2.5 DI, IoC, and Logger Service Testing

	3 Database Model and Repository Pattern
	3.1 Creating Models
	3.2 Context Class and the Database Connection
	3.3 Migration and Initial Data Seed
	3.4 Repository Pattern Logic
	3.5 Repository User Interfaces and Classes
	3.6 Creating a Repository Manager

	4 Handling GET Requests
	4.1 Controllers and Routing in WEB API
	4.2 Naming Our Resources
	4.3 Getting All Companies From the Database
	4.4 Testing the Result with Postman
	4.5 DTO Classes vs. Entity Model Classes
	4.6 Using AutoMapper in ASP.NET Core

	5 Global Error Handling
	5.1 Handling Errors Globally with the Built-In Middleware
	5.2 Startup Class Modification
	5.3 Testing the Result

	6 Getting Additional Resources
	6.1 Getting a Single Resource From the Database
	6.2 Parent/Child Relationships in Web API
	6.3 Getting a Single Employee for Company

	7 Content Negotiation
	7.1 What Do We Get Out of the Box?
	7.2 Changing the Default Configuration of Our Project
	7.3 Testing Content Negotiation
	7.4 Restricting Media Types
	7.5 More About Formatters
	7.6 Implementing a Custom Formatter

	8 Method Safety and Method Idempotency
	9 Creating Resources
	9.1 Handling POST Requests
	9.2 Code Explanation
	9.3 Creating a Child Resource
	9.4 Creating Children Resources Together with a Parent
	9.5 Creating a Collection of Resources
	9.6 Model Binding in API

	10 Working with DELETE Requests
	10.1 Deleting a Parent Resource with its Children

	11 Working with PUT Requests
	11.1 Updating Employee
	11.1.1 About the Update Method from the RepositoryBase Class

	11.2 Inserting Resources while Updating One

	12 Working With PATCH Requests
	12.1 Applying PATCH to the Employee Entity

	13 Validation
	13.1 Validation while Creating Resource
	13.1.1 Validating Int Type

	13.2 Validation for PUT Requests
	13.3 Validation for PATCH Requests

	14 Asynchronous Code
	14.1 What is Asynchronous Programming?
	14.2 Async, Await Keywords, and Return Types
	14.2.1 The IRepositoryBase Interface and the RepositoryBase Class Explanation

	14.3 Modifying the ICompanyRepository Interface and the CompanyRepository Class
	14.4 IRepositoryManager and RepositoryManager Changes
	14.5 Controller Modification

	15 Action Filters
	15.1 Action Filters Implementation
	15.2 The Scope of Action Filters
	15.3 Order of Invocation
	15.4 Improving the Code with Action Filters
	15.5 Validation with Action Filters
	15.6 Dependency Injection in Action Filters

	16 Paging
	16.1 What is Paging?
	16.2 Paging Implementation
	16.3 Concrete Query
	16.4 Improving the Solution

	17 Filtering
	17.1 What is Filtering?
	17.2 How is Filtering Different from Searching?
	17.3 How to Implement Filtering in ASP.NET Core Web API
	17.4 Sending and Testing a Query

	18 Searching
	18.1 What is Searching?
	18.2 Implementing Searching in Our Application
	18.3 Testing Our Implementation

	19 Sorting
	19.1 What is Sorting?
	19.2 How to Implement Sorting in ASP.NET Core Web API
	19.3 Implementation – Step by Step
	19.4 Testing Our Implementation
	19.5 Improving the Sorting Functionality

	20 Data Shaping
	20.1 What is Data Shaping?
	20.2 How to Implement Data Shaping
	20.3 Step-by-Step Implementation
	20.4 Resolving XML Serialization Problems

	21 Supporting HATEOAS
	21.1 What is HATEOAS and Why is it so Important?
	21.1.1 Typical Response with HATEOAS Implemented
	21.1.2 What is a Link?
	21.1.3 Pros/Cons of Implementing HATEOAS

	21.2 Adding Links in the Project
	21.3 Additional Project Changes
	21.4 Adding Custom Media Types
	21.4.1 Registering Custom Media Types
	21.4.2 Implementing a Media Type Validation Filter

	21.5 Implementing HATEOAS

	22 Working with OPTIONS and HEAD Requests
	22.1 OPTIONS HTTP Request
	22.2 OPTIONS Implementation
	22.3 Head HTTP Request
	22.4 HEAD Implementation

	23 Root Document
	23.1 Root Document Implementation

	24 Versioning APIs
	24.1 Required Package Installation and Configuration
	24.2 Versioning Examples
	24.2.1 Using Query String
	24.2.2 Using URL Versioning
	24.2.3 HTTP Header Versioning
	24.2.4 Deprecating Versions
	24.2.5 Using Conventions

	25 Caching
	25.1 About Caching
	25.1.1 Cache Types
	25.1.2 Response Cache Attribute

	25.2 Adding Cache Headers
	25.3 Adding Cache-Store
	25.4 Expiration Model
	25.5 Validation Model
	25.6 Supporting Validation
	25.6.1 Configuration

	25.7 Using ETag and Validation

	26 Rate Limiting and Throttling
	26.1 Implementing Rate Limiting

	27 JWT and Identity
	27.1 Implementing Identity in ASP.NET Core Project
	27.2 Creating Tables and Inserting Roles
	27.3 User Creation
	27.4 Big Picture
	27.5 About JWT
	27.6 JWT Configuration
	27.7 Protecting Endpoints
	27.8 Implementing Authentication
	27.9 Role-Based Authorization

	28 Documenting API with Swagger
	28.1 About Swagger
	28.2 Swagger Integration Into Our Project
	28.3 Adding Authorization Support
	28.4 Extending Swagger Configuration

	29 Deployment to IIS
	29.1 Creating Publish Files
	29.2 Windows Server Hosting Bundle
	29.3 Installing IIS
	29.4 Configuring Environment File
	29.5 Testing Deployed Application

