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Chapter 1

What this book is about
and who should read it
This book is aimed at people who are familiar with the use of routine NMR
for structure determination and who wish to deepen their understanding of
just exactly how NMR experiments ‘work’. It is one of the great virtues of
NMR spectroscopy that one can use it. and indeed use it to quite a high level,
without having the least idea of how the technique works. For example,
we can be taught how to interpret two-dimensional spectra, such as COSY,
in a few minutes, and similarly it does not take long to get to grips with
the interpretation of NOE (nuclear Overhauser effect) difference spectra.
In addition, modern spectrometers can now run quite sophisticated NMR
experiments with the minimum of intervention, further obviating the need
for any particular understanding on the part of the operator.

You should reach for this book when you feel that the time has come to
understandjust exactly what is going on. It may be that this is simply out of
cufiosity, or it may be that for your work you need to employ a less common
technique. modify an existing experiment to a new situation or need to
understand more fully the limitations of a particular technique. A study
of this book should give you the confidence to deal with such problems and
also extend your range as an NMR spectroscopist.

One of the difliculties with NMR is that the language and theoretical
techniques needed to describe it are rather different from those used for just
about all other kinds of spectroscopy. This creates a barrier to understand-
ing, but it is the aim of this book to show you that the barrier is not too
difficult to overcome. Indeed. in contrast to other kinds of spectroscopy,
we shall see that in NMR it is possible, quite literally on the back of an
envelope, to make exact predictions of the outcome of quite sophisticated
experiments. Further, once you have got to grips with the theory, you should
find it possible not only to analyse existing experiments but also dream up
new possibilities.

There is no getting away from the fact that we need quantum mechanics
in order to understand NMR spectroscopy. Developing the necessary quan-
tum mechanical ideas from scratch would make this book rather a hard read.
Luckily, it is not really necessary to introduce such a high level of formality

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons. Ltd



2 E _

What this book is about and who should read It

Optional sections are marked like this:

provided we are prepared to accept, on trust, certain quantum mechanical
ideas and are prepared to use these techniques more or less as a recipe. A
good analogy for this approach is to remember that it is perfectly possible to
learn to add up and multiply without appreciating the finer points of number
theory.

One of the nice features we will discover is that, despite being rigorous,
the quantum mechanical approach still retains many features of the simpler
vector model often used to describe simple NMR experiments. Once you
get used to using the quantum mechanical approach, you will find that it
does work in quite an intuitive way and gives you a way of ‘thinking’ about
experiments without always having to make detailed calculations.

Quantum mechanics is, of course, expressed in mathematical language,
but the mathematics we will need is not very sophisticated. The only topic
which we will need which is perhaps not so familiar is that of complex
numbers and the complex exponential. These will be introduced as we go
along, and the ideas are also summarised in an appendix.

1.1 How this book is organized
The ideas we need to describe NMR experiments are built up chapter by
chapter, and so the text will make most sense if it read from the beginning.
Certain sections are not crucial to the development of the argument and so
can be safely omitted at a first reading; these sections are clearly marked as
such in the margin.

Chapter 6, which explains how quantum mechanics is formulated in a
way useful for NMR, is also entirely optional. It provides the background
to the product operator formalism, which is described in Chapter 7, but this
latter chapter is written in such a way that it does not rely on anything from
Chapter 6. At some point, I hope that you will want to find out about what
is written in Chapter 6, but if you decide not to tackle it, rest assured that
you will still be able to follow what goes on in the rest of the book.

The main sequence of the book really ends with Chapter 8. which is
devoted to two-dimensional NMR. You should dip into Chapters 9-12 as
and when you feel the need to further your understanding of the topics they
cover. This applies particularly to Chapter 10 which discusses a selection
of more advanced ideas in two-dimensional NMR, and Chapter 1 1 which is
concemed with the rather ‘technical’ topic of how to write phase cycles and
how field gradient pulses are used.

Quite deliberately, this book starts off at a gentle pace, working through
some more-or~less familiar ideas to start with, and then elaborating these as
we follow our theme. This means that you might find parts of the discussion
rather pedestrian at times, but the aim is always to be clear about what is
going on. and not to jump over steps in calculations or arguments. The
same philosophy is followed when it comes to the more diflicult and/of 1658
familiar topics which are introduced in the later chapters. If you are already
familiar with the vector model ofpulsed NMR. and are happy with thinking
about multiplets in terms of energy levels, then you might wish to jump in



1.2 Scope and limitations i

at Chapter 6 or Chapter 7.
Each chapter ends with some exercises which are designed to help your

understanding of the ideas presented in that chapter. Tackling the exercises
will undoubtedly help you to come to grips with the underlying ideas,

1.2 Scope and limitations
1n this book we are going to discuss the high—resolution NMR of liquid
samples and we will concentrate, almost exclusively, on spin-half nu-
clei (mainly ‘H and 13C). The NMR of solids is an important and fast-
developing field, but one which lies outside the scope of this book.

The experiments we will choose to describe are likely to be encountered
in the routine NMR of small to medium-sized molecules. Many of the
experiments are also applicable to the study of large biomolecules, such
as proteins and nucleic acids. The special multi-dimensional experiments
which have been devised for the study of proteins will not be described here,
but we note that such experiments are built up using the repertoire of pulsed
techniques which we are going to look at in detail.

The existence of the chemical shift and scalar coupling is, of course,
crucial to the utility of NMR spectroscopy. However, we will simply treat
the values of shifts and coupling constants as experimentally derived para-
meters; we will have nothing to say about their calculation or interpretation
— topics which are very well covered elsewhere.

1.3 Context and further reading
This is not a ‘how to’ book: you will find no advice hero on how to select
and run a particular experiment, nor on how to interpret the result in terms
of a chemical structure. What this book is concerned with is how the
experiments work. However, it is not a book of NMR theory for its own
sake; rather, the ideas presented, and the theories introduced, have been
chosen carefully as those most useful for understanding the kinds of NMR
experiments which are actually used.

There are many books which describe how modern NMR spectroscopy
is applied in structural studies, and you may wish to cgnsult those alongside
this text in order to see how a particular experiment is used in practice. Two
useful texts are: J K M Sanders and B K Hunter M0dern NMR Spectroscopy
(2nd edition, OUP, 1993), and T D W Claridge I-Ifg/1-Regolulion NMR
Techniques in Organic Chemistry (Elsevier Science, 1999)_

There are also a number of books which are at roughly the same level
as this text and which you may wish to consult for funnor information
or an alternative view. Amongst these, R Freeman Spin Ch()re0grap]7_y
lSpektrum, 1997), and F J M van de Ven Multidimensional NMR in Liquids
(VCH, 1995) are particularly useful. If you wish to go further and deeper
into the theory of NMR, M H Levitt Spin Dyfldlhfcs (Wiley, 2001) is an
excellent place to start.

The application of NMR to structural studies of biomolecules is a vast
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area which we will only touch on from time to time. A detailed account,
covering both theoretical and practical matters can be found in J Cavanagh,
W J Fairbrother, A G Palmer lII and N J Skelton Protein NMR Spec-
troscopy." Principles and Practice (Academic Press, 1996).

At the end of each chapter you will also find suggestions for further
reading. Many of these are directions to particular chapters of the books we
have already mentioned.

1.4 On-line resources
A solutions manual for the exercises at the end of each chapter is available
on-line via the spectr0sc0pyN0W website:

http://www.spectr0scopynow.c0m/nmr
follow the ‘Education’ link from this page

A liSl of corrections and amendments will also be available on this site, as
Well as other additional material. It will also be possible to download all of
the figures (in ‘tif’ format) from this book.

1.5 Abbreviations
ADC
COSY
CTP
DQF COSY
FID
HETCOR
HMBC
HMQC
HSQC
NMR
NOE
NOESY
RF
TX
ROESY
SHR
SNR
TOCSY
TPPI
TROSY
IX

analogue to digital converter
correlation spectroscopy
coherence transfer pathway
double-quantum filtered COSY
free induction decay
heteronuclear correlation
heteronuclear multiple-bond correlation
heteronuclear multiple-quantum correlation
heteronuclear single-quantum correlation
nuclear magnetic resonance
nuclear Overhauser effect
nuclear Overhauser effect spectroscopy
radiofrequency
receiver
rotating frame Overhauser effect spectroscopy
States—Haberkorn-Ruben
signal-to—noise ratio
total correlation spectroscopy
time proportional phase incrementation
transverse relaxation optimized spectroscopy
transmitter



Chapter 2

Setting the scene
You will probably find that much of this chapter covers topics you are famil-
iar with or have at least come across before. The point of the chapter is, as
the title says, to set the scene for what follows by reminding you of the basic
language of NMR. how we describe NMR spectra and how some important
quantities are defined. There is also a section on oscillations and rotations,
explaining how these are described and represented mathematically. These
are key ideas which we will use extensively in the rest of the book.

2.1 NMR frequencies and chemical shifts
Like all forms of spectroscopy, an NMR spectmm is a plot of the intensity
of absorption (or emission) on the vertical axis against frequency on the
horizontal axis. NMR spectra are unusual in that they appear at rather
low frequencies, typically in the range 10 to 800 MHZ, corresponding to
wavelengths from 30 m down to 40 cm. This is the radiofrequency (RF) part
of the electromagnetic spectrum which is used for radio and TV broadcasts,
mobile phones etc.

It is usual in spectroscopy to quote the frequency or wavelength of
the observed absorptions; in contrast, in NMR we give the positions of
the lines in ‘ppm’ using the chemical shift scale. The reason for using a
shift scale is that it is found that the frequencies of NMR lines are directly
proportional to the magnetic field strength. So doubling the field strength
doubles the frequency, as shown in Fig. 2.1. This field dependence makes
it difficult to compare absorption frequencies between spectrometers which
operate at different field strengths, and it is to get round this problem that
the chemical shift scale is introduced. On this scale, the positions of the
peaks are independent of the field strength. In this section we will explore
the way in which the scale is defined, and also how to convert back and
forth between frequencies and ppm — something we will need to do quite
often.

Before we look at the definition of the chemical shift it is worthwhile
pointing out that the frequency at which an NMR signal appears also
depends on the nuclear isotope (e.g_ ‘I-I, BC, ‘SN etc.) being studied.
Also, for a given field, the NMR absorptions for a particular isotope cover

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons, Ltd
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Fig. 2.1 Schematic NMR spectra consisting of two lines. ln (a) the magnetic field is such that
the two lines appear at 200.0002 and 200.0004 MI-lz, respectively: their separation is 200 Hz.
The spectrum shown in (b) is that expected when the applied magnetic field is doubled. The
frequency of each peak is doubled and. as a consequence. the separation between the two peaks
has now, also doubled to 400 H2.

rather a small range of frequencies relative to the absolute frequency of the
absorption. In an experiment it is therefore usual only to measure the NMR
spectrum from one particular isotope at a time.

2.1.1 Chemical shift scales
The chemical shift scale is set up first by agreeing a simple reference com-
pound, a line from which is taken to define zero on the chemical shift scale.
For ll-l and “C this reference compound is TMS. The choice of reference
compound is arbitrary, but subject to careful intemational agreement so as
to make sure everyone is using the same compound and hence the same
origin on their shift scales.

The position of a peak in the spectrum is specified by measuring its fre-
quency separation from the reference peak, and then dividing this difference
by the frequency of the reference peak. As we are taking the ratio of two
frequencies. the field dependence cancels out. The ratio thus specifies the
position of a line in a way which is independent of the applied field. which
is what we require.

Expressed mathematically. the chemical shift 6 is given by

6(PPm) = 10° >< (2.1)
Ural’

where u is the frequency of the NMR line in question and um; is the fre-
quency of the line from the agreed reference compound. Clearly. the line
from the reference compound will appear at 6 = 0.

It is usual to quote chemical shifts in ‘parts per million’ (ppm) in order
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Fig. 2.2 A schematic NMR spectrum consisting of two lines is shown with both a frequency
scale and a chemical shift scale, in ppm. The left-hand peak has been chosen as the reference,
and so appears at 0 ppm. Nate that it is usual for the ppm scale co be plotted increasing to the
left. and not to the right as shown here.

to make the numbers more convenient; this is why in the definition of 6
the ratio is multiplied by 106. Figure 2.2 shows the schematic spectrum of
Fig. 2.1 (b) with both a frequency scale and a chemical shift scale in ppm;
the left hand peak has been chosen as the reference and so appears at 0 ppm.
The right hand peak appears at 1 ppm and it is easy to see that if a ppm scale
were to be added to the spectrum of Fig. 2.1 (a), the right hand peak would
still be at 1 ppm.

2.1.2 Conversion from shifts to frequencies
Sometimes we need to know the frequency separation of two peaks, in
HZ. The software used to process and display NMR spectra usually has
an option to toggle the scale between I-Iz and ppm, so measuring the peak
separation is quite easy. However, sometimes we will need to make the
conversion from ppm to HZ manually.

The definition of the chemical shift, Eq. 2.1, can be rearranged to

1O'6 >< 6(ppm) x vmf = v — vmf.

From this it is clear that a peak at 6 ppm is separated from the reference
peak by 10-6 x 6 x umf. It follows that two peaks at shifts 61 and 62 are
separated by a frequency of l0'° X (61 —— 62) >< uref.

It is usual to express the frequency of the reference peak in MHZ
(= 106 HZ); when this is done the factor of 104’ cancels and the frequency
separation in HZ is simply

frequency separation in Hz = (61 — 62) X u,s¢(in MHZ). (2.2)

So, for example, if the reference frequency is 500 MHZ. then two peaks at
2.3 and 1.8 ppm are separated by (2.3 — 1.8) >< 500 = 250 I-I1.

Put even more simply, if the frequency ofthe reference peak is 500 MHZ
then 1 ppm corresponds to 500 Hz; if the reference peak is at 800 MHZ,
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Fig. 2.3 Our two-line spectrum is shown with both a frequency scale and an offset frequency
scale. The receiver reference frequency has been chosen as 400.0007 MHZ, as indicated by the
arrow. As a result, the right-hand peak has an offset frequency of + 100 Hz and the left-hand
peak has an offset of -300 Hz. lt is important to realise that the choice of the receiver reference
frequency is entirely arbitrary and is not related to the frequency of the resonance from the
reference compound.

1 ppm corresponds to 800 Hz. The conversion from ppm to Hz is therefore
rather simple.

2.1.3 The receiver reference frequency and the offset frequency
The RF circuits in virtually all NMR spectrometers are arranged in such
a way that the frequencies of the peaks in the spectrum are not measured
absolutely but are determined relative to the receiver reference frequency.
This reference frequency can be set quite arbitrarily by the operator of the
spectrometer; typically, it is placed somewhere in the middle of the peaks
of interest.

It is important to realize that this receiver reference frequency has got
nothing to do with the resonance from the reference compound; the receiver
reference can be placed anywhere we like. The usual arrangement is that
when the full spectrum is displayed, the receiver reference frequency is in
the middle of the displayed region, so the frequencies of the peaks can be
positive or negative, depending on which side of the reference frequency
they fall.

The frequency of a peak relative to the receiver reference frequency is
called the oflserfrequency (or, for short, the offset) of the peak. This offset
frequency uomc, is given by

Uoffsel I U '" Urx.

where v is the frequency of the peak of interest and um is the receiver
reference frequency (‘rx’ is the traditional abbreviation for receiver). We
see from this definition that the offset frequency can be positive or negative.
as exemplified in Fig. 2.3.

When calculating the chemical shift using Eq. 2.l on p. 6 it is usually
sufficiently accurate to divide, not by the frequency of the line from the
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reference compound (2/M), but by the receiver reference frequency, um:

U ‘T Uref6(ppm) = 10° >< __. (2.3)
Urx

The reason for this is that NMR resonances cover such a small range relative
to their absolute frequencies that, provided the receiver reference frequency
is somewhere in the spectrum, the difference between um and um is com-
pletely negligible. Similarly, when converting from shifts to frequencies
(Eq. 2.2). it is generally sufficiently accurate to use the receiver reference
frequency in place of umf.

2.2 Linewidths, lineshapes and integrals
We cannot extract much useful information from a spectrum unless the
peaks or multiplets are clearly separated from one another - an observation
which is as true for the most complex multi-dimensional spectrum as it
is for the simplest conventional ‘H spectrum. Whether or not two peaks
are resolved will depend on the separation between them relative to their
linewidth and, to an extent, their lineshape. These two properties are thus
of paramount importance in NMR.

It is not uncommon for lines in NMR spectra of small to medium-sized
molecules to have widths of a few HZ. Thus, compared with their absolute
frequencies, NMR lines are very narrow indeed. However, what we should
really be comparing with the linewidth is the spread of frequencies over
which NMR lines are found for a given nucleus. This spread is generally
rather small, so relatively speaking the lines are not as narrow as we might
suppose. Indeed, NMR experiments on complex molecules are primarily
limited by the linewidths of the resonances involved.

The basic lineshape seen in simple NMR experiments is the absorption
mode lineshape, illustrated in Fig. 2.4. The lineshape is entirely positive
and is symmetrical about the maximum. The breadth ofthe line is specified
by quoting its width at half ofthe peak height, as is also shown in the figure.

When we first learn about proton NMR we are told that the area under a
peak or multiplet, i.e. the integral, is proportional to the number of protons
giving rise to that feature. It therefore follows that if two peaks are both
associated with single protons, they must have the same integral and hence
if one of the lines is broader it will have reduced peak height; this is
illustrated in Fig. 2.5. This reduction in peak height also means that the
signal—to-noise ratio of the spectrum is reduced.

As two lines get closer and closer together, they begin to overlap and
eventually will merge completely so that it is no longer possible to see the
two separate lines; the process is illustrated in Fig. 2.6. The diagram shows
that, by the time the separation falls somewhat below the linewidth, the
merging ofthe two lines is complete so that they are no longer distinct. The
exact point at which the lines merge depends on the lineshape.

‘go
I

h _________ _ _

/1/2 -------- - -

frequency

Fig. 2.4 An absorption mode lineshape.
The peak is centred at t/0 and is of height h;
the width of the peak is specified by giving
the width W measured at half the peak
height (h/2).

(H) (bl

Fig. 2.5 Illustration of how the area or
integral of a peak corresponding to a certain
number of protons is fixed. The peak shown
in (b) is three times broader than that shown
in (a); however. they have the same integral
(shown by the grey line). As a result. the
peak height of the broader line is reduced.
also by a factor of three.
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Flg. 2.7 Spectrum (a) shows two lines. at
frequencies v1 and ug, from two different
spins. If there is a scalar coupling between
the spins, each line splits symmetrically into
two. giving two doublets, as shown in (b).
The splitting of the two lines in each doublet
is the coupling constant, J12. One way of
thinking about the two lines of a doublet is
to associate one line with the coupled spin
being in the ‘up’ spin state, and the other
line with the coupled spin being in the
‘down’ spin state; these spin states are
indicated by the open-headed arrows.
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Fig. 2.6 Illustration of how the ability to resolve two lines depends on their separation relative
to the linewidth. In (a) the separation A is twice the linewidth, W; the two peaks are clearly
resolved. In (b) the separation has decreased so that it is equal to [.5 times the linewidth and as
a result the ‘dip‘ between the two lines is less pronounced. Further reduction in the separation
makes the dip even smaller, as in (c) where the separation is equal to the linewidth. Finally,
in (d) where the separation is half of the linewidth, the two peaks are no longer distinct and a
single line is seen.

2.3 Scalar coupling
Scalar or J coupling between nuclei is mediated by chemical bonds and is
therefore very useful in establishing which nuclei are close to one another
on the bonding framework. The presence of such coupling gives rise to
multiplets in the spectrum; for example, as shown in Fig. 2.7, if two spin-
half nuclei are coupled, the resonance from each spin splits symmetrically
about the chemical shift into two lines, called a doubler.

Each doublet is split by the same amount, a quantity referred to as the
coupling constant, J. It is found that the values of coupling constants are
independent of the field strength; they are always quoted in Hz.

One way of thinking about the two lines of a doublet is to associate
them with different spin states of the coupled spin. The idea here is that
a spin-half nucleus can be in one of two spin states, described as ‘up’ and
‘down’ (in Chapter 3 we will have a lot more to say about what up and down
actually mean). So, for the doublet centred at the chemical shift of the first
spin, one line is associated with the second spin being in the up spin state,
and the other line is associated with the second spin being in the down spin
state; Fig. 2.7 (b) illustrates the idea. Similarly. for the doublet centred at
the shift of the second spin, one line is associated with the first spin being
up and the other line with the first spin being down.

In terms of frequencies. the line associated with the coupled spin being
in the up state is shifted by %J|2 to the left, and the line associated with
the coupled spin being in the down state is shifted by %.I;; to the right. So.
the two lines of the doublet are separated by J11, and placed symmetrically
about the chemical shift.

2.3.1 Tree diagrams
If there are couplings present to further spins. the form of the multiplets can
be predicted using ‘tree’ diagrams. of the type shown in Fig. 2.8. Multiplet
(a) is the doublet arising from the first spin due to its coupling to the second:
over the multiplet is shown the tree diagram which can be used to construct
it. At the top, we start with a line at v|; in the next layer down this line splits
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Fig. 2.8 Illustration of how multiplets are built up as a result of scalar coupling. In (a) we
see a doublet which arises from the coupling of the first spin to a second spin: the coupling
constant is ./|g. The doublet can be built up using a tree diagram in which the original line at
vi is split symmetrically into two; the left-hand line is associated with the second spin being
up (indicated by an upward pointing arrow), and the right-hand line is associated with the
second spin being ‘down‘ (a downward arrow). ifthe first spin is also coupled to a third spin,
with coupling constant J13, each line of the doublet is split once more, as is shown in (b);
the resulting multiplet is called a doublet of doublets. The first branching of the tree diagram
represents the coupling to the second spin and is the same as in (a). The second layer represents
the coupling to the third spin: again, the line which splits to the left is associated with the third
spin being up, and the one which splits to the right is associated with the third spin being down.
The spin states of the second spin are Shown using arrows with open heads, whereas those of
the third spin have filled heads. Each line of the doublet of doublets is thus associated with
particular spin states of the two coupled spins. The parameters chosen to draw the diagram
were:t/1: 0, J12 =15 Hz and J13 = 20 Hz.

symmetrically into two: one shifted by %J12 to the left, and one by %J1; to
the right, thus producing the doublet. These two branches can be associated
with the second spin being in the up and down spin states, respectively.

If a third spin is now introduced which also has a coupling (of size
J13) to the first spin, we have to add another layer of branching to the tree
diagram; this is shown in Fig. 2.8 (b). As before, we start with a line at vi;
the first layer of the branching is due to the coupling to the second spin, and
is exactly the same as in (a). To construct the second layer, each line from
the first is split symmetrically into two but this time with the splitting being
J13. As before, the branch which splits to the left is associated with the third
spin being up and the branch which splits to the right is associated with the
third spin being down. Overall, the result is a four line multiplet, called a
doubler of doublets.

If we assume that a branching to the left reduces the frequency of the
line, and that a branching to the right increases it, we can work out the
frequencies of each of the four lines of the doublet of doublets simply
by noting whether they are the result of a branching to the left or right.
So, the left-most line of the doublet of doublets shown in (b) must have
frequency (ul — %J|2 - %J13), whereas the next line along has frequency
(vi + %J1z — %J;3) as it derives from a branching to the right due to the
coupling to the second spin and a branching to the left due to the coupling

i _ \ “J 1
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to the third spin.
You should convince yourself that the doublet of doublets looks exactly

the same if, in the tree diagram, you first split according to the coupling to
the third spin and then according to the coupling to the second spin.

The question arises as to how we know that it is the up spin state which
is associated with the line which splits to the left. In fact, whether it is
the up or down state depends on the sign of the coupling constant; here we
have chosen both couplings to be positive. In section 3.6 on p. 40 we will
retum to the influence which the sign of the coupling has on the spectrum.
However, for the moment we will simply note that the appearance of the
multiplet is unaffected by the sign ofthe coupling.

The final thing to note from Fig. 2.8 is that since the doublet and the
doublet of doublets are both from one spin. the integral of both must be
the same. So, adding the second splitting to form the doublet of doublets
reduces the intensity ofthe lines by a factor of two.

2.4 Weak and strong coupling
All we have said so far about the multiplets which arise from scalar coup-
ling is applicable only in the weak coupling limit. This limit is when the
frequency separation of the two coupled spins is much larger in magnitude
than the magnitude ofthe scalar coupling between the two spins.

For example, suppose that we record a proton spectrum at 500 MHZ and
that there are two protons whose resonances are separated by 2 ppm and
which have a coupling of 5 Hz between them. As explained in section 2.1.2
on p. 7, the frequency separation between the two lines is 2><5OO = 1000 Hz.
This is two hundred times greater than the coupling constant, so we can be
sure that we are in the weak coupling limit. The coupling between different
isotopes (e.g. '3C and 'H) is always in the weak coupling limit on account
of the very large frequency separation between the resonance frequencies
of different isotopes (usually of the order of several Ml-Iz).

On the other hand, if the frequency separation of the resonances from
two coupled spins is comparable to the coupling constant between them,
we have what is called strong coupling. In this limit, both the frequencies
and intensities of the lines are perturbed from the simple weak coupling
prediction.

Figure 2.9 shows what happens for two coupled spins as their frequency
separation decreases. In (a), where the frequency separation is eight times
the coupling constant, the multiplets are more or less as expected: however,
even at this separation we can see some perturbation as the lines no longer
all have the same intensity. As the separation decreases further, shown in (b)
and (c), the intensity perturbation becomes more noticeable. with the two
‘outer’ lines (p and s) becoming weaker and the two ‘inner’ lines (q and
r) becoming stronger. This intensity perturbation results in what is called
‘roofing’ as the profile of the intensities is reminiscent of the slope ofa roof.

Another feature of these strongly coupled spectra is that the mid-point
of the two left~hand lines (p and q) no longer corresponds to the chemical
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Flg. 2.9 Illustration of the effects of strong coupling on the spectrum of two coupled spins.
The frequency scale is in Hz, relative to an arbitrary origin; the coupling constant between
the two spins is 5 Hz. The offset of the first spin, denoted vi, is kept constant at IO HZ: the
offset of the second spin. U2, varies from spectrum to spectnun and is shown by the dashed
line. In spectra (a)-(d) the frequency separation between the two spins decreases progressively,
making the spectrum more and more strongly coupled. As the olfsets of the two spins move
closer together the intensities of the lines are perturbed. In addition, the two left-hand lines (p
and q) are no longer symmetrically placed around the offset of spin one, and similarly the two
right-hand lines (r and s) are no longer symmetrically placed about the offset of spin two. The
intensity perturbations give rise to the familiar ‘roofing’ effect in which the intensities of the
four lines are reminiscent of the line ofa roof(shown dashed in spectrum (0)). In the limit that
the two offsets are the same. spectrum td), the outer two lines (p and 5) disappear and we find
a single peak at this offset.

shift (or offset) of one of the spins; similarly, the mid-point of the right two
lines (r and s) no longer corresponds to the shift of the other spin. This
effect is particularly noticeable in spectrum (c).

In the limit that the separation of the two spins goes to Z€rO (lr¢- 3163’
have the same shift or offset). the intensity of the two outer lines (p and s)
goes to zero, the two inner lines (q and r) acquire all the intensity and lie
on top of one another. The result is a single line, as shown in (d)- The
key thing to notice here is that even though the two spins are coupled,
there is no evidence of this in spectrum (d) — we would see exactly the
same spectrum if the two spins were not coupled to one another. This is an
example of the rule we leam early on when interpreting NMR Spectra Which
is that ‘equivalent spins do not split one another’. For spectrum (d), we have
two spins with identical shifts, which makes them equivalent: therefore, no
splitting is seen.
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For systems with more than two spins, the presence of strong coupling
gives rather more complex spectra than seen for a two-spin system. Not
only are intensity perturbations seen, but it is also possible for extra lines
to appear. The full analysis of such spectra is rather complex and is usually
done with the aid of computer programs.

Unless we say otherwise, everything described in this book applies
only to weakly coupled spin systems. This is something of a limitation,
but for strongly coupled systems the calculations for all but the simplest
experiments become very much more complex and the resulting spectra are
rather hard to interpret, so little is to be gained by such an analysis. In
practice, therefore, we need not be too worried by this limitation to weak
coupling.

Confusion can arise as the term strong coupling is sometimes used to
mean a coupling constant with a large size. Strictly, this is an erroneous use
of the term.

2.5 The basic NMR experiment
The way we actually record an NMR spectrum using a pulsed experiment is
shown in Fig. 2.10. First, a delay is left in order to allow the spins to come
to equilibrium; this is called the relaxation delay, 1,. Typically this delay is
of the order of a few seconds.

Next, a very short burst, typically lasting no more that 20 as, of high
power RF is applied; this excites a transient signal known as afree induction
decay or FID. The FID is then recorded for a time called the acquisition
time, rm which usually lasts between 50 ms and a few seconds. Finally,
Fourier transformation of the FID gives us the familiar spectrum.

The NMR signal tends to be rather weak, so that it is almost never the
case that the spectrum from a single FID has sufficient signal-to-noise to be
useful. In order to improve the signal-to-noise ratio we use time averaging.
The idea here is to repeat the experiment many times and then add together
the resulting FIDs. The signal part of the FID simply adds up so that after
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Flg. 2.10 Timing diagram showing how a basic NMR spectrum is recorded. The line marked
‘tx' shows the location of high-power RF pulses; ix is the traditional abbreviation for an RF
transmitter. The NMR signal is detected by at receiver during the times shown on the line
marked rx. During time 1, the spins come to equilibrium. A very short RF pulse is applied for
time tp and then the resulting FID is recorded for time rm. In order to improve the signal-to-
noise ratio, the whole process is repeated several times over and the FIDs are added together:
this process is called time averaging. I-Iere. the experiment is repeated three times.
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Fig. 2.11 300 MHZ proton spectrum of quinine (in CDCl3 solution), whose structure is shown
in Fig. 2.12. The group of multiplets between 7 and 9 ppm are clearly from the aromatic ring,
while those between 4.5 and 6 ppm include the protons on the double bond. The intense peak
at 3.8 ppm (which has been truncated) is from the OCH 3 group.

N experiments the signal will be N times stronger. However, the noise,
because it is random, adds up more slowly — usually increasing as \/N.
Overall, then, repeating the experiment N times gives an improvement in
the signal-to-noise ratio by a factor of We usually describe this by
saying that N ‘transients’ or ‘scans’ were recorded; calling each experiment
a scan is something of a misnomer, but it is an historic usage which has
stuck firmly.

Figure 2.1 l shows the proton spectrum of quinine, whose structure is
shown in Fig. 2.12. Throughout the rest of the text, we will be using spectra
of this molecule to illustrate various different experiments.

2.5.1 Heteronuclear NMR and broadband decoupling
In an NMR experiment we can usually only observe one kind of nucleus at
a time, such as proton, 13C or '5N. Historically, proton NMR was the first to
be exploited widely, and it is still the most recorded nucleus. As a result, all
nuclei which are not protons are grouped together and called heteronuclei.

Scalar couplings can occur between any magnetic nuclei which are
reasonably close on the bonding network. It is usual to distinguish between
homonuclear couplings, which are couplings between nuclei of the same
type, and heteronuclear couplings, which are couplings between nuclei of
different types.

While couplings certainly provide useful information, at times they can
be troublesome as the presence of many couplings will result in complex
broad multiplets. This is particularly the case when observing BC spectra
of organic molecules in which any one BC is likely to be coupled to several
protons.

The effect of all of these J3C—'I-l couplings can be removed if, while
the “C spectrum is recorded, the protons are irradiated with a broadband
decoupling sequence. Such sequences generally involve continuous irra-
diation of the protons with a carefully designed repeating set of pulses of
particular phases and flip angles. The most commonly employed sequence

HO
N

H3CO /

\ I
N

rip?“

\

Fig. 2.12 The structure of quinine.
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Fig. 2.13 300 MHz 13C spectrum of quinine recorded without broadband proton decoupling.
The presence of both the large one~bond '-‘CJ H couplings, and numerous long-range coup-
lings, makes for a rather complex spectrum. The intense l:l:l triplet at 77 ppm is from the
CDC]; solvent.
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Fig. 2.14 300 MHz BC spectrum of quinine recorded with broadband proton decoupling.
The resulting collapse of all the multiplets means that each UC gives rise to a single line.
Compared with the coupled spectrum, Fig. 2.l3, both the resolution and the signal-to-noise
ratio has improved greatly.

is called WALTZ—l6, although there are many more which can be used.
Such broadband decoupling essentially sets all of the '3C—1H couplings to
zero, so that in the BC spectrum there is a single peak at each shift. The sim-
plification achieved is very significant, and in addition the signal-to-noise
ratio is improved as all of the intensity appears in a single line rather than
being spread across a multiplet. This is well illustrated by the comparison
of Figs 2.13 and 2.14, which are the coupled and decoupled '3C spectra of
quinine.

The main issue with broadband decoupling sequences is that, as they
are applied continuously during data acquisition, the sample itself may be
heated to a significant degree simply by absorbing the RF power. The wider
the range of chemical shifts of the nucleus being irradiated, the more power
is needed and hence the more serious the heating effect. For protons. with
their modest shift range, this is generally not a problem. However, if we
want to observe protons and decouple “C, the wide range of “C shifts
means that more power is required and so heating can be more of a problem.
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2.6 Frequency, oscillations and rotations
Quantities with the dimensions of frequency occur a great deal in NMR:
for example the frequencies of the lines themselves, offset frequencies and
coupling constants. Often, when we specify a frequency we are thinking
of it in relation to some kind of oscillation or, as we shall see is more
common in NMR, a rotation. In this section we will look at how we specify
frequencies, how they are related to rotations and how the resulting motion
or oscillation can be expressed mathematically.

2.6.1 Motion in a circle
A good way to start is to think about a particle moving with constant speed
along the circumference of a circle of radius r. Imagine a line joining the
centre of the circle to the particle — this line is best described as a vector.
As the particle moves around the circle, the position of the particle changes
constantly but we can specify exactly where it is simply by giving the angle
through which the vector has rotated.

The situation is depicted in Fig. 2.15. At time zero the particle is on the
x-axis; after some time, the particle has moved so that the vector joining it
to the origin makes an angle 6 to the x-axis. From the diagram, it is clear
that the x-coordinate of the particle is r cos 6 and the y-coordinate is r sin 6.

Another way of looking at this is to say that the x-component of the
vector is rcos 6; by ‘component’ we mean the projection of the vector onto
the axis. This projection is found by drawing a line from the tip of the vector
and which is perpendicular to the x-axis; where this line cuts the x—axis gives
the component along that axis.

Figure 2.16 shows these x- and y—components plotted against the angle
6; above the graph is shown the corresponding position of the particle.
Rather than specifying the angle in degrees we have chosen to give it in
radians. Recall that there are 2rr radians in a complete revolution i.e. 360°.
So, 6 = 71’/2 corresponds to one quarter of a revolution or 90°; similarly,
6 = 31r/2 corresponds to three quarters of a revolution, or 270°.

The rotation of the particle, which is simply a steady increase in the
angle 6, gives rise to x- and y—components which are oscillating as cosine
and sine functions. We see that there is thus a strong connection between
rotational and oscillatory motion.

2.6.2 Frequency
We started out by supposing that the particle was moving around the circle
at a constant speed. Suppose that it takes a time T to complete one revo-
lution — this is called the period. This period is the same for the sine and
cosine waves which describe the position of the particle; it is the time after
which they repeat.

Thefrequency of the rotation or oscillation, u is simply

_l
v-T.

So a fast oscillation or rotation, which has a short period, corresponds to a

.W
Fig. 2.15 Imagine a particle following a
circular path about the origin; here the
rotation is anti-clockwise. At time zero. the
particle starts on the x-axis and after a
certain time it has rotated through an angle
6, measured from the x-axis. If the circle is
of radius r, the x- and y-coordinates are
r cos 6 and r sin 6, respectively. These
coordinates are also the x- and
y—components of the vector from the origin
to the particle.
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Fig. 2.16 Illustration of how the x- and _v-components of the vector specifying the position of
a particle moving round a circular path vary with the angle 6. as defined in Fig. 2.15. The x-
and y—components vary as cos 6 and sin 6, and are shown by black and grey lines, respectively.
For some selected angles. the position of the particle is shown above the graph; the horizontal
axis gives the angle 9 in radians, expressed as multiple of rt. Note that the x- and y—components
can be positive and negative, and that after a complete revolution, 6 = 21r. the pattern repeats.

high frequency. Another way of thinking about the frequency is to see it as
the number of cycles or oscillations per unit time.

The period is specified in seconds (s), so the frequency has units s
or, equivalently, Hertz (symbol Hz). Thus an oscillation or rotation with a
period of 0.0013 s corresponds to a frequency of 769 Hz. In words, this
means that in 1 s (that is, a unit of time) the oscillation goes through 769
complete cycles.

2.6.3 Angular frequency
There is another way of expressing the frequency, which is to give it in
radians per second; this is called the angular frequency, cu. Suppose that
the period is T; during this time the angle 6' increases by 211 radians so the
angular frequency is

w _ 21r_ T ,

If the time is in seconds, w will be in radians per second i.e. rad s".
Given that the frequency is related to the period by u = l/T, it follows

that frequency and angular frequency are related by

w-=2n'><v or v= 2. (2.4)221

When we begin to explore the theory of NMR in more detail it will be
more convenient to use rad s" rather than Hz as the unit for frequencies.
However, the frequency scales you will find on spectra and the values of
coupling constants are invariably quoted in Hz, so we will often need to use
Eq. 2.4 to swap back and forth between these two frequency units.

The usual convention is to use the symbols f, F or v (Greek ‘nu’) to
represent frequencies in Hz, whilst to and Q (Greek lower and upper case
‘omega’) are used to represent frequencies in rad s".
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2.6.4 Phase
Suppose that our particle depicted in Fig. 2.15 on p. l7 starts on the x-axis
and then rotates through an angle ¢, as shown in Fig. 2.l7. We describe this
situation by saying that the particle has ‘acquired a phase ¢>’. ln this ¢onteXt.
phase is just a way of saying how far the particle has proceeded around the
circle. If we think about the sine and cosine functions Which represent the
_t'- and _r-components. the phase just tells us how far along the oscillation we
have proceeded.

If the particle is moving at a constant angular frequency of to rad s_',
then after time I the angle (in radians) through whiCh the particle has moved
is just

phase after time t = angular frequency X time
= 0))‘.

For a particle moving at constant speed, therefore, the phase angle simply
increases linearly with time.

So. what we have plotted along the horizontal axis of Fig. 2.16 on p. 18
is the phase acquired after a certain time. The aXiS Could just as Well he
labelled with time, as, for a constant speed, phase and time are directly
proportional to one another.

We can also use the idea of phase to specify the starting position of the
particle. So far, we have assumed that at time zero the particle is on the
x-axis, but this is not necessarily the case. The more general Situation is
where at time zero the particle starts at a position described by a phase <15
(measured, by convention, from the x-axis. Figure 2-13 illustrates thiS idea
for three different phases.

In (a) the starting phase is If/4 radians. So, at r = 0 the x-component
is cos (If/4)!‘ which is 0.707 r; similarly the y~component at time zero
is sin (rt/4)r which is also 0.707 r. Then, as time proceeds the x- and
y—components oscillate in the familiar way. However, neither of these
components is a sine or cosine wave — rather, they are sine and cosine Waves
which have been shifted ‘to the left’ by our starting phase of rt/4 TfldiflIl5-

Mathematically we can write the two components in the following way:

x-component = rcos (wt + <15)
y-component = r sin (wt + <15)‘

Note that when t = 0 we have r cos ¢ and r sin ¢, as eXpe¢ted-
Although the initial phase ¢ can have any value, there are some special

cases which will be of interest. The first is when dt = 71’/2 radians or 90°.
as depicted in Fig. 2.18 (b). For this phase the graph of the y—component is
clearly a cosine wave and, after a bit of thought, it i-S alSo Clear that the graph
of the x-component is minus a sine wave. If we think about the particle
rotating from the initial position shown in (b) then clearly the x-component
Starts at zero and then at first becomes negative; similarly the y-component
starts at its maximum and initially decreases. These are the properties of
minus a sine function and a cosine function, respe<Ilively-

Y

 ' X

r ‘ :g \ § /

c'> 2 at i an/2

Fig. 2.17 The position of the particle is
described by the angle qb which is called the
phase. Here, the phase, measured from the
x-axis, is 225° or l.251r radians. Thought of
in terms of the oscillating x- and
_\'-components, the phase tells us how far
along the wave we have travelled; on the
graph. the vertical dashed line shows the
phase, ¢, corresponding to the diagram
above. As before, the solid and grey lines
represent the x- and y—components,
respectively.

,4.
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Fig. 2.18 Illustration of how a phase angle can be used to describe the starting position of
our particle. The top row shows the starting positions at time zero; in (a) the phase. ¢, is rr/4
radians or 45°. in (b) the phase is rr/2 radians or 90°, and in (c) the phase is n radians or
180°. The bottom row shows the time dependence of the .r- and y—components (solid and grey
lines. respectively) as the particle moves from its starting position. Note that in all cases theses
components are just those shown in Fig. 2.16 on p. 18 shifted to the left by differing amounts.

Mathematically we can write the two components as

x-component = rcos (tut + 1r/2)
y-component = r sin (wt + If/2).

These expressions can be tidied up using the standard identities

cos (A + B) E cos (A) cos (B) — sin (A) sin (B)
sin (A + B) 2 sin (A) cos (B) + cos (A) sin (B).

Applying the first of these to the expression for the x-component we find:

x-component = r cos (wt + rr/ 2)
= r cos (wt) cos (rt/2) — r sin (wt) sin (rr/2)
= —r sin (wt),

where on the last line we have used the fact that cos (rr/2) = 0 and
sin (rr/2) = 1. So, as expected from the diagram, a phase shift of rr/2 does
indeed give us an x-component of the form —r sin (wt).

The y-component can be treated in a similar way using the second
identity:

y-component == r sin (wt + IT/2)
= r sin (wt) cos (rr/ 2) + r cos (wt) sin (1r/ 2)
= r cos (wt).

As expected, we see that the y-component is a cosine wave.
Finally Fig. 2.18 (c) shows the case where the initial phase is rr radians

or 180°. From the graphs of the x- and y—components it is clear that all that
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has happened is that both have changed sign relative to the case where the
initial phase is zero. We can demonstrate this mathematically:

x-component = r cos (wt + Ir)
= rcos (wt) cos (rt) — r sin (wt) sin (rr)
= —rcos(wt),

where on the last line we have used the fact that cos (rt) = —l and sin (rr) = 0.
A similar argument shows that the 'v—component is —rcos(wt). Thus, an
initial phase of zr simply causes the x- and y—components to change sign.

It is also common to describe the situations shown in Fig. 2.18 as being
the result of aphase shift. So, (a) is a phase shift of It/4, (b) a shift of 7!/2
and (c) a shift of rt. We will encounter this language often.

2.6.5 Representation using complex numbers
The position of a particle on a circle is conveniently represented using the
complex exponential exp (i 6) or e“’. This function follows the identity

exp(i6) E cost? + i sin 9.
real imag.

In words, the real and imaginary parts of exp (i 9) are cos 0 and sin 6, respec-
tively. This immediately makes us think of the x- and y—components of our
rotating particle, Fig. 2.15 on p. l7. Indeed, if we redraw this diagram and
label the axes ‘real’ and ‘imaginary’, rather than x and y (Fig. 2.19), we see
that the position of the particle is described exactly by r exp (i 6), where r is
the radius.

Recalling that if the particle is moving at an angular velocity w then
after time t the angle 6 is equal to wt, so the position of the particle is given
by

r exp (i wt).

Similarly, if the phase at time t = 0 is ¢>, the position of the particle becomes

r exp (i [wt + ¢]) 2 r exp (i wt)exp (i ¢).

The identity comes about because of the property of exponentials i.e.
e"*B 2 e" X es.

This representation of rotational motion or oscillations using complex
exponentials tums out to be very convenient, and we shall use it often.

2.7 Photons
Electromagnetic radiation can, for some purposes, be thought of as con-
sisting of particles called photons. The energy of a photon is related to its
frequency, u, according to

E = hu.
where h is a universal constant known as Planck‘s constant. From this equa-
tion we see that the higher the frequency, the more energetic the photon.

aw

magn

sv
Fig. 2.19 If we imagine the .r- and _v-axes
as corresponding to the real and imaginary
parts of a complex number. then the position
of the particle is described using the
complex exponential as rexp (i 6).
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If the frequency is expressed in angular units (win rad s") then, recall-
ing Eq. 2.4 on p. 18, we have u = w/22r and so the energy is

E = h (w/21!)
= hm.

h is h/21r, a quantity which will appear often in our calculations. It is
pronounced ‘h bar’ or ‘h cross’.

2.8 Moving on
The scene is now set, and we are ready to Start our description of NMR
proper. The first topic we will explore is how energy levels and selection
rules are useful in thinking about NMR spectra, and how quantum mechan-
ics can be used to find these energy levels.

2.9 Further reading
Chemical shifts, scalar couplings and their effect on spectra:
Chapters 2 and 3 from Hore, P. J. (1995) Nuclear Magnetic Resonance,
Oxford University Press

Broadband decoupling:
Chapter 7 from Freeman, R. (i997) Spin Choreography, Spektrum

Complex numbers and the complex exponential:
Chapter 7 from Sivia, D. S. and Rawlings, S. G. (1999) Foundations of
Science Mathematics, Oxford University Press
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2.10 Exercises
2.1 In a ‘H NMR spectrum the peak from TMS is found to occur at

500134 271 MHZ. Two other peaks in the spectrum are found at
500135021 and 500.137 921 MHZ; compute the chemical shifts
of these two peaks in ppm.
Given that the receiver reference frequency is 500.135 27] MHZ,
recompute the chemical shifts of the two peaks using Eq. 2.3 on
p. 9: comment on your answers.
What would the frequency separation, in Hz and in rad s", be
between these two peaks if the spectrum were recorded using
a different spectrometer which operates at 400 MI-Iz for pro-
tons? The receiver reference frequency for this spectrometer is
400130000 MHZ.

2.2 Following the approach described in section 2.3.1 on p. IO, use a
tree diagram to predict the form of the multiplet expect for spin
A when it is coupled to two other spins, B and C, with coupling
constants JAB = I0 Hz and JAQ = 2 Hz. Work out the frequency
of each line and label it with the spin states of the coupled spins;
assume that the multiplet is centred at O Hz.
Repeat the process for the cases (a) JAB = 10 Hz and JAC = l2 Hz,
and (b) JAB = 10 I-Iz and JAC = I0 Hz. What special feature arises
in the latter case?
Predict the form of the A spin multiplet expected when a fourth
spin D is introduced, using the coupling constants JAB = IO I-I2,
./AC = 2 HZ and JAD = 5 HZ.

2.3 A rotation has a period of2.5 X 10") s; compute the corresponding
frequency in both Hz and rad s'l.
Compute how long it will take the object to rotate through an angle
of: (a) 90°; (b) 31:/2 radians; and (c) 720°.
An oscillation has a angular frequency of 7.85 >< 104 rad s".
Compute the corresponding frequency in Hz and the period in s.

2.4 Following the style of Fig. 2.18 on p. 20, make sketch graphs of
the x~ and y—components of a rotating particle as a function of time
for the case where the starting phase ¢ is: (a) 0°; (b) 135°; (c)
2rr radians; (d) 3rt/2 radians. In each case, comment on the form
of your graphs, noting particularly whether they are simple sine or
cosine functions.

2.5 In Fig. 2.18 (c) on p. 20 the y-component is rsin (wt +11). Using
the approach of section 2.6.4 on p. 19, show that this y-component
can be written more simply as —r sin (tut).





Chapter 3

Energy levels and NMR
spectra
In this chapter we will look at how energy levels can be used to understand
simple NMR spectra. This approach is of somewhat limited utility when
it comes to understanding how NMR experiments work, but it is neverthe-
less worthwhile exploring as it is a good vehicle for introducing quantum
mechanics, gives us some useful ways of thinking about NMR spectra, and
introduces the idea of multiple-quantum transitions.

The usual explanation given for the appearance of lines in a spectrum
is that they arise as a result of transitions between a set of energy levels
possessed by the molecule. The existence of these energy levels is a con-
sequence of the quantization of the energy. In favourable cases, we can use
quantum mechanics to calculate what these energy levels are, and find the
set of labels or quantum numbers which characterize each level.

The molecule can absorb photons whose energies match the difference
in energy between two of these quantized energy levels, as is illustrated in
Fig. 3.1. Here we see two energy levels, with energies Eumm and Eloweh
separated by AE:

AE = Eupper "' El0wer-

A photon can only be absorbed if its energy, hu, matches the energy sepa-
ration of the two levels i.e.

hu = AE.

The spectrum thus consists ofa series of lines whose frequencies depend on
the energy separation between the levels.

A photon of the correct energy will only be absorbed if the transition
between the two energy levels is allowed according to the quantum ine-
chanical selection rules which apply to the system. These rules are usually
expressed in terms of the quantum numbers of the levels involved. and typ-
ically require that. in going from one level to another, a particular quantum
number must change by a specified amount.

This description of how spectra arise is deceptively simple and, for
NMR, not really adequate. In the first section is this chapter we will tease
out what the problem is and therefore discover the limitations of such an

Undersmndirig NMR Spectroscopy James Keeler
@ 2005 John Wiley & Sons, Ltd
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Fig. 3.1 The basic description of
spectroscopy in lenns of energy levels. A
photon may be absorbed provided its
energy. given by hu, matches the energy
separation between two energy levels. here
E,,m,c,. — E1,,,,.,.,. The result is an absorption
line in the spectrum. at t'rcqricric_\‘ tr.
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Fig. 3.2 An illustration of the process of
measurement in quantum mechanics. A
postulate of the theory is that a
measurement of the energy yields a value
which corresponds to one of the energy
levels available to the system. However, it is
not the case that the system has to be in one
ofthe energy levels. it is just that a
measurement of the energy gives a value
corresponding to one of the energy levels.

approach. Nevertheless, despite these difficulties, we will see that there are
many aspects of NMR which can be understood by thinking about energy
levels, and the rest of the chapter is therefore devoted to explaining how
these levels are found, and how we can use them to predict the fonn of
spectra.

3.1 The problem with the energy level approach
The above description of how a spectrum arises implies that the molecule
sits in one energy level and then the absorption of a photon causes it to
move to another level. This is certainly not an uncommon or contentious
thing to imply. Indeed, in any elementary course of quantum mechanics or
spectroscopy we are usually told that ‘the energy is quantized’ and it is then
either stated, or implied, that it follows that the molecule must be ‘in one of
the energy levels’.

The problem is that quantum mechanics emphatically does not say that
a molecule must be in one of the energy levels. What quantum mechanics
says about the molecule and its energy is rather more complicated and, on
the face of it, rather surprising.

One of the fundamental postulates of quantum mechanics is to do with
what happens when we make a measurement. This postulate raises all sorts
of practical and philosophical problems. but as far as we know it is correct
so we will simply use it and not worry too much about the philosophy.
Adapted for the present purpose, the postulate implies that, if we measure
the energy of a molecule, the value we will obtain will always correspond
to one of the energy levels. Figure 3.2 attempts to illustrate this idea.

In essence, spectroscopy is a way of measuring the energy of a mole-
cule, since we determine the frequency, and hence the energy, of the pho-
tons which are absorbed. Strictly, it is an energy dzfierence that we are
measuring, but we can think of this as two successive measurements of the
energy. As described in the previous paragraph, each measurement of the
energy will give a value which corresponds to one of the energy levels. so
in spectroscopy it appears that transitions take place between these levels.

3.1.1 Wavefunctions and mixed states
You might be forgiven for thinking that it is splitting hairs to make a dis-
tinction between a molecule actually being in one of the energy levels as
opposed to it appearing to be in one of the levels. However, the distinction
becomes significant when we start to think about the wavefimction which
describes the molecule.

In quantum mechanics. the wavefunction carries within it all of the
information needed to compute the properties of the molecule. Later on we
will see some examples of such functions, but for now we will just take it
that such functions exist. Each energy level has associated with it a dzflerent
wavefunction and,just as it is commonly implied that the molecule must be
in one of the energy levels, it is also often implied that the wavefunction of
the molecule must be the one associated with that level.
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However, just as it is not true that the molecule must be in one of the
energy levels. it is also not true that the wavefunction must be one associated
with an energy level. This is a hard idea to come to terms with, as any
book on quantum mechanics always has nice diagrams showing the energy
levels alongside pictures of the associated wavefunctions (for example, as
in Fig. 3.3). We are enticed into slotting the molecule into one of the levels
and giving it the associated wavefunction! However, this is not a correct
description.

In fact, the wavefunction for the molecule is generally a mixture of the
wavefunctions associated with the energy levels: such a wavefunction is
often called a mixed state or a superposition state. We will see as the
book progresses that NMR experiments, even the simplest ones, work by
manipulating and exploiting the properties of these mixed states.

We can legitimately ask why it is not necessary to be concerned about
these mixed states when thinking about IR or UV spectroscopy; for these
kinds of spectroscopy, the energy level approach is sufiicient. There are two
reasons for this.

Firstly, mixed states arising from molecular vibrational and electronic
energy levels have very short lifetimes so that it is hard (if not impossible)
to manipulate them. The reason for these short lifetimes is that the states are
changed and perturbed by the very frequent collisions which occur between
molecules. In contrast, nuclei lie deeply buried inside the molecules and are
little affected by collisions, so the mixed states arising from nuclear spins
can be rather long lived. We can thus manipulate and observe them at our
leisure.

The second reason why mixed states are important in NMR, and not
in IR or UV spectroscopy, is that in NMR we have a straightforward way
of manipulating these states using RF pulses. The equivalent for other
forms of spectroscopy would be extremely short high-powered bursts of
laser radiation. Although such sources are available, they are hardly routine.

Thus we really do not need concern ourselves with mixed states when
it comes to the description of most kinds of spectroscopy other than NMR.
Simply concentrating on the energy levels and supposing, albeit somewhat
incorrectly, that the molecules are in one or other of the energy levels will
give us a perfectly adequate description of the spectrum. In contrast, in
NMR, we do need to take into account the existence and behaviour of these
mixed states.

3.1.2 Energy levels in NMR
Despite the cautions and caveats of the previous section, energy levels and
their associated Wavefunctions do play a very important part in the theory
of NMR. To start with, thefrequencies of the lines in an NMR spectrum can
always be predicted by thinking about the allowed transitions between the
energy levels - indeed, the rest of this chapter is devoted to this topic.

Later on we will discover that the energy levels determine how the
mixed states evolve over time. In NMR, time evolution is of central im-
portance as we detect the FID as a function of time, and multiple~pulse se-
quences are all about manipulating the spins through different time periods.

/\f\/

energy

/\/\

/\\/
0/\r

. energyvefun tronswa C levels
Fig. 3.3 The energy levels and associated
wavefunctions fOr a particle constrained so
that it can only move between x = 0 and
x = L—the so-called ‘particle in a box’. We
are tempted to slot the particle into one of
the energy levels and hence give it the
associated wavefunction. However, this is
not what quantum mechanics specifies;
rather the wavefunction which describes the
particle is in general a mixture of the
wavefunctions corresponding to each energy
level.
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Fig. 3.4 An example of a possible
wavefunction for the electron in a hydrogen
atom; r is the distance between the nucleus
and the electron. and '1/(Tl is the
wavefunction. For a particular value of r. Pu.
the wavefunction evaluates to a number.

So. energy levels remain central to our discussion of NMR, even to the most
sophisticated level.

The way ahead
The time has come to flesh out some of the ideas which have been intro-
duced in this section. and to do this we will need to introduce quantum
mechanics. ln particular, we need to understand what a wavefunction is,
and learn how energy levels and the associated wavefunctions can be found
in particular cases. In fact, the quantum mechanics of NMR is surprisingly
easy: we rarely, if ever. need to evaluate any integrals or differentials, and
most problems can be solved by rather simpler algebra.

To start with we will develop sufficient quantum mechanics to be able
to find the energy levels and associated wavefunctions of a single spin one-
half. After that. we will discuss the resulting spectrum before moving on to
more complex arrangements of spins.

3.2 Introducing quantum mechanics
Quantum mechanics is a powerful theoretical framework which provides
an essentially complete description of the microscopic world. Quantum
mechanical calculations on ‘real’ systems are often so complex that they
can only be tackled numerically using powerful computers. This is why el-
ementary courses of quantum mechanics concentrate on very simple model
systems. such as the ‘harmonic oscillator’ or ‘rigid rotor‘, for which it is
possible to make calculations using a pen and paper. Luckily for us, the
quantum mechanical description of NMR is particularly straightforward and
it turns out to be possible to use it to analyse just about any experiment
without the need to resort to computer-based calculations.

To develop the quantum mechanics we need from first principles would
be both time consuming and laborious, so we shall not do it. Rather. we
will simply state the key ideas and then use them to work forward to the
practical results we need.

Wavefunctions and operators are of central importance in quantum me-
chanics, so we will start out by discussing them in turn.

3.2.1 Wavefunctions
A wavefimr-rim: is a mathematical function which contains a complete de-
scription of the system: if we know the wavefunction we can deduce from
it anything we wish to know. such as the position of a particle or its energy.

For example, one of the possible Wavefunctions for an electron in a
hydrogen atom is

¢(r) = exp(—ar).

Here. r is the distance from the electron to the nucleus and a is a constant,
which is known; the function is illustrated in Fig. 3.4. The wavefunction is
Wflllfin l//(1') to remind us that the function depends on the variable r. We
could substitute any value of r into this expression and then evaluate it to
give a number: this is what is meant by l/I being a function of r.
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We said that the wavefunction tells us everything about the system, but
where is this infomtation held and how do we extract it? To do this, we
need to introduce quantum mechanical operators.

3.2.2 Operators
Mathematically, an operator is something which acts on a function to pro-
duce a new function. A good example is the operator d/dx, which means
‘differentiate with respect to the variable x’; let us apply this operator to the
function sin x and see what happens. Recalling that the differential of sin x
is cos x, the effect of the operator is

OPCTHIOF

/-"‘%

d .
— sin x = cos x.
dx +,_/ +,_/

function new function

The new function, generated by the action of the operator, is therefore cos x.
Operators are important in quantum mechanics as in this theory they

‘represent observables’. Observables are things We can measure, for exam-
ple energy - which is our main concern here. The wavefunction contains
all the information, but we need the appropriate operator to ‘extract’ this
information from the wavefunction. At this stage, we do not need to know
the mathematical process by which an operator is used to find the value of
some observable quantity; we will return to this point later on.

A key point about operators is that the order in which they act is impor-
tant. This is in contrast to functions and numbers, which can be reordered
freely; for example

2><cosx><sinx zsinx ><2><cosx.

The first point I0 make is that in general the order of operators and
functions cannot be changed; for example consider the operator d/dx and
the function sin XI

d , _ d
8-; slnx at SIHXEE.

Here we see that changing the order of the operator and the function gives
quite a different result.

The second point is that if we have two operators acting one after
another on a function the result depends on the order in which the operators
act. For example, consider the two operators d /dx, which means ‘differenti-
ate with respect to x’, and x, which means simply ‘multiply by x’. Applying
these operators in this order to sin x gives:

function

X *- Slll X =
‘KP’ dx

2nd operator %»-’
lst operator

X COS X
mi

second operator

= X COS XI.

Note that the operator immediately to the left of the function is the one
which acts first.
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Now let us apply the operators in the other order
function

d ,-5». d _
—— X S111 X : —' X Sm X
dx me“ dr

‘\r-’ Isl operator */”
2nd operator 2nd operator

= sinx+ x cosx.

We see that applying the operators in the reverse order gives quite a different
result.

Sometimes, the order of operators does not matter, in which case the
operators are said to commute. When the order does matter, the operators
are said not to commute.

3.2.3 Eigenfunctions and eigenvalues of operators
We introduced operators by saying that their effect on a function was to
change it to a new function. However, there are some functions which,
when a particular operator acts on them, remain unchanged apart from
multiplication by a constant.

For example, consider the operator d /dx acting on the function exp (Ax),
where A is a constant:

operator
/-'-’*\ CODSIAHZ

d ,_¢+

— exp (Ax) = A >< exp(Ax). (3.1)
dx *'-vi’ “rfi/i"’

function same function

In contrast to the case where the operator acted on the function sin x, the
result of it operating on exp (Ax) is for the function to be unchanged with
the exception of multiplication by a constant. Functions which have this
property are said to be eigenfunctions of the operator, and the multiplying
constant is called the eigenvalue. Generally there are several eigenfunctions
for a given operator, each with a corresponding eigenvalue.

The eigenfunctions and eigenvalues of an operator have the following
relation between them:

(operator) acting on (eigenfunction) = (eigenvalue) >< (eigenfunction).

This is called the eigenvalue equation. Equation 3.1 is of the form of the
eigenvalue equation, so we can say that exp (Ax) is an eigenfunction of the
operator d/dx, with eigenvalue A.

3.2.4 Measurement
We mentioned in section 3.1 on p. 26 the quantum mechanical postulate
which implies that a measurement of the energy of a molecule will always
give a value corresponding to one of the energy levels. A more general
statement of the postulate is as follows.

If we measure the value of some observable, the result will al-
ways be one of the eigenvalues of the operator which represents
this observable.
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To take a concrete example, if we measure the energy of a system, then
the result must be one of the eigenvalues of the operator for energy. lt is
these eigenvalues which are the ‘energy levels’ of the system which we have
been talking about. Further, the eigenfunction associated with a particular
eigenvalue is the wavefunction which corresponds to the energy level.

The eigenvalues and eigenfunctions of the energy operator are thus very
important as they give us the energy levels of the system and the associated
wavefunctions. To find the energy eigenfunctions we first need to know the
energy operator, which is what the next section is about.

3.2.5 Hamiltonians and angular momentum
The operator which represents the observable quantity energy is so im-
portant in quantum mechanics that it has its own name - it is called the
Hamiltonian operator. Usually the name is shortened to ‘the Hamiltonian’
and it is commonly represented using the symbols H and 7'1, appropriately
festooned with sub- and superscripts as required; a ‘hat’ is often added to
remind us that the symbol represents an operator (rather than a function):
F1.

Constructing Hamiltonians is something of an art form which will not
be discussed here; rather, we will simply state the form of the various
Hamiltonians we need and leave it at that.

For a nuclear spin in a magnetic field of strength B0 applied along the
z-axis, the Hamiltonian which represents the energy of interaction between
the spin and the magnetic field is

gone spin = _')/B0iz

where y is the gyromagnetic ratio, which is a fundamental property of the
nucleus in question.

fa is an operator which represents the z—component of the nuclear spin
angular momentum. Angular momentum is a concept from classical physics
where it is associated with rotational motion. For example, a mass following
a circular path has angular momentum, which turns out to be a vector quan-
tity having both a magnitude and a direction; this is illustrated in Fig. 3.5.

Some nuclei appear to possess an intrinsic source of angular momentum
which is usually called nuclear spin angular momentum. The name is
something of a problem, as it makes it sound as if the angular momentum
arises from a literal spinning of the nucleus, which it certainly does not.
Rather, the angular momentum is an intrinsic property of the nucleus, just
like its mass or its charge.

Like classical angular momentum, the nuclear spin angular momentum
is a vector quantity, having both a direction and a magnitude. The operator
I; represents the z-component of this angular momentum and it is this
component which interacts with the applied magnetic field which is also
along the z-direction.

3.2.6 Eigenfunctions and eigenvalues of
Angular momentum operators, such as fl. turn out to be very important in
the theory of NMR, and we will come across them again and again. At this

angular
momentum vector

i

Fig. 3.5 In classical physics, a mass
moving around a circular path possesses
angular momentum; this is a vector quantity,
having both a magnitude and a direction.
For motion in a circular path, the angular
momentum vector points in a direction
perpendicular to the plane of rotation.
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stage, it is the eigenfunctions and eigenvalues of T; which are of particular
importance. Finding these requires a rather subtle argument which we will
not go into here; rather we will simply state the result and go on to explore
the consequences.

The number of these eigenvalues depends on the spin of the nucleus in
question, and this in turn is specified by a quantum number I, called the
nuclear spin angular momentum quantum number or, more succinctly, the
spin quantum number. I can be integer (0, l, 2 ...) or half-integer (%, £-
...).

It turns out that the operator l; has (21 + l) eigenfunctions (with as-
sociated eigenvalues), each of which is characterised by another quantum
number m; m can only take values between —I and +1 in integer steps. For
example. ifl = 1, m can be ~1, Oot +1; ifl = 5, m can be -5 or +5.

From now on we will restrict ourselves to a spin-half nucleus, for which
i; has just two eigenfunctions, characterized by m = +% and m = —%.
The two corresponding eigenfunctions are <1/+i,2 and I/I__l/1 , and these obey the
eigenvalue equations:

i.¢+.,2 = +§n.p+.,Z i_. 111% = -int:/_1,Z. (3.3)
a/1% thus has eigenvalue +%li, and lfl_l/2 has eigenvalue -éh.

These two eigenvalue equations can be written more compactly as

ix I//In : mhl//m»

where, as above, m = :l:%. We see that the quantum number m is not only a
label for the eigenfunctions, but also gives the eigenvalue as mh.

You will have noticed that we have not said what the eigenfunctions lb,"
actually are - the reason for this is that this is a piece of information that we
never need to know. All we need to know is that these functions exist and
what the associated eigenvalues are. Armed with these eigenfunctions we
can now go on to use them to find the eigenvalues of the Hamiltonian for
one spin, and hence the energy levels.

3.2.7 Eigenvalues for the one-spin Hamiltonian
Not surprisingly, the functions lfi+I/2 and w_l/2 are also the eigenfunctions of
the Hamiltonian for a single spin, Eq. 3.2 on p. 31:

Hone spin = _')’B0i;-

The reason why this is not surprising is that I/Iii/3 a.re eigenfunctions of iz,
and the only difference between this operator and Hone spin is multiplication
by "730-

To show that ¢+l/2 is indeed an eigenfunction, and to find the correspond-
ing eigenvalue, we need to work out what the effect of the Hamiltonian is
on ipp/Z:

Hone spin‘/'+V; = -730 l/1012]

= ~i'Bo[%7i=//».=/,1
= —%fivB<>¢ut-
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On the first line we note that the expression in square brackets is fa acting
on one of its eigenfunctions. We can therefore use Eq. 3.3 to replace fl://+1/2
with #711,//+5.2; this brings us to the second line. On the third line we have just
tidied things up by moving the constants to the left.

What we have shown is that when flum Sp,“ acts on the function ¢r+t/2 the
result is to regenerate the function multiplied by a constant (—%h)/B0). This
is exactly the property of an eigenfunction, so

i,//1,1,: is an eigenfunction of Hem. Spin with eigenvalue — éh}/B0.

Using the same approach. it is easy to show that ¢I_y2 is also an eigenfunc~
tion, with eigenvalue +57?)/B0.

The only difference between Hm Spin and T; is multiplication byAsome
constants, the presence of which does not stop an eigenfunction of I; also
being an eigenfunction of I510“ win. The eigenvalues of this Hamiltonian are
just those for T; multiplied by the constant factor -7/B0.

3.2.8 Summary
We have covered quite a lot of ground in this introduction to quantum
mechanics, so it is worthwhile pausing to summarize the key results.

o Operators represent observable quantities; particularly important is
the Hamiltonian operator which represents the energy.

0 The eigenvalues of the Hamiltonian are the energy levels available to
the system; the eigenfunctions are the associated wavefunctions.

0 For a spin one-half, the operator for the z-component of the angular
momentum, II, has two eigenfunctions labelled by m = 1%;

in//,,, = mh¢/,,,

0 The Hamiltonian for one spin in a magnetic field is

Hone spin : _')'B0i:~

0 The eigenfunctions of ii are also eigenfunctions of this Hamiltonian,
with eigenvalues Em where

E,-,, = —mh‘}’BQ.

These are the two energy levels of a single spin-half in a magnetic
field.

3.3 The spectrum from one spin
3.3.1 Energy levels
As we have shown in the last section, the two energy levels or states avail-
able to a single spin-half are

Em = ‘M1730 m = +§ or — (3.4)
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Fig. 3.6 The two energy levels for a single
spin-half nucleus having a positive
gyromagnetic ratio. The allowed transition
between them gives rise to a single line at
minus the Larmor frequency.

B0 is the magnetic field strength, usually given in Tesla (symbol T), and the
gyromagnetic ratio, y, is usually given in rad s*' T“. With these units, the
energy comes out in Joules, as expected.

For spin-half nuclei it is traditional (and compact) to give the energy
level with m = +5 the label (I and the level with m = -5 the label 5;

Eu = -5 Pi)/B0 Efl = +5 H)/B9. (35)

The a state with m = +5 is often described as ‘spin up’, and the B state
with m = -5 as ‘spin down’,

Quantum mechanics tells us that the allowed transitions are ones in
which In changes by +1 or -1. So, if we go from the a state, with m = +5,
to the,B state, with m = -5, the change in m, Am, is

_ :1i'(+i)Amg—9fl Z

So, the transition from a to ,8 is allowed; it is easy to work out that for the
transition from,8 to a, Am = +1, so this is allowed too.

Which out of the a orfl’ state is the lower in energy depends on the sign
of the gyromagnetic ratio, y. For ‘H and 13C, y is found to be positive, but
for '5N 7/ is negative. From now on, unless specifically stated otherwise, we
will assume that y is positive; for such a nucleus the energy levels are as
shown in Fig. 3.6.

The energy of the allowed transition from 0/ to [3 is

AE,,_.,, = 15,,-E,
= %’*YB@"(—%’WB@)
= fl‘)/B0

= (h/27F)YB0-

Note that to compute AE we have taken the energy of the upper state minus
that of the lower state; we will stick to this in all that follows.

Recalling that the energy of a photon of frequency u is hu, it follows that
the frequency of the photon corresponding to the above energy gap, U;1—+B~
is found simply by dividing the energy gap by h:

:

= )/B0/Zn. (3-6)
U11/—lfl

Our prediction is for a line at frequency (9/B9)/2zr Hz.

3.3.2 The Larmor frequency
We now define the Larrnorfrequency of the spin. tog (in rad s"). in IN‘
following way:

definition of Larmor frequency: (1)9 = -}/B0 in rad s”'. (3-7)
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The Larmor frequency in Hz. v0, is simply wg /Zn:

definition of Larmor frequency: uh = —-)/B0/Zn in H7. (3.8)

The minus sign in these definitions seems a bit awkward, but it does have
a reason. which will become clear when we look at the vector model in the
following chapter.

Colnparing Eqs 3.6 and 3.8 we see that the transition from a to B occurs
at minus the Larmor frequency:

Ua_,I3 = —UQ.

This is a nice simple result. For a single spin, there is one allowed
transition which results in a line in the spectrum at minus the Larmor
frequency. From Eq. 3.8 we see that this frequency is proportional to the
magnetic field strength, as we expect, with the constant of proportionality
being the gyromagnetic ratio.

We know that nuclei of the same isotope (e.g_ protons), but in different
chemical environments, give lines at slightly different frequencies on ac~
count of the chemical shift. We could accommodate this by allowing the
gyromagnetic ratio to be different for different protons, but this is not really
convenient. A better way is to keep y the same for all nuclei of the same
isotope and redefine the Larmor frequency to include the chemical shift:

wo = —'y(l + l0"“><6)B0 or U() = -y(l + lO_°><6)B0/2n.

In these expressions 6 is the chemical shift in ppm.
To take a concrete example. suppose that the magnetic field

is 9.4 T and that we are concerned with protons, which have
y = +2.67522 >< I08 rad s" T"'. The Larmor frequency, in Hz, ofaproton
with chemical shift 2 ppm is thus

U0 = -7/(I +l0"“><6)B(,/2n
= -2.67522 >< 10*‘ (l + l0'“><2)9.4/2n
= -4.00229 >< 108 Hz.

So the Larmor frequency is -400.229 MHz.

3.3.3 Writing the energies in frequency units
As we are always going to want to convert the energy differences between
levels to frequencies, we might just as well express the original energies
in frequency units to start with. It might seem strange at first to write an
energy in Hz or rad s‘], but remember that energy is in direct proportion to
frequency so going from one to the other simply involves multiplication by
a constant factor.

As we saw in section 2.7 on p. 2l, to convert energies from Joules to
Hz, all we need to do is divide by Planck’s constant, h, and to convert from
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Joules to rad s" we divide by h. So the energies given by Eq. 3.4 on p. 33
can be written in frequency units as:

in Hz: Em = —myBg/211'
in rads"': Em = —myBo.

These can be made even simpler by introducing the Larmor frequencies, as
defined in Eqs 3.7 and 3.8 on p. 34 and p. 35

in Hz: Em = muo
in rad s": Em = mwo.

Note that the minus sign has disappeared as the definition of the Larmor
frequencies introduces a further negative.

Now the energies, measured in Hz, of the ct and ,6 states are simply

Ea=%U0 Ep=-%vo,
and so the frequency of the a —> B transition is

u,,_,;; = El; — Ea

= -1%.-vi — (i vo)
= —v0.

This is exactly the same result we found before, but you can see that
writing the energies in frequency units is much simpler and more direct
than working in energy units.

3.4 Writing the Hamiltonian in frequency units
Just as it is convenient to write the energy levels in frequency units, it would
also simplify things if when we find the eigenvalues of the Hamiltonian
they came out directly in frequency units, rather than in Joules. If we take
an energy in Joules and divide by Ii, we obtain a frequency in rad s_', so
shifting the Hamiltonian from energy to angular frequency units is simply a
matter of ‘losing’ a factor of ii.

This is normally done by removing the factor of Pi from the eigenvalues
of the operator fz. So, rather than Eq. 3.3 on p. 32, we have

ill!/+91 = +%IJ/+1/, iel//-v, = -ill’-1/m (3-9)
What we are doing is expressing the eigenvalues in units of ii.

Recall that the Hamiltonian for one spin is

Hone spin = -)/Boip

Using Eq. 3.9, we can show that I/ll/2 is an eigenfunction of this Hamiltonian
in the same way as we did in section 3.2.7 on p. 32:

Hone spln¢+1/, = "YB0i;W+1m
= —%7B0¢+'/2
= +§wo¢/+v,-
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The eigenvalue is thus -5780 or, if we introduce the Larmor frequency
defined in Eq. 3.7 on p. 34, +%w0. Using the same approach we can show
that the other eigenfunction is i0_l/2, with eigenvalue -504).

We can also use the definition of the Larmor frequency to write the
one-»spin Hamiltonian as

gong Spin = (ufliz. ill S’-1

If we want the frequencies in Hz, all we would need to do is divide every-
thing by 21r: A A

Hone spin : U011, in HZ

where we have used vn = mo /22r. The eigenfunctions of this Hamiltonian
are the same as before, but the eigenvalues are :5un. The Hamiltonians and
eigenvalues written in various units are summarized in the following table.

in ener units in frequency in frequency
__ gy units (rad s") units (Hz)_

m wavefunction Iii = _')/Bojz H = roof; H = uof;

l l l l+5 thy, OT t//n -577730 5400 5110

-% ll-1/ZOYW/1 %"WB<> riwo -ivo

3.5 The energy levels for two coupled spins
It is fairly straightforward to extend our treatment of one spin to two. The
first thing to do is to write down the Hamiltonian. For one spin it was (in
units of Hz)

Home spin : 1/Oigi

to extend this to two spins we simply add a similar term for the second spin:

Htwo spins. no coupl. = 110.111: 4" U0.2i2z ~
\_&/._/ ‘mi

spin l spin 2

This needs some explanation. fl. is the operator for the Z-component of
angular momentum of thefirst spin; I22 is a similar operator referring to the
second spin. Similarly, u0_1 is the Larmor frequency of the first spin, and
v0_2 that of the second spin (they need not be the same). It is important to
realize that separate operators are needed for each spin. For the moment we
will leave out the coupling between the two spins, but this will be remedied
shortly.

Having found the Hamiltonian, we now need to find the eigenfunctions;
this tums out to be rather easy as they are just products of the eigenfunctions
of fl for each spin. For the first spin, the two eigenfunctions of ii; are given
by Eq. 3.9 on p. 36

flzl//n.l = Télpaul fut///3.1 = -%l//an (3-11)
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Note how the subscript l has been added to the eigenfunction to indicate that
it is an eigenfunction of the spin one operator. Two similar eigenfunctions
exist for T21:

72:1//0.2 = +5»i...l i2zl///3.2 = —5¢ll.i- (3.12)
We will now show that l//(,‘|l//B1 is an eigenfunction of HM, ,p,,,,,, no m,,,,|_;

as before, we do this by acting on the function with the Hamiltonian opera-
tor. There are several steps in the calculation:

Hlwb spins, DO ebupl!//n.l1//5.2 = (villi1; + 1/0,2i2z) I//n.l!P;i.2
= UO.lil: ¢'n.ll//3.2 + I/0.2 12;!//n.l $3.2

W}

swap order

= vo,l [fie i//a/,l]¢B,2 + I/0,2%.l V22 $5.2]-
To get to the second line we have just multiplied out the bracket. On the
third line, the first term is the same but, compared with the previous line, in
the second term the order of i2; and l//,,,_| has been swapped. As we noted
in section 3.2.2 on p. 29, we are not normally allowed to reorder operators
and functions, but in this case it is permissible as the operator refers to spin
two whereas the function refers to spin one. The operator thus has no effect
on the function, so reordering is permissible. It would not, however, be
permissible to reorder f|; and t//,,_| as both refer to the same spin.

Now look at the last line. Using Eq. 3.11, the first square bracket can
be rewritten as +5lp,,_i , and using Eq. 3.12 the second square bracket can be
rewritten as -%¢p_22 using these substitutions we find

fitwo spins. no ¢bnpl.¢n,l<//p.2 = I/0,1 [fl;¢n.l]¢p.2 + I/0.21//n.l P2; l//5.2]
= %UO,l¢or,l¢,[>'.2 — %vO.2Wix_l¢B.2

= H1/0.1 * ivozl l//n.l¢p.2-\___/i, c_,_,
eigenvalue eigenfunction

To go to the final line we have simply factored out rpm] i,//B1.
What we have shown is that when film, S,-,;,,S_ no c(,,,p;_ acts on the function

lflmllfiflz that function is regenerated multiplied by a constant 5v0_; — 5110;;
in other words, l,0,,_1l,b5_2 is an eigenfunction of the Hamiltonian and
51104 — 5110.2 is the eigenvalue i.e. the energy.

It is easy to go on to use the same method to show that there are three
more possible eigenfunctions, each consisting of a product of an eigenfunc-
tion of T1: with an eigenfunction of fgz. The results are summarized in the
Table 3.1.

As well as labelling the wavefunctions as u orfl for each spin, we have
also given the value of m for the first and second spins, ml and mg. The
table also lists the ‘spin states’ which is a shorthand way of describing the
wavefunction; the first letter gives the spin state of the first spin and the
second the spin state of the second spin.

If you look at this table it is easy to spot that the general expression for
the eigenvalues (the energy levels) is

EIHIJII3 = ml I/0.1 + "I2vo.2- in HZ
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Table 3.1 Eigcnfunctions and eigenvalues (in Hz) for two spins, without a coupling between
them. Each eigenfunction is labelled with the m value for each spin; in addition the spin-state
labels are also given.

m, "lg spin states eigenfunction eigenvalue (energy)

++to-to,-

+

N—-Ru-—

' “(Y ¢’(Y.ld/(7.2 ‘til/0.1 + §l/0.2
“ ”' 05 ¢'a_i¢p.2 +%l/0,1 * %v0,2

-j 3 .30’ ll/all//0.2 -%v0,1 + il/0,2
*‘ -' 13/5’ IV/11¢/3.2 —%l/0.1 - %v0.2J-.4-

+

\)-—vJv—'

3.5.1 Introducing scalar coupling
A scalar coupling between the two spins adds a third term to the Hamil-
tonian:

fit»/0 spins = U0,lil: + v0,2i2; + 1121111921-\_\,__/
coupling term

where J12 is the scalar coupling between spins one and two, in Hz (the
Larmor frequencies are also in Hz).

It tums out that the four wavefunctions listed in the Table 3.1 are stilt’
eigenfunctions of this Hamiltonian, although with different eigenvalues. As
an example we will take the function corresponding to the afi spin states
and show that this is an eigenfunction ofjust the coupling term, Jlzilzizzs
The procedure is, as before, to apply the operators to the wavefunction:

J12ii;i2;l//Q-.11!/5,2 = .]12[il:'//a,l][i2z¢B.2]
_\,_./

reorder

= J11 [ital] [—%t/113,1]
= —§-/12 %,1¢,a.2-

On the first line we have reordered the two terms igzl/I01 indicated by the
underbrace; as before, we can do this as the operator and function refer
to separate spins. Having made this reordering, we recognize that the two
expressions in square braces can be substituted using Eqs 3.1 1 and 3.12 on
p. 37 and p. 38; this gives us the second line. Finally, some simple tidying
up gives us the third line.

We have shown that operating on 1//(,_1t//fig with the coupling term of
the Hamiltonian regenerates the original function times the constant — £112.
$0, I//Q~|¢p’2 is an eigenfunction with eigenvalue —§J1;. To complete the
calculation we need to show that 1,//(,_,¢p_2 is an eigenfunction of H,,,.0,[,,nS,
not just of the coupling term. However, as we have already shown that this
product function is an eigenfunction of Jlgikig; and also 0f(U0.li1:+U0.2i2;),
it follows that it is also an eigenfunction of the sum of these terms. The
eigenvalue is, not surprisingly, the sum of the eigenvalues of the separate
t°m1$5 +;i:U0_l ~ %l/0,2 - i112-



40 Energy levels and NMR spectra
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Fig. 3.7 Energy levels. drawn
approximately to scale. for two spin
systems. On the left is shown a
homonuclear system (two protons): on this
scale the at/3 and Ba states have the same
energy. On the right are the energy levels
for a “C-' H pair. The Lannor frequency of
a proton is about four times that of '3C, and
this leads to the 0,8 and [30 states having
substantially different energies.

Tame 3_2 Eiggnfungfiflfls and eigenvalues (energies, in Hz) for two coupled Spi|15_

spin states eigenfunction eigenvalue (energy)number m, "13
1 + + act %,i%.2
2 l -: all ¢-1.11!/5.2

Ha’ 1//at 1//11.23 _ ..

4 —- 7 5,5’ 1//p.i I//5.2

l l l+2UQ'] + 21/91 + Z1“

I~)v—r.>-id-—J- ¢—-J—-to—-q--

1+5v0.l - ivoz - ',l{-I12
+-v

_l 1 l21/0.1+ 2110.2 -" 3112
1 _l 1-— W "2"0.1 2v(l.2+ZJl2

In fact, it is no coincidence that these ‘product’ functions, such as
¢,,_|t,///,1 are eigenfunctions of the coupling term in the Hamiltonian. The
underlying reason is that the coupling term commutes with the other temis
(see section 3.2.2 on p. 29); a theorem in quantum mechanics predicts that
two commuting operators will have common eigenfunctions.

Applying the same procedure to the other three product functions gives
us the complete set of energies shown in Table 3.2; for future convenience
the levels have been numbered.

Once more it is easy to see that in general the eigenvalues (energies)
obey:

E,,,]_m2 = m1vq_| + m2v0_2 + m|mgJ|g. ll'l HZ

If the two spins are of the same type (e.g. both protons) then we have a
homonuclear spin system and v0_1 z um. Under these circumstances the a//3
and Ba levels (levels 2 and 3) are very similar in energy, and lie more or less
mid way in energy between the other two levels; the situation is depicted
in Fig. 3.7 (a). In contrast, if the two spins are of different types (e.g. one
proton and one BC), all four levels have markedly different energies, as
shown in Fig. 3.7 (b).

3.6 The spectrum from two coupled spins
The selection rule for allowed transitions in the case of two spins is just the
same as it was for one spin i.e. m can only change by 1:1. However, when
applied to two spins the rule has to be supplemented somewhat to say that
m of only one of the spins can change by :1. So, the quantum number of
the fifst Spin. "I1. may change by ii, or that of the second spin, mg, may
change by the same amount.

Applying these rules means that the allowed transitions are between
levels l and 2, 3 and 4, 1 and 3, and 2 and 4. The resulting frequencies
are easily worked out; for example, the 1-2 trangitign;

viz = E2-El
: l .._ l l 1 l+2”°-1 2”0.2 " 3112 ~ (51/0.1 + 5110.2 + i112)
.._ l" ‘I/0,2 “ 5./'12.
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Fig. 3.8 On the left, the energy levels of a two-spin system; the arrows show the allowed
transitions: dark grey arrows indicate transitions in which spin one flips and light grey arrows
indicate those in which spin two flips. On the right. the corresponding spectrum; each line is
marked according to the two energy levels involved, which spin flips (the active spin) and the
spin state of the passive spin. lt is assumed that the Larmor frequency of spin two is greater in
magnitude than that of spin one, and that the coupling J13 is positive.

The complete set of transitions are:

transition spin states frequency
1—>2

3—>4

l—>3
2—>4

aa/—>ia/,3
fia —> fifl
a/a —> Ba

6'/5’ —>fi’fi

_vO’2 _

-1/Q2 +

_.U0‘| _

—U()‘| +

15112
15112
15112
15112

The energy levels and corresponding schematic spectrum are shown in
Fig. 3.8; as expected, the spectrum consists of two doublets, each split by
J12 and centred at the Larmor frequencies of spins one and two.

As a result of the selection rule, each allowed transition corresponds to
one of the spins ‘flipping’ from one spin state to the other, while the state of
the other spin remains fixed. For example, transition l—2 involves a spin two
going from a tofi whilst spin one remains in the a state. In this transition
we say that spin two is active and spin one is passive and in the a spin state.
As spin two flips in this transition, it is not surprising that the transition
forms one part of the doublet for spin two.

Transition 3-4 is similar to l—2 except that the passive spin (spin one)
is in the ,6 state; this transition forms the second line of the doublet for
spin two. This discussion illustrates a very important point, which is that
the lines of a multiplet can be associated with different spin states of the
coupled (passive) spins. We will use this kind of interpretation very often,
especially when considering two-dimensional spectra.

The two transitions in which spin one flips are l—3 and 2~4, and these
are associated with spin two being in the 0/ and ,8 spin states, respectively.
Which spin flips and the spin states of the passive spins are shown in Fig. 3.8
for each transition.

If the coupling J|2 is negative, working through the calculation gives
the same four lines at identical positions as for a positive coupling of the
same magnitude; this is in accord with the observation we made earlier in
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Fig. 3.9 Illustration of the effect of
changing the sign of the coupling on the
spectrum of two coupled spins. The top
spectrum is for a positive coupling, whereas
the lower is for a negative coupling of the
same magnitude. Note that the appearance
of the spectnim is identical, but that the
labels on the transitions change.
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Fig. 3.10 In a two-spin system there is one
double quantum transition (l—-4) and one
Zero-quantum transition (2—3); the
frequency of neither of these transitions are
affected by the size of the coupling between
the two spins.

section 2.3 on p. 10 conceming the effect (or lack of it) of changing the sign
of the coupling.

However, what does change when the coupling becomes negative are
the labels of the lines; this is illustrated in Fig. 3.9. For example, transition
1-2 is now the right-hand line of the doublet, rather than the left line. From
the point of view of the spectrum, what swaps over is the spin state of the
passive spin associated with each line of the multiplet.

3.6.1 Multiple-quantum transitions
There are two more transitions in our two-spin system which are not al-
lowed by the usual selection rule and so do not appear in the spectrum; the
transitions are illustrated in Fig. 3.10. We will discover later on that, using
two-dimensional NMR, we can detect these transitions indirectly.

The first forbidden transition is between states 1 and 4 (aa -> ,3/3) in
which both spins flip. The usual way of describing such a transition is to
specify the change in the quantum number M which is found by adding up
the m values for each spin. For two spins, M is simply my +mg. The M value
for each level can be computed in this way to give the following results:

inumber spin states M
l cm + 1
2 a/B O
3 Ba O
4 B5 - l

The change in M, AM, for the l~4 transition is thus -2 and so this
transition is called a double-quantum transition. Using the same approach,
all of the allowed transitions described above have AM = ii and so are
called single-quantum transitions.

From the table of energy levels (Table 3.2 on p. 40) it is easy to work out
that the frequency of the 1-4 transition is (—v0_1 — v0.2) i.e. the sum of the
Larmor frequencies. Note that the coupling has no effect on the frequency
of this line.

The second forbidden transition is between states 2 and 3 (fia -—> a/B);
again, both spins flip. The AM value is 0, so this is called a zero-quantum
transition, and its frequency is (~vg,| + vg_;) i.e. the difference of the Larmor
frequencies. As with the double-quantum transition, the coupling has no
effect on the frequency of this line.
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3.7 Three spins
3.7.1 The Hamiltonian and energy levels
Now we are getting used to writing Hamiltonians, the following should
come as no surprise:

Hthrce spins : UU,l1l: + I/0,212: + I/0.313:

+ Jl2il:i2z + J1311;13z + 12312131-
\ 1 . 1 e Jv v v

l-2 coupling l-3 coupling 2~3 coupling

The first three terms represent the interactions of spins 1, 2 and 3 with
the magnetic field; note that there are three different Larmor frequencies.
The next three terms reprAesent all of the possible couplings, with each term
being the product of the I; operator for the relevant two spins.

The eigenfunctions of this Hamiltonian turn out to be products of the
eigenfunctions of iz’ ¢,, and t//B, for each spin; an example of such a product
function is 1,lr,,_1t//,,_;¢B,3. Since each spin can be tr or ,8, there are a total of
eight separate product functions.

We will not go through the process of showing that these are indeed the
eigenfunctions and finding the corresponding eigenvalues, but simply state
the general fonn of the eigenvalues, that is the energies:

E,,,,,,,,,,,, = m1v(;_1 + m1vQ_3 + m3vg_3 + m|m2J13 + 11111113113 +mgm3J13.

In this expression, WI], 7712 and W13 can each be +% (the 0/ state) or —% (the
[3 state). The energies and corresponding M values (= rn; + mg + m3) are
shown in Table 3.3.

In the table, we have grouped the energy levels into two groups of four;
the first group all have spin three in the a state and the second have spin
three in the /5’ state. The energy levels (for a homonuclear system) are shown
schematically in Fig. 3.11.
Table 3.3 Eigenfunctions and corresponding eigenvalues (energies, in Hz) for three coupled
spins. The first four levels all have the third spin in the 0/ state, whereas for the second four,
the third spin is in the B state.

number spin states M energy

l rm/tr

2 (11311

3 Ba/0

4 BBQ

3
Z

1Z

1Z

Z

1-l-EUQJ

1
+'i'UQ_]

1"5v0,1
1-5110.1

l+ 51/01

I— 5110.2
l+ 3 U03

l- 5 110,2

+

+

+

+

1 1'52/Q3 + 3.112 + #113 +

l _l_] 1] _2110.3 4 12+ 4 13
1 1 15110.2" 3/12 — 3113 +
1 1 151/0.3 + 3-/12 — 3-713 "

i123

i-/23

i123

i123
5 an/B

6 <1/35
7 flu/B

3 BBB

l
Z

12

12

3‘T

1"l-§U()_|

1+51/0.1
1-5110.1
1"51/0,1

+ it/0.2
1" 5 V0.2
1+ 3110.2
l* 5 1/0.2

%U0,3 + i-/12 - £113 '"
15U0..=1'§J12-i-/13+
1 1 1§l1o.3‘*3~/12+;-713“

iv +-'-J +1] +2 0.3 4 12 4 13

ill?»

§J2.1

$123

i123

<= Optional section
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Fig, 3.11 Energy levels for a homonuclear three-spin system. The levels can be grouped into
two sets of four: those with spin three in the or state (shown on the left with solid lines) and
those with spin three in thefi state, shown on the right (dashed lines).

3.7.2 Single quantum spectrum
As before, the selection rule is that m ofjust one spin can change by ii; this
means that AM = il. Applying this rule we see that there are four allowed
transitions in which spin one flips: 1-3, 2-4, 5-7 and 6-8. The frequencies
of these lines can easily be worked out from the energy levels in Table 3.3,
and are shown below along with the spin states of the passive spins (two
and three in this case).

transition state of spin two state of spin three frequency

1--3 Cl’ (Z -—U()_| - '_i7./13 — %J13

2--4 B Q‘ —U0,] + ~:l:J|3 - %J|3

5*7 (1 ,3 —vo,1 — %J12 + %J1.=
6-8 3 B —U()_] + 5113 + %J|3

These four transitions form the four lines of the multiplet (a doublet
of doublets) centred at the Larmor frequency of spin one. The schematic
spectrum is illustrated in Fig. 3.12. As in the case of a two-spin system, we
can label each line of the multiplet with the spin states of the passive spins -
in the case of the multiplet from spin one, this means the spin states of spins
two and three. In the same way. we can identify the four transitions which
contribute to the tnultiplet from spin two (l~2, 3-4. 5—6 and 7-8) and the
four which contribute to that from spin three (I-5, 3-7, 2-6 and 4-8).

3.7.3 Multiple quantum transitions
There are six double-quantum transitions in which two spins flip and in
which M changes by 2. Their frequencies are given in the following table.



453-7, Three spins i

ot spin2 [5 [3
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Bfiq-—-~—4 6 Bap .......... .. 7

Baa --._ 3 qqfl ........ .. 5 +QB‘! 2 —U0,1

92 96 100 104 108
<*—-—J12——*>

ototot 1 <*—-—*/12-—*>
—>J13<— —>J13<-

wta'5? do Q

Fi9- 3-12 Energy levels for a three-spin system showing by the arrows the four allowed
lfflnsiliflns which result in the doublet of doublets at the shift of spin one. The schematic
m“lllP1'5' is 5h0Wn On the right, where it has been assuming that v0_1 = -100 Hz, J1; = 10 HZ
and J13 = 2 Hz. The multiplet is labelled with the spin states of the passive spins.

transition initial state final state frequency

I-4

5-8

aaa

a/afl
/3/5'0
BBB

-1/0,1 - I/0.2 — £113 -
1~v0.1- 1/0,2 + 5113 +

15123

112 Z3

l-7

2-8

arm

a/,8a
BOB
BBB

-110,1" 110,3 - i112 *

-1101" I/0.3 + %J12 +

1jg-/23
151231

1-6

3-8

O50/(Y

59'”
@1315’
BBB

-1/0,2 - 110,3 — %J12 -

—U0_g —- U()‘3 + %./12 +

l5113
112 13

These transitions come in three pairs. Transitions 1-4 and 5-8 are
centred at the sum of the Larmor frequencies of spins one and two; this
is not Surprising as in these transitions it is the spin states of both spins one
and two which flip. The two transitions are separated by the sum of the
couplings to spin three (J13 + J23), but they are unaffected by the coupling
J12 which is between the two active spins.

We can describe these transitions as a kind of double quantum doublet.
spins One and two are both active in these transitions, and spin three is
passive. Just as we did before, we can associate one line with spin three
being in the a state (transition I-4) and one with it being in the ,6’ state
(transition 5-8). A schematic representation of the spectrum is shown in
Fig. 3.13.

There are also six zero-quantum transitions in which M does not change.
Like the double quantum transitions these group in three pairs, but this time
centred around the drflerence in the Larmor frequencies of two of the spins.
These zero-quantum doublets are split by the diflerence of the couplings
to the spin which does not flip in the transitions. There are thus many
similarities between the double- and zero-quantum spectra.

In a three spin system there is one triple-quantum transition, in which
M changes by 3, between levels l (aaa/) and 8 (/3,85). In this transition all
of the spins flip, and from the table of energies we can easily work out that
its frequency is -1/0'1 - 2/01 — 1103, i.e. the sum of the Larmor frequencies.
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Fig. 3.13 There are two double quantum transitions in which spins one and two both flip
(transitions 1-4 and S-8). The two resulting lines form a doublet which is Centred at the sum
of the Larmor frequencies of spins one and two and which is split by the sum of the Couplings
to spin three. As with the single-quantum spectra, we can associate the two lines of the doublet
with different spin states of the third spin.

We see that the single-quantum spectrum consists of three doublets of
doublets, the double-quantum spectrum of three doublets and the triple-
quantum spectrum of a single line. This illustrates the idea that as we move
to higher orders of multiple quantum, the corresponding spectra become
simpler. This feature has been used in the analysis of some complex spin
systems.

3.7.4 Combination lines
There are three more transitions which we have not yet described. For
these, M changes by l but all three spins flip; they are called combination
lines. Such lines are not seen in normal spectra but, like multiple quantum
transitions, they can be detected indirectly using two-dimensional spectra.
These lines may become observable in strongly coupled spectra. The table
gives the frequencies of these three lines:

transition initial state final state frequency

2-7 a/Ba Ba/,8 -z/OJ + 110,2 — t/Q3

3——6 /Baa a/‘BB +2/(11 — vi); * I/0,3

4-5 B/Ba 0/a/B +v0_t + 110; — t/Q37

Notice that the frequencies of these lines are not affected by any of thfi
couplings.

3.8 Summary
In this chapter we have seen precisely what we mean by ‘energy levels‘ and
why they are important in NMR. We have seen that these energy levels are
the eigenvalues of the relevant Hamiltonian, and we have looked at how
Hamiltonians are written and how the eigenvalues (and eigenfunctions) can
be found.



3.9 Further reading

Armed with these energy levels and the necessary selection rules, we
can predict the spectra we expect from two and three coupled spins. By
working from the energy levels, we see where the idea that lines can be
associated with particular spin states of coupled spins come from.

Finally, we saw that for coupled spins we have the possibility of multiple
quantum transitions which are not allowed in simple experiments but which
can be detected indirectly. Like normal spectra, such multiple quantum
spectra can contain multiplets, which can be interpreted in a similar way to
those in conventional spectra.

3.9 Further reading

The origins of nuclear spin:
Chapter l from Levitt, M. H. (2001) Spin Dynamics, Wiley

Operators and Wavefunctions:
Chapter l from Green, N. J . B. (1997) Quantum Mechanics 1: Foundations,
Oxford University Press

Energy levels and strong coupling effects:
Chapter l from Freeman, R. (1997) Spin Choreography, Spektrum
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3 10 Exercises
Following the same approach uspd in section 3.2.7 on p. 32, show
that t/1_t/I is an eigenfunction of Hm Spin with eigenvalue +%liyB0.

Calculate the Larmor frequency (in Hz. MHz and rad s"‘) of “C at
a magnetic field strength of 9.4 T; the gyromagnetic ratio of “C is
+6.7283 >< 107 rad s_' T" and you assume that the chemical shift
is zero.
Recompute the above Larmor frequency for the case where the
chemical shift is 77 ppm.

Show that with are eigenfunctions of the one-spin Hamiltonian
when it is written in angular frequency units

F70“ spin = wait;
hence find the corresponding eigenvalues. You should assume that

i: I//+'/1 : +ii'¢+‘/1 i: ‘/'—‘/1 = _%l//—‘/1

i.e. that I,/It)/2 are eigenfunctions of with eigenvalues 1%.

Following the approach of section 3.5 on p. 37, show that t,b,,,;t//mg
is an eigenfunction of the Hamiltonian for two spins with no coup-
ling between them:

Htwo spins. no coupl. = 110,111: + 110.2122-

Hence find the corresponding eigenvalue (the energy); make sure
that each step in your argument is clear and justified.
Show that ¢/,,_]¢,,_2 is also an eigenfunction of the coupling term
Jlzllzlzz; find the corresponding energy.
Without further detailed calculations explain why t1/,,_|¢1[,_g iS all
eigenfunction of the Hamiltonian for two spins with coupling

Htwo spins = U0.lil: + vogiz; + Jl2ilzi2z;

state the corresponding eigenvalue (energy).

Larmor frequencies are usually tens or hundreds of MHZ, but to
make the numbers easier to handle in this problem we will assume
that the Larmor frequencies are very much smaller.
Consider a system of two coupled spins. Let the Larmor frequency
of the first spin be -100 Hz and that of the second spin be -200 Hz.
and let the coupling between the two spins be 5 Hz. Compute the
energies (in Hz) of the four energy levels, according to Table 3.2
on p. 40,
Using these energies, compute the frequencies of the four allowed
transitions; make a sketch of the spectrum. roughly to scale. and
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label each line with the energy levels involved (i.e. 1-2 etc.). Also,
indicate for each line which spin flips and the spin state of the
passive spin.
Repeat your calculation, and redraw the sketch, for the case where
the coupling is —-5 Hz. Comment on the effect of changing the sign
of the coupling.

For a three-spin system, use Table 3.3 on p. 43 to work out the
frequencies of the four allowed transitions in which spin two flips.
Then, taking um = -200 Hz, J23 = 4 Hz and the rest of the
parameters as in Fig. 3.12 on p. 45, compute the frequencies of
the lines which comprise the spin two multiplet. Make a sketch of
the multiplet (roughly to scale) and label the lines in the same way
as is done in Fig. 3.12.

How would these labels change if J23 = -4 Hz‘?

For a three spin system, use Table 3.3 on p. 43 to compute the
frequencies of the six zero-quantum transitions; mark these transi-
tions on an energy level diagram.

Explain why these six transitions fall into three groups of two.

How would you describe the zero-quantum spectrum?





Chapter 4

The vector model
In the last chapter we made quite a lot of progress towards understanding
the form of NMR spectra by working from the energy levels and selection
rules. However, this has brought us no closer to understanding how even
the simplest pulse—acquire NMR experiment actually works. Ultimately it
is only quantum mechanics which will give us the complete understanding
We are looking for. However, before we embark on the full rigours of
that approach we will spend some time exploring the much simpler vector
model.

Strictly speaking, the vector model only applies to uncoupled spins, so
you might think that it is of little use. However, the model gives us an
excellent start towards understanding RF pulses, and also is a convenient
way of thinking about some key experiments, such as the spin echo. In
due course, we will discover that many features of the vector model have
direct counterparts in the full quantum mechanical treatment; this common
ground between the two approaches will help us to come to grips with the
more complex quantum mechanical approach. The final reason for spending
some time with the vector model is that much of the language used to talk
about pulsed NMR is derived from this model.

So, although the vector model has its limitations, it is very worthwhile
to know where the model comes from and how to use it.

4.1 The bulk magnetization
In section 3.2.5 on p. 31 we described how some nuclei appear to contain
a source of spin angular momentum. It turns out that associated with this
angular momentum there is always a nuclear spin magnetic moment; what
this means is that the nucleus generates a small magnetic field, just as if it
were a tiny bar magnet.

When the nucleus is placed in a magnetic field (as we always do to
record an NMR spectrum), there is an interaction between the nuclear mag-
netic moment and the applied field. The energy of the interaction depends
on the angle between the magnetic moment and the applied field: the lowest
energy arrangement is when this angle is zero i.e. the magnetic moment is
parallel to the field, and the highest energy is when the magnetic moment is

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley 8: Sons. Ltd
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Fig. 4.1 The energy of interaction between
a magnetic moment. represented by the
small arrow. and an applied magnetic field.
B0, depends on the angle 0 between the
magnetic moment and the field direction.
The lowest energy arrangement is when the
magnetic moment is parallel to the field
(6 = 0), and the highest energy arrangement
is when the moment is opposed to the field
(9 : n radians).
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individual magnetic summed over

moments sample

t\\/itW
Flg. 4.2 As a result of the disniption due to
thermal motion. the individual magnetic
moments are not all able to adopt the lowest
energy arrangement in which they align with
the field. For nuclear magnetic moments the
interaction with the field is so small that,
across the sample. the arrangement of the
moments is almost random. However, there
is a small preference for alignment with the
field and this, when averaged over the
sample, gives rise to a bulk magnetization of
the sample, parallel to the field direction.
This magnetization can be represented by a
vector, called the bulk magnetization vector.

opposed to the field (see Fig. 4.1).
The energy of the spins in our sample is thus minimized if all of the

individual magnetic moments align with the field. However, this alignment
is opposed by the random thermal motion of the molecules which is trying
to drive the system to state where the magnetic moments have random
orientations. The energy of this thermal motion is very much greater than
the energy of interaction between a nuclear magnetic moment and the ap-
plied field, and so the thermal motion easily disrupts the alignment of the
magnetic moments.

However, the randomizing effect of the thermal motion is not complete
since. as we have described, there is a very small energetic advantage for
the magnetic moment to be aligned with the field. As a consequence, the
magnetic moments are aligned in such a way that, averaged over our sample,
there is a slight net alignment of the moments parallel to the magnetic field.
One way of describing this alignment is to say that out of 105 spins it is as if
just one magnetic moment is aligned with the field and the rest are aligned
randomly; you can see why the alignment is described as ‘slight’.

As a result of this net alignment, the NMR sample becomes magnetized,
which means that the sample as a whole acquires a magnetic moment, just
as each spin has a magnetic moment; this is illustrated in Fig. 4.2. This
magnetization of the sample is along the direction of the applied magnetic
field and is represented by a bulk magnetization vector. The description
‘bulk’ is there to remind us that the magnetization is a property of the
whole sample. Note that the magnetization is a vector quantity, having a
magnitude and a direction.

The vector model is only concemed with what happens to this magne-
tization vector. The nice thing about the model is that the behaviour of the
vector is completely classical — we do not need any quantum mechanics
to work out what will happen. The model just involves rotations of the
magnetization vector in normal space, and so is intuitive and quite easy
to understand. Later on we will discover that for uncoupled spins the
predictions of the model are identical to those from a quantum mechanical
treatment; for such systems, the vector model is exact.

Surely the spins can only he ‘up’ or ‘down’?
Figure 4.2 might cause you some difiiculties as it shows the magnetic mo-
ments from individual spins pointing in all directions, whereas you will read
in many elementary accounts of NMR that ‘the spins are either up (state tr)
or down (state pi)’. The problem is that this statement. although oft repeated.
is simply not true, for the reasons set out in section 3. l .1 on p. 26.

In that section we described how spins are generally in what are called
mixed or superposition states which are combinations of the wavefunctions
for the tr and B states. A consequence of this is that the magnetic moment
can point anywhere between up, where it would point for a pure tr state, and
down, where it would point for a purefi state. We will return to this poinl
when We examine the quantum mechanics of a single spin in more detail in
Chapter 6.
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4.1.1 Axis systems
The rest of this chapter is going to be concerned with the motion of the
magnetization vector in three-dimensional space. This is a convenient mo-
ment, therefore, to describe the axis system we are going to use, which is
the right-handed axis set illustrated in Fig. 4.3.

The axes are described as right—handed as if you grasp the z-axis With
your right hand, with the thumb pointing along the +2 direction, then your
fingers curl from the x- to the y-axis. The curl of your fingers also gives the
sense of a positive rotation in such an axis system. So, looking down the
1-axis from +z towards the origin, a positive rotation is anti-clockwise and
takes us from x to y. Similarly, a positive rotation about the x-axis takes us
from 1 to ~y: imagine grasping the x-axis with your right hand and then you
will find that the curl of your fingers takes you from Z to —y.

4.1.2 The equilibrium magnetization
When a sample is first placed in a magnetic field there is no bulk magneti-
zation along the z-axis; rather, it takes a finite time for this magnetization to
build up. If we wait long enough, the magnetization reaches a steady value;
at this point we say that the equilibrium magnetization has built up.

The process by which the sample comes to equilibrium is illustrated
in Fig. 4,4. In the absence of a magnetic field the moments are oriented
randomly because all orientations have the same energy; there is thus no
net magnetization of the sample. When a magnetic field is applied there is
an energetic preference for the magnetic moments to be oriented parallel to
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Fig. 4.4 Illustration of how the equilibrium magnetization builds up. On the left is shown
the case where no magnetic field is applied: the individual magnetic moments are at random
orientations so that. summed over the sample, there is no net magnetization. ln the presence
of a magnetic field, there is an energetic preference for moments to be aligned with the field,
but it takes time for these orientations to be populated. So, when the magnetic field is first
applied there is still no magnetization. However, after waiting sufiicient time. the orientations
with the moment parallel to the field become more populated as shown (greatly exaggerated)
on the right. The result is that, summed over the sample, there is a net magnetization along the
field direction.
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Fig. 4.3 The right-handed axis set which
will be used throughout this book; the axes
are right-handed in the sense that if the
z—axis is grasped with the right hand and
with the thumb pointing along +2, the
fingers curl from x to y. In such an axis
system, a positive rotation about a particular
axis is defined by the curl of the fingers if
that axis is grasped with the right hand and
with the thump pointing in the positive
direction. A positive rotation about the
+1-axis is shown.
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Fig. 4.5 Once tilted away from the z-axis,
the magnetization vector rotates about the
field direction, sweeping out a cone of
constant angle to the 2-I1XiS1 this motion is
called precession. The direCti0n of
precession shown is for 11 nucleus with H
positive gyromagnetic ratio and hence a
negative Larmor frequency.

the field, but to start with the magnetic moments are still oriented randomly
so there is no net magnetization.

Over time, the random molecular motion ensures that the lower-energy
orientations are preferentially populated; as described above, this leads
to the growth of the net magnetization vector along the Z-axis. As more
moments adopt lower energy orientations the magnetization grows until it
reaches a steady value; at this point there is no further change and the system
is at equilibrium.

The process by which the spins come to equilibrium in a magnetic field
is called relaxation. For nuclear spins it is a relatively slow process — it can
easily take several seconds for the equilibrium net lnflgnetilfltion to build
up. In Chapter 9 we will look into the details as to how random molecular
motion leads to relaxation.

At equilibrium, the bulk magnetization vector points along the z-axis
— there is no bulk magnetization in the x— and y-directions. Of course, as
the individual magnetic moments can point in any direction, each magnetic
moment has x- and y—components, but it ttlrnS Ont that at equilibrium these
transverse components are distributed randomly and so cancel one another
out; the result is that at equilibrium the bulk magnetization has no transverse
components. We will see in the following sections how such transverse
components of the magnetization can be created by RF pulses.

4.2 Larmor precession
Once it has formed, the equilibrium magnetization vector is fixed in size and
direction — it does not vary over time, which is a particular property of the
equilibrium state. However, suppose that by some means (which we will go
into later) the magnetization vector has been tipped away from the 3-axis,
such that the vector makes an angle [3 to that axis. It tums out that what
then happens is that the magnetization vector rotates about the direction of
the magnetic field sweeping out a cone with a constant angle B, as shown
in Fig. 4.5. This kind of motion is called precession; the vector is said to
precess about the field.

If the magnetic field strength is BO, then it turns out that the frequency
of the precession is

wo = -7'30 in rad s" or v0 = -—yB0/22r in Hz

where y is the gyromagnetic ratio. The precession frequency is the Larmor
frequency which we encountered in section 3.3.2 on p. 34. For a single spin,
we saw that the allowed transition occurs at the Larmor frequency which
is exactly the same as the frequency at which the magnetization vector
precesses about the applied field; this is not a coincidence. The precession
of the magnetization about the field is sometimes called Larmor precession.

For nuclei which have a positive gyromagnetic ratio, the Larmor fre-
quency is negative (see section 3.3.2 on p. 34); this means that the preces-
sion of the magnetization vector about the field corresponds to a negative
rotation. Recalling section 4.l.l on p. 53. a negative rotation about I i-Q
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clockwise when viewed looking down the z-axis from +2 to the origin; this
is the sense of rotation shown in Fig. 4.5.

The magnetization will only execute this precessional motion when it
is at an angle to the magnetic field direction. So, at equilibrium, where
the magnetization is along the 1-axis and hence parallel to the field B0, the
magnetization remains stationary.

4.3 Detection
The precession of the magnetization vector is what we actually detect in a
pulsed NMR experiment. All we have to do is to mount a small coil of wire
round the sample, with the axis of the coil aligned in the xy-plane; this is
illustrated in Fig. 4.6. As the precessing magnetization vector ‘cuts’ the coil
a current is induced which we can amplify and then record — this is thefree
induction signal or, more usually, free induction decay (FID).

The detection process is analogous to the way in which an electric
current can be produced by induction. You may recall a demonstration in
which a bar magnet thrust into a coil of wire leads to the generation of
a current in the wire. If the magnet is moved rhythmically in and out of
the coil, or rotated inside the coil, the result is an oscillating current. The
magnetization of the sample behaves just like a magnet, so as the vector
precesses it leads to the generation of an oscillating current in the coil.

A coil wound round the x-axis detects the x-component of the magne-
tization; we can work out what this will be using some simple geometry.
Suppose that the equilibrium magnetization vector is of size M0; if this
has been tilted through an angle ,8 towards the x-axis, the x-component is
M0 sinfl, as shown in Fig. 4.7.

Although the magnetization vector precesses on a cone, we can visu-
alize what happens to the x- and y—components much more simply by just
thinking about the projection of the vector onto the xy-plane. At time zero,
the x-component is M0 sin B; the vector then precesses at wo about the
2-axis, which means that this initial x-component rotates at this frequency
in the xy-plane.

This rotation of a vector is exactly of the type we discussed in section 2.6
on p. 17. Here the vector is of length r = MO sin ,8 and starts out at time zero
along the x-axis. The vector rotates at frequency wo so that at time I the
angle through which the vector has rotated is wot. The x- and y—components
are thus rcos wot and rsin wot, respectively; this is illustrated in Fig. 4.8.
The components of the magnetization are denoted M, and M_,. and are given
by

M, = M0 sinflcos wot My = M0 sinfl sin wqt. (4.1)

Plots of these two components are also shown in Fig. 4.8; both are
simple oscillations at the Larmor frequency. Fourier transformation of these
signals gives us the familiar spectrum - in this case a single line at wo; the
details of how this transform works will be covered in Chapter 5.
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Fig. 4.6 The precessing magnetization will
cut a coil wound round the x-axis, thereby
inducing a current in the coil. This current
is amplified and then detected to give the
free induction signal.
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Fig. 4.7 Tilting the magnetization through
an angle /3 towards the x-axis gives an
x-component of size M0 sin ,8.
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Fig. 4.9 If the magnetic field along the
:-axis is replaced quickly by one along x.
the magnetization rotates in the _v:—plane as
it executes a precessional motion about the
field. As a result. the magnetization moves
towards the transverse plane.
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Fig. 4.8 At time zero we assume that the the magnetization is positioned so that its 1-
coinponcnt is M0 sin 5 and the y-component is zero. After time 1. the angle through which the
vector has rotated is wot. so the .r- and _v-components of the magnetization are Mo sin Boos wot
and M0 sin3 sin wot. respectively. Plots of these components of the magnetization are given in
the lower part of the figure; it is assumed that the Larmor frequency. wo. is negative.

4.4 Pulses
We now turn to the important question as to how we can rotate the magneti-
zation away from its equilibrium position along the z-axis. Conceptually
it is easy to see what we have to do. All that is required is to replace
the magnetic field along the 1-axis with one in the xy-plane (say along the
.r-axis), as shown in Fig. 4.9. The magnetization is now no longer aligned
with the field, and so will precess about it; in this case the precession
would be in the yz-plane which would bring the magnetization towards the
transverse plane. which is what we require.

Unfortunately it is all but impossible to switch the magnetic field sud-
denly in this way. Remember that the main magnetic field is supplied by
a powerful superconducting magnet. and there is no way that this can be
switched ofi‘ quickly; we will need to find another approach, and it turns out
that the key is to use the idea of resonance.

The idea is to apply a very small magnetic field along the .\-axis but
— crucially — to make this field oscillate at or near the Larmor frequency:
in other words. the oscillating field is resonant with the Larmor precession
frequency. We will show that even though B0 is many times greater in size
than the oscillating field, the latter can make the magnetization move away
from the :-axis provided that the resonance condition is met.

The coil used to detect the precessing magnetization (Fig. 4.6 on p. 55)
can also be used to generate the oscillating magnetic field. All we do is feed
some RF power to the coil and the resulting oscillating current will create
the required oscillating magnetic field along the .t"-direction. This field is
called the rut1iofreqzwrzc'_\' or RFfield.

To understand how this weak RF field can rotate the magnetization we
need to introduce the idea of the mtatingframe.
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Fig. 4.10 Illustration of how two counter-rotating fields Bf and Bf, shown in (a), add together
to give a field which is oscillating along the x-axis, shown in (b). The graph shows how the
field along x varies with time.
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4.4.1 Rotating frame
When RF power is applied to the coil wound along the x-axis, the result is
a magnetic field which oscillates along the x-axis. What we mean by this
is that the magnetic field starts out pointing along +x, gradually shrinks
to zero and then increases along the —x direction; then, it shrinks back
to zero and finally increases back to its original value along +x. We will
take the frequency of this oscillation to be 41),, (in rad s“) and the size of
the magnetic field to be 2B1; the reason for the 2 will become apparent
later. tum is called the transmitter frequerzcy for the reason that an RF
transmitter is used to produce the power; ‘tx’ is the traditional abbreviation
for transmitter.

It tums out to be a lot easier to work out the efiect of this oscillating field
if we replace it, in our minds, with two counter-rotating fields: Fig. 4.10
illustrates the idea. The two counter rotating fields have the same magnitude
B1. One, denoted Bf, rotates in the positive sense (fromx to y) and the other,
denoted Bf, rotates in the negative sense; both are rotating at the transmitter
frequency mu.

At time zero, Bf and B1‘ are both aligned along the .r-axis, and so add up
to give a total field of 2B1 along .r. As time proceeds, the vectors rotate away
from the x-axis and in opposite directions. Since the two vectors have the
same magnitude and are rotating at the same frequency, their y—components
always cancel one another out. However. theirx-components shrink towards
zero as the angle through which the vectors have rotated approaches 90°.
Then, as the angle increases beyond this point, the x-components grow once
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Fig. 4.12 An analogy for the rotating
frame. In (a) a child riding on a
merry~go-round executes a rather complex
motion as seen by a fixed observer.
However, if the observer joins the child on
the merry-go-round, as in (b). the child
appears to be executing a simple up-down
motion.

laboratory frame
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Fig. 4.11 The top row shows the motion of the field Bf when viewed in a fixed axis system, or
laboratoryframe. The field is rotating at ~01“ i.e. in the negative sense. which is clockwise in
this view. The bottom row shows the same field, but this time viewed in an axis system which
is rotating at —w,,, about the ;-axis; in this rotating frame, the field Bf appears to be static.

more, but this time along the —x-axis, reaching a maximum when the angle
of rotation is 180°. Bf and B; continue to rotate, causing the x-component
to drop back to zero and rise again to a value 2B1 along the x~axis. Thus we
see that the two counter-rotating fields add up to a field oscillating along x
- that is a linearly oscillating field.

Suppose now that we think about a nucleus with a positive gyromagnetic
ratio; recall that this means the Larmor frequency is negative so that the
sense of precession is from x towards —y, which is the same direction as the
rotation of Bf. It turns out that the other field, Bf, which is rotating in the
opposite sense to the Larmor precession, has no significant interaction with
the magnetization and so we will ignore it.

We now employ a ‘trick’ and move to a co-ordinate system which,
rather than being static (the laboratory frame), is rotating about the :-axis
in the same direction and at the same rate as Bf (i.e. at —w,,,). As is
shown in Fig. 4.11, in this rotating set of axes B] appears to be static and
directed along the x-axis. This is a very nice result as, when viewed in this
rotating frame, the RF field is neither oscillating nor rotating. but is simply
stationary. Moving to the rotating frame has therefore removed the time
dependence of the field; it is then much easier to work out the effect the
field has on the magnetization.

An analogy to help you understand how the rotating frame simplifies
things by removing time dependence is shown in Fig. 4.12. In ta) the anx-
ious parent is watching their child riding on a merry-go-round (or carousel).
The child’s motion is rather complicated: not only is the horse going round
and round, but it is also going up and down.

ln (b) the parent is standing on the carousel, and so is going around
with the child — in other words the parent has entered a rotating frame going
at the same speed as the merry-go-round. Now. from the point of view of
the parent, the child is just executing a simple up-down motion. Thus by
moving to an appropriate frame of reference, the description of a complex
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motion is simplified.
It is important to realize that the purpose of the rotating frame is to

remove the time dependence of the RF field. B} In the laboratory frame,
this field is rotating about the z-axis at —w,,,; in a rotating frame also moving
at -wu, Bf appears to be stationary. This is the only choice of rotating
frame frequency which will make B] stationary. The magnetic field due to
the applied RF is often called ‘the radiofrequency field‘ or ‘the B; field’.

We will use the rotating frame to help us work out what effect the RF
field has on the magnetization, but before we do this we need to consider
how the Larmor precession is affected by viewing things in the rotating
frame.

4.4.2 Larmor precession in the rotating frame
Suppose that we choose the rotating frame such that it rotates at the same
frequency and in the same sense as the Larmor precession. Viewed in
this frame. the magnetization will appear to be stationary i.e. the apparent
Larmor frequency is zero. Of course the precession has not really stopped,
it is just that we are viewing it differently.

More generally, if the rotating frame frequency is mm frame, the apparent
frequency of the Larmor precession in such a frame will be (mg — mm frame).
This difference frequency is called the ofiset, and is given the symbol Q:

Q = ‘~90 " wrot. frame-

The frequency w at which magnetization precesses around a magnetic
field B is given by

w = -'yB.

Another way of looking at this relationship is to say that if we know the pre-
cessional frequency we can work out the magnetic field B using B = ~04/y.
Following this line of argument we can say that if in the rotating frame the
precessional frequency appears to be Q, then the apparent magnetic field
AB is given by

Q
AB = ——.

7’
AB is called the reducedfield in the rotating frame. Clearly if the offset is
zero, then so too is the reduced field.

The important conclusion from this section is that, when viewed in the
rotating frame, the apparent magnetic field along the z—axis (the reduced
field) can be much smaller than the applied magnetic field, B0. Indeed. if
the rotating frame is at the Larmor frequency. the apparent field is zero.
When the reduced field becomes comparable with the Bl field, the latter
can start to influence the motion of the magnetization even though it is very
much smaller than the applied field B0. To understand the details of how
this works we need to introduce the concept of the effective field.

4.4.3 The effective field
From the discussion so far we can see that when RF power is applied there
are two magnetic fields in the rotating frame. Firstly, there is the RF field

In this discussion we will assume that the
gyromagnetic ratio is positive, so that the
Larmor frequency is negative.
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Flg. 4.13 In the rotating frame the effective
field B”; is the vector sum of the reduced
field AB and the B| field. The tilt angle. 6. is
defined as the angle between Beg‘ and AB.

which, provided we choose mm mm = —w.,,, gives rise to a static field B,
along the x-axis.

Secondly, there is the reduced field, AB, given by (-9/y). Since
Q : ((4)0 _ wrot. frame) and (Urot. frame = “(Utx it fono“/3 that

Q = "J0 " (“¢Utx)
= (4)0 + mm. (4.2)

This looks rather strange, but recall that tug is negative, so if the transmitter
frequency and the Larmor frequency are comparable in magnitude, the
offset will be small.

In the rotating frame, the reduced field (which is along z) and the B1 field
(which is along x) add vectorially to give an effective field Beff as illustrated
in Fig. 4.13. The size of this effective field is given by simple geometry as:

Beg = ,/B} + (AB)? (4.3)
The crucial point is that the magnetization precesses around the effective
field, just as in the laboratory frame the Larmor precession takes place
around the B0 field. As usual, the precessional frequency about the effective
field (4)35 is proportional to the field:

welf = Belf-

The vertical lines (I I) indicate that we should take the absolute value of the
quantity they enclose i.e. ignore the sign. Thus, regardless of the sign of y,
wag is always positive.

If the offset is small the effective field will lie close to the x-axis, and so
the equilibrium magnetization will be rotated away from the z~axis, which is
exactly what we want to achieve. The key point is that. although B0 is very
much larger than Br, we can eliminate the effect of the B0 field by setting
the transmitter frequency close to the Larmor frequency i.e. by making the
offset small. With this condition the reduced field AB is small and it is then
possible for the small B1 field to begin to exert an influence. In the limit
that the offset is zero, AB disappears and the B1 field is the only one left in
the rotating frame.

The angle between AB and Beg‘ is called the tilt angle and is usually
given the symbol 6. From Fig. 4.13 we can see that:

_ B1 AB Br
: —-- Q = -— = —-_srn 6 Befi cos Befi tan 0 AB

All three definitions are equivalent. When the offset is zero, 0 = zr/2; when
the offset is large, 0 approaches zero or rt, depending on the sign of the offset
and hence of AB.

4.4.4 The effective field in frequency units
For practical purposes the thing that is important is the precession frequency
about the effective field, mm. It is therefore convenient to think about the
construction of the effective field not in terms of magnetic fields, but in
terms of the precession frequencies that they cause.
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For each field the precession frequency is proportional to the magnetic
field with the constant of proportion being y. the gyromagnetic ratio. For z
example. we have already seen that in the rotating frame the apparent
Larmor precession frequency, Q, depends on the reduced field:

= - AB. ‘” " iQ y Q 6 9 E

We define ml as the precessional frequency about the B1 field (note that the '
absolute value of y is taken. so wl is always positive): X

“)1

w; = |y| B1, Fig. 4.14 The effective field can be thought
of in terms of frequencies instead of the

and we already have fiCldS USCCI ll'1

weff = l)’| Befl’-

Using these definitions in Eq. 4.3 meg can be written as

(1)35 = ,/of + Q2. (4.4)

Figure 4.13 can be redrawn in terms of frequencies, as shown in Fig. 4.14.
Similarly, the tilt angle can be expressed in terms of these frequencies:

. wt Q wts1n9=—— c0s9=— tan6=—.
wet? wet? Q

4.4.5 Summary
This has been rather a long and involved section which has introduced many
new ideas, so it is well to end by summarizing the key points.

0 RF power is supplied to a small coil wound round the sample in such
a way that the oscillating current in the coil creates an oscillating
transverse magnetic field e.g. along the x-axis.

0 This linearly oscillating field can be decomposed into two counter-
rotating fields. Only the field which is rotating in the same sense as
the Larmor precession need be considered.

0 The rotating field can be made static by moving to an appropriate
rotating frame.

0 In the rotating frame, the Larmor precession is modified; we interpret
this as the B0 field being replaced by the reduced field AB.

0 The magnetization rotates about the effective field which is a vector
sum of the RF field Bl and the reduced field.

0 The effective field will lie close to the x-axis if the offset is small i.e.
the transmitter frequency is close to the Larmor frequency.
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Fig. 4.15 Three-dimensional representations of the motion of the magnetization vector during
an on-resonance pulse. The thick line is the path followed by the tip of the vector, which is
assumed to start on the +1-axis. The effective field is the same as the Bl field and lies along
the x-axis; the magnetization therefore precesses in the yz-plane. The rotation is in the positive
sense about x, so the magnetization moves toward the —y~axis. In (a) the flip angle is 90° and
so the magnetization ends up along —_v; in (b) the pulse flip angle is l80° which places the
magnetization along —z.

4.5 On-resonance pulses
The simplest case to deal with is when the transmitter frequency is exactly
the same as the Larmor frequency - called an on-resonance pulse. Under
these circumstances the offset Q is zero and so, referring to Fig. 4.14 we see
that the effective field lies along the x-axis and is of size wt. The tilt angle
0 of the effective field is zr/2 or 90°.

For an on-resonance pulse the motion of the equilibrium magnetization
vector is very simple; all that happens is that it is rotated from the z-axis and
in the yz-plane, just as shown in Fig. 4.9 on p. 56. The precession frequency
is wt and so if the RF field is applied for a time tp, the anglefl through which
the magnetization has been rotated will be given by

B = wltp.

B is called theflip angle of the pulse. By altering the time for which the RF
is applied we can alter the angle through which the magnetization is rotated.

The most commonly used flip angles are rr/2 (90°) and rr (l80°). The
motion of the magnetization vector during such on-resonance pulses is
shown in Fig. 4.15. The 90° pulse rotates the magnetization from the
equilibrium position to the —_v-axis; this is because the rotation about the
field is in the positive sense. Imagine grasping the x-axis with your right
hand and with the thumb pointing along the +x~direction; your fingers then
curl in the sense of a positive rotation.

If the pulse flip angle is set to 180°, the magnetization is taken all the
way from +1 to —z; this is called an inversion pulse. In general, for a flip
angle ,8 simple geometry tells us that the 1- and y—components are

M; = MO cosfl My = —MQ sinfi;

this is illustrated in Fig. 4. l6.
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For the pulses we have been describing so far the RF (B1) field is
aligned along the x~axis, so such a pulse is properly described as ‘an x
pulse‘ or ‘a pulse about x’; this is often written 90‘: or 90°(x). Later on,
in section 4.10 on p. 70, we will describe the effects of pulses about other
axes. Generally the convention in NMR is that, unless otherwise specified,
a pulse is assumed to be about the x-axis. However, to start with we will
specify the phase of all of the pulses in order to avoid confusion.

4.5.1 Hard pulses
ln practical NMR spectroscopy we usually have several resonances in the
spectrum, each of which has a different Larmor frequency; we cannot
therefore be on-resonance with all of the lines in the spectrum. However,
it is possible to make the RF (B1) field strength sufficiently large that for a
range of resonances the effective field lies very close to the x-axis. Then,
to all intents and purposes, the magnetization behaves as if the pulse is
on-resonance.

This is best illustrated using an example. Suppose that we have a
proton spectrum covering a range of about 10 ppm, and that we place the
transmitter frequency in the middle of the spectrum. The largest possible
offset is 5 ppm which, at a Larmor frequency of 500 MHZ, translates to an
offset of 2500 Hz; converting to rad s'l this gives Q = 1.57 X 104 rad s'1.

A typical value for the length of a 90° pulse might be about 12 /JS; from
this we can work out the field strength, wl, since this is related to the flip
angle according to Eq. 4.5 on p. 62

,8 = wltp hence an =
P

In this case we know that for a 90° pulse B = rr/2 and the duration, rp is
12 >< 10'“ s; therefore
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Fig. 4.16 If an on-resonance pulse of flip
angle B is applied to equilibrium
magnetization we can use simple geometry
to work out the resulting y- and
z-components.

rr/2 Z
‘"1=r§m<@

= 1.31 >< 105 radS_l.
The tangent of tilt angle is therefore:

EQ
1.31 >< 105
1.57 >< 104

= 8.34;

tan0 =

hence the tilt angle is 83°, as illustrated in Fig. 4.17. We can use Eq. 4.4 on
p. 61 to calculate wag as 1.32 >< 105 rad s']; as expected, this value is very
close to wt as wt >> Q.

Recall that for an on-resonance pulse the tilt angle is 90°. What we have
shown in this example is that for a peak at the edge of the spectrum the tilt
angle is within a few degrees of that for an on-resonance pulse and so, to
a good approximation, we can assume that the magnetization vector will

............... .. ‘°°"
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Flg. 4.17 lllustration of the position of the
effective field for the example given in the
text where the otfset is 2500 Hz and the
field strength corresponds to a 90° pulse of
duration 12 ps. These conditions result in
the RF field strength (1)1 being much greater
than the offset Q, and so the tilt angle is
close to 90°. To all intents and purposes we
can assume that the pulse is in fact on
resonance. with the effective field lying
along the .r-axis and of strength wl.
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Fig. 4.18 Timing diagram or pulse
sequence for the simple pulse—acquire
experiment. The line marked ‘RF‘ shows
the location of the radiofrequency pulses,
and the line marked ‘acq’ shows when the
signal is recorded or acquired. The pulse
sequence can be divided up into three
periods, as shown on the lower line.

behave as it does for an on-resonance pulse. Such a pulse is called a hard
pulse or a non-selective pulse.

In summary, the condition for a hard pulse is that the RF field strength,
wt , must be much greater than the offset, Q:

hard pulse : an >> |Q|.

We need the modulus signs as the ofi’set might be negative. If this condition
holds, the effective field is the same as (4)1 and, like wt, lies along the x-axis.

A spectrometer is designed to have sufiicient RF power to create hard
pulses over the normal range of shifts of a given nucleus. As the main
magnetic field B0 becomes greater, the range of possible offsets increases
(recall that these scale with the field), and so for a pulse to be considered
‘hard’ the B1 field must be proportionately stronger i.e. more RF power is
needed.

4.6 Detection in the rotating frame
It was explained in section 2.1.3 on p. 8 that, due to the way most NMR
spectrometers are constructed, the frequencies of the lines in the spectrum
are measured relative to the receiver reference frequency. The commonest
arrangement is to make the receiver reference frequency the same as the
transmitter frequency. Recall that we also need to make the rotating frame
frequency equal to the transmitter frequency in order to make the Bi field
static. If the transmitter, rotating frame and receiver reference frequencies
are all the same then the offset frequency described in section 2.1.3 on p. 8
and the offset defined in Eq. 4.2 on p. 60 will have the same value.

Consider a peak which is 100 Hz from the transmitter frequency, and
hence 100 Hz from the receiver reference frequency; in a rotating frame
at the transmitter frequency, the magnetization vector from this peak will
precess at 100 Hz. One way of looking at this is to say that we are detecting
the precession of the magnetization in the rotatingframe. So, instead of the
detected signal oscillating at the Larmor frequency, the oscillation is at 100
Hz - that is the offset frequency.

From now on we will make the assumption that the receiver refer-
ence and transmitter frequencies are the same, and that We are detecting
the signal in the rotating frame. With these assumptions the x- and y-
magnetizations given in Eq. 4.1 on p. 55 are rewritten

M’, = M0 sin,8 cos Qt My = M0 sinfl sin Qt,

where Q is the offset.

4.7 The basic pulse—acquire experiment
At last We are in a position to understand how the simple pulse-acquire
NMR experiment, introduced in section 2.5 on p. 14, actually works. The
timing diagram — or pulse sequence as it is usually known — is shown in
Fig. 4.18.
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Fig. 4.19 Evolution of the magnetization during the acquisition time (period 3) of the pulse-
acquire experiment; the x_v-plane of the rotating frame is shown. The magnetization starts out
along —_v and evolves at the offset frequency Q (here assumed to be positive). The resulting at-
arrd pv-magnetizations are shown in the graphs in the lower part of the figure.

The pulse sequence can be divided up into three periods, as shown in
the diagram; we will assume that the RF pulse is ‘hard’. During period 1
equilibrium magnetization builds up along the z-axis. As was described in
section 4.5 on p. 62, during period 2 the 90°(x) pulse rotates this magneti-
zation onto the —y-axis. During period 3 the magnetization precesses in the
transverse plane at the offset Q; this is illustrated in Fig. 4.19.

Some simple geometry, shown in Fig. 4.20, enables us to deduce how
the x- and y-magnetizations vary with time. The offset is Q, so after time t
the vector has precessed through an angle Qt; the x- and y—components are
thus proportional to the sine and cosine of this angle:

My = ~MQ cos Qt M, = M0 sin Qt.

As we commented on before, Fourier transformation of the detected sig-
nals arising from these magnetizations will give a spectrum, with a peak
appearing at frequency Q.

4.7.1 Spectrum with several lines
If the spectrum has more than one line, then we can associate a separate
magnetization vector with each. If the pulse is hard. then each vector will
be rotated into the transverse plane, and then they will precess at their
individual offsets. The detected signal will be the sum of contributions from
each vector; for example the y-component will be

My = _MQ‘] cos Q11 — M0,; cos Q2! — M0,; cos Q3t ...

where M0_1 is the equilibrium magnetization associated with the first line,
Q1 is its offset and so on for the other lines. Fourier transformation of the
resulting detected signal will produce a spectrum with lines at Q1, Q2 etc.

‘I
Fig. 4.20 After a 90°(x) pulse the
magnetization starts out along the —_v-axis
It then rotates through an angle Qt during
time t; the x-component is proportional to
sin Qt and the y-component to cos Q1.
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Fig. 4.21 Illustration of how pulse calibration is achieved using a pulse—acquire experiment
in which the flip angle of the pulse. B, is varied. In such an experiment. the signal intensity
is proportional to sin /3. as shown by the graph. Along the top are the spectra which would
be expected for various different flip angles (indicated by the dashed lines). The signal is a
maximum for a flip angle of 90°. goes through a null at 180°, and after that goes negative. Pulse
calibration is achieved by increasing the duration of the pulse until the signal goes through a
null; this time corresponds to a 180° pulse.

4.8 Pulse calibration
It is crucial that the pulses we use in NMR experiments have the correct flip
angles. For example. to obtain the maximum intensity in the pulse—acquire
experiment we must use a 90° pulse, and if we wish to invert magnetization
we must use a 180° pulse - other flip angles will simply not give the
required result. Pulse calibration is therefore an important preliminary to
any experiment and is usually carried out using a modified pulse—acquire
experiment.

We have already shown that, for a hard or on-resonance pulse applied to
equilibrium magnetization, the y-component of magnetization after a pulse
of flip anglefl is proportional to sin/:1 (Fig. 4. l6 on p. 63). Recalling that it is
this transverse magnetization which is detected, it follows that the intensity
of the signal in a pulse-acquire experiment will vary as sin ,3. A typical
outcome of such an experiment in which the pulse flip angle is varied is
shown in Fig. 4.21.

The normal practice is to increase the flip angle of the pulse (by increas-
ing its length) until a null is found; the flip angle is then 180°. There is a
maximum in the signal when the flip angle is 90°, but the maximum is broad
and hence rather difficult to locate precisely. In contrast, the null at 180° is
sharper and easier to locate.

Once the duration of a 180° pulse is found, simply halving the time
gives a 90° pulse; the pulse length for other flip angles can be found by
simple proportion.

Suppose that the 180° pulse was found to be of duration rm. Since the
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flip angle is given by ,6 = wltp (Eq. 4.5 on p. 62) it follows that

F = wlliso
hence wl = L,

I180
where we have remembered to write the flip angle B in radians. Using this
expression, we can determine ml, the RF field strength, from the duration
of a pulse of known flip angle.

Sometimes we want to quote the field strength not in rad s_1 but in Hz,
in which case all we need to do is divide the above result by Zn:

1
2 = ——— H .(w1/ YT) 2,180 Z

For example, let us suppose that we found a null in the signal at a pulse
length of 15.5 ps; thus

rr
ml = —

I130
71'

_ -615.5 >< 10
= 2.03 >< 105 rad 5"‘.

In frequency units the calculation is

l
(wt/27?) = ZED

1
Z 2><15.5 >< 10-6
= 32.3kHz.

This result is often expressed in words by saying ‘the B1 field is 32.3
kHz’. At first sight this is rather a strange thing to say, as surely B1 is a
magnetic field, not a frequency. When we specify the B| field in Hz, what
we are in fact doing is giving the frequency at which the magnetization will
precess about the field. In practice, this is a more useful thing to know than
the size of the field in Tesla.

4.9 The spin echo
We are now able to analyse the most famous pulsed NMR experiment, the
spin echo, which is a component of a very large number of more complex
experiments; the pulse sequence is shown in Fig. 4.22.

The special thing about the spin echo sequence is that, at the end of the
second T delay, the magnetization ends up along the same axis, regardless
of the length of -r or the size of the offset Q. We describe this outcome by
saying that ‘the offset has been refocused’, meaning that at the end of the
sequence it is just as if the magnetization has not evolved at all i.e. as if the
offset is zero.

90'(x) 180"(X)

RF "E “Hz -c
ii

2':

Flg. 4.22 Pulse sequence for the spin echo
experiment. The l80° pulse (indicated by an
open rectangle as opposed to the closed one
for a 90° pulse) is in the centre of a delay of
duration 2r, thus separating the sequence
into two equal periods, r. The signal is not
acquired until after the second delay r, or
put another way, until 21 after the beginning
of the sequence. The durations of the pulses
are in practice very much shorter than the
delays 1, but for clarity the length of the
pulses has been exaggerated.
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Fig. 4.23 Illustration of the effect of a l80°(x) pulse on three vectors (coloured in black, grey
and light grey) which stan out at different angles from the —y-axis. All three are rotated by
180° about the x-axis on the trajectories indicated by the thick lines which dip into the southern
hemisphere. After the pulse, the vectors end up in mirror image positions with respect to the
xz-plane.

4.9.1 180° pulses as refocusing pulses
To understand how the spin echo sequence works we first need to under-
stand the effect of the 180° pulse when it is applied to transverse magnetiza-
tion. Figure 4.23 shows the effect of a l80°(x) pulse on three magnetization
vectors at different positions in the transverse plane. We see that each vector
is carried through a different arc but all end up in mirror image positions
with respect to the xz-plane.

A second view of what is going on is given in Fig. 4.24. The diagram
describes the fate of a magnetization vector which has precessed away from
the —y-axis through an angle ¢ i.e. it has acquired a phase ¢. To work out
the effect of the l80° pulse it is convenient first to resolve the magnetization
vector into its components along the x- and y-axes, as is shown in the
diagram.

The x-component is unaffected by the l80°(x) pulse as this component
is aligned along the same axis as the B1 field. The y-component is simply
rotated to the opposite axis, in this case from —y to +y; this is analogous to
a l80° pulse rotating the equilibrium magnetization from the +z-axis to the
-2-axis.

When the two components are recombined to give the final position of
the vector, we find that it has been moved to a mirror image position with
respect to the xz-plane. Expressed in terms of the phase angle, the effect of
the l80°(x) pulse is to move the vector from a position described by a phase
1;) (measured from —y), to one with a phase (rr — ¢).

4.9.2 How the spin echo works
Figure 4.25 illustrates the motion of a typical magnetization vector during
the spin echo; the diagram commences after the initial 90°(x) pulse has
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Fig. 4.24 Illustration of the effect of a 180°(x) pulse on a magnetization vector in the
transverse plane; the initial position of the vector is described by a phase angle ¢, measured
from the —y—axis. The effect of the pulse is best visualized by resolving the vector into its x-
and _v~components. As the former is aligned with the B| field, it is llnafffifilfid by the 1911186;
the y-component is simply reversed in direction. The final position of the vector is found
by recombining the x- and y—components. We see that the vector ends up in a mirror image
position with respect to the xz-plane. with a phase angle (yr — ¢) radians, measured from the
—y—axis.

placed the magnetization along —y. The position of the magnetization
vector at selected times is shown, as is a graph giving the phase ¢ which
the magnetization vector acquires as the sequence pr0CcodS. This phase
is measured anti-clockwise from the starting position of the vector on the
—y—axis.

During the first delay T the vector precesses from —y towards the x-axis
(we are assuming that the offset is positive). The angle through which the
vector rotates is simply Q-r, which is therefore its phase.

As has already been explained, the effect of the l80°(X) pulse is to move
the vector to a mirror image position with respect to the xz-plane. So, after
the 180° pulse the vector is at an angle Qr to the y-axis rather than being at
Q-r to the —y-axis. Measured from the —y-axis, the phase is now (rt - QT).

During the second delay -r the vector continues to evolve and will once
again rotate through an angle of QT; the additional phase acquired is thus
QT. Just after the 180° pulse the phase is (yr — QT); adding to this the phase
QT acquired during the second delay -r gives us the phase at the end of the
sequence as (1r— QT) + Qr = yr i.e. the magnetization vector is aligned along
the y—axis.

Clearly, the final position of the vector is independent of the offset Q
and the delay T; this is the special feature of a spin echo and why it is
described as refocusing the offset. This refocusing comes about because
firstly the phase acquired during the two r delays is the same, and secondly
the intervention of the 180° pulse between them causes the phases to cancel
one another out.

The 180° pulse is called a refocusing pulse because it causes the evo-
lution during the first delay 1 to be undone by the second delay. It is
interesting to note that the spin echo sequence gives exactly the same result
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Fig. 4.25 Illustration of how the spin echo refocuses the evolution of the offset. The sequence
starts with a 90°(x) pulse (not shown) which places the magnetization along —y. The upper
part of the figure shows the position of the magnetization vector at various times; note how the
180° (.r) pulse moves the magnetization to a mirror image position with respect to the xz-plane.
At the bottom of the diagram shows a graph of the phase accrued by the magnetization vector
(mfiawrcd from its starting position on the —_v-axis) varies throughout the sequence. The 180°
pulse causes a discontinuity in the phase. changing its value from Qr to (1r—Qr). The evolution
of the phase for two different offsets is shown by the solid and dashed lines, Regardless of the
offset or the delay 1. the magnetization ends on along the y-axis with a phase of ;r_

as the sequence 90°(x) — l80°(x) with the delays omitted.
Figure 4.25 also shows the phase throughout the sequence. Note the

discontinuity when the 180° pulse is applied: at this point the phase changes
from Qr to (rr — Qr). If the offset is smaller the phase evolution is different,
as shown by the dashed line, but the phase at the very end of the sequence
is still rt.

4.10 Pulses of difierent phases
So far we have only allowed the RF (B 1) field to be along the x-axis, but the
field can just as well be in any direction in the transverse plane. Commonly.
pulses with the field aligned along the four cardinal directions are used i.e.
x, y, —x and -—y. For example, a pulse with the field along the _v-axis is
referred to as ‘a y pulse’ or a ‘pulse about y’. A y pulse is sometimes called
a pulse ‘phase shifted by 90°’, indicating that it is about an axis shifted by
90° from the x-axis (which is taken as the reference point). So. a 90° pulse
about the —_v-axis, written 90°(—_v), can be described as a pulse phase shifted
by 270°.

If we apply a 90° pulse about the y-axis to equilibrium magnetization
we find that the vector rotates in the x;-plane such that the magnetization
ends up along the x-axis; this is illustrated in Fig. 4.26 (a). As before.
we can determine the effect of such a pulse by thinking of it as a positive
rotation about the y-axis. A 90° pulse about —x rotates the equilibrium
magnetization to the y-axis, as is shown in Fig. 4.26 (b).

As we described in section 4.9.l on p. 68. a l80°(x) pulse causes the
vectors to move to mirror image positions with respect to the x:-plane. ln
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Flg. 4.26 Three-dimensional rt-presentations of the effect on equilibrium magnetization of (a)
ll 90° Pl1l§k‘ '~\b0l1l lllfi ,\'-=lXi»\‘ Hlld (bl =1 90“ pulse about the -.\'-axis. The magnetiyntion starts
from the +:-axis and the path followed by the tip of the magnetization vector is shown by
the solid line. The pulses are assumed to be on resonance (or hard). with the B; ficltls in the
positions shown.

a similar way, a l80°(v) pulse causes the vectors to move to mirror image
positions with respect to the _\-':~plane. Finally. it is interesting to note that a
180° pulse about any axis in the transverse plane will rotate magnetization
from +z to —z.

4.11 Off~resonance effects and soft pulses
So far we have only dealt with the case where the pulse is either on reso-
nance or where the RF field strength is large compared with the offset (a
hard pulse, section 4.5.1 on p. 63), which is in effect the same situation. We
now turn to the case where the offset Q is comparable in size to the RF field
strength wt. The consequences of this are sometimes a problem to us, but
they can also be turned to our advantage for selective excitation.

Referring to Fig. 4.14 on p. 61, we see that as the offset becomes
comparable with the RF field strength, the effective field begins to move
up from the x-axis towards the z-axis (assuming that the offset is positive).
As a consequence, rather than the equilibrium magnetization simply being
rotated in the yz-plane from z to -y, the magnetization follows a more
complex curved path. A series of such paths for increasing offsets are shown
in Fig. 4.27; in this figure the duration of the pulse has been set so that the
flip angle is 90° on resonance.

There are two things to note from this diagram. Firstly. although on
resonance the magnetization vector ends up along —_\', for the off-resonance
case the vectors stop short of the transverse plane. This means that the
signal we would observe after such a pulse will be weaker than for the
on-resonance case, simply because less transverse magnetization has been
generated.

The second thing to note is that, whereas the on-resonance pulse pro-
duces only y-magnetization, the off-resonance pulses also produce some
x-magnetization. We will see later on in section 5.3.4 on p. 92 that this

¢= Optional section
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Fig. 4.27 Three-dimensional representation showing the path followed during an x pulse for
various different resonance offsets. The duration is chosen so that, on resonance. the flip angle
is 90°; the thick lines show the path followed by the tip of the magnetization vector which is
assumed to start on +z. Path a is for the on-resonance case; the effective field lies along x and
is indicated by the dashed line A. Path b is for the case where the offset is half the RF field
strength (Q = mi /2); the effective field is marked B. Paths c and d are for offsets equal to and
1.5 times the RF field strength, respectively; the effective field directions are labelled C and D.

leads to phase errors in the spectrum.
In the limit that the offset becomes very much larger than the RF field

strength, the effective field lies very close to the z-axis, and so the pulse is
incapable of rotating the equilibrium magnetization away from the z-axis.
Such a pulse is so far off resonance that it has no effect. For example.
pulses applied to '3C have no effect on ‘H as the resonance offset of ‘H
would be tens if not hundreds of MHZ from the “C transmitter frequency.
For typical RF field strengths of the order of kHz, it therefore follows that
‘H resonances will not be affected by pulses to 13C.

We can see more clearly what is going on if we plot the x» and _v-
magnetizations. produced by a nominal 90°(x) pulse applied to equilib-
rium magnetization, as a function of the offset; these graphs are shown in
Fig. 4.28. In (a) we see the _\=-magnetization and. as expected. on resonance
the equilibrium magnetization ends up entirely along -y. However. as the
offset increases the amount of y-magnetization generally decreases but there
is an oscillation imposed on this overall decrease: at some offsets the mag-
netization is zero and at others it is positive. The plot of the x-magnetization,
(b), shows a similar story with the magnetization generally falling off as the
offset increases. but again with a strong oscillation.

Plot (c) is of the magnitude of the magnetization. which is given by

M355 = +

This gives the total transverse magnetization in any direction; it is. of
course. always positive. We see from this plot the characteristic nulls and
subsidiary maxima in the amount of magnetization as the offset increases.

What plot (c) tells us is that although a pulse can excite magnetization
over a wide range of offsets. the region over which it does so efficiently
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Fig. 4.28 Plots of the magnetization produced by a 90°(x) pulse to equilibrium magnetization
(assumed to be of size l) as a function of the offset; the pulse length has been adjusted so that
on resonance the flip angle is 90°. The horizontal axes of the plots is the offset Q expressed as
a ratio of the RF field strength wl. Plots (a), (b) and (c) are. respectively. the x-magnetization,
y-magnetization, and the absolute value of the transverse magnetization.

is really rather small. If we want at least 90% of the magnetization to be
rotated to the transverse plane (i.e. Mabs 2 0.9), the offset must be less than
about 1.6 times the RF field strength.

4.11.1 Excitation of a range of shifts
There are some immediate practical consequences of these off-resonance
effects for RF pulses. Suppose that we are trying to record the full range
of “C shifts (200 ppm) on an spectrometer whose magnetic field gives a
proton Larmor frequency of 800 MHz and hence a '3C Larmor frequency of
200 MHz. If we place the transmitter frequency at 100 ppm, the maximum
offset that a peak can have is 100 ppm which, at this Larmor frequency,
translates to 20 kHz. According to our criterion above, if we are willing to
accept a reduction to 90% of the full intensity at the edges of the spectrum
we would need an RF field strength of 20/ 1 .6 z 12.5 kHz. This corresponds
to a 90° pulse width of 20 ps. If the spectrometer has insufficient power to
produce this pulse width, the excitation at the edges of the spectrum will
fall below the 90% mark.

4.11.2 Selective excitation
Sometimes we want to excite just a portion of the spectrum, for example a
single line or just the lines of one multiplet. We can achieve this by putting
the transmitter on resonance with the line we want to excite (or in the middle
of the multiplet), and then reducing the RF field strength until the degree of
excitation of the rest of the spectrum is sufficiently small. At the same time
as the RF field strength is reduced. the duration of the pulse will have to be
increased in order to maintain the flip angle at 90°. The whole process is
visualized in Fig. 4.29.

Pulses which are designed to affect only part of the spectrum are called
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Fig. 4.29 Visualization of the selective excitation of just one line in the spectrum. At the
top is shown the spectrum that would be excited using a hard pulse. If the transmitter iS
placed on~resonance with one line and the strength of the RF field reduced, then the pattem of
excitation we expect is as shown in the middle (see the plot of Mabs in Fig. 4.28). AS 8 Y¢$\1lL
the peaks at non-zero offsets are attenuated and the spectrum which is excited will be as shown
at the bottom. The extent to which the otf-resonance peaks are excited will depend on the field
strength (and hence duration) of the pulse.

selective pulses or sofi pulses (as opposed to non-selective or hard pulses).
The level to which we need to reduce the RF field depends on the separation
between the peak we want to excite and those peaks we do not want to
excite. The closer the unwanted peaks are, the weaker the RF field must
be made and hence the longer the 90° pulse. In practice, a balance has to
be made between making the pulse too long (and hence losing signal due
to relaxation) and allowing a small amount of excitation of the unwanted
signals.

Figure 4.29 does not portray one problem with this approach, which is
that for peaks away from the transmitter a mixture ofx- and y-magnetization
is generated (as shown in Fig. 4.28). The second problem that the figure
does show is that the excitation falls off rather slowly and ‘bounces’ through
a series of maxima and nulls; these are sometimes called ‘wiggles’. We
might be lucky and have an unwanted peak fall on a null, or unlucky and
have an unwanted peak fall on a maximum.

Much effort has been put into getting round both of these problems. The
key feature of all of the successful solutions is to ‘shape’ the envelope of
the RF pulse i.e. not just switch it on and off abruptly. but with a smooth
variation. Such pulses are called shaped pulses. The simplest of these
are basically bell~shaped (like a gaussian function, for example). These
suppress the wiggles at large offsets and give just a smooth decay; they
do not, however, improve the phase properties. To attack this part of the
problem requires an altogether more sophisticated approach.
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Fig. 4.30 Plots Of the Z-magnetization produced by a pulse applied to equilibrium magneti-
zation as a function of the offset; the flip angle on-resonance has been set to 180°. Plot lb)
covers a nanower range of offsets than plot (a). Comparing these plots with those of Fig, 4.28
on p. 73, we see that both show characteristic wiggles as we go off-resonance; however, the
range of offsets over which inversion is 90% complete is much less than that over which 90%
excitation is achieved.

4.11.3 Selective inversion
Sometimes we want to invert the magnetization associated with just one
resonance while leaving all the others in the spectrum unaffected; such
a pulse would be called a selective inversion pulse. Just as for selective
excitation, all we need to do is to place the transmitter on resonance with
the line we wish to invert, and reduce the RF field strength until the other
resonances in the spectrum are not affected significantly. Of course we will
need to lengthen the pulse so that the on-resonance flip angle is maintained.

Figure 4.30 shows the 2-magnetization generated as a function of off-
set for such an inversion pulse. Compared with the behaviour of a 90°
excitation pulse (Fig. 4.28 on p. 73), we see that the range over which
there is significant inversion is somewhat smaller and that the ofl’-resonance
oscillations are smaller in amplitude.

This observation has two consequences: one ‘good’ and one ‘bad’. The
good consequence is that a selective 180° pulse is, for a given field strength,
more selective than a corresponding 90° pulse. In particular, the weaker
off-resonance wiggles are a useful feature.

The bad consequence is that when it comes to hard 180° pulses, the
range of offsets over which there is anything like complete inversion is
much more limited than the range of offsets over which a 90° pulse gives
significant excitation. This can be seen clearly by comparing Fig. 4.30 with
Fig. 4.28 on p. 73. Thus, 180° pulses are often the source of problems in
spectra with large offset ranges.

4.12 Moving on
Several times now we have referred to the fact that a Fourier transform can
be used to tum the measured FID into a spectrum. The next chapter explores
this process in more detail and, along the way, introduces some of the useful
manipulations which we can subject the FID to before Fourier transforming
it. We will also explore in more detail how phase errors manifest themselves
in spectra.
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4.13 Further reading
The origins of microscopic and macroscopic nuclear magnetism:
Chapter 2 from Levitt, M. H. (2001) Spin Dynamics, Wiley

The vector model, spin echoes and selective pulses:
Chapters 2, 4 and 5 from Freeman, R. (1997) Spin Choreography, Spektrum



4.14 Exercises j j

4.14 Exercises
4.1 A particular spectrometer has a B0 field which gives a Larmor

frequency of 600 MHz for ‘H; the RF field strength, to, /(Zn), has
been determined to be 25 kHz. Suppose that the transmitter is
placed at 5 ppm. Compute the offset (in Hz) of a peak at 10 ppm,
and hence compute the tilt angle of the effective field, 6, for a spin
with this offset.
ls this 25 kHz field sulficiently strong to give hard pulses over the
full range of ‘I-l chemical shifts?

Repeat the calculation for a Larmor frequency of 900 MHZ and
comment on your result.

4.2 Explain why it is that the maximum signal in a pulse—acquire
experiment is seen when the flip angle of the pulse is 90°. What
would you expect to see in such an experiment if the flip angle of
the pulse were set to: (a) 180°; (b) 270°?

4.3 In an experiment to determine the pulse length, an operator ob-
served a positive signal for pulse widths of 5 and 10 /.is; as the pulse
was lengthened further the intensity decreased going through a null
at 20.5 its and then becomes negative.
Explain what is happening in this experiment and use the data to
detennine the RF field strength in Hz and in rad s", and the length
of a 90° pulse.
A further null in the signal was seen at 41.0 ps; to what do you
attribute this?

4.4 Using an approach similar to that of Fig. 4.24 on p. 69, show
that a 180° pulse about the y—axis rotates vectors to mirror image
positions with respect to the yz-plane.
[Hint: as in this figure, resolve the vector into its x- and y-
components; however, for the case of a l80°(y) pulse, it is the
y-component which is unaffected and the X~C0mp0[l€nl which is
inverted by the pulse.]

4.5 Use vector diagrams, similar to those of Fig. 4.25 on p. 70, to show
what happens during the spin echo sequence

90°(.x) — 1' — l80°(y) — T—-

Also, draw up a phase evolution diagram appropriate for this se-
quence. In what way does the result differ from a spin echo in
which the 180° pulse is about the x-axis?
Without drawing up further detailed diagrams, state what the effect
of applying the refocusing pulse about the —x-axis would be.
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The gyromagnetic ratio of “P is 1.08 >< IO8 rad s"' T". This
nucleus shows a wide range of shifts, covering some 700 ppm,

Estimate the minimum 90° pulse length you would need to excite
peaks over this complete range to within 90% of their theoretical
maximum for a spectrometer with a B0 field strength of 9.4 T.
[Hint see section 4.1 l on p. 71.]

A spectrometer operates at a Larmor frequency of 400 MHZ for ‘H
and hence I00 MHZ for 13C. Suppose that a 90° pulse of length 10
pg is applied to the protons. Does this have a significant effect on
the “C nuclei? Explain your answer carefully.

From the plots of Fig. 4.28 on p. 73 we see that there are some
offsets at which the transverse magnetization goes to zero. Recall
that during the pulse the magnetization starts on +1 and is rotated
about the effective field; the nulls in the excitation are when the
magnetization has been rotated all the way back to +Z i.e. when
the rotation about the effective field is through Zn radians, or some
multiple of this angle. We can work out the offset at which this
occurs in the following way.

The effective field is given by

wcfi = ,/wf +Q3.

To simplify things, we will express the offset as a multiple K of the
RF field strength:

Q = KUJ1.

Show that, using this expression for Q, wag is given by:

meg =w1Vl+K2.

The null condition is when the rotation is 211':

null condition wefizp = Zn,

where tp is the length of the pulse. The final thing to note is that
the on-resonance flip angle is zr/2; this means that

on resonance wltp = rr/2.

Combine the last three equations to show that the null occurs when

4= V1+/<3 i.e./<= \/l5.

The predicted null is atx = Q/wt = \/T5 i.e. Q = \/lgwi. Does
this agree with Fig. 4.28?
Predict the value of K at which the next null will occur.
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4.9

4.10

4.11

4.12

Further nulls continue to occur at larger offsets; show that at large
offsets, which means K >> l, the nulls occur at K = 4n, where n is
an integer.

lHint: the nulls occur at rotation angles of Znn; forK >> 1, V1 + K3
can be approximated.]

When calibrating a pulse by looking for the null produced by a
180° rotation, why is it important to choose a line which is close to
the transmitter frequency (i.e. one with a small offset)?

Use vector diagrams to predict the outcome of the sequence:

90°(x) — T — 90°(x)

when applied to equilibrium magnetization. In your answer, ex-
plain how the x-, y- and z-magnetizations depend on the delay r
and the offset Q.

For a fixed delay, sketch a graph of the x- and y-magnetization as a
function of the offset. At what values of QT do any nulls occur?

Consider the spin echo sequence to which a 90° pulse has been
added at the end:

90°(x) - T - l80°(x) - T - 90°(¢).
The axis about which the pulse is applied is given in brackets
after the fiip angle. Explain in what way the outcome is different
depending on whether the phase ¢ of the pulse is chosen to be X, y,
—x or —y.

The so-called l-l sequence is:

90°(x) — T - 90°(—x)

For a peak which is on resonance the sequence does not excite
any observable magnetization. However, for a peak with an offset
such that Qr = rr/2 the sequence results in all of the equilibrium
magnetization appearing along the x-axis. Further, if the delay is
such that QT = rr no transverse magnetization is excited.

Use vector diagrams to explain these observations, and make a
sketch graph of the amount of transverse magnetization generated
as a function of the offset for a fixed delay r.

The sequence has been used for suppressing strong solvent signals
which might otherwise overwhelm the spectrum. The solvent is
placed on resonance, and so is not excited: r is chosen so that the
peaks of interest are excited. How does one go about choosing the
value for T?
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4.13

4.14

The so-called l—l sequence is:

90°(x) — r — 90°(y).

Describe the excitation that this sequence produces as a function of
offset. How could it be used for observing spectra in the presence
of strong solvent signals?

If there are two peaks in the spectrum, we can work out the effect
of a pulse sequence by treating the two lines separately. There is a
separate magnetization vectorfor each line.

Suppose that a spectrum has two lines, A and B. Suppose also that
line A is on resonance with the transmitter and that the offset of
line B is 100 Hz.

Starting from equilibrium, we apply the following pulse sequence:

90°(x) — r — 90°(x)

Using the vector model, work out what happens to the magnetiza-
tion from line A.

Assuming that the delay 1- is set to 5 ms (1 ms = 10'3 s), work out
what happens to the magnetization vector from line B.

Suppose now that we move the transmitter so that it is exactly
between the two lines. The offset of line A is now +50 Hz and
of line B is -50 Hz.

Starting from equilibrium, we apply the following pulse sequence:

90°(x) - T

Assuming that the delay r is set to 5 ms, work out what happens to
the two magnetization vectors.



Chapter 5

Fourier transformation
and data processing
In pulsed NMR spectroscopy we measure what is called a time-domain
signal — that is, the measured signal is a function of time. This is in contrast
to most other kinds of spectroscopy, in which measurements of absorption
or emission are made directly as a function of frequency to give the usual
Sp8CUUH10nfl?quenCy1hnnahIflgnal

Except in the simplest cases, the time domain representation is virtu-
ally uninterpretable by eye, so it is vital to have a way of generating the
frequency-domain representation (i.e. a normal spectrum) from the time-
domain signal. This is where the Fourier transform comes in: it is a
relatively simple mathematical procedure, well suited to implementation
on a computer. which generates the spectrum from the FID. The process is
illustrated in Fig. 5.1.

In this chapter we will first explore how the Fourier transform works,
and then look in more detail at the relationship between the time and
frequency domains. This will naturally bring us to the important topics
of lineshapes and the phases of lines in NMR spectra. The chapter closes
with a description of the manipulations which can be performed on the FID,
prior to Fourier transformation, in order to improve the signal-to-noise ratio
or the resolution of the spectrum.

Before proceeding, there is one point we need to clarify about the way
in which the FID is actually measured. For a computer to be able to
manipulate the time-domain signal (the FID), it has to be converted into
a digital form. This digitization process involves measuring the size of
the signal, converting this value to a number and then storing it away in
computer memory.

In Chapter 12 we will look at this digitization process in more detail.
but suffice it to say that digitization involves sampling the signal at regular
intervals chosen so as to give a good approximation to the smoothly varying
signal. The digital representation of the FID thus consists of several data
points, evenly spaced in time, as shown in Fig. 5.2. In this chapter we
will, for convenience. represent the FID as if it were a continuous smooth
function, rather than being sampled at discrete intervals. Most of the time
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time
domain
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Fourier
transform

frequency ————~
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Fig. 5.1 The Fourier transform is a
mathematical process which tums a
time-domain signal, the FID, into a
frequency-domain signal, the spectrum.

(8)

(b) time ————~
0 .9

5 '. .0
Q O00 0. 0

Fig. 5.2 The amplitude of the FID, as
shown in (a), varies smoothly as a function
of time. In order to be able to manipulate
this time-domain signal in a computer. the
signal has to be digitized at regular intervals
In (b) we see a digital representation of the
signal from (a): provided we sample
sufficiently often. the data points are a good
approximation of the real signal.
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Fig. 5.3 Illustration of how the Fourier transform works. The FID, shown along the top, is
multiplied by trial cosine functions of known frequency to give a product function. The area
under this product function corresponds to the intensity in the spectrum at the frequency of
the cosine wave. Three cases are shown. In (a) the trial cosine is at 15 Hz which matches the
oscillation in the FID; as a result the product function is always positive and the area under it
is a maximum. In (b) the trial frequency is l7 Hz; now the product function has positive and
negative excursions, but on account of the decay of the FID, the area under the trial function
is positive, although smaller than the area in case (a). The intensity of the spectrum at 17 Hz
is therefore less than at 15 Hz. Finally, in (c) the trial frequency is 30 Hz; the product function
oscillates quite rapidly about zero so that the area under it is essentially zero. As a result, the
intensity in the spectrum at this frequency is zero. The spectrum is generated by plotting the
area under the product function against the frequency of the corresponding trial cosine wave.

this distinction makes no practical difference, but when it does we will point
this out.

5.1 How the Fourier transform works
The best way to see how the Fourier transform works is to start out by
considering a particular example. Let us imagine that we have a single
resonance at an offset of 15 Hz; the measured FID will thus consist of an
oscillation at 15 Hz which decays away over time, as shown across the top
of Fig. 5.3. We have assumed that the oscillation is simply a cosine wave —
later in this chapter we will discuss other possibilities.

To transform this FID into a conventional spectrum we need to find
out the frequency of the oscillation, as this gives the position of the peak
in the spectrum. Of course, in this simple case we could determine the
frequency from the period of the waveform, but such an approach would
clearly be inapplicable to more complex waveforms. The Fourier transfomi
is a general solution to this problem; it involves comparing the FID with a
series of cosine waves in the following way.

Suppose we take our FID and multiply it by a trial cosine wave with a



5.1 How the Fourier transform works

la) 15 Hz lb) 17 Hz (C) 30 HZ
FID \/\/\/\/\/\/\/\

_ X X X
trial

wave

pl'OClUCt  AAAAAA~  VV¢*AA“‘  AVA”*
function _ _ V

=__...................................., F...............
_ i .

areaunde
productfuncton

; I
i l:.

f

2 iz 1
ii .=

Y_
0 5 10 15 20 25 30

frequency / Hz

Fig. 5.4 This diagram is essentially the same as Fig. 5.3 with the exception that the FID has a
slower decay. As a result, for the case where the trial cosine wave is at 17 Hz, the area under
the product function is smaller, and so is the corresponding intensity in the spectrum. The
overall result is that the line is narrower.

frequency of I5 Hz. As both the FID and the cosine wave have the same
frequency, at any time both functions have the same sign; the product of the
two functions is therefore alwayspositive, as shown in Fig. 5.3 (a). The area
under this product function represents the ‘amount’ of oscillation at l5 Hz
there is in the FID, in other words the area represents the intensity of the
spectrum at l5 Hz.

Now suppose we make the frequency of the trial cosine wave 30 Hz;
again this is multiplied by the FID to give a product function, as shown in
Fig. 5.3 (c). This time, the FID and the trial cosine do not always have
the same sign, and so the product function oscillates about zero. If we
recall that an area enclosed by the curve above the horizontal axis is counted
as positive and that below is counted as negative, it is clear that the area
under the product function is very close to zero. So we say that there is no
oscillation at 30 Hz present in the FID i.e. the intensity in the spectrum at
30 Hz is zero.

Finally consider the case, shown in (b), where the frequency of the trial
cosine function is l7 Hz. The positive and negative excursions of this
function and the FID almost match, so to start with the product function
is positive. However, eventually they do get out of step and the product
function goes negative. The important point is that because of the decay on
the FID the area under the product function is not zero - the positive part
at the beginning outweighs the negative part at the end. However, the area
under the product function is not as great as when the trial cosine wave is
at l5 Hz, so the intensity of the spectrum at I7 Hz is significant, but not as
great as that at l5 Hz.

The whole process is repeated with more trial cosine waves covering a
range of frequencies. The spectrum is then constructed by plotting the area
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Fig. 5.5 This diagram is essentially the same as Fig. 5.3 with the exception that the FID is
appropriate for a situation where there are two resonances, one at an offset of 10 Hz and one at
20 Hz. Multiplying by trial cosine waves at 10 and 20 Hz, (a) and (b), gives product functions
which clearly have non-zero areas; these areas correspond to intensity in the spectrum at 10
and 20 Hz. However, multiplying by a cosine wave at 30 Hz, (c). gives a product function with
zero area; this corresponds to their being no intensity in the spectrum at 30 Hz.

under the product function against the frequency of the corresponding trial
cosine wave, as shown at the bottom of Fig. 5.3. As expected, the spectrum
shows a peak centred at 15 Hz; however, the peak has a certain width, which
is a result of the decay of the FID. We saw above that, when the frequency
of the trial cosine function is close to 15 Hz, the area under the product
function is still significant, and so there is intensity in the spectrum away
from the centre of the peak.

If the decay of the FID is slower, the corresponding peak in the spectrum
is narrower; this is illustrated in Fig. 5.4 which should be compared with
Fig. 5.3. In the case of the trial cosine wave at 17 Hz, the negative part
of the product function is more significant on account of the slower decay
of the FID. As a result, the area under the product function, and hence
the intensity in the spectrum at 17 Hz, is reduced. This corresponds to a
narrower line.

What happens if the FID is from more than one resonance? In such
cases, each gives a separate contribution to the FID so that the time-domain
signal is, for example, a sum of decaying cosine waves. A typical situation
is illustrated in Fig. 5.5 where two resonances, at 10 and 20 Hz, give rise
to a FID with a more complex form. Nevertheless, multiplication by trial
cosine waves at either I0 or 20 Hz gives product functions which clearly
have finite areas under them, and so there is intensity in the spectrum at
these two frequencies. However, multiplication by a trial cosine at 30 Hz
gives a product function which oscillates back and forth about zero and so
has zero area; there is thus no intensity in the spectrum at 30 Hz.

No matter how complex the original waveform of the FID, this process
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of inultiplying by trial cosine waves will always pick out the intensity at the
corresponding frequency. This is the essence of the Fourier transform.

5.1.1 Mathematical formulation of the Fourier transform
Written in words, the procedure we have been describing is

intensity atf Hz = area under [FID X cos (21rft)] .

The quantity in the square bracket is the product function described above.
Let us call the intensity at frequencyf, S Spm-,,m(f), and the amplitude of the
FID at time t is S F{])(l)I the (f) and (r) remind us that these are functions
of frequency and time respectively. Next, recall that in calculus, the area
under a function is the same as its integral. So, our expression in words can
be written more formally as

Sspecfl-um(f) = Jim S|:1D(t) cos (21rft) dt. (5.1)

The integral is over time (as shown by dt), which is the horizontal axes of
the plots of the FID.

The upper limit of the integral is infinite time. However in practice, as
the FID eventually decays to zero, we only need to compute the integral
from zero up to some time at which the FID is negligible. Equation 5.1
is one definition of the Fourier transform which allows us to compute the
spectrum, S Sp¢¢m,m(f), from the FID, SF1D(r). All we need to do is compute
the integral for a range of frequencies, thus building up the spectrum.

On the spectrometer the FID is represented by a set of points which
have been sampled at regular intervals. To Fourier transform such data,
rather than computing the integral we multiply each point in the FID by the
value of the trial cosine wave computed for the time corresponding to that
point. This gives the product function as a series of data points, and these
are then summed to give the intensity in the spectrum at the frequency of
the trial cosine wave.

Expressed mathematically the integral of Eq. 5.1 becomes the sum

i=N

Sspeetrum(f) = Z SF1D(fi) <:<>s<2m->.
i=1

where t,~ is the time corresponding to the ith data point and S F1D(t,-) is the
value of the FID at this time; N is the total number of data points.

Why the Fourier transform works
We have, with the aid of diagrams and words, attempted to explain how
the Fourier transform picks out from a complex waveform the component
oscillating at a certain frequency. The question is, why does this process
work?

The Fourier transform uses two key ideas. The first is that any time-
domain function can be represented by the sum of cosine waves of different
frequencies and amplitudes. How many cosine waves we need depends on
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Fig. 5.6 A 90°(y) pulse rotates the
equilibrium magnetization onto the x-axis;
from there it precesses 'rn the transverse
plane. creating 1- and _v-components
M0 cos Qt and M0 sin Qt. The diagram
assumes that the offset Q is positive.

the complexity of the time domain function. The spectrum, or frequency-
domain function, is a plot of the amplitude of these cosine waves as a
function of their frequency.

The second point is that these cosine waves are orthogonal to one
another. What this means is that the integral, taken between t = O and
t = oo, of the product of any two cosine waves of different frequencies is
zero. It is for this reason that the integral of Eq. 5.1 is able to pick out
the contribution at just one frequency. A good analogy here is to think
about the x-, y- and z—coordinates of a point in space: because the three axes
are orthogonal, the values of the three coordinates are independent of one
another. By analogy, the contribution to the spectrum at one frequency is
independent of that at another because the cosine functions at two different
frequencies are orthogonal.

5.2 Representing the FID
In section 4.7 on p. 64 we showed that, in the basic pulse—acquire ex-
periment, the evolution of the x- and y—components of the magnetization
generated by a 90°(x) pulse can be written

My = —M0 cos Qt M, = M0 sin Qt,

where M0 is the equilibrium magnetization and Q is the offset (in rad s'* ).
As described in section 4.6 on p. 64, the assumption is made that we are
detecting the signal in a rotating frame at the transmitter frequency.

If our pulse—acquire experiment had used a 90° pulse about y, rather
than about x, the equilibrium magnetization would have been rotated onto
the x-axis. As shown in Fig. 5.6, the evolution of the x- and y—components
are given by

Mx = M0 cos Qt M, = M0 sin Qt.

It will suit us for our present purposes to use these forms of M, and M)»:
later on, we will see that the choice we make is in any case arbitrary.

The precession of the magnetization gives rise to a current in the RF
coil which, after various manipulations by the RF electronics in the spec-
trometer, results in a signal voltage which can be digitized and the result
stored away in computer memory. The spectrometer is capable of detecting
simultaneously both the x- and y—components of the magnetization, each
giving rise to separate signals which we will denote S X and S ,-.

These signals are proportional to M, and M,-, but theirvabsolute size
is not generally of any interest so we will simply write the constant of
proportion as S 0, the maximum value:

S,=S0cos§2r S,_=S0sinQt.

Finally, we need to recognize that the magnetization. and hence the signal.
will decay over time. We model this by assuming that the signal decays
exponentially:

S, =S0cosQtexp(—;) S). =SqsinQtexp(%{). (5.2)
Z 2
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T3 is a time constant which characterizes the decay; the shorter T2, the more
rapid the decay. As we will see in Chapter 9, this decay is usually due to
relaxation processes.

Rather than dealing with the x- and y—components separately, it is con-
venient to bring them together as a complex signal, with the x-component
becoming the real part and the y~component the imaginary part. The com-
plex signal is written S (I) to remind us that it is a function of time.

so) = s,.+is,
wt _ _ -r

= S0cosQt exp — +1 S0s1nQt exp(T)]

= S0 (cos Qt + i sin Qt) exp
2

== S0 exp (iQt) exp (5.3)

To go from the third to the fourth line we have used the identity
cos6 + i sin6 2 exp(i6).

It is convenient to think of this complex signal as being represented by a
vector rotating at frequency Q, as shown in Fig. 5.7. The vector is of length
S 0 exp (—t/T2) (i.e. it shrinks over time), and the x- and y—components (the
real and imaginary parts) are given by Eq. 5.2.

The division by T2 in Eq. 5.3 is sometimes rather inconvenient, so we
define

l . .
R: —, Rrn units ofs" orHz

T2
enabling us to write the time-domain signal as

S(t) = S0 exp (iQt) exp (—Rt). (5.4)

R is the (first~order) rate constant for the decay: as R increases the decay
becomes more rapid and so the corresponding line becomes broader.

If there are several resonances present, then the complex time-domain
signal is a sum of terms such of the type given in Eq. 5.3

_ —1 _ —tS(t) : Sg"exp(1Q1t) exp £75}-i» Sébexp (rQ2t) exp + ...
T2 T2

where each resonance i has its own intensity S 3”, frequency Q,-, and decay
constant T2“ .

5.3 Lineshapes and phase
As has already been outlined. Fourier transformation of the time-domain
signal, the FID, gives the required spectrum. ln this section we will examine
the relationship between the time-domain function and the spectrum in more
detail. This will introduce the important topics of the lineshape and phase
of the peaks in a spectrum.

Y (imas-)
S0 exp(—t/T2)‘A

Sx (rea|)iv_ 8°

l1
1
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sy (|'mag.) '_ 50

time -—-—~

Fig. 5.7 The complex time-domain signal
defined in Eq. 5.3 can be thought Offls
arising from a rotating vector of length
S 0 exp (—r/T3); the x~ and y—components of
the vector are given by Eq. 5.2.
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Fig. 5.8 Fourier transformation of an exponentially decaying time-domain signal (Eq. 5.4)
gives a complex frequency-domain signal or spectrum whose real and imaginary parts have
the absorption and dispersion mode Lorentzian lineshapes, shown in (a) and (b) respectively.
Here. the peak is centred at 6 Hz and the decay constant R has been chosen such that the
width (at half height) of the absorption mode line is 1 Hz; note that the heights of both peaks,
as well as their widths, are also functions of the decay constant. The dispersion lineshape is
considerably broader than the absorption lineshape: it also has both positive and negative parts,
which is an undesirable feature. The width W, at half height, of the absorption mode is R/rt Hz;
the dispersion mode is almost four times wider.

5.3.1 Absorption and dispersion lineshapes
ln section 5.1 (starting on p. 82) the Fourier transform was introduced
by thinking about a purely real time-domain function and the result of
multiplying it by cosine waves. There is an analogous process for complex
time-domain functions where, instead of multiplying by cos (21rft) and then
integrating, we multiply by the complex exponential exp (i2rrft). As was
explained in section 2.6.5 on p. 21, exp(i21rft) is the way of representing
an oscillation using complex numbers.

Not surprisingly, if we start with a complex time-domain signal, Fourier
transformation gives a complex frequency-domain signal or spectrum. Nor-
mally, the software on the spectrometer only displays the real part of this
complex spectrum, but it is important to realize that the imaginary part
exists, even if it is not displayed.

Fourier transformation of the complex time~domain signal of Eq. 5.4
gives a complex frequency-domain signal, or spectrum, S (cu):

S(t) Tl S(Lt))
FT S OR , -—S0(w - Q)

S0 exp (iQt) exp (—Rr) -—> R2 + (w _ (2)21 +1 R2 +—(£b~; Q)? (5.5)
V V

real imaginary

Note that, just as in the FID the running variable is time, in the spectrum
the variable is the frequency, w, here chosen to be in rad s".

The real part of the spectrum is a peak with the absorption mode
Lorentzian lineshape, whereas the imaginary part has the dispersion mode
Lorentzian lineshape; the lineshapes are illustrated in Fig. 5.8 for the case
S 0 = l. You will recognize the real part as similar to the lineshape in-
troduced in section 2.2 on p. 9. Note that these particular lineshapes are a
result of the assumed exponential decay of the time-domain function.
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The factor of S0 in Eq. 5.5 is just an overall scaling, so it is usual to
define the Lorentzian absorption and dispersion mode lineshape functions,
Atw) and D(w). without this factor:

R *(w ~ Q)A = —————-— D = ————————. 5.6(m ¥+w-ml (M W+w-ml ()
The absorption lineshape is always positive and is centred at Q; if we let
w = Q it is easy to see that the height of the peak is 1/R:

R
S@)= m+@-ml

5
R2

=1m
Using these expressions, we can work out the frequency, wt/2, at which the
height of the line has fallen to half this maximum. For example, recalling
that the peak height of the absorption lineshape is l/R, wt/2 is found by
solving the following equation:

1 l R_X__=____.__._____.
2 R R2+(Q—u)|/2)?

The values for wt/2 turn out to be (Q + R) and (Q — R); there are of course
two values as the lineshape is symmetrical about frequency Q. Thus, the
width at half height of the absorption mode lineshape is simply 2R rad s_‘
or R/If Hz. These features of the absorption Lorentzian are shown in Fig. 5.8
@-

These results are exactly what we expected. The larger the decay con-
stant R, the faster the FID decays and hence the broader the line in the
spectrum. Also, as R increases the peak height decreases, so as to keep the
integral of the line constant (section 2.2 on p. 9).

The dispersion lineshape, Fig. 5.8 (b), is not one we would choose for
high-resolution spectroscopy. It is broader and half the height of the ab-
sorption mode. but the worst feature is that it has both positive and negative
parts. A crowded spectrum in which the peaks have the dispersion mode
lineshape would very rapidly become quite uninterpretable.

So far we have written the lineshapes in angular frequency units, rad s";
it is sometimes convenient to rewrite the functions given in Eq. 5.6 in terms
of Hz. The results, along with their peak heights and widths are summarized
in Table 5.1.

Using the definitions of the lineshape functions A(w) and D(w) from
Eq. 5.6, we can write the result of the Fourier transformation of Eq. 5.5
more compactly as

ll’!5(1) S (w)

S0 exp (iQt) exp (—Rr) S0 [A(w) + iD(w)]. (5.7)iii
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Table 5.1 Definitions of the absorption and dispersion mode Lorentzian lineshape funqjons’
A and D. along with their peak heights and widths, given in both rad s" and Hz, The peaks
are centred at Q rad s" or F9 Hz.

absorption dispersion

lineshape R ~(w — Q)-1 A(w) = ————i D(w) =(rad s ) R2 + (cu — Q)2 R2 + (w - Q)2
lineshape R —21r(f — F0)A(f)=———i———-—— D(f)=(Hz) R2 + 41r2(f - F@)2 ‘ R1 + 41r2(f - F0)1

peak height 1/R l/(ZR)

width (rad Sr‘) 2R 2(2 + ‘/§)R = 7.5R

width (Hz) R/It’ e 0.32R (2 + \/§)R/rr z 11R

5.3.2 Phase
We have already seen that we can influence the form of the x» and y-
components of the magnetization by altering the phase of the RF pulse.
What is more, although the receiver in the spectrometer produces two
signals which are labelled as deriving from the x- and y-components of
the magnetization, due to the way the RF electronics works there is no
guarantee that these outputs correspond to the magnetizations measured in
the same axis system used to define the phase of the RF pulses.

As a result, the time-domain signal measured by the spectrometer has an
essentially arbitrary (and usually unknown) phase ¢ associated with it. We
saw in section 2.6.5 on p. 21 that mathematically such a phase corresponds
to multiplication by exp (iqb), so the time-domain signal is

S(t) = S0 exp (iQt) exp (—Rt) >< exp (i¢).

One of the properties of the Fourier transform is that if we multiply the
time domain by a constant, the frequency domain is multiplied by the same
constant — in other words. the constant propagates through harmlessly. So.
following Eq. 5.7, we can just write down the Fourier transform of the time
domain signal with the phase factor as

so exp(iQt) exp(—Rt) >< exp(i¢) T» so [A(w) + iD(w)] >< €Xp(l¢). (5.8)
Remember that we usually display just the real part of the frequency do-
main; to find out what this is, we need to replace exp (i¢) with (cos ¢+i sin ¢)
and then multiply out the brackets

50 [A(w) + iD(w)] ¢Xt>(i¢) =

+

Sq [A(r.u) + iD(w)l [cos ¢ + i sin ¢]
:90 [cos ¢A(w) — sin <15 D(w)]

V

real

iS0 [cos ¢D(w) + Slit ¢bA(¢u)]. (5.9)
imaginary
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Fig. 5.9 Depiction of the effect of a phase shift on the spectrum, In each case a vector
diagram. like that of Fig. 5.7 on p. 87, shows how the position of the signal at time zero is
specified by a phase angle ¢ measured anti-clockwise from the x-axis. The corresponding x-
and y—components of the time-domain signal are shown, along with the real and imaginary
parts of the spectrum. In (a) ¢ = 0 and, as expected, the real part contains the absorption mode
lineshape. In (b) a phase shift of ¢ = If/4 results in both the real and imaginary parts of the
spectrum being a mixture of absorption and dispersion mode lineshapes. Two special cases are
also shown: in (c) a phase shift of 7r/2 moves the absorption mode to the imaginary part of the
spectrum; in (d) a phase shift of n simply inverts the spectrum when compared with ta).

What this says is that in general the real part of the spectrum contains
a mixture of the absorption and dispersion lineshapes; likewise, the imag-
inary part is also a mixture. The relative contributions of absorption and
dispersion depend on the phase ¢.

Figure 5.9 illustrates what the real and imaginary parts of the spectrum
will look like for various values of the phase. In (a) the phase is zero,
so the real part is the absorption mode, as expected. In (b) the phase is 2r/4
radians or 45°; the vector diagram shows where the signal starts at time zero.
Note that the x- and y—components of the time domain are no longer simple
damped cosine and sine waves, but are phase shifted, which is the same
thing as being shifted along the time axis. The real part of the spectrum is
clearly neither pure absorption nor pure dispersion, but a mixture of the two.
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Fig. 5.10 Illustration of how a spectrum is
phased by trial and error. The original
spectrum is shown at the top, and beneath it
are spectra resulting from various phase
corrections. In fact, the appropriate phase
correction is —75°, but at this scale a value
within a few degrees of this also looks
correctly phased. If we increased the
vertical scale, we could inspect the foot of
the line in more detail and hence adjust the
phase more closely.

The figure also illustrates some special cases. In (c) the phase is If/2
radians or 90°, so cos¢ = 0 and sin¢ = I; from Eq. 5.9 it is clear that
the real part is minus the dispersion lineshape and the imaginary part is the
absorption lineshape, which is what is shown in the diagram.

Another special case, shown in (d), is when ¢ = rt radians or 180°;
now cos¢ = —I and sin¢ = 0, so the real part contains minus the ab-
sorption mode lineshape and the imaginary part minus the dispersion mode
lineshape. In other words, a phase shift of rr or 180° simply inverts the
spectrum.

5.3.3 Phase correction
Usually, we want to make sure that the real part of the spectrum (the
part which is displayed) has the absorption mode lineshape as this is the
lineshape which will give us the narrowest peaks. The problem is that the
spectrometer produces time-domain data with an arbitrary phase, and so the
real part of the resulting spectrum will not have the pure absorption mode —
such a spectrum is described as being ‘not phased correctly’ or ‘un-phased’.

Luckily, the solution to the problem is rather simple. Remember that the
spectrum is stored in computer memory, so it is easy to have the computer
multiply the spectrum by exp(i¢¢,,,r), where ¢C,,,, is a phase correction.
From Eq. 5.8 on p. 90, the spectrum will now be described by the function

5 0 [A(w) + iD(w)l >< <-IXP (i¢) >< CXP (idem)-
Collapsing the two exponentials together gives

5 0 [A(w) + iD(w)l X 6XP(iI¢ + ¢corr])-

If we choose ¢c<,,-, = —¢, the exponential term will be exp (0) which is I,
and so the spectrum will become A(w) + iD(w), which is what we want.

The question is, given that we do not know ¢, how do we choose ¢¢,,,, to
obtain the desired result? The answer is, by trial and error. The software on
the spectrometer provides a mode in which qbco,-, can be altered by a ‘click
and drag’ operation; as the phase correction is altered, the display of the
real part of the spectrum is updated continuously. All we do is adjust the
phase until the peaks appear to have the required absorption lineshape; at
this point, it should be that ¢C°,-, = —¢. The process is called phasing the
spectrum, and it is illustrated in Fig. 5.10.

Admittedly, the process is somewhat subjective, and no two spectros-
copists will come up with the same phase correction for a given spectrum
— but the result is close enough for most purposes. Note that a single phase
correction is applied to the whole spectrum: the correction is therefore
described as a frequency independent or zero order phase correction.

The key message of this section is that, after recording the data, we can
adjust the phase in the spectrum to obtain the lineshape we require.

5.3.4 Frequency dependent phase errors
Sometimes, the phase is not the same for all the lines in the spectrum, but
varies from one edge of the spectrum to the other. There are many reasons
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Fig. 5.11 Illustration of how a spectrum which has a frequency-dependent phase error is
phased. In (a) the line which is on resonance (at zero frequency) is in pure absorption, but
there is a phase error which increases with offset. Often, it is found that the phase error is
proportional to the offset. in which case the whole spectrum can be phased by applying a
phase correction which varies with the offset in a linear manner, as shown in (b); all we have
to do is to choose, by trial and error, constant of proportion k which determines how quickly
the phase correction increases with offset i.e. the slope of the line. With the correct choice, a
spectrum with all of the lines in phase, Sh0Wn in (c), is obtained.

why this might be so, but perhaps the commonest is due to the RF pulse
used to excite the spectrum.

Look back at Fig. 4.27 on p. 72 and Fig. 4.28 on p. 73. What these
diagrams show is that, whereas an on-resonance 90°(x) pulse rotates the
equilibrium magnetization onto the -y-axis, as we go off resonance the
pulse produces more and more x-magnetization. The position of the magne~
tization just after the pulse thus varies with the offset; in other words, there
is a phase error which increases with the offset. Such a phase error is said
to be due to an ‘off resonance’ effect of the pulse.

When the resulting FID is Fourier transformed we will find that the
phases of the lines are not all the same. If an on-resonance peak is phased to
the absorption mode, we will find that other lines have dispersion contribu-
tions which increase as the offset increases; this is illustrated in Fig. 5.1 l(a).

To a good approximation. the phase error due to this off-resonance effect
is directly proportional to the offset from the transmitter, Q. So, if we
multiply the spectrum by a phase correction which is proportional to the
offset:

¢con : k X

we should be able to phase all of the lines in the spectrum by an appropriate
choice of the constant k. As before, the choice of k is made by trial and
error. Figure 5.1 l(b) shows the phase correction and (c) Shows the result of
applying this, with the correct choice of k, to the spectrum; all of the lines
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are now in phase. This type of phase correction is often described as being
linear orfirst order.

The usual convention is to express the frequency-dependent phase cor-
rection as the value that the phase takes at the extreme edges of the spec-
trum. So, for example, a frequency-dependent correction by 100° means
that the phase correction is zero in the middle (at zero offset) and rises
linearly to +l00° at one edge and falls linearly to —l00° at the Opposite
edge.

The phase error due to these off-resonance effects of a nominal 90° pulse
is of the order of (Qtp) radians at offset Q for a pulse of duration tp. For a
'3C spectrum recorded at a Larmor frequency of 125 MHZ, the maximum
offset is about 100 ppm which translates to l2 500 Hz. Let us suppose that
the 90° pulse width is 15 /.1s, then the phase error is

21rX 12s00>< 15 >< 10-6 =1.2 radians,
which is about 68°; note that in the calculation we had to convert the offset
from Hz to rad s" by multiplying by 2rr. So, we expect the frequency-
dependent phase error to vary from zero in the middle of the spectrum
(where the offset is zero) to 68° at the edges; this is a significant effect.

For reasons which we cannot go into here. it turns out that a linear
phase correction does not completely remove the phase errors due to off~
resonance effects. Provided that the lines in the spectrum are sharp and
the frequency-dependent phase correction is not too large, the linear phase
correction works well. However, problems arise if the lines are broad and
large corrections are used; in particular, the use of such phase corrections
can give rise to significant distortions in the baseline of the spectrum.

5.4 Manipulating the FID and the spectrum
On the spectrometer, the FID is stored on disc or in memory so it is no
trouble at all for the software to perform mathematical manipulations on
the time-domain signal prior to Fourier transformation. This section is
concemed with some common manipulations of the FID which can be used
to enhance the signal-to-noise ratio (SNR) of the spectrum, or to narrow
the lines in the spectrum. Correctly applied, these manipulations can be of
great utility.

5.4.1 Noise
lnevitably when we record a FID we record noise at the same time. Some
of the noise is contributed by the amplifiers and other electronics in the RF
receiver, but the major contributor is the thermal noise from the coil used to
detect the signal. Reducing the noise contributed by these sources is largely
a technical matter which will not concem us here.

It is worthwhile spending a moment describing the nature of the noise
recorded by an N MR spectrometer. The first thing is that the noise signal
wanders back and forth about zero in a random way (it is noise. after alll
but that, averaged over time, the positive and negative excursions cancel one
another out so that the mean (average) of the noise is zero.
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lhe second Cll'.ll';lClCl'lSll\‘ oi“ the noise is that it has an approximately
Gaussian distribution. What this means is that the probability of the noise
signal reaching a certain value S "om is proportional to the Gaussian function

exp (-0.8 iioise)’

where 0' is a parameter which characterizes the distribution of the noise.
Due to the fact that S ,,,,i_,~,_ appears as the square and as the argument to an
exponential, it follows that the probability drops off rather quickly as Swiss
increases. So, although the noise will be ‘spikyl large amplitude spikes are
much less likely to be found than lower level spikes. whilst small excursions
about zero are the most likely. Figure 5.12 shows a typical noise record.

Like the FID, the noise is recorded as a function of time, and then
converted to the frequency domain by Fourier transformation. This process
does not alter the character of the noise: it retains both the Gaussian dis-
tribution and the zero mean. The amplitude of the noise in the spectrum
depends on both the amplitude of the noise in the time domain and the total
time for which the noise was recorded: the longer the acquisition time, the
more noise is recorded and this appears as a greater noise amplitude in the
spectmm. This property of the noise in the two domains has some practical
consequences which are explored in the following two sections.

Effect of the acquisition time
The free induction signal decays over time. but in contrast the noise just
goes on and on. Therefore, if we carry on recording data for long after the
FID has decayed, we will just measure noise and no signal. Not surpris-
ingly, the resulting spectnrm will therefore have a poor SNR.

Figure 5.13 illustrates how the SNR of the spectrum is affected by
altering the acquisition time. In (a) data acquisition is carried on long after
the NMR signal has decayed into the noise. Simply halving the acquisition
time, as shown in (b), still allows us to record the NMR signal but greatly

(8) (bl (c)

T > TI 2 > -77 4-»

.............l....
Fig. 5.13 Illustration of the effect of altering the acquisition time on the signal-to-noise ratio
(SNR) in the spectrum; at the top are shown a series of FIDs while the corresponding spectra
are shown beneath. In (a) the NMR signal has decayed into the noise within the first quaner
of the acquisition time T. but the noise carries on unabated throughout the whole time. Shown
in (b) is the effect of halving the acquisition time; the SNR of the spectrum improves as a
consequence of the fact that we are acquiring less noise but the same amount of signal. In (c)
we See that taking the first quarter of the data gives a more substantial improvement in the SNR
of the spectrum,

lO 1

time ————~
frequency -~—-

Fig. 5.12 A typical piece of noise, such as
would be recorded by an NMR
spectrometer. The noise is described as
‘Gaussian with zero mean’. which means
that (l ) the time average of the noise is zero,
and (Z) the probability ofa certain
amplitude occurring is proportional to a
Gaussian function of the amplitude. This
means that high amplitude noise spikes
occur with lower probability (i.e. less often)
than lower amplitude ones.
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Fig. 5.14 A graph of the decaying
exponential function WLB (1') = exp(—R1_Br)
the decay rate is set by the value of the
parameter RLB.

reduces the amount of noise which is recorded; the result is an imp1”OVcm¢n{
in the SNR. Shortening the acquisition time still further means that even less
noise is recorded; the result, shown in (c), is a significant improvement in
the SNR.

Of course. we must not shorten the acquisition time to the point where
we start to miss significant parts of the the NMR signal. Clearly the acqui-
sition time needs to be chosen with care.

5.4.2 Sensitivity enhancement
A typical time-domain signal is strongest at the beginning but, due to the
decay, falls away over time; however, the noise remains constant through-
out. This gives us the idea that the early parts of the time domain are
‘more important’ as it is here where the signal is the strongest, whereas
the latter parts are ‘less important’ as the signal has decayed leaving the
noise dominant.

We can favour the early parts of the time domain by multiplying it by
a function which starts with the value one and then steadily tails away to
zero. The idea is that this function will attenuate the later parts of the time
domain where the signal is weakest, but leave the early parts unaffected. If
the decay rate of the function is chosen carefully, it is possible to improve
the SNR of the corresponding spectrum. In the discussion which follows
we will use the term ‘time-domain signal’ to mean the NMR signal plus the
noise. whereas the NMR signal alone will be referred to as the FID.

A function used to multiply the time domain signal is called a weighting
function. The simplest example is an exponential:

WLBU) = ¢XP(-RLBT), (5-10)

where RLB is a rate constant which determines how fast the weighting
function decays; we are free to choose the value of RLB. Figure 5.14 shows
a sketch ofthe function.

Multiplication by this particular weighting function will make the enve-
lope of the FID decay more rapidly, and hence the line in the corresponding
spectrum will be broader than in the spectrum from the unweighted FID.
It is for this reason that such decaying weighting functions are often called
line broadening functions.

Recall that as the line becomes broader. the peak height is reduced.
This will have an adverse effect on the SNR. and so the decay rate of
the weighting function therefore has to be chosen carefully. If the decay
is too slow, then the noise in the tail of the time-domain signal will not
be attenuated sufficiently. If the decay is too fast, then the noise will be
attenuated. but the reduction in the peak height may outweigh the reduction
in the noise level, thus leading to a degradation in the SNR.

Figure 5.15 illustrates the effect on the spectrum and its SNR of dif-
ferent choices of this decay constant. The original time-domain signal.
shown in (a), has a rather noisy tail which carries on long after the FID
has disappeared into the noise; as a result, the corresponding spectrum
(D is rather noisy. Multiplication of the time domain by the exponential
weighting function (b) gives what is called the weighted time domain. (dil

a
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Fig. 5.15 Illustration of how multiplying a time-domain signal by a decaying exponential
function (a weighting function) can improve the SNR of the corresponding spectrum. The
original time-domain signal is shown in (a); Fourier transformation gives the spectrum (f).
Multiplying the time domain by a weighting function (b) gives the weighted time-domain
signal (d); (g) is the corresponding spectrum. Note the improvement in SNR of (g) when
compared with (f). Multiplying (a) by the more rapidly decaying weighting function (c) gives
(e); (h) is the corresponding spectrum. which, when compared with (g), shows the expected
reduction in peak height caused by the more rapidly decaying weighting function. Spectra
(f)—(h) are all plotted on the same vertical scale so that the decrease in peak height can be seen.
The same spectra are plotted in (i)-(k). but this time they have been normalized so that the
peak heights are all the same; this shows most clearly the improvement in the SNR and the
increase in the linewidth.

clearly the noise in the tail has been reduced substantially, whereas the FID
is little affected. The corresponding spectrum (g) shows a considerable
improvement in SNR when compared with (f); note also the reduction in
peak height.

If the weighting function decays faster, as shown in (c), the resulting
weighted time domain (e) shows not only the reduction of the noise in the
tail but also a more rapid decay of the NMR signal. The corresponding
spectrum (h) shows a small improvement in SNR over (g), but the change
is not as dramatic as that from (f) to (g). There is a clear reduction in the
peak height of (h) when compared with (g), once more as a consequence of
the line broadening.

The way in which the SNR and linewidths are affected by the choice
of decay rate for the weighting function is best seen by comparing spectra
(i)—(k); these are the same as (f)—(h), but have been plotted so that the peaks
are all the same height. The increase in linewidth as we go from (i) to (j) to
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(k) is evident; it is also clear that despite the increase in linewidth, Spectmm
(k) has a slightly better SNR than (j).

5.4.3 The matched filter
The weighting function which gives the greatest increase in the SNR is
called a matchedfilter; how this is selected in described in this section. A3
we have seen. the time-domain signal can be represented as (Eq, 5_4 on
p. 87)

S(t) = SQ exp (iQt) exp (—Rr);

Fourier transformation of such a function gives a peak of width R/1r Hz_
Suppose we multiply this time-domain signal by an exponential weighting
function WLB(t) (Eq. 5.10 on p. 96); the result is

WLB (1) X S (t) = exp (—Ri_Bt) [S 0 exp (iQt) exp (—Rt)]
= S 4; exp (iQt) exp ( —[R + R;_g]t),

where to go to the second line we have simply combined the two exponential
decay terms.

The effect of the weighting function is simply to change the decay
constant from R to (R + RLB). Thus, Fourier transformation of the weighted
time-domain signal will give a line of width (R + RLB)/1r. In summary, the
use of a weighting function with decay constant Ru; increases the linewidth
in the spectrum by RLB/1r Hz.

It is usual to specify the weighting function, not by giving the value of
Rte. but by Specifying the extra line broadening that it will cause. So, a
‘line broadening of 5 Hz’ is a function which will increase the linewidth in
the spectrum by 5 Hz. Such a function would require RLB/JT = 5, which
means that RLB = 15.7 s".

It can be shown that the best SNR is obtained by applying a weighting
function which gives an extra line broadening equal to the linewidth in the
original spectrum — such a weighting function is called a matched filter.
S0, if the linewidth is 2 Hz in the original spectrum, applying an additional
line broadening of 2 Hz will give the optimum SNR. If there is a range
of linewidths present in the spectrum, then no single value of the line
broadening will give the optimum SNR for all the peaks.

The extra line broadening caused by the matched filter may not be
acceptable on the grounds of the decrease in resolution it causes. Under
these circumstances we have to make a compromise between resolution and
SNR, applying as much line broadening as we can tolerate, but perhaps not
up to that required for the matched filter. In any case, it is important to
use a weighting function which decays sufficiently fast to cut off the n0i$¢
recorded after the NMR signal has decayed.

5.4.4 Resolution enhancement
In the previous two sections we saw that multiplying the time-domain sig-
nal by a decaying function results in an increase in the linewidth. This
immediately puts in mind the idea of multiplying the time-domain signal
by a weighting function which increases over time; this would partly cancel
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out the decay of the FID and hence decrease the linewidth in the spectrum.
Weighting functions of this type are said to lead to resolution enhancement.

A typical example of such a function is an exponential with aposirive
argument:

WRE(t) = exp(RREr) RRE > O.

This function starts at one when r = 0 and than rises indefinitely; a plot is
shown in Fig. 5.16.

The problem with using such a function is that it amplifies the noise in
the tail of the time domain, thus degrading the SNR in the corresponding
spectrum. To get round this problem it is usual to apply, as well as the rising
weighting function, a second decaying weighting function whose purpose
is to ‘clip’ the noise at the tail of the time domain. Clearly the decaying
function must not decay so fast that it undoes the resolution enhancing effect
of the rising function.

A common choice for the decaying function is a Gaussian:

WG(t) = exp(—at2),

where tr is a parameter which sets the decay rate; the lfifgfir (Y. the faster
the decay rate. A Gaussian is a bell-shaped curve, symmetrical about its
centre; however, the weighting function uses just the right-hand half of the
curve i.e. the part fort > O. Like a simple exponential, the Gaussian starts
with the value I at t = 0 and then tails away smoothly to zero. To start
with, a Gaussian decays more slowly than an exponential, but then beyond
a certain point the Gaussian drops off more quickly; this is illustrated in
Fig. 5.17. With a suitable choice of 0, the Gaussian will not at first undo the
effect of the rising exponential but will, at longer times, attenuate strongly
the noise at the end of the time domain.

The whole process is illustrated in Fig. 5.18. The original time-domain
signal (a) has been recorded well beyond the point where the signal de-
cays into the noise; the corresponding spectrum is shown in (b). If (a) is
multiplied by the rising exponential function plotted in (c), the result is the
time-domain signal (d); note how the decay of the FID has been slowed, but
the noise in the tail of the time-domain signal has been greatly magnified.
Fourier transformation of (d) gives the spectrum (e); the resolution has
clearly been improved, but at the expense of a large reduction in the SNR.

Referring now to the bottom part of Fig. 5.18 we can see the effect of
including a Gaussian weighting function. The original time-domain signal
(a) is multiplied by the rising exponential (f) and the Gaussian (g); this gives
the time-domain signal (h)- Note that once again the signal decay has been
slowed, but the noise in the tail of the time domain is not as large as it was
in (d). Fourier transformation of (h) gives the spectrum (i): the resolution
has clearly been improved when compared with (b). but without too great a
loss of SNR.

Finally, plot (j) shows the product of the two weighting functions (f)
and (g). We can see clearly from this plot how the two functions combine
together to first increase the time-domain function and then to attenuate it
at longer times. Careful choice of the parameters RRE and a are needed to

GRREY
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O time
Fig. 5.16 A graph of the rising exponential
function WRE(t) = exp(RR1=_t): the function
starts at one and then rises indefinitely. at a
rate set by the parameter RRE.
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Fig. 5.17 Comparison of the decaying
exponential function exp(—RL3t) and the
Gaussian function exp(~a/ti). To start with.
the exponential decays more quickly than
the Gaussian. but at long times the situation
is reversed. RU; and tr have been chosen so
that the functions have decayed to half their
initial values at the same time.
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Fig. 5.18 Illustration of the use of weighting functions to enhance the resolution in the
spectrum. The original time-domain signal is Shown in (a) and the corresponding spectrum
in (b). Multiplication of (a) by the rising exponential (c) gives (d); Fourier transfomiation of
(d) gives the spectrum (e). Comparing (b) and (e) we see that the line has been narrowed.
but only at the expense of a serious degradation in the SNR. The situation can be improved
by using two weighting functions: a rising exponential (Q and a Gaussian (g); the result of
applying both of these is the time-domain signal shown in (h). Here we see that the decay of
the FID has been lengthened, as it was in (d). but the noise in the tail of the time domain has
been controlled by the Gaussian. The corresponding spectrum (i) shows an improvement in
resolution without too great a reduction in SNR. Plot (j) is of the product of the two weighting
functions (D and (g); note that the product function increases to a maximum and then tails
away. The scales of the plots have been altered to make the relevant features clean

obtain the optimum result. Usually, a process of trial and error is adopted.
with the parameters being adjusted until the best result is obtained.

5.4.5 Defining the parameters for sensitivity and resolution
enhancement functions

On most spectrometers one does not select the values of RLB, RR; and
a directly; rather these values are computed from some other parameterS
whose values are perhaps rather more intuitive.

For line broadening using a decaying exponential function, we usually
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enter the value of the extra line broadening (in Hz) which the weighting
function will cause. As explained in section 5.4.3 on p. 98, the Weighting
function exp (—RL3/I) causes an extra line broadening of Ru;/1r. On the
spectrometer we specify this additional linewidth L, from which RLB is
computed using RLB = Lzr.

For resolution enhancement, the composite weighting function is

WLG(r) = exp(RREt) exp (-0:2). (5.11)
If we multiply the time-domain function by this we obtain

Wr_¢;(I) X S (I) = exp (RREI) exp (-0/I2) [S0 exp (iQt) exp (—Rt)]
= S0 exp (iQt) exp (—[R — RR5]t) exp (-042).

If we ignore the Gaussian function for the moment (i.e. put tr = O), then
the overall decay rate is (R — RRE), which translates to a linewidth of
(R/1r — RRE/71') Hz. Now R/zr is the linewidth when no weighting functions
are used, so RRE/Ir is the reduction in the linewidth caused by the weighting
function

The way in which RRE is usually specified is to enter the required
reduction in the linewidth, L, as a negative number; RR}; is then computed as
~L/1r. This might seem a bit strange, but it is really for compatibility with
the line broadening function: to increase the linewidth by l Hz we enter
L : 1, to decrease the linewidth by the same amount we enter L = -1. The
composite resolution enhancement weighting function of Eq. 5.11 can thus
be written:

WLG(t) = exp(—2rLt) exp (—at2),

where L is entered as a negative number, and is the amount by which the
linewidth will be reduced, if the effect of the Gaussian function is ignored.

As shown in Fig. 5.19, the product of the rising exponential and
Gaussian gives rise to a maximum in the overall weighting function. It
is easy to show that this maximum occurs at a time

Lrr
[max = _‘2;§

recall that L is negative, so rm,“ is positive. On some spectrometers the value
of rm, (in seconds) at which you want this maximum to occur is specified,
and from this tr is computed as

Ln
CZ:-i*.

2 tfllflX

On other spectrometers, rm, is expressed as a fractionf of the acquisi-
tion time: tmax = ftacq. In this case, oncef has been specified, a is computed
using

_ Lrr
G—— .

Z e -rtLt e-ottz

W._G(0

O 7 7 W -

‘max time

Fig. 5.19 Plot of the product of a rising
exponential and a Gaussian function; the
maximum occurs at rm,“ = (—L1r)/(2a); as
explained in the text, L < 0.
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Lorentzian

_J Q
l

Gaussian
___iJ C._..._._.__

Fig. 5.20 Comparison of the Lorentzian
and Gaussian lineshapes; the two peaks
have been adjusted so that their peak heights
and widths at half~height are equal. The
Gaussian is a more compact lineshape.

5.4.6 ‘Lorentz-to-Gauss’ transformation
A weighting function which combines a rising exponential with a Gaussian
can be used to change the lineshape from a Lorentzian to a Gaussian. These
two lineshapes are compared in Fig. 5.20; for the same width at half-height,
the Gaussian is more compact, a feature which might be preferred to the
Lorentzian line which spreads rather more at the base.

The transformation is achieved by choosing the value of RR5 so as 10
cancel exactly the original decay of the FID. Multiplication by the Gaussian
then gives the FID a pure Gaussian envelope, the Fourier transform of which
gives a Gaussian lineshape. The width of the Gaussian line is set to the
required value by varying the parameter a/. The overall process is know
colloquially as a Lorentz-to-Gauss transformation.

In practice, we would again use trial and error to find the appropriate
values of the two parameters; whether or not a complete Lorentz-to-Gauss
transformation has actually been achieved is somewhat subjective.

5.4.7 Other weighting functions
Many other weighting functions have been developed for sensitivity en-
hancement or resolution enhancement. Perhaps the most popular are the
sine bell functions, which are illustrated in Fig. 5.21.

The basic sine bell is just the function sin 6 for 6 = 0 to 6 = rr. The
function is adjusted so that it fits exactly over the acquisition time, as is
illustrated in the top left-hand plot of Fig. 5.21. In this form, the function
will give resolution enhancement rather like the combination of a rising ex-
ponential and a Gaussian function (compare Fig. 5.18 (j)). Mathematically
the weighting function is:

WsB(t) = sin .
Iacq

Clearly this function goes to zero at I = tacq.
The sine bell can be modified by shifting it to the left, as is shown

in Fig. 5.21. The further the shift to the left, the smaller the resolution
enhancement effect will be, and in the limit that the shift is by zr/2 or 90°

phase O 1t/8 rt/4 it/2

Wse

0

WSBS

0 " rm/2 rm 5
Flg. 5.21 The top row shows sine bell and the bottom row shows sine bell squared weighting
functions for different choices of the phase parameter ¢, given in radians.
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the function is simply a decaying one and so will broaden the lines. The shift
is usually expressed in terms of a phase ¢>. With such a shift the weighting
function is:

W5n(t) = sin (L— am + ([1);
tacq

note that this definition of the function ensures that, regardless of ¢, it goes
to zero at rm.

The shape of all of these weighting functions are altered subtly by
squaring them to give the sine bell squared functions; these are shown in
the lower part of Fig. 5.21. The weighting function is then

_ — IW5n5(t) = S102 + rp).
tacq

Much of the popularity of these functions probably rests on the fact that
there is only one parameter to adjust, rather than two in the case of the
combination of an exponential and a Gaussian function.

5.5 Zero filling
We mentioned right at the start of the chapter that the time-domain signal
is sampled at regular intervals and stored away in computer memory in a
digital form. When these data are subject to a Fourier transform the result-
ing spectrum is also represented by a set of data points, this time evenly
spaced in frequency. Usually, the number of data points in the spectrum is
equal to the number in the original time-domain signal. So, although the
spectrometer plots a spectrum that appears to be a smooth line, in fact it is
joining together a series of closely spaced points.

This is illustrated in Fig. 5.22 (a) which shows the FID and the corre-
sponding spectrum; rather than joining up the points which make up the
spectrum we have just plotted the points. Clearly there are only a few data
points which define the line.

If we take the original FID and add an equal number of zeroes to it, the
corresponding spectrum will have double the number of points, and so the

i tacit tacq tacq

ta) (b) (c)

.2, _-- 4 _ .- -2. _ J-c
Fig. 5.22 Illustration of the results of zero filling. The time-domain signals along the top row
are all the same except that ( b) and (C) have been Supplemgmgd with increasing numbers of
zeroes and so contain more and more data points. Fourier transformation preserves the numbgr
of data points, so the line in the corresponding spectnim is represented by more points as more
zeroes are added to the end of the FID.

4: Optional section
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Optional section =>

line is represented by more data points. This is illustrated in Fig. 5.22 (b)_
Adding a set of zeroes equal to the number of data points is called ‘zero
filling once’.

We can carry on with this zero filling process. For example, having
added one set of zeroes, we can add another to double the total number of
data points (‘zero filling twice’). This results in an even larger number of
data points defining the line, as is shown in Fig. 5.22 (c).

Zero filling costs nothing: it is just a manipulation in the computer.
This manipulation does not improve the resolution as the measured signal
remains the same, but the lines will be better defined in the spectrum. This
is desirable, at least for aesthetic reasons if nothing else.

It turns out that the Fourier transform algorithm used by computer
programs is most suited to a number of data points which is a power of
2. So, for example, 2”‘ : 16384 is a suitable number of data points to
transform, but 15 000 is not. In practice, therefore, it is usual to zero fill the
time domain data so that the total number of points is a power of 2; it is
always an option, of course, to zero fill beyond this point.

5.6 Truncation
In conventional NMR it is almost always possible to record the FID until it
has decayed almost to zero (or into the noise). However, in two-dimensional
NMR this may not be the case, simply because of the restrictions on the
amount of data which can be recorded, particularly in the indirect dimension
(see section 8.1.1 on p. 189 for further details). If we stop recording the
signal before it has fully decayed the FID is said to be truncated; this is
illustrated in Fig. 5.23, along with the consequences for the corresponding
spectra.

As is shown in the figure, a truncated FID leads to oscillations around

i1W1ha*l1t—
Fig. 5.23 illustration of how truncation leads to anefacts (called sine wiggles) in the spectntm.
The FID on the left has been recorded for sufficient time that it has decayed almost to zero: the
corresponding spectrum shows the expected lineshape. However. if data acquisition is stopped
before the signal has decayed fully, the corresponding spectra show oscillations around the
base of the peak; these oscillations are called sinc wiggles.
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the base of the peak in the corresponding spectrum; these are usually called
sim‘ wiggles or truncation artifacts — the name arises as the peak shape
is related to a sinc function sin (x)/x. The more severe the truncation,
the larger the sinc wiggles. The separation of successive maxima in these
wiggles is I/tacq Hz.

Clearly these oscillations are undesirable as they perturb the baseline
and may make it more difiicult to discern nearby weaker peaks. Assuming
that it is not an option to increase the acquisition time, the only solution is
to apply a decaying weighting function to the FID so as to force the signal
to go to zero at the end. Unfortunately, this will have the side effect of
broadening the lines and reducing the SNR.

Highly truncated time-domain signals are often a feature of multi-
dimensional NMR experiments. Much effort has therefore been put into
finding alternatives to the Fourier transform which will generate spectra
without these truncation artifacts. The popular methods are linear predic-
tion and maximum entropy. Both have particular merits and drawbacks, and
need to be applied with great care.

5.7 Further reading
Fourier transformation and phase correction:
Chapter 5 from Levitt, M. H. (2001) Spin Dynamics, Wiley

Fourier transformation, weighting functions and sensitivity:
Chapter 4 from Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987)
Principles of Nuclear Magnetic Resonance in One and Two Dimensions,
Oxford

A comprehensive review on all types of NMR data processing:
Lindon, J. C. and Ferrige, A. G. (1980) Progress in Nuclear Magnetic
Resonance Spectroscopy, 14, 27.

Fourier transformation (a comprehensive text):
Bracewell, R. N. (1978) The Fourier Transform and its Applications,
McGraw-Hill
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5.8 Exercises
5.1

5.2

5.3

In a spectnim with just one line, the dispersion mode lineshape
might be acceptable — in fact we can think of reasons why it might
even be desirable (what might these be?). However, in a spectrum
with many lines the dispersion mode lineshape is very undesirable;
why?

An absorption mode Lorentzian line, centred at frequency Q is
given by

S OR
R2 + (0.) — Q)?

We are going to work out the width of the line at half—height_
Clearly, this is independent of the position of the line, so we can
make the calculation simpler by assuming Q = O:

A(o)) =

SORAW’ :
Show that the peak height is S0 and hence, by finding the values of
to (there are two) for which A(w) = S0/(2R), show that the width
of the line at half-height is 2R rad s"'. Give the corresponding
expression for the width in Hz.

A dispersion Lorentzian line, centred at Q = O, is given by

~w
D = —,i-.

(0)) R- + col

To find the minima and maxima, we first need to differentiate D(w)
with respect to oi; show that this differential is

dD(w) _ o1 —R2
do) (R3 + col)?

The minima and maxima are found by solving

dD(w)
do)

show that to = d:R are two solutions to this equation. Further show
that the peak height at these two frequencies are $1/(ZR): draw a
sketch of the lineshape and mark on it all of the features you have
identified.
There are two frequencies at which the lineshape has half the max-
imum peak height; these frequencies are found by solving

—w__l
R3 + of 4R
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Show that the frequencies are given by

w=R(—2:i:

Mark these positions on your sketch.
Similarly show that there are two frequencies at which the peak
height is —l/(4R). and hence show that the overall width of the
line at half-height is 2(2 + \/§)R. Compare this value with that for
the absorption mode lineshape.

Make sketches similar to those of Fig. 5.9 on p. 91 for the cases:
(a) <15 = 3rr/4; (b) ¢ = 3n/2; (c) ¢ = 2n; (d) ¢ = 571'/2.

Suppose that we record a spectrum with the simple pulse—acquire
sequence using a 90° pulse applied along the x-axis. The resulting
FID is Fourier transformed and the spectrum is phased to give an
absorption mode lineshape.
We then change the phase of the pulse from x to y, acquire an
FID in the same way and phase the spectrum using the some phase
correction as above. What lineshape would you expect to see in the
spectrum? Give the reasons for your answer.
How would the spectrum be affected by: (a) applying the pulse
about —x; (b) changing the pulse flip angle to 270° about x?

The gyromagnetic ratio of 3'P is 1.08 >< 108 rad s" T'1. This
nucleus shows a wide range of shifts, covering some 700 ppm.
Suppose that the transmitter is placed in the middle of the shift
range and that a 90° pulse of width 20 ,us is used to excite the spec-
trum; the spectrometer has a B0 field strength of 9.4 T. Estimate
the size of the phase correction (in radians and in degrees) which
will be needed at the edges of the spectrum.

Why is it undesirable to continue to acquire the time-domain signal
after the NMR signal has decayed away?
How can weighting functions be used to improve the SNR of a
spectrum? In your answer describe how the parameters of a suit-
able weighting function can be chosen to optimize the SNR. Are
there any disadvantages to the use of such weighting functions?

For a time-domain signal in which the NMR signal has decayed
long before the end of the acquisition time. explain why the SNR of
the corresponding spectrum can be improved either by shortening
the acquisition time, or by applying a suitable weighting function.

Describe how weighting functions can be used to improve the
resolution in a spectrum. In practice, what sets the limit on the
improvement that can be obtained? Will zero filling improve the
resolution?
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5.10

5.11

Explain why use of a sine bell weighting function shifted by 45°
may enhance the resolution of a spectrum, whereas use of a sine
bell shifted by 90° will not.

In a proton NMR spectrum the peak from TMS was found to show
‘wiggles’ characteristic of truncation of the FID. However, the
other peaks in the spectrum showed no such artifacts. Explain.

How can truncation artifacts be suppressed? Mention any difiicul-
ties with your solution to the problem.



Chapter 6

The quantum mechanics
of one spin
To make any further progress in our understanding of multiple-pulse NMR,
especially as applied to coupled spin systems, we need to develop some
more quantum mechanical tools. There is no avoiding this, as the energy
level approach and the vector model are simply not up to the task.

Over the next two chapters we will introduce the product operator
approach, which is an exact quantum mechanical treatment well-suited to
multiple-pulse NMR on coupled spin systems. This approach is relatively
simple to apply, and has the advantage of giving results which can be readily
interpreted in terrns of the appearance of spectra.

This chapter describes the theoretical background which leads up to the
product operator formalism, while the next chapter describes how product
operators can be used in practice to predict the outcome of experiments. The
good news is that you do not need to read this chapter at all, but can jump
straight to the next in which you will find a practical description of how
to use product operators. There is nothing in this present chapter which
you need to know in order to understand how to use the product operator
method.

However, at some point — perhaps after you have had some experience
with making your own calculations — you will probably want to know where
this operator approach comes from and why it works. At this point you
should read this chapter.

6.1 Introduction
This chapter is concerned with the quantum mechanical description of first
a single spin-half nucleus, and then a non-interacting collection of such
nuclei. Of course, this is the system to which the vector model, described in
Chapter 4, applies exactly, so in a way we are going over the same ground.
However, this repetition will be useful as our knowledge of the vector model
will help us in understanding and interpreting the quantum mechanics.

To start with we will work with the wavefunction which describes the

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons, Ltd

You do not necessarily need to read this
chapter. but can jump straight to the next if
you wish.
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spin, and show how the observable magnetization can be computed from
a knowledge of this wavefunction. We will then go on to show how the
time-dependent Schrodinger equation can be used to predict how the wave-
function, and hence the magnetization, evolves over time.

What we will discover is that, even for this very simple system of
non-interacting spins, the quantum mechanical approach seems to be very
cumbersome and unintuitive. However, it will be shown that by casting the
theory in a different way in which operators are used to represent the motion
of the spins, a great deal of simplification is achieved. The practical details
of how this simpler operator approach is used, and how it can be extended
to coupled spins, is described in the following chapter.

This chapter requires you to have some knowledge of the following
mathematical topics: complex numbers, matrices and simple first-order
differential equations. V

6.2 Superposition states
The central idea of this chapter is that the wavefunction of a single spin, tp,
can always be described as a linear combination of the eigenfunctions of
the Hamiltonian for a single spin:

41/ = CW’/1 + C-1/.¢'-is (6-1)
Recall from Eq. 3.10 on p. 37 that, when written in frequency units, the
Hamiltonian for a single spin is Hone gpin = whiz. It was shown in section 3.4
on p. 36 that the eigenfunctions of the spin operator fl, ¢!+l/2 and ¢r_1/2:

i,¢,+1,, = +§¢+1,, i,¢_.,, = —%¢r_i;2, (6.2)
are also eigenfunctions of this Hamiltonian. The corresponding eigenvalues
are 1: éwoz

. _ _ l .. _ _ "1
Hone spm¢+'/2 — +59-'0¢/+1/2 Hone spin!/'-1/2 — 20-)0¢'—'/y

In Eq. 6.1 Cl/2 and C__l/2 are coeflicients (just numbers) whose values
may change over time. We will see in due course that these coefiicients
determine the observable magnetization from the spin, and we will also see
how to predict the way in which the coefficients vary with time.

Equation 6.1 represents what is called a superposition of states or a
mixed state of the spin. As was explained in section 3.l on p. 26. quantum
mechanics does not require that the wavefunction of the spin be one corre-
sponding to an energy level i.e. ¢/I/1 or ¢/_l/2. lt really is very important to
grasp the idea that the spin is in a superposition state: everything else in this
chapter flows from this central point.

As was explained in section 3.3.l on p. 33, it is common to denote
the eigenfunction of fa with eigenvalue +% as a (spin up). and the Stfllfi
with eigenvalue —% as B (spin down). We will adopt this notation for
the remainder of this chapter, as it is rather more compact: using this. thfi
superposition state is written

(/1 = Calfla + Cfilflfl.
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6.3 Some quantum mechanical tools
ln the rest of this chapter. we are going to need a number of ideas and
techniques from quantum mechanics, and s0 these have been collected
together in this section. They may seem a little abstract at this stage, and
you might justifiably think ‘so what?’, but rest assured that all of the topics
we cover in this section are going to be useful later on.

6.3.1 Dirac notation
So far we have written the wavefunctions and eigenfunctions using the
symbol zp, adding subscripts when we need to distinguish dilferent functions
e.g. tfii/1 or tau. In a way, the tp is a bit redundant; all it i$ Ihfiffi f0f is I0 give
us something to ‘hang’ the subscripts on.

A more compact and useful notation for Wavefunctions was developed
by Paul Dirac. In his notation, the wavefunction is written as a ‘ket’ I ), and
any labels, such as quantum numbers, are written inside the ket. So, for
example

¢_1/2 becomes and (pg becomes [B).

Often, we will need the complex conjugate of a wavefunction, which is
denoted by a superscript * e.g. 1,//I/'. In the Dirac notation, the complex

. . . - 2conjugate 1S indicated by a ‘bra’ ( I; for example

1111/; becomes and 1/1,’; becomes (al.

All you have to remember is that the bras and kets aF@l\1$tf“"¢ii011S, and so
can be manipulated as such.‘

If a bra appears on the left and a ket on the rig/1?, integration 1S impliedi

(al [{3} implies ‘ft//;...¢;; dr.
‘V-1 \‘,_/

bra ket

The could be other functions, constants or, as is often the case, oper-
ators. The integration is with respect to the variable T, which in quantum
mechanics is a shorthand meaning ‘the full range of all relevant variables’.

It is important to note that integration is only implied if the bra is on the
left and the ket on the right. So, the expression

l5)---(el
does not imply an integration.

As We have seen, 1/1,, is an eigenfunction of 1;; in the two notations this
property is written

fl tfla = étfla Dirac notation: i; Ia) = éla).

To start with, the Dirac notation might appear to add complication for
little benefit, but in fact it is a more compact and elegant way of doing many
manipulations. For a while we will use both notations, and m0ve Over to
using only the Dirac form.

‘If you are wondering how to pronounce ‘bra’ and ‘K¢I'. bra rhymes with <18!» and Rel is
pronounced just as it is written.
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6.3.2 Normalization and orthogonality
A wavefunction is said to be normalized if

f¢*¢ dr = l Dirac notation: (tpl |¢> = 1, (6.4)

where we have written lip) as the Dirac notation for 1//. Admittedly this is 3
bit redundant, but it does look odd to have an empty ket: | ).

The eigenfunctions of ll, tpu (Dirac notation: |a)) and $3 (Dirac nota-
tion: l,8)), are in fact normalized:

I 1/1; tpa dr = l Dirac notation: (al |a/) = l

fwgwfi dr = 1 Dirac notation: (/3| Vi) = 1.

When a bra and a ket appear next to one another, it is common to leave out
one of the vertical lines, so the above become

(HI <1) = 1 <,3|B> = 1- (6-5)

Two wavefunctions, (pi and (fig, are said to be orthogonal if

ftpftpz dr = 0 Dirac notation: (1l2) = 0;

note how the subscripts from the wavefunctions have become the labels in
the bra and ket. It turns out that W0‘ and t/1/3 are orthogonal

I $31,115 dz" = O Dirac notation: (aw) = 0; (6.6)

similarly (Bio) = O.
In the Dirac notation the superposition wavefunction is written

= Cola) + CB

The question we want to address is whether or not this wavefunction is
normalized. To answer this, we need to compute the integral of Eq. 6.4, for
which we need the complex conjugate of tp:

<u=cm+¢wt
In order to take the complex conjugate of tlr we have had to take the compleX
conjugates of the coefficients cu and cfl, as in general these are complex.

In Dirac notation, the integral we need is computed as follows:

mo =[qm+awMew+%w]
= cgcn (ala) +050’; (alfl) +050‘, (flla) +6308 (HM?)

=1 :0 :0 =l

= cgca + 050,3.
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lo go to the second line we have just multiplied out the square braces.
reinctnbcring that the bras and kets are just functions. Then, using the fact
that (trl and (/31 are normalized, Eq. 6.5, we recognize that (ole) = l and
(Bl/3) = l. Finally. using the fact that (til and (Bl are orthogonal to one
another, Eq. 6.6. we recognize that (alfi) = (lilo) = 0. Since the integral
(¢|¢) is nor = l, the wavefunction lip) is not normalized.

We can make the wavefunction normalized by dividing the wavefunc-
*tion It//) by , lc,’}c,, + cg cfi, the normalizingfactor:

6., la) + cf, ll?)
it//>no|-malized - 'i"_"i_-

,lc,’§c,, + cgcfi

If you repeat the above calculation with this wavefunction, the integral will
be = l.

We will show later on in this chapter that the coefficients cu and op
change over time. However, it turns out that, no matter what happens,
(0:00 + cgcfl) remains constant — in other words, the normalizing factor
remains constant. All this factor does is simply scale the result of any
calculation we make by a constant amount. This is not really a signifi~
cant effect. so to simplify things we will assurne that the wavefunction of
the superposition state is normalized i.e. ca and cfl are chosen such that
(cgca +c;cfi) = l.

6.3.3 Expectation values
In section 3.2.4 on p. 30 it was explained that it is a postulate of quantum
mechanics that a measurement of some observable quantity will always give
one of the eigenvalues of the operator which represents that observable.

For example. if we measure the :—component of the angular momentum
of a spin-half nucleus. we will find either the value +% or —%, as these are
the two eigenvalues of it, the operator which represents the z-component.

The question is which eigenvalue will we find in a particular measure-
ment? Quantum mechanics does not have a direct answer to this, but does
give us a way of finding out what the average result of many measurements
will be; this average is called the expectation value.

Imagine the following thought experiment. Suppose that the spin is
described by a wavefunction 11/. and that we then duplicate this spin many,
many times in such a way that each has the same wavefunction. Now we
make a measurement on each spin, and then compute the average value of
these measurements: the process is visualized in Fig. 6.1. It is a postulate
of quantum mechanics that this average value. called the wrpet-t11r1'0n mine.
is given by

(Q) = Dirac notation: (Q) = (6.7)

where Q is the operator which represents the observable we are measuring
and (Q) is the corresponding expectation value.

Recall that for a complex number c. the
product (cc‘) is always real.

NMMMMEN
Iflflflflflflflw
“MMMMMENM
QMMMNMMMI
MNMNNMNNM
MEMEEMNNW

measure
z-component

EMEHEHH
HEHEEEEW
HEHHMMHM
EEHEEMEW

MHHEHEEHW
WEHHEHMHW

Fig. 6.1 Visualization of the process of
taking an expectation value. Suppose that
our spin is described by a wavefunction th:
we imagine duplicating the spin. along with
its wavefunction. a very large number of
times, as shown at the top of the diagram.
Then. we measure the :.-component of the
angular momentum; quantum mechanics
tells us that the outcome of a single
measurement is either +-It or —%. as these
are the eigenvalues of iz. The average over a
large number of measurements is the
expectation value. ln the case shown above
the expectation value is
(I/42)[l9 >< (+5) + 23 >< t-in = -0.048;
admittedly. 42 is not really rt ‘very large
number of spins’.
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A good way of seeing how this works is to do a particular 6X&mp1e_
Suppose that the wavefunction is the superposition state

|w=am+%w.
and that we are interested in the expectation value of ii i.e. the Z-COmpOn@n[
of angular momentum. As was explained in the previous section, we are
going to assume that the wavefunction for the superposition state is normal-
ized i.e. (tpli//) = l. As a result, the bottom of the fraction in Eq. 6.7 is equal
to one, so the expectation value can be computed as follows;

m>= wmw
= [c;'(a| + CEQBIJ i; (ca la) + cl; |B)]

= qowflmnwgwaLm+aemLwwq%wLw>§/_/ §,-/ §,../ 5,.’

=§|a> =—§w> =§|a> -§-w>
= %c;ca (a/|a) —%c;cfi (alfl) +-écgca (BIL!) —%@E¢B (fllfl)

=1 =0 =0 =1

= 5056,, ~ %c;§cfi. (6.8)

There is quite a lot going on here, so let us take things one line at a time.
To go to the second line we have simply substituted (1//| and lip) by the
superposition states, and then to go to the next line we have multiplied out
the square braces, taking care not to change the order of the functions and
the operator. Recall that in section 3.2.2 on p. 29 it was pointed out that, in
general, the order of functions and operators must not be changed.

To go to the fourth line, we have simply used the fact that la) and L8) are
eigenfunctions of iz (Eq. 6.2 on p. 1 10):

mw=hw Lm=—ha
To go to the last line, we have used the fact that Ia) and {B} are normalised
and orthogonal to one another (Eqs 6.5 and 6.6 on p. 112):

(Ola) = 1 (BIB) = 1 <0/L3) = 0 (Bid) = 0-
The final result,

(I2) = %c(’,'ca — %c;cfl, (6-9)

can be interpreted in the following way. Each individual measurement of
the z—component gives the result +% or —%; however, when a large number
of measurements are taken, the probability of obtaining +% is cgca, and the
probability of obtaining the result —-% is cgcfi. The average value of the
z-component is thus

average Z-component = (probability of obtaining the result +%) X

+ (probability of obtaining the result —%) X
_ I ._l_ cgca (+5) + c;;‘cB( 2).

This average z-component is thus the same thing as the expectation value.
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6.3.4 The x- and y—components of angular momentum
So far we have only referred ti) the 1-component of the angular momentum,
represented by the operator 1;. However, angular momentum is a vector
property. and so has components in all three directions. The x-component
is represented by the operator ,,and the y-component by the operator i,..

The important thing to note is that la) and I/3) are not eigenfunctions
of in nor are they eigenfunctions of iy. ln fact, it can be shown that these
operators have the following effects on la) and L8):

i.|a> = §w> i.tB> = gm (6.10)
iyl<r> = it to 1",.-tB>= -it |a>. (6.11)

where i is the ‘complex i’.
Using these, we can work out the expectation value of ix for the case

where the wavefunction is our superposition state: 11/1) = Gala) + cfi. M1’).

<1.> = {C-;<<1| + C; ta] i. [¢.,|a> + <:,,w>]
= c;ca(al ix Ia) +c§cfl (a/I ix (B) +c/’§ca(Bl ix Ia/) +c/‘gel, (BI ix (B)

\\,-/ §,-/ +,_/ Q/J

=§w> =§w> =§w> §w>
= écgca (a/{B} +%c,’;c/, (ala) +%cEc,, (flit?) +%c/jcfi (BIQ)

=0 =l =l =0

= %c,’;cfi + %c;c,,. (6.12)

As before, going to the second line is simply a case of multiplying out the
square braces, being careful to preserve the ordering of the operators and
functions. To go to the third line we use Eq. 6.10 to work out the effect of
i, on la) and lb‘). The final step is to use, as we did before, the fact that la)
and 1/5) are normalized and orthogonal (Eqs 6.5 and 6.6 on p. l l2).

A similar approach for (1,), using Eq. 6.1 1, gives

<m=5¢%-pqq. mm)

The feature to note here is that the expectation values of ix, is and ii all
depend on the coefficients ca and cl, which define the superposition state.

6.3.5 Matrix representations
Using the two functions la) and L8) we can construct what is called a matrix
representation of an operator Q; in this context, the two functions are called
the l2a.s'i.s'_funcn'0n.s-.

As there are two basis functions, the matrix will have two rows and two
columns, i.e. it will be a two-by-two matrix. The element in the ith row and
jth column is given by the integral

Q,-1 = J‘;//fQ¢j dr Dirac notation: Qij = (i|Q|j).
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Let us suppose that the first basis function is Ia) and the second is L8),
then the matrix representation of Q is

<<rlQ|<r> <¢1lQlB>
Q = (6.14)

wow wpw
For example, the matrix representation of i: is

I : [owe amp]
‘ who amp

=[§mo sow]
the awn
1 0

/-‘T
$5)

= _, (6.15)
2

To go to the second line we have used the fact that la) and M1’) are eigen-
functions of ix, and to go to the last line we have used the fact that these two
basis functions are normalized and orthogonal.

Using a similar approach we can find the matrix representations of ix
and iy as:

Ix = 1 I, = 6.16)
,__\ NO OM»

2/ /7 to-Tc O~._.
Q?)

I\

In due course, we will make much use of these matrix representations.

6.4 Computing the bulk magnetization
To be useful, our quantum mechanical theory must be able to compute what
we actually observe in an NMR experiment, which is the transverse magne-
tization. In this section, we are going to look into how this is achieved, but
to start with we will discuss the z~component of the magnetization as the
calculation is somewhat simpler.

When we record an NMR signal it is not from one spin but from the
extremely large number of spins in our sample. For example l cm3 of a
1 mM solution contains around 6 >< 1017 solute molecules — clearly even
for this rather dilute solution we are dealing with a large number of spins-
Our aim is to be able to compute the bulk x-, y- and z~magnetizations from
such a sample.

On the face of it, this appears to be a daunting task as each spin can in
principle have a different wavefunction i.e. be in a different superposition
state. It would seem that we would need to know all of these Wavefunctions
- clearly an impossible task. However, as we will see in the following
section, the fact that there are so many spins actually makes the calculation
rather simple.
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6.4.1 The ensemble average
As was explained in section 4.1 on p. 51, each spin appears to contain a
source of angular momentum; associated with this is a magnetic moment,
which can point in any direction. The bulk magnetization of the sample
in the Z direction is found by adding up the z-component of the magnetic
moment of each spin:

bulk z-magnetization = z-comp. of the magnetic moment from spin 1
+ z-comp. of the magnetic moment from spin 2
+ z-comp. of the magnetic moment from spin 3
+ . . .

The z-component of the magnetic moment from a single spin is simply
proportional to the z-component of the angular momentum, with the con-
stant of proportionality being the gyromagnetic ratio, y:

z-component of magnetic moment = yxz-component of angular momentum

The same applies to the x- and y—components.
As has already been described in section 6.3.3 on p. 113, the Z-

component of the angular momentum is represented by the operator iz, and
the average value of the z-component is given by the expectation value:

<12) 2

Recall that this expectation value comes from a thought experiment
in which we duplicate a single spin, along with its wavefunction, a large
number of times and then measure the z—component from each spin; the
expectation value is the average of these measurements. However, what
we are trying to calculate here is the z-magnetization from a real sample,
rather than an imagined set of spins which all have the same wavefunction.
In general, in a real sample each spin has a dzflerent wavefunction i.e. the
coefficients ca and cfl in the superposition state are different for each spin.

We extricate ourselves from this difliculty in the following way. Al-
though in principle each spin can have a different wavefunction, for a sam-
ple containing 1017 spins, there must be a large number of spins which have,
to some level of approximation, the same wavefunction. A useful analogy
here is to think about the individual weights of all the people in London. If
we weighed each person to a precision of 0.25 kg, we would find that there
are a lot of people with the ‘same’ weight; if we made the measurement to a
precision of 0.5 kg, the numbers with any particular weight would be even
higher. The point is that, for a sufficiently large sample, there will always be
many people with the ‘same’ weight, regardless of how closely we define
what ‘the same’ means.

Consider the first spin, whose superposition state is

cslla) + cgllfl).

Following the line above, we argue that in our sample there are many spins
which have a wavefunction very similar to this. On average, the contribution
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of each of these spins to the z-component is given by the expectation value;
(1 _r <1 <1 1 rm (1)(I;) )- 50,/*cn’ — 505 cl, .

The same argument applies to the second spin, whose superposition state is

63%) + q‘,?’p>
and which contributes

_ 2 ( (2) (2)(IZ)(2) - %cf,,)”c,,2) — écfi '05 .

The total z—magnetization is the sum of the z-components of each Spin,
multiplied by y

M. = w<1.>“> +w<1.>"’+w<1,>“‘ +... <6.1v>
: y[%Cg1)*cp) _ %c;1)*c;1>] +y[%cf12>*C2z; _ %C(?2)*C;32)]

3 3 (3) (3)+7/(%c§,)*c(a) — $05 '65 (6.18)

Each spin in the sample contributes to this sum.
The usual way of writing this sum is

M: = %yN(c{.jc,, —- cgcfi), (6.19)

where the line indicates an ensemble average and N is the number of spins
in the sample (called the ensemble).

Taking the ensemble average means adding up the contributions from
each spin in the ensemble, as shown in Eq. 6.18, and then dividing by the
number of spins to obtain an average. To compute the bulk magnetization
from the N spins in the sample we need to multiply by N as the ensemble
average is the average contribution per spin.

Another way of expressing the z-magnetization is to write Eq. 6.17 as

M: = YNU3»

where the bar inciicittes the ensemble average of the expectation values of i;
from each spin. (I5) is found, as before, by adding up the contribution from
each spin and dividing by the number of spins in order to obtain an average:

<1.> = §(<1.>“’ + <1,>"’ + <1.><” + . . .).
Using a similar argument, the x- and y-magnetizations are given by the

following ensemble averages (for completeness we include the expression
for M2):

Mx = 2 %yN(c,’§cB + cgcn) or Mx = 7/NE (6-20)

My = %iyN(c;c,,~c§cB) or M,-=yN(i_v) (6.21)

1“) '-I-It 1‘)QM; = %yN( — cgcfi) or M; = yN(-IT. (6-22)

The difficulty we still have not got round is the need to know the
wavefunction for each spin, as from these three equations it still looks
if we need to know this in order to compute the magnetization. However. I11
the next section we will find that by introducing the idea of populations we
will finally be in a position to compute M2.
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6.4.2 Populations
ln section 6.3.3 on p. 113 we introduced the interpretation that, when mea-
suring the 1-component of angular momentum, the probability of obtaining
+§ is c§c,,. and the probability of obtaining the result —% is cgcfi. These
two values of the z-component are associated with the two energy levels of
ll single spin. and so we can extend this interpretation by saying that cf; ca is
‘the probability of finding the spin in the energy level Ia)’, and 0505 is ‘the
probability of finding the spin in the energy level [B)’.

The probability of finding a particular spin in the level la) is cgca. If
we add up these probabilities for all the spins in the sample we will find
the number of spins which. on measurement, are in the level a. We can
interpret this number as the population of the level a, na:

no = c§_,l)*cf,U + cf,2)*c§,2) + cg)*c§,3) +

Similarly the population of level ,6 is
_ (1)* (1) (2)* (2) (3)* (3)nu-cfi cfi +cfi cfi +c/3 cl? + .

Recalling that the ensemble average of cgca is found by adding up the
contribution from each spin and then dividing by N, it follows that

no, = Ncac; and np = N c ' (6.23)
in T1»c

so 1
cue}; — cfic; = 77 (na F nfi).

Using this expression in Eq. 6.22, we can rewrite the bulk z-magnetization
as

Ml = %y(n., - n5). (6.24)
In words, the z-magnetization is proportional to the population difference
between the two energy levels.

At equilibrium, these populations are predicted by the Boltzmann distri-
bution:

n¢,‘eq=%Nexp(—Ec,/k3T) nfi,eq=%Nexp(—E’@/kBT) (6.25)
where E0 and E5 are the energies of the two levels (in J), kg is Boltzmann’s
constant, T is the temperature and N is the total number of spins. As (for
positive y) the a state has the lower energy, the Boltzmann distribution
predicts that nmq > nmq, and so at equilibrium the sample will have a
bulk z-magnetization.

Combining Eqs 6.24 and 6.25 we can compute this equilibrium Z-
magnetization as

MO = %'Y(na,eq _nfi,eq)

= §y1v[exp(-E,,/kBT)- exp(-5,,/I<BT)].
The key point here is that, as we have a large number of spins, we can use
the Boltzmann distribution to find the equilibrium populations and hence
the equilibrium z-magnetization. We do not need to know the wavefunction
of each spin in the sample.
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6.4.3 Transverse magnetization
The next point to address is whether we can say anything useful about thg
size of the x- and y-magnetizations. Following the same line of argument as
above, and using Eq. 6.20 on p. l 18, the x-magnetization is given by

Mt = 7/<10") +1/(I.t>‘2’ +
(1) (l) 2 (2) (2= 7/i%cf,l)*cB + %cl, *c§:)l +7i%c§,)*cB + %cB)*c§,2)] +

= %yN(c§cB +0500).

To make further progress, it is convenient to write the complex coefii-
cients ca and cfi in terms of a (real) magnitude r and a phase <15:

ca = r0, exp (i¢,,) cfi = rfi exp (i¢fi) (616)
cg = r,, exp(—i¢a) cg = rp exp(—i¢B). (6.27)

Note that the complex conjugates are formed by changing the sign of the ar-
gument to the exponential. By definition the r are real and so are unaffected
by taking the complex conjugate.

Using this way of writing the coefficients, the expectation value of ix
can be written:

|~a--to-—|~.>--‘1r-it"3

Qt E0
+(Ix) = _

= - rnrfl exp (-i¢a) exp (i¢fi) + rarfl exp (—i¢;;) exp (i¢,,)]

= - an {@XP(i[¢p - ¢..1>+ @XP(-il¢,6 - ¢..1>}.

1 w
zcficfl

This can be tidied up further by using the identity

exp (i0) + exp (—i6) E 2 cos0

to give
(Ix) = rarfi Cos (¢,6 " ¢a)

Using this, the bulk x-magnetization can be written

MX = y<I.\'>(]) + Y<I.t>‘2’ +
= yrfrnrg) cos (4521) — ¢§,‘>) + yrf,2)r;,2) cos (¢g2) — ¢§)) + ...

= 7/N rarfi cos ((155 — ¢a).

As before, we have used the overline to indicate an ensemble average.
We now introduce the hypothesis that, at equilibrium. the phases ¢ are

randomly distributed. As a result (¢B -¢,,) is also randomly distributed. and
therefore the average of cos (¢B — ¢(,) over the sample is zero. This comes
about because positive and negative values of the cosine function cancel one
another out. Therefore. at equilibrium the x-magnetization is zero.

A similar calculation for the y-magnetization gives

My = yN rarp sin (¢,9 — ¢a).
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ll is clear that this is also zero if the phases are randomly distributed.
Another way of looking at this is to say that, as we know from experi-

ment that at equilibrium there is no x- or y-magnetization, the implication
is that the phases are randomly distributed.

Just for completeness we will compute the 3-magnetization using this
form of the coeflicients

53-|\_).-4-Q|- ,-—1_¢_-itgfi,‘

*1

=1an _c-5

Q
(1,) = _ —%c;cfl

: : ra r0 exp (_i¢a) exp “ r/if/3 CXP eXP

= - exp<ii¢.. — ¢..1> - »-,%e><p<-1t¢p - ¢a>]
= - _ ,5],

where to go to the last line we have used exp(0) = l. In contrast to the case
of the x- and y—components, the phases do not affect the value of (I2).

The z-magnetization is thus

M1 = %yN lrf, —

We can therefore identify NE as being the population of level la).

A comment on the units
We need to be a little careful here about the units. Recall from section 3.4
on p. 36 that we decided it would be convenient to omit a factor of h and
write the eigenvalue equation for iz as

7; la) = §l<r>
rather than

1: la) = %hl<r)~
As a result of this choice, our expression for M; is also missing a factor
of h, and so is dimensionally incorrect. If we put this factor back into our
calculations we find

(I1) = Hz (c*c — ego )_ 11 <1 /5

and so
M: = %hyN(c{{c(, — @508) or M; = ii)/N (11).

For most purposes, this will make no difference, but it is as well to be aware
what is going on. For the remainder of the discussion. we will continue to
omit the factor of h.

6.5 Summary
We have introduced a lot of new ideas so far, so a quick summary of the
really crucial points will not go amiss.
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Each spin is in a superposition state, which can be written as a linem-
combination of the eigenfunctions of IZ:

i,l/ = Calfla, + op ipfi Dirac notation: It//) = ca|a) + cfi L8),

The coefficients ca and cl, are complex numbers which vary with
time, and are different for each spin in the sample. The coefiicients
can be chosen (or scaled) so that the wavefunction :11 is normalized,

la) and L8) are eigenfunctions of fz:

.mo=a@ Lw=-an
The functions are also normalized and orthogonal to one another:

(aid) = 1 (BIB) == 1 <<YLB) = 0 (Bid) = 0.

Repeated observation of the variable corresponding to an operator
gives an average equal to the expectation value (Q), where

w*Qwd . ‘
(Q) =¥ Dirac notation: (Q) =

ftp tbdr (I//ll/1)

For the superposition state, the expectation values of the three com-
ponents of angular momentum are

|Q._
QQ‘ QQ(Ii) = —%c;cB (Ix) = §c:cB+%c5ca (Iy) = %ic;ca-—%ic;c/3

The components of the bulk magnetization are given by

§yN(e;;¢fi + ¢;e,,) or M, = y2v<1_,>Mt

5‘-iyN(c;c,, —c;c/3) or My = 7/N(Iy)M,=
M, = %yN(c,§c,,—c/gap) or M;=yN(I;).

where the overbar indicates an ensemble average, which means
adding up the contributions from each spin in the sample and then
dividing by the number of spins.

The z-magnetization can be written in terms of the populations of the
two levels, nu and nfl:

M: = %')/(nu _"

At equilibrium, the z-magnetization depends on the equilibrium [DOP-
ulations, which are predicted by the Boltzmann distribution. The
equilibrium x- and y-magnetizations are zero.
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6.6 Time evolution
So far we have been studiously avoiding the issue of time in quantum
mechanics, but we know that time evolution is of central importance in
NMR. so it is clearly essential that we extend our understanding of quantum
mechanics to include such evolution. The way in which the wavefunction
changes over time is predicted by the time-dependentSchrodinger equation:

9‘-ail) = ~iF1¢(i) Dirac notation: 9%? = -11-‘1|t,//(1)). (6.28)

ln this equation we have written r//(I) to remind ourselves that the wavefunc-
tion is a function of time.

The derivative on the left tells us how the wavefunction varies with time,
and the equation says that this variation depends on the Hamiltonian. We
have met the Hamiltonian before (section 3.2.5 on p. 31) as the operator for
energy; now we see it playing an even more crucial role in determining the
time-evolution of the wavefunction.

As the wavefunction varies with time, so do the expectation values
we have computed in the previous section. Thus, working out the time
evolution of the wavefunction will enable us to find the time evolution of
the magnetization.

We will now try to solve the time-dependent Schrodinger equation
(TDSE) for two cases which are of great interest to us. The first is for
free precession and the second is for an RF pulse.

6.6.1 Free evolution
For a single spin, the Hamiltonian for free evolution (i.e. in the absence of
an RF field) is

H = Q13. (6.29)

This Hamiltonian is written in the rotating frame, so the frequency is the
offset Q, rather than the Larmor frequency wt). As was explained in sec-
tion 4.4.2 on p. 59, the offset is the difference between the Larmor frequency
and the rotating frame frequency. We will do all of our calculations in the
rotating frame as. just as was the case for the vector model, such a choice
makes it possible to analyse the effect of an RF pulse. The Hamiltonian is
also written in angular frequency units.

The superposition state of our single spin is

it//(1)) = %(I)l<r) + ¢;;(I)lB>- (6-30)
where we have written c(,(t) to remind ourselves that it is the coefficients
ca(r) and ca (t) which will vary in time; the basis functions Ia) and lfl), are
time independent.

Solving the TDSE in this case is not too difficult, but the algebra is
perhaps a little intricate at times. To start with simply substitute Eq. 6.30
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and the form of the Hamiltonian (Eq. 6.29) into the TDSE:

9‘? = —iF1l~//(r)>
<1 ..<>i> (>w> .W = -in1.[c..<i>|a> + c,,<¢>w>]

d
Lét(i)iQ)+ %ft)tB> = —iQ¢,,(r)T2l<r>—iQ¢ (¢)71lB>

at; B §,-/

=%i<1> =-%w>
d (I)

%|<r>+i§t—iB> = -%iQ%(F)l<1')+%iQcfi(i)lB)-

Let us look at what we have done line by line. To go to the second line
we have just substituted It/1(t)) using Eq. 6.30, and the Hamiltonian for the
free precession, Eq. 6.29. Multiplying out the brackets takes us to the third
line. Then we recognize that la) is an eigenfunction of fl, so filo/) = %|ar);
similarly fzlfi) can be replaced by —%LB). This brings us, after a little tidying
up, to the fourth line.

We now employ a ‘trick’ which is commonly used in quantum mechan-
ics: we take this last equation and multiply from the left by (al.

d ( )
2%-;(—t2 la) + L-§;£— w) = —%iQca(t)la) -+- %iQcB(t)LB) (6.31)

(l (Z)(<rIg5§t£i<r>+<<rl—%—lB> = <a|[-§inc.,<o]|a>+<ai[§iQ¢,,m]w>.
The derivatives of ca and ca , and the quantities in square braces on the right,
are all just numbers so we can move them around as we like to give:

Ci—-W <a|<1>+——C”(’) ow) = __l‘ 1'dt dt rQc (t) (ala) + 1Qc (t) (a/LB)
=r :0

2 rt 2 /3
:1 :0

dca (t)dt = -§io¢,,(i). (6.32)

To go to the second line we have utilized the by now familiar property that
la) is normalized, hence (a/la) = l, and that la) and L8) are orthogonal,
hence (alt?) = 0. The result of all of these rather lengthy manipulations is
the relatively simple differential equation, Eq. 6.32.

This equation tells us how c,,(t) varies with time, which is what we are
trying to work out. The solution to this equation is well known as it occurs
in all kinds of physical and mathematical problems; it is

c,,(t) = cc,(())exp(—%i§).i) (6.33)
where ca(0) is the value of the coefficient at time zero.

To show that this is a solution all we need to do is to substitute the ex-
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pression for ca(t) into the left of Eq. 6.32, and then compute the derivative:

dca(!) 6 .T = (-1-; [c5,(0) exp(—§rQt)]

= ca(0)(——%iQ)exp(—%iQt)
= —§iQ ca(O)exp(—%iQt)

imag-A

=Cr:(ll

= -gin ca(t).
We have therefore shown that dc,,(r)/dt is equal to —%iQc5,(t), which is
exactly what Eq. 6.32 says, so Eq. 6.33 is the solution to Eq. 6.32.

If we go back to Eq. 6.31 and left multiply by (Bi instead of (al, then a
similar line of argument leads to

dc5(t) I’
T = §lQCB

The solution to which is easily shown to be

65(1) = 65 (0) exp(-3,-iQt).
Note that all that is different between the expressions for 655(1) and 05 (2) is
the sign in the exponential term.

What this all means
The problem we set out to solve is how the superposition state

Ii//(0) = C..(r)lQ> + c5(r)lB>
evolves in time under the influence of the free precession Hamiltonian

H = oi,
The solution is that the coefiicients vary according to

C56) = ca(0)exp(—%iQt) 65(1) = 65(o)6>tp(§aQr), (6.34)
where c,,(0) and c5,(0) are the coefficients at time zero. It is useful to
remind ourselves that la) and LB) are eigenfunctions of the free precession
Hamiltonian. QIZ:

Qizla) = %Q la’) Qizlfil = _%Q
%/-’ %/—’

eigenvalue eigenvalue

Recalling these, we can see that Eq. 6.34 says that each coefficient
oscillates in phase at a frequency which depends on the corresponding
eigenvalue of the Hamiltonian (in fact, the oscillation is as minus the cor-
responding eigenvalue). This phase oscillation is illustrated graphically in
Fig. 6.2.

in the next section we will explore the effect that these oscillations have
on the expectation values of the different components of angular momen-
tum, and hence On the magnetization.
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Fig. 6.2 Illustration of the time dependence
of the coefficients ca and c5 during a period
of free precession. The real and imaginary
parts of the coefficients are plotted along the
x- and y-axes, respectively. The grey dots
represent the motion of cu, with the large
grey dot representing the value at time zero;
the black dots similarly represent 05.. The
starting values are arbitrary, and successive
dots indicate the coefficients at equal time
intervals. Both coefficients follow a circular
path which is a result of the phase
modulation predicted by Eq. 6.34: each
coefficient has constant magnitude. i.e. the
distance to the origin, given by \)c;(l)c,,(t)
or it-’(r)c (r). is fixed. Note that the twoB B
coefficients proceed in opposite directions
on account of the corresponding eigenvalues
having different signs.
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6.6.2 Effect of free evolution
In section 6.3.3 on p. 113 we found that the expectation value of the Z-
component of angular momentum was (Eq. 6.9 on p. l 14)

(I1) = %c;ca — écgcfi.

We can now substitute in the values of ca (t) and ca (t) from Eq. 6.34 so that
we can find out how the expectation value changes with time:

<[z>(t) = - [ca(O) exp (-51:20]’ [e(,(0) eXp(—%iQt)]
_% [QB (0) exp(%iQt)]* [CB (0) exp(%iQt)]

= §e;(0) exp (§iQr) e,,(0) exp (—§iQr)
-§e;(0) exp (-»%iQt) efi (0) exp (+ liar)

= %c;(O)ca(O) - §e;;(o)eB(0).

|\_;-

To go from the second line to the last we have recognized that
exp(6) exp(—6) = exp(0) = 1. The result is that the expectation value
of the z-component of angular momentum is not affected by free evolution.
This is hardly a surprise: as we have seen in the vector model, free evolution
is a rotation about the 2-axis, and so we do not expect the z-component to
be affected by such a rotation.

The x-component behaves in a more interesting way. The expectation
value is given by Eq. 6.12 on p. 115:

1
[Q- ho»

OQ(I,)(t) = icgcfi +

= §[e,,(0)exp<-%iQr)]' [cB(O)eXp(%iQ!)]
+5 [eh (0) exp (§iQi)]* [cn(O) exp (e %iQr)]

= §e;(0) exp (5191) CB (0) exp (§iQr)
+ %cE (O) exp (—%iQt) cu(0) exp (—%i§2t)

= %c;(O)cB(O)exp(iQt) + §e;(0)ea(0)exp(-mi). (6.35)
In contrast to the z—component, the expectation value of the x-component
oscillates at frequency Q. This is, of course, exactly the frequency Of
precession in the rotating frame, so it should not come as a surprise.

The final expression for (I,)(t) can be simplified by writing the compl6X
exponentials in terms of sines and cosines using the identities:

exp(i6) E cos 6 + isin49 exp (-i6) E c0s6 — i sin 9.
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Then Eq. 6.35 can be re-expressed as

<1..>(:> = %c;(0ie,,(0>exp<tQr> + ~§-c§(0)@p(0)@XP(—iQI)
= §e;(0)efi (0) [cos (Qt) + i sin (Qr)]

+ %c;(O)ca(O) [cos (Qt) - 1 sin (om
= cos (Qt) [%c(’;(())cB (0) + §e;;(0)ea(0)]

=(Ix)(0)

- sin (Qt) [§ie;(0)e,,(0) _ §ie;(0)efi(0)]
Q 4V '

=(I,-N0)

= cos (oi)(1,>(0) ~ sin (s2r)(1,>(0).
On the third line we recognize that the quantity in the first square brace is
simply (IX) at time zero (Eq. 6.12 on p. l 15), and similarly the quantity in
the second square brace is (1,) at time zero (Eq. 6.13 on p. 115).

This says something entirely familiar, which is that if we start out at time
zero with a vector along —_v, after time t the vector has precessed through
an angle Qt generating an x-component of proportional to the sine of this
angle.

A similar calculation for the y-component of the angular momentum
gives

(I>.)(t) = cos (Qt)(Iy)(O) + sin (Qt)(I,(<)(O). (6.36)

Again. this is a familiar result as it shows that a vector aligned initially along
x rotates through an angle Q1‘ towards y; this is visualized in Fig. 6.3.

It is important to realize that these expressions refer to the x- and
y—components of a single spin. To work out the components of the bulk
magnetization we need to multiply by 7/N and take the ensemble average,
as in Eqs 6.20 and 6.21 on p. 118:

cos (Qt);/N(I,-)(0) - sin (Qt);/N<I,)(0)
cos (Qt)M,(0) - sin (Qt)My(0)
cos (Qt)yN(I_,-)(O) + sin (Qt);/N(Ix)(O)
cos (Qt)M,.(O) + sin (Qt)M,(0).

"/N(I,>(r) =
hence MX(z) =

yN<Iy)(t) :

hence My(t) =

These relationships show how the components of the magnetization evolve
over time, and they predict an oscillatory interchange of the x- and y-
components; these predictions are identical to those of the vector model.
We now turn our attention to the somewhat more complex case of the effect
of an RF pulse.

6.7 RF pulses
As we saw in Chapter 4, an RF pulse results in a transverse magnetic field
Bl appearing in the rotating frame, and if we are on resonance (or the pulse
is strong) this is the only field present in the rotating frame. We also saw

< Iy>

<1 >(0)M
Y 3 <lx>

<Ix>(O)

Fig. 6.3 Visualization of the predictions of
Eq. 6.36; the horizontal and vertical axes
represent the expectation values of the x~
and y~components of the angular
momentum. The grey vector depicts the
initial condition (t = O) in which the
expectation values are (I,)(0) and (1'_,.)(0).
After time t, the vector has rotated through
an angle Qt to the position given by the
black vector. The y-component of this
vector clearly depends on both the x- and
y—components at time zero, as given by
Eq. 6.36.
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Fig. 6.4 Illustration of the time dependence
of the coefficients cu and cl; during an RF
pulse; the motion of the coefficients is
represented in the same form as in Fig. 6.2
on p. 125. The motion of the coefficients for
the case of a pulse is very different to that
for free precession shown in Fig. 6.2.
Firstly. the paths are not circular; secondly
the magnitude of the coefficients change
(i.e. their distance from the origin changes),
and finally the paths proceed in the same
direction. What this diagram represents is
an oscillatory interchange between ca and
Op.

that the magnetization rotates about this field at a frequency wt = iyB||_ it
should come as no surprise therefore, that the Hamiltonian (in the rotating
frame) for an on-resonance or strong pulse about the x-axis is

Hpulse : wl1.r-

Comparing this with the free precession Hamiltonian Iffm, = Q11 (Eq. 6,29
on p. 123), we see that the operator is now ix rather than ii; this is because
the magnetic field is now along x rather than Z. The frequency has changed
from the offset Q to ml, the rate at which the RF field rotates the magneti-
zation.

To work out what effect this Hamiltonian has on our superposition state
all we have to do is solve the TDSE,just as we did before. However, finding
the solution turns out to be rather more complex than before as Ia) and w)
are not eigenfunctions of ix (and hence of Hpuise). We will not therefore go
into all the details, but simply quote the results.

The differential equations for the coefficients tum out to be

dc..<r) . <16 <1) .
T‘ = —%l(.t)|Cfi(t) %- I —%l(.t)|Ca(l).

Comparing these with the equivalent differential equations for free evolu-
tion, Eq. 6.32 on p. 124, we see that the additional complication for the
effect of the pulse is that the rate of change of ca depends on c/3, and vice
versa. The solutions to these equations can be obtained by standard methods
and are:

ca(t) = cos (lop) e,,(0) - isin (%(t)] 1) e,,(0) (6.37)
e/,(r) = cos(%w(t)cfi(0)—isin(%w;t)ca(0). (6.38)

Compared with free evolution (Eq. 6.34 on p. 125), these results are more
complex as the value of ca at time t depends on both ca and c5 at time
zero. What is happening here is that the Hamiltonian is causing a mixing
between the states Ia) and I/3), resulting in an oscillatory interchange of the
two coefficients, which is represented graphically in Fig. 6.4.

It is interesting to compare this figure with the corresponding One f0l'
free precession, Fig. 6.2 on p. 125. In the case of free precession, the coef-
ficients are simply phase modulated and so proceed on circular paths: their
magnitudes, represented by the distance from the origin, remain constant.
In contrast, during a pulse the magnitudes of the coefficients change as a
result of the oscillatory interchange between the two coefficients.

6.7.1 Effect on the components of angular momentum
Now that we have the values of cu and c/3 at any time, we can compute the
expectation values of the x-, y- and z~components of the angular momentum.
as these are related to the coefficients in the following ways (section 6.3.3
on p. ll3)

|q>_.;\;.-(Q.-fi|._-‘

c:§(t)c/3(t) + c5(r)ca(r)]

i [0/§'(t)ca(t) — c;(t)cfi(t)]

e;(1)e,,(r) ~ cg (t)cB (r)] .
(Iy)(t) =

<1x)(1‘) = —

(1;)(t) = -
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We have written (1.x>(T) etc. to remind ourselves that, as the coefficients
depend on time. so will the expectation values.

ll‘ we substitute the expression from Eqs 6.37 and 6.38 into the above
relationships for (I,.)(r) etc.. we obtain, after some tedious but essentially
straightforward manipulation:

-l\)—v
<1_.>(r) = c;<0)c,,(0) + c;;<0)c..<0)].
(1_,.)(i) = —§i [c;(0)cp(0)—c..(0)e;(0)]ees(e)p)

-1 e;(o)e,,(o)-e,;(0)e,,(0)] sin(w1r), (6.39)
<1.>(r) = - (0)-:.,<0)—c,;(0)c,,<0)]c<>s(w1r)

+-1 [e,,(0)e;(0) - e,,(0)e;(0)] sin (W).
N-

--risk)

QP“?Q1?

These expressions can be simplified greatly if we recognize that the quan-
tities in square braces are the expectation values of the various components
of the angular momentum at time zero, i.e.

<1.>(0) = c;:(0)-:,.(0) + c,;(0)c.(0)].
(1_.)(0) = -1 [0/§(0)ca(O)—c,§(0)c/3(0)],
<1.>(0) = - [e;(0)e..<0) - -¢;;(0)c,. 61)] .l\J>-l\J—-I\)*—-

,___,

With these substitutions, things look rather simpler:

<1.><r) = <1.><0). (6.40)
<I,><r) = <Iy)(0)CO5(wlt) ~ <1.>(0) sintwu). (6.41)
<1.>(:) = <1.><0) cos (wit) + <1,.>(0> $iI1(w1T)- (6.42)

These relationships are relatively easy to interpret. Firstly, we see that
the x-component simply does not change, but retains the same value it had
at time zero. Given that we have chosen the pulse to be about the x~axis, it
is not surprising that the x-component is unaffected.

The expression for the y-component, Eq. 6.41, predicts an oscillatory
interchange of the y- and z-components. For example, if we choose the
time such that wit = Ir/2. then <I,.)(r) = —(I;)(0). This looks familiar: the
2-component is rotated onto y by a pulse with a flip angle of 1r/ 2 radians or
90°.

Similarly, the z—C0mp0nent, Eq. 6.42, shows an oscillatory interchange
of the _v- and z-components. In other words, it represents a vector rotating
in the yz-plane at frequency to 1.

6.7.2 Effect on the components of the bulk magnetization
The results in the previous section tell us how the individual components
of the angular momentum from a single spin evolve over time. However,
what we want to know is how the bulk magnetization evolves over time.
As was explained in section 6.4 on p. 116, we find the bulk magnetization
by taking the ensemble averages of the expectation values of the individual
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C0mp0nents of the angular momentum. From Eqs 6.20, 6.21 and 6.22 on
p. 118, we have

M1 = Y1‘/(T My = Y/W13 M1 = YN<_I§- (6.43)
If we take the expression for (Iy)(t), Eq. 6.41 on p. 129, compute the
ensemble average and multiply by 'yN, we obtain

'yN(Iy)(t) - yN(Iy)(0) cos (ml!) yN(Iz)(0) sin (colt),

which, using Eq. 6.43, we recognize is the same thing as

M,(t) = My(0) cos (wit) — Mz(0) sin (wlt).

Using the same approach for each of the components, we can use Eqs 6,40
to 6.42 to determine the three components of the bulk magnetization as

MAI) = 541(0), (6.44)
My(t) = My(0) cos (w|t) — MZ(0) sin (wlt), (6.45)
MZ(t) = Mz(0) cos (to; t) + My(0) sin (ml t). (6_46)

These relationships predict exactly the same outcome of an x-pulse as
the vector model: x-magnetization is unaffected, whereas y- and z-
magnetization are rotated into one another i.e. the magnetization vector
rotates in the yz-plane.

If we assume that the magnetization is at equilibrium at time zero, we
can write

M,(0) = 0 My(0) = 0 M:(0) = M0,

where M0 is the equilibrium magnetization. Using these values in Eqs 6.44
to 6.46, gives

Mx(t) = O M_,.(t) = —M0 sin (cult) Mz(t) = M0 cos (wit).

This is a result we are very familiar with: the equilibrium magnetization is
rotated from z through an angle wit towards —y.

6.8 Making faster progress: the density operator
We have now developed the theory to the point where we can predict the
time evolution of the components of the bulk magnetization during free
precession and during RF pulses. However, you would be forgiven for
thinking that an enormous amount of labour has been needed to derive Some
essentially trivial results!

The reason that everything is such hard work is that the calculations
involve a three-stage process: firstly, we solve the TDSE using the relevant
Hamiltonian; then we compute the components of the angular momentum
of a single spin; finally, we compute the ensemble average to find the bulk
magnetization.
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What we need to find is a way of saving some of this labour. The first
grep is to notice that the components of the angular momentum are always
expressed in terms of particular products of the two coetficients ca and cfi:

¢";c',, c/gap 0:0‘, cl‘; cu.

What is more. when we take the ensemble averages, it is these products
which are subject to the averaging process.

These observations lead us to wonder if there is some way of reformu-
lating the theory so that the products of the coefiicients, and their ensemble
averages. appear in a more convenient way. It turns out that by introducing
the density operator (also called the density matrix) such a simplification
can be achieved.

6.8.1 Introducing the density operator
The density operator )6 is defined as

t3 = It//><1//l_ (6.47)
As before, the overbar indicates taking an ensemble average, which means
adding up the contributions from each spin in the sample and then dividing
by the number of spins.

In the case of our superposition state, lw) and {t//I are given by

in = ¢.,la> + can <¢| = cg <01 + c;;</3|.
You might think that the definition of Eq. 6.47 makes it look as if f5

is a function, not an operator. However, we can see that it is indeed an
operator by forming its matrix representation, as described in section 6.3.5
on p. 115. Following the general form given in Eq. 6.14 on p. 116, the
matrix representation of ;3 is

p:[<a1na> <a|t»w>]E[p.r P12]
(filfilal (Bl/3l3> P21 P22 I

Each of the matrix elements can be evaluated by using Eq. 6.47 and the
known properties of la) and LB). As an example, let us work out the top
nght-hand element i.e. that in row I and column 2, the elementpu. To avoid
clutter, we will leave out the overbar which indicates ensemble averaging
until the last line.

P12 = <¢¥lfil5)
= <a|li¢><¢'lllB>
= <(»| l¢..|a> + @fiv1>][¢~;<al + sol] ta
= <<rl[@,,la> +6); lB>l [CZ (all?) +6; (BIB) 1

§,_/ §,_/

=0 =1

= (a|[c,,|rr)+cfl[,B)]c;

= [ca (crla) +t- (aw) ]@*
=1 =0

_ . .1’- can/3.
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To go to the second line, the definition of b has been inserted. and then
on the third line |i/1) and (1/1| have been expressed as the superposition of
la) and |/3). The right-hand square bracket is then multiplied out to give
line four, and then we use the properties that la) and LB) are orthogonal
and normalized to go to the next line. Repeating the same procedure with
the left-hand bracket carries us to the end of the calculation. Finally, we
recall that the density operator, and its matrix elements, are defined as an
ensemble average, which is why the overbar has been inserted on the final
line.

Applying the same procedure gives the other elements as

P21 — <filfi|<I¥> - CZCB Pit — <‘1’li’|¢1) — Cacti P22 — <flli>|.5) — C565-

Thus the complete matrix representation of the density operator is

Ct ( C’,,=[_.*_.; (6.43)
cficn cficfi

Remember that the coefficients ca and cl; vary with time, so ,6 is therefore
a function of time. Things are already looking hopeful as the elements of
this matrix are the ensemble averages of the products of the coefficients —
the quantities which always appear when we compute the components of
the bulk magnetization.

6.8.2 Calculating the components of the bulk magnetization
The really Convenient feature of the density operator is that we can compute
the bulk magnetization directly from the matrix form of the operator. For
example, the x-magnetization, given by

M, = %yN(c,‘§c/3 + c,,c/‘§).

can be written in terms of the elements of the density operator (Eq. 6.48) as

Mr = %YN(P2l +Pi2)-

Similarly, My and M; are

My = ii7N(Pi2 -021) M; = %)’N(Pu -1922)-

The important point here is that the ensemble averaging is contained within
the density operator, so we can compute the bulk magnetization directl.\'
from the density operator. This is an important advantage of this approach.

6.8.3 Equilibrium density operator
Recall from section 6.4.2 on p. 119 that c,,c,"; and cfic; are related to thfi
populations, nu and I1/3, of the two states (Eq. 6.23 on p. 119):

cue; = n,,/N cfic/*3‘ = n5/N.
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The two diagonal elements of the matrix representation of the density oper-
ator are thus n,,/N and nb-/N.

ln section 6.4.3£'l_p. 120$: also argued that, at equilibrium, the
ensemble averages cjc/3 and cgca are zero. So, at equilibrium, the two
off-diagonal elements of the matrix form of the density operator are zero.

We can thus write the equilibrium density operator as

no /N O

pm zi "/mi/N i (6.49)
where rzmeq and n;;_¢q are the equilibrium populations.

This is rather a nice result as it gives us a starting point for the calcula-
tion since all of our experiments will start with a sample which has come to
equilibrium. The final thing we need to know is how the density operator
varies with time.

6.8.4 Time evolution of the density operator
Starting from the TDSE. Eq. 6.28 on p. l23:

d|¢(t)> _ _. --75- - iH|¢<:>>.
it can be shown that the equivalent equation of motion for the density
operator is

d;5(t) . A , A .T = —1(Hp(t)-p(t)H); (6.50)
this is known as the Liouvilleivon Neumann equation. The prder in which
operators act is important, so H )6 is not the same thing as )6 H.

It can be shown that the solution to Eq. 6.50 is

pg) = exp (-1191) ,a(0) exp(iFIt), (6.51)
where f)(t) is the density operator at time t and 13(0) is the density operator
at time zero.

You would be forgiven for thinking that this does not look like much
of a ‘solution’ to the problem. However, it turns out that exp(iil§t) can be
expressed in matrix form.just in the same way as is possible for 6. So, the
right-hand side of Eq. 6.51 is in fact just the multiplication of three matrices
together, which is a trivial task.

However, we are not going to describe how these matrix forms of
exp(ii§t) are found, as there is another way to approach the use of the
density operator which avoids the need for matrices, and results in a much
more intuitive method of calculation. This approach casts the whole prob-
lem in operators, as described in the next section.

6.8.5 Representing the density operator using a basis of operators
We are familiar with the idea that the position of any point in space can be
described by specifying its x-, y- and z-coordinates. Part of the reason why
this approach is useful is that the x-. y- and 1-directions are all orthogonal
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to one another i.e. the angles between them are all 90°. This means that, for
example. changing the x-component does not change the other components.

Expressed somewhat more formally, we have three orthogonal unit
vectors pointing along the x-, y- and Z-directions. The vectors have unit
length (hence their name), and are denoted e_,, e_,- and ez. Any vector can be
expressed as a linear combination of these three unit vectors:

ax ex + a_,. ey + 0; 6;,

where ax gives the component in the x-direction and similarly ay and a; are
the components along y and z, respectively. The vectors (e,, ey, ea) are said
to be basis vectors.

In a similar way, a matrix can be expressed as a linear combination
of a basis set of other matrices. For example, it tums out that the matrix
representation of the density operator, for an ensemble of spin-half nuclei,
can be expressed as a linear combination of the matrices representing in
i; and a fourth matrix which we shall call E. These matrix representations
were introduced in section 6.3.5 (Eqs 6.15 and 6.16 on p. ll6), and are
repeated here for convenience, along with the definition of E.

L Q _l'

5 0 El 0

1 0 10“[6-ll “lo ll2

These matrices are orthogonal to one another in an analogous way to
the unit vectors along x. y and 3. Two matrices, A and B. are said to be
orthogonal if the trace of their product is zero:

orthogonality: Tr{AB} = 0.

The trace of a matrix, denoted Tr{M}, is the sum of its diagonal elements.
This is best illustrated by way of an example: let us consider the product

of the matrix representations of ,and I2:

AA l 10-(‘?tl><[2 t)20 0'5
_[°—i)

{O

The trace of this final matrix is the sum of the elements along the diagonal
i.e. elements 1,1 and 2,2; clearly in this case the trace is zero. so the matriX
representations of ix and ii are orthogonal. Similar calculations will show
that any two of the four basis operators are also orthogonal in this sense-

We now write the density operator in terms of a linear combination of
the four basis operators:

t3 = agli‘ + axf, + ayiy + a;i:. (6-52)
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If the operators are written in their matriX forms, this combination is

p=aE[ O 1]+a.\‘[ I _ ~— —-

Adding up all of these terms, the matrix form of the density operator is

p : 2a,; +_a: ax — ia, (6.53)
I y ag

O

Q-—O ON-'
;_/

+ ‘P
/4? ON.- i/

+
Ila

/—i\ ON-* N__O \______/

cz, +1a 2aE—-

Note that a_,. and at only appear on the off-diagonal elements, whereas ag
and a; only appear on the diagonal elements.

In section 6.8.2 on p. 132 we noted that the really useful feature of the
density matrix was that we could compute the bulk magnetizations directly
from its elements. Repeating the results from that section, it was shown that

MK = %YN(P21+p12) My = éil/N(P12 -P21) M; = %YN(P|1 -1122)-

Using the elements ofp from Eq. 6.53, we find

M, = gywa, M, = §yNa_,. M; = gyzvaz. (6.54)
Now this really is a very nice result, as it says that if we write the

density operator as the linear combination of operators, Eq. 6.52, we can
extract the value of the bulk magnetization just by inspecting the values of
the coefficients ax etc. Note that the coefficient ag does not contribute to
any of the magnetizations.

We will see in the next chapter that, by using this operator expansion
we can work out the time evolution of the system without solving the
TDSE directly, taking any ensemble averages or working with matrices.
The reSHlIing approach is thus very convenient to use, and indeed it is the
one we will use exclusively in the rest of the book. The practical details of
how calculations are actually made using this approach are described in the
next chapter.

6.8.6 The equilibrium density operator — again
In section 6.8.3 on p. 132 we showed that at equilibrium the matrix repre-
sentation of the density operator, fieq, was

fi = nQ!@q/N O

°“ 0 "M/N ’
where nmq and n,;_,,q are the equilibrium populations of the two levels.

These equilibrium populations can be computed using the Boltzmann
distribution (Eq. 6.25 on p. 1l9):2

"M = §ivexp(-5.,//<51) um = §N@xp<-5,3//<51)
2The factor of % in these expressions is l /q. where q is the partition function. In this case

q = 2, as there are two accessible states.
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The energy of interaction of the spins with the magnetic field is very much
less than the thermal energy, which means that Em/kBT is very small. As a
result, the exponential terms can be well approximated using exp (x) = 1 + X
to give

nm = %/v(1 - Ea/lq;T) nm = §N(1 - E5/kBT)
This can be further simplified by recalling that the energies are (in J)

Ea = —%hyB0 EB = +§nyB0,
SO

7'2)/B0 Ft)/B
flmeq = + I1/gxq = -

From these it follows that the average population, nay = §(nc,_eq + nfivcq), is
simply %N, and the difierence in the populations, An = (nayeq — nfieq)‘ is

71BAn=_Z_Q
2kB T i

The populations of the two levels can therefore be written

l 1nmeq = nay + iAn nflyeq = nay — 5An,

and so the equilibrium density operator becomes

_ l nm,+ %An O
peq _ N O Hm, — lAn '

This equilibrium density matrix can be written in terms of the matrix
representations of E and I: in the following way:

A "av 1 0 An ‘ 0

p°" 2 W 0 1 J"? ' -1
2$0»-4

= ket-5‘_’li,.
N N

It tums out that the matrix ll never leads to any observable magnetiza-
tion, so this term can simply be omitted without causing any problems to
our calculations. So, the equilibrium density operator (sometimes called the
reduced density operator on account of the missing E term) is simply

fieq : kliz

where kl = An/N. The value of the constant kl depends on the number Oi
spins in the sample, the temperature and the exact spacing between the tw0
energy levels.

Referring back to the operator expansion of ,5. Eq. 6.52 on p. I34. We
see that at equilibrium only the coeliicient az is non zero:

aZ_@q :
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Fain; Fq. 6.54 on p. I35. we can therefore write the 3-magnetization as

llfw, = 5‘-)’Na:'cq
= %yNk1.

All experiments start with equilibrium magnetization, so in calculating
the result of any experiment every term will be prefaced by the constant
factor (yNk|). All this factor does is set the overall size of the equilibrium
magnetization and hence the subsequent size of the signal we observe. In
NMR. we have no useful way of measuring the absolute size of the signal —
rather what we are interested in is how the signal evolves over time. So, for
simplicity and convenience we usually ignore the factor lq which sets the
size of the equilibrium density matrix, and write:

/aeq : fa-

Similarly, when computing the components of the magnetization we
ignore the factor yN which simply scales the value. As a result, we can
write very simply, but rather informally:

My = at My = av M; = az.

6.8.7 Summary
In this section we have shown how the density operator is an alternative to
working directly with the wavefunction. The density operator includes the
effects of ensemble averaging in such a way that the components of the bulk
magnetization can be computed directly. We went on to show that an oper-
ator expansion of the density operator makes it particularly straightforward
to extract the value of the components of the bulk magnetization. In the next
chapter we will go on to show how practical calculations can be performed
using this operator approach, and how it can be extended straightforwardly
to coupled spin systems.

Here is a summary of the key points.

0 The density operator is defined as

/5 = l~/1'—><W.
note that ensemble averaging is included in this definition.

0 The density operator evolves in time according to

an) = exp(—iI:It)fi(O) exp(iHt).
0 The density operator can be expanded as a linear combination of basis

operators:
,6 = aEE + a’,-I, + a,.I,, + azlz.

o To within a constant scaling factor, the components of the bulk mag-
netization are given simply by the coefficients in this expansion

My=(1; M‘-=Q\~ MZIGI.

0 At equilibrium the density operator is simply fl.
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6.9 Coherence
In section 6.4.3 on p. 120 we noted that, at equilibrium, the x- and y.
components of the bulk magnetization are zero on account of the randomly
distributed phases of the contributions from each spin in the ensemble. For
example,

l * it _ _
My.eq : §i')’N(cpCo _ C(zCfi)eq "' O or M1'.eq _ ')’N<]y-lcq -'= O-

However, we saw in section 6.7 on p. I27 that transverse magnetization is
generated when an RF pulse is applied to equilibrium magnetization. In
quantum mechanics this transverse magnetization is described as being the
result of the presence of a coherence in the sample. In this section we will
explore what this term coherence means.

In section 6.7.1 on p. 128 we saw that, after an RF pulse, the expectation
value of the y-component of angular momentum was given by (Eq. 6.39):

~‘ la lK)-—
(ly)(t) == — 1 c*(O)cp(O)—c0(O)c;;‘(O) cos(w1t)

- [c;(O)c(,(O)—cE(O)cB(O)lsin(w|t). (6.55)
I-Qu—A

Remember that this refers to a single spin. The equation predicts that
from this single spin there is a y-component, whose size depends on the
coeflicients ca and cfi at time zero, i.e. before the pulse.

However, what we are able to detect is the bulk magnetization. which is
the sum of the contributions from each spin; to compute this sum, we take
the ensemble average

Mic) = —§i 11V[¢$(0)¢,,(0) — c.<0>c;<0>]cos<@1r>
-§yN[<:;;(0)@,,(0) - @;;(0)@p (0)] sin (W).

Now if the spins are at equilibrium at time zero, the first term in square
braces is zero on account of the random distribution of the phases at equi-
librium. However, the second term in square braces is not zero, but in fact
equal to (nu — np)/N, as was explained in section 6.4.2 on p. 119. So, the
y-magnetization is

M_v(t) = —%y (nu ~ np) sin (ml t). (5-56)

In words, what all of this says is as follows. At equilibrium, the phases
of the superposition states are randomly distributed, so there is no bulk
transverse magnetization. However, as the two energy levels (0 and 3) are
not equally populated, there is z—magnetization; we can describe this as a
polarization of the sample along the :5-direction. When a pulse is appli¢d»
y-magnetization is generated and, according to Eq. 6.56. this magnetization
is proportional to the original polarization along the z-axis, (n',,—r1;zl- ll. lhfle
was no polarization along z at time zero (i.e. nu = Hp), then the pulse would
not generate any y-magnetization. All the pulse really does is to rotate the
axis along which the polarization is aligned from 3 to _v.
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Transverse magnetization is described as being the result of a coherence
amongst the spins. Sometimes it is implied that a coherence is an ‘alignment
of the spins‘ which is brought about by the pulse - phrases such as ‘the
pulse brings the spins into alignment‘ or ‘the wavefunctions are aligned by
the pulse’ are commonly encountered. However, all of these phrases are
misleading since, as we have seen. the pulse does not create an alignment
or alter the phases of the spins in some magic way: all the pulse does is to
rotate a polarization from z to y.

It is important that each spin in the ensemble experiences the same RF
field. If this is the case, then each spin behaves in a way described by
Eq. 6.55, so that when the ensemble average is taken the second term is
indeed the 2-magnetization. If, for example, the value of on were to vary
across the sample, then the sine and cosine terms would vary from place to
place. and it would be quite easy for the ensemble average of both terms
to be zero. When there is a coherence present in the sample, this has been
generated by the individual spins in the sample all experiencing the same
interaction with the applied RF field in such a way that a polarization along Z
has been rotated to another direction. Without the initial polarization along
z, a pulse cannot generate a coherence.

6.10 Further reading
A detailed discussion of quantum mechanics and its application to the one-
spin system:
Chapters 6-11 from Levitt, M. H. (2001) Spin Dynamics, Wiley

The postulates of quantum mechanics (Chapter I), and angular momentum
(Chapter 4):
Atkins, P. W. and Friedman, R. (2005) Molecular Quantum Mechanics, 4th
edit, Oxford
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6.11 Exercises
To really get to grips with the material in this chapter, it is very instructive
to work through every line in all the equations. By doing this, you can be
sure that you have understood the logic of the argument, and each step in
a derivation or proof. Just reading the equations and saying ‘I see what
is going on’ is not the same thing as actually working through things for
yourself.

6.1 Write the following in Dirac notation:

Kt!//1=-it//it fl!/lwadr ft/5w/sdr front
Express the following statements in Dirac notation:
(a) $0, is normalized;
(b) l//0, and lflp are orthogonal;
(c) ([1,, is an eigenfunction of ix with eigenvalue §;
(d) ¢/ can be expressed as a linear combination of 1,!/Q and (by.

6.2 If the wavefunction for a single spin is given by

in = 0.. 10> + ¢,,lB>,
and assuming that (c§c,, + cgcp) = 1, show that

(Iy) = T;-lcgca — %1o;c/3.

What is the interpretation of (1,)?

6.3 Using the approach of section 6.3.5 on p. 115, show that

— O
Ix: _ Iv: L 2 .

/i\ N'—O ON~— H /i\ to ,_.. O._.

,_..

\§-¢:/

6.4 Given that
(1,) = %ic;c,, — %ic:cfi,

and expressing the coefficients in r/¢ fomiatz

ca = r,, exp (i¢,,) cfi = rig exp(i¢p)
cg = r,, exp (—i¢,,) cg = ry; exp(-i¢>;;),

show that

<1y> = lqw {exp <il¢/3 — ¢.,1>- <=xp<-itta ~ ¢..1>}.
Use the identity exp (i6) — exp (—i6) 2 2i sin 6 to tidy this up to

(I,-) = rarp sin (4)5 — ¢,,).

Hence show that the bulk y-magnetization is given by

M). = yN rarfi sin (¢B — ¢,,)_

What value do you expect this to take at equilibrium?
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6.5 Using the approach of section 6.6.1 on p. 123, show that

dcfi (r) l_
T '-= ilQCB(I).

[1-lint: start from Eq. 6.31 on p. 124 and left multiply by (fl|.]
Show, by substituting Eq. 6.58 into Eq. 6.57, that the solution to
this differential equation is

c,3(n = ¢,,(0) exp(%iQt). (6.58)

6.6 Using the approach of section 6.6.2 on p. 126, show that, during
a period of free evolution, the expectation value of T, evolves
according to

<1,>(i) = cos (Q2‘)(Iy)(O) + sin (Qt)<I,)(0).

Give a graphical interpretation of this result.

6.7 Using the approach described in section 6.8.1 on p. 131, show that
for a spin described by the wavefunction

WI) = Q10) + 6,3116’).

the matrix representation of the density operator is given by

_ cue; cue;
P- '—'; —"" -(250,, c/30; )





Chapter 7

Product operators
In this chapter we are going to introduce a quantum-mechanical method
for calculating the outcome of a multiple-pulse NMR experiment by repre-
senting the state of the spin system using a combination of operators. The
background as to how and why this approach works was given in the pre-
vious chapter; however, in this chapter we will simply present the method
as a recipe which you can apply systematically. The method is exact, and is
capable of dealing with the majority of modern pulse sequences.

To start with we will consider a system of uncoupled spins; this is the
same system to which the vector model applies, so we will be able to verify
our calculations by comparing them with what we found in Chapter 4.
However, the real strength of the operator approach is its ability to deal
with coupled spin systems, so we will spend some time showing how this
is done and illustrating the method with various applications. For coupled
spin systems it turns out that we need to use products of operators, hence
this approach is usually called the product operator method.

Using product operators we will be able to understand most of the im-
portant building blocks from which modern multi-pulse NMR experiments
are constructed, such as the J-modulated spin echo and coherence transfer
by pulses. Once we have grasped how these key elements work, the analysis
of even rather complex pulse sequences becomes quite straightforward.

7.1 Operators for one spin
We are going to start out by thinking about a spin system which consists
of just a single spin one-half, without any couplings to other spins. Our
sample will contain a very large number of these spin systems, which we
will assume are not interacting with one another. This collection of identical
spin systems is called an ensemble, so our NMR sample can be described
as an ensemble of non-interacting single spins.

Based on the discussion in Chapter 6, we assert that everything about
this ensemble can be calculated from a knowledge of the density operator
t3. Furthermore, for a one-spin system, this operator can be expressed as a
linear combination of the operators ix, T, and ix:

an) = a,(t)i, + a_,.(r)f, + a,(r)i,. (7.1)

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons, Ltd
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The operator iz represents the z~component of the spin angular momentum;
we met this operator before in section 3.2.5 on p. 31 where we used it
to write the Hamiltonian. Similarly, ,-and iy represent the x- and y-
components of the spin angular momentum.

The coefficients a,(t), ay(t) and aZ(t) are just numbers which vary with
time. The really useful thing about writing the density operator in this way
is that the amount of x-, y- and Z-magnetizations are very simply related to
these coefficients:

MAI) = ai(r) M,(r) = ay(t) M10) = a=(r). (7.2)
S0, once we know the coeflicients we can work out the components of
the magnetization from the sample, and how these vary with time: this
represents a complete knowledge of the state of the spin system at any time.

To be entirely correct, we should note that M, is proportional to a,,
not equal to it. However, the constant of proportion is the same for all the
components and has no real effect on our calculation other than to scale the
answer. In NMR we have no practical way of measuring the absolute size of
the magnetization, so this scaling is of no consequence; for simplicity it is
therefore usual just to ignore the constant of proportion and write M, = a_,.

We need to know how the density operator evolves in time, and it tums
out that this is given by

no) = exp (-1151:) 5(0) exp (11%). (7.3)

where ;3(0) is the density operator at time t == O, and ;5(t) is the operator
after time t. Ii is the Hamiltonian which is relevant for the period of time 0
to t; we will specify what these relevant Hamiltonians are in the following
section. Although it looks daunting, it tums out that the right-hand side of
Eq. 7 .3 is quite straightforward to evaluate using a simple recipe which we
will introduce shortly.

7.1.1 Hamiltonians for free precession and pulses
The idea of the Hamiltonian as the operator for energy was introduced in
section 3.2.5 on p. 31. However, the Hamiltonian plays a far more important
role than simply determining the energy: it is the operator which determines
how the spins evolve in time. For pulsed NMR. time evolution is of central
importance, so a knowledge of the Hamiltonian is crucial.

A key point to grasp is that the Hamiltonian is different during pulses
and periods of free precession. This should not come as a surprise, since
during free precession there is simply a magnetic field along the 3-direction.
whereas during a pulse there is an additional transverse magnetic field. It is
these fields which interact with the spin and modify the energy.

In writing our Hamiltonians we will employ the quantum mechanical
equivalent of the rotating frame introduced in section 4.4.1 on p. 57. Recall
that this is an axis system which is rotating about the z-axis at the frequency
of the applied RF power. and in the same sense as the Larmor precession.
In such a frame, the transverse magnetic field due to zr pulse appears to be
static and the applied field along the z-axis is reduced in size.
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During a period of free precession the Hamiltonian is

Hfree : Qiy

where, as before (section 4.4.2 on p. 59), Q is the oflset of the spin, which
is the difference between its Larmor frequency and the rotating frame fre-
quency.

During a pulse in which the RF field is applied along the x-axis, there is
an additional term in the Hamiltonian which represents this field:

F1,,p,,,. = oi, + wlixe (7.5)

As before, on is the RF field strength which determines the rate at which
the magnetization rotates about the field along the x-axis.

It was shown in section 4.5.1 on p. 63 that if the RF field strength (1)1 is
much greater in size than the offset Q, the evolution of the magnetization is
dominated by the transverse field. If these conditions hold, we have a hard
(or non-selective) pulse, for which the Hamiltonian is simply

Hx,hard pulse = (J11 i.x- (7-6)

If the pulse is about the y-axis, then the operator simply becomes iy:

I:Iy,hard pulse : wliy

Throughout this chapter we will assume that all pulses are hard.

7.1.2 Rotations
To understand how the density operator changes with time we need to
consider how we are going to work out the right-hand side of Eq. 7.3. We
will illustrate the procedure by considering a specific case, and then go on
to generalize the approach.

Imagine at time zero the density operator is simply ix i.e. ax = 1, a_,- = 0
and a; = 0:

: ix-

Suppose that we now want to work out the effect of a period of free preces-
sion, for which the Hamiltonian is given by Eq. 7.4. So, using Eq. 7.3 the
density operator after evolution for time t is

5(1) = exp(—iHt) 5(0) exp(iFIt)
= exp(—iQti;)i_,exp(iQri;). (7.8)

The last line can be evaluated using an identity which is well-known in
the theory of angular momentum operators:

exp (—i9i;) ix exp (it-Jig) E cos Bi,» + sin 6i,.. (7.9)

In the present case the angle 6 is equal to Qt. This identity is interpreted
as starting with the operator I, and then rotating it through an angle (-7
about the z-axis. Not surprisingly, this rotation generates a y-component
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Table 7.1 Table showing how the rotation through angle 0 about a particular axis affects the
operators ,,iv and iz. For convenience, the lines in the table are numbered.

rotation about operator identity-. iy

il
ix
ll
it

1 exp (—i6i,,) iv exp (i6i,) E cos Bi). + sin 9i:

2 x

3

4

5

6

x

exp (—i6i,) i; exp (i6i,) E cos Bi; — sin Bi,

y exp (—i0iy) ix exp(i6i,.) 2 cos 6 ix - sinfliz

Y

Z

eXp (-i6iy) iz exp (i6iy) 5 cos 6iZ + sin6i,

exp ('—i6iz) i, exp (i6iZ) E cos 6i, + sin Bi,

z iy exp(-i6i,_) exp (i6iZ) E cos6 i_,. - sin0ix

proportional to sin 6, leaving an x-component proportional to cos 0. The
analogy with x-magnetization rotating towards the y-axis is complete and
entirely appropriate.

If we set 6 = Qt and apply the identity Eq. 7.9 to Eq. 7.8 we find

exp(—iQtiZ)i, exp (imiz) = cos (mi, + sin (Qi)i_,..
Overall the effect of a period of free precession can be written as

i, 2'; cos (Qz)i_,- + sin (o.»)i,. (7.10)

This is a notation we will use often: the time evolution is represented by a
right arrow connecting 5(0) to p(r), and over the arrow we write (Ht), where
H is the relevant Hamiltonian which acts for time t:

76(0) ii» an).
As there is a one-to-one correspondence between the coefficients in

front of the operators and the components of the magnetization (Eq. 7.2
on p. 144), our interpretation of Eq. 7. l0 is that the magnetization at time
zero is along x, and after time t the magnetization has a component cos (Qt)
along x and sin (Qt) along y.

So far we have looked at the particular example of ,-being rotated about
z, but we will now go on to show that the rotation of any operator about any
axis essentially behaves in the same way.

Since we are writing the density operator as a linear combination
of the operators ,, i_,. and iz, and as the Hamiltonians are also ex-
pressed in terms of these operators, every time we want to work out what
exp(—iFit);’)(O) exp (iiir) is it will boil down to relationships of the typ¢
given in Eq. 7.9. There are only six possible versions of these rotations. and
they are all given in Table 7.1.

You might notice that there are some combinations missing from thiS
table such as the rotation of i: about the :~axis. However. such a rotation
has no effect:

exp(—i8iz) i, exp(i6i;) E i,_.
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Based on \\ hat we know from the vector model. this is hardly a surprise:
rotating a vector about its own axis does not affect the vector in any way.

Armed with this table of identities and a knowledge of the Hamiltonians,
we are in a position to calculate the outcome of any pulse sequence. How-
ever, before we do that we should just remind ourselves of the limitations
of this approach.

Limitations
The substantial effect which is missing from this operator approach is re-
laxation. We know that over time the transverse components of the magne-
tization will decay to zero, and the longitudinal components will retum to
their equilibrium values; neither of these effects are included.

Later on. in Chapter 9, we will look at how the effects of relaxation can
be taken into account. but for the moment we will just have to accept this
limitation.

The other main limitation of the product operator approach is that it
only applies to weakly coupled spin systems. Remember from section 2.4
on p. 12 that a spin system is weakly coupled if the difference between the
Larmor frequencies of two coupled spins is much greater than the size of
the coupling constant between them.

7.2 Analysis of pulse sequences for a one-spin system
All of our NMR experiments start with equilibrium magnetization. which
is along the 3-axis. We will therefore write the equilibrium density operator
as II.

7.2.1 Pulse—acquire
The pulse sequence for the basic pulse-acquire experiment is shown in
Fig. 7.1. Let us assume that we start at equilibrium, so that the initial density
operator is simply i;. We then apply an x-pulse of duration tp using a field
strength on: the relevant Hamiltonian is given in Eq. 7.6 on p. I45:

Hx,pulse : wlIx-

(1

__%r_,_

To work out the evolution we need to solve Eq. 7.3 on p. 144 Fi9- 7-1 Pulse $°q"¢fl¢@ for Ihs basis
pulse-acquire experiment. A pulse of flip

»~ __ _- ‘ A ‘ " angle n and of phase x is ap lied to
pup) _ eXp( lH'i"pmserp)p(0) eXp(1HX'puiSetp) equilibrium magnetization. i)Jata

. * _ * - _ * - acquisition. indicated by the damped
with H"'p"1$° 7‘ w’ I" and pm) _ 1:’ L 6' cosine-wave FID, starts immediately after

flip) = exp (—iw)rpi,)i; 8XP(iwitpi.t~)-

The right-hand side can be evaluated using the identity on line 2 of
Table 7.1: A A

exp(-i6i_,) i, exp (iei,) E cost) 1, - sin6
with 0 replaced by amp. Doing this gives

f5(tp) = cos (tulip) i; — sin (witp)
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Of course, wltp is simply the flip angle a, so the result can be wringn;

[1(tp) = cosa ii — sin a/iy.

The result is entirely what we expected: the pulse rotates the magnetization
from Z towards —y, and if the flip angle is zr/2 (90°), then the magnetization
is rotated entirely onto the —y-axis. For other flip angles the y-component
is simply (— sin a).

The effect of this pulse on equilibrium magnetization can be represented
using the arrow notation in the following way:

. untpil A _ A
I; —-—-—+ cos (w1tp)IZ — sin (w;tp)I,.

Over the arrow we have written the relevant Hamiltonian multiplied by the
time zp: I-ilwulsetp, which is w|tpi_,. A

Since wl tp = a, the temi over the arrow can also be written (11,, and the
sine and cosine can be written in terms of a

xii 1» cosaiz — sinafy.

This arrow notation is so much more compact than writing out all the
exponential operators that we will use it from now on.

After the pulse, there is a period of free precession, for which the
Hamiltonian is 151;,“ = Qiz. This is a rotation about the z-axis, and so
the term cos a fl present after the pulse is not affected by free precession. In
contrast, the term in iy is affected, and using the arrow notation the effect of
free precession on this temi can be written

. ~ . ~ . ~— sina Iy —-> — sin a [cos (Qt)I_v — sin (Qt)I,]

= — sin a cos (Qtfiy + sin a sin (Qt)f,.

The term over the arrow is Iifmct, which is Qti:~
The way in which this calculation works needs a little more explanation.

The factor (— sin a), which in the initial state is multiplying is just a
number, and as such is unaffected by the rotation about z. This factor is
simply carried forward and multiplies the final result. All we need to do i5
consider the rotation of about z, for which the appropriate identity is (line
4 of Table 7.1)

exp (—i6'i:)iy exp (iétiz) 2 cos6'fv ~ sin 6'i,.

This identity, with 0 = Qt, is used on the first line. To go to the second. We
have simply multiplied out the bracket. _

The final result is that at time t after the pulse the state of our system is

cos a fl - sin a cos (Qr)i, + sin a sin (Qr)i,. (7-1 1)

The observable x- and y—components of the magnetization are thus:

M,,(t) = sin a sin (Qt) M,_(t) = - sin 0 cos (Q!)-

This is in agreement with the predictions we made using the vector model-
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7.2.2 The spin echo
Using the vector model we saw that the spin-echo pulse sequence, shown
in Fig. 7.2. resulted in the magnetization appearing on the y-axis, regardless
of the oflset and the time r. We will now reproduce this result using the l I
operator approach.

The flrst part of the sequence is simply 90°— delay, which is what we
have already computed in the previous section. So we can use the result of Fig. 7.2 Pulse sequence for the spin echo.
Eq. 7.l l with (Y —> 1r/ 2 and I -> -r to give us the state of the spin system just Filled-in Feflflflslfls ifldiwfl 90° pulses.
prior to the n pulse as whereas open rectangles indicate l80°

pulses; unless otherwise indicated, the phase
A . » of the pulses is 1. ln practice, the duration of

T COS (‘Only + Sm ('QT)I"‘ the pulses is negligible when compared with
_ _ _ A _ the delays r. The sequence ends after the

The 1r pulse is about the x-axis, and so the term sin (Qr)I,, is unaffected. Second delay T, as indicawd by the dashed
The effect of the pulse, of duration t,,, on the other term is: line; the overall delay between the first

pulse and the end of the sequence is thus 2r.

T T
4-—-—><—€->

— cos (Qr)i, — cos (QT) [cos (w1t,,)IA_,» + sin (w1t,,)fZ]

111+ - cos (QT) [cosnfv + sin nil]

= + cos (Qr)iy.

On the first line, the term over the arrow is Hpulggtn, which is equal to w1t,,f_,.
We have also used the identity from line 1 of Table 7.1:

exp (—i6f,) Ty exp (i6f,,) 2 cos6i, + sin Gig

with 6 = an t,,. As before, the factor — cos (QT) is unaffected by the rotations
and simply multiplies the result.

To go to the second line, we have used wit, = 1r which is the case for
a 1r pulse, and to go to the last line we have used cosrr = —l and sin 1r = 0.
Overall, the result is that the term ~ cos (Qr)f_,. is inverted in sign - entirely
as expected on the basis of the vector model.

In summary, after the rt pulse the state of the spin system is

cos (Qrfiy + sin (Qr)ix.

Now we need to consider the evolution during the second delay. Each term
has to be considered separately, so we will start with cos (Qr)i,.. Recall that
the factor cos (QT) will just multiply our answer, so for simplicity we can
set it aside during the calculation and then reintroduce it at the end.

Using this approach, the temi fy evolves during the delay T according to

. ii, . _ .
Iy -2-» cos (Qr)I_, —- sin (Qr)I,,

where we have used Hfmr = Qfiz and the identity from line 6 of Table 7.l
with 6 = QT. Reintroducing the factor cos (QT) the overall result of the
evolution of the term cos (Qr)i_, is

cos (QT) cos (Qr)f_, — sin (QT) cos (Qr)f,. (7.12)
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We now have to consider the evolution of the tenn sin (Qr)i,,:

A Qri; A _ A
Ix —~—> cos (Qr)I_, + sin (Qr)I,..

This time we have used the identity from line 5 of Table 7.1 with 6 = Q1
Reintroducing the factor sin (QT), the overall result of the evolution of

the temi sin (Qr)I,- is

cos (QT) sin (Qr)i, + sin (QT) sin (Qr)iy. (713)

At the end of the spin echo the state of the system is found by adding
together Eq. 7.12 and Eq. 7.13. The first thing to note is that the terms in f,
cancel one another. The terms in iy are:

cos (Q-r) cos (or) + sin (or) sin (oni, E {[cos (Q-r)]2 + [sin (QT)]2]
Using the identity:

cos2 6 + sin2 6 El

we see that the final state of the spin system is As we predicted using the
vector model, the magnetization ends up along the y-axis, regardless of the
offset and the delay T.

7.3 Speeding things up
Calculations using this operator approach can become rather laborious, so
it is important to simplify things where we can, and to develop strategies
for using the rotations from Table 7.l on p. 146 in an efficient way. We
introduce two such strategies here.

7.3.1 90° and 180° pulses
The effect of pulses with flip angles of 90° or 21/ 2 radians is rather simple
as when witp = rt/2, cos (wltp) = 0 and sin (wltp) = l. Referring to the
identities in Table 7.1, we see that 90° pulses about the x- and y-axes simply
cause the transformations:

A i, A
Iy EL) [Z

ii or/2>i, _iy

ix in/mi, _i:

A M/2>i_, .
I: ———~> IX.

180° pulses are even simpler: for such pulses tulip = fr flfld. 5°
cos (wltp) = —l and sin (wltp) = 0. So all that happens is that the ongmfll
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term changes sign:

A ni, A1,. -» -1.
A rrl, A
I; -——> -1:
A Hi. A
It §> -11
A rrly A
I; —-——> -11.

Note that both 90° and 180° pulses about a particular axis have no effect on
operators along that axis e.g. a pulse about x has no effect on I,-.

7.3.2 Diagrammatic representation
The identities in Table 7.1 simply represent rotations in a three-dimensional
space where the .r-. _\"- and Z~axes represent the three operators 1,, I_,. and IZ.
For example, the identity

exp(-i6fX)i; exp (i0i_,.) E cos ei, - Sinai,
can be interpreted as a vector which starts on the z~axis and then is rotated
about the x~axis. As a result, the vector moves in the yz-plane, initially
setting off towards the —_v-axis i.e. a positive rotation about x, as is illustrated
in Fig. 7.3. All of the identities in Table 7.1 on p. 146 can be interpreted as
rotations in this way.

A further feature of these identities is that they all have the same fonn.
Rotation of an operator xi results in a state which has two terms: the first
is A multiplied by the cosine of an angle, and second is a ‘new’ operator,
E, multiplied by the sine of the same angle. In general, the right-hand side
takes the fomi:

cos 6 X original operator + sin 6 X new operator.

We can work out what the ‘new operator’ will be by looking at Fig. 7.3.
For example, if we start with and imagine rotating it in a positive sense
about x, the vector initially moves towards z, so the ‘new operator’ is T1.
The corresponding identity is therefore

exp(—i6i,) exp (iélfx) 2 coséif, + sinéliz,

Similarly, if we start with —f; and rotate in a positive sense about x,
from the figure we can see that the initial movement is towards y, so the
‘new operator’ is I_,., and the corresponding identity is

exp(—i6ii-) (~f;) exp (i6f,,) 2 — cos6'i: + sin6iy

This identity is not in Table 7.1, but can be found by multiplying the identity
from line 2

exp(—i6f_,) fl exp (i6f_,) E coséli; — sin6i_,
by—l.

I.

1,, 'Y

Fig. 7.3 A rotation of the operator T: about
x takes it towards —I'_,-, which is the same
motion as a positive rotation of a vector
which starts along +:. Remember that the
sense of a positive rotation about x is found
by grasping the x-axis with your right hand
and with your thumb pointing along the +.t
direction. The curl of your fingers then
gives the sense of a positive rotation.
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Fig. 7.5 Pulse sequence for the l — 1
sequence used to Suppress a single strong
resonance (e.g. a solvent). thus allowing
weaker signals from solutes to be observed.
It is shown in the text that a line which is on
resonance (Q = 0) is not excited, whereas
lines with offsets close to rr/(21) are excited
significantly. By choosing r, this region of
excitation can be adjusted to cover the
solute peaks of interest.

‘T/\ ‘bl/\ ‘G’/“\st; 6/ $1;
rotation about x rotation about y rotation about 2

Fig. 7.4 Diagrams for determining the result of rotating any operator about x, y or 1. To
use the diagrams you simply locate the one for the axis about which the rotation is taking
place. The initial operator is then located on the diagram. and the ‘new operator’ is then found
by following the arrow. The result of the rotation is cos6' times the original operator plus
sinél times the ‘new’ operator. For a negative rotation about x, we simply use (a) but with
the rotation clockwise e.g. z is rotated to y; similarly, (b) can be used for a negative rotation
about y.

The effect of any rotation about x can be worked out using using the
diagram shown in Fig. 7.4 (a). To use this, you simply locate the initial
operator and then move in the sense of the arrow to find the ‘new operator’.

Rotations about y and z can be handled in a similar way using diagrams
(b) and (c). It is also worth noting that for 90° pulses, the result is a complete
transformation to the ‘new’ operator.

7.3.3 The 1 - 1 sequence
To illustrate how we can use the simplifications set out in the previous two
sections, we will analyse the l — T sequence, which is used for observing
signals in the presence of a very strong solvent resonance.

The pulse sequence is shown in Fig. 7.5. It starts with a 90° pulse about
x, followed by a delay r, and then a 90° pulse about —x. Data acquisition
follows immediately after the second pulse. _ A

The first pulse simply rotates the equilibrium magnetization I; to T1,.
Free evolution is a rotation about 2, and we see from Fig. 7.4 (c) that —I_ '
rotated towards in so that after the delay the state of the system is

< - CI)

— cos (Qr) Ty + sin (QT) TX.

The effect of the final 90° pulse about —x can be worked out by using
Fig. 7.4 (a) but, since the pulse is about —x, the rotation goes clockwisfi i-¢-
in the opposite sense to that shown. Thus, for this 90° rotation, -1, g0¢S I0
+i;; the term in ix is unaffected.

The final result is

cos (Qr) i; + sin (Qr) ix.

What we have here is a pulse sequence which produces transverse magm-
tization along the x-axis whose size is proportional to sin (QT). A line at
zero offset is therefore not excited, whereas a line with an offset such that
(QT) = rt/2 will be excited to the maximum extent, since sin(rt/2) = 1-
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The sequence can thus be used to suppress an unwanted strong line,
such as one from a solvent, by placing it on-resonance i.e. with Q = 0.
Lines further off resonance are excited according to the function sin (QT),
and by choosing T such that (Q'T) = tr/2, lines at (or near) offset Q’ will be
excited efficiently. The optimum value for the time T is therefore rr/(2Q').
If the offset is expressed in frequency units, Q’ = 2zrF, then T = 1/(4F).

7.4 Operators for two spins
The product operator method comes into its own when we want to work
with coupled spins. Whereas for one spin we only need the three operators
ix, iy and iz, we will need a total of sixteen operators to describe the two-spin
system. The density operator can be expressed as a linear combination of
these sixteen operators, just as the density operator for a one-spin system
could be expressed as a linear combination of ix, iy and iz.

The sixteen operators are constructed from the following four operators
for spin one:

Er in in T1,.
and the corresponding four operators for spin two:

E2 i2x i2y ii21 ;

note the subscript 1 to indicate that the operator is for spin one, and the
subscript 2 to indicate that the operator is for spin two. E; and E2 are ‘unit
operators’ for spins one and two, respectively.

The sixteen product operators needed to describe a two-spin system, are
constructed from all possible products consisting of an operator for spin one
and an operator for spin two. For example, if the operator for spin one is
E1, then the four possible products are

E152 Eli2x Eiizy Erin-

It turns out that the product E1152 does not give rise to any observable mag-
netization. Ejigx and Elizy correspond to observable x- and y-magnetization
on spin two; such temis are also described as single-quantum coherence. As
we shall see later, this type of magnetization is referred to as in-phase. E1 i2z
corresponds to z-magnetization on spin two.

If the operator for spin one is i1,, then the four products are

ilxE2 2ilxi2x 2ilxi2y 2iixi2z-

We have inserted a factor of 2 into any product involving two x, y or z
operators. This is for normalization purposes, which we will simply have to
accept. The product i1xE"2 is simply in-phase x-magnetization on spin one,
just in the same way that Ii“; igx is in-phase x-magnetization on spin two.

Later on, we will show that products such as 2j1xi2x and 2i1,,i2y, in
which both operators are x or y (transverse), represent multiple-quantum
coherences.



154 Product operator;

The product 2ilxigz will turn out to be very important; we will show that
it represents what is called anti-phase magnetization on spin one. This is
observable, and leads to a spin-one doublet in which the two lines are of
opposite sign - hence the description ‘anti-phase’.

Carrying on, the next four products have i1, as the spin-one operator:

i,,i2", 2i,,.i2, 2i,,.i2, 2i,,i2,.
As before, the first of these terms is in-phase _v-magnetization on spin one,
the second and third are multiple quantum, and the final term is anti-phase
magnetization on spin one, aligned along y.

The final set of four products have ii; as the spin-one operator:

ilzE2 Zitzizx Zinizy 2ilzi2z~

The first term is simply z-magnetization on spin one; the second and third
terms are anti-phase magnetization on spin two, aligned along x and y, re-
spectively. The final term, 2i1;i2;, represents a non-equilibrium population
distribution which does not lead to observable magnetization.

For brevity, it is usual to omit the operators E | and E2. Also, the product
12711.5); never appears in any practical sequence, so we can set it to one side.
This leaves fifteen operators, which can be grouped as follows:

description operat0r(s)

z-magnetization on spin one it

in-phase x- and y-magnetization on spin one i1,, i1,

z-magnetization on spin two in

in-phase x- and y-magnetization on spin two i;,, i2,

anti-phase x- and y-magnetization on spin one 2i,,,i;;, 2i1_,.i;z

anti-phase x- and y-magnetization on spin two 2i1:i2_,. 2i,:i2,.

multiple-quantum coherence 2i|,.ig_,, 2i,,,i2,., 2i,_,i;,, 2ii,-i2,-

non-equilibrium population 2i,,i2,

Our task is now to understand precisely what the difference is between
in-phase and anti-phase magnetization: this tums out to be due to the
evolution of scalar coupling.

7.4.1 Effect of coupling
Scalar coupling acts, along with offsets, during periods of free evolution. To
describe such evolution we need to know the corresponding H21I11lltOfll3l‘--
which was introduced in section 3.5.1 on p. 39; here it is written in angular
frequency units:

FIND spins = Qlilz + Qzizz + Zfljjgijzigz. (714)

Q; and Q2 are the offsets of spin one and two. respectively. J t2_l5 the
scalar coupling constant between spins one and two, and is given in l-lz.
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However. as we are writing the Hamiltonian in angular frequency units. we
have to multiply J|3 by 2n in order to put everything into rad s_'. This is a
bit awkward‘ but the well~established convention is always to write scalar
coupling constants in Hz, so we will have to put up with the factor of 21r.

There are three terms in this Hamiltonian; these describe. in turn: the
evolution of the offset of spin one; the offset of spin two; and the scalar
coupling between the two spins. It turns out that we can consider the effect
of these three terms one at a time, and in any order (this is because the
operators commute with one another). So. in the arrow notation, the result
of a period of free precession

A Htwo spins’ A70(0) ———~> 0(1)
can be worked out by three successive transformations (in any order):

A Qlrfl, D211}: 21rJ|;1i):i;: A
11(0) ~——> ——* ———> p(r)i

The first two of these transformations are simply rotations about z, and we
can work out the effect of these using the approach which has already been
described. The new thing we need to deal with is the effect of the term
271'./13l‘i1:i3;.

The effect of this term on the operators fl, and ii}. can be deduced from
the following identities:

¢XP(-i9i1;i2:) in exp<i@i1J1.-.) E ¢os(§@)i1.t+ sin (%6)2il_vi2:» (7.15)
exp(—i6i1;i2z)f1y exp (ieikizz) E cos(%6)i1_v - sin(%0)2i1,,i2;. (7.16)

The important thing to notice here is that the sine and cosine terms are of
half the angle 9. This is in contrast to all the identities we have come across
before, which depend on the full angle 6. These identities tell us that the
effect of COLlpling is to cause the in-phase terms IU. and I1, to evolve into
the anti-phase terms 211)-I3; and 211x111. Note the shift of axis: an in-phase
term along x becomes an anti-phase term along y.

For example, suppose we start with the term I1, and allow it to evolve
under coupling for a time 1; in the arrow notation the transformation is

A 2 J Z iii. A
[Ix LTE4 p(-r)_

To work out the effect of this we need the identity of Eq. 7.15 with
9 = 27rJ12T. Noting that %6 = 1rJ12'r, the evolution is

A 2“-I Z izilz '\ . " "I1, ——'—1—-> cos (n'J)2'r) 11,- + s1n(rtJ13r)2I1,.I3;.

There will be complete conversion to the anti-phase term when the
sin (n'J12"r) = 1, which is when (ml);-r) = rr/2 i.e. T = 1/(2113).

In a similar way, anti-phase terms become in-phase according to the
following identities:

6Xp(—i6i1;i2;)2i),i2; exp(i9j|;i2:) E c0s(%9)2i1,i2; + sin(%0)i,,., (7.17)
eXp(—i6i;Zi2Z)2f;yi2; exp(iei,_.i2,) E cos(%9)2i1_,.i2; - sings) in. (718)
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Fig. 7.6 Diagrams, similar to those of Fig. 7.4 on p. 152, for working out the effect of the
evolution of scalar coupling on in-phase and anti-phase terms. The letters x and y represent
the in~phase terms about the corresponding axes. whereas xz and _)"z represent anti-phase terms
about these axes. To work out the evolution of a term, we simply locate it in (a) or (b); this term
will evolve into the term indicated by the arrow, and with the coefiicient sin (rrlt). For example,
—2i|,i3Z is located in (b), and the arrow takes us to the term —i|_,-; the result of evolution ofthe
coupling is therefore cos (1rJr) times the original term plus sin (zrlr) times the new term, i_@_
- cos (1t'Jt)2i[,i2z - sin (nJ:)i,,.

For example, by using the second identity we can see that

zilyizz Egg COS (7IJ12T) Zilyizz — sin (7t‘./127') ilx.

There is thus complete conversion of the anti-phase to the in~phase operator
when "r = 1/ (2J12). We saw above that the same value of the delay gives
complete conversion of in-phase to anti-phase.

This interconversion of in-phase and anti-phase magnetization can be
summarized in the diagrams shown in Fig. 7.6, which are similar to those
of Fig. 7.4 on p. 152.

The evolution of the in-phase and anti-phase terms of spin two follows
the same pattern as that for spin one: all we have to do is swap the indices
l and 2. So, for example, Eq. 7.17

exp (_'i0i1:i2Z) Zihjgz exp (i€ilZf2:) E cos (%6) Zfhjzz + sin (%6) fry,

becomes

exp (—i6i1zigZ) 2i,,i2,, exp (i6i);f2z) E cos (56) 2i\1i2x + sin (ta) 5,.
We can also use Fig. 7.6 provided we interpret x and y as referring to fa;
and izy, and xz and yz as referring to Zilzizx and 2il:i2)i.

For example, the evolution ofthe term —f2, is found from (a), where We
see that this term evolves to —2i1Zi2v. In the arrow notation this is:

A 21:1 ri J1 A _ A
-12, —i-‘-2—> - cos (zrJ12r) I2,‘ — sin (1rJ|2r) 21112»

We are now in a position to explore more closely why fl, is called an
in-phase term and 21(J2: an anti-phase term.

7.5 In-phase and anti-phase terms
We mentioned above that operators like i1, are called in-phase terms and
products such as 2f; J21 are called anti-phase terms. Now that we under-



7.5 In-phase arid ainti-phase terms W

stand how to deal with the evolution due to coupling, we are in a position
to explain just precisely what in- and anti-phase mean. As our discussion
progresses. we will see that these anti-phase terms play a pivotal role in
multiple-pulse NMR experiments.

7.5.1 In-phase terms
Let us imagine that at time zero we just have the operator in. We then
allow this to evolve freely for a time 1. all the time observing the x- and
y-magnetizations. What we are going to do is work out how these magne-
tizations vary with time, and hence the form of the time-domain signal and
the corresponding spectrum.

The evolution is controlled by the Hamiltonian we introduced before
(Eq. 7.14 on p. 154):

.FI(w() spins = Qlii; + Qzigz + 27!./12i1;i2;.

We need to work out the effect of the three terms in turn. The first is simply
a 1-rotation due to the offset term for spin one, QIIIZ, which we see from (c)
in Fig. 7.4 on p. l52 takes I1,‘ to the new operator 11).:

fix cos (Q1r) in + sin (Qlt)f1_,.. (7.19)

The next term we need to consider is the offset term for spin two, Qgigz;
as the operator here refers to spin two it has no efiect on any spin one
operator. This is a general principle which we will use often.

Finally, we need to consider the effect of the scalar coupling, 21rJ12i1Zf2z,
on each term on the right of Eq. 7.19. For the term in we need (a) from
Fig. 7.6 on p. 156 to see that the new operator is 2i)‘,-f;_;; for the term I1, we
need (b) to see that the new operator is —2f|,j2;. The overall result is

~ . .. 27!-]l27il:i?.:cos (Q1!) 1|,‘ + sin (Q1t)I1_,- -—-?—>

cos(1rJ11t)cos(£2|t)i1_.< + sin (1rJ12t) cos (§11t) 2i]yi1z
 

x-magnetization

+ cos (rt./',2t) sin (Q1r) fl, — sin (1rJ12t) sin (S21t) 2ilxi1:-
 

y-magnetization

At time t the observable x-magnetization (on spin one) is given by the
coefficient multiplying the operator fl, Similarly, the y-magnetization is
given by the coefficient multiplying the operator 11,.

As explained in section 5.2 on p. 86, we usually represent the NMR
signal as a complex number, the real part being proportional to the x-
magnetization and the imaginary part proportional to the y-magnetization.
Thus, the signal at time t, S(r), is

S(t) : cos (1rJ)2t) cos (Q11) + icos (M121) sin (Q|t)
= cos (1rJ12r) exp(iQ;t)
= é [exp (i7rJ12t) + exp (—i7rJ12t)] exp (K21!)

= %6XP(i[Qi +77-]l2lt)+%eXP(iiQl -7?-/1211‘)
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Fig. 7.7 The term fl, evolves over time to
give an observable signal whose Fourier
transform consists of the two lines of the
spin-one doublet i.e. a line at (Ql + H.112)
and a line at (Ql - rrJl;)). In the real part of
the spectrum the lines have the absorption
lineshape. whereas in the imaginary pan the
lineshape is dispersive. The important thing
is that the two lines of the doublet both have
the same sign: this is why the term fl, is
described as ‘in-phase‘.

We have used quite a lot of manipulations here. To go to the second line we
have used the identity cos 6 + i sin 6 E exp (i9), 11111110 g0 to the third line we
have rewritten the cosine in terms of complex exponentials using the iden-
tity cos6 E %[CXp(i6) + exp(~i6)l. Finally, to go to the last line we have
multiplied out the square brackets and used exp (A) exp (B) E exp (A + B).

The time-domain signal is the sum of two exponential terms. one oscil-
lating at frequency (Ql + 1rJl2t) and one at (Ql — 1rJl2t); these two terms are
both positive and have the same size. In practice, these signals will not only
oscillate but will also decay over time due to relaxation. If we assume, for
simplicity, that the decay is exponential, then the signal is of the form

S(1‘) = % exp (i[Ql + 1rJl2]t) exp (—Rt) + %exp (i[Ql — 1rJl3]t) exp (—Rt).

As we saw in section 5.3 on p. 87, Fourier transformation of such a
signal will give rise (in the real part of the spectrum) to two absorption
mode lines of the same height, one centred at (Ql + 1rJl3t), and one centred
at (Ql - 1rJlgt). These are, of course, the two lines of the spin~one doublet;
the spectrum is illustrated in Fig. 7.7. Remember that we are working here
in angular frequency units, so the lines are separated by 2rrJl2 rad s71, which
lS J13 HZ.

We can now see why the term fl, is described as ‘in-phase’, since if we
observe its evolution it gives rise to a spectrum consisting of the spin one
doublet, with both lines positive and of the same intensity. A calculation
along the same lines starting with fly gives the result

so) = giexptiiol +nJl21r)+§ie><p(iior A Milt)-
This is the same as for fl x, apart from the factor i, which is simply a phase
factor, corresponding to a phase shift of 1r/2 radians or 90° (see section 5.3.2
on p. 90). In practice this means that if the spectrum obtained from the
evolution of fl, is phased to give absorption mode lines in the real part. that
from fll. will give dispersion mode lines. Remember that the relative phase
is arbitrary, so we could just as well phase the spectrum so that the doublet
from fl x is dispersive, and that from fly is absorptive. The important thing
is that fl, and fl, both give rise to in-phase doublets.

Similar calculations for f2, and f2_,. show that these two operators give
rise to in-phase doublets centred on the offset of spin two; both lines in the
doublet have the same sign. If one doublet is phased to absorption, the other
will be in dispersion.

7.5 .2 Anti-phase terms
We now turn to the anti—phase operators. Strictly speaking, these are not ob-
servable in the sense that they do not give rise to transverse magnetization.
However, we will show in this section that over time anti-phase operators
evolve into in-phase operators which are observable.

Imagine that at time zero we havejust 2f|_lf3;, and that we allow this to
evolve for time t, observing the x- and y-magnetizations as time proceeds.
Once again, we need to consider the effect of the offset of spin one. the
offset of spin two, and the coupling.
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“The term in the Hamiltonian which represents the offset of spin one is
Ql Ilz. This spin-pnek operator has no effect on any of the spin-two operators,
so its effect on 2Il,I2z is the same as its effect on fl,. In the following, we
emphasize this by placing curly braces around f3; in the following:

A A Qltfl, A A A ,_
2Il_,-{I3;} —-——-> C0S(QlI)2fl,{12:}+ sin (Qlt) 2Il_,.{I2z};

essentially, the operator f2; carries through as a harmleSS factor, and fl,
evolves into fl,-.

The next term to consider is that for the offset of spin two: Qgfk. This
has no effect on the spin-one operators and, as the spin-two operator is izz,
this is also unaffected as a z—operator is unaffected by a z-rotation,

Finally, we have to consider the coupling, which gives the following
result (check it for yourself using Fig. 7.6 on p. 156):

cos (9,1) 2i,,,i2, + sin (Q11) 2i,,.i2,
cos (111.21) cos (Q, 1) 2il,,i2, + sin (1lJl21) cos (Q, 1) fl,

mi

y-magnetization

+ cos (11Jl21) sin (Q, 1) 2il,.i2, - sin (1lJ,21) sin (Qlr) i,,.
\_____.m,i____/

x-magnetization

As before, M, is given by the Coefficient of fl, and My by the coefficient
of ily; so, M, + iM_,. is:

S(t) = - sin (1rJl2t) sin (Ql r) + i sin (1rJl2t) cos (Qlt)
= isin (2rJl2t) [cos (Qlt) + i sin(Qlt)]
= isin (H.112!) 6Xp (iQl1‘)

= i% [exp (i1tJl2t) — exp (-l7TJl3I)] exp (i£2l t)

= gcxp (rm, + 111,211) - 5 exp (rm, - 111,211).
We have used the same manipulations as in the case of the evolution
of the in-phase term, except that to go to the fourth line the identity
sin 6 E (l /2i)[exp (i6) — exp (-i6)] has been used.

As with the term fl,, we find a term oscillating at (Ql + 7l'.fl3f) and one
at (Ql — rrJl2r). These are the two lines of the spin-one doublet. However,
the crucial thing here is that one of the terms is multiplied by a minus sign.
So, on Fourier transformation, one peak will be positive and one will be
negative, as shown in Fig. 7.8. This is why the operator 2fl_,f2; is referred
to as an anti-phase operator.

In section 3.6 on p. 40 it was explained how the two lines of the spin-one
doublet could be associated with spin two being in the a or ,8 state. What
we see in the case of the anti-phase term is that the sign of the peak (i.e.
whether it is positive or negative) also depends on the spin state of spin two.

A similar calculation for 2fl_,_f2; shows that this is also an anti-phase
doublet on spin one, but with the opposite lineshape to that for 2fl_,,-fgz.
Similarly, Zflzfg, and 2i]zi2)) correspond to anti-phase doublets on spin two.

21[J12 ;<_._

imaginary '\ /I

real ,___, _t —~»~
Q1L1EJ12

Q1+7IJ12

Fig. 7.8 The term 2fl,f3; evolves over time
to give an observable signal whose Fourier
transform consists of the two lines of the
spin-one doublet. However. in contrast to
the in-phase term fl ,, the two lines from
2fl_,,f2: have opposite signs - hence the
description of this term as ‘anti-phase’.
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Fig. 7.9 Spectra resulting from the four observable operators of spin one. The complete
spectrum is shown in grey at the top of the diagram: on the left, the spectra are phased such
that x-magnetization gives rise to absorption mode lines. whereas on the right the phase is such
that y-magnetization gives absorption mode lines i.e. there is a phase shift of 90° between the
two sets of spectra.
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Flg. 7.10 Spectra resulting from the four observable operators of spin two; the fonnat is the
same as for Fig. 7.9.

7.5.3 Observable terms
Strictly speaking, the only terms which give rise to observable magnetiza-
tion are fl,, fl_,., f2, and f2y. However we have shown that if we start with the
operator 2fl,f2; at time zero, this evolves in such a way as to give observable
signals. So, it is usual to ‘pretend’ that the anti-phase terms such as 2fl,f2;
are observable, in the sense that over time they will evolve into observable
signals.

So, when we make a calculation on a pulse sequence we only need to
carry it on up to the very beginning of data acquisition. At this point we
simply inspect the terms we have, pick out those which are observable and
simply deduce the form of the spectrum by realizing which spin they are
on, and whether or not they are in-phase or anti-phase.

We also need to take into account the axes along which the operators
are aligned, as this affects the lineshape in the spectrum. So. for example. if
we have adjusted the phase in the spectrum so that fl, gives an absorption
mode in-phase doublet, then 2fl ,f2, will give an absorption mode anti-phase
doublet, whereas 2fl_,.f2; will give a dispersion mode anti-phase doublet.
On the other hand, we could just as well phase the spectrum so that Il_,.
gives an absorption mode in-phase doublet, in which case 2fl,f2; will givfl
a dispersion mode anti-phase doublet.

Figures 7.9 and 7.10 show the spectra arising from the observable op-
erators on spin one and spin two, respectively. Each set of spectra appear
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twice: once phased such that x-magnetization gives rise to absorption mode
lineshapes. and once such that _v-magnetization gives rise to the absorption
mode.

7.6 Hamiltonians for two spins
We have already introduced and discussed the free-precession Hamiltonian
for two spins (Eq. 7.14 on p. 154):

Htwospins = Qlil: + Qziz; + 21fJ12i1;i2;-

It was also described how the evolution caused by this Hamiltonian can be
worked out by considering the effect of the three terms in turn, and in any
order. We have already seen that, as spin—one operators are unaffected by
rotations due to spin-two operators (and vice versa), it is often the case that
one of these three terms has no eliect on the evolution.

For hard RF pulses, the Hamiltonian is analogous to that for a single
spin (Eq. 7.6 on p. I45), except that there is a term for spin one and a term
for spin two:

H; = w|i,_,- + Luligx.

Once more, these two terms commute, so that the evolution caused by this
Hamiltonian can be worked out by considering each term in turn. In the
arrow notation this evolution for time tp is represented:

w i, UJ T,aw) :5(tp)-
Noting that the fiip angle a is given by amp means that we can write these
two arrows as A

(ti), (II-I
5(0) —'~> -—“-> f>(fp)-

If the pulse is applied only to one of the spins, then only the operator
for that spin is present in the Hamiltonian. For example, a pulse to spin one
has the Hamiltonian

A A

Hx, spin l : wl1lx-

As before, for a pulse about y, the operators in the Hamiltonian are changed
to 1,:

Ply = (U111). + wllzy.

7.7 Notation for heteronuclear spin systems
As far as the product operator approach is concemed, it makes no difference
Whether the two spins are of the same type (e.g. both protons), or of different
[YP¢5 (e.g_ one proton and one BC). However, when we are analysing
heteronuclear pulse sequences it is sometimes useful to modify the oper-
ator notation somewhat so as to create a stronger distinction between the
Spin~one and spin-two operators.
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The usual way to do this is to call one of the spins the ‘I spin’ and the
other the ‘S spin’. The operators for the I spin are

A A A
I, I, I2,

and thgge for the S spin are

3,, 3, §Z.

This is only a change of notation, so everything we have done up to now
still holds. All we have to do is replace the operators ii, with Ty, where
y = X, y, 3, and similarly replace I27 with S7.

In this notation, instead of writing the offsets of spins one and two as Qi
and Q2, we write the offsets of the I and S spin as Q; and Qs. The coupling
between the two spins, which was J12, becomes Jis.

Using this notation, the free precession Hamiltonian is
A A A AA

Htwo spins — Q1]: + QSS: + 2Tl'J[§IzSZ.

For an x-pulse to the I spin the Hamiltonian is
A A

Hx,I : wllxi

whereas for a y-pulse to the S spin the Hamiltonian is

Hy; =

7.8 Spin echoes and J-modulation
In section 4,9 on p. 67 we used the vector model to explain how it is that the
spin echo refocuses the evolution of the offset (chemical shift), and earlier
in this chapter (section 7.2.2 on p. 149) we repeated the analysis of the
spin echo using operators. However, in both cases we only considered the
evolution of the offset; we were not in a position to consider what happens
when a scalar coupling is present - which is precisely what we are going to
do now.

What we will find is that, in contrast to what happens to the offset. the
evolution of the scalar coupling is not refocused in a spin echo. In fact, it
appears that the coupling evolves throughout the entire duration of the spin
echo, just as if the refocusing pulse were not there. This feature of the spin
echo turns out to be absolutely crucial in multiple-pulse NMR experiments.

To start with, we will consider the case where the two spins which are
coupled are of the same type e.g. two protons: this is called a homonuclear
spin system. Then, we will go on to consider the case where the two spins
are different e.g. BC and proton: this is called a heteronuclear spin system.
The key difference in this second case is that we can choose whether t0
apply the 180° pulse to either one of the spins, or to both. We shall see that
this flexibility allows us to choose whether the coupling is refocused or n01;
again, such spin echoes lie at the very heart of heteronuclear multiple-pulSC
experiments.
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So far, we have used the term spin echo as the name for the whole
sequence (90° — delay ~ l80°- delay -). However, the initial 90° pulse is
just there to excite transverse magnetization, the behaviour of which during
the spin echo is what we are really interested in. So, from now on we will
use the term spin echo for the element (delay - l80°— delay), and simply
imagine that some transverse magnetization is present at its start.

7.8.1 Spin echo in a homonuclear spin system
First, we are going to analyse the evolution during a spin echo applied to a
homonuclear two-spin system. The pulse sequence is shown in Fig. 7.l l.
As the spin system is homonuclear, the rt pulse is applied to both spins, and
to start with we will assume that this pulse is applied along the x-axis,

During the delays T, both offsets and the scalar coupling affect the
evolution. We have already shown that the offset is refocused, so to simplify
the calculation here we will simply ignore the offset entirely, safe in the
knowledge that it has no overall effect. You might legitimately object to
this simplification, as it could be that the presence of the coupling somehow
interferes with the refocusing of the offset. Rest assured that this is in fact
not the case. The technical reason for this is that the terms in the Hamil-
tonian which describe offsets and coupling commute with one another, and
so act entirely independently.

Let us imagine that at the start of the echo sequence we have in-phase
x-magnetization of spin one: fix. The first thing to consider is the evolution
of the coupling during the delay T. To work out what happens, all we need
to do is refer to (a) of Fig. 7.6 on p. I56, and note that ii, evolves into
2il)vi2:, with the angle being 1rJi;r

A 2IT.]|1Tiizi1; A _ A A

Ii, ————> cos (rrJi2r) Ii, + sin (1rJig"r) 2I]_y[2Z. (7.20)

Next comes the 71' pulse, applied about the x-axis. The effect of this pulse
is determined by treating it as a 11' rotation of spin one and then of spin two
(section 7.6 on p. l6l ). As was described in section 7.3.1 on p. 150, such 1r
pulses simply invert the sign of some terms. The term Ii, is unaffected, as an
x-pulse does not affect x-operators. In the product 2Ii_,.I2:, Ii, changes sign
to —fi,-, and the same is true for I3; which goes to —f_q:. Since'—1 X -1 = +1,
the net result is that the product 2fi,.I2; is unaffected by the 1r pulse. Overall,
therefore, nothing happens:

Ifii , +2113,
COS(7IJ|2T)i|x+Si11(7!/i3T)2i1yi2; L) COS (fl’Ji3T) ii_¢+Sll1 (7Tt/127) Ziivi-I35.

Finally, we have to consider the evolution during the second delay r.
Taking the terms one at a time, the evolution of Ii, is just as before:

A 2,TJ]2Ti|:i2:
cos (1rJi2'r) Iii, ‘——->

cos (7l'Ji2T) cos (rrJi2'r) iii + sin (ztligr) cos (7l’.Ii3T) 2IAi_,-fgz.

For the evolution of the term 2fi _,.I1; we need Fig. 7.6 (a) to see that it evolves

<---——p<-—-->

 >

Fig. 7.11 Pulse sequence for the spin echo.
From now on. we will regard the
(delay — 180° - delay) sequence i.e. that
part between the dashed lines. as the spin
echo. The initial 90° pulse. included in
Fig. 7.2 on p. l49_ is not considered to be
part of the spin echo. The duration of the
180° pulse. indicated by the open rectangle,
is negligible compared with the delays "r.
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IO -iixi

2 J 1 i J ,sin (7rJ12T)2i1yi21
cos (rrJi2'r) sin (rrJi2'r) 2i1yi2; — sin (1rJi1'r) sin (1rJi2'r) Iix.

So, the final result is:

[cos (7rJi2"r) cos (2rJi2r) — sin (1rJi2r) sin (1rJi2"r)] Ii,
+ [sin (rrJi2-r) cos (1rJi2r) + cos (1rJi2-r) sin (7rJi2'r)] 2Ii,I2Z.

This looks a little complicated until we spot that the expression multiply-
ing ii, is of the form cosz 6 — sinz 6; the identity cos (26) E cosz 6 — sin16
can therefore be used to simplify it to cos (21rJ ]2T). Similarly, the
expression multiplying 2fi_,.I2; is of the form 2 sin 6cos 6; the identity
sin (26) E 2 sin 6cos 6 simplifies the expression to sin (21rJigr). So, overall,
the result is

COS (21f.]12T)i1X + Slfl (21l’Ji2T)2iiyi2Z.

Compare this final result with Eq. 7.20 which gives the result of evo-
lution of the coupling for time T: if you replace T in Eq. 7.20 by 2r you
obtain Eq. 7.21. What we see is that the overall effect of the spin echo is the
same as allowing the coupling to evolve for time 21'. The evolution of the
coupling is not affected by the sequence - in contrast to the offset which is
refocused.

You will remember that, arbitrarily, we assumed that there was just in-
phase x-magnetization present at the start of the spin echo. We need to check
that our conclusion that the coupling is not refocused applies generally, and
not just to this particular starting case. First, let us consider in-phase y-
magnetization: the calculation proceeds as before, although this time we
need Fig. 7.6 (b) to see that Ii, evolves to —2fi,,I2z.

ii, cos ("Jim ii, - sin (1rJi2'r)2Ii,I1;. (7.22)
This time the zr pulse inverts the first term fi.,., and also inverts I2; from the
product 2Ii,I;;; overall, both terms are multiplied by ~l:

A _ A A 7{i|x+7{i2_;
cos (1rJi2r) Iiy — s1n(1rJi2-r)2Ii,I2Z ————->

— cos (zrJi2r) ii, + sin (1rJi2'r) 2Ii,I2;.

For the evolution during the second delay T, each term is considered sepa-
rately:

A 2nJ|21-ilzizz
— cos(zrJi2r) Ii, —-———->
— cos (7rJi2'r) cos (1rJi2-r) iii. + sin (7l'.]|2T) cos (rrJi;T) Ziiiizl;

where we have used Fig. 7.6 (b) to see that —fi, evolves to 2fi_,I;;. Using
the same diagram, we see that 2Ii,f2; evolves to Ii,-, giving

_ »~ - ?-IfJ|2Ti:=i2=
s1n(1rJi2"r) 211,12; —i->

cos (1rJi2-r) sin (1rJi1r) 2Ii,,f2z + sin (1rJi2r) sin (1rJi;'r) Iiy.
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So. the final result is:

— [cos (1rJi2'r) cos (1rJi2'r) — sin (rrjigr) sin (1rJi2r)} ily
+ [sin (1rJi2r) cos (rum) + cos (mm) sin (Mimi 2ii,i2,.

Applying the identities for cos (26) and sin (26) we used before, this simpli-
fies to A

— COS (27I'Ji2T)I1_v + Sill (27l'J|2T)2I1x12z.

Once again, we see that the evolution of the coupling has not been refo-
cused. Comparing Eq. 7.23 with Eq. 7.22, the result of evolution for time
r, we see that the result of the spin echo is the same as evolution for 2-r
together with an overall change of sign. We will have more to say about
this sign change in a moment.

Finally, we should consider the effect of the spin echo on the anti-phase
terms 2Ii_,I2Z and 2jlyi2Z- We will not go through the calculation step-by-
step (this is something you can do for yourself), but simply quote the results;
for convenience, they are summarized in the following table. Note that each
initial state evolves into two terms, one multiplied by cos (2lrJ127') and one
by Sil‘l(27I./|1T).

final state

initial state x cos (21rJ igr) x sin (2zrJi2r)

in in 2jlyi2:
ii, -ii, 2ii,,i2,

2i,,i,, -2ii,,i2, -ii,
2ii,.i2, 2ii_,.i2, ~ii,,

For all initial states, the coupling evolves for time 2r. Careful inspection
of this table will show that the result of the spin echo is equivalent to (in
either order)

0 evolution of the coupling for time 2r

0 a 180° pulse (here about x).

This is a very handy way of dealing with the evolution due to spin echoes —
we will use it often.

For example, consider starting with Ii,,: evolution for 21' gives

. 2n1i;<21)ii.i2_. A _ . .
Ii, —i> cos (21rJi;'r) Ii, + sin (2rrJi21') 2[ly[2z-

A 180° pulse aboutx leaves the terms unaffected

A '\ A ix “Zncos (21rJi21-) Ii, + sin (27l'./121') 21i,.I2, l»
cos (27fJ12T) ii, + sin (27fJ1Q_T) 2i,_,.i2,;
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Fig. 7.12 A simple sequence for observing
J-modulated spin echoes. The initial 90°
pulse about _v generates in-phase
x—magnetization; a spin echo of total
duration 2r follows, and then the signal is
recorded.

this is exactly the result we obtained before, and is given on the first line of
the table. A A

As another example, consider starting with 2Ii_,I2;: evolution for 21
gives

zilxizz COS (ZR./137') 2il_fi2: + Sill (27l'J12T) fly.

A 180° pulse about x changes the signs Of both terms

cos (2rrJi2r) 2ii_,I2;+ sin (2lrJi21') Ii,
- cos (21rJi2r) Ziixig; - sin (2711, gr) ii,,

which is the result on line three of the table. If we change the phase of the
180° pulse from x to y, the same principle applies: the result of the spin
echo is evolution for time 2'r, followed by a 180° pulse, this time about y.

Of course, we might just as well start with magnetization on spin two
rather than spin one. The general result we have found above still applies
e.g.

13,. l‘§°_'l - cos (2rrJi2T)I2_,, + sin (2zrJi2r)2ii;I2,.

Summary
It is useful at this point to summarize the properties of the spin echo when
applied to homonuclear spin systems:

0 The offset is refocused i.e. it can be ignored.

o The coupling is not refocused.

o The overall result of the spin echo is equivalent to evolution of the
coupling for time 2T followed by a 180° pulse (of the appropriate
phase).

The homonuclear spin echo is said to be modulated by the coupling. in
the sense that the result depends, in an oscillatory way, on the coupling. You
will also encounter the term J-modulated spin echo as a description of this
effect.

7.8.2 Spectra from a J-modulated spin echo
A good way of seeing what this J-modulation means in practical terms is to
consider an experiment where we start with in-phase x-magnetization. Il.r~
apply a spin echo sequence and then observe the result straight away. A
suitable pulse sequence is shown in Fig. 7.12. Just after the spin echo. and
right at the start of acquisition, we have shown in the previous section that
the terms present are

cos (21rJi2~r)ii, + sin(21rJi2r)2Ii(.l°1:.
From the discussion in section 7.5 on p. I56. we know that the temi iii
will give rise to the spin-one doublet in which both lines have the Sflmfi
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Fig. 7.13 Illustration of the result expected for the spin echo sequence of Fig. 7.12. Different
values of the delay T are shown, starting with T = 0 at the top. On the left the spectra are
phased so that x-magnetization gives rise to absorption mode lineshapes, whereas on the right
the phase is such that _v-magnetization gives rise to absorption mode lineshapes. For T = 0
we start with in-phase magnetization along x, fix; as r increases. the amount of anti-phase
magnetization increases, and when 1 = I/(4112) there is complete conversion to anti-phase
magnetization along y, 2Ii,I;i2. As T increases beyond this point. the amount of in-phase
magnetization increases, but in the negative sense; when T = 1/(2Ji2) there is complete
conversion to negative in-phase magnetization, —Ii X.

sign and amplitude i.e. they are in-phase. The term 2ilyi2Z will give the
same doublet, but this time with one line positive and one line negative i.e.
anti-phase. In addition, if we phase the spectrum such that magnetization
initially along x gives absorption mode lineshapes, the in-phase doublet will
be in absorption but the anti-phase doublet will be in dispersion.

The spectrum will therefore consist of a superposition of two doublets:
there will be an in-phase absorption doublet, with intensity proportional to
cos(22rJi2r), and an anti-phase dispersion doublet with intensity propor-
tional to sin (2rrJi2T). Clearly, as the delay T changes, the ratio between the
in-phase and anti-phase contributions changes.

This effect of changing the spin-echo delay T is shown in Fig. 7.13. At
the top, we have T = O, and so see just the in-phase absorption multiplet. As
T increases, the proportion of the in-phase contribution decreases and that
of the anti-phase term increases; note that in-phase magnetization along x
becomes anti-phase magnetization along y, so there is a change in lineshape
from absorption to dispersion (or vice versa).

We can work out the value of the delay which will give complete con-
version to anti-phase by noting that this will be when

sin (21rJi;T,,pi) = l,

which is when (27l'J|gTOpi) = rr/2 i.e. Topt = l/(4Ji2). For this value of
the delay, the amount of in-phase magnetization is cos (2zrJi2/[4Ji2]) =
cos (1r/ 2) = 0, so there is indeed complete conversion to anti-phase, as can
be seen in Fig. 7.13.

As T increases beyond 1/(41 i2), the amount of anti-phase decreases
and the amount of in-phase increases, but this time the in-phase doublet
is negative. Complete conversion to the inverted doublet occurs when
COS(27l'.]i2T) = —-l, which is when T = l/(2Ji2).

If we imagine starting the experiment not with in-phase magnetization,
but with the anti-phase state 2Ii,I;:, then the effect of the spin echo is to
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Fig. 7.14 Three different spin echo pulse
sequences which can be applied in
heteronuclear spin systems where we have
the option of applying 180° pulses to: (a)
both spins; (b) only the I spin; and (C) only
the S spin. Sequence (a) gives an identical
result to a homonuclear spin echo i.e. the
offset is refocused and the coupling is not.
Seqllenefi (b) refocuses the offset of the I
spin (but not of the S spin), and also
refocuses the coupling. Sequence (c)
refocuses the coupling, leaves the offset of
thel spin unaffected, but refocuses the
ofiset of the S spin. In all cases the start and
end of the echo sequence is indicated by the
dashed lines.

— cos (21tJ12-r)2I1,11: — S111 (21rJ12r)11,.

This time, anti-phase magnetization evolves into in-phase and, as before,
complete conversion to in-phase requires r = l/(4112).

In summary:

0 The J-modulation during a spin echo causes an oscillatory inter-
change between in-phase and anti-phase terms.

0 The in-phase and anti-phase terms are along orthogonal axes e.g. x
and y.

0 Complete conversion of in-phase to anti-phase, or vice versa, requires
a spin~echo delay r of 1/ (4J1;), which is a total delay of l/(2112).

Spin echoes are useful in that they allow us to interconven in-phase
and anti-phase terms in a way which is independent of the oflset (which is
refocused). Such manipulations are very important in multiple-pulse NMR.

7.8.3 Spin echoes in heteronuclear spin systems
In section 4.11 on p. 71 it was noted that, whereas in practice it is possible
to apply a sufficiently high-power RF pulse so that all of the resonances of a
single type of nucleus (e.g. proton or 13C) are affected, such a pulse applied
to one type of nucleus will not affect another. So, for example, a hard pulse
set to cover the range of BC chemical shifts will have no effect on protons,
and vice versa.

Therefore, when it comes to forming a spin echo in a heteronuclear spin
system, we can choose to which type of nucleus the 180° pulse is applied.
In a two-spin system there are three possibilities, shown in Fig. 7.14. For
the discussion in this section we will switch to calling the two spins I and S,
rather than one and two, as this is the usual notation for heteronuclear spin
systems (see section 7.7 on p. 161). Typically I will be proton, and S will
be a heteronucleus, such as BC, “P or '5N.

In sequence (a) 180° pulses are applied to both spins. This is exactly
the same as in the homonuclear spin system, so we can immediately deduce
that the offsets of both spins are refocused, whereas the coupling evolves for
time 21. In (b) and (c) there is a single 180° pulse applied to either the I spin
or the S spin. We will now work out what happens in these two sequences.

180° pulse to the I spin only - sequence (b)
From all we have done so far, it is clear that in this sequence the offset of the
I spin is refocused by the action of the l80° pulse applied to that spin. So,
if there are temus such as ,or 2I_,,.§‘z present at the start of the sequence, W6
expect that at the end of the sequence they will be unaffected by the offset
of the I spin.

On the other hand, we do not expect the offset of the S spin to be
refocused as there is no l80° pulse applied to this spin. Thus terms suCl1
as S‘, or 2I,_$‘y will simply continue to evolve under the influence of I116
offset throughout the whole period 21.
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To work out what happens to the coupling requires an explicit calcula-
tion. Let us start with the term 1,, and follow its fate through the sequence.
The evolution during the first delay T is exactly as before:

A 7-F11: Ti;§: ~ .I, ii» cos (2rJ;_,-r) I, + Sll'l (1tJ1§'r)2I),SZ.

The 180° pulse is only applied to the I spin, so it is only the I spin operators
whose sign can be changed. As before, the x-pulse does not affect I, but
the operator I_,_ in the product 21,5; is inverted. The overall result is

cos (7l'J1gT) I, + sin (rr.I;5~rA) 2I,S; A A (7.24)
cos (1rJ;g r) I_,- — sin (H.115 -r) 2I_,_S;.

We now allow each tenn to evolve once more for delay r under the coupling.

. 21:1,, uls.
cos (1rJ15 'r) I, —-——-—>

cos (ms 1) cos (ms T) i, + sin (ITJ15 T) cos (If./15 T) 21,.s,.
_ A A 27(J[$Ti;.§;- S1n(7rJ15T) 21,s, -i>

AA- cos (F115 1) sin (ms 1) 21,5, + sin (ms T) sin (ms T) i,.
Collecting the terms together we see that the two anti-phase terms can-

cel one another out, whereas the in-phase terms are

[cos (1rJ1S -r) cos (rrJ;S r) + sin (1rJ,S r) sin (rrJ;5 r)] ,.

Using the identity that cosl 6 + sin2 6 E l, we see that the result is simply ix.
ln other words, at the end of the sequence it appears that the coupling does
not affect the evolution of I, i.e. the coupling is refocused.

Repeating the calculation with different initial states shows the follow-
ing overall results:

A r-n,,(I spin)-r A1, ———> 1,
A

Iy
2i,s,

AA

r—7r,(l spin)~r
-i—-—>

r—n,,(I spin)-r
-AZ)

r-1r,(I spin)-r
--i-i)

_Iy

2i,,s_,
AA21_,s, 21_,s

It is clear from these that, for transverse I spin operators, the overall out-
come is the same as a 180° pulse about the x-axis applied to the I spin.

We now turn to transverse S spin operators; first we will consider SX:

A 2flJ[5TL.§; A _ A A

S, —€-> cos (7IJ]5T) S, + Sll'l (7rJ;5 T) 2I_-S,-.

The 180°(x) pulse applied to the I spin inverts only the operator in the
product 212$,

cos om, T) S‘, + sin (Ir./151') 2i,s,. -”-'-A cos (H115 T) - sin (H.115 T) 2i,s_,..
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Comparing this result with Eq. 7.24, we see that the terms on the right are
the same apart from the fact that the I and S operators have been swapped,
We do not therefore need to complete the rest of the calculation as it will be
the same as before, giving the final result S,. The coupling is refocused.

Working through all of the other S spin transverse operators shows us
that the coupling is refocused in each case. Do not forget, however, that
these transverse S spin terms will still evolve under the offset of that spin
for the entire duration Zr.

It is interesting to note that, as far as transverse operators of the S spin
are concemed, the only effect of the 180° pulse to the I spin is to invert
the operator I; when it appears in anti-phase terms. For this reason, when
thinking about the S spin operators, the 180° pulse to the I spin is often
called an inversion pulse, rather than a refocusing pulse.

180° pulse to the S spin only - sequence (c)
Working out what happens here need not detain us for long. We can re-use
all of the calculations for the echo with the 180° pulse applied to the I spin
simply by swapping the I and S operators. So, we expect that transverse
operators of the S spin will be affected neither by the coupling nor the offset
— both are refocused. For these operators, the overall effect of the sequence
is just the 180° pulse to the S spin. Transverse operators on the I spin
will evolve under the offset of the I spin, but the coupling is once again
refocused.

Summary
In summary, the echo sequence shown in (a) of Fig. 7.14 on p. 168 refocuses
the offset, but allows the coupling to evolve. The effects of sequences (b)
and (c) on transverse operators for different spins are summarized in the
table.

sequence (b) sequence (c)

transverse operator on offset coupling offset coupling

I spin refoc. refoc. not refoc. refoc.
S spin not refoc. refoc. refoc. refoc.

It is clear that in a heteronuclear spin system we will be able to control
the evolution of the coupling and offset separately by choosing the appro-
priate kind of spin echo. This freedom is exceptionally important in the
operation of heteronuclear multiple-pulse experiments.

7.9 Coherence transfer
We are now in a position to understand one of the key building blocks of
multiple-pulse NMR experiments — coherence transfer. The idea is remark-
ably simple: suppose that we have generated some anti-phase magnetization
of spin one, aligned along the y-axis, 2I|_,.I2;. From what we have seen s0



7.10 The INEPT experiment 171

tar. such a state can easily be generated by allowing the scalar coupling to
evolve for an appropriate time. We now apply a 90° pulse (to both spins),
about the x-axis. The result is

» A 1/211'. ~ » (/217:1 » ~21,_,.12, -5-l-» 21,,12, Lo -21,_.1;_,..
\..\,._/ \-_\,__./

on spin I on spin 2

The key point here is that the term which started out as transverse magne-
tization on spin one. 2f1_,.I;;, ends up transverse on spin two, 2f1:I1_v. This
process is called coherence transfer as transverse magnetization, which is a
coherence. is transferred from one spin to another.

An in-phase tenn cannot be transferred from one spin to another by
the action of a pulse — such a transfer is a unique feature of anti-phase
terms. As we have seen, anti-phase terms arise because of the evolution of
a scalar coupling, so it is only if such a coupling exists between two spins
that we can have coherence transfer via the anti-phase state. Therefore, the
existence of coherence transfer between two spins is indicative of a coupling
between those spins; this connection is very important in two-dimensional
spectroscopy.

7.10 The INEPT experiment
The INEPT experiment is an excellent demonstration of how coherence
transfer using anti-phase states can be used to great advantage. In addition,
the basic idea used in this experiment is used over and over again in many
more complex heteronuclear multiple~pulse experiments, However, to un-
derstand the motivation for developing the INEPT experiment, we need to
back-track somewhat and discuss the factors which influence the size of the
equilibrium magnetization.

7.10.1 Why the experiment was developed
In section 4.1.2 on p. 53 we described how, at equilibrium, the bulk Z-
magnetization arose due to the preferential population of the lower energy
orientations of the individual magnetic moments. The closer the magnetic
moment lies to the applied field (which is along the +1-axis), the lower the
energy, so preferential population of lower energy orientations leads to bulk
z»magnetization.

The energy of interaction between an individual magnetic moment and
the applied field is proportional to the gyromagnetic ratio of the nucleus
and the applied magnetic field strength. Increasing either of these factors
increases the energetic preference for orientations lying close to the field
direction, and hence increases the size of the equilibrium magnetization.

The size of the signal we detect at the end of an experiment ultimately
depends on the size of the equilibrium magnetization from which we start:
the larger the equilibrium magnetization. and the larger the observed signal.
This is one of the reasons why so much effort has been put into increasing
the strength of the applied magnetic field, as doing so increases the equi~

NMR spectroscopists love to give their new
CXp6l'im€nlS names or acronyms. The more
whimsical or ironic the name. the better.
INEPT stands for lnsensitive Nuclei
Enhanced by Polarization Transfer. You
can judge for yourself whether whimsy or
accuracy was what led to the choice of this
acronym!
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Fig. 7.15 Pulse sequence for the INEPT
experiment; note that the second 90° pulse
to the I spin is of phase y. The experiment
results in an observable signal on the S spin
Whose size depends on the equilibrium
magnetization of the I spin. By choosing the
I spin to have a higher gyromagnetic ratio
than the S spin. the signal observed on S
will be larger than for a simple
pulse—acquire experiment on that spin. The
sequence works by generating an anti-phase
state on the I spin during period A, and then
transferring it to the S spin using the two
pulses in period B. During period C the
anti-phase state evolves into an in-phase
state; it is then observed. The optimum
value for both delays r1 and 1'2 is 1/(4,115 ).

librium magnetization and hence the strength of the signals; as a result, the
sensitivity is improved.

For a fixed magnetic field strength, nuclei with higher gyromagnetic
ratios will have larger equilibrium magnetizations, and hence ~ all other
things being equal — have higher sensitivity. The INEPT experiment was
conceived as a way of enhancing the signals observed from a low gyromag_
netic ratio nucleus by transferring to it the larger equilibrium magnetization
of a higher gyromagnetic ratio nucleus. Typically, the high gyromagnetic
ratio nucleus is proton, whose magnetization is transferred to nuclei such as
BC or '5N.

7.10.2 Analysis of the INEPT experiment
The pulse sequence for INEPT is shown in Fig. 7.15. Broadly speaking,
what happens is that during period A an anti~phase state is generated on
the I spin. The two pulses in period B transfer this anti-phase state to S,
and then during period C the anti-phase state evolves back into an in-phase
state; it is then observed on the S spin. Let us now see, in detail, how this
all works.

As the two spins will have different gyromagnetic ratios, we want to
keep track of the fact that their equilibrium magnetizations are different.
So, rather than writing the equilibrium magnetization on spin one as I1, we
will write it as k;Iz, where k; is a parameter which gives the overall size of
the equilibrium magnetization. Similarly, the equilibrium magnetization on
spin two will be written kg SZ.

To start with, we are going to consider the fate of the equilibrium
magnetization on spin one. The initial 90°(x) pulse rotates this to —k;I_,..
Looking at the pulse sequence, we recognize that period A is a spin echo; as
both spins experience a 180° pulse, it follows that the offsets are refocused
but the coupling continues to evolve for the whole of the period 2n. It was
shown in section 7.8.1 on p. 163 that the overall effect of such a spin echo
is evolution of the coupling for 2r], followed by a 180° pulse to both spins.
So, at the end of period A the state of the spin system is

A AA

k; cos (27rJ;5'r1) Iy — k; sin (2zrJ;5r; ) 2[_(Sz.

Period B consists of the two 90° pulses, but note that the pulse to the
I spin is about the y-axis‘, these are the pulses which cause the coherence
transfer. The order in which they act is not important as they are on different
spins.

The operator will not be affected by either the _v-pulse to I, or the
pulse to S. We can therefore discard this term right away as there are
no more coherence transfer steps and therefore it will not contribute to
any observable signal on the S spin. Remember that in this heteronuclear
experiment we are only going to observe the signals from S.

The term ZIXSZ is affected by the two pulses as follows:

/2)?» .
—- /C] SlI1(27f.l13T|) 2i,-S: L) kl Sm (277-/ISTI ) 2i;-§:

lg —k] S111 (ZII./']_gT1) Zizfiy.
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These two pulses have transferred our anti-phase state from the I spin to the
S spin. We could observe it immediately. resulting in a spectrum with anti-
phase doublets; the resulting simplified INEPT pulse sequence is shown in
Fig. 7.16 (a). However, it is more common to allow the anti-phase state to
evolve into an in-phase state before it is observed.

Continuing with the INEPT pulse sequence of Fig. 7.15, we recognize
that, like period A. period C is a spin echo, during which offsets are refo-
cused, and the coupling continues to evolve. As before, we can compute the
overall effect of this spin echo by allowing the coupling to evolve for 212,
and then applying a 180° pulse to both spins. So, at the end of this period
we have

- kl COS (27I'J1_g T2) Slfl (2Tl’J[_g T1) 2i:-§y
. . A (7.25)+ k; s1n(21rJ1_g"r2)sin(21rJ;5r;)S,.

The in-phase signal on the S spin, Sr, is largest when both of the sine
terms multiplying it are = 1, which is when the argument of the sine is zr/2:

27!‘./1_gT|‘0pt = 7T/2.

This tells us that Twp‘ = l/(4115) gives us the strongest signal; the optimum
value for T2 is the same. These delays are those which result in complete
interconversion of in- and anti-phase magnetization during the two spin
echoes.

With this optimum value for the delays T1 and T2, the final observable
term is

kI~§x;

compare this with the result of a simple pulse—acquire experiment directly
on the S spin, which would give the term

Apart from the trivial difference in phase (and sign) between these two sig-
nals, the key thing is that in the INEPT experiment the signal is proportional
to k1, whereas in the pulse—acquire experiment the signal is proportional to
kg. If the I spin has a greater gyromagnetic ratio than the S spin, the result
will be a stronger signal from the INEPT experiment by a factor k1/kg.

Note that because offsets are refocused throughout the pulse sequence,
the enhancement produced by the INEPT experiment is independent of the
offset of either spin. So, for example, in a molecule all of the BC nuclei
bearing an attached proton can have their signals enhanced at the same time
by the transfer of magnetization from the attached protons.

The final thing to note is that the transverse magnetization present dur-
ing the two periods A and C will decay due to relaxation. As a result, not
all of the equilibrium magnetization will be transferred from I to S i.e. the
enhancement will be less than the theoretical maximum.

ta) lT1UT1|Y
ll .‘7

(b) Y
lT1HT1lT2HT2

I. .. .

r-<1-— A —t>Bi<i»—— C ——>‘

Fig. 7.16 Two modified INEPT
experiments. In sequence (a) the S spin
signal is observed immediately after it has
been transferred from I; as a result, the S
spin multiplet will appear in anti-phase.
Sequence (b) is identical to that shown in
Fig. 7.15, except that broadband decoupling
of the I spin (denoted by the grey rectangle)
is applied during acquisition of the signal on
S. As a result, the S spin multiplet collapses
to a single line.
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Fig. 7.17 illustration of the effect of
broadband decoupling of the I spin on the S
spin multiplet. An in-phase multiplet
collapses to a single line of twice the
intensity; an anti-phase doublet collapses to
nothing. This can be thought of as a result
of setting the coupling to zero.

7.10.3 Decoupling in the INEPT experiment
As we described in section 2.5.1 on p. l5, when observing heteronuclei
such as '3C, it is usual to employ broadband decoupling of the protons so
as to remove any splittings from the BC spectrum due to '3C—' H COI.lplings_
There are two reasons for doing this: firstly, the spectrum is simplified
by collapsing the multiplets to single lines; secondly, the sensitivity is
improved as all of the intensity which was spread across a multiplet is now
concentrated in one line.

If we have an in-phase state on the S spin, then applying broadband
decoupling to the I spin will cause the in-phase doublet to collapse to a
single line. However, if we have an anti-phase state, decoupling I will sim-
ply make the multiplet disappear; these different outcomes are illustrated
in Fig. 7.17. We can think of this as a result of the decoupling effectively
setting the coupling to zero, so that the positive and negative lines of the
anti-phase multiplet cancel one another.

In the INEPT experiment, if we wish to observe the S spin signal in the
presence of broadband decoupling of the I spin, then it is essential to allow
the anti-phase term which appears at the end of period B to evolve into an
in-phase term. This is achieved during the second spin echo, period C. At
the end of this period, it is possible to tum on the broadband decoupling and
observe the S spin signal (see Fig. 7.16 (b)).

Assuming that only the in-phase signal will be observed during decou-
pled acquisition, the only term at the end of period C, given by Eq. 7.25,
which is important is

k] Sill (ZIT./]5T3)Sil'1(27T./[5T1)S‘x.

It was noted above that the optimum values of both of the r delays is
1 / (4115); any value other than this will result in a reduction in the intensity
of the signal, and so reduce the advantage of the INEPT experiment.

In a real molecule not all of the couplings have the same value. so
a compromise has to be made when it comes to choosing the values of
the delays r. As a result, not all of the spins will experience the same
enhancement.

Generally, the INEPT experiment is most successful when large one-
bond heteronuclear couplings are used to transfer the magnetization from
one spin to another. Not only do such large couplings keep the delays r
short, thus reducing any losses due to relaxation, but they also tend to have
a limited range of values, making it possible to choose a good compromise
value for 1'.

7.10.4 Suppressing the signal from the equilibrium magnetization on
the S spin

So far we have not considered the fate of the equilibrium magnetization on
the S spin, kgS;. This is inverted by the first 180° pulse to the S spin and
then rotated onto the +y-axis by the 90° pulse, to give Sy. During the spin
echo, period C, this in-phase term evolves to give:

—k5 cos (21rJ;5 1'1) S, + ks sin (21:11; 1-3) 2I=S_,.
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As usual, we have worked this out by allowing the coupling to evolve for
21' and then applying a 180° pulse to both spins. If we assume that we are
using broadband decoupling of the I spin during acquisition, then only the
first term is observable. Furthermore, if 1'2 is set to the optimum value of
1/(4J;S ), the cosine term will be zero, so this in-phase term disappears i.e.
there is no visible contribution due to the S spin equilibrium magnetization.

However, we may not be able to use the optimum value of 1'2, so there is
the possibility of some of this term in S, being present at the start of acqui-
sition. The problem is that this term is along y, whereas the term transferred
from the I spin is along x. The result will therefore be a phase distortion
of the spectrum. It is therefore desirable to remove the contribution from
equilibrium magnetization on spin two, so as to remove the phase distortion.

The way this is done is to repeat the experiment twice. In the first
experiment, everything is as we have described, so the two in-phase signals
are

Experiment 1: fks cos (2¢rJ12'r2) S, +I<1 sin (2rrJ12-r2) sin (2rrJ1;gjr1) S,
V7 v

from equil. mag. on the S spin from °q“i1~ 1332- 0" ‘he I Sill"

In the second experiment, we change the phase of the very first pulse from
x to -x. If you work through the calculations again, you will find that this
alters the sign of the terms which arise from the equilibrium magnetization
of the I spin. However, the tenns which arise from the equilibrium magne-
tization of the S spin are not affected, simply because this first pulse has no
effect on the S spin terms. So. the outcome of the second experiment is

Experiment 2: —k5 cos (27l'J1_§' 1'2) S, — It; sin (2rrJ15 T2) sin (2rrJ;S 1'1) Sg

from equil. mag. on the S spin fmm Bq"i1- mag‘ <1" ‘hf? I 5Pi11

All we have to do is to subtract the data from these two experiments; the
terms arising from the S spin equilibrium magnetization will cancel, whilst
those arising from the I spin equilibrium magnetization will add:

Experimentl - Experiment 2 = 2k, Sill (21rJ1g T2) sin (211,,ms,
This procedure is an example of an idea called difference spectroscopy,

in which we separate out a wanted from an unwanted term by shifting the
phase of a pulse in such a way that one term changes sign and the other
does not. If we understand how the pulse sequence works, we can work out
which pulse phase we need to alter.

The INEPT pulse sequence combines all of the key ideas we have intro-
duced in this chapter: spin echoes are used to interconvert in- and anti-phase
terms, independent of offset, and pulses are used to cause anti-phase tenns
to be transferred from one spin to another.
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COSY stands for COrrelation
SpectroscopY. It was originally conceived
as a two-dimensional experiment. and this
version will be discussed in detail in
Chapter 8.

talxty
spin 1

Y
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spin 1

Fig. 7.18 Pulse sequence for the selective
COSY experiment. The first pulse,
indicated by a small filled-in rectangle, is
made selective so that it only affects one
multiplet. here spin one. After a delay r, in
which anti-phase magnetization develops. a
non-selective 90° pulse is applied, followed
by acquisition. The experiment is repeated
twice, once with the first pulse phase x,
sequence (a). and once with this pulse phase
—x, sequence (b). Subtracting the two sets
of data gives a spectrum in which only the
multiplet from spin one, and multiplets from
any spin coupled to it, are present.

7.11 Selective COSY
In this section we are going to describe a simple experiment which is an
analogue of the very important two-dimensional COSY experiment; both
experiments enable us to identify which spins are coupled to one another.
The experiment we are going to describe uses a selective pulse, which is a
pulse with such a weak RF field that, even in a homonuclear spin system,
only one multiplet is affected. More details about such pulses can be found
in section 4.11.2 on p. 73.

The pulse sequence is show in Fig. 7.18. To start with we will consider
only the fate of the equilibrium magnetization of spin one. The first pulse
is made selective so that only spin one is excited; we will also put the
transmitter on resonance with this spin, so that its offset is zero. The effect
of this selective 90° pulse is simply to generate —f1_,..

During the delay T the coupling evolves but, as we have assumed that
spin one is on resonance (Q; = 0), there is no evolution of the offset. So, at
the end of the delay we have a mixture of in- and anti-phase magnetization:

- cos (rrJ1;r) fly + sin (1rJ12r)2i1,,f2:.

The second pulse is non-selective, and so affects both spin one and spin
two; note that the pulse is about the y—axis. After this pulse we have

- cos (2'rJ1;-r) i,_, - Sin (Ir./111') 2i,,i2,,.
As expected, the in-phase term is unaffected, but the anti-phase term has
been transferred to spin two.

We must also consider the fate of the equilibrium magnetization of spin
two. This is unaffected by the first pulse, and simply rotated to x by the
second. In summary, at the start of acquisition we have:

from spin one: — cos (1rJ11-r) fly — sin (1rJ127') 2ipig, (7 26)
from spin two: igx. i

The term 2I1;f2, arises from coherence transfer from spin one to spin
two. However, the term I2, simply comes from the equilibrium magnetiza-
tion of spin two, and its presence (on top of the anti-phase term) serves only
to confuse the spectrum. This is illustrated in Fig. 7.19 (a), where we see
the superposition of the operators fl, and Ziizfgx leads to an odd-looking
multiplet on spin two.

As with INEPT, this unwanted signal is suppressed simply by repeating
the experiment using the sequence of Fig. 7.18 (b), in which the first pulse
has phase —x. Working through the calculation shows that this changes the
sign of both of the terms which arise from spin one, but leaves the sign of
the term arising from spin two unaffected. This is, of course, because spin
two is unaffected by the initial selective pulse.

The outcome of the second experiment is therefore

from spin one: + cos (1rJ12'r) I1, + sin (1rJ|2‘r) 2i|;I;_, 7 an
from spin two: fzx; ( W '



7.11 Selective COSY

‘I’

ta) Fur __ _ _ _g___

_<°> _ _
o,=0 QQ --o->

Fig, 7.19 Spectrum (a) is the outcome of the selective COSY experiment of Fig, 7.18
(a) in which spin one experiences the selective pulse; the spectrum is phased such that
x-magnetization gives absorption lines. On spin one we see a dispersive in-phase doublet
arising from the term fly. Two operators contribute to the spin two multiplet: the first is
sin (1rJ|;r) 2f1:12,, which arises from coherence transfer from spin one, the second is jg, which
simply arises from the equilibrium magnetization on spin two. The superposition of these
two operators results in the unsymmetrical spin two multiplet. Spectrum (b) was recorded
using sequence (b) of Fig. 7.18; in this spectrum, the signals den'ved from the equilibrium
magnetization of spin one are inverted, but those arising from equilibrium magnetization on
spin two are unaffected. Taking the difference (b) - (a) gives spectrum (c), which contains Only
signals which derive from the equilibrium magnetization ofspin One: we see a nice anti-phase
doublet on spin two. The peak marked with a * is from another spin. not coupled to spins one
or two; this peak is also eliminated from the difference spectrum, (c). In summary, (c) contains
signals only from spin one or those spins coupled to it.

this is shown in Fig. 7.19 (b). Subtracting the two experiments, Eq. 7.27 —
Eq. 7.26, gives us just the required signals which arise from spin one:

200$ (711/137) ii). + 2 Sifl (IT./131') Zjlzigx.

This difference spectrum is shown in Fig. 7.19 (c).
The difference spectrum shows an in-phase multiplet from the spin we

originally excited, here spin one. In contrast, the multiplet from the coupled
spin, here spin two, appears in anti-phase and shifted in phase by 90°.

The presence of this anti-phase multiplet in the spectrum shows that
there is a coupling between the spin associated with this multiplet and spin
one. We can see this as if J12 = 0 the intensity of the anti-phase term,
sin (_7rJ;g'r). goes to zero. More generally, the intensity of the anti-phase
term depends on the choice of r and the coupling present in the system;
typically one chooses a value of r of the order of l ,/(2112) for the largest
Couplings expected.

The difference procedure also makes sure that signals from any spins
not coupled to spin one do not appear in the final spectrum. Thus what we
have in the difference spectrum is just the multiplet of the initially excited
Spin (spin one), and the multiplets from any spins coupled to spin one. You
can see how this could be useful for tracing out the network of couplings in
a molecule.
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This experiment once more demonstrates coherence transfer via an
anti-phase state, and also the use of difference spectroscopy to suppress
unwanted signals.

7.12 Coherence order and multiple-quantum coherences
When we introduced the product operators for two spins we noted that
operators such as 11,, and I2, corresponded to transverse magnetization
(or single-quantum coherence), whereas operator products such as Zilxizy
corresponded to unobservable multiple-quantum coherence. Now is a good
time to explore how we can go about working out what kind of coherence
a particular product operator represents. This will lead us to the concept
of coherence order, an idea which we will use often, especially in two~
dimensional experiments.

At the end of this section we will also look at how these multiple-
quantum coherences evolve over time. There are some differences between
this evolution and that for the simple operators f, and iv, but we will find
that with some ingenuity a geometrical picture of the evolution of multiple-
quantum coherences can be developed.

7.12.1 Raising and lowering operators: the classification of
coherence order

The coherence order, given the symbol p, is defined by what happens to
a particular state (e.g. an operator or product operator) when a z-rotation
through an angle ¢ is applied. A state of coherence order zero is unaffected
by the rotation. From what we know already we can deduce that the operator
iz must be of coherence order zero as it is not affected by a z-rotation.

A state of coherence order +1 rotates through an angle —-¢ under this
z-rotation, whereas a state of coherence order +2 rotates through an angle
—2¢. Coherence order is a signed quantity, so there also exist states of order
—1 and -2. The z-rotation rotates these states through angles of +¢ and
+2¢, respectively.

In order to work out the coherence order of a particular operator or
product operator, we need to introduce the raising operator fr, and the
lowering operator f_. These are defined as follows:

it E i, + ii, i_ E i_,. - ify. (7-28)
The point of introducing these operators is that it turns out that, more or less
by definition, f+ has coherence order +1 and f_ has coherence order -l. We
can work out the coherence order of other operators by expressing them in
terms of the raising and lowering operators. _

If we add together the definitions in Eq. 7.28, the term in 1,. cancels;
similarly, if we subtract the two equations the term in 1°, cancels. So, W6
canwrite: A _

i,E%(i,+i_) i_,.Eg(1.,-1-). (7.29)
Therefore, both f, and f, are equal mixtures of coherence orders +1 and "-11
these operators therefore represent single-quantum coherence. Recalling
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that rand T). also represent observable transverse magnetization, we can
see that such magnetization has coherence order ;|;l.

To classify the product operators for two spins we simply introduce
raising and lowering operators for each spin, defined in an identical way
to Eq. 7.23:

i;+Ei1X+li|y i]_Ei1x—li|y

i2+ E igx + lily i2_ E in — ligy.

These can be rearranged to give analogous expressions to those of Eq. 7.29:

I115 1i++1i-) 1lyE (1i+"1|-) (7 30)

I22: E 12+ + i2- 12v E 12+ - 12-)-YQ-‘70-

/?

'3.-!-—‘E-

Using Eq. 7.30. a product such as 2i1,_-i3; can be written

2ilxi2z '=' (in + in) fu-

To work out the overall coherence order, we sum the coherence order
for spin one and that for spin two. As igz has coherence order zero, the
coherence order of Zilxizz is therefore an equal mixture of +1 and —l.

The product 2i1,12, is more interesting:

Zilxigx E 2 X %(i|+ + i]_) X - (i2+ + i2_)

E i(il+i2++i1-i2- i2-+i1-i2+)-2e _4 _ _4 - 4 . J
p=+2 p=—2 [i=0 ]7=0

+ :~>- +

The term i!+i2+ has coherence order +1 for spin one, and also +1 for spin
two; so, the overall coherence order is +1 + l = +2. The coherence orders
p of the other terms are given underneath each. We see that 2i; J1; is an
equal mixture of coherence orders +2 and -2, double-quantum coherence,
and coherence order 0, zero-quantum coherence.

Similar calculations show that all of the products involving two trans-
verse operators are likewise mixtures of double- and zero-quantum coher-
ence. The results are summarized in the table.

product operator double-quantum part zero~quantum part

am. %(il+i2+ +2.12-) §<i..i2_ +i;-aJ
Ziiiizy %(il+i2+ - il—i2—) 2ii(-i1+i2- + i|_i2+)

2il_vi2x %(i|+i2+ - il—i2—) %(il+i2— ~ il—i2+)

2il_vi2y -%(i|+igi+Ic1-162-) %(i1+i2- + it-i2+)

We can look at the contents of this table in another way. Suppose we
take the sum (211,12, + 21ly[2y); we can see that the double-quantum parts
will cancel, and the zero-quantum parts will add, so (2i1',-in + Zih-igy)
i5 pure zero-quantum. Similarly, for the difference (2i]_‘-jg; — 2i,_.ii3_\.)
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the zero-quantum parts cancel and the double-quantum parts add, 50
(2i|_,,i2_,, - 2i]yi2y) is pure double quantum.

By adding and subtracting the rows in the table we can construct two
pure double—quantum operators, denoted DAQ, and DAQY, and two pure zero-
quantum operators, denoted ZQX and ZQY. The definitions are given in the
table.

operator definition

DAQX (2ilXi2.( '" 2ilyi2y)

DAQy (2ilxi2_v + 2ilyi2,\')

Z12. <2i.,i2. + 2i..i2,>
ZQ_v (2ilyi2x - Ziiiizy)

The designations DAQ, and DAQy are arbitrary, but as we shall see soon, quite
useful.

7.12.2 Generation of multiple-quantum coherence
Multiple-quantum coherence is generated by applying a pulse to an anti-
phase state. For example, if we have the state Zilxigz and apply a non-
selective 90°(x) pulse the result is the generation of a mixture of zero- and
double—quantum coherence:

A . in/2)i ,+(1i/2)? , . A
211x122 éé) -"21]XI2y.

It is interesting to note that the same anti-phase tem1 undergoes coherence
transfer if the 90° pulse is applied about the y-axis:

. (/2)? (/2)i\- A A
zilxlzz —-7:---ly+n;> —2I|:I2x.

Anti-phase states are thus crucial in both coherence transfer and the gener-
ation of multiple-quantum coherence.

7.12.3 Evolution of multiple-quantum coherence
Having generated a multiple-quantum state, we now need to know how it
will evolve under the free precession Hamiltonian. Eq. 7.14 on p. 154.

Htwospins = Quit: + 9212:. + 2"Ji21i:12:-

It turns out that both double- and zero-quantum states are unaflected by the
coupling term between the two spins involved in the coherence. In the C2186
of two spins, it means that the coupling term 2rrJ|;i|;i2; does not affect the
evolution. This leaves just the ofi’set terms which can. as usual, be treated
sequentially.

As an example, we will consider the evolution of the pure double-
quantum term DAQX, which is (2i|,i2, — 2i|yi2,.). First, we will consider



7.12 Coherence order and multipte-quantum coherences 181

Lh€ 2i; rig, l€TH'l.'

. . n,ii,+nii.
211.J2x -—"—'—E—i>

2[cos(S1|!)f1,. + sin (Q1!) fly] [cos (Q11) jg, + sin (Q1t)i2,,] .

Next. the —2i1_,.i2_,. term:

A -R n;li;:+Q3Ii2:
"'2I\yI1). —-—"'—--—-'>

- 2[cos(Q1t)i1y - sin (om i,,] [cos (on) i2, — sin (Q21) in] .
Collecting together the terms we have:

[cos (Q, 1) cos (on) - sin (Q11) sin (0201 (2i,,,i,,, - 2i,,i2,)
+ [cos (Q,r) sin (£221) + sin (Q, r) cos (Q2t)} (2i,,,i,,. + 2i,_,i2,).

Using the identities:

cos(A + B) E cos/l cosB — sinAsinB
sin (A + B) E cosA sinB + sinA cosB

we can rewrite the result as

cos ([0, + Q21!) (2i,,,i2, - 2i,,.i2,.) + sin([Q| + O.2]r) (2i,,i1,. + 2i,_,i,,,).
This can be further tidied up by inserting the definitions of DAQX and DAQ,
from the table on the previous page to give:

<><>S([Q1 + can D12. + sin (to. + Q21») I>'Q_._
So. overall the evolution of DAQX is

1>“Q,. cosnn. + can D12. + since. + 92]!) I>"Q,.
Overall, DAQX evolves into DAQ, at a rate determined by the frequency

{Q1 + Q2]. We call this sum of the offsets the double quantum precession
frequency, QDQ:

QDQ = Q, + Q2.

Using this, the evolution of the double quantum becomes:

DAQJF COS (QDQ!) Dbx + Sill (QDQ!)

There is a complete analogy between this evolution of double quantum and
that of a simple operator such as IX:

i, 35» cos (Qt) i, + sin (Qt)
This is why we chose the symbols DAQI, and DAQY. Similarly, we can use
diagrams such a those in Fig. 7.4 on p. 152 to determine the way in which
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(3) (bl
/DQX\ /ZQx\

coy @S -coy zoy gs -zoy

\ oQ,/ \ zo,/
angle = (Q,+Q2)t angle = (Q1-9.2)!

Fig. 7.20 Diagrams, analogous to those of Fig. 7.4 on p. 152, for determining the evolution of
(a) double quantum, and (b) zero quantum, during a delay. As before, having located the old
operator, we find the new operator as the next one round the circle. indicated by the arrows. In
the case of the double-quantum coherences, diagram (a), the old operator is multiplied by the
tenn cos (QDQr) and the new by sin (QDQr), where QDQ = (Q, + Q2). For the zero-quantum
coherences, (b). the terms are multiplied by cos (QZQI) and sin (Q7,Qr), where QZQ = ($21-$21).

DAQ, and DhQ_,. evolve into one another; a suitable diagram is shown in
Fig. 7.20 (a). Using this we can determine very simply that:

A Q|fi|:+n1li1; A _ A

—DQy ma — COS (QDQI) DQ), + Sm (QDQI) DQJK,

and so on.
In section 3.6.1 on p. 42 we found that, in a two-spin system, the fre-

quency of the double quantum transition between levels aa and ,B,B was the
sum of the Larmor frequencies of the two spins. Here, we have found that
double quantum coherence evolves at the sum of the oflsets of the two spins.
The difference comes about as for the present discussion we are working in
the rotating frame, rather than the laboratory frame used in Chapter 3, so
the Larmor frequencies are replaced by the offsets.

The zero-quantum terms evolve in an analogous way, except this time
the frequency is the diflerence of the offsets: QZQ = [Q| — Q3]. Figure 7.20
(b) shows how the operators evolve into one another, for example:

. Q i, Q ii, A _ .-ZQ,it - cos (QZQI) ZQ, - sin (amt) zQ,.

7.13 Summary
We have covered a great deal of ground in this chapter. but in doing so W6
have laid the basis for understanding just about any multiple-pulse NMR
experiment. Straight away in the next chapter we will use all that W6
have developed here to help us to understand how two-dimensional NMR
works. We will find that we can make fast progress with understanding
such experiments now that we have the product operator method ‘under olll
belts’.
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The key points of the method are summarized here:

0 There are fifteen product operators needed to describe a two-spin
system: they are listed, along with their interpretation, in the table
on p. 154.

0 The way in which the operators evolve under pulses, offsets and
coupling can be deduced from Fig. 7.4 on p. 152 and Fig. 7.6 on
p. I56.

0 The distinction between in-phase and anti-phase operators is particu-
larly important; Figs 7.9 and 7.10 on p. i6O illustrate these.

0 The evolution of coupling interconvens in- and anti-phase terms.
Spin echoes are a convenient way of achieving such interconversions
independent of the offset.

0 Anti-phase terms can be transferred to other spins or to multiple-
quantum coherences by the action of pulses.

7.14 Further reading
Product operators for two spins:
Chapters 3 and 4 from I-lore, P. J., Jones, J. A. and Wimperis, S. (2000)
NMR: The Toolkit, Oxford
Chapter 3 from Freeman, R. (1997) Spin Choreography, Spektrum

A more detailed discussion of the quantum mechanics of two coupled spins,
including product operators:
Chapter 12 from Levitt, M. H. (2001) Spin Dynamics, Wiley
Chapter 2 from van de Ven, F. J. M. (1995) Multidimensional NMR in
Liquids, VCH

A full account of the product operator method:
Sorensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G. and
Emst,R. R. (1983) Progress in Nuclear Magnetic Resonance Spec-
troscopy, 16, 163.



i Product operators

7.15 Exercises
7.1 Using Fig. 7.4 on p. 152, determine the result of the following

rotations:

exp (-mi.) i, exp (i9i,,) exp (-iéfz) (-2,) exp (i0i,)
exp <-193.) $2 exp easy) exp (-iw/2>i_.> i. ¢XP (i(0/2)i,)
exp (-iélix) ix exp (i6li,,) exp (ifiiiz) (—fZ) exp (—i6iz).

Write each of these transformations using the arrow notation intro-
duced in section 7.1.2 on p. 145.

7.2 Following the same approach as in section 7.2.2 on p. 149, show
that (for a single spin) a spin echo sequence in which the 180° pulse
is about y

90°(x) — 1' — l80°(y) —- T-

results in the magnetization being refocused on the —y—axis.

7.3 Determine the outcome of the following rotations:

. ("mi . or/oi,>'1, ~—> 1, i>
. -or/2>i, . -or/2>i,1,. —-> 1, -—>

a
,. rrSy ,, Inf,
Sv :2 S: if
. —1ri_,. ,, -zri,1.. -—> 1. —» -

7.4 A variant on the 1—l sequence, described in section 7.3.3 on p. 152,
is the sequence:

90°(x) — 1' — 90°(y).

Show that, for a one spin system, this sequence gives rise to trans-
verse magnetization which varies as cos (Q-r).
Hence show that there is a null in the excitation at Q = rr/(ZT); give
the position of this null in frequency units (Hz). At what offsets 1S
the excitation a maximum?

7.5 Using Fig. 7.6 on p. 156, determine the outcome of the following.
all of which involve the evolution of coupling:

A 27!./13Ti1zi2l A 271'-l|27'il:iZ:-1., -—-» Io ——~——~
. . ‘ .7, . 2»! I J_2[lx12z 2f‘:12-V __‘_’:_'._f‘_>

2n1,_.(r/2)! S A 2"-Illrilzilz
S, —-~:i> I21 ————-> .



7.15 Exerclses g g

7.6

7.7

7.8

7.9

7.10

Following the approach of section 7.5 on p. 156, show that the
observable signal arising from Irv is of the form

so) = gt exp (no, + rrJ1g_]t) + %iexp(i[Q, - 711,211).
Hence describe the spectrum you expect to see.
Similarly, determine the observable signal arising from 2i;,.f2Z, and
hence the form of the spectrum.

Assuming that magnetization along the y-axis gives rise to an ab-
sorption mode lineshape, draw sketches of the spectra which arise
from the following operators:

fly flx Zilyilz 2ilzi2x-

Describe each spectrum in words.

Give the outcome of the following evolution due to pulses or de-
lays. In each case, describe the overall transformation in words.

. on,.i.. . . or/2)(i.,+io_.)
Ila-_“‘_—’ 2IlxI2zi'__’

A A —1rig_,. . Qfti: Qgnf:
ZILJ2: :7 S1 i’Z’
A 27!./rgligzig; A A 27!‘./igffgzigz-1... €> - 211.12, »—> .

Using that same approach as in section 7.8.1 on p. 163, show that
the effect of a spin echo (in a homonuclear system) on the terms
2I|,I2z and Zilyizz is as follows:

Zilxizz2 ~ cos (27TJ]2T) 2f|,,f;; — sin (2rrJ1g‘r) 1:1,.

2i,,.f2, i» cos(2rrJ12T) 2i,,.i2, - sin(21rJ12r)f1,,.

Using the idea that a spin echo is equivalent to evolution of the
coupling for time 2r, followed by a 180° pulse, draw up a table
similar to that on p. 165 for a spin echo in which the 180° pulse is
applied about the y-axis.
Extend both your table and that on p. 165 to include in- and anti-
phase operators on spin two.

For a homonuclear two-spin system, what delay 'r in a spin echo
sequence would you use to achieve the following overall trans-
formations? (Apart from in the last transformation, do not worry
about the sign of any term.)

i2y—> 2iIzi2x 2i1;i2.r—> izy
ilxif %ilx+%2il_vi2z il.r”"’ “fix-



7.11

7.12

7.13

7.14

7.15

7.16

Product operators

Consider the spin echo pulse sequence (c) from Fig. 7.14 on p, 163_
By considering the evolution of the operators S, and 2fZS,,, show
that the coupling is refocused, and that, from the point of view of
the evolution of these operators, the sequence is equivalent to a
180° pulse to the S spin.
Without detailed calculations, state what effect you expect se-
quence (c) to have on the evolution of the operators I, and 2f,,S:.

Why does the second 90° pulse to spin one in the INEPT experi-
ment (Fig. 7.15 on p. 172) have to be about the y-axis?
Show that changing the phase of the first 90° pulse from x to —x
results in the following observables on the S spin at the start of
acquisition:

—ks cos (27T.][gT2) Sy — k1 sin (27rJ15 1'2) sin (27T.]]g T1) S,

Specify the coherence order (or orders) of the following operators:

i+ iz L ilx 2ilzi2y zilzilz i1+i2- ilxi2y

By expressing rand iy in terms of f+ and f_, verify the relation-
ships given in the table on p. 179.

Consider the pulse sequence shown below.

T T
<-—->4i>

Starting with equilibrium magnetization on spin one, i1;, show that
the sequence generates a mixture of double- and zero-quantum
coherence. Find the value of 1' which gives the maximum amount
of multiple-quantum coherence. [Hint: can you spot the spin echo?
If so, the calculation is much simpler.]
Show that if we start with equilibrium magnetization on both spins
one and two, i.e. fl: + T2, the sequence generates only double-
quantum coherence.

Show that

z‘Q, cos (ro, - Q2]r) z‘Q, + sin([Q1 - Q21!) ZAQ,-t



Chapter 8

Two-dimensional NMR
There can be little doubt that the introduction of two-dimensional NMR has
made structure determination by NMR much easier, and has also greatly in-
creased the complexity of problems which can be tackled. Two-dimensional
NMR has now become so routine that we think nothing of requesting a
two-dimensional COSY or HMQC experiment in order to help us unravel
a problem. Such experiments are straightforward to interpret, and have
proved to be very reliable, which accounts for their popularity.

Two-dimensional spectroscopy has also made it possible to use NMR to
determine the structures of biomolecules, such as proteins, DNA and RNA
— tackling molecules of this size would have been quite unthinkable before
the advent of two-dimensional techniques. Once the idea of two dimensions
was firmly established, the extension to three or even four dimensions fol-
lowed on quite naturally, and such experiments open up the possibility of
studying even larger biomolecules.

In this chapter we are going to be concerned with the simplest and
most frequently used two-dimensional experiments. These will serve as
our introduction to the key ideas in two-dimensional NMR which are the
basis of more elaborate experiments.

The basic idea behind two-dimensional NMR is quite simple, but it is
one of those simple ideas capable of great elaboration. As shown in Fig. 8.1,
in conventional (one-dimensional) NMR we have a plot of intensity against
frequency, whereas in two-dimensional NMR we plot intensity against two
frequency axes; each peak in a two-dimensional spectrum thus has an inten-
sity and two frequency co-ordinates. What these two co-ordinates represent
depends on the experiment in question.

Probably the most useful two-dimensional experiments are those in
which the position of the peak shows a correlation between two quanti-
ties. For example, in the COSY experiment the frequency co-ordinates
of the peaks give the chemical shifts of coupled spins. Another example
is the HMQC experiment, in which one frequency co-ordinate gives the
BC chemical shift, while the other gives the chemical shift of the attached
proton.

In this chapter we will look in detail at a number of important two-
dimensional experiments, and will analyse them using the product operator

Understanding NMR Spe("!r0.\'c0py James Keeler
© 2005 John Wiley & Sons, Ltd
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Fig. 8.1 In conventional (one-dimensional)
NMR we plot the intensity of absorption
against frequency, as shown in (a): each
peak has a single frequency coordinate. In
two-dimensional NMR, (b), each peak has
two frequency coordinates. measured along
the to, and tug axes. Two-dimensional NMR
spectra are usually presented as contour
plots in which points of equal intensity are
joined by lines. just as in a topographic map.
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evolution detection
 ’ '2‘,
preparation mixing
Fig. 8.2 The general scheme for
two-dimensional NMR. The preparation and
mixing periods may be as simple as a single
pulse. or may consist of much more
complex arrangements of pulses and delays.
The coherence generated during the
preparation period evolves for time :1, but
there is no detection during this time. After
the mixing period, the signal is detected
during time t2.

method introduced in the previous chapter. At this stage, we will restrict the
discussion to two-dimensional experiments which involve transfer of mag-
netization through scalar couplings. Discussion of the important NOESY
experiment, in which the magnetization transfer arises due to relaxation
effects, is delayed until the next chapter which is devoted to relaxation.

For the whole of this chapter we will restrict ourselves to discussing
just two coupled spins. Although this is the simplest system in which
magnetization transfer through scalar couplings can be seen, all of the
important ideas about how two-dimensional NMR experiments work can
be understood by considering this simple spin system. There are, however,
some additional features which can only be seen if we have three or more
spins; for a selected set of experiments, these are discussed in Chapter 10.

Before embarking on our discussion of specific experiments. we will
consider the general scheme for two-dimensional NMR, and discuss the
important topic of lineshapes.

8.1 The general scheme for two-dimensional NMR
A general way of representing just about all two-dimensional experiments
is shown in Fig. 8.2. We start with the preparation period, during which
the equilibrium magnetization is transformed into some kind of coherence
which then evolves for the evolution period, t| .

The preparation period might be something as simple as a 90° pulse,
which would generate transverse magnetization (single-quantum coher-
ence). However, this period could be a more complicated set of pulses
and delays. For example, it might be a sequence designed to generate
multiple-quantum coherence, or an INEPT-style sequence designed to trans-
fer magnetization from another type of nucleus.

The evolution period, t1, is not a fixed time; rather, t1 is incremented
systematically in a series of separate experiments. We will have more to
say about how this is done in the next section. The second important thing
about the evolution period is that no observations are made during it. S0,
the coherence which evolves during t1 need not be observable e.g. it could
be multiple-quantum coherence. This ability to follow the evolution of
unobservable coherences is an important feature of two-dimensional NMR.

Next comes the mixing period, during which the coherence present at
the end of t1 is manipulated into an observable signal which can be recorded
during the detectionperiod. t2. For example, ifmultiple-quantum coherence
is present during :1, then the mixing period needs to be devised in such
a way as to transfonn the multiple-quantum coherence into an observable
signal. During the mixing time it is also common for magnetization to be
transferred from one spin to another, for example through a scalar coup-
ling. Ultimately, it is the form of the mixing period which determines the
information content of the spectrum.
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8.1.1 How two-dimensional spectra are recorded
At the start of Chapter 5, we described how the FID is recorded at regular
time intervals, leading to a series of data points which represent the time-
domain function. In a two-dimensional experiment, the same approach is
used, with data being recorded at regular intervals in both t1 and I2.

The process of acquiring a two-dimensional time-domain data set is
illustrated in Fig. 8.3. First, t1 is set to zero, the pulse sequence is executed
and the FID recorded as a series of data points in the usual way. The
resulting set of data are stored away (in memory or on computer disc). This
set of data is called the first t1 increment.

Next, t1 is set to A1, the sampling interval in that dimension. Once again,
the sequence is executed, the data recorded and stored away separately.
These data form the second t1 increment.

The process is repeated with r1 = 2A1, r1 = 3A1 until sufficient data
in the t1 dimension have been built up. We can imagine all these data as
fomring a matrix. The first row is the t2 data for t1 = 0, the second row is the
I2 data for t1 = A1, the third for t] = 2A1 and so on. This two-dimensional
data set can be represented as the time-domain function S (t1, I2).

The :2 data are recorded in real time. just as in a conventional experi-
ment. It is therefore not time consuming to record thousands of data points,
should we wish to. However, in t1 it is rather a different story, as for each
data point (each increment) we have to execute the whole pulse sequence.
So, data as a function of t1 is rather more time consuming to record. It is
therefore uncommon to record more than a few hundred increments of t1.

8.1.2 How the data are processed
In conventional (one-dimensional) NMR we take the time-domain function
S (t), and subject it to a Fourier transform to give the frequency-domain
function, or spectrum, S (w). In two-dimensional NMR we have a time-
domain function which depends on t1 and :2, so in order to arrive at the
spectrum, we need to Fourier transform with respect to both times.

The way in which this is done is visualized in Fig. 8.4. We start with the
time-domain data which can be thought of as a matrix. A row in the matrix
corresponds to a particular value of t|, whereas a column corresponds to
a particular value of t2. Remember that the data are sampled at regular
intervals, so that the first row corresponds to t1 = 0, the second to t1 = A1,
the third to t1 = 2A1 and so on. Similarly, the data in the first column
correspond to :2 = 0, the second to :2 = A2 and so on (A2 is the sampling
interval in t2).

The first step is to extract each row from the matrix in turn, subject it
to the usual Fourier transform, and then construct a new matrix out of these
transformed rows. What this process gives us is a series of spectra, with the
running frequency variable rug (in angular frequency units). Each row in the
new matrix corresponds to a different t1 value.

We now take each column in turn from this new matrix. A column
corresponds to a particular (02 frequency, and the data points in the column
correspond to increasing values of t1; these time-domain data are often
called interferograms. Each column is subject to a Fourier transform and

.' -‘;="___.
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Fig. 8.3 Illustration of how a
two-dimensional data set is recorded for the
general sequence of Fig. 8.2. Firstly, t1 is
set to zero, the sequence is executed and the
FID is digitized at regular intervals as a
function of tg; the resulting time-domain
signal is stored away. Next, ti is set to the
sampling interval A|. The sequence is then
executed and the data (as a function of :2)
are recorded and stored away. The whole
process is repeated for the next increment of
:1, in which ti = 2A1 and so on for as many
increments of r1 as are required.
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Fig. 8.4 Visualization of how a two-dimensional time-domain matrix is convened to a two
dimensional spectrum. The original data, top left, are arranged in a matrix with successive
rows corresponding to longer t| values, and successive columns corresponding to longer I;
values. The data along lg are sampled at intervals of A2, whereas those along ti are sampled
at intervals of A1. The first step is to take the rows, Fourier transfonn them and then construct
a new matrix (top right). In this matrix, successive rows still correspond to increasing values
of ti , but the columns now correspond to different wg frequencies, resulting from the Fourier
transformation with respect to I2. In the second step. columns from the top right matrix are
subjected to a Fourier transform. The data in these columns correspond to increasing values of
ti, and so Fourier transformation gives a spectrum with running frequency variable w|. These
transformed columns are used to construct the bottom matrix, which is the two-dimensional
frequency-domain spectrum.

then used to construct the final matrix. The columns of this matrix have
the running frequency variable ml (in angular units). Figure 8.5 shows
an example of the result of these two separate transforms on a simple
time-domain data set.

This final matrix is our two-dimensional spectrum, with frequency axes
mi, corresponding to the evolution in ti, and L02, corresponding to the evo-
lution in I2. Just as for one-dimensional spectra, the time-domain data can
be manipulated using weighting functions, and the final spectrum subject
to phase correction. The only difference here is that we need separate
weighting and phasing in each dimension.

8.2 Modulation and lineshapes
In section 5.3 on p. 87 we saw that Fourier transformation of an expoflcll
tially damped time-domain function gives a spectrum with the absorplwfl
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Fig. 8.5 Illustration of the process of double Fourier transformation on a simple data set. The
original time-domain data, shown in (a), consists of a damped cosine wave in each dimension.
Fourier transformation with respect to I2 gives the data shown in (b), and then the second
Fourier transform with respect to ti gives the two-dimensional spectrum shown in (c); as
expected, the spectrum shows a single line. Two typical cross-sections, taken through each
data set at the positions indicated by the numbered arrows, are shown beneath each data set.
Cross-sections l and 2 are taken parallel to I3 and ti, respectively, and show damped cosine
waves. In data set (b), cross-section 3. which is taken parallel to wg, shows a peak. However,
cross-section 4, which is taken parallel to ti, still shows a cosine wave. The peak is said to be
modulated in Ii by the cosine wave. In the final spectrum (c), cross-sections 5 and 6 both show
a single peak. The intensity in any particular cross-section depends on the coordinate at which
it is taken.

mode Lorentzian lineshape in its real part (Eq. 5.7 on p. 89):

so exp (tor) exp (—Rt) 51> so [A(w) + iD(w)] ,
where A(w) is the absorption mode Lorentzian and D(w) is the corre-
sponding dispersion mode lineshape. We now need to work out what
to expect when we subject a two-dimensional time-domain data set to a
two-dimensional Fourier transfonnation.

8.2.1 Cosine amplitude modulated data
As we will see when we analyse some particular experiments, a typical
two-dimensional time-domain function is of the fomiz

sci, :2) = so [cos (op, ) exp (-R">i,)] >< [exp (IQBIZ) exp (—R(2)t2)j.
modulation in ri

In this expression, S ii gives the overall amplitude of the signal, QA is the
modulating frequency in ti, and R”) is the decay constant in this dimension.
Similarly, QB and Rm are the frequency and the decay constant in I2. The
decay of the signal represented by the temrs exp (—R(1)ri) and exp (——R(2)t;)
is in fact due to transverse relaxation — a topic considered in detail in the
next chapter. R“) and Rm are therefore transverse relaxation rate constants;
however, for the present purposes it does not really matter what the origin
of these decay temis is.

This time-domain signal is described as being cosine amplitude modu-
lated with respect to ti. The name arises because the ti modulation is of the
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fonn of a cosine, which simply varies the amplitude, but not the phase, of
the signal.

If we Fourier transform this time-domain signal with respect to I2 we
obtain, just as before, a spectrum whose real part contains an absorption
mode Lorentzian centred at QB, and whose imaginary part contains the
corresponding dispersion mode lineshape.

Fl" along 1;
S(l‘1,l‘2) ?~—-> $(l1.w2)

FTalon
?g—t2> So [cos (QAti ) exp (—R(')ti)] >< [A2(QB) + i D2(QB)],

The notation here is that A2(Q) represents an absorption Lorentzian in the
(4)2 dimension, centred at frequency Q; similarly, D2(Q) represents the
corresponding dispersion lineshape.

The next step is to Fourier transform S (ti, L02) with respect to ti. In con-
trast to the modulation in 12, which is of the form of a complex exponential
exp (iQt), the modulation in ti is simply a cosine wave. As a consequence,
to generate the spectrum we need to use a slightly different kind of Fourier
transform, called a cosine Fourier transform.

The cosine Fourier transform of a damped cosine wave gives the ab-
sorption mode Lorentzian:

so cos (Qt) exp (—Rt)i so A(w).
Note that, in contrast to the transform of the complex exponential, the
resulting spectrum is real.

Using this. we can detennine the result of the cosine transform with
respect to ti:

.~r'r 15(l1,w2) s<wi.w2>
50 lAl(QA)l >< i/mop) + iD2(Qs)l
50 lAl(QA)A2(QB) +iAi<ox>v2<oB>1.

where Ai(Q) represents an absorption mode Lorentzian centred at Q in the
wi dimension.

The real part of the spectrum S(wi,wg) is SOAl(QA)A2(QB)! Whidl is
a peak at frequency {wi = Q,“ 0,2 = QB} with the absorption lineshape in
each dimension. This lineshape is called a double absorption Lorentlifllh
and is illustrated in Fig. 8.6. The imaginary part has a lineshape which i5
dispersive in the L02 dimension; such a lineshape is not suitable for high-
resolution spectra, so we simply choose to display the real pan.

8.2.2 Sine amplitude modulated data
Another commonly encountered two-dimensional time-domain function
has sine, rather than cosine, amplitude modulation:

$01.12) = 50[Sifl(QAl1)¢XP(-Rmf|)]X[eXP(iQB'2)¢XP(—Rm'2)l'
\iii\/A-——¥

modulation in ri
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Fig. 8.6 Two views of the double absorption mode Lorentzian lineshape which is commonly
encountered in two-dimensional spectra. On the left is shown a perspective view, and on the
right is shown a contour plot. A cross-section through this lineshape taken parallel to either axis
shows an absorption mode line whose intensity depends on precisely where the cross-section
is taken. The four-fold star shape, clearly evident in the contour plot, is very characteristic of
the double absorption Lorentzian.

The transform with respect to t2 gives the absorption and dispersion mode
lineshape, just as in the case of the cosine modulated data:

smog) = so [Sit1(QAI1)¢XP(-Rmf1)] >< lA2(QB) + iD2(QB)l-
This time, the modulation with respect to t1 is of the form of sine, so to
transfonn the data in t1 we need a sine Fourier transform. Such a transfonn
of a dam ed sine wave a ain ives the abso tion mode Lorentzian:P 8 8 PP

, ‘ FI‘so Sln (Qt) exp (—Rt) so A(w).
Using this for the transform with respect to to, we can work out the fom1 of
the resulting spectrum:

sin FY along I1
5(!1,w2) _*i’ S(wi,w2)

fig S0 [A1(QA)l X [A2(QB) + iD2(QB)l
i FT l n _50[Ai(QA)A2(QB) +1Al(QA)D2(QB)l-

As before, the real part of the spectrum contains the required double ab-
sorption lineshape.

8.2.3 Mixed cosine and sine modulation
If the data are either cosine or sine modulated, we can obtain the desired
double absorption lineshape by selecting the appropriate type of transfonn
in the t1 dimension. Unfortunately, there are cases where, in a single
experiment, some of the data are cosine and some are sine modulated, so it
is not possible to choose the appropriate transform for all of the data.

A cosine Fourier transform of a sine modulated signal gives the disper-
sion lineshape:

so sin (Qt) exp (—Rt) so 0(0)).
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A sine Fourier transform of a cosine modulated signal also gives the disper-
sion lineshape:

so cos (Qt) exp (—Rt) so D(w).
So, if we select the kind of Fourier transform which results in the cosine
modulated data giving the desired absorption mode lineshape, then the sine
modulated data will give peaks with the undesirable dispersion lineshape.
Similarly, selecting the correct transform for the sine modulated data will
result in dispersion mode lineshapes for the cosine modulated data. There
is no way round this problem, although we will see in due course that it
is sometimes possible to modify an experiment so as to obtain one kind of
modulation.

8.3 Axes and frequency scales in two-dimensional spectra
In all of the theoretical approaches we use to analyse NMR experiments, it
is generally more convenient to express any frequencies in rad s", rather
than in Hz. This is why we so far have labelled the frequency axes of our
two-dimensional spectra as ml and L02, so as to indicate that they are in
angular frequency units.

However, when we are interpreting and working with practical spectra,
we are certainly going to be using Hz or ppm, and not rad s". Of course,
ppm is not really a frequency scale at all, but such values can readily be
converted into frequencies.

Since this chapter is concerned with using theoretical methods to predict
and understand the fomi of two~dimensional spectra, we will label the axes
ml and (1)2 i.e. implying angular frequency units. This gives us a common
unit for the axes and quantities such as the offsets of the two spins, Q1 and
Q2. However, when we give experimental examples of two-dimensional
spectra we will label the scales in ppm, as is clearly most natural.

Often, we will want to indicate that the splitting between two peaks in a
two-dimensional spectrum is given by the coupling between the two spins,
J12 (Hz). As the frequency scale is in rad s'l , the splitting should be labelled
2rrJ12, so that it too will be in rad s". Although this is technically correct.
we will not do it as the result would be cumbersome and fussy. So. even
though the scale is in rad s'1, we will mark the splitting as J12; from the
context, it will always be clear what is going on.

8.4 COSY
The COSY experiment, and its variants, is one of the most popular and
useful of all two-dimensional experiments. It is a homonuclear experiment.
mostly used for analysing proton spectra. From a COSY spectrum it is
possible to identify the chemical shifts of spins which are scalar coupled
to one another, thus enabling us to trace out the J-coupling network in the
molecule.
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Figure 8.7 shows a schematic COSY spectrum; broadly speaking it
contains two kinds of peaks: cross peaks, here shown in light grey, and
diagonal peaks show in dark grey. Cross peaks have difierent frequency
coordinates in an and (1)2. Such a peak appearing at frequency wl = QA,
L02 = QB shows that a spin at offset (chemical shift) QA is coupled to another
spin at offset (chemical shift) QB. Thus, the spectrum in Fig. 8.7 shows
the presence of the following couplings: A—B, B-D and C—E. Diagonal
peaks have the same frequency coordinates in an and (U2, and are centred
at the offset (chemical shift) of each spin. These peaks do not convey any
particular information about the connectivity of the spins, but serve to locate
the shifts in the spectrum.

We will see shortly that the ‘blobs’ used in Fig. 8.7 to represent cross
and diagonal peaks are not single lines but collections of peaks which form
a two-dimensional multiplet. So, to be more precise we should refer to
cross-peak multiplets and diagonal-peak multiplets.

8.4.1 Overall form of the COSY spectrum
The pulse sequence for the COSY experiment in shown in Fig. 8.8. Al-
though the pulse sequence is very simple, working out the detailed form
of the spectrum is quite an involved process, so we will go through the
calculation slowly.

We will start with equilibrium magnetization on spin one, ill, which
is rotated to —i1y by the first 90° pulse. During tl this magnetization
evolves under the offset of spin one and the coupling between the two spins.
Evolution of the offset gives:

A Q|I|i|z A _ A

-I1), i) —COS ((2.111) Ily + SlH(Q1l1)I|x.

Each tenn evolves under the coupling to give :
A 27fJ|2I|i|zi2z

- COS(Q]l|)I|y mm)

- cos (1rJ12t1) cos (om) A, + sin (1rJ12t1) cos (Q, 1.) 2i,,,io,;
x i J ,

Slfl (9.111) I];  )

COS (1rJ12t1) Slll (Q1 l|)j|x + Sll'1(1TJ|2l1)SlH(Q]l1)2i|yi2z.

Finally, each of these four terms is rotated by the second 90° pulse:

A or/2)(i1.+i1.) A— cos (1rJ|2t1 ) cos (Q1t1) Ily Le- cos (:rrJ12t|) cos (Q1t|)I1Z [1]
. ~ ~ ix ix . - ~s1n(1rJ|2t1) cos (Q1 t1) 21,,,12, (L/mr- s1n(1rJ|2t1) cos (Q1 t1) 211,12, [2]

. ~ or/2><i..+i2.> . »cos (1rJ|2t1) Slll (£21 t1) 1|, ?i> cos (1rJ12r1) SlI1(Q1t|) I1, [3]
. . » » </2)<i.i.> . . ~ osrn (1rJ12t1) s1n(Q1t|) 211,12,L— s1n(1rJ|2t1) s1n(Q1t|) 2I|zI2y. [4]

This brings us to the start of I1, so from now on we need only con-
sider the observable terms, which are [3] and [4]. Tenn [1] represents
z-magnetization, and term [2] is multiple-quantum coherence, neither of
which is observable.

EDC BA

QQA
C B

Q---O C
D

E
§—>

Q g...

— (1)2->

Fig. 8.7 A schematic COSY spectrum,
indicating how it is used to determine the
chemical shifts of coupled spins. In this
example there are five spins, A—E, with the
offsets indicated. Two kinds of peaks appear
in the spectrum: diagonal peaks, shown in
dark grey, and cross peaks, shown in light
grey. Diagonal peaks have the same
frequency coordinates (chemical shifts) in
each dimension, whereas for cross peaks the
coordinates are different. The appearance of
the cross peak at the wi frequency of B and
the (1)2 frequency of A indicates that A and B
are coupled. Using the same interpretation
for the other cross peaks, we find that B is
further coupled to D (connections indicated
by the dashed lines in the lower triangle).
Similarly, C is coupled to E, but not to any
of the other spins (the dashed lines in the
upper triangle show this connection).
Overall, the COSY spectrum allows us to
trace out the network of coupled spins in the
molecule. Note that the spectrum has
symmetry about the diagonal, shown by the
grey line.

I: t1

Fig. 8.8 The pulse sequence for the COSY
experiment. Filled in rectangles indicate 90°
pulses; unless otherwise indicated, it is
assumed that the phase of the pulses is x.
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Fig. 8.9 Schematic COSY spectrum for
two-spin system. There are two diagonal
peak multiplets, shown in dark grey, centred
allwr-W2} = [91,91] 8l1dlQ2.Q2l- In
addition, there are two cross-peak
multiplets, shown in light grey, centred at
[§2| , Q2} and {£22, Q1} (the internal structure
of the multiplets is not shown). The
numbers in square braces refer to the terms
in the calculation which give rise to each
feature. If the coupling between the spins
goes to zero, the cross-peak multiplets
disappear.

The operator in term [3] is f1,, which will give rise to a doublet on spin
one in the 0.22 dimension. This term is modulated in t1 by sin (Qm) i.e. it
is modulated at the offset of spin one, Q1. Thus, in the two-dimensional
spectrum, term [3] gives rise to a feature centred at the offset of spin one
in (1)2, and the offset of spin one in wl: in other words, a diagonal peak
(or more precisely a diagonal peak multiplet). The position of the peak is
shown in Fig. 8.9.

In contrast, the operator in tenn [4] is 2f|zf2_,', this gives rise to an anti-
phase doublet centred at the shift of spin two in the w; dimension. Like term
[3], [4] is also modulated in t1 according to sin (Q1 t1). So, overall, term [4]
gives rise to a feature centred at Q1 in wl and Q2 in (1)2; this is a cross-peak
multiplet. Once again, the position of the peak is shown in Fig. 8.9.

We started the calculation with equilibrium magnetization on spin one,
ilz- If we repeat the calculation starting with equilibrium magnetization on
spin two, fzz, the resulting observable terms are

C0S(1FJ12li)$iI1(Q2li)i2x [51
- sin (1rJ12t1) sin (ooh) 2i,_,io,. [6]

Using the same interpretation as above, term [5] is the diagonal-peak mul-
tiplet centred at Q2 in each dimension, and [6] is the cross-peak multiplet
centred at Q2 in an and Q1 in l/J2. So, the complete COSY spectrum consists
of two diagonal-peak multiplets and two cross-peak multiplets, as shown
schematically in Fig. 8.9.

Looking back through the calculation we can see that the cross peak,
term [4], arises from magnetization on spin one which went anti-phase
during t1 and was then transferred to spin two by the second 90° pulse. In
other words, the cross peaks arise due to coherence transfer via the coupling.

If the coupling J12 is zero, no such anti-phase magnetization is gener-
ated, and so there is no cross peak. We can see this from the calculation as
term [4],

- sin (1rJ12t1) sin (Q, 1,) 2i,,io,, [4]
will be zero if J12 = 0 as this makes sin (1rJ12t;) = 0.

The next task is to work out the detailed form of the two-dimensional
multiplets. We will find that each consists of four separate peaks, but that
the phase and sign of the four peaks is significantly different between the
cross- and diagonal-peak multiplets.

8.4.2 Detailed form of the two-dimensional multiplets

The cross-peak multiplet
The cross-peak multiplet arises from term [4]:

- sin (7rJ12t|) sin (Q1 1,) 2i,,io_,. [4]
As was shown in section 7 .5.2 on p. 158, evolution of the term 2ilzi2y during
t2 gives rise to a time-domain signal of the form

ii exp atom + 1lJr2l2]) — ii exp (ilfizlz - 1rJr2l2l)-
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As expected, we have terms oscillating at (Q; +rrJ|;) and (Q; —rrJ|;), which
are the frequencies of the two lines of the spin-two multiplet.

If we impose an exponential decay on this time-domain signal, we
obtain

gr exp (i[Q2t3 + 7rJ|;t;]) exp (-R<1>io)
1~ ~ (2) (81)-51exp(1[Q;tg —- 7rJ;2t3]) exp (—R lg).

The Fourier transform of an exponentially decaying oscillation gives the
usual spectrum, with the absorption mode in the real part:

so exp(iQt;) exp (~R‘2>ro) E» so [Ao(o) + iD;(Q)],
so Fourier transformation of the time-domain signal in Eq. 8.1 gives:

ii lA2(Q2 + F112) + iD2(Q2 + "J12)l (8 2)
-ii lA2(Q2 " F112) + iD2(Q2 — 7lJ12)l-

As expected, there are two peaks, one at (Q2 + 7!./13) and one at (Q2 — 7rJ12).
Most importantly, the peak at (Q; + rrJ;;) is positive whereas that at
(Q3 — H.112) is negative, so what we have is an anti-phase doublet, just as
expected for the term Zilzizy.

Due to the factor of %i which is multiplying the whole expression in
Eq. 8.2, the desirable absorption mode lineshape appears in the imaginary
part of the spectrum. The normal practice is to adjust the phase of the
spectrum so that the absorption mode lineshape appears in the real part. In
this case the required phase correction is —90° or (—rr/2) radians; such a
correction is achieved by multiplying by exp (—i[rr/2]) E —i. Noting that
i >< (—i) = l, the result of applying this phase correction to Eq. 8.2 is

ii/i2(Q2 + F112) + iD2(Q2 + "Jr2)l_l _ _ _ (8.3)
2[A2(Q2 7fJ12)+1D2(Q2 7fJr2)l-

Now the absorption mode lineshape appears in the real part of the spectrum.
For term [4], the modulation with respect to to is of the form

—sin(7rJ12t|)sin (Q1t|). This product of two sine terms can be expanded
using the trigonometric identity

sinAsinB E %[cos(A - B) - cos (A + 3)]
togive

%[COS(Q1f1+ 7fJ1gI|) — COS(Q1I1 —7f./1311)] .

As before, we impose an exponential decay to give

%[cos(Q|t1 + 7rJ1;t|)exp(—R(')t[) — cos (QII1 — 7!./1311) exp(—R(‘)r|)].

The cosine Fourier transformation of this with respect to 11 gives two ab-
sorptron mode peaks:

%[Al(Ql +7!-/i2)-Ai(Q1 —7f-/i2)l- (8-4)
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Fig. 8.10 Contour plot of the cross-peak multiplet cenned at the offset of spin one in the
lo] dimension and the offset of spin two in the lug dimension. Positive contours are indicated
by black lines, and negative contours by grey lines. This arrangement of four peaks is called
an anti-phase square array. Alongside each axis is plotted an anti-phase doublet; the four
peaks in the two-dimensional spectrum can be constructed by ‘multiplying together‘ these two
anti-phase doublets. S0. the top right-hand peak is positive, as the peaks along an and mg from
which it is derived are both positive. In contrast, the top left-hand peak is negative, as it is
constructed from the product of a positive peak (along ml) and a negative peak (along (1)2).

What we have here are the two lines of the spin one doublet; one line is
positive and one is negative i.e. the doublet is in anti-phase.

Equation 8.3 gives the spectrum in the (4)2 dimension, and Eq. 8.4 gives
the spectrum in the wl dimension; multiplying the two together will give
us the overall form of the two-dimensional spectrum. If we take just the
real part of the to; spectrum (as this has the absorption mode lineshape), the
result is

%[A1(Q1+ F-712) - A1(Q1- F-712)] X § [A2(Q2 + F-712) -A2(Q2 - F-712)l-
v v

an spectrum an; spectrum

Multiplying this out gives us four lines. each with the double absorption
lineshape:

+§A1(Q1 + F-712) A2(Q2 + F-712)
—iA1(Q1+ F-712)/\2(Q2 r" F-712)
-iA1(Q1— F-712)A2(Q2 + F-712)

+§A1(Q1 - F-712)A2(Q2 - F-712)-
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Figure 8.10 shows a contour plot of these four peaks. This pattern is
called an anti-phase square array, on account of the sign alternation of the
peaks in each dimension. The array of peaks is centred at wl = Ql and
to; = Q2. and is split by 21rJ 12 in each dimension.

The process of finding the frequencies and signs of the four peaks is,
to say the least. rather convoluted, but can be speeded up by using the
following approach.

ln term [4] the operator is 2i1zi2y, and we already know that this gives
rise, with suitable phasing, to an anti-phase doublet on spin two. In tl,
we saw that the modulation of the signal, — sin (71./lgfl) sin (Qltl ), could be
expressed as

é [cos (Qlrl + rrJl3tl) — cos (Qltl — 1rJl2tl)] .

The Fourier transform of this gives an anti-phase doublet on spin one.
The two-dimensional multiplet can be found by imagining these two

anti-phase doublets along the wl and to; axes, as show in Fig. 8.10, and
then multiplying them so as to create the two-dimensional multiplet. To
describe this process in words makes it sound very complicated, but if you
look at Fig. 8.10 it should be clear what the process is.

If the coupling J12 goes to zero, then the four peaks in the anti-phase
square array will fall on top of one another and cancel completely. So, if
the coupling is zero, there is no cross-peak multiplet.

The diagonal-peak multiplet
The diagonal-peak multiplet is represented by term [3]

cos (7rJl2tl)sin(Qltl)fl,,. [3]

From section 7.5.1 on p. 157 we know that evolution of the term fl, during
t2 will give the following signal

lexp (ilQ1f2 + 11112-21) + %e><r><i1Qla - 11112-21).
lf we assume that this is decaying exponentially, then Fourier transforma-
tion with respect to I2 gives the following frequency-domain signal:

%lA2(Q1+ F-712) + iD2(Q1 + F-712)] (8 5)

+§1A2<Q1- 1-112) +iD2(Q1 - moi. '
This time, the real part contains the required double absorption lineshape, so
no phase correction is required. As expected for the term fl,-, the spectrum
is an in-phase doublet of spin one.

The modulation of the signal with respect to tl is the product of a Cosine
and a sine term. This can be expanded using the trigonometric identity

sinAcosB E g [sin (A + B) + sin(A - B)]
togive

%[Sll'l (Q11; +71./1211) + Sill (Qlfi "-7fJlgfl)].
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Fi9- 3-11 C0fll0ur plot of the diagonal~peak multiplet centred at the offset of spin one in
both dimensions; positive contours are indicated by black lines. Note that, in contrast to the
cross-peak multiplet shown in Fig. 8.10, all four peaks have the same sign. Alongside each axis
is plotted an in-phase doublet; the two-dimensional multiplet can be constructed by multiplying
these together.

Again assuming an exponential decay, a sine Fourier transform with respect
to t1 gives two absorption mode peaks of the same sign:

%[A1(Q1 + F112) + A1(Q1 — 1fJ12)]- (8-6)

These IWO lines form the in-phase doublet on spin one.
The two-dimensional spectrum is the product of the (4)2 part, Eq. 8.5.

and the wt part, Eq. 8.6. Takingjust the real part of Eq. 8.5 we find:

%[A1(Q1+ 7'-’12)+A1(Q1-7TJ12)]><%[A2(Q| + F112) +A2(Q| -"J12?
ml spectrum (4)1 spectrum

Multiplying this out gives four double absorption lines, which are all posi-
tive.

+%Al(Q-1+ F112) A2(Qi + F-/12)
+§A1(Q| + F112)/§2(Q| — F112)
+§A1(Q| - 77112)-A2(Q'I + F112)
+4IjAl(Q-1* 7TJl2)A2(Ql — F112)-

Figure 8.] l shows a schematic contour plot of these four peakS- The
array Of peaks is centred at wt = Q1 and tug = Q1. and is 5P“_‘ by 27'1"
in each dimension. Note that, in contrast to the cross-peak multiplet. all 0*
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the lines in the diagonal-peak multiplet have the same sign. If the coupling
goes to zero, these four peaks fall on top of one another, but in contrast to
the cross-peak multiplet, the four lines reinforce one another.

As before, we can speed things up by realizing that the spectrum in to;
is an in-phase doublet on spin one. The form of the modulation in 1|

% [sin (Q1f| + ll’./|3I|) + sin(Q|t1—1rJ12r1)],

tells us that the spectrum in wi is also an in-phase doublet on spin one.
Multiplying these two together, in the manner shown in Fig. 8.11, gives the
four positive lines of the diagonal-peak multiplet.

8.4.3 Phase properties of the COSY spectrum
Looking back through the previous section, you will see that we used rather
different processing to obtain the cross- and diagonal-peak multiplets shown
in Figs 8.10 and 8.11.

0 For the cross peak, we applied a 90° phase correction in the to;
dimension and used a cosine Fourier transform in ti.

0 For the diagonal peak, no phase correction was used in 602, and a sine
Fourier transform was used in 11.

We can, of course, choose to process the data any way we like, but the
whole spectrum is processed at the same time: we cannot choose one kind
of processing for the cross peaks, and a different one for the diagonal peaks.
It tums out that, if we choose the processing which results in the cross
peaks appearing in double absorption, then the diagonal peaks will appear
in double dispersion.

The reason for this can be seen by looking at the terms which give rise
to the cross and diagonal peaks. The diagonal peak term is

¢°5(7F-/i2F1)SiI1 (Qi11)i1.r1 [3]

expanding the trigonometric terms as we did before gives

%[5iI1(QiF1+ "J12f1) + $iI1(Q1f1- "J12Ii)] it» (3-7)

The cross peak term is

- sin (711,; 21,) sin (Q, 1, ) 2i,J2,, [4]
which expands to

% [cos (on, + 7l'J|jj| ) - cos (on, _ 7rJ12t1)] 2i,,i2_,. (8.8)
Comparing Eqs 8.7 and 8.8, we see that in the first the magnetization
observed during I2 appears along thex-axis, whereas in the second it appears
along the y-axis; this accounts for the 90° phase shift in the to; dimension.
Similarly, the ti modulation in the first appears as a sine, whereas in the
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Fig. 8.12 Two views of the double dispersion mode Lorentzian lineshape: on the left is
shown a perspective view, and on the right is shown a contour plot (positive contours are black,
negative contours are grey). A cross-section through this lineshape taken parallel to either axis
shows a dispersion mode line. This lineshape is very undesirable for high-resolution work. The
peak height of the double dispersion lineshape is one quarter of that of the double absorption
lineshape, a point which can be appreciated by comparing the above plots with those ofFig. 8.6
on p. 193 which are to the same scale.

second it appears as a cosine; this accounts for the change in lineshape in
the on dimension.

The double dispersion lineshape is illustrated in Fig. 8.12. As the
dispersive line has positive and negative parts, the two-dimensional line-
shape alternates sign in a four-fold pattern; furthermore. compared with the
double absorption lineshape, the peak height is reduced by a factor of i.
The combination of the broad wings of the dispersion lineshape, and the
alternating signs, makes this lineshape very undesirable for high—resolution
work. The double absorption lineshape, illustrated in Fig. 8.6 on p. 193, is
much preferred.

Figure 8.13 shows schematic COSY spectra processed in such a way as
to have either the cross peaks or the diagonal peaks in double absorption.
It is clear from these plots that the double dispersion lineshape, whether it
appears on the diagonal or the cross peaks, is simply not desirable.

8.4.4 How small a coupling can we detect with COSY?
We commented above that, if the coupling goes to zero the cross peak
disappears due to the cancellation of the anti-phase lines. However, what
happens if the coupling is not zero, but just small: will the cross peak be
detectable?

The answer to this question is illustrated in Fig. 8.14, which shows
cross-sections through a series of cross-peak multiplets in which the coup-
ling constant is successively halved. So, if the coupling constant for the
left—most doublet is Jmax, for the next it is Jmax/2, for the next it is Jmax/4
and so on; the linewidth has been kept constant, and is about one fifth of
Jmax.

As the coupling constant becomes smaller and smaller, the two lines
begin to overlap and, since they are of opposite sign, they begin to cancel
one another out. So, as we go from left to right in the diagram, the overall
intensity of the cross peaks gets smaller and smaller. However, in (a) the
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Fig. 8.13 Schematic COSY spectra of a two-spin system computed for two different choices
of the processing. ln (a) the processing has been chosen so that the cross peaks have the
double absorption lineshape and the diagonal peaks have the double dispersion lineshape; in
(b), the processing has been chosen so that the lineshapes are the other way round. The anti-
phase square arrays are clearly visible in (a), but rather hard to spot in (b). If the diagonal is
dispersive, as in (a), it spreads much more than if it is absorptive, as in (b). Positive contours
are indicated by black lines and negative by grey lines; the main diagonal is also indicated by
the grey line.

anti-phase multiplet is still clearly visible even on the far right-hand side
where the coupling has been reduced by a factor of 1/64.

The spectra shown in (a) are unrealistic, though, as unlike experimental
spectra they contain no noise. The series of spectra (b) are the same as (a)
except that noise has been added. Now, as the overall intensity decreases,
we see that the signal-to-noise ratio also decreases. In fact, for the right-
most spectrum, the anti—phase doublet is not really visible.

The amount of cancellation in an anti-phase doublet depends on the
size of the coupling relative to the linewidth. If the coupling is much larger
than the linewidth, there will be no cancellation, but as the two become
comparable a significant amount of cancellation occurs. Once the linewidth
becomes larger than the coupling, the amount of cancellation will be very
significant.

For a given combination of linewidth and coupling constant, whether or
not a cross peak is visible above the noise depends on the signal-to-noise
ratio. Therefore, to detect cross peaks due to the smallest coupling constants
we need to make sure that the linewidth is minimized and the signal-to-noise
ratio maximized.

8.4.5 The problem with COSY
The basic COSY experiment is undoubtedly extraordinarily useful, but it
does suffer from two drawbacks, both of which are associated with the
detailed form of the cross- and diagonal-peak multiplets.

The first problem is a consequence of the anti-phase structure of the
cross-peak multiplet, which contrasts with the in-phase structure of the
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Fig. 8.14 Both (a) and (b) show cross-sections taken through a series of cross-peak multiplets
in which the coupling constant has been halved in each successive step. So, the coupling
constant for the second spectrum is one half of that for the first, the coupling constant for the
third spectrum is one quarter of that for the first, and so on. Since the two lines are in anti-phase.
once the coupling constant becomes comparable with the linewidth, cancellation stans to
occur, leading to an overall reduction in intensity. The series of spectra in (b) differ in that noise
has been added to them. In these spectra we see that as the coupling constant decreases, the
signal-to-noise ratio decreases, indeed the effect is sufficient to make it impossible to discem
the anti-phase doublet in the right-most spectrum. The smallest coupling which can be detected
thus depends on the linewidth and the noise level in the spectrum.

diagonal-peak multiplet. In the cross-peak multiplet the lines tend to cancel
one another out, leading to a reduction in intensity, whereas in the diagonal-
peak multiplet the lines tend to reinforce one another. As a result, there can
be a considerable difference in the overall intensity of the cross and diagonal
peaks, particularly when the coupling is comparable with, or smaller than,
the linewidth. The presence of intense diagonal peaks can make it difiicult
to locate the weaker cross peaks, especially if they lie close to the diagonal.

The second problem is to do with the lineshapes in the spectrum. As was
illustrated in Fig. 8.13 on p. 203, if we phase the cross peaks to absorption.
the diagonal peaks will be in double dispersion. The latter lineshape is
rather broad and results in the diagonal peaks spreading out into the spec-
trum, possibly obscuring nearby cross peaks. The altemative, shown in
Fig. 8.13 (b), is to phase the diagonal to double absorption, which reduces
its tendency to spread into the spectrum. However, the cross peaks are
then in double dispersion, which further reduces their intensity and makes
it more difficult to spot the characteristic anti-phase square arrays.

Both of these problems are neatly avoided (in large part) by a simple
modification of COSY called double-quantum filtered COSY. As we shall
see in the next section, in the modified experiment both the diagonal- and
c;O5S-peak multiplets are in anti-phase and have the same lineshape.

8.5 Double-quantum filtered COSY (DQF COSY)
The pulse sequence for DQF COSY is shown in Fig. 8.15. The key point
about this sequence is that we arrange things so that the signals observed
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during t; all derive from double-quantum coherence present between the
second and third 90° pulses. In other words, all of the observed signals have
been p11SSed lhrOUgh, or been filtered through, a state of double-quantum
coherence — hence the name of the experiment.

The way in which we ensure that the observed signals all derive from
double~quantum coherence is to use a coherence selection method such as
phase cycling or pulsed field gradients. These methods are described in t, Z» 12-»
detail in Chapter ll. For the present purposes we will simply assume that  ,
the selection can be made, and leave the details of how to later.

Starting with equilibrium magnetization on spin one, f15, the evolution Fig. 8.15 The pulse sequence for
during It and the effect of the second 90° pulse are exactly as for COSY: we d°"b'@-quantum filtered C05Y (DQF
thus obtain the four terms [1 1-[41 listed On p. 195. of these, it is only term COSY» 1" ‘hi? =*P"""@"‘ " is Winged

. . . . that the only signal observed comes from[2] which contains double-quantum coherence, so this is the only term of doubbquantum coherenca prmm between
interest to us at Present? the second and third 90°pulses — hence the

name ‘double-quantum filtered’.
-Sifl(7T.]|'_;f1)COS (Qtf1)2i1Xi2y.

We saw in section 7.12.1 on p. 178 that 2i1,,i2_v is a mixture of double-
and zero-quantum coherence. In the table on p. 179 the pure double quan-
tum operator DAQN‘. and the pure zero~quantum operator ZAQV were defined
as

DQV E (21A1t1A2y + 2ilyi2x) ZQy E (2ilyi2x - 2i1.ti2>-)-
From these definitions we can see that:

i>‘Q, - z“Q, = 2 (2i]xi2y),
or put the other way round

2i,,,i2, = §(i)‘Qy - ZQY).

It follows that the pure double-quantum part of 2it,j2,. is %l§Q).:

double-quantum part of Zilxigy = %DAQ_\.

= %(2i1,1-igy + Ziiyigx) .

So, the pure double-quantum part of term [2] is

—-5 sin (F1121!) COS (Q1f]) (2i];igy + 2i1yi2;) .

The third 90° pulse rotates both of these terms into observable anti-
phase magnetization:

A A » /~ ' it A21-§ sin(7rJ12t1) cos (om) (21,,12_,. + 21.,.12_.) l’filL-‘L’->
- 5 Sin (F./12l1) cos (Q, t, ) (2i,,i2; + 2i,zi2,).

This brings us to the start of I2.
The two terms Zitxigz and 2i,;i2, represent anti-phase magnetization

on spins one and two respectively; both terms are modulated in I1 at Q1.
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Fig. 8.16 Comparison of a conventional COSY, (a), and a DQF COSY, (b), for a two-spin
system. The conventional COSY has been processed so that the cross peaks have the double
absorption lineshape; as a result, the diagonal peaks have the double dispersion lineshape. In
this spectrum, the cross-peak multiplets are anti-phase square arrays, but the diagonal-peak
multiplets are in-phase. The overall result is that the broad dispersive diagonal peaks rather
dominate the spectrum. In contrast, both the diagonal- and cross-peak multiplets of the DQF
COSY spectrum are anti-phase square arrays of absorption mode peaks. This results in the
diagonal-peak multiplets being much less dominant. However, the price to pay is a reduction in
overall intensity by a factor of one half when compared with the conventional COSY spectrum.

Thus, the first tenn represents the diagonal-peak multiplet and the second
the cross-peak multiplet. The really important thing is that both terms have
the same modulation in t| , and both appear along the x-axis; it will thus be
possible to choose processing which results in all the lines in the spectrum
having the double absorption mode lineshape. This is in contrast to the
simple COSY experiment where the cross- and diagonal-peaks cannot be
phased to have the same lineshape.

Expanding the ti modulation in the usual way gives:

-.1; sih (1tJ,,t1) cos (£2111) E -§><% [sin (om + If./|2l|) - Sin (oh, - 7TJ12t1)]
This corresponds to an anti-phase doublet on spin one. So, we conclude that
both the diagonal- and cross-peak multiplets show anti-phase structure in
both dimensions. This is the second important property of the DQF COSY
experiment. However, it should be noted that there is a price to pay, which
is the loss of signal intensity by the factor of one half which arose from
taking only the double-quantum part of the coherence present between the
second and third pulses.

If we repeat the calculation starting with equilibrium magnetization on
spin two, T22, we find a further diagonal- and cross-peak multiplet, this time
centred at Q2 in the (1)1 dimension. These multiplets have the same phase
properties as those already described.

Figure 8.16 compares a conventional COSY with a DQF COSY spec-
tnim — the difference is dramatic. In the conventional COSY, the diagonal-
peak multiplets are rather dominant and, due to their dispersive lineshapes,
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Flg. 8.17 Part of a DQF COSY spectrum of quinine, recorded at 300 MHZ. Positive contours
are plotted in black. and negative in grey; the conventional proton spectrum is plotted along the
two axes. The two doublets at around 8.55 ppm and 7.48 ppm are from a two-spin system, so
we see the expected anti-phase square arrays for both the diagonal- and cross~peak multiplets.
The proton at around 7.92 ppm is coupled to one at around 7.3 ppm, again forming a two-
spin system; however, the doublet at 7.3 ppm is overlapped by a multiplet from another spin.
Nevertheless, the cross-peak multiplet at [7.3 ppm, 7.92 ppm} shows up clearly as an anti-phase
square array.

spread into the spectrum. In contrast. in the DQF COSY all of the multiplets
are in anti-phase and all the peaks are in absorption mode. This results in
a much nicer looking spectrum, with a better balance of intensity between
the cross and diagonal peaks.

An additional benefit ofthe DQF COSY experiment is that singlets (i.e.
peaks from uncoupled spins) do not appear in the spectrum. This is be-
cause the creation of double-quantum coherence requires the presence of a
coupling in order to generate the anti-phase terms. The magnetization from
uncoupled spins cannot therefore pass through the double-quantum filter,
and so such spins do not contribute to the spectrum. Often, such singlets
arise from solvents and the suppression of what can be rather intense peaks
is a useful feature of the DQF COSY experiment.

Generally, the DQF COSY experiment is to be preferred to COSY as it
gives a much nicer spectrum for hardly any complication of the experiment.
The only case Where one might not choose DQF COSY is when sensitivity
is at a premium.
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Fig. 8.18 A different part of the DQF COSY spectrum from which Fig. 8.17 was taken. The
multiplets in this part of the spectrum are much more complex than those for a two-spin system,
but they are still based on anti-phase stnictures.

Figures 8.17 and 8.18 show two different parts of a DQF COSY spec-
trum of quinine. As expected, the spectra show a good balance between
the intensity of the cross and diagonal peaks. In Fig. 8.17 there are two
two-spin systems, and it can be seen that the cross and diagonal peaks have
exactly the fomi predicted in this section. The multiplets in Fig. 8.18 are
much more complicated, but like those from the two-spin system. are based
on anti-phase structures. In section 10.2 on p. 323 we will look in detail at
the form of these multiplets expected for three and more coupled spins.

8.6 Double-quantum spectroscopy
It is important to remember that in two-dimensional NMR no observations
are made during the evolution time rt. It is therefore possible to follow
the evolution of unobservable coherences, such as multiple-quantum coher-
ence. using such experiments. Indeed, the advent of two-dimensional NMR
opened up the possibility of studying such multiple-quantum coherence-<
and led to a growing interest in their properties. _

In structure determination, the only two-dimensional experiment 11?‘
volving multiple quantum evolution which has widespread application 15
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a double-quantum experiment. In this section we will describe how the
experiment works, and the useful information which can be gleaned from
the spectrum.

A simple pulse sequence for following the evolution of multiple-
quantum coherence is shown in Fig. 8.19. Broadly speaking, what happens
is the following: ‘ T | T N t l*—'&—’

1

l. Transverse magnetization is generated by the first pulse. l<'—I A I

Flg. 8.19 Pulse sequence for recording
two-dimensional spectra in which
multiple-quantum coherence evolves during

0f the C0l1Pll11g- t1. Anti-phase magnetization. generated
_ during a spin echo (period A), is transferred

3. The second 90° pulse converts this anti-phase magnetization to into multiplequmtum cohmnces by the
multiple-quantum coherence, which then evolves for time t1. second 90° pulse. After evolution for 2|, the

multiple-quantum coherence is transferred
4. The final 90° pulse converts the multiple-quantum coherence back into observable magnetization by the final

into observable magnetization, which is then recorded for lg. 90° Pulse AS usual» filled in rectangles
represent 90° pulses, whilst open rectangles

We thus expect to see a spectrum in which there are multiple-quantum f'=Pf¢5¢Il¢ 130° Pulm-
frequencies in ml , and the frequencies of the normal spectrum in 0);.

2. During the following spin echo, period A, some anti-phase magneti-
zation is generated, the amount depending on the delay 1' and the size

8.6.1 Detailed analysis of the pulse sequence
We will start with equilibrium magnetization on spin One, T11» Whl¢l1 is
rotated by the first 90° pulse to —i1,. Next, we have a spin echo covering
period A. As has been described in section 7.8.1 on p. 163, the spin echo
refocuses the offset, but the coupling evolves for time 21'. The overall
result of the spin echo is equivalent to evolution of the coupling for time
21", followed by a 180° pulse. So, at the end of period A we have

cos (M1121) fl, - sin (2rrJ121')2f1,,f2z.
The 90° pulse rotates these two terms to give

COS (27l']12T) ilz + SlI1(27TJ1gT)2i1xi2y.

We will suppose that we are able to select just the double-quantum part
of the coherence at this point. This is the same thing that we did when
analysing the DQF COSY (section 8.5 on p. 204), where it was shown that:

double-quantum part of Zflxfzy = %DAQy

= 5 (2i,,,i,, + 2i,,i2,,).
So, at the start of ti we have

§ sin (27rJ1;'r) o‘Q,.
The evolution of this double~quantum term during t1 can be worked out

using the rules from section 7.12.3 on p. 180:

A volu 'on for | A _ ADQ, costrni + szamno, — S1l1([Ql + Qz]r1)DQ,.
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Fig. 8.20 Schematic double-quantum
spectrum, recorded using the pulse sequence
of Fig. 8.19, ofa two-spin system. In the tog
dimension we have anti-phase doublets on
both spin one and spin two. All four peaks
have the same to; frequency, (Q1 + Q2),
which is the double~quantum frequency.
From our detailed calculation. the overall
intensity of these peaks is proportional to
sin (2IIJ|2T).

where

DAQI E (2ilxi2x _ 2il_vi2y) and DAQ_y E (2ilxi2y "l" Zilyigx).

(Q1 + Q2), the sum of the offsets, is the double-quantum frequency.
Therefore, at the end of t1 we have

% sin (zmm) [cos ([91 + Q2113) o‘Q, - sin ([01 + Qg]I1)ljQxl _

A The final thing to consider is the effect of the third 90° pulse; UQX and
DQy are affected differently by this pulse:

" " " " '* ~ ix Ax I‘ A A ADQ,E211,12.-211,12, 211.12,—211.12,.
and

A A A A A /2 ix A; A A A A
DQy E 2IlxI2y + 2IlyI2x 1-£1-+—,2—)> 2111121 + 3111121-

From these we see that the term DAQX does not lead to any observable
magnetization, whereas the term DQ‘. gives two anti-phase terms, one on
each spin. So, at the start of :2 the observable terms are

§ sin (ZR./12T) cos ([9, + om) [2i,_,i2, + 2i,,i2,] .
In the (1)2 dimension we have an anti-phase doublet on spin one, and a

similar doublet on spin two. There is just one modulating frequency in t1,
which is the double-quantum frequency (Q; + Q2). The result is that all
four peaks have this as the wl frequency. A schematic spectrum is shown
in Fig. 8.20. Since both the observable terms appear along the x-axis, and
there is just one modulating frequency in ti, it is possible to process the
spectrum in such a way that all of the peaks are in absorption.

The overall intensity of the peaks in the spectrum depends on, amongst
other things, the factor sin (21rJ12r) which arose in our calculation. This
factor determines the amount of anti-phase magnetization present at the
end of the spin echo (period A), and hence the overall amount of double-
quantum which is created. As we saw before, if T = l/(4113) there is
complete conversion to anti-phase, and in the present context this choice of
1' will give the maximum amount of double-quantum coherence, and hence
the strongest peaks in the spectrum. Since we have used a spin echo to
create the anti-phase magnetization, the result is independent of the offsets
of either spin.

8.6.2 Interpretation and application of double-quantum spectra
From the double-quantum spectrum we can determine the double-quantum
evolution frequency. (Q1 + Q3). However, as this is just the sum of the
two offsets, which we already know, it is not a very significant piece Of
information.

What is more useful is to note that the peaks from coupled spins must
share the same double-quantum frequency in the wt dimension. This 15
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because lhc double-quanlum cohercncc prcscnl during t| is lranslcrrctl hack
to both of the spins involved. Furtlici"nioi'e, if lhc coupling is zero, no anti-
phase magnetization is created, and so no double-quantum is generated. As
a result. there are no peaks in the spectrum.

The double-quantum spectrum thcrcforc cnablcs us to identify which
pairs of spins are coupled. This is exactly the same information as we can
find from a COSY spectrum, it is just that in the double-quantum spectrum
the information is presented in a slightly different way.

ll" all wc want to know is which spins are coupled to which. then a COSY
is probably a better choice than a double-quantum spectrum, as the former
is simpler to interpret and does not suffer from any complications. How-
ever, there are some special circumstances in which the double~quantum
spectrum is useful — one of which we will look at in the next section.

8.6.3 INADEQUATE
The two-dimensional INADEQUATE experiment is a very elegant way of
identifying the chemical shifts of directly-bonded “C atoms. ln favourable
cases, it is possible to trace out the entire network of C—C bonds from such
a two-dimensional spectrum. The experiment simply involves recording
a two-dimensional double-quantum spectrum, just as was described in the
previous section. However, instead of observing protons we observe '3C.

The INADEQUATE experiment relies on two key ideas. The first is
to note that the natural abundance of “C is rather low, about 1%. This
means that the probability of any one carbon in a molecule being “C is
0.0l, whereas the probability of there being two "C atoms in a molecule is
().0l ><0.0l = ().00()l = l0“‘. Experimentally, it is possible to detect spectra
from molecules containing two 13C atoms, but we can ignore molecules
containing three such atoms as the probability of these occurring is simply
too low.

The second point is that the one-bond carbon—carbon coupling constant
is quite large, and covers a modest range (40—60 Hz); this coupling is also
much larger than that for two- or three-bond couplings. It is therefore
possible to generate double-quantum coherence between two adjacent '-‘C
atoms by setting the delay 1 in the pulse sequence of Fig. 8.19 on p. 209 to
l/(4 ‘JCCJ "A: 0.005 s. The resulting double-quantum spectrum will contain
only responses from adjacent pairs of '3C atoms.

How these ideas enable us to trace out the carbon framework is best
described using an example. Let us consider the simple molecule 2-butanol,
shown in Fig. 8.21. There are three ways in which two “C atoms can
appear in adjacent positions; these three isotopomers (as they are called)
are illustrated in the diagram.

The form of the INADEQUATE spectrum for 2-butanol is shown in
Fig. 8.22. ln this diagram, the offsets of the “C atoms in the molecule
are denoted Q1, Q2, Q3 and Q4, according to the numbering shown in
Fig. 8.2]. This spectrum can be understood by realizing that each of the
three isotopomers A, B and C gives rise to a pattern of peaks of the form
shown in Fig. 8.20 on p. 2l().

The spectrum from isotopomer A thus shows, in the (1)2 dimension, two

INADEQUATE: Incredible Natural
Abundance DoublE QUAntum Transfer
Experiment

OH

4Q\
2

31

Fig. 8.21 Illustration of the occurrence of
molecules containing two adjacent '-‘C
atoms in 2~butanol_ whose stnicture is
shown at the top. There are three possible
isotopomers in which two UC atoms
occupy adjacent positions: these are shown
in stnictures A. B and C (the presence of a
"c is indicated by the black dot). In each
isotopomer it is possible to generate
double-quantum coherence between the two
adjacent “C atoms.
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Fig. 8.22 Schematic double-quantum (INADEQUATE) spectrum of 2-butanol. The offsets of
the carbons are denoted Q1, Q2 etc. according to the numbering shown in Fig. 8.21. Each of
the three isotopomers shown in that figure gives rise to a pattern of peaks of the form shown in
Fig. 8.20 on p. 210. The peaks which belong to the same isotopomer can be identified as they
all have the same wl frequency; in addition, the wl frequency must be the sum of the offsets
of the two doublets in the tn; dimension. Using this approach, the peaks from each of the three
isotopomers can be identified, and are indicated by the boxes. In the (U2 dimension the peaks
appear in anti-phase, which is indicated schematically by the black and grey ovals.

anti-phase doublets centred at Q1 and Q2, and in the ml dimension a single
peak at the double-quantum frequency (Q1 + Q2). As was explained above,
the fact that these peaks share the same double-quantumfrequency indicates
that spins one and two are coupled, which in the INADEQUATE experiment
implies that they are directly bonded.

Isotopomer B gives anti-phase doublets at Q2 and Q3 in ml, and
(Q; + Q3) in ml. This pattern of peaks implies that spins two and three are
coupled, and hence that carbons two and three are directly bonded. Finally,
isotopomer C gives doublets at Q3 and Q4 in (4)2, and (Q3 + Q4) in ml, which
implies that carbons 3 and 4 are directly bonded.

Thus, by looking for peaks which share a common ml frequency, we can
identify pairs ofadjacent BC atoms, and hence trace out the C—C framework
of the molecule. Note that we can be sure that this process identifies only
directly bonded '3C atoms as we have set the delay in the pulse sequence so
that double-quantum coherence is generated only as a result of the evolution
of the large one-bond coupling.

The technical problem with this experiment is that the signals due to
molecules containing two 13C atoms are around 100 times weaker than
those from molecules containing one such atom. However, double—quantum
coherence carmot be generated in molecules containing only one BC, so
signals from such molecules do not contribute to the spectrum. Thus, by
recording a double-quantum spectrum we are able to focus on the signals
from the molecules containing two BC atoms, and reject all others.

As we have already mentioned, the required double-quantum coherence
is Selected, and unwanted signals are suppressed, using either phase cycling
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or gradient pulses (see Chapter 1 l). This suppression has to be very effec-
tive if the wanted signals are not to be swamped by the much more intense
signals from molecules containing only one “C atom.

8.7 Heteronuclear correlation spectra
It is possible to use two-dimensional NMR to correlate the shifts of different
types of nuclei, such as BC and proton, or UN and proton. These heteronu-
clear correlation spectra can be recorded in such a way that cross peaks
arise due to transfer through the relatively large one-bond heteronuclear
coupling, thus making it possible to identify the shifts of directly attached
nuclei. Such spectra are very useful for tackling assignment problems.

lt is also possible to arrange for the correlations to occur via smaller
long-range couplings (typically over two or three bonds). The resulting
spectra are more complicated than those from one-bond correlation exper-
iments as there are likely to be many more couplings, and hence more
cross peaks. Nevertheless, long-range correlation spectra have proved to
be invaluable in tackling more difficult assignment problems.

In principle, any pair of heteronuclei can be correlated in a two-
dimensional experiment, but by far the most popular combinations include
protons as one of the nuclei. In the description which follows it is helpful
to keep in mind that the I spin is likely to be proton and the S spin a
heteronucleus.

Before looking at particular experiments, we first need to consider
which of the two nuclei we are going to observe, which is the topic of the
next section.

8.7.1 Normal or inverse correlation
If we are going to use two-dimensional NMR to correlate protons and BC,
then we have the choice of devising an experiment in which we observe
either 13C or proton. The question therefore arises as to which is the best
choice.

Usually, achieving the highest sensitivity is the most important thing. In
this regard, it tums out that observing the nucleus with the highest Larmor
frequency gives the best sensitivity. So in the case of proton and 13C, it is
best to observe the protons.

However, there is a big problem when it comes to observing the protons,
which derives from the fact that the natural abundance of BC is only 1%.
So, only l% of the molecules in the sample contain any '3C atoms, and it is
this small fraction which contributes signals to the two-dimensional corre-
lation experiment. These wanted signals are all too easily overwhelmed by
the much more intense contribution from the 99% of molecules containing
no BC.

When we look at particular experiments we will see that there are ways
of suppressing these unwanted signals. However. they must be suppressed
very well if they are not to swamp the much weaker signals we are interested
in. In the early days of two-dimensional NMR, achieving the required
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HSQC: Heteronuclear Single-Quantum
Correlation

degree of suppression was, for technical reasons, beyond the capabilities
of most spectrometers. However, the situation has now changed and it is
possible to achieve excellent suppression on a routine basis.

If '3C observation is used, then no such problems arise as molecules
not containing '3C simply do not contribute to the signal. So, the original
heteronuclear correlation experiments all used BC detection, despite the
fact that this gives lower sensitivity.

When they were first introduced, experiments using proton observation
were termed inverse in order to distinguish them from the then ‘normal’
experiments which involved BC observation. The current state of play is
that proton observe experiments have become routine and practically the
norm. so to describe them as ‘inverse’ is not entirely logical. However, this
historic term is still widely used to describe heteronuclear experiments with
proton observation.

8.8 HSQC
The HSQC experiment is widely used for recording one-bond correlation
spectra between 15N and proton, with proton being the observed nucleus
(i.e. it is an inverse experiment). The vast majority of such spectra are
recorded on molecules of biological interest (peptides, proteins and nucleic
acids) which can quite easily be enriched in ‘5N.

The HMQC experiment, described in the next section, gives an essen-
tially identical spectrum to HSQC. However, the way in which relaxation
affects the two experiments is somewhat different. It is generally held that
HSQC is the superior experiment for larger molecules, whereas for small to
medium-sized molecules the HMQC experiment is to be preferred.

Two HSQC pulse sequences are shown in Fig. 8.23; they are identical
up until the end of period D and only differ in the details of how the I
spin signal is observed. Broadly speaking the sequence works by first
transferring magnetization from the I spin to the S spin using the same
method as in INEPT (section 7.10 on p. 171). The S spin magnetization then
evolves for t1, during which time it acquires a frequency label according to
the offset of S. Finally this magnetization is transferred back to I, where
it is observed. The resulting spectrum thus has peaks centred at the offset
of the S spin in the wl dimension, and at the offset of the I spin in the (U3
dimension. A

Let us start our analysis with equilibrium magnetization on the I spin, 1;.
This is made transverse by the first pulse, and there their follows a spin echo.
period A, during which the coupling evolves. but the offset is ref0Cl1$@d-
Thus, at the end of this period we have:

cos (22rJ;Sr1) I, — sin (27t./157'] ) 2I,.§,_.

The subsequent two 90° pulses, period B, transfer the anti-phase [C1111 to the
S spin, and leave the in-phase term unaffected. We are only interested in the
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Fig. 8.23 Pulse sequences for heteronuclear correlation using the HSQC experiment. Both
sequences start with equilibrium magnetization on the 1 spin, which is first transferred to
the S spin using an INEPT-like sequence formed by periods A and B (see section 7.10 on
p. 17l). The S spin magnetization then evolves for t1, with the centrally placed I spin 180°
pulse refocusing the evolution of the coupling. Finally, this magnetization is transferred back
to the I spin, where it is observed. In sequence (a), the signal is observed immediately. In
sequence (b), a spin echo, period E, allows the anti-phase signals to become in-phase. so that
they can then be observed using broadband S spin decoupling (indicated by the grey rectangle).
The optimum value for both ri and rg is l/(4115 ).

term which is transferred to S:

- sin (21:15 T1)2j,;-$1 sin (21rJ;_; 1, ) 2i,s,
flE)—&—> — sin (27rJ;S T1) 2I;Sy.

Note that the pulse to the I spin must be about the _v-axis for there to be
any transfer. Periods A and B of the HSQC sequence are identical to those
in the INEPT sequence, Fig. 7.15 on p. I72, and so this initial part of the
I-ISQC pulse sequence is often called an INEPT-transfer.

Period C is the ti evolution, but note that the centrally placed 180° pulse
to the I spin forms a spin echo, so that the evolution of the coupling during
period C is refocused (see section 7.8.3 on p. I68). Thus, the evolution
during this period is the same as the offset evolving for ti, followed by a
180° pulse to I.

—— sin (27rJ1g T1) ZIZSV — cos (Qsti) sin (27rJ1S r1)2IZS_,.
+ sin (Qgt1)sin(27rJ;s T1) 2i,s_,

zri, .. AA
—> cos (Q3 ti) sin (22rJ1S T1) 21:5,. — sin (Q5 ti) sin (27rJ1g T1 ) 21:5,.

AA
Next follows 90° pulses to both spins; these transfer the term 2I:S,. to

—2I,S:, which is anti-phase magnetization on the I spin. The term 2I;S,,
becomes 2i_,.S_,, which is unobservable multiple-quantum coherence. So, at
the start of period E we have

-cos(Q5t1)sin (27rJ,Sr1)2I_vS:. (8.9)



216 Two-dimensional NMR

(a)  i

1 ........ ...
">1

| s
—0)2—> EQ,

(b) 11%

l ............»-o......................-...
¢°1

—(D-—>l2 Q,

Fig. 8.24 Schematic HSQC spectra arising
from pulse sequences (a) and (b) of
Fig. 8.23. In sequence (a), there is no spin
echo just prior to acquisition, so that an
anti-phase doublet is seen in the nu;
dimension, as shown in spectrum (a).
Sequence (b) uses broadband decoupling of
the S spin during acquisition. so the I spin
doublet collapses to a single line, as shown
in spectrum (b).

8.8.] Coupled or decoupled acquisition
There are two altematives at this point. The first is to observe the signal
straight away, as in sequence (a) of Fig. 8.23. Looking at Eq. 8.9, we can
see that in the to; dimension there is an anti-phase doublet centred at the
shift of the I spin. There is a single modulating frequency in ti, so that
both components of the doublet appear at the offset of the S spin in the wi
dimension; a schematic spectrum is shown in Fig. 8.24 (a).

The peaks in this spectrum show the correlation between the offsets
(shifts) of the two spins. Note, too, that the intensity of these peaks depends
on the factor sin (2rr.!iS -ri), which will be a maximum when ri = I /(4J1g).
This is not surprising, as it is this value of the delay which gives complete
conversion to anti-phase magnetization during period A.

Using sequence (a) results in a spectrum in which each correlation gives
rise to two peaks, separated by Jig in the (1)2 dimension. The spectrum
can be simplified if we apply broadband decoupling of the S spin during
acquisition, but recall from the discussion in section 7.10.3 on p. 174 that
we cannot simply apply decoupling after the final two 90° pulses as the
anti-phase multiplet would collapse to zero. Rather we need to interpose
another spin echo, period E of sequence (b), in order to allow the anti-phase
terms to become in-phase.

As before, during this spin echo the coupling evolves, but the offset does
not, so at the end of period E we have

AA

— cos (2JTJ[_§' T2) cos (Qs ti) sin (27'l'J1s ri ) 2IySz
+ sin (27fJ1_§'T2) cos (Q5 ti) sin (27TJ1S ri) Ix.

If the signal is now observed while broadband decoupling is applied to the
S spin, then just the term in I1 contributes. This results in a single peak at
Qi in the (4)2 dimension, and Q5 in wi , as shown in Fig. 8.24 (b). As before,
the optimum value for 1'2 is 1/(4-J15 ). The overall result of sequence (b) is a
very simple spectrum containing just one peak, whose coordinates allow us
to read off the offsets (shifts) of the two coupled spins.

8.8.2 Suppressing unwanted signals in HSQC
We remarked at the beginning of this section that HSQC is usually an
inverse experiment, with proton being the observed nucleus (the I spin)
If the S spin has low natural abundance, then we have to address the issue
of how to suppress the intense signals which arise from protons which are
not coupled to the heteronucleus. This can be achieved by using a difference
experiment, an idea we have encountered before in the context of the INEPT
experiment (section 7.10.4 on p. 174).

Looking at the pulse sequences ofFig. 8.23, and the analysis we made of
them, it can be seen that the first 90° pulse applied to the S spin only affects
the I spin magnetization which has become anti-phase with respect to the
coupling. This pulse has no efiect on in-phase I spin magnetization, which
will include all of the magnetization from nuclei which are not coupled to
S.

Thus, if we change the phase of this first S spin 90° pulse from x to —x,
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the sign of the wanted terms will be inverted, whereas the unwanted signals
will be unaffected. So, all we need to do is repeat the experiment twice,
once with the phase of the first S spin 90° pulse set to +x, and one with the
phase set to —.\". Subtracting the signals recorded from the two experiments
will suppress the unwanted signals, and preserve the wanted ones.

The same effect can also be achieved by shifting the phase ofthe second
I spin 90° pulse from +y to —_y, or of the second S spin 90° pulse from +x
to —.r. Which of these is chosen in practice is largely a technical matter.

8.8.3 Sensitivity
If we step back and take a broad-brush look at the HSQC experiment we
see that it involves three steps:

1. Transfer of the equilibrium magnetization of the I spin to the S spin.

2. Evolution of the S spin magnetization for ti.

3. Transfer of the S spin magnetization back to the I spin for observa-
tion.

It has already been explained that, if the I spin is proton, it is advantageous
from the sensitivity point of view to make it the observed nucleus. However,
the question arises as to why we need the first step, the transfer from I to
S. After all, there is equilibrium magnetization on the S spin which could
simply be excited and allowed to evolve for ti.

In our discussion of the INEPT sequence (section 7.10 on p. 171), it
was explained that the equilibrium magnetization is larger for spins with
higher Larmor frequencies. It is for this reason that we want to start with
the equilibrium magnetization on proton, rather than on the heteronucleus.
Ultimately, we will observe stronger signals, and therefore have higher
sensitivity, by starting with the larger equilibrium magnetization.

There is one further advantage to starting with proton equilibrium mag-
netization. This is that, generally speaking, the proton magnetization re-
turns to its equilibrium value somewhat more quickly than does the magne-
tization from heteronuclei, such as 13C or ‘SN. Between experiments, we
need to allow sufiicient time for the spins to come back to equilibrium; by
starting with proton magnetization this time is minimized. So, we are able to
repeat the experiment more quickly. and thus achieve greater signal-to-noise
per unit time, by starting with proton magnetization.

8.9 HMQC

The pulse sequence for the HMQC experiment is shown in Fig. 8.25 (a). A
detailed analysis of this sequence will show that it gives a spectrum identical
to that for the decoupled HSQC experiment, Fig. 8.23 (b). However the
HMQC sequence works in rather a different way to HSQC.

Broadly speaking the HMQC sequence consists of three steps:

l. I spin equilibrium magnetization is excited and then allowed to be-
come anti-phase (period A).

HMQC: Heteronuclear Multiple-Quantum
Correlation
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Fig. 8.25 Pulse sequence for: (a) the HMQC experiment; and (b) the HMBC experiment. In
both experiments. equilibrium magnetization of the I spin is excited and allowed to become
anti-phase during period A. It is then transferred to multiple-quantum coherence by the first
S spin pulse, period B. After evolution for :1, the coherence is transferred back into anti-
phase magnetization on the I spin by the second S spin pulse. period D. In HMQC. the anti-
phase magnetization evolves back into in-phase magnetization during period E. It is then
observed under conditions of broadband S spin decoupling. ln HMBC. the signals are observed
immediately after the coherence transfer step, and no broadband decoupling is used. The
optimum value for r is l/(2J,5 ).

2. In period B this anti-phase magnetization is converted into heteronu-
clear multiple-quantum coherence. which then evolves for ti (period
C).

3. The multiple-quantum coherence is converted back into observable
magnetization on the I spin. the coupling is allowed to rephase (pe-
riod E). and then the signal is acquired under conditions of broadband
S spin decoupling.

A Step-by-step analysis of this pulse sequence is rather involved. =15 b0th
the offset and the coupling evolve during periods A and E. In addition. we
need to cope with the multiple-quantum evolution during period C. How-
ever, things are simplified greatly by realizing that the l80° pulse which is
placed in the centre of ti in fact creates a spin echo over the whole of period
F, from the first pulse to the start of acquisition. The offset of the I spin is
therefore refocused over the whole of this period, and so can be ignored in
our calculations. You might be concerned that the pulses to the S spin will
interfere with this refocusing. but it turns out that. because these pulses are
disposed symmetrically about the 180° pulse. they do not cause a problem-

The detailed analysis is as follows. The first pulse creates -1,. which
then evolves during period A under the coupling to give

— cos (zrJ,s 1') i_,. + sin (zrJ,g r) 2i,S;;

note that, as explained above. we can ignore the evolution of the 1 5P1"
offset. The 90° pulse to S has no effect on the first term. but rotates ll“
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second term into multiple quantum, to give —sin (2rJ,S -r)2i_,S_,-. We will
ignore the first term as it does not give rise to any useful peaks in the
spectrutn.

The multiple-quantum term is not affected by the evolution of the coup-
ling between the I and S spins (see section 7.12.3 on p. 180), and we have
already argued that the offset of the I spin is refocused, so that just leaves
the evolution under the offset of the S spin to consider. This just affects the
S spin operator. St:

_ A A Q5I|.§;
— sin (2rJ,S -r) 2I_,S_,. —-——>

AA AA
— cos (Q51, ) sin (2rJ15 T) 2I_,S_,. + sin (£2511) sin (1rJ,5 -r) 21,-Sx.

Next comes a 90° pulse to S. period D. As this is about the x-axis, this
pulse has no effect on the term 2IA_,-S,-, but rotates —2i_,.S,. into —2i_,S;, which
is anti-phase magnetization on the I spin. So, the only observable term at
the start of period E is

— cos (Q51; ) sin (7TJ]$ T) 2i_,S:.

During period E the coupling evolves, converting the anti-phase term to
in-phase:

_ A A 2ll’.,|§Ti;S=;
— COS (QSI1) S111 (IT./)5 T) 21,8; ——————>

AA
— cos (1rJ1S-r) cos (£2511) sin (1rJ1§ 1) 21,8;
- sin (Jr./15 T) cos (as :1) sin (ms 1) i_,..

As we are using broadband decoupling of the S spin during acquisition, only
the in-phase term is observable. Hence the sole observable term is

—[sin(2rJ;5-r)]2 cos (Q§t1)i_,-.

Apart from a trivial phase shift from x to y, the result is identical to that for
the decoupled HSQC experiment, and so the spectrum will be just as shown
in Fig. 8.24 (b) on p. 216.

The intensity of the peaks depends on the delay r. for which the op-
timum value is l/(2J,S), as this makes sin (2rJ;5 r) = l. As with HSQC,
the optimum value for these fixed delays is that which leads to a complete
interconversion of in- and anti-phase magnetization. Note that in HSQC
the coupling evolves for 21-1 or 21;, whereas in HMQC it evolves for -r;
this is why the optimum value of T1 or T2 is 1/(4J15), whereas that for r is
1/(2/15)

As with HSQC, we need to think about how we are going to suppress
signals from protons (the I spin) which are not coupled to the heteronucleus
(the S spin). Once again, we can use a difference experiment and, based
on the earlier discussion. it is easy to spot that changing the phase of either
of the S spin pulses from +x to —.\' will change the sign of the wanted sig-
nals, but leave those from uncoupled spins unaffected. A simple difference
experiment will therefore suppress these unwanted signals.
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Fig. 8.26 ll-I—l3C HMQC spectrum of quinine recorded at 300 MHZ for proton and with
broadband BC decoupling during I11 the conventional proton and '3C spectra have been plotted
along the relevant axes. Some carbons, such at the one at 57 ppm, have two inequivalent
attached protons, and so show correlations to two different proton shifts.

The HMQC experiment starts with equilibrium magnetization on the I
spin so, if this is proton, all the sensitivity advantages that we described for
HSQC will also apply to HMQC.

Figure 8.26 shows a ‘H-BC I-IMQC spectrum of quinine, recorded using
broadband BC decoupling during acquisition. The decoupled '3C spectrum
is plotted along the wl axis, and tracing across at each carbon shift, we
can find the shift of the attached proton; note that some of the carbons
are quatemaries, and no have no cross peak associated with them. The
spectrum shows, in a very clean way, the connection between the '3C and
'1-I assignments.

8.10 Long-range correlation: HMBC
In both HMQC and HSQC, there are fixed delays whose durations need to
be set according to the value of the coupling constant between the two nuclei
which are being correlated. The values of one-bond BC-‘I-I or '5N-'H
couplings cover quite a small range, so it is possible to find a value for these
fixed delays which is a reasonable compromise for all pairs of nuclei.

However, long-range coupling constants are much smaller than one-
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Fig. 8.27 Plot (a) shows the theoretical intensity of the correlations in an HMBC experiment
as a function of the delay 1 for three different values of the coupling constant. It is clear that
there is no value of 1 which will ensure good intensity for all three couplings. Plot (b) compares
the functions [sin (zrJ;51)]2 and sin (1rJ;5 1') for J15 = 3 Hz. It is clear that when the delay r is
much less than its optimum value, the sinz function is significantly less that the sin function.

bond couplings, and also cover a much wider range. In order to see corre-
lations through these smaller couplings it is necessary to lengthen the fixed
delays considerably, but the presence of a wide range of couplings causes
difiiculties in choosing a suitable value for these delays.

It was shown above that, for the HMQC sequence, the intensity of the
correlations goes as [sin (2rJ1S -r)]2. In Fig. 8.27 (a) this function is plotted
against -rfor J15 of 3, 7 and l 1 Hz. From these plots, we see that r z 0.055 s
will give near to maximum intensity for the correlations through couplings
of 7 and ll Hz, but that the correlation through the 3 I-lz couplings will be
rather weak. Lengthening the delay to around 0.17 s increases the intensity
of the latter correlation to near its maximum, but such a value of r results
in low intensity for the other two couplings. It is clear that there is no
single value of r which will give good intensity over such a wide range of
couplings.

The only sure way around this problem is to record several spectra with
different values of r. If time does not permit this, then another approach is to
set the value of r according to the largest expected long-range coupling, and
accept that much smaller couplings will lead to low intensity correlations.

There are two further problems with the I-IMQC experiment. The
first arises from the fact that the intensity of the correlations goes as
[sin (1rJ15 -r)]2. If T is considerably less than its optimum value, then
sin (7TJ1$T) will be much less than one, and so its square will be very much
less than one. This point is illustrated in Fig. 8.27 (b). The second problem
is that relaxation during the long T delays causes a loss of magnetization.
and hence a reduction in the intensity of the correlations.

One way of minimizing these two problems is to use the modified
HMQC sequence, usually known as HMBC, shown in Fig. 8.25 (b) on
p. 218. In HMBC the second r delay is omitted. acquisition is started
immediately after the final pulse, and broadband decoupling is not used.
As a result of omitting the second delay -r, the intensity of the correlations
goes as sin (211,; r), rather than the [sin (1rJ;5 -r)]2 function found for HMQC.
Furthermore, the losses due to relaxation are reduced as the total fixed delay
is halved from 2-r to r.
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Flg. 8.28 In the presence of relaxation, the
intensity of the correlations in an HMBC
goes as sin (zrJ;_; T) exp (—Rr), where R is a
relaxation time constant. This function is
plotted against r for J15 = 3 Hz. The black
line is for the case of no relaxation, and as
expected the maximum occurs at
‘r = I/(2115) or 0.l7 s. The dark grey and
light grey lines are for increasing rates of
relaxation. As the rate of relaxation
increases, the maximum moves to shorter
values of ‘r and its height is reduced.

However, there is a price to pay for these two advantages. Firstly, we
cannot use decoupling during acquisition as the wanted operators are in
anti-phase and so would collapse to zero. Secondly, although the centrally
placed 180° pulse refocuses the evolution of the offset of the I spin during
ll, the evolution of the offset during -r is not refocused. The correlation
peaks thus acquire a phase in (4)2 which depends on their offset and the
value of -r. These phase distortions and the presence of the anti-phase terms
simply have to be tolerated as a by-product of the improved sensitivity of
HMBC. We return to this point in section 10.6 on p. 345, where the effect
of proton-proton couplings on the appearance of the HMBC multiplets is
also considered.

The final point we need to make about the HMBC experiment is how
relaxation affects the choice of the delay -r. In the absence of relaxation, the
intensity of the correlations goes as sin (2rJ,5 r), but when relaxation is taken
into account there will be a reduction in intensity which can be modelled by
adding an exponential damping term:

sin (zrJ15 r) exp(—Rr).

In this expression, faster relaxation corresponds to an increase in R.
Figure 8.28 illustrates the effect of this relaxation term. The plot shows

the above function, with J15 = 3 Hz, plotted against r for different amounts
of relaxation i.e. values of R.

If there is no relaxation (black line) the optimum value for -r is simply
l/(2./15), or 0.17 s in this case. I-Iowever, when relaxation is included,
the maximum intensity is reached for a shorter value of 1'. The faster the
relaxation, the shorter the value of -r at which the maximum occurs and
the lower the height of the maximum. What this implies is that to observe
correlations through small couplings with the greatest intensity, one needs
to use a value ofr which is significantly shorter than l/(2J15).

In principle, we can imagine modifying the HSQC experiment in a
similar way we did for I-IMQC in order to optimize the observation of
correlations through long-range couplings. However, in practice it is found
that the resulting experiment has no particular advantages over HMBC.

8.10.1 Suppressing one-bond peaks in HMBC spectra
In HMBC we make T long enough that long-range I—S couplings will have
gone anti-phase. and so give rise to cross peaks in the spectrum. However.
in our sample, there are still I—S spin pairs which have a one-bond coupling
between them, and these will also give rise to cross peaks whose intensity
depends on sin (2rJ;5 -r) in the usual way. This intensity will be a maximum
when r = 1/(2J,5) or at any odd multiple of this time i.e. r = n/(2J,5).
n = I, 3, 5 Depending on the exact values of r and the one-bond
coupling, it is quite possible that one-bond cross peaks will have significant
intensity in an HMBC spectrum.

The appearance of such peaks can be rather troublesome as they can
obscure the wanted long-range correlations. Remember, too. that we record
I-IMBC spectra without broadband S spin decoupling during I3. so each one-
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Fig. 8.29 Modified HMBC pulse sequence in which one-bond correlations are suppressed.
The delay r, is set to l/(2 U15). and r is the usual long delay needed for generating long-range
correlations. One-bond coupled I—S pairs will give rise to anti~phase magnetization at the
end of time ri. and this will be tumed into multiple-quantum coherence by the first S spin
pulse. The sequence is repeated twice, with the phase of this pulse set to +x and then to —x; as
explained in the text, adding together the results of these two experiments cancels the one-bond
correlations, but leaves the long-range correlations unaffected.

bond correlation will give rise to two peaks, separated by the one-bond
coupling in wg.

If we know the value of the one-bond coupling ‘J15, we can simply
choose T to be an even multiple of 1/ (2 ‘J/5 ), as this makes sin (zr‘J15r) go
to zero. For example, if ‘J15 = 160 Hz, l/(2 'J,5) = 3.125 ms, and so
choosing T = 20 >< 3.125 = 62.5 ms will ensure that the one-bond cross
peak has zero intensity.

The problem is that there is a range of values for the one-bond coupling.
The function sin (zr'J;5 1') will have gone through so many oscillations by
the time r is large enough to generate long~range correlations, that even a
small difference in the values of the one-bond couplings will result in the
zero crossings of the corresponding sine curves getting out of step with
one another. There is therefore no way of choosing a single value of 1- at
which sin (zr‘J15-r) will be close to zero for a range of values of the one-bond
coupling.

Luckily, there is a simple modification to the HMBC pulse sequence
which suppresses these one-bond conelations rather effectively; the modi-
fied pulse sequence in shown in Fig. 8.29. The idea is quite simple: after
the initial I spin pulse, we leave a delay r, which is set to l/(2 'J;_q), just
as we would in an HMQC experiment. This means that at the end of this
delay, the magnetization from an I spin which is one-bond coupled to an S
spin will be anti-phase, and so the first S spin 90° pulse will transform this
magnetization into multiple-quantum coherence.

In contrast, any magnetization from an I spin which is long-range coup-
led to an S spin will be unaffected by the first S spin pulse, as the delay
T1 will be insutficient for any anti-phase magnetization to develop. So,
this I spin magnetization continues to evolve through the rest of the pulse
sequence, which, from this point on, is identical to HMBC.

We need to make sure that the heteronuclear multiple-quantum coher-
ence generated by this extra S spin pulse does not, as a result of the effect
of some later pulse, contribute to the spectrum. This aim is achieved by
repeating the experiment twice, once with the phase of this S spin pulse
set to +x, and once with it set to —x; the results from the two experiments
are then added together. From the point of view of long-range coupled I—S
pairs, this pulse has no effect, and so changing its phase is unimportant.



Two-dimensional NMR

llli at- o..s...._
- -.L2o

i 530
' " _, ;-40

§"50
_. 1 . "

4. g-70
(ppm)' 5-80

?Q<>_Sh'ft

I g-100 "
mca

5110
Q‘O ‘acChe

i i + i-130
‘ ... .. ;—140

i i M ' i-150
' "' ;-160

8 7 6 5 4 3 2

‘H Chemical Shift (ppm)
Fig. 8.30 'H—l3C HMBC spectrum of quinine recorded at 300 MHZ for proton. The pulse
sequence of Fig. 8.29 has been used in order to suppress correlations through one-bond coup
lings; the delay T has been set to 33 ms (the optimum value for a 15 Hz long-range coupling).
In this spectrum, the quatemary carbons, such as those at 142 ppm and 144 ppm show several
correlations due to long-range couplings.

However, for one-bond coupled pairs, this pulse creates multiple-quantum
coherence, whose sign will be altered by altering the phase of the pulse. As
a result, adding the signals recorded with this phase set to +x and -—x will
cancel any signals arising from this multiple-quantum coherence.

The extra delay r| and associated S spin pulse is often called a ‘low-pass
J filter’ as only magnetization from spin pairs with low (small) values of the
coupling passes through to the rest of the sequence.

Figure 8.30 shows a ‘I-l—'3C HMBC spectrum of quinine. recorded us-
ing the pulse sequence of Fig. 8.29 in order to suppress correlations through
one-bond C—H couplings. Numerous correlations can be seen as a result of
the large number of long-range C—H couplings present. The correlations to
quaternary carbons are particularly useful, as such carbons do not appear in
the HMQC spectrum.
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Fig. 8.31 Pulse sequence for the HETCOR experiment; note that, in contrast to HSQC and
HMQC, the signal is observed on the S spin ~ the heteronucleus. Equilibrium magnetization
of the I spin is excited by the first pulse, and then evolves under the influence of the offset
of I for ti. Period B is a spin echo, during which anti-phase magnetization develops. This
magnetization is transferred to the S spin by the two 90° pulses which form period C. A
further spin echo. period D, allows the anti-phase terms to become in-phase. They are then
observed under conditions of broadband decoupling of the I spin. The optimum values for the
delays 1-; and 1-; are both l/(4J,5).

8.11 HETCOR

The last heteronuclear correlation experiment we will consider is the HET-
COR experiment. In contrast to HSQC and HMQC, it is the heteronucleus
(e.g. BC) which is observed in a HETCOR experiment. Generally speaking,
this results in lower sensitivity than for the inverse experiments, which ac-
counts for the popularity of the latter. Nevertheless, HETCOR is historically
important in the development of two-dimensional NMR and remains in use
to a significant extent.

The HETCOR pulse sequence is shown in Fig. 8.31. Broadly speaking
the way the sequence works can be summarized as follows

1. Transverse magnetization of the I spin, excited by the first pulse,
evolves for time :1; the centrally placed 180° pulse refocuses the
coupling.

2. Anti-phase magnetization develops during the spin echo which con-
stitutes period B, and then this magnetization is transferred to the S
spin by the two 90° pulses of period C.

3. The anti-phase terms evolve back into in-phase terms during the
spin echo which forms period D. Finally, these in-phase terms are
observed while broadband decoupling is applied to the I spin.

The detailed analysis proceeds as follows. We start with equilibrium
magnetization of the I spin, which is rotated to -13- by the first pulse. Period
A is a spin echo in which the coupling is refocused, but the offset continues
to evolve for the whole time ti. So, at the end of ti we have

- cos(Q1t1) 1", + sin (Q,r,)i,,.
These in-phase terms cannot be transferred to the S spin. They need to
be made anti-phase. which is the purpose of the spin echo which forms
period B. During this echo the coupling evolves. but the offset is refocused.
Following the usual procedure of replacing the echo by evolution of the

HETCOR: HETeronuclear CORrelation
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Fig. 8.32 Schematic HETCOR spectrum.
As for HSQC (Fig. 8.24 (b) on p. 216), there
is a single peak whose coordinates give the
offsets of the I and S spins. However,
compared with HSQC, the two dimensions
are swapped round.

TOCSY: TOtal Correlation SpectroscopY
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Fig. 8.33 Schematic TOCSY spectrum for
the same spin system as for the COSY
spectrum shown in Fig. 8.7 on p. 195. The
couplings present are A—B, B-D and C—E.
Despite there being no coupling between A
and D, the TOCSY spectrum contains a
cross peak between these two spins as they
are connected by an unbroken chain of
couplings. A cross-section taken parallel to
an at the shift of spin A in (1)2 shows
multiplets from all of the spins which are in
the same network of couplings as A.

coupling for 21'] followed by 180° pulses to both spins, we find the follow-
ing state at the end of period B:

cos (21rJ1s T1) cos (Qm) I, — sin (27fJ[$ r1) cos (Qm) 2I,Sz
cos (210,511) sin (on, ) i, + sin (2rrJ;S;'r1) sin(Q1t1) 2i,s,.

Next comes 90° pulses to both spins. Of the four terms above, only the
last leads to observable magnetization on the S spin, becoming

_ _ A A

S1Il (271113 T1) SlIl (QII1) 2118),.

Finally we have the spin echo of period D, during which this anti-phase
term goes in-phase. As we are going to observe the signal in the presence
of broadband decoupling of the I spin, it is only the in-phase tenn present
at the end of this period that is relevant. This term is

sin (271115 T2) sin (210,, 1,) sin (on, ) 3,.
The resulting spectrum shows a single peak at Q; in the wl dimension

and at Q5 in (U2, as shown schematically in Fig. 8.32. This is the same as
HSQC or HMQC, with the exception that the two dimensions are swapped
around.

8.12 TOCSY

TOCSY is a homonuclear experiment, generally used for protons, which
gives a spectrum in which a coupling between two spins is indicated by
the presence of a cross-peak multiplet. To this extent, TOCSY is similar to
COSY. However, in TOCSY we also see cross peaks between spins which
are connected by an unbroken chain ofcouplings. So, for example, if spin A
is coupled to spin B, and B is coupled to spin C, then in a TOCSY spectrum
we will see a cross peak between A and C, even though there is no coupling
between these two spins. This idea is illustrated in Fig. 8.33, which shows
the TOCSY spectrum of the same spin system whose COSY spectrum is
shown in Fig. 8.7 on p. 195.

TOCSY is very useful for identifying the spins which belong to an
extended network of couplings. In principle, such information is available
by tracing out the sequence of cross peaks in a COSY, but in complex
overlapping spectra it is not always possible to identify unambiguously such
a series of related cross peaks. In TOCSY, a single cross-section taken at
the shift of one spin should, in principle, show the multiplets of all of the
spins which are part of the network of couplings to which this spin belongs.
TOCSY also differs from COSY in one further important respect. As we
shall show, both the diagonal- and cross-peak multiplets are in-phase and
can be phased to pure absorption.

The pulse sequence for TOCSY is shown in Fig. 8.34. The key part of
the experiment is the period of isotropic mixing, for time rmix. which forms
the mixing period in this sequence. In a two-spin system, such a period of
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isotropic mixing causes the following evolution of z-magnetization:

it: "-*% ll + C05 (277-/l2Ttnix)l it; + % H “ COS(27rJI2Tmix)] ii:

- sin (277-’l2Tmix) % (2ii_.~i1.. — 2i,..i;,). (8.10)
__?,i._,

1'0,

The important thing here is that Z-magnetization on spin one is transferred
to 3-magnetization on spin two at a rate which depends on the coupling and
the mixing time, rmix. It is this transfer which gives rise to cross peaks in
the spectrum.

ln addition to transfer to igz, isotropic mixing generates zero-quantum
coherence, specifically the term ZAQ_,.. This is not of any particular inter-
est and, as we will see later, its presence causes phase distortions in the
spectrum.

In practice, isotropic mixing is achieved by using Specially designed
pulse sequences, such as DIPSI-2. Such sequences involve applying a
carefully crafted set of pulses of various phases and flip angles in a repetitive
sequence. The way in which these sequences are designed is outside the
scope of this book.

The reason why this kind of mixing is called ‘isotropic’ is that it
transfers not only z-, but also x- and y-magnetization between spins in an
essentially identical way. So, for example, the evolution ofx-magnetization
under isotropic mixing can be found from Eq. 8.10 by making the cyclic
permutation of z to x, x to y, and y to z:

in -—>% [1 + ¢0$(2"~/12Tmix)] in +%[1-¢0S(27fJ12Tmix)]i2x
- sin (21rJm,,,,) 5 (2i,,i2,. - 2i,,.i2,).

We will see in due course that it is generally only desirable to transfer one
component of the magnetization between spins, and here we choose this to
be the z-component.

8.12.1 TOCSY for two spins
We will now analyse the pulse sequence of Fig. 8.34 in detail so that we can
determine the expected form of the spectrum. In the pulse sequence, we
have to arrange things so that only 3-magnetization present at points A and
B, just before and just after the period of isotropic mixing, contributes to the
spectrum. Why this is necessary is easier to understand once the analysis
has been completed.

The required z-magnetization can be selected at these points by using
one of the coherence selection methods which will be described in Chap-
ter l I. However, it turns out that separating the z~magnetization from the
zero~quantum coherence is quite a difiicult, but not impossible, task. Again,
we defer discussion of this to section l 1.15 on p. 415.

In the sequence, the state of the system at point A is just the same as
after the COSY sequence (90° -r1 — 90°), so we can reuse the results of our
earlier calculation. Of the four terms given on p. 195, only term [ll contains

l:f1——->‘<fiL>l-if2—>

A B

Fig. 8.34 Pulse sequence for the TOCSY
experiment. The heart of the sequence is the
period of isotropic mixing, indicated by the
grey rectangle, which transfers
magnetization between spins which are
connected via an unbroken network of
couplings. In practice, isotropic mixing is
achieved by the use of a specially designed
multiple-pulse sequence, such as DIPSI-2.
As explained in the text, it is an-anged that
only z-magnetization present at points A
and B contributes to the spectnim.
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the required z-magnetization:

—cos(1rJ12tt)cos(Q,z1)f1;. [l]

As expected, the size of this magnetization reflects the evolution of the
offset and coupling during I1 i.e. the magnetization is modulated by these
parameters.

The effect of isotropic mixing on T1: is given by Eq. 8.10. However, we
are only interested in the terms in 1]; and jg; produced at point B, which are

-141-» C03 (11-/t2l1)¢0$ (Qtl1)i1; " A1->2 $03 (1TJt2fi)¢0S(QiI1)i2;-

For brevity we have introduced the transfer functions A1.“ and AH2, de-
fined as

Al-+1 = 5 [1 + cos(21rJ1;rm;,,)] A,_,2 = 5 [1 - cos (21tJ,2~r,,,,,)].
The final pulse rotates both f1; and it into in-phase observable magnetiza-
tion:

A]_>1 cos(rrJ1;t|)cos(.Q1t1)i1,- + AH; cos (1rJ12t;)cos(Q,z|)ig,-. (8.11)
The first term is modulated at the offset of spin one in rt and appears on
spin one during t2: it therefore gives rise to the diagonal-peak multiplet.
The second term has the same modulation in rt. but appears on spin two
during I21 this gives the cross-peak multiplet.

The overall intensity of the cross-peak multiplet depends on A |_.;. From
its definition, we can see that this term is at a maximum when

COS (27IJ12Tmjx) = -1,

which, since cos 7t = -1, occurs when

2rrJ,2'rm;,, = Jr i.e. rm,‘ = l/(2J;3).

In fact, with this optimum value of rmix, the diagonal peak intensity (A,_.|)
goes to zero.

We can determine the detailed form of the cross- and diagonal-peak
multiplets by analysing the modulation using the same approach as in sec-
tion 8.4.2 on p. 196. What we will find is that the diagonal- and cross-peak
multiplets are in-phase in both dimensions, and can be processed in such a
way that all the peaks have the double absorption lineshapes.

The fact that the cross-peak multiplets are in-phase is a substantial dif-
ference to COSY, where the multiplets are anti-phase. As was commented
on in section 8.4.4 on p. 202, the cancellation caused by this anti-phase
structure reduces the overall intensity of the cross peak, and so places a
lower limit on the size of the coupling which can be detected by COSY.

On the face of it, the absence of such cancellation in TOCSY cross peaks
means that we might expect to be able to detect smaller couplings using
TOCSY than we can using COSY. However. two extra factors must be
taken into account. Firstly, the overall intensity of the TOCSY cross peaks
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depends on the transfer function A|_,2; secondly, relaxation will take place
during the period of isotropic mixing, leading to loss of signal intensity.

if we are trying to detect a correlation through a small coupling, we will
need to use a long period of mixing. The losses due to relaxation will thus
be more severe than when looking for correlations through larger couplings.
Whether or not the overall intensity of the COSY or TOCSY cross peaks
is greater depends intimately on the choice of the experimental parameters
and on the molecule being studied. However, the general experience is that
for small to medium-sized molecules, COSY is the preferred experiment
for detecting small couplings.

Before mOVing on to consider the TOCSY spectra of more extended spin
systems, it is worthwhile looking at what would happen to the zero-quantum
terms which are created by the isotropic mixing. At point B in the sequence,
these terms will be

Slfl (27IJ|2TmiX) COS (R./|2I])COS ((2121) % (2i1,.i2, — Zimigy).

The final 90° pulse results in two anti-phase terms:

Sill (27fJ12Tmix) COS (7fJ12l])C0S (Q1I1) % (2i,j2, - 2;],-igz).

What we have, therefore, is an anti-phase contribution to both the cross-
and diagonal-peak multiplets. Funhemiore, this contribution is along x,
whereas the in-phase term is along y, so the anti-phase contributions will be
in dispersion (assuming the in-phase contribution is in absorption), resulting
in a phase distorted spectrum with a mixed lineshape. It is to avoid this
undesirable outcome that it is necessary to suppress the contributions from
zero-quantum coherence (see section 11.15 on p. 415).

It was mentioned above that the isotropic mixing sequence affects x-, y-
and Z-magnetization in essentially the same way. In the pulse sequence,
we chose to allow only z-magnetization at point A to contribute to the
spectrum, and it has been shown that this results in a spectrum with in-phase
absorption multiplets. It is interesting to consider what would happen to
x-magnetization present at this point.

From p. 195, the x-magnetization is given by term [3]

COS(7f./12I1)SlIl(.Q1I1)i1x.

After the period of isotropic mixing this term goes to

Al—>l cos (1rJ12t,) sin (om) it, + AH; cos (1rJ12t1) sin (o,t,)i2,. (8.12)
Both of these terms are unaffected by the final pulse (which is aboutx), and
so contribute directly to the spectrum.

If we determine the detailed form of the multiplets arising from these
terms (using the approach of section 8.4.2 on p. 196), we find that as before
both the cross- and diagonal-peak multiplets are in phase. However, the
problem is that the lineshapes of the peaks from the x-magnetization are
90° out of phase with those from the z-magnetization.
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We can see this by comparing Eqs 8.1 1 and 8.12. The terms arising from
Z—magnetization appear along the y-axis in 22, and are modulated in I1 as
cos (Qm ). In contrast, the terms arising from x-magnetization appear along
the x-axis and have ti modulation which goes as sin (Qm). There is thus a
90° shift in each dimension. So, if the peaks arising from Z-magnetization
are phased to double absorption, those arising from x-magnetization will
give peaks in double dispersion.

Therefore, if we are to retain absorption mode lineshapes, we must
restrict the transfer to either the z-magnetization or the x-magnetization.
It has been shown that the relaxation losses during the mixing time are
somewhat less for the mixing of z-magnetization, which is why we chose
this in the first place.

8.12.2 TOCSY for more extended spin systems
Our analysis of TOCSY for two spins does not reveal what is probably the
most interesting feature of the experiment which is the appearance of cross
peaks between spins which are not directly coupled. Unfortunately, for
more than two coupled spins, the evolution under isotropic mixing is rather
complicated and cannot be expressed in such a simple form as Eq. 8.10 on
p. 227. It is, however, possible to make numerical calculations (e.g. with a
computer) of the behaviour of particular spin systems.

Generally speaking it is found that cross peaks due to direct couplings
build up to their maximum intensity in a time which is of the order of
1/(2J). Peaks which arise from transfer through two successive couplings
take longer to build up, and if three successive couplings are involved, even
longer mixing times are needed.

If we are only interested in seeing cross peaks between directly coupled
spins, then a relatively short mixing time is used - say of the order of 1/(21)
for the largest expected coupling. However, if we are interested in seeing
the cross peaks due to transfer through two or more couplings. then we
might use a mixing time of 100 or even 200 ms.

As with the two-spin system, the cross- and diagonal-peak multiplets
are in phase in each dimension, and the spectra can be processed so that all
of the peaks have the absorption mode lineshape. Generally speaking, all
of the peaks in the spectrum have the same sign (e.g. positive), although in
some more extended spin systems it is possible for peaks to be negative at
certain mixing times.

Figure 8.35 shows part of the TOCSY spectrum of quinine; the region
shown is the same as for the DQF COSY spectrum shown in Fig. 8.18 on
p. 208. In contrast to COSY, the TOCSY multiplets are in phase, which
makes a substantial difference to the appearance of the spectrum.
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Fig. 8.35 Part of the TOCSY spectrum of quinine, recorded at 300 MI-Iz and using a mixing
time of 20 ms. Zero-quantum contributions present before and after the mixing time have been
suppressed using the method described in section 11.15 on p. 415.

8.13 Frequency discrimination and lineshapes
We now need to tackle the somewhat awkward and technical matter of
frequency discrimination and its relation to lineshape selection. Up to
now, we have been skirting around this problem in our discussion of two—
dimensional NMR, but when it comes to any practical spectroscopy it is an
issue which must be considered. So, we can delay no further.

The problem arises because the offset Q of a peak can be positive or
negative. Recall from section 4.4.2 on p. 59, that the offset is the difference
between the Larmor frequency and the receiver reference frequency. In a
multi-line spectrum, it is usual to set the receiver reference frequency to be
somewhere in the middle of the spectrum, so there will be peaks with both
positive and negative offsets, as shown in Fig. 8.36.

In one-dimensional NMR. this does not represent a problem as we
detect both the x- and y—components of the magnetization, and use them
to construct a complex time~domain function of the form

exp (iQt) exp (-Rt).

As we have seen, Fourier transformation of this signal gives. in the real part
of the Spectrum, an absorption mode peak at frequency Q.

<= Optional section
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Flg. 8.36 In a one-dimensional spectrum
the receiver reference frequency tum; is
usually placed somewhere in the middle of
the spectrum. As was explained in
section 4.6 on p. 64, a peak gives rise to a
detected signal oscillating not at the Larmor
frequency, mg, but at the offset frequency Q,
which is the difference between the Larmor
frequency and the receiver reference
frequency: Q = wii — wmf. As a result, there
are peaks with both positive and negative
offsets present in the spectrum.

In the spectrum arising from Fourier transformation of a complex time-
domain function, positive and negative frequencies are clearly separated.
The spectrum is usually plotted with the scale running from negative fre-
quencies, through zero, to positive frequencies. A peak at frequency +Q
will appear in a different place to a peak at frequency -Q. Such a spectrum
is said to be frequency discriminated. It is clear that this frequency dis-
crimination arises from the fact that exp (+iQt) and exp (—iQt) are different
functions, i.e. the time-domain data are sensitive to the sign of the offset.

As we have seen, in two-dimensional NMR the modulation in the ti
dimension is typically either of the form cos (Qzi) or sin (Qti). Let us start
out by considering the cosine modulated signal. Due to the property of a
cosine that cos (+6) E cos (-9), it follows that

cos (—Qti) E cos (+Qti).

As a result, a modulation at +Q is indistinguishable from modulation at —Q.
In a spectrum containing peaks with both positive and negative offsets,

the inability to discriminate the sign of the offset will lead to confusion.
Each peak will appear twice, and we have no way of knowing whether a
peak at 100 Hz is from a spin with an offset of +100 Hz or from one with
offset of -100 HZ.

If the data are sine modulated, the situation is a little different. Recalling
that sin (—0) 2 — sin (6), it follows that

sin (—Qti) E — sin (Qti).

What this means is that a peak at —Q is indistinguishable from a peak at
+Q but with negative intensity. In a spectrum with peaks at both positive
and negative offsets the result will be very confusing. Not only could a
negative peak overlap with, and so cancel out, a positive peak, but additional
confusion could arise in spectra which genuinely have both positive and
negative peaks.

Overall, we can see that two-dimensional experiments which have co-
sine or sine modulation with respect to ti are going to lead to problems in
spectra containing peaks with positive and negative offsets. Modulation as
cosine or sine in ti lead to spectra which lack frequency discrimination in
the wi dimension.

However, all is not lost as there are straightforward ways of remedying
this problem. These methods all rely on the ability to generate both sine and
cosine modulated data; how this is done is the topic of the next section.

8.13.1 Obtaining cosine and sine modulated data
We saw in section 8.8 on p. 214 that in the HSQC experiment the modula-
tion in ti was of the form cos (Qti). If we repeat the analysis of the pulse
sequence with the phase of the first 90° pulse applied to the S spin changed
from x to y, we will find that the modulation changes from cos (Qti) to
sin (Qti).

ln fact, in any of the experiments we have described so far, we can
always change the ti modulation from cosine to sine (or vice versa) by
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shifting the phase of a suitably chosen pulse or pulses. Generally a 90°
phase shift of all of the pulses which precede ti usually has the desired
effect. ln heteronuclear experiments, it is usually only necessary to shift the
phases of the pulses on one of the spins. So, for example. in HMQC all we
need to do is change the phase of the first 90° pulse to the S spin.

The overall result is that we will be able to record two data sets, one
with cosine and one with sine modulation, simply by changing the phase of
one or more pulses. The simplest form of these two data sets are:

s,(i, , :2) = cos (o,,i,)exp(-R<‘>ii ) exp (iQi=itz)exp(—R(2)t;)
- u> - <2) (M3)S,(ti, I3) = sin (QAti)exp(—R ti)exp (tQi=it2) exp (—R t2).

From now on, we will work with these prototype data sets. It is the avail-
ability of these two data sets which makes it possible to achieve frequency
discrimination.

8.13.2 P- and N-type selection: phase-twist lineshapes
The simplest way to achieve frequency discrimination is to make the ti
modulation of the form exp (iQti) i.e. of the same form as it is in 1;. As
was explained above. this kind of modulation is sensitive to the sign of Q,
and so frequency discrimination is achieved.

Noting that exp(i9) E cos9 + isin 9, we form the new time-domain
function Si>(ri, I2) from the combination S¢(ti , I2) + iS,(ti, t2):

$t>(tiJ2) = 5¢(ti.t2) + i$§(ti.t2)
= [cos (QAti) + i sin (on, )1 exp (-R<'>ii ) exp GQBIZ) exp (—R‘2)t2)
= exp (io,,i. ) exp (~R“)zi) exp (tom) exp(-R<2>i,).

Thus, simply by combining the cosine and sine modulated data in this
way we can generate modulation with respect to ti of the form exp (iQzi),
which is sensitive to the sign of the offset. The resulting spectrum will be
frequency discriminated.

We now need to work out the detailed form of the two-dimensional
spectrum which arises from this time-domain signal. The first step is a
Fourier transform with respect to lg, to give the function S p(ti , (1)2). As we
saw in section 8.2 on p. 190, this gives an absorption mode line in the real
part and the corresponding dispersion mode line in the imaginary part:

SPfli. 1112) = exp(iQAt1)eXP(“R(U[1)lA2(QB)+iD2(QB)l-

As before, A2(Q) is an absorption mode peak at frequency Q in the (1)2
dimension, and D2(Q) is the corresponding dispersion mode peak.

Next we compute the Fourier transform with respect to Ii. In contrast
to the approach we took earlier in this chapter, we need to use the regular
Fourier transform, as opposed to the cosine or sine transform. as the data
are of the form exp (iQti ). As in the (1)3 dimension, we obtain an absorption
mode line in the real part and a dispersion mode line in the imaginary part.
The resulting spectrum, Sp(wi , (U2), is

SP(wi.w2) = lA1(QA)+iDl(Q/1)]iA2(QB)+iD2(QB)],
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Fig. 8.37 Two views of the phase-twist lineshape: on the left is shown a perspective view,
and on the right is shown a contour plot (positive contours are black, negative contours are
grey). This lineshape is the sum of a double absorption line (Fig. 8.6 on p. 193) and a double
dispersion line (Fig. 8.12 on p. 202). The central part of the lineshape is dominated by the
double absorption mode line, but as we move further away from the centre the absorption
mode tails away leaving the broader double dispersion lineshape dominant. A cross-section
taken parallel to either axis and through the centre of the peak shows the absorption mode
lineshape, but as we move away from the centre of the peak, the lineshape becomes a mixture
of absorption and dispersion. This phase-twist lineshape is very unsuitable for high-resolution
work.

where Ai(Q) is an absorption mode peak at frequency Q in the wi dimen-
sion, and Di(Q) is the corresponding dispersion mode peak.

Multiplying out the bracket and separating the result into real and imag-
inary parts gives

SP((u1! W2) =[4l(QA)A2(QB) — D1 (QA)D2(QBE
real

+ if/11(QA)D2(QB) + Dt(QA)A2(QB)l -
imaginary

The real part of the spectrum, contained in the first square braces,
consists of a double-absorption line centred at fwi, M2} = {QA, QB} and
a double dispersion line at the same frequency. This combination is called
the phase-twist lineshape, and is illustrated in Fig. 8.37.

As can readily be appreciated from the diagram, this lineshape is not
really suitable for high-resolution work on account of it having both positive
and negative parts, and also as a result of the broadness of the dispersion
mode contribution. The phase-twist lineshape is an inevitable consequence
of Fourier transforming a data set such as S p(ti , I2) in which the modulation
is of the form exp (iQt) in each dimension. Thus, although we have achieved
the desired frequency discrimination, an unwanted by-product has been the
appearance of the phase-twist lineshape.

A data set which is modulated as exp (iQti) in the ti dimension is said to
be phase modulated, on account of the fact that as ti increases it is the phase
of the observed signal which changes. Double Fourier transformation of
such a phase modulated data set gives a frequency discriminated spectrum,
but inevitably yields the phase-twist lineshape.
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Wlien the cosine and sine modulated data sets were combined, we chose
the combination S¢(!; , 1;) + i S§(t| , I2). However, we couldjust as well have
made the combination Sc(t| , I3) — i Ss(r| , f3)Z

SY\'(tl-fl’) = 5<.~(!|.iz)-i5§(fiJ2)
= exp(—iQAt|)exp(—R(')r1)exp(iQBr2)exp(—R(2)t2).

Following through the same argument as before, the resulting spectrum is

3N(wi.w2) = [Al(_QA)A2(QB) “ Dl("'QA)D2(QB)]
+ i [A1(-Q-A)D2(Q-B) + DI(_QA)A2(Q-B)]-

This is just the same as before, except that the sign of the frequency of the
peak in the wt dimension has changed. The difference is essentially a trivial
one.

S p(w|, (4)2) is called the P-type spectrum (P for positive), as the mod-
ulation is in the same sense in each dimension i.e. both are of the form
exp (iQt). S N(a)1 , tug) is called the N-type spectrum (N for negative), as the
modulation is in opposite senses in each dimension i.e. one is of the fonn
exp (—i§2!), and one of the form exp (iQt).

Sometimes the N-type spectrum is called the echo and the P-type the
anti-echo. The origin of these names is described in section 11.3 on p. 377.

8.13.3 The States—Haberkorn-Ruben method
The States-Haberkorn~Ruben (SHR) method is a way of processing the
sine and cosine modulated data sets such that frequency discrimination is
achieved but without giving rise to the unfavourable phase-twist lineshape.

We start by Fourier transforming the cosine modulated data set with
respect to t2, resulting in the usual absorption and dispersion lineshapes:

Scm, an = cos (ain > exp <»R“’ri> [A2(QB) + 1112618)].
We then take the real part of the signal:

5¢,R(I1.w2) = Re[Sc(tl~(U2)]
= cos (on, ) exp (-R<‘>i, )A2(Q,,).

The same process is repeated for the sine modulated data set:

-5's(1‘1 9 wz) = Si"(QAl1)<fXP(-Rmfi)[/12(Qa)+iD2(QB)]-

Ss,R(tl , an = sin (QAtl)@XP(‘R(Ut1)A2(Q-B)-
Now we use Sc_R(t|,w2) to form the real part, and SS_R(z|, (1)2) to form

the imaginary part, of a new data set S5HR(r,, wz):

5sHR(Ii-(H2) = 5¢,R(1i,w2) + iSs.R(7iiw2)
= [C05 (QAY1) + i $if1(QAF1)l ¢XP("RmT1)A2(QB)
== exp (iQAt1) exp (—Rmt1)A;(QB).
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Fig. 8.38 If we deliberately place the
receiver reference frequency to one side of
all of the peaks, then all of the offsets will
be positive. There is then no ambiguity over
the sign of the offsets, and so frequency
discrimination is not an issue. However,
half of the spectrum is now empty — a waste
of data space. Furthermore, as the
transmitter is usually at the same frequency
as the receiver reference, placing the latter
to the side of the spectrum increases the
likelihood of off-resonance effects being a
problem with the RF pulses.

The modulation in ti is of the form exp (iQ.t, ), so frequency discrimination
in the wt dimension has been achieved.

In the last step we compute the usual Fourier transform with respect to
ti to give the final spectrum:

$st~tR(wi,w2) = [Ai(QA)+iDi{QA)]A2(QB)
= A1 (Q-A)A2(Q-B) + i Di(Q-A)A2(QB)-

The real part of S 5HR((z)1, (1)2) contains the required double absorption line-
Sllfipe, A|(Q-,4 )A;(QB). So, overall the SHR method achieves frequency
discrimination without introducing the unwanted phase-twist lineshape,

The data processing for the SI-IR method is slightly more complex than
for generating the N- or P-type spectrum, but the software on modem Spec-
trometers offers such processing as a standard option. Note, however, that
we need to record and store away separately a cosine and a sine modulated
data set for each t; increment.

It is probably worth noting at this point that the SHR method does not
gel round the problem in COSY that the cross- and diagonal-peaks have
different lineshapes. This is a fundamental property of the experiment, and
not a function of the way the data are processed.

8.13.4 The TPPI or Redfield method
Suppose we knew that the offsets of all the peaks are positive, then we would
not need to worry about frequency discrimination as there would be no
ambiguity about the sign of the offset of a particular peak. Since we are
at liberty to place the receiver reference frequency where we like, we can
ensure that all of the offsets are positive by placing the receiver reference
frequencyjust to the side of the peaks, as shown in Fig. 8.38.

Appealing though this simple method is, there are two good reasons
not to use it. The first is that half the spectrum — the part where peaks
with negative offsets normally appear — will be empty; this is a waste of
data space. The second point is that it is usual to make the transmitter
frequency the same as the receiver reference frequency, so the transmitter
would end up being placed to the side of all of the resonances. This is
unfavourable as it increases the maximum offset present in the spectrum.
making off-resonance effects more likely.

The TPPI or Redfield method is a neat trick which enables us to leave
the receiver reference frequency (and hence the transmitter frequency) in
the middle of the spectrum, but make it look as if all of the offsets in the
to; dimension are positive. The method involves incrementing the phase of
one of the pulses in the sequence in concert with the incrementation of ti
- hence the name, time proportional phase incrementarion. TPPI. We will
show that such an approach adds a constant frequency to the offsets of all
of the lines in the spectrum. By choosing this frequency appropriately, we
can make it appear that all of the offsets are positive.

Like the SHR method, TPPI relies on the ability to change the form
of the modulation in ti by changing the phase of an appropriate pulse (or
pulses) in the sequence. Recall from section 8.13.1 on p. 232 that we have
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access to cosine and sine modulated data sets of the form

S,~(ti.t;t = cos(QAti)eXp(—R”)f|l¢XP(iQaf2)@XP('R0)!2)
S,(ti.t3) = sin(QAti)exp(—Rml1)¢XP(iQBl2)¢XP(-R(2)I2)-

Although cosine and sine are different functions, they are related by a
simple shift in time (or phase). This is illustrated in Fig. 8.39, where we see
that shifting a cosine to the right by one quarter of a period gives us a sine
wave. Recall that in a whole period the phase changes through 360°, so a
shift by one quarter of a period is the same thing as a phase shift of 90° or
Ir/'2 radians.

We saw in section 2.6.4 on p. 19 that a cosine wave phase shifted by ¢
can be written

cos (Qt + ¢).

Using the trigonometric identity cos (A + B) E cosA cosB — sinA sin B,
cos (Qt + ¢) can be written

cos (Qt) cos ¢ - sin (Qt) sin ¢.

From this it is clear that a phase shift of ¢> = —rr/ 2 results in sine modulation:

cos(Qt)cos(~rr/2) — sin (Qt) sin (—2r/2) = sin (Qt),

where we have used sin (—2r/2) = —l and cos (—rr/2) = 0.
If we view a sine wave in this way as a phase shifted cosine wave. then

the cosine and sine modulated data sets can be written in a single expression

s(¢,ii,t2) = cos (oh, + ¢)eXp(—Rmti)eXp(iQgt2)eXp(—R(2)t2), (8.14)
where ¢ = 0 for the cosine modulated data set, and ¢ = —rr/2 for the sine
modulated data set.

We saw that shifting the phase of an appropriate pulse (or pulses) in the
pulse sequence enables us to change the ti modulation from cosine to sine.
Another way of describing this is to say that the phase ¢ in Eq. 8.14 can
be changed by altering the phase of an appropriate pulse in the sequence.
We can make ¢ any value we like by choosing an appropriate phase for the
pulse. For example in HSQC, ¢ = tr can be achieved by shifting the phase
of the first spin two pulse by tr or 180°.

The final, and key, step is to make ¢ propottional to ti: tp or ti or
¢ = waddtl. where aim is the constant of proportion between the phase
and ti. It is clear that maid is a frequency as phase = (frequency >< time).
Substituting this expression forqb into Eq. 8.l4 we have

5(¢. I112) = cos (QAri + to,,ddti)exp (—R")ti ) exp (iQi;t;)exp(—R(2)t2)
= COS + waddlli) €Xp (-RUJH) EXP (lggfg) GXP (—*R(2)I2).

What We have achieved is to add a frequency waiiii to the modulation fre-
quency in ti.

This is the essence of how the TPPI method works. By making the
Phase ¢ Pmportional to ti we can add a constant frequency to the offsets of

cosine
\
\
\

\\

shift right by 1/4 of a period

sine

Q

0 time

Fig. 8.39 Illustration of the relationship
between a cosine and sine wave. At the top
is shown a cosine wave; if this is shifted to
the right by one quarter of a period, the
result is a sine wave, shown undemeath.
Shifting the cosine wave to the right brings
in data from negative times, here indicated
in grey. A Shift by one quarter Of a period is
equivalent t0 a phase shift of 90° or rt/2
radians.
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Fig. 8.40 If we have frequency discrimination then all we need to do is choose the receiver
reference frequency and the ti sampling interval, Ai, such that all of the peaks have offsets
which fall in the range —f-iwi to +_fm3xi as shown in the top spectrum. Adding fmx to 311 of
the offsets makes sure that they are all positive, but increases the maximum offset to 2fmx, as
shown in the lower spectrum.

all of the peaks, and if this frequency is chosen appropriately we can make
it appear that all of the offsets are positive. Our final task is to work out
exactly how the phase has to be varied.

The data in ti are recorded at regularly spaced intervals of time, so in
successive experiments ti take the values 0, Ai, 2Ai ..., where Ai is the
ti sampling interval. For reasons which are explained in section 12.5.2 on
p. 436, the maximum frequency which can be represented correctly by such
a sampled signal is I/(2Ai) Hz; we will call this frequency fmax.

If we have frequency discrimination in ti, then the range of offsets which
can be represented correctly is from —fm,,,, to +fma,i. In such a situation we
would choose the receiver reference frequency and Ai so that all of the
offsets present fall within this range.

However, the problem is that we do not have frequency discrimination,
and so need to make sure that all of the offsets are positive. We can do
this by adding fmx to all of the offsets, as shown in Fig. 8.40. Now the
maximum frequency is 2fm,,,,, so to represent this range properly the value
of Ai will need to be halved, giving a new value of A] = l/(4fm,,,,).

We saw above that the frequency of all the peaks can be shifted by
mm by making the phase proportional to ti: ¢ = waddti. The additional
frequency we require is fmax Hz, which is Zzrfmax rad s". So, the phase is
given by

¢ I 27l’fm;iXI] .

Recall that ti is incremented through the series of values O, A], 2A]
which can be written (i —- l)A'] where i = 1, 2, 3 So the phase for the
ith increment ofti is

¢f = znfmaxfi — l)Ai-
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Now \\’¢ recall that A; = l/(4fma,,), so

I
¢t' _ 27T.fmax(i

_ 71'
= (I -

What this says is that as ti is incremented in steps of A] , the phase must be
incremented in steps of zr/2. So. as ti goes through the series of values 0,
A1, 2A], 3A§ the phase moves in synchrony through the values 0, tr/2,
tr, 3rt/2 ....

For the case of the COSY experiment, incrementing the phase of the first
pulse by tr/2 results in the phase ¢ changing by rr/2. So, in the TPPI method
the phase of first pulse is incremented by zr/2 each time ti is incremented.
This is illustrated in Fig. 8.41.

Once the TPPI method has been applied, all of the offsets in wi will
appear to be positive, and so we can process the data in the ti dimension
using a cosine (or sine) Fourier transform. Such a transform only computes
that part of the spectrum with positive frequencies, and so no data space is
wasted on the empty part of the spectrum covering negative frequencies.

8.13.5 The States—TPPl method
Two-dimensional spectra often contain what are called axial peaks, which
are a series of peaks at wi = 0; the origin of these peaks is described in
more detail in section l l .7 on p. 391, as is a way of suppressing them.

The signals which give rise to axial peaks come from magnetization
which has recovered due to relaxation during the pulse sequence. As a
result, these signals are not phase shifted when the pulses prior to ti are
phase shifted as part of the SHR or TPPI methods. In the SHR approach,
this does not make any difference as the axial peaks have zero frequency in
ti, so frequency discrimination is not an issue. In the TPPI method, as the
signals which give rise to the axial peaks do not experience the phase shift,
they are not shifted by fmax and so remain at wi = 0, which is the edge of
the spectrum (see Fig. 8.40 on p. 238).

The way in which axial peaks appear in the spectrum is thus different
according to whether or not we have used the SHR or TPPI methods. In
SHR the peaks appear at wi = 0 which is the middle of the spectrum. In
contrast, in TPPI the peaks appear at the edge of the spectrum. Having
axial peaks in the middle of the spectrum is not really acceptable, as they
might well fall on top of peaks we are interested in. However, having axial
peaks at the edge of the spectrum. where there are probably no real peaks
of interest, is acceptable.

The realization that TPPI is advantageous because of where the axial
peaks appear led to the development of the States—TPPl procedure. In
this, frequency discrimination is achieved by the usual SHR method i.e. we
record separate sine and cosine modulated data sets and process them in the
way already described. The new feature is that each time ti is incremented,
we invert the phase of the pulses which precede ti, and at the same time
change the sign of the data we have recorded. Of course, these two things

X
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Fig. 8.41 Illustration of how the TPPI
method is applied to the COSY pulse
sequence. Each time that ti is incremented,
the phase of the first pulse is incremented by
/r/2 radians or 90°.
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cancel one another out, and so make no difference, except for the Signals
which give rise to the axial peaks which are not inverted when the phase of
the pulses prior to t1 are inverted.

As a result, the sign of the signals which give rise to the axial peaks
alternate each time t| is advanced. The effect of this phase altemation is
similar to that used in TPPI, except that as the phase changes by 180° each
time tl advances by A| , the frequency shift is by fmx. As a result, the axial
peaks are shifted to the edge of the spectrum and hence out of the way.

8.13.6 Phase in two-dimensional spectra
The prototype data sets given in Eq. 8.13 on p. 233 are idealized in that
there are no phase errors in either dimension. As we saw in section 5.3.2 on
p. 90, for instrumental reasons there is often a phase error in the acquisition
dimension (here I2), and the same applies to the t1 dimension. So, a more
realistic representation of the two data sets includes a phase error of ¢1 in
I1, and $2 in I22

Sc(t1,t2) = cos (QAII + ¢1)exp (—Rmt|)exp (iQBt2)6Xp(i¢2)6Xp (-'R(2)l2)
SS(t1,r2) = sin (QAI; + ¢1) exp (—Rmt1)exp (iQ5I2) exp (i¢;;)eXp(—Rmtg).

To obtain absorption mode lineshapes, we will need to apply phase
corrections to the final two-dimensional spectrum in just the same way as
we do to one-dimensional spectra. The only difference is that there are two
phases to adjust, one for each dimension.

The software provided with modern spectrometers makes it possible
to apply such phase corrections. However, phasing a two-dimensional
spectrum is not quite so straightforward as phasing in one dimension, as
it is not feasible to recompute the whole spectrum after each trial phase
correction is applied — to do so would simply be too time consuming. So.
we cannot ‘drag the mouse’ to alter the phase and see right away how the
two-dimensional spectrum changes in the way We are accustomed to for
one-dimensional spectra.

The way two-dimensional spectra are phased in practice is to take out
some selected cross-sections parallel to one of the dimensions, determine
the correct phase using these, and then apply the correction to the whole
spectrum. The process is then repeated for the other dimension.

Sometimes, particularly in routine work, it is not considered worthwhile
going to all the trouble of using the SHR or TPPI methods to obtain absorp-
tion mode lineshapes, and then in addition having to phase correct the two-
dimensional spectrum. Rather, the simpler approach, involving calculating
the absolute value spectrum, is used. How this works is considered in the
next section.

Absolute value spectrum
The simplest way to achieve frequency discrimination is to use P- or N-type
data selection. The resulting time-domain signal, including phase errors. is
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Flg. 8.42 Two views of the absolute value lineshape: on the left is shown a perspective view,
and on the right is shown a contour plot. The lineshape is strictly positive, but has broad
features which derive from the dispersion contributions to the lincshupc.

of the form

Sp(I| , I3) = CXp (lQ.AI| ) €Xp(i¢|)€Xp(—R(l)I1)

X exp (lgglg) exp (i¢1) exp (—R(2)t2).

Noting that exp (i¢t ) 6Xp (i¢2) = ¢XP (ll¢t + ¢zl). enables us to simplify this
expression to

Sp(r|, t2) = exp (iQ,\r| ) exp(—R“)t1 ) exp (iQBt2) exp (—R‘2)t;) exp (i¢mt).

Whfife ¢tt)[ = ¢| +

As was shown in section 8.13.2 on p. 233, double Fouriertransformation
of this time~domuin ltmction gives the spectrum

$1»<t»..w2> = ¢XP(i¢tm){lA1(QA)A2(QB) - D1(~QA)D2(-QB)]
+ i lAl(QA)D2(QB) + 0. (QA)/\z(Qn)l }.

Note that the phase factor exp (i¢,,,,) simply multiples the whole spectrum.
Finally, we compute the magnitude of this spectrum which is defined as

l5P(w|.wz)| = \l5r>(w|.w2)5,§(w1-W2),

where S ; is the complex conjugate of the spectrum, found by changing the
sign of the imaginary part:

S;<w..w2> =<=xp<-i¢....i{ iAI(QA)A2(QB) - 1>.<s2..>1>2tsm1
— ilAt(QA)D2(QIi‘) + 1>.<n,n/magi] l.

A few lines of algebra show us that

l

lAl(QA)A’2(QB) - Dl(QA )Dz(Q1;l2 2l5P(wi.wz)| = 0 .
+ lAl(QA)D2(QB) + D|(Q,q)/lg(QB)]“
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The lineshape is rather an involved mixture of absorption and dispersion in
each dimension. However, the nice thing about it is that it is not affected by
the phase errors: these cancel out when computing the magnitude.

Figure 8.42 shows two views of this lineshape, known as the absoluge
value lineshape. As can be seen, it has undesirable broad features which
continue well away from the centre of the peak — these are due to the
dispersion mode contributions. In addition, because of the calculation of
the square root, all of the peaks in the spectrum will tum out positive, which
results in a loss of useful information in spectra such as COSY.

The combination of computing a P-type spectrum and then plotting the
absolute value gets round some of the complexities of processing and phas~
ing two-dimensional spectra. For routine work on unchallenging molecules,
this approach is certainly convenient and probably sufficient. However, for
more difficult problems, or where the highest resolution is required, there is
really no substitute for computing a proper absorption mode spectrum.

8.14 Further reading
Two-dimensional NMR:
Chapter 5 from Hore, P. J., Jones, J. A. and Wimperis, S. (2000) NMR: The
Toolkit, Oxford
Chapter 8 from Freeman, R. (l 997) Spin Choreography, Spektnim
Chapter 13 from Levitt, M. H. (2001) Spin Dynamics, Wiley
Chapter 4 from van de Ven, F. J. M. (1995) Multidimensional NMR in
Liquids, VCH
Chapters 6 and 8 from Emst, R. R., Bodenhausen, G. and Wokaun, A.
(1987) Principles ofNuclear Magnetic Resonance in One and Two Dimen-
sions, Oxford

Low-pass J-filters:
Schulte~Herbriiggen, T., Meissner, A., Papanikos, A., Meldal, M. and
Sorensen, O. W. (2002) J. Magn. Reson., 156, 282

TOCSY:
Chapter 6 (and references therein) from Cavanagh, J., Fairbrother, W. 1-.
Palmer III, A. G. and Skelton, N. J. (1996) Protein NMR Spectroscopy.
Academic Press

The SHR and TPPI methods:
Keeler, J. and Neuhaus, D. (1985) J. Magn. Res0n., 63, 454
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8 15 Exercises
ldentify the preparation and mixing periods for each two-
dimensional pulse sequence described in this chapter.

The diagram below is the same as Fig. 8.5 (b) on p. l9l i.e. the re-
sult of Fourier transforming the time domain data along 12. Sketch
the form of the cross-sections indicated by the arrows at positions
1. 2 and 3, and 4, 5, and 6. Explain carefully any differences and
similarities between these cross-sections.
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Starting with equilibrium magnetization on spin two, 1:21, d6I6flTliflC
the form of the observable operators present at I2 = O in the COSY
sequence. Describe the kinds of peaks (cross or diagonal) which
each observable term gives rise to, and work out the detailed form
of the two-dimensional multiplets. In each case, choose phase cor-
rections and appropriate Fourier transforms so as to give absorption
mode peaks.

Repeat the previous exercise, but this time for the DQF COSY
pulse sequence.

A two-dimensional zero-quantum spectrum can be recorded us-
ing the same pulse sequence as for double-quantum spectroscopy,
Fig. 8.19 on p. 209. The only difference is that zero-quantum
coherence is selected during ti. Given that

A

zero—quantum part of Zflxigy = —%ZQy

: —% (2il_vi2x _ 2flxi2_\-) 9

determine the form of the two-dimensional spectrum. The evolu-
tion of this zero-quantum term is given in section 7.12.3 on p. 180.
Compare the form of the zero-quantum and double-quantum spec-
tra. What information is available from the zero-quantum spec-
tmm?

Why must the second I spin 90° pulse in the HSQC sequence be
applied about the y~axis? What would the effect be of applying this
pulse about the —y-axis?
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8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

For the HSQC sequence of Fig. 8.23 (a) on p. 215, show that
changing the phase of the first 90° pulse to the S spin from x to
y results in the modulation of the observed signal changing from
COS (Q5-It) [O Sill (Q5-I1).

For the HMQC sequence, as applied to proton and BC, explain
how difference spectroscopy can be used to suppress the contribu-
tions from protons which are not coupled to 13C. Make an explicit
calculation to demonstrate that your proposal works.

Explain why, in an HMQC, the peaks will have their maximum
intensity when T = n/(2J1S)forn = 1, 3, 5 ..., and zero intensity
forn=2, 4, 6

Discuss how you would modify the HSQC pulse sequence to make
it suitable for detecting correlations through long-range ‘3C—1H
couplings.

It was shown that for the TOCSY sequence (applied to a two-
spin system) the observable signals at the start of t; are given by
Eq. 3.11 on p. 2281

A1_,| COS (7IJ12I|)COS (Q|I1)i1y -l-A1_,2 COS (7l'J12I1)COS (Q1l|)igy.

Using the same approach as in section 8.4.2 on p. 196, show that
both the cross- and diagonal-peak multiplets in a TOCSY are in
phase in each dimension and can be processed in such a way that
the peaks in both multiplets have the absorption lineshape.

A peak in the P-type spectrum can be represented as

SP(wl 412) = lAl(QA)A2(QB) * Dl(QA)D2(QB)l. gal _ S

+ l [A 1 (QA )D2(QB) + D1(QA)A2(QB)l-
C . _. v

imaginary

The real part of this phase-twist lineshape is plotted in Fig. 8.37 on
p. 234. What does the imaginary part look like? Sketch a contour
plot.

Describe how you would apply (a) the SHR, and (b) {he TPPI
method to the HSQC sequence.

For the double-quantum experiment whose pulse sequence 15
shown in Fig. 8.19 on p. 209, it turns out that shifting the phfl-<5
of all the pulses which precede ti by ¢ results in the ti modulation
being modified from cos ([Qi + Q2]ri) to cos ([Q| + Qzlh + 34’)-

Describe how you would implement the TPPI method in this Sc-
quence so as to generate a frequency discriminated spectrum.



Chapter 9

Relaxation and the NOE
In this chapter we are going to look at the phenomenon of relaxation. which
is how the bulk magnetization from the spins reaches its equilibrium value.
As we have already seen. at equilibrium we have magnetization along z, but
none in the transverse plane: it is relaxation which drives the spins to this
equilibrium state.

This chapter starts out by describing how relaxation comes about, and
how its rate is determined by molecular properties, such as shape and
motion. We then move on to consider some important applications of
relaxation phenomena, such as the nuclear Overhauser effect (NOE) and
cross correlation.

Relaxation in NMR is unusually slow when compared with that of other
molecular energy levels. For example, the lifetime of an excited electronic
state is typically a few microseconds, and the vibrational and rotational
energies of molecules are likely to change at every collision, giving them
lifetimes of a few nanoseconds. In contrast, it takes between milliseconds
and seconds for the equilibrium magnetization to be established; in extreme
cases this process can take minutes.

The slow relaxation is at once both an advantage and a disadvantage.
The advantage of slow relaxation is that it means that any transverse mag-
netization (or, more generally, coherences) we generate will survive for long
enough for it to be manipulated and observed. Multiple-pulse NMR, with
its sequences of pulses and delays lasting many milliseconds, would simply
not be possible if relaxation were not so relatively slow. Furthermore, slow
relaxation means that the FID persists for long enough for us to obtain
high-resolution spectra ~ that is, the linewidths are narrow.

The disadvantage of slow relaxation is that it sets a lower limit on the
rate at which an experiment can be repeated. Remember that, in even
the simplest pulse-acquire experiment, we usually repeat the experiment
several times in order to improve the signal-to-noise ratio. The problem is
that, before we can repeat the experiment, we have to allow sufficient time
for the equilibrium magnetization to be re-established. If we do not do this,
the Z-magnetization will be reduced in size, and so will the observed signal.

We will see in this chapter that in NMR the rate of relaxation is sensitive
to the physical environment the nuclei find themselves in, and the nature

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons. Ltd
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Fig. 9.1 Relaxation drives the
z-magnetization to its equilibrium value.
indicated here by the dashed line, and the
transverse (x or y) magnetization to its
equilibrium value of zero.

of the motion which the molecule is undergoing. Thus relaxation can be
used as a probe for studying both of these things. It tums out that, when
compared with other techniques, NMR is sensitive to rather slow molecular
motions, and so NMR can be a unique source of such information.

When it comes to structural studies, the one really important manifes-
tation of relaxation is the NOE. This allows us to identify which nuclei are
close in space (for protons, say within 5 to 6 A), thus providing complemen-
tary information to scalar coupling, which relates to the bonding network.
Although the NOE is only semi-quantitative when it comes to estimating
distances, it nevertheless forms a key element in the NMR spectroscopist’s
arsenal of techniques. Much of this chapter will therefore be devoted to
understanding the origin of the NOE, and to describing the experiments
which are used to measure it.

We will start with a description of what relaxation is, focusing on how
what is happening to the individual spins leads to a particular behaviour
of the bulk magnetization of the sample. Our discussion will reveal the
importance of the timescale of molecular motions, and introduce the key
idea of the correlation time, which is used to characterize these motions.

Having established the underlying physical phenomena which are re-
sponsible for relaxation, we will go on to describe the origin of the NOE.
To do this we will need to consider in detail the relaxation properties of a
pair of spins, something which is conveniently described using the Solomon
equations. These equations are also a convenient way of understanding how
the experiments used to detect the NOE work.

Having discussed the NOE, we then go on to look at the relaxation
of transverse magnetization; this kind of relaxation has some similarities
and some important differences to the relaxation of z-magnetization. The
chapter closes with a discussion of the phenomena of cross correlation
which results from the interference between different sources of relaxation.

Describing the effects of relaxation is relatively straightforward, but
understanding the origin of relaxation and its dependence of motion is rather
more difficult. It is probably the part of NMR theory that most people.
including the author, find most difficult to grasp. Do not be surprised.
therefore, if you find this chapter more challenging than those which have
preceded it.

9.1 What is relaxation?
Relaxation is the process by which, over time, the bulk magnetization re-
turns to its equilibrium position. We have already established that at equilib-
rium there is no transverse magnetization, but there is z-magnetization along
the direction of the applied magnetic field. The size of this equilibrium
z-magnetization depends on the number of spins, their gyromagnetic ratio
and the size of the applied field.

Thus, relaxation drives the transverse magnetization to zero and the
longitudinal (that is, along z) magnetization to a particular steady value-
as illustrated in Fig. 9.l. The description of the equilibrium magnetization
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as being ‘steady‘ is important. as by definition at equilibrium all quantities
cease to be time dependent i.e. nothing is changing.

However. this description tells us nothing about what is happening to the
individual spins which results in this behaviour of the bulk magnetization.
How the two are connected is the topic of the next few sections.

9.l.l Behaviour of individual magnetic moments
lt is helpful at this point to remind ourselves how the bulk magnetization of
the sample is related to the magnetic moments of individual spins. Recall
the discussion in section 4.1 on p. 51, where we described how each spin
has associated with it a magnetic moment. This moment is a vector quantity,
having a particular magnitude and direction. The magnitude is determined
by the gyromagnetic ratio of the nucleus, but there are no restrictions on
the direction in which a particular moment can point, so in general each
moment has an .x-, y- and :-component.

The bulk z-magnetization is found by adding together the 2-components
of the magnetic moment from each spin. Similarly. the x- and y-
magnetizations are found by adding together the corresponding components
from each spin. At equilibrium, the x- and y—components of the individual
spins are distributed randomly, so adding them up results in no bulk trans-
verse magnetization.

For the z-magnetization the story is rather different. As was described in
section 4.1 on p. 5 l, there is an energetic preference for the z-component of
the magnetic moment to be aligned along the field direction. However, the
energy preference is rather small and so the alignment is easily disrupted
by the thermal motion. Nevertheless, when summed over the whole sample
there is a net magnetization along the z-direction.

When an RF pulse is applied to equilibrium magnetization. the :-
rnagnetization is rotated towards the transverse plane. As a result, the
I.-component is reduced in size. After the pulse, the resulting transverse
magnetization precesses about the field direction, and it is this precession
which we detect in the form of the FID.

The question is, what is happening to the magnetic moments of the
individual spins during the pulse and period of free precession? It tums
out that each magnetic moment behaves in exactly the same way as the bulk
magnetization. That this is true can be seen from a quantum mechanical
treatment of the motion of a single spin — the details of which are given in
Chapter 6. However. even without looking into the details of the quantum
mechanics, it seems reasonable that each magnetic moment behaves in the
same way as the bulk magnetization, as the latter is composed of the former.

So, for example, if we apply a 90° pulse about the x-axis, the 2-
component of the magnetic moment is rotated to —_v. the x-component is
unaffected, and the y-component is rotated to +1. During free precession,
the magnetic moment precesses about the z-axis at the Larmor frequency,
sweeping out a cone of constant angle. as illustrated in Fig. 9.2. As a result
we have a constant 1-component, and oscillating .r- and y—components.

At equilibrium, there is a net alignment of the individual moments along
the z—axis. The effect of a 90°(x) pulse is to rotate the z-component of each

X Y

Fig. 9.2 Each spin has associated with it a
magnetic moment. which is a vector
quantity. having a magnitude and a
direction. The moment can point in any
direction, with its energy being determined
by the angle between the moment and the
applied magnetic field. which is along 1.
The moment precesses about the :-axis at
the Larmor frequency. describing a cone of
constant angle. As a result. the .\-- and
v-components of the moment oscillate at the
Larmor frequency. If a transverse magnetic
field. oscillating at the Larmor frequency, is
applied, the magnetic moment will be
rotated in such a way that the angle it makes
to the :-axis will be altered.
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Flg. 9.3 Spin A experiences a local field,
B100, due to the magnetic moment of a
nearby spin B. The magnitude and direction
of the local field depends on the distance r
between the two spins, and the orientation
of the vector joining the two spins (shown
dashed) with respect to the applied field,
which is along the z—axis.

magnetic moment onto the —y—axis. Therefore, after the pulse there is net
y-magnetization. The crucial thing is that the pulse affects each magnetic
moment in the same way, so all the z-components are rotated onto —y. It is
for this reason that the pulse is able to rotate the net z-magnetization into
the transverse plane.

After the pulse, the magnetic moments of the individual spins precess
about the z-axis at the Larmor frequency. Once again, the key thing is that
each magnetic moment is precessing at the same frequency, so they do not
get out of alignment with one another as a result of this precessional motion.
The alignment between the moments is therefore maintained.

After the 90° pulse the spins are definitely not at equilibrium. The
question is, how can equilibrium be restored? One simple option is to apply
another 90° pulse which, if its phase is chosen correctly, will rotate the
magnetization back to its equilibrium position along the z-axis. However,
this is not relaxation — this is just us manipulating the spins. Relaxation is a
natural process which takes place without any intervention from us, so we
must identify another way in which the magnetization can be driven to its
equilibrium position.

9.1.2 Local fields
From all we have seen so far, it is clear that to rotate the magnetization
towards the z-axis we need a transverse magnetic field which is oscillating
at or near to the Larmor frequency. During an RF pulse we apply such
a field deliberately, but it turns out that such oscillating fields also occur
naturally within the sample. These fields can interact with the individual
magnetic moments, and thus rotate them to new positions, in just the same
way as an RF pulse.

There are various mechanisms which lead to the generation of magnetic
fields within the sample, and we will discuss these in more detail later on.
At this stage it is helpful to describe just one source of these fields, which is
from other spins in the sample. Each spin has a magnetic moment which, as
we have noted before, behaves like a small bar magnet, generating its own
magnetic field. A spin therefore experiences not only the static applied field
but also magnetic fields from nearby spins; this is illustrated in Fig. 9.3

This field generated by a spin — called the localfield — falls off rapidly
with distance, and even at the closest approach, is many orders ofmagnitude
weaker than the applied field. The local field varies in magnitude and
orientation as the molecules move around due to thermal agitation. If this
motion results in the transverse component of the field oscillating at close
to the Lannor frequency, a magnetic moment which experiences the local
field will be rotated to a new direction, just as it would be by a pulse.

The local field acts like a pulse but, rather than all of the spins being
affected in the same way, the elfect is highly localized. The local field
is different in different parts of the sample, so each spin is affected in a
difierent way. This is in complete contrast to a pulse, which affects all of
the spins in the same way.

As these local fields can change the orientation of individual magnetic
moments, both the magnitude and orientation of the bulk magnetization will
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Fig. 9.4 Visualization of how the bulk z-magnetization is driven to zero by random changes
in the z-component of the magnetic moments of individual spins. The z-component of each of
20 spins is represented by a dot: if the spin is aligned along +1. the component takes the value
+1. whereas if the spin is aligned along —z, the component takes the value -1. The initial state,
shown in (a), has all of the z-components along —z. such that the total z-magnetization, found
by adding up the individual z-components. is ~20. After a short time, some of the individual
magnetic moments will be reoriented, thus changing their 1-components. This is shown in (b),
where the z-magnetization is -16. If we wait longer, more of the magnetic moments will have
been reoriented. giving the arrangement shown in (c), for which the z-magnetization is -12.
After sufficient time the z-magnetization will become zero, as is the case for arrangement (d).
See text for discussion of why the magnetization is driven to zero, rather than to its proper
equilibrium value.

be affected. What we now need to explore is how these local fields drive the
bulk magnetization to its equilibrium position.

If we assume, not unreasonably, that the local fields are varying ran-
domly in their magnitude and orientation, then we expect that the bulk
z-magnetization will eventually be driven to zero. The reason for this
assertion is that if the individual magnetic moments are rotated by random
amounts at random time intervals, after sufiicient time the moments will be
randomly oriented, resulting in no bulk magnetization.

This idea is illustrated in Fig. 9.4, in which we see how the z~
components of just twenty spins are affected by random reorientations of
the individual moments. So that we can see more clearly what is going on,
at time zero the magnetic moments of all of the spins have been aligned
along —Z, as shown in (a). After some time, the magnetic moments of a few
of the spins have been reoriented, leading to a change in their z-components;
this is shown in (b). It is clear that the result of these reorientations is to
reduce the size of the z-magnetization.

Leaving longer times, as shown in (c) and (d), results in more of the
magnetic moments being reoriented, and so a further reduction in the total
z-magnetization. It is clear that, after sufiicient time, these random reorien-
tations will drive the z-magnetization to zero.

There is clearly a problem with this description, as it predicts that at
equilibrium there is no z-magnetization, which is certainly not the case. To
resolve this problem with our argument we need to think about what it is
that the spins are coming to equilibrium with, which is the topic of the next
section.
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Fig. 9.5 The interaction of the spins with
the applied magnetic field, and the thermal
motion of the molecules, can both be
thought of as leading to reservoirs of energy.
The two reservoirs are able t0 Come I0
equilibrium as a result of the mediation
provided by the local fields i-e. the 10081
fields create thermal contact between the
two reservoirs.

9.1.3 Coming to equilibrium with the lattice
Recall that the local fields are varying on account of the random thermal
agitation of the molecules in the sample. We describe this by saying that
the local fields provide a mechanism by which the thermal motion of the
molecules can be experienced by the spins - in other words it puts the spins
into contact with the thermal motion.

We know from everyday experience that if we put two objects in contact,
they will come to thermal equilibrium by exchanging heat energy. For ex-
ample, a hot lump of metal dropped into a bucket of cold water cools down
as energy flows from the hot metal to the cooler water. As the metal cools,
the water is heated, and eventually both come to the same temperature. They
are then in thermal equilibrium with one another.

In our NMR sample, the nuclear spins have a certain amount of energy
on account of the interaction of the magnetic moments with the applied
magnetic field. Of course, the nuclei have other sorts of energy as well,
but we are not concemed with these here, and so when we talk about the
‘energy of the spins’ we will just mean this energy of interaction between
the spins and the field.

The interaction between the spins and the field can therefore be thought
of leading to a reservoir of (spin) energy. The thermal motion of the
molecules is also a reservoir of energy, which is put in contact with the
spin energy reservoir via the mediation of the local fields, as is illustrated
in Fig. 9.5. As a result, the two reservoirs are able to come to thermal
equilibrium with one another, just in the same way that two physical objects
can come to thermal equilibrium.

When the bulk magnetization is rotated away from the z-axis, the energy
of the spins is increased. This is because the number of spins whose
magnetic moments are aligned with the z—axis, the low energy arrangement,
is decreased. For the spins to come back to equilibrium they therefore need
to lose energy.

The amount of energy that the spins need to lose to come to equilibrium
is minuscule when compared with the energy of thermal motion. Bringing
the spins back to equilibrium is analogous to dropping our hot metal into an
ocean, rather than a bucket!

The process by which the z-magnetization is returned to its equilibrium
value is called longitudinal relaxation. You will also find it referred to as
spin—lattice relaxation. This latter term arises from the understanding that
this kind of relaxation involves the flow of energy between the spins and
the molecular motion. The ‘lattice’ is a generic term used to describe a
reservoir of energy, which in this case is the molecular motion.

The equilibrium z-magnetization
In the previous section we discussed a simple picture in which the reori-
entation of individual magnetic moments by random fields drove the bulk
z-magnetization to zero — a result which is plainly wrong. as we know that
relaxation results in the establishment of a finite Z-magnetization all filulllb‘
rium. It is not that this picture of the magnetic m0ments being I60l'i¢I1l¢d is
wrong, it is just that there is an additional subtlety which we need to take
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account of in order to arrive at the correct equilibrium position.
lfthe local field at a particular spin results in its magnetic moment being

rotated mwara's the :-axis. the energy of interaction between the spin and
the applied field is reduced, and so there must be a flow of energy from the
spin to the surroundings. ln contrast, if the magnetic moment is turned away
from the :-axis. the magnetic energy of the spin increases, and so there must
be a flow of energy from the surroundings to the spin.

The key point to understand here is that there is a higher probability for
a certain amount of energy to flow into the surroundings than there is for the
same amount of energy to flow out of the surroundings. The reason for this
is connected to the fact that the surroundings are at thermal equilibrium, a
situation described by the Boltzmann distribution. This distribution tells us
that as the energy of a particular state (i.e. energy level) of the surroundings
goes up. the probability of that state being occupied goes down.

When energy is absorbed, the surroundings move from a lower energy
state to a higher energy one; in contrast, when energy is given out, the
surroundings move from a higher energy state to a lower energy one. As
the lower energy state is the more occupied of the two, it follows that it
is more probable that the surroundings will absorb, rather than give out, a
certain amount of energy.

The overall result of this asymmetry between the probability of giving
out and receiving energy is that events in which the magnetic moments are
moved towards the z-axis are more probable than those in which the moment
moves away from the z-axis. As a result, after many such events, the z-
components of the moments are not distributed randomly, but in such a way
as to lead to a net z-magnetization.

This discussion relies on the fact that the energy of interaction between
the spins and the magnetic field is minuscule compared with the energy as-
sociated with the thermal motion of the molecules. We can therefore safely
assume that once the surroundings are at equilibrium, the flow of energy to
and from the spins will not perturb this equilibrium in any perceptible way.
It also follows that the difference in the probability of these tiny amounts
of energy flowing into or out of the surroundings is very small, so that the
distribution of the z-components of the magnetic moments is only slightly
perturbed from a random arrangement.

9.1.4 Transverse relaxation
The process by which transverse magnetization decays away to its equilib-
rium value of zero is called transverse relaxation. It is also called spin—spin
relaxation, a confusing and unhelpful term which we will avoid.

When we talk about the individual magnetic moments changing orien-
tation as a result of interacting with an oscillating transverse local field, it is
not only the z-, but also the transverse components of the moments which
can be changed. For example, if the local field has a component along x,
then the y-component of the magnetic moment can be changed. Similarly, a
local field along y can change the x~component. Overall therefore, these
local fields not only drive the z-magnetization to its equilibrium value,
but also do the same for the transverse magnetization. This is called the
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The origin of the terms secular and
non-secular will be described in section 9.8
on p. 291

non-secular contribution to transverse relaxation.
There is, however, a second way in which the transverse magnetization

is driven to equilibrium. Remember that the magnetic moments from in-
dividual spins precess about the applied magnetic field B0 at the Larmor
frequency (Fig. 9.2 on p. 247). However, the field experienced by a panic-
ular spin is not just BO, but is this field plus the z-component of the local
field. As a result the precession frequency is changed, albeit by rather a
small amount as the local field is much smaller than BO.

The local field varies from spin to spin, so the precession frequency is
slightly different for each spin. Consequently, over time the precession of
the individual moments will get out of step with one another, and thus the
net transverse magnetization will shrink. This is the secular contribution to
transverse relaxation.

If the local fields did not change over time, then this decay of the trans-
verse magnetization could be reversed using a spin echo. This comes about
because the frequency at which each spin is evolving is constant, so a spin
echo will refocus this, in just the same way that an offset term is refocused.
However, it is not the case that the local fields are time independent— on the
contrary, they are changing rapidly due to molecular motion. As a result, a
spin echo cannot refocus the evolution at this ever changing frequency, and
so the decay of the transverse magnetization cannot be reversed.

There is a subtle point here: the secular part of transverse relaxation
requires a distribution of fields along the z-axis, but in contrast to longitu-
dinal relaxation, and the non-secular part of transverse relaxation, the fields
are not required to be oscillating at the Larmor frequency. However, it is
important that these fields do vary with time, otherwise the decay of the
transverse relaxation will not be irreversible - and relaxation must be that.

The rate of molecular motion does have an effect on the secular part of
transverse relaxation, in the following way. If the motion is very fast, the
local field experienced by a particular spin changes so often that the spin
precesses at a frequency determined by the time-average of the local field.
In the limit of very fast motion, this time average is the same for all spins.
and so there is no longer any spread of precession frequencies, and hence
no dephasing and no transverse relaxation.

In practice, the averaging of the local field is not quite complete, so that
each spin still experiences a slightly different average field. As a result, the
magnetic moments do get out of step with one another, resulting in a decay
of the transverse magnetization. The faster the motion, the more complete
the averaging becomes, resulting in a smaller spread of average fields and
hence slower relaxation. In section 9.8 on p. 291 we will retum to a more
quantitative description of this effect of motion on the secular contribution
to transverse relaxation.

9.1.5 Summary
Rather a lot of new ideas have been introduced in this section. so it is helpful
to summarize the key steps in the discussion.
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o The magnetic moment from each individual spin behaves in the same
way as the bulk magnetization i.e. it can be rotated by a transverse
field oscillating at the Larmor frequency, and precesses about the field
along the z axis.

o In the sample there are sources of local magnetic fields which vary
randomly in orientation and magnitude. These fields are highly lo-
calized.

o If the local field experienced by a spin has a transverse component
which is oscillating at the Larmor frequency, then the orientation
of the magnetic moment of the spin will change. In particular, the
components of the magnetic moment which are perpendicular to the
transverse local field will be changed.

¢ These changes in orientation of the magnetic moments of individual
spins result in changes in the bulk magnetization of the sample.

0 The local fields provide a thermal contact between the spins and
the random thermal motion of the molecules. This drives the Z-
magnetization back to its equilibrium value.

0 The retum of the z-magnetization to its equilibrium value is called
longitudinal relaxation. Such relaxation is brought about by the trans-
verse components of local magnetic fields which are oscillating at the
Larmor frequency.

0 The decay of transverse magnetization to its equilibrium value of zero
is called transverse relaxation.

Q There are two contributions to transverse relaxation: the non-secular
contribution, like longitudinal relaxation, is brought about by the
transverse components of local fields which are oscillating at the
Larmor frequency; the secular contribution is caused by there being a
distribution of the z-components of the local fields. Increasing the rate
of the random motion decreases the rate of this secular contribution.

Our task now is to describe in more detail the various sources of these
local fields, and then to go on to investigate how we can characterize the
random motions which give rise to the required time dependence.

9.2 Relaxation mechanisms
A particular source of a local magnetic field is called a relaxation mech-
anism. While there are quite a lot of these, two tend to be dominant for
spin-half nuclei: the dipolar mechanism and the chemical shift anisotropy
mechanism. We will therefore largely confine our attention to these mecha-
nisms.
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9.2.1 The dipolar mechanism
In this mechanism the local field is due to the magnetic moment (or mag-
netic dipole, as it is sometimes called) of another spin, as was outlined in
section 9.1.2 on p. 248 and illustrated in Fig. 9.3 on the same page. There
are thus two spins, or dipoles, involved: one generating the field, and one
experiencing it. This is why the mechanism is also called the dip01€—dip0le
mechanism.

The local field due to the neighbouring spin depends on a number of
parameters:

0 The distance r between the two spins: in fact, the interaction falls of
rather quickly as (l /13).

0 The gyromagnetic ratio of the spin: the larger the gyromagnetic ratio,
the larger the magnetic moment and the larger the local field. So, for
example, protons give rise to larger local fields than 13C nuclei.

0 The orientation of the vector joining the two spins relative to the
applied magnetic field (the z-axis).

With this strong distance dependence, the dipolar mechanism is only
effective over rather short distances, say less than 5 A for two protons.
However, note that local fields can be contributed by more than one spin, so
equally effective relaxation can be brought about by either a single nearby
spin or a larger number of more remote spins.

The final point to note is that the effect of a given local field B10,
on the nucleus depends on the gyromagnetic ratio of that nucleus. This
is because the rate at which the local field rotates the magnetic moment
goes as 7/Bloc, in just the same way that an RF field B1 causes the bulk
magnetization to precess at a frequency 7/B1. Overall, then, the strength of
the dipolar interaction depends on the gyromagnetic ratio of the spin which
is generating the local field, and the gyromagnetic ratio of the spin which is
experiencing that local field.

9.2.2 Chemical shift anisotropy
The usual description given for the chemical shift is to say that, in the
presence of a strong applied field, the electrons in the molecule give rise to a
small induced (local) field at the nucleus. The nucleus therefore experiences
the sum of the applied field and this induced field, thus shifting the Larmor
frequency by an amount which depends on the size of the induced field.

For most molecules, the size of the induced field, and hence the size of
the chemical shift, depends on the orientation of the molecule with respect
to the applied magnetic field. This is described by saying that the chemical
shift is anisotropic. In liquid samples the molecules are tumbling so rapidly
that the nuclei see an average local field, and hence have an average chem-
ical shift, called the isotropic shift. Nevertheless, at any instant, the local
field is different for molecules at different orientations.

What is not usually commented on is that the local field due to thfi
chemical shift is not necessarily parallel to the applied field — in fact in
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general this local field can point in any direction, as illustrated in Fig. 9.6.
We see that this local field is therefore a relaxation mechanism.

The extent to which the local field varies as the molecule tumbles
depends on the anisotropy of the chemical shift i.e. the extent to which
the shift varies with orientation. With the exception of nuclei at sites of
high symmetry, such as isolated atoms or nuclei in octahedral or tetrahedral
sites, all chemical shifts are anisotropic. The extent of the anisotropy does,
however, vary very much between different isotopes.

As a rough guide, the shift anisotropy is of the order of the chemical
shift range for that nucleus. So, for protons the shift anisotropy is rarely
more than a few ppm, whereas for BC the anisotropy can easily be 100 ppm,
or more. Nuclei such as “P, which have wide chemical shift ranges, can also
have large anisotropies.

The local field due to the chemical shift is proportional to the applied
field. In tum the interaction of this field with the nucleus depends on the
gyromagnetic ratio of the nucleus, so overall the interaction goes as 'yB0.

9.2.3 Relaxation by paramagnetic species
In the dipolar mechanism, the source of the local field is the magnetic mo-
ments of other nuclear spins in the sample. Unpaired electrons also generate
local fields in an analogous way, and so are a potential source of relaxation.
The magnetic moment of the electron is very much greater than that of
the proton, so the local field generated by an electron is correspondingly
much greater. Unpaired electrons can, therefore, be a particularly efficient
source of relaxation, causing a significant effect even when present at low
concentrations.

In preparing an NMR sample it is inevitable that small amounts of O;
gas are dissolved in the solvent, and since O2 has unpaired electron spins
(i.e. it is paramagnetic), the dissolved oxygen is a source of relaxation.
Sometimes, the sample is ‘degassed’, for example by bubbling pure ni-
trogen gas through the sample, in order to remove the oxygen and hence
reduce the rate of relaxation.

9.3 Describing random motion - the correlation time
The next task is to work out how to describe and quantify the random
thermal motion which provides the all-important time dependence to the
local fields. Recall from our previous discussion that to cause longitudinal
relaxation the transverse component of the local field must be oscillating at
or near the Larmor frequency.

A molecule is likely to be executing two distinct kinds of motion: vibra-
tions and overall rotation. During a vibration, the individual bonds and bond
angles are oscillating back and forth about their equilibrium positions, and
in principle this will modulate the dipolar interaction as the distance, and
possibly the angle between the intemuclear vector and the field direction,
will change. However, such oscillations typically take place at frequencies
of 10“ to 1013 Hz, which is much higher than even the highest achievable
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Fig. 9.6 When placed in a strong applied
field B0, a local field is generated as a result
of the interaction between the electrons and
B0. It is this field which is responsible for
the chemical shift. However, on account of
the anisotropy of the electron distribution,
the local field varies in direction and size as
the molecule tumbles in solution. The
resulting variation in the local field can be a
source of relaxation.
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Larmor frequency of around 109 Hz. We can thus discount such vibrations
as being effective sources of relaxation.

The overall rotation of a molecule will result in the modulation of
the local fields due to both the dipolar interaction and the chemical shift
anisotropy (CSA), therefore such motion can be a source of relaxation. The
question is, are these motions at the tight frequencies to cause relaxation?

In a gas, small molecules rotate freely at frequencies of around 108 to
109 Hz, which is certainly in the right ball-park for relaxation. However,
in liquids the picture is quite different, and it is certainly not the case that
even small molecules are free to rotate. The density of a liquid means that
the frequency of collisions between molecules is rather high, but the high
density, combined with the interactions between the molecules, means that
the ability of a molecule to rotate is rather constrained. So, each Collision is
only capable of changing the orientation of a molecule by a small amount.

One way of visualizing this situation is to imagine that the solvent exerts
a viscous drag on the molecule which is so large that even an energetic
collision is only able to rotate the molecule by a small amount, if at all.
An analogy would be trying to make a floating football rotate by throwing
ping-pong balls at it.

Let us concentrate on just one molecule, and place an imaginary vector
in it, such that the arrow starts out pointing along +z. As the molecule
experiences collisions it will start to be rotated, in small steps, away from its
starting position. However, since the collisions are random, the vector will
not move steadily away from +z, but will execute a jerky motion in which
the direction it moves, and the angle through which it moves, is different on
each step. Such motion is called rotational difiusion.

If we wait a ‘long time’, the vector will have wandered through more
or less all possible orientations, whereas after a ‘short time’ the vector will
barely have moved. What ‘long’ and ‘short’ mean can be quantified by
defining a rotational correlation time rc, which is the average time it takes
for a molecule to end up at an orientation about one radian from its starting
position. Remember that the molecule does not jump to this new position
in a few steps, but takes a tortuous and wandering path of many tiny steps
before it finally finds itself one radian from where it started.

Figure 9.7 provides a visualization of the nature of rotational diffusion
and the meaning of the correlation time. To make this diagram, we have
simplified things by considering a two-dimensional case, for which only
one angle is needed to specify the orientation i.e. we are thinking about the
rotational diffusion of a disc rather than a sphere. Each graph shows the
angle for 300 time steps, where at each step the angle is allowed to change
by a random amount.

For the plots shown in (a), the maximum change in the angle allowed on
any one step is i0.04 radians, whereas in (b) the maximum change is 10.08
radians. On any one time step, the size of the change is chosen at random
within the permitted range.

The first thing to note is that, although the maximum change in the
angle allowed on each step was the same for all the plots shown in ta). the
actual sequence of angles is different in each case. This is expected as it is
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Fig. 9.7 Plots of the orientation, specified by the angle 9 (rad), of a disc undergoing rotational
diffusion. Each graph contains 300 equally spaced time steps, and the angle always starts at
zero. In (a) the maximum allowed change in the angle on each step is 10.04 radians. with the
actual change being chosen at random in this interval. For the plots shown in (b) the maximum
change is 10.08 radians. Each plot (trajectory) is different on account of the random nature of
the process. However, on average the trajectories shown in (b) deviate further from the starting
position. as a result of the greater change in the angle allowed on each time step. The rotational
correlation time for motion of which (a) is a representative sample of trajectories is therefore
longer than for those shown in (b).

a random process, so each molecule heads ofl‘ on its own unique trajectory.
In none of the trajectories does 6 reach one radian, so the correlation time
must be somewhat longer than the time represented by these 300 steps.

For the plots shown in (b), the maximum change in the angle on each
step is twice that for (a), so not surprisingly the excursions away from the
starting position are greater. In fact, within the time frame the angle reaches
one radian for two of the trajectories, and almost makes it for a third. It is
clear that the correlation time for this set of trajectories must be shorter than
that for those shown in (a).

It is important to realize that the correlation time is the average time
needed to achieve an orientation one radian away from the starting position,
not the time taken by one particular molecule to achieve this orientation.
This average is taken over a large number of molecules in the sample.

For small molecules Tc turns out to be around 10 ps, rising to 10 ns
for small proteins. The reciprocal of the correlation time, 1/re, is a rough
estimate of the ‘average frequency’ of the motion (in rad s‘1), so 1/ (2rr Tc)
gives this frequency in Hz. Correlation times in the range 10 ns to 10 ps give
average frequencies in the range of l07 to 101° Hz, which is comparable
with typical Larmor frequencies. Rotational dilfusion therefore appears to
give motion in the right range to cause relaxation.

The problem we have is in trying to quantify the amount of this motion
which is actually at the right frequency ~ that is, at the Larmor frequency.
To do this we need to introduce the correlation function and the spectral
density.

9.3.1 The correlation function
The correlation function is a way of characterizing the time dependence of
the random motion III our sample, and hence finding out how much of the



g Relaxation and thegNOE

motion is present at the Larmor frequency. We will start out by describing
what the correlation function is, and then, in the following section, explain
how this function can be used to assess the amount of motion at particular
frequencies.

Imagine that a particular spin i experiences a local field BM,-(t) which
is varying in time, so that at a time 1 later the local field is B|,,C_,-(t + T). The
correlation function G(t, T) is defined as the average over the sample of the
product B1(,C(t)B|oc(t + 1'):

1
Gltfr) 2 E [B1o¢,|(I)B1o¢_i(I + T) + B1o¢,2(f)B]0¢,2(l + T) + . . (9.l)

= i i B. on -<1 + T)N 0c,t 0c,z
i=|

2 BJ0clt)BJ0clt + T)»

where N is the number of spins in the sample. On the last line we have used
the overbar to indicate the average over the sample, known as the ensemble
average.

Generally B1o¢(t) can take positive or negative values, which are equally
distributed either side of zero, so that its average over the sample is zero. It
is also usually the case that the magnitude of the local field from a particular
source has a maximum value.

The local field varies due to the thermal motion in the sample, so Bk,¢(t)
is a random function of time. It turns out that the properties of this random
function do not depend on the point from which time is measured; such
functions are said to be stationary random functions. For such a random
function, the value of the correlation function does not therefore depend on
the time t, but only on the time interval r. So, from now on we will write
the correlation function as G(r)_

Figure 9.8 helps us to visualize how the correlation function varies with
-r. The points in this figure represent the values of B|O¢(0), B|,,C(‘r), and the
product B10C(0)Bk,C('r) for different values of r, and for 50 spins. For each
value of T, the top graph shows B|,,C(O), the middle shows Bk,¢(T), and the
IOWCP Sh0W$ Bl(;¢(0)B10¢(T). If follows from the definition of G(T), Eq. 9.1.
that the value Of G(r) is found by summing the values of B|oc(0)Bk,¢(r) in
the lower plot and then dividing by the number of values.

The plots shown under (a) are for the case -r = O. Here B|,,c(0)Bi(,¢(r) =
Bl2oc(0), so all of the points in the lower plot are positive, and hence G(1)
will be a maximum. In general, we can see that it will always be the case
that the maximum value of G(r) occurs at r = 0.

The plots shown under (b) are computed for a value of 1' which is shorter
that the correlation time. Careful comparison of the plots of B|,,¢(0) and
B|0C(-r) will show that, although the local fields have changed between the
two times, the Change is small. As a result Bk,C(O)B1,,,-tr) is still positive for
most spins, but there are a few where the local field has changed sign. and
f0t these Bloc(0]B]0‘_-(T) is negative. So, when Gtr) is found by computing
the sum of the points in the lower plot the result will be somewhat less than
G(0).
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Fig. 9.8 Visualization of the behaviour of the conelation function G(1') as a function of the
time interval r. In each of (a). (b) and (c), the data points represent: in the top row, B1Q¢lO); in
the middle row, Biocfr); and in the bottom row, the product Bjo¢(O)B|<,C(r). The values for each
of 50 spins are represented by a dot, and it has arbitrarily been assumed that 131°C can only take
values between —l and +1. Note that the horizontal axis is not time, but is just used to spread
out the values from the 50 spins. G('r) is found by summing the points Bk,c(0)B1OC(-r) (shown in
the bottom row), and dividing by the number of points. ln (a) r = O. so Bioctr) = B1040), and
as a consequence all of the points in the lower plot are positive. G(r) is therefore a maximum
when r = O. In (b) r is shorter than correlation time 1-C, and so although for each spin B|<,¢(r)
is different to B1040), the change is not large. Most of the points in the lower plot are positive,
but in the few cases where the local field has changed sign between time O and time r, the
point is negative, and as a result G(-r) is less than G(D) (in this case 0.87 >< G(O)). Finally, in (c)
r >> rc, so that the local field of each spin has changed significantly between time zero and
time r. As a result, there are a significant number of negative points in the lower plot, and so
G(r) is significantly less than G(0).

Finally, the plots shown under (c) are for the case where the time 1 is
much longer than the correlation time. Now the local fields have changed
significantly between time zero and time T, so there are a significant number
of negative points in the lower plot. Summing these points, that is comput-
ing G(r), gives a value which is much less that G(0).

Our overall picture for how the correlation function varies with r is that
it starts at a maximum at r = 0, and then falls away smoothly to zero at a
rate determined by the value of the correlation time Tc. The value of G(0)
cart be computed from the definition of G('r) given in Eq. 9.1:

: Bloc(!)Bloc(t)

_ 2
_ Bloc‘

This value is simply the average of the square of the local field. The time
at which we compute this average is irrelevant for a stationary random
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Fig. 9.9 Plot of the correlation function
Gtr) = Bic exp (—lrl/rc) for three different
values of the correlation Lime, rc. The curve
for shortest value of rc, rmin, is shown in
light grey, the dark grey line is for a 1-C of
twice this value, and the black line is for
twice this value again. Note that for all three
gsss. G(r) has the same maximum value of

7Bfoc at T =0.

function, so G(0) just depends on the average size of the interaction.
The exact form of the correlation function depends on the details of

the interaction between the molecule and the solvent. The simplest case to
analyse is where the molecule is assumed to be spherical and the solvent
simply provides a medium with a certain viscosity. Rotational diffusion in
such a case, turns out to be described by a correlation function which is a
simple exponential whose decay rate is set by rc:

T
G(T) = BM exp (—|-r|/-rc).

A plot of this function for three different correlation times is shown in
Fig. 9.9. Note that the smaller the correlation time, the faster G(r) decays.
The function depends on the modulus of the time r, as the same behaviour
is expected for positive times T as it is for negative times i.e. the behaviour
for a particular time interval in the future is the same as for the same interval
of time in the past.

The exponential part of the correlation function is independent of the
source of the local fields, which only determines the overall magnitude
of G(r) via the term Blzoc. It is therefore common to define a reduced
correlation function, g(r), which is independent of the size of the local
fields:

g(r) = exp (—|r[/re). (9.2)

2With this definition, G('r) = Blocg(r).

9.3.2 The spectral density
From the discussion in section 9.1.2 on p. 248, you will recall that, in order
to be effective at causing longitudinal relaxation, the local field must be
oscillating close to the Larmor frequency. We have now seen that the time
dependence of the local field results from molecular motion, specifically
rotational diffusion, and that this motion can be characterized by a cor-
relation function. The next task is to find out exactly how much of the
motion is present at the required frequency. We will see in this section that
the spectral density function, which is related to the correlation function.
provides this information.

The correlation function is a function of time, analogous to the FID we
observe in an NMR experiment. If we Fourier transform the FID we obtain
a function of frequency, the spectrum, which tells us how much intensity
there is at each frequency. In an analogous way, if we Fourier transform
the correlation function we will obtain a function of frequency, and from
this we will be able to find the amount of motion which is at the Larmor
frequency.

The Fourier transform of the correlation function is called the spectral
density, J(to):

0(1) ll 1(0)).
The amount of motion at the Larmor frequency is simply found by evaluat-
ing .!(w) at w = wo.
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in the case of the exponential correlation function, the Fourier transform. . . . - _ .iis the taniiliar absorption mode Lorentzian, centred at w - 0.

21'Bi, exit-in/1.~> 5-» Bi,,l-—+7°,;;.
C

so —- 21'2 C
= B|m .

Figure 9.10 shows plots of this function for different values of the
correlation time: only positivcflequencies are shown. The spectral density
has its maximum value of 2Bl20cT¢ at w = 0, and then falls off steadily
as to increases, with the rate of the fall-off being determined by Tc. As
rc becomes shorter, the spectral density spreads out to higher frequencies.
Note also that the value of 1(0) increases as rc increases.

A particularly important feature of the spectral density is that, if we plot
it against w, we find that the area under the curve is independent of Tc.
Expressed mathematically, the area under J(w) is the integral

O0 -—— 21'_ 2 <=area - j0‘B]Oc——idw
l + 0121'?

_ 2- ITBIOC.

A consequence of the area being constant is that, although 1(0)) is al-
ways a maximum at w = 0, as re becomes smaller the size of the maximum
decreases and at the same time the spectral density spreads out to higher
frequencies. This can be seen in Fig. 9.10.

This behaviour has an important consequence if we think about the
value of the spectral density at the Larmor frequency as a function of the
correlation time. Remember that it is J(w0) which will determine the rate
of longitudinal relaxation.

The spectral density at the Larmor frequency is given by

i 21'
JW0) Z Bi” 1 + wcgrgl

lf we make a plot of this as a function of TC, as is shown in Fig. 9.11, we
see that there is clearly a value of the correlation time which makes J(w0)
a maximum. It is a relatively easy calculation to show that this maximum
occurs when wore = 1 i.e. "rc = 1/wo.

It follows that the rate of longitudinal relaxation will also be a maximum
when Tc = 1/(1)9, as this is the value of the correlation time which gives the
maximum spectral density at the Larmor frequency. So, both correlation
times which are shorter or longer than this optimum value will give slower
relaxation. Just like Goldilocks and the porridge, for the most efiicient
longitudinal relaxation the correlation time must be neither too long nor
too short, but ‘just right’.

‘The factor of two comes in as an FID only exists for time greater than zero, whereas the
wrrelation function extends symmetrically either side of r = 0.

""" Tc = tmin
-- e= 2%

~/(0)) i.. 1:6 = 41min

00 w—->
Fig. 9.10 Plots of the spectral density
function, J(u)), for three different values of
the correlation time, Tc; the graph is plotted
only for positive values of w. The light grey
line is for the shortest value of Tc, -rmin, the
dark grey line for the case where
'|'¢ = 21',-“in, and the black line for the case
where rc = 41-m;,,. Note that the shorter r¢
becomes. the higher the frequencies to
which J(w) spreads. As explained in the
text, it tums out that the area under these
curves are all the same.

J(to0)

9 Z
ts = 1/coo 'i:c——->

Fig. 9.11 A plot of the spectral density at
the Lannor frequency. J(w0), as a function
of the correlation time, re. The plot shows a
maximum at 1-C = 1/mo. This implies that
the rate of longitudinal relaxation will be a
maximum for this value of the correlation
time.
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ln the previous section we introduced (Eq. 9.2 on p. 260) the idea of the
reduced correlation function g(r), which does not depend on the size of the
local fields. The Fourier transform of this reduced correlation function is
the reduced spectra! density, j(w):

gm 3» rte)
FT 21¢expt-trim) ~> ——]+w,T3.

“TWith this definition, it follows that J(w) = B|OCj(w).

9.3.3 Motional regimes
The comparison between the Larmor frequency and the correlation time
turns out to be rather important in the theory of relaxation — indeed, we
have already seen an example of this in Fig. 9.11 where the maximum in
J(wQ) occurs when re = l/zoo.

In making this comparison it is usual to distinguish two motional
regimes. The first is calledfast motion or extreme narrowing, and is defined
mathematically as when more << 1. Physically, this is the limit in which
motion is very fast i.e. the correlation time is very short, such as would be
the case for small molecules.

The reduced spectral density at the Lannor frequency is given by

_ 21¢J(wo) = —,-7;l + wfirc

if the fast motion limit applies, worc << l, it follows that (1 + wgrf) = l,
and so j(w0) is given by

fast motion: j(wg) == 2r¢.

In words, what this fast motion limit means is that the spectral density
is independent of the Larmor frequency. It should also be noted that as
j(0) = 21¢ (for all values of Tc), in the fast motion limit it follows that
j(wo) = j(O)-

The other limit is called the slow motion or spin dijfizsiorz limit, and is
when wg-rc >> 1. In this limit, (1 + war?) z wgrg, so the reduced spectral
density becomes

. . 2slow motion: ](w0) = ~7~.

Recalling that j(0) = 2rc, this expression can be written

j(w0) = w5-r,,

As wgrf >> l, it follows that _j((l)[)) is very much smaller than j(O).
For a Larmor frequency of 500 MHZ (too = 3.1 >< I09 rad s"). a small

molecule with a correlation time of 10 ps has tugfc = 0.03, which is clearly
in the fast motion limit. In contrast, a small protein with a correlation time
of 10 ns has worc = 31, which is clearly in the slow motion limit.
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9.3.4 Transverse relaxation and the spectral density at zero
frequency

ln section 9.1.4 on p. 251, two different contributions to transverse relax-
ation were identified. The first is the non-secular part, which is caused
by local fields varying at the Larmor frequency. As we have seen in the
previous section. the amount of such motion is given by the spectral density
at the Larmor frequency, J(w0).

The second contribution is the secular part, which results from a dis-
tribution of local fields (along 3) across the sample. In section 9.1.4, we
described how motion actually reduces the effectiveness of this kind of re-
laxation, such that the faster the motion, the smaller the secular contribution
to transverse relaxation becomes.

Motion, at anyfreqiiency, reduces the effectiveness of this secular con-
tribution to transverse relaxation. So, in terms of the spectral density, it
is the component of the motion which is not varying which will be most
effective for causing this kind of relaxation. This component is given by
1(0)) when to = 0 i.e. the spectral density at zero frequency, J(0).

From Eq. 9.3 on p. 261 it follows that

1(0) — Flfzr_ QC C9

so we expect the secular contribution to transverse relaxation to be propor-
tional to re. This makes sense, as the shorter the correlation time becomes,
the faster the motion and so the more complete the averaging of the local
fields.

9.3.5 Summary
To summarize what we have found so far.

0 Rotational diffusion in a liquid causes the local fields to vary at rates
which are suitable for causing relaxation.

0 This random diffusive motion can be described using a correlation
time Tc, which is the average time it takes for a molecule to move to
a position at an angle of about one radian from its starting position.

0 The spectral density gives the frequency distribution of the motion.
The simplest example of such a spectral density function is

T 2%
Kw) : Bl” l + ufirgl

Note that J(to) depends on the correlation time, Tc.

0 The rate of longitudinal relaxation depends on the spectral density at
the Lamior frequency. The relaxation is most rapid when w0T¢ = 1.

0 The non_secular contribution to transverse relaxation depends on the
spectral density at the Larmor frequency, J(wQ). The secular part
of transverse relaxation depends on the spectral density at zero fre-
quency, J(0).
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We are now in a position to explore the details of how the z-
magnetization behaves as a result of relaxation. To do this, we will first
need to introduce the concept of the populations of energy levels.

9.4 Populations
In section 4.1 on p. 51 we were at pains to point out that the magnetic
moment from a single spin-half can point in any direction, and that its
energy depends on the angle between the magnetic moment and the applied
field. However, if we measure the energy of a particular spin, we will always
find a value which corresponds to one of the two energy levels of a spin
half i.e. that corresponding to the a state or the ,6 state (see section 3.1
on p. 26 for a discussion of this point). It turns out that there is a certain
probability pa of finding the energy corresponding to the a state, and a
certain probability pp of finding the energy corresponding to the ,8 state.

If we imagine measuring the energy of every spin in the sample, then
for each there is a probability p,,,,~ of finding the energy corresponding to
the state a. The sum of all these probabilities is the same as the number of
spins in the sample which were found to have the energy of the a state. This
number can be identified as the population of this state, nu:

"<1 : pal + pal + Pa.3 - - -

In a similar way, we can compute the population of the /3 state, nfi.
This language is rather dangerous, as the moment we start talking about

the ‘populations of the a and ,8 states’, it is easy to fall into the trap of
imagining that each spin is in one of these states, which is certainly not true.
Nevertheless, thinking about the sum of these individual probabilities as a
population is a very useful concept when it comes to describing relaxation
- we will use it throughout the rest of this chapter.

9.4.1 The z-magnetization in terms of populations
If we accept this description of the spins in terms of the populations of the a
and ,8 states, it is easy to determine the bulk z-magnetization. A spin in the
a state contributes +%h~y to magnetization, and one in the B state contributes
—%hy, so the bulk z-magnetization, M2, is

M, = %hy(n,, - n,,), (9.4)
where n,, and Hp are the populations of the <1 and B states, respectively. What
this equation says is that the magnetization is proportional to the population
difference and to the gyromagnetic ratio. This latter factor comes about
because the magnetic moment of a spin, which is what leads to the bulk
z-magnetization, is proportional to its gyromagnetic ratio.

At equilibrium we know that the populations must be those given by the
Boltzmann distribution, which in this case predicts the followingzz

ng:%Nexp(—Ea/kBT) n,‘;=§~e>tp(-5,,/tar). (9-5i
2The factor of % in these expressions is l/q, where q is the partition function. In this case

q = 2, as there are two accessible states.
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where En and E5 are the energies of the a and B states, kg is Boltzmann’s
constant. and 113 and Hg are the equilibrium populations.

The energy E,, is tiny compared with kBT, so the fraction (Er,/kBT) is
very much less than one. We can therefore approximate the exponential as

exp(—x)=l—x x<<1.

Using this, the populations are

nfi = 5/\/(1 - E,/kflr) ng = §1v(1- 5,,/1<BT),

and so the equilibrium z-magnetization, Mg, is

M? = éh)/(rt?! —— fig)
E - E.= lh N _P____‘l,

4 Y 1<,,T
Not surprisingly, the population difference depends on the energy difference
between the two levels. The energies of these two levels were given in
section 3.2.7 on p. 32 as

Ea = —%h’)/B0 EB = +'%h')’B0,

where we have included a factor of it so that the energies are in Joules, rather
than in rad s"1. Using these, the equilibrium magnetization can be written

2 2_ Y h NBQMf _ MET . (9.6)

This expression says that the bulk magnetization is proportional to the
number of spins, the square of the gyromagnetic ratio, and the strength of
the applied field. So, the largest equilibrium magnetization, and hence the
strongest signals, come from nuclei with the greatest gyromagnetic ratios
and from using the highest magnetic field strengths.

The expression for given in Eq. 9.6 goes as 7/2. This is because the
energies of the states, which determine their populations, are proportional
to y, and the magnetic moment contributed by each spin is also proportional
to y.

Since it is not possible to measure that absolute size of an NMR signal,
the absolute size of the z-magnetization is not important in our calculations.
As a result it is usually acceptable to drop all the constants in Eq. 9.4 and
Simply write

M; =nn,—n;; and M? =n$—-rig.

Although these expressions are not correct in a formal sense, they capture
the essence of the situation, which is that the magnetization is proportional
to the population difference.
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Fig. 9.12 The population of the energy
level associated with the spin being in the 0
state. nu. will be decreased by transitions
from the 0 to the B state, and increased by
transitions in the reverse sense. The
(first-order) rate constants for these two
processes are W,,_,;; and W;;_,,,, respectively.

9.4.2 Relaxation in terms of populations
Longitudinal relaxation drives the z-magnetization towards its equilibrium
value, and we have now seen that the z-magnetization is proportional to
the population difference between the a and B energy levels. It therefore
follows that the approach to equilibrium involves changing the populations
of the two levels, so that longitudinal relaxation can be described as arising
from transitions between the two levels. For example, a transition from
tr to B will decrease the population difference and hence reduce the z-
magnetization, whereas a transition from B to tr will increase the population
difference, and hence increase the z-magnetization.

The simplest assumption we can make is that the rate of transitions from
a to B is proportional to the population of the a state, na:

rate from a to B = Wa_;fl no,

where we have written the constant of proportion as W,,_,;;. This constant
is in fact a rate constant, entirely analogous to a first-order rate constant in
kinetics; both have units of (time)“ e.g. s".

Similarly, the rate of transitions from B to a is

rate from B to a = W;;_.,, nfi.

Note that this time the rate is proportional to the population of the B state,
as it is from this state that the transitions originate, and that we have also
allowed the rate constant to be different. The two processes are illustrated
in Fig. 9.12.

Transitions from a to B decrease the population of the tr state, whereas
transitions from B to or increase the population of the or state. So, the overall
rate of change of the population of the tr state is:

rate of change of na = +Wp_.a np —W,,_.;; na . (9.7)
“m/--“ m/--’
increase in nu decrease in n,,

The first term is positive as it describes the rate of a process which increases
the population of the a state, whereas the second term is negative as it
describes a process which reduces the population of the state.

We can write an analogous equation for the rate of change of the popu-
lation of the B State:

rate of change of nfi = +W,,_.p na —-W;;_,a nfi. (9-3)
m,.__/ Q“,-_a
increase in up decrease in nfl

At equilibrium the populations will be constant i.e. the rate of change
will be Zero, In addition, these populations will have their equilibrium
values, as predicted by Eq. 9.5 on p. 264. Applying these two conditions to
the expressions of Eqs 9.7 and 9.8. we have

0 = Wfl_,a I12 "' Wa_,fl I13, 0 = +Wa->5 712 -' Wfl—>n "2-
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From either of these it follows that

if-"Y"3 — W (9 9)
I12 _ '

There is a difficulty with this expression, in that the theory most commonly
used to predict values for the rate constants W;;_,,, and W,,_,;; comes up with
the answer that these two are equal. As a result, it follows from Eq. 9.9 that
rig = ng i.e. the equilibrium populations are equal, which is certainly not
correct.

The problem here turns out to be a deficiency in the theory, in which the
spins are treated quantum mechanically, but the surroundings (the lattice)
are treated classically. To obtain the correct result, consistent with the
expected equilibrium populations, a much more complete theory is needed
which treats both the spins and the lattice quantum mechanically. However,
such an approach is both complicated and laborious.

What we are going to do is avoid this problem entirely by rewriting the
rate equations, Eqs 9.7 and 9.8, in the following way:

rate of change of n,, =W,,;; (nfi — ng) — W05 (nn — ng) (9 10)

rate of change of nfi = — W"); (nfi — I12) + Wag (n,, — ng). H

What we have done is made all the rate constants equal (W05), and instead
of these multiplying the populations they multiply the deviation of the
populations from their equilibrium values i.e. (n,, — n2) and (Hp — ng). You
can see immediately from Eq. 9.10 that, if n, = ng and Hp = ng, the rate of
change of both nn and np are zero, as is required at equilibrium.

As the z-magnetization is equal to the population difference (nn — n5),
the rate of change of the z-magnetization is equal to the difference between
the rate of change of nn and that of nfii

rate of change of M; = rate of change of nu — rate of change of np

We can then use Eq. 9.10 to substitute in expressions for the rates of change
of the populations:

rate of change of Ml = 2W,,;;(n;; — ng) — 2Wa;;(nn — ng)

: _2WaB [(770 _ nfi) " (712 _

= -2W..i<M. - Mi’).
This equation predicts what we expect: when M; = the rate of change
is zero.

The usual way to write this equation is using the language of calculus,
in which we identify the rate of change of M; as its derivative with respect
to time, dM:/dt:

dM;(t) _ _ _T _ R; [Mm (9.11)
We have written the z-magnetization as M;(t) to remind ourselves that it is
a function of time. RZ, the rate constant for longitudinal relaxation, is equal
[O 2“/0,13.
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If you are not familiar with the method used
to solve this kind of differential equation,
then just skip forward to the result, Eq. 9.14
on the next page

This equation is often written

d .>%=-Ti1[M.(r>-1w§].
where Ti is the time constant for longitudinal relaxation: T1 = 1 /R1. The
use of the symbol T1 for this time constant is so ubiquitous that longitudinal
relaxation is often called ‘T, relaxation’.

The rate of relaxation, and hence the value of the relaxation rate constant
RC, will depend, as we have seen, on the average of the square of the local
fields, and the spectral density at the Larmor frequency. For the moment
we will not look in detail at the calculations which lead to a prediction of
the rate constant, but rather look at the implications of Eq. 9.11 for the
behaviour of the z-magnetization.

9.5 Longitudinal relaxation behaviour of isolated spins
In this section we are going to investigate the practical consequences of the
fact that the z-magnetization relaxes according to

%'3 = -R. [Mm - M2].
This differential equation says that the rate of change of the z-magnetization
is proportional to the deviation of the magnetization from its equilibrium
value. The minus sign ensures that the z-magnetization changes in such
a way that it approaches its equilibrium value as time increases; the rate
constant R2 determines the rate at which equilibrium is approached. All this
can best be seen by using an example.

Suppose that at time zero the z-magnetization is M;(0). What we will
now work out, by integrating the above differential equation, is precisely
how the z-magnetization moves back to its equilibrium position. We start
by separating out the parts of the differential equation so that the variable
MZ(t) is on the left, and time is on the right:

= -R. [Mun - M2]
1h c ——i~i dM;(r) = -R, dt.en e [MAD _

We can now integrate the left-hand side with respect to M,(r) and the right-
hand side with respect to t:

lf————-—[MZ(t)_Mg] dMZ(r) _f Rzdt

In (M;(z) — = —R,t + const. (9-13)

To compute the integrals we have used the fact that and R; are constants.
As usual, a constant of integration has been included. but we can tind out
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Fig. 9.13 Plots showing the way in which the :~magnetization approaches equilibrium, start-
ing from a particular value, as predicted by Eq. 9.l4. The quantity plotted along the vertical
axis is M:(i)/Mg, which takes the value one when the z-magnetization is at equilibrium. In
ta). the three lines are computed for different values of the z-magnetization at time zero. Note
that the further the system is from equilibrium. the more rapidly the magnetization changes.
The plot in (b) shows the effect of increasing the rate constant RI. The black line has the
smallest value of R, the dark grey line has twice the value of the rate constant. and the light
grey line twice the value again. As expected. the greater the rate constant, the more rapidly the
:-magnetization approaches its equilibrium value.

its value by noting that at t = O the magnetization is M;(0). So at I = 0
Eq. 9.12 becomes

ln (M;(0) — = const.

Putting this value of the constant back into Eq. 9.12 we have

ln (M,(r) - M?) = -12,1 + ln (M;(0) -
Tidying this up gives

M;(r) - M9inf-—%~) = -R,:. (9.13)
M:(0) _ Mi)

If we take exponentials of both sides we have

M;(l) - M?
1141(0) — M? = exp (-R,r),

which can be rearranged to

M;(t) = [M;(0) - exp(—R,!) + (9.14)
Figure 9.l3 shows plots of M:(t), as predicted by this equation, for

different initial 1-magnetizations, M:(O), and for different values of the rate
constant R1. The common feature of all of these plots is that eventually
the magnetization ends up at its equilibrium value. However. as shown
in Fig. 9.13 (a), the further the magnetization is away from equilibrium,
the faster the rate of change of the magnetization. Also, as shown in
(b), the time that it takes the magnetization to reach its equilibrium value
becomes shorter as the rate constant R; becomes larger. This behaviour is
in agreement with the qualitative predictions we made earlier.
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Fig. 9.14 Pulse sequence for the
inversion-recovery experiment, used to
estimate the value of the rate constant for
longitudinal relaxation, R1 (or, altematively,
the time constant T1).

9.5.1 Estimating the rate constant for longitudinal relaxation
It is often important to have an estimate for the rate constant for longitudinal
relaxation, Rz, and we will see in this section that the analysis which led to
Eq. 9.14 provides a convenient framework for doing this.

The method most commonly used for estimating R: is the inversion-
recovery experiment, whose pulse sequence is shown in Fig. 9.14. Initially,
the magnetization is inverted by a 180° pulse, so that M;-(0) = —M§). This
inverted magnetization is then allowed to relax for a time 1. Using Eq. 9.14
with t = r and M;(O) = ~M§), we can see that the z-magnetization at time r
is

A/11(1) = -2M? exp (-R21) + M3
= [1 — 2exp(—Rz1')].

After time 1 a 90° pulse is applied, the resulting FID observed. and then
Fourier transformed to give the spectrum. Figure 9.15 shows a typical set of
spectra recorded for different values of T. Note how the line starts negative,
passes through zero and then becomes more positive as r increases.

The height, S (T), of the peak in the spectrum will be proportional to the
size of the z-magnetization present just before the 90° pulse. Thus, S (T) can
be written

S(r) = c [1 — 2exp (-Rz1')] , (9.15)

where c is some constant of proportion.
From Eq. 9.15, it follows that the peak height at time T = 0. S(0), is —c.

We can therefore replace the constant c in this equation by —S (0) to give

S(r) = S(O) [2 exp (—R:r) — 1] .

which can be tidied up to

$(T52 = 2exp(—-Rzr) — 1.

TtliliiiH

increasing t —-i->

Flg. 9.15 Typical set of spectra that would be recorded using the inversion—reco\’ery pulse
sequence of Fig. 9.14. The spectrum recorded for r = 0 has been phased so that the peak is
negative, and then the same phase correction has been applied to all of the other spectra. The
peak heights S (T) are measured as a function of r. and then these data are used to plot a graph
from which we can obtain an estimate of R: or T1.
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This can be rearranged into a form which will give a straight-line plot in the
following way:

S(r)——— = 2 —R, — 1S(O) exp( gr)

S("r)i + l
5 (0)

S(r) + S(O)
W = “P ("RzT)

= 2 exp (—R;r)

1,, (E2) = _R_,
2S (0) ” '

where, to go to the last line, we have taken natural logarithms of both sides.
This last line implies that if we plot ln ([S (T) + S(O)]/2S (0)) against 1'

we will obtain a straight line of slope -R1. So, all we need to do is repeat
the experiment over a suitable range of r values, measure the peak heights,
and make this plot.

9.5.2 Making a quick estimate of the relaxation rate constant
Sometimes, all we want is a rough estimate of R5, so doing a complete
inversion—recovery experiment, and then plotting a graph would be rather
a waste of time. One method for obtaining such a rough estimate is to use
the inversion-recovery pulse sequence, but rather than varying the delay r
systematically, we just try a few values until we locate the time at which the
signal goes through a null. As we will see in a moment, this null time is
simply related to the value of R,

It is quite easy to find the null point as, for short times r, the signal is
negative, whereas for longer times it will be positive. A couple of quick
experiments are therefore usually sufiicient to ‘bracket’ the null point. and
then a few more trial values usually enables us to home in on the precise
value of the delay, rnu", which gives a null.

From Eq. 9.15, the peak height S (T) will be zero when

O = c [1 — 2 exp(—RZ1'm,1|)].

This can be rearranged to

¢XP (_RzTnull) = %

hence R1 : — ln %/rm," or R; = ln 2/rnu".

So, simply by finding the value of rnu", we can obtain an estimate of R1. If
we want T; instead, then the relationship is simply T1 = rm,||/ ln 2.

9.5.3 How long do I have to leave between experiments?
As we noted at the start of this chapter, the rate of longitudinal relaxation
determines the time we have to leave between experiments in order to allow
the system to come to equilibrium. We can now make some estimates, in
terms of R2 (or Ti), as to how long this time actually has to be.
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Fig. 9.16 Illustration of how long it takes
to recover a certain proportion of the
equilibrium z-magnetization, starting from
M: = 0. The horizontal time axis is
expressed as a multiple of the longitudinal
t'elaxati0n time, T1. For the magnetization
to recover to 99% of its equilibrium value
(i.e. M;/M? = 0.99) takes almost 5 >< T1, but
recovery to 95% only takes about 3 >< T1.
The difference in these values arises from
the fact that the rate of change of the
z-magnetization gets slower the closer we
are to equilibrium.

The first thing to realize is that the time it takes to get back to equilib-
rium depends on where you start from. For example, if we start out with the
magnetization being inverted (i.e. along —z), then it will take longer to get
back to equilibrium than if we start out with no z-magnetization.

Just exactly where the magnetization ends up at the end of a pulse
sequence depends on the details of that sequence, so we cannot come to any
general conclusions. l-lowever, assuming that there is no z-magnetization
at the end of the sequence is a reasonable choice, as most sequences finish
with a 90° pulse followed by data acquisition. The chances are that this
pulse will rotate all of the magnetization into the transverse plane.

Let us suppose, therefore, that at the end of data acquisition there is
no z-magnetization i.e. M;(0) = 0. What we are going to work out is the
relaxation delay, 1,, needed for the z-magnetization to retum to a fraction
f of its equilibrium value, that is when MZ(t,) = For complete
retum to equilibrium f = l, whereas for a return to 90% of the equilibrium
magnetization, f = 0.9.

Equation 9.13 on p. 269 is a useful place to start, with t = 1,:

= _R_,1_
M.<0> — M? t

We put Mz(0) = 0 and MZ(t,) = fM§ to give

fM? " M?111 iM-9-— = —Rzt1.

This simplifies to

1
1, = —Fln(1—f) or t, = —T1ln(l —f).

What this tells us is that it takes an infinite amount of time for the spins
to retum completely to equilibrium (f = l), a result which comes about
because the rate of change of the magnetization gets slower the closer the
magnetization is to equilibrium.

If, however, we lower our sights and accept 99% of the equilibrium
magnetization, then the above expression predicts for f = 0.99 that
t1 = 4.6x T1. If 95% is acceptable, then 2, = 3.0 x T1. and for 90%
I, = 2.3 x T1. These values are illustrated in Fig. 9.l6.

So, leaving a delay of around five times T1 will guarantee that, to all
intents and purposes, the magnetization has recovered to equilibrium. If We
are more impatient, then three times T1 will give us 95% of the magnetiza-
tion — a value which is often regarded as being an acceptable compromise-
Note that the time during which the FID is recorded can actually be counted
into the relaxation delay tr, as longitudinal relaxation is taking place during
the FID.

Difficulties arise when not all of the spins in the sample have the same
relaxation time T1. The most conservative approach is to set the relaxation
delay according to the longest T1, but if this results in an unacceptably long
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Fig. 9.17 Dipolar relaxation causes transitions between all four energy levels of a two-spin
system. Four of the transitions involve a change in the total magnetic quantum number, M, by
il. The corresponding rate constants are thus given a subscript ‘l’, and a superscript showing
which spin is flipping and the spin state of the passive spin. So the transition from flu to flfl
has rate constant W; 5) as spin two is flipping, and spin one is in the B state. There is one
double-quantum transition, with rate constant W2, and one zero-quantum transition, with rate
constant W11; as before, the subscript gives the value of AM. The arrangement of the energy
levels shown here is appropriate for a homonuclear spin system; in a heteronuclear system the
a/3 and Ba levels will not have the same energy. However, the same set of relaxation-induced
transitions occur.

delay, we might choose to set the relaxation delay according to an average
value of T1 .

Often it is the solvent which has the slowest relaxation, and hence the
longest T1. Since we are not usually interested in the solvent signal, it
is common to set the relaxation delay according to the behaviour of the
interesting solute signals, and simply ignore the behaviour of the solvent.

9.6 Longitudinal dipolar relaxation of two spins
We now turn to a very important topic which is the relaxation behaviour
of two spins which are interacting via the dipolar mechanism described
in section 9.2.1 on p. 254. The relaxation in this system has features
which do not occur in a one-spin system, in particular the phenomenon of
cross relaxation which gives rise to the very important nuclear Overhauser
effect (NOE). We will therefore spend quite some time exploring dipolar
relaxation and its consequences.

9.6.1 Energy levels and transition rates
We introduced and derived the energy levels for two coupled spins in sec-
tion 3.5 on p. 37. For the present discussion, it is not necessary for the
spins to be coupled, but as we saw in section 3.5, the presence of the scalar
coupling does not change the wavefunctions associated with the levels, but
only shifts their energies very slightly.

These four energy levels can be labelled with the spin states of each
spin, so the level aa has spin one and spin two in the a state, whereas Ba
has spin one in the B state and spin two in the a state.
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The dipolar interaction between two spins can lead to relaxation-
induced transitions between any of these four levels; these transitions are
illustrated in Fig. 9.l7. To demonstrate that this is so we would need to
look at the detailed form of the Hamiltonian which describes the dipolar
interaction — something which is beyond the level of this text.

Each transition has associated with it a rate constant, WAM, where the
subscript gives the change, AM, in the total magnetic quantum number
associated with the transition. Four of the transitions can be characterized
as single quantum, AM = l, and we can further distinguish them according
to which of spin one or spin two is flipping, and the spin state of Spin which
is not flipping (the passive spin). So, the transition from aa to Ba has rate
constant W9”) as it is spin one which is flipping, and spin two is in the a
state. Similarly, the transition from aa to a/3 has rate constant W9“) as spin
two is flipping, and the passive spin is in the a state.

The single-quantum relaxation rates depend on the spectral density at
the frequency corresponding to the transition, which are, of course, the
Larmor frequencies of the spin which is flipping. So Wu”) depends on the1
spectral density at the Lannor frequency of spin one, w0_1, whereas Win”
depends on the spectral density at the Larmor frequency of spin two, (U03.

There is one double quantum transition, between states aa and /3/3, with
transition rate constant W2. This depends on the spectral density at the sum
of the Larmor frequencies of spins one and two: (w0_| + mm). The zero
quantum transition rate, between states afi and Ba, is W0, and this depends
on the spectral density at the difference of the two Lannor frequencies:
(won - wo.2)-

9.6.2 Rate equations for the populations and z-magnetizations
Just as we did for a single spin, we can work out differential equations for
the rate of change of the population of each level. Assuming that the rate is
proportional to the deviation from the equilibrium population, we can write
the rate of change of the population of level l as

d
71,-? = —W§2‘“)(n| — rt?) — Wf"”)(n1 -11?) — Wg(n| - rt?)

loss from lcvcl l

+ W,""’<n2 - n3) + W§""’<n3 - n2) + Wm — n3).
gain from level 2 gain from level 3 gain from level 4

where n,- is the population of the ith level. and rt? is the equilibrium popu-
lation of that level. The first three terms are all negative as they represent
processes in which population is lost from level l; in addition, the rates all
depend on the deviation of the population of level l from its equilibrium
value, as it is from this level that the transition is coming.

The first positive term represents a process by which the population of
level l is increased as a result of transitions from level 2. The rate of the
process therefore depends on the population of level 2. Similarly. the second
and third positive terms all represent transitions in which the population of
level l is increased.
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We can write similar differential equations for each of the populations.
The resulting four equations. although simple to construct, are certainly
rather complex in form. However, things can be improved by rewriting the
populations in terms of the ;—magnetization of the two spins.

For example, following what we did before for a single spin, the z-
magnetization of spin one depends on the population difference between
levels l and 3. and between 2 and 4. Both of these p()pul;1[i()n dirferenees
contribute to the spin one z-magnetization, as both transitions belong to
spin one. Leaving out any constants of proportion, we can write the z-
magnetization of spin one as

11; = ('11 -'13) + ('12 "'14)-

We have written this as Ir; rather than MM in order to emphasize the con-
nection between this z-magnetization and the operator iii, which represents
it in quantum mechanics.

Recognizing that transitions I-2 and 3-4 belong to spin two, we can
write

I2: = (m — '12) + (H3 — mt).
for the z-magnetization from the second spin. It turns out that we need
another magnetization term which depends on the diflerence between the
population differences across the two spin-one transitions;

211112: = (Ni — I13) — ('12 — "4)_

As with It; and 12;, this term is denoted 211112; as it is related to the product
operator 2i|;i2;. In fact, simply by rearranging the populations on the
right, we can see that 211512; is also the difference between the population
differences across the two spin-two transitions.

3111121 = ('11 - H2) — ('13 - '14)-

2I]ZI2Z is often called a ‘zz term’.
The magnetizations also have equilibrium values defined in terms of the

equilibrium populations:

_ 0 0 0 0It-nl —n3+n2—n4,

and similarly for I31. lt turns out that the equilibrium value of 211212: is zero.
After a lot of tedious algebra, the rate equations for the populations can

be rewntten in terms of rate equations for the magnetizations;

til]:
dr

dig;
dz

d 211,12:
dr

= — R;"<1t. - 151) - <Ti2(12; - I31) - A<'>21,,12,
= - 0,20,, - 13.) - R§2’(12, - 13:) ~ A<1>z1,,12z (9.16)

: _ Amfll? — _ A(2)(12: _ 1.9:) _ Rfim) 2Il:I2:-
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The various rate constants are defined as follows in terms of the rate con-
stants for the individ

Rti)

@’
0' i2
Au)

A(2)

R(l,2)

ual transitions:

= MW+Mm+m+%
W124») + Wpm + W2 + W0

W2 - W0
W§l,a) _ Wtifi)

“,§2.nr) _ Wfzpi
W§l,a) + Wilfi) + “/$2.0) + “/£2,/3)‘

The rate constant R21) describes the self relaxation of spin one, meaning
that this rate constant simply determines the rate at which the magnetiza-

Rzn) Fly tion 1|; approaches equilibrium without the involvement of I2: and 21,2122.
\ G12 Similarly, R?‘ is the self-relaxation rate constant for spin two.

I12 <"'_'> I22 The rate constant 012 describes the rate at which magnetization from
spin one is transferred, by relaxation processes, to spin two. We make

Am Am this interpretation as, in the differential equation for Ir, there is a term
cr12(12; — Igz) which says that the rate of change of 11; is proportional to
12;, with 0'13 as the constant of proportion. There is a similar process which

2/12/22 transfers magnetization from spin one to spin two; it turns out to have the

This relaxation-mediated transfer of z-magnetization from one spin to
another is called cross relaxation. lt is an (almost) unique feature of dipolar

Fig. 9.18 Visualization of the relaxation relaxation and is, as we shall see shortly, responsible for the NOE. It is
Pathways bclwsen different kinds of interesting to note that in scalar coupled systems we saw that it was possible
z‘"‘ag'Y°‘mfi°“ f°'_‘“'°SPi“5 "“<%='g°i“g to transfer transverse anti-phase magnetization from one spin to another
relaXau°n.“.a ma dlpom mcchamsmf The using RF pulses. Now we have a second mechanism for transfer but thisarrows pointing to the edges of the diagram _ _ _ _ _ _ _ ‘ ,
Show the 5e]f_rema,i0n processes in these time it involves dipolar relaxation and z-magnetization; no scalar coupling

H(1'g)¢ same rate constant.
Z

in which the magnetization simply retums is required.
I0 its equilibrium value In addition, there Following the same discussion as above, Rim is the rate constant for
are processes which connect the Self relaxation of the 2Ir;I»- term. Finally Am and Am are the rate constants
z-magnetization terms of the two spins. The . . "“
most important of these is cross relaxation, for the interconversion of Ir; with 2Ir;12;, and of I3; with 21 1:12;. These
with me ccnsmm U12’ which transfers various relaxation pathways are visualized in.Fig. 9.18. I 0) lfi)
magnetization between the two spins. For dipolar relaxation between two spins it turns out that M ‘ = W?

and WP“) = Win”; however, in more complex situations, such as that
discussed in section 9.11 on p. 305, these rate constants can be different.
Writing these rate constants as Win and WY’, respectively, the above differ-
ential equations and expressions for the rate constants simplify considerably
as Am = O and Am

(121

0.

% : —Rgl)(1|; — 15):) — (7'|2(I1; _

% = -0't2(1i; — 1‘.1>— R?’<1a - 12,) <°-17>
|;1v

—~a;i = -RQ2) 2I|;I1;.
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The rate constants simplify to:

Rt” = 2w§" + W2 + W0
Rt” = 2w§2’ + W2 + W0
0'12 = W2 - W0

Rt") = zwj” + zwj”.

(9.18)

We now see that there is still cross relaxation between I12 and I22, but there
is no relaxation-induced transfer between 2112122 and either of I12 or 122.

Equations 9.17 are often called the Solomon equations; we will use them
extensively in the following discussion.

9.6.3 Relaxation rate constants
The theory of how the rate constants W for transitions between individual
levels are computed is beyond the scope of this text. No new quantum
mechanical concepts are needed to make these calculations — it is just that
the details are rather involved because we are dealing with time~dependent
random processes.

What we find is that the theory predicts that the transition rate constant
between two levels i and j, W2]-, is always the product of three terms:

w.»,- = A.-,2 >< Y’ ><1<a»,>;
we will consider each of these temis in tum.

A,-j is a number which arises from the details of the Hamiltonian which
represents the particular interaction which is causing relaxation. Y2 is a
tenn which is related to the magnitude of the local fields which are causing
relaxation. The term is quite deliberately written as the square since it
tums out that the rate of relaxation always depends on the average of the
square of the local fields. Generally, Y2 depends on the physical details of
the interaction, such as the distance between two spins or the size of the
chemical shift anisotropy.

Finally, j(w,~,») is the reduced spectral density at the frequency of the
transition between the two energy levels. As we have already seen in sec-
tion 9.3.2 on p. 260, this is a measure of the amount of the random motion
which is at the correct frequency, here wry, needed to cause transitions
between the two levels.

In the case of dipolar relaxation between two spins, the rate constants
defined above are given by:

W?" = s 52/((110.1) wt” = a b2j(w0.2)
W2 = %;b2J-(won + 010.2) W0 = 51552]-(010.1 — w0,2)-

The size term is b:
b = /10717271

47rr3 ‘
In this expression /10 is a physical constant called the permeability of vac-
uum, which has the value 47r >< 10-7 H m"‘; ‘H’ stands for Henries, the
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unit of inductance. yr and yg are the gyromagnetic ratios of the two spins,
and r is the distance between them. As described above, each rate constant
consists of the product of a number, the square of a size factor and a spectral
density.

Note that W3 depends on the spectral density at the sum of the Larmor
frequencies of the two spins, as this is the frequency of the transition
between the a/a/ and /3,8 states, which are connected by W2. Similarly,
W0 depends on the spectral density at the difference of the two Larmor
frequencies, as this is the frequency of the a/,8 <—> Ba transition.

Using these expressions for the various rate constants between levels,
the rate constants given in Eq. 9.18 on p. 277 can be written as

Rt" = b’ l2i,1<an> + s1<a0.t + 010.2) + 2%1<a@,. - ¢/10.2)]
R22) = b2 [§35](wo,2) + %j(w0_l + (110.2) + §]5J'(¢/10.1 ~ 0102)] (9 19)

(T12 = b2 [%j(w0,1 + (110.2) ' 2i0j(w0,l — </10.2)] I

Rim) = I92 [%J'(w0,i) + Z36j(w0,2)l-
Note how each rate constant depends on the spectral density at more than
one frequency.

9.6.4 Cross relaxation in the two motional regimes
The self relaxation rate constants R?) and R?) are always positive, as they
are the sum of positive terms. However, the cross-relaxation rate constant
0-1; is the difference of two terms, and so may be positive or negative. As
we will see in this section, it tums out that the sign of 0-12 depends on an
interplay between the sizes of the Lannor frequencies and the correlation
time. We will also discover in a subsequent section that the sign of the
cross-relaxation rate constant is of considerable importance in the theory of
the NOE.

The situation which is of most interest is when the two spins are of the
same type e.g. both protons, in which case they both have the same Larmor
frequency (the tiny difference due to chemical shifts is of no significance
for relaxation). ln this case j(wn_| +a»n_2) becomes j(2a»o) and j(wn_1 —-wng)
becomes j(O). So, from Eq. 9.19 the cross-relaxation rate constant is

0'12 = b2r35j(2w0) - b22—1nJ'(0) -__,_._/ \_,__/
W2 wt,

The underbraces remind us of the origin of the two tenns. It is interesting
to examine the value of 0'12 in the two motional regimes, described in
section 9.3.3 on p. 262.

ln the fast motion limit, the spectral density is simply 21-2 at all frequen-
cies, so:

fast motion: 0'13 = 19% j(2w0) - b32'—0 1(0)
§.._V___/ \_\?_/

w2 wt,
_ 1; _ 2_I._ b N21, b,02r2
_ 12- zbrc.
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From the final expression we see that in the fast motion limit 0'13 is clearly
positive. Looking back through the calculation we can see that this comes
about because W3 > W0.

ln the slow motion limit j(0) is still 2r¢, but j(2a)0) is negligible com-
pared with j(O). so:

slow motion: tr]; = b2,36j(2a»0) — b22—l0j(0)
as \-?,-—-/

w2 w,,
_ 2_ 0- b 71,21,
_ 1—- ~'l—6b2'l'c.

Now, 0'12 is negative, which we can see comes about because W0 > W2.
The cross-over point, where 0'12 = 0, occurs when W2 = Wo:

cross-over: b2T36j(2wn) = b2%5j(O).
\ié,.i...._/ W11

W; W0

Simply by substituting in the expression for j(w), we can see that this cross-
over occurs when

5
(1)()'l'¢ =

For protons at a Lannor frequency of 500 MI-Iz, the correlation time at
this cross-over point is 360 ps, as is illustrated in Fig. 9.19. This value
of the correlation time is typical of a medium-sized molecule in a more
viscous solvent such as water. Small to medium-sized molecules in less
viscous solvents, such as CDCI3, will have smaller correlation times than
this, whereas large molecules, such as proteins and polysaccharides, will
have much longer correlation times than this.

In the next section we will discover that the sign of the cross-relaxation
rate constant has important consequences when it comes to the NOE.

9.7 The NOE

The differential equation of the rate of change of the z-magnetization:

d'“— ">1 1° 1° 920I — -R2 (1: ' t2)*0'i2(12;" 22), ( - )

tells us that if spin two is not at equilibrium (i.e. (I22 I 13:) ¢ 0), the rate of
change of the z-magnetization on spin one will have a contribution which
is proportional to the cross-relaxation rate constant, 0'12. This rate constant
will only be non-zero if there is dipolar relaxation between the two spins, so
if we find that the behaviour of the z-magnetization of spin one is affected
by the amount of z-magnetization on spin two, we can deduce that cross
relaxation must be taking place.

In section 9.6.3 on p. 277, we saw that 0-,2 cc I22, so that the cross-
relaxation rate goes as 1/r6. The rate thus falls off rather rapidly with
distance, so in practice we are only likely to be able to observe the effects of

QQ12_->

-re/ps

100 200 300 500 600

Fig. 9.19 Illustration of how the
cross-relaxation rate constant, 0'12, changes
sign from positive to negative as the
correlation time is increased. The graph is
computed for two protons with a Larmor
frequency of 500 MHz, so the cross-over
point is at rc z 360 ps.
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fa) 180'
<i‘C —->

spin 2

(bi

Fig. 9.20 Pulse sequence for the simple
transient NOE experiment. There are two
parts of the experiment. ln the first part, (a),
the z-magnetization of spin two is inverted
by a selective 180° pulse. There then
follows a delay r during which cross
relaxation takes place, and finally the
1-magnetization is made observable by a
non-selective 90° pulse. Experiment (a)
leads to what is called the irradiated
spectmm. The second experiment, (b), is
simply a pulse—acquire sequence; this gives
us the reference specu'um. By subtracting
the reference spectrum from the irradiated
spectrum, we obtain an NOE difference
specn'um in which the presence of any cross
relaxation to spin two is revealed.

cross-relaxation between spins which are reasonably close to one another.
In practice, for two protons, this means a distance of less than about 5 A.
Thus, if we see evidence of cross relaxation between two spins, we can be
sure that they are reasonably close in space.

Cross relaxation leads to what is called the nuclear Overhauser effect
(NOE), which is an exceptionally important tool when it comes to structural
studies by NMR. In the following sections we will look at different ways
in which cross-relaxation, and hence the NOE, can be detected. All of
these experiments have it in common that one spin is perturbed away from
equilibrium, and then the effect of this on the z-magnetization of the other
spin is determined.

9.7.1 The transient NOE experiment
The pulse sequence for the simplest transient NOE experiment is shown in
Fig. 9.20. This is a difference experiment, in which the spectrum arising
from sequence (b) is subtracted from that arising from sequence (a); as
we shall see, taking this difference reveals the presence of the NOE in a
particularly convenient way.

In sequence (a) the first thing which happens is that the z~magnetization
from spin two is inverted by a selective 180° pulse (see section 4.11 on
p. 71); the z-magnetization from spin one is not affected by the pulse. So,
immediately after this pulse (time ‘r = 0), the z-magnetization of the two
spins can be written as

at 1 = 0 ; 1..(o) = 1?. and 122(0) = -12.. (9.21)
These are the initial conditions which we would need to take into account in
solving the differential equation, Eq. 9.20. which describes how I1; varies
with time.

Solving this differential equation in general tenns is not fundamentally
very difficult, but is a more complex task than we want to get involved in
here. We are going to take a simpler approach, by solving the equation in
what is called the initial rate limit, which only applies at short times. In
this approach, we assume that, on the right-hand side of Eq. 9.20. I1; and
I2: have their initial values (i.e. the values at time zero, given in Eq. 9.21).
Applying this idea gives:

= —R@'>l1~<<>>»tl~mr1.:<@>~1:>.1
: TRi])(1i)z _ 1i)z) _ 0-12(“Igz _ 13:)

= zrmrgz. (9.22)
We have had to put the subscript ‘init’ on the differential to remind us that
this expression only applies in the initial rate limit. This approximation is
valid for times short enough that the 5-magnetizations have not changed by
very much from their initial values.

It is now easy to separate the variables (as we did in section 9.5 on
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p. 268) in Eq. 9.22, and then integrate both sides:

dI|;(I)

dr
dI,1(r) = 20111;’: at

IdI,1(r) = f2<r;;I§’zdt
I11(t) = 20'1;tIgz+const.

= 2012121

ln these manipulations we have written 111(1) to remind ourselves that 111
depends on time. To go to the second line, we have simply taken the term dt
over to the right: this separates the variables into I11(t) on the left and r on
the right. The two integrals are easy to compute as U']2Ig2 is just a constant.

We can find the constant of integration, as we know that at time zero
111(0) = 1?? so the constant is simply 1%. Overall, then, the z-magnetization
of spin one at time r = 1' is

111(1) = 2033113: +

What this says is that there will be a contribution to the z-magnetization of
spin one which is proportional to the time T and the cross-relaxation rate
constant mg: this is what leads to the NOE.

The next step is to work out what has happened to the z-magnetization
from spin two. Again, we start with the differential equation

dI 1if- = -R;’>(12.— 13.) - =m<1r.— 111).
and impose the initial conditions as before 111(0) = 1?: and 121(0) = -122 to
give

C112" '>-—~ = 2R<->1°.
( dt )init Z 22

This has the same form as Eq. 9.22, but with a different rate constant.
Integrating as before gives

121(1) = 2R;2)t1gz + const.

The initial condition is 121(0) = -182. so the constant of integration is —IgZ.
Thus, the z-magnetization from spin two as a function of the time 1' obeys

1141) = 2R§>¢1§Z - 13,.
Since R131 is positive, this equation says that as -r increases the initially
inverted z-magnetization becomes less negative, which is the expected result
as the magnetization approaches equilibrium.

So far, we have computed the z-magnetization for each spin as a function
of the time r in pulse sequence (a) of Fig. 9.20. For pulse sequence (b), the
situation is very simple as both spins are at equilibrium just prior to the 90°
pulse. The results for both experiments are summarized in the following
table.



282 Relaxation and the N05

Q1 Q2
_____L__.__€__L_____

ta) /\ ii

<b> /\ /\

@=@-M

Fig. 9.21 Illustration of how NOE
difference spectra are constmcted. Spectrum
(a) is the irradiated spectmm, recorded
using sequence (a) of Fig. 9.20. Spin two
has been inverted, as indicated by the arrow
and the negative intensity of the
corresponding peak. In fact, in this
spectmm the peak from spin one is slightly
higher than in the reference spectmm, (b),
on account of there being cross relaxation
from spin two. This increase in peak height
is most simply visualized by computing the
NOE difference spectmm, (c), as (a) - (b)_
Now we can clearly see that spin one has
received an NOE enhancement. In the
difference spectrum, the irradiated peak
appears with negative intensity. It has been
assumed that the cross-relaxation rate
constant is positive, so the NOE
enhancement is positive.

experiment spin-one magnetization spin-two magnetization

(=1) Ito) = 2<mTl§1 + 1?, 121(1) = 2R?’rI§. — 12,
<1» 1?. 13.

The 90° pulse in both experiments rotates any z-magnetization into the
transverse plane, where it is observed as an FID. Fourier transformation
of the FID will give us a spectrum in which there is one peak at the offset
(shift) of spin one, and similarly a peak at the offset of spin two.

The height of the peak for spin one, S 1(1), will be proportional to I11(r),
and similarly the height of the spin two peak, S 2(r), will be proportional to
I11(r). Furthermore, if both spins are of the same type (e.g. proton), their
equilibrium z~magnetizations will be equal: 1?: = Thus, the data in the
table above can be converted into peak heights (in the table, c is the constant
of proportion):

spectrum S 1(1) S2('r)

irradiated: (a) c(l + 20121‘) c(2R12’r — I)

reference: (b) c c

NOE difference: (a) - (b) C 20'12r C (21291 - 2)
Spectrum (a) is called the irradiated spectrum, as it is from the experiment
in which one of the spins was inverted. Spectrum (b) is called the reference
spectrum; it is simply the normal spectrum. The table also shows the peak
heights in what is known as the NOE difference spectrum, found by taking
(11) r (b)-

To interpret these results we will assume, for the sake of argument, that
0'12 is positive. We must also remember that these results are only valid in
the initial rate limit, which in practice means that 0111' << l and R91 << 1-

In spectrum (a), the peak for spin one is, as a result of cross-relaxation,
a little higher than the corresponding peak in the reference experiment, (b).
We say that the peak has received an NOE enhancement or, more loosely.
that the peak ‘has an NOE’. The presence of this enhancement is revealed
by subtracting the reference spectrum (b) from the irradiated spectrum (=1).
as doing so just leaves the intensity which arose due to cross relaxation i.e.
the NOE enhancement. The difference (a) — (b) is called the NOE dzfierence
spectrum.

The peak for spin two in spectrum (a) is negative, on account of the fact
that the spin was inverted, with a peak height which is very close to minus
the peak height in the reference experiment (b). Thus, in the NOE difference
spectrum, the spin-two peak is negative, with a peak height of more or less
twice that in the reference spectrum. The process of computing the N05
difference spectrum is shown in Fig. 9.21.

If there is no cross relaxation i.e. 0'1; : 0, then the intensity of the Spin-
one peak in the irradiated spectrum (a) will be the same as in the reference
spectrum (b), and so the spin-one peak will not appear in the NOE difference
spectrum. This difference spectrum is therefore a very direct way of seeiut!
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which spins are cross relaxing with the spin which is inverted (in this ease,
spin two). In this spectrum, the only peaks we will see are those which
receive an NOE enhancement and the one which was initially l1~rnrlin1ed_

In practice. it is rather difficult to record high-quality NOE difference
spectra using the simple pulse sequence described in this ge(;[i()n_ However,
by replacing the selective 180° pulse with an alternative inversion sequence
which uses pulsed field gradients, it is possible to obtain excellent spectra
on a routine basis. The details of this modified experiment are given in
section ll.l6 on p. 420.

The NOE enhancement
The size of the NOE enhancement, r7, is expressed as a fraction in the
following way:

_ peak height in irradiated spectrum — peak height in reference spectrum
J7 _ peak height in reference spectrum

For the above example the enhancement is computed as

c(l + 20121) — c
'7 = ————"*

C
= 20127’.

For molecules in the fast motion limit, 0-11 is positive and so is the en-
hancement. In the slow motion limit, 0-12, and therefore the enhancement,
is negative.

The larger the cross-relaxation rate constant 0'12, the greater the en-
hancement. Recall from section 9.6.3 on p. 277 that 0'12 0c F6, so spins
which are closer will have faster cross relaxation, and hence show larger
enhancements. It is possible, therefore, to use the size of the enhancement
as an indicator of the intemuclear distance.

To use the NOE enhancement as a quantitative measure of the distance
tums out to be rather difficult due to a number of theoretical and practical
limitations. To find out more about this, you should refer to the excellent
text by Neuhaus and Williamson (see Further reading),

Longer mixing times
Remember that all of our calculations so far are in the initial rate limit. To
work out what happens at longer times, we need to integrate the Solomon
equations without making the restrictive assumptions we used above. We
will not go into the details here but just describe the outcome.

To start with. the NOE enhancement increases linearly — this is what we
predicted using the initial rate approximation. I-Iowever, at longer times, the
rate of increase of the enhancement starts to slow down. and eventually it
reaches a maximum. After this. the enhancement steadily falls to zero.

The maximum value of the enhancement, and the time at which this
occurs, is a function of the cross-relaxation and self-relaxation rate con-
stants. Not surprisingly, the greater 012. the greater the maximum and the
earlier time at which it occurs. The effect of increasing the self-relaxation
rate constants is to decrease the maximum enhancement.
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(3) spin 2

(b)

Fig. 9.22 Pulse sequence used to record a
steady-state NOE difference spectrum. Two
experiments are needed: in (a) the target
spin (here spin two) is irradiated with a
weak field so as to saturate it. The
irradiation is applied for long enough for a
new steady state to be reached. Experiment
(b) is just a normal pulse—acquire sequence,
which leads to the reference spectrum. The
NOE difference spectrum is found by taking
(a) ~ (b).

1./t l
1» A 1_ A

(<>) = (3) - (b)

I V
Fig. 9.23 Illustration of how a steady-state
NOE difference spectrum is constructed.
The spectra are similar to those of Fig. 9.21
on p. 282 except that spin two is saturated,
so does not appear in the irradiated
spectrum (a). Subtracting the reference
spectrum (b) from the irradiated spectrum
(a) gives the NOE difference spectrum (c).
As before, the peak from the irradiated spin
is negative, and the enhancement is visible
on spin one. It has been assumed that the
cross-relaxation rate constant is positive.

9.7.2 The steady-state NOE experiment
In this experiment, rather than inverting one of the spins, and then letting
cross relaxation take place, the target spin is irradiated continuously with
a weak RF field. The field is chosen to be weak enough that only the spin
with which it is on-resonance is affected.

The result of this irradiation is to saturate the target spin, which means
that its z-magnetization is forced to Zero. The terrn saturation comes about
from thinking about the populations of the two energy levels. Continuous
irradiation eventually equalizes these populations, a situation which in spec-
troscopy is described as saturation. The population difference, and hence
the z-magnetization, thus goes to zero.

The pulse sequence used to measure a steady-state NOE is shown in
Fig. 9.22. As for the transient experiment, two spectra are recorded: one in
which the target spin (here spin two) is saturated, and a reference spectrum
in which all spins are at equilibrium.

As before, we can analyse the experiment using the Solomon equations;
however, the approach is a little different to that used for the transient
experiment. There are two key ideas needed here. The first is that, as spin
two is irradiated continuously, it is kept saturated, so we can write, at all
times, I21 = O. The second is that, if we saturate spin two for long enough,
we will reach a new steady state in which the spin one magnetization is not
changing with time, i.e.:

= 0-
dr ss

the subscript ‘SS’ indicates the new steady state. Once again, we start with
the Solomon equation for the spin-one magnetization (Eq. 9.20 on p. 279):

dlif = -R§"(11. - 1?.) - (mire. — 12.).
Applying the two conditions we have described gives

0 = -R§1)(I1z,ss - 1i)1) - 0'12(-lg),

where 11155 is the steady-state value of the z-magnetization on spin one.
Rearranging this last expression gives

(T= 1:. + Ir.-
RZ

As with the transient experiment, the z-magnetization on spin one is altered
as a result of cross relaxation.

If we assume, as we did before, that IYZ = I31, then the peak height
of the spin-one resonance in the steady-state spectrum is c(l + 0'12/Rgn).
Since spin two is saturated, no spin-two peak appears in the irradiated
experiment. In the reference spectrum, both peaks have height c. So, in
the NOE difference spectrum the spin-one peak will have height c0'12/R11),
and the spin-two peak will have height —c; this is illustrated in Fig. 9.23.
As before, the difference spectrum reveals the presence of cross relaxation
in a very convenient way.
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The NOE enhancement is given by

¢(1+ 0-,2/R§‘>) - C
'lss = lei

0'12
=  _

As in the transient experiment, an NOE enhancement will only be seen if
the cross-relaxation rate constant is non-zero. However, in contrast to the
transient experiment, the steady-state NOE depends not just on 0'12, but the
ratio of this cross-relaxation rate constant to the self-relaxation rate constant
of spin one (i.e. the spin which is enhanced).

Thus, the size of the steady-state NOE does not simply reflect the
amount of cross relaxation, but rather the balance between cross and self
relaxation. Cross relaxation must be from the dipolar mechanism, but self
relaxation can be from this and other sources (such as dissolved oxygen).
We therefore have no way of relating the self-relaxation rate constant, and
hence the NOE enhancement, to the internuclear distance. Steady-state
NOE measurements can therefore only be used qualitatively.

The final point is to estimate how long it takes the spins to come to the
new steady state once we start irradiating one of them. As we have seen, the
steady-state enhancement depends on a balance between the self and cross
relaxation of spin one, so the rate at which the system comes to a steady
state clearly has something to do with these rate constants. It tums out that
the smaller of these is always 0'12, so the value of this rate constant is the
limiting factor in determining the rate at which the steady state is achieved.

For a first-order process, the reciprocal of the rate constant gives a
related parameter known as the time constant. It can be shown that equi-
librium is only reached after waiting several times this time constant. So,
in the case of the steady-state NOE, we need to wait several times 1/0'12.
This can easily be several seconds. However, since there is little quantita-
tive information that we can derive from the size of the steady-state NOE
enhancements, it is not necessary to wait until the steady state has been
reached.

9.7.3 Heteronuclear steady-state NOE
An important application of the steady-state NOE is to enhance the intensity
of signals recorded from heteronuclei such as 13C. The idea is that by irradi-
ating the protons, the z-magnetization of the '3C nuclei will be enhanced as
a result of cross relaxation. Thus, when the z-magnetization is rotated into
the transverse plane, stronger '3C signals will be observed as a result of the
NOE enhancement.

Since this is a heteronuclear experiment, we will switch to the IS nota-
tion, where I is typically the protons. Adapting the result of the previous
section, the enhanced z-magnetization on the S spin ('3C) as a result of
saturating the I spin (proton) is:

5,55 = % If + sf. (9.23)
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NOESY: Nuclear Overhauser Effect
SpectroscopY

In section 9.6.2 on p. 274 we defined I; in terms of the population difference
across the I spin transitions, so If,’ depends on the equilibrium population
difference. It was shown in section 9.4.1 on p. 264 that this difference is
proportional to the gyromagnetic ratio of the spin, and so it follows that

Sf Ys—- = ~—. (9.24
I? ‘Y1 )

So, as 7 for proton is about four times 7 for 13C, the equilibrium magneti-
zation of proton is four times that of '3’C.

If we use Eq. 9.24 to write 1? in terms of sf in Eq. 9.23, we find that the
steady-state magnetization on the S spin is

$.55 = L“'5 sf’ + sf’.
i 7'5 Rig) i i

Using this we can determine that the NOE enhancement of the S spin is

_ 71 0'ts
'7ss ys R25)

An estimate for this enhancement can be made if it is assumed that,
for a BC with a directly attached proton, the self relaxation of the '3C is
dominated by its dipolar interaction with the proton. We will also assume
that we are in the fast motion limit, so that all spectral densities are simply
Zrc.

With these assumptions, the relevant expressions for the rate constants
given in Eq. 9.19 on p. 278 simplify to:

Rf) = 11%, 0-,5 = gm.
Substituting these into the expression for 1155 we find

fast motion: 1755 = 1,
27$

which, in the case of spin two being proton and spin one being “C, gives
1755 z 2. Clearly, there is a useful enhancement of the '-‘C signal to be
obtained in this way.

In practice, the enhancement we obtain will be less than this estimate.
There are two main reasons for this. Firstly, there are probably other sources
of relaxation of the S spin (the UC) than the attached proton. As a result.
RES) is increased and the enhancement is reduced. Secondly, we rarely have
the patience to wait the rather long time which is needed for the steady state
to be reached. Nevertheless, useful enhancements can be achieved with
somewhat shorter times.

9.7.4 Two-dimensional NOESY
A two-dimensional NOESY spectrum looks very similar to a COSY. with
the important exception that the cross peaks are generated, not by cohercflfls‘
transfer through couplings, but by cross relaxation. Thus, the appearance oi
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tl NOESY cross peak at |Q,», Q11} tells us that there is cross relaxation be-
tween spins i and j ~ in other words, the two spins must be reasonably close
in space. COSY and NOESY are therefore complementary experiments: the
former tells us which spins are coupled, and so connected by the bonding
network. whereas the latter tells us which spins are close in space.

The NOESY pulse sequence is shown in Fig. 9.24; we will analyse
it for the case of two spins which are undergoing dipolar relaxation. For
simplicity, we will assume that there is no scalar coupling between the two
spins.

The first part of the sequence, 90°— I1 — 90°, has already been analysed in
detail when discussing the COSY experiment. We are only interested in the
z-magnetization present after the second pulse, as it is such magnetization
which can undergo transfer due to cross relaxation. So, we need term [l]
on p. l95:

—cos(1rJ;2t;)cos(Q1t|)i1Z. [l]
As we are assuming that there is no coupling, J12 = O and hence
cos (1rJ12t;) = 1, giving

“C95(Ql1'l)ilz-
This term arises from the equilibrium magnetization on spin one; there is
an analogous terms arising from spin-two equilibrium magnetization:

— COS (Q2171) jgz.

Therefore, just after the second pulse (T = 0) the z-magnetizations on the
two spins are:

1,, = _¢os(o,t,)1?, and 12, = -¢<>s(o2t,)1§,.
Essentially what we have here are z-magnetizations which carry a label with
them, in the form of the modulation cos (Q,-t1), identifying them as being
from spin one or spin two. During the mixing time, these magnetizations
may be transferred to another spin, carrying with them the label which
identifies their source. We will see that such transfers will be the origin
of the cross peaks in the spectrum.

We are going to assume that the two spins are of the same type. so
that their equilibrium z-magnetizations are equal; we will write these as If,
Also, to save space we will use the notation

ct = —cos (Qm) and C2 = —cos(.Q;r|).

Further, as there is only one cross-relaxation rate constant, we will write it
as tr, and we will also assume that the two self-relaxation rate constants are
equal, with value RZ.

With all of these simplifications, the Solomon equations (Eq. 9.17 on
p. 276) become

d—I§t—(Q = — R1[1|Z(t)— If] — <1 l12;(1) - 1?] (9 25)

gag = - 0' [1,,(t) - 1§]- R, [12,(r) - 1?].

I: r,~1-t->W_F'2-T

Flg. 9.24 The NOESY pulse sequence.
During I1, transverse magnetization
acquires a phase label according to the
ofiset; this transverse magnetization is
rotated onto the z~axis by the second pulse.
During the mixing time r cross relaxation
may transfer this labelled z-magnetization to
other spins. The final pulse rotates the
z-magnetization into the transverse plane,
allowing a signal to be detected.
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We are going to solve these using the initial rate approximation, just as we
did for the transient NOE experiment in section 9.7.1 on p. 280. The initial
conditions are

111(0) = C11? and 12,10) = @213. (9.26)
Inserting these on the right-hand sides of Eq. 9.25 gives, in the initial rate
limit,

dl . = -R,(¢,-1)1§’ - 0'(C2 -1)1§
init

dl .

These can be integrated, just as we did before, to give

I|;(t) = —R;t(c| — l)I? — 0"t(c; — 1)]? + const. l
124;) = -mm - in? - R;t(c; - 1)1f + const. 2

The initial conditions given in Eq. 9.26 enable us to find the constants as:

const. l = ct]? and const. 2 = cgli).

Putting these constants back into the integrated equations, tidying up and
finally setting the time to T (the mixing time) gives the following

Z1;-$2 = ct(l — R;T) — c20'r + (R; + 0")? (9.27)
Z

gig) = c;(l — Rgr) — c|0"r + (R; + 0')r. (9.28)

The expressions describe the situation at the end of the mixing time.
The final pulse in the sequence rotates this z-magnetization into the

transverse plane, where it is then observed during t2. Without any detailed
calculations we can see that the spin-one z-magnetization in Eq. 9.27 will
give rise to peaks at the offset of spin one, Q1, in the (4)2 dimension. From
the right-hand side of Eq. 9.27, we can see there are three terms modulating
this peak in :1. Writing out ct and C2 in full, these terms are:

- cos (Qtt1)(l - R_-_r) + cos (Q2[| )0-11+ (R; + 0')-r.
v 7'" v v

diagonal cross axial

The first tenn is modulated at Q1 in tt and is therefore a diagonal peak.
which will appear at (wt , tug) = {Qt . Qt }; its intensity is (R;r— l ). Recall that
in this initial rate limit R,-1' << l, so this peak is negative. Our interpretation
of the diagonal peak is that it arises from z-magnetization which started out
on spin one and remained on that spin during the mixing time.

The second term is modulated at Q2 in t|, and so gives rise to a cross
peak at lQg,Q1}. The intensity of this peak is (rrr), which means that if 0'
is positive, it will be small and positive i.e. of opposite sign to the diagonal.
On the other hand, if we are in the slow motion limit, which gives tr < 0. the



9.7 The NOE 289

cross peak will have the same sign as the diagonal. This term arises from
magnetization which started on spin two at the beginning of the mixing time
and was then transferred to spin one as a result of cross relaxation. lf there
is no cross relaxation (tr = 0), then there are no cross peaks.

Finally, the third term has no modulation in t|, and so will appear at
an = O; such peaks are called axial peaks. The magnetization responsible
for the axial peak has lost its frequency label as this is the magnetization
which has recovered as a result of relaxation during the mixing time. The
intensity of the axial peaks goes as (R;+o-)r, and as it turns out that R: > la-I,
these peaks will be positive, i.e. opposite in sign to the diagonal. Figure 9.25
illustrates the way in which all three types of peaks appear in the spectrum.

From Eq. 9.28 we can see that there is a complementary set of peaks
arising from the z-magnetization on spin two present at the end of the
mixing time: a diagonal peak at {Q2,Q2}, a cross peak at {Q;,Q2}, and
an axial peak at {0, Q2}. The intensities of these peaks are the same as their
counterparts appearing at Qt in (1)1.

In many ways. NOESY is the two-dimensional counterpart of the tran-
sient NOE experiment described in section 9.7.1 on p. 280. As in that
experiment, at first increasing r increases the intensity of the cross peaks.
Then, the rate of increase decreases until we reach a maximum, after which
the intensity falls off.

Suppression of axial peaks
The axial peaks convey no useful information and can be somewhat trou-
blesome if they obscure the wanted cross peaks. It would be a good idea,
therefore, to have a method of suppressing them.

Looking back over the calculation, you can see that the distinguishing
feature of the terms which give rise to the axial peaks is that they have
no modulation as a function of ti. The reason why this is so is that the
magnetization which gives rise to the axial peaks is created as a result of
relaxation during r.

If the phase of the first pulse in the sequence in changed from x to —x,
then the sign of the z-magnetization at the start of the mixing time is also
changed. This sign change propagates through the subsequent calculations,
and results in both the diagonal and cross peaks changing sign. However,
the axial peaks do not change sign as they arise from recovered magnetiza-
tion.

So, we can use a simple difference method to suppress the axial peaks.
The experiment is repeated twice, once with the phase of the first pulse set
to x and one with the phase set to —x. Subtracting the two experiments
results in the cancellation of the axial peaks, while the cross and diagonal
peaks add up.

Figure 9.26 shows part of the NOESY spectrum of quinine. For this
small molecule the cross-relaxation rate constant is positive, and so the
diagonal and cross peaks have opposite sign. Some of the cross peaks
are quite strong, whereas others are much weaker, implying that they are
between more distant spins.

..... “Q2

axial p/elaks o>1=0

1 “Q1

1 5
91 Q2

""" U)2*>

Fig. 9.25 Schematic NOESY spectrum for
two spins undergoing cross relaxation.
Positive peaks are shown in black and
negative in grey; the spectrum is shown for
a molecule in the fast motion limit i.e.
0' > O. The spectrum is closely analogous to
a COSY, except that in NOESY the cross
peaks arise due to cross relaxation during
the mixing time. ln addition to the diagonal
peaks and cross peaks. the spectrum shows
axial peaks which appear at wt = O.
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Fig. 9.26 Part of the NOESY spectrum of quinine, recorded at 300 MHz and with a mixing
time of 1 s. As expected for this small molecule. the cross and diagonal peaks have opposite
signs. The region shown is the same as for the DQF COSY shown in Fig. 8.17 on p. 207. The
contribution from zero-quantum coherence present during the mixing time has been suppressed
using the method described in section 11.15 on p. 415.

9.7.5 The NOE in more extended spin systems
The dipolar interaction involves a pair of spins, so even in an extended spin
system we can still think of the cross relaxation between two particular
spins, and hence the NOE which will be seen between them. The presence
of other spins does affect the NOE, however, as they provide additional
sources of relaxation. An NOE is always a competition between the transfer
due to cross relaxation and the general loss of magnetization caused by self
relaxation of the two spins involved. If the relaxation is fast enough. then
it will outcompete the cross relaxation, and no NOE will be seen. ll i5
essentially this competition which sets a limit on the maximum distance
over which we are able to observe the effects of cross relaxation.

In an extended spin system it is possible that NOE enhancements be-
tween spins which are not cross relaxing one another will be observed. Tl1i$
comes about in the following way. Suppose we have three spins, A. B and
C. A is close to B, so there is cross relaxation between them. Similarly.
B and C are close to one another, and so cross relax. However. there is I10
cross relaxation between A and C; the situation is depicted in Fig. 9.27-
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Let us assume that we are in the fast motion limit. so 0' is positive. If
we selectively invert A in a transient NOE experiment, then we will see
a positive NOE enhancement on B. This enhancement means that the z-
magnetization on spin B has been made greater than its equilibrium value.

Now, as spin B is no longer at equilibrium, cross relaxation with spin
C will cause magnetization from B to be transferred to C. As a result, an
NOE enhancement will be seen on spin C. Since the magnetization on B is
greater than the equilibrium value, cross relaxation to C results in a negative
enhancement of that spin, even though 0- is positive. Figure 9.27 shows the
resulting NOE difference experiment.

The overall result is that inversion of A results in a positive NOE en-
hancement of B, and a negative NOE enhancement on the remote spin C,
even though this latter spin is not cross relaxing with A. Spin C is said to
receive a relayed NOE from A. It tums out that in the slow motion limit,
where 0" is negative, both the direct and relayed NOE enhancements are
negative.

Such relayed NOEs are potentially confusing as they break the simple
interpretation that observation of an NOE between two spins means that
they must be close in space. However, in the fast motion limit, the sign of
the NOE enhancement does give us a way of distinguishing the direct from
the relayed NOEs. In the slow motion limit, all the NOEs are negative, and
therefore cannot be distinguished by their signs.

The final point is that these relayed NOEs generally build up much more
slowly than the direct NOEs. This is because the relayed NOE requires
first that a normal direct NOE be generated, and then that this enhancement
causes a second NOE to the remote spin. By restricting ourselves to modest
mixing times, it is rather unlikely that such transferred NOEs will have had
time to build up.

In the slow motion limit, the cross-relaxation rate constant depends
only on W0, which in turn depends on j(0), where j(O) = Zrc. As the
correlation time gets longer and longer, the cross-relaxation rate therefore
also increases. So, for large molecules with long correlation times, such
as proteins, cross relaxation can be quite efficient. In such cases, relayed
NOE enhancements can build up quickly, and indeed multiple relays along a
chain of spins are also possible. This phenomenon, in which magnetization
is spread amongst the spins by efficient cross relaxation, is called spin dif-
fusion. The presence of this effect leads to ambiguities in the interpretation
of the observed NOE enhancements.

9.8 Transverse relaxation
In section 9.4.2 on p. 266 we showed that, for a single spin, the relaxation
behaviour of the z-magnetization is given by (Eq. 9.1 l on p. 267)

dMZ(l)T _ —R; [M:(r) -
This equation predicts that relaxation will drive the z-magnetization to its
equilibrium value of

A<——->B<—->C

QA QB QC
l I I

\fL Jt
F

I

Fig. 9.27 Schematic NOE difference
spectrum for three spins, A, B and C, in a
line. Cross relaxation between the spins is
indicated by the double-headed arrows; note
that there is no cross relaxation between A
and C. The lower part of the figure shows
the NOE difierence spectrum expected for
the case where A is irradiated. As it is
assumed that the cross-relaxation rate
constant is positive, we see a positive NOE
enhancement on B. Even though A and C
are not cross relaxing one another, we see a
negative enhancement on C. This is due to a
two-stage transfer, first from A to B, and
then from B to C. The NOE on C is
described as a relayed NOE. Note that for
the purposes of the diagram. the size of the
relayed NOE has been greatly exaggerated.
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time
Fig. 9.28 Transverse magnetization decays
exponentially at a rate determined by the
transverse relaxation rate constant. R,_,..
Curves are shown for two values of the rate
constant, with the grey curve having twice
the rate constant of the black curve.

The transverse magnetization, for example the x-magnetization, obcys
the following differential equation:

dM.t(r)-7 = "R10 MAI), (9.29)
where Rx). is the rate constant for transverse relaxation and, for simplicity,
it has been assumed that the offset is zero. There is a similar equation for
the y-magnetization, with the same rate constant. We will now show that
this equation predicts that the x-magnetization decays exponentially to its
equilibrium value of zero.

All that we have to do is to integrate Eq. 9.29 using the same approach
as in section 9.5 on p. 268:

dM.t(r)
dz

9@__Rd,-' xyMAI)

—R,,_y r + const.

= -R., M,(t)

fdM.i(r) _
Mm ‘

ln M,,(r) =

We can find a value for the constant by taking the value of the x-
magnetization at time t = 0 to be M,t(0). Substituting this into the last
line shows that the constant of integration is ln M,(0), so the solution to the
differential equation is

in M_,(r) = —R,_,. r + in M,,(O).

This can be rearranged as follows:

lnM,(t)-—ln M,,(0) = -Rnt
Mm) _ _

- Rxyf

@ = exp(—R,v t)M..<0> r
M_,(t) = M_,,(0)exp(—R,yt).

What the last line says is that the x-magnetization decays from its initial
value to the equilibrium value of zero at a rate determined by the rfllfi
constant Rn; typical examples of such a decay are shown in Fig. 9.28. The
y-magnetization behaves in exactly the same way.

The 1'c(;ip1'OC8l of the rate constant Rn. is the time constant for the decay
of transverse magnetization. Usually this time constant is denoted T2. Whflfe
T2 : 1/Rn, The use of this symbol is so widespread that transverse
relaxation is often called ‘T2 relaxation’.

If the offset is not zero then, in addition to decaying due to transverse
relaxation, the x~ and y—components of the magnetization are interconvertfid
due to their precession in the transverse plane. lf we are only interested in
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the reluxuiioii purl of this process. We can '3limiflHI6 the effect of precession
by defining M .... as

MU = 1/M"; +

The value of Mn. does not change as a result of precession, so its time
dependence is just determined by relaxation:

dM.\-»-(I)_-T = -Rn. M,.,_,(r).

9.8.1 Different contributions to transverse relaxation
In section 9.1.4 on p. 251. and also in section 9.3.4 on p. 263, we discussed
how there are two distinct contributions to transverse relaxation. The first
is made by transverse components of the local fields which are oscillat-
ing at the .L.a.rmo.r frequency - the same components cause longitudinal
relaxation. The second contribution to transverse relaxation comes from
the 3-components of the local fields, and depends on the spectral density at
zero frequency.

The first contribution. which depends on the spectral density at the Lar-
mor frequency, is called the non-secular contribution, whereas the second
contribution, which depends on the spectral density at zero frequency, is
called the secular contribution.

The terms secular and non-secular come from quantum mechanics. In
this theory, a secular perturbation is one which changes the energy, but not
the wavefunction. whereas a non-secular perturbation changes both. An
oscillating transverse magnetic field causes an individual magnetic moment
to change orientation, and so changes the wavefunction — it is thus a non-
secular effect. A field along the 3-axis will alter the rare ofprecession of the
magnetic moment, which is the same as altering the energy, but does not
alter the orientation with respect to the z-axis — this is n secular effect,

There is an interesting relationship between the non-secular part of
transverse relaxation and longitudinal relaxation. and it is this topic which
is explored in this section. We will first consider the simplest case, which
is relaxation caused by ‘random fields‘, and then go on to consider dipolar
relaxation.

9.8.2 Relaxation by random fields
One of the simplest problems we can deal with in the theory of relaxation
is to imagine that our spin experiences a random locnl fic1d_ We do nor ask
where the field comes from, but just accept that it is there,

To make things as simple as possible we will also nssume rhnr the mean
square of the local field is the same in the x-, y- and z-directions:

B2 =51, B1 =31 at =31l0c..r loc loc._v loc’ lnc_; 10¢‘

With these assumptions, it can be shown that the rate constant for lon-
gitudinal relaxation is given by:

R. = w"1§'§i<~i.>. (9.30)
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where y is the gyromagnetic ratio and mo is the Larmor frequency (we are
not able to go into the details of the theory used to compute these rate
constants), As expected, the rate of longitudinal relaxation depends on the
spectral density at the Larmor frequency.

The rate constant for transverse relaxation, Rn, can be shown to be
given by

Rs = %~/’Bi,,. 1(0) + 928%,, mo) .
secular non-secular

As expected, the rate constant has a secular part, depending on j(0), and
a non-secular part, depending on j(wO). The new feature which these
calculations reveal is that the non-secular part is precisely half the value
of the longitudinal rate constant given in Eq. 9.30:

_ l 2 - IRx, ._ 5;/231°C 1(0) + 512,.
i§,_._..__» ~§,_»

secular non-secular

It tums out that for any relaxation mechanism it is always true that there
is a contribution to the transverse relaxation rate constant which is equal to
one-half of the longitudinal rate constant. This factor of one half cannot be
a coincidence, so where does it come from? One argument goes along the
following lines.

Imagine that the transverse component of the local field experienced
by a particular spin is aligned along the x-axis, and is oscillating at the
Larmor frequency. The z-component of the magnetic moment of the spin
will thus be rotated, as will its y—component. However, the x-component is
unaffected, as it is parallel with the local field. Thus, the z—component of
the moment is altered, leading to longitudinal relaxation, but only one of
the transverse components is altered. We interpret this by saying that the
field is half as effective at causing transverse relaxation as it is at causing
longitudinal relaxation, as only one of the two transverse components of the
moment is affected.

Relaxation rates in the two motional limits
It is interesting to see how the longitudinal and transverse relaxation rate
constants compare in the fast and slow motion limits. Recall that in the
fast motion limit j(w0) = 21¢ and, independent of the motional regime.
j(0) = 21¢. The two rate constants are thus

fast motion: R2 = 7/2Bl2OCj(w@)

= 2)/2Bl2oc Tc,

and

fast motion: RU = %y2Ej(O) + é)/ZBZC j(w0)

= 72 B1201: TC + 7/2Bl2oc Tc

2
Z T‘;-
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Therefore, in the fast motion limit the two rate constants are equal, which is
a consequence of the spectral density being independent of frequency.

ln the slow motion limit j(0) is still 2r¢, and as described in section 9.3.3
on p. 262, j(w0) is given by

So. the rate constant for longitudinal relaxation becomes

Note that this rate constant decreases as the correlation time increases.
In contrast, the rate constant for transverse relaxation goes on increasing

2
j(w0) = "T-

more

2 ')slow motion: R; = y B~,j(¢u0)lot

2 2
_ 2)] Bloc_ if_

U)0T¢

as TC increases on account of the secular term:

On the second line we have simply set j(w0) to zero, as it will be negligible

slow motion: R“ = %y2I9_,2:j(O)+%y2Kj(w0)
_ 2 2- ')/BIOCTC.

compared with j(O).
Figure 9.29 shows a plot of the two rate constants as a function of the

correlation time. The fast motion limit, in which the two rate constants
are equal. is seen when -rc is small. As the correlation time increases, the
longitudinal relaxation rate constant eventually reaches a maximum. It was
shown in section 9.3.2 on p. 260 that j(w0) is a maximum when wort = 1,
so this is the condition for R; being a maximum. As the correlation time
increases further, R; falls off steadily. In contrast, the transverse relaxation
rate constant goes on increasing with re.

The practical consequence of these observations is that for large mole-
cules. which tumble slowly and so have long correlation times, trans-
verse magnetization decays away to zero much more quickly than the z-
magnetization recovers to equilibrium.

9.8.3 Transverse dipolar relaxation of two spins
For two spins relaxing by the dipolar interaction the following relaxation
behaviour is found:

where

%=_R<i_>] __R<2>1
dt 1') IX _ xy 2X1

1>_b21- 3~ 3- 3Riry - lJ—0J(9) + $J(wo.22 +\Z5](w0.l) + fij(lU0,l + wo.2) + ,;'5j(w0.1 — wag]
Secular non-secular =R) ’ /2

l
ti: R”

R,

more = 1 T’

Fig. 9.29 Plot of the rate constants for
longitudinal (R1) and transverse (Rat)
relaxation, caused by random fields, as a
function of the correlation time. Tc. In the
fast motion limit (wgrc << l), the two rate
constants are equal, and increase with Tc.
However. as the correlation time increases
further the rate constant for longitudinal
relaxation reaches a maximum and then
falls off. In contrast, the rate constant for
transverse relaxation goes on increasing
indefinitely, eventually becoming a linear
function of rc.

a
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and

<2) _ 2 1Rn —- b [$110) + %J'(w0,i) + %J'(w0.2) + §35j(wo_i + w0,2) + $j(w0.i — w0_Z)]

“Cum non-secular =R§2’ /2

As before, the non-secular contribution is equal to one-half of the cone.
sponding longitudinal rate constant.

Of the two terms which have been labelled secular, the first needs no
comment since, as in the case of random fields, it depends on the Spectral
density at zero frequency. In the expression for Rig, that is the transverse
relaxation rate constant for spin one, the second secular term depends on
the spectral density at the Larmor frequency of spin two, w0_2. Our interpre-
tation of this term is as follows.

Spin one sees a magnetic field due to spin two, and as we have seen,
this field depends on the distance between the two spins and the orientation
of the vector joining them. However, the field at spin one also depends on
the spin state of spin two i.e. whether it is up or down. Flipping spin two
causes the local field experienced by spin one to change, thus making a
contribution to the spread of local fields. The rate of flipping of spin two
depends on the spectral density at the Larmor frequency of this spin, as it is
motion at this frequency which is needed to flip the spin.

As with relaxation by random fields, in the fast motion limit Rn. = Rz,
and in addition RD. is the same for both spins involved in the dipolar inter-
action.

9.8.4 Transverse cross relaxation: ROESY
For two spins undergoing dipolar relaxation, we saw that the behaviour of
the z-magnetization of spin one depends on the deviation of spin two from
equilibrium, and vice versa. This effect appears in the Solomon equations
via the cross~relaxation tenn depending on 0'12 :

<11];
dt

Elia
dr

= -R§"<Il. - 1&1) - tmtaz — 12,)
= _U'l2Ulz e 1§’,> - R§’><12. - 12,).

However, for transverse relaxation, no such cross term is seen between the
two transverse terms:

dI dl
fi = —Rgy)I1x I -Rg,)I2x.

The question is, why not?
The answer to this question is that, in principle, there is such a cross-

relaxation tenn between I1, and 13,, — it is just that we cannot observe
the effect of this cross term. To see why this is, imagine that spin one
is on-resonance and that its transverse magnetization is stationary along
the x-axis. Spin two, however, does have an offset and so its transverse
magnetization precesses around in the transverse plane.
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Cross relaxation can cause some of the spin-two transverse magnetiza-
tion to become spin~one transverse magnetization. This new contribution to
spin one will appear in the direction in which the spin-two magnetization
is pointing. A little time later, further cross relaxation generates some
more spin-one transverse magnetization. As the spin-two magnetization
has precessed around, the new contribution to spin one will be in a different
direction to the first. As this process goes on, the overall result is that the
contributions to the spin-one magnetization which come from cross relax-
ation of spin two are just spread around the transverse plane, and so simply
cancel one another out. This is why, although there is cross relaxation, we
cannot see its effect.

We can see from this description that if the two spins had the same offset,
their transverse magnetizations would precess at the same frequency and so
be aligned at all times. In such a situation, we would expect there to be net
transfer of transverse magnetization due to cross relaxation. The problem is
that as the two spins have the same offset, they will not be separated in the
spectrum.

However, there is a way — called spin locking — of making it appear, for
a period of time, that two spins have the same offset. How this works is the
topic we will tum to next.

Spin locking
The idea of spin locking is quite simple. Imagine starting at equilibrium
and first applying a 90° pulse about the y-axis; this brings the magnetization
down along the x-axis. Immediately after the pulse, we apply a strong RF
field, just as we would use for a pulse, along the x-axis; the sequence is
shown in Fig. 9.30. If this field is sufficiently strong it is found that it ‘locks’
the magnetization and keeps it aligned with the RF field. Effectively, this
strong RF field suppresses the offset term, thus keeping the magnetization
stationary along the x-axis.

For the spin-locking field to be ‘sufiiciently strong’ its field strength,
as determined by the frequency wt, must be much larger than the greatest
offset present. Clearly, if there is only one line in the spectrum, we can
satisfy this condition with any field simply by placing the transmitter on-
resonance with the line. However, in general there will be more than one
line on the spectrum, and hence a range of offsets.

As an example, consider a proton spectrum recorded at 500 Mi-Iz. If
we place the transmitter in the middle of the spectrum, the largest offset
is about 5 ppm, which corresponds to 2500 Hz. To be effective across the
spectrum, the spin-locking field strength, to,/(21r), would need to be two
or three times this maximum offset; three times the maximum offset gives
wt /(Zn) = 7500 Hz, which is quite feasible. Of course, we can only hope
to spin lock spins of the same isotope (e.g. both protons), as the frequency
Separation between spins of different isotopes would be too large.

If we assume that the transverse magnetization from both spins is spin
locked, then the differential equations which describe the relaxation behav-

Y x

Fig. 9.30 A simple pulse sequence
illustrating the idea of spin locking. The
initial pulse rotates the equilibrium
magnetization onto the x~axis. Immediately
after the pulse. a strong RF field is applied
along the x-axis. Provided the field is strong
enough, the magnetization remains locked
along x, even if the spin has an offset.
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ROESY: Rotating frame Nuclear
Overhauser Effect SpectroscopY

-ii 1;———> it2_>

l:'1_:iw,,,,.
Fig. 9.31 Pulse sequence for the
two-dimensional ROESY experiment. The
mixing time consists of a period of spin
locking during which cross relaxation
between transverse magnetization takes
place.,

iour will include a cross-relaxation term:

dI dl
iii = _R§é,)Ilx _ 0-xyI2x % = '-Uxylgx — Rsgllx,

where the transverse cross-relaxation rate constant is given by

0-xy = Ir’ [$110) + %.,1<w@>].
In this expression, mo is the Larmor frequency ofboth spins — the difference
caused by chemical shifts is too small to be important.

The really important thing about 0",, is that, as it is the sum of two terms,
it is positive for all values of the correlation time. This is in contrast to
the corresponding cross-relaxation rate constant for z-magnetization, which
changes sign as re changes, and therefore has a zero-crossing. This key
observation is exploited in the two-dimensional ROESY experiment.

ROESY
ROESY is analogous to the NOESY experiment, except than instead ofgen-
erating cross peaks by cross relaxation between the z-magnetization of dif-
ferent spins, the cross peaks in ROESY arise from cross relaxation between
spin-locked transverse magnetization. The experiment is a useful alternative
to NOESY as the cross peaks in a ROESY spectrum always have the same
sign, regardless of the value of the correlation time. ROESY is therefore
used to look for NOE enhancements in molecules whose correlation times
make the conventional NOEs zero or close to zero (see section 9.6.4 on
p. 278).

The pulse sequence for the two-dimensional ROESY experiment is
shown in Fig. 9.31. It is quite similar to the NOESY pulse sequence
(Fig. 9.24 on p. 287) in that frequency-labelled magnetization is prepared
during ti. The difference comes in the mixing time. In NOESYZ the
frequency-labelled magnetization is rotated onto the z-axis, where cross
relaxation takes place. In ROESY, it is the x-magnetization present at the
end of ti which is spin-locked so that transverse cross relaxation can take
place.

At the start of the mixing time (i.e. the spin locking), r = 0, the x-
magnetizations of the two spins are

1,,,(0) = Si1'1(Q1l‘| i If and 12,(0) = sin (Q2r1) IQ,
where we have assumed that the equilibrium z-magnetizations of the two
spins are the same. Following the same approach as we used to analyse the
NOESY experiment in the initial rate limit, we can show that at the end of
the mixing time the magnetizations are:

11,41) = (1 - Rmr) sin (om) 1° -0,; sin (om) 1°, W 1, .. 1.
v " ' T

diagonal peak cross peak
I2,,("r) = ( I -— Rg,)'r) sin (Q2t1) I2 :_0-xylr sin (Q1t1) I2 .

diagolial peak "035 Pcak
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As before, we have two cross peaks, both with intensity (—o',_,.r), and two
diagonal peaks, with intensity (1 — Ri\.i\.)T) and (l — Rgir). In the initial rate
limit R,“-r << l, so the diagonal peaks are positive, and the cross peaks are
negative. The transverse cross-relaxation rate constant an is positive for
all values of the correlation time, so it is always the case that the cross and
diagonal peaks will have the opposite signs.

9.9 Homogeneous and inhomogeneous broadening
The picture we have developed so far is that transverse magnetization de-
cays at a rate detemiined by the transverse relaxation rate constant, Rn, so
that atypical FID would be described by the function

S (t) = A exp (iQt) exp (-Rnt).

Fourier transfomiation of this function will give a peak of width (at half-
height) 2R,,y rad s" or R,-y/71' Hz. The faster the relaxation, the greater R/O),
and hence the broader the line.

A line whose width is determined by the transverse relaxation rate is
said to be homogeneously broadened. Such broadening is a fundamental
property of the molecule, its environment and motion, as it is these attributes
which determine the rate of relaxation.

However, rapid relaxation is not the only way in which a line can
become broad. For example, if the applied magnetic field is not uniform
across the sample (i.e. the field is not the same everywhere), then spins in
different parts of the sample will have different Larmor frequencies. As a
result, there will be a spread of frequencies across the sample which will
result in a broad line. A familiar example of this is when the shims are
poorly adjusted, resulting in a lineshape which reflects the inhomogeneity
of the Bo field.

The way we usually think about this is to imagine dividing up the sample
into volumes which are small enough that over each separate volume the
magnetic field is unifomi. Each of these little volumes thus, contributes a
line to the spectrum whose width is determined by R“, but whose Larmor
frequency is determined by the precise value of the magnetic field in that
volume. So, when we think about the spectrum from the whole sample, the
lineshape we see is the sum of the lines from each of the separate volumes,
As a consequence, the width of the overall line will be greater than the width
of the line from each individual volume; Fig. 9.32 illustrates this idea The
width and shape of the line from the whole sample will thus depend on the
details of the non-uniformity of the applied field.

This kind of line broadening is called ii’lh0m0ggng0u5, The term eon-
veys the idea that different parts of the line are from different parts of
the sample, rather than in the case of homogeneous broadening where the
entire line comes from the whole sample. As the diagram illustrates, we
can think of an inhomogeneous lineshape as resulting from the addition of
many homogeneously broadened lines which are centred at slightly different
frequencies.
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Fig. 9.32 Illustration of the idea of an inhomogeneously broadened lineshape. The NMR
sample is shown on the left, and we imagine that the magnetic field is not uniform along the
z-axis. Thus, at each position along z the magnetic field, and hence the Larmor frequency, is
different. We can imagine a small volume, shown here as a disc, in which the magnetic field
is unifonn. Each disc gives rise to a homogeneously broadened line, as shown on the right.
However, discs at different positions give lines at different frequencies. A range of such lines is
shown on the right; their intensities are not equal, as it is typically the case that the extremities
of the sample do not contribute as much signal. What we actually observe is the spectrum from
the whole sample. This spectrum, shown at the bottom, is the sum of the lines contributed by
each of the discs; note that the line from the whole sample is broader than the lines from each
of the small regions. The line we observe is said to be inhomogeneously broadened as it is
the sum of (homogeneously broadened) lines with different frequencies. Note that parts of the
inhomogeneous line which appear at different frequencies correspond to different pans of the
Sample.

Another way of thinking about this difference between homogeneous
and inhomogeneous line broadening is to consider how the behaviour of the
transverse magnetization is affected by the presence of these two types of
line broadening.

In the case of inhomogeneous line broadening it is convenient to think,
as we did before, about the sample being divided into small volumes, each
of which has a different Lannor frequency. The transverse magnetization
from each small volume therefore precesses at a different frequency. The
total magnetization is found by adding up these individual contributions,
and it is clear that, on account of the spread of Lannor frequencies, the
contributions from each volume will get out of step with one another. As a
result, cancellation will occur, leading to a decay of the total magnetization.

The key thing is that this decay can be reversed simply by using a spin
echo. Recall that the special property of the spin echo sequence —'r—180°—r-
is that, at the end of the second T delay, all the magnetization ends up in the
same position regardless of the frequency at which it evolves during 1. So,
although the magnetization from different parts of the sample is evolving
at different frequencies, and so getting out of step with one another, at the
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Fig. 9.33 Demonstration of the different behaviour of transverse magnetization under the
influence of homogeneous and inhomogeneous broadening. Each plot shows the evolution
of transverse magnetization as a function of time; at the mid point, that is after time 1, a
180° pulse is applied. The decay seen in (a) is due to homogeneous broadening, and so
continues throughout, unaffected by the 180° pulse. In (b) the decay is due to inhomogeneous
broadening; to help visualize the effect, the decay rate has been made faster than in (al. By
the time the 180° pulse is applied, the magnetization has decayed to almost zero; this decay is
attributed to the magnetization from different parts of the sample getting out of step with one
another. However, Mter the 180° pulse, the overall magnetization grows back, and by time 2-r
it has retumed to its initial value. This is because the evolution due to the offset is refocused at
time 2-r, so at this point there is no dephasing due to there being 21 spread of offsets. Decay (c)
is the same as (a), i.e. homogeneous. In (d) we see the effect of having both inhomogeneous
and homogeneous broadening. As in (b), the magnetization decays at first, but after the 180°
pulse the magnetization grows back. However, at time 2-r the magnetization does not reach its
initial value on account of the decay due to the homogeneous broadening. Note that at time
2r, the magnetization in (c) and (d) are the same i.e. its size at this point is determined solely
by the homogeneous term.

end of the spin echo the magnetization from each part of the sample will be
aligned in the same direction. This is usually described by saying that the
decay due to the inhomogeneity has been refocused.

However, the decay of the transverse magnetization due to homoge-
neous broadening is quite different: it cannot be reversed by a spin echo.
The reason for this is that the decay is due to transverse relaxation, which is
a natural process, rooted in the random molecular motion and the approach
to equilibrium. There is no way we can reverse its effects.

Figure 9.33 illustrates the different way in which transverse magnetiza-
tion behaves during a spin echo, depending on whether the broadening is
homogeneous or inhomogeneous. The magnetization in (a) decays due to
homogeneous broadening i.e. relaxation; as a result, the 180° pulse has no
effect on the decay. In contrast, the magnetization shown in (b) decays due
to inhomogeneous line broadening. The 180° pulse reverses the decay, so
that at time 21, when the refocusing is complete, the magnetization has the
same size as it did at time zero.

Plot (d) shows what happens when homogeneous and inhomogeneous
broadening are both present. During the time up to the 180° pulse we see
decay due to both kinds of broadening. After the pulse, the decay due to the
inhomogeneous broadening is reversed, and completely removed at time 21.
However, the decay due to homogeneous broadening is not refocused. and
continues throughout the echo, as shown in (c). At time 2-r, therefore, the
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size of the magnetization is determined only by the homogeneous broaden-
ing; therefore, at this time, the magnetization in (c) and (d) are the same,

Seen in the time domain, therefore, the cmcial difference between ho-
mogeneous and inhomogeneous broadening is that the effects of the latter
can be undone by a spin echo, whereas nothing can be done about the
former.

9.9.1 Describing inhomogeneous broadening: T¢*
As we noted above, a typical time-domain function which decays due to
relaxation can be written as

S (I) = A exp (iQt) exp (—Rxyt).

Such a decay due to relaxation leads to homogeneous broadening. It is
commonly assumed that inhomogeneous broadening can also be described
by an exponential decay, with rate constant Rinhom, giving a time-domain
signal of the form

S(t) = A exp (iQt) exp (——R_,_w-t) exp (—R;,,h(,mt) (9.3 l)
m/——-—’mk--1’
homogeneoug inhomogeneous

= A exp (iQt) exp (—[R@ + Rinhomlt)-
This assumption is convenient as the overall decay of the signal is deter-
mined by the sum of the two rate constants, (Rx). + Rinhom), so the cor-
responding linewidth is simply (Rn + Rmhom)/n Hz. In other words, the
overall linewidth is the sum of a homogeneous contribution, Rn./n, and an
inhomogeneous contribution, Rinhom /rr.

This assumption that the inhomogeneous broadening can be described
by an exponential decay, as in Eq. 9.31, is simply not valid. The reason is
that the inhomogeneous lineshape, and hence the corresponding decay of
the time-domain function, depends in detail on how the applied magnetic
field varies across the sample. There is absolutely no reason to assume
that the result of this will be an exponential decay. We only have to think
about the odd-looking lineshapes that we obtain when the shims are poorly
adjusted to realize that the inhomogeneous part of the decay is certainly not
exponential.

Notwithstanding this, NMR spectroscopists are fond of measuring
the linewidth in the spectrum, and then assuming that this is equal to
(Rx, + Rinhom)/7r Hz. Although not correct in any real sense, provided the
lineshape is something like a Lorentzian, such an approach is probably not
a bad way of estimating the inhomogeneous contribution to the decay.

As we noted above, it is common to specify the relaxation rate constant
R,_,. in terms of its associated time constant T3 = l/Rn. Similarly. the time
constant 1/Rmhom is often denoted T; Using these, Eq. 9.31 becomes

sn) = Aexp(iQt)exp(—t/T3)exp(—t/Tgr).
 ,_, ‘\ 4

h°"\°E¢n¢0us inhomogeneous

= Aexp(iQr)exp(—r/T2‘),
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where l — 1 + 1

T; — T1 TI-

Tf gives the overall decay rate, due to both homogeneous and inhomo-
geneous contributions. It is also not uncommon for people to talk of ‘T;
relaxation‘. which is rather a loose term as the inhomogeneous part of the
decay lineshape is not due to relaxation.

9.9.2 Measuring the transverse relaxation rate constant
in the absence of inhomogeneous broadening, a good estimate of the rate
constant for transverse relaxation can be obtained by measuring the width
of the corresponding line at half height. Rn, is simply rr times the width in
Hz. However, if there is a significant inhomogeneous contribution to the
linewidth. we cannot use this method.

To get round this problem of the inhomogeneous contribution, we use
the simple spin echo pulse sequence of Fig. 9.34 to measure Rn, . As was
explained above, any effects of inhomogeneous broadening are refocused at
the end of the echo, so the size of the transverse magnetization present at
the start of data acquisition (after the second T delay) only depends on the
transverse relaxation rate constant and the time 2-r.

The experiment simply involves executing the pulse sequence, and
recording the FID, for a series of times r. The peak height in the spectrum,
S (r), will simply follow the decay of the transverse magnetization i.e.

S (T) = S (O) cxp(—2Rn-1'),

where S (0) is the peak height at time r = O. Taking logarithms of both sides
of this equation gives

In S(r) = ln S (O) ~ 2R”.-r,

so a plot of ln S (T) against 21' will be a straight line of slope "‘Rxy.

9.10 Relaxation due to chemical shift anisotropy
The way in which chemical shift anisotropy (CSA) can become a relaxation
mechanism was outlined in section 9.2.2 on p. 254. In the present section,
we will look in more detail firstly at how the size of the CSA is specified,
and secondly at the resulting relaxation rate constants. Pan of the reason
for doing this is that CSA relaxation is important for heteronuclei such as
BC, ‘SN and “P, and also because the cross correlation between CSA and
dipolar relaxation, which we will consider in the following section, is an
important phenomenon in NMR of large (biological) molecules.

9.10.1 Specifying the CSA
When a molecule is placed in a static magnetic field, in order to work out
the size and direction of the local field at a particular nucleus we need to
know firstly the chemical shielding tensor of that nucleus, and secondly the

<——1 <——'[—r

Fig. 9.34 The simple spin echo pulse
sequence used for measuring the rate
constant for transverse relaxation. The spin
echo refocuses any decay due I0
inhomogeneous contributi0ns to the
lineshape, so that at the start of acquisition
the size of the magnetization only depends
on the transverse relaxation which has taken
place during 21'. Therefore. the peak height
also reflects just this relaxation-induced
decay.

<= Optional section
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Fig. 9.35 Representation of an axially
symmetric shielding tensor as a
three-dimensional ellipsoid i.e. a sphere
which has been ‘stretched’ along one axis;
the principle axis is shown dotted. The
distance between the centre and the edge of
the ellipsoid, measured along the symmetry
axis, is o'||. The distance measured in a
perpendicular direction is 01. On account
of the axial symmetry, this latter distance is
the same in any direction which is
perpendicular to the symmetry axis. In this
diagram, 0'" > 01, but it can just as well be
the other way round.

orientation of the tensor with respect to the applied field. A full description
ofwhat a tensor is, how the shielding tensor can be measured, and the details
of how the local field is calculated is beyond the level of this text.

However, for present purposes the important thing we need to know is
that the ‘size’ of the tensor is specified by its three principle components,
usually denoted 0'“, 0'” and 0-Z2. Like the chemical shift, these components
are quoted in ppm. The orientation of the tensor is fixed within the mole-
cule, so that as the molecule tumbles, the tensor moves with it. To complete
our description, we also need to know the orientation of the tensor with
respect to the molecular framework.

Things become somewhat simpler if we have what is called an axially
symmetric tensor, which is one in which two of the principle components
are equal, but the third is different. Such a tensor can be represented by
a three-dimensional ellipsoid, as shown in Fig. 9.35. The distance along
the symmetry axis from the centre of the ellipsoid to the edge gives the
parallel component of the shielding tensor, denoted 0*“. The distance from
the centre to the edge, measured perpendicular to the symmetry axis, gives
the perpendicular component of the tensor, denoted 01.

When the tensor is oriented so that the symmetry axis is along the
direction of the applied field, the chemical shift is 0'", whereas if the sym-
metry axis is perpendicular to the field, the chemical shift is 01. At other
orientations, the shift is between these two values. Similarly, the direction
and size of the local field depends on the orientation of the tensor with
respect to the applied field.

It is often found that the chemical shielding tensor of the 13C in a C—H
group, or of the '5N in an N-H group is, to a good approximation, axially
symmetric, with the symmetry axis pointing along the direction of the C—H
or N—H bond. We will have more to say about the significance of this in the
subsequent section concerned with cross correlation.

9.10.2 Relaxation rate constants due to CSA
CSA relaxation only involves one spin, so there is no possibility of cross
relaxation and hence transfer of magnetization between spins. The mag-
netizations thus decay with simple exponentials, just as for the case of
relaxation by random fields (section 9.8.2 on p. 293):

dM dMZ-E-I2 = —R,,y MX, -J = -R,(M, - Mfi).

For an axially symmetric shielding tensor, the rate constants are as
follows:

_ 2 2 1 _ 21Ra - c [E1<0>+ @J'(wo)j R. - c gJ'(wo),
where

c = yB0(o'|| — 01).

As we have come to expect, R2, only depends on j(t/)0), whereas Rn has
a secular contribution depending on j(0) and a non-secular contribution,
equal to %RZ, depending on j(w0).
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The rate Constants go as l)/B(j)2. and so this kind of relaxation is likely to
be more significant at higher field. and for higher gyromagnetic ratio nuclei.
Finally, note that the rate constants depend on the difference between cr" and
01. often rather loosely called the ‘anisotropy’, and is sometimes given the
symbol A.

In contrast to the other mechanisms we have considered, the two rate
constants are not equal in the fast motion limit. In fact, in this limit,
Rn/R: = 7/6.

9.11 Cross correlation
A particular nucleus in a molecule is likely to experience random fields
from more than one source, for example by dipolar interaction with several
other nuclei, from its CSA or from paramagnetic species. The simplest
assumption we can make is that these different sources of relaxation are
independent, and so the total relaxation rate constant is the sum of the rate
constants due to each source of local fields:

Rwr=Ri+R2+R3+--.,
where R,- is the rate constant for relaxation caused by local fields from
source i.

For two sources of relaxation to be independent of one another, the time
dependence of the associated random fields must be completely different. In
other words, there must be no correlation between these random functions.
Whether or not this is the case will depend on the kind of molecular motion
which is causing the fields to vary.

If it turns out that the random fields from two separate sources are
not independent, then we say that there is cross correlation (or relaxation
interference) between the relaxation mechanisms giving n'se to the fields.
As we shall see, the presence of such an effect alters the relaxation rate
constants in rather a subtle way.

For the remainder of this section we are going to discuss cross correla-
tion between dipolar and CSA relaxation in the '5N—'H fragment, such as
would be found in the amide bond of a polypeptide (protein). We choose
this example as it is a case where cross correlation has led to some very
important applications in the area of biological NMR.

9.11.1 Cross correlation in longitudinal relaxation
The ‘SN nucleus in an N—H group is relaxed by two mechanisms: the
dipolar interaction with the proton and the CSA of the “N itself. In both
cases. the time dependence of the local field experienced by the '5 N den'ves
from the rotational reorientation of the molecule due to thermal motion.
Such motion alters the orientation of both the N—H vector and the '5N shift
anisotropy tensor with respect to the applied field. It is therefore clear that
the variations of the random fields arising from these two sources must be
correlated to some extent as both are modulated by the same motion.

Once more, the details of how the rate constants are calculated for such
a case is beyond the level of this text, so we will simply have to quote some

<= Optional section
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results, and then discuss their interpretation. To start with, we will consider
the longitudinal relaxation of our N—H pair, the dipolar part of which was
discussed in section 9.6 on p. 273. In our discussion, spin one will be the
“N and spin two will be the proton; we will also aggumo, for Simplicity’
that only the UN has a significant CSA.

It turns out that, in the presence of cross conelation, the rolaxation me
constants Wglm and Willi), defined in Fig. 9.17 on p. 273, are different. This
is in contrast to the case of pure dipolar relaxation (section 9.6.3 on p. 277),
where these two rate constants are equal. The theory shows us that the rate
constants are given by

Wim) = Wdipolar + WCSA -,'—0C1bPz(¢05 9)j(wo,1)
ma

CTOSs-conelation term

Wim = Wdipolar + WcsA +1‘-0¢i1>P2(¢0s 9)j(wo,i)~
%a---\,-_--..i/

cr0ss~correlation term

(9.32)

In these expressions, Wdipola, is the contribution from pure dipolar relax-
ation, WCSA is the contribution from pure CSA relaxation, and P2(cos 6) is
the second order Legendre polynomial, given by

P2(cos0) = to cos2 e - 1).
6 is the angle between the principle axis of the chemical shielding tensor and
the N—H vector. The constants b and cl are those we have defined before
when discussing dipolar relaxation and CSA relaxation:

b = '-‘%’jh ct = ')’lB0(U'l,|[ - art); (9.33)
we have added the subscript 1 to cl in order to indicate that it describes the
CSA of spin one.

The crucial thing to note is that the cross~correlation term has the oppo-
site sign in W§"“) to that in W9”) . What this means is that the presence of
cross correlation decreases the rate of relaxation for one of the transitions,
and increases it for the other. Remember that the only thing that is different
between these two spin-one transitions is the spin state of spin two (the
passive spin), so what we have here is a spin-one relaxation rate constant
whose value depends on the spin state of spin two,

This behaviour can be interpreted in the following way. Spin one expe-
riences two local fields, one deriving from its CSA and one from the dipolar
interaction with spin two; due to cross correlation the fluctuations in these
random fields are partly correlated. Depending on the way in which the
fields are correlated, they might reinforce one another to some extent. thus
increasing the relaxation rate constant, or they might cancel one another to
some extent, thus reducing the relaxation rate constant.

We commented before, in section 9.8.3 on p. 295, that the direction
of the local field at spin one depends on, amongst other things, the spin
state of spin two. So, if when spin two is in the one state (i.e a orfll. the
dipolar and CSA derived fields reinforce to some extent, we expect that
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when spin two is in the opposite state (i.e. B or a), the two local fields will
cancel to some extent, simply as the direction of the dipolar-derived field
has changed. This, then, is the origin of the difference in the sign of the
cross-correlation terms in Eq. 9.32.

The degree of cross correlation between the two random fields depends,
via the P3(COS 6) term in Eq. 9.32, on the orientation of the shift anisotropy
tensor with respect to the N—H vector. This term can be positive or neg-
ative, and has its maximum when 6 = 0° or 180° i.e. when the tensor is
aligned with, or against, the direction of the N—H bond. In practice the
tensor and the bond vector are usually quite closely aligned, making the
cross-correlation effect a maximum.

The question arises as to which of Wilm and Wglfil is the greater:
referring to Eq. 9.32 we see that this depends on the signs of P2(cos 6), b
and cl. The sign of b depends on the signs of the two gyromagnetic ratios,
'y1 and Y2. The sign of cl depends on the sign of 7| and of (o-1." - o-M).
S0, although it is clear that in the presence of cross correlation WP”) and
WP!” will be different, which is the greater depends on the type of nuclei
and the details of the CSA. Note that pure dipolar relaxation depends on bf,
and pure CSA relaxation of spin one depends on cf, so in these cases the
signs of b and cl are not important.

The effect of W51“) and Will” not being the same can best be seen by
looking at the Solomon equations in the form given in Eq. 9.16 on p. 275:

Qllaat
Q2

dz
d 21 J3- = ~ A“><1i. — 1?.) - A<’><12.— 13.) - R9” 211.12.-

= - R§'>(1,, - 1?,) ~ 0,412, - 13,) — A“) 21,212,

= — M11, - 1:1) - Rgata. — 13.) — N” 211.12.

For pure dipolar relaxation, Wf"") : WP”) so Am = O and similarly
Am = O; as a result there is no transfer between Ill and 211112;. However, in
the presence of cross correlation, A“) = W§"") — Wing) is not zero but, from
Eq. 9.32, is given by

Al“ = _§ c;bP;(cost9)j(wo_i).
Note that this rate constant can be positive or negative. Am is still zero as we
are assuming that there is no CSA on this spin. So the Solomon equations
become

d/1: to 10 0 to—(-17 = — R1 (I11 — 1,) — U'l2(I2; — 12,) - A 2111121
dig;
dt

d 211,12,
dz

= ~ U‘i2(/iz - 1?; - R;’><12. — 13,)
= — AU’(1iz ' [ill " Rim 2111/21-

ln these equations the rate constants R2“ and Rim) have contributions from
both the dipolar and CSA relaxation mechanisms.
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What these particular Solomon equations tell us is that, in the presence
of cross correlation, there will be a relaxation—induced transfer between 1|:
and 21l:12:: there is no such transfer in the case of pure dipolar relaxation.
The observation of this transfer is thus a convenient way of detecting the
presence of cross correlation.

9.11.2 Cross correlation in transverse relaxation
We now turn to the effect of cross correlation on transverse relaxation, and
again restrict our attention to the ‘5N—lH spin pair. In this case, the theory
predicts that the effect of cross correlation is to make the transverse relax-
ation rate constants dzflerent for the magnetization associated with different
lines of the UN doublet. As with longitudinal relaxation, what we have here
is relaxation of spin one which depends on the spin state of spin two (recall
that the two lines of the doublet are associated with different spin states of
spin two).

As the magnetization associated with the two lines relaxes at different
rates, in the spectrum the two lines will have different widths. So, rather
than having the usual doublet in which both lines have the same width and
height, as shown in Fig. 9.36 (a), the presence of cross correlation results
in an asymmetric doublet where one line has become broader, and the other
has become sharper, as shown in Fig. 9.36 (b). Narrowing a line increases
its peak height, whereas broadening the line decreases the height, so in the
doublet shown in (b) the sharp line is very much taller than the broad line.

It turns out that the asymmetry increases as the correlation time becomes
greater. In the slow motion limit, where we can set all of the spectral
densities to zero except that at zero frequency, the relaxation rate constants
for the two lines are

line 1 ; g 1121(0) + g ¢1})"(0) +% qb P;(cos9) 1(0)
dipolar CSA cross correlation

line 2 ; g b21(0) + g ¢§j(0) -1-15 ob P2(cos6) 1(0).
\ 1 \ ,\ 4

v \r v

dipolar CSA cross correlation

As before, we are assuming that spin one is the ‘SN and spin two is the
proton, and we are also assuming that only the ‘SN has a significant CSA.

The crucial thing to note here is that the cross-correlation term is of
dzflerent sign in the two expressions. So, for one line the presence of
cross correlation increases the rate of relaxation. whereas for the other it
decreases the rate i.e. one line will be broadened and one will be narrowed.
As before, which line is narrowed and which is broadened depends on the
signs of b, cl and P2(cos 9). Physically, what is happening is that for the line
which is narrowed, the random fields from the dipolar and CSA interactions
are correlated in such a way that they partly cancel one another, whereas for
the other line the two fields reinforce.

By some quirk of nature, it turns out that for the ‘SN-‘H groups which
occur in the peptide linkages in proteins this line narrowing effect is partic-
ularly pronounced at high magnetic fields. Indeed, for typical values of the
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Fig. 9.36 Illustration of the effect of cross correlation on the spin-one doublet. In the absence
of cross correlation. the two lines of the doublet have the same width, and hence the same
intensity. as shown in (a). Cross correlation results in one of the lines becoming narrower,
and the other becoming broader, as shown in (b); arbitrarily, we have assumed that the line
associated with the o» state of spin two is the broader of the two. Since the peak height goes
inversely with the linewidth. the narrow line is rather dominant in this doublet. If the spin-one
doublet is observed under conditions of broadband decoupling of spin two we will see a single
line. whose width is the average of the widths of the two lines of the doublet. In the case of the
symmetrical doublet (a), decoupling gives a line of the same width and twice the height, shown
in (cl. I-Iowever. for the asymmetric doublet (b), decoupling gives a line of intermediate width,
shown in td). The advantage of having a narrow line in tc) is completely lost if decoupling is
used.

N—H bond length and '5N CSA, it turns out that for one line the relaxation
rate constant goes to zero at field strengths of around 25 T (assuming the
slow motion limit). At the currently highest available field strengths of
around 20 T the amount of line narrowing is still very significant, with the
narrow line typically being one twentieth of the width of the broad line.
The presence of such unexpectedly narrow lines for large molecules greatly
improves the sensitivity, and therefore makes it much easier to obtain struc-
tural information; the effect has been given the name TROSY.

In the ‘5N-‘H group the proton also has a CSA, albeit a factor of ten
or more smaller than that of the '5N. However, as the gyromagnetic ratio
of proton is some ten times larger than than of ‘5N, the effect, in relaxation
tenns, of the CSA of the proton is comparable with that of the ‘SN. As a
result, the two lines of the proton doublet (due to the coupling to 15N) also
have different widths due to the presence of cross correlation. Once again,
by some quirk of nature, the conditions which maximize the effect for the
‘SN doublet also result in significant narrowing of one line of the proton
doublet. The fact that both the proton and UN doublets contain a sharp line
has been exploited extensively in devising high-sensitivity N—H correlation
experiments, such as those discussed in section 10.9 on p. 357.

Note that we can only see this difference in the linewidth between the
two lines of the multiplet if the splitting is resolved. If there is no splitting.
for example as a result of applying broadband decoupling to spin two. what
We see is one line with a width determined by the average of the widths of
the two lines of the doublet. This average linewidth will be much larger than
the width of the narrow line, so there will be a large reduction in peak height.
and we therefore lose any advantage in signal-to-noise ratio gained from

TROSY: Transverse Relaxation Optimized
SpectroscopY
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having a tall sharp line. This idea is illustrated in Fig. 9.36. It is therefore
important that experiments which are designed to exploit this TROSY effect
retain the splitting throughout; we return to a discussion of suitable ptllsg
sequences in section 10.9 on p. 357.

9.12 Summary
Local fields, generated by mechanisms such as the dipolar interaction
or CSA, are responsible for relaxation. The time dependence of
these local fields is characterized by the correlation function, which
depends on the correlation time. The spectral density j(w), which is
the Fourier transform of the correlation function, gives the amount of
motion present at frequency w.

The rate constant for longitudinal relaxation depends on the spectral
density at the Larmor frequency; the rate constant for transverse re-
laxation depends on the spectral density at both the Larmor frequency
and at zero frequency.

The rate constant for longitudinal relaxation reaches a maximum
when worc z 1. The rate constant for transverse relaxation increases
indefinitely as the correlation time increases.

Two motional limits can be distinguished: fast motion, when
wore << 1, and slow motion, when worc >> 1. In the fast motion
limit the spectral density is independent of frequency and is given by
j(w) = 2-re i.e. proportional to the correlation time.

Dipolar relaxation is unique in giving rise to cross relaxation, a
process which leads to the transfer of magnetization from one spin
to another and hence the NOE. The cross-relaxation rate constant is
positive in the fast motion limit and negative in the slow motion limit.

The size of an NOE enhancement is determined by the competition
between cross relaxation and self relaxation.

We distinguish between homogeneous and inhomogeneously broad-
ened lines. Homogeneous broadening is due to relaxation, and the
corresponding decay of the magnetization cannot be reversed; in
contrast, the dephasing due to inhomogeneous broadening can be
reversed by a spin echo.

9.13 Further reading
Molecular motion and relaxation:
Chapters I5 and 16 from Levitt, M. I-I. (2001) Spin Dynamics. Wiley

Theory of relaxation:
Chapter 6 from van de Ven, F. J. M. (1995) Multidimensional NMR 1"
Liquids, VCH



9.13 Further reading

All aspects of the NOE, both theoretical and experimental:
Neuhaus, D. and Williamson, M. P. (2000) The Nuclear Overhauser Eflect
in Structural and Conformational Analysis, 2nd edit., Wiley

Relaxation and the NOE, in the context of larger molecules:
Chapter 5 from Cavanagh, J., Fairbrother, W. J., Palmer III, A. G. and
Skelton, N. J. (I996) Protein NMR Spectroscopy, Academic Press

TROSY:
Femandez, C. and Wider, G. (2003) Current Opinion in Structural Biology,
13, 570
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9.14 Exercises
Data:

9.1

9.2

9.3

9.4

9.5

gyromagnetic ratio for protons +2675 >< 108 rad s"l T'l

gyromagnetic ratio for BC +6.728 >< 107 rad s71 T"

gyromagnetic ratio for 15N -2.713 >< 107 rad s" T'1

Boltzmann constant, kg 1.381 >< 1043 J K-1

Planck constant, h 6.626 >< 10-34 J s
Planck constant/ 27r, 71 1.055 >< 10734 J s

Permeability of vacuum, /.10 4a >< 10-7 H m"

1/3t: l0"°m 1ns=10'9s lps=10‘12s

Suppose that an NMR sample containing 1013 protons is placed in a
magnetic field of 9.4 T. Using the Boltzmann distribution, calculate
the equilibrium populations ofthe 01 andfl levels, assuming that the
temperature is 298 K.
When the sample is first placed in the magnetic field, half the pro-
tons will be in the a level and half will be in the,8 level. Calculate
the total energy change of the spins when they go from this initial
state to equilibrium. Compare your answer with the typical thermal
energy possessed by N molecules, which is of the order of NkBT.

Show that, for a fixed frequency 6), the maximum in the reduced
spectral density function j(w) occurs at TC = 1/w. What is the
significance of this result?

For a sample consisting of isolated spins, explain in words why it
is necessary for the rate constant for the relaxation-induced transi-
tions from the 01 state to the [3 state to be less than the rate constant
for the transitions in the opposite direction.

In an inversion—recovery experiment the following peak heights
S (T) (arbitrary units) were measured as a function of the delay r:

0.0 0.1 0.5 0.9 1.3 1.7 2.1 2.9

—129.7 -93.4 7.6 62.6 93.4 109.5 118.9 126.4

r/s

S(r)

Use a graphical method to analyse these data and hence determine
a value for the rate constant for longitudinal relaxation and the
corresponding value of the relaxation time, T1.

In an experiment to estimate T1 using the inversion-recovery S8-
quence, three peaks in the spectrum were observed to go through it
null at 0.5, 0.6 and 0.8 s respectively. Explain how an estimate for
T1 can be obtained from such measurements, and give the valllc
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of Tl for each line. A solvent resonance was still inverted after a
delay of 1.5 s; what does this tell you about the relaxation time of
the solvent?

An alternative to the inversion—recovery method for estimating R2
is the saturation—recovery experiment. This stans with the spin
being irradiated for a long time so that it becomes saturated, i.e.
M; = 0. There then follows a delay r, followed by a 90° pulse and
then observation of the FID.
Show that the z-magnetization at the end of r is given by

MZ(T) = ll — e><p<—R.r)];
make a sketch of MZ(‘r) as a function of r.
Explain how the data from a series of experiments recorded with
increasing values of r can be used, in conjunction with a graphical
method, to estimate R2.

Using the approach of section 9.6.2 on p. 274, write down ex-
pressions for dn,~/dt for each of the four levels in terms of the
populations and the transition rate constants, W.

In this exercise we will use the expressions given in section 9.6.3
on p. 277 and in section 9.8.3 on p. 295 to calculate the relaxation
rate constants which arise from the dipolar relaxation of two spins.
In principle these calculations are just a question of substituting
in the appropriate values into the formulae, but in doing so it is
all too easy to make mistakes, particularly over the units of the
various quantities. This exercise takes you through the calculations
step-by-step so that you can check your results at each stage.

(a) Consider the two protons in a CH2 group, which are sep-
arated by 1.8 A. Remembering to put r in m, show that
bl = 1.675 >< 10“) s‘2. [Working out the units of bi is
rather difficult, so we will just accept that they are s‘2.]

(b) Assuming that the molecule is in the fast motion limit, so that
j(w) = 2-rc, and taking re = 20 ps, show that the transition
rate constants have the following values (all in units of s“'):
w§*’ = 0.0503, wf” = 0.0503, W2 = 0.201, W0 = 0.0335.
Then, using Eq. 9.18 on p.277, show that R?) = 0.335, R22) =
0.335 and (T12 = 0.168 (all in units of s").

(c) Use Eq. 9.19 on p. 278 to calculate RE‘), R22) and 012; You
should, of course, obtain the same values as you did in the
previous part.

(d) Use the expressions in section 9.8.3 on p. 295 to deter-
mine Rg,’ and R§?,?; you should find that both have the value
0.335 s“.

(e) Comment on the values you have calculated. and the compar-
ison between them.
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9.9

9.10

9.11

(f) The next task is to repeat all of these calculations for a corre-
lation time of 500 ps, and for a magnetic field strength of
11.74 T (a proton Larmor frequency of 500 MHZ). Such
a correlation time places the motion well outside the fast
motion limit, so you will need to compute the reduced spec-
tral densities explicitly for each frequency. Firstly, show
that the proton Larmor frequency is 3.140 >< 109 rad s'1,
and the use this to show that j(t/J0) = 2.88 >< 10*“) s,
j(2w0)=9.20 >< 10-“ S and 1(0) = 1.00 >< 10-95. Note
that to compute j(w), w must be in rad s71.
Use these values for the reduced spectral density, along with
the value of b2 computed earlier, to show that R2“ = 2.025,
R?’ = 2.025 and 0'1; = -0.375, RQ,’ = 3.41 and R5,? = 3.41,
all in units of s".

(g) Comment on the values you have obtained for the longer
correlation time, and compare them with those obtained in
the extreme narrowing limit.

The typical separation of a directly bonded “C-‘H pair is 1.1 A.
Assuming a correlation time of 20 ps (i.e. the fast motion limit),
calculate values for the rate constants R2“, R22), 0'12, R9,.’ and Rig’
(take spin one to be BC and spin two to be 'H). [If you have com-
pleted the previous exercise, then all you have to do is recognize
that, in the fast motion limit, the only difference between a ‘H-‘H
pair and a '3C—'H pair is the value of the constant b.]
Compare your answers with those in parts 2-4 of the previous
exercise.

For a bonded '3C—'H pair a typical value of the chemical shift
anisotropy (an — 01) is 100 ppm. Assuming a correlation time of
20 ps (i.e. the fast motion limit), compute the contribution which
CSA relaxation makes to the 13C at static magnetic field strengths
of 4.7 T and 11.74 T. In computing the constant c, remember to
put (an — U'y_) = 100 >< 10"6 on account of the fact that the value
quoted is in ppm.
Comment on the values you obtain at the two fields, and compare
them with the dipolar contributions calculated in the previous ques-
tion.

[The values you should find at 4.7 T are c2 = 1.00 X 10° s‘2.
R, = 0.00267 5-‘ and R.,, = 0.00311 5"; the values at 11.74 T are
all larger by the ratio (1 1.74/4.7)2.]

Protons have much smaller chemical shift anisotropies than het-
eronuclei, but at the very high magnetic fields which are now
becoming available CSA relaxation may be significant. Assuming
that a proton has (o'|| - 01) = 10 ppm, calculate the CSA contri-
bution to its transverse relaxation at fields of 4.7 T, 11.74 T and
23.5 T (the latter field corresponds to a proton Larmor frequency 01‘
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9.12

9.13

9.14

1000 MHZ); in your calculation, assume that the fast motion limit
applies, and take rc = 20 ps. Compare your values with the rate
constants for dipolar relaxation calculated for the same correlation
time in exercise 9.8.

An alternative to the transient NOE experiment described in sec-
tion 9.7.1 on p. 280, is one in which rather than spin two being
inverted by a selective 180° pulse at the start of the experiment, it
is saturated. After this, there is a delay r and then a 90° pulse
followed by observation, just as in the experiment described in
section 9.7.1.

In this modified experiment, the initial conditions are:

atr = 0: 1.,(0) = 1?: and 12.(0) = 0.

Using these initial conditions, analyse the experiment using the
same approach as in section 9.7.1. You should find that the NOE
enhancement is given by 17 = 0-121'. Sketch the expected form of
the irradiated, reference and NOE difference spectra.

Why is an NOE difference spectrum a convenient way of visualiz-
ing which resonances are receiving an NOE enhancement?

Explain the following observations, in words, concerning the NOE
in a two-spin system.

(a) In a transient NOE experiment, and in the initial rate, the
NOE enhancement depends only on the cross-relaxation rate
C011 Stiilll.

(b) At longer times, the NOE enhancement in this transient ex-
periment depends on the self-relaxation rate constants of both
spins as well as on the cross-relaxation rate constant.

(c) In a steady-state NOE experiment, the NOE enhancement
of spin two, observed when spin one is saturated, depends
on the ratio of the cross-relaxation rate constant to the self-
relaxation rate constant of spin two; the self-relaxation rate
constant of spin one does not affect the size of the enhance-
ment.
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9.15

9.16

9.17

9.18

For the molecule shown below, a transient NOE experiment
(recorded in the initial rate limit) in which HR was inverted gave
equal NOE enhancements (in the initial rate limit) on HA and HO
If HA was inverted, the enhancement on Hy; was the same as in the
first experiment; no enhancement was seen on HQ.

In steady-state experiments, irradiation of Hg gave equal enhance-
ments on HA and HQ. However, irradiation of HA gave a much
smaller enhancement on H3 than for the case where H3 was the
irradiated spin and the enhancement was observed on HA. Explain
these observations.

HA

2 H5

Y Hc
x

For a two-spin system, and in the initial rate, show that in the
NOESY experiment, changing the phase of the first pulse from x
to —x, changes the sign of the diagonal and cross peaks, but leaves
the axial peaks unaffected. Explain how the latter peaks can be
suppressed.

ln the case of relaxation caused by random fields. calculate the
value of Bin needed to give a proton T| of l s at a Larmor fre-
quency of 500 MHz and for a con'elation time of l0 ps. Comment
OI] y()UT HHSWCT.

ln a spin echo experiment designed to measure the value of Rn».
the following peak heights S(r) were measured as a function of the
spin echo delay 1-. Use a graphical method to estimate the value of
RX):-

T/ s 0 0.1 0.2 0.3 0.4 ().5 0.0 0.7

S(T) 65.0 39.4 23.9 14.5 8.80 5.34 3.24 1.96

Explain why it is not usually possible to estimate Rx, by simply
measuring the linewidth in the spectrum.



Chapter 10

Advanced topics in
two-dimensional NMR
This chapter is something of a rag-bag of different experiments and tech-
niques, with rather little connection between them. However, everything
in this chapter is of importance to some particular application of two-
dimensional NMR, and so the chances are that at some stage you will come
across one or other of the techniques described here.

Some of the ideas we want to discuss in this chapter only show up in
spin systems consisting of three or more coupled spins, so we will first
have to extend the product operator approach of Chapter 7 from two to
three spins. In addition, we will also introduce another operator basis,
polarization operators, which provides a more convenient description of
some experiments than do product operators.

The topics which are covered in this chapter are:

10.1 Product operatorsfor three spins. This is a straightforward extension
of the two-spin case discussed in Chapter 7.

10.2 COSY for three spins. In this section particular attention will be
focused on the detailed form of the cross-peak multiplets. We will
find that in these multiplets the splittings due to active and passive
couplings appear in distinct, and potentially useful, ways.

10.3 Reduced multiplets in COSY spectra. It will be shown that, un-
der some circumstances, the cross-peak multiplets in COSY can be
simplified in a particularly useful way which makes it possible to
determine the relative signs of coupling constants and, under some
circumstances, measure the values of rather small coupling constants.

10.4 Polarization operators. This alternative operator expansion is par-
ticularly useful for understanding the detailed form of cross-peak
multiplets, such as those seen in COSY and ZCOSY experiments.

10.5 ZCOSY. This is a modified COSY experiment which is the best prac-
tical method for recording reduced multiplets.

Understanding NMR Spectroscopy James Keeler
© Z005 John Wiley & Sons, Ltd
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10.6 HMBC. The important HMBC experiment is revisited to see what
effect the presence of proton-proton couplings has on the appearance
of the spectrum. We will discover that such couplings result in rather
complex cross-peak multiplets.

10.7 Sensitivity-enhanced experiments. In this section we will look at the
way in which the sensitivity of some heteronuclear experiments can
be improved by relatively simple modifications to the pulse sequence.
Such an approach has proved to be very useful in biomolecular NMR.

10.8 Constant time experiments. The constant time pulse sequence ele-
ment makes it possible to remove, from the wl dimension, the split-
tings due to homonuclear couplings. Again, this is a modification
which has proved to be particularly popular in biomolecular NMR,
especially in three- and four-dimensional experiments.

10.9 TROSY The TROSY technique exploits the fact that, due to cross
con'elation between CSA and dipolar relaxation, the two lines of a
doublet can have very different linewidths — an effect which is very
pronounced in the spectra of '5N—'H pairs in large biomolecules. It
will be shown that experiments such as HSQC can be modified in
such a way that only the correlation between the two narrow lines
is seen, thus leading to a significant improvement in sensitivity and
resolution.

10.1 Product operators for three spins
In section 7.4 on p. 153 we described how the product operators for two
spins were constructed by taking any one of the four operators for spin one:

A A A A

E1 1|; 11;» 112,

and multiplying it by any one of the four operators for spin two
A A AE2 12, 12, 12,.

To extend this approach to three spins, all we need to do is to further
multiply by any one of the four operators for spin three:

5, 1., 22, 22,.
Recall that the E are unit operators which, for brevity, we do not bother to
write out each time. So, for example, i1,£7f2E3 would usually be written as
in.

With four operators for each spin, we can see that there will be a total
of 43 = 64 possible product operators for a three-spin system. This is rather
a lot of operators to deal with, but we will find that in most calculations
Only a small sub-set of the operators are important, so that things are not as
complex as they might appear at first.

Just as in the two-spin case, normalization factors are needed for some
of the product operators. Those containing two operators which are not E
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have a factor of 2, whereas those with three such operators have a factor of 4.
So. for example. I1,-122E; becomes 211,122 and I1,-121132 becomes 4I1,l22i32.

10.1.1 Interpretation of the product operators for three spins
ln thinking about the interpretation of the product operators for a three-spin
system. it is useful to keep in mind what the spectrum of such a spin system
looks like. As was discussed in section 3.7 on p. 43, each spin gives rise to
a doublet ofdoublets and, as is illustrated in Fig. 3.12 on p. 45, each line in
the multiplet can be labelled with the spin states of the two coupled spins. It
is also important to remember that the appearance of the multiplet, and the
labelling of the lines, depends on the relative sizes and signs of the coupling
constants present.

As for two spins, i1: represents z-magnetization on spin one and, set-
ting aside any constant (see section 6.8.6 on p. 135), the equilibrium z-
magnetization on this spin can be written i1:. Similarly, i2: and i3; represent
z-magnetization on spins two and three respectively.

i1, represents in-phase x-magnetization on spin one. If this operator is
allowed to evolve, and the resulting FID Fourier transformed, the spectrum
will consist of the spin one multiplet (a doublet of doublets) in which all of
the lines have the same phase. Just exactly what this multiplet looks like
will depend on the size of the coupling constants to spins two and three, a
point which is illustrated in Fig. 10.1 where the multiplets for three different
combinations of couplings are shown. Note in particular that the multiplet
shown in (c) is for the case J12 = J13, and so appears as a 122:1 triplet.

2f1,i2: gives rise to a multiplet in which those lines associated with spin
two being in the 0 spin state are negative, while those associated with spin
two being in thefl state are positive. The result, also illustrated in Fig. 10.1,
is described as being anti-phase with respect to the coupling to spin two.
Note, once again, that the detailed appearance of the multiplet depends on
the relative size of the two coupling constants. If, as is shown in (a), J12 >
J13, the intensity pattern is — — ++, whereas if J13 > J12, as shown in (b),
the pattern is — + —+. If the two coupling constants are equal, shown in (c),
the two centre lines cancel to give what appears to be an anti-phase doublet;
however, it is important to realize that this is not a doublet, but a doublet of
doublets in which two of the lines have cancelled one another.

In a similar way. 2i1,i32 represents x-magnetization on spin one which
is anti-phase with respect to the coupling to spin three. The signs of the
lines in the corresponding multiplet are affected by the spin state of spin
three. So, as is shown in Fig. 10.1, we see a pattern of two positive and
two negative lines, the exact form of which depends on the relative size of
the two coupling constants. Once again, if these two coupling constants are
equal, two of the lines cancel.

Finally. the operator 4i1,,-i12i3: gives rise to a multiplet in which lines
associated with spins two and three being in the same spin state are positive,
whereas if the spins are in different states the lines are negative; such an
aflflflgement is said to be doubly anti-phase. As can be seen in Fig. 10.1, the
resulting pattern of intensities is + — —+. In contrast to the singly anti-phase
lfirms, if the two coupling constants are equal, two of the lines reinforce one
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(11) (bl (C)
SP")? 1111 BB Q1 B01 B <1 011313
SW13 QB <16 <1 <1 B B <1 <1/B B

->J13‘" <"-112* '* J13 <-
‘-'~/12—’ "—J13—’ " Jizr

"X ll ll 1 1.1 l 1 L
2I1xI2z U A L2/ I rt Y A Y L
4/ix/zzlaz A A., l . Y‘>-

--11 031$-10 -5 O -10 -5 -10 -5 I 5 10 HZ

Fig. 10.1 Illustration of the form of the spin-one multiplets expected for four product operators
which lead to observable signals on spin one; it has been assumed that x-magnetization will
give rise to an absorption mode lineshape, and that the offset of spin one is 0 Hz. ln (a)
J12 = 10 Hz and J13 = 2 Hz, in (b) J13 = 7 Hz and J13 = 10 Hz, and in (c) J13 = 5 Hz and
J13 = 5 Hz. Each line is labelled with the spin state of the two coupled spins, spins two and
three. J1, is described as an in-phase operator as it gives rise to multiplets in which all four
lines have the same phase i.e. all positive. 2l1_,l2; is described as being anti-phase with respect
to the coupling to spin two; lines associated with spin two being in the or spin state are negative,
while those associated with the 5 spin state are positive. Similarly, 2l1_,i3: is anti-phase with
respect to the coupling to spin three, and the signs of the lines are determined by the spin states
of that spin. Finally, 4i1_,i2,i;: is described as being doubly anti-phase: lines in which the spin
states of the two coupled spins are the same are positive, whereas those in which the spin states
are opposite are negative. Note that for the multiplets shown in (c), in which J12 = J13, the
in-phase multiplet becomes a l:2:l triplet, whereas the singly anti-phase multiplets appear to
be anti-phase doublets on account of the cancellation of two of the lines. However. the doubly
anti-phase term results in a +1 1 —2 : +1 ‘triplet’, as the two centre lines reinforce.

another resulting in a +1 1 -2 : +1 ‘triplet’.
Similar interpretations can be made of the operators igx, 2f11l2_., 2l;_,i3;

and 4i1;i2,2f3;: they all represent spin-two multiplets which are, respectively.
in-phase, anti-phase with respect to the coupling to spin one, anti-phase with
respect to the coupling to spin three, and doubly anti-phase with respect
to the couplings to spins one and three. The corresponding operators l_i_,.
2i1:l3_,-, 2i2;i3, and 4f1;i2;f3_, give rise to multiplets on spin three. There
are a further set of operators along y, such as 4i|_,j2;i3:, which give rise I0
multiplets which are phase shifted by 90° compared with those along x. It
is usual to call product operators such as 2i|_1i2; singly anti-phase. and those
such as 4f1Xi2;i3; doubly anti-phase.

The only observable product operators are those already described i.e.
those containing just one transverse operator ,or Products containing
two such transverse operators correspond to double- and zero-quantum
coherence, and products containing three such operators correspond I0
triple-quantum coherence and a kind of single-quantum coherence associ-
ated with combination lines; none of these operators are observable.
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10.1.2 Evolution due to offsets and pulses
The evolution under the influence of offsets and pulses follows the same
rules as were established for two spins, and are summarized in Fig. 7.4 on
p. 152. As before. although we need a separate term for the offset of each
spin. these can simply be applied one after another, in any order. So, for
example. the evolution during a delay due to the offset is given by

Q1!i1; Q3173; Q3173;pm) -—-> ——> —> .
Often. calculating the effect of these three rotations will be simpler than it
might seem at first sight. as the offset for spin one only affects operators
of that spin and not the operators for the other two spins. The effect of a
pulse can similarly be calculated by considering three successive rotations;
for example, for a 90° pulse about x:

or/2>i1. in/ziiz. (77/2)i3x
0(0) ?> i> ————+ -

10.1.3 Evolution of couplings
The effect of coupling is in principle the same as for two spins, and is
summarized in Fig. 7.6 on p. 156. However, the results are a little more
complicated than for two spins, and how this all turns out is best illustrated
by means of an example.

Let us start with in-phase magnetization on spin one i1,-, and allow it to
evolve first under the coupling to spin two, and secondly under the coupling
to spin three. We do not need to consider the coupling between spins two
and three as this cannot affect the evolution of a spin-one operator.

The evolution due to the 1—2 coupling is just as before, leading to an
anti-phase term along y:

A 271'./13li];ig_; A _ A A
I1, i> cos (rrJ12t) I1, + sin (7rJ12t) 2I1,,I2:.

We will now consider the effect of the 1-3 coupling separately on each of
the terms on the right of the previous equation. For the term in f1, it is just
the same as before, except that the coupling is between spins one and three,
so the anti-phase term is 2i1yf3; rather than 2i1yf22:

A 27!./13!i];i3;
COS (ff./13!) I]x -—-ii

cos (7rJ13t) cos (7rJ12t) i1, + sin (rrJ13t) cos (rrJ12t) 2i1,.i3:.

The evolution of the term sin (rrJ12t) 2ilyi2Z is a little more complicated.
The first thing to realize is that the spin-two operator jg; is unaffected by
the 1-3 cpupling. so as far as this part of the calculation is concerned, the
operator I2: is justa constant, like the factor of 2 and the sine term. So,
it is just the term I1_v which will evolve under the l—3 coupling; as before,
in-phase along y gives rise to anti-phase along x:

A "J13 A|;‘3: ~ . A A11,. i-l’-> cos<r112r> I1, - sm<1r113r>211.13,. (10.1)
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I1x

’1x 2'1/21

/1x 2/1/az 2/iy/21 '4/1,1/21/sz

Fig. 10.2 Representation of the evolution
of i1, under the influence of coupling to
spin two and spin three. An arrow to the left
implies a factor of cos(21J,-1-r), whereas an
arrow to the right implies a factor of
sin (211,-I-t). The top set of arrows is for the
coupling between spins one and two, and
the lower set for the coupling between spins
one and three. The way in which each temi
splits up (including the sign) is found by
following round the diagrams in Fig. 7.6 on
p. 156. From the diagram we can see that
the factors associated with the term 2l1ylg;
are sin (111121) and cos (111131), as to arrive at
this term we first split to the right and then
to the left.

Note that the anti-phase term which is produced is 2f1,i3Z, as it is the 1-3
coupling which is evolving. A A

The evolution of sin (1rJ 131‘) 211,12: due to the 1-3 coupling is therefore
found by multiplying both sides of Eq. 10.1 by 2 sin (7rJ12t) I22:

_ A '\ 2”~,l3Iil:i31sin (rrJ12t) 211,12; ————>
COS (If./13!) sin (If./12!) 2i1yi2Z — Slll (71./13!) S111 (II./12!) 4i1xi2zi3z.

The factor of 4 in the last term arises from one factor of 2 in the starting
operator 2i1_,l2z, and a second factor of 2 from Eq. 10.1.

The overall result of the evolution of f1, under coupling is best summa-
rized in a table:

dependence dependence . . .term axis description
O11 J12 Ol'1 J13

i], COS (7fJ|3l)

2i,,.i2,
2i1,.i,,

cos (1rJ13t) x in-phase

sin (rrJ12t) cos (1rJ1;,t) y anti-phase with respect to J12

cos (1rJ12t) sin (1rJ1 31) y anti-phase with respect to J13
_ doubly anti-phase with

X respectto J12 and J13-4,11,12,12, 51111111121) sin (111131)

The size of the singly anti-phase terms depends on a factor sin (rrJ2c,1,,,2t),
where Jmv, is the coupling with respect to which the term is anti-phase, and
a factor cos (1rJ1,,s,1,¢t), where Jpmve is the coupling to the other spin. The
in-phase term has two such cosine factors, whereas the doubly anti-phase
term depends on two such sine factors. Note, too, how if the in-phase term
starts along x, the singly anti-phase terms appear along y, and the doubly
anti-phase temi appears along -—x.

There are lots of nice patterns here, which can also be expressed dia-
grammatically as shown in Fig. 10.2. At the top of the diagram we have the
starting operator i1,,. Under the influence of the 1-2 coupling, two operators
are generated: the original operator, f1,, and the anti-phase operator 2f1,.fg2.
Then, each of these operators splits into two as a result of the evolution of
the 1-3 coupling. The cascade is arranged so that an operator which has
split to the left has associated with it a cosine factor, whereas an operator
which has split to the right has a sine factor. The signs of the operators are
found simply by following around the rotations in Fig. 7.6 on p. 156. Such
a diagram is a convenient way of keeping track of the operators, their signs
and the trigonometric factors.

We will do one more example, which is to start with the doubly anti-
phase term 4f1;f22f3,. and allow it to evolve under the coupling between
spins one and three, and between spins two and three; we need not concem
ourselves with the coupling between spins one and two as this cannot affect
a spin-three term.

The evolution of the 1-3 coupling is best determined by regarding
4f1zi2:f3y as A x 2f1zf3y, where A = 2f2:; the term A has been separated
out as it will not be affected by the evolution of the 1-3 coupling.
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Allowing 2f1;l_1_,. to evolve under the 1-3 coupling gives

- . * 1, i,i__. A . _ .
211213,. —J-(-—li—'—L> cos (rrJ13t) 211213,. — sin (rrJ13t) 13,.

Putting back in the factor A = Zfgz gives the result

cos (111121) 4114212,. - sin (111131) 2i2,i2,. (10.2)
Now we need to consider the evolution of each term on the right-hand

side of Eq. 10.2 under the 2-3 coupling. From the first term we can take
out a factor B = cos (11./13!) 211: which will be unaffected by the evolution
of this coupling; the remaining operator product evolves according to

A A I J 1 A ~ . A
212213,. £3:-> COS (7I./23!) 212213), - S111 (7(./23!) 13,.

Putting back in the factor B gives

cos (rrJ23t) cos (rrJ13t) 4i1Zi2zi3y ~ sin (rrJ23t) cos (rrJ13t) 2i12f3,.

Finally, we need to consider the evolution of the term
-sin(1rJ13t)2f2:f3,, from Eq. 10.2 under the 2-3 coupling; this is
straightforward and gives

_ A A Z11./33!i3:i3z
— S111 (711131) 212213,; ii'>

— cos (rrJ23t) sin (rrJ13t) 2ig2f3,,- — sin (K./23f) sin (rrJ13t) i3y-

ln summary, after the evolution of both couplings we have the four
terms:

cos (rrJ23t) cos (rrJ13t) 4f12i2Zi3y
— cos (1rJ23t) sin (7rJ13t) 2f22l3,
- sin (111221) cos (111121) 2i1,i2,
— sin (rrJ23t) sin (7rJ13t) 13y.

As before, there is a nice pattern here, which is also illustrated in Fig. 10.3.
The original doubly anti-phase term has two cosine factors, the singly anti-
phase terms have a cosine and a sine factor, and the in-phase term has two
sine factors. Note, too, that the doubly anti-phase term is along y, the singly
anti-phase terms are along —x, and the in-phase terms are along —y.

We now have all the tools we need to analyse the effect of pulse se-
quences on three-spin systems.

10.2 COSY for three spins
Based on our previous discussion of COSY (section 8.4 on p. 194), we know
What to expect for three mutually coupled spins. Assuming that all the coup-
lings are non-zero, there will be cross peaks centred at {(111, tog} = {Q1 , Q2},
lQi.Q3} and {Q2,Q3}, along with a symmetry-related set of cross peaks
Which have the (o1 and to; coordinates transposed. ln addition, there will be
d'a80na1 peaks centred at {Q1 , Q1}, {Q2, Q2} and {Q3, Q31. The overall form
Of the spectrum is shown in Fig. 10.4.

4/12/2zI3y
.

4/12/22/3y -2/ZZISX

/2x%2\

4/12/2zl3y '2(1zl3x '2I2z/3x ’I3y

Fig. 10.3 Representation of the evolution
of 4i1_.l3;l3_,i under the influence of the
coupling of spin three to spins one and two.
The diagram is interpreted in the same way
as Fig. 10.2.



324 Advanced topics in two-dimensional NMB

Q3 Q2 Q1

0 0 Q :2,
. Q2

l 0 00 93
‘"1

I
i 032?}

Fig. 10.4 Schematic COSY spectrum for
three mutually coupled spins. The cross
peaks are shown in grey, and the diagonal
peaks in black; multiplet structures are not
shown.
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Fig. 10.5 Examples of the form of the
multiplets expected along the two
dimensions for the l—2 cross peak. These
multiplets have been computed for the
particular case J12 = 4 Hz, J13 = 6 Hz and
J23 = 9 Hz. Multiplet (a) is that along wl,
and is from spin one; the multiplet is
anti-phase with respect to the l~2 coupling,
but in-phase with respect to the 1-3
coupling. Multiplet (b) is that along mg, and
is from spin two; the multiplet is also
anti-phase with respect to the l~2 coupling,
but in-phase with respect to the 2-3
coupling.

What we are going to look at in this section is the detailed form of the
cross-peak multiplets. We will see that they have rather an aesthetically
pleasing arrangement of peaks, from which we can determine something
about the relative size of the coupling constants which are responsible for
the cross peak (the active coupling), and the other (passive) couplings.

Starting from equilibrium magnetization on spin one, T11, and applying
the COSY pulse sequence of Fig. 8.8 on p. 195, gives us the following
observable terms at time t2 = 0:

cos (rrJ13t1) cos (rrJ12t1) sin(Q1t1) ii, [1]
- cos (rrJ13t1) sin (M211) sin (om) zflziz, [2]
— SlI1(7TJ13l1)COS (7TJ12l|) sin (Q1I1)2i1Zi3y.

Looking at these, we can see that term [1] is the diagonal peak as it is
modulated at the offset of spin one, Q1, in t1, and appears as observable
magnetization on spin one. Term [2] is also modulated at Q1 in t1, but
appears as observable magnetization on spin two: it therefore gives rise to
the cross peak at {(21, Q2}, which for short we will call the 1-2 cross peak.
Similarly, term [3] gives rise to the cross peak at {£21, Q3}, i.e. the l—3 cross
peak.

Note that if J12 = O, term [2] goes to zero on account of the factor
sin (1rJ12t1) being zero. Just as expected, there will be no 1-2 cross peak if
the coupling between spins one and two is zero. On the other hand, having
J12 = 0 does not make term [3] zero, so the l—3 cross peak is still present.

10.2.1 Structure of the cross-peak multiplets
We will now focus on the l-2 cross-peak multiplet, represented by term [2].
The wl frequencies of the peaks in this multiplet are found by examining
the modulation with respect to t1. Just as we did for the two-spin case, we
can use the usual trigonometric identities to transform the t1 modulation,
- cos (rrJ13t1) sin (rrJ|2t1) sin(Q1t1). into a sum of terms.

The first step is to combine the terms in the product,
sin (rrJ;2t1) sin (flltl), using the identity

sinAsinB E % [cos (A — B) — cos (A + B)] ,

which gives

— cos (rrJ13t1) % [cos (Om — rrJ12t|) — cos (Q1t1 + rrJ12t1)] ,

where we have also used the identity cos (—A) E cos (A). We then multiply
out the square bracket and combine the product of two cosines using the
identity

cosAcosB E % [cos (A - B) + cos (A + B)].

The result of all these manipulations is four terms:

all + COS (Q1t1 + H1121] + 7TJ13f1) + COS (Q1f] + 7l'J12I1- 7TJ13l|)

—COS (Q1l1 — JTJ12l‘1 + 7TJ13I1) — COS(Q1l1— K1121] — 7TJ13l‘1)].
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Fig. 10.6 Contour plot of the COSY cross-peak multiplet between spins one and two in the
three-spin system: positive contours are shown in black, and negative in grey. The couplings
are J11 = 4 Hz, J13 = 6 Hz and J23 = 9 Hz, and the whole plot covers :10 Hz from the
centre of the multiplet. The multiplets plotted along the top and at the side are those shown in
Fig. 10.5; multiplying these together (in the way outlined in Fig. 8.10 on p. I98) gives us the
form of the two-dimensional multiplet. A key feature of the multiplet is that it consists of four
anti-phase square arrays, which are picked out by the grey boxes.

The four frequencies are the four lines of the spin-one multiplet (a doublet
of doublets); however, two of the lines are positive and two are negative.
The lines which are separated by J12 have opposite signs, whereas those
which are separated by J13 have the same signs. Figure 10.5 (a) shows an
example of such a multiplet for a particular set of couplings; the multiplet is
described as being anti-phase with respect to J12, and in-phase with respect
(O J13.

In the t1 modulation, — cos (rrJ13t1 ) sin (rrJ12t1) sin (Q1t1 ), it is the pres-
ence of the sine term, sin (rrJ12t1). which makes the multiplet anti-phase
with respect to J12. The cosine term, cos (rrJ13t1), results in an in-phase
splitting with respect to J13.

The operator in term [2] is 2i1zi2,. Following the discussion in sec-
tion 10.1.1 on p. 319, this operator gives, in (02, a multiplet on spin two
which is anti-phase with respect to the coupling to spin one, and in-phase
with respect to the coupling to spin three. Figure 10.5 (b) shows an example
of such a multiplet for a particular set of couplings. Comparing the two
multiplets shown in (a) and (b), we see that both are anti-phase with respect
to the 1-2 coupling, which is the coupling responsible for forming the cross
peak, but are in-phase with respect to the coupling to the third spin.

Now that we have identified the form of the multiplets in each dimen-
sion, we can work out the detailed form of the cross peak by ‘multiplying
together’ the w1 and tn; multiplets in the way which was introduced in
Fig. 8.10 on p. 198. Figure 10.6 shows the resulting two-dimensional
multiplet.

Looking at the multiplet we can see immediately that it consists of
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Fig. 10.7 Illustration of how the cross-peak multiplet shown in Fig. 10.6 is constructed from
four anti-phase square arrays. The centre of the multiplet is indicated by the black dot and,
relative to this point. the anti-phase square arrays are shifted by 1|: § J13 Hz in the m1 dimension,
and :t: % J23 Hz in the (1)2 dimension. These shifts are indicated by the grey lines which connect
the centre (the black dot) to the centre of each anti-phase square array (the grey dot); in the
diagram a = 1113 and b = 512,.

four anti-phase square arrays of the type pictured in Fig. 8.10 on p. 198;
in Fig. 10.6 these four arrays are picked out with grey squares. In each
dimension, the peaks in the anti-phase square array are separated by J12,
which is the coupling responsible for the cross peak — termed the active
coupling.

Relative to the centre of the cross-peak multiplet at {£21, Q2}, the four
anti-phase square arrays are centred at the following frequencies, as illus-
trated in Fig. 10.7:

I+%-/13,+%-/23}, {-§J13,+%-/23}, {+%J13,—%-723}, l—%J13,—%-723},

where, for convenience, we have written the frequencies in Hz, rather than
rad s'1.

In the w1 dimension, the coupling J13 is described as passive as it it not
responsible for the cross peak, but does involve one of the spins responsible
for the cross peak. In the same way, in (1)2 the coupling J23 is passive.

The exact appearance of the multiplet depends on the relative sizes of
the couplings involved. It is particularly easy to spot the four anti-phase
square arrays in Fig. 10.6, as the active coupling is smaller than both of
the passive couplings. Other arrangements of couplings lead to cross-peak
multiplets which are a little more diflicult to disentangle.

Figure 10.8 shows a series of different 1-2 cross-peak multiplets all of
which have the same active coupling, but in which the passive couplings are
different; the values are given in the table.

cross peak J12 / Hz J13 / Hz J23 / Hz comment
(a) 8 4 6
(b) 8 4 7.5 two couplings similar
(e) two couplings equal
(d)
(6)
(f) one coupling zerooooooooo O-to-t> O\O\O\oo

Multiplet (a) should be compared with that in Fig. 10.6. The difference
between these two multiplets is that in (a) the active coupling is larger
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Flg. 10.8 Illustration of how the appearance of the 1-2 cross-peak multiplet depends on the
relative sizes of the active and passive couplings. For each multiplet the active coupling, J12,
is 8 Hz; the passive couplings have the values given in the table in the text. In all cases, the
area plotted is 110 Hz from the centre of me cross-peak multiplet. In each multiplet, one of
the four anti-phase square arrays is indicated by a grey box.

than either of the two passive couplings, whereas in Fig. 10.6 the active
coupling is smaller than the passive couplings. The anti-phase square arrays
in multiplet (a) are thus not separate from one another, but overlap (to avoid
confusion, in the diagram only one of the squares is indicated).

In multiplet (b) the passive coupling in the m2 dimension, J23, is similar
in size to the active coupling, J12. As a result, the two columns of peaks
in the centre of the multiplet come quite close together, and so the adjacent
positive and negative peaks begin to cancel. In the limit that J23 = J12,
multiplet (c), this cancellation is complete and so the multiplet consists of
only eight peaks, rather than the usual sixteen. This multiplet looks rather
strange until you realize that some of the peaks which form the anti-phase
square arrays are missing because of cancellation. For the case shown in
(c), the spin two multiplet in the conventional one-dimensional spectrum
would be a l:2:l triplet.

Multiplets (d), (e) and (f) illustrate what happens as the passive coupling
J13 gets smaller and smaller. As expected, the individual multiplet compo-
nents move closer together, but as the peaks which become adjacent have
the same sign they reinforce one another. In the limit that J13 = 0, multiplet
(f), two of the anti-phase square arrays lie on top of one another and so there
are only eight individual peaks in the multiplet.

You can see from these examples that, although in principle each cross-
peak multiplet is composed of four anti-phase square arrays, what the mul-
tiplet actually ends up looking like depends in detail on the relative sizes
of the coupling constants. In addition, the extent to which individual peaks
will cancel or reinforce one another depends on the linewidth, which may be
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different in the two dimensions. As a result, in practical spectroscopy one
often needs a sharp eye and an inventive mind to disentangle the structure
of a particular cross-peak multiplet.

If we are able to understand the form of the cross-peak multiplet, then
it gives us extra information on the relative sizes of the couplings involved.
However, in general we need to be cautious about actually trying to mea-
sure the values of couplings from these cross peaks since, as noted in
section 8.4.4 on p. 202, cancellation between nearby peaks results in the
splittings between peaks of opposite signs not being equal to the coupling
constants.

The extension to more complex spin systems is straightforward. All
that happens is that each passive coupling further duplicates the anti-phase
square arrays. So if spin one was further coupled to spin four, then the I-2
cross peak would consist of eight anti-phase square arrays, shifted by :t %J13
and :l:%J14 III (.01, 3I‘l(l by :l:%J23 ill (4)2.

10.3 Reduced multiplets in COSY spectra
As we have seen, for a system of three mutually coupled spins, each cross-
peak multiplet contains sixteen separate peaks, which can be grouped into
four anti-phase square arrays. In this section we will look at the ways in
which the number of peaks in the multiplet can be reduced, leading to what
are called, not surprisingly, reduced multiplets.

It tums out that from these reduced multiplets we can determine the
relative signs of the two passive couplings. In addition, under favourable
circumstances, we can measure the values of the coupling constants to
the passive spins to high accuracy. The latter feature, often called the
ECOSYprinciple, has been used very widely to measure values of coupling
constants in labelled proteins and nucleic acids.

It is easiest to see how reduced multiplets arise by first thinking about
a three-spin system in which one of the spins is of a different type to the
others e.g. a heteronucleus. Once we have examined this case, we will go
on to explain how reduced multiplets can be generated in homonuclear spin
systems.

10.3.1 COSY for a three-spin system containing one heteronucleus
Imagine that, in our three-spin system, spin three is of a different type to
the other two e.g. spins one and two are protons, whereas spin three is a
heteronucleus, such as “C, ‘SN, “P, or '9F. Furthermore, in recording our
COSY spectrum, we will apply pulses only to the first type of nucleus (spins
one and two); spin three, being a heteronucleus, does not experience any
pulses. For compatibility with the next section, we will denote the operators
of the third spin l3,,, i3), and f3z, rather than Six, S). and S2, as would be usual
for a heteronucleus.

If we repeat the calculation at the start of section lO.2 on p. 323. we will
find that, starting from J11, the following observable terms on spin two are
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present at the beginning of I2:

- cos (1111111) sin (1111211) sin (9111) 2i1,i2, [2]
— SlI'I(7T.]13l1) Sill (7TJ12l1)COS (Q1l1)4i1Zi2/1113:.

Both of these terms are modulated at Q1 in the w1 dimension: they therefore
both contribute to the 1-2 cross peak.

Term [2] is exactly the same as the one we found before on p. 324. As is
shown in Fig. 10.6 on p. 325, this term gives rise to a cross-peak multiplet
which is anti-phase with respect to J12 in each dimension, but is in-phase
with respect to J13 in the w1 dimension, and with respect to J23 in the 1112
dimension.

Term [5] did not appear in our original calculation because in that case
the final 90° pulse was applied to all three spins, whereas in the present case
this final pulse is not felt by spin three. You can see that if we did apply a
90°(x) pulse to spin three, this last temi would be rotated from 4l1Zl2yl32 to
-4l1:l21J3_,., which is unobservable. So, the consequence of spin three being
a heteronucleus is the presence of an additional contribution to the cross
peak, as represented by temi [5].

We now need to work out the fomi of the two-dimensional multiplet
which arises from term [5]. As before, we have to expand the modulation
in t1, — sin (1111311) sin (7rJ12t1 ) cos (Q1t1 ), using trigonometric identities; the
result is

H + COS (Q1t1 + 7fJ12l1+ 7!./13l1) — COS(Q1I‘1 + 7fJ1gI‘1 — 7!./13l1)

—COS (Q1l1 — 7!./12l1+ 7T./1311) + COS (Q1l1 — 7!./12l1— 7!./13l1)].

The four lines are clearly those of the spin-one multiplet, however the
pattem of intensities is that for a doubly anti-phase state (see Fig. 10.1 on
p. 320), this is in contrast to the multiplet from temi [2], which is singly
anti-phase with respect to the active coupling, J12. The t1 modulation of
term [5] has sine factors depending on J12 and J13: it is these which make
the multiplet anti-phase with respect to both of these couplings.

In 1112, the operator in term [5] is 4i1zl2,.J3,. This gives rise to a spin-two
multiplet which is doubly anti-phase with respect to J12 and J23. Now that
we have worked out the form of the multiplets in the two dimensions we
can ‘multiply’ them together in the way we did in Fig. 10.6 on p. 325; the
result is shown in Fig. 10.9.

Just as for temi [2], the multiplet from which is shown in Fig. 10.6, there
are four anti-phase square arrays, but this time two are of opposite overall
Sign to those in Fig. 10.6. Apart from these sign changes, the multiplets
from terms [2] and [5] are identical.

The difference between the two multiplets, and the way in which
they combine to give the overall form of the cross peak, is illustrated in
Fig. 10.10. Here, multiplet (a) is from term [2] - note that the four anti-
Phase square arrays all have the same overall sign. Multiplet (b) is from
‘firm I5], and in this case two of the anti-phase square arrays are of opposite
Overall sign to the other two. In the COSY spectrum what we will see is the
Sum of the two contributions (a) and (b), which is what is shown in (c). Two
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Fig. 10.9 Contour plot of the contribution made by term [5] to the cross-peak multiplet
between spins one and two; positive contours are shown in black, and negative in grey. The
couplings are J12 = 4 Hz, J13 = 6 Hz and J23 = 9 Hz, and the whole plot covers 110 Hz
from the centre of the multiplet; these are the same parameters as used in Fig. 10.6 on p. 325.
The w1 multiplet, which is on spin one and doubly anti-phase with respect to the 1-2 and 1-3
couplings, is shown down the side. Similarly, along the top is shown the w2 multiplet, which is
on spin two and doubly anti-phase with respect to the l—2 and 2-3 couplings. Multiplying these
two multiplets together gives us the form of the two-dimensional multiplet. As in Fig. 10.6,
we can pick out four anti-phase square arrays, however the overall sign of two of these are
opposite to those in Fig. 10.6. The overall sign of each anti-phase square array is shown by the
symbol in the middle of the array.

of the anti-phase square arrays have cancelled one another, and two have
reinforced. The result is called a reduced multiplet.

The form of the reduced multiplet can be described in the following
way. There are two anti-phase square arrays, split by the active coupling,
J12, in each dimension. One array is shifted by +%J13 in the w1 dimension,
and +%J23 in the 0.22 dimension, away from the nominal centre of the cross
peak at {Q1,Q2}. The other array is shifted by —%J13 and —-%J23 in the
respective dimensions. Note that the anti-phase square array is split by the
active coupling, whereas the shifts are determined by the passive couplings.

In Fig. 10.10 (c) the peaks are labelled according to the spin state of spin
three, which is the passive spin to which both spins one and two are coup-
led. We see that the only peaks which are present in the two-dimensional
multiplet are those in which the spin state of spin three is the same in both
dimensions.

This observation gives us a way of thinking about what a reduced multi-
plet is. We imagine that one anti-phase square array comes from molecules
in which spin three is in the a state, and as a result this array is centred at
{v1 — lJ13, v2 - lJ23}.' The other array comes from molecules in which spin2 2
three is in the ,8 state. and is centred at {v1 + %J13, v2 + 3123}.

11/1 and v2 are the offsets of spins one and two, respectively, in units of Hz.
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Fig. 10.10 Contour plots of the l-2 cross peak showing: (a) the contribution made by term
[2]; (b) the contribution made by term [5]; (c) the sum of these two contributions. which is what
will be observed in the spectrum. As a result of adding (a) and (b), two of the anti-phase square
arrays cancel, so that there are only two arrays in multiplet (c), which is described as a reduced
multiplet. The two anti-phase square arrays are displaced from the centre by {+§J13, +§J23},
and [—%J13,—%J23}; in the diagram a = 3113 and b = 3123. In (c) the peaks are labelled
according to the spin state of spin three. the passive spin to which both spins one and two are
coupled; note that all the peaks present have the same spin state in both dimensions. The value
of the coupling constants are the same as for Fig. 10.9.

This way of thinking about a reduced multiplet also indicates in what
sort of experiments we can expect to find such multiplets. The key point is
that to have a reduced multiplet, the spin state of the passive spin (here spin
three) must remain the same throughout i.e. it must not change between the
t1 and t2 periods. Therefore, no pulses can be applied to the passive spins,
as these will scramble the spin states (an exception would be a 180° pulse
which simply swaps the spin states, but does not scramble them). This is
why a COSY of a homonuclear three-spin system does not show reduced
multiplets, whereas if one spin is heteronuclear. and so is unaffected by the
pulses, we do find reduced multiplets.

The final point to make is that for a reduced multiplet to appear between
spins one and two, both must be coupled to the same third spin. If only spin
one is coupled to spin three, then we will not see a reduced multiplet.

10.3.2 Determining the relative signs of the passive coupling constants
In section 3.6 on p. 40 we explained that changing the sign of a coupling
constant has no visible effect on the normal one-dimensional spectrum, but
does affect the labelling of the lines in the multiplet according to the spin
states of the coupled spins. This is illustrated in Fig. 10.1 1, where we see the
effect on the labelling of the spin-one and spin-two multiplets of changing
the sign of the coupling to the third spin.

In a reduced multiplet, the only peaks which appear are those in which
the spin state of the third, passive, spin is the same in each dimension.
Where these peaks appear will therefore depend on the sign of the coupling
constants to this passive spin since, as we have seen, this affects the labelling
of the peaks. We therefore expect the appearance of the reduced multiplet
to be affected by the signs of the coupling constants to the passive spins.

Figure 10.12 illustrates how the appearance of the reduced multiplet
between spins one and two is affected by the signs of J13 and J23. What we
see here is that it is the relative signs of the couplings which is important.

ta) *~’1=*—'

_kMl
"<17"-aI3s I53
B3 153% °~a

I I T j I

-10 Q1l21t +10
(b) ‘*-/23:’

fill
valve B3763,
I5:-:1 I3:-:1 as (la

-I 0 92,121: +1‘ 0

Fig. 10.11 Illustration of the effect on the
spin-one and spin-two multiplets of
changing the sign of the passive couplings
to spin three. These multiplets have been
computed for the particular case
|J12l = 4 Hz, |J13l = 6 Hz and |Jz3| = 9 Hz.
Multiplet (a) is for spin one, and each line is
labelled according to the spin state of spin
three (denoted a3 or /33). The labels in black
are for the case where J13 = +6 Hz, and
those in grey are for J13 = -6 Hz; note that
the multiplet does not change, but the labels
do. Multiplet (b) is for spin two. and is
similarly labelled for the case J23 = +9 Hz
(in hlack), and J23 = -9 Hz (in grey).
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J13 and J23 same sign J13 and J23 opposite sign
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Fig. 10.12 Illustration of how the form of the reduced cross-peak multiplet between spins
one and two is affected by the signs of the two passive couplings to spin three. The spin-one
multiplet appears along an , and the spin-two multiplet along wg; as in Fig. 10.11, |J12| = 4 Hz,
|J13l = 6 Hz and |J23| = 9 Hz, and a range of 110 Hz is plotted from the centre of the
cross peak. The spin state of the third (passive) spin is denoted by 03 /B3. Note that the only
components of the cross peak which will be present are those which have the same spin state
of the passive spin in the two dimensions. If the two passive couplings J13 and J23 have the
same sign, shown in (a) and (b), the reduced multiplet ‘tilts’ to the right. In contrast, if the
couplings have opposite signs, as in (c) and (d), the multiplet tilts to the left.

If both couplings have the same sign, then the two anti-phase square arrays
are arranged such that the multiplet is ‘tilted’ to the right, whereas if they
have opposite signs, the multiplet is tilted to the left. It is thus possible to
determine the relative signs of the coupling constants simply by inspecting
which way the reduced multiplet is tilted.

It is not possible to determine the absolute sign of the coupling con-
stants by this method, only their relative signs. However, the sign of
some couplings are known unambiguously from other considerations, and
if such a coupling is one of the passive couplings, then the absolute sign
of the other passive coupling can be determined. For example, one-bond
'3C—'I-l couplings are known to be positive, so from a reduced multiplet in
which one passive coupling is a one-bond C-H coupling, and the other is
a long-range C—H coupling, it will be possible to detennine the sign of the
long-range coupling.

10.3.3 Measuring the size of the passive coupling constants
We have already noted that, because of the way in which the positive and
negative components of a cross-peak multiplet interfere with one another,
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Fig. 10.13 Illustration of the use of a reduced multiplet to facilitate the measurement of a
small coupling constant. Multiplet (a) is the normal 1-2 COSY cross peak, computed for the
couplings J12 = 4 Hz, J13 = 0.5 Hz and J23 = 9 Hz; the spin-one multiplet appears along
ml, and the spin-two multiplet along wg. The splitting due to the small passive coupling in the
wl dimension is barely visible. Shown in (b) is the corresponding reduced multiplet for the
case where spin three is a heteronucleus, and so is unaffected by the final pulse of the COSY
sequence. The remaining two anti-phase square arrays are clearly separated as a consequence
of the large passive coupling J23. As the two arrays no longer interfere with one another, it
is now possible to measure J13 from the displacement, in the wl dimension, between the two
arrays.

it is not usually possible to measure values of coupling constants simply by
measuring the splittings between the peaks in the multiplet (section 8.4.4
on p. 202). However, under some circumstances, in reduced multiplets it is
possible to measure the size of the coupling constants to the passive spin.

The idea is illustrated in Fig. 10.13. In (a) we have the l—2 cross-peak
multiplet as would be seen in a simple COSY spectrum of a homonuclear
spin system. The 1-3 passive coupling is rather small (0.5 Hz), whereas the
2-3 passive coupling is large. As a result, two pairs of the anti-phase square
arrays overlap extensively, and it is only just possible to see the splitting in
the cu; dimension due to the 1-3 coupling.

Multiplet (b) is the corresponding reduced multiplet, as would be
seen for the case where spin three is a heteronucleus. As has been de-
scribed above, the two remaining anti-phase square arrays are shifted by
{+%J13, +%J23} and {—%J13, —%J23} from the centre of the cross peak. Since
J23 is so large, the two arrays are well separated in the (U2 dimension, and
as a result there is no overlap or interference between the two arrays. It
is therefore possible to measure the small coupling J13 by measuring the
displacement of the two arrays in wl , as is shown in the figure. Similarly, it
is possible to measure the large coupling J23 in the other dimension.

Essentially what we are doing here is to use the large passive coupling to
‘drag apart’ the two anti-phase square arrays. Once they are well separated,
there is no longer any interference between them, and so we can find the
value of the small passive coupling by measuring the displacement between
the two arrays.

This idea has been used to great effect in the NMR of proteins and
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Fig. 10.14 Pulse sequence for small flip
angle COSY. lfthe flip angle of the final
pulse is significantly less than 90°, the
resulting spectrum shows reduced
multiplets.

nucleic acids. It is possible to label such samples with 100% BC and '5N_
thus making it relatively straightforward to see the effect of couplings to
these nuclei on the proton spectra. Typically, the one-bond C—H or N~H
coupling takes on the role of the ‘large’ passive coupling, enabling us to
measure the much smaller long-range heteronuclear couplings from the
reduced multiplets.

10.3.4 Reduced multiplets in homonuclear spin systems
We now tum to how reduced multiplets can be generated for purely
homonuclear spin systems. A clue as to how this might be achieved comes
from the heteronuclear case we have been discussing so far, in which we
noted that the important thing was for the spin state of spin three to remain
the same throughout the experiment. Any pulse (other than a 180° pulse)
applied to spin three will violate this condition, but suppose we use a pulse
with rather a small flip angle - this will not change the spin states ‘very
much’ and so we might expect to generate reduced multiplets.

The simplest implementation of this idea is the small flip angle COSY
experiment, whose pulse sequence is shown in Fig. 10.14. All we do is
make the flip angle of the final pulse significantly less than 90°; 20° is a
typical value. Starting from fu, and working through the sequence, we find
the following observable terms on spin two at the beginning of I21

[S1111 0] 1- cos (2rJ,3t,) sin (1rJ,2t,) sin (o, r, )1 2i,,i,, 12']
[sin2 6cos 0] 1- sin (1rJ,3t,) sin (7i'J12f| ) cos (on, )1 4i,,i,,i3,, 15']

where 6 is the flip angle of the final pulse.
First, consider the case 6 = rr/2. With this value, term [5’] disappears as

cos (rr/2) = 0, and term [2’] becomes exactly the same as term [2] on p. 324
since sin (rt/2) = l. This is the expected result.

The two terms [2’] and [5’] have a different dependence on the flip angle
6, and so, in general, are of different overall size. They will not therefore
combine to give a reduced multiplet in the same way as terms [2] and [5] on
p. 329. However, we will now show that if the flip angle 6 is small, the two
terms will have the same size, and so combine to give a reduced multiplet.

We first note that sin 6 and cos 6 can be expressed as power series in 6
(here 6 must be in radians):

- 1 1S1l'l6=0-5-;Q3+§;95... cos6=l— 53-. :':y p e+¢em
We have only written out the first three terms in each case. If 6 is small
(i.e. 6 << 1), then 62 is even smaller, and 63 even smaller still. Under these
circumstances we can discard all of the terms in 62 and higher powers of 6.
This gives the approximate results

small6: sin6@-6 cos6zl.
If we now return to terms [2’] and 15'], and assume that 6 is small enough

that we can use sin6 e 6 and cos6 z 1, we find

1- cos (M31, ) sin (1rJ,2r, ) sin (o, r, )1 2i,,i2_, 12']
[- Sin (FF-Instr) $i11(1fJ|2f1) COS (Qifill 4il:f2_vi3:- l5'l

1-in----\
°'R>"Po

HM
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Bath terms now have the same dependence on the flip angle 6 and, apart
from the factor 62, they are identical to terms [2] and [5] on p. 329. So, the
resulting cross peak will have a reduced multiplet structure of precisely the
form described in section 10.3.1 on p. 328.

There are some practical difficulties with using small flip angle COSY
as a way of generating reduced multiplets. The overall intensity of the cross
peak goes as 62 which, as it is necessary that 9 << 1, means that the cross
peaks will be much weaker than in a COSY where the final pulse is 90°.
Recalling the discussion in section 8.4.2 on p. 196, one of the problems with
COSY is that the diagonal peaks tend to be stronger than the cross peaks
and, on account of their lineshape, the diagonal peaks tend to spread well
away from the main diagonal. In a small flip angle COSY these problems
are even worse as the cross peaks become weaker as the flip angle is reduced
whereas, as we will show in section 10.4.4 on p. 338, the components of the
diagonal-peak multiplet which lie exactly on the diagonal get stronger. So,
for a small flip angle, the cross peaks can easily be swamped by intense tails
from the diagonal peaks.

Generally speaking, small flip angle COSY is not a convenient method
of generating reduced multiplets in homonuclear spin systems. Luckily,
there are other experiments, such as ZCOSY and ECOSY which generate
such multiplets, and largely side-step the problems which stem from the
diagonal peaks in a conventional COSY.

ZCOSY is most simply described using a different set of operators to the
ones we have been using so far. In the next section we will introduce these
operators, and first illustrate how they can be used to describe small flip
angle COSY. Then, we will use the same operators to show how ZCOSY
works.

10.4 Polarization operators
Product operators are generally speaking an excellent way of analysing the
outcome of multiple-pulse experiments. but they are perhaps not best-suited
to analysing multiplet structures, or dealing with the effects of pulses whose
flip angles are not 90° or 180°. Under some circumstances, a useful alter-
native is to construct our product operators from a different set of operators,
called polarization operators. To keep the distinction clear, we will call the
product operators we have been using so far Cartesian product operators.

In this section we will introduce these operators, and then go on to see
how they provide a convenient description of experiments such as small flip
angle COSY and ZCOSY.

10.4.1 Construction and interpretation of polarization operators
The state of each spin is represented by one of four polarization operators;
for spin one these are

1",, f,_ fl, i,,,. (10.3)
W6 have come across the operators f1+ and i1_ before in section 7.12.1 on
9' 178- 11+ is called the raising operator, and f1_ the lowering operator; they
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are defined in terms of f1,, and fly as follows:

r,. E 2,, +11, 2,- E 2,, - ii,,.
These identities can be expressed the other way round:

ilxE%(il++il—) iiyi %<il+"il—)- (10.4)

The operators T1,, and i1/; are related to the unit operator E1 and fizz

12", E fl, + iv, i,, E §(i,,, - fut). (10.5)

There are a similar set of four operators needed for spins two, three and so
on.

The basis operators are formed by making all possible products consist-
ing of one of the operators of the type given in Eq. 10.3 for each spin. For
example, in a three-spin system, we can have products such as:

il—f2ai3a ii+i2-isa ilai2,6i3a- (10-6)

Only products containing one operator of the type L or i_ are in principle
observable. So, of these three product operators, only the first gives rise to
observable magnetization, and since the operator is f1_, the magnetization
appears on spin one. For reasons which will be described in section 11.1.4
on p. 374, only operator products containing one operator of the type f_ are
observable in practical experiments.

The second product in Eq. 10.6 is zero-quantum coherence between
spins one and two as it contains the operators in and f2_ (see section 7.12.1
on p. 178). The final product represents the population of the afia energy
level.

10.4.2 Free evolution
The really nice thing about these products of polarization operators is that
free evolution simply results in a phase factor; in contrast to Cartesian
product operators, the number of operators does not increase.

For example, the evolution of the product j|_i2ai3a for a time t gives:

eXP(+i[Q1 — F112 — F1131!) it-izaiaa.

whereas the product f1_f2pf3,, evolves according to

exp(+i{Q1 + rrJ|2 — rrJ|3]t) f|_i;pi3,,,

and the product f]_i2pi3B goes to

eXp(+i[Q[ + nJ|2 + 1rJ|3]t) i,_i2;J35.

In each case, the operator simply acquires a phase factor which depends on
the frequency in the square brace and the time. The frequencies all include
the offset of spin one, as the operator is l1_. If the operator for spin two is
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IL, then a term —1rJ,; isflincluded. whereas if the operator is ing a term +1rJ,2
is included. Likewise, 13,, gives a term —rrJ,_; and igfl gives a term +7rJ,_;.

The corresponding operators containing i,, simply evolve in the oppo-
site sense, meaning that the argument of the exponential has a factor of —i
rather than +i; for example

i,_i,,,i_,,, —> eXp(+i[Q, + TF1]; - ¢rJ,,]r)i,_i,,,i,,,
il+i2,8i3n —’ exp(-i[Q1+ F112 - TR/13]!) ii+f2pi3a-

The same rules apply to operator products containing i2_ and f2+; for exam-
ple A A A A A

I1ai2+I3[3 --> exp(-not - TF-/12 + M2311) 11..12+13p.
The offset term is Q2, as the raising operator present is for spin two. Since
the spin-one operator is 1°,“ we include a term —rrJ,2 in the frequency, and
as the spin-three operator is iy; we include a term +1rJ;3. Note that the
latter term involves the coupling between spins two and three, as spin two
is present as the raising operator.

You will have noticed by now that each of the four operators

il—i2ai3a if-i2fii3a il—i2ai3[i 71-Twila
evolves at the frequency of one of the four lines of the spin-one multiplet.
Each operator represents observable magnetization which corresponds to
one of the four lines of the multiplet. In the same way the four operators

i1J2_i3., i1,J2_i3.. ilai2—f3,B i1l3i2-i373,
represent the four lines of the spin-two multiplet.

10.4.3 Pulses
The effect of pulses on these operators is rather more complex than for
cartesian product operators. For an x-pulse of flip angle 6 to spin one we
have:

" Bi; " . ‘\ . . * '~1,, —‘» @052 (la) 1,, + S1Il2 (%e)1,_ + %1s1n6([,,, ~ 1,,,)
A Hi: A . " . . A *l|_ —‘> cos2 (%9)I1- + s1n2 (%6) 1,, — %lS1l'16<I1,,, — I15)

" 0;: '\ . ’“ - . A11,, —'> Cos2(%9)l1,,+s1n2(%6)I1;;+%1s1n9(i1+—l,_)

in; i> cos2(%6)i,;;+sin2(%6)f,,,—%isint9(f,,,—i,_).

The effect of a pulse is to interconvert all the operators in a fairly complex
Way which depends on trigonometric functions of 9 and l9. There are a
similar set of relations for the operators of spins two, three and so on.

Two special cases are of interest. For a 180° pulse, 6 = rr, the transfor-
mations become rather simple:

il+ LI]; i]- i|_ in i1afi)f1B ila.
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The second case we are going to be interested in is when the flip angle 9 is
small. As we discussed in section 10.3.4 on p. 334, in such circumstances
we can write sin6 z 6 and cos6 = l. So, the trigonometric terms in the
above equations become

¢t>s2(§e) zl sin2(%9) = la’ sin6~ e.
With these approximations, the effect of a small flip angle pulse is

A Oi]; A r~ '\ '\

11+ i) 11+ + %92I|._ + '%l6(I1a"

L7‘._"T‘>'\""'

‘Qin

\/\_/\_/\_/

A 01 A - _ A A
[]_ ;) 11.. + £921?“ ~ %lQ(I|a, —

ei (10.7)
ilai) _

»~ 01', » A . » ~
115;? [1’g'f'%62I1a—%l6'(I]+— _ .

We are now in a position to use these polarization operators in some practi-
cal calculations.

10.4.4 Small flip angle COSY
As we did before, let us imagine a homonuclear three-spin system and start
out with z-magnetization on spin one, ft. We are going to assume that the
phase of the first pulse is y, so that the operator generated by this pulse is
i,,. This simplifies the calculation slightly when compared with starting
with a 90°(x) pulse; the form of the spectrum is not changed, apart from an
overall phase shift.

To express in in terms of polarization operators we first have to realize
that in is really a shorthand for i|xE2E3 (see section 10.1 on p. 318). These
three operators can be expressed in terms of polarization operators by using
Eqs 10.4 and 10.5 on p. 336:

f1_,E %(i1++i|_) E2 Ei2a+i2fi E3Ei3a+i3/3.

Substituting in these expressions gives

i1,,E2E3 E :12-(iht + i|_)(i2,,, + ig/3) (iga + A5).

Multiplying this all out we find

t\J>-rl~)-—- /-\/-\

111 E + Il+IZoI3ir + Il+I2aI3B + Il+[2fi’I3a + 1i+125l3)s) (10 8)
-l" " i1_i2a,i3a, + i|_i2ai3/3 + i]_ig5i3a, + i1_.i3,3i3/3) .

The four operators in the first bracket correspond to the four lines of
the spin-one multiplet, which is hardly a surprise as we know from sec-
tion 10.1.1 on p. 319 that the cartesian operator fr, represents an in-phase
multiplet on spin one. Similarly, the four operators in the second bracket
also correspond to the four lines of the multiplet: all that is different about
this second group of four, as compared with the first. is a change in the sense
of the evolution.
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To predict the form of the spectrum we first have to allow each of these
operators to evolve for time rl, and then work out the effect of the final,
small flip angle, pulse. This is not quite as complicated as it seems, since
once we have done a couple of terms a pattern will develop, which means
that we do not really have to work through them all.

To start with we will just consider the term fl.,f;,,f3,,; during tl this term
simply acquires a phase factor:

exp (—ilQi - TFJ|2 * 7fJi3]1‘i) i1+i2ai3a-

The final pulse will transfer this term, along with its modulation, to the other
spins, thereby generating the cross peak. We will focus on the transfers to
spin two, which lead to the 1-2 cross peak.

The 1-2 cross-peak multiplet
ln order to contribute to the 1-2 cross peak, the final pulse must transfer
il,f2,,f;,, into an operator product containing i3_ (recall that only i_ opera-
tors are observable). In addition, for the temi to be observable the spin-one
and spin-three operators must be il-y and i3.,', where 7/ and y’ can be a or B:

il+i2ai3a —’i1yi2-i3y'-

The effect of the small flip angle pulse is given by Eq. 10.7 on p. 338,
from which we see that the transformation from T2,, to f2_ carries with it the
coeflicient -%i6.

For spin one, if the operator goes from fl, to flu there is a coefficient
of +%i6, whereas if the final operator is fl”, the coefficient is —%i6. For
spin three, if the operator remains the same (i3,,), there is a coefficient of 1,
whereas the transformation to f3); gives a coefiicient of £62. In summary,
we have the following four possibilities

il+i2ai3a 7 _" (1)i1ai2—f3a

il+i2ai3a -- -- 1)il[3i2—i3a

fl+i\2ai3rr “-9 " _' ‘62) ilai2—-f3/3

/-\/-\/-\/ix

++

t0-—‘l\)>—'I\J'—'l\I~—'
---1->-.s-.CbQDCbQD

£2Q/£2£2 ,-\/-\,-\,3 l\J--|\J—w--lg..-
blrrun:I-1‘hdv QDCbCDCb

£2‘§/\:/Q;/‘R/5/\ J-\»—J>--i1+i2ai3a-—~> -" r" - )illGi2—j3B-

If the fiip angle is small, we can discount the last two terms as they go as 64,
which will give them very low intensity compared with the first two terms,
which go as 62; we will therefore ignore the terms in 614.

Note that the first two terms are the ones in which the spin-three operator
is unchanged, whereas in the second two terms this operator changes from
130 to 13);. What is happening is that the small flip angle pulse is discrimi-
nating in favour of transfers in which spin three, the passive spin, does not
change spin state.

Multiplying out the brackets for the first two terms gives us

il+i20i3tl Z) +i92 ilrri2—i3a il+iZai3a W) _%6ZilBiZ—i3a-
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Notice that there is a sign change depending on whether spin one ends up
3S ill, O1’ ing.

As we saw above. during tl the product fl.f;,,f3,, acquires a phase label
exp (—i[Ql - rrJl; — rr.ll;]rl ), which means that after Fourier transformation
with respect to tl there will be a peak at —{Ql — rrJlg — rrJl3] in the to,
dimension. In (1)3 the term flaf;_i3,, gives rise to a peak at [Q3 —zrJl; —1rJ;3],
while the term fl,@i3_f3,, gives a peak at [Q3 + ll’./12 - H.133].

Overall. the term flzf3,,f;,, present during tl gives rise to two compo-
nents in the cross-peak multiplet:

{(01.0-*2} = l"‘[Ql - Tl’-/12 - F113]. [Q2 "' "J1: - R-7231} intensity: + §62

{wl9u)2} = l-[Qt — "J1: — F1131» [Q2 + H112 -F1231} intensity: — if}:

We now need to work through the remaining three operator products
of the form fl+fl.,f;,, present during rl. It tums out that these follow a
very similar pattern. in which the final pulse causes each to split into two
products which are observable on spin two. The results are summarized in
the table below.

Down the side are the operator products present at the start of rl. and
along the top are the four possible operator products which result in observ-
able signals on spin two. The entries in the table give the coeflicient for the
transfer between the operator in the corresponding row and column.

o

Jo-—-kt-‘O
‘P.‘P. oo oo*——*-—

“P.

l fiafz-fall fipliz-i3a___i1af2li3p iiraiz-is/2 I: /iw2
i|.l.igfii3p 0 0 —§02 +-63
i]+i2qi3p +§0Z —-
i,,.fwl3,, —§02 +-
fl,,f2,,i3,, +§03 —-

Fi /wt

Recall that each of the product operators down the side represents a line
from the spin-one multiplet. whereas those along the top represent a line
from the spin-two multiplet. Thus the table is in fact a direct picture of the
1-2 cross-peak multiplet.

The operators have been ordered in the table in a way which will match
the line positions for the case where the active coupling is smaller than
either of the passive couplings. which is the situation illustrated in (c) from
Fig. 10.10 on p. 331. The pattem of intensities shown in the table therefore
matches this diagram. What we have here is a reduced multiplet, with the
two anti-phase square arrays appearing in the top right. and bottom left.
quadrants of the table.

We saw that the transfer from fl.,i;,,i;,, to i13i3_.i_"4§ has an overall coef-
ficient of

t - 1 - | ° _ I("§l6) (—El6) —- -T6

This transfer gives rise to a peak which is not part of the reduced multiplet.
We can compare the intensity of this unwanted peak with that of the wanted
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peaks, which go as §62:

unwanted _ T1594
wanted — £92

- 1_ ,@1.
50, if 6 is 20°, which is 0.35 radians, this ratio is 0.03 i.e. the unwanted
peaks will be 3% of the intensity of the wanted peaks. For most purposes,
this degree of suppression of the unwanted peaks is probably sufiicient.

Lineshapes for the cross-peak multiplet
We saw above that a typical component of the cross-peak multiplet arises
from the transfer fl,f2,,f3,, —-> il,,f2_f3,,. In 1, the term fl,f2,,f3,, has
a phase modulation according to exp(—i[Ql —1rJl2 — 1rJl3]1l), and dur-
ing 1; the term il,,f;_f3,, will acquire a phase modulation of the form
exp(+i[Qg — 7!./12 — 1rJ;3]tl ). So, overall, the time-domain function for this
component of the cross-peak multiplet will be

S(I|,I3) = €Xp(—l[Ql — R1112 — 7!./13]Il) X €XP(+i[Qg —- 7t‘]|g — 7(.]g3]f1).

Referring to Eq. 10.8 on p. 338, we see that during rl there are, in addition
to the terms of the form fl,i2.,f3,/, an equivalent set of terms of the form
il_f;,IA_l,/. The only difference in the behaviour of these terms is that the
sign of the evolution frequencies in rl are reversed. For example, the transfer
fl_f2,,i3,, ——> il,,i2_f3,, gives rise to a contribution to the time-domain signal
of the form

$'(l1,I2)= EXP (+i[Qr - ITJ12 - TFJ13lfr)>< ¢XP(+i[Q2 - "J12 "" TfJ23lf2)-

The transfers fl+f2,,f3,, —> fl,,f;_f3,, and fl_f2,,f3,, -—-> fl,,f2_i3,, both
contribute to the observed signal:

Sobs(71,I2) == Sm. r2) + S’(n.r2)
= {exp(—i[Ql — 7!./13 — rrJl3]tl) + exp(+i[Q.l — H.112 - rrJl3}tl)

>< exp(+i[Q2 — TI./[3 — 7rJ231t2)
= 2cos ([Ql — mil; - 7rJl3]tl) exp(+i[Q2 -"7l’.]]1 —rrJ;3]t;).

Overall, we have cosine modulation, so the spectrum can be processed in
the usual way to give absorption mode lineshapes.

The diagonal-peak multiplet
If the final small fiip angle pulse does not transfer the operators iltigyigya to
another spin, but leaves them on spin one, the result will be a contribution
to the diagonal-peak multiplet. As was the case for the cross peak, we will
find that only a sub-set of the sixteen possible components of the diagonal
peak multiplet have significant intensity.

If we start with the operator product fl+i2,,f3,, present during rl , we can
ice that contributions to the diagonal peak will arise from transfers of the
Orm

[l+I2a13a —"~> 11- 12~,13y-
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multiplet, for spin one, from a small flip
angle COSY. These peaks arise from
operators of the form il_i1,,i3,' present
during ll. Out of the sixteen possible
components of the multiplet. only four
survive. and these are the peaks which lie
directly on the diagonal line (4)1 = tug.
These four peaks have the same spin state of
the passive spins, spins two and three. in the
two dimensions. As explained in the text, in
practice the lines would have the phase twist
lineshape.

Referring to Eq. 10.7 on p. 338. the intensity of the four possible transfers
of this type are;

(1 I )il-i2ai3a

l 02)(1)i1-i2fii3a
1)(i 92)f1-izafsp

‘ ‘ ‘ },e2)(j, 01)i,-i2,,i,,,.

il+i2aj3a “'7 '

il+f2ai3a '

i1+-i2ai3o '

/-'~\/-\»-~/> J>--J=--A-—J=-—- ‘R,‘R,‘R,“P.
\./\-/\-/\_2 /R/-\P\

l

lIl+I2aI3a

Of these four transfers, the first goes as 61, and so will be of comparable
intensity with the components in the cross peak. All of the other transfers
go as 61”‘ or 6'6, and so will be of negligible intensity.

Thus, starting from i1+i2aj3a, the only transfer of significant intensity is
that to fl_f2,,i3,,; note that the spin states of spins two and three remain the
same in this transfer. The result is a contribution to the time-domain signal
of the form,

S(ll,l'2)= pl,-Q2€Xp(-l[Q1—7f.]12 —7f.]|3][1)X€Xpf+l[Ql —7r./lg -TI./13112).

Such a phase modulated signal gives rise to a phase-twist lineshape, inten-
sity §62, at frequency

{(Ul!u)2} = l—lQ1 - "J12 - "J13l,[Q1 " "J12 —7fJ13ll~

Apart from the sign change, the w l and to; frequencies are the same, so this
peak lies directly on the diagonal line wl = -012.

The other operators of the form i|.l.i2yi3y/ also give rise to peaks which
have, apart from the sign change, identical frequencies in the two dimen-
sions. Thus, the diagonal-peak multiplet consists of just four peaks, all of
Whifih lie 011 the diagonal line to, = —w2, and whose frequencies are just
the four lines of the spin-one multiplet. The four peaks are all positive.

These four components of the diagonal-peak multiplet are those in
which the spin states of spins two and three, which are both passive, remain
the same. Once again, the small flip angle pulse discriminates in favour of
terms in which the spin states of the passive spins are preserved.

The terms of the type fl_f2,f3,l present during tl do not need any trans-
fer to make them observable in t2. For example,

ii—i2ai3a —» <1><1><1>il_i2..i3...
This transfer will give rise to a phase-twist peak of overall intensity 1, and
at

{(01.1/J21 = llQ1 - "J12 - If-/13], [Q1 - If-/12 * Tl-/13]];

note that this lies on the diagonal line £4); = (4)2. The four operators of the
type f1-i2yi3y thus give rise to four components of the diagonal peak. all of
which lie on the diagonal line wl = (1)2, as shown in Fig. 10.15.

The key difference between the diagonal- and cross-peak multiplets is
that for the Cross-peak multiplet there are equal contributions from signals
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evolving at +Q and —Q during ti, leading to overall cosine modulation and
hence an absorption mode lineshape. In contrast, for the diagonal-peak
multiplet. the two contributions are not equal, so we do not have cosine
modulation. and hence cannot obtain an absorption mode lineshape.

The problem with small flip angle COSY
A small flip angle COSY does indeed generate reduced cross-peak multi-
plets. the individual peaks of which have the absorption mode lineshape.
The overall intensity of the cross-peak components is £62, which makes
them much less intense than the diagonal-peak components, which have
intensity l.

Recall too, that the diagonal-peak components have the unfavourable
phase-twist lineshape. This, combined with the much greater intensity of
the diagonal peaks, means that the cross-peak multiplets are easily swamped
by the spreading diagonal. For these reasons, small flip angle COSY is not
a particularly useful experiment.

However, the ZCOSY experiment, which we will describe next, gets
around these problems in rather a neat way. In ZCOSY, the cross and
diagonal peaks are of comparable intensity, and both have the absorption
mode lineshape.

10.5 ZCOSY
The pulse sequence for the ZCOSY experiment is shown in Fig. 10.16. The
mixing period consists of two small flip angle pulses separated by a small
delay, and it is arranged that only population terms present between these
two pulses contribute to the final spectrum. We will see that the resulting
spectrum looks very similar to a small flip angle COSY, with the important
difference that all peaks are in absorption mode.

The way in which this sequence works is easily appreciated using po~
larization operators. Let us start with the term i,+i;_,,i3a and see how it can
be transferred to population terms of the kind ilyigy/T3,», by the first small
flip angle pulse. There are four possibilities in which spin one is Tm:

)(l) 110120130

il+i2ai3a *-> - -92)(1)-iiaizpisa
le1)i..t2.r3,,
)(;@1) r,.,r.,,r3,,.

We can see that, of these four possibilities, only the first will be significant
if the flip angle is small. There are also four possibilities in which spin one
is Iw, but only one of these will be significant for small flip angles:

I1+I2a[3a —*

,‘\/-\,_\/-\
++++

y\)>-gg-¢|q.-y\_)_.
bl!I-II3-1||-1|%<b<D%

§-n/in/i-n/L} /-\/R1%/\ J>>->--I.;>.._-r—d

\/
/-\

"ii

Il+I2aI3a --* "

11+12a13a —* - -

il+i2ai3a —>(-§ie)<1>(1>ii,,i2.i3..
_ The second small flip angle pulse has to generate observable terms from
Ilalzqlflm so one of the operators must be rotated to [_. To contribute to

99
l “__t2_>

T1-*>

Fig. 10.16 Pulse sequence for the ZCGSY
experiment. It is arranged so that only
population terms present between the two
small flip angle pulses contribute to the
spectrum.
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the 1-2 cross peak, the spin-two operator must be transformed to Es; [ha
operators for spins one and three may also be changed from 11,, to I13, and
from 13,, to 13,9:

ii.,i2..13.. —> (l)("%i9)(l)ilai2—i3a
i,,,i2,,i3,, -> (£02) (-gm) (1) i,,9i2_i3,,
ilai2ai3a -—> (1)(—§i9) (i92)i1ai2-isp
i,ai2.,i3,, _s (§62)(—§i6)(§62)i,fli2_i3,3

Again, of these only the first term will have significant amplitude ifthe flip
angle is small. A corresponding transfer arises from the term Iwlzalga

il/3i2ai3a —-> (1) (—%i9) (1) iipiz-ism

In summary, the result of the two small flip angle pulses acting on the
term i;,,1;ai3,, is the following contributions to the 1-2 cross peak:

A '~ A 1. A A A . . A A A( 1 ) ( ~ )( - )~._.

._.~___

Il+l2aI3a"" +49 llaI2aI3a '_“> + 16 — 16 llaI2—I3a

N.-
,._.

IQ
i,.i2,,i3.,, _> (gm) i1,,i2,,i3,, _> (_ 6) (_ i0)i1,3i2_i3,,.

Leaving out the intermediate stage these transformations are

.._:-7-I°'i<>"R>
Il+I2uI3a "" Ila[2—I3a

il+i2ai3a -'> (-- )ilBi2—i3a-

These are identical to the transfers we computed for the small flip angle
COSY as shown in the table on p. 340. Working through the rest of the
operators, we will find exactly the same results as in the table, so the l—2
cross peak will show the required reduced structure.

It is also easy to show that terms of the form i]_i27i3y present during ti
also give rise to a similar cross-peak multiplet, but with the sign of the wi
frequencies reversed. It will therefore be possible to process the spectra to
give absorption mode lineshapes.

The diagonal-peak multiplet
We can go through the same procedure for the diagonal peak. For the first
small flip angle pulse, the same considerations apply as for the cross peak.
and the only two significant terms will be

il+i2ai3a ->(+%i9)i1ai2ai3a

i1+i2ai3a -*’(-%i9)i1/sizaiaw

The second pulse must make these observable on spin one. The transfers
which are significant for a small flip angle pulse are

(+%I9) i]gi2ai3a -—> (+%l6)(—%l6) i]_i_7_ui30,

(—%I6) i]fii2_ai30, ———> (-—%I6) (+%I6) i|_i3_,,i3,,.
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The overall transfers caused by the two small flip angle pulses are

iI+i2Ui3a '—* (+i92)ii-izaisa

il+i2ai3a -—> (+§92) il—i2ai3a-

Both of the transfers give rise to a peak at

lwlvwll = l_lQi —7FJi2 -/F113], lQi -H112 -71/131};

this is a component of the diagonal-peak multiplet which lies directly on the
wi = —w3 diagonal.

Working through the same calculation starting with the operator
i1_i;,,i3,, we find that it gives rise to the same contributions to both the cross-
and diagonal-peak multiplets as did i,+i2,,i3,,, with the sole exception that
the frequencies evolving during r, are of opposite sign; the amplitudes all
go as £02. Therefore, all of the signals are cosine modulation in 1;, and so
we can obtain an absorption mode lineshape.

ZCOSY is superior to small flip angle COSY because firstly, the cross
and diagonal peaks have similar intensities, and secondly because the spec-
tra can be processed in such a way as to obtain absorption mode lineshapes.
One practical difliculty is that it is vital to ensure that only population terms
present between the two small flip angle pulses contribute to the observed
signal; how this can be achieved effectively is discussed in section l 1.15 on
p. 415.

10.6 HMBC

The HMBC experiment was discussed, for the case of two spins, in sec-
tion 8.10 on p. 220. In this section, we are going to investigate the form
of the HMBC spectrum for a three-spin system containing two protons and
one heteronucleus, such as “C. The two protons (I, and I3) are coupled
and, for simplicity, we will assume that only I1 is long-range coupled to 13 C
(the S spin). The topology of the spin system is shown in Fig. lO.l7.

The pulse sequence for the HMBC experiment is shown in Fig. 10.18.
As usual, we will start our analysis with equilibrium magnetization on spin
1|; we do not need to consider the magnetization on spin I2 as this spin is
not coupled to the heteronucleus. The 90° pulse generates —i1,, and then
this term evolves for time 1' under the influence of the offset of spin I1, and
the couplings of this spin to spins I2 and S.

The result is rather a lot of terms, but based on the analysis for a two-
Spin system, we know that only those which are anti-phase with respect to
the heteronucleus, the S spin, will be transformed into multiple quantum by
the next S spin pulse. So, we will discard all of the other terms, leaving:

+ sin (nJ;,5 r) cos (ff./121') cos ((2,,-r) 2ii_,S;
+ sin (nJ;,$ T) cos (njnr) sin (Q1, T) 2I1ySZ

— sin (nJ;,5 -r) sin (1rJ1;-r) sin (Q1, 1') 4i1,,i2zSZ
+ sin (nJ,,$r) sin (R1127) cos (Q1, -r) 4i1_,.igZS;.

Fig. 10.17 The arrangement of spins
considered in this discussion of the HMBC
experiment. Spins 1| and I3 are protons, and
are coupled, but only 1| is (long-range)
coupled to the S spin. BC. The coupling
between the two I spins will be denoted J12,
and that between 1; and S will be denoted
./1| 5 .

r—> __t2_>
I

l::t,_>‘A A s
Flg. 10.18 Pulse sequence for the HMBC
experiment.
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Note that all the terms include the factor sin (1rJ1,5 -r) which comes from the
evolution needed to create magnetization which is anti-phase with respect
to the I1—S coupling. For simplicity, these factors which depend on -r will
be written A1, A2 . . ., so that the state at the end of -r is:

A12i]x§; + A2 2i|y§; + A3 4ilxi2:§: + A4 4i|yi2z§z,

The 90° pulse to the S spin simply changes S; to —Sy:

—A1 2i,,S,. - A2 2i,,s, - A 3 4i,,,i2,S, ~ A4 4i,,i,,S{,.
This brings us to the start of t1. What we have here is a combination of var-
ious different types of heteronuclear multiple-quantum coherence between
I1 and S i.e. the long-range coupled proton and BC.

The 180° pulse placed in the middle of I1, and applied to the I spins,
will refocus the offset of I1, so we do not need to consider its evolution.
Furthermore, we know that multiple quantum between 11 and S is not
affected by the coupling between these spins, so we do not need to consider
the evolution of J1,_;.

The coupling between I1 and I2 (the two protons) will affect the evo-
lution during r1. However, we are going to ignore this evolution for two
reasons. Firstly, for the typical resolution that can be achieved in the ml
dimension of an I-IMBC (remember that it is the range of 13C shifts which
have to be covered in this dimension), it is unlikely that the splittings due to
proton-proton couplings will be resolved. Secondly, ignoring the evolution
of J1; simplifies the calculation considerably.

So, during t1 we only need to consider the evolution due to the offset of
the S spin (the heteronucleus). The result of this is

COS (Q3 I1) [—A1 2i1X.§y — A2 2i|_v.§y — A3 4i|Xi2Z.§y - A4 4i|yi2;.§y]

+ Slll(Q3l‘1)[A12i1X.§X + A2 2i1y.§x + A3 4i“-izzgx + A4 4i1yi2zi3,\-1.

We must not forget the 180° pulse to the I spins, which will simply change
the sign of the operators I1, and I21:

COS (S1311) [—A| Zilxgy + A2 2i|y.§y + A3 4i|xi2;.§_v — A4 4ilyi2Z§y]

+ SIII (9311) [A1 2i1,\-SIX '- A2 2i]y.§x - A3 4i1xi2Z§x + A4 4i1yi2;.§X].

The final pulse to the S spin makes some of these multiple-quantum
terms observable on I1. It is clear that as this pulse is about x, only the
terms containing the operator S, will become observable i.e. those in the
first square brace:

COS (S2311) [—A1 2i];-Sz + A2 Zityfiz + A3 4i1_,;i2;.§; — A4 4i]yi2;§;]-

All four of these terms contribute to the spin-one multiplet. and they are
all modulated at the offset of the S spin as a function of tl. We will therefore
see a two-dimensional multiplet centred at {§25,§2|} which, although only
having one frequency in cu], has a complex multiplet structure in (1)3.
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Fig. 10.19 Illustration of typical multiplet structures in the w; dimension expected for HMBC
cross-peak multiplets from the spin system shown in Fig. 10.17. In each case, the contributions
from the four product operators which contribute to the multiplet are shown separately, as well
as their sum (marked ‘t0tal’), which is what would actually be observed in the spectrum. Note
that the contribution from each operator depends on the values of the coupling constants and
the offset. It has been assumed that x-magnetization will give the absorption lineshape. For
all three multiplets, the offset of 1| has been taken as 80 Hz, the linewidth is 0.5 Hz, and the
delay r is 40 ms. In (a) the coupling constants are J12 = 2 Hz, J/,5 = 7.5 Hz; in (b) they are
1|; = 5 HZ. 11,3 = 6 HZ; find in (C) they are J13 = 7 HZ, J/13 = 3 HZ.

All of the contributions to the spin-one multiplet are anti-phase with re-
spect to the coupling to the heteronucleus, the S spin. There are, in addition,
contributions which are both in-phase and anti-phase with respect to the
coupling to I2, the other proton. Finally, all of these different contributions
appear along both the x- and y—axes, in a complex mixture which depends
on the factors A,-.

Figure 10.19 shows examples of the I1 spin multiplet structure that
would be observed in the (U3 dimension of an HMBC; the diagram also
shows the individual contributions from the four operators. It is clear
from this diagram that the multiplets have complex phase properties which
will certainly defeat any attempt to measure the value of the long-range
heteronuclear coupling, J1, 5.

10.7 Sensitivity-enhanced experiments
Sensitivity is always at a premium in NMR spectroscopy, so those de-
veloping new multiple-pulse experiments must always pay close attention
I0 making sure that as much of the original equilibrium magnetization as
Possible ends up contributing to the observed signal. lnevitably, along the
Way magnetization will be lost due to relaxation, or due to delays not being
at their optimum values (such as 1/(2J)). It is also important to make sure
that we are not losing magnetization by poor design of the pulse sequence.

It tums out that many two-dimensional experiments have a feature
which results in a loss of sensitivity: this is that, at the end of 1| only one
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component of the magnetization is transferred by the mixing period into
observable signals. Generally, at the end of ti the magnetization will be
somewhere in the xy-plane, such that it has a component along one axis
(say x) which goes as cos(Qiti), and a component along the orthogonal
axis (y) which goes as sin (Qiti). What usually happens is that only one
of these components is transferred into observable magnetization; the other
is discarded. Sensitivity is therefore lost as not all of the magnetization
present at the end of ti leads to observable signals.

Of course, we can determine whether we transfer the sine or the cosine
component by altering the pulse sequence, usually by shifting the phase of
a pulse. However, this does not improve the situation as it is still the case
that only one component is transferred.

For some types of experiments — principally heteronuclear ones — it
tums out that a suitable modification of the pulse sequence will allow
both components to be transferred. As a result, the signal-to-noise ratio
of the spectrum can be increased by up to a factor of \/2. Such modified
experiments are described as being sensitivity enhanced (SE).

We will describe how this sensitivity-enhancement scheme can be ap-
plied to the HSQC experiment for the case of a two-spin system. The same
approach is used in the more complex pulse sequences used to record three-
and four-dimensional experiments for the study of labelled proteins and
nucleic acids.

10.7.1 Sensitivity-enhanced HSQC
The HSQC experiment was described in section 8.8 on p. 214, and its pulse
sequence is given in Fig. 8.23 (b) on p. 215. At the end of ti (period C), we
showed that the following operators were present:

cos (oi ti) sin (2nJ1$ T1) 2i,s, - sin (oi ti) sin (27tJ1_gTi) 2i,s,.
We see that we have an anti-phase term along y, with cosine modulation
as a function of ti, and an anti-phase term along —x with sine modulation.
The subsequent 90° pulses (about x) transfer the first term to anti-phase on
the I spin, but turn the second term into unobservable multiple-quantum
coherence

— cos (Q5 ti ) sin (2nJ,5ri) 2IySZ + sin (Q; ti ) sin (2rrJi5 ri ) 2IySX.

So, as we commented on above, only one of the components (here the cosine
modulated term) present at the end of ti ends up being observed. If we
change the phase of the 90° pulse to the S spin at the end of ti from x to y,
it will be the sine modulated component which is transferred to the I spin,
but the cosine component will be transferred into unobservable mulip1e-
quantum coherence.

The modified HSQC pulse sequence shown in Fig. 10.20 achieves trans-
fer of both components present at the end of ti. We will first describe what
happens to each component, and once we have done this the general idea of
how such a sequence works should become clear.

For simplicity we will assume that the delays ri and r; have their
optimum values of 1/(4Ji5); this means that during the spin echoes there
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Fig. 10.20 Pulse sequence for sensitivity-enhanced HSQC; typically the I spin will be proton
and the S spin will be BC or ‘SN. A comparison of this sequence with that for conventional
HSQC. shown in Fig. 8.23 (b) on p. 215. shows that up to the end of ti the two are identical.
The operators present at each of the points a ...f for both the cosine and sine modulated
components are shown beneath the sequence. All of the pulses are of phase x unless otherwise
noted: the second 90° pulse to the S spin has phase ¢, which is +x or —x as described in the
text. The optimum value for both ri and 12 is l /(4115).

will be complete conversion of in-phase to anti-phase, or vice versa. Up
to the end of ti the pulse sequence is the same as a conventional HSQC,
so from our previous analysis of that experiment we have, at point a, two
anti-phase terms:

AA AA
point a: cos (Q5 ti)2IZS,. — sin(Q5ti)2I;S,,.

First, we will follow the fate of the cosine component. Taking the phase
¢ of the second S spin 90° pulse to be +x, we find at point b that the anti-
phase magnetization has been transferred to anti-phase on spin I :

AA
point b: — cos (flsti) 2I,SZ.

The spin echo, period A, results in complete conversion of this anti-phase
temi to in-phase. As usual, we can work out the effect of the echo by
ignoring the offset, allowing the coupling to evolve for time 212, and then
applying both 180° pulses. Recalling that r2 = l/(4/15), the result is, at
point c,

point c: cos (Q5 ti)I,,.
The 90°(y) pulse to the I spin rotates this in-phase term onto the z-axis:

point dz — cos (Q5 ti) I1.

During period B this z-magnetization does not evolve, but is just inverted
by the 180° pulse. So, at the end of the period we have

point e: + cos (Q5 ti ) I1.

Finally, the last 90° pulse to the I spin makes this term observable as an
1n-phase term along the y-axis:

point f: — cos (Q5 ti) Iy.
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Now let us tum to the sine modulated component. Once more assuming
that ¢ = x, we find that at point b there is a state of multiple-quantum
coherence:

point b: sin (Q; ti) 2I,.S,.

During the spin echo, period A, the offsets are refocused and, as we have
seen before, the multiple-quantum coherence between the I and S spins is
unaffected by the coupling between these two spins (see section 7 .12.3 on
p. 180). So, all that happens during this period is an inversion as a result of
the 180° pulse to the I spin (the S, term is unaffected by the l80°(x)pu1se);

AA
point c: — sin (Q5ti) 2IyS,.

The 90°(y) pulse to the S spin rotates this multiple-quantum term to anti-
phase y-magnetization on the I spin:

point <1; sin (oi ti) 2i_,s,.
During the spin echo, period B, this anti-phase magnetization evolves into
in-phase along x:

point e: — sin(Q$ti) Ix.

The final 90°(x) pulse to the I spin has no effect on ,,so we are left with
in-phase magnetization, on the I spin, along the —x-axis:

point f: — sin (Q5 ti ) Ix.

The overall result is that both the cosine and sine modulated signals are
transferred, in a single experiment, to in-phase magnetization on the I spin.
In summary, the process is

AA xx
phase ¢ - x: cos (Q; ti) 211$, - sin (flsti) 2IzS_, ~—-> (I0 9)

— cos (Qsti)Iy — sin (flsti) Ix. l

If we change the phase ¢ of the second S spin 90° pulse to —x and
work through the calculation again we will find that the cosine component
changes sign, whereas the sine component does not. This is because the
term ZIZS, present at point a is unaffected by this pulse.

AA AA
phase ¢> - x : cos (QSt])2IzSy sin (Q;ti)2IzS. -—>

, _ , (10.10)
+ cos (Q3l|)Iy — srn (Q5ti ) 1,.

Having analysed the sequence we can ‘stand back’ and see how it works.
The cosine component is transferred to the I spin by the first pair of 90°
pulses, the anti-phase magnetization becomes in-phase during the spin echo
A, and then this magnetization is rotated onto the z-axis. It remains there
during period B, and is then made observable by the final pulse.

The sine component is first transferred into multiple-quantum coher-
ence, which does not evolve during period A. The multiple-quantum coher-
ence is then transferred to anti-phase on the I spin, and is finally rephased
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during period B. ending up along x so that it is unaffected by the final 90°
pulse.

The key point is that for the cosine component the magnetization is
‘stored‘ along : during period B, while the sine component rephases. Sim-
ilarly, the sine component is stored as multiple quantum during period A,
while the cosine component rephases. At the end, both components have
been transferred from S to I and rephased.

In order to process the spectrum in the usual way we need to disentangle
the sine and cosine modulated signals. We do this by repeating the experi-
ment twice for each ti value, once with the phase ¢ set to +x, and once with
the phase set to —x. The resulting data are kept separate.

Referring to Eqs 10.9 and 10.10, we can see that adding the result of the
two experiments gives just the sine modulated term — sin (Q; ti ) Ix, whereas
subtracting the two gives just the cosine modulated term -cos(Q5ti)I,..
Note that these terms appear along different axes in the t2 dimension; it
will therefore be necessary to phase shift one of them by 90° to compensate
for this. Having made all these manipulations, we have a cosine and a sine
modulated data set which can be processed according to the SHR procedure,
described in section 8.13.3 on p. 235.

You might think, quite reasonably, that this sensitivity enhanced exper-
iment should improve the signal-to-noise ratio by a factor of two, since we
are transfening both components of the magnetization present at the end
of ti, rather than just one of them. However, in order to be able to separate
these components, we need to record two experiments, each of which comes
with its own noise. When the data sets are combined, the signal increases by
a factor of two, but the noise also increases, by a smaller factor of \/2 (see
section 2.5 on p. 14). Overall, the signal-to-noise ratio therefore increases
by a factor of

Practical aspects of sensitivity-enhanced experiments
In practice, we may not obtain the factor of \/2 improvement in the signal-
to-noise ratio: this is for two reasons. Firstly, the sequence is longer
and more complex. As a result, more magnetization will be lost due to
relaxation, and there is also the possibility of further losses due to pulse
imperfections.

Secondly, there will only be complete transfer of both components if
the delays r2 are at their optimum values of l/(4115). For a molecule
containing a range of one-bond C-H or N—H couplings, a compromise value
will have to be chosen, resulting in less that the full sensitivity gain for some
resonances.

The sensitivity-enhanced HSQC experiment, and more complex se-
quences based on the same idea, have proved to be very popular in the
NMR of large biomolecules. No doubt this is because in such systems there
is such a premium on sensitivity. In addition, it tums out that selection using
pulsed field gradients can be implemented into these sensitivity-enhanced
sequences without further loss of sensitivity.
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Fig. 10.21 The ‘constant time‘ pulse
sequence element, used to remove the
splittings in the wi dimension due to
homonuclear coupling. The element
occupies a fixed time period T, and contains
a 180° pulse which fomis a spin echo over
the time (T — ti) (period A). As a result, the
offset evolves only during period B (time
ti). In contrast. the coupling evolves for the
whole time T, unaffected by the size of ti.
As a result, the evolution during ti depends
only on the offset, so there are no splittings
in the wi dimension due to homonuclear
coupling.
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Fig. 10.22 Illustration of how the location
of the 180° pulse in the constant time
element changes as ti increases. The value
ti = 0 is achieved by having the 180° pulse
in the centre of the constant time T, as
shown at the top. As ti increases, the 180°
pulse moves to the left. When this pulse
reaches the start of the constant time, ti is at
its maximum value of T. An equivalent
result is achieved by moving the 180° pulse
to the right.

10.8 Constant time experiments
The ‘constant time’ method gives us a way of removing the splittings, in
the mi dimension, due to homonuclear couplings. Removing heteronuclear
couplings is quite easy — we can use broadband decoupling, or a strategi-
cally placed l80° pulse to the heteronucleus — but removing homonuclear
decouplings has proved to be difficult, and the constant time approach is
just about the only way of achieving this.

There are two reasons why we might want to remove the splittings due
to homonuclear coupling. Firstly, the collapse of multiplets to single lines
will simplify the spectra, and therefore increase the effective resolution.
Secondly, if all the intensity of a multiplet is concentrated into one line, the
signal-to-noise ratio will increase. However, we will see that. in practice,
although the first aim can be achieved, it is not always the case that the
constant time method leads to an improvement in the signal-to-noise ratio.

The basic idea of a constant time period is illustrated in Fig. 10.21. The
constant time is the period T between the dashed lines, and ti is the usual
evolution time. Within this time T there is a 180° pulse, which is not placed
centrally, but occurs a time §(T — ti) from the beginning. As a result, a
spin echo forms at a time (T — ti) (indicated by the grey dashed line). The
remaining time until the end of the period is T — (T — ti) = ti.

The evolution of the offset (chemical shift) is refocused by the spin echo
(period A), but during period B the offset evolves as normal. So, the overall
result is that the offset evolves for time ti, just as it would in a normal
two-dimensional experiment.

Homonuclear coupling is not refocused by the spin echo, and so contin-
ues to evolve throughout the whole of the constant time period T. Thus, as
ti is increased, the magnetization present at the end of the constant time is
modulated by the offset, but the evolution of the coupling does not change.
As a result, couplings do not modulate the signal as a function ofti, and so
there are no splittings in the wi dimension.

Figure 10.22 illustrates the appearance of the constant time element as
ti increases. The value of ti = 0 is achieved by placing the 180° pulse in
the middle of the constant time, and then ti is increased by moving the 180°
pulse to the left (or, equivalently, to the right). The maximum value which
ti can take is T.

10.8.1 Constant time COSY
The simplest experiment in which we can include this constant time element
is COSY; the resulting pulse sequence is shown in Fig. 10.23. The sequence
starts with a 90° pulse, and then the constant time period follows. At the end
of the constant time we have the usual mixing pulse, followed by detection.

The analysis of this pulse sequence for a two-spin system is straight-
forward. Starting with equilibrium magnetization on spin one, IIza the 90°
pulse generates —Ii ,.. As we have explained, the coupling evolves for time
T, giving the following result:

- cos (7l'Ji2T) ii, + sin (Mir) 2ii,i2,.
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We need to take account of the l80°(x) pulse, which inverts the operators
Ily and I21 to give

cos (1rJ1;T) T1, — sin (1rJ12T) Zilxigz.

We now have to let these two terms evolve under the offset, which only
acts for time I1. This gives the following result:

cos(Q1z1)cos (1rJ1;T)f1, — sin (Q|t|)cos(1rJ12T) fl, <—(T"1)—>_ t
A ,_ _ , _ N I | 2 m 2

—COS(Q1I1)SlH (7l'J|2T) 2I1_xI2z — Sill“-1111)SlIl(7l'J12T)2I1yI2z. 5 I1

The final 90° pulse results in the following two observable terms: ‘_B—'
Fig. 10.23 Pulse sequence for the constant

_ Sin (Q1 ,1 ) cos (7r_]12T) jlx [1] time COSY experiment.

+ sin (om) sin (7l'J12T) 2i,,i2,. [2]

 >

—-->

Term [1] gives the diagonal peak, as it is modulated in t1 at frequency
Q1, and appears on spin one in t2. In (1)2 we expect an in-phase doublet
(arising from T1,), whereas in (U1 there is just one modulating frequency.
Therefore the diagonal-peak multiplet will consist of just two lines at
{£11, Q1 =1; 1rJ1g}. Note that there is no splitting in the wl dimension, which
is just what we expect from a constant time experiment.

Term [2] gives the cross peak, as it appears on spin two. In contrast to
the diagonal peak, the multiplet in (4)2 is in anti-phase (arising from 2i1Zfgy),
but as for the diagonal peak there is one modulating frequency in wl. The
result will be a multiplet with two anti-phase peaks at {Q1 , Q2 1 1rJ12}.

Note that both the diagonal- and cross-peak terms have the same mod-
ulation, sin ((2111), in t1: they can therefore both be phased to absorption
in wl. However, in t2 the magnetization which gives rise to the diagonal
peak appears along x, whereas that for the cross peak appears along y. The
lineshapes will therefore be different in (U2.

The equilibrium magnetization on spin two will give rise to an equiva-
lent set of peaks at {(22, Q2 :1; rrJ12} and {(22, Q; 1 1rJ1;}. The overall form
of the spectrum is illustrated in Fig. 10.24. Note the lack of any splitting
on the cu] dimension, and the different lineshapes of the cross and diagonal
peaks in the (1)2 dimension.

Referring to terms [1] and [2] in our calculation, we see that, although
the value of the coupling J12 does not affect the frequency of the modulation
in I1, it does affect the intensity of the peaks via the factors cos (1rJ|2T) for
the diagonal peak and sin (rrJ12T) for the cross peak. The reason for this
intensity effect is easy to see. Cross peaks only arise from magnetization
which is anti-phase at the time of the final 90° pulse. The amount of anti-
phase magnetization at this point depends on the evolution of the coupling
prior to this pulse, which in this experiment has occurred for time T; this
is the origin of the factor sin (7rJ12T). Similarly, the diagonal peaks arise
from in-phase magnetization present at the time of the final pulse, and the
amount of this magnetization goes as cos (7rJ12T).

From our calculations we can see that the cross peaks will have maxi-
mum intensity when T = n/(2112) where n = 1, 3, 5 . . ., and zero intensity
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Fig. 10.24 Schematic constant time COSY spectra for a two-spin system; the absence of any
splitting in the an dimension is immediately evident. In (a) the spectrum has been phased
so that, in the (1.); dimension, the cross peaks are in absorption and the diagonal peaks in
dispersion. The anti-phase structure of the cross-peak multiplets is clear. In (b), the opposite
phasing has been used, with the diagonal peaks in absorption and the cross peaks in dispersion.
Now, the in-phase nature of the diagonal peaks is plain. The lineshape in the wl dimension is
the same for both diagonal and cross peaks. In these simulations. the constant time T has been
set to a value which gives similar intensity for the cross and diagonal peaks; the diagonal is
indicated by the dashed line.

when T = n/(2./12) where n = 2, 4, 6 .... The opposite is the case for
the diagonal peaks. This variation is illustrated in Fig. 10.25. Herein lies
the fundamental problem with constant time experiments. In exchange for
removing the splittings from the w1 dimension, we now have a situation
where the intensity of the cross peak depends on the value of T and the
size of the coupling constant. In a real molecule, there will inevitably be a
range of coupling constants present, and so it will not be possible to choose
a single value of T which will give the greatest intensity for all peaks. If
we are unlucky, a cross peak could be entirely missing just because of an
unfortunate choice of T.

The second problem with the constant time experiment is that the losses
due to relaxation can be severe, since for every value of ti the time between

00 i QQ <3 <>-01>

T $0 ofiv Q1 <>-~r>

l ,_
_._m2_>

Fig. 10.25 Schematic constant time COSY spectra of a two-spin system showing the effect
of increasing the constant time T. For spectra (a) ...(d) the value of T is 1/(8J12), I/(4J|2),
3/(8111) and 1/(2J1;), respectively. Note that as T increases, the cross peaks grow in intensity
at the expense of the diagonal peaks.
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the start of the experiment and the acquisition of the signal is always T.
This is in contrast to normal COSY, where the time during which the mag-
netization decays due to relaxation starts from zero and increases steadily
with 1|. Thus. the relaxation losses will be much greater in a constant time
COSY than they are in a regular COSY experiment.

Linewidths in the tul dimension
Constant time COSY experiments have the rather unusual feature that, in
the to, dimension, the linewidth is limited only by the inhomogeneous
broadening. The way this comes about is as follows.

In the pulse sequence, the presence of the spin echo means that, at
the end of period A, the decay of the magnetization is due only to the
homogeneous part of the linebroadening — any inhomogeneous decay will
have been refocused (section 9.9 on p. 299). So, noting that the duration of
period A is (T — ti), the magnetization present at the end of this period will
be reduced by a factor

exp (‘RAT — 11]).
where Rn. is the rate constant for transverse relaxation i.e. the homogeneous
decay.

During period B, which is of duration I1, the magnetization will decay
due to both the homogeneous and inhomogenous contributions. This intro-
duces a further factor

EXP (-[Rn + Rinhomitl)»

where Rinhom is the rate constant for the inhomogeneous decay.
Thus, at the end of the constant time the magnetization will have been

reduced by a factor

exp (-RxyiT — til) X exp (_[Rx_v + Riniomlri) = exp (—RXyT) exp (_Rinhomtl ).
The decay as a function of 11, which is what will determine the linewidth
in the tul dimension, is therefore determined only by Rmhom. The homoge-
neous decay does affect the overall intensity, via the term exp (-—R,3,T), but
this decay does not affect the linewidth.

If well adjusted (‘shimmed’), modern NMR magnets give exception-
ally homogeneous fields, and so the inhomogeneous contribution to the
linewidth is very small. As a result, the linewidth in the an dimension
Of a constant time experiment can be very small. In practice, though, the
linewidth in this dimension is likely to be limited by the maximum value
which ti can reach.

10.8.2 Constant time HSQC
Constant time COSY experiments have never proved to be particularly
popular. However, in the area of biomolecular NMR, where the proteins
iipd nucleic acids which are being studied have been globally labelled with

C and '5N, the constant time element is often used as part of the complex



Advanced topics in twoi-ditlensional NMR

Y
I t1‘ 1:, I i1 l —I2»

I I T I . Wu -IuS- . 1
—i-mm-— B —>

Fig. 10.26 Pulse sequence for the constant time HSQC experiment; this sequence should be
compared with that for conventional HSQC shown in Fig- 3-23 (bl OH P. 215- The usual 11
evolution has been replaced by the constant time period of Fig. l0.2l on p. 352, so as a result
in the wt dimension there are no splittings due to homonuclear couplings. This is a useful
feature for the case where the S spin is BC and where the sample is uniformly labelled with
“C. Note the 180° pulse to the I spin which is placed in the middle of 11 ; as in a conventional
HSQC, this pulse is needed to refocus the evolution of the I—S coupling during 2;.

three- and four~dimensional pulse sequences. We will illustrate such appli-
cations by describing a constant time HSQC experiment, the pulse sequence
for which is shown in Fig. 10.26.

The constant time element is inserted between the two 90° pulses which
transfer the magnetization to the S spin, and the two 90° pulses which
transfer the magnetization back to the I spin. As before, the offset of the
S spin is refocused over the period A, but evolves during period B, which is
l'| .

In this heteronuclear experiment, the S spin 180° pulse in the middle of
period A, and the I spin 180° pulse in the middle of period B, refocus the
evolution of the heteronuclear coupling over these two times. Overall, for
a two-spin system the appearance of the constant time HSQC experiment
will be identical to that of the normal HSQC.

Suppose now that we are dealing with a biological sample which has
been globally labelled with 13C. In a conventional 'H—‘3C HSQC spectrum,
with proton observation, we would therefore expect to see splittings due to
the 13C~13C couplings which evolve during I1. However, if we used the con-
stant time version of the experiment, the splittings in the wi (BC) dimension
due to these homonuclear couplings will be removed, thus simplifying the
spectrum.

At the end of the constant time period, any BC magnetization which is
anti-phase with respect to '3C—‘3C couplings will not be transferred back
to proton, but will be transferred to other carbons or into multiple-quantum
coherence by the final 90° pulse to the S spin (BC). The magnetization
which is in-phase with respect to the C—C couplings will be transferred and.
since the '3C—'3C coupling has evolved for the whole of the constant time
T, these in-phase terms will go as cos (1rJ¢¢T). It is therefore important to
choose T so as to maximize this term, which means that 1rJ¢¢T = ll‘, 2n. . ..
i.e. T = n/JCC where n = l, 2, 3 . . .. The largest couplings present are the
one-bond '3C—'3C couplings. These do not vary that much with structure.
so it is possible to find a value of T which is a reasonable compromise.

A constant time HSQC would be a completely pointless experiment for
a natural abundance sample. in which there is a very small probability of
finding two "C nuclei in one molecule.
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10.9 TROSY

In section 9. l 1.2 on p. 308 we described how cross correlation between
CSA and dipolar relaxation can result in the two lines of a doublet having
different linewidths. The effect is particularly pronounced for 15N—'H pairs
in large molecules when the spectra are recorded at high field. In such cases,
it is not uncommon for there to be a twenty-fold difference in the widths of
the two lines of the doublet, both in the ‘SN and ‘H spectra.

In conventional HSQC spectra, it is usual to collapse the splittings, in
both dimensions, due to the heteronuclear couplings. In an this is achieved
by the 180° pulse applied to the I spins in the middle of t1; in (4)2, the
splittings are removed by observing the signal in the presence of broadband
decoupling of the S spins.

As was explained in section 9.11.2, collapsing the splittings in this way
results in a line whose width is the average of the widths of the two lines
of the doublet. In the case that one line is much broader than the other, the
result will be a considerable reduction in peak height when the decoupled
line is compared with the sharp line of the doublet (see Fig. 9.36 on p. 309),
and hence a reduction in the signal~to-noise ratio.

These observations lead to the idea that, in cases where cross correlation
effects are substantial, it is best not to remove the splittings due to the het-
eronuclear couplings. We will then obtain a higher signal-to-noise ratio on
account of the greater peak height of the sharp line. This is the fundamental
idea behind TROSY.

Experimentally, it is easy to modify the HSQC sequence so as to retain
the splittings in each dimension. The pulse sequence is shown in Fig. 10.27;
compared with a conventional HSQC, the 180° pulse to the I spin, applied
in the middle of t1, and the broadband decoupling of the S spin during
acquisition have been removed.

Rather than giving a single peak at {£25,511}, this modified sequence
gives a multiplet centred at this frequency and split by J15 in each dimen-
sion; all of the peaks are in phase. An example of such a multiplet is shown
in Fig. 10.28 for two different cases.

In (a) the width of the two lines of the doublet are the same, and we see
the familiar pattern of four peaks. However in (b) one line of the doublet
(in both dimensions) has been made ten times broader than the other. The
four components of the multiplet now all have different combinations of the
linewidths in each dimension.

One peak (here the top right) is narrow in each dimension, two peaks are
broad one way and sharp the other: they are just visible in the top left and
bottom right positions. The final peak is broad in each dimension, and is
invisible at the contour levels chosen. As the broad lines increase in width,
the intensity of all but the top right-hand peak decreases, and in the limit
Only this peak is seen.

However, it is not always the case that the difference in the linewidths
is such that only one out of the four peaks is seen. The presence of the
other three peaks can cause confusion and crowding of the spectrum, so it
is necessary to devise experiments in which all the unwanted peaks are sup-

. u H4 u if
Fig. 10.27 Modified HSQC pulse sequence
in which the IS coupling is retained in each
dimension. Compared with conventional
HSQC, Fig. 8.23 (b) on p. 215, the changes
are simply the removal of the 180° pulse to I
in the middle of ti, and the omission of
broadband decoupling of the S spin during
tg.
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Fig. 10.28 Schematic multiplets. as would be recorded using the modified HSQC experiment
of Fig. l().27; note that the coupling is retained in both dimensions. In (:1) the linewidths of
all the peaks are the same, and we see the familiar square array of peaks. In (b) the width Of
one of the lines of each doublet has been increased by a factor of ten; the One-dimensional
spectra plotted at the edges of the two-dimensional plots illustrate clearly the large reduction
in the height of the broad peak. Of the four components of the multiplet, one - that at the top
right — is unaffected as it is still narrow in each dimension. Two of the peaks are broad in one
dimension and narrow in the other: they are just visible in the contour plot. The fourth peak is
broad in each dimension, and is invisible in this contour plot. A cross peak of the type shown
in (a) is characteristic of a small molecule, whereas that shown in (b) would be expected for a
large molecule.

pressed deliberately. In the next section, we tum to how these experiments
are designed.

10.9.1 Line-selective transfer
The key to designing a TROSY experiment is to understand the relationship
between the four lines of the two-dimensional multiplet and the energy level
diagram ofa two-spin system: this is illustrated in Fig. 10.29. At the top of
the figure are shown the four energy levels of a two-spin system, labelled
with the spin states of each spin, the state of the I spin being given first.
Transitions l-3 and 2-4 involve flipping the I spin, and so are the two lines
of the I spin doublet which appear in the (U2 dimension. Transitions l-2 and
3-4 are the S spin transitions, and correspond to the S spin doublet which
appears in the wt dimension.

In the schematic two-dimensional multiplet, shown in the lower part of
the figure, the to, frequency of the sharp peak is that of the 3-4 transition,
and in (U2 the sharp peak is at the frequency of the 2-4 transition. So, We
see that the sharp line arises from a transfer from a specific line of the S spin
doublet (here 3-4), to a specific line of the I spin doublet (here 2-4).

If we want to devise an experiment in which only this sharp peak ap-
pears, what we need to do is cause the selective and exclusive transfer Of
coherence from the 3-4 transition to the 2-4 transition. It is important lhfll
the transfer is just between these two transitions: if it spreads elsewhere We
will lose intensity from the wanted sharp peak, and other unwanted peaks
will appear in the spectrum.
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It tums out that this exclusive transfer from one transition to another
can be achieved by using two line-selective 180° pulses. By line-selective,
we mean a pulse whose RF field strength has been made so low that it
affects only the line which it is on resonance with, and no other lines in the
spectrum. In the context of an IS spin system, such a line—selective pulse
would be required to affect just one line from the I or S spin doublet, so the
RF field would have to be weak enough that a line J15 Hz away would be
unaffected.

The way in which the required transfer is brought about by these two
selective pulses is illustrated in Fig. 10.30. Here we see the four energy
levels for the IS spin system, just as in Fig. 10.29. Coherences (transitions)
between particular energy levels are indicated by wavy lines, and the selec-
tive l80° pulses are indicated by double-headed arrows.

In part (a) of the figure we start out with coherence between levels 3
and 4 i.e. one of the lines of the S spin doublet. The first 180° pulse is
applied at the frequency of transition 1-3, which is one of the lines of the
I spin doublet: note that the transition (the wavy line), and the pulse (the
double-headed arrow) share a common energy level, level 3. It tums out
that the effect of this 180° pulse is to transfer the coherence from 3-4 to
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Flg. 10.30 Illustration of how coherence transfer from one transition to another can be brought
about by the successive application of two line-selective 180° pulses. The diagram shows
the four energy levels of an IS spin system, as in Fig. 10.29. Coherences corresponding to
particular transitions are indicated by wavy lines, and the selective 180° pulses are indicated
by double-headed arrows. In (a) we see the transfer from 3-4 to 2-4 by application of selective
pulses at the frequencies of transitions 1-3 and then l-2. The effect of the first pulse is to
‘move‘ the end of the curly line from energy level 3 down to level 1; in the same way. the
second pulse moves the end of the curly line from level l to level 2. Shown in (b) is the transfer
3-4 to I-3 brought about by selective 180° pulses applied at the frequency of transition I-3
and then at that of 3-4.
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Flg. 10.29 At the top are shown the four
energy levels of a two~spin system. Each
level is labelled according to the spin states
of the two spins I and S; for example, level
2 is labelled afi, which means that spin I is
in the a state, and spin S is in the,B state.
The two S spin transitions, l-2 and 3-4, are
shown in light grey: these correspond to the
two lines of the S spin doublet. Similarly,
the two lines of the I spin doublet
correspond to the transitions 1-3 and 2-4,
which are shown in dark grey. The lower
part of the diagram shows a typical
multiplet which would be observed in an
I—S correlation spectrum. The tn; and (4)2
frequencies of the lines in this multiplet
correspond to the transitions in the energy
level diagram, as shown. In this case. the
sharp peak in the multiplet arises from the
transfer from the S spin transition 3-4 to the
I spin transition 2-4.
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l-4, as shown in the middle set of energy levels. We can think of this
process as the pulse ‘moving’ the end of the curly line from level 3 to level
1. Just exactly why these line—selective 180° pulses work in this way is
most readily appreciated using single transition operators; see the Further
reading section at the end of the chapter for appropriate references.

The second 180° pulse is applied at the frequency of transition l—2,
which is one of the lines of the S spin doublet. As is shown in the diagram,
this ‘moves’ the end of the curly line from level l to level 2, so the coherence
ends up between levels 2 and 4 i.e. one of the lines of the I spin doublet.

The overall effect can be summarized:
180° pulse to 1-3 180° pulse to 1-2

3-4 ——-————> I-4 i---> 2-4 .“,1 \,-/
spin S spin I

Using this diagrammatic approach, we can show that this sequence of two
selective 180° pulses will also cause the transfer

180° pulse to I-3 180° pulse to 1-21-2 i-__> 2-3 Z--> 1-3 .
*1; ‘¥/-’
spin S spin I

Therefore, coherence associated with each line of the S spin doublet ends
up on a particular line of the I spin doublet.

It may be that we wish the transfer to go to the other line of the I spin
doublet, so instead of 3-4 going to 2-4, we want it to go to l—3. As is
shown in Fig. 10.30 (b), this transfer can be achieved by applying the first
selective 180° pulse to 1-3, and the second to 3-4. The overall transfer is

180° pulse to I-3 180° pulse to 3-43-4 --—> 1-4 —i» 1-3 .
a,-4 a/.2

spin S spin I

The same sequence of pulses also causes transfer from l—2 to 2-4
180° pulse to I-3 180° pulse to 3~41-2 i-—> 2_3 ---—-> 2-4 .

*v-/ %/-’
spin S spin I

There are two problems with this approach. Firstly, the transfer is not
exclusive. In Fig. 10.29 the transfer we are interested in is from 3-4 to
2-4, but we have seen that the two selective 180° pulses which cause this
transfer will also transfer from l-2 to l—3, which we do not want. The
second problem is that in a sample with many different IS spin systems. it
will be extremely inconvenient — if not next to impossible - to apply these
selective pulses to all the doublets. Luckily, there is a way of achieving
the same result as these selective pulses which applies to all the IS spin
systems in the sample at the same time; we describe this approach in the
next section.

10.9.2 Implementation of line-selective 180° pulses
Imagine that we start with the operator I, apply a 90°(_v) pulse to the I spin.
and then observe the result. The pulse will generate the term ,.which gives
an in-phase doublet, the two lines of which correspond to the transitions l—3
and 2-4, as is shown in Fig. 10.31
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AA
Now suppose we start with the operator 21:81, and once again apply

3 9()°@-) pulse to the I spin. This time the pulse will generate 2I,S:, which
corresponds to an anti-phase doublet in which one of the lines is positive and
one is negative, as is shown in the figure. We can say, therefore, that in going
from I: to 2I;S; one of the lines has been inverted, i.e. it has experienced
a line-selective 180° pulse. Similarly, if we start with the state —2I;S:, we
will also find an anti-phase doublet, but this time it is the other line which
has been inverted.

Overall then, if we can find a pulse sequence which takes us from I:
to ZIISZ. this will correspond to a 180° pulse to one of the lines of the I
spin doublet. Similarly, a sequence which takes us from I1 to —2IZS; will
correspond to a 180° pulse to the other line.

Such a pulse sequence is shown in Fig. 10.32 (a). We recognize that this
sequence is a simple spin echo, flanked by a 90°(x) pulse to the I spin on one
side, and a 90°(;ty) pulse to the I spin on the other side. The delay r is set to
1/ (4J;5 ), so the spin echo causes complete interconversion of in-phase and
anti-phase magnetization.

Starting with II, the first pulse generates —I_,.. During the spin echo of
total duration 1/ (2J,S), —I_,. evolves into the anti-phase state 2I,,S;, and the
180° pulses change this to -2IxSZ. The final 90° pulse, if it is about +y,
generates ZIZSZ, or if it is about —y, generates -2IZS:.

Thus, overall the sequence of Fig. 10.32 (a) achieves the transformation
I; —~> ¢2I;S;, with the sign depending on the phase of the final pulse. The
sequence is therefore equivalent to a selective 180° pulse to one of the lines
of the I spin doublet; which line is inverted depends on the phase of the last
pulse. A similar analysis shows that sequence (b) has the same effect on the
lines of the S spin doublet.

These sequences are very useful as, due to the presence of the spin echo,
their effect is independent of the offset. So, all IS spin systems in the sample,
regardless of their offsets, experience the appropriate line-selective 180°
pulses. The slight difficulty is that the sequences only work as described if
r = 1 /(4115). If there is a range of values for the coupling constant J13, a
compromise value for 1' must be chosen, and as a result the inversion will
not be perfect for all the spin systems.

10.9.3 A TROSY HSQC sequence
We can now include these two selective pulses into an HSQC-type se-
quence, to give the experiment whose pulse sequence is shown in Fig. 10.33.
The sequence starts out, as in conventional HSQC, with magnetization
being transferred from the I to the S spin. There is no I spin 180° pulse
placed in the middle of t| so that, as explained above, the splitting due to
the I-S coupling is retained in L01.

At the end of r1 the transfer back to the I spin is achieved by two selec-
live 180° pulses, which are implemented using the sequences of Fig. 10.32.
Period A is a 180° pulse to one of the I spin transitions, either 1-3 or 2-4,
depending on the phase ¢,. Period B is a 180° pulse to one of the S spin
transitions, either l—2 or 3-4, depending on the phase ¢S. After these two
Periods, the magnetization is back on the I spin, where it is observed.

1-3 2-4,,_l_l_
21,8,

'2/zsz

Q!

Fig. 10.31 Illustration of the form of the I
spin doublet which would arise from the
application of an I spin 90° (y) pulse to the
operators I, 2IZ.§‘z and —2I:S';. For the latter
two operators, one of the two lines of the
doublet has been inverted. It therefore
follows that the transformation I; —> :=2IZSz
can be thought of as being due to a selective
180° pulse to one of the lines of the I spin
doublet.

(a) ii’

._ll___
(bl

I T | T I

S

Fig. 10.32 Pulse sequences which achieve
line-selective 180° pulses to: (a) one of the
lines of the I spin doublet; and (b) one of the
lines of the S spin doublet. Which line is
inverted depends on the phase of the final
pulse. The delay -r must be set to 1/(41,-3 ).
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Fig. 10.33 HSQC-type pulse sequence using line-selective 180° pulses to implement the
transfer from the 5 to the I spin. Up to the end of I; , the sequence is the same as conventional
HSQC, with the exception that there is no I spin 180° pulse in the middle of ti. Period A is a
selective 180° pulse to one of the transitions of the I spin doublet (i.e. l-3 or 2-4, depending
on the phase 4;,-), implemented using the sequence of Fig. 10.32 (a). Period B is a 180° pulse
t0 One Of lh¢ transitions of the S spin doublet (i.e. 1-2 or 3-4, depending on the phase ¢5 );
the pulse is implemented using the sequence of Fig. 10.32 (b). The overall effect of these
two selective pulses is to transfer the magnetization to the I spin. The optimum value for -r
1'8 I/('4/Isl Further processing, as described in the text, is needed to generate a spectrum in
which only One peak is present in the two-dimensional multiplet.

As was explained in section 10.9.1 on p. 358, these line-selective 180°
pulses do not achieve the exclusive transfer between two transitions. In
addition, as it stands the pulse sequence will not produce data which can
be processed to give an absorption mode spectrum. To get round these
problems. it tums out that we need to repeat the experiment with different
values of the phases gb; and ¢5, and then combine the data in a fairly
involved way. The details of exactly how this is done are described in the
next section,

10.9.4 Processing the TROSY HSQC spectrum
Assuming that 1 = l/(4.115), at the end of tl we have the following four
terms

+ C0S(.Qst|)Sll'l(7fJ[$l1)g,, + Slll (Q_5'i|)COS (7111521) zizgx

+ sin (931,) sin (7'l'.]1_5'I| ) 3,. - cos (S2311 ) cos (rrJ1;t1) 2i,§,.
To find the frequencies which are modulating ti we need to combine the
trigonometric terms in the usual way. When we do this, four trigonometric
factors keep appearing which, for brevity, we will replace with the following
symbols:

6+ = <>05(lQs + rrlrsln) 6- = ¢0S(lQ.s' — Irlislrr)
5+ = SlI1(lQ_5- + 7l'J[5]f]) S- = Sln ([95 — 7I'J[_§}I]).

The frequencies in the square brackets are just those of the two lines of the
S spin doublet.

Using these replacements, the four terms at the end of ti can be written

I +%(.;-+ -.s'_h)S, +l §(s., +s_)2IZS, (mu)
+5(—c+ +c_)S, + 5(-ct -c_)2IzS,.

We Will drop the factor of %, as it makes no difference to the final result.
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Each of these four terms gives rise to an observable I spin operator.
Working through all the details is rather tedious, but is made easier by
recognizing the spin echoes in periods A and B, and also by noticing that,
if 1 = l/(4115). there is a complete interchange of in-phase and anti-phase
magnetization during these spin echoes. The overall result also depends on
the phases ¢, and ¢5 , as is summarized in the table.

observable operator at I3 = 0

expt ¢1J ¢s 1.r___g_7 Iy H g/X5; 21;-S:

(a) y y (—@+ — 6-) (—s+ + 8-) (C+ — c_) (s+ + s-)
(b) —y y (—c+ ~ C-) (S+ — S-) (—c+ + 0-) (s+ + s-)
(C) y —y (~c+ — 0-) (—s+ + s-) (—c+ + 0-) (—s+ — s-)

_y V_y (“C-» T C—) (-9+ _ 5-) W (C-t _ C—) (_-7+ -' 5-)

The entries in the table give the coefiicients which multiply the operator
heading the column for each of the four possible combinations of the phases
4;, and ¢g. Any one of the four experiments (a) . . . (d) creates a mixture ofx-
and y-magnetization, which will result in lines which have complex phase
properties. Our first task is therefore to separate these two components of
the magnetization.

After looking at the table for a while we realize that two useful combi-
nations are

st = §t<b>+<c>1
= (-cl-¢_)ix+(-¢++¢_)2i_,§z (10.12)t Z , . E W,

S2 = §[(b)—(@)l
= til-s_)i,.+(s++s-)2i_,..§z. (10.13)

C D

Note that we now have a clean separation of x- and _v-magnetization. Com-
bination S ] is processed to give a spectrum which is then phased to absorp-
tion. Combination S 2 is processed separately and also phased to absorption,
which will require an additional phase correction on 90° in each dimension.
This is on account of the observable magnetization appearing along )1 rflihfif
than x, and the modulation in t| being of the form of a sine, rather than a
cosine.

Each of the terms A .. .D will give rise to a two-dimensional multiplet
centred at {Q5 , Q1} and split by J15 in each dimension. However, the pattern
Of signs is different in each case. For example, term A is in-phase in the cu;
dimension, and both lines in the to; dimension have the same sign, which
happens to be negative. So, all four lines of the multiplet are negative.

In contrast. term B is anti-phase in both dimensions. and so gives rise to
the familiar anti-phase square array. The multiplets arising from all of the
fourterms are shown schematically in Fig. 10.34.
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A B S1 S1+s2

0 0 S,-s2

Fig. 10.34 Schematic form of the multiplets arising from termsA . . . D in Eqs l0. l2 and l0.l3.
Adding together the multiplets from terms A and B results in two of the peaks cancelling,
to give a multiplet containing just two negative peaks: this is the multiplet expected for
combination S 1. In a similar way, combination S 2 contains the same two peaks as S 1, but
in S3 one peak is positive and one is negative. Multiplets with just one line can be created
by further combining S1 and S 2, as shown. Positive peaks are indicated by black circles, and
negative peaks by open circles.

OO OO
+

The appearance of the spectrum from combination S 1 is found by
adding together the multiplets from terms A and B. As shown in the dia-
gram, the result is that two of the peaks cancel. Similarly, for combination
S 2 we need to add the multiplets from terms C and D; again, the same two
peaks cancel, but this time the remaining two peaks have opposite signs.

We can obtain multiplets containing just one peak by forming the further
combinations (S1 + S2) and (S1 - S2), as shown in the figure. After this
rather tortuous process, the one-line multiplet we were aiming for has at last
been generated.

Using the data from experiments (b) and (c), we can generate multiplets
in which only the bottom left or top right peak is present. In an analogous
way, multiplets containing the other peaks can be generated from experi-
ments (a) and (d) by forming the combinations:

S3 = %[(a) + (d)l st = t to)-<d>1.
l-laving processed these data separately, and phased them both to absorp-
tion, the further combinations (S 3 + S 4) and (S 3 - S 4) will give one-line
multiplets, with the single line in either the top left or bottom right.

You may have noticed that this discussion has rather evaded the point as
to exactly which combinations are needed to generate the multiplet con-
taining just the shatp peak. With such a complex experiment and data
processing, it is probably best to detennine which combination is needed
by trying them all and then picking the one that gives the sharp peak. Once
the correct combination has been determined, it will remain the same for all
spin systems of the same type e.g. all N—H pairs in a protein or nucleic acid.

The TROSY experiment, and the associated data processing, are some-
what involved, but the rewards, in terms of the gains in resolution and
sensitivity, are very great in the case of large molecules at high field. The
technique has proved to be very useful for '5N—‘H pairs, and has also been
used for ‘3C—lH pairs. Just like the sensitivity enhancement modification.
TROSY-type transfer can be implemented into the more complex pulS6S
sequences used to generate the three- and four-dimensional spectra used in
biomolecular NMR.
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10.10 Further reading
Product operators for more extended spin systems. and a discussion of the
application of this to various experiments:
Chapter l4 from Levitt, M. H. (2001) Spin Dynamics, Wiley

A full account of the product operator method:
Sorensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., and Ernst,
R. R. (1983) Progress in Nuclear Magnetic Resonance Spectroscopy, 16,
163

Polarization and single transition operators:
Chapter 2 from Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987)
Principles of Nuclear Magnetic Resonance in One and Two Dimensions,
Oxford

Small flip angle COSY and ECOSY:
Chapter 6 from Cavanagh, J ., Fairbrother, W. J., Palmer III, A. G. and
Skelton, N. J . (1996) Protein NMR Spectroscopy, Academic Press

ECOSY
Griesinger, C., Sorensen, O. W. and Emst, R. R. (1987) J. Magn. Reson.,
75, 474

ZCOSY:
Oschkinat, H., Pastore, A. Pfzindler, P. and Bodenhausen, G. (1986)
J. Magn. Reson., 69, 559

Constant time experiments and sensitivity enhanced experiments:
Chapter 7 from Cavanagh, J., Fairbrother, W. J., Palmer III, A. G. and
Skelton, N. J . (1996) Protein NMR Spectroscopy, Academic Press

TROSY:
Femandez, C. and Wider, G. (2003) Current Opinion in Structural Biology,
13, 570
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10.11

10.1

10.2

10.3

1 0.4

10.5

10.6

Exercises
Draw sketches. roughly to scale, of the multiplets represented by
the following operators: izy, 2f1Zl2_,., 2l;yl3; and 4l|Zl2_,.l3:, assum-
ing that the couplings constants are: (a) J12 = 2 Hz, J23 = 6 Hz;
and (b) J12 = 6 Hz, J23 = 6 Hz. Label each line of the multiplet ac-
cording to the spin states of the passive spins. (You should assume
that y-magnetization gives rise to an absorption mode lineshape.)

Starting with the operator l2_,., work out the result of evolution of
the l—2, l—3 and 2-3 couplings for a time t. Comment on the
operators you obtain and the trigonometric factors associated with
each.
Draw up a ‘tree diagram’, of the type shown in Fig. 10.2 on p. 322,
which represents the results of your calculation.

Starting with the operator 2i2yi3z, draw up a tree diagram to show
the evolution under first the 2-3 coupling, and then the l-2 coup-
ling. You do not need to Work out all the sines and cosines to
draw up the diagram, but just need to ‘split’ each operator into the
appropriate pair which arise from evolution of the coupling.
By inspecting your tree diagram, write down the trigonometric
factors which multiply the operator 4]1212,13,

In a COSY of a three-spin system, the diagonal peak of spin one
is represented by term [ll on p. 324. From this term, work out
the detailed form of the diagonal-peak multiplet, using the same
approach as was used for the cross peak. Sketch the form of the
multiplet and compare it with the cross peak.
You will need the identities

cosAcosB E % [cos (A + B) + cos (A — B)]
sinAcosB E % [sin (A + B) + sin (A — B)] ,

and you will also need the identities sin(—A) E —sin(A) and
cos (—A) E cos (A).

Identify all four anti-phase square arrays in each of the multiplets
shown in Fig. 10.8 on p. 327.
Sketch the form of the l-2 cross peak for the following combina-
tions of couplings: (a) J1; = 8 Hz, J13 = 7 Hz. J23 = 4 I-I2; (b)
J12 = 8 HZ, ./t3 = 8 HZ, J23 = 4 HZ; (C) Jtg I 8 HZ, ./|3 z 4 HZ,
J23 = (),5 HZ; (d) J12 = 3 1-[Z_ _]|3 = 8 Hz. J13 = 0.5 Hz. In each
case, identify the four anti-phase square arrays.

Assuming that spin three is a heteronucleus. sketch the form of
the reduced 1-2 cross-peak multiplets which would be expected
for the cross peaks shown in Fig. 10.8 on p. 327. Identify the two
anti-phase square arrays in each case.
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10.7

10.8

10.9

10.10

10.11

10.12

10.13

Explain why, whereas it is not usually possible to measure a value
for the active coupling constant responsible for a cross peak, it
is sometimes possible to measure values of the passive coupling
constants.

In a three-spin system, give an interpretation of each of the follow-
ing products of polarization operators. State, with reasons, which
of the products are observable.

ilai2—i3a1 ilaf2-—i3— il,Bi2,6i3[3 i]qi2fii3+

Give the time evolution of the first and fourth operator products.

In a small flip angle COSY experiment, work out the contribution
which the operator product ihigfliga, present during 1,, makes to
the I-2 cross peak. You should follow the same approach as used
in section 10.4.4 on p. 33s for the term i,,i,,,i3,,,
Without further detailed calculations, state the contribution to the
1-2 cross peak made by the term l1_I2fiI3a.

In the ZCOSY experiment, work out the contribution which the op-
erator product 11+[2fil3q, present during ti, makes to the l-2 cross
peak. Compare your answer with that in the previous question.

The pulse sequence for a constant time version of double-quantum
filtered COSY is shown below.

<---_ T
._(r-z,)__.

__ ‘F’I ll 551%

Show that, for a two-spin system and starting from fix, the double
quantum present between the final two pulses is given by

5 cos (Qit1)sin(1rJ12T) (2i.,,t2, + 2i,,i2,) .

Determine the effect of the final pulse on this double-quantum
state, and hence predict the form of the diagonal- and cross-peak
multiplets. Does double quantum filtration have any practical ben-
efits in this experiment?

Starting from ll, determine the form of a constant time COSY
spectrum for a three-spin system. Comment on the choice of the
fixed time T for such a spin system.

Consider the following three-spin system which consists of a pro-
ton I coupled to a '3C, S i, with coupling constant J15, ; S | is further
coupled to a second '3C, S1, with coupling constant 15,321
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10.14

10.15

10.16

10.17

J/s,

 J31S2

Note that there is no coupling between I and S 3.
For the constant time HSQC pulse sequence, and starting with
equilibrium magnetization in the I spin, work out the S spin op-
erators present at the end of the constant time period; assume that
T1 I l/(4./15,) and T2 =1/(4115,).

Determine which of these operators become observable on the I
spin at the end of the sequence, and hence predict the form of the
spectrum. How do the peaks vary in intensity as a function of the
constant time T? What is the optimum value for this time?

Using the same approach as in Fig. 10.30 on p. 359, verify that the
following transfers take place:

180° pulse to l-3 180° pulse to l-2
l-2 > 2-3 > l-3 .

L-‘J gr}

spin S spin I

180° pulse to l-3 180° pulse to 3-4
l-2 > 2-3 > 2-4 .
iv; {J

spin S spin I

Work out which two line-selective 180° pulses you could need to
cause transfer from: (a) l—3 to 3-4; (b) l-3 to I-2. How could
these be implemented in a practical sequence?

Verify that the operators given at the start of section 10.9.4 on
p. 362 are indeed those present at the end of ti. By combining the
trigonometric functions in the usual way, also verify that Eq. l0.ll
on p. 362 is correct.
Follow the fate of the term Sx, present at the end of ti, through the
rest of the TROSY HSQC sequence, for the case where both ¢1 and
¢5 are y. Check your answer against the table on p. 363.

Using the same approach as in section 10.9.4 on p. 362, determine
the form of the two-dimensional multiplets arising from the com-
binations S3 and S4, and hence verify that by further combining
these you can generate multiplets with one peak in the top left Of
bottom right.

Can you think of any disadvantages of the TROSY HSQC 5°‘
quence, when applied to '5N—lI-I correlation?



Chapter 11

Coherence selection:
phase cycling and field
gradient pulses
We now turn to a topic which has been rather glossed over up to this point,
especially when discussing two-dimensional experiments, which is exactly
haw we can select different kinds of coherences at different points in our
pulse sequences. The ability to make such a selection is very important, as
is well illustrated by the three pulse sequences shown in Fig. 11.1. Each
of these pulse sequences consists of three 90° pulses arranged in different
ways; what really makes them different is our wish to restrict the type of
coherence or magnetization present at each stage.

Sequence (a) is DQF COSY, so we want single-quantum coherence to
be present during r1, and double quantum to be present between the final two
pulses. Sequence (b) is doubleequantum spectroscopy: here we want single
quantum during the spin echo, and double quantum during n. Finally, (c) is
NOESY, in which we want single quantum during ti, and z-magnetization
during 1.

The spins in the sample have no way of knowing, nor come to that do
they care, what we want from the pulse sequence. They will just evolve
according to the sequence of pulses and delays, and coherences other than
the ones we want will certainly be generated. The result will be confused
two-dimensional spectra, rather than the clean results which were presented
in Chapter 8. It is therefore essential that, at each point, we have some way
of selecting the coherences we want and rejecting all the others.

There are two ways of achieving this selection. The first is phase
cycling. In this method, we repeat the pulse sequence (for the same value
of ti) several times over, each time shifting the phase of certain pulses in
a predetermined way. The results from these separate experiments are then
combined, probably using additional receiver phase shifts. in such a way
that the signals arising from the wanted coherences add up, while those
arising from unwanted coherences cancel. In this chapter, we will discover
how to devise the sequence of phases, called phase cycles, that are needed

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons. Ltd

(8)
N r1 f2—>

(bl
I T | T | :1 I ’2‘>

(C)
I:f1 t2—’

Fig. 11.1 Three different pulse sequences,
all of which consist of three 90° pulses: (a)
is DQF COSY. (b) is double-quantum
spectroscopy, and (c) is NOESY. All that is
really different between these experiments is
the type of coherence or magnetization we
want to be present at each stage.
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to select particular coherences.
We have, in fact, already come across a simple form of phase cycling,

which we called difference spectroscopy. For example, in the HMQC
experiment described in section 8.9 on p. 217, we saw that we were able
to suppress unwanted signals by repeating the experiment twice, once with
the phase of one of the pulses shifted by I80‘, and then subtracting the
results. This difference experiment is essentially a two-step phase cycle,
In this chapter we will develop longer phase cycles capable of greater
discrimination than simple difference spectroscopy.

The second method for coherence selection is to use pulsed field gra-
dients. During such a gradient, the main magnetic field is deliberately
made inhomogeneous for a short time. As a result, any coherences present
dephase rapidly: this is exactly the same process as the inhomogeneous
dephasing described in section 9.9 on p. 299. However, it tums out that
this dephasing can be reversed by applying a second field gradient, but —
and this is the key part — by careful choice of the duration and position in
the pulse sequence of the two gradients, we can make sure that only the
required coherence is rephased. Later on in this chapter we will look in
detail at exactly how these gradient pairs are designed.

Before getting into the details of how to construct phase cycles and
gradient sequences, we will introduce the idea of coherence order and
the coherence transfer pathway. These provide a convenient and unified
framework for discussing both phase cycles and gradient sequences.

11.1 Coherence order
The idea of coherence order was introduced in section 7.l2.l on p. I78, but
this idea is so important for the present chapter that it is worth restating the
key ideas once more. The coherence order, given the symbol p, is defined
by what happens to an operator (or product of operators) when a z-rotation
through an angle ¢ is applied. If, as a result of this rotation, the operator
acquires a phase of(—p >< ¢), the operator is classed as having orderp:

definition of orderp : /3"”£ flu’) X ¢XP(-iP¢)- (l l.l)

In Eq. l l.l,f)(”’ is an operator of orderp.
The order can take both positive and negative integer values, including

zero. An operator with p = il is called single quantum, whereas one with
p = :2 is called double quantum, and so on. Operators with p = 0 are
either zero quantum or z-magnetization.

Our usual product operators can be classified according to coheffiflfie
order by expressing them in terms of the raising operator, 1,4, and I116
lowering operator, i,-_ for each spin i. These operators are defined as

in E in + iii)! i- 5 in " iiiyv ll L2)

where ii, and iiy are the usual x and y operators for spin i.
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The operator l,», has coherence order p = + l, something we can easily
demonstrate by seeing how it is affected by a z-rotation:

i|'+ E ll, + lily 15+ cos¢ ii, + sin 4: ii, + i (costb ii); — sin¢

= cos ¢ + ilg.) ~ i sin ¢ (ii, + il,-y)

= (cos 4; — i sin ¢) (Z, + ii,-y)
= exp(-i¢)i,~,.. (11.3)

This shows that, under a z-rotation, l,-+ acquires a phase of (—¢) so, from
Eq. ll.l, the operator must have coherence order +1. Using a similar
approach we can show that l,-_ has coherence order —l. The operator
is unaffected by a z-rotation, and so has p = O.

The definitions of the raising and lowering operators given in Eq. l l.2,
can be turned round so as to express 1:,-_,, and I1, in terms of ii, and l;_:

i.-.E5(i.~.+i.~-) isegli.-.-i.~_). (11.4)
From these we see that both ii, and lg, are equal mixtures of coherence
orders +1 and —l.

if we have a product operator, then each operator can be classified
according to coherence order, and in addition we can define an overall
order, which is the sum of the individual coherence orders. For example
the operator Zlhlgz can be expanded as

Ziiiizz Ei in + in ) i2; ,
§,-/ §,-/ §,_/

p|=+l p1=—l p2=0

from which we have pi = +1 or —l , and pg = O. The overall order, (pt +p2),
is therefore either (+| + O) = +l or (-l + O) = -l, in equal measure.

We have already shown in section 7.12.1 on p. I78 that products such
as Zllxlg, are mixtures oforders p = O, p = +2 and p = -2:

2iixi2x E %(ii+i2+ + il-i2- +il+i2— 'l‘il—i2+)-
p=:2 [Ell p=() p=(l

Note that the operator contains an equal mixture of p = +2 and p = -2
terms.

11.1.1 Possible values of the overall coherence order
For any one spin the maximum coherence order is +l, so in a spin system
composed of N spins the maximum overall coherence order that can be
present is +N. For example, in a three-spin system the maximum coherence
order is +3. such as would be represented by the operator product l|+lg+l_i+;
this is triple-quantum coherence.

in the same way, the most negative value of the overall coherence order
is -N, which would be achieved by having all ofthe operators in the product
of the type l,~_. Overall a system oi‘ N spins can give rise to coherences of
order —p to +p, in integer steps.

These remarks apply only to systems of
coupled spin-half nuclei; nuclei with I > %
can support higher orders of
multiple-quantum coherence than those
described here.
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We should just note here that in order to generate triple-quantum coher-
ence one spin has to be coupled to two others, and to generate qU3dI'Upl¢-
quantum coherence, one spin needs to be coupled to three others. The
generation of higher and higher orders of coherence becomes increasingly
unlikely as it requires more and more couplings to one spin.

11.1.2 Evolution of operators of particular coherence orders
Under the influence of the offset term, we know that an operator such as ii,
evolves into Iiy according to

» Qitiiz ~ . ~I,-X --——> cos (Q,-t) I,-X + sin (Qit) I,-y,

where Q; is the offset of spin i. Evolution under the offset is just a z-rotation
through an angle ((2,1), so from Eq. 11.3, we can see that the operator ll,-+
evolves under the offset according to

ilq. 8Xp (—lQ.,'t) ii+.

Similarly, in evolves as

. 9,11,‘ _ A
I,-_ ——-> exp(+iQ,-1‘) I,-_.

From these it follows that a product such as i1+f3_, which has p = O,
evolves according to

» A Qifiiz . A A Qzfiz; . . * ~
I1+I2_ ——-+ 6Xp(~lQ1l)I|+I2_ —~—> €Xp(+lQ2l)€Xp(—1Q1l)I|+I2_.

The overall result is

A A Q|li|;+Q2!i2: . _ A A
I1+I2_ -—i———) CXP (+l[—Q] + Q21!) I1+I2_,

from which we recognize [—Q| + Q2] as the zero-quantum frequency. Sim-
ilarly, for the p = +2 order term I |+I2+, the evolution is

. A Q i, rz i, _ . .l,+12+ —'t;-31> eXp(—1[Q1 + -Q2lt)Il+I2+»

where [Q] + Q2] is the double-quantum frequency.
In general, if in an operator product the coherence order of spin one 1S

pl, and that of spin two is pg, the product will evolve over time according
to

f l ' f ' .fi(pl+p2) ree evo ulion or time-r fi(pl+p2) X exp (_lQ(P‘+m)t)’

where
Q(Pl*P2) : plgl + PZQZI

If scalar coupling is taken into account the evolution becomes more
complex, but for the present purposes we can ignore evolution of the coup-
ling as it does not lead to a change in the coherence order. and so doefi I101
affect the process of coherence selection.
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11.1.3 The effect of pulses
ln principle. an RF pulse will cause any coherences present to be transferred
to all possible coherence orders: there are no selection rules as to which
transfers are allowed. However, at the detailed level, we know that whether
or not a pulse will actually generate a certain coherence depends on the
presence or otherwise of anti-phase states. For example, i1 x has coherence
order 1:1. but a 90° pulse will not transfer this state to double quantum.
On the other hand. Zir.-i;_;, which is also p = il, will be transferred into
double- and zero-quantum coherence by a 90°(x) pulse.

A special case which will be of some interest to us is that a pulse applied
to equilibrium magnetization, such as fr; (coherence order zero), can only
generate coherence orders ii. This is immediately clear as we know that
a pulse can only generate ire or fry from i13. It is not possible to generate
multiple-quantum directly from the equilibrium z-magnetization.

In some cases, the amount of a particular coherence order which is gen-
erated by transfer from another order depends on the flip angle of the pulse.
Such effects turn out to be important in two-dimensional spectroscopy, so
we will investigate them here.

Let us start with iiz, p = O, and consider the effect of applying a pulse
of flip angle 6 about the x-axis:

Tr; cos Hi,-Z — sin 6l,1_,-.

The operator i,-y can be rewritten in terms of l,-+ and T,-_ using Eq. 11.4 on
p. 371 to give

A i, . _ . A
1,1 1'-> cos6],-I — s1nt9(I,-+— I,-_).

This equation tells us that a pulse of any flip angle generates equal amounts
of coherence orders :1.

If we apply a pulse to i,-+ the situation is a little more complex. Writing
I,-+ as Iix + iI,-_., allows us to work out the effect of the pulse in the usual way:

T,-+ E ii’, + ii,-_,. T,-X + icos9l,-_,< + i sinéli,-Z
= %(f,~+ + i,-_) + -2‘—iicos6(i,1+ — + isindi,-Z

= §(1+ cost9)I”,-,, +%(1— cos6)i,-- +isin9i,A;
= cos2(%0) i,-, + S1111 (gs) i,- + ismei,-,. (11.5)

In this calculation, to go to the second line we have used the identities of
Eq. 11.4, and to go to the last line we have used the identities

cos2(%l9)2%(l +cos6') sin2(%0)E%(l—cos0).

Using a similar approach we can show that

i,-_ E -111,. @051 (§e>i,-_ + sinz (gem, -ismei,-,. (11.6)
‘What Eqs 1 1.5 and l 1.6 tell us is that the amount of transfer from i,-+

I0 11- (an vice versa) depends on the flip angle of the pulse. For the special
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case that 0 = 1:/2 (=1 90° pulse), sin(1r/4) = 1/ ~/Z cos or/4) = 1/ ~/5 and
so sin2(1r/4) = cos2(1r/4) = %; there is therefore equal transfer to i,-+ and
f,-_. As we will see, this special property of 90° pulses will turn out to be
important in two-dimensional spectroscopy.

180° pulses
The effect of 180° pulses is rather simple, as in Eqs 11.5 and 11.6 for the
case 6 = 1r, cos2 (%6) = O, sinz (%0) = 1 and sint9 = O. The effect of such a
180° pulse is therefore:

A yr],-X A A III,‘ A

h+ '__+ h- L- ___* fi+-

We see that all a 180° pulse does is to reverse the sign of the coherence
order.

An operator product with an overall order of +2 is thus changed to -2
by a 180° pulse:

A A 7f(I|,-l-13,) A A
11+12+ -"""'"—> ll-I2-
m,—-J %-\/_-P’

p=+2 p=—2

11.1.4 Observables
In an NMR experiment, it is the x- and y-magnetizations which we ulti-
mately observe; these magnetizations are represented by the operators fix
and i,-y. As we have seen, these operators both have coherence orders +1
and -1, so it is clear that p = :1 are the only observable coherences. This
is hardly a surprise, as we are used to the idea that we can only observe
single-quantum coherence.

In section 5.2 on p. 86 we saw that the usual procedure is to combine
the observed signals from the x- and y-magnetizations into a complex time-
domain signal, S (t):

so) OC [M,(1) + iMy(t)].
Constructing the observable signal S (t) in this way can be shown to be
equivalent to detecting only coherence order p = -1.

It is somewhat arbitrary as to whether we detect p = -1 or p = +1.
However, if a complex signal S (t) is constructed in the way described. it is
definite that only one out of p = :1 is observed. We will assume that it is
p = -1 which is observable.

Summary
Coherence order is a key concept in this chapter, so let us summarize its
properties.

0 Coherence order, p, is defined by the response of an operator to 3
rotation about the z-axis. An operator of orderp acquires a phase of
(-12¢) when subject to a rotation of angle ¢ about the z-axis.

0 The operators f,-Z, IA,-+ and f,-_ have coherence orders O. +1 and -1. re-
spectively. The overall coherence order of a product of operators can
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be found by adding together the coherence orders of each operator in
the product.

0 The following identities are useful in assigning coherence orders:

1115 + iiy E _ ii—)-

0 For a system of N coupled spins, the coherence order can take all
values between —N and +N. in integer steps. including zero.

0 Under free evolution. an operator (or product of operators) sim-
ply acquires a phase factor exp(-i§2‘1"*1’=*'"")t), where the frequency
Q‘1"*"1*"') is determined by the offsets and coherence orders of the
individual operators in the product:

Q(P|+p2+"‘) = pig] + [7292 + . . .

0 A pulse applied to equilibrium magnetization generates equal
amounts of p = +1 and p = -1 coherence, and no higher orders.

0 A 90° pulse has the special property of causing equal amounts of
coherence to be transferred into order +p as into order -p.

0 A 180° pulse simply reverses the sign of the coherence order.

0 Only coherence order -l is observable.

11.2 Coherence transfer pathways
A convenient way of describing which coherences are desired at each stage
in a pulse sequence is to draw a coherence transfer pathway (CTP) under-
neath the pulse sequence. Several examples of such pathways are shown in
Fig. 11.2.

The thick line in the CTP shows the coherence order, or orders, which
we want to be present at each point in the sequence, and the transfers
between these orders caused by the pulses. Note that during a delay the

(8) lb) (C)
Ii f1:l ‘ t2 I r r k fc‘ t2 tt1—>l<—r:qI ,2

‘“"‘_“ rt-.e‘~r.-r.=&£
Flg. 11.2 Three pulse sequences with their corresponding coherence transfer pathways shown
undemeath. The grey ‘tram lines’ show the possible coherence orders. p. that can be present,
which in this case we have restricted to the range -2 to +2, shown on the left. The thick
line shows the desired order, or orders. of coherence present at each point in the sequence.
During the delays the coherence order remains constant: in contrast. pulses cause a change in
coherence order. The sequences are: (a) DQF COSY. (b) double-quantum spectroscopy. and
(C) NOESY.

§"'

$io—m
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I-> 4-T t2—>
I

AilS
+1 + »—--——-—-—-~PI_2 

PS
Fig. 11.3 Pulse sequence and coherence
transfer pathways for the HMQC
experiment. Note that separate coherence
orders, p, and pg, are specified for the I and
S spins, respectively.

order remains constant, but that a pulse causes the orders to change. It is
important to realize that the specified CTP is the one which we want to
contribute to the spectrum. There will be many other pathways, not shown,
which will also contribute; by using phase cycling or gradient pulses it is
our task to select the required CTP and reject all others.

Sequence (a) is for DQF COSY. We start with coherence order p =
O, corresponding to equilibrium z-magnetization, from which the first 90°
pulse generates p = +1; this then evolves during t1. Recall that this 90°
pulse creates equal amounts of p = +1 and p = -1; for reasons which will
be discussed below, it is important to retain both p = +1 and p = -1 during
I1.

The second 90° pulse transfers the single quantum into double quantum,
p = :l:2. Note that we have allowed for all possible transfers by this pulse:
+1 ——> +2, +1 ——> -2, -1 —> +2 and —1 —> -2; not to allow all of
these transfers would result in a loss of signal. Finally, the third 90° pulse
transfers p = +2 to p = -1. Since only p = -1 is observable, we need only
concem ourselves with the pathway that ends up with this order.

Sequence (b) is for double-quantum spectroscopy. Again, we start with
p = O, and the first pulse generates p = +1. The 180° pulse just swaps
the sign of the coherence order, so +1 -> —l and —l -> +1. The second
90° pulse generates double quantum and, as for DQF COSY, we allow all
possible transfers from :l:l to :l:2. As the pulse is 90°, equal amounts of
p = +2 and p = -2 will be generated. The final pulse transfers the double
quantum to observable, p = -1, coherence.

Finally, sequence (c) is NOESY. The first part of the sequence is as
for DQF COSY, but this time the second 90° pulse is required to generate
z-magnetization, which has p = O. After the mixing time T, the final
90° pulse generates observable p = -1. We can see that these coherence
transfer pathways are convenient ways of expressing the desired outcome
of an experiment.

11.2.1 Coherence transfer pathways in heteronuclear experiments
In heteronuclear experiments, it is sometimes convenient to write a separate
coherence transfer pathway (CTP) for each type of nucleus. As an example,
Fig. 11.3 shows the pulse sequence, and separate CTPs, for the HMQC
experiment. The coherence order for the I spin (typically proton) is given
by the pathway labelled p], and that for the S spin (the heteronucleus) is
given by the pathway labelled pg.

There are several things to note about these pathways. The first is that
the coherence order of the I spin only changes when pulses are applied to
that spin: pulses to the S spin have no effect on the coherence order p1.
Secondly, as we observe the I spin magnetization in this experiment. the
CTP for this spin must end up at p] = — 1. In addition, the CTP for the S spin
must end up at pg = O, so that the overall order, (p1 + pg ). is -1. If pg were
not Zero, then we would have a state of heteronuclear multiple—quantum
coherence, which is not observable.

After the first pulse to the S spin. we have p; = +1 and pg = ill
the overall order is therefore O or 2, which corresponds to heteronuclear
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double- and zero-quantum coherence. The 180° pulse to I simply inverts
the sign of p1, which in this case is equivalent to interchanging the double-
and zero-quantum coherence. Note that the p, = -1 coherence generated
by the first pulse will be switched to p, = +1 by the 180° pulse, and so will
not be observable. The final 90° pulse to S transfers pg = :l:1 to p, = O,
thus making the signal observable on the I spin.

Before we get down to the nitty-gritty of how these desired pathways
are selected we need to explore the important topic of how a CTP is related
to frequency discrimination and lineshape in two-dimensional spectra.

11.3 Frequency discrimination and lineshapes in
two-dimensional spectra

This topic has been discussed before in section 8.13 on p. 231, but we now
need to revisit the topic in order to see how it is related to CTPs. It is helpful
first to summarize the key results from section 8.13:

0 Most two-dimensional experiments generate time-domain functions
which are cosine or sine modulated as a function of I1 i.e. data of the
form

cos(QAt1)exp(iQBt2) or sin(QAt1)exp(iQBt;);

such data sets are said to be amplitude modulated in ti. Fourier trans-
formation of such data gives spectra which lack frequency discrimi-
nation in the an dimension, i.e. peaks at iQA are not distinguished,
which leads to confusion in the spectrum.

0 It is usually possible, by simple modifications to the pulse sequence,
to record both a cosine- and a sine-modulated data set in separate
experiments.

0 The cosine- and sine-modulated data sets can be combined to give a
phase modulated signal of the form

exp (iQAt1)exp (iQBt2).

Such a signal gives a spectrum with frequency discrimination in the
an dimension, but which has the unfavourable phase-twist lineshape.

0 If cosine- and sine-modulated data sets are available, it is possible to
process the data in such a way as to obtain both frequency discrimi-
nation and absorption mode lineshapes (i.e. avoiding the phase-twist
lineshape).

The way in which these important ideas are related to CTPs is best
illustrated by the example of a simple COSY spectnim. The COSY pulse
sequence, along with three different CTPs. is shown in Fig. ll.4. All
pathways start with p = O, and end with the p = -1, which is the observable
coherence order. The difference between the pathways is in the coherence
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Fig. 11.4 The COSY pulse sequence, with
three possible coherence transfer pathways.
Pathway (a) gives the N-type or echo
spectrum, (b) gives the P-type or anti-echo
spectrum, and (c) gives amplitude
modulated data.

order(s) present during ti: in (a) p = +1 is present, in (b) p = -1 is present,
and in (c) both p = +1 and p : —l are present. As we shall see, these
differences have a large influence on the detailed form of the spectrum.

Let us first consider CTP (a). From the discussion in section 1 1.1.2 on
p. 372, we know that the evolution of the p = +1 coherence during ti results
in the signal acquiring a phase

CXp (-lgpifi).

Here we have written the ti modulating frequency simply as QA.
The final pulse transfers the coherence to order -1, and then evolution

during t2 gives a signal of the form

€Xp (+lQBl2).

We have written the frequency in t2 as QB, to allow for the possibility that
it might be different to that in ti. The really important point here is that the
sense of the modulation in ti and I3 is opposite, on account of the change in
the Sign of the coherence order between ti and t2.

The overall form of the two-dimensional time-domain signal will there-
fore be

CTP (3) I GXp (—lQAli) €Xp (+lQBf2).

This signal is phase modulated in ti, and so the spectrum will be sensitive
to the sign of QA i.e. the spectrum will be frequency discriminated. From
the discussion in section 8.13.2 on p. 233, we can deduce that Fourier trans-
formation of this time-domain signal will give rise to a peak at (wi,w;} =
{—QA, QB}, and that this peak will have the phase-twist lineshape.

For CTP (b) all that is different from (a) is that the coherence order
present during ti is -1 rather than +1. This simply alters the sense of the
phase modulation in ti, so that the overall two-dimensional signal is of the
form:

CTP (b) : 6Xp(+lQAIi) exp(+iQi;t;i).

Fourier transformation of this gives a phase-twist line at {+QA, QB}.

N- and P-type spectra
CTP (a) gives rise to what is called the N-type or echo spectrum. The N
stands for ‘negative’, which comes from the observation that the coherence
order in ti is of opposite sign to that in t2. The term ‘echo’ comes from
the fact that the final 90° pulse causes a change in coherence order from +p
to —p; this is the same effect as a 180° pulse, which is associated with the
formation of a spin echo.

CTP (b) gives rise to the P-type or anti-echo spectrum. The P stands
for ‘positive’, the name coming from the fact that the coherence order in ti
and in I2 have the same sign. The term ‘anti~echo‘ indicates that, with no
change of the sign of the coherence order, an echo will not be formed.
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Amplitude modulated spectra
We now tum to CTP (c) of Fig. ll.4. Here, both p = +1 and p = -1 are
present during ti. so the modulation in this dimension is the sum of two
phase modulations:

EXP (—lQATi) + CXP (lQAf|) .
mix my

p=+l p=—l

Of course, the sum of these two is just 2cos(QAti), so the overall two-
dimensional time-domain function is of the form

CTP (c): cos (QAti) exp (+iQi;t2).

This data are amplitude modulated in ti, and so, as described in section 8.13
on p. 231, the result will be a spectrum which lacks frequency discrimina-
tion.

However, assuming that we have access to the sine-modulated data
(which we usually do), the cosine- and sine-modulated data sets can be
combined in such a way as to give frequency discrimination and at the same
time retain absorption mode lineshapes. How this is done is described in
section 8.13.3 on p. 235 and in the following section 8.13.4.

The important point here is that in order for the signals from the p = +1
and p = -1 pathways to combine to give cosine (or sine) modulation in ti,
the two pathways must have the same overall amplitude.

Summary
In summary, we have shown that if one coherence of order either +p or —p
is present during ti, the resulting spectrum will be frequency discriminated,
but will have the unfavourable phase-twist lineshape.

If coherence of both orders +p and -p is present during ti, the resulting
data will be amplitude modulated, and so the spectrum will lack frequency
discrimination. However, assuming that both cosine- and sine-modulated
data sets can be recorded, it is possible to process the data in such a way as
to achieve frequency discrimination and retain absorption mode lineshapes.

Selecting a CTP in which both orders +p and -p are present during ti
is referred to as selecting symmetrical pathways. You will note that all of
the pathways shown in Fig. 11.2 on p. 375 have this property, and so all
the spectra can be processed to give frequency discriminated spectra with
absorption mode lineshapes.

11.4 The receiver phase
The ability to change the phase of our RF pulses is very important in
multiple-pulse NMR experiments, and is of course crucial in the whole
process of phase cycling. There is a further phase which is under our control
in an NMR spectrometer, the receiver phase, and this too plays a vital part
in the implementation of phase cycles.

9
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(a) y.B (b) y.B (c) y.B (<1) y,B

90'(y) 901-X) 90'(-y) 90'(x)

Fig. 11.5 Vector diagrams showing the result of a pulse—acquire experiment for different
phases of the pulse. The position of the vector, which has offset Q, is shown after free
precession for time t, such that it has rotated through an angle (Qt). The phase of the pulse
is shown beneath each vector diagram. The magnetization along the x-axis gives rise to the
detected signal A, and the magnetization along the y-axis gives rise to the signal B. Beneath
each vector diagram is shown the real part of the spectrum which would result from Fourier
transfomiation of the time-domain signal (A + iB). Note how the phase of the line in the
spectrum changes in response to the phase of the pulse.

In section 5.2 on p. 86 we saw that the spectrometer is capable of making
simultaneous measurements of the x- and y—components of the magnetiza-
tion, and that the resulting detected signals are used to form the real and
imaginary parts of a complex time-domain signal. To avoid the confusion of
having too many x’s and y’s, we will call the outputs of these two detectors
A and B, rather than referring to them as the x and y detectors.

Imagine a simple pulse—acquire experiment, in which the phase of the
pulse is y, and where we have one line in the spectrum with offset Q. The
pulse rotates the magnetization onto the x-axis, and then free precession for
time t results in the vector rotating through an angle (Qt) towards the y-axis.
The situation is depicted in Fig. 11.5 (a).

If, for simplicity, we assume that the equilibrium magnetization is of
size one, then simple geometry tells us that M, = cos (Qt) and My =
sin (Qt). The detected signal A is thus cos (Qt), and B is sin (Qt). If we
construct the time-domain signal from the combination A + iB, the result is

S a(r) = A + iB
= cos (Qt) + i sin (Qt)
= exp (iQt).

Assuming the usual damping of this signal due to relaxation, Fourier trans-
formation of this function will give rise to a spectrum in which the real part
has an absorption mode line at frequency Q. This is shown in the diagram.
beneath the vector picture.

Now suppose that we shift the phase of the pulse from _v to -x: the result
is shown in Fig. 11.5 (b). It is now evident that the detected signal A will
be - sin (Qt), and B will be cos (Qt). The combination (A + iB), which We
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computed before. is now

S ,,i(t) = - sin (Qt) + icos (Qt)
= i (cos Qt + i sin Qt)
= i exp(iQt)
= exp (i 71'/2) exp (iQt).

The factor exp (irr/2) is a phase shift by (If/2), and so the real part of the
spectrum arising from this signal will show the dispersion mode lineshape
(see section 5.3.2 on p. 90); this is shown in the diagram. Not surprisingly,
the phase of the line in the spectrum has been changed as a result of shifting
the phase of the pulse.

However, we do not have to form the time domain from the combination
(A + iB), but can choose any combination we like. Suppose that for the case
of the 90°(—x) pulse, (b) in the figure, we form the time-domain signal from
the combination (B — iA):

S i,(r) = B — iA
= cos (Qt) - i[- sin (Qt)]
= cos (Qt) + i sin (Qt)
= exp (iQt).

Now we have exactly the same time-domain signal as we did for the 90°(y)
pulse, and so will obtain an absorption mode lineshape in the real part of
the spectrum.

In a similar way we can find a combination of signals A and B arising
from the experiment with a 90°(-y) pulse, and with a 90°(x) pulse, which
will give an absorption mode lineshape in the real part of the spectrum. All
four combinations are summarized in the table (the labels in the first column
refer to the parts of Fig. 11.5):

pulse phase A B combination rx phase
(a) y cos (Qt) sin (Qt) (A + iB) O
(b) —x — sin (Qt) cos (Qt) (B - iA) -71'/2
(c) —y — cos (Qt) — sin (Qt) (-A — iB) —7r
(d) x sin (Qt) — cos (Qt) (-B + iA) —37r/2

What we are seeing here is that, although changing the phase of the
pulse changes the detected signals A and B, we can always find a com-
bination of these signals which. after Fourier transformation, will give us
an absorption mode spectrum. Changing the combinations in this way is
usually described as changing the phase of the receiver.

The four combinations of A and B listed in the table are related to one
another simply by multiplying the entry on the previous row by -i. For
example, to go from the second to the third row we would simply compute:

—i><(B-iA)=-A-iB.
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90'(y) 90'(-x) 9o'(-y) 90'(x)
la) y y y

(b) { Y Y Y

J1 it
Fig. 11.6 Illustration of how both the phase of the pulse and of the receiver affects the
lineshape in the spectrum. The vector diagrams and spectra in (a) are essentially the same
as those in Fig. 11.5, except that the bullet I indicates the phase of the receiver, which in this
case is fixed. Adding together these four spectra will result in complete Cancellation. In (b),
the pulses go through the same phases as in (a), but this time the receiver phase is shifted
by —90° each time the phase of the pulse advances (in the diagram receiver phase shifts are
measured clockwise from the x-axis). The result is that the magnetization is in afixed position
relative to the receiver phase (as indicated by the I). Consequently, each spectrum has the
same lineshape, and so they will all add up.

>e#eas -as
Given that exp (-in/2) = -i, multiplying by -i is the same thing as

applying a phase shift of (-1r/2). Thus, the combinations ofA and B in the
table can be regarded as arising from a shift in the phase of the receiver by
(—1r/2) each time we move from one row to the next. The total receiver
phase shift, relative to that in the first experiment, is also shown in the table
under the column headed ‘rx phase’. Arbitrarily, we will assign a receiver
phase of zero to the combination A + iB; such a phase can also be described
as ‘having the receiver along x’.

Ifwe record four separate pulse—acquire experiments in which the phase
of the pulse goes through the sequence Ly, —x, -y, x], each will give a
different lineshape, as shown in Fig. 11.5. Adding up the results of these
four experiments will result in complete cancellation, as the lines for pulse
phases y and —y, and for phases —x and x, are equal and opposite.

However, if the receiver phase goes through the sequence of phases
[0, —1r/2, —rr, —31r/2] in the four experiments, each will give the absorption
mode lineshape, and so the spectra from all four experiments will add up.
Figure 11.6 illustrates this idea. In (a) the phase of the receiver, indicated by
the bullet 0, remains fixed, so changing the phase of the pulse changes the
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phase ofthe spectrum. In (b). the receiver changes phase by —9()° each time
the pulse phase changes. As a result, the angle between the axis denoted
by the 0 and the magnetization is fixed, and so the four spectra all have the
same lineshape. We say that in (b) the receiver phase follows the phase shift
of the magnetization. which in turn comes from the phase shift of the pulse.

It is rather inconvenient that, for the receiver phase to follow the mag-
netization, when the pulse phase advances in the sequence [y, —x, ~y,
X], we have to move the receiver phase in the opposite direction through
the sequence of phases [0, —zr/2, —2r, —32r/2]. To get round this, the
spectrometer software is configured so that requesting the receiver phases
[0, rr/2, 71', 321'/2] will result in the signals adding up when the pulse goes
through the sequence [_v, —x, —y, x]. In other words, the software sorts out
the minus sign for us.

Specifying the receiver phase
We can specify the receiver phase in any way we like, either in radians
- as we have been doing up to now ~ or in degrees. So the sequence
[0, Jr/2, rr, 3n/2], can be written [0°, 90°, 180°, 270°}. Equally well, rather
than specifying the angle we can specify the axis, so that the sequence of
phases can be written [x, y, —x, —y].

The absolute receiver phase is not important, all that matters is by how
much the phase advances in each step. So, in the pulse—acquire experiment
we have been discussing, the sequence of receiver phases can just as well
be [—x, —y, x, y] or Ly, —x, —y, x] or [270°, 0°, 90°, 180°]. The absolute
phase will affect the lineshape, but we can always adjust it to what we want
by phasing the spectrum.

The take-home message
The key point to take away from this section is that if the signal generated
by the pulse sequence acquires a phase shift, we can compensate for this by
shifting the receiver phase by the same amount. If we do this, the signal
will add up: this is a crucial part of how phase cycling works.

11.5 Introducing phase cycling
Coherence selection by phase cycling relies on the following property in
relation to the general pathway illustrated in Fig. 1 1.7 (a);

If a pulse causes a change in coherence order from pl to P2,
then shifting the phase of the pulse by A¢ results in the coher-
ence acquiring a phase shift of

—Ap X A¢,

where Ap is the change in coherence order, given by

Ap = (P2 — pil-
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Fig. 11.7 Two examples of a single
coherence transfer step brought about by a
pulse. In (a) the change is from coherence
order p; to order pg, such that the change in
coherence order, Ap, is (pg — pl). If the
phase of the pulse is shifted by Adz, the
coherence following the pathway shown
acquires a phase —Ap >< Agb. Pathway (b) is
for the particular case of +2 —> -1, which
has Ap = -3, and is discussed in the text.

This property means that pathways with different Ap acquire diiferem
phase shifts; as a result it is possible for us to differentiate between path-
ways. In practice, the way we do this is to repeat the experiment several
times, with different values of A¢, and then combine the results in such a
way that the signals which derive from the wanted pathway add up, whereas
signals from all other pathways cancel.

It is important to realize that the phase which a coherence acquires
as a result of following a particular pathway is carried forward with that
coherence through the rest of the pulse sequence. So, if the coherence ends
up contributing to the observed signal, then this signal will have the phase
shift which the coherence acquired earlier in the sequence.

Our ability to alter the receiver phase is important in making sure that
the wanted signals from different experiments add up. As we saw in sec-
tion l1.4 on p. 379, if we adjust the receiver phase so that it ‘follows’ the
phase shifts of the signal, then these will add up. On the other hand, if the
receiver phase does not follow that of the signal, the latter will cancel.

How this all works is best seen using an example, which will be the
selection of the pathway +2 —> -1, shown in Fig. 11.7 (b).

11.5.1 Selection of a single pathway
In this section we will concentrate on devising a phase cycle which selects
the pathway +2 —> -1, which has Ap = -3. Imagine that we advance
the phase of the pulse through the sequence x, y, —x, —y, or in degrees
0°, 90°, 180°, 270°. The phase shifts experienced by the pathway will be
—(—3 >< Ac/>) = 3 A¢; these are listed in the table

step phase shift of pulse, A¢ 3 A¢ equiv(3fiA¢)W
7 1 W 00 O0 00

2 90° 270° 270°

3 180° 540° 180°
4 270° 810° 90°

The fourth column, titled ‘equiv(3 A45)’, is just the phase in the third
column reduced to the range 0° to 360°. The idea here is that a phase of
¢ + n >< 360°, where n is an integer, is equivalent in every way to a phase of
¢. We can therefore add or subtract multiples of 360° from any phase until
it is in the range 0°—360° without any loss of infomiation. For example 540°
is the same as 180° since 540° — 360° : 180°, and 810° is the same as 90°
since 810° — 2 x 360° = 90°. Reducing the phases in this way makes them
a lot easier to comprehend.

What the table tells us is that as the phase of the pulse goes

pulse phase: [0°. 90°. 130°. 270°]

the pathway with Ap = -3 acquires a phase which 8°65

phasg for : -31 [00, 270°. 180°. 90°]-
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If we want the signals in these four steps to add up, all we need to do is to
make the receiver phase shift match that acquired by the Ap : -3 pathway
on each step i.e. the sequence

rx phase to select Ap = -3: [0°, 270°, 180°, 90°].

Now that we have seen how to select a particular pathway, we need to
check that other pathways are rejected, as this is ultimately what we are
trying to achieve. Let us consider the pathway with Ap = -2, for which the
phase shift experienced will be -(-2 X 13¢) = 2A¢; the table below gives
the result for each step in the phase cycle

step phase shift of pulse, A475 2 13¢ equiv(2 A¢)

J=-u.>t\>-—- to \t;o‘8O000°Q0
LII‘;-FF-' -l’=~O\OOOoooo00°

WI-—‘%°CZ%°o<>QO

The phase shifts given in the last column are, of course, different from
those computed for the pathway Ap = -3; the question is, if we use the
receiver phase shifts [0°, 270°, 180°, 90°] will the pathway with Ap = -2
cancel?

One way of determining this is shown in Fig. 11.8. In this figure, the
grey vector represents the phase which the coherence has acquired as a
result of shifting the phase of the pulse, and the phase of the receiver is
indicated by the bullet 0. Both phases are measured anti-clockwise from 3
o’clock.

In (a) the arrows show the phases acquired by the pathway with Ap = -3
as the pulse is advanced through the four steps [0°, 90°, 180°, 270°] i.e. the
phases from the final column in the table on p. 384. The receiver phases,
indicated by the 0, go through the sequence [0°, 270°, 180°, 90°], which
is what we determined would result in the signals from the pathway with
Ap = -3 adding up. It is clear from the diagram that, since the receiver
phase follows the phase of the signal, the signals from all four steps will
add up.

In Fig. 11.8 (b) we see the signal phases for the pathway with Ap = -2,
and the set of receiver phases which we determined would select Ap = -3.
Firstly, it is clear that the receiver is no longer following the signal phase.
Secondly, we can see that step (1) will cancel with step (3), as the signal
and the receiver are aligned in the first step, and 180° apart in the second.
In addition, the signals from steps (2) and (4) will cancel, as in the first case
the receiver is 90° ahead of the signal, whereas in the second it is 90° behind
the signal i.e. an effective shift of 180°.

Overall we find that if the pulse phase goes [0°, 90°, 180°, 270°], and
the receiver phase goes [0°, 270°, 180°, 90°], the pathway with Ap = -3 is
selected, and the pathway with Ap = -2 is rejected.

We will do one more example, which is to consider the pathway with
Ap = +1 for which the phase shift experienced will be -(+1 >< A¢>) = —A¢.
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[If"4$"@'>@ease
Fig. 1 1.8 Diagrammatic way of working out whether or not a particular set of receiver phase
shifts will result in the selection or rejection of a particular pathway. The grey arrow indicates
the phase shift acquired by the signal from a particular pathway as the pulse phase goes through
the four steps [0°, 90°, l80°, 270°]. The phase of the receiver is shown by the bullet 0. and
both the receiver and signal phases are measured anti-clockwise from 3 o’clock. In (a) is
shown the signal phases for Ap = -3. as given in the table on p. 384. The receiver phase
goes [0°, 270°, 180°, 90°], so that the arrow and the 0 are always aligned: the signals from
this pathway will therefore add up. In (b) the signal phases are for the pathway Ap = -2,
as given in the table on this page, but the receiver phases are those used to select Ap = -3.
Now the receiver phase no longer follows the phase of the signal. and in fact steps (1) and
(3), and (2) and (4) cancel one another. The pathway with Ap = -2 is therefore rejected.
It is important to realize that these are not vector diagrams in the NMR sense, but simply
diagrammatic representations of various phase shifts.

step phase shift of pulse, A¢ -A¢ equiv(-A¢)

1 8 0° U I 0° I 0° I I
2 90° -90° 270°
3 180° -180° 180°
4 270° -270° 90°

This time the phases in the column headed ‘equiv(—A¢)’ were obtained by
adding 360° to the phases in the third column.

The phase shifts in the final column of this table are identical to those
in the table on p. 384, which were computed for the pathway Ap = -3. S0.
if we used the sequence of receiver phases [0°, 270°, 180°, 90°], the signals
from both pathways will add up.

If we work through more values of Ap, we will find that this four-step
cycle rejects Ap == -2, -1, 0, 2, 3, and 4, but selects Ap = -3, l and 5-
A convenient way of specifying this selectivity is to write out the possible
values of Ap in a line, putting brackets around those which are rejected and
emboldening those which are selected:

(-4) -3 (~2) (-1) (0) 1 (2) (3) (4) 5
Note that the selected values of Ap differ by four, which is no coinci-

dence as this is the number of steps in the phase cycle. We can understand
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how this comes about in the following way.
Suppose that we have a pathway with a particular value of Ap, and that

we then shift the phase of the pulse by 90°. This pathway will therefore
experience a phase shift of (-Ap x 90°). Now consider a second pathway
which has a change in coherence order of (Ap +4). The effect of a 90° phase
shift of the pulse on such a pathway is:

~—(Ap + 4) x 90° = -Ap >< 90° — 4 >< 90°
= —Ap >< 90° - 360°
= -Ap >< 90°.

To go to the last line we have used the fact that a phase shift of 360° has
no effect. So, what we see here is that a pathway with (Ap + 4) experi-
ences the same phase shift as one with Ap. Therefore, selecting one will
automatically select the other.

Put more generally, this property of a phase cycle can be expressed as
follows

If the phase of a pulse is cycled through a complete series of N
steps

0, 6, 26, (N - l)6,

where the phase increment 6 is 360°/N, then selecting a path-
way with a particular value of Ap will also result in the se-
lection of pathways with (Ap + nN), where n is a positive or
negative integer.

This lack of selectivity of a phase cycle might at first appear to be
something of a drawback, but we will see that it turns out to be quite useful
to be able to select more than one pathway at the same time.

11.5.2 Combining phase cycles
Suppose that we have two pulses, and want to select Ap = +1 for the first
pulse, and Ap = -2 for the second, as shown in Fig. 11.9. For the first
pulse, the phase acquired by the pathway is -Ap >< At/>1 = —A¢;; the table
gives the results for a four-step cycle:

step phase shift of pulse, Ad; -Arm equiv(-A¢;):
1 0° 0° 0° I5
2 90° —90° 270°
3 180° -180° 180°
4 270° -270° 90°

For the second pulse, the phase acquired by the pathway is —Ap><A¢2 =
2 A¢); the table gives the results for a four-step cycle:

M1 A412

+2 .._...._..___~-.-.-...... .. .._ ._._....... .. .
+1

0 1 __ __

Ap=+1 Ap=-2

Fig. 11.9 A coherence transfer pathway
involving two changes of coherence order
one with Ap = +1. and one with Ap = -2
The phase shifts of the two pulses are A¢|
and A¢3.

v
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step phase shift of pulse, A¢;; 2 A¢2 equiv(2 A¢2)
1 0° 0° 0°
2 90° 180° 180°
3 1 80° 360° 0°
4 270° 540° 180°

To select both pathways, we need to complete both four-step phase
cycles independently of one another. This means that as A¢1 goes
through the sequence [0°, 90°, 180°, 270°] and the receiver follows with
[0°, 270°, 180°, 90°], the phase of the second pulse must be held constant.

Having completed these four steps, the phase of the second pulse can
be shifted by 90°, and this is then held constant as the first pulse is again
shifted through [0°, 90°, 180°, 270°]. However, this time the phase shift
of 180° which results from shifting the phase of the second pulse, must be
added to phase shifts which come from shifting the first pulse, giving the
phases

[0° +180°, 270° + 180°, 180° +180°, 90° +180°] -2 [180°, 450°, 360°, 270°]

Reducing these to the range 0°—360° gives [l80°, 90°, 0°, 270°].
In the next four steps, the phase of the second pulse is shifted to 180°,

and once again the first pulse is cycled through the four phases. Shifting
the second pulse by 180° results in no shift in the phase of the signal, so for
these four steps the total phase is [0°, 270°, 180°, 90°], just as it was for the
first four steps.

Finally, the second pulse is shifted to 270°, which results in a phase
shift of 180°, so the total phase for the last four steps is the same as for the
second four: [l80°, 90°, 0°, 270°]. Table ll.l summarizes all of this for the
sixteen steps of the cycle.

In the table, the column headed ‘total phase’ is the phase acquired as
a result of shifting both of the pulses. It is found by adding together the
phases equiv(—A¢1) and equiv(2 A¢1), and reducing the result to the range
0°—360° in the usual way. To select these two pathways, the receiver phase
would need to match the phases given in the right-hand column.

If we wanted to select three separate values of Ap, this would require
43 = 64 independent steps: clearly, we want to avoid this if we can, as the
experiment will become rather long. The next section explains how we can
judiciously minimize the length of our phase cycles.

11.6 Some phase cycling ‘tricks’
We need to be intelligent about how we go about applying phase cycling
otherwise we will end up with absurdly long phase cycles which will be
quite impractical. This section is about some ‘tricks’ which we can use in
order to minimize the number of pulses which we need to cycle, and hence
minimize the length of the phase cycle.
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Tabla 11.1 Construction of the sixteen-step phase cycle needed to select the pathway shown
in Fig. us.

glep At», -Aafilfl cquivt—A¢1)i A¢; 2A¢2 equiv(g A192) totalphase

1 or 0° 0" 0° 0° 0° or
2

3

4

90° -90° 210" 0° 0°
180“ -180" 180° 0° 0"
270" -210° 90° 0° 0°

270°
l 80°
90°

\JO\Lh

0° 0° 0° 90° 180° 180°

90° —90° 270° 90° l 80° 130°
180° -180° 180° 90° 180° 180°

1 80°
90°
00

270° —-270° 90° 90° 180° 180°W 270°

9000” 00° 0° "180° 365° 0 0° 0°
10 90° -90° 270" 180° 360" 0°

l Z 270° —270° 90° 1 80° 360° 0° 90°

270°

ll 180° —l80° 180° 180° 360° 0° 180°

13 0° 0° 0° 270° 540° 180° 180°

14 90° -90° 2"/0° 270" 540° 180° 90°
15 180° -180° 130" 270° 540° 180° 0°
16 270° -270° 90° 270° 540° 180° 270°

11.6.1 The first pulse
We noted in section 11.1.3 on p. 373 that a pulse applied to equilibrium
magnetization can only generate coherence orders :l: 1. Often, this is exactly
what we want — for example, it is a common feature of all the coherence
transfer pathways in Fig. l 1.2 on p. 375. If this is the case, then there is no
need to apply a phase cycle to the first pulse at all.

11.6.2 Grouping pulses together
In the previous section we described how a phase cycle can be constructed
to select a particular value of Ap caused by a pulse. However, exactly the
same considerations apply to the overall transformation brought about by a
group of pulses: all that we have to do is to shift the phaS¢S of all the pulses
at the same time. Any delays present between the pulses are not important.
as the coherence order does not change during such periods.

A good example of the application of this idea is in the sequence
used to generate double-quantum coherence, shown in Fig. ll.lO. This
sequence takes equilibrium magnetization, p = 0, and transforms part of it
into double-quantum coherence, with p = :2. The overall transformation
caused by this group of three pulses therefore has Ap = 1&2.

A four-step cycle in which all three pulses move through the steps
[0°. 90°, 180°, 270°] and the receiver phase goes [0°, 180°, 0°, 180°] will
select Ap = +2. In addition, since the cycle has four steps, we can deduce
that it will also select Ap = -2, as this differs from Ap = +2 by four. S0,

_l;ll;L_
<-—Xp—; I2"-L ieaozh

Fig. 11.10 This three—pulse sequence can
be used to generate double quantum, with
p = :2. The overall transformation caused
by the group of three pulses is Ap = :2, and
they can be phase cycled together (as a unit)
to select this change.
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+1
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<—Ap:j;2->

Fig. 11.11 A 180° pulse simply causes a
change in the sign of the coherence order.
here p = :1 goes to p = IF]; the required
pathways are therefore Ap = :2. These
pathways can be selected with a four-step
phase cycle in which the pulse goes
[0°, 90°, l80°, 270°] and the receiver phase
goes [0°, 180°, 0°, 180°]. This is know as
EXORCYCLE.

the four-step cycle of the group of three pulses selects the transformation
with Ap : 1:2, which is what we require.

We do have to be cautious about one thing here. Just because we select
Ap = :2 overall, it does not mean that the detailed CTP drawn in Fig. 11.10
is selected. In fact, all coherence orders present during the spin echo will
be selected. provided that they are transferred to p : :2 by the final pulse

In reality, though, things are not as bad as they might seem. Firstly, the
initial pulse can only generate p = :1, and secondly, the 180° pulse can
only change the sign of the coherence order.‘ The pathways drawn during
the spin echo are therefore the only possible ones, so we do in fact obtain
the pathways specified.

11.6.3 The final pulse
The role of the final 90° pulse in the sequence is usually to generate observ-
able coherence, p = —l, from whatever coherence orders are present just
prior to this pulse; this is the case for all three sequences shown in Fig. 11.2
on p. 375.

Suppose that, by appropriate phase cycling, we have already selected
the coherence order(s) we want to be present just before this last pulse. If
this is the case, then there is no need to select any particular pathway on
the last pulse, as the only possible pathway is from the already selected
coherence orders to p = —l. Pathways which end up with other orders of
coherence are simply not observable, and so we do not need to worry about
them.

11.6.4 High-order multiple-quantum terms
Look again at the sequence shown in Fig. ll.l0 which is used to generate
p = 1:2. If we select this pathway with a four-step cycle, we will also select
Ap = :6 i.e. the generation of sextuple-quantum coherence.

However, in practice we need not worry about this, as in order to gen-
erate such a coherence we would need to have one spin with a significant
coupling to five others. This is just so unlikely in any real sample that we
can discount it occurring.

Generally speaking, in devising phase cycles we do not need to consider
the generation of high orders of multiple-quantum coherence. It is probably
safe to assume that triple-quantum is the highest order that is likely to be
generated in any significant quantities unless we have some very exotic spin
system.

11.6.5 Refocusing pulses
It was noted in section ll.l.3 on p. 373 that a 180° pulse simply causes
the coherence order to change sign. In fact we can say that the refocusing
property which such a pulse has comes about because it causes such a
change in the coherence order. A coherence of order p present before
the 180° pulse acquires a phase (—Q"”'r1) as a result of evolution for time
1|. After the pulse, the coherence has order —p and so acquires a phase

I ‘If the 180° pulse is imperfect then other changes may occur; see section l l.o.5.
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(-Qi"’l'r1) as a result of evolution from time 1-2. However, as QM” = -Q”),
this latter phase can be written as (+Q‘/’)r;). If 11 = T3, these two phases
are equal and opposite, and so cancel one another out: this is the formation
of an echo.

Although a 180° pulse simply changes the sign of the coherence order,
if the pulse is in anyway imperfect — for example by being mis-calibrated so
that it is not really a 180° pulse — then additional coherence transfers will be
caused. These unwanted transfers can be suppressed using an appropriate
phase cycle.

For example, if the 180° pulse is being used to refocus single-quantum
coherence, the desired pathways from p = +1 —> p = -1 and p = -1 —>
p = +1 have Ap = :2, as shown in Fig. 11.11. The four-step phase
cycle in which the pulse goes [0°, 90°, 180°, 270°] and the receiver phase
goes [0°, 180°. 0°, 180°] selects both of these pathways. This phase cycle
was one of the first to be used in multiple-pulse NMR, and is often called
EXORCYCLE.

11.7 Axial peak suppression
In a two-dimensional experiment, our expectation is that it will be the
equilibrium magnetization present before the first pulse which leads to
the coherence present during tr, and then finally to the observed signals
during I2. However, all through the pulse sequence the magnetization or
coherences present are decaying due to relaxation, thus leading to the re-
generation of z-magnetization. As this z-magnetization has been generated
by relaxation (an essentially random process), it is not phase labelled i.e. it
is not modulated by the evolution during t1.

If this recovered z-magnetization is made observable by subsequent
pulses in the Sequence, it will give rise to peaks in the two-dimensional
spectrum. However, as the magnetization is not modulated as a function of
tr, the peaks will appear at cur = 0 (their frequencies in (.02 are just those of
the usual spectrum). These peaks are usually called axial peaks on account
of them lying on the wl = 0 axis. In section 9.7.4 on p. 286 we came across
a specific example of how such peaks arise in the NOESY experiment.

Axial peaks are easily suppressed by difference spectroscopy. All we do
is repeat the experiment with the phase of the first pulse changed by 180°.
This changes the sign of all of the wanted peaks, but leaves the axial peaks
unaffected. Subtracting the signals from the two experiments will therefore
cancel the axial peaks, but the wanted peaks will add up.

A convenient way of subtracting the results from the two experiments is
simply to shift the phase of the receiver by 180°, in which case we have a
two-step phase cycle:

axial peak suppression: first pulse: [0°, 180°] rx phase: [0°, 180°].

Generally speaking it is convenient to include axial peak suppression as part
of the phase cycling process which we are inevitably going to be using for
coherence pathway selection.

EXORCYCLE was originally developed to
remove some artifacts, dubbed ‘phantoms’
and ‘ghosts’, from two-dimensional spectra
- hence the name.
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11.8 CYCLOPS

As has been described previously, the spectrometer has detectors which
measure both the x- and y—components of the magnetization, and we use the
output of these detectors to construct a complex time-domain signal. Due to
imperfections in the RF electronics in the spectrometer, the output of these
two detectors may not correspond exactly to the x- and y-magnetizations,
and this can lead to unwanted peaks in the spectrum.

Three kinds of imperfection have been identified. The first is where,
rather than the output of the detectors corresponding to the x- and y-
components of the magnetization, the detectors measure two components
which are not quite at 90° to one another. Such an imperfection leads to the
appearance of a small peak at minus the frequency of the real peak i.e. the
peaks are symmetrically placed with respect to the centre of the spectrum,
cu = 0. Such peaks are called quadrature artifacts or quadrature images.

The second kind of imperfection is where the two detectors are not quite
balanced, in the sense that the same amount of magnetization gives rise to
a difierent output from the two detectors. This imperfection, like the first.
gives rise to quadrature artifacts.

The third kind of imperfection is when, in the absence of any transverse
magnetization, the output of either of the detectors is not zero but rather
has a small steady value. This is sometimes called a DC oflsetz the ‘DC’
stands for direct current, which implies a steady, rather than fluctuating,
value. Such a steady contribution to the time-domain signal will lead, after
Fourier transformation, to a peak at zero frequency. This peak is sometimes
called the zero-frequency glitch or DC spike.

On modem spectrometers with carefully constructed and adjusted re-
ceivers, the zero-frequency glitch and quadrature artifacts are likely to be
reasonably small. Nevertheless, they can be inconvenient, especially if the
spectrum has high dynamic range in which case the quadrature artifact from
a large signal can obscure a genuine, weaker signal.

It turns out that, provided these artifacts are not too large, they can be
suppressed in a simple pulse—acquire experiment using a four-step phase
cycle, known as CYCLOPS:

CYCLOPS pulse: [0°, 90°, 180°, 270°] rx phase: [0°, 90°, 180°, 270°]

In terms of CTPs, we recognize that this cycle selects the pathway Ap = —l.
which is exactly that required in a pulse—acquire experiment, since the
magnetization starts on z, p = 0, and ends up as observable, p = —l.

In more complex pulse sequences, we can implement CYCLOPS by
cycling the phases of all of the pulses together through the sequence
[0°, 90°, 180°, 270°}, with the receiver phase going [0°, 90°, 180°, 270°].
One way of thinking about this is that, taken together. the whole pulse
sequence converts z-magnetization, p = 0, to observable magnetization.
p = —-l. This is a transfer with Ap = —l, which is the pathway selected by
this cycle.

The problem with implementing CYCLOPS in more complex se-
quences is that it multiplies the length of the phase cycle by a factor of four.
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which may result in an unacceptably long cycle. However, it is sometimes
the case that a phase cycle which is devised to select other pathways in the
sequence tums out. almost as a by-product, to suppress quadrature artifacts
and the zero frequency glitch. Clearly this is a desirable outcome.

11.9 Examples of practical phase cycles
In this section we will give examples oftypical phase cycles for some of the
most commonly used two-dimensional experiments.

11.9.1 COSY
Figure ll.l2 shows the COSY pulse sequence with three different CTPs.
ln (a) and (b) only one coherence order is retained in t|; as explained
in section 11.3 on p. 377, the resulting time-domain data will be phase
modulated in :1. The corresponding spectra will therefore be frequency
discriminated, but will have the unfavourable phase-twist lineshape. As
was discussed before, CTP (a) will give the N-type, and CTP (b) the P-type
spectrum.

To select CTP (a) all we have to do is select Ap == +1 for the first pulse.
If we do this, we do not need to select any pathway on the last pulse as we
have already selected p = +1 prior to this pulse. A suitable four~step cycle
is:

N-type: ¢. = [0°, 90°, 180°, 270"] ¢,, = [0°, 270°, 130°, 90°].
During this phase cycle, the phase of the second pulse, ¢2, is held constant.

Similarly, to select CTP (b) all we need to do is select Ap = -1 for the
first pulse.

P-type: ¢1 = [0°, 90°, 180°, 270°] 43,, = [0°, 90°, 180°, 270°].

An altemative approach would be to keep the phase of the first pulse
fixed and cycle the phase of the second pulse. For the N-type spectrum, this
means selecting Ap = -2, for which a suitable cycle is

N-type: ¢2 = [0°, 90°, 180°, 270°] ¢,,, = [0°, 180°, 0°, 180°].

For the P-type spectrum, CTP (b), we need to select Ap : 0 on the last
pulse, for which a suitable cycle is

P-type: ¢>2 = [0°, 90°, 180°, 270°] ¢,, = [0°, 0°, 0°, 0°].

CTP (c) in Fig. 1 1.12 has symmetrical pathways in 1|, and so will lead
to amplitude modulation as a function of ti. Such data can be processed so
as to obtain both frequency discrimination and absorption mode lineshapes.

The first pulse can only generate p = 11, so we do not need to select
this. As before, since the coherence orders we require in I1 have already
been selected, there is no need to cycle the final pulse. Thus, this CTP is
the only one possible in this two-pulse experiment, so no phase cycling is
needed. If necessary, a two-step cycle of the first pulse and the receiver can
be used to suppress axial peaks.

‘Pi $2 t¢rx

_ 

_.,__.__________.._____._

(C)
+1 >-0-1 -

Fig. 11.12 The COSY pulse sequence,
together with three possible coherence
transfer pathways: (a) gives the N-type
spectrum, (b) gives the P-type spectrum and
(c) retains symmetrical pathways in r|. The
phases of the two pulses are denoted ¢| and
¢3, and the phase of the receiver is denoted
¢fX~

_M,A—~=>—9;—<=~a
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¢1 $2 $3 ¢n<
I2-—>

f1 i»

la) ii“

Fig. 11.13 The DQF COSY pulse
sequence. together with two possible
coherence transfer pathways: (a) retains
symmetrical pathways in 21; (b) gives an
N-type Spectrum with frequency
discrimination.

A

iv-ot~K:§',iv-»o:-§

11.9.2 DQF COSY
The pulse sequence, and two possible CTPs, for DQF COSY are shown in
Fig. 11.13. CTP (a) retains symmetrical pathways in :1 and so can give an
absorption mode spectrum; this pathway is also the simplest one to select,

The final pulse causes two transfers, one with Ap = -3, and one with
Ap = +1. As these two required values of Ap differ by four, a four~step
phase cycle will select both of them at the same time, which is very conve-
nient for us. A suitable phase cycle is

CTP (a): ¢>3 = [0°, 90°, 180°, 270°] ¢>,, = [0°, 270°, 180°, 90°].

During this cycle, the phases of ¢>1 and ¢>2 are kept constant.
As only p = -1 is observable, selecting Ap = —3 and Ap = +1 on the

last pulse unambiguously selects p = :2 in the period between the second
and third pulses. Since the first pulse can only generate p : ;l:l, there is no
need for any further selection.

An alternative approach to selecting CTP (a) is to group the first two
pulses together, and then cycle them as a unit to select Ap = :2. Such a
cycle would be

CTP (a): (¢1, ¢2) = [0°, 90°, 180°, 270°] ¢,X = [0°, 180°, 0°, 180°]

Having made the selection of p = :2 between the second and third pulses,
there is no need to cycle the last pulse as this can only generate the observ-
able p = ~1 from the already selected p = :2 coherences.

Selecting CTP (b) from Fig. 11.13 needs a longer cycle. One way to
approach this is to use the same four-step cycle as above to select Ap = -3
and Ap = +1 on the last pulse:

¢>3 = [0°, 90°, 180°, 270°] ¢>,,, = [0°, 270°, 180°, 90°].

Then we need to select Ap = +1 on the first pulse, which will require the
cycle

¢>1 = [0°, 90°, 180°, 270°] ¢>,,, = [0°, 270°, 180°, 90°].

This is of course the same cycle as for the last pulse.
These two cycles need to be completed independently, to give the fol-

lowing sixteen-step cycle:

SIEP 4>i $2 dm $16? ¢i $1 ¢rx
0° O“ 0° 9 1 80° 0° l 80°

0° 90° 270° 10 l 80° 90° 90°

0° 180° 180° l l 180° l 80° 0°

1 2 l 80° 270° 270°

90° 0° 270° 13 270° 0° 90°

1 4 270° 90° 0°

90° 180° 90° 15 270° 180° 270°

90° 270° 0° 16 270° 270° 180°OO\lO\'J\-\l>~L>-\I\>>—-

3Q. 3E

.

215%
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1 1.9.3 Double-quantum spectroscopy
Figure 11.14 shows a pulse sequence for double-quantum spectroscopy,
along with a CTP in which symmetrical pathways are retained in 1|; this
CTP is similar in many ways to that for DQF COSY. As we did before,
we can select Ap = ~3 and Ap = +1 for the final pulse using the four-step
cycle:

¢4 = [0°, 90°, 180°, 270°] dam = [0°, 270°, 180°, 90°].

If necessary, the 180° pulse (phase ¢;) can be cycled to select Ap = :2
according to the EXORCYCLE scheme. These two four-step cycles have
to be completed independently, thus giving a sixteen-step cycle.

11.9.4 NOESY
The NOESY pulse sequence, along with a CTP which retains symmetrical
pathways in t1, is shown in Fig. 11.15. The final pulse causes the transfor-
mation Ap = —l, which can be selected with the four-step cycle:

¢>3 = [0°, 90°, 180°, 2'/0°] ¢,, = [0°, 90°, 180°, 270°].
This selection ensures that p = 0 is present during the mixing time 1', and
since the first pulse can only generate p = :1, no further cycling is needed.

As well as selecting Ap = ~l for the last pulse, this four-step cycle
selects Ap = —5 and Ap = +3. The first of these would correspond to the
transfer p = 4 —> p = -1, and the second to the transferp = -4 ~> p = —1.
This means that, in addition to selecting the z-magnetization present during
r, the four-step cycle would also select p = :4. As was commented on
above, for just about all practical situations there will be negligible amounts
of quadruple-quantum generated, so we do not need to worry about such
coherences inteifering with the NOESY cross peaks.

As was explained in section 9.7.4 on p. 286, in a NOESY experiment it
is important to suppress the axial peaks, so we need to add a simple two-step
cycle in which the first pulse goes [0°, 180°] and the receiver does the same.
Combining this with the four-step cycle of the last pulse gives an overall
eight-step cycle.

step 1 2 3 4 5 6 7 8
dn 0° 0° 0° 0° 180° 180° 180° 180°
¢3 0° 90° 180° 270° 0° 90° 180° 270°
on 0° 90° 180° 270° 180° 270° 0° 90°

11.9.5 HMQC
The pulse sequence and CTP for HMQC is shown in Fig. 11.16. As was
explained in section 8.9 on p. 217, a simple difiierence experiment is used
to suppress the signal from the I spins which are not coupled to S. This
involves repeating the experiment with the phase of the first S spin 90°
pulse first set to x, and then to —x. Subtracting the data from these tW0
experiments cancels the unwanted signals from the I spins.

$1 ¢'2 ¢3 $4 ¢’rx
I I I I: f1—>“l_! ,2->

+2+1 4 +7»——~~~
.2’2 _- ..

Fig. 11.14 Pulse sequence for
double-quantum spectroscopy. together with
a coherence transfer pathway in which
symmetrical pathways are retained 11.

¢1 $2 ‘Pa ¢'rx
|———t1—>|<~t:lM tad’

-Q»-G

1'\)—*O-170

Fig. 11.15 Pulse sequence for NOESY,
together with a coherence transfer pathway
in which symmetrical pathways are retained
I1 .
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I'X¢/ ¢
T-> 4-I-> t2‘*>

I
tits

__|i'|_1S
+1 —--—-_i-—-~

Pl _l1>" \ *"'i'-"—

PS?-———~(IIIIII§>———————-1
Fig. 11.16 Pulse sequence for HMQC,
together with a coherence transfer pathway
which leads to amplitude modulation as a
function of 1|.

In terms of the CTP, this S spin pulse causes the transfer Aps = it‘
both pathways which can be selected by the two-step cycle:

¢5 = [0°, 180°] ¢>,,, = [0°, 180°].

Note that as this is a two-step cycle, it selects both Apg = +1 and Apg = -1
as the Aps values differ by two.

The 180° pulse to the I spins is required to cause the transformation
Ap1 = -2, and this can be selected using the usual four-step EXORCYCLE.
Overall, we therefore have an eight-step cycle:

Hep 1 2 3 4 5 6 7 s
¢S 0° 180° 0° 180° 0° 180° 0° 180°
¢, 0° 0° 90° 90° 180° 180° 270° 270°
¢m 0° 180° 1s0° 0° 0° 180° 180° 0°

11.10 Concluding remarks concerning phase cycling
We will close this discussion of phase cycling with a summary of the key
ideas, and then go on to comment on the deficiencies of the method.

11.10.! Summary
0 Shifting the phase of a pulse by A43 results in a pathway which has a

change in coherence order of Ap acquiring a phase —Ap >< A¢.

o A particular pathway can be selected by ensuring that, as the phase
of the pulse is advanced, the receiver is phase shifted by an amount
equal to the phase shift experienced by the desired pathway.

0 If a phase cycle of N steps selects a pathway with a particular value
of Ap, it will also select pathways with changes in coherence order
Ap : nN, where n is an integer.

0 Phase cycles designed to select particular values of Ap for different
pulses must be completed independently.

0 The length of phase cycles can be minimized by ‘intelligent design’,
such as taking advantage of: (a) grouping pulses together; (b) recog-
nizing that the first pulse can only generate p = :1", (c) realizing that
not all of the pulses need to be cycled in order to select a particular
pathway unambiguously.

11.10.2 Deficiencies of phase cycling
The are two major problems with phase cycling as a method of coherence
selection. The first is that, in order for the selection to work, we have to
complete all of the steps in the cycle. Even if the signal-to-noise ratio is
sufiicient on one scan, we have to carry on and repeat all of the four. eight. or
however many steps there are in the phase cycle. As a result, the experiment
can end up taking far longer than is strictly necessary
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This problem is especially acute in two-dimensional spectra where we
have to perform a separate experiment for each tl value. The need to
complete a long phase cycle for each such value may limit the number of
ti increments which can be recorded in the time available, and hence the
resolution in the wl dimension.

The second problem with phase cycling is that it relies on cancellation
of the signals from unwanted pathways. For each step in the cycle, all
possible pathways contribute to the observed signal. Then, as the signals
from successive steps are combined, the unwanted signals will eventually
be cancelled.

The problem is that the signals which are supposed to cancel one another
are likely to have been recorded at times separated by many seconds, if not
minutes. If anything has changed over this time, then the cancellation will
not be perfect. The sorts of changes we are thinking of are fluctuations in the
amplitude and phase of pulses due to imperfections in the RF electronics,
changes in room temperature, changes in the static magnetic field caused by
objects being moved near the magnet — in fact just about anything you cart
think of.

Modem spectrometers, and the environments in which they are housed,
are very carefully designed so as to minimize any such sources of instability.
However, there is a limit as to what can be achieved, and so inevitably the
cancellation of unwanted pathways will be less than complete. This really
shows up when the phase cycle has to suppress signals which are much
stronger than the ones we are interested in. A good example of this is in
inverse correlation experiments where we are trying to observe the weak
signals from protons coupled to “C, and suppress the very much stronger
signals from protons which are not coupled to 13C. Such experiments really
expose the limitations of the spectrometer, and hence of the phase cycling
method.

Field gradient pulses, which are the topic of the rest of this chapter,
provide an alternative to phase cycling for selecting a particular CTP. To
a large extent, the use of gradient pulses avoids the difficulties which have
been highlighted in relation to phase cycling. However, as we shall see,
such pulses have other limitations.

11.11 Introducing field gradient pulses
Normally we take a great deal of trouble to make sure that the applied
magnetic field is as homogeneous as possible across the sample, as this
will give us the narrowest lines in the spectrum. However, we will see in
this section that the ability to make the magnetic field inhomogeneous, for
short periods and in a strictly controlled way, opens up an altemative way
of selecting CTPs.

The usual arrangement for making the field inhomogeneous is to include
a small coil in the NMR probe, placed close to the RF coil used to excite
and detect the NMR signal. The extra coil is designed so that it creates a
magnetic field which varies linearly along the z-axis i.e. along the direction



i Coherence selection: phase cycling and field gradient pulses
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Fig. 1 1 .17 Diagrammatic representation of the effect of a magnetic field gradient on the NMR
spectrum. In (a) we see the usual NMR sample in a homogeneous magnetic field. The graph
to the left of the tube shows a plot of the field along the z-direction, Bl, against Z; in this case
B2 = B0 everywhere. The sensitive volume of the sample is shown by the grey rectangle. As
the field is homogeneous across the sample, the spectrum expected for case (a) will have the
usual narrow line, as shown to the right of the tube. When the gradient is applied, B, varies
linearly with z, as shown in (b); the variation in BZ has been greatly exaggerated. It is usual
to arrange things so that the extra field due to the gradient is zero in the middle of the sample,
z = 0. As a result of the variation in Bl, spins in different parts of the sample have different
Larmor frequencies, and so we see a very broad line, as shown to the right of the tube. This
line broadening is inhomogeneous.

of the main field B0. Such a coil is said to create afield gradient.
The spectrometer is able to control both the size and direction of the flow

of the current which passes through this field gradient coil. The greater the
current flowing through the coil, the greater the field gradient i.e. the more
rapidly the field changes with distance. If the direction of flow of the current
is reversed, the field gradient is changed in sign. What this means is that if
the current flowing one way results in the field increasing as we go along
the positive z-direction, reversing the direction of flow of the current means
that the field will decrease along the positive z-direction.

Figure 11.17 illustrates the relationship between the field gradient, the
NMR sample and the spectrum. In (a) we see the sample in a homogeneous
magnetic field B0. To the left of the sample tube there is a graph of the
magnetic field along the z-direction plotted against z: in this case, the graph
is a straight line, as Bl = B0 throughout.

Only part of the sample is actually excited and detected by the RF coil.
Typically a region between 1 and 2 cm long forms this ‘sensitive volume’;
in the diagram this is shown by the grey rectangle. When the magnetic
field is homogeneous, the spectrum will show a narrow line, as is illustrated
schematically to the right of the tube.

If current is allowed to flow through the field gradient coil, the situation
is changed to that shown in (b). Now we see that B, varies linearly with z,
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as slioxxn in the graph to the left of the tube. lt is usual to arrange things
such that the gradient coil produces no field in the middle of the sample,
; = 0. As a result, B; is greater than BO in one half of the sample, and less
than B0 in the other half.

A consequence of B; varying along the tube is that different parts of the
sample have different Larmor frequencies, so rather than there being one
sharp line from the whole sample, at each z-coordinate there is a line with a
different Larmor frequency. All of these lines merge together to give a very
broad line. whose width is determined by the strength of the field gradient
and the size of the sensitive volume.

Figure 11.17 (b) shows this broad line to the right of the tube. The
intensity tails away at the edges of this line as a result of reaching the limits
of the sensitive volume. This line is inhomogeneously broadened, in the
sense described in section 9.9 on p. 299.

The magnetic field, due to the combination of the gradient and the
applied field B0, can be written

BZ=B0+Gz, (11.7)

where G is the magnetic field gradient, in units of T m"', and z is the
coordinate along the field direction, measured (in m) from the centre of
the sample. The sign of G can be reversed simply by changing the direction
of the current flow through the gradient coil.

For historical reasons. the value of G is always quoted in ‘Gauss per cm’
(G cm"). One Gauss is 10“ Tesla, so the conversion from G cm" to T
m“ is achieved simply by multiplying by 10*‘ for the conversion Gauss to
Tesla, and 102 for the conversion cm" to m‘1. So overall, we just multiply
by 104.

The upper limit on the field gradient which can be achieved by modem
high-resolution spectrometers is about 60 G cm", or 0.6 T m". If we
assume that the sensitive volume extends for about 1.5 cm, then from the
top to the bottom of the sample the magnetic field due to such a gradient
will vary by 9 X lO_3 T. With the aid of the usual relationship between
the Lamior frequency and the magnetic field, w = —7/B, we can convert
this range of magnetic field strength into a frequency range. Taking 7/ to
be that of proton, we find that the frequency varies by 380 kHz from top to
bottom. This range of frequencies produced by the gradient is very large
indeed when compared with a typical NMR linewidth.

When a field gradient is applied, any transverse magnetization (or
coherence) present will decay very quickly as a result of spread of Lar-
mor frequencies across the sample. However, the crucial point is that this
inhomogeneous decay can be reversed by a spin echo or, more generally,
as a result of certain types of coherence transfer. How we can describe and
exploit such processes are the topics of the next two sections.

ll.l1.1 The spatially dependent phase
As we have seen, when a gradient is applied, the magnetic field becomes
spatially dependent in the way described by Eq. 11.7. Consequently. the
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Although the evolution of the offset in the
presence of the gradient is not important in
determining the spatially dependent phase,
the evolution of this offset during the
gradient does have some important
consequences, which are discussed in
section l1.12.5 on p. 407

Larmor frequency also becomes spatially dependent in a way which we can
find simply by multiplying this equation by the gyromagnetic ratio:

—wBZ = —YBo — v61-
We have in fact multiplied by -71 so that we can replace -7/B0 with wq, the
Larmor frequency when the field has its nominal value, B0. Similarly, we
will write -7/B; as w(z), the Larmor frequency at position z:

w(Z) = we — 7/Gz.

When a gradient is applied, the thing which is of interest to us is the
variation in the Larmor frequency across the sample, i.e. the term -7/Gz.
The evolution at wo, due to the main magnetic field B0, is the same in all
parts of the sample and so does not cause any dephasing: we will therefore
ignore it from now on, and simply write the spatially dependent part of the
frequency, Q(z), as

Q(z) = —yGz.

If we have coherence of order +1 present, then it will evolve at fre-
quency Q(z) in the usual way:

A I. .1, 55’-'-> exp(-1o(z)t)i+.
What this means is that the coherence acquires a phase ¢(z) = —Q(z)t.
Coherence with order -1 will acquires the opposite phase ¢(z) = +Q(z)t.
The important point is that this phase is different in different parts of the
sample: it is therefore called the spatially dependent phase.

If we have double-quantum coherence present, say with p = +2, the
evolution due to the gradient will be

M2. cxp(~iQi(z)I) ¢Xt>(—iQz(z)t) i1+i2+-
We have allowed for the possibility that the spatially dependent frequency
will be different for the two spins, and so have written these two frequencies
as Q; (z) and Q1(z). However, it is usually the case that the range of frequen-
cies which the gradient causes across the sample is very much greater than
the range of olfsets in the normal spectrum. We saw an example of this
above where the range of frequencies due to the gradient was 380 kHz,
which should be compared with a range of offsets for proton spectra (at
SOO MHZ) of around 5 kHz. This being the case, we can safely assume that
the spatially dependent frequency Q(Z) is the same for all spins. Thus, the
evolution of the double quantum is just:

i,,i2, exp(—2iQ(z)t)i1,l;+.
The spatially dependent phase is therefore ¢(z) = —2Q(z)t.

These examples can be generalised to give the following expression for
the spatially dependent phase acquired by a coherence of order p:

¢(Z)=—pX)/GZI. (ll-3)
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The cnicial point is that the phase is proportional to the coherence order. It is
this property which enables us to select CTPs using gradients, as explained
in the following section.

ll.l1.2 Selection of a single pathway using two gradients
We are now in a position to explain how two gradients can be used to select
a particular CTP: the arrangement is shown in Fig. 11.18. The basic idea
is that during the first gradient G1 coherences acquire a spatially dependent
phase and are therefore dephased. The coherences are then transferred by
the pulse, and acquire a further spatially dependent phase during the second
gradient pulse G2. If the phase acquired during the second gradient is equal
and opposite to that acquired during the first. the coherence will be rephased
at the end of the second gradient. On the other hand, if these phases are not
equal and opposite, the coherence remains dephased and is effectively lost.

The process depicted in Fig. 11.18 can be described as follows. The
phase acquired by coherence of order pl during the first gradient pulse is

¢i(Z) = -Pt‘)’GiZT1-

Similarly, the phase acquired by coherence of order pg during the second
gradient pulse is

¢2(Z) = -P2')’G2ZT2-
Therefore, at the end of the second gradient the total spatially dependent
phase is

-Pi')’G1ZT1 '- P276221‘:-
For the CTP pl -+ pg to be refocused at this point, the spatially dependent
phase must be zero:

refocusing condition: — p|')'G1Z'l'1 — p2')’G2Z’-1'2 = 0.

This can be rearranged to

. . . Grefocusing condition: —-fl = -2.
G2?2 P1

By selecting the strengths and durations of the gradients such that this con-
dition is satisfied, we can arrange for a particular pathway to be refocused.
The hope is that coherences which have followed other pathways will be
dephased.

For example, if we wish to select the pathway +2 -+ ~l, the refocusing
condition is

G1T1 -1
= 2 = -1 i— = —-i

P + —’ p G21‘2 2
_ 1_ 2_

If we make the two gradients the same length, -r1 = T2, then to select this
pathway the second gradient needs to be twice the strength of the first:
G2 = 2G1.

.,F*l__
G 151 T2

p2 g:

Fig. 11.18 Illustration of the use of field
gradient pulses to select a coherence
transfer pathway. The timing of the gradient
pulses is given by the grey rectangles on the
line marked ‘G’, whereas the RF pulses
appear in the usual way on the line marked
‘RF’. The duration of the first gradient pulse
is T1 and the field gradient is of size G1; the
corresponding parameters for the second
gradient pulse are -r; and G2. Note that the
gradients G| and G2 can be positive or
negative.
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Fig. 11 .19 Example of the selection of a
coherence transfer pathway using gradients
in a heteronuclear experiment. As no pulse
is applied to the I spin, the coherence order
on that spin does not change.

As a second example, consider the pathway -2 —+ —l; the refocusing
condition is

G171 --1
P — 2 —') P — l E — —3

_ 1_ -5

For equal length gradients, this means that the second gradient needs to
be twice the strength of the first and the gradients need to be applied in
opposite senses: G2 = —2G|.

It is interesting to note that a pair of gradient pulses selects a particular
ratio of coherence orders, whereas phase cycling selects a particular change
in coherence order.

ll.ll.3 The spatially dependent phase in heteronuclear systems
The spatially dependent phase, given by Eq. 11.8 on p. 400, depends on
the gyromagnetic ratio of the nucleus in question, so if we are dealing with
heteronuclear experiments we need to take this into account when devising
our gradient selection schemes.

As was discussed in section 11.2.1 on p. 376, we can assign separate
coherence orders p; and pg to each type of nucleus, I and S. The spatially
dependent phase arising from spin I depends on p; and 71, and similarly for
the S spin it depends on ps and 'y$ . Overall, the spatially dependent phase
is given by

¢(Z) = — (Pm + Psrs) G zt- (1 1-9)
How this works out in practice is best illustrated using an example, such

as the pathway shown in Fig. 11.19. Here we see that the coherence order
on the S spin changes from +1 to O, whereas the coherence order on the I
spin remains unchanged at -1, simply because no pulse is applied to this
spin. The spatially dependent phase caused by the first gradient pulse is

¢1(Z) = -(-1>< 7'1 + 1 X’}’s) GtZT1,

and by the second gradient pulse is

¢1(z) = — (—l x 7/1 + 0 X 75) Ggzrg.

Therefore the refocusing condition, ¢1(z) + ¢;_(z) = O, is

(‘Y1 — ')’s) G1ZT1 + 'l’1G2ZT2 = 0-

This condition rearranges to
G1Tt _ Y1
G21‘: ‘Vs - ‘Y1

l

('Ys/71)- 1'
If the I spin is ‘H and the S spin BC, then ('y_g /71) = 0.252, and so

(Gyri)/(G212) = —l.34 . These numbers are a little easier to understand if
we assume that 'y for ‘H is four times that of BC, which is almost correct.
With this assumption, (7/S /'y1) = 3;, and so (G111)/(G212) = —§.
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ll.ll.4 Shaped gradient pulses
For technical reasons, it is undesirable to switch the gradient pulse on and
off suddenly. Rather, it is preferable to switch the gradient on and off in a
smooth fashion. One approach which is commonly adopted is to make the
envelope of the gradient pulse the first half of a sine Wave, usually called a
‘sine bell’. Mathematically, this is the function

_ (III)
sin — .

'r

When t = O and t = r the function is zero, and it has its maximum value of
l at t = gr.

Looking back over the previous section, we can see that the spatially
dependent phase from a rectangular shaped gradient pulse depends on the
product G X r. We can interpret this as the area under the envelope of the
gradient pulse i.e. the width, r, times the height, G.

The area under a sine bell shaped gradient is clearly less than the area
under a rectangular gradient of the same height and duration, as is shown
in Fig. 11.20. lf the maximum of the sine bell is G, then the area under the
gradient envelope is found from the integral

1'

I G sin(E)dt,
0 T

which has the value (2Gr/rr). For a rectangular gradient, the area is simply
(Gr), so the spatially dependent phase produced by the sine bell is (2/rr) =
0.64 times that produced by a rectangular gradient.

It is common to define a shape factor, s, as

area under the envelope of the shaped gradient
s = .

area under a rectangular gradient of the same overall height and duration

and then to modify the expression for the spatially dependent phase to

¢(z) = —s p 7/Gz t.

l1.11.5 Dephasing in a field gradient
ln this section we will look at the details of how a coherence is dephased by
a gradient. This will help us to understand how factors such as the length
and strength of a gradient affect the rate of dephasing, and so how we might
go about choosing these parameters in a particular experiment.

Let us consider the dephasing of observable coherence of order -1. If
we start with the operator l. at time zero, then after time t the operator will
have acquired a phase yGzt at position z in the sample:

exp (iyGzt) i.. (1 1.10)

The observable signal from the whole sample is found by adding up the
contributions from all possible positions z, taking into account that the phase
at each position is difierent.

2 .........................................-
l-——>

Fig. 11.20 The spatially dependent phase
produced by a gradient depends on the area
under its envelope, which is a plot of the
gradient strength G against time. Here we
see a comparison of the areas of a
rectangular gradient, whose envelope is
shown by the dashed line, and a sine bell
gradient, whose envelope is shown by the
solid line. Clearly the area under the sine
bell shaped gradient. shown shaded in grey,
is significantly less than that under the
rectangular gradient.
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Fig. 11.21 The black line is a plot of the
function S (1), given in Eq. 11.11, which
shows how a coherence dephases during a
gradient pulse. Note that the dephasing
depends on the dimensionless parameter
7Gzmt. Also shown in grey is an
approximation to the envelope of S(t), as
given in Eq. l 1.12. After the first couple of
oscillations, this envelope function is an
excellent approximation to the envelope of
S (r).
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If we assume that the sensitive volume of the sample extends from —%z,,,
to +§z,,,, then the signal from the whole sample is found by integrating the
phase factor in Eq. 11.10 with respect to z, and in the range -ézm and +%zm;

lzm
S (1) = L I12 exp(i)/Gzt) dz.

zm -Elm

We have divided by zm, the size of the sensitive volume, in order to make
S (t) dimensionless, and so that it has the value 1 at t = O; essentially this is
a normalization factor.

The integral is straightforward to compute and gives us the rather neat
result: ‘ I

S(t)= . (11.11)
;vGzmr

Figure 11.21 shows a plot of this function against the dimensionless pa-
rameter yGz,,,t. The plot shows that S (t) is an oscillating function, which
decays steadily over time. In fact, it is this overall decay which we are
more interested in than the oscillations, and it can be shown that once
we are beyond the first couple of oscillations, the envelope of S (t) is well
approximated by _

envelope ofS(t) = (11.12)
§l')’|GZmI

This function is also shown in the plot in Fig. 11.21.
Not surprisingly, the dephasing goes as l /(Gr), so a stronger or longer

gradient gives more dephasing. Also, the dephasing goes as 1/y so, for a
given field gradient, nuclei with higher gyromagnetic ratios are dephased
more completely. This is not a surprise, as for a larger value of y, the range
of Larmor frequencies across the sample is greater for a given field gradient.

To take a specific example, suppose that G = 20 G cm“ (0.2 T m"‘)
and gm = 1 cm (0.01 m). Then for the dephasing of protons, the envelope
0fS(t) is -63.7 10

envelope of S (t) =

If we want the magnetization to be dephased to 1% of its initial value, i.e.
S(t) = 0.01, then this last expression tells us that r = 0.37 ms. which is
the length of the gradient pulse we would need. If we want more complete
dephasing, say to 0.1%, then the gradient would need to be ten times longer.
i.e. 3.7 ms.

To dephase coherences on 13C, for which y is one-quarter of that of
proton, we would need gradients four times longer in order to achieve the
same effect. For '5N, for which y is about one-tenth of that of the proton.
we would need gradients which are ten times longer. Given that there is a
practical limit on the length of a gradient pulse which can be applied. you
can see that dephasing heteronuclei becomes progressively more difficult as
their gyromagnetic ratios decrease.
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11.12 Features of selection using gradients
Before we look at the way in which gradients can be used in some typical
experiments, there are a number of features about the way gradients work,
and the consequences of introducing them into pulse sequences, which we
need to discuss.

ll.12.1 Selection of multiple pathways
Consider the two pathways shown in Fig. 11.22 (a) and (b), both of which
involve the transfer of double quantum to single quantum. The conditions
for refocusing these two pathways can easily be shown to be:

pathway (a): % =% pathway (b): % = -g.
For pathway (a), the areas of the two gradients have to be in the ratio

1:2, and the gradients have to be in the same sense. For CTP (b), the areas
are still in the ratio 1:2, but the gradients need to be in the opposite sense.
There is no combination of two gradients which will select both pathways
simultaneously. This is in contrast to phase cycling which, as was shown in
section 11.9.2 on p. 394, can select both of these pathways using a four-step
phase cycle.

Looking back through the CTPs which we have specified for the com-
mon two-dimensional experiments discussed in section 11.9 on p. 393, we
see that it is very often the case that we wish more than one pathway to
contribute. Unfortunately, if we use gradients for coherence selection, it is
not possible (except in some special cases) to select more than one order of
coherence at the point where the gradient is applied.

This feature of selection with gradients is unfortunate for two reasons.
Firstly, if we limit the number of desirable pathways which contribute, the
signal which we observe will be reduced in size, and hence the signal-to-
noise ratio will be reduced. For example, in Fig. 11.22 the consequence of
selecting only pathway (a), or pathway (b), is a loss of half the signal when
compared with phase cycling, which can select both pathways.

The second problem is that, if we apply a gradient during the evolution
period t1 of a two-dimensional experiment, we will inevitably select just
one order of coherence during t1: it will not be possible to retain sym-
metrical pathways. As was explained in section 11.3 on p. 377, selecting
one coherence order during t1 results in a spectrum with the undesirable
phase-twist lineshape. In order to be able to process the data to give
absorption mode lineshapes, we must retain symmetrical pathways in t1,
which is incompatible with applying a gradient during t1.

All is not lost, however, as there is a method, described in the next
section, of regaining an absorption mode lineshape even when gradients
have been used during t1.

ll.12.2 Obtaining absorption mode lineshapes when gradients are
used in t1

If we have used a gradient during t], it is possible to obtain an absorption
mode spectrum using the following procedure. The experiment is repeated

...___I___
G T1 T2
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Flg. 11.22 Illustration of the two possible
pathways by which a pulse can transfer
double quantum, p = :t:2, to single quantum,
p = -1; such transfers take place, for
example, on the last pulse of the DQF
COSY and double-quantum spectroscopy
experiments. Using gradients, it is possible
to select either pathway (a) or pathway (b).
but not both at once.
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Fig. 11.23 A 180° pulse simply causes the
coherence order to change sign. Such a
pathway. for any value of p, can be selected
by two equal gradient pulses.

twice: once with the gradients set so as to select coherence order +p during
I1, and once with the gradients set to select -p during t1. These two
experiments give N— and P-type data sets, the time-domain signals for which
are of the form

SPU1, 12) = 9XP (+iQAl1) ("EXP (iQBl‘2) SNU1, I2) = CXP (-iQ/U1) CXP (iQBf2)

Note that the only difference between these is the sign of the modulation in
:1, which derives from the fact that signals come from either +p or —p order
coherence during t1.

From these N- and P-type data sets we form the combinations:

Se(l1,l2) = %[SP(tl,t2)+SN(tl,t2)]
= cos(QAt1)exp(iQBt2),

and

5591,12) = §l;[SP(l1,l2)-'SN(l1,l2)]
-'= SlH(QAl1)€Xp(lQBI2).

The resulting cosine- and sine-modulated data sets can then be processed to
give an absorption mode spectrum using the SHR method (section 8.13.3
on p. 235).

There is a cost to this method of obtaining absorption mode lineshapes.
Firstly, we have to record two separate experiments, with different gradient
pulses, and secondly there is a reduction in signal-to—noise ratio by a factor
of \/5 compared with an experiment in which symmetrical pathways are
retained during t1.

11.12.3 Refocusing pulses
An ideal 180° pulse simply causes a change in the sign of the coherence
order i.e. p —> —p, as is shown in Fig. 11.23. Such a change in coherence
order is what leads to the formation of a spin echo, so when used in this way
a 180° pulse is often called a refocusing pulse.

For any value of p, such a pathway is refocused by two equivalent
gradients placed either side of the pulse. We can easily see how this works
by noting that the spatially dependent phase from the first gradient pulse is
(—pyGzr), and that from the second gradient pulse is (+pyGz1'). Clearly,
these are equal and opposite, so the total phase is zero and the pathway is
refocused.

If the 180° pulse is imperfect, it will cause transfer to coherences other
than —p: such pathways will not be refocused. So. this pair of gradients
is a very good way of ‘cleaning up’ the results of an imperfect 180° pulse.
What is more, because the selection of p —> ~p works for any value of p,
we do not lose any signal.
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l1.l2.4 180° pulses in heteronuclear experiments
In heteronuclear experiments, 180° pulses are often used to refocus the
evolution of a heteronuclear coupling — for example during the evolution
time of experiments such as HMQC and HSQC. Figure 11.24 illustrates a
typical such arrangement.

There is no coherence present on the I spin, so the 180° pulse is not
acting as a refocusing pulse in the sense described in the previous section.
Rather, its role is to invert the I2 operators in product operators such as
ZIZSX and 2IZSy which are present during ti. This 180° pulse is therefore
best described as an inversion pulse.

If the 180° pulse is perfect, it will cause the transformation IZ —> -I2,
and nothing else. However, if the pulse is imperfect, coherences may
be generated (or transferred) by the pulse, and these may go on to give
unwanted peaks in our spectrum. By placing a gradient after the 180° pulse,
any coherences generated by the pulse will be dephased, and therefore will
not contribute to the spectrum.

The problem with placing a gradient after the 180° pulse is that it will
dephase the coherences present on the S spin — which is certainly not what
we want to happen. To get round this, we place equal and opposite gradients
either side of the 180° pulse. The S spin coherences are dephased by the
first gradient, and then promptly rephased by the second; this works for
any value of pg. Overall this pair of ‘anti-phase’ gradients cleans up any
imperfections from the 180° pulse, and leaves the evolution of the S spin
coherences unaffected.

11.12.5 Phase errors due to gradient pulses
Up to now we have emphasized how, if the gradient pulses are correctly
chosen, the spatially dependent phase due to the first gradient is equal and
opposite to that of the second gradient, leading to refocusing at the end
of the second gradient. However, this refocusing only applies to the phase
which resultsfrom the gradientpulse itself: any phase due to the underlying
evolution of offsets and couplings is not cancelled.

How this comes about is best illustrated by an example. We will use
the DQF COSY pulse sequence, shown in Fig. 11.25, along with a gradient
selection scheme and the associated CTP. The first gradient is placed during
the double-quantum period, and the second just prior to t2. By making
the second gradient twice the area of the first, the pathway +2 —> -1 is
refocused; we can therefore be sure that double-quantum filtration has taken
place.

Now imagine recording a spectrum without the gradient pulses, but
leaving in the delays T where the gradients were, and using phase cycling
to select the CTP shown. A typical value for these delays 1, the length
of the gradient pulse, is l to 2 ms. So what we have is a pulse sequence
with a significant delay between the second and third pulses, and a further
significant delay between the last pulse and the start of acquisition.

During the first of these delays the double-quantum coherence will
evolve at (Q1 + Q2), and during the second delay the single-quantum coher-
ence will evolve at its offset, as well as according to the couplings present.
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Fig. 11 .24 A typical arrangement in which
a centrally placed 180° pulse to the I spin is
used to refocus the evolution of the
heteronuclear coupling over the evolution
time t1. No coherence is present on the I
spin, so the role of this 180° pulse is to
invert the operators such as I1, rather than to
act as a refocusing pulse in the way shown
in Fig. 11.23. The 180° pulse to I causes no
changes in the coherence order of the S spin.
As explained in the text, two equal and
opposite gradient pulses are useful for
cleaning up any problems associated with
an imperfect 180° pulse, while leaving the S
spin coherences unaffected.
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Fig. 1 1.25 A DQF COSY pulse sequence,
along with a suitable pair of gradients to
select the pathway +2 -> -1 caused by the
final pulse. To select this pathway, the
second gradient must have twice the area of
the first; here we have chosen to achieve this
by keeping the gradients the same length
and doubling the strength of the second one.
As explained in the text, the evolution of the
offset during the two periods r occupied by
the gradient pulses leads to very large phase
errors in the spectrum.
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Fig. 1 1 .26 Illustration of how the phase
errors associated with the underlying
evolution of the offsets during a gradient
can be refocused. In (a) a 180° pulse forms
a spin echo such that the evolution during
the first time r is refocused at the end of the
second time 'r. As a result, there is no net
evolution of the offset over the entire period
21. The gradient, of duration T, is placed
afier the 180° pulse so that the spatially
dependent phase produced by the gradient is
unaffected by the pulse. Sequence (b) also
refocuses the evolution of the underlying
offset, but is more time efficient than (a),
giving the same spatially dependent phase
in half the time.

As a result of the evolution during these delays, phase errors will accrue,
and these will affect the observed spectrum.

These phase errors are frequency dependent and can reach quite large
values. For example, consider the evolution of the offset during the second
delay T. The offset is typically in the range O to 2500 Hz, and a typical
value for the delay is 1.5 ms; this results in a frequency-dependent phase
which reaches 1350° at the edge of the spectrum. It is simply not possible
to correct such large phase errors by the usual phasing procedures. Further-
more, there will be additional frequency-dependent phase errors due to the
evolution of the double quantum during the first delay 1'. The overall result
will be a spectrum which simply cannot be phased.

Putting the gradients back into the sequence does not eliminate these
phase errors. Of course, the second gradient refocuses the spatially depen-
dent phase caused by the first, but this refocusing effect does not extend to
the underlying evolution of the offsets, which continues regardless of the
gradients. What we have discovered is that we cannot simply insert gradi-
ents into our existing pulse sequences, without considering the effect that
the time occupied by the gradient will have on the phase in the spectrum.

The solution to this problem is to place the gradient within a spin echo,
as shown in Fig. 11.26 (a). The gradient pulse (duration r) generates a
spatially dependent phase in the usual way, but by containing the pulse in
the second half of a spin echo, the evolution of the underlying offset over
the first delay -r is refocused during the second delay -r. As a result, there
is no net evolution of the offset over the total time 21'. We should note that
the spin echo does not refocus the evolution of the (homonuclear) coupling,
and that the spatially dependent phase generated by the gradient is (p7/zG*r).

Sequence (b) is slightly more time efficient, as it achieves the same
effect as (a) but in half the time. In (b) the gradient has been split into
two equal and opposite parts, but as before the spin echo ensures that there
is no net evolution of the underlying offset over the total time -r. The first
gradient generates a spatially dependent phase of %(p'yzG'r), and the second
generates the same, so overall the phase is the same as in sequence (a). The
reason that the gradients in (b) have to be applied in the opposite sense to
one another is that the 180° pulse changes the sign of the coherence order.

In principle, when we want to insert a gradient into a pulse sequence,
we should use sequence (a) or (b) in order to refocus the evolution of the
underlying offsets. Unfortunately, this complicates the sequences by adding
extra delays and extra refocusing pulses, which can themselves be a source
of imperfections.

In many pulse sequences, especially heteronuclear ones, there are al-
ready spin echoes present as part of the sequence. It may be — if we are
lucky - that we can insert our gradient into one of these existing echoes.
and thereby avoid the need to introduce extra 180° pulses.

l1.l2.6 Selection ofz-magnetization
Magnetization along the z-axis does not evolve during a delay, and so is
unaffected by a field gradient. Another way of looking at this is to say that
such magnetization has coherence order zero, and so does not acquire any
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spatially dependent phase during a gradient. Therefore, if we wish to retain
z-magnetization and reject all other coherences, all we need to do is apply
a single gradient. This is in contrast to the way we select other coherences,
where we always need two gradients: one to dephase the coherence, and
one to rephase it.

A gradient which is just used to destroy unwanted coherences is some-
times called a purge gradient or a homospoil pulse. In the following section
we will see a numberof cases where such gradients can be used to advantage
in practical pulse sequences.

Zero-quantum coherence also has p = 0, and so, like z-magnetization, is
not dephased by a gradient; therefore, the two cannot be separated. In some
experiments, this turns out to be rather a problem as the presence of un-
wanted zero-quantum coherence leads to phase distortions. In section l 1.15
on p. 415 We will discuss how the contribution from zero quantum can be
suppressed.

1 1.13 Examples of using gradient pulses for coherence
pathway selection

In this section we will look at how gradient pulses can be implemented into
a number of the commonly used two-dimensional experiments.

11.13.1 DQF COSY
Figure 11.27 shows two different versions of the DQF COSY experiment
in which gradient pulses are used for CTP selection. In sequence (a),
only p = +1 is retained during t1, so the resulting data set will be phase
modulated as a function of t1. Processing this data set will give a frequency
discriminated spectrum, with the phase-twist lineshape. The areas under
three gradient pulses need to be in the ratio l:l:3 to select the pathway
shown.

(8) (b)
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Fig. 11.27 Two different versions of the DQF COSY experiment which utilize gradients
for CTP selection. Sequence (a) retains just p = +1 during tr, and so leads to a frequency
discriminated spectrum with the phase-twist lineshape. No attempt is made to control the
phase errors which will accrue due to evolution of the underlying offsets during the three
gradient pulses, so the spectrum has to be displayed in the absolute value mode. The areas of
the gradients need to be in the ratio l:1:3 to select the pathway shown. Sequence (b) retains
symmetrical pathways in tr, and so will give_rise to data which can be processed to give
absorption mode lineshapes. Both of the gradients are contained within spin echoes so that the
phase errors due to the evolution of the underlying offsets are removed.
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In this sequence, the gradients are not placed within spin echoes so, as
described in section 1l.l2.5 on p. 407, the resulting spectrum will show
large frequency-dependent phase errors due to the evolution of the under~
lying offsets during the gradients. These phase errors, combined with the
fact that the spectrum has the phase-twist lineshape, mean that the only
feasible thing to do is to display the spectrum in the absolute value mode,
as described in section 8.13.6 on p. 240. While such a display does not give
such high resolution as an absorption mode spectrum, it is convenient for
routine spectroscopy where resolution is not at a premium.

If we want an absorption mode spectrum, then we will need to use the
sequence shown in Fig. 11.27 (b) in which, since no gradient is applied
during tr, symmetrical pathways are retained. The resulting data set will
be amplitude modulated in ti, and so we will need to use the SHR or TPPI
procedure to achieve frequency discrimination (see section 8.13 on p. 231).

In this sequence, both gradients appear within spin echoes, so the evo-
lution of the underlying offsets during the gradients is refocused. As a
result, the large frequency-dependent phase errors found in the spectra from
sequence (a) are avoided. The CTP looks rather tortuous as a result of the
fact that the 180° pulses change the sign of the coherence order. When
working out possible pathways it is sometimes useful to work back from
the end, since we know that the pathway must finish at -1.

11.13.2 HMQC
Figure 11.28 shows two different HMQC pulse sequences using gradient
selection. Sequence (a) retains only one pathway, pg = +1, during t1,
and so gives rise to a frequency discriminated spectrum with phase-twist
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Fig. 11.28 Two altemative I-IMQC pulse sequences using gradients for selection. Sequence
(a) is only suitable for generating spectra to be displayed in the absolute value mode. since
large phase errors accrue due to the evolution of the underlying offsets during gradients G1
and G2. In contrast, in sequence (b) this evolution is refocused by placing the gradients within
spin echoes (the two gradients G1) or in existing delays in the sequence (gradient G3). rm»
altemative coherence transfer pathways are shown for this sequence: the solid pathway gives
rise to the P-type spectrum, and the dashed pathway gives rise to the N-type spectrum; as
explained in the text, different gradient strengths are needed to select these two pathways. An
absorption mode spectrum can be obtained by combining the P- and N-type data in the manner
described in section l 1.12.2 on p. 405. The exact strengths and lengths needed for the gradients
G 1, G1 and G3 depend on the gyromagnetic ratios of the I and 5 spin. as described in the text.
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lineshapes. The final gradient G; is placed within an existing delay in the
pulse sequence. but the two gradients Gl and G; are not, and so will give rise
to large frequency-dependent phase errors in wl. The resulting spectrum is
therefore only suitable for an absolute value display.

It is not strictly necessary to use two gradients during 1|. However,
by placing one on either side of the 180° pulse, we can select the pathway
pl = +l —> p; = -1. which this pulse is required to bring about. If the pulse
is imperfect. then the gradients will make sure that any unwanted transfers
are dephased. At the end of the sequence the spatially dependent phase for
the pathway shown

('-V1G1ZT1 - VsG1ZT1) + (V1G2ZT2 - Vs G2ZT2) + (V1G3ZT3),

where we have assumed that gradient G; is of duration T], and so on.
Rearranging this so that the (G;zr,~) are factors gives

G1ZT1(-V1- Vs) + G2ZT2(V1— Vs) + G3ZT3(V1)-

There are many combinations G111, G212 and G313 which will make this
spatially dependent phase zero i.e. refocus the pathway.

To get a handle on one of the possibilities it is easier to think ofa specific
case. Imagine that I is ‘H and S is '3C, and let us also assume that 7/H = 4)/C.
To simplify things further we will also let all of the gradients have the
same length, so that T2 = T) and T3 = T1. With these simplifications and
assumptions the refocusing condition becomes:

GlZTl('“4')’C — VC) + G2ZT1(4VC - VC) + G3ZTi(4VC) = 0-

Cancelling a factor of ZT1’)/C simplifies this to

—5G| + 3G2 + 4G3 = O.

One solution to this is for the gradient strengths to be in the ratio

G1:G2:G3=5:3:4.

In the sequence shown in Fig. 11.28 (b), the two gradients G1 are placed
within spin echoes, and the final gradient G2 is placed in an existing delay.
As a result, the evolution due to the underlying offsets will be refocused, and
so it should be possible to phase the spectrum in a straightforward manner.

The evolution of the S spin offset during the first gradient G1 is refo-
cused by the first S spin l80° pulse. The second such 180° pulse refocuses
the evolution during the second gradient G 1. For the I spin, the evolution
during the first gradient G1 is refocused during the second gradient G1 by
the I spin 180° pulse which appears between these two gradients; this pulse
was part of the original sequence.

Since gradients are applied during 1| , the resulting spectra will be phase
modulated as a function of 1|. However, by recording both the P- and N-type
spectra (the solid and dashed lines on the CTP), it will be possible to obtain
an absorption mode spectrum using the method described in section l 1.12.2
on p. 405.
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For the solid CTP shown in sequence (b) (the P-type spectrum), the
spatially dependent phase at the end of the sequence is:

(*V1G1ZT| - VsG|ZT1) + (V1GiZT1 — ')’$G1ZT1)+(')/JGQZTQ).

The phase accrued by the I spin due to the first gradient pulse G1 is equal
and opposite to that accnied during the second gradient pulse G1 on account
of the change in sign of p; caused by the I spin 180° pulse. Thus, the first
and third terms in the above expression cancel. The refocusing condition is

-2VsGiZTl + V1G2zT; = 0

which rearranges to
G1 T1 ')/1

G2T2 2Vs
In the case that I and S are ‘H and BC, respectively, the refocusing condition
is (G1T1) = 2(G2T2)-

We need different gradients to select the dashed CTP, which corresponds
to the N-type spectrum. A similar calculation to the above shows that for
this pathway the refocusing condition is

2')/_gG;ZT] + ')//G227‘; = 0

which rearranges to
G1" = _11_
G2T2 2Vs i

So for the case of a 'H—l3C HMQC, the gradient ratio is (G111) = —2(G2r2)
i.e. one of the gradients needs to be applied in the opposite direction to those
needed for the P-type experiment.

Suppressing the unwanted I spin magnetization
From our original discussion of the HMQC experiment, you will recall that
a major difficulty is suppressing the signal from the I spins which are not
coupled to S. In the case where I is ‘H, and S is BC, the unwanted signal
is around a hundred times stronger than the wanted signal, so we have to
suppress the former very effectively if we are to be able to see the latter.

Looking at the sequences in Fig. 11.28, we can see that, with the gra-
dient combinations we chose, the uncoupled I spin magnetization remains
dephased at the end of the sequence. For example, in sequence (b) this I
spin magnetization is dephased by the first gradient G1, but is then rephased
by the second gradient G1 on account of the change in sign of the coherence
order caused by the I spin 180° pulse. However, the magnetization is once
again dephased by gradient G2, and so does not contribute to the observed
signal.

The fact that the unwanted pathways are dephased at the end of the
sequence, and so never contribute to the observed signal, is one of the very
attractive features of selecting a pathway with gradients. This is in contrast
to phase cycling where, for each step of the cycle, all pathways contribute
to the signal, but it is arranged that the unwanted contributions will cancel
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when the slgtials from all the steps are combined. As was mentioned
above. the effectiveness of such cancellation is very much dependent on
the stability of the spectrometer. Generally speaking, it has been found that
selection with gradients is far more effective than phase cycling when it
comes to suppressing intense unwanted signals.

ll.l3.3 HSQC
Figure l 1.29 shows how gradients can be used to select the required path-
way in an HSQC pulse sequence. Like the HMQC sequence shown in
Fig. l 1.28 (b), the presence of a gradient during t1 means that the sequence
will give a P- or N-type data set, depending on the choice of the gradients.
By recombining these data sets, an absorption mode spectmm can be ob-
tained.

Gradient G2 is placed in a spin echo, so the evolution of the underlying
S spin offset is refocused. Similarly, the evolution of the I spin offset during
gradient G3 is refocused as this gradient is placed in the final spin echo
which forms a part of the original HSQC sequence. We therefore expect to
be able to phase the spectrum.

Gradient G1, which is inserted between the second I spin 90° pulse and
the first S spin 90° pulse, plays a role which we have not encountered before.
If we work through the product operator analysis of this pulse sequence, we
will find that the anti-phase term 2I,S:, present at the end of the second
delay r, is transformed into the term 2I;S; by the second I spin 90° pulse.
This term is along z, and so is unaffected by the gradient.

ln contrast, if we consider the magnetization from the I spins which
are not coupled to S, at the end of the second -r delay this magnetization
appears along y. It is therefore unaffected by the 90°(y) pulse, leaving the
magnetization to be dephased by the gradient G1. The role that this gradient

.|#u¢-i u
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Fig. 11.29 Pulse sequence for an HSQC experiment utilizing gradient pulses for coherence
selection. Gradient G1 is a purge gradient as, when it is applied, the wanted magnetization
is along z. whereas the unwanted magnetization (from I spins not coupled to S) is transverse.
The gradients G2 and G3 can be chosen to select either the P-type pathway (solid line) or the
N-type pathway (dashed line); by combining these two data sets it is possible to obtain an
absorption mode spectrum. Gradient G9 is contained within a spin echo, so the evolution of
the underlying S spin offset during the gradient is refocused. Gradient G3 is placed within a
spin echo present in the original HSQC sequence; the evolution of the I spin offset is therefore
refocused.
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plays is therefore to dephase the unwanted magnetization, while leaving the
wanted z-magnetization unaffected. In other words, G1 is a purge gradient.

It may be that this purge gradient, in conjunction with phase cycling,
will give acceptable suppression of the unwanted I spin magnetization. If
this is the case, then there is no need to go to the complication of introducing
the further gradients G3 and G3. For biological samples which have been
globally labelled in BC or '5 N, it is generally found that perfectly adequate
suppression of the unwanted signals can be obtained using the purge gradi-
ent G1 and some limited phase cycling.

The refocusing condition is

1*=VsG2ZT2 + V1G3zT3 = 0,
where we have assumed that gradients G2 and G2 have durations T3 and T3,
respectively. The positive sign is for the N-type pathway (dashed line),
whereas the negative sign is for the P-type pathway (black line). This
condition rearranges to

G2T2 iV1
Gs T3 Vs

11.14 Advantages and disadvantages of coherence
selection with gradients

We have already mentioned, in the context of the HMQC experiment. that
the big advantage of using gradient pulses is that the unwanted pathways
simply do not contribute to the observed signal. In contrast to phase cycling,
therefore, the stability of the spectrometer is not so crucial.

Selection made using gradients is immediate, which is quite the opposite
to phase cycling, where the selection process is only complete once the
phase cycle has been finished. If the sample gives spectra with good signal-
to-noise ratio in a single transient, completing all the steps of the phase
cycle will just make the experiment unnecessarily long, but we have no
option but to complete all the steps. In contrast, using gradient selection we
can keep the experiment time to the absolute minimum needed to achieve
the required signal-to-noise ratio. For concentrated samples, experiments
using gradient selection can therefore be recorded in the shortest possible
times.

However, these advantages of gradient selection come with a price. As
we have seen, the inability of gradients to select symmetrical pathways
leads to a loss of signal. Also, if we wish to retain absorption mode line-
shapes, special steps need to be taken to control the evolution of the offset
during the gradients. Usually, this will involve adding extra delays and extra
refocusing pulses to the sequence. Finally, if gradients are introduced into
the evolution time t1, we will have to record separate P- and N-type data
sets in order to be able to obtain an absorption mode spectrum.

Generally, the advantages of coherence selection with gradients out-
weighs the disadvantages, so the use of gradients has become a matter of
routine. Inverse correlation experiments, such as HMQC, on natural abun-
dance samples benefit very much from selection with gradients. and it is
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fair to say that such experiments have only become routine as a result of the
use of gradients. In the complex pulse sequences devised for biomolecular
NMR. gradient pulses also play a key role.

11.15 Suppression of zero-quantum coherence
Neither phase cycling nor gradient pulses can distinguish between z-
magnetization and zero~quantum coherence as both have order p = O. In the
case of field gradients, z-magnetization is not dephased as it does not evolve
about the applied field along the z-axis. For zero-quantum coherence, the
reason why there is no dephasing in a gradient is a little more subtle.

Zero-quantum coherence is represented by operator products of the type
I1.,I;;_. In the absence of a gradient, the I1, term will evolve in the usual
way, acquiring a phase factor exp(—i§21r) which depends on the offset of
spin one. I3- will acquire a phase factor exp (iQ;I), which is in the opposite
sense and depends on the offset of spin two. Overall, the operator product
acquires a phase which depends on the diflerence of the two offsets:

exp(i[Q2 - Q1]t) i1,i2-.
As we saw above, in the presence of a gradient, the spatial dependence of
the magnetic field results in the evolution frequency having an extra term
Qlz), where Q(z) = -7/Gz. This term is simply added to the offsets of the
spins, so that the evolution of I1», and I2_ is now

eXp(—i[Q1 + Q(z)lr)i1+ exp (ilflz + Q(z)]r)7z_-
As a result, the evolution of the zero-quantum term is

BXP (ilQ2 + 9(1) - Q1 - Q(z)l1) ii+i2--
Clearly, the two offset terms Q(z) which derive from the gradient cancel
one another. Therefore, the evolution of the zero-quantum coherence is
unaflected by the presence of the gradient. What is happening here is
that the gradient is affecting the two spins involved in the zero-quantum
coherence in an equal and opposite way, such that overall there is no net
effect.

This inability to separate zero quantum and z-magnetization causes dif-
ficulties in many two-dimensional experiments. For example, in NOESY
the desired cross peaks arise from z-magnetization i.e. operators such as I1:
and I21, present during the mixing time. The final pulse transforms these
operators into —i1,. and —I2,, which give in-phase multiplets.

In a coupled two-spin system, anti-phase terms will develop during
t1, and some of these will be turned into zero-quantum coherence by the
90° pulse placed at the end of t1. Part of this zero-quantum coherence,
specifically ZQV, is transformed by the final 90° pulse into anti~phase mag-
netization along the x~axis:

» »» »» t/2>ti,1',> »» A»ZQ, E 211,12. - 211.12, 211.12. - 211.12..
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ta) (b)
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Fig. 11.30 Illustration of how a NOESY cross peak can be swamped by zero-quantum
interference. The cross-peak multiplet shown in (a) is a mixture of an NOE contribution
(about 20%) and a contribution from zero-quantum coherence present during the mixing time
(about 80%). The NOESY contribution is an in-phase absorption mode doublet, whereas
the zero-quantum contribution is anti-phase in each dimension, and has the dispersion mode
lineshape. In multiplet (a) the NOE contribution is simply not visible, but is swamped by the
anti-phase dispersive multiplet. If this contribution from the zero quantum is suppressed. the
NOE multiplet becomes clearly visible, as shown in (b).

The important point to note here is that the wanted NOESY peaks are
in-phase and appear along the y-axis, whereas the unwanted peaks, which
arise from zero-quantum coherence, are anti-phase and along the x-axis.
So, if the NOESY peaks are phased to absorption in (1)2, the peaks from the
zero quantum will be in anti-phase dispersion. The same is true for the wl
dimension: the NOESY peaks are in-phase and in absorption, whereas the
zero-quantum derived peaks are anti-phase and dispersive.

The presence of the anti-phase dispersive terms represents something
of a problem when recording NOESY spectra of coupled spin systems. It
is all too easy for the anti-phase dispersive multiplets to obscure NOESY
cross peaks, especially as the two kinds of peaks can lie directly on top of
one another. The problem is particularly acute if the NOESY cross peaks
are weak, as is often the case for short mixing times. In such situations, the
zero-quantum contribution can completely swamp the NOESY peak, as is
illustrated in Fig. 11.30.

Similar interference from zero-quantum coherence occurs in TOCSY
and ZCOSY spectra. There is clearly a need for a method of suppressing
the zero-quantum coherence, which is what we tum to next.

ll.l5.l The z-filter
A convenient framework for thinking about this problem of suppressing
zero-quantum coherence is to consider the pulse sequence element known
as a z-filter, shown in Fig. 11.31. The idea of this element is that in-phase y-
magnetization present at point A will reappear as in-phase y-magnetization
at point D, but that all other magnetization will be suppressed.

The element works by the first pulse rotating fly to ill; the gradient does
not affect this z-magnetization, and it is then simply rotated back to fly by
the second 90° pulse, which is about —x. Any in-phase x-magnetization
present at point A is unaffected by the first pulse, and so is dephased by the
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gradient. Similarly. anti-phase terms along y are transferred to the coupled
spin by the first pulse; as they are still single-quantum coherence, they are
dephased by the gradient. For example, 2l|yl2: is transferred to —2l1;l2y,
which is dephased.

The only problem with this sequence comes from anti-phase terms along
.\'. For example. 2l1,-lg; present at point A is transferred to —2l1,‘-lg)» at point
B by the first pulse. This state is a mixture of double- and zero-quantum X ‘X
coherence. of which only the zero-quantum part, %(2l|,.l1_, — Zllxlgy), sur- l<—-— T1 d
vives the gradient to point C. Finally. this zero-quantum temi is transfomiecl RF A 3 C 0
back to anti-phase magnetization along x, %(~2l1;i3, + Zllxigz), by the final I
pulse. G G2

The z-filter is not entirely effective at selecting just the in-phase compo-
nent along y. An anti-phase component along x passes through the filter be-
cause this anti-phase term becomes zero-quantum coherence in the interval only Coherence order P : 0 is present
between the two pulses. If we had a way of suppressing the zero-quantum mween me two 90° Pulses, 1,, its idea;
coherence, We would have £1 perfect z-filter. form, only in-phase y-magnetization passes

The key to achieving this suppression is the realization that, during the from Point A *0 P°inID1h°W¢"¢Y- the
delay 1'2 between the two pulses of the z-filter, the zero-quantum coherence P‘°S°‘_‘°° °f Z°"° q“‘*Y““‘T‘ ‘Ming Tl ‘eS“i‘S

. _ . . . in anti-phase magnetization along 1 passingevolves and acquires a phase, whereas the z-magnetization does not. It is through me Sequenm These Contributions
easy to work out the details of how the zero quantum evolves using the from zero quantum can baefiminmed by
infomiation given in SeCti0n 7.12.3 on p. l80. repeating the sequence for a range of values

At point C we have the term %(2i,_,.i2,, — zilxizy) or %ZQ,.. During 1,, for the delay T1-
this coherence evolves according to

icos ([01 - n2i1.>z'Q. — isin ([91 - Q2lTz) Zbr

Fig. 11.31 The z-filter pulse sequence
element, in which the gradient ensures that

The final pulse only creates observable magnetization from the ZQV term,
giving A 4

écos " Q2172) (-2il:i2x + 2ilxI2z)-

The key thing here is that the amplitude and sign of this unwanted temi
depends on the zero-quantum frequency [Q1 — Q2] and the time rz.

The trick to suppressing this contribution is to repeat the experiment
for two different values of the z-filter delay, Tz_1 and Tzvg, such that
cos ([S), — Q2]r,_;) is equal and opposite to cos ([9; — S2211-1,2). If the re-
sults of the two experiments are then added together, the anti-phase temis
will cancel completely.

A simple solution is to choose rZ_1 such that cos([Q1 - Q;]r,,|) = 1,
and 1-,’; such that cos ([0; — 031112) = —l. In other words:

IQ; -Qg|1',_, = 0, 27r, 47r and lQ1—Q3lTz’2 =zr, 37r, 57r

Taking the first option from the list in each case gives the following values
1r

T = 0 and 1 = —————.z.l 2.2 ‘Q1 __ Q2‘

if we express the offsets in terms of Hz, rather than rad s", the value of T21
looks more familiar:

TL] I 0 and TL; =
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Fig. 11.32 Three pulse sequences for
two-dimensional experiments, all of which
contain a z-filter element, which is
highlighted by the grey box. The sequences
(a), (b) and (c) are NOESY, ZCOSY and
TOCSY, respectively. In each case, a
gradient is applied in the z-filter delay in
order to dephase coherences other than
those with p = O.

It is clear that T1,; is the time needed for the zero quantum to precess through
half a revolution.

In a real molecule there will be more than one zero-quantum frequency,
so the choice of the z-filter delays is not so straightforward. However, it
tums out that there is a systematic way of choosing a set of these delays
such that coherences with a certain range of zero-quantum frequencies are
suppressed: the details can be found in the publications listed under Further
reading.

The difliculty with this approach is that it is necessary to repeat the ex-
periment several times. This can result in an unacceptably long experiment,
just as can be the case where a long phase cycle is used.

11.15.2 Implementation ofz-filters in two-dimensional experiments
The z-filter element occurs in a number of important two-dimensional ex-
periments, such as NOESY, ZCOSY and TOCSY, whose pulse sequences
are shown in Fig. 11.32. In each case, the presence of zero-quantum
coherence between the two pulses of the filter results in unwanted dispersive
contributions to the spectrum. Just as was described in the previous section,
it is possible to suppress this contribution from zero-quantum coherence by
repeating the experiment with a set of carefully chosen values for the delay
between the two pulses of the filter.

In the case of ZCOSY, the two pulses which form the filter have small
flip angles, rather than being 90° pulses. However, the issue remains the
same, regardless of the flip angle of the pulses, as in this experiment we
wish to retain only the contribution due to populations (z-magnetization)
between the two pulses, and reject all coherences, including zero-quantum.

In TOCSY, the mixing sequence is placed within a z-filter, and to
suppress the zero-quantum contributions we need to vary both the delay
between the first 90° pulse and the mixing sequence, as well as the delay
between the mixing sequence and the second 90° pulse. This is necessary
because the mixing sequence also generates zero-quantum coherence.

11.15.3 Zero-quantum dephasing
In this last section, we turn to a modification of the z-filter which makes it
possible to eliminate the zero-quanttun coherence in a single experiment.
To understand how the modification works, it is helpful to follow through a
sequence of ‘thought’ experiments.

First, imagine taking the z-filter, sequence (a) from Fig. 11.33, and then
inserting a 180° pulse during rz, to give the sequence shown in (b). The
180° pulse is placed at time r from the start of the filter, so will create a
spin echo at time 21'. As a result, the zero quantum will only evolve for time
(rz — 21'). By moving the 180° pulse around in the filter (i.e. by changing 1'),
we can vary the time over which the zero quantum will evolve. The result is
entirely equivalent to changing the delay Tz in the original z-filter, sequence
(8)-

Now suppose that we could arrange things so that, in dzflerentparts of
the sample, the 180° pulse appears at dzfierent times r. What would happen
is that the zero quantum would evolve for different times in different parts
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Fig. 11.33 Different versions of the z-filter element. The original sequence, which has already
been discussed. is shown in (a). Sequence (b) gives an altemative way of changing the time
for which the zero quantum evolves; as explained in the text, the zero quantum evolves for
time (rz - 2-r). Sequence (c) results in dephasing of the zero-quantum coherence in a single
experiment. The key feature of the sequence is a swept-frequency 180° pulse (indicated by the
rectangle with the diagonal line) applied during a gradient. See text for further details.

of the sample. For example, we could arrange things so that at the top of
the sample 1' = 0, so the zero quantum evolves for 1,, and that at the bottom
of the sample r = érz, so that the zero quantum does not evolve at all. As
we go from the top to the bottom we arrange things such that r increases
steadily, and so the time for evolution of the zero quantum goes from 1',
at the top, steadily down to zero at the bottom. The idea is illustrated in
Fig. 11.34.

When we observe our NMR signal, it is from the whole sample at once.
So if we were able to arrange for the zero-quantum evolution time to vary
along the sample, what we would actually observe would be the sum of the
signals from all these filters with different zero-quantum evolution times.
This would be the same as adding up the results from a large number of
experiments with different z-filter delays, and so the contribution from the
zero-quantum coherence would be suppressed. However, in our thought
experiment we achieve this suppression in a single experiment, which is a
great advantage. In effect, the zero quantum is dephased as a result of its
evolution becoming spatially dependent, just as in a normal gradient.

The final part of the story is turning this thought experiment into a prac-
tical pulse sequence, which we do by using a combination of a gradient with
a swept-frequency 180° pulse, as shown in Fig. 11.33 (c). As is illustrated
in Fig. 11.17 on p. 398, when a gradient is applied the NMR line becomes
very broad and e most importantly - different parts of the line correspond
to different positions in the sample. So, as shown in the diagram, the high
frequency part of the line corresponds to the top of the sample, and the low
frequency part to the bottom.

With the gradient switched on, we then apply a swept-frequency 180°
pulse. Such pulses are rather different from the ones we have encountered
so far, in that the frequency of the RF used to generate them is not constant,
but is swept steadily from one edge of the spectrum to the other. As a result,
lines at different oflsets experience the 180° pulse at different times.

If we apply such a swept-frequency pulse when the gradient is on, and
sweep the frequency from one end of the broad line to the other, the result
will be a 180° pulse appearing at different times in different parts of the
sample. This is exactly what we imagined in our thought experiment.

The z-filter element shown in (c) is far superior to sequence (a) in that

<-iTzi>

Fig. 11.34 Illustration of a ‘thought’
experiment in which we imagine that the
timing of the 180° pulse in the z-filter varies
as we move along the sample. As a result,
the time for which the zero-quantum
coherence evolves, indicated by the
double-headed open arrow, varies along the
sample.
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Fig. 1 1 .35 Illustration ofhow gradients can
be employed to advantage in selective
excitation. In sequence (a), magnetization
which experiences the selective 180°
refocusing pulse is rephased at the end of
the spin echo, but other magnetization is
dephased by both gradient pulses. This
sequence therefore gives very clean
excitation in which the only magnetization
present is from the selectively excited
resonances. By adding a 90° pulse of
appropriate phase ¢ to the end of the
sequence, the selected magnetization will be
inverted; the result is a selective inversion
sequence, shown in (b). Sequence (c) is
simply a development of (a) in which two,
rather than one, gradient echoes are used;
the sequence is called the double pulsed
field gradient spin echo, DPFGSE. As
explained in the text, this sequence has
more desirable phase properties than the
simple gradient echo.

it suppresses the zero-quantum coherence in a single experiment, rather
than requiring multiple repetitions. The strength of the gradient and the
parameters for the swept-frequency pulse have to be selected carefully; the
Further reading section gives references to publications which discuss this.

11.16 Selective excitation with the aid of gradients
In section 4.11.2 on p. 73 it was described how, by reducing the RF field
strength of a pulse, only lines which are on resonance, or close to resonance,
are excited. Such selective excitation is used quite often in NMR experi-
ments, such as the transient NOE experiment described in section 9.7.1 on
p. 280. In this section we will describe how field gradient pulses can be
used to improve the quality of selective excitation, and go on to show how
this can be used to great advantage in one-dimensional NOE experiments.

The key idea of how gradients can be used to improve selective exci-
tation is shown in Fig. 11.35 (a). The sequence starts with a non-selective
90° pulse which excites transverse magnetization from all of the spins; this
magnetization is then dephased by gradient G1. Next comes a selective
180° pulse whose frequency is set in the middle of the resonances which
we want to excite, and whose field strength has been chosen so that only
the resonances over the required range will be affected (e.g. one line or one
multiplet).

The sequence ends with the second gradient G1, which is identical to
the first. For magnetization which has not experienced the selective 180°
pulse, this second gradient simply causes further dephasing. On the other
hand, the magnetization which does experience the selective 180° pulse is
rephased by the second gradient, as the pulse sequence is a simple spin
echo.

The overall result is that magnetization from resonances which expe-
rience the selective 180° pulse is refocused at the end of the the second
gradient, whereas all other magnetization is dephased. In an experiment
which uses selective excitation, we are only interested in the fate of the
magnetization which has been excited. The advantage of this selective
gradient echo method is that the magnetization from all of the spins other
than the selectively excited ones is dephased, and is therefore unobservable,
even if further pulses are applied.

Typically the excitation sequence of Fig. l 1.35 (a) is used at the start of
a more complex pulse sequence in which the selectively excited magnetiza-
tion is manipulated further. For example, in the selective COSY experiment
shown in Fig. 7.18 on p. 176, the initial selective 90° pulse can be replaced
by this gradient echo sequence. If we do this, it is not necessary to compute
a difference spectrum as all but the magnetization from the excited spin
is dephased. The magnetization generated by the final non-selective pulse
must therefore come from the excited spin.

In the transient NOE experiment, whose pulse sequence is shown in
Fig. 9.20 on p. 280, we start out with selective inversion of the resonances
of one spin. This can be achieved simply by adding a 90° pulse, of the
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appropriate phase, at the end of the gradient echo sequence, as is shown
in Fig. 11.35 (b). Applying the pulse about —x rotates the selectively ex-
cited magnetization onto —z, whereas applying the pulse about +x, puts the
magnetization onto +z. In either case, all other magnetization is dephased.

11.16.1 The double pulsed field gradient spin echo
One of the difficulties with the gradient echo, Fig. 11.35 (a), is that the
axis along which the selected magnetization rephases (i.e. the phase of the
magnetization) is affected by the phase properties of the 180° pulse. For
example, some shaped selective pulses (section 4.11.2 on p. 73) give rise to
phase shifts which vary across the range of offsets which are excited.

These difficulties with the phase of the resulting magnetization are all
neatly side-stepped by using two gradient echoes, as shown in Fig. 11.35
(c). It turns out that the phase of the magnetization excited by this sequence
is independent of the phase properties of the selective 180° pulses (provided
the two pulses are the same). An important proviso is that the gradients must
be chosen such that only magnetization which experiences both 180° pulses
is refocused i.e. we must select only the pathway —l —> +1 —> -1.

This double pulsed field gradient spin echo, or DPFGSE, sequence can
be turned into a selective inversion pulse simply by adding a 90° pulse of
the appropriate phase at the end of the sequence, just as We did for the
single echo. Such an inversion pulse has found an important application in
one-dimensional NOE experiments, which are described in the next section.

11.16.2 The DPFGSE NOE experiment
The DPFGSE NOE experiment is essentially a modification of the one-
dimensional transient NOE experiment, shown in Fig. 9.20 on p. 280, in
which the selective inversion pulse has been replaced by a DPFGSE inver-
sion sequence: the pulse sequence is shown in Fig. 11.36.

The initial 90° pulse generates magnetization along —y, and that part
of the magnetization which experiences both of the selective 180° pulses
refocuses along ~y at the end of the second gradient G2. If the following
90° pulse has phase ¢ = +x the magnetization will be rotated onto —z

I 180' 180" P,
HF i ' ' '

G1__lI I
Fig. 11.36 The pulse sequence for the DPFGSE NOE experiment. This is essentially a one-
dimensional transient NOE experiment in which the selective 180° pulse has been replaced
by the combination of a DPFGSE sequence followed by a 90° pulse, of phase ¢. If ¢ = +x
the selectively excited magnetization is inverted, whereas if the phase is —-x the magnetization
is retumed to the z-axis. Cross relaxation takes place during -r, and the final pulse makes
the z-magnetization observable. It is necessary to compute a difference spectrum in order to
suppress the signals arising from z-magnetization which recovers due to relaxation during -r.
Two experiments are recorded, with the phase ¢ set to +x and then to —x: taking the difference
between these eliminates the unwanted signals.
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i.e. inverted, whereas if ¢ = —x. the magnetization will be returned to +z.
During the delay 1', cross relaxation takes place, and then the final 90" pulse
makes the result observable.

Although the magnetization from all but the selectively excited spin is
dephased at the end of the DPFGSE sequence, relaxation during the rather
long delay 1- allows z-magnetization to recover. This recovered magnetiza-
tion will be made observable by the final 90° pulse. As a result, the spectrum
will not simply show peaks from the initially excited spin and those spins
which are cross relaxing with it.

The unwanted peaks from this recovered z-magnetization can easily be
eliminated by a difference experiment. All we do is record the spectrum
twice, once with the phase ¢> set to +x, and once with it set to —x. The
signals due to the recovered magnetization will be the same in the two
experiments, so taking the difference will eliminate them. This is, of
course, exactly the same difference procedure we used to reveal the NOE
enhancements in the simple transient NOE experiment.

The big advantage of the DPFGSE NOE experiment over the simple
transient NOE experiment of Fig. 9.20 is that, in the former, the difference
step is only needed to suppress the signals arising from the z-magnetization
which has recovered during 1-. In contrast, in the simple transient experi-
ment, the difference step has to suppress the much larger signals from the
equilibrium z-magnetization of all the spins which are not affected by the
180° pulse. In practical use, the DPFGSE NOE gives much higher quality
spectra, enabling smaller NOE enhancements to be detected with greater
confidence.

Figure 11.37 shows experimental DPFGSE NOE spectra of quinine.
The excellent suppression of the generality of signals makes it possible to
observe even small NOE enhancements with confidence.
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Fig. 11.37 Experimental DPFGSE NOE spectra for quinine, recorded at 300 MHz. The
normal ‘H spectrum is shown at the bottom, along with two NOE spectra in which different
multiplets have been inverted (indicated by the arrow). The mixing time was 0.5 s, and the
NOE spectra are shown on an expanded vertical scale. Several NOE enhancements, including
some rather small ones. are clearly visible against the clean baseline of the spectrum. Note the
excellent suppression of the very strong peak at 3.85 ppm.
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11.18

11.1

11.2

11.3

11.4

Exercises
Using the same approach as was used to derive Eq. l 1.3 on p. 371,
show that a 1-rotation, through an angle ¢, of the operators i,»_
generates a phase factor of exp (+i¢).
State the overall coherence order, or orders, of each of the follow-
ing operators:

il+i2— 2il+i2+i3: in i2y 2ilzi2y (2ilxi2x+2ilyi2_v)

You may need to express the operators ix and I} in terms of L and
i. using Eq. 11.4 on p. 37].
In a heteronuclear spin system a coherence order can be assigned to
each spin, I and S. Assign such orders for the following operators:

A A AA AA AA
I, Sy ZIXSZ 21,5‘, 2I_‘S>..

Following the discussion in section 11.1.2 on p. 372, write down
the result of allowing each of the following operators to evolve
freely for a time t:

A A A A A A A A A

11+ 12- Il+I2+ I+S— Il-I2—I3—-

Draw up coherence transfer pathways for the following experi-
ments: (a) triple-quantum filtered COSY (which is identical to
DQF COSY, except that p = :3 between the last two pulses); (b)
zero-quantum spectroscopy (which is identical to double-quantum
spectroscopy, except that we have p = 0 during :1); (c) ZCOSY;
(d) HSQC. In all cases, retain symmetrical pathways in ti.
For the HMQC experiment, draw up coherence transfer pathways
which will give: (a) a P-type spectrum; (b) an N-type spectrum;
(c) a spectrum which can be processed to give absorption mode
lineshapes. Which of these spectra will be frequency discriminated
in the w] dimension?

Confirm that each of the combinations of A and B given in the
table on p. 381 does indeed give rise to a spectrum with the same
lineshape.
Draw up a diagram, similar to that of Fig. 11.6 on p. 382, to
illustrate that, in a pulse—acquire experiment where the pulse phase
goes through the sequence [x, y, —x, —y] and the receiver phase
goes through the sequence [—l80°, —270°, 0°, ~—90°], each spec-
trum has the same lineshape.

In section 11.5.1 on p. 384 it was shown that a pathway with
Ap = —3 could be selected with the following four-step cycle.

pulse phase: [0°, 90°, 180°, 270°] rx phase: [0°, 270°, 180°, 90°].

Show that this cycle rejects pathways with Ap = —l and Ap = 0,
but selects a pathway with Ap = +5.
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11.5

11.6

11.7

11.8

In section 11.5.2 on p. 387 it was shown how the independent
completion of two four-step cycles, the first selecting Ap = +l
and the second selecting Ap = -2, generates a sixteen-step cycle.
Draw up a table, similar to Table 11.1 on p. 389, in which the
required receiver phases are shown for the case where the second
pulse is cycled first.
Draw up a sixteen-step phase cycle for a two-pulse sequence in
which Ap is —l for the first pulse and +3 for the second; you
should determine the sequence of receiver phases needed to select
this pathway.

Consider a phase cycle in which the pulse phase goes through the
three steps [0°, l20°, 240°]. Devise a set of accompanying receiver
phase shifts (which will not be multiples of 90°) which will select
a pathway with Ap = -2. Without further detailed calculations,
explain which other values of Ap will be selected or rejected by
this three-step sequence.
Explain how this three-step sequence could be used to select the
appropriate pathway for N-type COSY, and devise another three-
step cycle to select the pathway for P-type COSY.

Shown below are the pulse sequence and coherence transfer path-
way for triple-quantum filtered COSY.

¢1 ¢2 ¢a ¢rx
f2—‘>Hr, ____..‘ m

N _~‘l"»':'¢'e€‘=‘_->1’ .$aT"\.*i‘ir%=' _

++

an-o~m$

i

F

>»1z|_. tr . >.t._ ‘

Grouping the first two pulses together, devise a six-step phase cycle
which will select the required pathway (i.e. step the pulse phase in
increments of 60° and determine the correct receiver phase shifts).
Once this pathway has been selected, is any further phase cycling
necessary?
Without further detailed calculations explain what other pathways
are selected by your phase cycle, and comment on whether or not
they are a matter for concem in practical spectroscopy.
Write an alternative six-step phase cycle for the above experiment
in which just the phase of the last pulse, and the receiver, are
shifted; you will need receiver phase shifts which are not multiples
of 90°.

For the NOESY experiment, group the first two pulses together and
devise a four-step phase cycle which selects the pathway shown in
Fig. 11.15 on p. 395.
Add axial peak suppression to your cycle (write out all eight steps)-
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Write a coherence transfer pathway for N-type NOESY, and devise
a suitable phase cycle to select this pathway (sixteen steps are
needed). Is is necessary to add axial peak suppression to your
cycle?

11.9 Consider the pathway shown below.

11.10

H..___]__
G T1 T2
+2 * 
+1

O -""" ""'—-'-"“-'-‘i

Write down the spatially dependent phase which accrues dur-
ing the two gradient pulses, and hence determine the ratio of
(G212)/(G111) which will refocus the pathway.
Determine: (a) the values of G1 and G; needed if the gradients are
of the same length; (b) the values of T1 and T1 needed if the two
gradients have the same absolute strength.

Consider the pathway shown below for a heteronuclear experi-
ment.

, I
S I

G T1 T2
PI E1 ___ r \ _

+1Ps_9 -

Write down the spatially dependent phase which accrues dur-
ing the two gradient pulses, and hence determine the ratio of
(G1'r1)/(G112) which will refocus the pathway.
Assuming that I is ‘H and S is “N, and that the gradients have the
same duration, work out the ratio of gradient strengths needed to
select this pathway, given that 7/(IH) = —l0 ~y('5N).
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11.11 Draw up coherence transfer pathways for the following exper-
iments, and explain how gradients could be used to select the
specified pathways. ln some cases you may nccd to modify the
pulse sequences, for example, by the inclusion of extra refocusing
pulses. Determine the relative strengths of any gradient pulses you
propose to include.

(a) P-type DQF COSY (i.e. p = —l during 1|) (absolute value
display).

(b) N-type triple-quantum filtered COSY (i.e. p = +l during ti)
(absolute value display).

(c) N-type COSY (absolute value display).

(d) Double-quantum spectroscopy, intended to give an absorp-
tion mode spectrum (i.e. refocusing phase errors due to gra-
dients, and recording separate P- and N-type spectra).

(e) N-type HSQC (absolute value display) for ‘H-13C correla-
tion.



Chapter 12

How the spectrometer
works
NMR spectrometers have now become very complex instruments capable
of performing an almost limitless number of sophisticated experiments. We
certainly do not need to understand the details of how the spectrometer
works in order to be able to use it effectively, but it is helpful to have a broad
understanding of the basic components which make up the spectrometer,
and the way in which they work together.

Broken down to its simplest form, the spectrometer consists of the
following:

O An intense, homogeneous and stable magnetic field

o A ‘probe’ in which the coils used to excite and detect the NMR signal
are held close to the sample

0 An RF transmitter capable of delivering short high-power pulses, and
longer low-power pulses for selective excitation

0 A sensitive RF receiver to capture and amplify the NMR signals

0 A digitizer to convert the NMR signals into a form which can be
stored in computer memory

0 A ‘pulse programmer’ to produce precisely timed pulses and delays

0 A computer to control everything and to process the data.

We will consider each of these in turn.

12.1 The magnet
Modern NMR spectrometers use persistent superconducting magnets to
generate the B0 field. Basically such a magnet consists of a coil of wire
through which a current passes, thereby generating a magnetic field. The
wire is held at a sufficiently low temperature (typically < 6 K) for it to

Understanding NMR Spectroscopy James Keeler
© 2005 John Wiley & Sons, Ltd
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become superconducting, meaning that its resistance goes to zero. Thus,
once the current is set running in the coil it will persist for ever, thereby
generating a magnetic field without consuming any electrical power. Su-
perconducting magnets tend to be very stable and so are ideal for NMR.

One particular difficulty in constructing superconducting magnets is that
there is a physical effect which causes the wire to cease to be supercon-
ducting once the magnetic field exceeds a certain critical value. Simple
copper wires do not remain superconducting at the kinds of field strengths
we need for NMR. However, such high fields can be achieved by using
special wires in which filaments of one metal or alloy are embedded in a
matrix of another; typical combinations include copper, niobium and tin.

To maintain the wire in its superconducting state the coil is immersed
in a bath of liquid helium. Surrounding this is usually a ‘heat shield’ kept
at 77 K by contact with a bath of liquid nitrogen; this reduces the amount
of (expensive) liquid helium which boils off due to heat flowing in from the
surroundings. The whole assembly is constructed in a vacuum flask so as
to further reduce the heat flow. The cost of maintaining the magnetic field
is basically the cost of the liquid helium and liquid nitrogen needed to keep
the magnet cool.

Of course, we do not want the sample to be at liquid helium temper-
atures, so a room temperature region - accessible to the outside world —
has to be engineered as part of the design of the magnet. Usually this
room temperature zone takes the form of a vertical tube passing through
the magnet (called the bore tube of the magnet).

12.1.1 Shims
The lines in NMR spectra are very narrow — linewidths of 1 Hz or less are
not uncommon - so the magnetic field has to be very homogeneous. Just
how homogeneous the field has to be is best illustrated by an example.

Consider a proton spectrum recorded at 500 MHz, which corresponds
to a magnetic field of 11.75 T. The Larmor frequency is given by

1
U()=~g')'B() (12.1)

where y is the gyromagnetic ratio (2.67 X 108 rad s" for protons). We
need to limit the variation in the magnetic field across the sample so that
the corresponding variation in the Larmor frequency is much less that the
width of the line, say by a factor of ten.

Suppose that the maximum acceptable change in Larmor frequency
across the same is 0.1 Hz. Using Eq. 12.1 we can compute the change
in the magnetic field as (0.1 2rr)/y = 2.4 X 10-9 T. Expressed as a fraction
of the main magnetic field this variation is about 2 X l0"°. We can see
that we need to have an extremely homogeneous magnetic field for work at
high resolution.

On its own, no superconducting magnet can produce such a homoge-
neous field. What we have to do is to surround the sample with a set of
shim coils, each of which produces a tiny magnetic field with a particular
spatial profile which can be used to cancel out the inhomogeneities in the
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main magnetic field. The current through each of these coils is adjusted
until the magnetic field has the required homogeneity, something we can
easily assess by recording the spectrum of a sample which has a sharp line.

Modern spectrometers might have up to 40 different shim coils, so
adjusting them is an involved task. However, once set it is usually only
necessary on a day to day basis to alter a few of the shims which generate
the simplest field profiles.

The shims are labelled according to the field profiles they generate. So,
for example, there are usually shims labelled x, y and Z, which generate
magnetic fields varying in the corresponding directions. The shim 12 gen-
erates a field that varies quadratically along the z direction, which is the
direction of B0. There are rrrore shims whose labels you might recognize
as corresponding to the names of the hydrogen atomic orbitals. This is no
coincidence: the magnetic field profiles that the shims coils create are in fact
the spherical harmonic functions, which are the angular parts of the atomic
orbitals.

12.1.2 The lock
Although the magnetic field produced by a superconducting magnet is very
stable, there will nevertheless be some drift in the field which is certainly
significant for the very narrow lines we see in NMR. This slow drift is
compensated for by the fiela'—frequency lock, which is a feedback system
designed to keep the field at a steady value.

The lock uses the 2H NMR signal from a deuterated solvent used to
prepare the sample (most commonly CDCI3 or D20 in the case of biological
samples). The magnetic field is adjusted by small amounts in such a way as
to keep the deuterium resonance at afixed frequency; in this way, we ensure
that the field is held at a constant value. These adjustments to the field are
made by varying the current through a coil rather like the shim coils, but
this time designed to produce a homogeneous field profile.

The deuterium NMR signal is monitored using a continuous wave (CW)
NMR experiment, rather than the usual pulse-acquire experiment. The
reason for using a CW experiment is that it is by far the simplest way of
monitoring the frequency of a single line, which is all we want to do in this
case.

The lock is a feedback system: if the field changes, the deuterium line
shifts, resulting in an error signal which in turn alters the field in such a way
as to bring the line back to its original position. As we are not expecting
the field to change quickly, this feedback loop is given a long time constant
which means that it integrates the error signal over a long time; as a result,
the field only changes rather slowly. The advantage of this approach is
that any noise in the system is also integrated over this long time, thus
diminishing its effect.
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match D23”

tune

Flg. 12.1 Schematic of the key pans of the
probe. The coil is shown on the left (with
the sample tube in grey) which forms a
tuned circuit with the capacitor marked
‘tune’. The power transfer to the transmitter
and receiver is optimized by adjusting the
capacitor marked ‘match’. Note that the coil
geometry as shown is not suitable for a
superconducting magnet in which the main
field is parallel to the sample axis.

12.2 The probe

The probe is a cylindrical metal tube which is inserted into the bore of the
magnet. The small coil used both to excite and detect the NMR signal (see
section 4.2 on p. 54 and section 4.4 on p. 56) is held in the top of this
assembly in such a way that the sample can come down from the top of
the magnet and drop into the coil. Various other pieces of electronics are
contained in the probe, along with some arrangements for heating or cooling
the sample.

The coil is connected in parallel with a capacitor to form a tuned circuit,
which has a particular resonant frequency, depending on the inductance of
the coil and capacitance of the capacitor. The signal which a given amount
of magnetization gives rise to is greatly increased when the resonance fre-
quency of the tuned circuit matches the Larmor frequency. So, to optimize
the sensitivity, it is vital to make sure that the tuned circuit is resonant at the
Larmor frequency: this is what we do when we ‘tune the probe’.

Tuning the probe means adjusting the capacitor until the tuned circuit
is resonant at the Larmor frequency. Usually we also need to ‘match the
probe’ which involves further adjustments designed to maximize the power
transfer between the probe and the transmitter and receiver; Fig. 12.1 shows
a typical arrangement. The two adjustments tend to interact rather, so tuning
the probe can be a tricky business. To aid us, the instrument manufacturers
provide various indicators and displays so that the tuning and matching can
be optimized. We expect the tuning of the probe to be particularly sensitive
to changing solvent or to changing the concentration of ions in the solvent,
as such things affect the inductance of the coil.

In NMR, the main source of noise in a well-designed spectrometer is
actually from the coil itself. This is thermal noise, which arises from the
thermal motion of the electrons in the metal. Therefore, cooling the coil
will reduce the noise - the lower we go in temperature, the less noise there
will be. Technologically, cooling the coil down to 100 K or less is a very
challenging problem, but it is one that has been solved. The gain in signal-
to-noise ratio which can be achieved by such an approach is very significant.

12.3 The transmitter
The RF transmitter is the part of the spectrometer which generates the
pulses. We start with an RF source, such as a frequency synthesizer, which
produces a stable frequency which can be set precisely via a compute
interface. We also need to be able to shift the phase of the RF source in
order to generate phase-shifted RF pulses.

As we only need the RF to be applied for a short time, the output of
the synthesizer has to be ‘gated’ so as to create a pulse of RF energy. Such
a gate will be under computer control so that the length and timing of the
pulse can be controlled.

The RF source will be at a low level (a few mW) and so needs to be
boosted considerably before it will provide the 100 W or so of power needed
to create hard (non-selective) pulses. So, a high-power amplifier is needed
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as part of the transmitter. However, we may not always want the pulses to
be at full power; for example, we might want to generate selective pulses,
which require much lower power. To allow for this option, an attenuator,
under computer control. is placed between the RF source and the amplifier.
The amplified has a fixed gain, but by using the attenuator to alter the
power going into the amplifier we can alter its power output. The complete
arrangement is illustrated in Fig. l2.2.

The more power that is applied to the probe the more intense the Bl
field will become and so the shorter the 90" pulse length. However, there
is a limit to the amount of power which can be applied because of the
high voltages which are generated in the probe, especially across the coil
and tuning capacitor. Eventually, the voltage will reach a point where it is
sutlicient to ionize the air, thus generating a discharge or arc. Not only does
this probe arcing have the potential to destroy the coil and capacitor, but it
also results in unpredictable and erratic B1 fields.

12.3.1 Power levels and ‘dB’
As we have seen, the attenuator between the RF source and the amplifier
gives us a way of altering the output power of the transmitter. The attenua-
tion is normally expressed in t1c('ihel.\‘ (abbreviated dB and pronounced ‘dee
bee’). If the power of the signal going into the attenuator is Pin and power
at the output is Pom, then the attenuation in dB is

POUIl0 l —.X 08:0 Pm

Note that the logarithm is to the base 10. not the natural logarithm; the factor
of l0 is the ‘deci’ part in the dB.

For example, if the output power is half the input power, i.e.
P," = 2 X P0,", the power ratio in dB is

l0><log,0 E = IO x logml = -3.0
Pm 2

So, halving the power corresponds to a change of -3.0 dB. the minus
indicating that there is a power reduction i.e. an attenuation. An attenuator
which achieves this etiect would be called ‘a 3 dB attenuator‘.

Likewise, a power reduction by a factor of 4 corresponds to —6.0 dB.
ln fact, because of the logarithmic relationship we can see that each 3 dB
of attenuation will halve the power. So, a l2 dB attenuator will reduce the
power by a factor of lo.

The B1 field strength is proportional to the square mot of the power
applied. The reason for this is that it is the current in the coil which is
responsible for generating the B| field, and current and power arc related by
power = resistance >< current? So, the current is proportional to the square
root of the power.

Therefore, in order to double the B, field we need to double the current,
which means multiplying the power by a factor oi‘ four: this corresponds to
a power ratio of 6 dB. So, decreasing the attenuation by 6 dB will cause

computer _____ _ __ ____ _ _
control ;
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to probe

Fig. 12.2 Typical arrangement of the RF
transmitter. The synthesizer, which is the
source of the RF, produces a low-level
output. This is fed. via a gate and an
attenuator, to a high-power amplifier. The
power output is controlled by using the
attenuator to vary the input to the amplifier.
The gate is used to switch on the RF power
when a pulse is required. All of the
components are under computer control,
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the B1 field to double. and decreasing by a further 6 dB will cause a further
doubling of the field, and so on.

Usually the attenuator is under computer control and its value can be
set in dB. This is very helpful to us as we can determine the attenuation
needed for different B1 field strengths. Suppose that with a certain setting
of the attenuator we have determined the B1 field strength to be wl,“" (in
angular frequency units). However, in another experiment we want the field
strength to be w§‘°‘”. The ratio of the powers needed to achieve these two
field strengths is equal to the square of the ratio of the field strengths:

wnew 2
powerratio= %— .wtlnrt

Expressed in dB this is
(DREW 2

power ratio in dB = l0 loglo
1
new(1)= 201og,0ij17l. (12.2)
I

This expression can be used to find the correct setting for the attenuator.
As the duration of a pulse of a given flip angle is inversely proportional

to an the relationship can be expressed in terms of the initial and new pulse
widths, tp, ing; and tp_ "aw:

. . ( tp.init )power ratio in dB = 20logm —-— .
tp. new

For example, suppose we have calibrated the pulse width for a 90° pulse
to be l5 ps, but now we want a 90° pulse of 25 /.15. The required attenuation
would be:

. . l5power ratio in dB = 2Olog,0 = -4.4 dB.

We would therefore need to increase the attenuator setting by 4.4 dB.

12.4 The receiver
The NMR signal emanating from the probe is very small (of the order of
pV), but there is no problem in amplifying this signal to a level where it can
be digitized. The amplifiers need to be designed so that they introduce a
minimum of extra noise i.e. they should be low-noise amplifiers.

The first of these amplifiers, called the pre-amplifier or pre-amp is
usually placed as close to the probe as possible (you will often see it resting
by the foot of the magnet). This is so that the weak signal is boosted before
being sent down a cable to the spectrometer console.

One additional problem which needs to be solved comes about because
the coil in the probe is used for both exciting the spins and detecting the
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signal. This means that at one moment 100 W of RF power are being
;\ppllCCl. and the next we are trying to detect a signal at the /JV level. We
need to ensure that the high~power pulse does not end up in the sensitive
receiver. thereby destroying it!

This separation of the receiver and transmitter is achieved by a device
known as a diplerer. There are various different ways of constructing such
Li device, but at the simplest level it is just a fast acting switch set up so
that when the pulse is on the high power RF is routed to the probe, and the
receiver is protected by disconnecting its input. When the pulse is off the
receiver is connected to the probe and the transmitter is disconnected.

Some diplexers are passive, in the sense that they require no extemal
power to achieve the required switching. Other designs use fast electronic
switches (rather like the gate in the transmitter) which are under the control
of the pulse programmer so that the receiver or transmitter is connected to
the probe at the right times.

12.5 Digitizing the signal
12.5.1 The analogue to digital converter
A device known as an analogue to digital converter or ADC is used to
convert the NMR signal from a voltage to a binary number which can
be stored in computer memory. The ADC samples the signal at regular
intervals, resulting in a representation of the FID as data points.

The output from the ADC is just a number, and the largest number that
the ADC can output is set by the number of binary ‘bits’ that the ADC
uses. For example, the output ofa three-bit ADC can take just eight values:
the binary numbers 000, 001,010, 01 l, 100, 101, 1lO and lll. The total
number of possibilities is 2 raised to the power of the number of bits.

The waveform which the ADC is digitizing is varying continuously, but
output of the three-bit ADC only has eight levels, so what it has to do is
pick the level which is closest to the input, as is illustrated in Fig. 12.3. The
output of the ADC is therefore an approximation to the actual waveform.

The accuracy of the digital representation of the signal can be improved
by increasing the number of bits, as this gives more levels. At present,
ADCs with between 16 and 32 bits are commonly in use in NMR spec~
trometers; a further increase in the numbers of bits is limited by technical
considerations.

The main consequence of the approximation inherent in the ADC is the
generation of a forest of small sidebands - called digitization sidebands
— around the base of the peaks in the spectrum. Usually these are not a
problem as they are likely to be swamped by thermal noise. However, if
the spectrum contains a very strong peak the sidebands from it can swamp
a nearby weak peak. Increasing the number of bits used by the ADC results
in a better approximation of the signal, and hence reduced digitization
sidebands; this point is illustrated in Fig. 12.4.

i filféi
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Fig. 12.3 Digitization ofa waveform using
an ADC with eight levels (three bits). The
output of the ADC can only be one of the
eight levels. so the smoothly varying
waveform has to be represented by data
points at one of the eight levels. The data
points, indicated by filled circles, are
therefore an approximation to the true
wavefonn. Note that the waveform is
sampled at regular intervals, as indicated by
the grey vertical lines.
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Fig. 12.5 Illustration of the effect of
sampling rate on the representation of the
FID. In (a) the data points (shown by dots)
are quite a good representation of the signal
(shown by the continuous line). In (b) the
data points are too widely separated and so
are a very poor representation of the signal.
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Fig. 12.4 Illustration of the effect of increasing the resolution of the ADC on the size of
digitization sidebands. Spectrum (a) is from a FID which has been digitized using a six-bit
ADC (i.e. 64 levels); the vertical scale has been expanded ten-fold so that the digitization
sidebarrds are clearly visible. Spectrum (b) is from a FTD which has been digitized using an
eight-bit ADC (256 levels); the improvement over (a) is evident.

12.5.2 Sampling rates
Given that the ADC is only going to sample the signal at regular intervals,
the question arises as to how frequently it is necessary to sample the FID
i.e. what the time interval between the data points should be. Clearly, if the
time interval is too long we will miss important features of the waveform,
and so the digitized points will be a poor representation of the signal. This
is illustrated in Fig. 12.5.

It turns out that, if the interval between the points is A, the highest
frequency which can be represented correctly, fmax, is given by

1
fmax — fie

fmax is called the Nyquistfrequency. Usually we think of this relationship
the other way round i.e. if we wish to represent correctly frequencies up to
fma, the sampling interval is given by:

1
A Zfmax.

This sampling interval A is often called the dwell time. A signal at fma, will
have two data points per cycle.

We will see in section 12.6 on p. 437 that we are able to distinguish
positive and negative frequencies, so if the dwell time is A, it means that the
range of frequencies from —fma,, to +fm;,,, are represented correctly.

A signal at greater than fm, will still appear in the spectrum. but not at
the correct frequency; such a peak is said to be folded. For example a peak
at (fmax + F) will appear in the spectrum at (—fm,,,, + F), as is illustrated in
Fig. 12.6.

This Nyquist condition quickly brings us to a problem. A typical NMR
frequency is of the order of hundreds of MHz. but there simply are no ADCs
available which work fast enough to digitize such a wavefomi with the kind
of accuracy (i.e. number of bits) we need for NMR. The solution to this
problem is to mix down the signal to a lower frequency, as is described in
the next section.
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12.5.3 Mixing down to a lower frequency
The range of frequencies that a typical NMR spectrum covers is rather
small, usually no more than a few tens of kl-lz. So, if we choose a frequency
in the middle of this range, and then subtract this from the frequencies of the
NMR signals, we will end up with signals whose frequencies are no more
than a few tens of kHz, rather than hundreds of MHz. Such low frequencies
are easily within the capabilities of typical ADCs.

This frequency we subtract from the NMR signals is called the receiver
reference frequency or sometimes just the receiver frequency. Shifting the
frequencies in this way is the equivalent of detection in a rotating frame, as
was described in section 4.6 on p. 64.

The subtraction process is carried out by a mixer. Such a device takes
two signal inputs at frequencies f| and fg, and produces an output which
contains signals at the sum of the two input frequencies, (f1 + f2), and at the
dlfi€r€nC'€ (f| - fg). The process is visualized in Fig. 12.7.

One of the inputs to the mixer will be the locally-generated receiver
reference frequency, and the other will be the NMR signal from the probe.
Since we choose the reference frequency to be close to the NMR frequency,
the difference of these two will be at a low frequency, whereas the sum
will be at around twice the Larmor frequency. This high-frequency signal
is easily separated from the required low-frequency signal by passing the
output of the mixer though a low-pass filler. The filtered signal is then
passed to the ADC.

12.6 Quadrature detection
In discussing the vector model, we noted that it was possible to detect both
the x- and y—components of the precessing magnetization (section 4.6 on
p. 64). These two signals are then used to construct a complex time-domain
signal:

S(r) = S, + iS,_.

It is S (t) which we subject to a Fourier transform in order to generate the
spectrum (section 5.2 on p. 86). Typically, S (1) is a damped oscillation

S(t) = S<>exp(iQr) exp(—Rt).

This time-domain signal is sensitive to the sign of Q: exp (+iQr) and
exp (—iQt) are different functions. and upon Fourier transformation will give
a peak at +Q and —Q respectively. The spectrum is said to have frequency
discrimination. It is very important that our spectrum is discriminated in
this way since, as we place the receiver reference frequency in the middle
of the spectrum, there will be peaks at both positive and negative offsets.

The question is, how is it possible to detect the .r- and _\--components
of the magnetization? One possibility is to have two coils in the probe. one
aligned along x and one along J’; these would detect the x- and y-components
of the magnetization. In practice, it turns out to be very hard to achieve such
an arrangement, partly because of the confined space in the probe and partly

(a)

Ii_“1*i'-"-1
-fmax 0 +fmax

(bl

limit
- ’max 0 + fmax

Fig. 12.6 Illustration of the concept of
folding. In spectrum (a) the peak (shown in
grey) is at a higher frequency than the
maximum set by the Nyquist condition. In
practice, such a peak would appear in the
position shown in (b).

{ir-

l
n+5 q-5

Fig. 12.7 A radiofrequency mixer takes
inputs at two different frequencies. and
produces an output which contains signals
at the sum and difference of the frequencies
of the two inputs.
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because of the difficulties in making the two coils electrically isolated from
one another.

The same effect as having two coils can be achieved by feeding the
output from one coil into two mixers, which have different phases for the
receiver reference frequency. The way this works can be understood as
follows.

A mixer works by literally ‘multiplying together’ the two inputs. So,
if one input is the NMR signal of the form A cos (wot), and the other is the
receiver reference, represented by cos (tun, t), multiplying these two together
gives

A cos (wot) X cos (wmt) = LA {cos(w0 + w,,,)t + cos(w0 — w,,,)t] .___V_, ____V_, 2
NMR reference

where we have used the identity cosA cos B E %[cos(A + B) + cos(A — B)].
The low frequency signal, cos(w0 —w,,,)t, is the one passed to the ADC. The
difference mo — wrx is the offset, Q, so the ADC digitizes the signal cos (Qt).

Now suppose we shift the phase of the receiver reference frequency by
90° (rt/2 radians). The signal applied to the mixer is now cos (wmt + rr/2)
which is the same as ~ sin (wrxt). Multiplying this by the NMR signal gives

A cos (wot) >< - sin (cunt) = la [- sin(w0 + w,,,)t + SIn(wQ - o,,,)r],
m»--—-’ im/-"""-’

NMR reference

where we have used the identity cosA sin B 2 %[sin(A + B) — sin(A — B)].
The low-frequency signal is now sin(w0 — w,,,)t, which is sin (Qt).

So, by changing the phase of the receiver reference we can alter the out-
put of the detector from %A cos (Qt) to %A sin (Qt), which we recognize as
the two orthogonal components of the precessing transverse magnetization.
We do not need two coils, therefore, but just two mixers fed with reference
frequencies which differ in phase by 90°.

This method of generating the two orthogonal components is called
quadrature detection; Fig. 12.8 shows a typical practical implementation
of this scheme. The NMR signal from the probe is split into two and fed to
two separate mixers. The receiver reference signal fed to one of the mixers
is shifted by 90° relative to that fed to the other. As a result, the outputs
of the two mixers are proportional to the two orthogonal components of the
magnetization. These two outputs are digitized separately and become the
real and imaginary parts of a complex time-domain signal.

12.7 The pulse programmer
The pulse programmer has become an immensely sophisticated piece of
computer hardware, controlling as it does all of the functions of the spec-
trometer. As the pulse programmer needs to produce very precisely timed
events, often in rapid succession, it is usual for it to run independently of
the main computer. Typically, the pulse program is specified in the main
computer and then, when the experiment is started, the instructions are
loaded into the pulse programmer and then executed there.



12.8 Further reading

mixer
W real part

of\0</ ADC
\/\/ time domainVA

low pass filter

from
probe

mixer
7 \fi</ imag. part
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Flg. 12.8 The schematic arrangement used for quadrature detection. The key part is the
two mixers which are fed with reference signals, one of which is shifted in phase by 90°.
As a result, the output of the two detectors are proportional to orthogonal components of the
transverse magnetization. The low-pass filters between the mixers and the ADCs are there to
ensure that only the low-frequency difference signal is digitized.

The acquisition of data is usually also handled by the pulse programmer,
again separately from the main computer. Only when the experiment is
finished is the data passed back to the main computer.

12.8 Further reading
A comprehensive review on all types of NMR data processing, including
issues relating to digitization:
Lindon, J. C. and Ferrige, A. G. (1980) Progress in Nuclear Magnetic
Resonance Spectroscopy, 14, 27

A more detailed description of the RF hardware used in NMR spectrome-
ters:
Chapter 5 from Fukushima, E. and Roeder, S. B. W. (1981) Experimental
Pulse NMR: a Nuts and Bolts Approach, Addison—Wesley
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12.9 Exercises
12.1

12.2

12.3

12.4

12.5

You have been offered a superconducting magnet which claims to
have a homogeneity of ‘l part in 108’. Your intention is to use it to
record 3 ' P spectra at Larmor frequency of 180 MHZ, and you know
that your typical linewidths are likely to be of the order of 25 Hz.
Is the magnet suificiently homogeneous to be of use?
[For3‘Py =1.0s >< 108 rad S-' T"‘.]
A careful pulse calibration experiment has determined that the
180° pulse length is 24.8 ps. I-low much attenuation, in dB, would
have to be introduced into the transmitter in order to give an RF
field strength, ((1)1/2n), of 2 kl-I2?

A spectrometer is equipped with a transmitter capable of generat-
ing a maximum of 100 W of RF power at the frequency of '3C.
Using this transmitter at full power, the 90° pulse width is found
to be 20 /.15. What power would be needed to reduce the 90° pulse
width to 7.5 ,us? Would you have any reservations about using this
amount of power?

Explain what is meant by ‘a two—bit ADC’ and draw a diagram to
illustrate the outcome of such a ADC being used to digitize a sine
wave.

Why is it generally desirable to use an ADC with the largest num-
ber of bits available?

A spectrometer operates at 800 MHZ for proton, and it is desired to
record a spectmm covering a shift range of l5 ppm. Assuming
that the receiver reference frequency is placed in the middle of
this range, what range of frequencies (in Hz) is covered by the
spectrum, and what would the sampling interval (dwell time) have
to be?



Appendix A

Some mathematical topics
This appendix contains brief outlines of some mathematical concepts which
are used frequently in the text. These outlines are more by way of a
reminder of the key ideas, rather than a full exposition of the topic.

A.1 The exponential function and logarithms
The exponential function arises in the mathematical description of all sorts
of physical processes; in NMR it is encountered particularly in the theory
of relaxation. This function can be written in one of two ways:

e'A" or exp(—Ax)

where A is a constant and x is the variable; we tend to use the latter version
in this book. Figure A.1 shows a plot of this function for three different
positive values of A.

When x = O the function takes the value 1 for all values of A, and then
as x increases the function decays away towards zero; the larger the constant
A, the faster the decay rate. For negative values of x, exp (—Ax) is greater
than one and increases steadily the more negative x becomes. This kind of
behaviour is not usually encountered in physical systems.

The natural logarithm, denoted ln, is closely related to the exponential:

if C = exp(D) then ln(C) = D.

it follows from this definition of the logarithm that

exp(ln[C]) = C.

Any number raised to the power of zero is 1, thus exp (O) = l and so it
follows that ln (1) = 0.

Exponentials and natural logarithms have a number of properties which

Understanding NMR Spectroscopy James Keeler
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Fig. A.1 Plots of the exponential function for three different values of the constant A; note
that, for all values of A. the function is equal to one when x = 0, but that as A increases, the
rate of decay of the function increases.

we use frequently in manipulations:

multiplication: exp (L) X exp (M) 5 exp (L + M)
L

division:  5 E exp (L — M)

l
reciprocal: exp (—M) 5 W17;

e

addition: ln (L) + ln (M) 5 In (L >< M)

subtraction: ln (L) — ln (M) E ln

From the final relationship we have the following special case when L = 1:

_ M
ln (1) ln (M) - ln 1

1
hence ln (——) E — ln (M),

M

where we have used ln (1) = 0.
The relevant differentials and integrals are:

d
5 exp (—Ax) = —A exp (—Ax)

Iexp (—Ax) dx = lA- exp (—Ax) + const.

d 1
3 ln (X) - ;

1
I E dx = ln (x) + const.

Note that as ln (Ax) E In (A) + ln (x), the derivative of ln (Ax) is l/x as the
ln (A) term is a constant.
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Fig. A.2 Visualization of the complex plane, in which the two orthogonal axes are labelled
‘real’ and ‘imaginary’. In (a) we see how a complex number, the dot, can be thought of as a
point in the complex plane, with components a and b along the real and imaginary axes. The
position of the point can also be specified by the distance r from the origin, and the angle 9, as
shown in (b). Note that r is real and positive.

A.2 Complex numbers
Complex numbers, particularly when combined with the exponential func-
tion, occur in the mathematical description of all sorts of physical phe-
nomena associated with oscillations and other kinds of periodic motion.
In quantum mechanics, wavefunctions and the matrix representations of
operators frequently involve complex numbers.

One way to think about ordinary numbers is to consider them as falling
on a iine, which extends from minus infinity, through zero, to plus infinity.
Complex numbers are an extension of this idea in which the numbers lie in
a plane, the horizontal axis of which gives the real part of the number, and
the orthogonal vertical axis gives the imaginary part of the number.

Figure A.2 (a) illustrates this complex plane. The dot represents the
number, and its coordinate along the two axes are a and b. Therefore a is
the real part of the number and b is the imaginary part. Such a complex
number is written

a + ib,

where i is the ‘complex i’. This quantity has a number of properties which
are very important when it comes to manipulating complex numbers:

i2

i3

i4

I
i

The last of these properties is proved by multiplying the top and bottom of
l/i by i:

-1
Fxi;-i
i2><i2E—l><—lE+l
—i.

l 1 i
_ E _.X_
1 l I

i i .
E j-‘EiE—-1,

12 —l
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The complex conjugate of a complex number, indicated by a super-
script it, is found by changing the sign of the imaginary part:

(a + ib)* E (a — ib)

If a complex number is multiplied by its complex conjugate, the result
is a real positive number:

(a+ib)><(a+ib)* = (a+ib)><(a—ib)
= a2—iab+iba—i2b2
= a2 + b2,

where, to go to the last line we have used i2 = —l. For a general complex
number z, zz* is known as the square modulus of z, lzlz:

square modulus: |z|2 = zz*.

Another way of thinking about a complex number is shown in Fig. A.2
(b). Here we specify a position in the complex plane in terms of the distance
r of the point from the origin, and an angle 6, measured as shown in the
diagram. The distance r is, by definition, real and positive. It follows from
simple trigonometry that the real and imaginary parts are given by:

real: a = rcos6 imaginary: b = rsin 0. (A.1)

Using this representation, the square modulus is computed as follows

(a + ib)(a + ib)*=(rcos6+ irsinél) >< (rcos6—irsin6)
= (r cos 0? - to cos 0)(r sin 0) + to sin 0)(r cos 0) - Po sin of
= rl(cos2 0 + sinz 6)

_ = :1.

To go to the last line, we have used the identity cos2 9 + sinz 6 E 1. What
we have shown here is that the square modulus is just r2, the square of the
distance from the origin.

A.2.1 The complex exponential
It can be shown that the exponential of an imaginary number (ix) obeys

exp (ix) 2 cos x + i sin x. (A.2)

If we express the real and imaginary parts of a complex number a + ib in
terms ofr and 9, as in Eq. A. 1, we find:

a+ib= rcos6+irsinl9.

Comparison of this with Eq. A.2 shows that we can write the complex
number as

a + ib I rexp(i9).
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This representation of :1 complex number is very convenient for many pur-
poses.

The complex conjugate of r exp (i9) is found in the usual way by chang-
ing the sign of the imaginary part (remember that r is real):

[r exp (i9)]* = r exp (-»i6).

Using this, the square modulus is

(a + ib) X (a + lb)" = rexp(i6) X [r exp (i8)]*
= rexp (i9) rexp (—i6)
= ,1 eXp(i6 - i6)
= ,1,

where to go to the last line we have used exp (0) = l. As we found before,
the square modulus is simply r2:

|r exp (i9)|2 = r2.

Since we have defined r to be positive, it follows that the modulus of a
complex number written in the form r exp (i6) is r.

The complex exponential obeys all the rules which apply to the regular
exponential function, so manipulation of complex numbers represented in
this r/6 format is straightforward.

From Eq. A.2 it is clear that the complex exponential is closely related to
trigonometric functions. This leads to a number of useful identities, which
can be developed in the following way:

exp (i 6) + exp (—i 0) E (cos 6 + i sin 6) + (cos 6 — i sin 6)
E 2 cos 9.

Similarly, exp (i 6) — eXp(——i 6) 2 2i sin 6. It is therefore possible to express
sine and cosine in terms of complex exponentials. These relationships are
usually written as

cos 0 E g [exp (1 9) + exp(—-i 0)] , (A.3)
and

sin 0 E 2'-, [exp (i 0) » exp (—i 0)]. (A.4)

A.3 Trigonometric identities
The sine and cosine functions obey the following:

sin (—A) E — sin (A) cos(—A) E cos (A).

Products of sine and cosine functions arise every time we make a cal-
culation using product operators, so we frequently need to manipulate such
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products. For convenience, the set of identities needed for such manipula-
tions are repeated here:

cosA cos B E % [cos (A + B) + cos (A — B)]
sinA sin B E é [cos (A — B) — cos (A + B)]
sinA cos B 2 % [sin (A + B) + sin (A — B)]

cosA sin B E % [sin (A + B) — sin (A — B)].
The fourth of these is the same as the third with A and B swapped, but it is
included for convenience. These identities are easily proved by expressing
the product on the left using complex exponentials i.e. using Eqs A.3 and
A.4. For example:

cosA cos B 2 % [exp (iA) + exp (—iA)] % [exp (i B) + exp (—i B)]

E §{exp (i [A + Bi) + eXp(—i [A + B1)
M, 7 _.

=2 cos(A+B)

+ exp(i [A _ B1) + exp(-—i [A - 51)}
=2 cos (A-8)

E %[c0s(A+B)+cos(A— B)].

The sine and cosine of the sum and difference of angles have the fol-
lowing identities:

sin(A:B) E sinAcosB;l;cosAsinB
c0s(Ai-B) 2- cosAcosB1FsinAsinB.

Again, these are easily proved using complex exponentials. Of special
interest is the case where A = B, which gives

sin (2A) E 2 sinA cos B
cos (2A) E cosz A ~— sin2 A.

From the definition of sine and cosine it follows that

cos2A + sinz A =1,
from which it follows that

cos2A = l — sinz A and sin2 A = l — cosz A.

These can be used to rewrite cos (2A) in two different ways

cos (2A) 2 2cos2A — l or cos (2A) 2 1 - 2sin2A.

These identities can be used to express sin2A and cos2A in terms of
cos (2A):

cos2A E %[l + cos (2A)] and sin2A E %[l — cos (2A)].

A.4 Further reading
Sivia, D. S. and Rawlings, S. G. (I999) Foundations ofScience
Mathematics, Oxford University Press
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A Boltzmann distribution, 1 19, 135, 264
absolute value spectrum, 240 bra, 111
absorption mode lineshape, 88 broadband decoupling
active coupling heating during, 16

in COSY cross peak, 326 in 13C spectra, 15
active spin in HSQC, 216

in spectrum Of IWO coupled SpinS, 41 sequence, 15
ADC, 435 bulk magnetization

digitization sidebands, 435 at equilibrium, 53
number of bits, 435 calculated from density operator, 132

analogue to digital converter, see ADC origin of, 51
angular frequency, 18 precession of, 54

conversion to Hz, 18 related to ensemble average, 117
angular momentum related to expectation values for individual spins,

classical, 31 117
nuclear spin, 31 vector, 52

anti-phase magnetization, 158
coherence transfer using pulses, 170 C
effect of heteronuclear decoupling, 174 calibration of pulses, 66
from evolution of coupling, 154 chemical shift
in three-spin system, 319 conversion to frequency, 7
interconversion with in-phase using spin echo, ppm scale, 6

168 chemical shift anisotropy, see CSA
multiplet from, 159 circular motion, 17

anti-phase square array described using complex exponential, 21
in COSY, 198 phase shift in, 19
in COSY cross peak of three-spin system, 325 coherence
in description of reduced multiplet, 330 relation to superposition state, 138

attenuator, 432 coherence order
axial peak definition of, 370

moved using States-TPPI, 239 effect of pulses, 373
origin in NOESY, 288 evolution of operators of particular order, 372
suppression in NOESY, 289 in heteronuclear systems, 376
suppression using phase cycling, 391 introduced, 178

axis system observable, 374
right-handed, 53 possible values, 371

relation to raising and lowering operators, 178
B coherence transfer

Bi field, see radiofrequency field by pulses from anti-phase state, 170
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in INEPT experiment, 171
coherence transfer pathway

amplitude modulated data, 379
cancellation of unwanted, 385
defined, 375
in heteronuclear experiments, 376
P- and N-type data, 378
phase modulated data, 378
relationship to frequency discrimination, 377
retaining symmetrical, 379
selection using phase cycling, 384
selection with field gradient pulses, 401

coil
in probe, 432
used for detection, 55
used to generate radiofrequency field, 56

combination line
in three-spin system, 46

complex conjugate, 444
complex exponential, 444

relation to trigonometric functions, 445
complex numbers, 443

complex conjugate, 444
r/19 representation, 444
square modulus, 444

constant time
COSY, 352
COSY, intensity of cross and diagonal peaks,

353
COSY, linewidth in wt, 355
HSQC, 355
pulse sequence element, 352

correlation function

anti-phase square array in, 198
constant time, 352
constant time, analysis using product operators,

352
constant time, intensity of cross and diagonal

peaks, 353
constant time, lineshapes in, 353
constant time, linewidth in wt, 355
constant time, problems with, 353
constant time, pulse sequence, 353
cross peak, 196
cross-peak multiplet in a three-spin system, 324
detection of small couplings, 202
diagonal peak, 195
diagonal peak in small flip angle, 335
double-quantum filtered, 204
form of cross-peak multiplet, 196
form of diagonal-peak multiplet, 199
interpretation of, 194
phase cycle, 393
phase properties, 201
problems with, 203
pulse sequence, 195
reduced multiplets, 328
selective version, 176
small flip angle, 334
small flip angle, analysed using polarization op-

erators, 338
small flip angle, lineshape of cross peak, 341
small flip angle, lineshape of diagonal peak, 341
small flip angle, problems with, 343
three-spin system, 323
two-dimensional, 194

definition, 257 coupling
exemplified, 258
exponential fomi, 260
reduced, 260
relation to correlation time, 260

correlation time
definition, 256
relation to correlation function, 260

constant, 10
effect on evolution of product operators, 154
not refocused by spin echo in homonuclear case,

165
refocused in heteronuclear spin echo, 168
sign of constant, 12
term in Hamiltonian, 39

typical Values, 257 coupling constant
cosine modulation

in two-dimensional NMR, 191
lack of frequency discrimination, 232
used in States—Haberkorn—Ruben method, 235

COSY

determination of relative signs using reduced
multiplets, 331

effect of sign, 41
measurement using reduced multiplet. 332
sign of. 12

analysis using product operators, 194 cross correlation, 305
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dependence of rate constant on geometry. 306
diflercntial linebroudening, 308
effect on transverse relaxation, 308
exploitation in TROSY, 308
in '5N—'H pail’. 305
in longitudinal relaxation. 305
Solomon equations in presence of, 307

cross peak
form of multiplet for COSY of three spins, 324
form of multiplet in constant time COSY, 353
form of multiplet in COSY, 196
form of multiplet in DQF COSY, 205
form of multiplet in small flip angle COSY, 334
form of multiplet in TOCSY, 228
form of multiplet in ZCOSY, 344
in COSY, 196
in NOESY, 288
in small flip angle COSY, analysed using polar-

ization operators, 339
influence of active and passive couplings on form

of, 326
cross relaxation, 276

in fast motion regime, 278
in slow motion regime, 279
transverse, 296
transverse, dependence on spectral densities, 297
transverse, during spin locking, 297
zero crossing, 279

CSA, 254
cross correlation with dipolar relaxation, 305
relaxation due to, 303
tensor, 303

CYCLOPS, 392

D
dB, 433

relation to pulse width, 434
DC spike, 392
decoupling, see broadband decoupling
density operator, 130

at equilibrium, 132, 135
definition, 131
expansion coefficients, 134
expressed in terms of in iy and iz, 133
matrix representation, 131
rotation of, 145
time evolution, 133

dephasing

due to inhomogeneous broadening, 300
during field gradient pulse, 403

detection
in rotating frame, 64
of precessing magnetization, 55

diagonal peak
form of multiplet in constant time COSY, 353
form of multiplet in COSY, 199
form of multiplet in DQF COSY, 205
form of multiplet in small flip angle COSY, 335
form of multiplet in TOCSY, 228
form of multiplet in ZCOSY, 344
in COSY, 195
in NOESY, 288
lineshape in small flip angle COSY, 341

difference spectroscopy
in HSQC, 216
in INEPT, 175
in NOE experiments, 282, 284
in selective COSY, 176

digitization
of time domain, 81
sampling rate, 436
sidebands, 435
with ADC, 435

diplexer, 435
dipolar relaxation

described using Solomon equations, 277
longitudinal relaxation for two spins, 278
of two spins, 273
transverse, for two spins, 295

Dirac notation, 111
implied integration, 111

dispersion mode lineshape, 88
double-quantum coherence

diagrammatic representation of evolution, 182
evolution of, 180
generation from anti-phase terms, 180
representation using product operators, 179

double-quantum filtered COSY, see DQF COSY
double-quantum spectroscopy, 208

analysis using product operators, 209
form of spectrum, 210
INADEQUATE experiment, 21 1
interpretation of spectrum, 210
phase cycle. 395
pulse sequence, 209

double~quantum transition
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in three-spin system, 44
in two-spin system, 42

doubly anti-phase magnetization, 319
generated in three-spin system, 321

DPFGSE, 421
in NOE experiment, 421
transient NOE spectrum of quinine, 423

DQF COSY
advantages over COSY, 207
analysis using product operators, 204
of quinine, 207
pathway selection with gradients, 409
phase cycle, 394
phase properties of cross and diagonal peaks,

205
pulse sequence, 204

dwell time, 436

E
effective field

for hard pulse, 63
in frequency units, 60
in rotating frame, 59
tilt angle of, 60

eigenfunction
associated eigenvalue, 30
of i,, 31, 112

t of Hamiltonian for one spin, 32
of Hamiltonian for three coupled spins, 43
of Hamiltonian for two coupled spins, 39
of Hamiltonian for two spins without coupling,

37
of operator, 30

eigenvalue
associated with eigenfunction, 30
of i,, 31
of Hamiltonian for one spin, 32
relation to measurement, 30

eigenvalue equation, 30
energy

operator for, 31
energy level

description of transition using, 25
in frequency units, 35
of three coupled spins, 43
of two coupled spins, 40
of two spins without coupling, 39
problem with, 26

energy level diagram
three coupled spins, 44
two coupled spins, 40

ensemble average
calculation of bulk z-magnetization, 117
calculation of transverse magnetization, 120
overbar notation, 1 18

equilibrium magnetization
origin of, 53
value of, 265

EXORCYCLE, 390
expectation value, 113

of i,, 1 13
evolution of (ix) during a pulse, 129
of i, and i_,., 115

exponential
complex, 444
falling, as weighting function, 96
function, relation to logarithms, 441
rising, as weighting function, 99

extreme narrowing, see fast motion

F
fast motion, 262

relationship between longitudinal and transverse
relaxation rates, 294

sign of NOE enhancement, 283
spectral density, 262

FID, see free induction decay
field gradient pulse

advantages and disadvantages of, 414
controlling phase errors, 408
dephasing during, 403
DPFGSE, 42]
in conjunction with inversion pulse, 407
in conjunction with refocusing pulses, 406
in DQF COSY, 409
in HMQC, 410
in HSQC, 413
inability to select multiple pathways, 405
introduced, 397
obtaining absorption mode lineshapes when gra-

dients used in ti, 405
phase errors due to, 407
refocusing condition, 401
selection of a single pathway, 401
selective excitation, 420
shaped, 403
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sign of gradient, 398
strength of gradient, 399

field—frequency lock, 431
flip angle

determination, 66
of pulse, 62

folding, 436
Fourier transform

cosine, 192
how the transform works, 82
mathematical formulation, 85
of two-dimensional cosine modulated data, 192
of two-dimensional sine modulated data, 193
sine, 193

free induction decay, 14
description of decay during, 87
due to precession of transverse magnetization,

55
representation as complex time-domain signal,

86
frequency

angular, 18
conversion from Hz to angular, 18
motion in a circle, 17
offset, 8
offset in rotating frame, 59
receiver reference, 8
relation to period, 17
scale in two-dimensional NMR, 194

frequency discrimination
by quadrature detection, 437
in one-dimensional experiments, 231
in terms of coherence transfer pathway, 377
P- and N-type in two-dimensional NMR, 233
States—Haberkorn—Ruben method, 235
TPPI method, 236

G
Gaussian

lineshape, 102
weighting function, 99

gyromagnetic ratio, 31

H
Hamiltonian

as operator for energy, 3 1
determining time evolution, 123, 133
for coupling, 39

for one spin in a field, 31
for three spins with coupling, 43
for two spins without coupling, 37
free precession for one spin, 144
free precession for two spins, 161
in frequency units, 36
pulse for one spin, 127, 145
pulse for two spins, 161

hard pulse, 63
HETCOR

analysis using product operators, 225
form of spectrum, 226
pulse sequence, 225

heteronuclear correlation spectra, 213
HETCOR, 225
HMBC, 220, 345
HMQC, 217
HSQC, 214
normal vs inverse, 213

heteronuclear steady-state NOE, 285
dependence on gyromagnetic ratio, 286

HMBC
choice of fixed delay, 220
effect of ‘H-‘H couplings, 345
form of multiplets in (1)2, 347
of quinine, 224
pulse sequence, 218
suppressing one-bond correlations in, 222
with suppression of one-bond correlations, pulse

sequence, 223
HMQC

analysis using product operators, 218
of quinine, 220
pathway selection using gradients, 410
phase cycle, 395
pulse sequence, 218
sensitivity of, 219
suppression of unwanted I spin magnetization

with gradients, 412
homogeneous broadening, 299
homospoil pulse, 409
HSQC

analysis using product operators, 214
constant time, 355
constant time, advantage of, 356
constant time, pulse sequence, 356
coupled in both dimensions. pulse sequence, 357
coupled or decoupled acquisition, 216
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form of spectrum, 216
pathway selection using gradients, 413
pulse sequence. 215
purge gradient in. 413

spectra showing. 166
suppression in constant time experiment, 352

K
sensitivity, 217 K61. 1 l 1
sensitivity-enhanced. 348
suppression of unwanted signals. 216

I
in-phase magnetization, 157

in three-spin system. 319

L
Larmor frequency

as rate of precession, 54
definition of. 34
influence ofchemical shift, 35

interconversion with anti-phase using spin echo, relation to gyromagnetic ratio. 34
168

multiplet from. 158
INADEQUATE

example of. 211

Larmor precession
about applied field. 54
detection of. 55
in rotating frame, 59

principle of experiment. 21 1 l8lliC6
INEPT. 171 coming to equilibrium with, 250

coupled acquisition. 173 line broadening, 96
decoupled acquisition. 174 lineshape
sensitivity enhancement. 171

inhomogeneous broadening. 299
decay due to. 300
description using T,’ , 302
due to field gradieni. 399
origin of, 299
refocused by spin echo, 300

initial rate approximation
analysis of NOESY, 287
analysis of transient NOE experiment, 280

integral. 9
interferogram. 189
inverse detection

in heteronuclear correlation spectra, 213
sensitivity advantage, 217

inversion pulse
described using product operators, 150
described using vector model. 62
effect on coherence order. 374
with field gradient pulse. 407

inversion—recovery
analysis of data from. 270
pulse sequence, 270

isotropic mixing. 226

J
J-modulation

of spin echo in homonuclear spin system, 163

absolute value, 241
absorption mode, 9
absorption mode Lorentzian, 88
dispersion mode Lorentzian, 88
effect of phase. 90
Gaussian, 102
mixed, 91
phase-twist, 234
two-dimensional double absorption, 192
two-dimensional double dispersion, 201
width of, 9

linewidth
at half height, 9
in an of constant time COSY, 355

local field
dipolar. 248
effect on z-magnetization, 249
from CSA, 254

lock, 431
logarithms

natural, 4-41
long-range coupling, heteronuclear

detected using HMBC, 220
longitudinal relaxation, 250

behaviour of isolated spins, 268
dipolar, of two spins, 274
effect of correlation time, 294
estimating rate constant for, 270
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maximum in rate. 261
quick estimate of rate constant for. 271

Lorentz-to-Gauss transformation. 102
Lorentzian lineshape, 88

table of width and height parameters. 90
lowering operator. 178. 370

M
magnet

superconducting, 429
magnetic moment

behaviour during relaxation, 247
energy in a field, 51

matched filter. 98
matrix representation

of ix, i_,. and I33, 116
of density operator, 131
of operator, 115
orthogonality, 134

measurement
expectation value, 113
in quantum mechanics. 26, 30
relation to eigenvalues, 30

mixer, 437
with phase shifted reference, 438

mixing period, 188
isotropic, in TOCSY, 226

modulation in two-dimensional NMR
amplitude, in terms of coherence transfer path-

way. 379
cosine amplitude, 191
cosine and sine leading to lack of frequency

discrimination, 232
mixed cosine and sine, 193
obtaining cosine and sine modulated data, 232
phase, 233
sine amplitude, 192

modulation on two-dimensional NMR
phase, in terms of coherence transfer pathway,

378
motion

cross relaxation in two motional regimes, 278
in a liquid, 256
longitudinal and transverse relaxation rates in

the two motional regimes, 294
motional regimes, 262

multiple-quantum coherence
effect of J-coupling on, 180

evolution of. 180
generation from anti-phase terms. 180
heteronuclear, 219

multiple-quantum transition
in three-spin system, 4-4
in two-spin system. 42

multiplet
doublet of doublets. 1 1
prediction using tree diagram. 10
two-dimensional. 195

N
N-type

by combining cosine and sine modulated data,
233

coherence transfer pathway for, 378
spectrum. 234

NOE
as a result of cross relaxation, 279
difference spectrum, 282, 284
measured using steady-state experiment. 284
measured using transient NOE experiment, 280
transient experiment using DPFGSE, 421

NOE enhancement
competition between cross and self relaxation,

284
defined, 283
in steady-state NOE experiment. 284
in transient experiment. 283
sign of, 283
transverse, in ROESY, 298

NOESY
analysed using the Solomon equations, 287
cross and diagonal peaks, 288
of quinine, 290
phase cycle, 395
pulse sequence, 287
relayed peaks, 290
spin diffusion in, 291
suppression of axial peaks, 289
z-filter in. 418
zero-quantum interference, 415

noise
origin of, 94

non-secular
part of transverse relaxation. 251, 293

non-selective pulse, see hard pulse
normalization
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of wavefunction, 1 12 phase correction
nuclear Overhauser effect, see NOE
Nyquist frequency, 436

folding, 436

O
observable

coherence order, 374
product operators, 160

off-resonance effects, 71
excitation of a range of offsets, 73

frequency dependent or first-order, 92
frequency independent or zero-order, 92
in two-dimensional spectra, 240

phase cycle
COSY, 393
double-quantum spectroscopy, 395
DQF COSY, 394
EXORCYCLE, 390
HMQC, 395
NOESY, 395

offset frequency phase cycling
in rotating frame, 59
of peak, 8
refocused by spin echo, 68

operator
eigenfunction of, 30
for x~ and y—components of spin angular mo-

mentum, 115
for z-component of spin angular momentum, 31
lowering, 178
matrix representation, 115
order of action, 29
raising, 178
role in quantum mechanics, 29

P
P-type

by combining cosine and sine modulated data,
233

coherence transfer pathway for, 378
spectrum, 233

paramagnetic species
relaxation by, 255

passive coupling
in COSY cross peak, 326

passive spin
in COSY cross peak, 326
in spectnim of three coupled spins, 44
in spectrum of two coupled spins, 41

phase, 19
correction of errors in spectrum, 92
effect on lineshape, 90
errors due to field gradient pulses, 407
in two-dimensional spectra, 240
of peaks in COSY, 201
origin of frequency dependent, 93
receiver, 379

basic principle, 383
combining different cycles, 387
grouping pulses together, 389
neglect of high-order coherences, 390
of final pulse, 390
of first pulse, 389
problems with, 396
refocusing pulse, 390
selection of a pathway, 384
selectivity of a given cycle, 386, 387
time saving tricks, 388

phase shift
relation to circular motion, 19

phase-twist lineshape
from phase modulated data, 234

photons
energy of, 21

polarization operators
defined, 335
effect of pulses, 337
free evolution, 336
small flip angle COSY analysed using, 338
ZCOSY analysed using, 343

populations
related to I1; etc., 275
related to ensemble average, 119
used in analysis of dipolar relaxation of two

spins, 274
used to compute z-magnetization. 1 19. 264

pre-amplifier, 434
precession

about applied field, 54
detection of, 55
in rotating frame, 59

probe, 432
tuning and matching, 432
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product operators
diagrammatic representation of evolution of coup-

ling, 156
diagrammatic representation of rotations, 151
double- and zero-quantum terms, 179
effect of coupling on, 154
for one spin, 143
for three spins, 318
for two spins, 153
interpretation, for two spins, 154
limitations, 147
notation for heteronuclear spin systems, 161
observable operators, 160
relation to magnetization, 144

product operators, analysis using
1—f sequence. 152
constant time COSY, 352
COSY, 195
double-quantum spectroscopy, 209
DQF COSY, 204
HETCOR, 225
HMQC, 218
HSQC, 214
INEPT, 172
pulse—acquire, 147
sensitivity enhanced HSQC, 348
spin echo, 149
spin echo in heteronuclear spin system, 168
spin echo in homonuclear spin systems, 162
TOCSY, 227

pulse
calibration of, 66
effect on coherence order, 373
flip angle of, 62
Hamiltonian for, 127
hard, 63
inversion, 62
on resonance, 62
phase error due to, 72
phase of, 70
swept-frequency, 419

pulse programmer, 438
pulse sequence

1-T, 152
constant time COSY, 353
constant time HSQC, 356
COSY, 195
double-quantum spectroscopy, 209

DPFGSE NOE, 421
DQF COSY, 204
HETCOR, 225
HMBC, 218
HMBC, with suppression of one-bond correla-

tions, 223
HMQC, 218
HSQC, 215
HSQC, coupled in both dimensions, 357
INEPT, 172
inversion-recovery, 270
NOESY, 287
pulse—acquire, 14,64, 147
ROESY, 298
sensitivity-enhanced HSQC, 349
spin echo, 67
steady-state NOE, 284
TOCSY, 227
transient NOE, 280
TROSY HSQC, 362
ZCOSY, 343

purge gradient, 409
in z-filter, 416
in HSQC, 413

Q
quadrature artifacts, 392
quadrature detection

principle, 437
quadrature images, 392
quantum mechanics, 28

measurement in. 113
observation in, 26
of one spin, I09
operators in, 29
wavefunctions in, 28

quinine
coupled and decoupled 13C spectra, 15
DPFGSE NOE, 423
DQF COSY, 207
HMBC, 224
HMQC, 220
NOESY, 290
proton spectrum, 15
structure, 15
TOCSY, 231

R
radiofrequency field
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calibration of, 66
described using rotating frame, 57
generation using coil, 56

raising operator, 178, 370
effect of z-rotation, 370

rate constant
for longitudinal relaxation, 267
for longitudinal relaxation of two spins by dipo-

lar mechanism, 278
for relaxation due to CSA, 304
for transverse relaxation, 291
related to spectral density, 277
theoretical prediction of, 277

receiver
blank diagram, 439
hardware, 434
phase, 379
phase following signal, 383, 385
reference frequency, 8

reduced correlation function, 260
reduced field, 59
reduced multiplets

construction of, 329
determination of relative signs of couplings, 331
from small flip angle COSY, 334
in COSY with one heteronucleus, 328
in terms of anti-phase square arrays, 330
measuring passive coupling, 332

reduced spectral density, 261
reference compound, 6
refocusing pulse

description using product operators, 150
description using vector model, 68
phase cycle, 390
with field gradient pulse, 406

relative signs of couplings
determined using reduced multiplets, 331

relaxation
defined, 246
due to CSA, 303
due to random fields, 293
in terms of populations, 266
longitudinal dipolar, of two spins, 273
mechanisms, 253
time between experiments, 271

relaxation delay, 14, 271
relaxation mechanism

CSA, 254

dipolar, 248, 254
paramagnetic species, 255
random fields, 293

resolution
effect of linewidth, 9

resolution enhancement, 98
Lorentz-to-Gauss transformation, 102
specifying parameters for, 100
with rising exponential and Gaussian, 99
with sine bell, 102

ROESY
pulse sequence, 298

rotating frame
description of radiofrequency field, 57
detection in, 64
effective field in, 59
Larmor precession in, 59
reduced field in, 59

rotation
diagrammatic representation of rotations of an-

gular momentum operators, 151
of spin angular momentum operators, 145
table of rotations of spin angular momentum

operators, 146
rotational diffusion, 256

S
scalar coupling, see coupling
secular

part of transverse relaxation, 252, 293
selective excitation, 73

aided with gradients, 420
in selective COSY, 176
phase in, 74
using shaped pulses, 74

selective inversion, 75, 280
practical implementation in TROSY, 360
used in TROSY, 358

self relaxation, 276
sensitive volume. 398
sensitivity enhancement, 96

matched filter, 98
sensitivity-enhanced experiments, 347

HSQC, 348
sensitivity-enhanced HSQC

analysed using product operators, 348
practical aspects, 351
processing, 351
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pulse sequence, 349
shaped pulses, 74
shims, 430
signal-to-noise ratio

effect of acquisition time on, 95
improved using weighting function, 96
improvement by time averaging, 14

sinc wiggles, 104
sine bell

shifted, 102
weighting function, 102

sine bell squared, 103
sine modulation

in two-dimensional NMR, 192
lack of frequency discrimination, 232
used in States-Haberkorn—Ruben method, 235

slow motion, 262
sign of NOE enhancement, 283
spectral density in, 262

soft pulses, 73
inversion with, 75
shaped, 74

Solomon equations, 277
analysis of NOESY, 287
analysis of steady-state NOE, 284
analysis of transient NOE, 280
in presence of cross correlation, 307

spatially dependent phase
defined, 399
dependence on experimental parameters, 400
due to shaped gradient, 403
in heteronuclear systems, 402

spectral density, 260
area under, 261
at Larmor frequency, maximum in, 261
at zero frequency, 263
form for exponential correlation function, 260
reduced, 261
relation to correlation function, 260

spectrum
one spin, 33
three coupled spins, 44
two coupled spins, 40

spin angular momentum
eigenfunctions and eigenvalues of fz, 31
matrix representations of operators, 116
operator for Z-component, fl, 31

operators for x- and y—components, ix and fy,
1 15

rotations of operators, 146
spin diffusion, see slow motion
spin echo

description using vector model, 67
for one spin, analysed using product operators,

149
gradient echo for selective excitation, 420
in heteronuclear systems, analysed using prod-

uct operators, 168
in homonuclear systems, analysed using prod-

uct operators, 162
interconversion of in-phase and anti-phase states,

1 68
offset refocused by, 68
phase evolution during, 70
refocusing of inhomogeneous broadening, 300
used to measure rate constant for transverse re-

laxation, 303
spin lattice relaxation, see longitudinal relaxation
spin locking, 297
spin state

effect on multiplet, 1O
label for reduced multiplet, 330
label for spectrum of two coupled spins, 41

spin—spin relaxation, see transverse relaxation
States—Haberkorn—Ruben method

frequency discrimination in two-dimensional NMR
235

States—TPPl, 239
steady-state NOE

analysed using Solomon equations, 284
heteronuclear, 285
pulse sequence, 284

strong coupling, 12
superconducting magnet, 429
superposition state, 26

effect of free evolution, 123
effect of pulse on, 127
for one spin, 110
generation of transverse magnetization by pulse,

129
swept-frequency pulse, 419

T
T1, 267
T2, 292
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T, 302
tilt angle

of effective field, 60
time averaging. 14
time domain

complex representation, 86
digitization of, 81
signal with phase shift, 90
transformation to frequency domain, 81
truncation. effect of, 104
two-dimensional. 189

time proportional phase incrementation, see TPPI
TOCSY

analysis using product operators, 227
fonn ofcross- and diagonal-peak multiplets, 228
in extended spin systems, 230
interpretation of spectrum, 226
isotropic mixing in, 226
of quinine, 231
pulse sequence, 227
Z-filter in, 418
zero-quantum interference in, 229

TPPI, 236
combined with States method, 239
implemented in COSY, 239

transient NOE experiment
effect of longer mixing times, 283
enhancement in, 283
pulse sequence, 280

transition
in terms of energy levels, 25

transmitter, 432
power level and dB, 433

transverse magnetization

relation to spectral density at zero frequency,
263

relationship between non-secular part and lon-
gitudinal relaxation, 294

secular part, 252, 293
tree diagram, 10
trigonometric identities, 445
triple-quantum transition

in three-spin system, 45
TROSY

exploitation of effect, 357
in ‘5N—'H fragment, 308
line—selective transfer in, 358
multiplet, 357
origin of effect, 308

TROSY HSQC
processing data from, 362
pulse sequence, 362

truncation, 104
tuning and matching, 432
two-dimensional lineshape

absolute value, 241
double absorption, 192
double dispersion, 201

two-dimensional NMR
cosine amplitude modulation, 191
COSY, 194
double-quantum spectroscopy, 208
DQF COSY, 204
frequency discrimination, 231
frequency scales, 194
general scheme, 188
HETCOR, 225
HMBC, 220, 345
HMQC, 217

free evolution calculated from wavefunction. 126 HSQC 214
related to ensemble average, 120
zero at equilibrium, 54, 120

transverse relaxation, 251
behaviour of isolated spins, 291
cross relaxation, 296
dipolar, of two spins, 295
effect of correlation time, 294
effect of cross correlation, 308
effect of motion, 252
measurement of rate constant for, 303
non-secular part, 251, 293
rate constant for, 291

HSQC, constant time, 355
INADEQUATE, 21 1
NOESY, 286
obtaining cosine and sine modulated data, 232
phase modulation, 233
processing. 189
recording, 189
ROESY, 298
sensitivity-enhanced HSQC. 348
sine amplitude modulation, 192
TOCSY. 226
TROSY HSQC, 361
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ZCOSY, 343 recovery to equilibrium, described, 268
relation to magnetic moments, 247

U selection with field gradient pulse, 408
unit operator, 153 ZCOSY

advantages, 345
analysis using polarization operators, 343
form of cross-peak multiplet. 344
form of diagonal-peak multiplet, 344

V
vector model. 51
vector model description of

off‘!-resorj2;)nCe'effe§gs, 71 pulse Sequence, 343
pu se ca 1 ration, z_fi1ter in’ 418
pl1lS€—-flCql1ll‘8, 64 Zero fining’ 103

Pulses’ 56 _ zero-frequency glitch, 392
pulses of different phases, 70 Zer0_quanmm Coherence
refocusing pulse, 68 dcphasingy 418

Spin echo’ 67 diagrammatic representation of evolution, 182
W evolution of, 180

generation from anti-phase terms, 180
interference in NOESY, 415
interference in TOCSY. 229
representation using product operators, 179
suppression of, 415

wavefunction, 26
eigenfunction, 30
normalization, 112
orthogonal, 112

28time evolution’ 1231 zero-‘quantum transition
weak coupling‘ 12 in three-spin system, 44

weighting function In two-Spm System’ 42
decaying exponential, to enhance sensitivity, 96
Gaussian to control noise. 99
Gaussian used in conjunction with rising expo-

nential, 99
Lorentz-to-Gauss transformation, 102
matched filter, 98
resolution enhancement with, 98
shifted sine bell, 102
sine bell, 102
sine bell squared, 103
specifying parameters, 100

Z
z-filter

in NOESY, TOCSY and ZCOSY, 418
introduced, 416
suppression of zero-quantum in, 417
zero-quantum in. 416

z-magnetization
differential equation for relaxation of, 267
driven to zero by random local fields, 249
equilibrium value, 250, 265
in terms of populations, 265
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